DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Stacy; English, Shawn; Briggs, Timothy
Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less
A Compositional Relevance Model for Adaptive Information Retrieval
NASA Technical Reports Server (NTRS)
Mathe, Nathalie; Chen, James; Lu, Henry, Jr. (Technical Monitor)
1994-01-01
There is a growing need for rapid and effective access to information in large electronic documentation systems. Access can be facilitated if information relevant in the current problem solving context can be automatically supplied to the user. This includes information relevant to particular user profiles, tasks being performed, and problems being solved. However most of this knowledge on contextual relevance is not found within the contents of documents, and current hypermedia tools do not provide any easy mechanism to let users add this knowledge to their documents. We propose a compositional relevance network to automatically acquire the context in which previous information was found relevant. The model records information on the relevance of references based on user feedback for specific queries and contexts. It also generalizes such information to derive relevant references for similar queries and contexts. This model lets users filter information by context of relevance, build personalized views of documents over time, and share their views with other users. It also applies to any type of multimedia information. Compared to other approaches, it is less costly and doesn't require any a priori statistical computation, nor an extended training period. It is currently being implemented into the Computer Integrated Documentation system which enables integration of various technical documents in a hypertext framework.
Nelson, Stacy; English, Shawn; Briggs, Timothy
2016-05-06
Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less
Compositions and their application to the analysis of choice.
Jensen, Greg
2014-07-01
Descriptions of steady-state patterns of choice allocation under concurrent schedules of reinforcement have long relied on the "generalized matching law" (Baum, 1974), a log-odds power function. Although a powerful model in some contexts, a series of conflicting empirical results have cast its generality in doubt. The relevance and analytic relevance of matching models can be greatly expanded by considering them in terms of compositions (Aitchison, 1986). A composition encodes a set of ratios (e.g., 5:3:2) as a vector with a constant sum, and this constraint (called closure) restricts the data to a nonstandard sample space. By exploiting this sample space, unbiased estimates of model parameters can be obtained to predict behavior given any number of choice alternatives. Additionally, the compositional analysis of choice provides tools that can accommodate both violations of scale invariance and unequal discriminability of stimuli signaling schedules of reinforcement. In order to demonstrate how choice data can be analyzed using the compositional approach, data from three previously published studies are reanalyzed. Additionally, new data is reported comparing matching behavior given four, six, and eight response alternatives. © Society for the Experimental Analysis of Behavior.
ERIC Educational Resources Information Center
Weiss, Stanley J.; Kearns, David N.; Antoshina, Maria
2009-01-01
According to the composite-stimulus control model (Weiss, 1969, 1972b), an individual discriminative stimulus (S[superscript D]) is composed of that S[superscript D]'s on-state plus the off-states of all other relevant S[superscript D]s. The present experiment investigated the reversibility of composite-stimulus control. Separate groups of rats…
Compositional descriptor-based recommender system for the materials discovery
NASA Astrophysics Data System (ADS)
Seko, Atsuto; Hayashi, Hiroyuki; Tanaka, Isao
2018-06-01
Structures and properties of many inorganic compounds have been collected historically. However, it only covers a very small portion of possible inorganic crystals, which implies the presence of numerous currently unknown compounds. A powerful machine-learning strategy is mandatory to discover new inorganic compounds from all chemical combinations. Herein we propose a descriptor-based recommender-system approach to estimate the relevance of chemical compositions where crystals can be formed [i.e., chemically relevant compositions (CRCs)]. In addition to data-driven compositional similarity used in the literature, the use of compositional descriptors as a prior knowledge is helpful for the discovery of new compounds. We validate our recommender systems in two ways. First, one database is used to construct a model, while another is used for the validation. Second, we estimate the phase stability for compounds at expected CRCs using density functional theory calculations.
Composition formulas of binary eutectics
Ma, Y. P.; Dong, D. D.; Dong, C.; Luo, L. J.; Wang, Q.; Qiang, J. B.; Wang, Y. M.
2015-01-01
The present paper addresses the long-standing composition puzzle of eutectic points by introducing a new structural tool for the description of short-range-order structural unit, the cluster-plus-glue-atom model. In this model, any structure is dissociated into a 1st-neighbor cluster and a few glue atoms between the clusters, expressed by a cluster formula [cluster]gluex. This model is applied here to establish the structural model for eutectic liquids, assuming that a eutectic liquid consist of two subunits issued from the relevant eutectic phases, each being expressed by the cluster formula for ideal metallic glasses, i.e., [cluster](glue atom)1 or 3. A structural unit is then composed of two clusters from the relevant eutectic phases plus 2, 4, or 6 glue atoms. Such a dual cluster formulism is well validated in all boron-containing (except those located by the extreme phase diagram ends) and in some commonly-encountered binary eutectics, within accuracies below 1 at.%. The dual cluster formulas vary extensively and are rarely identical even for eutectics of close compositions. They are generally formed with two distinctly different cluster types, with special cluster matching rules such as cuboctahedron plus capped trigonal prism and rhombidodecahedron plus octahedral antiprism. PMID:26658618
Computational Models of Relational Processes in Cognitive Development
ERIC Educational Resources Information Center
Halford, Graeme S.; Andrews, Glenda; Wilson, William H.; Phillips, Steven
2012-01-01
Acquisition of relational knowledge is a core process in cognitive development. Relational knowledge is dynamic and flexible, entails structure-consistent mappings between representations, has properties of compositionality and systematicity, and depends on binding in working memory. We review three types of computational models relevant to…
NASA Technical Reports Server (NTRS)
Nicol, M.; Johnson, M.; Koumvakalis, A. S.
1985-01-01
The behavior of gas-ice mixtures in major planets at very high pressures was studied. Some relevant pressure-temperature-composition (P-T-X) regions of the hydrogen (H2)-helium (He)-water (H2O-ammonia (NH3)-methane (CH4) phase diagram were determined. The studies, and theoretical model, of the relevant phases, are needed to interpret the compositions of ice-gas systems at conditions of planetary interest. The compositions and structures of a multiphase, multicomponent system at very high pressures care characterized, and the goal is to characterize this system over a wide range of low and high temperatures. The NH3-H2O compositions that are relevant to planetary problems yet are easy to prepare were applied. The P-T surface of water was examined and the corresponding surface for NH3 was determined. The T-X diagram of ammonia-water at atmospheric pressure was studied and two water-rich phases were found, NH3-2H2O (ammonia dihydrate), which melts incongruently, and NH3.H2O (ammonia monohydrate), which is nonstoichiometric and melts at a higher temperature than the dihydrate. It is suggested that a P-T surface at approximately the monohydrate composition and the P-X surface at room temperature is determined.
Non-invasive techniques for determining musculoskeleton body composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohn, S.H.
1984-01-01
In vivo neutron activation analysis, combined with gamma spectrometry, has ushered in a new era of clinical diagnosis and evaluation of therapies, as well as investigation into and modelling of body composition in both normal individuals and patients suffering from various diseases and dysfunctions. Body composition studies have provided baseline data on such vital constituents as nitrogen, potassium and calcium. The non-invasive measurement techniques are particularly suitable for study of the musculo-skeletal changes in body composition. Of particular relevance here is the measurement of calcium loss in astronauts during prolonged space flights.
Thermospheric temperature, density, and composition: New models
NASA Technical Reports Server (NTRS)
Jacchia, L. G.
1977-01-01
The models essentially consist of two parts: the basic static models, which give temperature and density profiles for the relevant atmospheric constituents for any specified exospheric temperature, and a set of formulae to compute the exospheric temperature and the expected deviations from the static models as a result of all the recognized types of thermospheric variation. For the basic static models, tables are given for heights from 90 to 2,500 km and for exospheric temperatures from 500 to 2600 K. In the formulae for the variations, an attempt has been made to represent the changes in composition observed by mass spectrometers on the OGO 6 and ESRO 4 satellites.
Modeling Exoplanetary Haze and Cloud Effects for Transmission Spectroscopy in the TRAPPIST-1 System
NASA Astrophysics Data System (ADS)
Moran, Sarah E.; Horst, Sarah M.; Lewis, Nikole K.; Batalha, Natasha E.; de Wit, Julien
2018-01-01
We present theoretical transmission spectra of the planets TRAPPIST-1d, e, f, and g using a version of the CaltecH Inverse ModEling and Retrieval Algorithms (CHIMERA) atmospheric modeling code. We use particle size, aerosol production rates, and aerosol composition inputs from recent laboratory experiments relevant for the TRAPPIST-1 system to constrain cloud and haze behavior and their effects on transmission spectra. We explore these cloud and haze cases for a variety of theoretical atmospheric compositions including hydrogen-, nitrogen-, and carbon dioxide-dominated atmospheres. Then, we demonstrate the feasibility of physically-motivated, laboratory-supported clouds and hazes to obscure spectral features at wavelengths and resolutions relevant to instruments on the Hubble Space Telescope and the upcoming James Webb Space Telescope. Lastly, with laboratory based constraints of haze production rates for terrestrial exoplanets, we constrain possible bulk atmospheric compositions of the TRAPPIST-1 planets based on current observations. We show that continued collection of optical data, beyond the supported wavelength range of the James Webb Telescope, is necessary to explore the full effect of hazes for transmission spectra of exoplanetary atmospheres like the TRAPPIST-1 system.
NASA Technical Reports Server (NTRS)
Longhi, John
1994-01-01
NASA grant NAG9-329 was in effect from 3/1/89 to 8/31/94, the last 18 months being a no-cost extension. While the grant was in effect, the P.I., coworkers, and students gave 22 talks and poster sessions at professional meetings, published 12 articles in referred journals (one more is in press, and another is in review), and edited 2 workshop reports relevant to this project. Copies of all the publications are appended to this report. The major accomplishments during the grant period have derived from three quarters: 1) the application of quantitative models of fractional crystallization and partial melting to various problems in planetary science, such as the petrogenesis of picritic glasses and mare basalts and the implications of the SNC meteorites for martian evolution; 2) an experimental study of silicate liquid immiscibility relevant to early lunar differentiation and the petrogenesis of evolved highlands rocks; and 3) experimental studies of massif anorthosites and related rocks that provide terrestrial analogs for the proposed origin of lunar anorthosites by multistage processes. The low-pressure aspects of the quantitative models were developed by the P.I. in the 1980s with NASA support and culminated with a paper comparing the crystallization of terrestrial and lunar lavas. The basis for the high-pressure modifications to the quantitative models is a data set gleaned from high pressure melting experiments done at Lamont and is supplemented by published data from other labs that constrain the baric and compositional dependences of various liquidus phase boundaries such as olivine/orthopyroxene, relevant to the melting of the mantles of the terrestrial planets. With these models it is possible to predict not only the thermal and compositional evolution of magmatic liquids ranging in composition from lumar mare basalt to terrestrial calc-alkaline basalts, but also the small increments of fractional melting that are produced when mantle rises adiabatically. Copies of the crystallization/melting programs have been given to several colleagues in planetary science. Additionally, a series of computer graphics programs, based on the algorithms in the crystallization programs have been developed that display liquidus diagrams appropriate to input compositions.
Accurate atomistic potentials and training sets for boron-nitride nanostructures
NASA Astrophysics Data System (ADS)
Tamblyn, Isaac
Boron nitride nanotubes exhibit exceptional structural, mechanical, and thermal properties. They are optically transparent and have high thermal stability, suggesting a wide range of opportunities for structural reinforcement of materials. Modeling can play an important role in determining the optimal approach to integrating nanotubes into a supporting matrix. Developing accurate, atomistic scale models of such nanoscale interfaces embedded within composites is challenging, however, due to the mismatch of length scales involved. Typical nanotube diameters range from 5-50 nm, with a length as large as a micron (i.e. a relevant length-scale for structural reinforcement). Unlike their carbon-based counterparts, well tested and transferable interatomic force fields are not common for BNNT. In light of this, we have developed an extensive training database of BN rich materials, under conditions relevant for BNNT synthesis and composites based on extensive first principles molecular dynamics simulations. Using this data, we have produced an artificial neural network potential capable of reproducing the accuracy of first principles data at significantly reduced computational cost, allowing for accurate simulation at the much larger length scales needed for composite design.
Naz, Gul Jabeen; Dong, Dandan; Geng, Yaoxiang; Wang, Yingmin; Dong, Chuang
2017-08-22
It is known that bulk metallic glasses follow simple composition formulas [cluster](glue atom) 1 or 3 with 24 valence electrons within the framework of the cluster-plus-glue-atom model. Though the relevant nearest-neighbor cluster can be readily identified from a devitrification phase, the glue atoms remains poorly defined. The present work is devoted to understanding the composition rule of Fe-(B,P,C) based multi-component bulk metallic glasses, by introducing a cluster-based eutectic liquid model. This model regards a eutectic liquid to be composed of two stable liquids formulated respectively by cluster formulas for ideal metallic glasses from the two eutectic phases. The dual cluster formulas are first established for binary Fe-(B,C,P) eutectics: [Fe-Fe 14 ]B 2 Fe + [B-B 2 Fe 8 ]Fe ≈ Fe 83.3 B 16.7 for eutectic Fe 83 B 17 , [P-Fe 14 ]P + [P-Fe 9 ]P 2 Fe≈Fe 82.8 P 17.2 for Fe 83 P 17 , and [C-Fe 6 ]Fe 3 + [C-Fe 9 ]C 2 Fe ≈ Fe 82.6 C 17.4 for Fe 82.7 C 17.3 . The second formulas in these dual-cluster formulas, being respectively relevant to devitrification phases Fe 2 B, Fe 3 P, and Fe 3 C, well explain the compositions of existing Fe-based transition metals-metalloid bulk metallic glasses. These formulas also satisfy the 24-electron rule. The proposition of the composition formulas for good glass formers, directly from known eutectic points, constitutes a new route towards understanding and eventual designing metallic glasses of high glass forming abilities.
Media Ion Composition Controls Regulatory and Virulence Response of Salmonella in Spaceflight
Wilson, James W.; Ott, C. Mark; Quick, Laura; Davis, Richard; zu Bentrup, Kerstin Höner; Crabbé, Aurélie; Richter, Emily; Sarker, Shameema; Barrila, Jennifer; Porwollik, Steffen; Cheng, Pui; McClelland, Michael; Tsaprailis, George; Radabaugh, Timothy; Hunt, Andrea; Shah, Miti; Nelman-Gonzalez, Mayra; Hing, Steve; Parra, Macarena; Dumars, Paula; Norwood, Kelly; Bober, Ramona; Devich, Jennifer; Ruggles, Ashleigh; CdeBaca, Autumn; Narayan, Satro; Benjamin, Joseph; Goulart, Carla; Rupert, Mark; Catella, Luke; Schurr, Michael J.; Buchanan, Kent; Morici, Lisa; McCracken, James; Porter, Marc D.; Pierson, Duane L.; Smith, Scott M.; Mergeay, Max; Leys, Natalie; Stefanyshyn-Piper, Heidemarie M.; Gorie, Dominic; Nickerson, Cheryl A.
2008-01-01
The spaceflight environment is relevant to conditions encountered by pathogens during the course of infection and induces novel changes in microbial pathogenesis not observed using conventional methods. It is unclear how microbial cells sense spaceflight-associated changes to their growth environment and orchestrate corresponding changes in molecular and physiological phenotypes relevant to the infection process. Here we report that spaceflight-induced increases in Salmonella virulence are regulated by media ion composition, and that phosphate ion is sufficient to alter related pathogenesis responses in a spaceflight analogue model. Using whole genome microarray and proteomic analyses from two independent Space Shuttle missions, we identified evolutionarily conserved molecular pathways in Salmonella that respond to spaceflight under all media compositions tested. Identification of conserved regulatory paradigms opens new avenues to control microbial responses during the infection process and holds promise to provide an improved understanding of human health and disease on Earth. PMID:19079590
NASA Astrophysics Data System (ADS)
Andersen, J. R.; Antipin, O.; Azuelos, G.; Del Debbio, L.; Del Nobile, E.; Di Chiara, S.; Hapola, T.; Järvinen, M.; Lowdon, P. J.; Maravin, Y.; Masina, I.; Nardecchia, M.; Pica, C.; Sannino, F.
2011-09-01
We provide a pedagogical introduction to extensions of the Standard Model in which the Higgs is composite. These extensions are known as models of dynamical electroweak symmetry breaking or, in brief, Technicolor. Material covered includes: motivations for Technicolor, the construction of underlying gauge theories leading to minimal models of Technicolor, the comparison with electroweak precision data, the low-energy effective theory, the spectrum of the states common to most of the Technicolor models, the decays of the composite particles and the experimental signals at the Large Hadron Collider. The level of the presentation is aimed at readers familiar with the Standard Model but who have little or no prior exposure to Technicolor. Several extensions of the Standard Model featuring a composite Higgs can be reduced to the effective Lagrangian introduced in the text. We establish the relevant experimental benchmarks for Vanilla, Running, Walking, and Custodial Technicolor, and a natural fourth family of leptons, by laying out the framework to discover these models at the Large Hadron Collider.
Damage and strength of composite materials: Trends, predictions, and challenges
NASA Technical Reports Server (NTRS)
Obrien, T. Kevin
1994-01-01
Research on damage mechanisms and ultimate strength of composite materials relevant to scaling issues will be addressed in this viewgraph presentation. The use of fracture mechanics and Weibull statistics to predict scaling effects for the onset of isolated damage mechanisms will be highlighted. The ability of simple fracture mechanics models to predict trends that are useful in parametric or preliminary designs studies will be reviewed. The limitations of these simple models for complex loading conditions will also be noted. The difficulty in developing generic criteria for the growth of these mechanisms needed in progressive damage models to predict strength will be addressed. A specific example for a problem where failure is a direct consequence of progressive delamination will be explored. A damage threshold/fail-safety concept for addressing composite damage tolerance will be discussed.
On Latent Growth Models for Composites and Their Constituents.
Hancock, Gregory R; Mao, Xiulin; Kher, Hemant
2013-09-01
Over the last decade and a half, latent growth modeling has become an extremely popular and versatile technique for evaluating longitudinal change and its determinants. Most common among the models applied are those for a single measured variable over time. This model has been extended in a variety of ways, most relevant for the current work being the multidomain and the second-order latent growth models. Whereas the former allows for growth function characteristics to be modeled for multiple outcomes simultaneously, with the degree of growth characteristics' relations assessed within the model (e.g., cross-domain slope factor correlations), the latter models growth in latent outcomes, each of which has effect indicators repeated over time. But what if one has an outcome that is believed to be formative relative to its indicator variables rather than latent? In this case, where the outcome is a composite of multiple constituents, modeling change over time is less straightforward. This article provides analytical and applied details for simultaneously modeling growth in composites and their constituent elements, including a real data example using a general computer self-efficacy questionnaire.
Composition of single-step media used for human embryo culture.
Morbeck, Dean E; Baumann, Nikola A; Oglesbee, Devin
2017-04-01
To determine compositions of commercial single-step culture media and test with a murine model whether differences in composition are biologically relevant. Experimental laboratory study. University-based laboratory. Inbred female mice were superovulated and mated with outbred male mice. Amino acid, organic acid, and ions content were determined for single-step culture media: CSC, Global, G-TL, and 1-Step. To determine whether differences in composition of these media are biologically relevant, mouse one-cell embryos were cultured for 96 hours in each culture media at 5% and 20% oxygen in a time-lapse incubator. Compositions of four culture media were analyzed for concentrations of 30 amino acids, organic acids, and ions. Blastocysts at 96 hours of culture and cell cycle timings were calculated, and experiments were repeated in triplicate. Of the more than 30 analytes, concentrations of glucose, lactate, pyruvate, amino acids, phosphate, calcium, and magnesium varied in concentrations. Mouse embryos were differentially affected by oxygen in G-TL and 1-Step. Four single-step culture media have compositions that vary notably in pyruvate, lactate, and amino acids. Blastocyst development was affected by culture media and its interaction with oxygen concentration. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
["In vivo" body composition assessment; part I: a historic overview].
Carnero, Elvis A; Alvero-Cruz, José Ramón; Giráldez García, Manuel Avelino; Sardinha, Luis B
2015-05-01
The study of body composition (BC) has gained in relevance over the last decades, mainly because of its important health- and disease- related applications within both the clinical and the sports setting. It is not a new area, and its especial relevance as an area of biology dates from the second half of the nineteenth century. In this paper, we have reviewed the three historic periods of BC, with special reference to the most important advances in in vivo assessment. Even though the earliest findings about human BC date from antiquity, the first (or 'early') stage of discovery began in 1850. Said early stage was mainly characterized by data obtained from the dissection of cadavers and by the application of biochemical methods in vivo. Longitudinal changes in body composition were also a concern. The second (so called 'recent') stage, in the second half of the twentieth century, was marked by milestones such as the formulation of the first mathematical models for the estimation of body components, and technological advances. Within the third ('contemporary' or 'current') stage of research, several groups have focused on validating the classical BC models in specific populations, on analysis of the genetic determinants (i.e. phenotypes and, more recently genotypes) of body composition, and on re-instigating the study of dynamic BC. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
A comprehensive dairy valorization model.
Banaszewska, A; Cruijssen, F; van der Vorst, J G A J; Claassen, G D H; Kampman, J L
2013-02-01
Dairy processors face numerous challenges resulting from both unsteady dairy markets and some specific characteristics of dairy supply chains. To maintain a competitive position on the market, companies must look beyond standard solutions currently used in practice. This paper presents a comprehensive dairy valorization model that serves as a decision support tool for mid-term allocation of raw milk to end products and production planning. The developed model was used to identify the optimal product portfolio composition. The model allocates raw milk to the most profitable dairy products while accounting for important constraints (i.e., recipes, composition variations, dairy production interdependencies, seasonality, demand, supply, capacities, and transportation flows). The inclusion of all relevant constraints and the ease of understanding dairy production dynamics make the model comprehensive. The developed model was tested at the international dairy processor FrieslandCampina (Amersfoort, the Netherlands). The structure of the model and its output were discussed in multiple sessions with and approved by relevant FrieslandCampina employees. The elements included in the model were considered necessary to optimally valorize raw milk. To illustrate the comprehensiveness and functionality of the model, we analyzed the effect of seasonality on milk valorization. A large difference in profit and a shift in the allocation of milk showed that seasonality has a considerable impact on the valorization of raw milk. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Selimkhanov, Jangir; Thompson, W Clayton; Patterson, Terrell A; Hadcock, John R; Scott, Dennis O; Maurer, Tristan S; Musante, Cynthia J
2016-01-01
The purpose of this work is to develop a mathematical model of energy balance and body weight regulation that can predict species-specific response to common pre-clinical interventions. To this end, we evaluate the ability of a previously published mathematical model of mouse metabolism to describe changes in body weight and body composition in rats in response to two short-term interventions. First, we adapt the model to describe body weight and composition changes in Sprague-Dawley rats by fitting to data previously collected from a 26-day caloric restriction study. The calibrated model is subsequently used to describe changes in rat body weight and composition in a 23-day cannabinoid receptor 1 antagonist (CB1Ra) study. While the model describes body weight data well, it fails to replicate body composition changes with CB1Ra treatment. Evaluation of a key model assumption about deposition of fat and fat-free masses shows a limitation of the model in short-term studies due to the constraint placed on the relative change in body composition components. We demonstrate that the model can be modified to overcome this limitation, and propose additional measurements to further test the proposed model predictions. These findings illustrate how mathematical models can be used to support drug discovery and development by identifying key knowledge gaps and aiding in the design of additional experiments to further our understanding of disease-relevant and species-specific physiology.
Selimkhanov, Jangir; Patterson, Terrell A.; Scott, Dennis O.; Maurer, Tristan S.; Musante, Cynthia J.
2016-01-01
The purpose of this work is to develop a mathematical model of energy balance and body weight regulation that can predict species-specific response to common pre-clinical interventions. To this end, we evaluate the ability of a previously published mathematical model of mouse metabolism to describe changes in body weight and body composition in rats in response to two short-term interventions. First, we adapt the model to describe body weight and composition changes in Sprague-Dawley rats by fitting to data previously collected from a 26-day caloric restriction study. The calibrated model is subsequently used to describe changes in rat body weight and composition in a 23-day cannabinoid receptor 1 antagonist (CB1Ra) study. While the model describes body weight data well, it fails to replicate body composition changes with CB1Ra treatment. Evaluation of a key model assumption about deposition of fat and fat-free masses shows a limitation of the model in short-term studies due to the constraint placed on the relative change in body composition components. We demonstrate that the model can be modified to overcome this limitation, and propose additional measurements to further test the proposed model predictions. These findings illustrate how mathematical models can be used to support drug discovery and development by identifying key knowledge gaps and aiding in the design of additional experiments to further our understanding of disease-relevant and species-specific physiology. PMID:27227543
Cancer potencies of mineral and synthetic elongated particle (EP) mixtures, including fibers from asbestos, are influenced by changes in fiber dose composition, bioavailability and biodurability in combination with relevant cytotoxic dose-response relationships. A unique and com...
A systematic comparison of recurrent event models for application to composite endpoints.
Ozga, Ann-Kathrin; Kieser, Meinhard; Rauch, Geraldine
2018-01-04
Many clinical trials focus on the comparison of the treatment effect between two or more groups concerning a rarely occurring event. In this situation, showing a relevant effect with an acceptable power requires the observation of a large number of patients over a long period of time. For feasibility issues, it is therefore often considered to include several event types of interest, non-fatal or fatal, and to combine them within a composite endpoint. Commonly, a composite endpoint is analyzed with standard survival analysis techniques by assessing the time to the first occurring event. This approach neglects that an individual may experience more than one event which leads to a loss of information. As an alternative, composite endpoints could be analyzed by models for recurrent events. There exists a number of such models, e.g. regression models based on count data or Cox-based models such as the approaches of Andersen and Gill, Prentice, Williams and Peterson or, Wei, Lin and Weissfeld. Although some of the methods were already compared within the literature there exists no systematic investigation for the special requirements regarding composite endpoints. Within this work a simulation-based comparison of recurrent event models applied to composite endpoints is provided for different realistic clinical trial scenarios. We demonstrate that the Andersen-Gill model and the Prentice- Williams-Petersen models show similar results under various data scenarios whereas the Wei-Lin-Weissfeld model delivers effect estimators which can considerably deviate under commonly met data scenarios. Based on the conducted simulation study, this paper helps to understand the pros and cons of the investigated methods in the context of composite endpoints and provides therefore recommendations for an adequate statistical analysis strategy and a meaningful interpretation of results.
Dissecting the role of milk components on gut microbiota composition
Maga, Elizabeth A.; Weimer, Bart C.; Murray, James D.
2013-01-01
The composition of human milk is tailored to contribute to the development of the gastrointestinal (GI) tract of newborns and infants. Importantly, human milk contains the antimicrobial compounds lysozyme and lactoferrin that are thought to contribute to the formation of a health-promoting microbiota. As these protective factors are lacking in the milk of dairy animals, we genetically engineered goats expressing human lysozyme in their milk and have recently reported a new animal model to dissect out the role of milk components on gut microbiota formation. Using the pig as a more human-relevant animal model, we demonstrated that consumption of lysozyme-rich milk enriched the abundance of bacteria associated with GI health and decreased those associated with disease, much like human milk. This work demonstrated that the pig is a valid animal model for gut microbiome studies on the effects of dietary components on microbiota composition, host-microbe interactions and state of the intestine. PMID:23235404
Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aab, A.; Abreu, P.; Andringa, S.
2017-04-01
We present a combined fit of a simple astrophysical model of UHECR sources to both the energy spectrum and mass composition data measured by the Pierre Auger Observatory. The fit has been performed for energies above 5 ⋅ 10{sup 18} eV, i.e. the region of the all-particle spectrum above the so-called 'ankle' feature. The astrophysical model we adopted consists of identical sources uniformly distributed in a comoving volume, where nuclei are accelerated through a rigidity-dependent mechanism. The fit results suggest sources characterized by relatively low maximum injection energies, hard spectra and heavy chemical composition. We also show that uncertainties aboutmore » physical quantities relevant to UHECR propagation and shower development have a non-negligible impact on the fit results.« less
Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröoder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zong, Z.
2017-04-01
We present a combined fit of a simple astrophysical model of UHECR sources to both the energy spectrum and mass composition data measured by the Pierre Auger Observatory. The fit has been performed for energies above 5 ṡ 1018 eV, i.e. the region of the all-particle spectrum above the so-called "ankle" feature. The astrophysical model we adopted consists of identical sources uniformly distributed in a comoving volume, where nuclei are accelerated through a rigidity-dependent mechanism. The fit results suggest sources characterized by relatively low maximum injection energies, hard spectra and heavy chemical composition. We also show that uncertainties about physical quantities relevant to UHECR propagation and shower development have a non-negligible impact on the fit results.
Cancer potencies of mineral and synthetic elongated particle (EP) mixtures, including asbestos fibers, are influenced by changes in fiber dose composition, bioavailability, and biodurability in combination with relevant cytotoxic dose-response relationships. A unique and compreh...
Silk-polypyrrole biocompatible actuator performance under biologically relevant conditions
NASA Astrophysics Data System (ADS)
Hagler, Jo'elen; Peterson, Ben; Murphy, Amanda; Leger, Janelle
Biocompatible actuators that are capable of controlled movement and can function under biologically relevant conditions are of significant interest in biomedical fields. Previously, we have demonstrated that a composite material of silk biopolymer and the conducting polymer polypyrrole (PPy) can be formed into a bilayer device that can bend under applied voltage. Further, these silk-PPy composites can generate forces comparable to human muscle (>0.1 MPa) making them ideal candidates for interfacing with biological tissues. Here silk-PPy composite films are tested for performance under biologically relevant conditions including exposure to a complex protein serum and biologically relevant temperatures. Free-end bending actuation performance, current response, force generation and, mass degradation were investigated . Preliminary results show that when exposed to proteins and biologically relevant temperatures, these silk-PPy composites show minimal degradation and are able to generate forces and conduct currents comparable to devices tested under standard conditions. NSF.
ERIC Educational Resources Information Center
Armey, Michael F.; Crowther, Janis H.
2008-01-01
Research has identified a significant increase in both the incidence and prevalence of non-suicidal self-injury (NSSI). The present study sought to test both linear and non-linear cusp catastrophe models by using aversive self-awareness, which was operationalized as a composite of aversive self-relevant affect and cognitions, and dissociation as…
Review on failure prediction techniques of composite single lap joint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ab Ghani, A.F., E-mail: ahmadfuad@utem.edu.my; Rivai, Ahmad, E-mail: ahmadrivai@utem.edu.my
2016-03-29
Adhesive bonding is the most appropriate joining method in construction of composite structures. The use of reliable design and prediction technique will produce better performance of bonded joints. Several papers from recent papers and journals have been reviewed and synthesized to understand the current state of the art in this area. It is done by studying the most relevant analytical solutions for composite adherends with start of reviewing the most fundamental ones involving beam/plate theory. It is then extended to review single lap joint non linearity and failure prediction and finally on the failure prediction on composite single lap joint.more » The review also encompasses the finite element modelling part as tool to predict the elastic response of composite single lap joint and failure prediction numerically.« less
Compositional dependence of the band gap in Ga(NAsP) quantum well heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandieri, K., E-mail: kakhaber.jandieri@physik.uni-marburg.de; Ludewig, P.; Wegele, T.
We present experimental and theoretical studies of the composition dependence of the direct band gap energy in Ga(NAsP)/GaP quantum well heterostructures grown on either (001) GaP- or Si-substrates. The theoretical description takes into account the band anti-crossing model for the conduction band as well as the modification of the valence subband structure due to the strain resulting from the pseudomorphic epitaxial growth on the respective substrate. The composition dependence of the direct band gap of Ga(NAsP) is obtained for a wide range of nitrogen and phosphorus contents relevant for laser applications on Si-substrate.
Miller, Brian W.; Symstad, Amy J.; Frid, Leonardo; Fisichelli, Nicholas A.; Schuurman, Gregor W.
2017-01-01
Simulation models can represent complexities of the real world and serve as virtual laboratories for asking “what if…?” questions about how systems might respond to different scenarios. However, simulation models have limited relevance to real-world applications when designed without input from people who could use the simulated scenarios to inform their decisions. Here, we report on a state-and-transition simulation model of vegetation dynamics that was coupled to a scenario planning process and co-produced by researchers, resource managers, local subject-matter experts, and climate change adaptation specialists to explore potential effects of climate scenarios and management alternatives on key resources in southwest South Dakota. Input from management partners and local experts was critical for representing key vegetation types, bison and cattle grazing, exotic plants, fire, and the effects of climate change and management on rangeland productivity and composition given the paucity of published data on many of these topics. By simulating multiple land management jurisdictions, climate scenarios, and management alternatives, the model highlighted important tradeoffs between grazer density and vegetation composition, as well as between the short- and long-term costs of invasive species management. It also pointed to impactful uncertainties related to the effects of fire and grazing on vegetation. More broadly, a scenario-based approach to model co-production bracketed the uncertainty associated with climate change and ensured that the most important (and impactful) uncertainties related to resource management were addressed. This cooperative study demonstrates six opportunities for scientists to engage users throughout the modeling process to improve model utility and relevance: (1) identifying focal dynamics and variables, (2) developing conceptual model(s), (3) parameterizing the simulation, (4) identifying relevant climate scenarios and management alternatives, (5) evaluating and refining the simulation, and (6) interpreting the results. We also reflect on lessons learned and offer several recommendations for future co-production efforts, with the aim of advancing the pursuit of usable science.
NASA Astrophysics Data System (ADS)
Liu, Y.; Rollinson, C.; Dietze, M.; McLachlan, J. S.; Poulter, B.; Quaife, T. L.; Raiho, A.; Ricciuto, D. M.; Schaefer, K. M.; Steinkamp, J.; Moore, D. J.
2015-12-01
Over multi-decadal to multi-centennial timescales, ecosystem function and carbon storage is largely influenced by vegetation composition. The predictability of ecosystem responses to climate change thus depends on the understanding of long-term community dynamics. Our study aims to quantify the influence of the most relevant ecological factors that control plant distribution and abundance, in contemporary terrestrial biosphere models and in paleo-records, and constrain the model processes and parameters with paleoecological data. We simulated vegetation changes at 6 sites in the northeastern United States over the past 1160 years using 7 terrestrial biosphere models and variations (CLM4.5-CN, ED2, ED2-LU, JULES-TRIFFID, LINKAGES, LPJ-GUESS, LPJ-wsl) driven by common paleoclimatic drivers. We examined plant growth, recruitment, and mortality (including other carbon turnover) of the plant functional types (PFTs) in the models, attributed the responses to three major factors (climate, competition, and disturbance), and estimated the relative effect of each factor. We assessed the model responses against plant-community theories (bioclimatic limits, niche difference, temporal variation and storage effect, and disturbance). We found that vegetation composition were sensitive to realized niche differences (e.g. differential growth response) among PFTs. Because many models assume unlimited dispersal and sometimes recruitment, the "storage effect" constantly affects community composition. Fire was important in determining the ecosystem composition, yet the vegetation to fire feedback was weak in the models. We also found that vegetation-composition changes in the simulations were driven to a much greater degree by growth as opposed to by turnover/mortality, when compared with those in paleoecological records. Our work suggest that 1) for forecasting slow changes in vegetation composition, we can use paleo-data to better quantify the realized niches of PFTs and associated uncertainties, and 2) for predicting abrupt changes in vegetation composition, we need to better implement processes of dynamic turnover and fire in current ecosystem models.
Automated classification of optical coherence tomography images of human atrial tissue
NASA Astrophysics Data System (ADS)
Gan, Yu; Tsay, David; Amir, Syed B.; Marboe, Charles C.; Hendon, Christine P.
2016-10-01
Tissue composition of the atria plays a critical role in the pathology of cardiovascular disease, tissue remodeling, and arrhythmogenic substrates. Optical coherence tomography (OCT) has the ability to capture the tissue composition information of the human atria. In this study, we developed a region-based automated method to classify tissue compositions within human atria samples within OCT images. We segmented regional information without prior information about the tissue architecture and subsequently extracted features within each segmented region. A relevance vector machine model was used to perform automated classification. Segmentation of human atrial ex vivo datasets was correlated with trichrome histology and our classification algorithm had an average accuracy of 80.41% for identifying adipose, myocardium, fibrotic myocardium, and collagen tissue compositions.
Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory
Aab, A.; Abreu, P.; Aglietta, M.; ...
2017-04-20
In this paper, we present a combined fit of a simple astrophysical model of UHECR sources to both the energy spectrum and mass composition data measured by the Pierre Auger Observatory. The fit has been performed for energies above 5 • 10 18 eV, i.e. the region of the all-particle spectrum above the so-called 'ankle' feature. The astrophysical model we adopted consists of identical sources uniformly distributed in a comoving volume, where nuclei are accelerated through a rigidity-dependent mechanism. The fit results suggest sources characterized by relatively low maximum injection energies, hard spectra and heavy chemical composition. We also show thatmore » uncertainties about physical quantities relevant to UHECR propagation and shower development have a non-negligible impact on the fit results.« less
Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aab, A.; Abreu, P.; Aglietta, M.
In this paper, we present a combined fit of a simple astrophysical model of UHECR sources to both the energy spectrum and mass composition data measured by the Pierre Auger Observatory. The fit has been performed for energies above 5 • 10 18 eV, i.e. the region of the all-particle spectrum above the so-called 'ankle' feature. The astrophysical model we adopted consists of identical sources uniformly distributed in a comoving volume, where nuclei are accelerated through a rigidity-dependent mechanism. The fit results suggest sources characterized by relatively low maximum injection energies, hard spectra and heavy chemical composition. We also show thatmore » uncertainties about physical quantities relevant to UHECR propagation and shower development have a non-negligible impact on the fit results.« less
Perspective for Fibre-Hybrid Composites in Wind Energy Applications
2017-01-01
Increasing the efficiency of wind turbines will be vital for the wind energy sector to continue growing. The drive for increased efficiency is pushing turbine manufacturers to shift from glass fibre composite blades towards carbon/glass fibre-hybrid composite blades. This shift brings significant challenges in terms of optimising the design and understanding the failure of these new blade materials. This review therefore surveys the literature on fibre-hybrid composites, with an emphasis on aspects that are relevant for turbine blade materials. The literature on tensile, flexural, compressive, and fatigue performance is critically assessed and areas for future research are identified. Numerical simulations of fibre-hybrid composites have reached a reasonable maturity for tensile failure, but significant progress is required for flexural, compressive, and fatigue failure. Fatigue failure of fibre-hybrid composites in particular, requires more careful attention from both a modelling and experimental point of view. PMID:29117126
Perspective for Fibre-Hybrid Composites in Wind Energy Applications.
Swolfs, Yentl
2017-11-08
Increasing the efficiency of wind turbines will be vital for the wind energy sector to continue growing. The drive for increased efficiency is pushing turbine manufacturers to shift from glass fibre composite blades towards carbon/glass fibre-hybrid composite blades. This shift brings significant challenges in terms of optimising the design and understanding the failure of these new blade materials. This review therefore surveys the literature on fibre-hybrid composites, with an emphasis on aspects that are relevant for turbine blade materials. The literature on tensile, flexural, compressive, and fatigue performance is critically assessed and areas for future research are identified. Numerical simulations of fibre-hybrid composites have reached a reasonable maturity for tensile failure, but significant progress is required for flexural, compressive, and fatigue failure. Fatigue failure of fibre-hybrid composites in particular, requires more careful attention from both a modelling and experimental point of view.
NASA Astrophysics Data System (ADS)
Paulraj, D.; Swamynathan, S.; Madhaiyan, M.
2012-11-01
Web Service composition has become indispensable as a single web service cannot satisfy complex functional requirements. Composition of services has received much interest to support business-to-business (B2B) or enterprise application integration. An important component of the service composition is the discovery of relevant services. In Semantic Web Services (SWS), service discovery is generally achieved by using service profile of Ontology Web Languages for Services (OWL-S). The profile of the service is a derived and concise description but not a functional part of the service. The information contained in the service profile is sufficient for atomic service discovery, but it is not sufficient for the discovery of composite semantic web services (CSWS). The purpose of this article is two-fold: first to prove that the process model is a better choice than the service profile for service discovery. Second, to facilitate the composition of inter-organisational CSWS by proposing a new composition method which uses process ontology. The proposed service composition approach uses an algorithm which performs a fine grained match at the level of atomic process rather than at the level of the entire service in a composite semantic web service. Many works carried out in this area have proposed solutions only for the composition of atomic services and this article proposes a solution for the composition of composite semantic web services.
Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites
NASA Astrophysics Data System (ADS)
Li, Ying; Liu, Zeliang; Jia, Zheng; Liu, Wing Kam; Aldousari, Saad M.; Hedia, Hassan S.; Asiri, Saeed A.
2017-02-01
Polymer nanocomposites have been envisioned as advanced materials for improving the mechanical performance of neat polymers used in aerospace, petrochemical, environment and energy industries. With the filler size approaching the nanoscale, composite materials tend to demonstrate remarkable thermomechanical properties, even with addition of a small amount of fillers. These observations confront the classical composite theories and are usually attributed to the high surface-area-to-volume-ratio of the fillers, which can introduce strong nanoscale interfacial effect and relevant long-range perturbation on polymer chain dynamics. Despite decades of research aimed at understanding interfacial effect and improving the mechanical performance of composite materials, it is not currently possible to accurately predict the mechanical properties of polymer nanocomposites directly from their molecular constituents. To overcome this challenge, different theoretical, experimental and computational schemes will be used to uncover the key physical mechanisms at the relevant spatial and temporal scales for predicting and tuning constitutive behaviors in silico, thereby establishing a bottom-up virtual design principle to achieve unprecedented mechanical performance of nanocomposites. A modular-based multiscale modeling approach for viscoelasticity of polymer nanocomposites has been proposed and discussed in this study, including four modules: (A) neat polymer toolbox; (B) interphase toolbox; (C) microstructural toolbox and (D) homogenization toolbox. Integrating these modules together, macroscopic viscoelasticity of polymer nanocomposites could be directly predicted from their molecular constituents. This will maximize the computational ability to design novel polymer composites with advanced performance. More importantly, elucidating the viscoelasticity of polymer nanocomposites through fundamental studies is a critical step to generate an integrated computational material engineering principle for discovering and manufacturing new composites with transformative impact on aerospace, automobile, petrochemical industries.
Forming of complex-shaped composite tubes using optimized bladder-assisted resin transfer molding
NASA Astrophysics Data System (ADS)
Schillfahrt, Christian; Fauster, Ewald; Schledjewski, Ralf
2018-05-01
This work addresses the manufacturing of tubular composite structures by means of bladder-assisted resin transfer molding using elastomeric bladders. In order to achieve successful processing of such parts, knowledge of the compaction and impregnation behavior of the textile preform is vital. Hence, efficient analytical models that describe the influencing parameters of the preform compaction and filling stage were developed and verified through practical experiments. A process window describing optimal and critical operating conditions during the injection stage was created by evaluating the impact of the relevant process pressures on filling time. Finally, a cascaded injection procedure was investigated that particularly facilitates the manufacturing of long composite tubes.
Karaköse, Hande; Jaiswal, Rakesh; Deshpande, Sagar; Kuhnert, Nikolai
2015-04-08
Mono- and diacyl chlorogenic acids undergo photochemical trans-cis isomerization under ultraviolet (UV) irradiation. The photochemical equilibrium composition was established for eight selected derivatives. In contrast to all other dicaffeoylquinic acid derivatives, cynarin (1,3-dicaffeoylquinic acid) undergoes a [2 + 2] photochemical cycloaddition reaction, constituting a first example of Schmidt's law in a natural product family. The relevance of photochemical isomerization in agricultural practice was investigated using 120 samples of Stevia rebaudiana leave samples grown under defined cultivation conditions. Ratios of cis to trans chlorogenic acids were determined in leaf samples and correlated with climatic and harvesting conditions. The data indicate a clear correlation between the formation of cis-caffeoyl derivatives and sunshine hours prior to harvesting and illustrate the relevance of UV exposure to plant material affecting its phytochemical composition.
Díaz Lantada, Andrés; Alarcón Iniesta, Hernán; García-Ruíz, Josefa Predestinación
2016-02-01
Articular repair is a relevant and challenging area for the emerging fields of tissue engineering and biofabrication. The need of significant gradients of properties, for the promotion of osteochondral repair, has led to the development of several families of composite biomaterials and scaffolds, using different effective approaches, although a perfect solution has not yet been found. In this study we present the design, modeling, rapid manufacturing and in vitro testing of a composite scaffold aimed at osteochondral repair. The presented composite scaffold stands out for having a functional gradient of density and stiffness in the bony phase, obtained in titanium by means of computer-aided design combined with additive manufacture using selective laser sintering. The chondral phase is obtained by sugar leaching, using a PDMS matrix and sugar as porogen, and is joined to the bony phase during the polymerization of PDMS, therefore avoiding the use of supporting adhesives or additional intermediate layers. The mechanical performance of the construct is biomimetic and the stiffness values of the bony and chondral phases can be tuned to the desired applications, by means of controlled modifications of different parameters. A human mesenchymal stem cell (h-MSC) conditioned medium (CM) is used for improving scaffold response. Cell culture results provide relevant information regarding the viability of the composite scaffolds used. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estrada Rodas, Ernesto A.; Neu, Richard W.
A crystal viscoplasticity (CVP) model for the creep-fatigue interactions of nickel-base superalloy CMSX-8 is proposed. At the microstructure scale of relevance, the superalloys are a composite material comprised of a γ phase and a γ' strengthening phase with unique deformation mechanisms that are highly dependent on temperature. Considering the differences in the deformation of the individual material phases is paramount to predicting the deformation behavior of superalloys at a wide range of temperatures. In this work, we account for the relevant deformation mechanisms that take place in both material phases by utilizing two additive strain rates to model the deformationmore » on each material phase. The model is capable of representing the creep-fatigue interactions in single-crystal superalloys for realistic 3-dimensional components in an Abaqus User Material Subroutine (UMAT). Using a set of material parameters calibrated to superalloy CMSX-8, the model predicts creep-fatigue, fatigue and thermomechanical fatigue behavior of this single-crystal superalloy. In conclusion, a sensitivity study of the material parameters is done to explore the effect on the deformation due to changes in the material parameters relevant to the microstructure.« less
Estrada Rodas, Ernesto A.; Neu, Richard W.
2017-09-11
A crystal viscoplasticity (CVP) model for the creep-fatigue interactions of nickel-base superalloy CMSX-8 is proposed. At the microstructure scale of relevance, the superalloys are a composite material comprised of a γ phase and a γ' strengthening phase with unique deformation mechanisms that are highly dependent on temperature. Considering the differences in the deformation of the individual material phases is paramount to predicting the deformation behavior of superalloys at a wide range of temperatures. In this work, we account for the relevant deformation mechanisms that take place in both material phases by utilizing two additive strain rates to model the deformationmore » on each material phase. The model is capable of representing the creep-fatigue interactions in single-crystal superalloys for realistic 3-dimensional components in an Abaqus User Material Subroutine (UMAT). Using a set of material parameters calibrated to superalloy CMSX-8, the model predicts creep-fatigue, fatigue and thermomechanical fatigue behavior of this single-crystal superalloy. In conclusion, a sensitivity study of the material parameters is done to explore the effect on the deformation due to changes in the material parameters relevant to the microstructure.« less
Accelerated fatigue testing of dentin-composite bond with continuously increasing load.
Li, Kai; Guo, Jiawen; Li, Yuping; Heo, Young Cheul; Chen, Jihua; Xin, Haitao; Fok, Alex
2017-06-01
The aim of this study was to evaluate an accelerated fatigue test method that used a continuously increasing load for testing the dentin-composite bond strength. Dentin-composite disks (ϕ5mm×2mm) made from bovine incisor roots were subjected to cyclic diametral compression with a continuously increasingly load amplitude. Two different load profiles, linear and nonlinear with respect to the number of cycles, were considered. The data were then analyzed by using a probabilistic failure model based on the Weakest-Link Theory and the classical stress-life function, before being transformed to simulate clinical data of direct restorations. All the experimental data could be well fitted with a 2-parameter Weibull function. However, a calibration was required for the effective stress amplitude to account for the difference between static and cyclic loading. Good agreement was then obtained between theory and experiments for both load profiles. The in vitro model also successfully simulated the clinical data. The method presented will allow tooth-composite interfacial fatigue parameters to be determined more efficiently. With suitable calibration, the in vitro model can also be used to assess composite systems in a more clinically relevant manner. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Investigations on the magnetization behavior of magnetic composite particles
NASA Astrophysics Data System (ADS)
Eichholz, Christian; Knoll, Johannes; Lerche, Dietmar; Nirschl, Hermann
2014-11-01
In life sciences the application of surface functionalized magnetic composite particles is establishing in diagnostics and in downstream processing of modern biotechnology. These magnetic composite particles consist of non-magnetic material, e.g. polystyrene, which serves as a matrix for the second magnetic component, usually colloidal magnetite. Because of the multitude of magnetic cores these magnetic beads show a complex magnetization behavior which cannot be described with the available approaches for homogeneous magnetic material. Therefore, in this work a new model for the magnetization behavior of magnetic composite particles is developed. By introducing an effective magnetization and considering an overall demagnetization factor the deviation of the demagnetization of homogeneously magnetized particles is taken into account. Calculated and experimental results show a good agreement which allows for the verification of the adapted model of particle magnetization. Besides, a newly developed magnetic analyzing centrifuge is used for the characterization of magnetic composite particle systems. The experimental results, also used for the model verification, give both, information about the magnetic properties and the interaction behavior of particle systems. By adding further components to the particle solution, such as salts or proteins, industrial relevant systems can be reconstructed. The analyzing tool can be used to adapt industrial processes without time-consuming preliminary tests with large samples in the process equipments.
On the methane opacity for Uranus and Neptune.
NASA Technical Reports Server (NTRS)
Trafton, L.
1972-01-01
The contribution of methane to the thermal opacity in the atmospheres of Uranus and Neptune is shown to be negligible. The relevance of this finding lies in the importance of knowing all the sources of thermal opacity to include in models of these atmospheres, for only then may it be possible to deduce their atmospheric structure and composition correctly.
Ionospheres of the terrestrial planets
NASA Astrophysics Data System (ADS)
Schunk, R. W.; Nagy, A. F.
1980-11-01
The theory and observations relating to the ionospheres of the terrestrial planets Venus, the earth, and Mars are reviewed. Emphasis is placed on comparing the basic differences and similarities between the planetary ionospheres. The review covers the plasma and electric-magnetic field environments that surround the planets, the theory leading to the creation and transport of ionization in the ionospheres, the relevant observations, and the most recent model calculations. The theory section includes a discussion of ambipolar diffusion in a partially ionized plasma, diffusion in a fully ionized plasma, supersonic plasma flow, photochemistry, and heating and cooling processes. The sections on observations and model calculations cover the neutral atmosphere composition, the ion composition, the electron density, and the electron, ion, and neutral temperatures.
Composition of commercial media used for human embryo culture.
Morbeck, Dean E; Krisher, Rebecca L; Herrick, Jason R; Baumann, Nikola A; Matern, Dietrich; Moyer, Thomas
2014-09-01
To determine the composition of commercially available culture media and test whether differences in composition are biologically relevant in a murine model. Experimental laboratory study. University-based laboratory. Cryopreserved hybrid mouse one-cell embryos were used in experiments. Amino acid, organic acid, ions, and metal content were determined for two different lots of media from Cook, In Vitro Care, Origio, Sage, Vitrolife, Irvine CSC, and Global. To determine whether differences in the composition of these media are biologically relevant, mouse one-cell embryos were thawed and cultured for 120 hours in each culture media at 5% and 20% oxygen in the presence or absence of protein in an EmbryoScope time-lapse incubator. The compositions of seven culture media were analyzed for concentrations of 39 individual amino acids, organic acids, ions, and elements. Blastocyst rates and cell cycle timings were calculated at 96 hours of culture, and the experiments were repeated in triplicate. Of the 39 analytes, concentrations of glucose, lactate, pyruvate, amino acids, phosphate, calcium, and magnesium were present in variable concentrations, likely reflecting differences in the interpretation of animal studies. Essential trace elements, such as copper and zinc, were not detected. Mouse embryos failed to develop in one culture medium and were differentially affected by oxygen in two other media. Culture media composition varies widely, with differences in pyruvate, lactate, and amino acids especially notable. Blastocyst development was culture media dependent and showed an interaction with oxygen concentration and presence of protein. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Shrinkage Estimators for a Composite Measure of Quality Conceptualized as a Formative Construct
Shwartz, Michael; Peköz, Erol A; Christiansen, Cindy L; Burgess, James F; Berlowitz, Dan
2013-01-01
Objective To demonstrate the value of shrinkage estimators when calculating a composite quality measure as the weighted average of a set of individual quality indicators. Data Sources Rates of 28 quality indicators (QIs) calculated from the minimum dataset from residents of 112 Veterans Health Administration nursing homes in fiscal years 2005–2008. Study Design We compared composite scores calculated from the 28 QIs using both observed rates and shrunken rates derived from a Bayesian multivariate normal-binomial model. Principal Findings Shrunken-rate composite scores, because they take into account unreliability of estimates from small samples and the correlation among QIs, have more intuitive appeal than observed-rate composite scores. Facilities can be profiled based on more policy-relevant measures than point estimates of composite scores, and interval estimates can be calculated without assuming the QIs are independent. Usually, shrunken-rate composite scores in 1 year are better able to predict the observed total number of QI events or the observed-rate composite scores in the following year than the initial year observed-rate composite scores. Conclusion Shrinkage estimators can be useful when a composite measure is conceptualized as a formative construct. PMID:22716650
Mathematical models of continuous flow electrophoresis: Electrophoresis technology
NASA Technical Reports Server (NTRS)
Saville, Dudley A.
1986-01-01
Two aspects of continuous flow electrophoresis were studied: (1) the structure of the flow field in continuous flow devices; and (2) the electrokinetic properties of suspended particles relevant to electrophoretic separations. Mathematical models were developed to describe flow structure and stability, with particular emphasis on effects due to buoyancy. To describe the fractionation of an arbitrary particulate sample by continuous flow electrophoresis, a general mathematical model was constructed. In this model, chamber dimensions, field strength, buffer composition, and other design variables can be altered at will to study their effects on resolution and throughput. All these mathematical models were implemented on a digital computer and the codes are available for general use. Experimental and theoretical work with particulate samples probed how particle mobility is related to buffer composition. It was found that ions on the surface of small particles are mobile, contrary to the widely accepted view. This influences particle mobility and suspension conductivity. A novel technique was used to measure the mobility of particles in concentrated suspensions.
Sörman, Karolina; Edens, John F; Smith, Shannon Toney; Clark, John W; Kristiansson, Marianne; Svensson, Olof
2016-06-01
Research on psychopathic personality has been dominated by a focus on criminality and social deviance, but some theoretical models argue that certain putatively adaptive features are important components of this construct. In 3 samples (forensic mental health practitioners, probation officers and a layperson community sample), we investigated adaptive traits as conceptualized in the Triarchic model of psychopathy (Patrick et al., 2009), specifically the relevance of boldness to construals of psychopathic personality. Participants completed prototypicality ratings of psychopathic traits, including 3 items created to tap components of boldness (Socially bold, Adventurous, Emotionally stable), and they also rated a series of attitudinal statements (e.g., perceived correlates of being psychopathic, moral judgments about psychopaths). The composite Boldness scale was rated as moderately to highly prototypical among forensic mental health practitioners and probation officers and positively associated with other theoretically relevant domains of psychopathy. Across samples, higher composite Boldness ratings predicted greater endorsement of adaptive traits (e.g., social skills) as characteristic of psychopathy. For the individual items, Socially bold was rated as highly prototypical and was associated with theoretically relevant correlates. Adventurous also was seen as prototypical, though to a lesser degree. Only forensic mental health practitioners endorsed Emotionally stable as characteristic of psychopathy. Our results provide partial support for the contention that the boldness concept is viewed as an important component of psychopathy, particularly among professionals who work directly with offender populations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Diaferia, G.; Cammarano, F.
2017-12-01
Unraveling the temperature distribution and composition of Earth's crust is key for understanding its origin, evolution, and mechanical behavior. Models of compressional (
Politis, Argyris; Schmidt, Carla
2018-03-20
Structural mass spectrometry with its various techniques is a powerful tool for the structural elucidation of medically relevant protein assemblies. It delivers information on the composition, stoichiometries, interactions and topologies of these assemblies. Most importantly it can deal with heterogeneous mixtures and assemblies which makes it universal among the conventional structural techniques. In this review we summarise recent advances and challenges in structural mass spectrometric techniques. We describe how the combination of the different mass spectrometry-based methods with computational strategies enable structural models at molecular levels of resolution. These models hold significant potential for helping us in characterizing the function of protein assemblies related to human health and disease. In this review we summarise the techniques of structural mass spectrometry often applied when studying protein-ligand complexes. We exemplify these techniques through recent examples from literature that helped in the understanding of medically relevant protein assemblies. We further provide a detailed introduction into various computational approaches that can be integrated with these mass spectrometric techniques. Last but not least we discuss case studies that integrated mass spectrometry and computational modelling approaches and yielded models of medically important protein assembly states such as fibrils and amyloids. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Comer, J.; Ortoleva, P.
2007-01-01
Coexistence of twisted and untwisted crystals is explained via a model that accounts for the coupling of the entropic and energetic effects of impurities and a supra-lattice-scale structural order parameter. It is shown that twisted impure crystals can be in equilibrium with untwisted purer ones. The model explains how coexistence can occur in agates and other systems under hydrostatic stress. The model implies that untwisted crystals grown under one set of conditions could undergo a phase separation that, when accompanied by an imposed compositional gradient, leads to commonly observed, alternating bands of twisted and untwisted crystals and, when occurring in the absence of an external gradient, mossy patterns of crystal texture can emerge. This phenomenon is not related to anisotropic applied stress. Rather coexistence is a consequence of a compositional segregation/twist phase transition. Since twist coexistence is a compositional equilibrium, it arises from the exchange between bulk phases; hence, the detailed nature of the atomic structure within an interface between twisted and untwisted zones is not relevant. The approach places crystal-twist phenomena within the theory of order/disorder phase transitions.
Influence of cirrus clouds on weather and climate processes A global perspective
NASA Technical Reports Server (NTRS)
Liou, K.-N.
1986-01-01
Current understanding and knowledge of the composition and structure of cirrus clouds are reviewed and documented in this paper. In addition, the radiative properties of cirrus clouds as they relate to weather and climate processes are described in detail. To place the relevance and importance of cirrus composition, structure and radiative properties into a global perspective, pertinent results derived from simulation experiments utilizing models with varying degrees of complexity are presented; these have been carried out for the investigation of the influence of cirrus clouds on the thermodynamics and dynamics of the atmosphere. In light of these reviews, suggestions are outlined for cirrus-radiation research activities aimed toward the development and improvement of weather and climate models for a physical understanding of cause and effect relationships and for prediction purposes.
Modelling electro-active polymers with a dispersion-type anisotropy
NASA Astrophysics Data System (ADS)
Hossain, Mokarram; Steinmann, Paul
2018-02-01
We propose a novel constitutive framework for electro-active polymers (EAPs) that can take into account anisotropy with a chain dispersion. To enhance actuation behaviour, particle-filled EAPs become promising candidates nowadays. Recent studies suggest that particle-filled EAPs, which can be cured under an electric field during the manufacturing time, do not necessarily form perfect anisotropic composites, rather they create composites with dispersed chains. Hence in this contribution, an electro-mechanically coupled constitutive model is devised that considers the chain dispersion with a probability distribution function in an integral form. To obtain relevant quantities in discrete form, numerical integration over the unit sphere is utilized. Necessary constitutive equations are derived exploiting the basic laws of thermodynamics that result in a thermodynamically consistent formulation. To demonstrate the performance of the proposed electro-mechanically coupled framework, we analytically solve a non-homogeneous boundary value problem, the extension and inflation of an axisymmetric cylindrical tube under electro-mechanically coupled load. The results capture various electro-mechanical couplings with the formulation proposed for EAP composites.
Nonadditive Compositional Curvature Energetics of Lipid Bilayers
NASA Astrophysics Data System (ADS)
Sodt, A. J.; Venable, R. M.; Lyman, E.; Pastor, R. W.
2016-09-01
The unique properties of the individual lipids that compose biological membranes together determine the energetics of the surface. The energetics of the surface, in turn, govern the formation of membrane structures and membrane reshaping processes, and thus they will underlie cellular-scale models of viral fusion, vesicle-dependent transport, and lateral organization relevant to signaling. The spontaneous curvature, to the best of our knowledge, is always assumed to be additive. We describe observations from simulations of unexpected nonadditive compositional curvature energetics of two lipids essential to the plasma membrane: sphingomyelin and cholesterol. A model is developed that connects molecular interactions to curvature stress, and which explains the role of local composition. Cholesterol is shown to lower the number of effective Kuhn segments of saturated acyl chains, reducing lateral pressure below the neutral surface of bending and favoring positive curvature. The effect is not observed for unsaturated (flexible) acyl chains. Likewise, hydrogen bonding between sphingomyelin lipids leads to positive curvature, but only at sufficient concentration, below which the lipid prefers negative curvature.
NASA Technical Reports Server (NTRS)
Brackett, Robert A.; Arvidson, Raymond E.
1993-01-01
A technique is presented that allows extraction of compositional and textural information from visible, near and thermal infrared remotely sensed data. Using a library of both emissivity and reflectance spectra, endmember abundances and endmember thermal inertias are extracted from AVIRIS (Airborne Visible and Infrared Imaging Spectrometer) and TIMS (Thermal Infrared Mapping Spectrometer) data over Lunar Crater Volcanic Field, Nevada, using a dual inversion. The inversion technique is motivated by upcoming Mars Observer data and the need for separation of composition and texture parameters from sub pixel mixtures of bedrock and dust. The model employed offers the opportunity to extract compositional and textural information for a variety of endmembers within a given pixel. Geologic inferences concerning grain size, abundance, and source of endmembers can be made directly from the inverted data. These parameters are of direct relevance to Mars exploration, both for Mars Observer and for follow-on missions.
A Review of Research on Impulsive Loading of Marine Composites
NASA Astrophysics Data System (ADS)
Porfiri, Maurizio; Gupta, Nikhil
Impulsive loading conditions, such as those produced by blast waves, are being increasingly recognized as relevant in marine applications. Significant research efforts are directed towards understanding the impulsive loading response of traditional naval materials, such as aluminum and steel, and advanced composites, such as laminates and sandwich structures. Several analytical studies are directed towards establishing predictive models for structural response and failure of marine structures under blast loading. In addition, experimental research efforts are focused on characterizing structural response to blast loading. The aim of this review is to provide a general overview of the state of the art on analytical and experimental studies in this field that can serve as a guideline for future research directions. Reported studies cover the Office of Naval Research-Solid Mechanics Program sponsored research along with other worldwide research efforts of relevance to marine applications. These studies have contributed to developing a fundamental knowledge of the mechanics of advanced materials subjected to impulsive loading, which is of interest to all Department of Defense branches.
Relevant principal component analysis applied to the characterisation of Portuguese heather honey.
Martins, Rui C; Lopes, Victor V; Valentão, Patrícia; Carvalho, João C M F; Isabel, Paulo; Amaral, Maria T; Batista, Maria T; Andrade, Paula B; Silva, Branca M
2008-01-01
The main purpose of this study was the characterisation of 'Serra da Lousã' heather honey by using novel statistical methodology, relevant principal component analysis, in order to assess the correlations between production year, locality and composition. Herein, we also report its chemical composition in terms of sugars, glycerol and ethanol, and physicochemical parameters. Sugars profiles from 'Serra da Lousã' heather and 'Terra Quente de Trás-os-Montes' lavender honeys were compared and allowed the discrimination: 'Serra da Lousã' honeys do not contain sucrose, generally exhibit lower contents of turanose, trehalose and maltose and higher contents of fructose and glucose. Different localities from 'Serra da Lousã' provided groups of samples with high and low glycerol contents. Glycerol and ethanol contents were revealed to be independent of the sugars profiles. These data and statistical models can be very useful in the comparison and detection of adulterations during the quality control analysis of 'Serra da Lousã' honey.
Geostatistical Interpolation of Particle-Size Curves in Heterogeneous Aquifers
NASA Astrophysics Data System (ADS)
Guadagnini, A.; Menafoglio, A.; Secchi, P.
2013-12-01
We address the problem of predicting the spatial field of particle-size curves (PSCs) from measurements associated with soil samples collected at a discrete set of locations within an aquifer system. Proper estimates of the full PSC are relevant to applications related to groundwater hydrology, soil science and geochemistry and aimed at modeling physical and chemical processes occurring in heterogeneous earth systems. Hence, we focus on providing kriging estimates of the entire PSC at unsampled locations. To this end, we treat particle-size curves as cumulative distribution functions, model their densities as functional compositional data and analyze them by embedding these into the Hilbert space of compositional functions endowed with the Aitchison geometry. On this basis, we develop a new geostatistical methodology for the analysis of spatially dependent functional compositional data. Our functional compositional kriging (FCK) approach allows providing predictions at unsampled location of the entire particle-size curve, together with a quantification of the associated uncertainty, by fully exploiting both the functional form of the data and their compositional nature. This is a key advantage of our approach with respect to traditional methodologies, which treat only a set of selected features (e.g., quantiles) of PSCs. Embedding the full PSC into a geostatistical analysis enables one to provide a complete characterization of the spatial distribution of lithotypes in a reservoir, eventually leading to improved predictions of soil hydraulic attributes through pedotransfer functions as well as of soil geochemical parameters which are relevant in sorption/desorption and cation exchange processes. We test our new method on PSCs sampled along a borehole located within an alluvial aquifer near the city of Tuebingen, Germany. The quality of FCK predictions is assessed through leave-one-out cross-validation. A comparison between hydraulic conductivity estimates obtained via FCK approach and those predicted by classical kriging of effective particle diameters (i.e., quantiles of the PSCs) is finally performed.
NASA Astrophysics Data System (ADS)
Gallimore, P. J.; Griffiths, P. T.; Pope, F. D.; Reid, J. P.; Kalberer, M.
2017-04-01
The chemical composition of organic aerosols profoundly influences their atmospheric properties, but a detailed understanding of heterogeneous and in-particle reactivity is lacking. We present here a combined experimental and modeling study of the ozonolysis of oleic acid particles. An online mass spectrometry (MS) method, Extractive Electrospray Ionization (EESI), is used to follow the composition of the aerosol at a molecular level in real time; relative changes in the concentrations of both reactants and products are determined during aerosol aging. The results show evidence for multiple non-first-order reactions involving stabilized Criegee intermediates, including the formation of secondary ozonides and other oligomers. Offline liquid chromatography MS is used to confirm the online MS assignment of the monomeric and dimeric products. We explain the observed EESI-MS chemical composition changes, and chemical and physical data from previous studies, using a process-based aerosol chemistry simulation, the Pretty Good Aerosol Model (PG-AM). In particular, we extend previous studies of reactant loss by demonstrating success in reproducing the time dependence of product formation and the evolving particle size. This advance requires a comprehensive chemical scheme coupled to the partitioning of semivolatile products; relevant reaction and evaporation parameters have been refined using our new measurements in combination with PG-AM.
Collapse and revival of entanglement between qubits coupled to a spin coherent state
NASA Astrophysics Data System (ADS)
Bahari, Iskandar; Spiller, Timothy P.; Dooley, Shane; Hayes, Anthony; McCrossan, Francis
We extend the study of the Jayne-Cummings (JC) model involving a pair of identical two-level atoms (or qubits) interacting with a single mode quantized field. We investigate the effects of replacing the radiation field mode with a composite spin, comprising N qubits, or spin-1/2 particles. This model is relevant for physical implementations in superconducting circuit QED, ion trap and molecular systems. For the case of the composite spin prepared in a spin coherent state, we demonstrate the similarities of this set-up to the qubits-field model in terms of the time evolution, attractor states and in particular the collapse and revival of the entanglement between the two qubits. We extend our analysis by taking into account an effect due to qubit imperfections. We consider a difference (or “mismatch”) in the dipole interaction strengths of the two qubits, for both the field mode and composite spin cases. To address decoherence due to this mismatch, we then average over this coupling strength difference with distributions of varying width. We demonstrate in both the field mode and the composite spin scenarios that increasing the width of the “error” distribution increases suppression of the coherent dynamics of the coupled system, including the collapse and revival of the entanglement between the qubits.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Bonacuse, Peter J.; Mital, Subodh K.
2012-01-01
To develop methods for quantifying the effects of the microstructural variations of woven ceramic matrix composites on the effective properties and response of the material, a research program has been undertaken which is described in this paper. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, CVI SiC/SiC, composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents and collect relevant statistics such as within ply tow spacing. This information was then used to build two dimensional finite element models that approximated the observed section geometry. With the aid of geometrical models generated by the microstructural characterization process, finite element models were generated and analyses were performed to quantify the effects of the microstructure and its variation on the effective stiffness and areas of stress concentration of the material. The results indicated that the geometry and distribution of the porosity appear to have significant effects on the through-thickness modulus. Similarly, stress concentrations on the outer surface of the composite appear to correlate to regions where the transverse tows are separated by a critical amount.
A nonlinear model for ionic polymer metal composites as actuators
NASA Astrophysics Data System (ADS)
Bonomo, C.; Fortuna, L.; Giannone, P.; Graziani, S.; Strazzeri, S.
2007-02-01
This paper introduces a comprehensive nonlinear dynamic model of motion actuators based on ionic polymer metal composites (IPMCs) working in air. Significant quantities ruling the acting properties of IPMC-based actuators are taken into account. The model is organized as follows. As a first step, the dependence of the IPMC absorbed current on the voltage applied across its thickness is taken into account; a nonlinear circuit model is proposed to describe this relationship. In a second step the transduction of the absorbed current into the IPMC mechanical reaction is modelled. The model resulting from the cascade of both the electrical and the electromechanical stages represents a novel contribution in the field of IPMCs, capable of describing the electromechanical behaviour of these materials and predicting relevant quantities in a large range of applied signals. The effect of actuator scaling is also investigated, giving interesting support to the activities involved in the design of actuating devices based on these novel materials. Evidence of the excellent agreement between the estimations obtained by using the proposed model and experimental signals is given.
Challenges in Discerning Atmospheric Composition in Directly Imaged Planets
NASA Technical Reports Server (NTRS)
Marley, Mark S.
2017-01-01
One of the justifications motivating efforts to detect and characterize young extrasolar giant planets has been to measure atmospheric composition for comparison with that of the primary star. If the enhancement of heavy elements in the atmospheres of extrasolar giant planets, like it is for their solar system analogs, is inversely proportional to mass, then it is likely that these worlds formed by core accretion. However in practice it has been very difficult to constrain metallicity because of the complex effect of clouds. Cloud opacity varies both vertically and, in some cases, horizontally through the atmosphere. Particle size and composition, both of which impact opacity, are difficult challenges both for forward modeling and retrieval studies. In my presentation I will discuss systematic efforts to improve cloud studies to enable more reliable determinations of atmospheric composition. These efforts are relevant both to discerning composition of directly imaged young planets from ground based telescopes and future space based missions, such as WFIRST and LUVOIR.
ERIC Educational Resources Information Center
Mangubhai, Francis; Marland, Perc; Dashwood, Ann; Son, Jeong-Bae
2005-01-01
This study seeks to document teachers' conceptions of communicative language teaching (CLT) and to compare their conceptions with a composite view of CLT assembled, in part, from researchers' accounts of the distinctive features of CLT. The research was prompted by a review of the relevant research literature showing that, though previous studies…
A review of micro-contact physics for microelectromechanical systems (MEMS) metal contact switches
NASA Astrophysics Data System (ADS)
Toler, Benjamin F.; Coutu, Ronald A., Jr.; McBride, John W.
2013-10-01
Innovations in relevant micro-contact areas are highlighted, these include, design, contact resistance modeling, contact materials, performance and reliability. For each area the basic theory and relevant innovations are explored. A brief comparison of actuation methods is provided to show why electrostatic actuation is most commonly used by radio frequency microelectromechanical systems designers. An examination of the important characteristics of the contact interface such as modeling and material choice is discussed. Micro-contact resistance models based on plastic, elastic-plastic and elastic deformations are reviewed. Much of the modeling for metal contact micro-switches centers around contact area and surface roughness. Surface roughness and its effect on contact area is stressed when considering micro-contact resistance modeling. Finite element models and various approaches for describing surface roughness are compared. Different contact materials to include gold, gold alloys, carbon nanotubes, composite gold-carbon nanotubes, ruthenium, ruthenium oxide, as well as tungsten have been shown to enhance contact performance and reliability with distinct trade offs for each. Finally, a review of physical and electrical failure modes witnessed by researchers are detailed and examined.
NASA Astrophysics Data System (ADS)
Puckett, E. G.; Turcotte, D. L.; He, Y.; Lokavarapu, H. V.; Robey, J.; Kellogg, L. H.
2017-12-01
Geochemical observations of mantle-derived rocks favor a nearly homogeneous upper mantle, the source of mid-ocean ridge basalts (MORB), and heterogeneous lower mantle regions.Plumes that generate ocean island basalts are thought to sample the lower mantle regions and exhibit more heterogeneity than MORB.These regions have been associated with lower mantle structures known as large low shear velocity provinces below Africa and the South Pacific.The isolation of these regions is attributed to compositional differences and density stratification that, consequently, have been the subject of computational and laboratory modeling designed to determine the parameter regime in which layering is stable and understanding how layering evolves.Mathematical models of persistent compositional interfaces in the Earth's mantle may be inherently unstable, at least in some regions of the parameter space relevant to the mantle.Computing approximations to solutions of such problems presents severe challenges, even to state-of-the-art numerical methods.Some numerical algorithms for modeling the interface between distinct compositions smear the interface at the boundary between compositions, such as methods that add numerical diffusion or `artificial viscosity' in order to stabilize the algorithm. We present two new algorithms for maintaining high-resolution and sharp computational boundaries in computations of these types of problems: a discontinuous Galerkin method with a bound preserving limiter and a Volume-of-Fluid interface tracking algorithm.We compare these new methods with two approaches widely used for modeling the advection of two distinct thermally driven compositional fields in mantle convection computations: a high-order accurate finite element advection algorithm with entropy viscosity and a particle method.We compare the performance of these four algorithms on three problems, including computing an approximation to the solution of an initially compositionally stratified fluid at Ra = 105 with buoyancy numbers {B} that vary from no stratification at B = 0 to stratified flow at large B.
NASA Astrophysics Data System (ADS)
Akbar, Noreen Sher; Tripathi, Dharmendra; Bég, O. Anwar
2017-07-01
This paper presents a mathematical model for simulating viscous, incompressible, steady-state blood flow containing copper nanoparticles and coupled heat transfer through a composite stenosed artery with permeable walls. Wall slip hydrodynamic and also thermal buoyancy effects are included. The artery is simulated as an isotropic elastic tube, following Joshi et al. (2009), and a variable viscosity formulation is employed for the flowing blood. The equations governing the transport phenomena are non-dimensionalized and the resulting boundary value problem is solved analytically in the steady state subject to physically appropriate boundary conditions. Numerical computations are conducted to quantify the effects of relevant hemodynamic, thermophysical and nanoscale parameters emerging in the model on velocity and temperature profiles, wall shear stress, impedance resistance and also streamline distributions. The model may be applicable to drug fate transport modeling with nanoparticle agents and also to the optimized design of nanoscale medical devices for diagnosing stenotic diseases in circulatory systems.
NASA Astrophysics Data System (ADS)
Adler, Stephen L.
2017-07-01
We continue our study of Coleman-Weinberg symmetry breaking induced by a third rank antisymmetric tensor scalar, in the context of the SU(8) model (Adler 2014 Int. J. Mod. Phys. A 29 1450130) we proposed earlier. We focus in this paper on qualitative features that will determine whether the model can make contact with the observed particle spectrum. We discuss the mechanism for giving the spin \\frac{3}{2} field a mass by the BEH mechanism, and analyze the remaining massless spin \\frac{1}{2} fermions, the global chiral symmetries, and the running couplings after symmetry breaking. We note that the smallest gluon mass matrix eigenvalue has an eigenvector suggestive of U(1) B-L , and conjecture that the theory runs to an infrared fixed point at which there is a massless gluon with 3 to -1 ratios in generator components. Assuming this, we discuss a mechanism for making contact with the standard model, based on a conjectured asymmetric breaking of Sp(4) to SU(2) subgroups, one of which is the electroweak SU(2), and the other of which is a ‘technicolor’ group that binds the original SU(8) model fermions, which play the role of ‘preons’, into composites. Quarks can emerge as 5 preon composites and leptons as 3 preon composites, with consequent stability of the proton against decay to a single lepton plus a meson. A composite Higgs boson can emerge as a two preon composite. Since anomaly matching for the relevant conserved global symmetry current is not obeyed by three fermion families, emergence of three composite families requires formation of a Goldstone boson with quantum numbers matching this current, which can be a light dark matter candidate.
Schuna, John M; Peterson, Courtney M; Thomas, Diana M; Heo, Moonseong; Hong, Sangmo; Choi, Woong; Heymsfield, Steven B
2015-01-01
Adult body mass (MB) empirically scales as height (Ht) squared (MB ∝ Ht(2) ), but does regional body mass and body composition as a whole also scale as Ht(2) ? This question is relevant to a wide range of biological topics, including interpretation of body mass index (BMI). Dual-energy X-ray absorptiometry (DXA) was used to quantify regional body mass [head (MH), trunk, arms, and legs] and whole-body composition [fat, lean soft tissue (LST), and bone mineral content (BMC)] in non-Hispanic (NH) white, NH black, Mexican American, and Korean adults participating in the National Health and Nutrition Examination Survey (NHANES; n = 17,126) and Korean NHANES (n = 8,942). Regression models were developed to establish Ht scaling powers for each measured component with adjustments for age and adiposity. Exploratory analyses revealed a consistent scaling pattern across men and women of the four population groups: regional mass powers, head (∼0.8-1) < arms and trunk (∼1.8-2.3) < legs (∼2.3-2.6); and body composition, LST (∼2.0-2.3) < BMC (∼2.1-2.4). Small sex and population differences in scaling powers were also observed. As body mass scaled uniformly across the eight sex and population groups as Ht(∼2) , tall and short subjects differed in body shape (e.g., MH/MB ∝ Ht(-∼1) ) and composition. Adult human body shape and relative composition are a function of body size as represented by stature, a finding that reveals a previously unrecognized phenotypic heterogeneity as defined by BMI. These observations provide new pathways for exploring mechanisms governing the interrelations between adult stature, body morphology, biomechanics, and metabolism. © 2014 Wiley Periodicals, Inc.
Schuna, John M.; Peterson, Courtney M.; Thomas, Diana M.; Heo, Moonseong; Hong, Sangmo; Choi, Woong; Heymsfield, Steven B.
2015-01-01
Objectives Adult body mass (MB) empirically scales as height (Ht) squared (MB ∝ Ht2), but does regional body mass and body composition as a whole also scale as Ht2? This question is relevant to a wide range of biological topics, including interpretation of body mass index. Methods Dual-energy x-ray absorptiometry (DXA) was used to quantify regional body mass (head [MH], trunk, arms, legs) and whole-body composition (fat, lean soft tissue [LST], and bone mineral content [BMC]) in non-Hispanic (NH) white, NH black, Mexican American, and Korean adults participating in the National Health and Nutrition Examination Survey (NHANES; n=17,126) and Korean NHANES (n=8,942). Regression models were developed to establish Ht scaling powers for each measured component with adjustments for age and adiposity. Results Exploratory analyses revealed a consistent scaling pattern across men and women of the four race/ethnic groups: regional mass powers, head (~0.8-1) < arms and trunk (~1.8-2.3) < legs (~2.3-2.6); and body composition, LST (~2.0-2.3) < BMC (~2.1-2.4). Small sex and race/ethnic differences in scaling powers were also observed. As body mass scaled uniformly across the eight sex and race/ethnic groups as Ht~2, tall and short subjects differed in body shape (e.g., Mh/Mb ∝ Ht−~1) and composition. Conclusions Adult human body shape and relative composition are a function of body size as defined by stature, a finding that has important implications in multiple areas of biological research. PMID:25381999
Computational Modeling of Radiation Phenomenon in SiC for Nuclear Applications
NASA Astrophysics Data System (ADS)
Ko, Hyunseok
Silicon carbide (SiC) material has been investigated for promising nuclear materials owing to its superior thermo-mechanical properties, and low neutron cross-section. While the interest in SiC has been increasing, the lack of fundamental understanding in many radiation phenomena is an important issue. More specifically, these phenomena in SiC include the fission gas transport, radiation induced defects and its evolution, radiation effects on the mechanical stability, matrix brittleness of SiC composites, and low thermal conductivities of SiC composites. To better design SiC and SiC composite materials for various nuclear applications, understanding each phenomenon and its significance under specific reactor conditions is important. In this thesis, we used various modeling approaches to understand the fundamental radiation phenomena in SiC for nuclear applications in three aspects: (a) fission product diffusion through SiC, (b) optimization of thermodynamic stable self-interstitial atom clusters, (c) interface effect in SiC composite and their change upon radiation. In (a) fission product transport work, we proposed that Ag/Cs diffusion in high energy grain boundaries may be the upper boundary in unirradiated SiC at relevant temperature, and radiation enhanced diffusion is responsible for fast diffusion measured in post-irradiated fuel particles. For (b) the self-interstitial cluster work, thermodynamically stable clusters are identified as a function of cluster size, shape, and compositions using a genetic algorithm. We found that there are compositional and configurational transitions for stable clusters as the cluster size increases. For (c) the interface effect in SiC composite, we investigated recently proposed interface, which is CNT reinforced SiC composite. The analytical model suggests that CNT/SiC composites have attractive mechanical and thermal properties, and these fortify the argument that SiC composites are good candidate materials for the cladding. We used grand canonical monte carlo to optimize the interface, as a part of the stepping stone for further study using the interface.
Effective potential in ultraviolet completions for composite Higgs models
NASA Astrophysics Data System (ADS)
Golterman, Maarten; Shamir, Yigal
2018-05-01
We consider a class of composite Higgs models based on asymptotically free S O (d ) gauge theories with d odd, with fermions in two irreducible representations, and in which the Higgs field arises as a pseudo-Nambu-Goldstone boson and the top quark is partially composite. The Nambu-Goldstone coset containing the Higgs field, or Higgs coset, is either S U (4 )/S p (4 ) or S U (5 )/S O (5 ), whereas the top partners live in two-index representations of the relevant flavor group [S U (4 ) or S U (5 )]. In both cases, there is a large number of terms in the most general four-fermion Lagrangian describing the interaction of third-generation quarks with the top partners. We derive the top-induced effective potential for the Higgs coset together with the singlet pseudo-Nambu-Goldstone boson associated with the non-anomalous axial symmetry, to leading order in the couplings between the third-generation quarks and the composite sector. We obtain expressions for the low-energy constants in terms of top-partner two-point functions. We revisit the effective potential of another composite Higgs model that we have studied previously, which is based on an S U (4 ) gauge theory and provides a different realization of the S U (5 )/S O (5 ) coset. The top partners of this model live in the fundamental representation of S U (5 ), and, as a result, the effective potential of this model is qualitatively different from the S O (d ) gauge theories. We also discuss the role of the isospin-triplet fields contained in the S U (5 )/S O (5 ) coset, and show that, without further constraints on the four-fermion couplings, an expectation value for the Higgs field will trigger the subsequent condensation of an isospin-triplet field.
Waiting for Answerability: Bakhtin and Composition Studies.
ERIC Educational Resources Information Center
Ewald, Helen Rothschild
1993-01-01
Discusses Mikhail Bakhtin's interest in ethical action and response, or "answerability," and its relevance for composition studies. Examines how Bakhtin has been used to authorize various research in composition studies. Shows how composition instruction might be undertaken as influenced by answerability. (HB)
A network pharmacology study of Sendeng-4, a Mongolian medicine.
Zi, Tian; Yu, Dong
2015-02-01
We collected the data on the Sendeng-4 chemical composition corresponding targets through the literature and from DrugBank, SuperTarget, TTD (Therapeutic Targets Database) and other databases and the relevant signaling pathways from the KEGG (Kyoto Encyclopedia of Genes and Genomes) database and established models of the chemical composition-target network and chemical composition-target-disease network using Cytoscape software, the analysis indicated that the chemical composition had at least nine different types of targets that acted together to exert effects on the diseases, suggesting a "multi-component, multi-target" feature of the traditional Mongolian medicine. We also employed the rat model of rheumatoid arthritis induced by Collgen Type II to validate the key targets of the chemical components of Sendeng-4, and three of the key targets were validated through laboratory experiments, further confirming the anti-inflammatory effects of Sendeng-4. In all, this study predicted the active ingredients and targets of Sendeng-4, and explored its mechanism of action, which provided new strategies and methods for further research and development of Sendeng-4 and other traditional Mongolian medicines as well. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kehimkar, Benjamin; Hoggard, Jamin C.; Marney, Luke C.
There is an increased need to more fully assess and control the composition of kerosene based rocket propulsion fuels, namely RP-1 and RP-2. In particular, it is crucial to be able to make better quantitative connections between the following three attributes: (a) fuel performance, (b) fuel properties (flash point, density, kinematic viscosity, net heat of combustion, hydrogen content, etc) and (c) the chemical composition of a given fuel (i.e., specific chemical compounds and compound classes present as a result of feedstock blending and processing). Indeed, recent efforts in predicting fuel performance through modeling put greater emphasis on detailed and accuratemore » fuel properties and fuel compositional information. In this regard, advanced distillation curve (ADC) metrology provides improved data relative to classical boiling point and volatility curve techniques. Using ADC metrology, data obtained from RP-1 and RP-2 fuels provides compositional variation information that is directly relevant to predictive modeling of fuel performance. Often, in such studies, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is typically employed to provide chemical composition information. Building on approaches using GC-MS, but to glean substantially more chemical composition information from these complex fuels, we have recently studied the use of comprehensive two dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC - TOFMS) to provide chemical composition data that is significantly richer than that provided by GC-MS methods. In this report, by applying multivariate data analysis techniques, referred to as chemometrics, we are able to readily model (correlate) the chemical compositional information from RP-1 and RP-2 fuels provided using GC × GC - TOFMS, to the fuel property information such as that provided by the ADC method and other specification properties. We anticipate that this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an optimized approach to fuel formulation and specification for advanced engine cycles.« less
Sun, Jirun; Eidelman, Naomi; Lin-Gibson, Sheng
2009-03-01
The objectives of this study were to (1) demonstrate X-ray micro-computed tomography (microCT) as a viable method for determining the polymerization shrinkage and microleakage on the same sample accurately and non-destructively, and (2) investigate the effect of sample geometry (e.g., C-factor and volume) on polymerization shrinkage and microleakage. Composites placed in a series of model cavities of controlled C-factors and volumes were imaged using microCT to determine their precise location and volume before and after photopolymerization. Shrinkage was calculated by comparing the volume of composites before and after polymerization and leakage was predicted based on gap formation between composites and cavity walls as a function of position. Dye penetration experiments were used to validate microCT results. The degree of conversion (DC) of composites measured using FTIR microspectroscopy in reflectance mode was nearly identical for composites filled in all model cavity geometries. The shrinkage of composites calculated based on microCT results was statistically identical regardless of sample geometry. Microleakage, on the other hand, was highly dependent on the C-factor as well as the composite volume, with higher C-factors and larger volumes leading to a greater probability of microleakage. Spatial distribution of microleakage determined by microCT agreed well with results determined by dye penetration. microCT has proven to be a powerful technique in quantifying polymerization shrinkage and corresponding microleakage for clinically relevant cavity geometries.
Structural design methodologies for ceramic-based material systems
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Chulya, Abhisak; Gyekenyesi, John P.
1991-01-01
One of the primary pacing items for realizing the full potential of ceramic-based structural components is the development of new design methods and protocols. The focus here is on low temperature, fast-fracture analysis of monolithic, whisker-toughened, laminated, and woven ceramic composites. A number of design models and criteria are highlighted. Public domain computer algorithms, which aid engineers in predicting the fast-fracture reliability of structural components, are mentioned. Emphasis is not placed on evaluating the models, but instead is focused on the issues relevant to the current state of the art.
Homogeneous and heterogeneous chemistry along air parcel trajectories
NASA Technical Reports Server (NTRS)
Jones, R. L.; Mckenna, D. L.; Poole, L. R.; Solomon, S.
1990-01-01
The study of coupled heterogeneous and homogeneous chemistry due to polar stratospheric clouds (PSC's) using Lagrangian parcel trajectories for interpretation of the Airborne Arctic Stratosphere Experiment (AASE) is discussed. This approach represents an attempt to quantitatively model the physical and chemical perturbation to stratospheric composition due to formation of PSC's using the fullest possible representation of the relevant processes. Further, the meteorological fields from the United Kingdom Meteorological office global model were used to deduce potential vorticity and inferred regions of PSC's as an input to flight planning during AASE.
NASA Astrophysics Data System (ADS)
Krasnitckii, S. A.; Kolomoetc, D. R.; Smirnov, A. M.; Gutkin, M. Yu
2017-05-01
The boundary-value problem in the classical theory of elasticity for a core-shell nanowire with an eccentric parallelepipedal core of an arbitrary rectangular cross section is solved. The core is subjected to one-dimensional cross dilatation eigenstrain. The misfit stresses are given in a closed analytical form suitable for theoretical modeling of misfit accommodation in relevant heterostructures.
2017-10-01
of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed...IRI) in scenarios relevant to limb transplantation using mouse models for experimentation. Limitations in tolerated ischemia times limits the scope
Incorporating microbiota data into epidemiologic models: examples from vaginal microbiota research.
van de Wijgert, Janneke H; Jespers, Vicky
2016-05-01
Next generation sequencing and quantitative polymerase chain reaction technologies are now widely available, and research incorporating these methods is growing exponentially. In the vaginal microbiota (VMB) field, most research to date has been descriptive. The purpose of this article is to provide an overview of different ways in which next generation sequencing and quantitative polymerase chain reaction data can be used to answer clinical epidemiologic research questions using examples from VMB research. We reviewed relevant methodological literature and VMB articles (published between 2008 and 2015) that incorporated these methodologies. VMB data have been analyzed using ecologic methods, methods that compare the presence or relative abundance of individual taxa or community compositions between different groups of women or sampling time points, and methods that first reduce the complexity of the data into a few variables followed by the incorporation of these variables into traditional biostatistical models. To make future VMB research more clinically relevant (such as studying associations between VMB compositions and clinical outcomes and the effects of interventions on the VMB), it is important that these methods are integrated with rigorous epidemiologic methods (such as appropriate study designs, sampling strategies, and adjustment for confounding). Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Lignin Depolymerization with Nitrate-Intercalated Hydrotalcite Catalysts
Kruger, Jacob S.; Cleveland, Nicholas S.; Zhang, Shuting; ...
2016-01-13
Hydrotalcites (HTCs) exhibit multiple adjustable parameters to tune catalytic activity, including interlayer anion composition, metal hydroxide layer composition, and catalyst preparation methods. Here in this paper, we report the influence of several of these parameters on β-O-4 bond scission in a lignin model dimer, 2-phenoxy-1-phenethanol (PE), to yield phenol and acetophenone. We find that the presence of both basic and NO 3– anions in the interlayer increases the catalyst activity by 2–3-fold. In contrast, other anions or transition metals do not enhance catalytic activity in comparison to blank HTC. The catalyst is not active for C–C bond cleavage on ligninmore » model dimers and has no effect on dimers without an α-OH group. Most importantly, the catalyst is highly active in the depolymerization of two process-relevant lignin substrates, producing a significant amount of low-molecular-weight aromatic species. The catalyst can be recycled until the NO 3– anions are depleted, after which the activity can be restored by replenishing the NO 3– reservoir and regenerating the hydrated HTC structure. These results demonstrate a route to selective lignin depolymerization in a heterogeneous system with an inexpensive, earth-abundant, commercially relevant, and easily regenerated catalyst.« less
Assessment and prediction of drying shrinkage cracking in bonded mortar overlays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beushausen, Hans, E-mail: hans.beushausen@uct.ac.za; Chilwesa, Masuzyo
2013-11-15
Restrained drying shrinkage cracking was investigated on composite beams consisting of substrate concrete and bonded mortar overlays, and compared to the performance of the same mortars when subjected to the ring test. Stress development and cracking in the composite specimens were analytically modeled and predicted based on the measurement of relevant time-dependent material properties such as drying shrinkage, elastic modulus, tensile relaxation and tensile strength. Overlay cracking in the composite beams could be very well predicted with the analytical model. The ring test provided a useful qualitative comparison of the cracking performance of the mortars. The duration of curing wasmore » found to only have a minor influence on crack development. This was ascribed to the fact that prolonged curing has a beneficial effect on tensile strength at the onset of stress development, but is in the same time not beneficial to the values of tensile relaxation and elastic modulus. -- Highlights: •Parameter study on material characteristics influencing overlay cracking. •Analytical model gives good quantitative indication of overlay cracking. •Ring test presents good qualitative indication of overlay cracking. •Curing duration has little effect on overlay cracking.« less
NASA Astrophysics Data System (ADS)
Puckett, Elbridge Gerry; Turcotte, Donald L.; He, Ying; Lokavarapu, Harsha; Robey, Jonathan M.; Kellogg, Louise H.
2018-03-01
Geochemical observations of mantle-derived rocks favor a nearly homogeneous upper mantle, the source of mid-ocean ridge basalts (MORB), and heterogeneous lower mantle regions. Plumes that generate ocean island basalts are thought to sample the lower mantle regions and exhibit more heterogeneity than MORB. These regions have been associated with lower mantle structures known as large low shear velocity provinces (LLSVPS) below Africa and the South Pacific. The isolation of these regions is attributed to compositional differences and density stratification that, consequently, have been the subject of computational and laboratory modeling designed to determine the parameter regime in which layering is stable and understanding how layering evolves. Mathematical models of persistent compositional interfaces in the Earth's mantle may be inherently unstable, at least in some regions of the parameter space relevant to the mantle. Computing approximations to solutions of such problems presents severe challenges, even to state-of-the-art numerical methods. Some numerical algorithms for modeling the interface between distinct compositions smear the interface at the boundary between compositions, such as methods that add numerical diffusion or 'artificial viscosity' in order to stabilize the algorithm. We present two new algorithms for maintaining high-resolution and sharp computational boundaries in computations of these types of problems: a discontinuous Galerkin method with a bound preserving limiter and a Volume-of-Fluid interface tracking algorithm. We compare these new methods with two approaches widely used for modeling the advection of two distinct thermally driven compositional fields in mantle convection computations: a high-order accurate finite element advection algorithm with entropy viscosity and a particle method that carries a scalar quantity representing the location of each compositional field. All four algorithms are implemented in the open source finite element code ASPECT, which we use to compute the velocity, pressure, and temperature associated with the underlying flow field. We compare the performance of these four algorithms on three problems, including computing an approximation to the solution of an initially compositionally stratified fluid at Ra =105 with buoyancy numbers B that vary from no stratification at B = 0 to stratified flow at large B .
Toward an affirmative lesbian, gay, bisexual, and transgender leadership paradigm.
Fassinger, Ruth E; Shullman, Sandra L; Stevenson, Michael R
2010-04-01
This article presents an affirmative paradigm for understanding the leadership of sexual minorities-that is, lesbian, gay, bisexual, and transgender (LGBT) people. Although research on LGBT issues in leadership to date is almost nonexistent, there are several bodies of literature that can contribute to an understanding of the unique leadership challenges faced by sexual minority people. These include the literatures on stigma and marginalization, leadership in particular status groups (e.g., college students, women), and LGBT vocational issues (especially workplace climate and identity disclosure). We propose a new, multidimensional model of LGBT leadership enactment that incorporates sexual orientation (particularly regarding identity disclosure), gender orientation (including leader gender), and the situation (conceptualized here as group composition); the model also is embedded in context, the most relevant factors that affect the enactment of leadership being stigma and marginalization. We explicate this model with findings and concepts from relevant literatures, and we conclude the article with recommendations for building a scholarly literature in LGBT leadership. (PsycINFO Database Record (c) 2010 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Yu, Deying
Stretchable organic electronics have emerged as interesting technologies for several applications where stretchability is considered important. The easy and low-cost deposition procedures for the fabrication of stretchable organic solar cells and organic light emitting devices reduce the overall cost for the fabrication of these devices. However, the interfacial cracks and defects at the interfaces of the devices, during fabrication, are detrimental to the performance of stretchable organic electronic devices. Also, as the devices are deformed under service conditions, it is possible for cracks to grow. Furthermore, the multilayered structures of the devices can fail due to the delamination and buckling of the layered structures. There is, therefore, a need to study the failure mechanism in the layered structures that are relevant to stretchable organic electronic devices. Hence, in this study, a combined experimental, analytical and computational approach is used to study the effects of adhesion and deformation on the failure mechanisms in structures that are relevant to stretchable electronic devices. First, the failure mechanisms are studied in stretchable inorganic electronic structures. The wrinkles and buckles are formed by the unloading of pre-stretched PDMS/Au structure, after the evaporation of nano-scale Au layers. They are then characterized using atomic force microscopy and scanning electron microscopy. Analytical models are used to determine the critical stresses for wrinkling and buckling. The interfacial cracking and film buckling that can occur are also studied using finite element simulations. The implications of the results are then discussed for the potential applications of micro-wrinkles and micro-buckles in the stretchable electronic structures and biomedical devices. Subsequently, the adhesion between bi-material pairs that are relevant to organic light emitting devices, composite organic/inorganic light emitting devices, organic bulk heterojunction solar cells, and composite organic/inorganic solar cells on flexible substrates, is measured using force microscopy (AFM) techniques. The AFM measurements are incorporated into the Derjaguin-Muller-Toporov model to calculate the adhesion energies. The implications of the results are then discussed for the design of robust organic and composite organic/inorganic electronic devices. Finally, the lamination of organic solar cells and organic light emitting devices is studied using a combination of experimental, computational, and analytical approaches. First, the effects of applied lamination force (on contact between the laminated layers) are studied using experiments and models. The crack driving forces associated with the interfacial cracks that form at the interfaces between layers (at the bi-material interfaces) are estimated along with the critical interfacial crack driving forces associated with the separation of thin films, after layer transfer. The conditions for successful lamination are predicted using a combination of experiments and models. Guidelines are developed for the lamination of low-cost organic electronic structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zi-Kui; Gleeson, Brian; Shang, Shunli
This project developed computational tools that can complement and support experimental efforts in order to enable discovery and more efficient development of Ni-base structural materials and coatings. The project goal was reached through an integrated computation-predictive and experimental-validation approach, including first-principles calculations, thermodynamic CALPHAD (CALculation of PHAse Diagram), and experimental investigations on compositions relevant to Ni-base superalloys and coatings in terms of oxide layer growth and microstructure stabilities. The developed description included composition ranges typical for coating alloys and, hence, allow for prediction of thermodynamic properties for these material systems. The calculation of phase compositions, phase fraction, and phase stabilities,more » which are directly related to properties such as ductility and strength, was a valuable contribution, along with the collection of computational tools that are required to meet the increasing demands for strong, ductile and environmentally-protective coatings. Specifically, a suitable thermodynamic description for the Ni-Al-Cr-Co-Si-Hf-Y system was developed for bulk alloy and coating compositions. Experiments were performed to validate and refine the thermodynamics from the CALPHAD modeling approach. Additionally, alloys produced using predictions from the current computational models were studied in terms of their oxidation performance. Finally, results obtained from experiments aided in the development of a thermodynamic modeling automation tool called ESPEI/pycalphad - for more rapid discovery and development of new materials.« less
Fowler, L. Adele; Dennis, Lacey N.; Barry, R. Jeff; Powell, Mickie L.; Watts, Stephen A.
2016-01-01
Abstract Zebrafish (Danio rerio) as a model research organism continues to expand its relevance and role in multiple research disciplines, with recent work directed toward models of metabolism, nutrition, and energetics. Multiple technologies exist to assess body composition in animal research models at various levels of detail (tissues/organs, body regions, and whole organism). The development and/or validation of body composition assessment tools can open new areas of research questions for a given organism. Using fish from a comparative nutrition study, quantitative magnetic resonance (QMR) assessment of whole body fat and fat-free mass (FFM) in live fish was performed. QMR measures from two cohorts (n = 26 and n = 27) were compared with chemical carcass analysis (CCA) of FM and FFM. QMR was significantly correlated with chemical carcass values (fat, p < 0.001; lean, p = 0.002), although QMR significantly overestimated fat mass (FM) (0.011 g; p < 0.0001) and underestimated FFM (−0.024 g; p < 0.0001) relative to CCA. In a separate cross-validation group of fish, prediction equations corrected carcass values for FM (p = 0.121) and FFM (p = 0.753). These results support the utilization of QMR—a nonlethal nondestructive method—for cross-sectional or longitudinal body composition assessment outcomes in zebrafish. PMID:26974510
Understanding the Kinetics of Protein-Nanoparticle Corona Formation.
Vilanova, Oriol; Mittag, Judith J; Kelly, Philip M; Milani, Silvia; Dawson, Kenneth A; Rädler, Joachim O; Franzese, Giancarlo
2016-12-27
When a pristine nanoparticle (NP) encounters a biological fluid, biomolecules spontaneously form adsorption layers around the NP, called "protein corona". The corona composition depends on the time-dependent environmental conditions and determines the NP's fate within living organisms. Understanding how the corona evolves is fundamental in nanotoxicology as well as medical applications. However, the process of corona formation is challenging due to the large number of molecules involved and to the large span of relevant time scales ranging from 100 μs, hard to probe in experiments, to hours, out of reach of all-atoms simulations. Here we combine experiments, simulations, and theory to study (i) the corona kinetics (over 10 -3 -10 3 s) and (ii) its final composition for silica NPs in a model plasma made of three blood proteins (human serum albumin, transferrin, and fibrinogen). When computer simulations are calibrated by experimental protein-NP binding affinities measured in single-protein solutions, the theoretical model correctly reproduces competitive protein replacement as proven by independent experiments. When we change the order of administration of the three proteins, we observe a memory effect in the final corona composition that we can explain within our model. Our combined experimental and computational approach is a step toward the development of systematic prediction and control of protein-NP corona composition based on a hierarchy of equilibrium protein binding constants.
NASA Astrophysics Data System (ADS)
Algarray, A. F. A.; Jun, H.; Mahdi, I.-E. M.
2017-11-01
The effects of the end conditions of cross-ply laminated composite beams on their dimensionless natural frequencies of free vibration is investigated. The problem is analyzed and solved by using the energy approach, which is formulated by a finite element model. Various end conditions of beams are used. Each beam has either movable ends or immovable ends. Numerical results are verified by comparisons with other relevant works. It is found that more constrained beams have higher values of natural frequencies of transverse vibration. The values of the natural frequencies of longitudinal modes are found to be the same for all beams with movable ends because they are generated by longitudinal movements only.
NASA Astrophysics Data System (ADS)
Arendt, Carli A.; Aciego, Sarah M.; Hetland, Eric A.
2015-05-01
The implementation of isotopic tracers as constraints on source contributions has become increasingly relevant to understanding Earth surface processes. Interpretation of these isotopic tracers has become more accessible with the development of Bayesian Monte Carlo (BMC) mixing models, which allow uncertainty in mixing end-members and provide methodology for systems with multicomponent mixing. This study presents an open source multiple isotope BMC mixing model that is applicable to Earth surface environments with sources exhibiting distinct end-member isotopic signatures. Our model is first applied to new δ18O and δD measurements from the Athabasca Glacier, which showed expected seasonal melt evolution trends and vigorously assessed the statistical relevance of the resulting fraction estimations. To highlight the broad applicability of our model to a variety of Earth surface environments and relevant isotopic systems, we expand our model to two additional case studies: deriving melt sources from δ18O, δD, and 222Rn measurements of Greenland Ice Sheet bulk water samples and assessing nutrient sources from ɛNd and 87Sr/86Sr measurements of Hawaiian soil cores. The model produces results for the Greenland Ice Sheet and Hawaiian soil data sets that are consistent with the originally published fractional contribution estimates. The advantage of this method is that it quantifies the error induced by variability in the end-member compositions, unrealized by the models previously applied to the above case studies. Results from all three case studies demonstrate the broad applicability of this statistical BMC isotopic mixing model for estimating source contribution fractions in a variety of Earth surface systems.
Propagation of cosmic rays in the galaxy
NASA Technical Reports Server (NTRS)
Daniel, R. R.; Stephens, S. A.
1974-01-01
The characteristics of a model for analyzing the propagation of cosmic rays are discussed. The requirements for analyzing the relevant observational data on cosmic rays are defines as: (1) the chemical and isotopic composition of cosmic rays as a function of energy, (2) the flux and energy spectrum of the individual nucleonic components, (3) the flux and energy spectrum of the electronic component, (4) the cosmic ray prehistory, and (5) the degree of isotropy in their arrival directions as a function of energy. It is stated that the model which has been able to bring to pass the greatest measure of success is the galactic confinement model.
Analysis of Wellbore Skin Samples-Typology, Composition, and Hydraulic Properties.
Houben, Georg J; Halisch, Matthias; Kaufhold, Stephan; Weidner, Christoph; Sander, Jürgen; Reich, Morris
2016-09-01
The presence of a wellbore skin layer, formed during the drilling process, is a major impediment for the energy-efficient use of water wells. Many models exist that predict its potential impacts on well hydraulics, but so far its relevant hydraulic parameters were only estimates or, at best, model results. Here, we present data on the typology, thickness, composition, and hydraulic properties obtained from the sampling of excavated dewatering wells in lignite surface mines and from inclined core drilling into the annulus of an abandoned water well. Despite the limited number of samples, several types of skin were identified. Both surface cake filtration and particle straining in the aquifer occur. The presence of microcracks may be a determining feature for the hydraulic conductivity of skin layers. In the case of the well-developed water supply well, no skin layer was detected. The observed types and properties of wellbore skin samples can be used to test the many mathematical skin models. © 2016, National Ground Water Association.
Microvesicating effects of sulfur mustard on an in vitro human skin model.
Hayden, Patrick J; Petrali, John P; Stolper, Gina; Hamilton, Tracey A; Jackson, George R; Wertz, Philip W; Ito, Susumu; Smith, William J; Klausner, Mitchell
2009-10-01
Bis-(beta-chloroethyl) sulfide (SM) is a potent skin vesicant previously used for chemical warfare. Progress in determination of the mechanistic basis of SM pathology, and development of prophylactic and/or therapeutic countermeasures to SM exposure has been hampered by lack of physiologically relevant models of human skin. The current work evaluated a newly developed tissue engineered full-thickness human skin model in a completely in vitro approach to investigation of SM-induced dermal pathology. The model was first characterized with regard to overall morphology, lipid composition, basement membrane (BM) composition and ultrastructural features that are important targets of SM pathologic activity. Well-developed BM ultrastructural features were observed at the dermal-epidermal junction (DEJ), thus demonstrating successful resolution of a primary deficiency of models previously evaluated for SM studies. Studies were then conducted to evaluate histopathological effects of SM on the model. Good replication of in vivo effects was observed, including apoptosis of basal keratinocytes (KC) and microblister formation at the DEJ. Tissue engineered skin models with well-developed basement membrane structures thus appear to be useful tools for in vitro mechanistic studies of SM vesicant activity and development of preventive/therapeutic approaches for SM pathology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montañés-Rodríguez, Pilar; González-Merino, B.; Pallé, E.
Currently, the analysis of transmission spectra is the most successful technique to probe the chemical composition of exoplanet atmospheres. However, the accuracy of these measurements is constrained by observational limitations and the diversity of possible atmospheric compositions. Here, we show the UV–VIS–IR transmission spectrum of Jupiter as if it were a transiting exoplanet, obtained by observing one of its satellites, Ganymede, while passing through Jupiter’s shadow, i.e., during a solar eclipse from Ganymede. The spectrum shows strong extinction due to the presence of clouds (aerosols) and haze in the atmosphere and strong absorption features from CH{sub 4}. More interestingly, themore » comparison with radiative transfer models reveals a spectral signature, which we attribute here to a Jupiter stratospheric layer of crystalline H{sub 2}O ice. The atomic transitions of Na are also present. These results are relevant for the modeling and interpretation of giant transiting exoplanets. They also open a new technique to explore the atmospheric composition of the upper layers of Jupiter’s atmosphere.« less
Biocomposites from abaca strands and polypropylene. Part I: Evaluation of the tensile properties.
Vilaseca, Fabiola; Valadez-Gonzalez, Alex; Herrera-Franco, Pedro J; Pèlach, M Angels; López, Joan Pere; Mutjé, Pere
2010-01-01
In this paper, abaca strands were used as reinforcement of polypropylene matrix and their tensile mechanical properties were studied. It was found relevant increments on the tensile properties of the abaca strand-PP composites despite the lack of good adhesion at fiber-matrix interface. Afterwards, it was stated the influence of using maleated polypropylene (MAPP) as compatibilizer to promote the interaction between abaca strands and polypropylene. The intrinsic mechanical properties of the reinforcement were evaluated and used for modeling both the tensile strength and elastic modulus of the composites. For these cases, the compatibility factor for the ultimate tensile strength was deduced from the modified rule of mixtures. Additionally, the experimental fiber orientation coefficient was measured, allowing determining the interfacial shear strengths of the composites and the critical fiber length of the abaca strand reinforcement. The mechanical improvement was compared to that obtained for fiberglass-reinforced PP composites and evaluated under an economical and technical point of view.
NASA Technical Reports Server (NTRS)
Righter, K.; Pando, K.; Danielson, L.
2014-01-01
Numerous geophysical and geochemical studies have suggested the existence of a small metallic lunar core, but the composition of that core is not known. Knowledge of the composition can have a large impact on the thermal evolution of the core, its possible early dynamo creation, and its overall size and fraction of solid and liquid. Thermal models predict that the current temperature at the core-mantle boundary of the Moon is near 1650 K. Re-evaluation of Apollo seismic data has highlighted the need for new data in a broader range of bulk core compositions in the PT range of the lunar core. Geochemical measurements have suggested a more volatile-rich Moon than previously thought. And GRAIL mission data may allow much better constraints on the physical nature of the lunar core. All of these factors have led us to determine new phase equilibria experimental studies in the Fe-Ni-S-C-Si system in the relevant PT range of the lunar core that will help constrain the composition of Moon's core.
Statistical Models of Fracture Relevant to Nuclear-Grade Graphite: Review and Recommendations
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Bratton, Robert L.
2011-01-01
The nuclear-grade (low-impurity) graphite needed for the fuel element and moderator material for next-generation (Gen IV) reactors displays large scatter in strength and a nonlinear stress-strain response from damage accumulation. This response can be characterized as quasi-brittle. In this expanded review, relevant statistical failure models for various brittle and quasi-brittle material systems are discussed with regard to strength distribution, size effect, multiaxial strength, and damage accumulation. This includes descriptions of the Weibull, Batdorf, and Burchell models as well as models that describe the strength response of composite materials, which involves distributed damage. Results from lattice simulations are included for a physics-based description of material breakdown. Consideration is given to the predicted transition between brittle and quasi-brittle damage behavior versus the density of damage (level of disorder) within the material system. The literature indicates that weakest-link-based failure modeling approaches appear to be reasonably robust in that they can be applied to materials that display distributed damage, provided that the level of disorder in the material is not too large. The Weibull distribution is argued to be the most appropriate statistical distribution to model the stochastic-strength response of graphite.
A phylogenetic transform enhances analysis of compositional microbiota data.
Silverman, Justin D; Washburne, Alex D; Mukherjee, Sayan; David, Lawrence A
2017-02-15
Surveys of microbial communities (microbiota), typically measured as relative abundance of species, have illustrated the importance of these communities in human health and disease. Yet, statistical artifacts commonly plague the analysis of relative abundance data. Here, we introduce the PhILR transform, which incorporates microbial evolutionary models with the isometric log-ratio transform to allow off-the-shelf statistical tools to be safely applied to microbiota surveys. We demonstrate that analyses of community-level structure can be applied to PhILR transformed data with performance on benchmarks rivaling or surpassing standard tools. Additionally, by decomposing distance in the PhILR transformed space, we identified neighboring clades that may have adapted to distinct human body sites. Decomposing variance revealed that covariation of bacterial clades within human body sites increases with phylogenetic relatedness. Together, these findings illustrate how the PhILR transform combines statistical and phylogenetic models to overcome compositional data challenges and enable evolutionary insights relevant to microbial communities.
Volcanic ash melting under conditions relevant to ash turbine interactions.
Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B
2016-03-02
The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.
Influence of ionization on the Gupta and on the Park chemical models
NASA Astrophysics Data System (ADS)
Morsa, Luigi; Zuppardi, Gennaro
2014-12-01
This study is an extension of former works by the present authors, in which the influence of the chemical models by Gupta and by Park was evaluated on thermo-fluid-dynamic parameters in the flow field, including transport coefficients, related characteristic numbers and heat flux on two current capsules (EXPERT and Orion) during the high altitude re-entry path. The results verified that the models, even computing different air compositions in the flow field, compute only slight different compositions on the capsule surface, therefore the difference in the heat flux is not very relevant. In the above mentioned studies, ionization was neglected because the velocities of the capsules (about 5000 m/s for EXPERT and about 7600 m/s for Orion) were not high enough to activate meaningful ionization. The aim of the present work is to evaluate the incidence of ionization, linked to the chemical models by Gupta and by Park, on both heat flux and thermo fluid-dynamic parameters. The present computer tests were carried out by a direct simulation Monte Carlo code (DS2V) in the velocity interval 7600-12000 m/s, considering only the Orion capsule at an altitude of 85 km. The results verified what already found namely when ionization is not considered, the chemical models compute only a slight different gas composition in the core of the shock wave and practically the same composition on the surface therefore the same heat flux. On the opposite, the results verified that when ionization is considered, the chemical models compute different compositions in the whole shock layer and on the surface therefore different heat flux. The analysis of the results relies on a qualitative and a quantitative evaluation of the effects of ionization on both chemical models. The main result of the study is that when ionization is taken into account, the Park model is more reactive than the Gupta model; consequently, the heat flux computed by Park is lower than the one computed by Gupta; using the Gupta model, in the design of a thermal protection system, is recommended.
High performance dental resin composites with hydrolytically stable monomers.
Wang, Xiaohong; Huyang, George; Palagummi, Sri Vikram; Liu, Xiaohui; Skrtic, Drago; Beauchamp, Carlos; Bowen, Rafael; Sun, Jirun
2018-02-01
The objectives of this project were to: 1) develop strong and durable dental resin composites by employing new monomers that are hydrolytically stable, and 2) demonstrate that resin composites based on these monomers perform superiorly to the traditional bisphenol A glycidyl dimethacrylate/triethylene glycol dimethacrylate (Bis-GMA/TEGDMA) composites under testing conditions relevant to clinical applications. New resins comprising hydrolytically stable, ether-based monomer, i.e., triethylene glycol divinylbenzyl ether (TEG-DVBE), and urethane dimethacrylate (UDMA) were produced via composition-controlled photo-polymerization. Their composites contained 67.5wt% of micro and 7.5wt% of nano-sized filler. The performances of both copolymers and composites were evaluated by a battery of clinically-relevant assessments: degree of vinyl conversion (DC: FTIR and NIR spectroscopy); refractive index (n: optical microscopy); elastic modulus (E), flexural strength (F) and fracture toughness (K IC ) (universal mechanical testing); Knoop hardness (HK; indentation); water sorption (W sp ) and solubility (W su ) (gravimetry); polymerization shrinkage (S v ; mercury dilatometry) and polymerization stress (tensometer). The experimental UDMA/TEG-DVBE composites were compared with the Bis-GMA/TEGDMA composites containing the identical filler contents, and with the commercial micro hybrid flowable composite. UDMA/TEG-DBVE composites exhibited n, E, W sp , W su and S v equivalent to the controls. They outperformed the controls with respect to F (up to 26.8% increase), K IC (up to 27.7% increase), modulus recovery upon water sorption (full recovery vs. 91.9% recovery), and stress formation (up to 52.7% reduction). In addition, new composites showed up to 27.7% increase in attainable DC compared to the traditional composites. Bis-GMA/TEGDMA controls exceeded the experimental composites with respect to only one property, the composite hardness. Significantly, up to 18.1% lower HK values in the experimental series (0.458GPa) were still above the clinically required threshold of approx. 0.4GPa. Hydrolytic stability, composition-controlled polymerization and the overall enhancement in clinically-relevant properties of the new resin composites make them viable candidates to replace traditional resin composites as a new generation of strong and durable dental restoratives. Copyright © 2017 The Academy of Dental Materials. All rights reserved.
An Empirical Model of the Variation of the Solar Lyman-α Spectral Irradiance
NASA Astrophysics Data System (ADS)
Kretzschmar, Matthieu; Snow, Martin; Curdt, Werner
2018-03-01
We propose a simple model that computes the spectral profile of the solar irradiance in the hydrogen Lyman alpha line, H Ly-α (121.567 nm), from 1947 to present. Such a model is relevant for the study of many astronomical environments, from planetary atmospheres to interplanetary medium. This empirical model is based on the SOlar Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation observations of the Ly-α irradiance over solar cycle 23 and the Ly-α disk-integrated irradiance composite. The model reproduces the temporal variability of the spectral profile and matches the independent SOlar Radiation and Climate Experiment/SOLar-STellar Irradiance Comparison Experiment spectral observations from 2003 to 2007 with an accuracy better than 10%.
Zhang, Tong-Liang; Ding, Yong-Sheng; Chou, Kuo-Chen
2008-01-07
Compared with the conventional amino acid (AA) composition, the pseudo-amino acid (PseAA) composition as originally introduced for protein subcellular location prediction can incorporate much more information of a protein sequence, so as to remarkably enhance the power of using a discrete model to predict various attributes of a protein. In this study, based on the concept of PseAA composition, the approximate entropy and hydrophobicity pattern of a protein sequence are used to characterize the PseAA components. Also, the immune genetic algorithm (IGA) is applied to search the optimal weight factors in generating the PseAA composition. Thus, for a given protein sequence sample, a 27-D (dimensional) PseAA composition is generated as its descriptor. The fuzzy K nearest neighbors (FKNN) classifier is adopted as the prediction engine. The results thus obtained in predicting protein structural classification are quite encouraging, indicating that the current approach may also be used to improve the prediction quality of other protein attributes, or at least can play a complimentary role to the existing methods in the relevant areas. Our algorithm is written in Matlab that is available by contacting the corresponding author.
Woodrow, Graham
2007-06-01
Complex abnormalities of body composition occur in peritoneal dialysis (PD). These abnormalities reflect changes in hydration, nutrition, and body fat, and they are of major clinical significance. Clinical assessment of these body compartments is insensitive and inaccurate. Frequently, simultaneous changes of hydration, wasting, and body fat content can occur, confounding clinical assessment of each component. Body composition can be described by models of varying complexity that use one or more measurement techniques. "Gold standard" methods provide accurate and precise data, but are not practical for routine clinical use. Dual energy X-ray absorptiometry allows for measurement of regional as well as whole-body composition, which can provide further information of clinical relevance. Simpler techniques such as anthropometry and bioelectrical impedance analysis are suited to routine use in clinic or at the bedside, but may be less accurate. Body composition methodology sometimes makes assumptions regarding relationships between components, particularly in regard to hydration, which may be invalid in pathologic states. Uncritical application of these methods to the PD patient may result in erroneous interpretation of results. Understanding the foundations and limitations of body composition techniques allows for optimal application in clinical practice.
NASA Technical Reports Server (NTRS)
Hameed, S.; Cess, R. D.; Hogan, J. S.
1980-01-01
Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.
Soot and Spectral Radiation Modeling for a High-Pressure Turbulent Spray Flame
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreryo-Fernandez, Sebastian; Paul, Chandan; Sircar, Arpan
Simulations are performed of a transient high-pressure turbulent n-dodecane spray flame under engine-relevant conditions. An unsteady RANS formulation is used, with detailed chemistry, a semi-empirical two-equation soot model, and a particle-based transported composition probability density function (PDF) method to account for unresolved turbulent fluctuations in composition and temperature. Results from the PDF model are compared with those from a locally well-stirred reactor (WSR) model to quantify the effects of turbulence-chemistry-soot interactions. Computed liquid and vapor penetration versus time, ignition delay, and flame lift-off height are in good agreement with experiment, and relatively small differences are seen between the WSR andmore » PDF models for these global quantities. Computed soot levels and spatial soot distributions from the WSR and PDF models show large differences, with PDF results being in better agreement with experimental measurements. An uncoupled photon Monte Carlo method with line-by-line spectral resolution is used to compute the spectral intensity distribution of the radiation leaving the flame. This provides new insight into the relative importance of molecular gas radiation versus soot radiation, and the importance of turbulent fluctuations on radiative heat transfer.« less
The analysis of composite laminated beams using a 2D interpolating meshless technique
NASA Astrophysics Data System (ADS)
Sadek, S. H. M.; Belinha, J.; Parente, M. P. L.; Natal Jorge, R. M.; de Sá, J. M. A. César; Ferreira, A. J. M.
2018-02-01
Laminated composite materials are widely implemented in several engineering constructions. For its relative light weight, these materials are suitable for aerospace, military, marine, and automotive structural applications. To obtain safe and economical structures, the modelling analysis accuracy is highly relevant. Since meshless methods in the recent years achieved a remarkable progress in computational mechanics, the present work uses one of the most flexible and stable interpolation meshless technique available in the literature—the Radial Point Interpolation Method (RPIM). Here, a 2D approach is considered to numerically analyse composite laminated beams. Both the meshless formulation and the equilibrium equations ruling the studied physical phenomenon are presented with detail. Several benchmark beam examples are studied and the results are compared with exact solutions available in the literature and the results obtained from a commercial finite element software. The results show the efficiency and accuracy of the proposed numeric technique.
School Socioeconomic Composition and Adolescent Sexual Initiation in Malawi.
Kim, Jinho
2015-09-01
Numerous studies have documented the determinants of sexual behavior among adolescents in less-developed countries, yet relatively little is known about the influence of social contexts such as school and neighborhood. Using two waves of data from a school-based longitudinal survey conducted in Malawi from 2011-13, this study advances our understanding of the relationship between school-level socioeconomic contexts and adolescents' sexual activity. The results from two-level multinomial logistic regression models suggest that high socioeconomic composition of the student body in school decreases the odds of initiation of sexual activity, independent of other important features of schools and individual-level characteristics. This study also finds that the association between school socioeconomic composition and sexual activity is statistically significant among male adolescents but not female adolescents, suggesting that schools' socioeconomic contexts may be more relevant to male adolescents' initiation of sexual activity. © 2015 The Population Council, Inc.
School socioeconomic composition and adolescent sexual initiation in Malawi
Kim, Jinho
2015-01-01
While numerous studies have documented the determinants of sexual behavior among adolescents in less developed countries, relatively little is known about the influence of social contexts such as school and neighborhood. Using two waves of data from a school-based longitudinal survey conducted in Malawi from 2011 to 2013, this study advances our understanding of the relationship between school-level socioeconomic contexts and adolescents’ sexual activity. The results from two-level multinomial logistic regression models suggest that high socioeconomic composition of the student body in school decreases the odds of initiating sexual activity, independently of other important features of schools as well as individual-level characteristics. This study also finds that the association between school socioeconomic composition and sexual activity is statistically significant only among males, but not females, suggesting that school’s socioeconomic contexts may be more relevant to male adolescents’ initiation of sexual activity. PMID:26347090
AMP: Assembly Matching Pursuit.
Biswas, S; Jojic, V
2013-01-01
Metagenomics, the study of the total genetic material isolated from a biological host, promises to reveal host-microbe or microbe-microbe interactions that may help to personalize medicine or improve agronomic practice. We introduce a method that discovers metagenomic units (MGUs) relevant for phenotype prediction through sequence-based dictionary learning. The method aggregates patient-specific dictionaries and estimates MGU abundances in order to summarize a whole population and yield universally predictive biomarkers. We analyze the impact of Gaussian, Poisson, and Negative Binomial read count models in guiding dictionary construction by examining classification efficiency on a number of synthetic datasets and a real dataset from Ref. 1. Each outperforms standard methods of dictionary composition, such as random projection and orthogonal matching pursuit. Additionally, the predictive MGUs they recover are biologically relevant.
Hospital adoption of medical technology: an empirical test of alternative models.
Teplensky, J. D.; Pauly, M. V.; Kimberly, J. R.; Hillman, A. L.; Schwartz, J. S.
1995-01-01
OBJECTIVE. This study examines hospital motivations to acquire new medical technology, an issue of considerable policy relevance: in this case, whether, when, and why hospitals acquire a new capital-intensive medical technology, magnetic resonance imaging equipment (MRI). STUDY DESIGN. We review three common explanations for medical technology adoption: profit maximization, technological preeminence, and clinical excellence, and incorporate them into a composite model, controlling for regulatory differences, market structures, and organizational characteristics. All four models are then tested using Cox regressions. DATA SOURCES. The study is based on an initial sample of 637 hospitals in the continental United States that owned or leased an MRI unit as of 31 December 1988, plus nonadopters. Due to missing data the final sample consisted of 507 hospitals. The data, drawn from two telephone surveys, are supplemented by the AHA Survey, census data, and industry and academic sources. PRINCIPAL FINDING. Statistically, the three individual models account for roughly comparable amounts of variance in past adoption behavior. On the basis of explanatory power and parsimony, however, the technology model is "best." Although the composite model is statistically better than any of the individual models, it does not add much more explanatory power adjusting for the number of variables added. CONCLUSIONS. The composite model identified the importance a hospital attached to being a technological leader, its clinical requirements, and the change in revenues it associated with the adoption of MRI as the major determinants of adoption behavior. We conclude that a hospital's adoption behavior is strongly linked to its strategic orientation. PMID:7649751
Yan, Shi; Dai, Yong; Zhao, Putian; Liu, Weiling
2018-01-01
Steel-concrete composite structures are playing an increasingly important role in economic construction because of a series of advantages of great stiffness, good seismic performance, steel material saving, cost efficiency, convenient construction, etc. However, in service process, due to the long-term effects of environmental impacts and dynamic loading, interfaces of a composite structure might generate debonding cracks, relative slips or separations, and so on, lowering the composite effect of the composite structure. In this paper, the piezoceramics (PZT) are used as transducers to perform experiments on interface debonding slips and separations of composite beams, respectively, aimed at proposing an interface damage identification model and a relevant damage detection innovation method based on PZT wave technology. One part of various PZT patches was embedded in concrete as "smart aggregates," and another part of the PZT patches was pasted on the surface of the steel beam flange, forming a sensor array. A push-out test for four specimens was carried out and experimental results showed that, under the action of the external loading, the received signal amplitudes will increasingly decrease with increase of debonding slips along the interface. The proposed signal energy-based interface damage detection algorithm is highly efficient in surface state evaluations of composite beams.
Odunaiya, Nse A; Louw, Quinette A; Grimmer, Karen
2017-06-01
Assessment of lifestyle risk factors must be culturally- and contextually relevant and available in local languages. This paper reports on a study which aimed to cross culturally adapt a composite lifestyle cardiovascular disease (CVD) risk factors questionnaire into an African language (Yoruba) and testing some of its psychometric properties such as content validity and test retest reliability in comparison to the original English version. This study utilized a cross sectional design. Translation of the English version of the questionnaire into Yoruba was undertaken using the guideline by Beaton et al. The translated instrument was presented to 21 rural adolescents to assess comprehensibility and clarity using a sample of convenience. A test retest reliability was conducted among 150 rural adolescents using a purposive sampling. Data was analyzed using intraclass correlation (ICC ) model 3, Cohen kappa statistics and prevalence rates. ICC ranged between 0.4-0.8. The Yoruba version was completed 15-20 minutes and was reported to be culturally appropriate and acceptable for rural Nigerian adolescents. The Yoruba translation of the Nigerian composite lifestyle risk factors questionnaire performs at least as well as the original English version in terms of content validity and reliability. It took a shorter time to complete therefore may be more relevant to rural adolescents.
Incorporating radioactive decay into charging and coagulation of multicomponent radioactive aerosols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yong-ha; Yiacoumi, Sotira; Nenes, Athanasios
Compositional changes by the decay of radionuclides in radioactive aerosols can influence their charging state, coagulation frequency and size distribution throughout their atmospheric lifetime. The importance of such effects is unknown as they have not been considered in microphysical and global radioactivity transport studies to date. Here, we explore the effects of compositional changes on the charging efficiency and coagulation rates of aerosols using a set of kinetic equations that couple all relevant processes (decay, charging and coagulation) and their evolution over time. Compared to a coupled aggregation-tracer model for the prediction of the radioactive composition of particulates undergoing coagulation,more » our kinetic approach can provide similar results using much less central processing unit time. Altogether with other considerations, our approach is computational efficient enough to allow implementation in 3D atmospheric transport models. The decay of radionuclides and the production of decay products within radioactive aerosols may significantly affect the aerosol charging rates, and either hinder or promote the coagulation of multicomponent radioactive aerosols. Our results suggest that radiological phenomena occurring within radioactive aerosols, as well as subsequent effects on aerosol microphysics, should be considered in regional and global models to more accurately predict radioactivity transport in the atmosphere in case of a nuclear plant accident.« less
Incorporating radioactive decay into charging and coagulation of multicomponent radioactive aerosols
Kim, Yong-ha; Yiacoumi, Sotira; Nenes, Athanasios; ...
2017-09-29
Compositional changes by the decay of radionuclides in radioactive aerosols can influence their charging state, coagulation frequency and size distribution throughout their atmospheric lifetime. The importance of such effects is unknown as they have not been considered in microphysical and global radioactivity transport studies to date. Here, we explore the effects of compositional changes on the charging efficiency and coagulation rates of aerosols using a set of kinetic equations that couple all relevant processes (decay, charging and coagulation) and their evolution over time. Compared to a coupled aggregation-tracer model for the prediction of the radioactive composition of particulates undergoing coagulation,more » our kinetic approach can provide similar results using much less central processing unit time. Altogether with other considerations, our approach is computational efficient enough to allow implementation in 3D atmospheric transport models. The decay of radionuclides and the production of decay products within radioactive aerosols may significantly affect the aerosol charging rates, and either hinder or promote the coagulation of multicomponent radioactive aerosols. Our results suggest that radiological phenomena occurring within radioactive aerosols, as well as subsequent effects on aerosol microphysics, should be considered in regional and global models to more accurately predict radioactivity transport in the atmosphere in case of a nuclear plant accident.« less
NASA Astrophysics Data System (ADS)
Catlett, D.; Siegel, D. A.
2018-01-01
Understanding the roles of phytoplankton community composition in the functioning of marine ecosystems and ocean biogeochemical cycles is important for many ocean science problems of societal relevance. Remote sensing currently offers the only feasible method for continuously assessing phytoplankton community structure on regional to global scales. However, methods are presently hindered by the limited spectral resolution of most satellite sensors and by uncertainties associated with deriving quantitative indices of phytoplankton community structure from phytoplankton pigment concentrations. Here we analyze a data set of concurrent phytoplankton pigment concentrations and phytoplankton absorption coefficient spectra from the Santa Barbara Channel, California, to develop novel optical oceanographic models for retrieving metrics of phytoplankton community composition. Cluster and Empirical Orthogonal Function analyses of phytoplankton pigment concentrations are used to define up to five phytoplankton pigment communities as a representation of phytoplankton functional types. Unique statistical relationships are found between phytoplankton pigment communities and absorption features isolated using spectral derivative analysis and are the basis of predictive models. Model performance is substantially better for phytoplankton pigment community indices compared with determinations of the contributions of individual pigments or taxa to chlorophyll a. These results highlight the application of data-driven chemotaxonomic approaches for developing and validating bio-optical algorithms and illustrate the potential and limitations for retrieving phytoplankton community composition from hyperspectral satellite ocean color observations.
NASA Astrophysics Data System (ADS)
Rahman, M. Muzibur; Ahmad, S. Reaz
2017-12-01
An analytical investigation of elastic fields for a guided deep beam of orthotropic composite material having three point symmetric bending is carried out using displacement potential boundary modeling approach. Here, the formulation is developed as a single function of space variables defined in terms of displacement components, which has to satisfy the mixed type of boundary conditions. The relevant displacement and stress components are derived into infinite series using Fourier integral along with suitable polynomials coincided with boundary conditions. The results are presented mainly in the form of graphs and verified with finite element solutions using ANSYS. This study shows that the analytical and numerical solutions are in good agreement and thus enhances reliability of the displacement potential approach.
Features and characterization needs of rubber composite structures
NASA Technical Reports Server (NTRS)
Tabaddor, Farhad
1989-01-01
Some of the major unique features of rubber composite structures are outlined. The features covered are those related to the material properties, but the analytical features are also briefly discussed. It is essential to recognize these features at the planning stage of any long-range analytical, experimental, or application program. The development of a general and comprehensive program which fully accounts for all the important characteristics of tires, under all the relevant modes of operation, may present a prohibitively expensive and impractical task at the near future. There is therefore a need to develop application methodologies which can utilize the less general models, beyond their theoretical limitations and yet with reasonable reliability, by proper mix of analytical, experimental, and testing activities.
Sezgin, Erdinc; Levental, Ilya; Mayor, Satyajit; Eggeling, Christian
2017-01-01
Cellular plasma membranes are laterally heterogeneous, featuring a variety of distinct subcompartments that differ in their biophysical properties and composition. A large body of research has focused on understanding the basis for this heterogeneity and its physiological relevance. The membrane raft hypothesis formalized a physicochemical principle for a subtype of such lateral membrane heterogeneity, wherein the preferential associations of cholesterol and saturated lipids drives the formation of relatively packed (ordered) membrane domains that selectively recruit certain lipids and proteins. Recent years have yielded new insights into this concept and its in vivo relevance, primarily owing to the development of biochemical and biophysical technologies. PMID:28356571
Present, Future, and Novel Bioclimates of the San Francisco, California Region
Torregrosa, Alicia; Taylor, Maxwell D.; Flint, Lorraine E.; Flint, Alan L.
2013-01-01
Bioclimates are syntheses of climatic variables into biologically relevant categories that facilitate comparative studies of biotic responses to climate conditions. Isobioclimates, unique combinations of bioclimatic indices (continentality, ombrotype, and thermotype), were constructed for northern California coastal ranges based on the Rivas-Martinez worldwide bioclimatic classification system for the end of the 20th century climatology (1971–2000) and end of the 21st century climatology (2070–2099) using two models, Geophysical Fluid Dynamics Laboratory (GFDL) model and the Parallel Climate Model (PCM), under the medium-high A2 emission scenario. The digitally mapped results were used to 1) assess the relative redistribution of isobioclimates and their magnitude of change, 2) quantify the loss of isobioclimates into the future, 3) identify and locate novel isobioclimates projected to appear, and 4) explore compositional change in vegetation types among analog isobioclimate patches. This study used downscaled climate variables to map the isobioclimates at a fine spatial resolution −270 m grid cells. Common to both models of future climate was a large change in thermotype. Changes in ombrotype differed among the two models. The end of 20th century climatology has 83 isobioclimates covering the 63,000 km2 study area. In both future projections 51 of those isobioclimates disappear over 40,000 km2. The ordination of vegetation-bioclimate relationships shows very strong correlation of Rivas-Martinez indices with vegetation distribution and composition. Comparisons of vegetation composition among analog patches suggest that vegetation change will be a local rearrangement of species already in place rather than one requiring long distance dispersal. The digitally mapped results facilitate comparison with other Mediterranean regions. Major remaining challenges include predicting vegetation composition of novel isobioclimates and developing metrics to compare differences in climate space. PMID:23526985
Present, future, and novel bioclimates of the San Francisco, California region
Torregrosa, Alicia; Taylor, Maxwell D.; Flint, Lorraine E.; Flint, Alan L.
2013-01-01
Bioclimates are syntheses of climatic variables into biologically relevant categories that facilitate comparative studies of biotic responses to climate conditions. Isobioclimates, unique combinations of bioclimatic indices (continentality, ombrotype, and thermotype), were constructed for northern California coastal ranges based on the Rivas-Martinez worldwide bioclimatic classification system for the end of the 20th century climatology (1971–2000) and end of the 21st century climatology (2070–2099) using two models, Geophysical Fluid Dynamics Laboratory (GFDL) model and the Parallel Climate Model (PCM), under the medium-high A2 emission scenario. The digitally mapped results were used to 1) assess the relative redistribution of isobioclimates and their magnitude of change, 2) quantify the loss of isobioclimates into the future, 3) identify and locate novel isobioclimates projected to appear, and 4) explore compositional change in vegetation types among analog isobioclimate patches. This study used downscaled climate variables to map the isobioclimates at a fine spatial resolution −270 m grid cells. Common to both models of future climate was a large change in thermotype. Changes in ombrotype differed among the two models. The end of 20th century climatology has 83 isobioclimates covering the 63,000 km2 study area. In both future projections 51 of those isobioclimates disappear over 40,000 km2. The ordination of vegetation-bioclimate relationships shows very strong correlation of Rivas-Martinez indices with vegetation distribution and composition. Comparisons of vegetation composition among analog patches suggest that vegetation change will be a local rearrangement of species already in place rather than one requiring long distance dispersal. The digitally mapped results facilitate comparison with other Mediterranean regions. Major remaining challenges include predicting vegetation composition of novel isobioclimates and developing metrics to compare differences in climate space.
Elissen, Arianne M J; Struijs, Jeroen N; Baan, Caroline A; Ruwaard, Dirk
2015-05-01
To support providers and commissioners in accurately assessing their local populations' health needs, this study produces an overview of Dutch predictive risk models for health care, focusing specifically on the type, combination and relevance of included determinants for achieving the Triple Aim (improved health, better care experience, and lower costs). We conducted a mixed-methods study combining document analyses, interviews and a Delphi study. Predictive risk models were identified based on a web search and expert input. Participating in the study were Dutch experts in predictive risk modelling (interviews; n=11) and experts in healthcare delivery, insurance and/or funding methodology (Delphi panel; n=15). Ten predictive risk models were analysed, comprising 17 unique determinants. Twelve were considered relevant by experts for estimating community health needs. Although some compositional similarities were identified between models, the combination and operationalisation of determinants varied considerably. Existing predictive risk models provide a good starting point, but optimally balancing resources and targeting interventions on the community level will likely require a more holistic approach to health needs assessment. Development of additional determinants, such as measures of people's lifestyle and social network, may require policies pushing the integration of routine data from different (healthcare) sources. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
A model for interpretation of brine-dependent spontaneous imbibition experiments
NASA Astrophysics Data System (ADS)
Evje, S.; Hiorth, A.
2011-12-01
Previous experimental results for spontaneous imbibition experiments in the context of chalk cores have revealed a rather puzzling behavior: the oil recovery curves, both the shape as well as the steady state level which is reached, depend strongly on the brine composition. In particular, it has been demonstrated that Mg,SO42-, and Ca 2+ play a central role in this physico-chemical system. A good theoretical understanding of these experimental results, in terms of mathematical models that can suggest possible explanations of the lab experiments as well as predict behavior not yet tested in the lab, seems to still be lacking. The purpose of this paper is to try to shed light on some important modeling aspects. The model we propose is an extended version of the classical Buckley-Leverett (BL) equation for two-phase spontaneous imbibition where the water saturation equation has been coupled to a system of reaction-diffusion (RD) equations describing water-rock chemistry relevant for chalk core plugs. As far as water-rock chemistry is concerned we focus in this work on the combined effect of transport and dissolution/precipitation of calcite, magnesite, and anhydrite. The line we pursue is to couple changes of the wetting state, expressed in terms of the relative permeability and capillary pressure functions, to the water-rock chemistry behavior. More precisely, we build into the model the mechanism that the rock surface will become more water-wet at the places where dissolution of calcite takes place. In particular, we illustrate and analyze how different compositions of the imbibing brine then lead to different water-rock interaction scenarios which in turn gives qualitative and quantitative differences in the solution of the saturation equation describing spontaneous imbibition. Comparison with relevant experimental behavior is included as well as illustration of some possible interesting and non-trivial characteristic features of the model reflecting the nonlinear coupling mechanisms between the RD model for the water-rock chemistry and the BL equation for the water-oil transport.
Thermodynamic assessment and binary nucleation modeling of Sn-seeded InGaAs nanowires
NASA Astrophysics Data System (ADS)
Ghasemi, Masoomeh; Selleby, Malin; Johansson, Jonas
2017-11-01
We have performed a thermodynamic assessment of the As-Ga-In-Sn system based on the CALculation of PHAse Diagram (CALPHAD) method. This system is part of a comprehensive thermodynamic database that we are developing for nanowire materials. Specifically, the As-Ga-In-Sn can be used in modeling the growth of GaAs, InAs, and InxGa1-xAs nanowires assisted by Sn liquid seeds. In this work, the As-Sn binary, the As-Ga-Sn, As-In-Sn, and Ga-In-Sn ternary systems have been thermodynamically assessed using the CALPHAD method. We show the relevant phase diagrams and property diagrams. They all show good agreement with experimental data. Using our optimized description we have modeled the nucleation of InxGa1-xAs in the zinc blende phase from a Sn-based quaternary liquid alloy using binary nucleation modeling. We have linked the composition of the solid nucleus to the composition of the liquid phase. Eventually, we have predicted the critical size of the nucleus that forms from InAs and GaAs pairs under various conditions. We believe that our modeling can guide future experimental realization of Sn-seeded InxGa1-xAs nanowires.
Global thermal models of the lithosphere
NASA Astrophysics Data System (ADS)
Cammarano, F.; Guerri, M.
2017-12-01
Unraveling the thermal structure of the outermost shell of our planet is key for understanding its evolution. We obtain temperatures from interpretation of global shear-velocity (VS) models. Long-wavelength thermal structure is well determined by seismic models and only slightly affected by compositional effects and uncertainties in mineral-physics properties. Absolute temperatures and gradients with depth, however, are not well constrained. Adding constraints from petrology, heat-flow observations and thermal evolution of oceanic lithosphere help to better estimate absolute temperatures in the top part of the lithosphere. We produce global thermal models of the lithosphere at different spatial resolution, up to spherical-harmonics degree 24, and provide estimated standard deviations. We provide purely seismic thermal (TS) model and hybrid models where temperatures are corrected with steady-state conductive geotherms on continents and cooling model temperatures on oceanic regions. All relevant physical properties, with the exception of thermal conductivity, are based on a self-consistent thermodynamical modelling approach. Our global thermal models also include density and compressional-wave velocities (VP) as obtained either assuming no lateral variations in composition or a simple reference 3-D compositional structure, which takes into account a chemically depleted continental lithosphere. We found that seismically-derived temperatures in continental lithosphere fit well, overall, with continental geotherms, but a large variation in radiogenic heat is required to reconcile them with heat flow (long wavelength) observations. Oceanic shallow lithosphere below mid-oceanic ridges and young oceans is colder than expected, confirming the possible presence of a dehydration boundary around 80 km depth already suggested in previous studies. The global thermal models should serve as the basis to move at a smaller spatial scale, where additional thermo-chemical variations required by geophysical observations can be included.
NASA Astrophysics Data System (ADS)
Kanzaki, Yoshiki; Murakami, Takashi
2018-07-01
We have developed a weathering model to comprehensively understand the determining factors of the apparent activation energy of silicate weathering in order to better estimate the silicate-weathering flux in the Precambrian. The model formulates the reaction rate of a mineral as a basis, then the elemental loss by summing the reaction rates of whole minerals, and finally the weathering flux from a given weathering profile by integrating the elemental losses along the depth of the profile. The rate expressions are formulated with physicochemical parameters relevant to weathering, including solution and atmospheric compositions. The apparent activation energies of silicate weathering are then represented by the temperature dependences of the physicochemical parameters based on the rate expressions. It was found that the interactions between individual mineral-reactions and the compositions of solution and atmosphere are necessarily accompanied by those of temperature-dependence counterparts. Indeed, the model calculates the apparent activation energy of silicate weathering as a function of the temperature dependence of atmospheric CO2 (Δ HCO2‧) . The dependence of the apparent activation energy of silicate weathering on Δ HCO2‧ may explain the empirical dependence of silicate weathering on the atmospheric composition. We further introduce a compensation law between the apparent activation energy and the pre-exponential factor to obtain the relationship between the silicate-weathering flux (FCO2), temperature and the apparent activation energy. The model calculation and the compensation law enable us to predict FCO2 as a function of temperature, once Δ HCO2‧ is given. The validity of the model is supported by agreements between the model prediction and observations of the apparent activation energy and FCO2 in the modern weathering systems. The present weathering model will be useful for the estimation of FCO2 in the Precambrian, for which Δ HCO2‧ can be deduced from the greenhouse effect of atmospheric CO2.
Brouckaert, D; Uyttersprot, J-S; Broeckx, W; De Beer, T
2017-06-08
The industrial production of liquid detergent compositions entails delicate balance of ingredients and process steps. In order to assure high quality and productivity in the manufacturing line, process analytical technology tools such as Raman spectroscopy are to be implemented. Marked chemical specificity, negligible water interference and high robustness are ascribed to this process analytical technique. Previously, at-line calibration models have been developed for determining the concentration levels of the being studied liquid detergents main ingredients from Raman spectra. A strategy is now proposed to transfer such at-line developed regression models to an in-line set-up, allowing real-time dosing control of the liquid detergent composition under production. To mimic in-line manufacturing conditions, liquid detergent compositions are created in a five-liter vessel with an overhead mixer. Raman spectra are continuously acquired by pumping the detergent under production via plastic tubing towards a Raman superhead probe, which is incorporated into a metal frame with a sapphire window facing the detergent fluid. Two at-line developed partial least squares (PLS) models are aimed at transferring, predicting the concentration of surfactant 1 and polymer 2 in the examined liquid detergent composition. A univariate slope/bias correction (SBC) is investigated, next to three well-acknowledged multivariate transformation methods: direct, piecewise and double-window piecewise direct standardization. Transfer is considered successful when the magnitude of the validation sets root mean square error of prediction (RMSEP) is similar to or smaller than the corresponding at-line prediction error. The transferred model offering the most promising outcome is further subjected to an exhaustive statistical evaluation, in order to appraise the applicability of the suggested calibration transfer method. Interval hypothesis tests are thereby performed for method comparison. It is illustrated that the investigated transfer approach yields satisfactory results, provided that the original at-line calibration model is thoroughly validated. Both SBC transfer models return lower RMSEP values than their corresponding original models. The surfactant 1 assay met all relevant evaluation criteria, demonstrating successful transfer to the in-line set-up. The in-line quantification of polymer 2 levels in the liquid detergent composition could not be statistically validated, due to the poorer performance of the at-line model. Copyright © 2017 Elsevier B.V. All rights reserved.
Image segmentation with a novel regularized composite shape prior based on surrogate study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Tingting, E-mail: tingtingzhao@mednet.ucla.edu; Ruan, Dan, E-mail: druan@mednet.ucla.edu
Purpose: Incorporating training into image segmentation is a good approach to achieve additional robustness. This work aims to develop an effective strategy to utilize shape prior knowledge, so that the segmentation label evolution can be driven toward the desired global optimum. Methods: In the variational image segmentation framework, a regularization for the composite shape prior is designed to incorporate the geometric relevance of individual training data to the target, which is inferred by an image-based surrogate relevance metric. Specifically, this regularization is imposed on the linear weights of composite shapes and serves as a hyperprior. The overall problem is formulatedmore » in a unified optimization setting and a variational block-descent algorithm is derived. Results: The performance of the proposed scheme is assessed in both corpus callosum segmentation from an MR image set and clavicle segmentation based on CT images. The resulted shape composition provides a proper preference for the geometrically relevant training data. A paired Wilcoxon signed rank test demonstrates statistically significant improvement of image segmentation accuracy, when compared to multiatlas label fusion method and three other benchmark active contour schemes. Conclusions: This work has developed a novel composite shape prior regularization, which achieves superior segmentation performance than typical benchmark schemes.« less
Integrated presentation of ecological risk from multiple stressors
NASA Astrophysics Data System (ADS)
Goussen, Benoit; Price, Oliver R.; Rendal, Cecilie; Ashauer, Roman
2016-10-01
Current environmental risk assessments (ERA) do not account explicitly for ecological factors (e.g. species composition, temperature or food availability) and multiple stressors. Assessing mixtures of chemical and ecological stressors is needed as well as accounting for variability in environmental conditions and uncertainty of data and models. Here we propose a novel probabilistic ERA framework to overcome these limitations, which focusses on visualising assessment outcomes by construct-ing and interpreting prevalence plots as a quantitative prediction of risk. Key components include environmental scenarios that integrate exposure and ecology, and ecological modelling of relevant endpoints to assess the effect of a combination of stressors. Our illustrative results demonstrate the importance of regional differences in environmental conditions and the confounding interactions of stressors. Using this framework and prevalence plots provides a risk-based approach that combines risk assessment and risk management in a meaningful way and presents a truly mechanistic alternative to the threshold approach. Even whilst research continues to improve the underlying models and data, regulators and decision makers can already use the framework and prevalence plots. The integration of multiple stressors, environmental conditions and variability makes ERA more relevant and realistic.
Integrated presentation of ecological risk from multiple stressors.
Goussen, Benoit; Price, Oliver R; Rendal, Cecilie; Ashauer, Roman
2016-10-26
Current environmental risk assessments (ERA) do not account explicitly for ecological factors (e.g. species composition, temperature or food availability) and multiple stressors. Assessing mixtures of chemical and ecological stressors is needed as well as accounting for variability in environmental conditions and uncertainty of data and models. Here we propose a novel probabilistic ERA framework to overcome these limitations, which focusses on visualising assessment outcomes by construct-ing and interpreting prevalence plots as a quantitative prediction of risk. Key components include environmental scenarios that integrate exposure and ecology, and ecological modelling of relevant endpoints to assess the effect of a combination of stressors. Our illustrative results demonstrate the importance of regional differences in environmental conditions and the confounding interactions of stressors. Using this framework and prevalence plots provides a risk-based approach that combines risk assessment and risk management in a meaningful way and presents a truly mechanistic alternative to the threshold approach. Even whilst research continues to improve the underlying models and data, regulators and decision makers can already use the framework and prevalence plots. The integration of multiple stressors, environmental conditions and variability makes ERA more relevant and realistic.
NASA Astrophysics Data System (ADS)
Scholze, Marko; Buchwitz, Michael; Dorigo, Wouter; Guanter, Luis; Quegan, Shaun
2017-07-01
The global carbon cycle is an important component of the Earth system and it interacts with the hydrology, energy and nutrient cycles as well as ecosystem dynamics. A better understanding of the global carbon cycle is required for improved projections of climate change including corresponding changes in water and food resources and for the verification of measures to reduce anthropogenic greenhouse gas emissions. An improved understanding of the carbon cycle can be achieved by data assimilation systems, which integrate observations relevant to the carbon cycle into coupled carbon, water, energy and nutrient models. Hence, the ingredients for such systems are a carbon cycle model, an algorithm for the assimilation and systematic and well error-characterised observations relevant to the carbon cycle. Relevant observations for assimilation include various in situ measurements in the atmosphere (e.g. concentrations of CO2 and other gases) and on land (e.g. fluxes of carbon water and energy, carbon stocks) as well as remote sensing observations (e.g. atmospheric composition, vegetation and surface properties).We briefly review the different existing data assimilation techniques and contrast them to model benchmarking and evaluation efforts (which also rely on observations). A common requirement for all assimilation techniques is a full description of the observational data properties. Uncertainty estimates of the observations are as important as the observations themselves because they similarly determine the outcome of such assimilation systems. Hence, this article reviews the requirements of data assimilation systems on observations and provides a non-exhaustive overview of current observations and their uncertainties for use in terrestrial carbon cycle data assimilation. We report on progress since the review of model-data synthesis in terrestrial carbon observations by Raupach et al.(2005), emphasising the rapid advance in relevant space-based observations.
Nonequilibrium Interfacial Tension in Simple and Complex Fluids
NASA Astrophysics Data System (ADS)
Truzzolillo, Domenico; Mora, Serge; Dupas, Christelle; Cipelletti, Luca
2016-10-01
Interfacial tension between immiscible phases is a well-known phenomenon, which manifests itself in everyday life, from the shape of droplets and foam bubbles to the capillary rise of sap in plants or the locomotion of insects on a water surface. More than a century ago, Korteweg generalized this notion by arguing that stresses at the interface between two miscible fluids act transiently as an effective, nonequilibrium interfacial tension, before homogenization is eventually reached. In spite of its relevance in fields as diverse as geosciences, polymer physics, multiphase flows, and fluid removal, experiments and theoretical works on the interfacial tension of miscible systems are still scarce, and mostly restricted to molecular fluids. This leaves crucial questions unanswered, concerning the very existence of the effective interfacial tension, its stabilizing or destabilizing character, and its dependence on the fluid's composition and concentration gradients. We present an extensive set of measurements on miscible complex fluids that demonstrate the existence and the stabilizing character of the effective interfacial tension, unveil new regimes beyond Korteweg's predictions, and quantify its dependence on the nature of the fluids and the composition gradient at the interface. We introduce a simple yet general model that rationalizes nonequilibrium interfacial stresses to arbitrary mixtures, beyond Korteweg's small gradient regime, and show that the model captures remarkably well both our new measurements and literature data on molecular and polymer fluids. Finally, we briefly discuss the relevance of our model to a variety of interface-driven problems, from phase separation to fracture, which are not adequately captured by current approaches based on the assumption of small gradients.
An Empirical Model of the Variations of the Solar Lyman-Alpha Spectral Irradiance
NASA Astrophysics Data System (ADS)
Kretzschmar, M.; Snow, M. A.; Curdt, W.
2017-12-01
We propose a simple model that computes the spectral profile of the solar irradiance in the Hydrogen Lyman alpha line, H Ly-α (121.567nm), from 1947 to present. Such a model is relevant for the study of many astronomical environments, from planetary atmospheres to interplanetary medium, and can be used to improve the analysis of data from mission like MAVEN or GOES-16. This empirical model is based on the SOHO/SUMER observations of the Ly-α irradiance over solar cycle 23, which we analyze in details, and relies on the Ly-α integrated irradiance composite. The model reproduces the temporal variability of the spectral profile and matches the independent SORCE/SOSLTICE spectral observations from 2003 to 2007 with an accuracy better than 10%.
Clinical anthropometrics and body composition from 3D whole-body surface scans.
Ng, B K; Hinton, B J; Fan, B; Kanaya, A M; Shepherd, J A
2016-11-01
Obesity is a significant worldwide epidemic that necessitates accessible tools for robust body composition analysis. We investigated whether widely available 3D body surface scanners can provide clinically relevant direct anthropometrics (circumferences, areas and volumes) and body composition estimates (regional fat/lean masses). Thirty-nine healthy adults stratified by age, sex and body mass index (BMI) underwent whole-body 3D scans, dual energy X-ray absorptiometry (DXA), air displacement plethysmography and tape measurements. Linear regressions were performed to assess agreement between 3D measurements and criterion methods. Linear models were derived to predict DXA body composition from 3D scan measurements. Thirty-seven external fitness center users underwent 3D scans and bioelectrical impedance analysis for model validation. 3D body scan measurements correlated strongly to criterion methods: waist circumference R 2 =0.95, hip circumference R 2 =0.92, surface area R 2 =0.97 and volume R 2 =0.99. However, systematic differences were observed for each measure due to discrepancies in landmark positioning. Predictive body composition equations showed strong agreement for whole body (fat mass R 2 =0.95, root mean square error (RMSE)=2.4 kg; fat-free mass R 2 =0.96, RMSE=2.2 kg) and arms, legs and trunk (R 2 =0.79-0.94, RMSE=0.5-1.7 kg). Visceral fat prediction showed moderate agreement (R 2 =0.75, RMSE=0.11 kg). 3D surface scanners offer precise and stable automated measurements of body shape and composition. Software updates may be needed to resolve measurement biases resulting from landmark positioning discrepancies. Further studies are justified to elucidate relationships between body shape, composition and metabolic health across sex, age, BMI and ethnicity groups, as well as in those with metabolic disorders.
NASA Astrophysics Data System (ADS)
Wang, Lina; Jayaratne, Rohan; Heuff, Darlene; Morawska, Lidia
A composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. Hence, this model was able to quickly quantify the time spent in each segment within the considered zone, as well as the composition and position of the requisite segments based on the vehicle fleet information, which not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bi-directional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. Although the CLSE model is intended to be applied in traffic management and transport analysis systems for the evaluation of exposure, as well as the simulation of vehicle emissions in traffic interrupted microenvironments, the bus station model can also be used for the input of initial source definitions in future dispersion models.
Exploiting Cross-sensitivity by Bayesian Decoding of Mixed Potential Sensor Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreller, Cortney
LANL mixed-potential electrochemical sensor (MPES) device arrays were coupled with advanced Bayesian inference treatment of the physical model of relevant sensor-analyte interactions. We demonstrated that our approach could be used to uniquely discriminate the composition of ternary gas sensors with three discreet MPES sensors with an average error of less than 2%. We also observed that the MPES exhibited excellent stability over a year of operation at elevated temperatures in the presence of test gases.
Laboratory experiments in the study of the chemistry of the outer planets
NASA Technical Reports Server (NTRS)
Scattergood, Thomas W.
1987-01-01
It is shown that much information about planetary chemistry and physics can be gained through laboratory work. The types of experiments relevant to planetary research concern fundamental properties, spectral/optical properties, 'Miller-Urey' syntheses, and detailed syntheses. Specific examples of studies of the chemistry in the atmosphere of Titan are described with attention given to gas phase chemistry in the troposphere and the composition of model Titan aerosols. A list of work that still needs to be done is provided.
Raman biophysical markers in skin cancer diagnosis.
Feng, Xu; Moy, Austin J; Nguyen, Hieu T M; Zhang, Yao; Zhang, Jason; Fox, Matthew C; Sebastian, Katherine R; Reichenberg, Jason S; Markey, Mia K; Tunnell, James W
2018-05-01
Raman spectroscopy (RS) has demonstrated great potential for in vivo cancer screening; however, the biophysical changes that occur for specific diagnoses remain unclear. We recently developed an inverse biophysical skin cancer model to address this issue. Here, we presented the first demonstration of in vivo melanoma and nonmelanoma skin cancer (NMSC) detection based on this model. We fit the model to our previous clinical dataset and extracted the concentration of eight Raman active components in 100 lesions in 65 patients diagnosed with malignant melanoma (MM), dysplastic nevi (DN), basal cell carcinoma, squamous cell carcinoma, and actinic keratosis. We then used logistic regression and leave-one-lesion-out cross validation to determine the diagnostically relevant model components. Our results showed that the biophysical model captures the diagnostic power of the previously used statistical classification model while also providing the skin's biophysical composition. In addition, collagen and triolein were the most relevant biomarkers to represent the spectral variances between MM and DN, and between NMSC and normal tissue. Our work demonstrates the ability of RS to reveal the biophysical basis for accurate diagnosis of different skin cancers, which may eventually lead to a reduction in the number of unnecessary excisional skin biopsies performed. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
The archaebacterial origin of eukaryotes.
Cox, Cymon J; Foster, Peter G; Hirt, Robert P; Harris, Simon R; Embley, T Martin
2008-12-23
The origin of the eukaryotic genetic apparatus is thought to be central to understanding the evolution of the eukaryotic cell. Disagreement about the source of the relevant genes has spawned competing hypotheses for the origins of the eukaryote nuclear lineage. The iconic rooted 3-domains tree of life shows eukaryotes and archaebacteria as separate groups that share a common ancestor to the exclusion of eubacteria. By contrast, the eocyte hypothesis has eukaryotes originating within the archaebacteria and sharing a common ancestor with a particular group called the Crenarchaeota or eocytes. Here, we have investigated the relative support for each hypothesis from analysis of 53 genes spanning the 3 domains, including essential components of the eukaryotic nucleic acid replication, transcription, and translation apparatus. As an important component of our analysis, we investigated the fit between model and data with respect to composition. Compositional heterogeneity is a pervasive problem for reconstruction of ancient relationships, which, if ignored, can produce an incorrect tree with strong support. To mitigate its effects, we used phylogenetic models that allow for changing nucleotide or amino acid compositions over the tree and data. Our analyses favor a topology that supports the eocyte hypothesis rather than archaebacterial monophyly and the 3-domains tree of life.
On the development of an intrinsic hybrid composite
NASA Astrophysics Data System (ADS)
Kießling, R.; Ihlemann, J.; Riemer, M.; Drossel, W.-G.; Scharf, I.; Lampke, T.; Sharafiev, S.; Pouya, M.; F-X Wagner, M.
2016-03-01
Hybrid parts, which combine low weight with high strength, are moving into the focus of the automotive industry, due to their high potential for usage in the field of crash-relevant structures. In this contribution, the development of an intrinsic hybrid composite is presented, with a focus on the manufacturing process, complex simulations of the material behaviour and material testing. The hybrid composite is made up of a continuous fibre- reinforced plastic (FRP), in which a metallic insert is integrated. The mechanical behaviour of the individual components is characterised. For material modelling, an approach is pointed out that enables modelling at large strains by directly connected rheological elements. The connection between the FRP and the metallic insert is realised by a combination of form fit and adhesive bonds. On the one hand, adhesive bonds are generated within a sol gel process. On the other hand, local form elements of the metallic insert are pressed into the FRP. We show how these form elements are generated during the macroscopic forming process. In addition, the applied sol gel process is explained. Finally, we consider design concepts for a specimen type for high strain testing of the resulting interfaces.
Atomic Step Formation on Sapphire Surface in Ultra-precision Manufacturing
Wang, Rongrong; Guo, Dan; Xie, Guoxin; Pan, Guoshun
2016-01-01
Surfaces with controlled atomic step structures as substrates are highly relevant to desirable performances of materials grown on them, such as light emitting diode (LED) epitaxial layers, nanotubes and nanoribbons. However, very limited attention has been paid to the step formation in manufacturing process. In the present work, investigations have been conducted into this step formation mechanism on the sapphire c (0001) surface by using both experiments and simulations. The step evolutions at different stages in the polishing process were investigated with atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). The simulation of idealized steps was constructed theoretically on the basis of experimental results. It was found that (1) the subtle atomic structures (e.g., steps with different sawteeth, as well as steps with straight and zigzag edges), (2) the periodicity and (3) the degree of order of the steps were all dependent on surface composition and miscut direction (step edge direction). A comparison between experimental results and idealized step models of different surface compositions has been made. It has been found that the structure on the polished surface was in accordance with some surface compositions (the model of single-atom steps: Al steps or O steps). PMID:27444267
Atomic Step Formation on Sapphire Surface in Ultra-precision Manufacturing
NASA Astrophysics Data System (ADS)
Wang, Rongrong; Guo, Dan; Xie, Guoxin; Pan, Guoshun
2016-07-01
Surfaces with controlled atomic step structures as substrates are highly relevant to desirable performances of materials grown on them, such as light emitting diode (LED) epitaxial layers, nanotubes and nanoribbons. However, very limited attention has been paid to the step formation in manufacturing process. In the present work, investigations have been conducted into this step formation mechanism on the sapphire c (0001) surface by using both experiments and simulations. The step evolutions at different stages in the polishing process were investigated with atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). The simulation of idealized steps was constructed theoretically on the basis of experimental results. It was found that (1) the subtle atomic structures (e.g., steps with different sawteeth, as well as steps with straight and zigzag edges), (2) the periodicity and (3) the degree of order of the steps were all dependent on surface composition and miscut direction (step edge direction). A comparison between experimental results and idealized step models of different surface compositions has been made. It has been found that the structure on the polished surface was in accordance with some surface compositions (the model of single-atom steps: Al steps or O steps).
Advance study of fiber-reinforced self-compacting concrete
NASA Astrophysics Data System (ADS)
Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.
2015-10-01
Incorporation in concrete composition of steel macro- and micro - fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.
de Carvalho Rocha, Werickson Fortunato; Schantz, Michele M.; Sheen, David A.; Chu, Pamela M.; Lippa, Katrice A.
2017-01-01
As feedstocks transition from conventional oil to unconventional petroleum sources and biomass, it will be necessary to determine whether a particular fuel or fuel blend is suitable for use in engines. Certifying a fuel as safe for use is time-consuming and expensive and must be performed for each new fuel. In principle, suitability of a fuel should be completely determined by its chemical composition. This composition can be probed through use of detailed analytical techniques such as gas chromatography-mass spectroscopy (GC-MS). In traditional analysis, chromatograms would be used to determine the details of the composition. In the approach taken in this paper, the chromatogram is assumed to be entirely representative of the composition of a fuel, and is used directly as the input to an algorithm in order to develop a model that is predictive of a fuel's suitability. When a new fuel is proposed for service, its suitability for any application could then be ascertained by using this model to compare its chromatogram with those of the fuels already known to be suitable for that application. In this paper, we lay the mathematical and informatics groundwork for a predictive model of hydrocarbon properties. The objective of this work was to develop a reliable model for unsupervised classification of the hydrocarbons as a prelude to developing a predictive model of their engine-relevant physical and chemical properties. A set of hydrocarbons including biodiesel fuels, gasoline, highway and marine diesel fuels, and crude oils was collected and GC-MS profiles obtained. These profiles were then analyzed using multi-way principal components analysis (MPCA), principal factors analysis (PARAFAC), and a self-organizing map (SOM), which is a kind of artificial neural network. It was found that, while MPCA and PARAFAC were able to recover descriptive models of the fuels, their linear nature obscured some of the finer physical details due to the widely varying composition of the fuels. The SOM was able to find a descriptive classification model which has the potential for practical recognition and perhaps prediction of fuel properties. PMID:28603295
Familiarity effects in the construction of facial-composite images using modern software systems.
Frowd, Charlie D; Skelton, Faye C; Butt, Neelam; Hassan, Amal; Fields, Stephen; Hancock, Peter J B
2011-12-01
We investigate the effect of target familiarity on the construction of facial composites, as used by law enforcement to locate criminal suspects. Two popular software construction methods were investigated. Participants were shown a target face that was either familiar or unfamiliar to them and constructed a composite of it from memory using a typical 'feature' system, involving selection of individual facial features, or one of the newer 'holistic' types, involving repeated selection and breeding from arrays of whole faces. This study found that composites constructed of a familiar face were named more successfully than composites of an unfamiliar face; also, naming of composites of internal and external features was equivalent for construction of unfamiliar targets, but internal features were better named than the external features for familiar targets. These findings applied to both systems, although benefit emerged for the holistic type due to more accurate construction of internal features and evidence for a whole-face advantage. STATEMENT OF RELEVANCE: This work is of relevance to practitioners who construct facial composites with witnesses to and victims of crime, as well as for software designers to help them improve the effectiveness of their composite systems.
Laboratory-based electrical conductivity at Martian mantle conditions
NASA Astrophysics Data System (ADS)
Verhoeven, Olivier; Vacher, Pierre
2016-12-01
Information on temperature and composition of planetary mantles can be obtained from electrical conductivity profiles derived from induced magnetic field analysis. This requires a modeling of the conductivity for each mineral phase at conditions relevant to planetary interiors. Interpretation of iron-rich Martian mantle conductivity profile therefore requires a careful modeling of the conductivity of iron-bearing minerals. In this paper, we show that conduction mechanism called small polaron is the dominant conduction mechanism at temperature, water and iron content conditions relevant to Mars mantle. We then review the different measurements performed on mineral phases with various iron content. We show that, for all measurements of mineral conductivity reported so far, the effect of iron content on the activation energy governing the exponential decrease in the Arrhenius law can be modeled as the cubic square root of the iron content. We recast all laboratory results on a common generalized Arrhenius law for iron-bearing minerals, anchored on Earth's mantle values. We then use this modeling to compute a new synthetic profile of Martian mantle electrical conductivity. This new profile matches perfectly, in the depth range [100,1000] km, the electrical conductivity profile recently derived from the study of Mars Global Surveyor magnetic field measurements.
Proof test methodology for composites
NASA Technical Reports Server (NTRS)
Wu, Edward M.; Bell, David K.
1992-01-01
The special requirements for proof test of composites are identified based on the underlying failure process of composites. Two proof test methods are developed to eliminate the inevitable weak fiber sites without also causing flaw clustering which weakens the post-proof-test composite. Significant reliability enhancement by these proof test methods has been experimentally demonstrated for composite strength and composite life in tension. This basic proof test methodology is relevant to the certification and acceptance of critical composite structures. It can also be applied to the manufacturing process development to achieve zero-reject for very large composite structures.
English 540: Teaching Stretch and Studio Composition Practicum
ERIC Educational Resources Information Center
Davila, Bethany; Elder, Cristyn L.
2017-01-01
In the course overview, the authors state that this course prepares those who enroll to teach Stretch and Studio Composition at the University of New Mexico by introducing relevant theory and pedagogy in the areas of basic writing, multilingual writing, metacognition, and reading instruction. While the English 537: Teaching Composition Practicum…
Flavor-singlet spectrum in multi-flavor QCD
NASA Astrophysics Data System (ADS)
Aoki, Yasumichi; Aoyama, Tatsumi; Bennett, Ed; Kurachi, Masafumi; Maskawa, Toshihide; Miura, Kohtaroh; Nagai, Kei-ichi; Ohki, Hiroshi; Rinaldi, Enrico; Shibata, Akihiro; Yamawaki, Koichi; Yamazaki, Takeshi
2018-03-01
Studying SU(3) gauge theories with increasing number of light fermions is relevant both for understanding the strong dynamics of QCD and for constructing strongly interacting extensions of the Standard Model (e.g. UV completions of composite Higgs models). In order to contrast these many-flavors strongly interacting theories with QCD, we study the flavor-singlet spectrum as an interesting probe. In fact, some composite Higgs models require the Higgs boson to be the lightest flavor-singlet scalar in the spectrum of a strongly interacting new sector with a well defined hierarchy with the rest of the states. Moreover, introducing many light flavors at fixed number of colors can influence the dynamics of the lightest flavor-singlet pseudoscalar. We present the on-going study of these flavor-singlet channels using multiple interpolating operators on high-statistics ensembles generated by the LatKMI collaboration and we compare results with available data obtained by the Lattice Strong Dynamics collaboration. For the theory with 8 flavors, the two collaborations have generated configurations that complement each others with the aim to tackle the massless limit using the largest possible volumes.
Flavor-singlet spectrum in multi-flavor QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Yasamichi; Rinaldi, Enrico
2017-06-18
Studying SU(3) gauge theories with increasing number of light fermions is relevant both for understanding the strong dynamics of QCD and for constructing strongly interacting extensions of the Standard Model (e.g. UV completions of composite Higgs models). In order to contrast these many-flavors strongly interacting theories with QCD, we study the flavor-singlet spectrum as an interesting probe. In fact, some composite Higgs models require the Higgs boson to be the lightest flavor-singlet scalar in the spectrum of a strongly interacting new sector with a well defined hierarchy with the rest of the states. Moreover, introducing many light flavors at fixedmore » number of colors can influence the dynamics of the lightest flavor-singlet pseudoscalar. We present the on-going study of these flavor-singlet channels using multiple interpolating operators on high-statistics ensembles generated by the LatKMI collaboration and we compare results with available data obtained by the Lattice Strong Dynamics collaboration. For the theory with 8 flavors, the two collaborations have generated configurations that complement each others with the aim to tackle the massless limit using the largest possible volumes.« less
Kamstrup, Danna; Berthelsen, Ragna; Sassene, Philip Jonas; Selen, Arzu; Müllertz, Anette
2017-02-01
The focus on drug delivery for the pediatric population has been steadily increasing in the last decades. In terms of developing in vitro models simulating characteristics of the targeted pediatric population, with the purpose of predicting drug product performance after oral administration, it is important to simulate the gastro-intestinal conditions and processes the drug will encounter upon oral administration. When a drug is administered in the fed state, which is commonly the case for neonates, as they are typically fed every 3 h, the digestion of the milk will affect the composition of the fluid available for drug dissolution/solubilization. Therefore, in order to predict the solubilized amount of drug available for absorption, an in vitro model simulating digestion in the gastro-intestinal tract should be utilized. In order to simulate the digestion process and the drug solubilization taking place in vivo, the following aspects should be considered; physiologically relevant media, media volume, use of physiological enzymes in proper amounts, as well as correct pH and addition of relevant co-factors, e.g., bile salts and co-enzymes. Furthermore, physiological transit times and appropriate mixing should be considered and mimicked as close as possible. This paper presents a literature review on physiological factors relevant for digestion and drug solubilization in neonates. Based on the available literature data, a novel in vitro digestion model simulating digestion and drug solubilization in the neonate and young infant pediatric population (2 months old and younger) was designed.
Characterization and Modeling of a Water-based Liquid Scintillator
L. J. Bignell; Beznosko, D.; Diwan, M. V.; ...
2015-12-15
We characterised Water-based Liquid Scintillator (WbLS) using low energy protons, UV-VIS absorbance, and fluorescence spectroscopy. We have also developed and validated a simulation model that describes the behaviour of WbLS in our detector configurations for proton beam energies of 210 MeV, 475 MeV, and 2 GeV and for two WbLS compositions. These results have enabled us to estimate the light yield and ionisation quenching of WbLS, as well as to understand the influence of the wavelength shifting of Cherenkov light on our measurements. These results are relevant to the suitability of WbLS materials for next generation intensity frontier experiments.
Głogocka, Daria; Przybyło, Magdalena; Langner, Marek
2017-04-01
The ionic composition of intracellular space is rigorously maintained in the expense of high-energy expenditure. It has been recently postulated that the cytoplasmic ionic composition is optimized so the energy cost of the fluctuations of calcium ion concentration is minimized. Specifically, thermodynamic arguments have been produced to show that the presence of potassium ions at concentrations higher than 100 mM reduce extend of the energy dissipation required for the dilution of calcium cations. No such effect has been measured when sodium ions were present in the solution or when the other divalent cation magnesium was diluted. The experimental observation has been interpreted as the indication of the formation of ionic clusters composed of calcium, chloride and potassium. In order to test the possibility that such clusters may be preserved in biological space, the thermodynamics of ionic mixtures dilution in solutions containing albumins and model lipid bilayers have been measured. Obtained thermograms clearly demonstrate that the energetics of calcium/potassium mixture is qualitatively different from calcium/sodium mixture indicating that the presence of the biologically relevant quantities of proteins and membrane hydrophilic surfaces do not interfere with the properties of the intracellular aqueous phase.
7 CFR 3415.11 - Composition of peer review groups.
Code of Federal Regulations, 2013 CFR
2013-01-01
... education by the individual and the extent to which an individual is engaged in relevant research activities... need to maintain a balanced composition of peer review groups related to minority and female...
7 CFR 3415.11 - Composition of peer review groups.
Code of Federal Regulations, 2011 CFR
2011-01-01
... education by the individual and the extent to which an individual is engaged in relevant research activities... need to maintain a balanced composition of peer review groups related to minority and female...
7 CFR 3415.11 - Composition of peer review groups.
Code of Federal Regulations, 2014 CFR
2014-01-01
... education by the individual and the extent to which an individual is engaged in relevant research activities... need to maintain a balanced composition of peer review groups related to minority and female...
7 CFR 3415.11 - Composition of peer review groups.
Code of Federal Regulations, 2012 CFR
2012-01-01
... education by the individual and the extent to which an individual is engaged in relevant research activities... need to maintain a balanced composition of peer review groups related to minority and female...
Galmarini, Stefano; Koffi, Brigitte; Solazzo, Efisio; Keating, Terry; Hogrefe, Christian; Schulz, Michael; Benedictow, Anna; Griesfeller, Jan Jurgen; Janssens-Maenhout, Greet; Carmichael, Greg; Fu, Joshua; Dentener, Frank
2017-01-31
We present an overview of the coordinated global numerical modelling experiments performed during 2012-2016 by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP), the regional experiments by the Air Quality Model Evaluation International Initiative (AQMEII) over Europe and North America, and the Model Intercomparison Study for Asia (MICS-Asia). To improve model estimates of the impacts of intercontinental transport of air pollution on climate, ecosystems, and human health and to answer a set of policy-relevant questions, these three initiatives performed emission perturbation modelling experiments consistent across the global, hemispheric, and continental/regional scales. In all three initiatives, model results are extensively compared against monitoring data for a range of variables (meteorological, trace gas concentrations, and aerosol mass and composition) from different measurement platforms (ground measurements, vertical profiles, airborne measurements) collected from a number of sources. Approximately 10 to 25 modelling groups have contributed to each initiative, and model results have been managed centrally through three data hubs maintained by each initiative. Given the organizational complexity of bringing together these three initiatives to address a common set of policy-relevant questions, this publication provides the motivation for the modelling activity, the rationale for specific choices made in the model experiments, and an overview of the organizational structures for both the modelling and the measurements used and analysed in a number of modelling studies in this special issue.
NASA Astrophysics Data System (ADS)
Galmarini, Stefano; Koffi, Brigitte; Solazzo, Efisio; Keating, Terry; Hogrefe, Christian; Schulz, Michael; Benedictow, Anna; Griesfeller, Jan Jurgen; Janssens-Maenhout, Greet; Carmichael, Greg; Fu, Joshua; Dentener, Frank
2017-01-01
We present an overview of the coordinated global numerical modelling experiments performed during 2012-2016 by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP), the regional experiments by the Air Quality Model Evaluation International Initiative (AQMEII) over Europe and North America, and the Model Intercomparison Study for Asia (MICS-Asia). To improve model estimates of the impacts of intercontinental transport of air pollution on climate, ecosystems, and human health and to answer a set of policy-relevant questions, these three initiatives performed emission perturbation modelling experiments consistent across the global, hemispheric, and continental/regional scales. In all three initiatives, model results are extensively compared against monitoring data for a range of variables (meteorological, trace gas concentrations, and aerosol mass and composition) from different measurement platforms (ground measurements, vertical profiles, airborne measurements) collected from a number of sources. Approximately 10 to 25 modelling groups have contributed to each initiative, and model results have been managed centrally through three data hubs maintained by each initiative. Given the organizational complexity of bringing together these three initiatives to address a common set of policy-relevant questions, this publication provides the motivation for the modelling activity, the rationale for specific choices made in the model experiments, and an overview of the organizational structures for both the modelling and the measurements used and analysed in a number of modelling studies in this special issue.
Galmarini, Stefano; Koffi, Brigitte; Solazzo, Efisio; Keating, Terry; Hogrefe, Christian; Schulz, Michael; Benedictow, Anna; Griesfeller, Jan Jurgen; Janssens-Maenhout, Greet; Carmichael, Greg; Fu, Joshua; Dentener, Frank
2018-01-01
We present an overview of the coordinated global numerical modelling experiments performed during 2012–2016 by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP), the regional experiments by the Air Quality Model Evaluation International Initiative (AQMEII) over Europe and North America, and the Model Intercomparison Study for Asia (MICS-Asia). To improve model estimates of the impacts of intercontinental transport of air pollution on climate, ecosystems, and human health and to answer a set of policy-relevant questions, these three initiatives performed emission perturbation modelling experiments consistent across the global, hemispheric, and continental/regional scales. In all three initiatives, model results are extensively compared against monitoring data for a range of variables (meteorological, trace gas concentrations, and aerosol mass and composition) from different measurement platforms (ground measurements, vertical profiles, airborne measurements) collected from a number of sources. Approximately 10 to 25 modelling groups have contributed to each initiative, and model results have been managed centrally through three data hubs maintained by each initiative. Given the organizational complexity of bringing together these three initiatives to address a common set of policy-relevant questions, this publication provides the motivation for the modelling activity, the rationale for specific choices made in the model experiments, and an overview of the organizational structures for both the modelling and the measurements used and analysed in a number of modelling studies in this special issue. PMID:29541091
Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys
Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; ...
2017-03-28
The development and understanding of the mechanical properties of neutron-irradiated FeCrAl alloys is increasingly a critical need as these alloys continue to become more mature for nuclear reactor applications. This study focuses on the mechanical properties of model FeCrAl alloys and of a commercial FeCrAl alloy neutron-irradiated to up to 13.8 displacements per atom (dpa) at irradiation temperatures between 320 and 382 °C. Tensile tests were completed at room temperature and at 320 °C, and a subset of fractured tensile specimens was examined by scanning electron microscopy. Results showed typical radiation hardening and embrittlement indicative of high chromium ferritic alloysmore » with strong chromium composition dependencies at lower doses. At and above 7.0 dpa, the mechanical properties saturated for both the commercial and model FeCrAl alloys, although brittle cleavage fracture was observed at the highest dose in the model FeCrAl alloy with the highest chromium content (18 wt %). Finally, the results suggest the composition and microstructure of FeCrAl alloys plays a critical role in the mechanical response of FeCrAl alloys irradiated near temperatures relevant to light water reactors.« less
Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys
NASA Astrophysics Data System (ADS)
Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; Howard, Richard H.; Yamamoto, Yukinori
2017-06-01
The development and understanding of the mechanical properties of neutron-irradiated FeCrAl alloys is increasingly a critical need as these alloys continue to become more mature for nuclear reactor applications. This study focuses on the mechanical properties of model FeCrAl alloys and of a commercial FeCrAl alloy neutron-irradiated to up to 13.8 displacements per atom (dpa) at irradiation temperatures between 320 and 382 °C. Tensile tests were completed at room temperature and at 320 °C, and a subset of fractured tensile specimens was examined by scanning electron microscopy. Results showed typical radiation hardening and embrittlement indicative of high chromium ferritic alloys with strong chromium composition dependencies at lower doses. At and above 7.0 dpa, the mechanical properties saturated for both the commercial and model FeCrAl alloys, although brittle cleavage fracture was observed at the highest dose in the model FeCrAl alloy with the highest chromium content (18 wt %). The results suggest the composition and microstructure of FeCrAl alloys plays a critical role in the mechanical response of FeCrAl alloys irradiated near temperatures relevant to light water reactors.
A phylogenetic transform enhances analysis of compositional microbiota data
Silverman, Justin D; Washburne, Alex D; Mukherjee, Sayan; David, Lawrence A
2017-01-01
Surveys of microbial communities (microbiota), typically measured as relative abundance of species, have illustrated the importance of these communities in human health and disease. Yet, statistical artifacts commonly plague the analysis of relative abundance data. Here, we introduce the PhILR transform, which incorporates microbial evolutionary models with the isometric log-ratio transform to allow off-the-shelf statistical tools to be safely applied to microbiota surveys. We demonstrate that analyses of community-level structure can be applied to PhILR transformed data with performance on benchmarks rivaling or surpassing standard tools. Additionally, by decomposing distance in the PhILR transformed space, we identified neighboring clades that may have adapted to distinct human body sites. Decomposing variance revealed that covariation of bacterial clades within human body sites increases with phylogenetic relatedness. Together, these findings illustrate how the PhILR transform combines statistical and phylogenetic models to overcome compositional data challenges and enable evolutionary insights relevant to microbial communities. DOI: http://dx.doi.org/10.7554/eLife.21887.001 PMID:28198697
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asplund, Martin
2014-11-20
The chemical composition of stars contain vital clues not only about the stars themselves but also about the conditions prevailing before their births. As such, stellar spectroscopy plays a key role in contemporary astrophysics and cosmology by probing cosmic, galactic, stellar and planetary evolution. In this review I will describe the theoretical foundations of quantitative stellar spectroscopy: stellar atmosphere models and spectral line formation. I will focus mainly on more recent advances in the field, in particular the advent of realistic time-dependent, 3D, (magneto-)hydrodynamical simulations of stellar surface convection and atmospheres and non-LTE radiative transfer relevant for stars like themore » Sun. I will also discuss some particular applications of this type of modelling which have resulted in some exciting break-throughs in our understanding and with wider implications: the solar chemical composition, the chemical signatures of planet formation imprinted in stellar abundances, the cosmological Li problem(s) and where the first stars may be residing today.« less
Volcanic ash melting under conditions relevant to ash turbine interactions
Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.
2016-01-01
The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200–2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines. PMID:26931824
Release and Formation of Oxidation-Related Aldehydes during Wine Oxidation.
Bueno, Mónica; Carrascón, Vanesa; Ferreira, Vicente
2016-01-27
Twenty-four Spanish wines were subjected to five consecutive cycles of air saturation at 25 °C. Free and bound forms of carbonyls were measured in the initial samples and after each saturation. Nonoxidized commercial wines contain important and sensory relevant amounts of oxidation-related carbonyls under the form of odorless bound forms. Models relating the contents in total aldehydes to the wine chemical composition suggest that fermentation can be a major origin for Strecker aldehydes: methional, phenylacetaldehyde, isobutyraldehyde, 2-methylbutanal, and isovaleraldehyde. Bound forms are further cleaved, releasing free aldehydes during the first steps of wine oxidation, as a consequence of equilibrium shifts caused by the depletion of SO2. At low levels of free SO2, de novo formation and aldehyde degradation are both observed. The relative importance of these phenomena depends on both the aldehyde and the wine. Models relating aldehyde formation rates to wine chemical composition suggest that amino acids are in most cases the most important precursors for de novo formation.
De Vendittis, Emmanuele; Castellano, Immacolata; Cotugno, Roberta; Ruocco, Maria Rosaria; Raimo, Gennaro; Masullo, Mariorosario
2008-01-07
The growth temperature adaptation of six model proteins has been studied in 42 microorganisms belonging to eubacterial and archaeal kingdoms, covering optimum growth temperatures from 7 to 103 degrees C. The selected proteins include three elongation factors involved in translation, the enzymes glyceraldehyde-3-phosphate dehydrogenase and superoxide dismutase, the cell division protein FtsZ. The common strategy of protein adaptation from cold to hot environments implies the occurrence of small changes in the amino acid composition, without altering the overall structure of the macromolecule. These continuous adjustments were investigated through parameters related to the amino acid composition of each protein. The average value per residue of mass, volume and accessible surface area allowed an evaluation of the usage of bulky residues, whereas the average hydrophobicity reflected that of hydrophobic residues. The specific proportion of bulky and hydrophobic residues in each protein almost linearly increased with the temperature of the host microorganism. This finding agrees with the structural and functional properties exhibited by proteins in differently adapted sources, thus explaining the great compactness or the high flexibility exhibited by (hyper)thermophilic or psychrophilic proteins, respectively. Indeed, heat-adapted proteins incline toward the usage of heavier-size and more hydrophobic residues with respect to mesophiles, whereas the cold-adapted macromolecules show the opposite behavior with a certain preference for smaller-size and less hydrophobic residues. An investigation on the different increase of bulky residues along with the growth temperature observed in the six model proteins suggests the relevance of the possible different role and/or structure organization played by protein domains. The significance of the linear correlations between growth temperature and parameters related to the amino acid composition improved when the analysis was collectively carried out on all model proteins.
NASA Technical Reports Server (NTRS)
Banin, Amos; Carle, Glenn C.; Chang, Sherwood; Coyne, Lelia M.; Orenberg, James B.
1988-01-01
A model system of Mars soil analog materials (MSAMs) was prepared, and the properties of these clays, such as chemical composition, surface-ion composition, water adsorption isotherms, and reflectance spectra, were examined. The results of these studies, performed along with simulations of the Viking Labeled Release Experiement using MSAMs, indicate that surface iron and adsorbed water are important determinants of clay behavior, as evidenced by changes in reflectance, water absorption, and clay surface reactions. The paper discusses the relevance of these results to the two major questions raised by prior explorations of Mars: has there ever been abundant water on Mars, and why is the iron found in the Martian soil not readily seen in the reflectance spectra of the surface?
The Costs of Sharing: Attending to Contact in Composition Practices
ERIC Educational Resources Information Center
Heard, Matthew
2014-01-01
"Sharing" is a ubiquitous yet largely unexamined term in composition scholarship and practice. Scholars and teachers use the term widely to talk about practices such as peer review, collaboration, and student-teacher conferences, all of which have been used to support the relevance of composition as a social and communal act. Yet, as…
Dietary antioxidant synergy in chemical and biological systems.
Wang, Sunan; Zhu, Fan
2017-07-24
Antioxidant (AOX) synergies have been much reported in chemical ("test-tube" based assays focusing on pure chemicals), biological (tissue culture, animal and clinical models), and food systems during the past decade. Tentative synergies differ from each other due to the composition of AOX and the quantification methods. Regeneration mechanism responsible for synergy in chemical systems has been discussed. Solvent effects could contribute to the artifacts of synergy observed in the chemical models. Synergy in chemical models may hardly be relevant to biological systems that have been much less studied. Apparent discrepancies exist in understanding the molecular mechanisms in both chemical and biological systems. This review discusses diverse variables associated with AOX synergy and molecular scenarios for explanation. Future research to better utilize the synergy is suggested.
Physical Uncertainty Bounds (PUB)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, Diane Elizabeth; Preston, Dean L.
2015-03-19
This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switchingmore » out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.« less
NASA Astrophysics Data System (ADS)
Nelson, D. B.; Kahmen, A.
2016-12-01
The hydrogen and oxygen isotopic composition of water available for biosynthetic processes in vascular plants plays an important role in shaping the isotopic composition of organic compounds that these organisms produce, including leaf waxes and cellulose in leaves and tree rings. Characterizing changes in large scale spatial patterns of precipitation, soil water, stem water, and leaf water isotope values over time is therefore useful for evaluating how plants reflect changes in the isotopic composition of these source waters in different environments. This information can, in turn, provide improved calibration targets for understanding the environmental signals that plants preserve. The pathway of water through this continuum can include several isotopic fractionations, but the extent to which the isotopic composition of each of these water pools varies under normal field conditions and over space and time has not been systematically and concurrently evaluated at large spatial scales. Two season-long sampling campaigns were conducted at nineteen sites throughout Europe over the 2014 and 2015 growing seasons to track changes in the isotopic composition of plant-relevant waters. Samples of precipitation, soil water, stem water, and leaf water were collected over more than 200 field days and include more than 500 samples from each water pool. Measurements were used to validate continent-wide gridded estimates of leaf water isotope values derived from a combination of mechanistic and statistical modeling conducted with temperature, precipitation, and relative humidity data. Data-model comparison shows good agreement for summer leaf waters, and substantiates the incorporation of modeled leaf waters in evaluating how plants respond to hydroclimate changes at large spatial scales. These results also suggest that modeled leaf water isotope values might be used in future studies in similar ecosystems to improve the coverage density of spatial or temporal data.
NASA Astrophysics Data System (ADS)
Halperin, D.; Hart, R. E.; Fuelberg, H. E.; Cossuth, J.
2013-12-01
Predicting tropical cyclone (TC) genesis has been a vexing problem for forecasters. While the literature describes environmental conditions which are necessary for TC genesis, predicting if and when a specific disturbance will organize and become a TC remains a challenge. As recently as 5-10 years ago, global models possessed little if any skill in forecasting TC genesis. However, due to increased resolution and more advanced model parameterizations, we have reached the point where global models can provide useful TC genesis guidance to operational forecasters. A recent study evaluated five global models' ability to predict TC genesis out to four days over the North Atlantic basin (Halperin et al. 2013). The results indicate that the models are indeed able to capture the genesis time and location correctly a fair percentage of the time. The study also uncovered model biases. For example, probability of detection and false alarm rate varies spatially within the basin. Also, as expected, the models' performance decreases with increasing lead time. In order to explain these and other biases, it is useful to analyze the model-indicated genesis events further to determine whether or not there are systematic differences between successful forecasts (hits), false alarms, and miss events. This study will examine composites of a number of physically-relevant environmental parameters (e.g., magnitude of vertical wind shear, aerially averaged mid-level relative humidity) and disturbance-based parameters (e.g., 925 hPa maximum wind speed, vertical alignment of relative vorticity) among each TC genesis event classification (i.e., hit, false alarm, miss). We will use standard statistical tests (e.g., Student's t test, Mann-Whitney-U Test) to calculate whether or not any differences are statistically significant. We also plan to discuss how these composite results apply to a few illustrative case studies. The results may help determine which aspects of the forecast are (in)correct and whether the incorrect aspects can be bias-corrected. This, in turn, may allow us to further enhance probabilistic forecasts of TC genesis.
Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O’Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin
2017-01-01
Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment. PMID:28291234
NASA Astrophysics Data System (ADS)
Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O'Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin
2017-03-01
Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.
Cosmology in massive gravity with effective composite metric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heisenberg, Lavinia; Refregier, Alexandre, E-mail: lavinia.heisenberg@eth-its.ethz.ch, E-mail: alexandre.refregier@phys.ethz.ch
This paper is dedicated to scrutinizing the cosmology in massive gravity. A matter field of the dark sector is coupled to an effective composite metric while a standard matter field couples to the dynamical metric in the usual way. For this purpose, we study the dynamical system of cosmological solutions by using phase analysis, which provides an overview of the class of cosmological solutions in this setup. This also permits us to study the critical points of the cosmological equations together with their stability. We show the presence of stable attractor de Sitter critical points relevant to the late-time cosmicmore » acceleration. Furthermore, we study the tensor, vector and scalar perturbations in the presence of standard matter fields and obtain the conditions for the absence of ghost and gradient instabilities. Hence, massive gravity in the presence of the effective composite metric can accommodate interesting dark energy phenomenology, that can be observationally distinguished from the standard model according to the expansion history and cosmic growth.« less
Experimental study and thermodynamic modeling of the Al–Co–Cr–Ni system
Gheno, Thomas; Liu, Xuan L.; Lindwall, Greta; ...
2015-09-21
In this study, a thermodynamic database for the Al–Co–Cr–Ni system is built via the Calphad method by extrapolating re-assessed ternary subsystems. A minimum number of quaternary parameters are included, which are optimized using experimental phase equilibrium data obtained by electron probe micro-analysis and x-ray diffraction analysis of NiCoCrAlY alloys spanning a wide compositional range, after annealing at 900 °C, 1100 °C and 1200 °C, and water quenching. These temperatures are relevant to oxidation and corrosion resistant MCrAlY coatings, where M corresponds to some combination of nickel and cobalt. Comparisons of calculated and measured phase compositions show excellent agreement for themore » β–γ equilibrium, and good agreement for three-phase β–γ–σ and β–γ–α equilibria. An extensive comparison with existing Ni-base databases (TCNI6, TTNI8, NIST) is presented in terms of phase compositions.« less
Diffusion of macromolecules in self-assembled cellulose/hemicellulose hydrogels.
Lopez-Sanchez, Patricia; Schuster, Erich; Wang, Dongjie; Gidley, Michael J; Strom, Anna
2015-05-28
Cellulose hydrogels are extensively applied in many biotechnological fields and are also used as models for plant cell walls. We synthesised model cellulosic hydrogels containing hemicelluloses, as a biomimetic of plant cell walls, in order to study the role of hemicelluloses on their mass transport properties. Microbial cellulose is able to self-assemble into composites when hemicelluloses, such as xyloglucan and arabinoxylan, are present in the incubation media, leading to hydrogels with different nano and microstructures. We investigated the diffusivities of a series of fluorescently labelled dextrans, of different molecular weight, and proteins, including a plant pectin methyl esterase (PME), using fluorescence recovery after photobleaching (FRAP). The presence of xyloglucan, known to be able to crosslink cellulose fibres, confirmed by scanning electron microscopy (SEM) and (13)C NMR, reduced mobility of macromolecules of molecular weight higher than 10 kDa, reflected in lower diffusion coefficients. Furthermore PME diffusion was reduced in composites containing xyloglucan, despite the lack of a particular binding motif in PME for this polysaccharide, suggesting possible non-specific interactions between PME and this hemicellulose. In contrast, hydrogels containing arabinoxylan coating cellulose fibres showed enhanced diffusivity of the molecules studied. The different diffusivities were related to the architectural features found in the composites as a function of polysaccharide composition. Our results show the effect of model hemicelluloses in the mass transport properties of cellulose networks in highly hydrated environments relevant to understanding the role of hemicelluloses in the permeability of plant cell walls and aiding design of plant based materials with tailored properties.
Analysis of Ion Composition Estimation Accuracy for Incoherent Scatter Radars
NASA Astrophysics Data System (ADS)
Martínez Ledesma, M.; Diaz, M. A.
2017-12-01
The Incoherent Scatter Radar (ISR) is one of the most powerful sounding methods developed to estimate the Ionosphere. This radar system determines the plasma parameters by sending powerful electromagnetic pulses to the Ionosphere and analyzing the received backscatter. This analysis provides information about parameters such as electron and ion temperatures, electron densities, ion composition, and ion drift velocities. Nevertheless in some cases the ISR analysis has ambiguities in the determination of the plasma characteristics. It is of particular relevance the ion composition and temperature ambiguity obtained between the F1 and the lower F2 layers. In this case very similar signals are obtained with different mixtures of molecular ions (NO2+ and O2+) and atomic oxygen ions (O+), and consequently it is not possible to completely discriminate between them. The most common solution to solve this problem is the use of empirical or theoretical models of the ionosphere in the fitting of ambiguous data. More recent works take use of parameters estimated from the Plasma Line band of the radar to reduce the number of parameters to determine. In this work we propose to determine the error estimation of the ion composition ambiguity when using Plasma Line electron density measurements. The sensibility of the ion composition estimation has been also calculated depending on the accuracy of the ionospheric model, showing that the correct estimation is highly dependent on the capacity of the model to approximate the real values. Monte Carlo simulations of data fitting at different signal to noise (SNR) ratios have been done to obtain valid and invalid estimation probability curves. This analysis provides a method to determine the probability of erroneous estimation for different signal fluctuations. Also it can be used as an empirical method to compare the efficiency of the different algorithms and methods on when solving the ion composition ambiguity.
García-Estévez, Ignacio; Alcalde-Eon, Cristina; Puente, Víctor; Escribano-Bailón, M Teresa
2017-11-23
Enological tannins are widely used in the winemaking process either to improve different wine characteristics (color stability, among others) or to compensate for low tannin levels. In this work, the influence of the addition of two different enological tannins, mainly composed of hydrolysable (ellagitannins) and condensed tannins, on the evolution of color and pigment composition of two different types of model systems containing the five main grape anthocyanins was studied. In addition, the effect of the addition of an enological tannin on the color and pigment composition of red wines made from Vitis vinifera L. cv Tempranillo grapes was also studied by high-performance liquid chromatography with diode array detection coupled to mass spectrometry (HPLC-DAD-MS). Results showed that, in model systems, the addition of the enological tannin favored the formation of anthocyanin-derived pigments, such as A-type and B-type vitisins and flavanol-anthocyanin condensation products, provided that the yeast precursors were previously supplied. Moreover, model systems containing the enological tannins were darker and showed higher values of chroma at the end of the study than control ones. The higher formation of these anthocyanin-derived pigments was also observed in the red wines containing the enological tannin. Moreover, these wine also showed lower lightness (L*) values and higher chroma (C* ab ) values than control wines, indicating a higher stabilization of color.
NASA-UVA Light Aerospace Alloy and Structures Technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Starke, Edgar A., Jr.; Gangloff, Richard P.; Herakovich, Carl T.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.
1995-01-01
The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. The general aim is to produce relevant data and basic understanding of material mechanical response, environment/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated students for aerospace technologies. Specific technical objectives are presented for each of the following research projects: time-temperature dependent fracture in advanced wrought ingot metallurgy, and spray deposited aluminum alloys; cryogenic temperature effects on the deformation and fracture of Al-Li-Cu-In alloys; effects of aging and temperature on the ductile fracture of AA2095 and AA2195; mechanisms of localized corrosion in alloys 2090 and 2095; hydrogen interactions in aluminum-lithium alloys 2090 and selected model alloys; mechanisms of deformation and fracture in high strength titanium alloys (effects of temperature and hydrogen and effects of temperature and microstructure); evaluations of wide-panel aluminum alloy extrusions; Al-Si-Ge alloy development; effects of texture and precipitates on mechanical property anisotropy of Al-Cu-Mg-X alloys; damage evolution in polymeric composites; and environmental effects in fatigue life prediction - modeling crack propagation in light aerospace alloys.
Casale, M; Oliveri, P; Casolino, C; Sinelli, N; Zunin, P; Armanino, C; Forina, M; Lanteri, S
2012-01-27
An authentication study of the Italian PDO (protected designation of origin) extra virgin olive oil Chianti Classico was performed; UV-visible (UV-vis), Near-Infrared (NIR) and Mid-Infrared (MIR) spectroscopies were applied to a set of samples representative of the whole Chianti Classico production area. The non-selective signals (fingerprints) provided by the three spectroscopic techniques were utilised both individually and jointly, after fusion of the respective profile vectors, in order to build a model for the Chianti Classico PDO olive oil. Moreover, these results were compared with those obtained by the gas chromatographic determination of the fatty acids composition. In order to characterise the olive oils produced in the Chianti Classico PDO area, UNEQ (unequal class models) and SIMCA (soft independent modelling of class analogy) were employed both on the MIR, NIR and UV-vis spectra, individually and jointly, and on the fatty acid composition. Finally, PLS (partial least square) regression was applied on the UV-vis, NIR and MIR spectra, in order to predict the content of oleic and linoleic acids in the extra virgin olive oils. UNEQ, SIMCA and PLS were performed after selection of the relevant predictors, in order to increase the efficiency of both classification and regression models. The non-selective information obtained from UV-vis, NIR and MIR spectroscopy allowed to build reliable models for checking the authenticity of the Italian PDO extra virgin olive oil Chianti Classico. Copyright © 2011 Elsevier B.V. All rights reserved.
Interfacial and capillary phenomena in solidification processing of metal-matrix composites
NASA Technical Reports Server (NTRS)
Asthana, R.; Tewari, S. N.
1993-01-01
Chemical and hydrodynamic aspects of wetting and interfacial phenomena during the solidification processing of metal-matrix composites are reviewed. Significant experimental results on fiber-matrix interactions and wetting under equilibrium and non-equilibrium conditions in composites of engineering interest have been compiled, based on a survey of the recent literature. Finally, certain aspects of wetting relevant to stir-casting and infiltration processing of composites are discussed.
NASA Astrophysics Data System (ADS)
minatti, L.
2013-12-01
A finite volume model solving the shallow water equations coupled with the sediments continuity equation in composite channels with irregular geometry is presented. The model is essentially 1D but can handle composite cross-sections in which bedload transport is considered to occur inside the main channel only. This assumption is coherent with the observed behavior of rivers on short time scales where main channel areas exhibit more relevant morphological variations than overbanks. Furthermore, such a model allows a more precise prediction of thalweg elevation and cross section shape variations than fully 1D models where bedload transport is considered to occur uniformly over the entire cross section. The coupling of the equations describing water and sediments dynamics results in a hyperbolic non-conservative system that cannot be solved numerically with the use of a conservative scheme. Therefore, a path-conservative scheme, based on the approach proposed by Pares and Castro (2004) has been devised in order to account for the coupling with the sediments continuity equation and for the concurrent presence of bottom elevation and breadth variations of the cross section. In order to correctly compute numerical fluxes related to bedload transport in main channel areas, a special treatment of the equations is employed in the model. The resulting scheme is well balanced and fully coupled and can accurately model abrupt time variations of flow and bedload transport conditions in wide rivers, characterized by the presence of overbank areas that are less active than the main channel. The accuracy of the model has been first tested in fixed bed conditions by solving problems with a known analytical solution: in these tests the model proved to be able to handle shocks and supercritical flow conditions properly(see Fig. 01). A practical application of the model to the Ombrone river, southern Tuscany (Italy) is shown. The river has shown relevant morphological changes during the last fifteen years, most of them related to the occurrence of high flow rates. The employment of the model allowed to perform a detailed flood hazard assessment where potential risks associated to bedload transport,such as sediments filling of manufacts, excessive erosion or aggradation rates have been evaluated, together with the more 'classical' evaluation of water levels. The whole process also led to the identification of sensitive reaches of the river that require monitoring thus allowing better management practices of the public money allocated for river maintenance. Solution of the Riemann problem for a 10 m wide rectangular XS. The dotted lines represent the numerical solution, while the continuous ones represent the analytical solution
Berry composition and climate: responses and empirical models.
Barnuud, Nyamdorj N; Zerihun, Ayalsew; Gibberd, Mark; Bates, Bryson
2014-08-01
Climate is a strong modulator of berry composition. Accordingly, the projected change in climate is expected to impact on the composition of berries and of the resultant wines. However, the direction and extent of climate change impact on fruit composition of winegrape cultivars are not fully known. This study utilised a climate gradient along a 700 km transect, covering all wine regions of Western Australia, to explore and empirically describe influences of climate on anthocyanins, pH and titratable acidity (TA) levels in two or three cultivars of Vitis vinifera (Cabernet Sauvignon, Chardonnay and Shiraz). The results showed that, at a common maturity of 22° Brix total soluble solids, berries from the warmer regions had low levels of anthocyanins and TA as well as high pH compared to berries from the cooler regions. Most of these regional variations in berry composition reflected the prevailing climatic conditions of the regions. Thus, depending on cultivar, 82-87 % of TA, 83 % of anthocyanins and about half of the pH variations across the gradient were explained by climate-variable-based empirical models. Some of the variables that were relevant in describing the variations in berry attributes included: diurnal ranges and ripening period temperature (TA), vapour pressure deficit in October and growing degree days (pH), and ripening period temperatures (anthocyanins). Further, the rates of change in these berry attributes in response to climate variables were cultivar dependent. Based on the observed patterns along the climate gradient, it is concluded that: (1) in a warming climate, all other things being equal, berry anthocyanins and TA levels will decline whereas pH levels will rise; and (2) despite variations in non-climatic factors (e.g. soil type and management) along the sampling transect, variations in TA and anthocyanins were satisfactorily described using climate-variable-based empirical models, indicating the overriding impact of climate on berry composition. The models presented here are useful tools for assessing likely changes in berry TA and anthocyanins in response to changing climate for the wine regions and cultivars covered in this study.
Berry composition and climate: responses and empirical models
NASA Astrophysics Data System (ADS)
Barnuud, Nyamdorj N.; Zerihun, Ayalsew; Gibberd, Mark; Bates, Bryson
2014-08-01
Climate is a strong modulator of berry composition. Accordingly, the projected change in climate is expected to impact on the composition of berries and of the resultant wines. However, the direction and extent of climate change impact on fruit composition of winegrape cultivars are not fully known. This study utilised a climate gradient along a 700 km transect, covering all wine regions of Western Australia, to explore and empirically describe influences of climate on anthocyanins, pH and titratable acidity (TA) levels in two or three cultivars of Vitis vinifera (Cabernet Sauvignon, Chardonnay and Shiraz). The results showed that, at a common maturity of 22° Brix total soluble solids, berries from the warmer regions had low levels of anthocyanins and TA as well as high pH compared to berries from the cooler regions. Most of these regional variations in berry composition reflected the prevailing climatic conditions of the regions. Thus, depending on cultivar, 82-87 % of TA, 83 % of anthocyanins and about half of the pH variations across the gradient were explained by climate-variable-based empirical models. Some of the variables that were relevant in describing the variations in berry attributes included: diurnal ranges and ripening period temperature (TA), vapour pressure deficit in October and growing degree days (pH), and ripening period temperatures (anthocyanins). Further, the rates of change in these berry attributes in response to climate variables were cultivar dependent. Based on the observed patterns along the climate gradient, it is concluded that: (1) in a warming climate, all other things being equal, berry anthocyanins and TA levels will decline whereas pH levels will rise; and (2) despite variations in non-climatic factors (e.g. soil type and management) along the sampling transect, variations in TA and anthocyanins were satisfactorily described using climate-variable-based empirical models, indicating the overriding impact of climate on berry composition. The models presented here are useful tools for assessing likely changes in berry TA and anthocyanins in response to changing climate for the wine regions and cultivars covered in this study.
Assessment of NDE Reliability Data
NASA Technical Reports Server (NTRS)
Yee, B. G. W.; Chang, F. H.; Couchman, J. C.; Lemon, G. H.; Packman, P. F.
1976-01-01
Twenty sets of relevant Nondestructive Evaluation (NDE) reliability data have been identified, collected, compiled, and categorized. A criterion for the selection of data for statistical analysis considerations has been formulated. A model to grade the quality and validity of the data sets has been developed. Data input formats, which record the pertinent parameters of the defect/specimen and inspection procedures, have been formulated for each NDE method. A comprehensive computer program has been written to calculate the probability of flaw detection at several confidence levels by the binomial distribution. This program also selects the desired data sets for pooling and tests the statistical pooling criteria before calculating the composite detection reliability. Probability of detection curves at 95 and 50 percent confidence levels have been plotted for individual sets of relevant data as well as for several sets of merged data with common sets of NDE parameters.
Cecchinato, A; Ribeca, C; Chessa, S; Cipolat-Gotet, C; Maretto, F; Casellas, J; Bittante, G
2014-07-01
The aim of this study was to investigate 96 single-nucleotide polymorphisms (SNPs) from 54 candidate genes, and test the associations of the polymorphic SNPs with milk yield, composition, milk urea nitrogen (MUN) content and somatic cell score (SCS) in individual milk samples from Italian Brown Swiss cows. Milk and blood samples were collected from 1271 cows sampled once from 85 herds. Milk production, quality traits (i.e. protein, casein, fat and lactose percentages), MUN and SCS were measured for each milk sample. Genotyping was performed using a custom Illumina VeraCode GoldenGate approach. A Bayesian linear animal model that considered the effects of herd, days in milk, parity, SNP genotype and additive polygenic effect was used for the association analysis. Our results showed that 14 of the 51 polymorphic SNPs had relevant additive effects on at least one of the aforementioned traits. Polymorphisms in the glucocorticoid receptor DNA-binding factor 1 (GRLF1), prolactin receptor (PRLR) and chemokine ligand 2 (CCL2) were associated with milk yield; an SNP in the stearoyl-CoA desaturase (SCD-1) was related to fat content; SNPs in the caspase recruitment domain 15 protein (CARD15) and lipin 1 (LPIN1) affected the protein and casein contents; SNPs in growth hormone 1 (GH1), lactotransferrin (LTF) and SCD-1 were relevant for casein number; variants in beta casein (CSN2), GH1, GRLF1 and LTF affected lactose content; SNPs in beta-2 adrenergic receptor (ADRB2), serpin peptidase inhibitor (PI) and SCD-1 were associated with MUN; and SNPs in acetyl-CoA carboxylase alpha (ACACA) and signal transducer and activator of transcription 5A (STAT5A) were relevant in explaining the variation of SCS. Although further research is needed to validate these SNPs in other populations and breeds, the association between these markers and milk yield, composition, MUN and SCS could be exploited in gene-assisted selection programs for genetic improvement purposes.
Armey, Michael F; Crowther, Janis H
2008-02-01
Research has identified a significant increase in both the incidence and prevalence of non-suicidal self-injury (NSSI). The present study sought to test both linear and non-linear cusp catastrophe models by using aversive self-awareness, which was operationalized as a composite of aversive self-relevant affect and cognitions, and dissociation as predictors of NSSI. The cusp catastrophe model evidenced a better fit to the data, accounting for 6 times the variance (66%) of a linear model (9%-10%). These results support models of NSSI implicating emotion regulation deficits and experiential avoidance in the occurrence of NSSI and provide preliminary support for the use of cusp catastrophe models to study certain types of low base rate psychopathology such as NSSI. These findings suggest novel approaches to prevention and treatment of NSSI as well.
NASA Astrophysics Data System (ADS)
Sandford, Scott A.; Allamandola, Louis J.
1993-12-01
The present compilation of measurements of the physical and IR spectral properties of ices whose molecular compositions are relevant to the case of Io encompasses ice systems containing SO2, H2S, and CO2. Surface-binding energies used to calculate the residence times of molecules on a surface as a function of temperature furnish crucially important parameters for models attending to the transport of such molecules to the surface of Io. The values thus derived show that SO2 frosts anneal rapidly.
Impedance changes during setting of amorphous calcium phosphate composites.
Par, Matej; Šantić, Ana; Gamulin, Ozren; Marovic, Danijela; Moguš-Milanković, Andrea; Tarle, Zrinka
2016-11-01
To investigate the electrical properties of experimental light-curable composite materials based on amorphous calcium phosphate (ACP) with the admixture of silanized barium glass and silica fillers. Short-term setting was investigated by impedance measurements at a frequency of 1kHz, while for the long-term setting the impedance spectra were measured consecutively over a frequency range of 0.05Hz to 1MHz for 24h. The analysis of electrical resistivity changes during curing allowed the extraction of relevant kinetic parameters. The impedance results were correlated to the degree of conversion assessed by Raman spectroscopy, water content determined by gravimetry, light transmittance measured by CCD spectrometer and microstructural features observed by scanning electron microscopy. ACP-based composites have shown higher immediate degree of conversion and less post-cure polymerization than the control composites, but lower polymerization rate. The polymerization rate assessed by impedance measurements correlated well with the light transmittance. The differences in the electrical conductivity values observed among the materials were correlated to the amount of water introduced into composites by the ACP filler. High correlation was found between the degree of conversion and electrical resistivity. Equivalent circuit modeling revealed two electrical contributions for the ACP-based composites and a single contribution for the control composites. The impedance spectroscopy has proven a valuable method for gaining insight into various features of ACP-based composites. Better understanding of the properties of ACP-based composites should further the development of these promising bioactive materials. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Rare Earth Element Partitioning in Lunar Minerals: An Experimental Study
NASA Technical Reports Server (NTRS)
McIntosh, E. C.; Rapp, J. F.; Draper, D. S.
2016-01-01
The partitioning behavior of rare earth elements (REE) between minerals and melts is widely used to interpret the petrogenesis and geologic context of terrestrial and extra-terrestrial samples. REE are important tools for modelling the evolution of the lunar interior. The ubiquitous negative Eu anomaly in lunar basalts is one of the main lines of evidence to support the lunar magma ocean (LMO) hypothesis, by which the plagioclase-rich lunar highlands were formed as a flotation crust during differentiation of a global-scale magma ocean. The separation of plagioclase from the mafic cumulates is thought to be the source of the Eu depletion, as Eu is very compatible in plagioclase. Lunar basalts and volcanic glasses are commonly depleted in light REEs (LREE), and more enriched in heavy REEs (HREE). However, there is very little experimental data available on REE partitioning between lunar minerals and melts. In order to interpret the source of these distinctive REE patterns, and to model lunar petrogenetic processes, REE partition coefficients (D) between lunar minerals and melts are needed at conditions relevant to lunar processes. New data on D(sub REE) for plagioclase, and pyroxenes are now available, but there is limited available data for olivine/melt D(sub REE), particularly at pressures higher than 1 bar, and in Fe-rich and reduced compositions - all conditions relevant to the lunar mantle. Based on terrestrial data, REE are highly incompatible in olivine (i.e. D much less than 1), however olivine is the predominant mineral in the lunar interior, so it is important to understand whether it is capable of storing even small amounts of REE, and how the REEs might be fractionatied, in order to understand the trace element budget of the lunar interior. This abstract presents results from high-pressure and temperature experiments investigating REE partitioning between olivine and melt in a composition relevant to lunar magmatism.
Integrated presentation of ecological risk from multiple stressors
Goussen, Benoit; Price, Oliver R.; Rendal, Cecilie; Ashauer, Roman
2016-01-01
Current environmental risk assessments (ERA) do not account explicitly for ecological factors (e.g. species composition, temperature or food availability) and multiple stressors. Assessing mixtures of chemical and ecological stressors is needed as well as accounting for variability in environmental conditions and uncertainty of data and models. Here we propose a novel probabilistic ERA framework to overcome these limitations, which focusses on visualising assessment outcomes by construct-ing and interpreting prevalence plots as a quantitative prediction of risk. Key components include environmental scenarios that integrate exposure and ecology, and ecological modelling of relevant endpoints to assess the effect of a combination of stressors. Our illustrative results demonstrate the importance of regional differences in environmental conditions and the confounding interactions of stressors. Using this framework and prevalence plots provides a risk-based approach that combines risk assessment and risk management in a meaningful way and presents a truly mechanistic alternative to the threshold approach. Even whilst research continues to improve the underlying models and data, regulators and decision makers can already use the framework and prevalence plots. The integration of multiple stressors, environmental conditions and variability makes ERA more relevant and realistic. PMID:27782171
Microscale Bioadhesive Hydrogel Arrays for Cell Engineering Applications.
Patel, Ravi Ghanshyam; Purwada, Alberto; Cerchietti, Leandro; Inghirami, Giorgio; Melnick, Ari; Gaharwar, Akhilesh K; Singh, Ankur
2014-09-01
Bioengineered hydrogels have been explored in cell and tissue engineering applications to support cell growth and modulate its behavior. A rationally designed scaffold should allow for encapsulated cells to survive, adhere, proliferate, remodel the niche, and can be used for controlled delivery of biomolecules. Here we report a microarray of composite bioadhesive microgels with modular dimensions, tunable mechanical properties and bulk modified adhesive biomolecule composition. Composite bioadhesive microgels of maleimide functionalized polyethylene glycol (PEG-MAL) with interpenetrating network (IPN) of gelatin ionically cross-linked with silicate nanoparticles were engineered by integrating microfabrication with Michael-type addition chemistry and ionic gelation. By encapsulating clinically relevant anchorage-dependent cervical cancer cells and suspension leukemia cells as cell culture models in these composite microgels, we demonstrate enhanced cell spreading, survival, and metabolic activity compared to control gels. The composite bioadhesive hydrogels represent a platform that could be used to study independent effect of stiffness and adhesive ligand density on cell survival and function. We envision that such microarrays of cell adhesive microenvironments, which do not require harsh chemical and UV crosslinking conditions, will provide a more efficacious cell culture platform that can be used to study cell behavior and survival, function as building blocks to fabricate 3D tissue structures, cell delivery systems, and high throughput drug screening devices.
Microscale Bioadhesive Hydrogel Arrays for Cell Engineering Applications
PATEL, RAVI GHANSHYAM; PURWADA, ALBERTO; CERCHIETTI, LEANDRO; INGHIRAMI, GIORGIO; MELNICK, ARI; GAHARWAR, AKHILESH K.; SINGH, ANKUR
2014-01-01
Bioengineered hydrogels have been explored in cell and tissue engineering applications to support cell growth and modulate its behavior. A rationally designed scaffold should allow for encapsulated cells to survive, adhere, proliferate, remodel the niche, and can be used for controlled delivery of biomolecules. Here we report a microarray of composite bioadhesive microgels with modular dimensions, tunable mechanical properties and bulk modified adhesive biomolecule composition. Composite bioadhesive microgels of maleimide functionalized polyethylene glycol (PEG-MAL) with interpenetrating network (IPN) of gelatin ionically cross-linked with silicate nanoparticles were engineered by integrating microfabrication with Michael-type addition chemistry and ionic gelation. By encapsulating clinically relevant anchorage-dependent cervical cancer cells and suspension leukemia cells as cell culture models in these composite microgels, we demonstrate enhanced cell spreading, survival, and metabolic activity compared to control gels. The composite bioadhesive hydrogels represent a platform that could be used to study independent effect of stiffness and adhesive ligand density on cell survival and function. We envision that such microarrays of cell adhesive microenvironments, which do not require harsh chemical and UV crosslinking conditions, will provide a more efficacious cell culture platform that can be used to study cell behavior and survival, function as building blocks to fabricate 3D tissue structures, cell delivery systems, and high throughput drug screening devices. PMID:25328548
Enhancing the Scientific Return from HST Imaging of Debris Disks
NASA Astrophysics Data System (ADS)
Weinberger, Alycia
2016-10-01
We propose realistic modeling of scattering of light by small aggregate dust grains that will enable us to interpret visible to near-infrared imaging of debris disks. We will determine if disk colors, phase functions, and polarizations place unique constraints on the composition of debris dust. Ongoing collisions of planetesimals generate dust; therefore, the dust provides unique information on compositions of the parent bodies. These exosolar analogs of asteroids and comets can bear clues to the history of a planetary system including migration and thermal processing. Because directly imaged debris disks are cold, they have no solid state emission features. Grain scattering properties as a function of wavelength are our only tool to reveal their compositions. Solar system interplanetary dust particles are fluffy aggregates, but most previous work on debris disk composition relied on Mie theory, i.e. assumed compact spherical grains. Mie calculations do not reproduce the observed colors and phase functions observed from debris disks. The few more complex calculations that exist do not explore the range of compositions and sizes relevant to debris disk dust. In particular, we expect porosity to help distinguish between cometary-like parent bodies, which are fluffy due to high volatile content and low collisional velocities, and asteroidal-like parent bodies that are compacted.
Xiang, Dan; Verbruggen, Erik; Hu, Yajun; Veresoglou, Stavros D; Rillig, Matthias C; Zhou, Wenping; Xu, Tianle; Li, Huan; Hao, Zhipeng; Chen, Yongliang; Chen, Baodong
2014-12-01
We performed a landscape-scale investigation to compare the arbuscular mycorrhizal fungal (AMF) communities between grasslands and farmlands in the farming-pastoral ecotone of northern China. AMF richness and community composition were examined with 454 pyrosequencing. Structural equation modelling (SEM) and multivariate analyses were applied to disentangle the direct and indirect effects (mediated by multiple environmental factors) of land use on AMF. Land use conversion from grassland to farmland significantly reduced AMF richness and extraradical hyphal length density, and these land use types also differed significantly in AMF community composition. SEM showed that the effects of land use on AMF richness and hyphal length density in soil were primarily mediated by available phosphorus and soil structural quality. Soil texture was the strongest predictor of AMF community composition. Soil carbon, nitrogen and soil pH were also significantly correlated with AMF community composition, indicating that these abiotic variables could be responsible for some of the community composition differences among sites. Our study shows that land use has a partly predictable effect on AMF communities across this ecologically relevant area of China, and indicates that high soil phosphorus concentrations and poor soil structure are particularly detrimental to AMF in this fragile ecosystem. © 2014 The Author. New Phytologist © 2014 New Phytologist Trust.
Advance study of fiber-reinforced self-compacting concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mironova, M., E-mail: mirona@imbm.bas.bg; Ivanova, M., E-mail: magdalena.ivanova@imbm.bas.bg; Naidenov, V., E-mail: valna53@mail.bg
2015-10-28
Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural andmore » material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, M.; Keene, W. C.; Easter, Richard C.
Observations and model studies suggest a significant but highly non-linear role for halogens, primarily Cl and Br, in multiphase atmospheric processes relevant to tropospheric chemistry and composition, aerosol evolution, radiative transfer, weather, and climate. The sensitivity of global atmospheric chemistry to the production of marine aerosol and the associated activation and cycling of inorganic Cl and Br was tested using a size-resolved multiphase coupled chemistry/global climate model (National Center for Atmospheric Research’s Community Atmosphere Model (CAM); v3.6.33). Simulation results showed strong meridional and vertical gradients in Cl and Br species. The simulation reproduced most available observations with reasonable confidence permittingmore » the formulation of potential mechanisms for several previously unexplained halogen phenomena including the enrichment of Br- in submicron aerosol, and the presence of a BrO maximum in the polar free troposphere. However, simulated total volatile Br mixing ratios were generally high in the troposphere. Br in the stratosphere was lower than observed due to the lack of long-lived organobromine species in the simulation. Comparing simulations using chemical mechanisms with and without reactive Cl and Br species demonstrated a significant temporal and spatial sensitivity of primary atmospheric oxidants (O3, HOx, NOx), CH4, and non-methane hydrocarbons (NMHC’s) to halogen cycling. Simulated O3 and NOx were globally lower (65% and 35%, respectively, less in the planetary boundary layer based on median values) in simulations that included halogens. Globally, little impact was seen in SO2 and non-sea-salt SO42- processing due to halogens. Significant regional differences were evident: The lifetime of nss-SO42- was extended downwind of large sources of SO2. The burden and lifetime of DMS (and its oxidation products) were lower by a factor of 5 in simulations that included halogens, versus those without, leading to a 20% reduction in nss-SO42- in the southern hemisphere planetary boundary layer based on median values.« less
Ion composition variety and variability around perihelion
NASA Astrophysics Data System (ADS)
Beth, Arnaud; Altwegg, Kathrin; Behar, Étienne; Broiles, Tom; Burch, Jim; Carr, Christopher; Eriksson, Anders; Galand, Marina; Goetz, Charlotte; Henri, Pierre; Heritier, Kévin; Nilsson, Hans; Odelstad, Elias; Richter, Ingo; Rubin, Martin; Vallieres, Xavier
2017-04-01
For two years, the Double Focusing Mass Spectrometer (DFMS), one of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) onboard Rosetta probed the neutral gas and the plasma composition of the comet 67P/Churyumov-Gerasimenko's coma (67P). Major ion species detected include water ions (e.g, H2O+, H3O+, HO+) observed throughout the escorting phase. The analysis of DFMS data revealed a large zoo of ion species near perihelion (summer 2015). In particular, protonated versions of high proton affinity neutrals (e.g., NH4+) were detected, but also hydrocarbon and organic ion species. Near perihelion, ion composition was also highly variable and showed interesting variations in the complexity of the observed ion species. We will first present an overview of the rich variety of ion species observed during perihelion. This study will be supported by ionospheric modeling of ion composition below the ion exobase. We will then show an intercomparison between DFMS data and Rosetta Plasma Consortium (RPC) plasma and particle data to interpret the DFMS ion composition variability. Our primary goal is to highlight any correlation between observations from these different instruments (i.e. ion composition, ion and electron number density, energy distribution, magnetic field) and to find relevant signatures of physical processes which can affect the chemistry and dynamics (e.g., acceleration and deflection) of the involved neutral and ion species.
Structure and physical properties of silkworm cocoons
Chen, Fujia; Porter, David; Vollrath, Fritz
2012-01-01
Silkworm cocoons have evolved a wide range of different structures and combinations of physical and chemical properties in order to cope with different threats and environmental conditions. We present our observations and measurements on 25 diverse types of cocoons in a first attempt to correlate physical properties with the structure and morphology of the cocoons. These two architectural parameters appear to be far more important than the material properties of the silk fibres themselves. We consider tensile and compressive mechanical properties and gas permeation of the cocoon walls, and in each case identify mechanisms or models that relate these properties to cocoon structure, usually based upon non-woven fibre composites. These properties are of relevance also for synthetic non-woven composite materials and our studies will help formulate bio-inspired design principles for new materials. PMID:22552916
NASA Technical Reports Server (NTRS)
Valisetty, R. R.; Chamis, C. C.
1987-01-01
A computer code is presented for the sublaminate/ply level analysis of composite structures. This code is useful for obtaining stresses in regions affected by delaminations, transverse cracks, and discontinuities related to inherent fabrication anomalies, geometric configurations, and loading conditions. Particular attention is focussed on those layers or groups of layers (sublaminates) which are immediately affected by the inherent flaws. These layers are analyzed as homogeneous bodies in equilibrium and in isolation from the rest of the laminate. The theoretical model used to analyze the individual layers allows the relevant stresses and displacements near discontinuities to be represented in the form of pure exponential-decay-type functions which are selected to eliminate the exponential-precision-related difficulties in sublaminate/ply level analysis. Thus, sublaminate analysis can be conducted without any restriction on the maximum number of layers, delaminations, transverse cracks, or other types of discontinuities. In conjunction with the strain energy release rate (SERR) concept and composite micromechanics, this computational procedure is used to model select cases of end-notch and mixed-mode fracture specimens. The computed stresses are in good agreement with those from a three-dimensional finite element analysis. Also, SERRs compare well with limited available experimental data.
Multi-criteria Resource Mapping and its Relevance in the Assessment of Habitat Changes
NASA Astrophysics Data System (ADS)
Van Lancker, V. R.; Kint, L.; van Heteren, S.
2016-02-01
Mineral and geological resources can be considered to be non-renewable on time scales relevant for decision makers. Once exhausted by humans, they are not replenished rapidly enough by nature, meaning that truly sustainable resource exploitation is not possible. Comprehensive knowledge on the distribution, composition and dynamics of geological resources and on the environmental impact of aggregate extraction is therefore critical. For the Belgian and southern Netherlands part of the North Sea, being representative of a typical sandbank system, a 4D resource decision-support system is being developed that links 3D geological models with environmental impact models. Aim is to quantify natural and man-made changes and to define from these sustainable exploitation thresholds. These are needed to ensure that recovery from perturbations is rapid and secure, and that the range of natural variation is maintained, a prerequisite stated in Europe's Marine Strategy Framework Directive, the environmental pillar of Europe's Maritime Policy. The geological subsurface is parameterised using a voxel modelling approach. Primarily, the voxels, or volume blocks of information, are constrained by the geology, based on coring and seismic data, but they are open to any resource-relevant information. The primary geological data entering the voxels are subdued to uncertainty modelling, a necessary step to produce data products with confidence limits. The presentation will focus on the novelty this approach brings for seabed and habitat mapping. In our model this is the upper voxel, providing the advantage of having a dynamical coupling to the geology and a suite of environmental parameters. In the context of assessing habitat changes, this coupling enables to account for spatial and temporal variability, seabed heterogeneity, as well as data uncertainty. The project is funded by Belgian Science Policy and is further valorised through EMODnet-Geology (DG MARE).
Chemically Active, Porous 3D-Printed Thermoplastic Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Kent A.; Kennedy, Zachary C.; Arey, Bruce W.
Metal-organic frameworks (MOFs) exhibit exceptional properties and are widely investigated because of their structural and functional versatility relevant to catalysis, separations, and sensing applications. However, their commercial or large-scale application is often limited by their powder forms. To address this, we report the production of MOF-thermoplastic polymer composites accessed via a standard 3D printer. MOFs (Zeolitic imidazolate framework; ZIF-8) were successfully incorporated homogeneously into both poly(lactic acid) (PLA) and thermoplastic polyurethane (TPU) matrices, extruded into filaments, and utilized for on-demand access to 3D structures by fused-deposition modeling. Printed rigid PLA-MOF composites displayed good structural integrity, high surface area ((SA)avg =more » 531 m2 g-1) and hierarchical pore features. Flexible TPU-MOF composites (SAavg = 706 m2 g-1) were achieved by employing a sacrificial fluoropolymer readily removed post-printing. Critically, embedded particles in the plastic matrices retain their ability to participate in chemical interactions characteristic of the parent MOF. The fabrication strategies can be extended to other MOFs and illustrate the potential of 3D printing to create unique porous and high surface area chemically-active structures.« less
Fei, Airong; Liu, Qian; Huan, Juan; Qian, Jing; Dong, Xiaoya; Qiu, Baijing; Mao, Hanping; Wang, Kun
2015-08-15
Gold nanoparticles (Au NPs) decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon (Au/MWCNT-rGONR) composites were synthesized by a one-pot reaction. By employing the resulting Au/MWCNT-rGONR composites as the support for aptamer immobilization, we developed an ultrasensitive label-free electrochemical impedimetric aptasensor for acetamiprid detection, which was based on that the variation of electron transfer resistance was relevant to the formation of acetamiprid-aptamer complex at the modified electrode surface. Compared with pure Au NPs and MWCNT-rGONR, the Au/MWCNT-rGONR composites modified electrode was the most sensitive aptasensing platform for the determination of acetamiprid. The proposed aptasensor displayed a linear response for acetamiprid in the range from 5×10(-14) M to 1×10(-5) M with an extremely low detection limit of 1.7×10(-14) M (S/N=3). In addition, this impedimetric aptasensor possessed great advantages including the simple operation process, low-cost, selectivity and sensitivity, which provided a promising model for the aptamer-based detection with a direct impedimetric method. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Righter, K.; Go, B. M.; Pando, K. A.; Danielson, L.; Ross, D. K.; Rahman, Z.; Keller, L. P.
2017-04-01
Multiple lines of geochemical and geophysical evidence suggest the Moon has a small metallic core, yet the composition of the core is poorly constrained. The physical state of the core (now or in the past) depends on detailed knowledge of its composition, and unfortunately, there is little available data on relevant multicomponent systems (i.e., Fe-Ni-S-C) at lunar interior conditions. In particular, there is a dearth of phase equilibrium data to elucidate whether a specific core composition could help to explain an early lunar geodynamo and magnetic field intensities, or current solid inner core/liquid outer core states. We utilize geochemical information to estimate the Ni, S and C contents of the lunar core, and then carry out phase equilibria experiments on several possible core compositions at the pressure and temperature conditions relevant to the lunar interior. The first composition is 0.5 wt% S and 0.375 wt% C, based on S and C contents of Apollo glasses. A second composition contains 1 wt% each of S and C, and assumes that the lunar mantle experienced degassing of up to 50% of its S and C. Finally a third composition contains C as the dominant light element. Phase equilibrium experiments were completed at 1, 3 and 5 GPa, using piston cylinder and multi-anvil techniques. The first composition has a liquidus near 1550 °C and solidus near 1250 °C. The second composition has a narrower liquidus and solidus temperatures of 1400 and 1270 °C, respectively, while the third composition is molten down to 1150 °C. As the composition crystallizes, the residual liquid becomes enriched in S and C, but S enrichment is greater due to the incorporation of C (but not S) into solid metallic FeNi. Comparison of these results to thermal models for the Moon allow an evaluation of which composition is consistent with the geophysical data of an early dynamo and a currently solid inner and liquid outer core. Composition 1 has a high enough liquidus to start crystallizing early in lunar history (4.3 Ga), consistent with the possible core dynamo initiated by crystallization of a solid inner core. Composition 1 also stays partially molten throughout lunar history, and could easily explain the seismic data. Composition 2, on the other hand, can satisfy one or the other set of geophysical data, but not both and thus seems like a poor candidate for a lunar core composition. Composition 3 remains molten to temperatures that are lower than current estimates for the lunar core, thus ruling out the possibility of a C-rich (and S-poor) lunar core. The S- and C-poor core composition studied here (composition 1) is consistent with all available geochemical and geophysical data and provides a simple heat source and mechanism for a lunar core dynamo (core crystallization) that would obviate the need for other primary mechanisms such as impacts, core-mantle coupling, or unusual thermal histories.
Zeng, Qinghui; Liu, Yi; Zhao, Hongtao; Sun, Mingdong; Li, Xuyong
2017-04-01
Inter-basin water transfer projects might cause complex hydro-chemical and biological variation in the receiving aquatic ecosystems. Whether machine learning models can be used to predict changes in phytoplankton community composition caused by water transfer projects have rarely been studied. In the present study, we used machine learning models to predict the total algal cell densities and changes in phytoplankton community composition in Miyun reservoir caused by the middle route of the South-to-North Water Transfer Project (SNWTP). The model performances of four machine learning models, including regression trees (RT), random forest (RF), support vector machine (SVM), and artificial neural network (ANN) were evaluated and the best model was selected for further prediction. The results showed that the predictive accuracies (Pearson's correlation coefficient) of the models were RF (0.974), ANN (0.951), SVM (0.860), and RT (0.817) in the training step and RF (0.806), ANN (0.734), SVM (0.730), and RT (0.692) in the testing step. Therefore, the RF model was the best method for estimating total algal cell densities. Furthermore, the predicted accuracies of the RF model for dominant phytoplankton phyla (Cyanophyta, Chlorophyta, and Bacillariophyta) in Miyun reservoir ranged from 0.824 to 0.869 in the testing step. The predicted proportions with water transfer of the different phytoplankton phyla ranged from -8.88% to 9.93%, and the predicted dominant phyla with water transfer in each season remained unchanged compared to the phytoplankton succession without water transfer. The results of the present study provide a useful tool for predicting the changes in phytoplankton community caused by water transfer. The method is transferrable to other locations via establishment of models with relevant data to a particular area. Our findings help better understanding the possible changes in aquatic ecosystems influenced by inter-basin water transfer. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ren, Junjie; Guo, Ping
2017-11-01
The real fluid flow in porous media is consistent with the mass conservation which can be described by the nonlinear governing equation including the quadratic gradient term (QGT). However, most of the flow models have been established by ignoring the QGT and little work has been conducted to incorporate the QGT into the flow model of the multiple fractured horizontal (MFH) well with stimulated reservoir volume (SRV). This paper first establishes a semi-analytical model of an MFH well with SRV including the QGT. Introducing the transformed pressure and flow-rate function, the nonlinear model of a point source in a composite system including the QGT is linearized. Then the Laplace transform, principle of superposition, numerical discrete method, Gaussian elimination method and Stehfest numerical inversion are employed to establish and solve the seepage model of the MFH well with SRV. Type curves are plotted and the effects of relevant parameters are analyzed. It is found that the nonlinear effect caused by the QGT can increase the flow capacity of fluid flow and influence the transient pressure positively. The relevant parameters not only have an effect on the type curve but also affect the error in the pressure calculated by the conventional linear model. The proposed model, which is consistent with the mass conservation, reflects the nonlinear process of the real fluid flow, and thus it can be used to obtain more accurate transient pressure of an MFH well with SRV.
NASA Technical Reports Server (NTRS)
Harrison, W. J.
1981-01-01
An experimental investigation of Ce, Sm and Tm rare earth element (REE) partition coefficients between coexisting garnets (both natural and synthetic) and hydrous liquids shows that Henry's Law may not be obeyed over a range of REE concentrations of geological relevance. Systematic differences between the three REE and the two garnet compositions may be explained in terms of the differences between REE ionic radii and those of the dodecahedral site into which they substitute, substantiating the Harrison and Wood (1980) model of altervalent substitution. Model calculations demonstrate that significant variation can occur in the rare earth contents of melts produced from a garnet lherzolite, if Henry's Law partition coefficients do not apply for the garnet phase.
Numerical Simulation of Dry Granular Flow Impacting a Rigid Wall Using the Discrete Element Method
Wu, Fengyuan; Fan, Yunyun; Liang, Li; Wang, Chao
2016-01-01
This paper presents a clump model based on Discrete Element Method. The clump model was more close to the real particle than a spherical particle. Numerical simulations of several tests of dry granular flow impacting a rigid wall flowing in an inclined chute have been achieved. Five clump models with different sphericity have been used in the simulations. By comparing the simulation results with the experimental results of normal force on the rigid wall, a clump model with better sphericity was selected to complete the following numerical simulation analysis and discussion. The calculation results of normal force showed good agreement with the experimental results, which verify the effectiveness of the clump model. Then, total normal force and bending moment of the rigid wall and motion process of the granular flow were further analyzed. Finally, comparison analysis of the numerical simulations using the clump model with different grain composition was obtained. By observing normal force on the rigid wall and distribution of particle size at the front of the rigid wall at the final state, the effect of grain composition on the force of the rigid wall has been revealed. It mainly showed that, with the increase of the particle size, the peak force at the retaining wall also increase. The result can provide a basis for the research of relevant disaster and the design of protective structures. PMID:27513661
NASA Astrophysics Data System (ADS)
Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.
2013-12-01
Recent first-principles theoretical calculations (Stixrude 2009) and experimental shock-wave investigations (Mosenfelder 2009) indicate that melting perovskite requires significantly less energy than previously thought, supporting the idea of a deep-mantle magma ocean early in Earth's history. The modern-day solid Earth is thus likely the result of crystallization from an early predominantly molten state, a process that is primarily controlled by the poorly understood behavior of silicate melts at extreme pressures and temperatures. Probing liquid thermodynamics at mantle conditions is difficult for both theory and experiment, and further challenges are posed by the large relevant compositional space including at least MgO, SiO2, and FeO. First-principles molecular dynamics has been used with great success to determine the high P-T properties of a small set of fixed composition silicate-oxide liquids including MgO (Karki 2006), SiO2 (Karki 2007), Mg2SiO4 (de Koker 2008), MgSiO3 (Stixrude 2005), and Fe2SiO4 (Ramo 2012). While extremely powerful, this approach has limitations including high computational cost, lower bounds on temperature due to relaxation constraints, as well as restrictions to length scales and time scales that are many orders of magnitude smaller than those relevant to the Earth or experimental methods. As a compliment to accurate first-principles calculations, we have developed the Coordinated HArd Sphere Model (CHASM). We extend the standard hard sphere mixture model, recently applied to silicate liquids by Jing (2011), by accounting for the range of oxygen coordination states available to liquid cations. Utilizing approximate analytic expressions for the hard sphere model, the method can predict complex liquid structure and thermodynamics while remaining computationally efficient. Requiring only minutes on standard desktop computers rather than months on supercomputers, the CHASM approach is well-suited to providing an approximate thermodynamic map of the wide compositional space relevant to early Earth evolution. As a first step on this path, we apply the CHASM formalism to the MgO system. We first demonstrate that the model parameters can be obtained by training on equation of state data for a variety of crystal polymorphs, which discretely sample the continuous range of coordination states available to the liquid; training only on solid data, CHASM thus provides a fully predictive model for oxide liquids. Using the best-fit parameter values, the coordination evolution and equation of state of MgO liquid is determined by free-energy minimization over a wide P-T range. These results are evaluated by favorable comparison with predictions from published first-principles molecular dynamics calculations, indicating that CHASM is accurately capturing the dominant physical mechanism controlling the behavior of high pressure oxide liquids. By combining the CHASM description of MgO liquid with a thermodynamic model for solid MgO periclase, we also compare the MgO melting curve with both first principles computations and shock wave measurements. Future development of the CHASM model will incorporate SiO2, FeO, and Al2O3, providing a simple physical framework that enables both interpretation of experiments and prediction of behavior currently outside our technical or computational capabilities.
Helioseismic and neutrino data-driven reconstruction of solar properties
NASA Astrophysics Data System (ADS)
Song, Ningqiang; Gonzalez-Garcia, M. C.; Villante, Francesco L.; Vinyoles, Nuria; Serenelli, Aldo
2018-06-01
In this work, we use Bayesian inference to quantitatively reconstruct the solar properties most relevant to the solar composition problem using as inputs the information provided by helioseismic and solar neutrino data. In particular, we use a Gaussian process to model the functional shape of the opacity uncertainty to gain flexibility and become as free as possible from prejudice in this regard. With these tools we first readdress the statistical significance of the solar composition problem. Furthermore, starting from a composition unbiased set of standard solar models (SSMs) we are able to statistically select those with solar chemical composition and other solar inputs which better describe the helioseismic and neutrino observations. In particular, we are able to reconstruct the solar opacity profile in a data-driven fashion, independently of any reference opacity tables, obtaining a 4 per cent uncertainty at the base of the convective envelope and 0.8 per cent at the solar core. When systematic uncertainties are included, results are 7.5 per cent and 2 per cent, respectively. In addition, we find that the values of most of the other inputs of the SSMs required to better describe the helioseismic and neutrino data are in good agreement with those adopted as the standard priors, with the exception of the astrophysical factor S11 and the microscopic diffusion rates, for which data suggests a 1 per cent and 30 per cent reduction, respectively. As an output of the study we derive the corresponding data-driven predictions for the solar neutrino fluxes.
Stress and Strain in Silicon Electrode Models
Higa, Kenneth; Srinivasan, Venkat
2015-03-24
While the high capacity of silicon makes it an attractive negative electrode for Li-ion batteries, the associated large volume change results in fracture and capacity fade. Composite electrodes incorporating silicon have additional complexity, as active material is attached to surrounding material which must likewise experience significant volume change. In this paper, a finite-deformation model is used to explore, for the first time, mechanical interactions between a silicon particle undergoing lithium insertion, and attached binder material. Simulations employ an axisymmetric model system in which solutions vary in two spatial directions and shear stresses develop at interfaces between materials. The mechanical responsemore » of the amorphous active material is dependent on lithium concentration, and an equation of state incorporating reported volume expansion data is used. Simulations explore the influence of active material size and binder stiffness, and suggest delamination as an additional mode of material damage. Computed strain energies and von Mises equivalent stresses are in physically-relevant ranges, comparable to reported yield stresses and adhesion energies, and predicted trends are largely consistent with reported experimental results. It is hoped that insights from this work will support the design of more robust silicon composite electrodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar
The development and understanding of the mechanical properties of neutron-irradiated FeCrAl alloys is increasingly a critical need as these alloys continue to become more mature for nuclear reactor applications. This study focuses on the mechanical properties of model FeCrAl alloys and of a commercial FeCrAl alloy neutron-irradiated to up to 13.8 displacements per atom (dpa) at irradiation temperatures between 320 and 382 °C. Tensile tests were completed at room temperature and at 320 °C, and a subset of fractured tensile specimens was examined by scanning electron microscopy. Results showed typical radiation hardening and embrittlement indicative of high chromium ferritic alloysmore » with strong chromium composition dependencies at lower doses. At and above 7.0 dpa, the mechanical properties saturated for both the commercial and model FeCrAl alloys, although brittle cleavage fracture was observed at the highest dose in the model FeCrAl alloy with the highest chromium content (18 wt %). Finally, the results suggest the composition and microstructure of FeCrAl alloys plays a critical role in the mechanical response of FeCrAl alloys irradiated near temperatures relevant to light water reactors.« less
Detailed finite element method modeling of evaporating multi-component droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diddens, Christian, E-mail: C.Diddens@tue.nl
The evaporation of sessile multi-component droplets is modeled with an axisymmetic finite element method. The model comprises the coupled processes of mixture evaporation, multi-component flow with composition-dependent fluid properties and thermal effects. Based on representative examples of water–glycerol and water–ethanol droplets, regular and chaotic examples of solutal Marangoni flows are discussed. Furthermore, the relevance of the substrate thickness for the evaporative cooling of volatile binary mixture droplets is pointed out. It is shown how the evaporation of the more volatile component can drastically decrease the interface temperature, so that ambient vapor of the less volatile component condenses on the droplet.more » Finally, results of this model are compared with corresponding results of a lubrication theory model, showing that the application of lubrication theory can cause considerable errors even for moderate contact angles of 40°. - Graphical abstract:.« less
Development and characterisation of a novel three-dimensional inter-kingdom wound biofilm model.
Townsend, Eleanor M; Sherry, Leighann; Rajendran, Ranjith; Hansom, Donald; Butcher, John; Mackay, William G; Williams, Craig; Ramage, Gordon
2016-11-01
Chronic diabetic foot ulcers are frequently colonised and infected by polymicrobial biofilms that ultimately prevent healing. This study aimed to create a novel in vitro inter-kingdom wound biofilm model on complex hydrogel-based cellulose substrata to test commonly used topical wound treatments. Inter-kingdom triadic biofilms composed of Candida albicans, Pseudomonas aeruginosa, and Staphylococcus aureus were shown to be quantitatively greater in this model compared to a simple substratum when assessed by conventional culture, metabolic dye and live dead qPCR. These biofilms were both structurally complex and compositionally dynamic in response to topical therapy, so when treated with either chlorhexidine or povidone iodine, principal component analysis revealed that the 3-D cellulose model was minimally impacted compared to the simple substratum model. This study highlights the importance of biofilm substratum and inclusion of relevant polymicrobial and inter-kingdom components, as these impact penetration and efficacy of topical antiseptics.
Monte Carlo simulation of ion-material interactions in nuclear fusion devices
NASA Astrophysics Data System (ADS)
Nieto Perez, M.; Avalos-Zuñiga, R.; Ramos, G.
2017-06-01
One of the key aspects regarding the technological development of nuclear fusion reactors is the understanding of the interaction between high-energy ions coming from the confined plasma and the materials that the plasma-facing components are made of. Among the multiple issues important to plasma-wall interactions in fusion devices, physical erosion and composition changes induced by energetic particle bombardment are considered critical due to possible material flaking, changes to surface roughness, impurity transport and the alteration of physicochemical properties of the near surface region due to phenomena such as redeposition or implantation. A Monte Carlo code named MATILDA (Modeling of Atomic Transport in Layered Dynamic Arrays) has been developed over the years to study phenomena related to ion beam bombardment such as erosion rate, composition changes, interphase mixing and material redeposition, which are relevant issues to plasma-aided manufacturing of microelectronics, components on object exposed to intense solar wind, fusion reactor technology and other important industrial fields. In the present work, the code is applied to study three cases of plasma material interactions relevant to fusion devices in order to highlight the code's capabilities: (1) the Be redeposition process on the ITER divertor, (2) physical erosion enhancement in castellated surfaces and (3) damage to multilayer mirrors used on EUV diagnostics in fusion devices due to particle bombardment.
Research Interests Dynamic biochemical composition of bioenergy-relevant biomass Coproduct development from lipid streams. Lieve Laurens's research interests in this realm are primarily focused on analytical selective, quantitative tradeoffs in biochemical composition of three strains of algae, grown in distinct
Ternary and Quaternary Composition Diagrams: An Overview of the Subject.
ERIC Educational Resources Information Center
MacCarthy, Patrick
1983-01-01
Reviews graphical methods for representing ternary and quaternary systems, focusing on use of triangular composition diagrams. Examines some of the relevant geometry of triangles in general, showing that right isosceles triangles possess some very advantageous features for representing ternary systems. (JN)
Composition through Construction: A Less Teacher-Directed Approach (EJ Update).
ERIC Educational Resources Information Center
Tabachnick, Vicki
1992-01-01
Questions traditional composition techniques and their effects on student thinking and problem solving. Demonstrates how one high school English teacher responded to these classroom issues by reading relevant research and supplementing it with a study conducted on her own students. (HB)
The Effect of Self-Referential Expectation on Emotional Face Processing
McKendrick, Mel; Butler, Stephen H.; Grealy, Madeleine A.
2016-01-01
The role of self-relevance has been somewhat neglected in static face processing paradigms but may be important in understanding how emotional faces impact on attention, cognition and affect. The aim of the current study was to investigate the effect of self-relevant primes on processing emotional composite faces. Sentence primes created an expectation of the emotion of the face before sad, happy, neutral or composite face photos were viewed. Eye movements were recorded and subsequent responses measured the cognitive and affective impact of the emotion expressed. Results indicated that primes did not guide attention, but impacted on judgments of valence intensity and self-esteem ratings. Negative self-relevant primes led to the most negative self-esteem ratings, although the effect of the prime was qualified by salient facial features. Self-relevant expectations about the emotion of a face and subsequent attention to a face that is congruent with these expectations strengthened the affective impact of viewing the face. PMID:27175487
The Effect of Self-Referential Expectation on Emotional Face Processing.
McKendrick, Mel; Butler, Stephen H; Grealy, Madeleine A
2016-01-01
The role of self-relevance has been somewhat neglected in static face processing paradigms but may be important in understanding how emotional faces impact on attention, cognition and affect. The aim of the current study was to investigate the effect of self-relevant primes on processing emotional composite faces. Sentence primes created an expectation of the emotion of the face before sad, happy, neutral or composite face photos were viewed. Eye movements were recorded and subsequent responses measured the cognitive and affective impact of the emotion expressed. Results indicated that primes did not guide attention, but impacted on judgments of valence intensity and self-esteem ratings. Negative self-relevant primes led to the most negative self-esteem ratings, although the effect of the prime was qualified by salient facial features. Self-relevant expectations about the emotion of a face and subsequent attention to a face that is congruent with these expectations strengthened the affective impact of viewing the face.
Optimizing tooth form with direct posterior composite restorations.
Raghu, Ramya; Srinivasan, Raghu
2011-10-01
Advances in material sciences and technology have provided today's clinicians the strategies to transform the mechanistic approach of operative dentistry into a biologic philosophy. In the last three decades, composite resins have gone from being just an esthetically pleasing way of restoring Class III and Class IV cavities to become the universal material for both anterior and posterior situations as they closely mimic the natural esthetics while restoring the form of the human dentition. In order to enhance their success, clinicians have to rethink their protocol instead of applying the same restorative concepts and principles practiced with metallic restorations. Paralleling the evolution of posterior composite resin materials, cavity designs, restorative techniques and armamentarium have also developed rapidly to successfully employ composite resins in Class II situations. Most of the earlier problems with posterior composites such as poor wear resistance, polymerization shrinkage, postoperative sensitivity, predictable bonding to dentin, etc., have been overcome to a major extent. However, the clinically relevant aspect of achieving tight contacts in Class II situations has challenged clinicians the most. This paper reviews the evolution of techniques and recent developments in achieving predictable contacts with posterior composites. A Medline search was performed for articles on "direct posterior composite contacts." The keywords used were "contacts and contours of posterior composites." The reference list of each article was manually checked for additional articles of relevance.
Flowable Resin Composites: A Systematic Review and Clinical Considerations
Rodrigues, Jean C.
2015-01-01
Background Little is known about flowable composite materials. Most literature mentions conventional composite materials at large, giving minimal emphasis to flowables in particular. This paper briefly gives an in depth insight to the multiple facets of this versatile material. Aim To exclusively review the most salient features of flowable composite materials in comparison to conventional composites and to give clinicians a detailed understanding of the advantages, drawbacks, indications and contraindications based on composition and physical/mechanical properties. Methodology Data Sources: A thorough literature search from the year 1996 up to January 2015 was done on PubMed Central, The Cochrane Library, Science Direct, Wiley Online Library, and Google Scholar. Grey literature (pending patents, technical reports etc.) was also screened. The search terms used were “dental flowable resin composites”. Search Strategy After omitting the duplicates/repetitions, a total of 491 full text articles were assessed. As including all articles were out of the scope of this paper. Only relevant articles that fulfilled the reviewer’s objectives {mentioning indications, contraindications, applications, assessment of physical/mechanical/biological properties (in vitro/ in vivo /ex vivo)} were considered. A total of 92 full text articles were selected. Conclusion Flowable composites exhibit a variable composition and consequently variable mechanical/ physical properties. Clinicians must be aware of this aspect to make a proper material selection based on specific properties and indications of each material relevant to a particular clinical situation. PMID:26266238
A call for virtual experiments: accelerating the scientific process.
Cooper, Jonathan; Vik, Jon Olav; Waltemath, Dagmar
2015-01-01
Experimentation is fundamental to the scientific method, whether for exploration, description or explanation. We argue that promoting the reuse of virtual experiments (the in silico analogues of wet-lab or field experiments) would vastly improve the usefulness and relevance of computational models, encouraging critical scrutiny of models and serving as a common language between modellers and experimentalists. We review the benefits of reusable virtual experiments: in specifying, assaying, and comparing the behavioural repertoires of models; as prerequisites for reproducible research; to guide model reuse and composition; and for quality assurance in the translational application of models. A key step towards achieving this is that models and experimental protocols should be represented separately, but annotated so as to facilitate the linking of models to experiments and data. Lastly, we outline how the rigorous, streamlined confrontation between experimental datasets and candidate models would enable a "continuous integration" of biological knowledge, transforming our approach to systems biology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Crustal structure and igneous processes in a chondritic Io
NASA Technical Reports Server (NTRS)
Kargel, J. S.
1993-01-01
Liquid sulfur can form when metal-free C1 or C2 chondrites are heated. It may be obtained either by direct melting of native sulfur in disequilibrated C1 or C2 chondrites or by incongruent melting of pyrite and other sulfides in thermodynamically equilibrated rocks of the same composition. Hence, Lewis considered C2 chondrites to be the best meteoritic analog for Io's bulk composition. Metal-bearing C3 and ordinary chondrites are too chemically reduced to yield liquid sulfur and are not thought to represent plausible analogs of Io's bulk composition. An important aspect of Lewis' work is that CaSO4 and MgSO4 are predicted to be important in Io. Real C1 and C2 chondrites contain averages of, respectively, 11 percent and 3 percent by mass of salts (plus water of hydration). The most abundant chondritic salts are magnesium and calcium sulfates, but other important components include sulfates of sodium, potassium, and nickel and carbonates of magnesium, calcium, and iron. It is widely accepted that chondritic salts are formed by low-temperature aqueous alteration. Even if Io originally did not contain salts, it is likely that aqueous alteration would have yielded several percent sulfates and carbonates. In any event, Io probably contains sulfates and carbonates. This report presents the results of a model of differentiation of a simplified C2 chondrite-like composition that includes 1.92 percent MgSO4, 0.56 percent CaSO4, 0.53 percent CaCO3, and 0.094 percent elemental sulfur. The temperature of the model is gradually increased; ensuing fractional melting results in these components extruding or intruding at gravitationally stable levels in Io's crust. Relevant phase equilibria were reviewed. A deficiency of high-pressure phase equilibria renders the present model qualitative.
Moisture status during a strong El Niño explains a tropical montane cloud forest's upper limit.
Crausbay, Shelley D; Frazier, Abby G; Giambelluca, Thomas W; Longman, Ryan J; Hotchkiss, Sara C
2014-05-01
Growing evidence suggests short-duration climate events may drive community structure and composition more directly than long-term climate means, particularly at ecotones where taxa are close to their physiological limits. Here we use an empirical habitat model to evaluate the role of microclimate during a strong El Niño in structuring a tropical montane cloud forest's upper limit and composition in Hawai'i. We interpolate climate surfaces, derived from a high-density network of climate stations, to permanent vegetation plots. Climatic predictor variables include (1) total rainfall, (2) mean relative humidity, and (3) mean temperature representing non-El Niño periods and a strong El Niño drought. Habitat models explained species composition within the cloud forest with non-El Niño rainfall; however, the ecotone at the cloud forest's upper limit was modeled with relative humidity during a strong El Niño drought and secondarily with non-El Niño rainfall. This forest ecotone may be particularly responsive to strong, short-duration climate variability because taxa here, particularly the isohydric dominant Metrosideros polymorpha, are near their physiological limits. Overall, this study demonstrates moisture's overarching influence on a tropical montane ecosystem, and suggests that short-term climate events affecting moisture status are particularly relevant at tropical ecotones. This study further suggests that predicting the consequences of climate change here, and perhaps in other tropical montane settings, will rely on the skill and certainty around future climate models of regional rainfall, relative humidity, and El Niño.
NASA Astrophysics Data System (ADS)
Meng, Xiaocheng; Che, Renfei; Gao, Shi; He, Juntao
2018-04-01
With the advent of large data age, power system research has entered a new stage. At present, the main application of large data in the power system is the early warning analysis of the power equipment, that is, by collecting the relevant historical fault data information, the system security is improved by predicting the early warning and failure rate of different kinds of equipment under certain relational factors. In this paper, a method of line failure rate warning is proposed. Firstly, fuzzy dynamic clustering is carried out based on the collected historical information. Considering the imbalance between the attributes, the coefficient of variation is given to the corresponding weights. And then use the weighted fuzzy clustering to deal with the data more effectively. Then, by analyzing the basic idea and basic properties of the relational analysis model theory, the gray relational model is improved by combining the slope and the Deng model. And the incremental composition and composition of the two sequences are also considered to the gray relational model to obtain the gray relational degree between the various samples. The failure rate is predicted according to the principle of weighting. Finally, the concrete process is expounded by an example, and the validity and superiority of the proposed method are verified.
A Kinetic Model for GaAs Growth by Hydride Vapor Phase Epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulte, Kevin L.; Simon, John; Jain, Nikhil
2016-11-21
Precise control of the growth of III-V materials by hydride vapor phase epitaxy (HVPE) is complicated by the fact that the growth rate depends on the concentrations of nearly all inputs to the reactor and also the reaction temperature. This behavior is in contrast to metalorganic vapor phase epitaxy (MOVPE), which in common practice operates in a mass transport limited regime where growth rate and alloy composition are controlled almost exclusively by flow of the Group III precursor. In HVPE, the growth rate and alloy compositions are very sensitive to temperature and reactant concentrations, which are strong functions of themore » reactor geometry. HVPE growth, particularly the growth of large area materials and devices, will benefit from the development of a growth model that can eventually be coupled with a computational fluid dynamics (CFD) model of a specific reactor geometry. In this work, we develop a growth rate law using a Langmuir-Hinshelwood (L-H) analysis, fitting unknown parameters to growth rate data from the literature that captures the relevant kinetic and thermodynamic phenomena of the HVPE process. We compare the L-H rate law to growth rate data from our custom HVPE reactor, and develop quantitative insight into reactor performance, demonstrating the utility of the growth model.« less
Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model.
Liu, Fang; Velikina, Julia V; Block, Walter F; Kijowski, Richard; Samsonov, Alexey A
2017-02-01
We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic tissue modeling with numerical virtualization of an MRI system and scanning experiment to enable assessment of a broad range of MRI approaches including advanced quantitative MRI methods inferring microstructure on a sub-voxel level. A flexible representation of tissue microstructure is achieved in MRiLab by employing the generalized tissue model with multiple exchanging water and macromolecular proton pools rather than a system of independent proton isochromats typically used in previous simulators. The computational power needed for simulation of the biologically relevant tissue models in large 3D objects is gained using parallelized execution on GPU. Three simulated and one actual MRI experiments were performed to demonstrate the ability of the new simulator to accommodate a wide variety of voxel composition scenarios and demonstrate detrimental effects of simplified treatment of tissue micro-organization adapted in previous simulators. GPU execution allowed ∼ 200× improvement in computational speed over standard CPU. As a cross-platform, open-source, extensible environment for customizing virtual MRI experiments, MRiLab streamlines the development of new MRI methods, especially those aiming to infer quantitatively tissue composition and microstructure.
Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model
Velikina, Julia V.; Block, Walter F.; Kijowski, Richard; Samsonov, Alexey A.
2017-01-01
We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic tissue modeling with numerical virtualization of an MRI system and scanning experiment to enable assessment of a broad range of MRI approaches including advanced quantitative MRI methods inferring microstructure on a sub-voxel level. A flexibl representation of tissue microstructure is achieved in MRiLab by employing the generalized tissue model with multiple exchanging water and macromolecular proton pools rather than a system of independent proton isochromats typically used in previous simulators. The computational power needed for simulation of the biologically relevant tissue models in large 3D objects is gained using parallelized execution on GPU. Three simulated and one actual MRI experiments were performed to demonstrate the ability of the new simulator to accommodate a wide variety of voxel composition scenarios and demonstrate detrimental effects of simplifie treatment of tissue micro-organization adapted in previous simulators. GPU execution allowed ∼200× improvement in computational speed over standard CPU. As a cross-platform, open-source, extensible environment for customizing virtual MRI experiments, MRiLab streamlines the development of new MRI methods, especially those aiming to infer quantitatively tissue composition and microstructure. PMID:28113746
Clinical anthropometrics and body composition from 3D whole-body surface scans
Ng, BK; Hinton, BJ; Fan, B; Kanaya, AM; Shepherd, JA
2017-01-01
BACKGROUND/OBJECTIVES Obesity is a significant worldwide epidemic that necessitates accessible tools for robust body composition analysis. We investigated whether widely available 3D body surface scanners can provide clinically relevant direct anthropometrics (circumferences, areas and volumes) and body composition estimates (regional fat/lean masses). SUBJECTS/METHODS Thirty-nine healthy adults stratified by age, sex and body mass index (BMI) underwent whole-body 3D scans, dual energy X-ray absorptiometry (DXA), air displacement plethysmography and tape measurements. Linear regressions were performed to assess agreement between 3D measurements and criterion methods. Linear models were derived to predict DXA body composition from 3D scan measurements. Thirty-seven external fitness center users underwent 3D scans and bioelectrical impedance analysis for model validation. RESULTS 3D body scan measurements correlated strongly to criterion methods: waist circumference R2 = 0.95, hip circumference R2 = 0.92, surface area R2 = 0.97 and volume R2 = 0.99. However, systematic differences were observed for each measure due to discrepancies in landmark positioning. Predictive body composition equations showed strong agreement for whole body (fat mass R2 = 0.95, root mean square error (RMSE) = 2.4 kg; fat-free mass R2 = 0.96, RMSE = 2.2 kg) and arms, legs and trunk (R2 = 0.79–0.94, RMSE = 0.5–1.7 kg). Visceral fat prediction showed moderate agreement (R2 = 0.75, RMSE = 0.11 kg). CONCLUSIONS 3D surface scanners offer precise and stable automated measurements of body shape and composition. Software updates may be needed to resolve measurement biases resulting from landmark positioning discrepancies. Further studies are justified to elucidate relationships between body shape, composition and metabolic health across sex, age, BMI and ethnicity groups, as well as in those with metabolic disorders. PMID:27329614
Composition of matter in the heliosphere
NASA Astrophysics Data System (ADS)
Bochsler, Peter
2009-03-01
The Sun is by far the largest reservoir of matter in the solar system and contains more than 99% of the mass of the solar system. Theories on the formation of the solar system maintain that the gravitational collapse is very efficient and that typically not more than one tenth from the solar nebula is lost during the formation process. Consequently, the Sun can be considered as a representative sample of interstellar matter taken from a well mixed reservoir 4.6 Gy ago, at about 8 kpc from the galactic center. At the same time, the Sun is also a faithful witness of the composition of matter at the beginning of the evolution of the solar system and the formation of planets, asteroids, and comets. Knowledge on the solar composition and a fair account of the related uncertainties is relevant for many fields in astrophysics, planetary sciences, cosmo- and geochemistry. Apart from the basic interest in the chemical evolution of the galaxy and the solar system, compositional studies have also led to many applications in space research, i.e., it has helped to distinguish between different components of diffuse heliospheric matter. The elemental, isotopic, and charge state composition of heliospheric particles (solar wind, interstellar neutrals, pickup ions) has been used for a multitude of applications, such as tracing the source material, constraining parameters for models of the acceleration processes, and of the transport through the interplanetary medium. It is important to realize, that the two mainstream applications, as outlined above - geochemistry and cosmochemistry on one side, and tracing of heliospheric processes on the other side - are not independent of each other. Understanding the physical processes, e.g., of the fractionation of the solar wind, is crucial for the interpretation of compositional data; on the other hand, reliable information on the source composition is the basis for putting constraints on models of the solar wind fractionation.
Shreddability of pizza Mozzarella cheese predicted using physicochemical properties.
Banville, V; Morin, P; Pouliot, Y; Britten, M
2014-07-01
This study used rheological techniques such as uniaxial compression, wire cutting, and dynamic oscillatory shear to probe the physical properties of pizza Mozzarella cheeses. Predictive models were built using compositional and textural descriptors to predict cheese shreddability. Experimental cheeses were made using milk with (0.25% wt/wt) or without denatured whey protein and renneted at pH 6.5 or 6.4. The cheeses were aged for 8, 22, or 36 d and then tested at 4, 13, or 22°C for textural attributes using 11 descriptors. Adding denatured whey protein and reducing the milk renneting pH strongly affected cheese mechanical properties, but these effects were usually dependent on testing temperature. Cheeses were generally weaker as they aged. None of the compositional or rheological descriptors taken alone could predict the shredding behavior of the cheeses. Using the stepwise method, an objective selection of a few (<4) relevant descriptors made it possible to predict the production of fines (R(2)=0.82), the percentage of long shreds (R(2)=0.67), and to a lesser degree, the adhesion of cheese to the shredding blade (R(2)=0.45). The principal component analysis markedly contrasted the adhesion of cheese to the shredding blade with other shredding properties such as the production of fines or long shreds. The predictive models and principal component analysis can help manufacturers select relevant descriptors for the development of cheese with optimal mechanical behavior under shredding conditions. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Dynamics of confined reactive water in smectite clay-zeolite composites.
Pitman, Michael C; van Duin, Adri C T
2012-02-15
The dynamics of water confined to mesoporous regions in minerals such as swelling clays and zeolites is fundamental to a wide range of resource management issues impacting many processes on a global scale, including radioactive waste containment, desalination, and enhanced oil recovery. Large-scale atomic models of freely diffusing multilayer smectite particles at low hydration confined in a silicalite cage are used to investigate water dynamics in the composite environment with the ReaxFF reactive force field over a temperature range of 300-647 K. The reactive capability of the force field enabled a range of relevant surface chemistry to emerge, including acid/base equilibria in the interlayer calcium hydrates and silanol formation on the edges of the clay and inner surface of the zeolite housing. After annealing, the resulting clay models exhibit both mono- and bilayer hydration structures. Clay surface hydration redistributed markedly and yielded to silicalite water loading. We find that the absolute rates and temperature dependence of water dynamics compare well to neutron scattering data and pulse field gradient measures from relevant samples of Ca-montmorillonite and silicalite, respectively. Within an atomistic, reactive context, our results distinguish water dynamics in the interlayer Ca(OH)(2)·nH(2)O environment from water flowing over the clay surface, and from water diffusing within silicalite. We find that the diffusion of water when complexed to Ca hydrates is considerably slower than freely diffusing water over the clay surface, and the reduced mobility is well described by a difference in the Arrhenius pre-exponential factor rather than a change in activation energy.
Structure, stability, and thermodynamics of lamellar DNA-lipid complexes.
Harries, D; May, S; Gelbart, W M; Ben-Shaul, A
1998-01-01
We develop a statistical thermodynamic model for the phase evolution of DNA-cationic lipid complexes in aqueous solution, as a function of the ratios of charged to neutral lipid and charged lipid to DNA. The complexes consist of parallel strands of DNA intercalated in the water layers of lamellar stacks of mixed lipid bilayers, as determined by recent synchrotron x-ray measurements. Elastic deformations of the DNA and the lipid bilayers are neglected, but DNA-induced spatial inhomogeneities in the bilayer charge densities are included. The relevant nonlinear Poisson-Boltzmann equation is solved numerically, including self-consistent treatment of the boundary conditions at the polarized membrane surfaces. For a wide range of lipid compositions, the phase evolution is characterized by three regions of lipid to DNA charge ratio, rho: 1) for low rho, the complexes coexist with excess DNA, and the DNA-DNA spacing in the complex, d, is constant; 2) for intermediate rho, including the isoelectric point rho = 1, all of the lipid and DNA in solution is incorporated into the complex, whose inter-DNA distance d increases linearly with rho; and 3) for high rho, the complexes coexist with excess liposomes (whose lipid composition is different from that in the complex), and their spacing d is nearly, but not completely, independent of rho. These results can be understood in terms of a simple charging model that reflects the competition between counterion entropy and inter-DNA (rho < 1) and interbilayer (rho > 1) repulsions. Finally, our approach and conclusions are compared with theoretical work by others, and with relevant experiments. PMID:9649376
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehrez, Loujaine; Ghanem, Roger; Aitharaju, Venkat
Design of non-crimp fabric (NCF) composites entails major challenges pertaining to (1) the complex fine-scale morphology of the constituents, (2) the manufacturing-produced inconsistency of this morphology spatially, and thus (3) the ability to build reliable, robust, and efficient computational surrogate models to account for this complex nature. Traditional approaches to construct computational surrogate models have been to average over the fluctuations of the material properties at different scale lengths. This fails to account for the fine-scale features and fluctuations in morphology, material properties of the constituents, as well as fine-scale phenomena such as damage and cracks. In addition, it failsmore » to accurately predict the scatter in macroscopic properties, which is vital to the design process and behavior prediction. In this work, funded in part by the Department of Energy, we present an approach for addressing these challenges by relying on polynomial chaos representations of both input parameters and material properties at different scales. Moreover, we emphasize the efficiency and robustness of integrating the polynomial chaos expansion with multiscale tools to perform multiscale assimilation, characterization, propagation, and prediction, all of which are necessary to construct the data-driven surrogate models required to design under the uncertainty of composites. These data-driven constructions provide an accurate map from parameters (and their uncertainties) at all scales and the system-level behavior relevant for design. While this perspective is quite general and applicable to all multiscale systems, NCF composites present a particular hierarchy of scales that permits the efficient implementation of these concepts.« less
NASA Astrophysics Data System (ADS)
Rizzi, Malgorzata; Hemmingsen Schovsbo, Niels; Korte, Christoph; Bryld Wessel Fyhn, Michael
2017-04-01
To improve the understanding and interpretation of the depositional environment of a late Oligocene lacustrine organic rich oil-prone source rock succession, 2464 hand held (HH)-XRF measurements were made systematically on the 500 m long, continuous core from the fully cored Enreca-3 well. This core, drilled on the remote Bach Long Vi Island, northern Gulf of Tonkin, offshore Vietnam, represents a deep lake succession alternating between lacustrine pelagic dominated sediments interrupted by hyperpycnal turbidites, high density turbidites and debris flows [1, 2]. From a combined HH-XRF-XRD data set, multivariate data analysis and regression models are used to type the rock and to predict the XRD mineral composition based on HH-XRF composition. The rock types and the modelled mineral composition highlight the geochemical variations of the sediment and allows for direct comparison with sedimentological processes and facies changes. The modeling also depicts the cyclic alteration of rock types that are present on many different scales ranging from centimeters to hundreds of meters [1, 2]. The sedimentological and geochemical variations observed throughout the cored section reflects fluctuating paleoclimate, tectonism and hinterland condition controlling the depositional setting, which may provide a deeper understanding of the deposition of this and similar Paleogene syn-rift succession in the South China Sea region. It allows furthermore the development of a more generalized depositional model relevant for other deep-lacustrine syn-rift basins. [1] Petersen et al. (2014) Journal of Petroleum Geology, 37: 373-389. [2] Hovikoski et al. (2016) Journal of Sedimentary Research, 86(8): 982-1007.
Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, J.H.; Michelotti, M.D.; Riemer, N.
2016-10-01
Stochastic particle-resolved methods have proven useful for simulating multi-dimensional systems such as composition-resolved aerosol size distributions. While particle-resolved methods have substantial benefits for highly detailed simulations, these techniques suffer from high computational cost, motivating efforts to improve their algorithmic efficiency. Here we formulate an algorithm for accelerating particle removal processes by aggregating particles of similar size into bins. We present the Binned Algorithm for particle removal processes and analyze its performance with application to the atmospherically relevant process of aerosol dry deposition. We show that the Binned Algorithm can dramatically improve the efficiency of particle removals, particularly for low removalmore » rates, and that computational cost is reduced without introducing additional error. In simulations of aerosol particle removal by dry deposition in atmospherically relevant conditions, we demonstrate about 50-times increase in algorithm efficiency.« less
Smith, S; Madden, A M
2016-12-01
The accurate and valid assessment of body composition is essential for the diagnostic evaluation of nutritional status, identifying relevant outcome measures, and determining the effectiveness of current and future nutritional interventions. Developments in technology and our understanding of the influences of body composition on risk and outcome will provide practitioners with new opportunities to enhance current practice and to lead future improvements in practice. This is the second of a two-part narrative review that aims to critically evaluate body composition methodology in diverse adult populations, with a primary focus on its use in the assessment and monitoring of under-nutrition. Part one focused on anthropometric variables [Madden and Smith (2016) J Hum Nutr Diet 29: 7-25] and part two focuses on the use of imaging techniques, bioelectrical impedance analysis, markers of muscle strength and functional status, with particular reference to developments relevant to practice. © 2016 The British Dietetic Association Ltd.
Sensor-Motor Maps for Describing Linear Reflex Composition in Hopping.
Schumacher, Christian; Seyfarth, André
2017-01-01
In human and animal motor control several sensory organs contribute to a network of sensory pathways modulating the motion depending on the task and the phase of execution to generate daily motor tasks such as locomotion. To better understand the individual and joint contribution of reflex pathways in locomotor tasks, we developed a neuromuscular model that describes hopping movements. In this model, we consider the influence of proprioceptive length (LFB), velocity (VFB) and force feedback (FFB) pathways of a leg extensor muscle on hopping stability, performance and efficiency (metabolic effort). Therefore, we explore the space describing the blending of the monosynaptic reflex pathway gains. We call this reflex parameter space a sensor-motor map . The sensor-motor maps are used to visualize the functional contribution of sensory pathways in multisensory integration. We further evaluate the robustness of these sensor-motor maps to changes in tendon elasticity, body mass, segment length and ground compliance. The model predicted that different reflex pathway compositions selectively optimize specific hopping characteristics (e.g., performance and efficiency). Both FFB and LFB were pathways that enable hopping. FFB resulted in the largest hopping heights, LFB enhanced hopping efficiency and VFB had the ability to disable hopping. For the tested case, the topology of the sensor-motor maps as well as the location of functionally optimal compositions were invariant to changes in system designs (tendon elasticity, body mass, segment length) or environmental parameters (ground compliance). Our results indicate that different feedback pathway compositions may serve different functional roles. The topology of the sensor-motor map was predicted to be robust against changes in the mechanical system design indicating that the reflex system can use different morphological designs, which does not apply for most robotic systems (for which the control often follows a specific design). Consequently, variations in body mechanics are permitted with consistent compositions of sensory feedback pathways. Given the variability in human body morphology, such variations are highly relevant for human motor control.
Can Condensing Organic Aerosols Lead to Less Cloud Particles?
NASA Astrophysics Data System (ADS)
Gao, C. Y.; Tsigaridis, K.; Bauer, S.
2017-12-01
We examined the impact of condensing organic aerosols on activated cloud number concentration in a new aerosol microphysics box model, MATRIX-VBS. The model includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) that resolves aerosol mass and number concentrations and aerosol mixing state. Preliminary results show that by including the condensation of organic aerosols, the new model (MATRIX-VBS) has less activated particles compared to the original model (MATRIX), which treats organic aerosols as non-volatile. Parameters such as aerosol chemical composition, mass and number concentrations, and particle sizes which affect activated cloud number concentration are thoroughly evaluated via a suite of Monte-Carlo simulations. The Monte-Carlo simulations also provide information on which climate-relevant parameters play a critical role in the aerosol evolution in the atmosphere. This study also helps simplifying the newly developed box model which will soon be implemented in the global model GISS ModelE as a module.
Local order and crystallization of dense polydisperse hard spheres
NASA Astrophysics Data System (ADS)
Coslovich, Daniele; Ozawa, Misaki; Berthier, Ludovic
2018-04-01
Computer simulations give precious insight into the microscopic behavior of supercooled liquids and glasses, but their typical time scales are orders of magnitude shorter than the experimentally relevant ones. We recently closed this gap for a class of models of size polydisperse fluids, which we successfully equilibrate beyond laboratory time scales by means of the swap Monte Carlo algorithm. In this contribution, we study the interplay between compositional and geometric local orders in a model of polydisperse hard spheres equilibrated with this algorithm. Local compositional order has a weak state dependence, while local geometric order associated to icosahedral arrangements grows more markedly but only at very high density. We quantify the correlation lengths and the degree of sphericity associated to icosahedral structures and compare these results to those for the Wahnström Lennard-Jones mixture. Finally, we analyze the structure of very dense samples that partially crystallized following a pattern incompatible with conventional fractionation scenarios. The crystal structure has the symmetry of aluminum diboride and involves a subset of small and large particles with size ratio approximately equal to 0.5.
NASA Astrophysics Data System (ADS)
Lee, Sung Keun; Park, Sun Young; Kim, Hyo-Im; Tschauner, Oliver; Asimow, Paul; Bai, Ligang; Xiao, Yuming; Chow, Paul
2012-03-01
The detailed atomic structures of shock compressed basaltic glasses are not well understood. Here, we explore the structures of shock compressed silicate glass with a diopside-anorthite eutectic composition (Di64An36), a common Fe-free model basaltic composition, using oxygen K-edge X-ray Raman scattering and high- resolution 27Al solid-state NMR spectroscopy and report previously unknown details of shock-induced changes in the atomic configurations. A topologically driven densification of the Di64An36 glass is indicated by the increase in oxygen K-edge energy for the glass upon shock compression. The first experimental evidence of the increase in the fraction of highly coordinated Al in shock compressed glass is found in the 27Al NMR spectra. This unambiguous evidence of shock-induced changes in Al coordination environments provides atomistic insights into shock compression in basaltic glasses and allows us to microscopically constrain the magnitude of impact events or relevant processes involving natural basalts on Earth and planetary surfaces.
Birak, P.S.; Miller, C.T.
2008-01-01
The remediation of dense non-aqueous phase liquids (DNAPLs) in porous media continues to be one of the most challenging problems facing environmental scientists and engineers. Of all the environmentally relevant DNAPLs, tars in the subsurface at former manufactured gas plants (FMGP’s) pose one of the biggest challenges due to their complex chemical composition and tendency to alter wettability. To further our understanding of these complex materials, we consulted historic documentation to evaluate the impact of gas manufacturing on the composition and physicochemical nature of the resulting tars. In the recent literature, most work to date has been focused in a relatively narrow portion of the expected range of tar materials, which has yielded a bias toward samples of relatively low viscosity and density. In this work, we consider the dissolution and movement of tars in the subsurface, models used to predict these phenomena, and approaches used for remediation. We also explore the open issues and detail important gaps in our fundamental understanding of these extraordinarily complex systems that must be resolved to reach a mature level of understanding. PMID:19176266
NASA Astrophysics Data System (ADS)
Shinevar, William J.; Behn, Mark D.; Hirth, Greg; Jagoutz, Oliver
2018-07-01
We investigate the role of composition on the viscosity of the lower crust through a joint inversion of seismic P-wave (Vp) and S-wave (Vs) velocities. We determine the efficacy of using seismic velocity to constrain viscosity, extending previous research demonstrating robust relationships between seismic velocity and crustal composition, as well as crustal composition and viscosity. First, we calculate equilibrium mineral assemblages and seismic velocities for a global compilation of crustal rocks at relevant pressures and temperatures. Second, we use a rheological mixing model that incorporates single-phase flow laws for major crust-forming minerals to calculate aggregate viscosity from predicted mineral assemblages. We find a robust correlation between crustal viscosity and Vp together with Vs in the α-quartz regime. Using seismic data, geodetic surface strain rates, and heat flow measurements from Southern California, our method predicts that lower crustal viscosity varies regionally by four orders of magnitude, and lower crustal stress varies by three orders of magnitude at 25 km depth. At least half of the total variability in stress can be attributed to composition, implying that regional lithology has a significant effect on lower crustal geodynamics. Finally, we use our method to predict the depth of the brittle-ductile transition and compare this to regional variations of the seismic-aseismic transition. The variations in the seismic-aseismic transition are not explained by the variations in our model rheology inferred from the geophysical observations. Thus, we conclude that fabric development, in conjunction with compositional variations (i.e., quartz and mica content), is required to explain the regional changes in the seismic-aseismic transition.
Sonnenfeld, Camille; Sulejmani, Sanne; Geernaert, Thomas; Eve, Sophie; Lammens, Nicolas; Luyckx, Geert; Voet, Eli; Degrieck, Joris; Urbanczyk, Waclaw; Mergo, Pawel; Becker, Martin; Bartelt, Hartmut; Berghmans, Francis; Thienpont, Hugo
2011-01-01
Fiber Bragg gratings written in highly birefringent microstructured optical fiber with a dedicated design are embedded in a composite fiber-reinforced polymer. The Bragg peak wavelength shifts are measured under controlled axial and transversal strain and during thermal cycling of the composite sample. We obtain a sensitivity to transversal strain that exceeds values reported earlier in literature by one order of magnitude. Our results evidence the relevance of using microstructured optical fibers for structural integrity monitoring of composite material structures. PMID:22163755
Society of the plastic industry process emission initiatives
NASA Technical Reports Server (NTRS)
Mcdermott, Joseph
1994-01-01
At first view, plastics process emissions research may not seem to have much bearing on outgassing considerations relative to advanced composite materials; however, several parallel issues and cross currents are of mutual interest. The following topics are discussed: relevance of plastics industry research to aerospace composites; impact of clean air act amendment requirements; scope of the Society of the Plastics Industry, Inc. activities in thermoplastic process emissions and reinforced plastics/composites process emissions; and utility of SPI research for advanced polymer composites audiences.
Koyanagi, Takaaki; Katoh, Yutai
2017-07-04
Silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites are being actively investigated for use in accident-tolerant core structures of light water reactors (LWRs). Owing to the limited number of irradiation studies previously conducted at LWR-coolant temperature, this paper examined SiC/SiC composites following neutron irradiation at 230–340 °C to 2.0 and 11.8 dpa in the High Flux Isotope Reactor. The investigated materials were chemical vapor infiltrated (CVI) SiC/SiC composites with three different reinforcement fibers. The fiber materials were monolayer pyrolytic carbon (PyC) -coated Hi-Nicalon™ Type-S (HNS), Tyranno™ SA3 (SA3), and SCS-Ultra™ (SCS) SiC fibers. The irradiation resistance of these composites wasmore » investigated based on flexural behavior, dynamic Young's modulus, swelling, and microstructures. There was no notable mechanical properties degradation of the irradiated HNS and SA3 SiC/SiC composites except for reduction of the Young's moduli by up to 18%. The microstructural stability of these composites supported the absence of degradation. In addition, no progressive swelling from 2.0 to 11.8 dpa was confirmed for these composites. On the other hand, the SCS composite showed significant mechanical degradation associated with cracking within the fiber. Finally, this study determined that SiC/SiC composites with HNS or SA3 SiC/SiC fibers, a PyC interphase, and a CVI SiC matrix retain their properties beyond the lifetime dose for LWR fuel cladding at the relevant temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koyanagi, Takaaki; Katoh, Yutai
Silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites are being actively investigated for use in accident-tolerant core structures of light water reactors (LWRs). Owing to the limited number of irradiation studies previously conducted at LWR-coolant temperature, this paper examined SiC/SiC composites following neutron irradiation at 230–340 °C to 2.0 and 11.8 dpa in the High Flux Isotope Reactor. The investigated materials were chemical vapor infiltrated (CVI) SiC/SiC composites with three different reinforcement fibers. The fiber materials were monolayer pyrolytic carbon (PyC) -coated Hi-Nicalon™ Type-S (HNS), Tyranno™ SA3 (SA3), and SCS-Ultra™ (SCS) SiC fibers. The irradiation resistance of these composites wasmore » investigated based on flexural behavior, dynamic Young's modulus, swelling, and microstructures. There was no notable mechanical properties degradation of the irradiated HNS and SA3 SiC/SiC composites except for reduction of the Young's moduli by up to 18%. The microstructural stability of these composites supported the absence of degradation. In addition, no progressive swelling from 2.0 to 11.8 dpa was confirmed for these composites. On the other hand, the SCS composite showed significant mechanical degradation associated with cracking within the fiber. Finally, this study determined that SiC/SiC composites with HNS or SA3 SiC/SiC fibers, a PyC interphase, and a CVI SiC matrix retain their properties beyond the lifetime dose for LWR fuel cladding at the relevant temperature.« less
NASA Astrophysics Data System (ADS)
Koyanagi, Takaaki; Katoh, Yutai
2017-10-01
Silicon carbide (SiC) fiber-reinforced SiC matrix (SiC/SiC) composites are being actively investigated for use in accident-tolerant core structures of light water reactors (LWRs). Owing to the limited number of irradiation studies previously conducted at LWR-coolant temperature, this study examined SiC/SiC composites following neutron irradiation at 230-340 °C to 2.0 and 11.8 dpa in the High Flux Isotope Reactor. The investigated materials were chemical vapor infiltrated (CVI) SiC/SiC composites with three different reinforcement fibers. The fiber materials were monolayer pyrolytic carbon (PyC) -coated Hi-Nicalon™ Type-S (HNS), Tyranno™ SA3 (SA3), and SCS-Ultra™ (SCS) SiC fibers. The irradiation resistance of these composites was investigated based on flexural behavior, dynamic Young's modulus, swelling, and microstructures. There was no notable mechanical properties degradation of the irradiated HNS and SA3 SiC/SiC composites except for reduction of the Young's moduli by up to 18%. The microstructural stability of these composites supported the absence of degradation. In addition, no progressive swelling from 2.0 to 11.8 dpa was confirmed for these composites. On the other hand, the SCS composite showed significant mechanical degradation associated with cracking within the fiber. This study determined that SiC/SiC composites with HNS or SA3 SiC/SiC fibers, a PyC interphase, and a CVI SiC matrix retain their properties beyond the lifetime dose for LWR fuel cladding at the relevant temperature.
Urban Land: Study of Surface Run-off Composition and Its Dynamics
NASA Astrophysics Data System (ADS)
Palagin, E. D.; Gridneva, M. A.; Bykova, P. G.
2017-11-01
The qualitative composition of urban land surface run-off is liable to significant variations. To study surface run-off dynamics, to examine its behaviour and to discover reasons of these variations, it is relevant to use the mathematical apparatus technique of time series analysis. A seasonal decomposition procedure was applied to a temporary series of monthly dynamics with the annual frequency of seasonal variations in connection with a multiplicative model. The results of the quantitative chemical analysis of surface wastewater of the 22nd Partsjezd outlet in Samara for the period of 2004-2016 were used as basic data. As a result of the analysis, a seasonal pattern of variations in the composition of surface run-off in Samara was identified. Seasonal indices upon 15 waste-water quality indicators were defined. BOD (full), suspended materials, mineralization, chlorides, sulphates, ammonium-ion, nitrite-anion, nitrate-anion, phosphates (phosphorus), iron general, copper, zinc, aluminium, petroleum products, synthetic surfactants (anion-active). Based on the seasonal decomposition of the time series data, the contribution of trends, seasonal and accidental components of the variability of the surface run-off indicators was estimated.
NASA Technical Reports Server (NTRS)
Mckay, G. A.; Weill, D. F.
1975-01-01
Solid/liquid distribution coefficients (weight basis) were experimentally determined for a number of trace elements for olivine, orthopyroxene, plagioclase and ilmenite. Values of distribution coefficients were measured at 1200 C and a f sub O2 of 10 to the -13.0 power for liquids similar in composition to the olivine-opx-plagioclase peritectic in the pseudoternary system (Fe,Mg)2SiO4-CaAl2Si2O8-SiO2. Values were also measured at 1140 C and a f sub O2 of 10 to the -12.8 power for liquids similar in composition to high-Ti mare basalts. Major and trace element partitioning and relevant phase equilibria were used to investigate possible parent-daughter relationships between a number of highland samples and highly evolved KREEP-rich materials. Out of about 80 highlands samples tested, 33 were found to be possible parents to the KREEP-rich materials. The average composition of these samples is very similar to that of the Low-K Fra Mauro basalt (LKFM). A model is proposed to explain the production of LKFM-type material and more evolved members of the KREEP suite.
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Stoner, Glenn E.; Wert, John A.
1997-01-01
Since 1986, the NASA-Langley Research Center has sponsored the NASA-UVa Light Alloy and Structures Technology (LA2ST) Program at the University of Virginia (UVa). The fundamental objective of the LA2ST program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures. The LA2ST program has aimed to product relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The scope of the LA2ST Program is broad. Research areas include: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites, (2) Aerospace Materials Science, (3) Mechanics of materials for Aerospace Structures, and (4) Thermal Gradient Structures. A substantial series of semi-annual progress reports issued since 1987 documents the technical objectives, experimental or analytical procedures, and detailed results of graduate student research in these topical areas.
Gerin, P A; Dufrene, Y; Bellon-Fontaine, M N; Asther, M; Rouxhet, P G
1993-01-01
The conidiospores of the white rot basidiomycete Phanerochaete chrysosporium tend to aggregate during swelling and germination in agitated liquid medium; as time passes, the initial aggregates tend to associate together and to capture conidiospores that remain isolated. The surface chemical compositions of the conidiospores and of developed hyphae were analyzed by X-ray photoelectron spectroscopy. The data were interpreted by modelling the surface in terms of proteins, polysaccharides and hydrocarbonlike compounds. The surface molecular composition of the dormant conidiospores was estimated to be about 45% proteins, 20% carbohydrates, and 35% hydrocarbonlike compounds. There was an increase in the polysaccharide content during germination. Later, when the hyphae were developed, the polysaccharide content became still higher, and the protein content dropped. The initial step of aggregation is attributed to polysaccharide bridging; its occurrence cannot be explained by a change of the overall hydrophobicity or electrical properties of the conidiospores. Images PMID:8349553
Defect physics vis-à-vis electrochemical performance in layered mixed-metal oxide cathode materials
NASA Astrophysics Data System (ADS)
Hoang, Khang; Johannes, Michelle
Layered mixed-metal oxides with different compositions of (Ni,Co,Mn) [NCM] or (Ni,Co,Al) [NCA] have been used in commercial lithium-ion batteries. Yet their defect physics and chemistry is still not well understood, despite having important implications for the electrochemical performance. In this presentation, we report a hybrid density functional study of intrinsic point defects in the compositions LiNi1/3Co1/3Mn1/3O2 (NCM1/3) and LiNi1/3Co1/3Al1/3O2 (NCA1/3) which can also be regarded as model compounds for NCM and NCA. We will discuss defect landscapes in NCM1/3 and NCA1/3 under relevant synthesis conditions with a focus on the formation of metal antisite defects and its implications on the electrochemical properties and ultimately the design of NCM and NCA cathode materials.
NASA Astrophysics Data System (ADS)
Abers, Geoffrey A.; Hacker, Bradley R.
2016-02-01
To interpret seismic images, rock seismic velocities need to be calculated at elevated pressure and temperature for arbitrary compositions. This technical report describes an algorithm, software, and data to make such calculations from the physical properties of minerals. It updates a previous compilation and Excel® spreadsheet and includes new MATLAB® tools for the calculations. The database of 60 mineral end-members includes all parameters needed to estimate density and elastic moduli for many crustal and mantle rocks at conditions relevant to the upper few hundreds of kilometers of Earth. The behavior of α and β quartz is treated as a special case, owing to its unusual Poisson's ratio and thermal expansion that vary rapidly near the α-β transition. The MATLAB tools allow integration of these calculations into a variety of modeling and data analysis projects.
Theoretical predictions for the phase stability of dense binary mixtures
NASA Astrophysics Data System (ADS)
Macfarlane, J. J.
1983-08-01
A new approach is developed for evaluating the mixing properties of binary solutions at high pressure. This involves solving Poisson's equation throughout three-dimensional cubic lattices, consistent with Thomas-Fermi-Dirac (TFD) theory. Zero temperature calculations are carried out for a variety of compositions and crystal structures in 3 pressure groups relevant to Jovian planetary interiors. Pseudopotentials based on the two-component-plasma model (with a uniform electron background) are fitted to the solid-state results, and are then used in liquid-state calculations using hard-sphere perturbation theory. TFD results if H-He solutions find critical temperatures (above which all compositions are soluble) to be approx. 0.500, and 1500 K at pressures of 10, 100, and 1000 Mbar, respectively. These temperatures are much lower than those obtained using free electron perturbation theory, where Tcrit approx. 10,000 K at 10 Mbar.
NASA Technical Reports Server (NTRS)
Rudraraju, Siva Shankar; Garikipati, Krishna; Waas, Anthony M.; Bednarcyk, Brett A.
2013-01-01
The phenomenon of crack propagation is among the predominant modes of failure in many natural and engineering structures, often leading to severe loss of structural integrity and catastrophic failure. Thus, the ability to understand and a priori simulate the evolution of this failure mode has been one of the cornerstones of applied mechanics and structural engineering and is broadly referred to as "fracture mechanics." The work reported herein focuses on extending this understanding, in the context of through-thickness crack propagation in cohesive materials, through the development of a continuum-level multiscale numerical framework, which represents cracks as displacement discontinuities across a surface of zero measure. This report presents the relevant theory, mathematical framework, numerical modeling, and experimental investigations of through-thickness crack propagation in fiber-reinforced composites using the Variational Multiscale Cohesive Method (VMCM) developed by the authors.
NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)
NASA Technical Reports Server (NTRS)
Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.
1996-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. Three research areas are being actively investigated, including: (1) Mechanical and environmental degradation mechanisms in advanced light metals, (2) Aerospace materials science, and (3) Mechanics of materials for light aerospace structures.
Development of Supersonic Combustion Experiments for CFD Modeling
NASA Technical Reports Server (NTRS)
Baurle, Robert; Bivolaru, Daniel; Tedder, Sarah; Danehy, Paul M.; Cutler, Andrew D.; Magnotti, Gaetano
2007-01-01
This paper describes the development of an experiment to acquire data for developing and validating computational fluid dynamics (CFD) models for turbulence in supersonic combusting flows. The intent is that the flow field would be simple yet relevant to flows within hypersonic air-breathing engine combustors undergoing testing in vitiated-air ground-testing facilities. Specifically, it describes development of laboratory-scale hardware to produce a supersonic combusting coaxial jet, discusses design calculations, operability and types of flames observed. These flames are studied using the dual-pump coherent anti- Stokes Raman spectroscopy (CARS) - interferometric Rayleigh scattering (IRS) technique. This technique simultaneously and instantaneously measures temperature, composition, and velocity in the flow, from which many of the important turbulence statistics can be found. Some preliminary CARS data are presented.
Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework.
El-Assady, Mennatallah; Sevastjanova, Rita; Sperrle, Fabian; Keim, Daniel; Collins, Christopher
2018-01-01
Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.
Effects of in-sewer processes: a stochastic model approach.
Vollertsen, J; Nielsen, A H; Yang, W; Hvitved-Jacobsen, T
2005-01-01
Transformations of organic matter, nitrogen and sulfur in sewers can be simulated taking into account the relevant transformation and transport processes. One objective of such simulation is the assessment and management of hydrogen sulfide formation and corrosion. Sulfide is formed in the biofilms and sediments of the water phase, but corrosion occurs on the moist surfaces of the sewer gas phase. Consequently, both phases and the transport of volatile substances between these phases must be included. Furthermore, wastewater composition and transformations in sewers are complex and subject to high, natural variability. This paper presents the latest developments of the WATS model concept, allowing integrated aerobic, anoxic and anaerobic simulation of the water phase and of gas phase processes. The resulting model is complex and with high parameter variability. An example applying stochastic modeling shows how this complexity and variability can be taken into account.
Multi-Scale Modeling of Liquid Phase Sintering Affected by Gravity: Preliminary Analysis
NASA Technical Reports Server (NTRS)
Olevsky, Eugene; German, Randall M.
2012-01-01
A multi-scale simulation concept taking into account impact of gravity on liquid phase sintering is described. The gravity influence can be included at both the micro- and macro-scales. At the micro-scale, the diffusion mass-transport is directionally modified in the framework of kinetic Monte-Carlo simulations to include the impact of gravity. The micro-scale simulations can provide the values of the constitutive parameters for macroscopic sintering simulations. At the macro-scale, we are attempting to embed a continuum model of sintering into a finite-element framework that includes the gravity forces and substrate friction. If successful, the finite elements analysis will enable predictions relevant to space-based processing, including size and shape and property predictions. Model experiments are underway to support the models via extraction of viscosity moduli versus composition, particle size, heating rate, temperature and time.
NASA Astrophysics Data System (ADS)
Henry, Christine; Kramb, Victoria; Welter, John T.; Wertz, John N.; Lindgren, Eric A.; Aldrin, John C.; Zainey, David
2018-04-01
Advances in NDE method development are greatly improved through model-guided experimentation. In the case of ultrasonic inspections, models which provide insight into complex mode conversion processes and sound propagation paths are essential for understanding the experimental data and inverting the experimental data into relevant information. However, models must also be verified using experimental data obtained under well-documented and understood conditions. Ideally, researchers would utilize the model simulations and experimental approach to efficiently converge on the optimal solution. However, variability in experimental parameters introduce extraneous signals that are difficult to differentiate from the anticipated response. This paper discusses the results of an ultrasonic experiment designed to evaluate the effect of controllable variables on the anticipated signal, and the effect of unaccounted for experimental variables on the uncertainty in those results. Controlled experimental parameters include the transducer frequency, incidence beam angle and focal depth.
Drivers of lignin composition in boreal forest organic soils across a climate gradient
NASA Astrophysics Data System (ADS)
Myers-Pigg, A.; Kaiser, K.; Benner, R. H.; Ziegler, S. E.
2017-12-01
Lignin diagenesis in soils, including the cumulative effects of degradation and leaching, increases with experimental warming, signifying a potentially important change relevant to soil organic matter accumulation and fate. However, decadal to centennial climatic effects including changes in precipitation, litterfall inputs, and understory sources, on lignin composition are poorly constrained. We examined the lignin content and composition, via cupric oxide oxidation (CuO), within the organic layers of podzolic soils under similar balsam fir forests across a latitudinal climate gradient in Atlantic Canada. By exploring variation in lignin by both soil depth and climate region, this study informs on the climate drivers of lignin stability within boreal forest soil. A two-way analysis of variance (ANOVA) revealed significant variations in common signatures of CuO by-products with depth and/or site, indicating source and/or diagenetic controllers. Importantly, none of these signatures, with the exception of p-hydroxyphenols, exhibited a site by depth interaction indicating a similar degree of diagenetic alternation with depth across climates. The site by depth interaction for p-hydroxyphenols is a result of greater moss input in the northernmost site. To better elucidate this climate-induced source variation on our interpretation of lignin diagenesis, a principle component (PCA) model was built using signatures varying by site (p<0.01). These signatures loaded uniquely with the percentage of wood, needles, and mosses within the L layer in each region. Site differences in this loading indicate that shifts in understory input is a major climate effect controlling lignin composition in these forest soils. A lignin diagenesis PCA model was built using (1) all non-moss related signatures identified in the first PCA model, and (2) scores for additional sites within each region, calculated from modeled lignin composition based on 13C-NMR spectra. The combined results indicate that the lignin diagenetic states among soils is similar, despite the large increase in soil C turnover with climate warming across this transect. Thus our results indicate that shifts in moss contribution, and not increased diagenesis, controls CuO by-products with climate change in these moist boreal forests.
NASA Technical Reports Server (NTRS)
Bogan, Sam
2001-01-01
The first year included a study of the non-visible damage of composite overwrapped pressure vessels with B. Poe of the Materials Branch of Nasa-Langley. Early determinations showed a clear reduction in non-visible damage for thin COPVs when partially pressurized rather than unpressurized. Literature searches on Thicker-wall COPVs revealed surface damage but clearly visible. Analysis of current Analytic modeling indicated that that current COPV models lacked sufficient thickness corrections to predict impact damage. After a comprehensive study of available published data and numerous numerical studies based on observed data from Langley, the analytic framework for modeling the behavior was determined lacking and both Poe and Bogan suggested any short term (3yr) result for Jove would be overly ambitious and emphasis should be placed on transverse shear moduli studies. Transverse shear moduli determination is relevant to the study of fatigue, fracture and aging effects in composite structures. Based on the techniques developed by Daniel & Tsai, Bogan and Gates determined to verify the results for K3B and 8320. A detailed analytic and experimental plan was established and carried out that included variations in layup, width, thickness, and length. As well as loading rate variations to determine effects and relaxation moduli. The additional axial loads during the torsion testing were studied as was the placement of gages along the composite specimen. Of the proposed tasks, all of tasks I and 2 were completed with presentations given at Langley, SEM conferences and ASME/AIAA conferences. Sensitivity issues with the technique associated with the use of servohydraulic test systems for applying the torsional load to the composite specimen limited the torsion range for predictable and repeatable transverse shear properties. Bogan and Gates determined to diverge on research efforts with Gates continuing the experimental testing at Langley and Bogan modeling the apparent non-linear behavior at low torque & angles apparent from the tests.
NASA Technical Reports Server (NTRS)
Toplis, M. J.; Mizzon, H.; Forni, O.; Monnereau, M.; Barrat, J-A.; Prettyman, T. H.; McSween, H. Y.; McCoy, T. J.; Mittlefehldt, D. W.; De Sanctis, M. C.;
2012-01-01
While the HEDs provide an extremely useful basis for interpreting data from the Dawn mission, there is no guarantee that they provide a complete vision of all possible crustal (and possibly mantle) lithologies that are exposed at the surface of Vesta. With this in mind, an alternative approach is to identify plausible bulk compositions and use mass-balance and geochemical modelling to predict possible internal structures and crust/mantle compositions and mineralogies. While such models must be consistent with known HED samples, this approach has the potential to extend predictions to thermodynamically plausible rock types that are not necessarily present in the HED collection. Nine chondritic bulk compositions are considered (CI, CV, CO, CM, H, L, LL, EH, EL). For each, relative proportions and densities of the core, mantle, and crust are quantified. This calculation is complicated by the fact that iron may occur in metallic form (in the core) and/or in oxidized form (in the mantle and crust). However, considering that the basaltic crust has the composition of Juvinas and assuming that this crust is in thermodynamic equilibrium with the residual mantle, it is possible to calculate a single solution to this problem for a given bulk composition. Of the nine bulk compositions tested, solutions corresponding to CI and LL groups predicted a negative metal fraction and were not considered further. Solutions for enstatite chondrites imply significant oxidation relative to the starting materials and these solutions too are considered unlikely. For the remaining bulk compositions, the relative proportion of crust to bulk silicate is typically in the range 15 to 20% corresponding to crustal thicknesses of 15 to 20 km for a porosity-free Vesta-sized body. The mantle is predicted to be largely dominated by olivine (greater than 85%) for carbonaceous chondrites, but to be a roughly equal mixture of olivine and pyroxene for ordinary chondrite precursors. All bulk compositions have a significant core, but the relative proportions of metal and sulphide can be widely different. Using these data, total core size (metal+ sulphide) and average core densities can be calculated, providing a useful reference frame within which to consider geophysical/gravity data of the Dawn mission. Further to these mass-balance calculations, the MELTS thermodynamic calculator has been used to assess to what extent chondritic bulk compositions can produce Juvinas-like liquids at relevant degrees of partial melting/crystallization. This work will refine acceptable bulk compositions and predict the mineralogy and composition of the associated solid and liquid products over wide ranges of partial melting and crystallization, providing a useful and self-consistent reference frame for interpretation of the data from the VIR and GRaND instruments onboard the Dawn spacecraft.
Forecasting the use of elderly care: a static micro-simulation model.
Eggink, Evelien; Woittiez, Isolde; Ras, Michiel
2016-07-01
This paper describes a model suitable for forecasting the use of publicly funded long-term elderly care, taking into account both ageing and changes in the health status of the population. In addition, the impact of socioeconomic factors on care use is included in the forecasts. The model is also suitable for the simulation of possible implications of some specific policy measures. The model is a static micro-simulation model, consisting of an explanatory model and a population model. The explanatory model statistically relates care use to individual characteristics. The population model mimics the composition of the population at future points in time. The forecasts of care use are driven by changes in the composition of the population in terms of relevant characteristics instead of dynamics at the individual level. The results show that a further 37 % increase in the use of elderly care (from 7 to 9 % of the Dutch 30-plus population) between 2008 and 2030 can be expected due to a further ageing of the population. However, the use of care is expected to increase less than if it were based on the increasing number of elderly only (+70 %), due to decreasing disability levels and increasing levels of education. As an application of the model, we simulated the effects of restricting access to residential care to elderly people with severe physical disabilities. The result was a lower growth of residential care use (32 % instead of 57 %), but a somewhat faster growth in the use of home care (35 % instead of 32 %).
Damage tolerant functionally graded materials for advanced wear and friction applications
NASA Astrophysics Data System (ADS)
Prchlik, Lubos
The research work presented in this dissertation focused on processing effects, microstructure development, characterization and performance evaluation of composite and graded coatings used for friction and wear control. The following issues were addressed. (1) Definition of prerequisites for a successful composite and graded coating formation by means of thermal spraying. (2) Improvement of characterization methods available for homogenous thermally sprayed coating and their extension to composite and graded materials. (3) Development of novel characterization methods specifically for FGMs, with a focus on through thickness property measurement by indentation and in-situ curvature techniques. (4) Design of composite materials with improved properties compared to homogenous coatings. (5) Fabrication and performance assessment of FGM with improved wear and impact damage properties. Materials. The materials studied included several material systems relevant to low friction and contact damage tolerant applications: MO-Mo2C, WC-Co cermets as materials commonly used sliding components of industrial machinery and NiCrAlY/8%-Yttria Partially Stabilized Zirconia composites as a potential solution for abradable sections of gas turbines and aircraft engines. In addition, uniform coatings such as molybdenum and Ni5%Al alloy were evaluated as model system to assess the influence of microstructure variation onto the mechanical property and wear response. Methods. The contact response of the materials was investigated through several techniques. These included methods evaluating the relevant intrinsic coating properties such as elastic modulus, residual stress, fracture toughness, scratch resistance and tests measuring the abrasion and friction-sliding behavior. Dry-sand and wet two-body abrasion testing was performed in addition to traditional ball on disc sliding tests. Among all characterization techniques the spherical indentation deserved most attention and enabled to measure elastic-plastic properties of uniform and graded structures. In-situ curvature method used for residual stress and elastic modulus measurement was extended from uniform coatings to coatings with compositional/property gradients. Properties of composite and graded materials were measured using the inverse analysis. Conclusions. The specifics of the elastic-plastic response for thermally sprayed coatings were demonstrated. These included the strain dependence of elastic modulus and damage accumulation related to unloading/reloading loop formation. The measurement of elastic-plastic characteristics of composite coatings revealed the mixing and bonding mechanisms unique for thermally sprayed materials. Microstructural and compositional factors governing the frictional vs. abrasion response of carbide-metallic composite coatings were described. The measurement of abrasion resistance and friction sliding properties demonstrated that grading of cermet and ceramic coatings by adding moderate amount of metallic alloys can enhance elastic-properties radically and have a beneficial effect onto the coating performance.
A Geographical History of Online Rhetoric and Composition Journals
ERIC Educational Resources Information Center
Tirrell, Jeremy
2012-01-01
The "Mapping Digital Technology in Rhetoric and Composition History" project can accommodate the geographical aspects of many relevant potential data sets, such as the locations of conferences, grant and award winners, book publications, graduate programs, job openings, and blog posts. The maps created for this article focus specifically on online…
Percolation of binary disk systems: Modeling and theory
Meeks, Kelsey; Tencer, John; Pantoya, Michelle L.
2017-01-12
The dispersion and connectivity of particles with a high degree of polydispersity is relevant to problems involving composite material properties and reaction decomposition prediction and has been the subject of much study in the literature. This paper utilizes Monte Carlo models to predict percolation thresholds for a two-dimensional systems containing disks of two different radii. Monte Carlo simulations and spanning probability are used to extend prior models into regions of higher polydispersity than those previously considered. A correlation to predict the percolation threshold for binary disk systems is proposed based on the extended dataset presented in this work and comparedmore » to previously published correlations. Finally, a set of boundary conditions necessary for a good fit is presented, and a condition for maximizing percolation threshold for binary disk systems is suggested.« less
No One's Home: the Fate of Carbon on Lifeless Earths
NASA Astrophysics Data System (ADS)
Neveu, Marc
Although several thousands of exoplanets are now known, including many terrestrial planets, their possible geology and climates remain poorly understood and understudied. Yet, understanding how elements such as carbon are cycled between a planet's interior, surface, and atmosphere is crucial to predict how lifeless planets operate and, by contrast, be able to detect deviations from abiotic backgrounds due to biology, the holy grail of exoplanet science. As a first, feasible step towards the difficult, long-term goal of understanding how key reactive elements (H, C, N, O, S) are cycled in the atmospheres, surfaces, and interiors of terrestrial exoplanets through time, we propose to carry out a self-consistent theoretical study of the fate of carbon in the atmospheres and at the surfaces of Earth-like, lifeless exoplanets. We will: 1. Model the near-surface geochemistry and geophysics of the carbon cycle to determine net carbon gas fluxes as a function of terrestrial planet size and redox conditions; 2. Model the atmospheric fate of carbon species as a function of stellar input; 3. Perform simulations that self-consistently combine geological and atmospheric processes; 4. Convert resulting atmospheric compositions to spectra to be archived as a public database for use by observers. We will track the abiotic fate of carbon and its atmospheric expression on Earth-like planets as a function of three key parameters: planet size, surface and atmospheric redox conditions, and stellar irradiation. To do so, we will further develop and use state-of-theart planetary geological ("Geo") and atmospheric ("Atmos") models. We have previously developed a code that couples geophysical evolution and water-rock geochemistry (Neveu et al. 2015, GRL 42, 10197). Using this code, we will calculate the speciation of carbon species versus depth in subaerial oceans, their possible incorporation into the crust by water-rock interaction at the seafloor or by subduction of sediments, and outgassing as a function of temperature, pressure, and fluid/rock composition. We will expand this code with benchmarked parameterizations of land and seafloor weathering and outgassing rates. This modeling will result in detailed boundary conditions to be implemented into an existing atmospheric photochemical-climate model (DomagalGoldman et al. 2014, ApJ 792, 90). The atmospheric model will be used to predict species mixing ratios from net surface fluxes, given planetary and stellar parameters. The models will be benchmarked against what is known of the surfaces and atmospheres of the Earth (present and prior to atmospheric oxygenation) and Titan. Atmospheric model outputs will be fed back into the geological model in combined simulations of carbon cycling. We will investigate in detail the mutual feedbacks between geological and atmospheric processes, so far understudied for terrestrial exoplanets. The resulting atmospheric compositions will be converted to predicted exoplanet spectra using the Spectral Mapping Atmospheric Radiative Transfer model (SMART; Meadows & Crisp 1996, JGR 101, 4595). This grid of spectra will be made freely available to the exoplanet community. This proposal is relevant to the Exoplanets Research Program (E.3) objectives, as it "supports directly the scientific goals of advancing our knowledge and understanding of exoplanetary systems." It involves the "characterization of exoplanets (including their surfaces, interiors, and atmospheres) [...] including the determination of their compositions, dynamics, energetics, and chemical behaviors." This investigation will also advance "understanding the chemical and physical processes of exoplanets (including the state and evolution of their surfaces, interiors, and atmospheres)." Furthermore, this proposal is not "aimed at investigating the habitability of an exoplanet" and therefore not relevant to the Habitable Worlds program element (E.4).
Flexible and unique representations of two-digit decimals.
Zhang, Li; Chen, Min; Lin, Chongde; Szűcs, Denes
2014-09-01
We examined the representation of two-digit decimals through studying distance and compatibility effects in magnitude comparison tasks in four experiments. Using number pairs with different leftmost digits, we found both the second digit distance effect and compatibility effect with two-digit integers but only the second digit distance effect with two-digit pure decimals. This suggests that both integers and pure decimals are processed in a compositional manner. In contrast, neither the second digit distance effect nor the compatibility effect was observed in two-digit mixed decimals, thereby showing no evidence for compositional processing of two-digit mixed decimals. However, when the relevance of the rightmost digit processing was increased by adding some decimals pairs with the same leftmost digits, both pure and mixed decimals produced the compatibility effect. Overall, results suggest that the processing of decimals is flexible and depends on the relevance of unique digit positions. This processing mode is different from integer analysis in that two-digit mixed decimals demonstrate parallel compositional processing only when the rightmost digit is relevant. Findings suggest that people probably do not represent decimals by simply ignoring the decimal point and converting them to natural numbers. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
B. Franz, Heather; G. Trainer, Melissa; H. Wong, Michael; L. K. Manning, Heidi; C. Stern, Jennifer; R. Mahaffy, Paul; K. Atreya, Sushil; Benna, Mehdi; G. Conrad, Pamela; N. Harpold, Dan; A. Leshin, Laurie; A. Malespin, Charles; P. McKay, Christopher; Thomas Nolan, J.; Raaen, Eric
2014-06-01
The Sample Analysis at Mars (SAM) instrument suite is the largest scientific payload on the Mars Science Laboratory (MSL) Curiosity rover, which landed in Mars' Gale Crater in August 2012. As a miniature geochemical laboratory, SAM is well-equipped to address multiple aspects of MSL's primary science goal, characterizing the potential past or present habitability of Gale Crater. Atmospheric measurements support this goal through compositional investigations relevant to martian climate evolution. SAM instruments include a quadrupole mass spectrometer, a tunable laser spectrometer, and a gas chromatograph that are used to analyze martian atmospheric gases as well as volatiles released by pyrolysis of solid surface materials (Mahaffy et al., 2012). This report presents analytical methods for retrieving the chemical and isotopic composition of Mars' atmosphere from measurements obtained with SAM's quadrupole mass spectrometer. It provides empirical calibration constants for computing volume mixing ratios of the most abundant atmospheric species and analytical functions to correct for instrument artifacts and to characterize measurement uncertainties. Finally, we discuss differences in volume mixing ratios of the martian atmosphere as determined by SAM (Mahaffy et al., 2013) and Viking (Owen et al., 1977; Oyama and Berdahl, 1977) from an analytical perspective. Although the focus of this paper is atmospheric observations, much of the material concerning corrections for instrumental effects also applies to reduction of data acquired with SAM from analysis of solid samples. The Sample Analysis at Mars (SAM) instrument measures the composition of the martian atmosphere. Rigorous calibration of SAM's mass spectrometer was performed with relevant gas mixtures. Calibration included derivation of a new model to correct for electron multiplier effects. Volume mixing ratios for Ar and N2 obtained with SAM differ from those obtained with Viking. Differences between SAM and Viking volume mixing ratios are under investigation.
Lusa, Amanda L; Amigues, Isabelle; Kramer, Henry R; Dam, Thuy-Tien; Giles, Jon T
2015-01-01
To explore the contributions from and interactions between articular swelling and damage, psychosocial factors, and body composition characteristics on walking speed in rheumatoid arthritis (RA). RA patients underwent the timed 400-meter long-corridor walk. Demographics, self-reported levels of depressive symptoms and fatigue, RA characteristics, and body composition (using whole-body dual X-ray absorptiometry, and abdominal and thigh computed tomography) were assessed and their associations with walking speed explored. A total of 132 RA patients had data for the 400-meter walk, among whom 107 (81%) completed the full 400 meters. Significant multivariable indicators of slower walking speed were older age, higher depression scores, higher reported pain and fatigue, higher swollen and replaced joint counts, higher cumulative prednisone exposure, nontreatment with disease-modifying antirheumatic drugs, and worse body composition. These features accounted for 60% of the modeled variability in walking speed. Among specific articular features, slower walking speed was primarily correlated with large/medium lower-extremity joint involvement. However, these articular features accounted for only 21% of the explainable variability in walking speed. Having any relevant articular characteristic was associated with a 20% lower walking speed among those with worse body composition (P < 0.001), compared with only a 6% lower speed among those with better body composition (P = 0.010 for interaction). Psychosocial factors and body composition are potentially reversible contributors to walking speed in RA. Relative to articular disease activity and damage, nonarticular indicators were collectively more potent indicators of an individual's mobility limitations. Copyright © 2015 by the American College of Rheumatology.
COMPARATIVE ASSESSMENT OF THE COMPOSITION AND CHARGE STATE OF NITROGENASE FeMo-COFACTOR
Harris, Travis V.; Szilagyi, Robert K.
2011-01-01
A significant limitation in our understanding of the molecular mechanism of biological nitrogen fixation is the uncertain composition of the FeMo-cofactor (FeMo-co) of nitrogenase. In this study we present a systematic, density functional theory-based evaluation of spin coupling schemes, iron oxidation states, ligand protonation states, and interstitial ligand composition using a wide range of experimental criteria. The employed functionals and basis sets were validated with molecular orbital information from X-ray absorption spectroscopic data of relevant iron-sulfur clusters. Independently from the employed level of theory, the electronic structure with the greatest number of antiferromagnetic interactions corresponds to the lowest energy state for a given charge and oxidation state distribution of the iron ions. The relative spin state energies of resting and oxidized FeMo-co already allowed the exclusion of certain iron oxidation state distributions and interstitial ligand compositions. Geometry optimized FeMo-co structures of several models further eliminated additional states and compositions, while reduction potentials indicated a strong preference for the most likely charge state of FeMo-co. Mössbauer and ENDOR parameter calculations were found to be remarkably dependent on the employed training set, density functional and basis set. Overall, we found that a more oxidized [MoIV-2FeII-5FeIII-9S2−-C4−] composition with a hydroxyl-protonated homocitrate ligand satisfies all of the available experimental criteria, and is thus favored over the currently preferred composition of [MoIV-4FeII-3FeIII-9S2−-N3−] from the literature. PMID:21545160
Application of Biologically-Based Lumping To Investigate the ...
People are often exposed to complex mixtures of environmental chemicals such as gasoline, tobacco smoke, water contaminants, or food additives. However, investigators have often considered complex mixtures as one lumped entity. Valuable information can be obtained from these experiments, though this simplification provides little insight into the impact of a mixture's chemical composition on toxicologically-relevant metabolic interactions that may occur among its constituents. We developed an approach that applies chemical lumping methods to complex mixtures, in this case gasoline, based on biologically relevant parameters used in physiologically-based pharmacokinetic (PBPK) modeling. Inhalation exposures were performed with rats to evaluate performance of our PBPK model. There were 109 chemicals identified and quantified in the vapor in the chamber. The time-course kinetic profiles of 10 target chemicals were also determined from blood samples collected during and following the in vivo experiments. A general PBPK model was used to compare the experimental data to the simulated values of blood concentration for the 10 target chemicals with various numbers of lumps, iteratively increasing from 0 to 99. Large reductions in simulation error were gained by incorporating enzymatic chemical interactions, in comparison to simulating the individual chemicals separately. The error was further reduced by lumping the 99 non-target chemicals. Application of this biologic
NASA Technical Reports Server (NTRS)
Malavergne, V.; Brunet, F.; Righter, K.; Zanda, B.; Avril, C.; Borensztajn, S.; Berthet, S.
2012-01-01
Enstatite meteorites are the most reduced naturally-occuring materials of the solar system. The cubic monosulfide series with the general formula (Mg,Mn,Ca,Fe)S are common phases in these meteorite groups. The importance of such minerals, their formation, composition and textural relationships for understanding the genesis of enstatite chondrites (EC) and aubrites, has long been recognized (e.g. [1]). However, the mechanisms of formation of these sulfides is still not well constrained certainly because of possible multiple ways to produce them. We propose to simulate different models of formation in order to check their mineralogical, chemical and textural relevancies. The solubility of sulfur in silicate melts is of primary interest for planetary mantles, particularly for the Earth and Mercury. Indeed, these two planets could have formed, at least partly, from EC materials (e.g. [2, 3, 4]). The sulfur content in silicate melts depends on the melt composition but also on pressure (P), temperature (T) and oxygen fugacity fO2. Unfortunately, there is no model of general validity in a wide range of P-T-fO2-composition which describes precisely the evolution of sulfur content in silicate melts, even if the main trends are now known. The second goal of this study is to constrain the sulfur content in silicate melts under reducing conditions and different temperatures.
Biomass-derived carbon composites for enrichment of dilute methane from underground coal mines.
Bae, Jun-Seok; Jin, Yonggang; Huynh, Chi; Su, Shi
2018-07-01
Ventilation air methane (VAM), which is the main source of greenhouse gas emissions from coal mines, has been a great challenge to deal with due to its huge flow rates and dilute methane levels (typically 0.3-1.0 vol%) with almost 100% humidity. As part of our continuous endeavor to further improve the methane adsorption capacity of carbon composites, this paper presents new carbon composites derived from macadamia nut shells (MNSs) and incorporated with carbon nanotubes (CNTs). These new carbon composites were fabricated in a honeycomb monolithic structure to tolerate dusty environment and to minimize pressure drop. This paper demonstrates the importance of biomass particle size distributions when formed in a composite and methane adsorption capacities at low pressures relevant to VAM levels. The selectivity of methane over nitrogen was about 10.4 at each relevant partial pressure, which was much greater than that (6.5) obtained conventionally (at very low pressures), suggesting that capturing methane in the presence of pre-adsorbed nitrogen would be a practical option. The equilibrium and dynamic performance of biomass-derived carbon composites were enhanced by 30 and 84%, respectively, compared to those of our previous carbon fiber composites. In addition, the presence of moisture in ventilation air resulted in a negligible effect on the dynamic VAM capture performance of the carbon composites, suggesting that our carbon composites have a great potential for site applications at coal mines because the cost and performance of solid adsorbents are critical factors to consider. Copyright © 2018 Elsevier Ltd. All rights reserved.
Application of dynamic flux balance analysis to an industrial Escherichia coli fermentation.
Meadows, Adam L; Karnik, Rahi; Lam, Harry; Forestell, Sean; Snedecor, Brad
2010-03-01
We have developed a reactor-scale model of Escherichia coli metabolism and growth in a 1000 L process for the production of a recombinant therapeutic protein. The model consists of two distinct parts: (1) a dynamic, process specific portion that describes the time evolution of 37 process variables of relevance and (2) a flux balance based, 123-reaction metabolic model of E. coli metabolism. This model combines several previously reported modeling approaches including a growth rate-dependent biomass composition, maximum growth rate objective function, and dynamic flux balancing. In addition, we introduce concentration-dependent boundary conditions of transport fluxes, dynamic maintenance demands, and a state-dependent cellular objective. This formulation was able to describe specific runs with high-fidelity over process conditions including rich media, simultaneous acetate and glucose consumption, glucose minimal media, and phosphate depleted media. Furthermore, the model accurately describes the effect of process perturbations--such as glucose overbatching and insufficient aeration--on growth, metabolism, and titer. (c) 2009 Elsevier Inc. All rights reserved.
Murray, Martha M.; Magarian, Elise; Zurakowski, David; Fleming, Braden C.
2010-01-01
Purpose The purpose of this study was to determine if providing bony stabilization between the tibia and femur would improve the structural properties of an “enhanced” ACL repair using a collagen-platelet composite when compared to the traditional (Marshall) suture technique. Methods Twelve pigs underwent unilateral ACL transection and were treated with sutures connecting the bony femoral ACL attachment site to the distal ACL stump (LIGAMENT group), or to the tibia via a bone tunnel (TIBIA group). A collagen-platelet composite was placed around the sutures to enhance the biologic repair in both groups. Anteroposterior (AP) knee laxity and the graft structural properties were measured after 15 weeks of healing in both the ACL-repaired and contralateral ACL-intact joints. Results Enhanced ACL repair with bone-to-bone fixation significantly improved yield load and linear stiffness of the ACL repairs (p<0.05) after 15 weeks of healing. However, laxity values of the knees were similar in both groups of repaired knees (p>0.10). Conclusions Using an enhanced ACL suture repair technique that includes bone-to-bone fixation to protect the repair in the initial healing stages resulted in an ACL with improved structural properties after 15 weeks in the porcine model. Clinical Relevance The healing response of an ACL suture repair using a collagen-platelet composite can be enhanced by providing bony stabilization between the tibia and femur to protect the graft during the initial healing process in a translational model. PMID:20810092
Yan, Kang K; Zhao, Hongyu; Pang, Herbert
2017-12-06
High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied algorithms mostly deal with single data source, and cannot fully utilize the potential of these multi-omics data sources. In order to provide a holistic understanding of human health and diseases, it is necessary to integrate multiple data sources. Several algorithms have been proposed so far, however, a comprehensive comparison of data integration algorithms for classification of binary traits is currently lacking. In this paper, we focus on two common classes of integration algorithms, graph-based that depict relationships with subjects denoted by nodes and relationships denoted by edges, and kernel-based that can generate a classifier in feature space. Our paper provides a comprehensive comparison of their performance in terms of various measurements of classification accuracy and computation time. Seven different integration algorithms, including graph-based semi-supervised learning, graph sharpening integration, composite association network, Bayesian network, semi-definite programming-support vector machine (SDP-SVM), relevance vector machine (RVM) and Ada-boost relevance vector machine are compared and evaluated with hypertension and two cancer data sets in our study. In general, kernel-based algorithms create more complex models and require longer computation time, but they tend to perform better than graph-based algorithms. The performance of graph-based algorithms has the advantage of being faster computationally. The empirical results demonstrate that composite association network, relevance vector machine, and Ada-boost RVM are the better performers. We provide recommendations on how to choose an appropriate algorithm for integrating data from multiple sources.
ERIC Educational Resources Information Center
Brown, M. Christopher, II
2013-01-01
Historically Black colleges and universities are a unique institutional cohort in American higher education. These colleges have been celebrated for their achievements and critiqued for their composition at differing points during their collective history. This article addresses contemporary ebbs and flows of their relevance and reputation in the…
Compositional symbol grounding for motor patterns.
Greco, Alberto; Caneva, Claudio
2010-01-01
We developed a new experimental and simulative paradigm to study the establishing of compositional grounded representations for motor patterns. Participants learned to associate non-sense arm motor patterns, performed in three different hand postures, with non-sense words. There were two group conditions: in the first (compositional), each pattern was associated with a two-word (verb-adverb) sentence; in the second (holistic), each same pattern was associated with a unique word. Two experiments were performed. In the first, motor pattern recognition and naming were tested in the two conditions. Results showed that verbal compositionality had no role in recognition and that the main source of confusability in this task came from discriminating hand postures. As the naming task resulted too difficult, some changes in the learning procedure were implemented in the second experiment. In this experiment, the compositional group achieved better results in naming motor patterns especially for patterns where hand postures discrimination was relevant. In order to ascertain the differential effect, upon this result, of memory load and of systematic grounding, neural network simulations were also made. After a basic simulation that worked as a good model of subjects performance, in following simulations the number of stimuli (motor patterns and words) was increased and the systematic association between words and patterns was disrupted, while keeping the same number of words and syntax. Results showed that in both conditions the advantage for the compositional condition significantly increased. These simulations showed that the advantage for this condition may be more related to the systematicity rather than to the mere informational gain. All results are discussed in connection to the possible support of the hypothesis of a compositional motor representation and toward a more precise explanation of the factors that make compositional representations working.
Assessment methods in human body composition.
Lee, Seon Yeong; Gallagher, Dympna
2008-09-01
The present study reviews the most recently developed and commonly used methods for the determination of human body composition in vivo with relevance for nutritional assessment. Body composition measurement methods are continuously being perfected with the most commonly used methods being bioelectrical impedance analysis, dilution techniques, air displacement plethysmography, dual energy X-ray absorptiometry, and MRI or magnetic resonance spectroscopy. Recent developments include three-dimensional photonic scanning and quantitative magnetic resonance. Collectively, these techniques allow for the measurement of fat, fat-free mass, bone mineral content, total body water, extracellular water, total adipose tissue and its subdepots (visceral, subcutaneous, and intermuscular), skeletal muscle, select organs, and ectopic fat depots. There is an ongoing need to perfect methods that provide information beyond mass and structure (static measures) to kinetic measures that yield information on metabolic and biological functions. On the basis of the wide range of measurable properties, analytical methods and known body composition models, clinicians and scientists can quantify a number of body components and with longitudinal assessment, can track changes in health and disease with implications for understanding efficacy of nutritional and clinical interventions, diagnosis, prevention, and treatment in clinical settings. With the greater need to understand precursors of health risk beginning in childhood, a gap exists in appropriate in-vivo measurement methods beginning at birth.
Chemically Active, Porous 3D-Printed Thermoplastic Composites.
Evans, Kent A; Kennedy, Zachary C; Arey, Bruce W; Christ, Josef F; Schaef, Herbert T; Nune, Satish K; Erikson, Rebecca L
2018-05-02
Metal-organic frameworks (MOFs) exhibit exceptional properties and are widely investigated because of their structural and functional versatility relevant to catalysis, separations, and sensing applications. However, their commercial or large-scale application is often limited by their powder forms which make integration into devices challenging. Here, we report the production of MOF-thermoplastic polymer composites in well-defined and customizable forms and with complex internal structural features accessed via a standard three-dimensional (3D) printer. MOFs (zeolitic imidazolate framework; ZIF-8) were incorporated homogeneously into both poly(lactic acid) (PLA) and thermoplastic polyurethane (TPU) matrices at high loadings (up to 50% by mass), extruded into filaments, and utilized for on-demand access to 3D structures by fused deposition modeling. Printed, rigid PLA/MOF composites display a large surface area (SA avg = 531 m 2 g -1 ) and hierarchical pore features, whereas flexible TPU/MOF composites achieve a high surface area (SA avg = 706 m 2 g -1 ) by employing a simple method developed to expose obstructed micropores postprinting. Critically, embedded particles in the plastic matrices retain their ability to participate in chemical interactions characteristic of the parent framework. The fabrication strategies were extended to other MOFs and illustrate the potential of 3D printing to create unique porous and high surface area chemically active structures.
Assessment methods in human body composition
Lee, Seon Yeong; Gallagher, Dympna
2009-01-01
Purpose of review The present study reviews the most recently developed and commonly used methods for the determination of human body composition in vivo with relevance for nutritional assessment. Recent findings Body composition measurement methods are continuously being perfected with the most commonly used methods being bioelectrical impedance analysis, dilution techniques, air displacement plethysmography, dual energy X-ray absorptiometry, and MRI or magnetic resonance spectroscopy. Recent developments include three-dimensional photonic scanning and quantitative magnetic resonance. Collectively, these techniques allow for the measurement of fat, fat-free mass, bone mineral content, total body water, extracellular water, total adipose tissue and its subdepots (visceral, subcutaneous, and intermuscular), skeletal muscle, select organs, and ectopic fat depots. Summary There is an ongoing need to perfect methods that provide information beyond mass and structure (static measures) to kinetic measures that yield information on metabolic and biological functions. On the basis of the wide range of measurable properties, analytical methods and known body composition models, clinicians and scientists can quantify a number of body components and with longitudinal assessment, can track changes in health and disease with implications for understanding efficacy of nutritional and clinical interventions, diagnosis, prevention, and treatment in clinical settings. With the greater need to understand precursors of health risk beginning in childhood, a gap exists in appropriate in-vivo measurement methods beginning at birth. PMID:18685451
Jackson, Matthew D.; Al-Mahrouqi, Dawoud; Vinogradov, Jan
2016-01-01
Laboratory experiments and field trials have shown that oil recovery from carbonate reservoirs can be increased by modifying the brine composition injected during recovery in a process termed controlled salinity water-flooding (CSW). However, CSW remains poorly understood and there is no method to predict the optimum CSW composition. This work demonstrates for the first time that improved oil recovery (IOR) during CSW is strongly correlated to changes in zeta potential at both the mineral-water and oil-water interfaces. We report experiments in which IOR during CSW occurs only when the change in brine composition induces a repulsive electrostatic force between the oil-brine and mineral-brine interfaces. The polarity of the zeta potential at both interfaces must be determined when designing the optimum CSW composition. A new experimental method is presented that allows this. Results also show for the first time that the zeta potential at the oil-water interface may be positive at conditions relevant to carbonate reservoirs. A key challenge for any model of CSW is to explain why IOR is not always observed. Here we suggest that failures using the conventional (dilution) approach to CSW may have been caused by a positively charged oil-water interface that had not been identified. PMID:27876833
NASA Astrophysics Data System (ADS)
Mahadev, Sthanu
Continued research and development efforts devoted in recent years have generated novel avenues towards the advancement of efficient and effective, slender laminated fiber-reinforced composite members. Numerous studies have focused on the modeling and response characterization of composite structures with particular relevance to thin-walled cylindrical composite shells. This class of shell configurations is being actively explored to fully determine their mechanical efficacy as primary aerospace structural members. The proposed research is targeted towards formulating a composite shell theory based prognosis methodology that entails an elaborate analysis and investigation of thin-walled cylindrical shell type laminated composite configurations that are highly desirable in increasing number of mechanical and aerospace applications. The prime motivation to adopt this theory arises from its superior ability to generate simple yet viable closed-form analytical solution procedure to numerous geometrically intense, inherent curvature possessing composite structures. This analytical evaluative routine offers to acquire a first-hand insight on the primary mechanical characteristics that essentially govern the behavior of slender composite shells under typical static loading conditions. Current work exposes the robustness of this mathematical framework via demonstrating its potential towards the prediction of structural properties such as axial stiffness and bending stiffness respectively. Longitudinal ply-stress computations are investigated upon deriving the global stiffness matrix model for composite cylindrical tubes with circular cross-sections. Additionally, this work employs a finite element based numerical technique to substantiate the analytical results reported for cylindrically shaped circular composite tubes. Furthermore, this concept development is extended to the study of thin-walled, open cross-sectioned, curved laminated shells that are geometrically distinguished with respect to the circumferential arc angle, thickness-to-mean radius ratio and total laminate thickness. The potential of this methodology is challenged to analytically determine the location of the centroid. This precise location dictates the decoupling of extension-bending type deformational response in tension loaded composite structures. Upon the cross-validation of the centroidal point through the implementation of an ANSYS based finite element routine, influence of centroid is analytically examined under the application of a concentrated longitudinal tension and bending type loadings on a series of cylindrical shells characterized by three different symmetric-balanced stacking sequences. In-plane ply-stresses are computed and analyzed across the circumferential contour. An experimental investigation has been incorporated via designing an ad-hoc apparatus and test-up that accommodates the quantification of in-plane strains, computation of ply-stresses and addresses the physical characteristics for a set of auto-clave fabricated cylindrical shell articles. Consequently, this work is shown to essentially capture the mechanical aspects of cylindrical shells, thus facilitating structural engineers to design and manufacture viable structures.
NASA Astrophysics Data System (ADS)
Caprarelli, G.; Reidel, S. P.
2004-12-01
The Miocene Columbia River Basalt Group (CRBG) of north-western USA was emplaced in a geologically dynamic setting characterized by a close association between magmatism and lithospheric thinning and rifting. We present and discuss electron probe microanalysis and XRFA data obtained from samples spanning the entire sequence of the CRBG. The examined basalts have near-aphyric textures. No glass is present, and plagioclase and augitic clinopyroxene are dominant matrix and groundmass phases. Plagioclase microcrysts are labradoritic to bytownitic. Whole rock compositions were taken as proxies of the liquid compositions. Application of plagioclase / melt and clinopyroxene / melt geothermobarometers indicated that during crustal ascent the magmas were dry, and that pre-eruptive pressures and temperatures ranged from 0 to 0.66 GPa and 1393 to 1495 K, respectively. In a P-T diagram most of the samples are distributed along a general CRBG trend, while some samples plot along a parallel higher temperature trend. The calculated P-T values, the positive correlation between calculated P and T, and no horizontal alignment of the data, exclude the presence of upper crustal solidification fronts, and indicate that magma aggregation zones were located deeper than 25 km, plausibly immediately below the Moho, that in this region is at a depth of approximately 35 km. Episodic stretching of the lithosphere best explains the observed parallel P-T trends. Whole rock major element abundances resulted from fractional crystallization of the magmas during ascent. To retrieve the compositions of the primitive melts we added to the bulk rock compositions variable amounts of magnesian olivine [Mg/(Mg+Fe) = 0.88], and derived the evolution of olivine fractionating magmas in equilibrium with mantle harzburgite. Two groups of samples were found, corresponding to the parallel P-T trends obtained from mineral / melt calculations. The highest temperature trend corresponds to samples whose calculated primitive compositions are in agreement with those obtained from peridotite melting experiments (as published in the relevant literature). Interpretation of results for rocks belonging to the general CRBG trend suggests, either: (a) that higher forsteritic content olivine should be used in the calculations; or, (b) that melt / ol / opx reactions occurred. Investigation of the CRBG primitive compositions has relevance with regard to the geodynamic evolution models of this region. We are currently undertaking melt inclusion studies of suitable CRBG samples.
Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stegen, James C.; Konopka, Allan; McKinely, Jim
Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies—oxidized, reduced, and transition—within one lithofacies and elucidate relationships among facies features and microbial community biomass, diversity, and community composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial diversity—the number ofmore » microbial taxa—was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions.« less
NASA Astrophysics Data System (ADS)
Timmermann, H.; Sawady, W.; Reimert, R.; Ivers-Tiffée, E.
The internal reforming of methane in a solid oxide fuel cell (SOFC) is investigated and modeled for flow conditions relevant to operation. To this end, measurements are performed on anode-supported cells (ASC), thereby varying gas composition (y CO = 4-15%, yH2 = 5 - 17 % , yCO2 = 6 - 18 % , yH2O = 2 - 30 % , yCH4 = 0.1 - 20 %) and temperature (600-850 °C). In this way, operating conditions for both stationary applications (methane-rich pre-reformate) as well as for auxiliary power unit (APU) applications (diesel-POX reformate) are represented. The reforming reaction is monitored in five different positions alongside the anodic gas channel by means of gas chromatography. It is shown that methane is converted in the flow field for methane-rich gas compositions, whereas under operation with diesel reformate the direction of the reaction is reversed for temperatures below 675 °C, i.e. (exothermic) methanation occurs along the anode. Using a reaction model, a rate equation for reforming could be derived which is also valid in the case of methanation. By introducing this equation into the reaction model the methane conversion along a catalytically active Ni-YSZ cermet SOFC anode can be simulated for the operating conditions specified above.
Final report for the DOE Early Career Award #DE-SC0003912
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayaraman, Arthi
This DoE supported early career project was aimed at developing computational models, theory and simulation methods that would be then be used to predict assembly and morphology in polymer nanocomposites. In particular, the focus was on composites in active layers of devices, containing conducting polymers that act as electron donors and nanoscale additives that act as electron acceptors. During the course this work, we developed the first of its kind molecular models to represent conducting polymers enabling simulations at the experimentally relevant length and time scales. By comparison with experimentally observed morphologies we validated these models. Furthermore, using these modelsmore » and molecular dynamics simulations on graphical processing units (GPUs) we predicted the molecular level design features in polymers and additive that lead to morphologies with optimal features for charge carrier behavior in solar cells. Additionally, we also predicted computationally new design rules for better dispersion of additives in polymers that have been confirmed through experiments. Achieving dispersion in polymer nanocomposites is valuable to achieve controlled macroscopic properties of the composite. The results obtained during the course of this DOE funded project enables optimal design of higher efficiency organic electronic and photovoltaic devices and improve every day life with engineering of these higher efficiency devices.« less
Quantifying chaos for ecological stoichiometry.
Duarte, Jorge; Januário, Cristina; Martins, Nuno; Sardanyés, Josep
2010-09-01
The theory of ecological stoichiometry considers ecological interactions among species with different chemical compositions. Both experimental and theoretical investigations have shown the importance of species composition in the outcome of the population dynamics. A recent study of a theoretical three-species food chain model considering stoichiometry [B. Deng and I. Loladze, Chaos 17, 033108 (2007)] shows that coexistence between two consumers predating on the same prey is possible via chaos. In this work we study the topological and dynamical measures of the chaotic attractors found in such a model under ecological relevant parameters. By using the theory of symbolic dynamics, we first compute the topological entropy associated with unimodal Poincaré return maps obtained by Deng and Loladze from a dimension reduction. With this measure we numerically prove chaotic competitive coexistence, which is characterized by positive topological entropy and positive Lyapunov exponents, achieved when the first predator reduces its maximum growth rate, as happens at increasing δ1. However, for higher values of δ1 the dynamics become again stable due to an asymmetric bubble-like bifurcation scenario. We also show that a decrease in the efficiency of the predator sensitive to prey's quality (increasing parameter ζ) stabilizes the dynamics. Finally, we estimate the fractal dimension of the chaotic attractors for the stoichiometric ecological model.
Advances in air quality prediction with the use of integrated systems
NASA Astrophysics Data System (ADS)
Dragani, R.; Benedetti, A.; Engelen, R. J.; Peuch, V. H.
2017-12-01
Recent years have seen the rise of global operational atmospheric composition forecasting systems for several applications including climate monitoring, provision of boundary conditions for regional air quality forecasting, energy sector applications, to mention a few. Typically, global forecasts are provided in the medium-range up to five days ahead and are initialized with an analysis based on satellite data. In this work we present the latest advances in data assimilation using the ECMWF's 4D-Var system extended to atmospheric composition which is currently operational under the Copernicus Atmosphere Monitoring Service of the European Commission. The service is based on acquisition of all relevant data available in near-real-time, the processing of these datasets in the assimilation and the subsequent dissemination of global forecasts at ECMWF. The global forecasts are used by the CAMS regional models as boundary conditions for the European forecasts based on a multi-model ensemble. The global forecasts are also used to provide boundary conditions for other parts of the world (e.g., China) and are freely available to all interested entities. Some of the regional models also perform assimilation of satellite and ground-based observations. All products are assessed, validated and made publicly available on https://atmosphere.copernicus.eu/.
Modeling and simulation of a chemically stimulated hydrogel bilayer bending actuator
NASA Astrophysics Data System (ADS)
Sobczyk, Martin; Wallmersperger, Thomas
2017-04-01
Stimuli-sensitive hydrogels are polymeric materials, which are able to reversibly swell in water in response to evironmental changes. Relevant stimuli include variations of pH, temperature, concentration of specific ions etc. Stacked layers composed of multiple thin hydrogels - also referred to as hydrogel-layer composites - combine the distinct sensing properties of different hydrogels. This approach enables the development of sophisticated microfluidic devices such as bisensitive valves or fluid-sensitive deflectors. In order to numerically simulate the swelling of a polyelectrolyte hydrogel in response to an ion concentration change the multifield theory is adopted. The set of partial differential equations - including the description of the chemical, the electrical and the mechanical field - are solved using the Finite Element Method. Simulations are carried out on a two-dimensional domain in order to capture interactions between the different fields. In the present work, the ion transport is governed by diffusive and migrative fluxes. The distribution of ions in the gel and the solution bath result in an osmotic pressure difference, which is responsible for the mechanical deformation of the hydrogel-layer composite. The realized numerical investigation gives an insight into the evolution of the displacement field, the distribution of ions and the electric potential within the bulk material and the interface between gel and solution bath. The predicted behavior of the relevant field variables is in excellent agreement with results available in the literature.
NASA Astrophysics Data System (ADS)
Rahikainen, Mika; Hoikkala, Laura; Soinne, Helena
2013-04-01
Bayesian belief nets (BBN) are capable of developing holistic understanding of the origin, transportation, and effects of dissolved organic matter (DOM) in ecosystems. The role of riverine DOM, transporting carbon and macronutrients N and P into lakes and coastal areas, has been largely neglected in research about processes influencing aquatic ecosystem functions although dissolved organic matter provides a significant nutrient source for primary producers in aquatic environments. This neglect has also contributed to the environmental policies which are focused in the control of inorganic N and P load. It is of great social and economic interest to gain improved knowledge of whether the currently applied policy instruments act in synchrony in mitigating eutrophication caused by N and P versus DOM load. DOM is a complex mixture of compounds that are poorly characterized. DOM export is strongly regulated by land use (urban, forest, agricultural land, peat land), in addition to soil type and soil organic carbon concentration. Furthermore, the composition of DOM varies according to its origin. The fate and effects of DOM loads in the fresh water and coastal environments depend, for example, on their biodegradability. Degradation kinetics again depends on the interactions between composition of the DOM pool and the receiving environment. Impact studies of dissolved organic matter pose a complicated environmental impact assessment challenge for science. There exists strategic uncertainty in the science about the causal dependencies and about the quality of knowledge related to DOM. There is a clear need for systematization in the approach as uncertainty is typically high about many key processes. A cross-sectorial, integrative analysis will aid in focusing on the most relevant issues. A holistic and unambiguous analysis will provide support for policy-decisions and management by indicating which outcome is more probable than another. The task requires coupling complex models of different environmental compartments (soil chemistry, agricultural management practices, aquatic processes, costs and benefits for society) with explicit treatment of uncertainty. In order to achieve policy relevance, these models have to be integrated into resource management. We use a Bayesian belief net to describe the probabilistic dependencies among the driving forces, processes, and impacts relevant to dissolved organic matter in boreal waterways.
NASA Astrophysics Data System (ADS)
Zeng, Xiang; Teng, Jie; Yu, Jin-gang; Tan, Ao-shuang; Fu, Ding-fa; Zhang, Hui
2018-01-01
Graphene-reinforced aluminum (Al) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness and tensile tests. Compared to the pure Al alloy, the graphene/Al composites showed increased strength and hardness. A tensile strength of 255 MPa was achieved for the graphene/Al composite with only 0.3wt% graphene, which has a 25% increase over the tensile strength of the pure Al matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to investigate the morphologies, chemical compositions, and microstructures of the graphene and the graphene/Al composites. On the basis of fractographic evidence, a relevant fracture mechanism is proposed.
NASA Astrophysics Data System (ADS)
Ballantyne, F.; Medeiros, P. M.; Moran, M. A.; Song, C.; Whitman, W. B.; Washington, B.; Yu, M.; Lee, J.
2017-12-01
Despite the advent of methods enabling high resolution characterization of metabolic activity and of organic matter, linking microbial metabolism to organic matter transformations remains a challenge. By sequencing metatranscriptomes and using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS) to characterize organic matter (OM) at the beginning and at the end of incubations of estuarine water across tide and season, we sought to link observed a changes in OM composition to microbial metabolism. We used linear models and K means clustering to identify clusters of genes that responded coherently across season, which accounted for most of the variability in gene expression, over tidal regime, which explained the majority of the remaining variation, and over time during the 24 hour incubations. We used an approach from the field of signal processing, that to our knowledge has not been used to analyze FTICR-MS data, to identify formulae of compounds that changed in concentration during the incubations. This approach, based on the discrete wavelet transform (DWT), allowed us to overcome some of the challenges associated with analyzing FTICR-MS data: variable ionization of organic compounds, signal suppression by high concentration compounds, and uncertainty about how to normalize changes across spectra. We were able to link clusters of metabolic and transporter genes to changes in OM composition, and uniquely identify genes based on their cross correlation with changes in FTICR mass spectra. Our approach for analyzing FTICR- MS data enables more robust inference about OM transformations, and linking high resolution changes in gene expression and in OM data during incubations represents an important step toward formulating models of microbial metabolism relevant for predicting biogeochemically relevant C fluxes.
Payne, C L R; Scarborough, P; Rayner, M; Nonaka, K
2016-03-01
Insects have been the subject of recent attention as a potentially environmentally sustainable and nutritious alternative to traditional protein sources. The purpose of this paper is to test the hypothesis that insects are nutritionally preferable to meat, using two evaluative tools that are designed to combat over- and under-nutrition. We selected 183 datalines of publicly available data on the nutrient composition of raw cuts and offal of three commonly consumed meats (beef, pork and chicken), and six commercially available insect species, for energy and 12 relevant nutrients. We applied two nutrient profiling tools to this data: The Ofcom model, which is used in the United Kingdom, and the Nutrient Value Score (NVS), which has been used in East Africa. We compared the median nutrient profile scores of different insect species and meat types using non-parametric tests and applied Bonferroni adjustments to assess for statistical significance in differences. Insect nutritional composition showed high diversity between species. According to the Ofcom model, no insects were significantly 'healthier' than meat products. The NVS assigned crickets, palm weevil larvae and mealworm a significantly healthier score than beef (P<0.001) and chicken (P<0.001). No insects were statistically less healthy than meat. Insect nutritional composition is highly diverse in comparison with commonly consumed meats. The food category 'insects' contains some foods that could potentially exacerbate diet-related public health problems related to over-nutrition, but may be effective in combating under-nutrition.
Liquid-Vapor Equilibrium of Multicomponent Cryogenic Systems
NASA Technical Reports Server (NTRS)
Thompson, W. Reid; Calado, Jorge C. G.; Zollweg, John A.
1990-01-01
Liquid-vapor and solid-vapor equilibria at low to moderate pressures and low temperatures are important in many solar system environments, including the surface and clouds of Titan, the clouds of Uranus and Neptune, and the surfaces of Mars and Triton. The familiar cases of ideal behavior are limiting cases of a general thermodynamic representation for the vapor pressure of each component in a homogeneous multicomponent system. The fundamental connections of laboratory measurements to thermodynamic models are through the Gibbs-Duhem relation and the Gibbs-Helmholtz relation. Using laboratory measurements of the total pressure, temperature, and compositions of the liquid and vapor phases at equilibrium, the values of these parameters can be determined. The resulting model for vapor-liquid equilibrium can then conveniently and accurately be used to calculate pressures, compositions, condensation altitudes, and their dependencies on changing climatic conditions. A specific system being investigated is CH4-C2H6-N2, at conditions relevant to Titan's surface and atmosphere. Discussed are: the modeling of existing data on CH4-N2, with applications to the composition of Titan's condensate clouds; some new measurements on the CH4-C2H6 binary, using a high-precision static/volumetric system, and on the C2H6-N2 binary, using the volumetric system and a sensitive cryogenic flow calorimeter; and describe a new cryogenic phase-equilibrium vessel with which we are beginning a detailed, systematic study of the three constituent binaries and the ternary CH4-C2H6-N2 system at temperatures ranging from 80 to 105 K and pressures from 0.1 to 7 bar.
Ionescu, Andrei; Brambilla, Eugenio; Wastl, Daniel S; Giessibl, Franz J; Cazzaniga, Gloria; Schneider-Feyrer, Sibylle; Hahnel, Sebastian
2015-01-01
The aim of this study was to investigate the impact of resin matrix chemistry and filler fraction on biofilm formation on the surface of experimental resin-based composites (RBCs). Specimens were prepared from eight experimental RBC formulations differing in resin matrix blend (BisGMA/TEGDMA in a 7:3 wt% ratio or UDMA/aliphatic dimethacrylate in a 1:1 wt% ratio) and filler fraction (no fillers; 65 wt% dental glass with an average diameter of 7 or 0.7 µm or 65 wt% SiO2 with an average diameter of 20 nm). Surface roughness, surface free energy, and chemical surface composition were determined; surface topography was visualized using atomic force microscopy. Biofilm formation was simulated under continuous flow conditions for a 48 h period using a monospecies Streptococcus mutans and a multispecies biofilm model. In the monospecies biofilm model, the impact of the filler fraction overruled the influence of the resin matrix, indicating lowest biofilm formation on RBCs with nano-scaled filler particles and those manufactured from the neat resin blends. The multispecies model suggested a more pronounced effect of the resin matrix blend, as significantly higher biofilm formation was identified on RBCs with a UDMA/dimethacrylate matrix blend than on those including a BisGMA/TEGDMA matrix blend but analogous filler fractions. Although significant differences in surface properties between the various materials were identified, correlations between the surface properties and biofilm formation were poor, which highlights the relevance of surface topography and chemistry. These results may help to tailor novel RBC formulations which feature reduced biofilm formation on their surface.
NASA Astrophysics Data System (ADS)
Hakkenberg, Christopher R.
Forest modification, from local stress to global change, has given rise to efforts to model, map, and monitor critical properties of forest communities like structure, composition, and diversity. Predictive models based on data from spatially-nested field plots and LiDAR-hyperspectral remote sensing systems are one particularly effective means towards the otherwise prohibitively resource-intensive task of consistently characterizing forest community dynamics at landscape scales. However, to date, most predictive models fail to account for actual (rather than idealized) species and community distributions, are unsuccessful in predicting understory components in structurally and taxonomically heterogeneous forests, and may suffer from diminished predictive accuracy due to incongruity in scale and precision between field plot samples, remotely-sensed data, and target biota of varying size and density. This three-part study addresses these and other concerns in the modeling and mapping of emergent properties of forest communities by shifting the scope of prediction from the individual or taxon to the whole stand or community. It is, after all, at the stand scale where emergent properties like functional processes, biodiversity, and habitat aggregate and manifest. In the first study, I explore the relationship between forest structure (a proxy for successional demographics and resource competition) and tree species diversity in the North Carolina Piedmont, highlighting the empirical basis and potential for utilizing forest structure from LiDAR in predictive models of tree species diversity. I then extend these conclusions to map landscape pattern in multi-scale vascular plant diversity as well as turnover in community-continua at varying compositional resolutions in a North Carolina Piedmont landscape using remotely-sensed LiDAR-hyperspectral estimates of topography, canopy structure, and foliar biochemistry. Recognizing that the distinction between correlation and causation mirrors that between knowledge and understanding, all three studies distinguish between prediction of pattern and inference of process. Thus, in addition to advancing mapping methodologies relevant to a range of forest ecosystem management and monitoring applications, all three studies are noteworthy for assessing the ecological relationship between environmental predictors and emergent landscape patterns in plant composition and diversity in North Carolina Piedmont forests.
Structure and Energetics of Clusters Relevant to Thorium Tetrachloride Melts
NASA Astrophysics Data System (ADS)
Akdeniz, Z.; Tosi, M. P.
2000-10-01
We study within an ionic model the structure and energetics of neutral and charged molecular clusters which may be relevant to molten ThCl4 and to its liquid mixtures with alkali chlorides, with reference to Raman scattering experiments by Photiadis and Papatheodorou. As stressed by these authors, the most striking facts for ThCl4 in comparison to other tetrachloride compounds (and in particular to ZrCl4) are the appreciable ionic conductivity of the pure melt and the continuous structural changes which occur in the melt mixtures with varying composition. After adjusting our model to data on the isolated ThCl4 tetrahedral molecule, we evaluate (i) the Th2Cl8 dimer and the singly charged species obtained from it by chlorine-ion transfer between two such neutral dimers; (ii) the ThCl6 and ThCl7 clusters both as charged anions and as alkali-compensated species; and (iii) various oligomers carrying positive or negative double charges. Our study shows that the characteristic structural properties of the ThCl4 compound and of the alkali-Th chloride systems are the consequence of the relatively high ionic character of the binding, which is already evident in the isolated ThCl4 monomer.
NASA Astrophysics Data System (ADS)
Pennington, D. N.; Nelson, E.; Polasky, S.; Plantinga, A.; Lewis, D.; Whithey, J.; Radeloff, V.; Lawler, J.; White, D.; Martinuzzi, S.; Helmers, D.; Lonsdorf, E.
2011-12-01
Land-use change significantly contributes to biodiversity loss, changes ecosystem processes, and causes ultimately the loss of ecosystem services. Planning for a sustainable future requires a thorough understanding of expected future land use at both the fine-spatial scale relevant for many ecological processes and at the larger regional levels relevant for large-scale policy making. We use an econometric model to predict business as usual land-use change across the continental US with 100-m resolution in 5-year time steps from 2001 to 2051. We then simulate the affect of various national-level tax, subsidy, and zoning policies on expected land-use change over this time frame. Further, we model the impact of projected land-use change under business as usual and the various policy scenarios on carbon sequestration and biodiversity conservation in the conterminous United States. Our results showed that overall, land use composition will remain fairly stable, but there are considerable regional changes. Differences among policy scenarios were relatively minor highlighting that the underlying economic drivers of land use patterns are strong, and even fairly drastic policies may not be able to change these.
NASA Astrophysics Data System (ADS)
van Maanen, Barend; Nicholls, Robert J.; French, Jon R.; Barkwith, Andrew; Bonaldo, Davide; Burningham, Helene; Brad Murray, A.; Payo, Andres; Sutherland, James; Thornhill, Gillian; Townend, Ian H.; van der Wegen, Mick; Walkden, Mike J. A.
2016-03-01
Coastal and shoreline management increasingly needs to consider morphological change occurring at decadal to centennial timescales, especially that related to climate change and sea-level rise. This requires the development of morphological models operating at a mesoscale, defined by time and length scales of the order 101 to 102 years and 101 to 102 km. So-called 'reduced complexity' models that represent critical processes at scales not much smaller than the primary scale of interest, and are regulated by capturing the critical feedbacks that govern landform behaviour, are proving effective as a means of exploring emergent coastal behaviour at a landscape scale. Such models tend to be computationally efficient and are thus easily applied within a probabilistic framework. At the same time, reductionist models, built upon a more detailed description of hydrodynamic and sediment transport processes, are capable of application at increasingly broad spatial and temporal scales. More qualitative modelling approaches are also emerging that can guide the development and deployment of quantitative models, and these can be supplemented by varied data-driven modelling approaches that can achieve new explanatory insights from observational datasets. Such disparate approaches have hitherto been pursued largely in isolation by mutually exclusive modelling communities. Brought together, they have the potential to facilitate a step change in our ability to simulate the evolution of coastal morphology at scales that are most relevant to managing erosion and flood risk. Here, we advocate and outline a new integrated modelling framework that deploys coupled mesoscale reduced complexity models, reductionist coastal area models, data-driven approaches, and qualitative conceptual models. Integration of these heterogeneous approaches gives rise to model compositions that can potentially resolve decadal- to centennial-scale behaviour of diverse coupled open coast, estuary and inner shelf settings. This vision is illustrated through an idealised composition of models for a ~ 70 km stretch of the Suffolk coast, eastern England. A key advantage of model linking is that it allows a wide range of real-world situations to be simulated from a small set of model components. However, this process involves more than just the development of software that allows for flexible model coupling. The compatibility of radically different modelling assumptions remains to be carefully assessed and testing as well as evaluating uncertainties of models in composition are areas that require further attention.
NASA Technical Reports Server (NTRS)
Cess, R. D.; Hameed, S.; Hogan, J. S.
1980-01-01
Tropospheric ozone and methane might increase in the future as the result of increasing anthropogenic emissions of CO, NOx and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test this possible climatic impact, a zonal energy-balance climate model has been combined with a vertically-averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4 and NOx. The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NOx and CH4, and that future increases in these emissions could enhance global warming due to increasing atmospheric CO2.
Are animal models useful for studying human disc disorders/degeneration?
Eisenstein, Stephen M.; Ito, Keita; Little, Christopher; Kettler, A. Annette; Masuda, Koichi; Melrose, James; Ralphs, Jim; Stokes, Ian; Wilke, Hans Joachim
2007-01-01
Intervertebral disc (IVD) degeneration is an often investigated pathophysiological condition because of its implication in causing low back pain. As human material for such studies is difficult to obtain because of ethical and government regulatory restriction, animal tissue, organs and in vivo models have often been used for this purpose. However, there are many differences in cell population, tissue composition, disc and spine anatomy, development, physiology and mechanical properties, between animal species and human. Both naturally occurring and induced degenerative changes may differ significantly from those seen in humans. This paper reviews the many animal models developed for the study of IVD degeneration aetiopathogenesis and treatments thereof. In particular, the limitations and relevance of these models to the human condition are examined, and some general consensus guidelines are presented. Although animal models are invaluable to increase our understanding of disc biology, because of the differences between species, care must be taken when used to study human disc degeneration and much more effort is needed to facilitate research on human disc material. PMID:17632738
Comparing FDTD and Ray-Tracing Models in Numerical Simulation of HgCdTe LWIR Photodetectors
NASA Astrophysics Data System (ADS)
Vallone, Marco; Goano, Michele; Bertazzi, Francesco; Ghione, Giovanni; Schirmacher, Wilhelm; Hanna, Stefan; Figgemeier, Heinrich
2016-09-01
We present a simulation study of HgCdTe-based long-wavelength infrared detectors, focusing on methodological comparisons between the finite-difference time-domain (FDTD) and ray-tracing optical models. We performed three-dimensional simulations to determine the absorbed photon density distributions and the corresponding photocurrent and quantum efficiency spectra of isolated n-on- p uniform-composition pixels, systematically comparing the results obtained with FDTD and ray tracing. Since ray tracing is a classical optics approach, unable to describe interference effects, its applicability has been found to be strongly wavelength dependent, especially when reflections from metallic layers are relevant. Interesting cavity effects around the material cutoff wavelength are described, and the cases where ray tracing can be considered a viable approximation are discussed.
Shock-loading response of advanced materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, G.T. III
1993-08-01
Advanced materials, such as composites (metal, ceramic, or polymer-matrix), intermetallics, foams (metallic or polymeric-based), laminated materials, and nanostructured materials are receiving increasing attention because their properties can be custom tailored specific applications. The high-rate/impact response of advanced materials is relevant to a broad range of service environments such as the crashworthiness of civilian/military vehicles, foreign-object-damage in aerospace, and light-weight armor. Increased utilization of these material classes under dynamic loading conditions requires an understanding of the relationship between high-rate/shock-wave response as a function of microstructure if we are to develop models to predict material behavior. In this paper the issues relevantmore » to defect generation, storage, and the underlying physical basis needed in predictive models for several advanced materials will be reviewed.« less
Light on fluorescent lipids in rafts: a lesson from model membranes.
Kahya, Nicoletta
2010-09-15
Tracking fluorescent lipids in cellular membranes has been applied for decades to shed light on membrane trafficking, sorting, endocytosis and exocytosis, viral entry, and to understand the functional relevance of membrane heterogeneity, phase separation and lipid rafts. However, fluorescent probes may display different organizing behaviour from their corresponding endogenous lipids. A full characterization of these probes is therefore required for proper interpretation of fluorescence microscopy data in complex membrane systems. Model membrane studies provide essential clues that guide us to design and interpret our experiments, help us to avoid pitfalls and resolve artefacts in complex cellular environments. In the present issue of the Biochemical Journal, Juhasz, Davis and Sharom demonstrate the importance of testing lipid probes systematically in heterogeneous model membranes of specific composition and well-defined thermodynamic properties. The phase-partitioning behaviour of fluorescent probes, alone and/or in combination, cannot simply be assumed, but has to be fully characterized.
Species survival emerge from rare events of individual migration
NASA Astrophysics Data System (ADS)
Zelnik, Yuval R.; Solomon, Sorin; Yaari, Gur
2015-01-01
Ecosystems greatly vary in their species composition and interactions, yet they all show remarkable resilience to external influences. Recent experiments have highlighted the significant effects of spatial structure and connectivity on the extinction and survival of species. It has also been emphasized lately that in order to study extinction dynamics reliably, it is essential to incorporate stochasticity, and in particular the discrete nature of populations, into the model. Accordingly, we applied a bottom-up modeling approach that includes both spatial features and stochastic interactions to study survival mechanisms of species. Using the simplest spatial extension of the Lotka-Volterra predator-prey model with competition, subject to demographic and environmental noise, we were able to systematically study emergent properties of this rich system. By scanning the relevant parameter space, we show that both survival and extinction processes often result from a combination of habitat fragmentation and individual rare events of recolonization.
Species survival emerge from rare events of individual migration.
Zelnik, Yuval R; Solomon, Sorin; Yaari, Gur
2015-01-19
Ecosystems greatly vary in their species composition and interactions, yet they all show remarkable resilience to external influences. Recent experiments have highlighted the significant effects of spatial structure and connectivity on the extinction and survival of species. It has also been emphasized lately that in order to study extinction dynamics reliably, it is essential to incorporate stochasticity, and in particular the discrete nature of populations, into the model. Accordingly, we applied a bottom-up modeling approach that includes both spatial features and stochastic interactions to study survival mechanisms of species. Using the simplest spatial extension of the Lotka-Volterra predator-prey model with competition, subject to demographic and environmental noise, we were able to systematically study emergent properties of this rich system. By scanning the relevant parameter space, we show that both survival and extinction processes often result from a combination of habitat fragmentation and individual rare events of recolonization.
Baka, Maria; Verheyen, Davy; Cornette, Nicolas; Vercruyssen, Stijn; Van Impe, Jan F
2017-01-02
The limited knowledge concerning the influence of food (micro)structure on microbial dynamics decreases the accuracy of the developed predictive models, as most studies have mainly been based on experimental data obtained in liquid microbiological media or in/on real foods. The use of model systems has a great potential when studying this complex factor. Apart from the variability in (micro)structural properties, model systems vary in compositional aspects, as a consequence of their (micro)structural variation. In this study, different experimental food model systems, with compositional and physicochemical properties similar to fish patés, are developed to study the influence of food (micro)structure on microbial dynamics. The microbiological safety of fish products is of major importance given the numerous cases of salmonellosis and infections attributed to staphylococcus toxins. The model systems understudy represent food (micro)structures of liquids, aqueous gels, emulsions and gelled emulsions. The growth/inactivation dynamics and a modelling approach of combined growth and inactivation of Salmonella Typhimurium and Staphylococcus aureus, related to fish products, are investigated in/on these model systems at temperatures relevant to fish products' common storage (4°C) and to abuse storage temperatures (8 and 12°C). ComBase (http://www.combase.cc/) predictions compared with the maximum specific growth rate (μ max ) values estimated by the Baranyi and Roberts model in the current study indicated that the (micro)structure influences the microbial dynamics. Overall, ComBase overestimated microbial growth at the same pH, a w and storage temperature. Finally, the storage temperature had also an influence on how much each model system affected the microbial dynamics. Copyright © 2016. Published by Elsevier B.V.
The effects of gender composition on women's experience in math work groups.
Grover, Sarah S; Ito, Tiffany A; Park, Bernadette
2017-06-01
The present studies tested a model outlining the effects of group gender composition on self- and others' perceptions of women's math ability in a truly interactive setting with groups composed entirely of naïve participants (N = 158 4-person groups across 3 studies). One woman in each group was designated to be the "expert" by having her complete a tutorial that gave her task-relevant knowledge for a subsequent group task. Group gender composition was hypothesized to influence perceptions of women's math ability through intrapersonal processes (stereotype threat effects on performance) and interpersonal processes (social cohesion between the expert and other group members). Group composition affected the experts' performance in the group math task, but importantly, it also affected their social cohesion with group members. Moreover, both of these effects-lowered performance and poorer social cohesion in male-dominated groups-made independent contributions in accounting for group gender composition effects on perceptions of women's math ability (Studies 1 and 2). Boundary conditions were examined in a 3rd study. Women who had a history of excelling in math and had chosen a math-intensive STEM major were selected to be the designated experts. We predicted and found this would be sufficient to eliminate the effect of group gender composition on interpersonal processes, and correspondingly the effect on women's perceived math ability. Interestingly (and consistent with past work on stereotype threat effects among highly domain-identified individuals), there were continued performance differences indicative of effects on intrapersonal processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Monitoring in situ biodegradation of benzene and toluene by stable carbon isotope fractionation.
Vieth, Andrea; Kästner, Matthias; Schirmer, Mario; Weiss, Holger; Gödeke, Stefan; Meckenstock, Rainer U; Richnow, Hans H
2005-01-01
Intrinsic biodegradation of benzene and toluene in a heavily contaminated aquifer at the site of a former hydrogenation plant was investigated by means of isotope fractionation processes. The carbon isotope compositions of benzene and toluene were monitored in two campaigns within a time period of 12 months to assess the extent of the in situ biodegradation and the stability of the plume over time. The Rayleigh model, applied to calculate the extent of biodegradation and residual theoretical concentrations of toluene, showed that in situ biodegradation was a relevant attenuation process. The biodegradation rate constant for toluene was estimated to be k = 5.7+/-0.5 microM/d in the groundwater flow path downstream of the source area. The spatial distribution of the carbon isotope composition of benzene indicated that in situ biodegradation occurred at marginal zones of the plume where concentrations were lower than 30 mg/L. The vertical structure of the benzene plume provided evidence for in situ degradation processes at the upper and lower fringes of the plume. The results show that isotope fractionation can be used to quantify the extent of microbial in situ degradation in contaminated aquifers and to develop conceptual models for natural attenuation approaches.
Zebrafish Axenic Larvae Colonization with Human Intestinal Microbiota.
Arias-Jayo, Nerea; Alonso-Saez, Laura; Ramirez-Garcia, Andoni; Pardo, Miguel A
2018-04-01
The human intestine hosts a vast and complex microbial community that is vital for maintaining several functions related with host health. The processes that determine the gut microbiome composition are poorly understood, being the interaction between species, the external environment, and the relationship with the host the most feasible. Animal models offer the opportunity to understand the interactions between the host and the microbiota. There are different gnotobiotic mice or rat models colonized with the human microbiota, however, to our knowledge, there are no reports on the colonization of germ-free zebrafish with a complex human intestinal microbiota. In the present study, we have successfully colonized 5 days postfertilization germ-free zebrafish larvae with the human intestinal microbiota previously extracted from a donor and analyzed by high-throughput sequencing the composition of the transferred microbial communities that established inside the zebrafish gut. Thus, we describe for first time which human bacteria phylotypes are able to colonize the zebrafish digestive tract. Species with relevant interest because of their linkage to dysbiosis in different human diseases, such as Akkermansia muciniphila, Eubacterium rectale, Faecalibacterium prausnitzii, Prevotella spp., or Roseburia spp. have been successfully transferred inside the zebrafish digestive tract.
Freitas, AM; Samy, KP; Farris, AB; Leopardi, FV; Song, M; Stempora, L; Strobert, EA; Jenkins, JA; Kirk, AD; Cendales, LC
2016-01-01
Vascularized composite allografts (VCAs) are technically feasible. Similar to other organ transplants, VCAs are hampered by the toxicity and incomplete efficacy associated with conventional immunosuppression. Complications attributable to calcineurin inhibitors remain prevalent in the clinical cases reported to date, and these loom particularly large given the non-lifesaving nature of VCAs. Additionally, acute rejection remains almost ubiquitous, albeit controllable with current agents. Costimulation blockade offers the potential to provide prophylaxis from rejection without the adverse consequences of calcineurin-based regimens. In this study, we used a non-human-primate model of VCA in conjunction with immunosuppressive regimens containing combinations of B7-specific costimulation blockade with and without adhesion blockade with LFA3-Ig to determine what adjunctive role these agents could play in VCA transplantation when combined with more conventional agents. Compared to tacrolimus, the addition of belatacept improved rejection free allograft survival. The combination with LFA3-Ig reduced CD2hi memory T cells, however did not provide additional protection against allograft rejection and hindered protective immunity. Histology paralleled clinical histopathology and Banff grading. These data provide the basis for the study of costimulation blockade in VCA in a relevant preclinical model. PMID:26139552
Wang, Kai; Ye, Xiansen; Zhang, Huajun; Chen, Heping; Zhang, Demin; Liu, Lian
2016-01-01
Knowledge about the drivers of benthic prokaryotic diversity and metabolic potential in interconnected coastal sediments at regional scales is limited. We collected surface sediments across six zones covering ~200 km in coastal northern Zhejiang, East China Sea and combined 16 S rRNA gene sequencing, community-level metabolic prediction, and sediment physicochemical measurements to investigate variations in prokaryotic diversity and metabolic gene composition with geographic distance and under local environmental conditions. Geographic distance was the most influential factor in prokaryotic β-diversity compared with major environmental drivers, including temperature, sediment texture, acid-volatile sulfide, and water depth, but a large unexplained variation in community composition suggested the potential effects of unmeasured abiotic/biotic factors and stochastic processes. Moreover, prokaryotic assemblages showed a biogeographic provincialism across the zones. The predicted metabolic gene composition similarly shifted as taxonomic composition did. Acid-volatile sulfide was strongly correlated with variation in metabolic gene composition. The enrichments in the relative abundance of sulfate-reducing bacteria and genes relevant with dissimilatory sulfate reduction were observed and predicted, respectively, in the Yushan area. These results provide insights into the relative importance of geographic distance and environmental condition in driving benthic prokaryotic diversity in coastal areas and predict specific biogeochemically-relevant genes for future studies. PMID:27917954
A system for environmental model coupling and code reuse: The Great Rivers Project
NASA Astrophysics Data System (ADS)
Eckman, B.; Rice, J.; Treinish, L.; Barford, C.
2008-12-01
As part of the Great Rivers Project, IBM is collaborating with The Nature Conservancy and the Center for Sustainability and the Global Environment (SAGE) at the University of Wisconsin, Madison to build a Modeling Framework and Decision Support System (DSS) designed to help policy makers and a variety of stakeholders (farmers, fish & wildlife managers, hydropower operators, et al.) to assess, come to consensus, and act on land use decisions representing effective compromises between human use and ecosystem preservation/restoration. Initially focused on Brazil's Paraguay-Parana, China's Yangtze, and the Mississippi Basin in the US, the DSS integrates data and models from a wide variety of environmental sectors, including water balance, water quality, carbon balance, crop production, hydropower, and biodiversity. In this presentation we focus on the modeling framework aspect of this project. In our approach to these and other environmental modeling projects, we see a flexible, extensible modeling framework infrastructure for defining and running multi-step analytic simulations as critical. In this framework, we divide monolithic models into atomic components with clearly defined semantics encoded via rich metadata representation. Once models and their semantics and composition rules have been registered with the system by their authors or other experts, non-expert users may construct simulations as workflows of these atomic model components. A model composition engine enforces rules/constraints for composing model components into simulations, to avoid the creation of Frankenmodels, models that execute but produce scientifically invalid results. A common software environment and common representations of data and models are required, as well as an adapter strategy for code written in e.g., Fortran or python, that still enables efficient simulation runs, including parallelization. Since each new simulation, as a new composition of model components, requires calibration of parameters (fudge factors) to produce scientifically valid results, we are also developing an autocalibration engine. Finally, visualization is a key element of this modeling framework strategy, both to convey complex scientific data effectively, and also to enable non-expert users to make full use of the relevant features of the framework. We are developing a visualization environment with a strong data model, to enable visualizations, model results, and data all to be handled similarly.
Relevance in Basic Composition: Writing Assignments for Technical Students.
ERIC Educational Resources Information Center
Tichenor, Stuart
Generally, students in vocational and technical colleges are in writing classes because they must be, not because they want to be. As a rule, students in basic composition classes have been more or less continually exposed to writing classes since middle school where they been asked to keep journals, read articles and short stories, and write…
Rapid Solidification in Bulk Ti-Nb Alloys by Single-Track Laser Melting
NASA Astrophysics Data System (ADS)
Roehling, John D.; Perron, Aurélien; Fattebert, Jean-Luc; Haxhimali, Tomorr; Guss, Gabe; Li, Tian T.; Bober, David; Stokes, Adam W.; Clarke, Amy J.; Turchi, Patrice E. A.; Matthews, Manyalibo J.; McKeown, Joseph T.
2018-05-01
Single-track laser melting experiments were performed on bulk Ti-Nb alloys to explore process parameters and the resultant macroscopic structure and microstructure. The microstructures in Ti-20Nb and Ti-50Nb (at.%) alloys exhibited cellular growth during rapid solidification, with average cell size of approximately 0.5 µm. Solidification velocities during cellular growth were calculated from images of melt tracks. Measurements of the composition in the cellular and intercellular regions revealed nonequilibrium partitioning and its dependence on velocity during rapid solidification. Experimental results were used to benchmark a phase-field model to describe rapid solidification under conditions relevant to additive manufacturing.
First observation of a mass independent isotopic fractionation in a condensation reaction
NASA Technical Reports Server (NTRS)
Thiemens, M. H.; Nelson, R.; Dong, Q. W.; Nuth, Joseph A., III
1994-01-01
Thiemens and Heidenreich (1983) first demonstrated that a chemically produced mass independent isotopic fractionation process could produce an isotopic composition which is identical to that observed in Allende inclusions. This raised the possibility that the meteoritic components could be produced by chemical, rather than nuclear processes. In order to develop a mechanistic model of the early solar system, it is important that relevant reactions be studied, particularly, those which may occur in the earliest condensation reactions. The isotopic results for isotopic fractionations associated with condensation processes are reported. A large mass independent isotopic fractionation is observed in one of the experiments.
Integrated Composite Analyzer (ICAN): Users and programmers manual
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Chamis, C. C.
1986-01-01
The use of and relevant equations programmed in a computer code designed to carry out a comprehensive linear analysis of multilayered fiber composites is described. The analysis contains the essential features required to effectively design structural components made from fiber composites. The inputs to the code are constituent material properties, factors reflecting the fabrication process, and composite geometry. The code performs micromechanics, macromechanics, and laminate analysis, including the hygrothermal response of fiber composites. The code outputs are the various ply and composite properties, composite structural response, and composite stress analysis results with details on failure. The code is in Fortran IV and can be used efficiently as a package in complex structural analysis programs. The input-output format is described extensively through the use of a sample problem. The program listing is also included. The code manual consists of two parts.
Heydenreich, Juliane; Kayser, Bengt; Schutz, Yves; Melzer, Katarina
2017-12-01
Endurance athletes perform periodized training in order to prepare for main competitions and maximize performance. However, the coupling between alterations of total energy expenditure (TEE), energy intake, and body composition during different seasonal training phases is unclear. So far, no systematic review has assessed fluctuations in TEE, energy intake, and/or body composition in endurance athletes across the training season. The purpose of this study was to (1) systematically analyze TEE, energy intake, and body composition in highly trained athletes of various endurance disciplines and of both sexes and (2) analyze fluctuations in these parameters across the training season. An electronic database search was conducted on the SPORTDiscus and MEDLINE (January 1990-31 January 2015) databases using a combination of relevant keywords. Two independent reviewers identified potentially relevant studies. Where a consensus was not reached, a third reviewer was consulted. Original research articles that examined TEE, energy intake, and/or body composition in 18-40-year-old endurance athletes and reported the seasonal training phases of data assessment were included in the review. Articles were excluded if body composition was assessed by skinfold measurements, TEE was assessed by questionnaires, or data could not be split between the sexes. Two reviewers assessed the quality of studies independently. Data on subject characteristics, TEE, energy intake, and/or body composition were extracted from the included studies. Subjects were categorized according to their sex and endurance discipline and each study allocated a weight within categories based on the number of subjects assessed. Extracted data were used to calculate weighted means and standard deviations for parameters of TEE, energy intake, and/or body composition. From 3589 citations, 321 articles were identified as potentially relevant, with 82 meeting all of the inclusion criteria. TEE of endurance athletes was significantly higher during the competition phase than during the preparation phase (p < 0.001) and significantly higher than energy intake in both phases (p < 0.001). During the competition phase, both body mass and fat-free mass were significantly higher compared to other seasonal training phases (p < 0.05). Limitations of the present study included insufficient data being available for all seasonal training phases and thus low explanatory power of single parameters. Additionally, the classification of the different seasonal training phases has to be discussed. Male and female endurance athletes show important training seasonal fluctuations in TEE, energy intake, and body composition. Therefore, dietary intake recommendations should take into consideration other factors including the actual training load, TEE, and body composition goals of the athlete.
A Data Mining Approach to Improve Inorganic Characterization of Amanita ponderosa Mushrooms.
Salvador, Cátia; Martins, M Rosário; Vicente, Henrique; Caldeira, A Teresa
2018-01-01
Amanita ponderosa are wild edible mushrooms that grow in some microclimates of Iberian Peninsula. Gastronomically this species is very relevant, due to not only the traditional consumption by the rural populations but also its commercial value in gourmet markets. Mineral characterisation of edible mushrooms is extremely important for certification and commercialization processes. In this study, we evaluate the inorganic composition of Amanita ponderosa fruiting bodies (Ca, K, Mg, Na, P, Ag, Al, Ba, Cd, Cr, Cu, Fe, Mn, Pb, and Zn) and their respective soil substrates from 24 different sampling sites of the southwest Iberian Peninsula (e.g., Alentejo, Andalusia, and Extremadura). Mineral composition revealed high content in macroelements, namely, potassium, phosphorus, and magnesium. Mushrooms showed presence of important trace elements and low contents of heavy metals within the limits of RDI. Bioconcentration was observed for some macro- and microelements, such as K, Cu, Zn, Mg, P, Ag, and Cd. A. ponderosa fruiting bodies showed different inorganic profiles according to their location and results pointed out that it is possible to generate an explanatory model of segmentation, performed with data based on the inorganic composition of mushrooms and soil mineral content, showing the possibility of relating these two types of data.
A Data Mining Approach to Improve Inorganic Characterization of Amanita ponderosa Mushrooms
Salvador, Cátia; Martins, M. Rosário
2018-01-01
Amanita ponderosa are wild edible mushrooms that grow in some microclimates of Iberian Peninsula. Gastronomically this species is very relevant, due to not only the traditional consumption by the rural populations but also its commercial value in gourmet markets. Mineral characterisation of edible mushrooms is extremely important for certification and commercialization processes. In this study, we evaluate the inorganic composition of Amanita ponderosa fruiting bodies (Ca, K, Mg, Na, P, Ag, Al, Ba, Cd, Cr, Cu, Fe, Mn, Pb, and Zn) and their respective soil substrates from 24 different sampling sites of the southwest Iberian Peninsula (e.g., Alentejo, Andalusia, and Extremadura). Mineral composition revealed high content in macroelements, namely, potassium, phosphorus, and magnesium. Mushrooms showed presence of important trace elements and low contents of heavy metals within the limits of RDI. Bioconcentration was observed for some macro- and microelements, such as K, Cu, Zn, Mg, P, Ag, and Cd. A. ponderosa fruiting bodies showed different inorganic profiles according to their location and results pointed out that it is possible to generate an explanatory model of segmentation, performed with data based on the inorganic composition of mushrooms and soil mineral content, showing the possibility of relating these two types of data. PMID:29623092
NASA Technical Reports Server (NTRS)
Coats, Timothy William
1996-01-01
An investigation of translaminate fracture and a progressive damage methodology was conducted to evaluate and develop a residual strength prediction capability for laminated composites with through penetration notches. This is relevant to the damage tolerance of an aircraft fuselage that might suffer an in-flight accident such as an uncontained engine failure. An experimental characterization of several composite materials systems revealed an R-curve type of behavior. Fractographic examinations led to the postulate that this crack growth resistance could be due to fiber bridging, defined here as fractured fibers of one ply bridged by intact fibers of an adjacent ply. The progressive damage methodology is currently capable of predicting the initiation and growth of matrix cracks and fiber fracture. Using two difference fiber failure criteria, residual strength was predicted for different size panel widths and notch lengths. A ply discount fiber failure criterion yielded extremely conservative results while an elastic-perfectly plastic fiber failure criterion showed that the fiber bridging concept is valid for predicting residual strength for tensile dominated failure loads. Furthermore, the R-curves predicted by the model using the elastic-perfectly plastic fiber criterion compared very well with the experimental R-curves.
Composite Dry Structure Cost Improvement Approach
NASA Technical Reports Server (NTRS)
Nettles, Alan; Nettles, Mindy
2015-01-01
This effort demonstrates that by focusing only on properties of relevance, composite interstage and shroud structures can be placed on the Space Launch System vehicle that simultaneously reduces cost, improves reliability, and maximizes performance, thus providing the Advanced Development Group with a new methodology of how to utilize composites to reduce weight for composite structures on launch vehicles. Interstage and shroud structures were chosen since both of these structures are simple in configuration and do not experience extreme environments (such as cryogenic or hot gas temperatures) and should represent a good starting point for flying composites on a 'man-rated' vehicle. They are used as an example only. The project involves using polymer matrix composites for launch vehicle structures, and the logic and rationale behind the proposed new methodology.
Krystek, Petra; Bäuerlein, Patrick S; Kooij, Pascal J F
2015-03-15
For pharmaceutical applications, the use of inorganic engineered nanoparticles is of growing interest while silver (Ag) and gold (Au) are the most relevant elements. A few methods were developed recently but the validation and the application testing were quite limited. Therefore, a routinely suitable multi element method for the identification of nanoparticles of different sizes below 100 nm and elemental composition by applying asymmetric flow field flow fraction (AF4) - inductively coupled plasma mass spectrometry (ICPMS) is developed. A complete validation model of the quantification of releasable pharmaceutical relevant inorganic nanoparticles based on Ag and Au is presented for the most relevant aqueous matrices of tap water and domestic waste water. The samples are originated from locations in the Netherlands and it is of great interest to study the unwanted presence of Ag and Au as nanoparticle residues due to possible health and environmental risks. During method development, instability effects are observed for 60 nm and 70 nm Ag ENPs with different capping agents. These effects are studied more closely in relation to matrix effects. Besides the methodological aspects, the obtained analytical results and relevant performance characteristics (e.g. measuring range, limit of detection, repeatability, reproducibility, trueness, and expanded uncertainty of measurement) are determined and discussed. For the chosen aqueous matrices, the results of the performance characteristics are significantly better for Au ENPs in comparison to Ag ENPs; e.g. repeatability and reproducibility are below 10% for all Au ENPs respectively maximal 27% repeatability for larger Ag ENPs. The method is a promising tool for the simultaneous determination of releasable pharmaceutical relevant inorganic nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
McElroy, Mack; de Carvalho, Nelson; Estes, Ashley; Lin, Shih-yung
2017-01-01
Use of lightweight composite materials in space and aircraft structure designs is often challenging due to high costs associated with structural certification. Of primary concern in the use of composite structures is durability and damage tolerance. This concern is due to the inherent susceptibility of composite materials to both fabrication and service induced flaws. Due to a lack of general industry accepted analysis tools applicable to composites damage simulation, a certification procedure relies almost entirely on testing. It is this reliance on testing, especially compared to structures comprised of legacy metallic materials where damage simulation tools are available, that can drive costs for using composite materials in aerospace structures. The observation that use of composites can be expensive due to testing requirements is not new and as such, research on analysis tools for simulating damage in composite structures has been occurring for several decades. A convenient approach many researchers/model-developers in this area have taken is to select a specific problem relevant to aerospace structural certification and develop a model that is accurate within that scope. Some examples are open hole tension tests, compression after impact tests, low-velocity impact, damage tolerance of an embedded flaw, and fatigue crack growth to name a few. Based on the premise that running analyses is cheaper than running tests, one motivation that many researchers in this area have is that if generally applicable and reliable damage simulation tools were available the dependence on certification testing could be lessened thereby reducing overall design cost. It is generally accepted that simulation tools if applied in this manner would still need to be thoroughly validated and that composite testing will never be completely replaced by analysis. Research and development is currently occurring at NASA to create numerical damage simulation tools applicable to damage in composites. The Advanced Composites Project (ACP) at NASA Langley has supported the development of composites damage simulation tools in a consortium of aerospace companies with a goal of reducing the certification time of a commercial aircraft by 30%. And while the scope of ACP does not include spacecraft, much of the methodology and simulation capabilities can apply to spacecraft certification in the Space Launch System and Orion programs as well. Some specific applications of composite damage simulation models in a certification program are (1) evaluation of damage during service when maintenance may be difficult or impossible, (2) a tool for early design iterations, (3) gaining insight into a particular damage process and applying this insight towards a test coupon or structural design, and (4) analysis of damage scenarios that are difficult or impossible to recreate in a test. As analysis capabilities improve, these applications and more will become realized resulting in a reduction in cost for use of composites in aerospace vehicles. NASA is engaged in this process from both research and application perspectives. In addition to the background information discussed previously, this presentation covers a look at recent research at NASA in this area and some current/potential applications in the Orion program.
Atmospheric Science Data Center
2017-01-31
... Relevant Documents: DISCOVER-AQ - Airborne Science Data for Atmospheric Composition DISCOVER-AQ - NASA Earth ... DISCOVER-AQ - Mission Highlight Featured Articles : Articles featuring DISCOVER-AQ data products SCAR-B ...
NASA Astrophysics Data System (ADS)
Lynn, K. J.; Warren, J. M.
2017-12-01
Nominally anhydrous minerals (NAMs) are important for characterizing deep-Earth water reservoirs, but the water contents of olivine (ol), orthopyroxene (opx), and clinopyroxene (cpx) in peridotites generally do not reflect mantle equilibrium conditions. Ol is typically "dry" and decoupled from H in cpx and opx, which is inconsistent with models of partial melting and/or diffusive loss of H during upwelling beneath mid-ocean ridges. The rehydration of mantle pyroxenes via late-stage re-fertilization has been invoked to explain their relatively high water contents. Here, we use sophisticated 3D diffusion models (after Shea et al., 2015, Am Min) of H in ol, opx, and cpx to investigate the timescales of rehydration across a range of conditions relevant for melt-rock interaction and serpentinization of peridotites. Numerical crystals with 1 mm c-axis lengths and realistic crystal morphologies are modeled using recent H diffusivities that account for compositional variation and diffusion anisotropy. Models were run over timescales of minutes to millions of years and temperatures from 300 to 1200°C. Our 3D models show that, at the high-T end of the range, H concentrations in the cores of NAMs are partially re-equilibrated in as little as a few minutes, and completely re-equilibrated within hours to weeks. At low-T (300°C), serpentinization can induce considerable diffusion in cpx and opx. H contents are 30% re-equilibrated after continuous exposure to hydrothermal fluids for 102 and 105 years, respectively, which is inconsistent with previous interpretations that there is no effect on H in opx under similar conditions. Ol is unaffected after 1 Myr due to the slower diffusivity of the proton-vacancy mechanism at 300°C (2-4 log units lower than for opx). In the middle of the T range (700-1000°C), rehydration of opx and cpx occurs over hours to days, while ol is somewhat slower to respond (days to weeks), potentially allowing the decoupling observed in natural samples to occur via melt re-fertilization. Finally, off-center and oblique sections are common in natural samples and measurements likely reflect at least partially re-equilibrated compositions. Thus, the high water contents in peridotites may reflect variable NAM rehydration over a range of temperatures and timescales relevant for mid ocean ridge processes.
The ultrasonic machining of silicon carbide / alumina composites
NASA Astrophysics Data System (ADS)
Nicholson, Garth Martyn John
Silicon carbide fibre reinforced alumina is a ceramic composite which was developed in conjunction with the Rolls-Royce Aerospace Group. The material is intended for use in the latest generation of jet engines, specifically for high temperature applications such as flame holders, combustor barrel segments and turbine blade tip seals. The material in question has properties which have been engineered by optimizing fibre volume fractions, weaves and fibre interface materials to meet the following main requirements : high thermal resistance, high thermal shock resistance and low density.Components intended for manufacture using this material will use the "direct metal oxidation" (DIMOX) method. This process involves manufacturing a near net shape component from the woven fibre matting, and infiltrating the matting with the alumina matrix material. Some of the components outlined require high tolerance features to be included in their design. The combustor barrel segments for example require slots to be formed within them for sealing purposes, the dimensions of these features preclude their formation using DIMOX, and therefore require a secondary process to be performed. Conventional machining techniques such as drilling, turning and milling cannot be used because of the brittle nature of the material. Electrodischarge machining (E.D.M.) cannot be used since the material is an insulator. Electrochemical machining (E.C.M.) cannot be used since the material is chemically inert. One machining method which could be used is ultrasonic machining (U.S.M.).The research programme investigated the feasibility of using ultrasonic machining as a manufacturing method for this new fibre reinforced composite. Two variations of ultrasonic machining were used : ultrasonic drilling and ultrasonic milling. Factors such as dimensional accuracy, surface roughness and delamination effects were examined. Previously performed ultrasonic machining experimental programmes were reviewed, as well as process models which have been developed. The process models were found to contain empirical constants which usually require specific material data for their calculation.Since a limited amount of the composite was available, and ultrasonic machining has many process variables, a Taguchi factorial experiment was conducted in order to ascertain the most relevant factors in machining. A full factorial experiment was then performed using the relevant factors. Techniques used in the research included both optical and scanning electron microscopy, surface roughness analysis, x-ray analysis and finite element stress analysis. A full set of machining data was obtained including relationships between the factors examined and both material removal rates, and surface roughness values. An attempt was made to explain these findings by examining established brittle fracture mechanisms. These established mechanisms did not seem to apply entirely to this material, an alternative method of material removal is therefore proposed. It is hoped that the data obtained from this research programme may contribute to the development of a more realistic mathematical model.
NASA Astrophysics Data System (ADS)
Knight, Chase C.
Carbon fiber reinforced plastics (CFRP) are composite materials that consist of carbon fibers embedded in a polymer matrix, a combination that yields materials with properties exceeding the individual properties of each component. CFRP have several advantages over metals: they offer superior strength to weight ratios and superior resistance to corrosion and chemical attack. These advantages, along with continuing improvement in manufacturing processes, have resulted in rapid growth in the number of CFRP products and applications especially in the aerospace/aviation, wind energy, automotive, and sporting goods industries. Due to theses well-documented benefits and advancements in manufacturing capabilities, CFRP will continue to replace traditional materials of construction throughout several industries. However, some of the same properties that make CFRP outstanding materials also pose a major problem once these materials reach the end of service life. They become difficult to recycle. With composite consumption in North America growing by almost 5 times the rate of the US GDP in 2012, this lack of recyclability is a growing concern. As consumption increases, more waste will inevitably be generated. Current composite recycling technologies include mechanical recycling, thermal processing, and chemical processing. The major challenge of CFRP recycling is the ability to recover materials of high-value and preserve their properties. To this end, the most suitable technology is chemical processing, where the polymer matrix can be broken down and removed from the fiber, with limited damage to the fibers. This can be achieved using high concentration acids, but such a process is undesirable due to the toxicity of such materials. A viable alternative to acid is water in the sub-critical and supercritical region. Under these conditions, the behavior of this abundant and most environmentally friendly solvent resembles that of an organic compound, facilitating the breakdown of the polymer matrix. To date, very few studies have been reported in this area and the studies thus far have only focused on small scale feasibility and have only shown the recovery of random fibers. The goal of this research is to advance the knowledge in the field of sub-critical and supercritical fluid recycling by providing fundamental information that will be necessary to move this process forward to an industrial scale. This dissertation work consists of several phases of studies. In the first phase of this research, the feasibility of recycling woven CFRP was established on a scale approximately 30 times larger than previously reported. The industrial relevance was also conveyed, as the process was shown to remove up 99% of a highly cross-linked resin from an aerospace grade composite system with 100% retention of the single filament tensile strength and modulus whilst also retaining the highly valuable woven fiber structure. The second phase of research demonstrated the power of this technology to recycle multi-layer composites and provide the ability to reuse the highly valuable materials. Up to 99% resin elimination was achieved for a woven 12-layer aerospace grade composite. The recycled woven fabric layers, with excellent retention of the fiber architecture, were directly reused to fabricate reclaimed fiber composites (RFC). Manufacturing issues associated with the use of the recycled fiber were investigated. Several fabrication technologies were used to fabricate the composite, and the composites show moderate short beam shear strength and may be suitable for certain industrial applications. Moreover, fresh composites were also recycled, recovered, and reused to investigate the retention of flexural properties of the fibers after recycling. Up to 95% of the flexural strength and 98% of the flexural modulus was retained in the reclaimed fiber composites. The recycled resin residual can be incorporated into fresh resin and cured, demonstrating a near complete recycling loop. After showing the feasibility and power of this technology, the third phase of the study was focused on the fundamentals on the degradation of highly cross-linked polymer network by sub- and near-critical water. A methodology framework was established to study the apparent kinetics of the degradation of epoxy in sub-critical water. The reaction rate was modeled by a phenomenological rate model of nth order, and the rate constant was modeled by taking into account of the contributions of important physical parameters, e.g., pressure, temperature and dielectric constants. The applicability of the established model to describe the degradation kinetics was confirmed by the validation runs. This model is a suitable starting point to gain the knowledge required for eventual industrial process design. The final phase of this research consisted of a preliminary foray into investigating the economic feasibility of this technology. A process model was designed around a reactor which was sized according to considerations of industrial relevancy. The simulation of the process was done using Aspen Plus, powerful and comprehensive process simulation software. Economic analysis of this pseudo-realistic process suggested that such technology was economically viable and competitive comparing to other recycling technologies. In summary, this dissertation work represents the first comprehensive investigation on recycling aerospace-grade, multilayer woven fabric composites using supercritical and sub-critical water. The fundamental knowledge gained and process technology developed during this research is anticipated to play an important role in advancing this recycling technology toward potential adoption and implementation by the recycling and composite industry.
A hybrid formalism of aerosol gas phase interaction for 3-D global models
NASA Astrophysics Data System (ADS)
Benduhn, F.
2009-04-01
Aerosol chemical composition is a relevant factor to the global climate system with respect to both atmospheric chemistry and the aerosol direct and indirect effects. Aerosol chemical composition determines the capacity of aerosol particles to act as cloud condensation nuclei both explicitly via particle size and implicitly via the aerosol hygroscopic property. Due to the primary role of clouds in the climate system and the sensitivity of cloud formation and radiative properties to the cloud droplet number it is necessary to determine with accuracy the chemical composition of the aerosol. Dissolution, although a formally fairly well known process, may be subject to numerically prohibitive properties that result from the chemical interaction of the species engaged. So-far approaches to model the dissolution of inorganics into the aerosol liquid phase in the framework of a 3-D global model were based on an equilibrium, transient or hybrid equilibrium-transient approach. All of these methods present the disadvantage of a priori assumptions with respect to the mechanism and/or are numerically not manageable in the context of a global climate system model. In this paper a new hybrid formalism to aerosol gas phase interaction is presented within the framework of the H2SO4/HNO3/HCl/NH3 system and a modal approach of aerosol size discretisation. The formalism is distinct from prior hybrid approaches in as much as no a priori assumption on the nature of the regime a particular aerosol mode is in is made. Whether a particular mode is set to be in the equilibrium or the transitory regime is continuously determined during each time increment against relevant criteria considering the estimated equilibration time interval and the interdependence of the aerosol modes relative to the partitioning of the dissolving species. Doing this the aerosol composition range of numerical stiffness due to species interaction during transient dissolution is effectively eluded, and the numerical expense of dissolution in the transient regime is reduced through the minimisation of the number of modes in this regime and a larger time step. Containment of the numerical expense of the modes in the equilibrium regime is ensured through the usage of either an analytical equilibrium solver that requires iteration among the equilibrium modes, or a simple numerical solver based on a differential approach that requires iteration among the chemical species. Both equilibrium solvers require iteration over the water content and the activity coefficients. Decision for using either one or the other solver is made upon the consideration of the actual equilibrating mechanism, either chemical interaction or gas phase partial pressure variation, respectively. The formalism should thus ally appropriate process simplification resulting in reasonable computation time to a high degree of real process conformity as it is ensured by a transitory representation of dissolution. The resulting effectiveness and limits of the formalism are illustrated with numerical examples.
Numerical Mantle Convection Models With a Flexible Thermodynamic Interface
NASA Astrophysics Data System (ADS)
van den Berg, A. P.; Jacobs, M. H.; de Jong, B. H.
2001-12-01
Accurate material properties are needed for deep mantle (P,T) conditions in order to predict the longterm behavior of convection planetary mantles. Also the interpretation of seismological observations concerning the deep mantle in terms of mantle flow models calls for a consistent thermodynamical description of the basic physical parameters. We have interfaced a compressible convection code using the anelastic liquid approach based on finite element methods, to a database containing a full thermodynamic description of mantle silicates (Ita and King, J. Geophys. Res., 99, 15,939-15,940, 1994). The model is based on high resolution (P,T) tables of the relevant thermodynamic properties containing typically 50 million (P,T) table gridpoints to obtain resolution in (P,T) space of 1 K and an equivalent of 1 km. The resulting model is completely flexible such that numerical mantle convection experiments can be performed for any mantle composition for which the thermodynamic database is available. We present results of experiments for 2D cartesian models using a data base for magnesium-iron silicate in a pyrolitic composition (Stixrude and Bukowinski, Geoph.Monogr.Ser., 74, 131-142, 1993) and a recent thermodynamical model for magnesium silicate for the complete mantle (P,T) range, (Jacobs and Oonk, Phys. Chem. Mineral, 269, inpress 2001). Preliminary results of bulksound velocity distribution derived in a consistent way from the convection results and the thermodynamic database show a `realistic' mantle profile with bulkvelocity variations decreasing from several percent in the upper mantle to less than a percent in the deep lower mantle.
Characterization of the cardiac Na+/K+ pump by development of a comprehensive and mechanistic model.
Oka, Chiaki; Cha, Chae Young; Noma, Akinori
2010-07-07
A large amount of experimental data on the characteristics of the cardiac Na(+)/K(+) pump have been accumulated, but it remains difficult to predict the quantitative contribution of the pump in an intact cell because most measurements have been made under non-physiological conditions. To extrapolate the experimental findings to intact cells, we have developed a comprehensive Na(+)/K(+) pump model based on the thermodynamic framework (Smith and Crampin, 2004) of the Post-Albers reaction cycle combined with access channel mechanisms. The new model explains a variety of experimental results for the Na(+)/K(+) pump current (I(NaK)), including the dependency on the concentrations of Na(+) and K(+), the membrane potential and the free energy of ATP hydrolysis. The model demonstrates that both the apparent affinity and the slope of the substrate-I(NaK) relationship measured experimentally are affected by the composition of ions in the extra- and intracellular solutions, indirectly through alteration in the probability distribution of individual enzyme intermediates. By considering the voltage dependence in the Na(+)- and K(+)-binding steps, the experimental voltage-I(NaK) relationship could be reconstructed with application of experimental ionic compositions in the model, and the view of voltage-dependent K(+) binding was supported. Re-evaluation of charge movements accompanying Na(+) and K(+) translocations gave a reasonable number for the site density of the Na(+)/K(+) pump on the membrane. The new model is relevant for simulation of cellular functions under various interventions, such as depression of energy metabolism. (c) 2010 Elsevier Ltd. All rights reserved.
Photochemistry in Terrestrial Exoplanet Atmospheres. I. Photochemistry Model and Benchmark Cases
NASA Astrophysics Data System (ADS)
Hu, Renyu; Seager, Sara; Bains, William
2012-12-01
We present a comprehensive photochemistry model for exploration of the chemical composition of terrestrial exoplanet atmospheres. The photochemistry model is designed from the ground up to have the capacity to treat all types of terrestrial planet atmospheres, ranging from oxidizing through reducing, which makes the code suitable for applications for the wide range of anticipated terrestrial exoplanet compositions. The one-dimensional chemical transport model treats up to 800 chemical reactions, photochemical processes, dry and wet deposition, surface emission, and thermal escape of O, H, C, N, and S bearing species, as well as formation and deposition of elemental sulfur and sulfuric acid aerosols. We validate the model by computing the atmospheric composition of current Earth and Mars and find agreement with observations of major trace gases in Earth's and Mars' atmospheres. We simulate several plausible atmospheric scenarios of terrestrial exoplanets and choose three benchmark cases for atmospheres from reducing to oxidizing. The most interesting finding is that atomic hydrogen is always a more abundant reactive radical than the hydroxyl radical in anoxic atmospheres. Whether atomic hydrogen is the most important removal path for a molecule of interest also depends on the relevant reaction rates. We also find that volcanic carbon compounds (i.e., CH4 and CO2) are chemically long-lived and tend to be well mixed in both reducing and oxidizing atmospheres, and their dry deposition velocities to the surface control the atmospheric oxidation states. Furthermore, we revisit whether photochemically produced oxygen can cause false positives for detecting oxygenic photosynthesis, and find that in 1 bar CO2-rich atmospheres oxygen and ozone may build up to levels that have conventionally been accepted as signatures of life, if there is no surface emission of reducing gases. The atmospheric scenarios presented in this paper can serve as the benchmark atmospheres for quickly assessing the lifetime of trace gases in reducing, weakly oxidizing, and highly oxidizing atmospheres on terrestrial exoplanets for the exploration of possible biosignature gases.
Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing.
Jäger, Marten; Ott, Claus-Eric; Grünhagen, Johannes; Hecht, Jochen; Schell, Hanna; Mundlos, Stefan; Duda, Georg N; Robinson, Peter N; Lienau, Jasmin
2011-03-24
The sheep is an important model organism for many types of medically relevant research, but molecular genetic experiments in the sheep have been limited by the lack of knowledge about ovine gene sequences. Prior to our study, mRNA sequences for only 1,556 partial or complete ovine genes were publicly available. Therefore, we developed a composite de novo transcriptome assembly method for next-generation sequence data to combine known ovine mRNA and EST sequences, mRNA sequences from mouse and cow, and sequences assembled de novo from short read RNA-Seq data into a composite reference transcriptome, and identified transcripts from over 12 thousand previously undescribed ovine genes. Gene expression analysis based on these data revealed substantially different expression profiles in standard versus delayed bone healing in an ovine tibial osteotomy model. Hundreds of transcripts were differentially expressed between standard and delayed healing and between the time points of the standard and delayed healing groups. We used the sheep sequences to design quantitative RT-PCR assays with which we validated the differential expression of 26 genes that had been identified by RNA-seq analysis. A number of clusters of characteristic expression profiles could be identified, some of which showed striking differences between the standard and delayed healing groups. Gene Ontology (GO) analysis showed that the differentially expressed genes were enriched in terms including extracellular matrix, cartilage development, contractile fiber, and chemokine activity. Our results provide a first atlas of gene expression profiles and differentially expressed genes in standard and delayed bone healing in a large-animal model and provide a number of clues as to the shifts in gene expression that underlie delayed bone healing. In the course of our study, we identified transcripts of 13,987 ovine genes, including 12,431 genes for which no sequence information was previously available. This information will provide a basis for future molecular research involving the sheep as a model organism.
Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing
2011-01-01
Background The sheep is an important model organism for many types of medically relevant research, but molecular genetic experiments in the sheep have been limited by the lack of knowledge about ovine gene sequences. Results Prior to our study, mRNA sequences for only 1,556 partial or complete ovine genes were publicly available. Therefore, we developed a composite de novo transcriptome assembly method for next-generation sequence data to combine known ovine mRNA and EST sequences, mRNA sequences from mouse and cow, and sequences assembled de novo from short read RNA-Seq data into a composite reference transcriptome, and identified transcripts from over 12 thousand previously undescribed ovine genes. Gene expression analysis based on these data revealed substantially different expression profiles in standard versus delayed bone healing in an ovine tibial osteotomy model. Hundreds of transcripts were differentially expressed between standard and delayed healing and between the time points of the standard and delayed healing groups. We used the sheep sequences to design quantitative RT-PCR assays with which we validated the differential expression of 26 genes that had been identified by RNA-seq analysis. A number of clusters of characteristic expression profiles could be identified, some of which showed striking differences between the standard and delayed healing groups. Gene Ontology (GO) analysis showed that the differentially expressed genes were enriched in terms including extracellular matrix, cartilage development, contractile fiber, and chemokine activity. Conclusions Our results provide a first atlas of gene expression profiles and differentially expressed genes in standard and delayed bone healing in a large-animal model and provide a number of clues as to the shifts in gene expression that underlie delayed bone healing. In the course of our study, we identified transcripts of 13,987 ovine genes, including 12,431 genes for which no sequence information was previously available. This information will provide a basis for future molecular research involving the sheep as a model organism. PMID:21435219
NASA Astrophysics Data System (ADS)
Wonaschuetz, Anna
Atmospheric aerosols are a highly relevant component of the climate system affecting atmospheric radiative transfer and the hydrological cycle. As opposed to other key atmospheric constituents with climatic relevance, atmospheric aerosol particles are highly heterogeneous in time and space with respect to their size, concentration, chemical composition and physical properties. Many aspects of their life cycle are not understood, making them difficult to represent in climate models and hard to control as a pollutant. Aerosol-cloud interactions in particular are infamous as a major source of uncertainty in future climate predictions. Field measurements are an important source of information for the modeling community and can lead to a better understanding of chemical and microphysical processes. In this study, field data from urban, marine, and arid settings are analyzed and the impact of meteorological conditions on the evolution of aerosol particles while in the atmosphere is investigated. Particular attention is given to organic aerosols, which are a poorly understood component of atmospheric aerosols. Local wind characteristics, solar radiation, relative humidity and the presence or absence of clouds and fog are found to be crucial factors in the transport and chemical evolution of aerosol particles. Organic aerosols in particular are found to be heavily impacted by processes in the liquid phase (cloud droplets and aerosol water). The reported measurements serve to improve the process-level understanding of aerosol evolution in different environments and to inform the modeling community by providing realistic values for input parameters and validation of model calculations.
Taghadomi-Saberi, Saeedeh; Mas Garcia, Sílvia; Allah Masoumi, Amin; Sadeghi, Morteza; Marco, Santiago
2018-06-13
The quality and composition of bitter orange essential oils (EOs) strongly depend on the ripening stage of the citrus fruit. The concentration of volatile compounds and consequently its organoleptic perception varies. While this can be detected by trained humans, we propose an objective approach for assessing the bitter orange from the volatile composition of their EO. The method is based on the combined use of headspace gas chromatography⁻mass spectrometry (HS-GC-MS) and artificial neural networks (ANN) for predictive modeling. Data obtained from the analysis of HS-GC-MS were preprocessed to select relevant peaks in the total ion chromatogram as input features for ANN. Results showed that key volatile compounds have enough predictive power to accurately classify the EO, according to their ripening stage for different applications. A sensitivity analysis detected the key compounds to identify the ripening stage. This study provides a novel strategy for the quality control of bitter orange EO without subjective methods.
NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.
1997-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Here, we report on progress achieved between July I and December 31, 1996. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report are summarized as follows. Three research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somorjai, Gabor A.; Park, Jeong Y.
2008-02-13
Recent breakthroughs in synthesis in nanosciences have achieved control of size and shapes of nanoparticles that are relevant for catalyst design. In this article, we review the advance of synthesis of nanoparticles, fabrication of two and three dimensional model catalyst system, characterization, and studies of activity and selectivity. The ability to synthesize monodispersed platinum and rhodium nanoparticles in the 1-10 nm range permitted us to study the influence of composition, structure, and dynamic properties of monodispersed metal nanoparticle on chemical reactivity and selectivity. We review the importance of size and shape of nanoparticles to determine the reaction selectivity in multi-pathmore » reactions. The influence of metal-support interaction has been studied by probing the hot electron flows through the metal-oxide interface in catalytic nanodiodes. Novel designs of nanoparticle catalytic systems are discussed.« less
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Starke, Edgar A., Jr.; Gangloff, Richard P.; Herakovich, Carl T.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.
1995-01-01
The NASA-UVa Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. Here, we report on progress achieved between July 1 and December 31, 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.
Identification of complex stiffness tensor from waveform reconstruction
NASA Astrophysics Data System (ADS)
Leymarie, N.; Aristégui, C.; Audoin, B.; Baste, S.
2002-03-01
An inverse method is proposed in order to determine the viscoelastic properties of composite-material plates from the plane-wave transmitted acoustic field. Analytical formulations of both the plate transmission coefficient and its first and second derivatives are established, and included in a two-step inversion scheme. Two objective functions to be minimized are then designed by considering the well-known maximum-likelihood principle and by using an analytic signal formulation. Through these innovative objective functions, the robustness of the inversion process against high level of noise in waveforms is improved and the method can be applied to a very thin specimen. The suitability of the inversion process for viscoelastic property identification is demonstrated using simulated data for composite materials with different anisotropy and damping degrees. A study of the effect of the rheologic model choice on the elastic property identification emphasizes the relevance of using a phenomenological description considering viscosity. Experimental characterizations show then the good reliability of the proposed approach. Difficulties arise experimentally for particular anisotropic media.
Lopez-Sanchez, Patricia; Martinez-Sanz, Marta; Bonilla, Mauricio R; Wang, Dongjie; Gilbert, Elliot P; Stokes, Jason R; Gidley, Michael J
2017-04-15
Plant cell walls have a unique combination of strength and flexibility however, further investigations are required to understand how those properties arise from the assembly of the relevant biopolymers. Recent studies indicate that Ca 2+ -pectates can act as load-bearing components in cell walls. To investigate this proposed role of pectins, bioinspired wall models were synthesised based on bacterial cellulose containing pectin-calcium gels by varying the order of assembly of cellulose/pectin networks, pectin degree of methylesterification and calcium concentration. Hydrogels in which pectin-calcium assembly occurred prior to cellulose synthesis showed evidence for direct cellulose/pectin interactions from small-angle scattering (SAXS and SANS), had the densest networks and the lowest normal stress. The strength of the pectin-calcium gel affected cellulose structure, crystallinity and material properties. The results highlight the importance of the order of assembly on the properties of cellulose composite networks and support the role of pectin in the mechanics of cell walls. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hickey, Maud
2018-03-01
The purpose of this long-term qualitative study was to uncover evidence that might support components of positive youth development (PYD) in a music composition program at an urban youth detention center. The constructs of PYD come from self-determination theory-competence, autonomy, and relatedness-and formed the theoretical lens from which the data were analyzed. Over a period of 5 years, more than 700 youth participated in the program and created primarily rap music compositions. Comments from their feedback, as well as interviews, were analyzed using qualitative content analysis. Findings point to the emergence of two main categories as reasons for enjoying the program: competence and positive feelings. Creativity also emerged as linked to competence and autonomy as well as the "Good Lives Model" of detainee development. Further research on using culturally relevant and creative music programming as a tool in PYD is discussed.
Anthropometric, body composition and health determinants of active ageing: a gender approach.
López, Pilar Montero; Fernández-Ballesteros, Rocío; Zamarrón, María Dolores; López, Santiago Rodríguez
2011-09-01
This study applied a gender perspective to establish some of the anthropometric, body composition, health and socio-cultural determinants of active ageing. The variable 'active ageing' (presence/absence) was created based on cognitive and disability/illness/physical functioning, subjective health, satisfaction with life and productive activity performed, and used in predictive models to establish its relationship with anthropometric variables, physical health indicators and educational level. The sample consisted of 456 home-living individuals (169 men and 287 women; age range 54-75 years) from Madrid and Toledo in Spain. The women had a higher prevalence of obesity than the men (37.6% vs 29.0%), significantly greater fat accumulation in the abdominal area and worst perceived health (p=0.003). The frequency of active agers is higher in men than in women (38.4% vs 21.9%; p<0.001). Men and women were found to have distinctive ageing patterns. Health factors condition the presence of active ageing in women, while education factors are also relevant in men.
[Innovative application of small molecules to influence -pathogenicity of dental plaque].
Janus, M M; Volgenant, C M C; Krom, B P
2018-05-01
Current preventive measures against infectious oral diseases are mainly focussed on plaque removal and promoting a healthy lifestyle. This in vitro study investigated a third preventive method: maintaining healthy dental plaque with the use of small molecules. As a model of dental plaque, in vitro biofilms were cultivated under conditions that induce pathogenic characteristics. The effect of erythritol and other small molecules on the pathogenic characteristics and bacterial composition of the biofilm was evaluated. The artificial sweetener erythritol and the molecule 3-Oxo-N-(2-oxycyclohexyl)dodecanamide (3-Oxo-N) had no clinically relevant effect on total biofilm formation. Erythritol did, however, lower the gingivitis related protease activity of the biofilm, while 3-Oxo-N blocked the caries related lactic acid accumulation. Furthermore, both substances ensured the biofilm maintained a young, non-pathogenic microbial composition. This shows it is possible to influence the dental plaque in a positive manner in vitro with the help of small molecules. Further research is necessary before this manipulation of dental plaque can be applied.
Taylor, Matthew D; Beyer-Robson, Janina; Johnson, Daniel D; Knott, Nathan A; Bowles, Karl C
2018-06-01
Spatial patterns in perfluoroalkyl substances were quantified for exploited fish and crustaceans across two contrasting Australian estuaries (Port Stephens and Hunter River). Perfluorooctane sulfonate (PFOS) was detected in 77% of composites from Port Stephens and 100% of composites from Hunter River. Most species from Port Stephens showed a clear trend with distance to source. In contrast, only a subset of species showed this trend in the Hunter River, potentially due to species movement patterns and differing hydrology. Spatial modelling showed that PFOS concentrations were expected to exceed the relevant trigger value up to ~13,500 m from the main point source for Port Stephens and ~9000 m for the Hunter River. These results represent the first major investigation of bioaccumulation of PFASs in exploited species in Australian estuaries, and highlight various factors that can contribute to spatial patterns in bioaccumulation. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
The Chemical Modeling of Electronic Materials and Interconnections
NASA Astrophysics Data System (ADS)
Kivilahti, J. K.
2002-12-01
Thermodynamic and kinetic modeling, together with careful experimental work, is of great help for developing new electronic materials such as lead-free solders, their compatible metallizations and diffusion-barrier layers, as well as joining and bonding processes for advanced electronics manufacturing. When combined, these modeling techniques lead to a rationalization of the trial-and-error methods employed in the electronics industry, limiting experimentation and, thus, reducing significantly time-to-market of new products. This modeling provides useful information on the stabilities of phases (microstructures), driving forces for chemical reactions, and growth rates of reaction products occurring in interconnections or thin-film structures during processing, testing, and in longterm use of electronic devices. This is especially important when manufacturing advanced lead-free electronics where solder joint volumes are decreasing while the number of dissimilar reactive materials is increasing markedly. Therefore, a new concept of local nominal composition was introduced and applied together with the relevant ternary and multicomponent phase diagrams to some solder/conductor systems.
NASA Technical Reports Server (NTRS)
Macfarlane, J. J.
1984-01-01
A model free energy is developed for hydrogen-helium mixtures based on solid-state Thomas-Fermi-Dirac calculations at pressures relevant to the interiors of giant planets. Using a model potential similar to that for a two-component plasma, effective charges for the nuclei (which are in general smaller than the actual charges because of screening effects) are parameterized, being constrained by calculations at a number of densities, compositions, and lattice structures. These model potentials are then used to compute the equilibrium properties of H-He fluids using a charged hard-sphere model. The results find critical temperatures of about 0 K, 500 K, and 1500 K, for pressures of 10, 100, and 1000 Mbar, respectively. These phase separation temperatures are considerably lower (approximately 6,000-10,000 K) than those found from calculations using free electron perturbation theory, and suggest that H-He solutions should be stable against phase separation in the metallic zones of Jupiter and Saturn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braumann, Andreas; Kraft, Markus, E-mail: mk306@cam.ac.u; Wagner, Wolfgang
2010-10-01
This paper is concerned with computational aspects of a multidimensional population balance model of a wet granulation process. Wet granulation is a manufacturing method to form composite particles, granules, from small particles and binders. A detailed numerical study of a stochastic particle algorithm for the solution of a five-dimensional population balance model for wet granulation is presented. Each particle consists of two types of solids (containing pores) and of external and internal liquid (located in the pores). Several transformations of particles are considered, including coalescence, compaction and breakage. A convergence study is performed with respect to the parameter that determinesmore » the number of numerical particles. Averaged properties of the system are computed. In addition, the ensemble is subdivided into practically relevant size classes and analysed with respect to the amount of mass and the particle porosity in each class. These results illustrate the importance of the multidimensional approach. Finally, the kinetic equation corresponding to the stochastic model is discussed.« less
NASA Astrophysics Data System (ADS)
Román, Sebastián; Lund, Fernando; Bustos, Javier; Palza, Humberto
2018-01-01
In several technological applications, carbon nanotubes (CNT) are added to a polymer matrix in order to develop electrically conductive composite materials upon percolation of the CNT network. This percolation state depends on several parameters such as particle characteristics, degree of dispersion, and filler orientation. For instance, CNT aggregation is currently avoided because it is thought that it will have a negative effect on the electrical behavior despite some experimental evidence showing the contrary. In this study, the effect of CNT waviness, degree of agglomeration, and external strain, on the electrical percolation of polymer composites is studied by a three dimensional Monte-Carlo simulation. The simulation shows that the percolation threshold of CNT depends on the particle waviness, with rigid particles displaying the lowest values. Regarding the effect of CNT dispersion, our numerical results confirm that low levels of agglomeration reduce the percolation threshold of the composite. However, the threshold is shifted to larger values at high agglomeration states because of the appearance of isolated areas of high CNT concentrations. These results imply, therefore, an optimum of agglomeration that further depends on the waviness and concentration of CNT. Significantly, CNT agglomeration can further explain the broad percolation transition found in these systems. When an external strain is applied to the composites, the percolation concentration shifts to higher values because CNT alignment increases the inter-particle distances. The strain sensitivity of the composites is affected by the percolation state of CNT showing a maximum value at certain filler concentration. These results open up the discussion about the relevance in polymer composites of the dispersion state of CNT and filler flexibility towards electrically conductive composites.
Grain boundary engineering to control the discontinuous precipitation in multicomponent U10Mo alloy
Devaraj, Arun; Kovarik, Libor; Kautz, Elizabeth; ...
2018-03-30
Here, we demonstrate here that locally stabilized structure and compositional segregation at grain boundaries in a complex multicomponent alloy can be modified using high temperature homogenization treatment to influence the kinetics of phase transformations initiating from grain boundaries during subsequent low temperature annealing. Using aberration-corrected scanning transmission electron microscopy and atom probe tomography of a model multicomponent metallic alloy —uranium-10 wt% molybdenum (U-10Mo) a nuclear fuel, that is highly relevant to worldwide nuclear non-proliferation efforts, we demonstrate the ability to change the structure and compositional segregation at grain boundary, which then controls the subsequent discontinuous precipitation kinetics during sub-eutectoid annealing.more » A change in grain boundary from one characterized by segregation of Mo and impurities at grain boundary to a phase boundary with a distinct U 2MoSi 2C wetting phase precipitates introducing Ni and Al rich interphase complexions caused a pronounced reduction in area fraction of subsequent discontinuous precipitation. The broader implication of this work is in highlighting the role of grain boundary structure and composition in metallic alloys on dictating the fate of grain boundary initiated phase transformations like discontinuous precipitation or cellular transformation. This work highlights a new pathway to tune the grain boundary structure and composition to tailor the final microstructure of multicomponent metallic alloys.« less
Grain boundary engineering to control the discontinuous precipitation in multicomponent U10Mo alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Kovarik, Libor; Kautz, Elizabeth
Here, we demonstrate here that locally stabilized structure and compositional segregation at grain boundaries in a complex multicomponent alloy can be modified using high temperature homogenization treatment to influence the kinetics of phase transformations initiating from grain boundaries during subsequent low temperature annealing. Using aberration-corrected scanning transmission electron microscopy and atom probe tomography of a model multicomponent metallic alloy —uranium-10 wt% molybdenum (U-10Mo) a nuclear fuel, that is highly relevant to worldwide nuclear non-proliferation efforts, we demonstrate the ability to change the structure and compositional segregation at grain boundary, which then controls the subsequent discontinuous precipitation kinetics during sub-eutectoid annealing.more » A change in grain boundary from one characterized by segregation of Mo and impurities at grain boundary to a phase boundary with a distinct U 2MoSi 2C wetting phase precipitates introducing Ni and Al rich interphase complexions caused a pronounced reduction in area fraction of subsequent discontinuous precipitation. The broader implication of this work is in highlighting the role of grain boundary structure and composition in metallic alloys on dictating the fate of grain boundary initiated phase transformations like discontinuous precipitation or cellular transformation. This work highlights a new pathway to tune the grain boundary structure and composition to tailor the final microstructure of multicomponent metallic alloys.« less
Milk kefir: nutritional, microbiological and health benefits.
Rosa, Damiana D; Dias, Manoela M S; Grześkowiak, Łukasz M; Reis, Sandra A; Conceição, Lisiane L; Peluzio, Maria do Carmo G
2017-06-01
Kefir is fermented milk produced from grains that comprise a specific and complex mixture of bacteria and yeasts that live in a symbiotic association. The nutritional composition of kefir varies according to the milk composition, the microbiological composition of the grains used, the time/temperature of fermentation and storage conditions. Kefir originates from the Caucasus and Tibet. Recently, kefir has raised interest in the scientific community due to its numerous beneficial effects on health. Currently, several scientific studies have supported the health benefits of kefir, as reported historically as a probiotic drink with great potential in health promotion, as well as being a safe and inexpensive food, easily produced at home. Regular consumption of kefir has been associated with improved digestion and tolerance to lactose, antibacterial effect, hypocholesterolaemic effect, control of plasma glucose, anti-hypertensive effect, anti-inflammatory effect, antioxidant activity, anti-carcinogenic activity, anti-allergenic activity and healing effects. A large proportion of the studies that support these findings were conducted in vitro or in animal models. However, there is a need for systematic clinical trials to better understand the effects of regular use of kefir as part of a diet, and for their effect on preventing diseases. Thus, the present review focuses on the nutritional and microbiological composition of kefir and presents relevant findings associated with the beneficial effects of kefir on human and animal health.
NASA Astrophysics Data System (ADS)
Aglietta, M.; Alessandro, B.; Antonioli, P.; Arneodo, F.; Bergamasco, L.; Bertaina, M.; Castagnoli, C.; Castellina, A.; Chiavassa, A.; Cini, G.; D'Ettorre Piazzoli, B.; di Sciascio, G.; Fulgione, W.; Galeotti, P.; Ghia, P. L.; Iacovacci, M.; Mannocchi, G.; Morello, C.; Navarra, G.; Saavedra, O.; Stamerra, A.; Trinchero, G. C.; Valchierotti, S.; Vallania, P.; Vernetto, S.; Vigorito, C.; Ambrosio, M.; Antolini, R.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.
2004-03-01
The cosmic ray primary composition in the energy range between 1015 and 1016 eV, i.e., around the ``knee'' of the primary spectrum, has been studied through the combined measurements of the EAS-TOP air shower array (2005 m a.s.l., 105 m2 collecting area) and the MACRO underground detector (963 m a.s.l., 3100 m w.e. of minimum rock overburden, 920 m2 effective area) at the National Gran Sasso Laboratories. The used observables are the air shower size (Ne) measured by EAS-TOP and the muon number (Nμ) recorded by MACRO. The two detectors are separated on average by 1200 m of rock, and located at a respective zenith angle of about 30°. The energy threshold at the surface for muons reaching the MACRO depth is approximately 1.3 TeV. Such muons are produced in the early stages of the shower development and in a kinematic region quite different from the one relevant for the usual Nμ-Ne studies. The measurement leads to a primary composition becoming heavier at the knee of the primary spectrum, the knee itself resulting from the steepening of the spectrum of a primary light component (p, He) of Δγ=0.7+/-0.4 at E0~4×1015 eV. The result confirms the ones reported from the observation of the low energy muons at the surface (typically in the GeV energy range), showing that the conclusions do not depend on the production region kinematics. Thus, the hadronic interaction model used (CORSIKA/QGSJET) provides consistent composition results from data related to secondaries produced in a rapidity region exceeding the central one. Such an evolution of the composition in the knee region supports the ``standard'' galactic acceleration/propagation models that imply rigidity dependent breaks of the different components, and therefore breaks occurring at lower energies in the spectra of the light nuclei.
Thermomechanical Characterization and Modeling of Superelastic Shape Memory Alloy Beams and Frames
NASA Astrophysics Data System (ADS)
Watkins, Ryan
Of existing applications, the majority of shape memory alloy (SMA) devices consist of beam (orthodontic wire, eye glasses frames, catheter guide wires) and framed structures (cardiovascular stents, vena cava filters). Although uniaxial tension data is often sufficient to model basic beam behavior (which has been the main focus of the research community), the tension-compression asymmetry and complex phase transformation behavior of SMAs suggests more information is necessary to properly model higher complexity states of loading. In this work, SMA beams are experimentally characterized under general loading conditions (including tension, compression, pure bending, and buckling); furthermore, a model is developed with respect to general beam deformation based on the relevant phenomena observed in the experimental characterization. Stress induced phase transformation within superelastic SMA beams is shown to depend on not only the loading mode, but also kinematic constraints imposed by beam geometry (such as beam cross-section and length). In the cases of tension and pure bending, the structural behavior is unstable and corresponds to phase transformation localization and propagation. This unstable behavior is the result of a local level up--down--up stress/strain response in tension, which is measured here using a novel composite-based experimental technique. In addition to unstable phase transformation, intriguing post-buckling straightening is observed in short SMA columns during monotonic loading (termed unbuckling here). Based on this phenomenological understanding of SMA beam behavior, a trilinear based material law is developed in the context of a Shanley column model and is found to capture many of the relevant features of column buckling, including the experimentally observed unbuckling behavior. Due to the success of this model, it is generalized within the context of beam theory and, in conjunction with Bloch wave stability analysis, is used to model and design SMA honeycombs.
NASA Astrophysics Data System (ADS)
Zhong, X.; Galvez, M. E.
2017-12-01
Metamorphic fluids are a crucial ingredient of geodynamic evolution, i.e. heat transfer, rock mechanics and metamorphic/metasomatic reactions. During crustal evolution at elevated P and T, rock forming components can be effectively fractionated from the reactive rock system by at least two processes: 1. extraction from porous rocks by liquid phases such as solute-bearing (e.g. Na+, Mg2+) aqueous fluids or partial melts. 2. isolation from effective bulk rock composition due to slow intragranular diffusion in high-P refractory phases such as garnet. The effect of phase fractionation (garnet, partial melt and aqueous species) on fluid - rock composition and properties remain unclear, mainly due to a high demand in quantitative computations of the thermodynamic interactions between rocks and fluids over a wide P-T range. To investigate this problem, we build our work on an approach initially introduced by Galvez et al., (2015) with new functionalities added in a MATLAB code (Rubisco). The fluxes of fractionated components in fluid, melt and garnet are monitored along a typical prograde P-T path for a model crustal pelite. Some preliminary results suggest a marginal effect of fractionated aqueous species on fluid and rock properties (e.g. pH, composition), but the corresponding fluxes are significant in the context of mantle wedge metasomatism. Our work provides insight into the role of high-P phase fractionation on mass redistribution between the surface and deep Earth in subduction zones. Existing limitations relevant to our liquid/mineral speciation/fractionation model will be discussed as well. ReferencesGalvez, M.E., Manning, C.E., Connolly, J.A.D., Rumble, D., 2015. The solubility of rocks in metamorphic fluids: A model for rock-dominated conditions to upper mantle pressure and temperature. Earth Planet. Sci. Lett. 430, 486-498.
Iqbal, Muhammad; Hayat, Maqsood
2016-05-01
Gene splicing is a vital source of protein diversity. Perfectly eradication of introns and joining exons is the prominent task in eukaryotic gene expression, as exons are usually interrupted by introns. Identification of splicing sites through experimental techniques is complicated and time-consuming task. With the avalanche of genome sequences generated in the post genomic age, it remains a complicated and challenging task to develop an automatic, robust and reliable computational method for fast and effective identification of splicing sites. In this study, a hybrid model "iSS-Hyb-mRMR" is proposed for quickly and accurately identification of splicing sites. Two sample representation methods namely; pseudo trinucleotide composition (PseTNC) and pseudo tetranucleotide composition (PseTetraNC) were used to extract numerical descriptors from DNA sequences. Hybrid model was developed by concatenating PseTNC and PseTetraNC. In order to select high discriminative features, minimum redundancy maximum relevance algorithm was applied on the hybrid feature space. The performance of these feature representation methods was tested using various classification algorithms including K-nearest neighbor, probabilistic neural network, general regression neural network, and fitting network. Jackknife test was used for evaluation of its performance on two benchmark datasets S1 and S2, respectively. The predictor, proposed in the current study achieved an accuracy of 93.26%, sensitivity of 88.77%, and specificity of 97.78% for S1, and the accuracy of 94.12%, sensitivity of 87.14%, and specificity of 98.64% for S2, respectively. It is observed, that the performance of proposed model is higher than the existing methods in the literature so for; and will be fruitful in the mechanism of RNA splicing, and other research academia. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Moehler, O.; Cziczo, D. J.; DeMott, P. J.; Hiranuma, N.; Petters, M. D.
2015-12-01
The role of aerosol particles for ice formation in clouds is one of the largest uncertainties in understanding the Earth's weather and climate systems, which is related to the poor knowledge of ice nucleation microphysics or of the nature and atmospheric abundance of ice nucleating particles (INPs). During the recent years, new mobile instruments were developed for measuring the concentration, size and chemical composition of INPs, which were tested during the three-part Fifth International Ice Nucleation (FIN) workshop. The FIN activities addressed not only instrument issues, but also important science topics like the nature of atmospheric INP and cloud ice residuals, the ice nucleation activity of relevant atmospheric aerosols, or the parameterization of ice formation in atmospheric weather and climate models. The first activity FIN-1 was conducted during November 2014 at the AIDA cloud chamber. It involved co-locating nine single particle mass spectrometers to evaluate how well they resolve the INP and ice residual composition and how spectra from different instruments compare for relevant atmospheric aerosols. We conducted about 90 experiments with mineral, carbonaceous and biological aerosol types, some also coated with organic and inorganic compounds. The second activity FIN-2 was conducted during March 2015 at the AIDA facility. A total of nine mobile INP instruments directly sampled from the AIDA aerosol chambers. Wet suspension and filter samples were also taken for offline INP processing. A refereed blind intercomparison was conducted during two days of the FIN-2 activity. The third activity FIN-3 will take place at the Desert Research Institute's Storm Peak Laboratory (SPL) in order to test the instruments' performance in the field. This contribution will introduce the FIN activities, summarize first results from the formal part of FIN-2, and discuss selected results, mainly from FIN-1 for the effect of coating on the ice nucleation (IN) by mineral aerosols. The coating with both secondary organic compounds and sulphuric acid was conducted in the AIDA chamber at relevant temperatures and precursor concentrations and was monitored with the particle mass spectrometers. Already very thin, atmospherically relevant coatings reduced deposition IN, but had little effect on immersion freezing.
NASA Astrophysics Data System (ADS)
Botter, C. D.; Prada, M.; Fullea, J.
2017-12-01
The Porcupine is a North-South oriented basin located southwest of Ireland, along the North Atlantic continental margin, formed by several rifting episodes during Late Carboniferous to Early Cretaceous. The sedimentary cover is underlined by a very thin continental crust in the center of the basin (<5 km) that has been generally associated with hyperextension and mantle serpentinization. From North to South lithospheric stretching factors increase drastically from 2 in the North to >10 in the South. In spite of the abundant literature, most of the oil and gas exploration in the Porcupine Basin has been targeting its northern part and is mostly restricted to relatively shallow depths, giving a restrained overview of the basin structure. Therefore, studying the thermodynamic and composition of the deep and broader structures is needed to understand the processes linked to the formation and the symmetry signature of the basin. Here, we model the present-day thermal and compositional structure of the continental crust and lithospheric mantle underneath the Porcupine basin using gravity, seismic, heat flow and elevation data. We use an integrated geophysical-petrological framework where most relevant rock properties (density, seismic velocities) are determined as a function of temperature, pressure and composition. Our modelling approach solves simultaneously the heat transfer, thermodynamic, geopotential, seismic and isostasy equations, and fit the results to all available geophysical and petrological observables (LitMod software). In this work we have implemented a module to compute self-consistently a laterally variable lithospheric elastic thickness based on mineral physics rheological laws (yield strength envelopes over the 3D volume). An appropriate understanding of local and flexural isostatic behavior of the basin is essential to unravel its tectonic history (i.e. stretching factors, subsidence etc.). Our Porcupine basin 3D model is defined by four lithological layers, representing properties from post- and syn-rift sequences to the lithospheric mantle. The computed yield strength envelopes are representative of hyperextended lithosphere and reveal the sensitivity of the lithospheric strength to the geotherm, as well as to the thickness and composition of the crust.
Modeling stock price dynamics by continuum percolation system and relevant complex systems analysis
NASA Astrophysics Data System (ADS)
Xiao, Di; Wang, Jun
2012-10-01
The continuum percolation system is developed to model a random stock price process in this work. Recent empirical research has demonstrated various statistical features of stock price changes, the financial model aiming at understanding price fluctuations needs to define a mechanism for the formation of the price, in an attempt to reproduce and explain this set of empirical facts. The continuum percolation model is usually referred to as a random coverage process or a Boolean model, the local interaction or influence among traders is constructed by the continuum percolation, and a cluster of continuum percolation is applied to define the cluster of traders sharing the same opinion about the market. We investigate and analyze the statistical behaviors of normalized returns of the price model by some analysis methods, including power-law tail distribution analysis, chaotic behavior analysis and Zipf analysis. Moreover, we consider the daily returns of Shanghai Stock Exchange Composite Index from January 1997 to July 2011, and the comparisons of return behaviors between the actual data and the simulation data are exhibited.
Trägårdh, M; Lindén, D; Ploj, K; Johansson, A; Turnbull, A; Carlsson, B; Antonsson, M
2017-01-01
In this study, we present the translational modeling used in the discovery of AZD1979, a melanin‐concentrating hormone receptor 1 (MCHr1) antagonist aimed for treatment of obesity. The model quantitatively connects the relevant biomarkers and thereby closes the scaling path from rodent to man, as well as from dose to effect level. The complexity of individual modeling steps depends on the quality and quantity of data as well as the prior information; from semimechanistic body‐composition models to standard linear regression. Key predictions are obtained by standard forward simulation (e.g., predicting effect from exposure), as well as non‐parametric input estimation (e.g., predicting energy intake from longitudinal body‐weight data), across species. The work illustrates how modeling integrates data from several species, fills critical gaps between biomarkers, and supports experimental design and human dose‐prediction. We believe this approach can be of general interest for translation in the obesity field, and might inspire translational reasoning more broadly. PMID:28556607
Review of model sensor studies on Pd/SnO2(110) surfaces
NASA Technical Reports Server (NTRS)
Fryberger, Teresa B.; Semancik, Steve
1990-01-01
Studies performed at the National Institute of Standards and Technology on the model gas sensor system, Pd/SnO2(110), are reviewed. Adsorption and interfacial effects play a primary role in the gas sensing process, as they do in catalysis. For this reason, researchers have used a variety of surface sensitive techniques in the research, including x ray and ultraviolet photoelectron spectroscopies (XPS and UPS), low energy electron diffraction (LEED), and ion scattering spectroscopy (ISS). By combining these complementary techniques with in situ gas response (conductance) measurements, researchers were able to correlate directly sensor activity with the composition and structure of the Pd/SnO2 interface. Although the intent of this work is to develop an understanding of gas sensing mechanisms, its relevance to Pt/SnO2 catalytic systems is obvious.
Waldman, David A; Atwater, Leanne E; Davidson, Ronald A
2004-02-01
Personality has seen a resurgence in the work performance literature. The Five-Factor Model (FFM) represents a set of personality factors that has received the most attention in recent years. Despite its popularity, the FFM may not be sufficiently comprehensive to account for relevant variation across performance dimensions or tasks. Accordingly, the present study also considers how individualism may predict additional variance in performance beyond the FFM. The study involved 152 undergraduate students who experienced a leaderless group discussion (LGD) exercise. Results showed that while the FFM accounted for variance in students' LGD performance, individualism (independence) accounted for additional, unique variance. Furthermore, analyses of the group compositions revealed curvilinear relationships between the relative amount of extraversion, conscientiousness, and individualism in relation to group-level performance.
Structure of the SnO2(110 ) -(4 ×1 ) Surface
NASA Astrophysics Data System (ADS)
Merte, Lindsay R.; Jørgensen, Mathias S.; Pussi, Katariina; Gustafson, Johan; Shipilin, Mikhail; Schaefer, Andreas; Zhang, Chu; Rawle, Jonathan; Nicklin, Chris; Thornton, Geoff; Lindsay, Robert; Hammer, Bjørk; Lundgren, Edvin
2017-09-01
Using surface x-ray diffraction (SXRD), quantitative low-energy electron diffraction (LEED), and density-functional theory (DFT) calculations, we have determined the structure of the (4 ×1 ) reconstruction formed by sputtering and annealing of the SnO2(110 ) surface. We find that the reconstruction consists of an ordered arrangement of Sn3O3 clusters bound atop the bulk-terminated SnO2(110 ) surface. The model was found by application of a DFT-based evolutionary algorithm with surface compositions based on SXRD, and shows excellent agreement with LEED and with previously published scanning tunneling microscopy measurements. The model proposed previously consisting of in-plane oxygen vacancies is thus shown to be incorrect, and our result suggests instead that Sn(II) species in interstitial positions are the more relevant features of reduced SnO2(110 ) surfaces.
DSM-5 personality traits discriminate between posttraumatic stress disorder and control groups.
James, Lisa M; Anders, Samantha L; Peterson, Carly K; Engdahl, Brian E; Krueger, Robert F; Georgopoulos, Apostolos P
2015-07-01
The relevance of personality traits to the study of psychopathology has long been recognized, particularly in terms of understanding patterns of comorbidity. In fact, a multidimensional personality trait model reflecting five higher-order personality dimensions-negative affect, detachment, antagonism, disinhibition, and psychoticism-is included in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) and represented in the Personality Inventory for DSM-5 (PID-5). However, evaluation of these dimensions and underlying personality facets within clinical samples has been limited. In the present study, we utilized the PID-5 to evaluate the personality profile elevation and composition of 150 control veterans and 35 veterans diagnosed with posttraumatic stress disorder (PTSD). Results indicated that veterans with PTSD endorsed significantly more personality pathology than control veterans, with scores on detachment and psychoticism domains most clearly discriminating between the two groups. When personality domain scores were considered as parts of each subject's personality profile, a slightly different picture emerged. Specifically, the PTSD composition was primarily characterized by detachment and negative affect, followed by disinhibition, psychoticism, and antagonism in that order of relative importance. The profile of the control group was significantly different, mostly accounted for differences in antagonism and psychoticism. Using these complementary analytic strategies, the findings demonstrate the relevance of personality pathology to PTSD, highlight internalizing features of PTSD, and pave the way for future research aimed at evaluating the role of shared maladaptive personality traits in underlying the comorbidity of PTSD and related disorders.
NASA Astrophysics Data System (ADS)
Chan, A. W. H.; Wang, S.; Wang, X.; Kohl, L.; Chow, C. W.
2017-12-01
Particulate matter (PM) in the atmosphere is known to cause adverse cardiorespiratory health effects. It has been suggested that the ability of PM to generate oxidative stress leads to a proinflammatory response. In this work, we study the biological relevance of using a chemical oxidative potential (OP) assay to evaluate proinflammatory response in airway epithelial cells. Here we study the OPs of laboratory secondary organic aerosol (SOA) and metal mixtures, ambient PM from India, ash from the 2016 Alberta wildfires, and diesel exhaust particles. We use SOA derived from naphthalene and from monoterpenes as model systems for SOA. We measure OP using the dithiothreitol (DTT) assay, and cytosolic reactive oxygen species (ROS) production in BEAS-2B cell culture was measured using CellROX assay. We found that both SOA and copper show high OPs individually, but the OP of the combined SOA/copper mixture, which is more atmospherically relevant, was lower than either of the individual OPs. The reduced activity is attributed to chelation between metals and organic compounds using proton nuclear magnetic resonance. There is reasonable association between DTT activity and cellular ROS production within each particle type, but weak association across different particle types, suggesting that particle composition plays an important role in distinguishing between antioxidant consumption and ROS production. Our results highlight that while oxidative potential is a useful metric of PM's ability to generate oxidative stress, the chemical composition and cellular environment should be considered in understanding health impacts of PM.
Castro, Eduardo; Martínez-Ramón, Manel; Pearlson, Godfrey; Sui, Jing; Calhoun, Vince D.
2011-01-01
Pattern classification of brain imaging data can enable the automatic detection of differences in cognitive processes of specific groups of interest. Furthermore, it can also give neuroanatomical information related to the regions of the brain that are most relevant to detect these differences by means of feature selection procedures, which are also well-suited to deal with the high dimensionality of brain imaging data. This work proposes the application of recursive feature elimination using a machine learning algorithm based on composite kernels to the classification of healthy controls and patients with schizophrenia. This framework, which evaluates nonlinear relationships between voxels, analyzes whole-brain fMRI data from an auditory task experiment that is segmented into anatomical regions and recursively eliminates the uninformative ones based on their relevance estimates, thus yielding the set of most discriminative brain areas for group classification. The collected data was processed using two analysis methods: the general linear model (GLM) and independent component analysis (ICA). GLM spatial maps as well as ICA temporal lobe and default mode component maps were then input to the classifier. A mean classification accuracy of up to 95% estimated with a leave-two-out cross-validation procedure was achieved by doing multi-source data classification. In addition, it is shown that the classification accuracy rate obtained by using multi-source data surpasses that reached by using single-source data, hence showing that this algorithm takes advantage of the complimentary nature of GLM and ICA. PMID:21723948
Greater soil carbon stocks and faster turnover rates with increasing agricultural productivity
NASA Astrophysics Data System (ADS)
Sanderman, Jonathan; Creamer, Courtney; Baisden, W. Troy; Farrell, Mark; Fallon, Stewart
2017-01-01
Devising agricultural management schemes that enhance food security and soil carbon levels is a high priority for many nations. However, the coupling between agricultural productivity, soil carbon stocks and organic matter turnover rates is still unclear. Archived soil samples from four decades of a long-term crop rotation trial were analyzed for soil organic matter (SOM) cycling-relevant properties: C and N content, bulk composition by nuclear magnetic resonance (NMR) spectroscopy, amino sugar content, short-term C bioavailability assays, and long-term C turnover rates by modeling the incorporation of the bomb spike in atmospheric 14C into the soil. After > 40 years under consistent management, topsoil carbon stocks ranged from 14 to 33 Mg C ha-1 and were linearly related to the mean productivity of each treatment. Measurements of SOM composition demonstrated increasing amounts of plant- and microbially derived SOM along the productivity gradient. Under two modeling scenarios, radiocarbon data indicated overall SOM turnover time decreased from 40 to 13 years with increasing productivity - twice the rate of decline predicted from simple steady-state models or static three-pool decay rates of measured C pool distributions. Similarly, the half-life of synthetic root exudates decreased from 30.4 to 21.5 h with increasing productivity, indicating accelerated microbial activity. These findings suggest that there is a direct feedback between accelerated biological activity, carbon cycling rates and rates of carbon stabilization with important implications for how SOM dynamics are represented in models.
Kreszies, Tino; Schreiber, Lukas; Ranathunge, Kosala
2018-02-07
Water is the most important prerequisite for life and plays a major role during uptake and transport of nutrients. Roots are the plant organs that take up the major part of water, from the surrounding soil. Water uptake is related to the root system architecture, root growth, age and species dependent complex developmental changes in the anatomical structures. The latter is mainly attributed to the deposition of suberized barriers in certain layers of cell walls, such as endo- and exodermis. With respect to water permeability, changes in the suberization of roots are most relevant. Water transport or hydraulic conductivity of roots (Lp r ) can be described by the composite transport model and is known to be very variable between plant species and growth conditions and root developmental states. In this review, we summarize how anatomical structures and apoplastic barriers of roots can diversely affect water transport, comparing the model plant Arabidopsis with crop plants, such as barley and rice. Results comparing the suberin amounts and water transport properties indicate that the common assumption that suberin amount negatively correlates with water and solute transport through roots may not always be true. The composition, microstructure and localization of suberin may also have a great impact on the formation of efficient barriers to water and solutes. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
A numerical model for boiling heat transfer coefficient of zeotropic mixtures
NASA Astrophysics Data System (ADS)
Barraza Vicencio, Rodrigo; Caviedes Aedo, Eduardo
2017-12-01
Zeotropic mixtures never have the same liquid and vapor composition in the liquid-vapor equilibrium. Also, the bubble and the dew point are separated; this gap is called glide temperature (Tglide). Those characteristics have made these mixtures suitable for cryogenics Joule-Thomson (JT) refrigeration cycles. Zeotropic mixtures as working fluid in JT cycles improve their performance in an order of magnitude. Optimization of JT cycles have earned substantial importance for cryogenics applications (e.g, gas liquefaction, cryosurgery probes, cooling of infrared sensors, cryopreservation, and biomedical samples). Heat exchangers design on those cycles is a critical point; consequently, heat transfer coefficient and pressure drop of two-phase zeotropic mixtures are relevant. In this work, it will be applied a methodology in order to calculate the local convective heat transfer coefficients based on the law of the wall approach for turbulent flows. The flow and heat transfer characteristics of zeotropic mixtures in a heated horizontal tube are investigated numerically. The temperature profile and heat transfer coefficient for zeotropic mixtures of different bulk compositions are analysed. The numerical model has been developed and locally applied in a fully developed, constant temperature wall, and two-phase annular flow in a duct. Numerical results have been obtained using this model taking into account continuity, momentum, and energy equations. Local heat transfer coefficient results are compared with available experimental data published by Barraza et al. (2016), and they have shown good agreement.
NASA Astrophysics Data System (ADS)
Pozzer, A.; Ojha, N.; Tost, H.; Joeckel, P.; Fischer, H.; Ziereis, H.; Zahn, A.; Tomsche, L.; Lelieveld, J.
2017-12-01
The impacts of Asian monsoon on the tropospheric chemistry are difficult to simulate in numerical models due to the lack of accurate emission inventories over the Asian region and the strong influence of parameterized processes such as convection and lightning. Further, the lack of observational data over the region during the monsoon period reduce drastically the capability to evaluate numerical models. Here, we combine simulations using the global EMAC (ECHAM5/MESSy2 Atmospheric Chemistry) model with the observational dataset based on the OMO campaign (July-August 2015) to study the tropospheric composition in the Asian monsoon anticyclone. The results of the simulations capture the C-shape of the CO vertical profiles, typically observed during the summer monsoon. The observed spatio-temporal variations in O3, CO, and NOy are reproduced by EMAC, with a better correlation in the upper troposphere (UT). However, the model overestimates NOy and O3 mixing ratios in the anticyclone by 25% and 35%, respectively. A series of numerical experiments showed the strong lightning emissions in the model as the source of this overestimation, with the anthropogenic NOx sources (in Asia) and global soil emissions having lower impact in the UT. A reduction of the lightning NOx emission by 50% leads to a better agreement between the model and OMO observations of NOy and O3. The uncertainties in the lightning emissions are found to considerably influence the OH distribution in the UT over India and downwind. The study reveals existing uncertainties in the estimations of monsoon impact on the tropospheric composition, and highlights the need to constrain numerical simulations with state-of-the-art observations for deriving the budget of trace species of climatic relevance.
Shock compression of liquid silicates to 125 GPa: the anorthite-diopside join
NASA Astrophysics Data System (ADS)
Asimow, P. D.; Ahrens, T. J.
2008-12-01
Shock compression of pre-heated liquid silicates provides, at present, the only method for direct measurement of the equation of state of such liquids at lower mantle pressures. At previous AGU meetings we have reported the extension of the pre-heated Hugoniot of the anorthite-diopside eutectic composition Di64An36, initially at 1673 K, to 110 GPa, along with a determination of the density dependence of the Grüneisen parameter of this liquid composition. We have now completed this work by: (1) extending the Di64An36 data to 127 GPa; (2) measuring the diopside (CaMgSi2O6) end-member composition, initially at 1773 K, to 114 GPa; and (3) measuring the anorthite (CaAl2Si2O8) end-member composition, initially at 1923 K, to 125 GPa. For internal consistency we have also re-reduced all of the experiments reported by Rigden et al. (1984, 1988, 1989) as well as some unpublished data from that era, using the latest initial melt densities (Lange, 1997) and hot Mo equation of state (Asimow et al., 2008). We are now in a position to assess the compression behavior of each of these liquids and the model of linear mixing along the compositional join to all pressures relevant to the terrestrial mantle. The total data set for the Di64An36 and diopside compositions can be fit within error by straight line Hugoniots in particle velocity vs. shock velocity. This suggests that a 3rd order equation of state is adequate to describe compression of these liquids over large pressure ranges. Anorthite, on the other hand, clearly requires a more complex model, such as we require for MgSiO3 and Mg2SiO4 liquids (Mosenfelder, Asimow, and Ahrens; this meeting); we examine the 4th-order Birch-Murnaghan and Ghiorso equations of state as well as an explicit speciation model that accounts for continuous coordination change of Si and Al. The complexity of anorthite liquid compression causes an apparent failure of linear mixing, suggesting that calibration of a predictive model of the equation of state of any silicate liquid composition will require more than a small number of end-member determinations. We will discuss the implications of our new data and models for melting and crystallization in a whole mantle magma ocean or at the modern core-mantle boundary. Asimow, P.D., Sun, D. and Ahrens, T.J., 2008. Phys. Earth Planet. Int. 10.1016/j.pepi.2008.08.004. Lange, R.A., 1997. Contrib. Mineral. Petrol 130: 1-11. Rigden, S.M., Ahrens, T.J. and Stolper, E.M., 1984. Science 226(4678): 1071-1074. Rigden, S.M., Ahrens, T.J. and Stolper, E.M., 1988. J. Geophys. Res. 93(B1): 367-382. Rigden, S.M., Ahrens, T.J. and Stolper, E.M., 1989. J. Geophys. Res. 94(B7): 9508-9522.
NASA Technical Reports Server (NTRS)
Righter, K.; Leeman, W. P.; Hervig, R. L.
2006-01-01
Partitioning of Ni, Co and V between Cr-rich spinels and basaltic melt has been studied experimentally between 1150 and 1325 C, and at controlled oxygen fugacity from the Co-CoO buffer to slightly above the hematite magnetite buffer. These new results, together with new Ni, Co and V analyses of experimental run products from Leeman [Leeman, W.P., 1974. Experimental determination of the partitioning of divalent cations between olivine and basaltic liquid, Pt. II. PhD thesis, Univ. Oregon, 231 - 337.], show that experimentally determined spinel melt partition coefficients (D) are dependent upon temperature (T), oxygen fugacity (fO2) and spinel composition. In particular, partition coefficients determined on doped systems are higher than those in natural (undoped) systems, perhaps due to changing activity coefficients over the composition range defined by the experimental data. Using our new results and published runs (n =85), we obtain a multilinear regression equation that predicts experimental D(V) values as a function of T, fO2, concentration of V in melt and spinel composition. This equation allows prediction of D(V) spinel/melt values for natural mafic liquids at relevant crystallization conditions. Similarly, D(Ni) and D(Co) values can be inferred from our experiments at redox conditions approaching the QFM buffer, temperatures of 1150 to 1250 C and spinel composition (early Cr-bearing and later Ti-magnetite) appropriate for basic magma differentiation. When coupled with major element modelling of liquid lines of descent, these values (D(Ni) sp/melt=10 and D(Co) sp/melt=5) closely reproduce the compositional variation observed in komatiite, mid-ocean ridge basalt (MORB), ocean island basalt (OIB) and basalt to rhyolite suites.
Contribution of climate and fires to vegetation composition in the boreal forest of China
NASA Astrophysics Data System (ADS)
Venevsky, S.; Wu, C.; Sitch, S.
2017-12-01
Climate is well known as an important determinant of biogeography. Although climate is directly important for vegetation composition in the boreal forests, these ecosystems are strongly sensitive to an indirect effect of climate via fire disturbance. However, the driving balance of fire disturbance and climate on composition is poorly understood. In this study we quantitatively analyzed their individual contributions for the boreal forests of the Heilongjiang province, China and their response to climate change using four warming scenarios (+1.5, 2, 3, and 4°C). This study employs the statistical methods of Redundancy Analysis (RDA) and variation partitioning combined with simulation results from a Dynamic Global Vegetation Model, SEVER-DGVM, and remote sensing datasets of global land cover (GLC2000) and the Global Fire Emissions Database (GFED3). Results show that the vegetation distribution for the present day is mainly determined directly by climate (35%) rather than fire (1%-10.9%). However, with a future global warming of 1.5°C, local vegetation composition will be determined by fires rather than climate (36.3% > 29.3%). Above a 1.5°C warming, temperature will be more important than fires in regulating vegetation distribution although other factors like precipitation can also contribute. The spatial pattern in vegetation composition over the region, as evaluated by Moran's Eigenvector Map (MEM), has a significant impact on local vegetation coverage, i.e. composition at any individual location is highly related to that in its neighborhood. It represents the largest contribution to vegetation distribution in all scenarios, but will not change the driving balance between climate and fires. Our results are highly relevant for forest and wildfires' management.
Evaluating scale and roughness effects in urban flood modelling using terrestrial LIDAR data
NASA Astrophysics Data System (ADS)
Ozdemir, H.; Sampson, C. C.; de Almeida, G. A. M.; Bates, P. D.
2013-10-01
This paper evaluates the results of benchmark testing a new inertial formulation of the St. Venant equations, implemented within the LISFLOOD-FP hydraulic model, using different high resolution terrestrial LiDAR data (10 cm, 50 cm and 1 m) and roughness conditions (distributed and composite) in an urban area. To examine these effects, the model is applied to a hypothetical flooding scenario in Alcester, UK, which experienced surface water flooding during summer 2007. The sensitivities of simulated water depth, extent, arrival time and velocity to grid resolutions and different roughness conditions are analysed. The results indicate that increasing the terrain resolution from 1 m to 10 cm significantly affects modelled water depth, extent, arrival time and velocity. This is because hydraulically relevant small scale topography that is accurately captured by the terrestrial LIDAR system, such as road cambers and street kerbs, is better represented on the higher resolution DEM. It is shown that altering surface friction values within a wide range has only a limited effect and is not sufficient to recover the results of the 10 cm simulation at 1 m resolution. Alternating between a uniform composite surface friction value (n = 0.013) or a variable distributed value based on land use has a greater effect on flow velocities and arrival times than on water depths and inundation extent. We conclude that the use of extra detail inherent in terrestrial laser scanning data compared to airborne sensors will be advantageous for urban flood modelling related to surface water, risk analysis and planning for Sustainable Urban Drainage Systems (SUDS) to attenuate flow.
Evaluating scale and roughness effects in urban flood modelling using terrestrial LIDAR data
NASA Astrophysics Data System (ADS)
Ozdemir, H.; Sampson, C. C.; de Almeida, G. A. M.; Bates, P. D.
2013-05-01
This paper evaluates the results of benchmark testing a new inertial formulation of the de St. Venant equations, implemented within the LISFLOOD-FP hydraulic model, using different high resolution terrestrial LiDAR data (10 cm, 50 cm and 1 m) and roughness conditions (distributed and composite) in an urban area. To examine these effects, the model is applied to a hypothetical flooding scenario in Alcester, UK, which experienced surface water flooding during summer 2007. The sensitivities of simulated water depth, extent, arrival time and velocity to grid resolutions and different roughness conditions are analysed. The results indicate that increasing the terrain resolution from 1 m to 10 cm significantly affects modelled water depth, extent, arrival time and velocity. This is because hydraulically relevant small scale topography that is accurately captured by the terrestrial LIDAR system, such as road cambers and street kerbs, is better represented on the higher resolution DEM. It is shown that altering surface friction values within a wide range has only a limited effect and is not sufficient to recover the results of the 10 cm simulation at 1 m resolution. Alternating between a uniform composite surface friction value (n = 0.013) or a variable distributed value based on land use has a greater effect on flow velocities and arrival times than on water depths and inundation extent. We conclude that the use of extra detail inherent in terrestrial laser scanning data compared to airborne sensors will be advantageous for urban flood modelling related to surface water, risk analysis and planning for Sustainable Urban Drainage Systems (SUDS) to attenuate flow.
NASA Astrophysics Data System (ADS)
Berlok, Thomas; Pessah, Martin E.
2015-11-01
Understanding whether Helium can sediment to the core of galaxy clusters is important for a number of problems in cosmology and astrophysics. All current models addressing this question are one-dimensional and do not account for the fact that magnetic fields can effectively channel ions and electrons, leading to anisotropic transport of momentum, heat, and particle diffusion in the weakly collisional intracluster medium (ICM). This anisotropy can lead to a wide variety of instabilities, which could be relevant for understanding the dynamics of heterogeneous media. In this paper, we consider the radial temperature and composition profiles as obtained from a state-of-the-art Helium sedimentation model and analyze its stability properties. We find that the associated radial profiles are unstable to different kinds of instabilities depending on the magnetic field orientation at all radii. The fastest growing modes are usually related to generalizations of the magnetothermal instability (MTI) and the heat-flux-driven buoyancy instability which operate in heterogeneous media. We find that the effect of sedimentation is to increase (decrease) the predicted growth rates in the inner (outer) cluster region. The unstable modes grow quickly compared to the sedimentation timescale. This suggests that the composition gradients as inferred from sedimentation models, which do not fully account for the anisotropic character of the weakly collisional environment, might not be very robust. Our results emphasize the subtleties involved in understanding the gas dynamics of the ICM and argue for the need of a comprehensive approach to address the issue of Helium sedimentation beyond current models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berlok, Thomas; Pessah, Martin E., E-mail: berlok@nbi.dk, E-mail: mpessah@nbi.dk
2015-11-01
Understanding whether Helium can sediment to the core of galaxy clusters is important for a number of problems in cosmology and astrophysics. All current models addressing this question are one-dimensional and do not account for the fact that magnetic fields can effectively channel ions and electrons, leading to anisotropic transport of momentum, heat, and particle diffusion in the weakly collisional intracluster medium (ICM). This anisotropy can lead to a wide variety of instabilities, which could be relevant for understanding the dynamics of heterogeneous media. In this paper, we consider the radial temperature and composition profiles as obtained from a state-of-the-artmore » Helium sedimentation model and analyze its stability properties. We find that the associated radial profiles are unstable to different kinds of instabilities depending on the magnetic field orientation at all radii. The fastest growing modes are usually related to generalizations of the magnetothermal instability (MTI) and the heat-flux-driven buoyancy instability which operate in heterogeneous media. We find that the effect of sedimentation is to increase (decrease) the predicted growth rates in the inner (outer) cluster region. The unstable modes grow quickly compared to the sedimentation timescale. This suggests that the composition gradients as inferred from sedimentation models, which do not fully account for the anisotropic character of the weakly collisional environment, might not be very robust. Our results emphasize the subtleties involved in understanding the gas dynamics of the ICM and argue for the need of a comprehensive approach to address the issue of Helium sedimentation beyond current models.« less
Biological forcing controls the chemistry of the coral exoskeleton
NASA Astrophysics Data System (ADS)
Meibom, A.; Mostefaoui, S.; Cuif, J.; Yurimoto, H.; Dauphin, Y.; Houlbreque, F.; Dunbar, R.; Constantz, B.
2006-12-01
A multitude of marine organisms produce calcium carbonate skeletons that are used extensively to reconstruct water temperature variability of the tropical and subtropical oceans - a key parameter in global climate-change models. Such paleo-climate reconstructions are based on the notion that skeletal oxygen isotopic composition and certain trace-element abundances (e.g., Sr/Ca and Mg/Ca ratios) vary in response to changes in the water temperature. However, it is a fundamental problem that poorly understood biological processes introduce large compositional deviations from thermodynamic equilibrium and hinder precise calibrations of many paleo-climate proxies. Indeed, the role of water temperature in controlling the composition of the skeleton is far from understood. We have studied trace-element abundances as well as oxygen and carbon isotopic compositions of individual skeletal components in the zooxanthellate and non-zooxanthellate corals at ultra-structural, i.e. micrometer to sub-micrometer length scales. From this body of work we draw the following, generalized conclusions: 1) Centers of calcification (COC) are not in equilibrium with seawater. Notably, the Sr/Ca ratio is higher than expected for aragonite equilibrium with seawater at the temperature at which the skeleton was formed. Furthermore, the COC are further away from equilibrium with seawater than fibrous skeleton in terms of stable isotope composition. 2) COC are dramatically different from the fibrous aragonite skeleton in terms of trace element composition. 3) Neither trace element nor stable isotope variations in the fibrous (bulk) part of the skeleton are directly related to changes in SST. In fact, changes in SST can have very little to do with the observed compositional variations. 4) Trace element variations in the fibrous (bulk) part of the skeleton are not related to the activity of zooxanthellae. These observations are directly relevant to the issue of biological versus non-biological control over skeleton composition and will be discussed.
Age-related invariance of abilities measured with the Wechsler Adult Intelligence Scale-IV.
Sudarshan, Navaneetham J; Bowden, Stephen C; Saklofske, Donald H; Weiss, Lawrence G
2016-11-01
Assessment of measurement invariance across populations is essential for meaningful comparison of test scores, and is especially relevant where repeated measurements are required for educational assessment or clinical diagnosis. Establishing measurement invariance legitimizes the assumption that test scores reflect the same psychological trait in different populations or across different occasions. Examination of Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) U.S. standardization samples revealed that a first-order 5-factor measurement model was best fitting across 9 age groups from 16 years to 69 years. Strong metric invariance was found for 3 of 5 factors and partial intercept invariance for the remaining 2. Pairwise comparisons of adjacent age groups supported the inference that cognitive-trait group differences are manifested by group differences in the test scores. In educational and clinical settings these findings provide theoretical and empirical support to interpret changes in the index or subtest scores as reflecting changes in the corresponding cognitive abilities. Further, where clinically relevant, the subtest score composites can be used to compare changes in respective cognitive abilities. The model was supported in the Canadian standardization data with pooled age groups but the sample sizes were not adequate for detailed examination of separate age groups in the Canadian sample. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Dörr, Dominik; Schirmaier, Fabian J.; Henning, Frank; Kärger, Luise
2017-10-01
Finite Element (FE) forming simulation offers the possibility of a detailed analysis of the deformation behavior of multilayered thermoplastic blanks during forming, considering material behavior and process conditions. Rate-dependent bending behavior is a material characteristic, which is so far not considered in FE forming simulation of pre-impregnated, continuously fiber reinforced polymers (CFRPs). Therefore, an approach for modeling viscoelastic bending behavior in FE composite forming simulation is presented in this work. The presented approach accounts for the distinct rate-dependent bending behavior of e.g. thermoplastic CFRPs at process conditions. The approach is based on a Voigt-Kelvin (VK) and a generalized Maxwell (GM) approach, implemented within a FE forming simulation framework implemented in several user-subroutines of the commercially available FE solver Abaqus. The VK, GM, as well as purely elastic bending modeling approaches are parameterized according to dynamic bending characterization results for a PA6-CF UD-tape. It is found that only the GM approach is capable to represent the bending deformation characteristic for all of the considered bending deformation rates. The parameterized bending modeling approaches are applied to a hemisphere test and to a generic geometry. A comparison of the forming simulation results of the generic geometry to experimental tests show a good agreement between simulation and experiments. Furthermore, the simulation results reveal that especially a correct modeling of the initial bending stiffness is relevant for the prediction of wrinkling behavior, as a similar onset of wrinkles is observed for the GM, the VK and an elastic approach, fitted to the stiffness observed in the dynamic rheometer test for low curvatures. Hence, characterization and modeling of rate-dependent bending behavior is crucial for FE forming simulation of thermoplastic CFRPs.
14 CFR 1259.601 - Establishment and composition.
Code of Federal Regulations, 2011 CFR
2011-01-01
... entities that have an interest in space programs or science and education, and six nonfederal... Administrator or designee. (e) The relevant organizations and associations in aerospace and science education...
14 CFR 1259.601 - Establishment and composition.
Code of Federal Regulations, 2010 CFR
2010-01-01
... entities that have an interest in space programs or science and education, and six nonfederal... Administrator or designee. (e) The relevant organizations and associations in aerospace and science education...
14 CFR 1259.601 - Establishment and composition.
Code of Federal Regulations, 2013 CFR
2013-01-01
... entities that have an interest in space programs or science and education, and six nonfederal... Administrator or designee. (e) The relevant organizations and associations in aerospace and science education...
14 CFR 1259.601 - Establishment and composition.
Code of Federal Regulations, 2012 CFR
2012-01-01
... entities that have an interest in space programs or science and education, and six nonfederal... Administrator or designee. (e) The relevant organizations and associations in aerospace and science education...
NASA Astrophysics Data System (ADS)
You, Jeong-Ha
2005-01-01
Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated.
Nontypeable Haemophilus influenzae biofilms: role in chronic airway infections.
Swords, W Edward
2012-01-01
Like many pathogens inhabiting mucosal surfaces, nontypeable Haemophilus influenzae (NTHi) forms multicellular biofilm communities both in vitro and in various infection models. In the past 15 years much has been learned about determinants of biofilm formation by this organism and potential roles in bacterial virulence, especially in the context of chronic and recurrent infections. However, this concept has not been without some degree of controversy, and in the past some have expressed doubts about the relevance of NTHi biofilms to disease. In this review, I will summarize the present information on the composition and potential role(s) of NTHi biofilms in different clinical contexts, as well as highlight potential areas for future work.
Nontypeable Haemophilus influenzae biofilms: role in chronic airway infections
Swords, W. Edward
2012-01-01
Like many pathogens inhabiting mucosal surfaces, nontypeable Haemophilus influenzae (NTHi) forms multicellular biofilm communities both in vitro and in various infection models. In the past 15 years much has been learned about determinants of biofilm formation by this organism and potential roles in bacterial virulence, especially in the context of chronic and recurrent infections. However, this concept has not been without some degree of controversy, and in the past some have expressed doubts about the relevance of NTHi biofilms to disease. In this review, I will summarize the present information on the composition and potential role(s) of NTHi biofilms in different clinical contexts, as well as highlight potential areas for future work. PMID:22919686
Modeling Contamination Migration on the Chandra X-Ray Observatory - IV
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil William; Plucinsky, Paul P.; Marshall, Herman L.; Bogdan, Akos; Grant, Catherine E.; Tennant, Allyn F.; Dahmer, Matthew
2017-01-01
During its first 18 years of operation, the cold (about -60degC) optical blocking filters of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination, which attenuates low-energy x rays. Over the past several years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity, in part to evaluate potential bake-out scenarios intended to reduce the level of contamination. This paper, the fourth on this topic, reports the results of recent contamination-migration simulations and their relevance to a decision whether to bake-out the ACIS instrument.
Modeling contamination migration on the Chandra X-ray Observatory IV
NASA Astrophysics Data System (ADS)
O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil W.; Plucinsky, Paul P.; Marshall, Herman L.; Bogdan, Akos; Grant, Catherine E.; Tennant, Allyn F.; Dahmer, Matthew
2017-08-01
During its first 18 years of operation, the cold (about -60°C) optical blocking filters of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination, which attenuates low-energy x rays. Over the past several years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity, in part to evaluate potential bake-out scenarios intended to reduce the level of contamination. This paper, the fourth on this topic, reports the results of recent contamination-migration simulations and their relevance to a decision whether to bake-out the ACIS instrument.
Pierce, Joseph R; DeGroot, David W; Grier, Tyson L; Hauret, Keith G; Nindl, Bradley C; East, Whitfield B; McGurk, Michael S; Jones, Bruce H
2017-11-01
Army body composition standards are based upon validated criteria; however, certain field-expedient methodologies (e.g., weight-for-height, body mass index [BMI]) may disqualify individuals from service who may otherwise excel on physical performance and military-relevant tasks. The purpose was to assess soldier physical performance and military-specific task/fitness performance stratified by BMI. Cross-sectional observational study. Male (n=275) and female (n=46) soldiers performed a wide-array of physical fitness tests and military-specific tasks, including the Army physical fitness test (APFT). Within-sex performance data were analyzed by BMI tertile stratification or by Army Body Composition Program (ABCP) weight-for-height (calculated BMI) screening standards using ANOVA/Tukey post-hoc or independent t-tests, respectively. BMI stratification (higher vs. lower BMI) was associated with significant improvements in muscular strength and power, but also with decrements in speed/agility in male and female soldiers. Within the military specific tasks, a higher BMI was associated with an increased APFT 2-Mile Run time; however, performance on a 1600-m Loaded March or a Warrior Task and Battle Drill obstacle course was not related to BMI in either sex. Male and Female soldiers who did not meet ABCP screening standards demonstrated a slower 2-Mile Run time; however, not meeting the ABCP BMI standard only affected a minimal number (∼6%) of soldiers' ability to pass the APFT. Military body composition standards require a careful balance between physical performance, health, and military readiness. Allowances should be considered where tradeoffs exist between body composition classifications and performance on physical tasks with high military relevance. Published by Elsevier Ltd.
Blast and Impact Resistant Composite Structures for Navy Ships
2013-03-15
Navy cargo ships, Air Force tactical shelters, Air Force runway matting, vehicular bridge decks, railcar floors and wind turbine blades. The US Army...bridge decks, railcar floors and wind turbine blades. NAVY RELEVANCE Producing stronger, safer and more cost-effective platforms for the new generation...floors and wind turbine blades. 32 NAVY RELEVANCE Producing stronger, safer and more cost-effective platforms for the new generation naval ships
Oxidative DNA damage background estimated by a system model of base excision repair
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokhansanj, B A; Wilson, III, D M
Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parametersmore » from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.« less
Coretti, Lorena; Cristiano, Claudia; Florio, Ermanno; Scala, Giovanni; Lama, Adriano; Keller, Simona; Cuomo, Mariella; Russo, Roberto; Pero, Raffaela; Paciello, Orlando; Mattace Raso, Giuseppina; Meli, Rosaria; Cocozza, Sergio; Calignano, Antonio; Chiariotti, Lorenzo; Lembo, Francesca
2017-03-28
Alterations of microbiota-gut-brain axis have been invoked in the pathogenesis of autism spectrum disorders (ASD). Mouse models could represent an excellent tool to understand how gut dysbiosis and related alterations may contribute to autistic phenotype. In this study we paralleled gut microbiota (GM) profiles, behavioral characteristics, intestinal integrity and immunological features of colon tissues in BTBR T + tf/J (BTBR) inbred mice, a well established animal model of ASD. Sex differences, up to date poorly investigated in animal models, were specifically addressed. Results showed that BTBR mice of both sexes presented a marked intestinal dysbiosis, alterations of behavior, gut permeability and immunological state with respect to prosocial C57BL/6j (C57) strain. Noticeably, sex-related differences were clearly detected. We identified Bacteroides, Parabacteroides, Sutterella, Dehalobacterium and Oscillospira genera as key drivers of sex-specific gut microbiota profiles associated with selected pathological traits. Taken together, our findings indicate that alteration of GM in BTBR mice shows relevant sex-associated differences and supports the use of BTBR mouse model to dissect autism associated microbiota-gut-brain axis alteration.
Congdon, Peter
2009-01-30
Estimates of disease prevalence for small areas are increasingly required for the allocation of health funds according to local need. Both individual level and geographic risk factors are likely to be relevant to explaining prevalence variations, and in turn relevant to the procedure for small area prevalence estimation. Prevalence estimates are of particular importance for major chronic illnesses such as cardiovascular disease. A multilevel prevalence model for cardiovascular outcomes is proposed that incorporates both survey information on patient risk factors and the effects of geographic location. The model is applied to derive micro area prevalence estimates, specifically estimates of cardiovascular disease for Zip Code Tabulation Areas in the USA. The model incorporates prevalence differentials by age, sex, ethnicity and educational attainment from the 2005 Behavioral Risk Factor Surveillance System survey. Influences of geographic context are modelled at both county and state level, with the county effects relating to poverty and urbanity. State level influences are modelled using a random effects approach that allows both for spatial correlation and spatial isolates. To assess the importance of geographic variables, three types of model are compared: a model with person level variables only; a model with geographic effects that do not interact with person attributes; and a full model, allowing for state level random effects that differ by ethnicity. There is clear evidence that geographic effects improve statistical fit. Geographic variations in disease prevalence partly reflect the demographic composition of area populations. However, prevalence variations may also show distinct geographic 'contextual' effects. The present study demonstrates by formal modelling methods that improved explanation is obtained by allowing for distinct geographic effects (for counties and states) and for interaction between geographic and person variables. Thus an appropriate methodology to estimate prevalence at small area level should include geographic effects as well as person level demographic variables.
Congdon, Peter
2009-01-01
Background Estimates of disease prevalence for small areas are increasingly required for the allocation of health funds according to local need. Both individual level and geographic risk factors are likely to be relevant to explaining prevalence variations, and in turn relevant to the procedure for small area prevalence estimation. Prevalence estimates are of particular importance for major chronic illnesses such as cardiovascular disease. Methods A multilevel prevalence model for cardiovascular outcomes is proposed that incorporates both survey information on patient risk factors and the effects of geographic location. The model is applied to derive micro area prevalence estimates, specifically estimates of cardiovascular disease for Zip Code Tabulation Areas in the USA. The model incorporates prevalence differentials by age, sex, ethnicity and educational attainment from the 2005 Behavioral Risk Factor Surveillance System survey. Influences of geographic context are modelled at both county and state level, with the county effects relating to poverty and urbanity. State level influences are modelled using a random effects approach that allows both for spatial correlation and spatial isolates. Results To assess the importance of geographic variables, three types of model are compared: a model with person level variables only; a model with geographic effects that do not interact with person attributes; and a full model, allowing for state level random effects that differ by ethnicity. There is clear evidence that geographic effects improve statistical fit. Conclusion Geographic variations in disease prevalence partly reflect the demographic composition of area populations. However, prevalence variations may also show distinct geographic 'contextual' effects. The present study demonstrates by formal modelling methods that improved explanation is obtained by allowing for distinct geographic effects (for counties and states) and for interaction between geographic and person variables. Thus an appropriate methodology to estimate prevalence at small area level should include geographic effects as well as person level demographic variables. PMID:19183458
NASA Astrophysics Data System (ADS)
Choukroun, M.
2010-12-01
Ground-based observations and space missions to the outer Solar System (Voyager, Galileo, Cassini-Huygens) have evidenced recent geologic activity on many satellites of the giant planets. The diversity in surface expression of these icy moons’ activity is striking: from a scarred and young surface on Europa,1 with hydrated salts that may originate from a liquid layer buried at depth,2 to the South Polar plumes of Enceladus,3 where water ice particles are expelled along with a myriad of more complex molecules,4 to Titan, largest satellite of Saturn, with a dense atmosphere and a hydrocarbon cycle similar to the hydrological cycle on Earth.5 Large icy moons, i.e. with a radius greater than 500 km, share two particularities: a high content in water (on the order of a 30-70% bulk composition), and an interior segregated between a water-dominated mantle and a silicate-dominated core. The many forms water may have beneath the surface (ice polymorphs, liquid, hydrated compounds) bear a crucial role in the detected or alleged activity, and in the potential for astrobiological relevance. Indeed, any endogenic activity can only be approached through geophysical modelling of the internal structure and the thermal evolution. Current internal structure models for the icy moonse.g.,6 rely mainly on the contribution of each internal layer to the moment of inertia, generating non-unique solutions due to the large variability in density of H2O-bearing phases. Thermal evolution models,e.g.,7 can help constrain further the internal structure and geophysical activity, by starting with a given initial composition and state and investigating the thickening of icy layers through time. However, such models require both observational datasets and a precise description, as a function of pressure, temperature, and composition, of the thermophysical properties of the individual layers. Over the past century, experimental studies have provided a comprehensive view of the phase diagram of pure water, and of more complex chemical systems relevant to icy moons (sulfate salts, ammonia, volatiles). This presentation will review phases of interest, their physical properties, and their influence on the geophysical behavior of icy satellites. Then the focus will shift toward thermodynamic tools (equations of state, thermodynamic models), which can provide the inputs required by geophysical models. The specific case of the modeling of the water and water-ammonia phase diagrams will be presented,8,9 along with its planetary implications, and anticipated developments to address the chemical complexity of icy satellites. The author acknowledges support from a NASA Postdoctoral Program Fellowship, administered by Oak Ridge Associated Universities. This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Government sponsorship acknowledged. References : 1Greeley et al., Icarus, 1998. 2McCord et al., J. Geophys. Res., 1999. 3Porco et al., Science, 2006. 4Waite et al., Nature, 2009. 5Toon et al., Icarus 1988. 6Sohl et al., Icarus 2002. 7Tobie et al., Icarus, 2005. 8Choukroun and Grasset, J. Chem. Phys, 2007. 9Choukroun and Grasset, J. Chem. Phys., in press.
Creation of a Bioengineered Skin Flap Scaffold with a Perfusable Vascular Pedicle.
Jank, Bernhard J; Goverman, Jeremy; Guyette, Jacques P; Charest, Jon M; Randolph, Mark; Gaudette, Glenn R; Gershlak, Joshua R; Purschke, Martin; Javorsky, Emilia; Nazarian, Rosalynn M; Leonard, David A; Cetrulo, Curtis L; Austen, William G; Ott, Harald C
2017-07-01
Full-thickness skin loss is a challenging problem due to limited reconstructive options, demanding 75 million surgical procedures annually in the United States. Autologous skin grafting is the gold standard treatment, but results in donor-site morbidity and poor aesthetics. Numerous skin substitutes are available on the market to date, however, none truly functions as full-thickness skin due to lack of a vascular network. The creation of an autologous full-thickness skin analogue with a vascular pedicle would result in a paradigm shift in the management of wounds and in reconstruction of full-thickness skin defects. To create a clinically relevant foundation, we generated an acellular skin flap scaffold (SFS) with a perfusable vascular pedicle of clinically relevant size by perfusion decellularization of porcine fasciocutaneous flaps. We then analyzed the yielded SFS for mechanical properties, biocompatibility, and regenerative potential in vitro and in vivo. Furthermore, we assessed the immunological response using an in vivo model. Finally, we recellularized the vascular compartment of an SFS and reconnected it to a recipient's blood supply to test for perfusability. Perfusion decellularization removed all cellular components with preservation of native extracellular matrix composition and architecture. Biaxial testing revealed preserved mechanical properties. Immunologic response and biocompatibility assessed via implantation and compared with native xenogenic skin and commercially available dermal substitutes revealed rapid neovascularization and complete tissue integration. Composition of infiltrating immune cells showed no evidence of allorejection and resembled the inflammatory phase of wound healing. Implantation into full-thickness skin defects demonstrated good tissue integration and skin regeneration without cicatrization. We have developed a protocol for the generation of an SFS of clinically relevant size, containing a vascular pedicle, which can be utilized for perfusion decellularization and, ultimately, anastomosis to the recipient vascular system after precellularization. The observed favorable immunological response and good tissue integration indicate the substantial regenerative potential of this platform.
Chemical bonding and the equilibrium composition of Grignard reagents in ethereal solutions.
Henriques, André M; Barbosa, André G H
2011-11-10
A thorough analysis of the electronic structure and thermodynamic aspects of Grignard reagents and its associated equilibrium composition in ethereal solutions is performed. Considering methylmagnesium halides containing fluorine, chlorine, and bromine, we studied the neutral, charged, and radical species associated with their chemical equilibrium in solution. The ethereal solvents considered, tetrahydrofuran (THF) and ethyl ether (Et(2)O), were modeled using the polarizable continuum model (PCM) and also by explicit coordination to the Mg atoms in a cluster. The chemical bonding of the species that constitute the Grignard reagent is analyzed in detail with generalized valence bond (GVB) wave functions. Equilibrium constants were calculated with the DFT/M06 functional and GVB wave functions, yielding similar results. According to our calculations and existing kinetic and electrochemical evidence, the species R(•), R(-), (•)MgX, and RMgX(2)(-) must be present in low concentration in the equilibrium. We conclude that depending on the halogen, a different route must be followed to produce the relevant equilibrium species in each case. Chloride and bromide must preferably follow a "radical-based" pathway, and fluoride must follow a "carbanionic-based" pathway. These different mechanisms are contrasted against the available experimental results and are proven to be consistent with the existing thermodynamic data on the Grignard reagent equilibria.
Understanding Magnetic Resonance Imaging of Knee Cartilage Repair: A Focus on Clinical Relevance.
Hayashi, Daichi; Li, Xinning; Murakami, Akira M; Roemer, Frank W; Trattnig, Siegfried; Guermazi, Ali
2017-06-01
The aims of this review article are (a) to describe the principles of morphologic and compositional magnetic resonance imaging (MRI) techniques relevant for the imaging of knee cartilage repair surgery and their application to longitudinal studies and (b) to illustrate the clinical relevance of pre- and postsurgical MRI with correlation to intraoperative images. First, MRI sequences that can be applied for imaging of cartilage repair tissue in the knee are described, focusing on comparison of 2D and 3D fast spin echo and gradient recalled echo sequences. Imaging features of cartilage repair tissue are then discussed, including conventional (morphologic) MRI and compositional MRI techniques. More specifically, imaging techniques for specific cartilage repair surgery techniques as described above, as well as MRI-based semiquantitative scoring systems for the knee cartilage repair tissue-MR Observation of Cartilage Repair Tissue and Cartilage Repair OA Knee Score-are explained. Then, currently available surgical techniques are reviewed, including marrow stimulation, osteochondral autograft, osteochondral allograft, particulate cartilage allograft, autologous chondrocyte implantation, and others. Finally, ongoing research efforts and future direction of cartilage repair tissue imaging are discussed.
NASA Technical Reports Server (NTRS)
1995-01-01
The success of any solution methodology for studying gas-turbine combustor flows depends a great deal on how well it can model various complex, rate-controlling processes associated with turbulent transport, mixing, chemical kinetics, evaporation and spreading rates of the spray, convective and radiative heat transfer, and other phenomena. These phenomena often strongly interact with each other at disparate time and length scales. In particular, turbulence plays an important role in determining the rates of mass and heat transfer, chemical reactions, and evaporation in many practical combustion devices. Turbulence manifests its influence in a diffusion flame in several forms depending on how turbulence interacts with various flame scales. These forms range from the so-called wrinkled, or stretched, flamelets regime, to the distributed combustion regime. Conventional turbulence closure models have difficulty in treating highly nonlinear reaction rates. A solution procedure based on the joint composition probability density function (PDF) approach holds the promise of modeling various important combustion phenomena relevant to practical combustion devices such as extinction, blowoff limits, and emissions predictions because it can handle the nonlinear chemical reaction rates without any approximation. In this approach, mean and turbulence gas-phase velocity fields are determined from a standard turbulence model; the joint composition field of species and enthalpy are determined from the solution of a modeled PDF transport equation; and a Lagrangian-based dilute spray model is used for the liquid-phase representation with appropriate consideration of the exchanges of mass, momentum, and energy between the two phases. The PDF transport equation is solved by a Monte Carlo method, and existing state-of-the-art numerical representations are used to solve the mean gasphase velocity and turbulence fields together with the liquid-phase equations. The joint composition PDF approach was extended in our previous work to the study of compressible reacting flows. The application of this method to several supersonic diffusion flames associated with scramjet combustor flow fields provided favorable comparisons with the available experimental data. A further extension of this approach to spray flames, three-dimensional computations, and parallel computing was reported in a recent paper. The recently developed PDF/SPRAY/computational fluid dynamics (CFD) module combines the novelty of the joint composition PDF approach with the ability to run on parallel architectures. This algorithm was implemented on the NASA Lewis Research Center's Cray T3D, a massively parallel computer with an aggregate of 64 processor elements. The calculation procedure was applied to predict the flow properties of both open and confined swirl-stabilized spray flames.
Soft Plumbing: Direct-Writing and Controllable Perfusion of Tubular Soft Materials
NASA Astrophysics Data System (ADS)
Guenther, Axel; Omoruwa, Patricia; Chen, Haotian; McAllister, Arianna; Jeronimo, Mark; Malladi, Shashi; Hakimi, Navid; Cao, Li; Ramchandran, Arun
2016-11-01
Tubular and ductular structures are abundant in tissues in a wide variety of diameters, wall thicknesses, and compositions. In spite of their relevance to engineered tissues, organs-on-chips and soft robotics, the rapid and consistent preparation of tubular structures remains a challenge. Here, we use a microfabricated printhead to direct-write biopolymeric tubes with dimensional and compositional control. A biopolymer solution is introduced to the center layer of the printhead, and the confining fluids to the top and the bottom layers. The radially flowing biopolymer solution is sandwiched between confining solutions that initiate gelation, initially assuming the shape of a funnel until emerging through a cylindrical confinement as a continuous biopolymer tube. Tubular constructs of sodium alginate and collagen I were obtained with inner diameters (0.6-2.2mm) and wall thicknesses (0.1-0.4mm) in favorable agreement with predictions of analytical models. We obtained homogeneous tubes with smooth and buckled walls and heterotypic constructs that possessed compositions that vary along the tube circumference or radius. Ductular soft materials were reversibly hosted in 3D printed fluidic devices for the perfusion at well-defined transmural pressures to explore the rich variety of dynamical features associated with collapsible tubes that include buckling, complete collapse, and self-oscillation.
Spectroscopic confirmation of uranium(VI)-carbonato adsorption complexes on hematite
Bargar, John R.; Reitmeyer, Rebecca; Davis, James A.
1999-01-01
Evaluating societal risks posed by uranium contamination from waste management facilities, mining sites, and heavy industry requires knowledge about uranium transport in groundwater, often the most significant pathway of exposure to humans. It has been proposed that uranium mobility in aquifers may be controlled by adsorption of U(VI)−carbonato complexes on oxide minerals. The existence of such complexes has not been demonstrated, and little is known about their compositions and reaction stoichiometries. We have used attenuated total reflectance Fourier transform infrared (ATR-FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopies to probe the existence, structures, and compositions of ≡FeOsurface−U(VI)−carbonato complexes on hematite throughout the pH range of uranyl uptake under conditions relevant to aquifers. U(VI)−carbonato complexes were found to be the predominant adsorbed U(VI) species at all pH values examined, a much wider pH range than previously postulated based on analogy to aqueous U(VI)−carbonato complexes, which are trace constituents at pH < 6. This result indicates the inadequacy of the common modeling assumption that the compositions and predominance of adsorbed species can be inferred from aqueous species. By extension, adsorbed carbonato complexes may be of major importance to the groundwater transport of similar actinide contaminants such as neptunium and plutonium.
Wolkow, Catherine A
2010-01-01
Dramatic changes in body composition accompany aging in humans, particularly with respect to adiposity and the musculature. People accumulate fat as they age and lose muscle mass and strength. Caenorhabditis elegans nematodes are small, hermaphroditic soil nematodes that offer a flexible model for studying genetic pathways regulating body composition in humans. While there are significant physiological differences between worms and people, many of the genetic pathways relevant to human lipid and muscle homeostasis are present in worms. Initial studies indicate that adiposity increases in C. elegans during aging, as occurs in humans. Furthermore, substantial evidence demonstrates age-related loss of muscle mass in worms. Possible mechanisms for these changes in C. elegans are presented. Recent studies have highlighted neuroendocrine and environmental signals regulating C. elegans fat metabolism. Potential dysfunction of these pathways during aging could affect overall fat accumulation. By contrast, muscle decline in aging worms results from accumulated damage and 'wear-and-tear' over life span. However, neuroendocrine pathways also regulate muscle mass in response to food availability. Such pathways might provide useful therapeutic approaches for combating muscle loss during aging. From this chapter, readers will develop a deeper understanding of the ways that C.elegans can be used for mechanistic gerontological studies. Copyright © 2010 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Perami, R.; Grezes-Besset, R.; Prince, W.
The use of AE to study microcracking in hybrid glass-carbon and kevlar laminates relevant to the aerospace industry was experimentally studied. It was found that some plastics reinforced by high-modulus fibers are especially prone to progressive cracking. The use of AE and permeability variations to analyze cracking under loads, fatigue, and aging of the composites is shown.
Evidence for a Global Martian Soil Composition Extends to Gale Crater
NASA Technical Reports Server (NTRS)
Yen, A. S.; Gellert, R.; Clark, B. C.; Ming, D. W.; King, P. L.; Schmidt, M. E.; Leshin, L.; Morris, R. V.; Squyres, S. W.; Campbell, J. L.
2013-01-01
The eolian bedform within Gale Crater referred to as "Rocknest" was investigated by the science instruments of the Curiosity Mars rover. Physical, chemical and mineralogical results are consistent with data collected from soils at other landing sites, suggesting a globally-similar composition. Results from the Curiosity payload from Rocknest should be considered relevant beyond a single, localized region with Gale Crater, providing key insights into planetary scale processes.
14 CFR § 1259.601 - Establishment and composition.
Code of Federal Regulations, 2014 CFR
2014-01-01
... or entities that have an interest in space programs or science and education, and six nonfederal... Administrator or designee. (e) The relevant organizations and associations in aerospace and science education...
Solar system formation and the distribution of volatile species
NASA Technical Reports Server (NTRS)
Lunine, Jonathan I.
1994-01-01
To understand how the solar system formed we must understand the compositional distribution of the current system. Volatile species are particularly important in that their stability as condensed phases is limited in temperature-pressure space, and hence variations in their distribution at present potentially contain an imprint of processes by which temperature and pressure varied in the solar nebula. In this talk we restrict ourselves to species more volatile than water ice, and address issues related to processes in the outer solar system and the formation of bodies there; others in this conference will cover volatile species relevant to inner solar system processes. Study of the outer solar system is relevant both to understanding the interface between the solar nebula and the progenitor giant molecular cloud (since the chemical links to present-day observables in molecular clouds are species like methane, carbon monoxide, etc.), as well as the origin of terrestrial planet atmospheres and oceans (the latter to be covered by Owen). The wealth of compositional information on outer solar system bodies which has become available from spacecraft and ground-based observations challenges traditional simplistic views of the composition and hence dynamics of the solar nebula. The basic assumption of thermochemical equilibrium, promulgated in the 1950's, in which methane and ammonia dominate nitrogen- and carbon-bearing species, is demonstrably incorrect on both observational and theoretical grounds. However, the kinetic inhibition model which replaced it, in which carbon monoxide and molecular nitrogen dominate a nebula which is fully mixed and hence cycles outer solar system gases through a hot, chemically active zone near the disk center, is not supported either by observations. Instead, a picture of the outer solar system emerges in which the gas and grains are a mixture of relatively unaltered, or modestly altered, molecular cloud material, along with a fraction which has been chemically altered in the solar nebula itself (and perhaps giant planet nebulae).
Pujades-Rodriguez, Mar; Guttmann, Oliver P; Gonzalez-Izquierdo, Arturo; Duyx, Bram; O'Mahony, Constantinos; Elliott, Perry; Hemingway, Harry
2018-01-01
To evaluate unmet clinical need in unselected hypertrophic cardiomyopathy (HCM) patients to determine the risk of a wide range of subsequent cardiovascular disease endpoints and safety endpoints relevant for trial design. Population based cohort (CALIBER, linked primary care, hospital and mortality records in England, period 1997-2010), all people diagnosed with HCM were identified and matched by age, sex and general practice with ten randomly selected people without HCM. Random-effects Poisson models were used to assess the associations between HCM and cardiovascular diseases and bleeding. Among 3,290,455 eligible people a diagnosis of hypertrophic cardiomyopathy was found in 4 per 10,000. Forty-one percent of the 1,160 individuals with hypertrophic cardiomyopathy were women and the median age was 57 years. The median follow-up was 4.0 years. Compared to general population controls, people with HCM had higher risk of ventricular arrhythmia (incidence rate ratio = 23.53, [95% confidence interval 12.67-43.72]), cardiac arrest or sudden cardiac death (6.33 [3.69-10.85]), heart failure (4.31, [3.30-5.62]), and atrial fibrillation (3.80 [3.04-4.75]). HCM was also associated with a higher incidence of myocardial infarction ([MI] 1.90 [1.27-2.84]) and coronary revascularisation (2.32 [1.46-3.69]).The absolute Kaplan-Meier risks at 3 years were 8.8% for the composite endpoint of cardiovascular death or heart failure, 8.4% for the composite of cardiovascular death, stroke or myocardial infarction, and 1.5% for major bleeding. Our study identified major unmet need in HCM and highlighted the importance of implementing improved cardiovascular prevention strategies to increase life-expectancy of the contemporary HCM population. They also show that national electronic health records provide an effective method for identifying outcomes and clinically relevant estimates of composite efficacy and safety endpoints essential for trial design in rare diseases.
Experimental recovery of quantum correlations in absence of system-environment back-action
Xu, Jin-Shi; Sun, Kai; Li, Chuan-Feng; Xu, Xiao-Ye; Guo, Guang-Can; Andersson, Erika; Lo Franco, Rosario; Compagno, Giuseppe
2013-01-01
Revivals of quantum correlations in composite open quantum systems are a useful dynamical feature against detrimental effects of the environment. Their occurrence is attributed to flows of quantum information back and forth from systems to quantum environments. However, revivals also show up in models where the environment is classical, thus unable to store quantum correlations, and forbids system-environment back-action. This phenomenon opens basic issues about its interpretation involving the role of classical environments, memory effects, collective effects and system-environment correlations. Moreover, an experimental realization of back-action-free quantum revivals has applicative relevance as it leads to recover quantum resources without resorting to more demanding structured environments and correction procedures. Here we introduce a simple two-qubit model suitable to address these issues. We then report an all-optical experiment which simulates the model and permits us to recover and control, against decoherence, quantum correlations without back-action. We finally give an interpretation of the phenomenon by establishing the roles of the involved parties. PMID:24287554
TOPICAL REVIEW: Electrical transport modelling in organic electroluminescent devices
NASA Astrophysics Data System (ADS)
Walker, A. B.; Kambili, A.; Martin, S. J.
2002-10-01
Organic electroluminescent devices (OEDs) emit light when an electric current is applied to a thin film section. They arise from two main technology branches - small molecules and light emitting polymers. Apart from the insight offered into the fundamentals of their physics, which is relevant to topics such as electrical transport in biological systems and molecular computers, understanding how the mobilities in these systems vary with morphology and composition enables the design of improved materials for technological requirements, e.g. fast switching speeds for active matrix displays and polymer field effect transistors. In this review, we have focussed on the models of transport in OEDs that address the unusual nature of this transport and underpin device design. The review concludes with the following point: as new materials for use in OEDs continue to appear, modelling is essential for the prediction of their transport properties, which in turn leads to the establishment of fundamental trends in the behaviour of devices employing them.
Orchard, Ané; Sandasi, Maxleene; Kamatou, Guy; Viljoen, Alvaro; van Vuuren, Sandy
2017-01-01
This study reports on the inhibitory concentration of 59 commercial essential oils recommended for dermatological conditions, and identifies putative compounds responsible for antimicrobial activity. Essential oils were investigated for antimicrobial activity using minimum inhibitory concentration assays. Ten essential oils were identified as having superior antimicrobial activity. The essential oil compositions were determined using gas chromatography coupled to mass spectrometry and the data analysed with the antimicrobial activity using multivariate tools. Orthogonal projections to latent structures models were created for seven of the pathogens. Eugenol was identified as the main biomarker responsible for antimicrobial activity in the majority of the essential oils. The essential oils mostly displayed noteworthy antimicrobial activity, with five oils displaying broad-spectrum activity against the 13 tested micro-organisms. The antimicrobial efficacies of the essential oils highlight their potential in treating dermatological infections and through chemometric modelling, bioactive volatiles have been identified. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Experimental recovery of quantum correlations in absence of system-environment back-action.
Xu, Jin-Shi; Sun, Kai; Li, Chuan-Feng; Xu, Xiao-Ye; Guo, Guang-Can; Andersson, Erika; Lo Franco, Rosario; Compagno, Giuseppe
2013-01-01
Revivals of quantum correlations in composite open quantum systems are a useful dynamical feature against detrimental effects of the environment. Their occurrence is attributed to flows of quantum information back and forth from systems to quantum environments. However, revivals also show up in models where the environment is classical, thus unable to store quantum correlations, and forbids system-environment back-action. This phenomenon opens basic issues about its interpretation involving the role of classical environments, memory effects, collective effects and system-environment correlations. Moreover, an experimental realization of back-action-free quantum revivals has applicative relevance as it leads to recover quantum resources without resorting to more demanding structured environments and correction procedures. Here we introduce a simple two-qubit model suitable to address these issues. We then report an all-optical experiment which simulates the model and permits us to recover and control, against decoherence, quantum correlations without back-action. We finally give an interpretation of the phenomenon by establishing the roles of the involved parties.
Direct Push supported geotechnical and hydrogeological characterisation of an active sinkhole area
NASA Astrophysics Data System (ADS)
Tippelt, Thomas; Vienken, Thomas; Kirsch, Reinhard; Dietrich, Peter; Werban, Ulrike
2017-04-01
Sinkholes represent a natural geologic hazard in areas where soluble layers are present in the subsurface. A detailed knowledge of the composition of the subsurface and its hydrogeological and geotechnical properties is essential for the understanding of sinkhole formation and propagation. This serves as base for risk evaluation and the development of an early warning system. However, site models often depend on data from drillings and surface geophysical surveys that in many cases cannot resolve the spatial distribution of relevant hydrogeological and geotechnical parameters sufficiently. Therefore, an active sinkhole area in Münsterdorf, Northern Germany, was investigated in detail using Direct Push technology, a minimally invasive sounding method. The obtained vertical high-resolution profiles of geotechnical and hydrogeological characteristics, in combination with Direct Push based sampling and surface geophysical measurements lead to a strong improvement of the geologic site model. The conceptual site model regarding sinkhole formation and propagation will then be tested based on the gathered data and, if necessary, adapted accordingly.
Clinical studies of fiber posts: a literature review.
Cagidiaco, Maria C; Goracci, Cecilia; Garcia-Godoy, Franklin; Ferrari, Marco
2008-01-01
This literature review aimed to find answers to relevant questions regarding the clinical outcome of endontically treated teeth restored with fiber posts. All clinical studies published since 1990 in journals indexed in MEDLINE were retrieved by searching PubMed with the query terms "fiber posts and clinical studies." The reference list of the collected articles was also screened for further relevant citations. The strength of the evidence provided by the reviewed papers was assessed according to the criteria of evidence-based dentistry. Five randomized controlled trials (RCTs) on fiber posts have been published in peer-reviewed journals. A meta-analysis is not applicable to these studies since they do not address the same specific clinical question. Retrospective and prospective trials without controls are also available. Two RCTs indicate that fiber-reinforced composite posts outperform metal posts in the restoration of endontically treated teeth. However, this evidence cannot be considered as conclusive. Longer-term RCTs would be desirable. The placement of a fiber-reinforced composite post protects against failure, especially under conditions of extensive coronal destruction. The most common type of failure with fiber-reinforced composite posts is debonding.
Robinson, Ainsley M; Gondalia, Shakuntla V; Karpe, Avinash V; Eri, Rajaraman; Beale, David J; Morrison, Paul D; Palombo, Enzo A; Nurgali, Kulmira
2016-12-01
Dysbiosis of the gut microbiota may be involved in the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms underlying the role of the intestinal microbiome and metabolome in IBD onset and its alteration during active treatment and recovery remain unknown. Animal models of chronic intestinal inflammation with similar microbial and metabolomic profiles would enable investigation of these mechanisms and development of more effective treatments. Recently, the Winnie mouse model of colitis closely representing the clinical symptoms and characteristics of human IBD has been developed. In this study, we have analyzed fecal microbial and metabolomic profiles in Winnie mice and discussed their relevance to human IBD. The 16S rRNA gene was sequenced from fecal DNA of Winnie and C57BL/6 mice to define operational taxonomic units at ≥97% similarity threshold. Metabolomic profiling of the same fecal samples was performed by gas chromatography-mass spectrometry. Composition of the dominant microbiota was disturbed, and prominent differences were evident at all levels of the intestinal microbiome in fecal samples from Winnie mice, similar to observations in patients with IBD. Metabolomic profiling revealed that chronic colitis in Winnie mice upregulated production of metabolites and altered several metabolic pathways, mostly affecting amino acid synthesis and breakdown of monosaccharides to short chain fatty acids. Significant dysbiosis in the Winnie mouse gut replicates many changes observed in patients with IBD. These results provide justification for the suitability of this model to investigate mechanisms underlying the role of intestinal microbiota and metabolome in the pathophysiology of IBD.
NASA Astrophysics Data System (ADS)
de Carvalho, Vanuildo S.; Kloss, Thomas; Montiel, Xavier; Freire, Hermann; Pépin, Catherine
2015-08-01
We study the fate of the so-called ΘI I-loop-current order that breaks both time-reversal and parity symmetries in a two-dimensional hot spot model with antiferromagnetically mediated interactions, using Fermi surfaces relevant to the phenomenology of the cuprate superconductors. We start from a three-band Emery model describing the hopping of holes in the CuO2 plane that includes two hopping parameters tp p and tp d, local onsite Coulomb interactions Ud and Up, and nearest-neighbor Vp d couplings between the fermions in the copper [Cu (3 dx2-y2) ] and oxygen [O (2 px) and O (2 py)] orbitals. By focusing on the lowest-energy band, we proceed to decouple the local interaction Ud of the Cu orbital in the spin channel using a Hubbard-Stratonovich transformation to arrive at the interacting part of the so-called spin-fermion model. We also decouple the nearest-neighbor interaction Vp d to introduce the order parameter of the ΘI I-loop-current order. In this way, we are able to construct a consistent mean-field theory that describes the strong competition between the composite order parameter made of a quadrupole-density wave and d -wave pairing fluctuations proposed in Efetov et al. [Nat. Phys. 9, 442 (2013), 10.1038/nphys2641] with the ΘI I-loop-current order parameter that is argued to be relevant for explaining important aspects of the physics of the pseudogap phase displayed in the underdoped cuprates.
Quantum-chemical insights from deep tensor neural networks
Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R.; Tkatchenko, Alexandre
2017-01-01
Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol−1) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems. PMID:28067221
Quantum-chemical insights from deep tensor neural networks.
Schütt, Kristof T; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R; Tkatchenko, Alexandre
2017-01-09
Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol -1 ) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems.
Impact of aromatics and monoterpenes on simulated tropospheric ozone and total OH reactivity
NASA Astrophysics Data System (ADS)
Porter, William C.; Safieddine, Sarah A.; Heald, Colette L.
2017-11-01
The accurate representation of volatile organic compounds (VOCs) in models is an important step towards the goal of understanding and predicting many changes in atmospheric constituents relevant to climate change and human health. While isoprene is the most abundant non-methane VOC, many other compounds play a large role in governing pollutant formation and the overall oxidative capacity of the atmosphere. We quantify the impacts of aromatics and monoterpenes, two classes of VOC not included in the standard gas-phase chemistry of the chemical transport model GEOS-Chem, on atmospheric composition. We find that including these compounds increases mean total summer OH reactivity by an average of 11% over the United States, Europe, and Asia. This increased reactivity results in higher simulated levels of O3, raising maximum daily 8-h average O3 in the summer by up to 14 ppb at some NOx-saturated locations.
Quantum-chemical insights from deep tensor neural networks
NASA Astrophysics Data System (ADS)
Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R.; Tkatchenko, Alexandre
2017-01-01
Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol-1) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems.
Aeolian Dunes: New High-Resolution Archives of Past Wind-Intensity and -Direction
NASA Astrophysics Data System (ADS)
Lindhorst, S.; Betzler, C.
2017-12-01
The understanding of the long-term variability of local wind-fields is most relevant for calibrating climate models and for the prediction of the socio-economic consequences of climate change. Continuous instrumental-based weather observations go back less than two centuries; aeolian dunes, however, contain an archive of past wind-field fluctuations which is basically unread. We present new ways to reconstruct annual to seasonal changes of wind intensity and predominant wind direction from dune-sediment composition and -geometries based on ground-penetrating radar (GPR) data, grain-size analyses and different age-dating approaches. Resulting proxy-based data series on wind are validated against instrumental based weather observations. Our approach can be applied to both recent as well as fossil dunes. Potential applications include the validation of climate models, the reconstruction of past supra-regional wind systems and the monitoring of future shifts in the climate system.
DISCOVER-AQ Aircraft insitu TraceGas Data (ICT)
Atmospheric Science Data Center
2018-03-28
DISCOVER-AQ Aircraft insitu TraceGas Data (ICT) Project Title: N/A Platform: NASA ... Relevant Documents: DISCOVER-AQ - Airborne Science Data for Atmospheric Composition DISCOVER-AQ - NASA Earth ...
Fluidized-bed pyrolysis of oil shale: oil yield, composition, and kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, J H; Huss, E B; Ott, L L
1982-09-01
A quartz isothermal fluidized-bed reactor has been used to measure kinetics and oil properties relevant to surface processing of oil shale. The rate of oil formation has been described with two sequential first-order rate equations characterized by two rate constants, k/sub 1/ = 2.18 x 10/sup 10/ exp(-41.6 kcal/RT) s/sup -1/ and k/sub 2/ = 4.4 x 10/sup 6/ exp(-29.7 kcal/RT) s/sup -1/. These rate constants together with an expression for the appropriate weighting coefficients describe approximately 97/sup +/% of the total oil produced. A description is given of the results of different attempts to mathematically describe the data inmore » a manner suitable for modeling applications. Preliminary results are also presented for species-selective kinetics of methane, ethene, ethane and hydrogen, where the latter is clearly distinguished as the product of a distinct intermediate. Oil yields from Western oil shale are approximately 100% Fischer assay. Oil composition is as expected based on previous work and the higher heating rates (temperatures) inherent in fluidized-bed pyrolysis. Neither the oil yield, composition nor the kinetics varied with particle size between 0.2 and 2.0 mm within experimental error. The qualitatively expected change in oil composition due to cracking was observed over the temperature range studied (460 to 540/sup 0/C). Eastern shale exhibited significantly faster kinetics and higher oil yields than did Western shale.« less
Constructing the "Best" Reliability Data for the Job
NASA Technical Reports Server (NTRS)
DeMott, D. L.; Kleinhammer, R. K.
2014-01-01
Modern business and technical decisions are based on the results of analyses. When considering assessments using "reliability data", the concern is how long a system will continue to operate as designed. Generally, the results are only as good as the data used. Ideally, a large set of pass/fail tests or observations to estimate the probability of failure of the item under test would produce the best data. However, this is a costly endeavor if used for every analysis and design. Developing specific data is costly and time consuming. Instead, analysts rely on available data to assess reliability. Finding data relevant to the specific use and environment for any project is difficult, if not impossible. Instead, we attempt to develop the "best" or composite analog data to support our assessments. One method used incorporates processes for reviewing existing data sources and identifying the available information based on similar equipment, then using that generic data to derive an analog composite. Dissimilarities in equipment descriptions, environment of intended use, quality and even failure modes impact the "best" data incorporated in an analog composite. Once developed, this composite analog data provides a "better" representation of the reliability of the equipment or component can be used to support early risk or reliability trade studies, or analytical models to establish the predicted reliability data points. Data that is more representative of reality and more project specific would provide more accurate analysis, and hopefully a better final decision.
Constructing the Best Reliability Data for the Job
NASA Technical Reports Server (NTRS)
Kleinhammer, R. K.; Kahn, J. C.
2014-01-01
Modern business and technical decisions are based on the results of analyses. When considering assessments using "reliability data", the concern is how long a system will continue to operate as designed. Generally, the results are only as good as the data used. Ideally, a large set of pass/fail tests or observations to estimate the probability of failure of the item under test would produce the best data. However, this is a costly endeavor if used for every analysis and design. Developing specific data is costly and time consuming. Instead, analysts rely on available data to assess reliability. Finding data relevant to the specific use and environment for any project is difficult, if not impossible. Instead, we attempt to develop the "best" or composite analog data to support our assessments. One method used incorporates processes for reviewing existing data sources and identifying the available information based on similar equipment, then using that generic data to derive an analog composite. Dissimilarities in equipment descriptions, environment of intended use, quality and even failure modes impact the "best" data incorporated in an analog composite. Once developed, this composite analog data provides a "better" representation of the reliability of the equipment or component can be used to support early risk or reliability trade studies, or analytical models to establish the predicted reliability data points. Data that is more representative of reality and more project specific would provide more accurate analysis, and hopefully a better final decision.
2011-01-01
Background Integrated care is considered as a strategy to improve the delivery, efficiency, client outcomes and satisfaction rates of health care. To integrate the care from multiple providers into a coherent client-focused service, a large number of activities and agreements have to be implemented like streamlining information flows and patient transfers. The Development Model for Integrated care (DMIC) describes nine clusters containing in total 89 elements that contribute to the integration of care. We have empirically validated this model in practice by assessing the relevance, implementation and plans of the elements in three integrated care service settings in The Netherlands: stroke, acute myocardial infarct (AMI), and dementia. Methods Based on the DMIC, a survey was developed for integrated care coordinators. We invited all Dutch stroke and AMI-services, as well as the dementia care networks to participate, of which 84 did (response rate 83%). Data were collected on relevance, presence, and year of implementation of the 89 elements. The data analysis was done by means of descriptive statistics, Chi Square, ANOVA and Kruskal-Wallis H tests. Results The results indicate that the integrated care practice organizations in all three care settings rated the nine clusters and 89 elements of the DMIC as highly relevant. The average number of elements implemented was 50 ± 18, 42 ± 13, and 45 ± 22 for stroke, acute myocardial infarction, and dementia care services, respectively. Although the dementia networks were significantly younger, their numbers of implemented elements were comparable to those of the other services. The analyses of the implementation timelines showed that the older integrated care services had fewer plans for further implementation than the younger ones. Integrated care coordinators stated that the DMIC helped them to assess their integrated care development in practice and supported them in obtaining ideas for expanding their integrated care activities. Conclusions Although the patient composites and the characteristics of the 84 participating integrated care services differed considerably, the results confirm that the clusters and the vast majority of DMIC elements are relevant to all three groups. Therefore, the DMIC can serve as a general quality management tool for integrated care. Applying the model in practice can help in steering further implementations as well as the development of new integrated care practices. PMID:21801428
Ab Initio Surface Phase Diagrams for Coadsorption of Aromatics and Hydrogen on the Pt(111) Surface
Ferguson, Glen Allen; Vorotnikov, Vassili; Wunder, Nicholas; ...
2016-11-02
Supported metal catalysts are commonly used for the hydrogenation and deoxygenation of biomass-derived aromatic compounds in catalytic fast pyrolysis. To date, the substrate-adsorbate interactions under reaction conditions crucial to these processes remain poorly understood, yet understanding this is critical to constructing detailed mechanistic models of the reactions important to catalytic fast pyrolysis. Density functional theory (DFT) has been used in identifying mechanistic details, but many of these works assume surface models that are not representative of realistic conditions, for example, under which the surface is covered with some concentration of hydrogen and aromatic compounds. In this study, we investigate hydrogen-guaiacolmore » coadsorption on Pt(111) using van der Waals-corrected DFT and ab initio thermodynamics over a range of temperatures and pressures relevant to bio-oil upgrading. We find that relative coverage of hydrogen and guaiacol is strongly dependent on the temperature and pressure of the system. Under conditions relevant to ex situ catalytic fast pyrolysis (CFP; 620-730 K, 1-10 bar), guaiacol and hydrogen chemisorb to the surface with a submonolayer hydrogen (~0.44 ML H), while under conditions relevant to hydrotreating (470-580 K, 10-200 bar), the surface exhibits a full-monolayer hydrogen coverage with guaiacol physisorbed to the surface. These results correlate with experimentally observed selectivities, which show ring saturation to methoxycyclohexanol at hydrotreating conditions and deoxygenation to phenol at CFP-relevant conditions. Additionally, the vibrational energy of the adsorbates on the surface significantly contributes to surface energy at higher coverage. Ignoring this contribution results in not only quantitatively, but also qualitatively incorrect interpretation of coadsorption, shifting the phase boundaries by more than 200 K and ~10-20 bar and predicting no guaiacol adsorption under CFP and hydrotreating conditions. We discuss the implications of this work in the context of modeling hydrogenation and deoxygenation reactions on Pt(111), and we find that only the models representative of equilibrium surface coverage can capture the hydrogenation kinetics correctly. Lastly, as a major outcome of this work, we introduce a freely available web-based tool, dubbed the Surface Phase Explorer (SPE), which allows researchers to conveniently determine surface composition for any one- or two-component system at thermodynamic equilibrium over a wide range of temperatures and pressures on any crystalline surface using standard DFT output.« less
Minkman, Mirella M N; Vermeulen, Robbert P; Ahaus, Kees T B; Huijsman, Robbert
2011-07-30
Integrated care is considered as a strategy to improve the delivery, efficiency, client outcomes and satisfaction rates of health care. To integrate the care from multiple providers into a coherent client-focused service, a large number of activities and agreements have to be implemented like streamlining information flows and patient transfers. The Development Model for Integrated care (DMIC) describes nine clusters containing in total 89 elements that contribute to the integration of care. We have empirically validated this model in practice by assessing the relevance, implementation and plans of the elements in three integrated care service settings in The Netherlands: stroke, acute myocardial infarct (AMI), and dementia. Based on the DMIC, a survey was developed for integrated care coordinators. We invited all Dutch stroke and AMI-services, as well as the dementia care networks to participate, of which 84 did (response rate 83%). Data were collected on relevance, presence, and year of implementation of the 89 elements. The data analysis was done by means of descriptive statistics, Chi Square, ANOVA and Kruskal-Wallis H tests. The results indicate that the integrated care practice organizations in all three care settings rated the nine clusters and 89 elements of the DMIC as highly relevant. The average number of elements implemented was 50 ± 18, 42 ± 13, and 45 ± 22 for stroke, acute myocardial infarction, and dementia care services, respectively. Although the dementia networks were significantly younger, their numbers of implemented elements were comparable to those of the other services. The analyses of the implementation timelines showed that the older integrated care services had fewer plans for further implementation than the younger ones. Integrated care coordinators stated that the DMIC helped them to assess their integrated care development in practice and supported them in obtaining ideas for expanding their integrated care activities. Although the patient composites and the characteristics of the 84 participating integrated care services differed considerably, the results confirm that the clusters and the vast majority of DMIC elements are relevant to all three groups. Therefore, the DMIC can serve as a general quality management tool for integrated care. Applying the model in practice can help in steering further implementations as well as the development of new integrated care practices.
The biomolecular corona of nanoparticles in circulating biological media
NASA Astrophysics Data System (ADS)
Pozzi, D.; Caracciolo, G.; Digiacomo, L.; Colapicchioni, V.; Palchetti, S.; Capriotti, A. L.; Cavaliere, C.; Zenezini Chiozzi, R.; Puglisi, A.; Laganà, A.
2015-08-01
When nanoparticles come into contact with biological media, they are covered by a biomolecular `corona', which confers a new identity to the particles. In all the studies reported so far nanoparticles are incubated with isolated plasma or serum that are used as a model for protein adsorption. Anyway, bodily fluids are dynamic in nature so the question arises on whether the incubation protocol, i.e. dynamic vs. static incubation, could affect the composition and structure of the biomolecular corona. Here we let multicomponent liposomes interact with fetal bovine serum (FBS) both statically and dynamically, i.e. in contact with circulating FBS (~40 cm s-1). The structure and composition of the liposome-protein corona, as determined by dynamic light scattering, electrophoretic light scattering and liquid chromatography tandem mass spectrometry, were found to be dependent on the incubation protocol. Specifically, following dynamic exposure to FBS, multicomponent liposomes were less enriched in complement proteins and appreciably more enriched in apolipoproteins and acute phase proteins (e.g. alpha-1-antitrypsin and inter-alpha-trypsin inhibitor heavy chain H3) that are involved in relevant interactions between nanoparticles and living systems. Supported by our results, we speculate that efficient predictive modeling of nanoparticle behavior in vivo will require accurate knowledge of nanoparticle-specific protein fingerprints in circulating biological media.When nanoparticles come into contact with biological media, they are covered by a biomolecular `corona', which confers a new identity to the particles. In all the studies reported so far nanoparticles are incubated with isolated plasma or serum that are used as a model for protein adsorption. Anyway, bodily fluids are dynamic in nature so the question arises on whether the incubation protocol, i.e. dynamic vs. static incubation, could affect the composition and structure of the biomolecular corona. Here we let multicomponent liposomes interact with fetal bovine serum (FBS) both statically and dynamically, i.e. in contact with circulating FBS (~40 cm s-1). The structure and composition of the liposome-protein corona, as determined by dynamic light scattering, electrophoretic light scattering and liquid chromatography tandem mass spectrometry, were found to be dependent on the incubation protocol. Specifically, following dynamic exposure to FBS, multicomponent liposomes were less enriched in complement proteins and appreciably more enriched in apolipoproteins and acute phase proteins (e.g. alpha-1-antitrypsin and inter-alpha-trypsin inhibitor heavy chain H3) that are involved in relevant interactions between nanoparticles and living systems. Supported by our results, we speculate that efficient predictive modeling of nanoparticle behavior in vivo will require accurate knowledge of nanoparticle-specific protein fingerprints in circulating biological media. Electronic supplementary information (ESI) available: Table S1: estimation of the corona thickness, sk, of elementary units (liposome-protein corona) clustered in k-fold equilibrium aggregates (t > 15 min). Tables S2 and S3: the full list of the most abundant corona proteins identified on the surface of multicomponent liposomes following dynamic and static incubation with fetal bovine serum. Table S4: the list of the unique proteins bound to MC liposomes following 90 min incubation with FBS under dynamic and static incubation. See DOI: 10.1039/c5nr03701h
Gattiker, Alexandre; Niederhauser-Wiederkehr, Christa; Moore, James; Hermida, Leandro; Primig, Michael
2007-01-01
We report a novel release of the GermOnline knowledgebase covering genes relevant for the cell cycle, gametogenesis and fertility. GermOnline was extended into a cross-species systems browser including information on DNA sequence annotation, gene expression and the function of gene products. The database covers eight model organisms and Homo sapiens, for which complete genome annotation data are available. The database is now built around a sophisticated genome browser (Ensembl), our own microarray information management and annotation system (MIMAS) used to extensively describe experimental data obtained with high-density oligonucleotide microarrays (GeneChips) and a comprehensive system for online editing of database entries (MediaWiki). The RNA data include results from classical microarrays as well as tiling arrays that yield information on RNA expression levels, transcript start sites and lengths as well as exon composition. Members of the research community are solicited to help GermOnline curators keep database entries on genes and gene products complete and accurate. The database is accessible at http://www.germonline.org/.
Space Radiation Effects in Inflatable and Composite Habitat Materials
NASA Technical Reports Server (NTRS)
Waller, Jess; Rojdev, Kristina
2015-01-01
This Year 2 project provides much needed risk reduction data to assess solar particle event (SPE) and galactic cosmic ray (GCR) space radiation damage in existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage is quantified for materials used in inflatable structures (1st priority), and habitable composite structures and space suits materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes.
Lennernäs, H; Lindahl, A; Van Peer, A; Ollier, C; Flanagan, T; Lionberger, R; Nordmark, A; Yamashita, S; Yu, L; Amidon, G L; Fischer, V; Sjögren, E; Zane, P; McAllister, M; Abrahamsson, B
2017-04-03
The overall objective of OrBiTo, a project within Innovative Medicines Initiative (IMI), is to streamline and optimize the development of orally administered drug products through the creation and efficient application of biopharmaceutics tools. This toolkit will include both experimental and computational models developed on improved understanding of the highly dynamic gastrointestinal (GI) physiology relevant to the GI absorption of drug products in both fasted and fed states. A part of the annual OrBiTo meeting in 2015 was dedicated to the presentation of the most recent progress in the development of the regulatory use of PBPK in silico modeling, in vivo predictive dissolution (IPD) tests, and their application to biowaivers. There are still several areas for improvement of in vitro dissolution testing by means of generating results relevant for the intraluminal conditions in the GI tract. The major opportunity is probably in combining IPD testing and physiologically based in silico models where the in vitro data provide input to the absorption predictions. The OrBiTo project and other current research projects include definition of test media representative for the more distal parts of the GI tract, models capturing supersaturation and precipitation phenomena, and influence of motility waves on shear and other forces of hydrodynamic origin, addressing the interindividual variability in composition and characteristics of GI fluids, food effects, definition of biorelevant buffer systems, and intestinal water volumes. In conclusion, there is currently a mismatch between the extensive industrial usage of modern in vivo predictive tools and very limited inclusion of such data in regulatory files. However, there is a great interest among all stakeholders to introduce recent progresses in prediction of in vivo GI drug absorption into regulatory context.
7 CFR 3411.11 - Composition of peer review groups.
Code of Federal Regulations, 2011 CFR
2011-01-01
... education and other relevant experience of the individual and the extent to which an individual is engaged... peer review groups related to minority and female representation and an equitable age distribution. (b...
Active black holes: Relevant plasma structures, regimes and processes involving all phase space
NASA Astrophysics Data System (ADS)
Coppi, Bruno
2011-03-01
The presented theory is motivated by the growing body of experimental information on the characteristics, connected with relevant spectral, time, and space resolutions, of the radiation emission from objects considered as rotating black holes. In the immediate surroundings of these objects, three plasma regions are identified: an innermost Buffer Region, an intermediate Three-regime Region, and a Structured Peripheral Region. In the last region, a Composite Disk Structure made of a sequence of plasma rings corresponding to the formation of closed magnetic surfaces is considered to be present and to allow intermittent accretion flows along the relevant separatrices. The nonlinear ``Master Equation'' describing composite disk structures is derived and solved in appropriate asymptotic limits. A ring configuration, depending on the state of the plasma at the microscopic level: (i) can be excluded from forming given the strongly nonthermal nature of the electron distribution (in momentum space) within the Three-regime Region allowing the onset of a spiral structure; the observed High Frequency Quasi Periodic Oscillations are associated with these tridimensional structures; (ii) may be allowed to propagate to the outer edge of the Buffer Region where successive rings carrying currents in opposite directions are ejected vertically (in opposite directions) and originate the observed jets; or (iii) penetrates in the Three-regime Region and is dissipated before reaching the outer edge of the Buffer Region. The absence of a coherent composite disk structure guiding accretion in the presence of a significant magnetic field background is suggested to characterize quiescent black holes.
Bonef, Bastien; Lopez-Haro, Miguel; Amichi, Lynda; Beeler, Mark; Grenier, Adeline; Robin, Eric; Jouneau, Pierre-Henri; Mollard, Nicolas; Mouton, Isabelle; Monroy, Eva; Bougerol, Catherine
2016-12-01
The enhancement of the performance of advanced nitride-based optoelectronic devices requires the fine tuning of their composition, which has to be determined with a high accuracy and at the nanometer scale. For that purpose, we have evaluated and compared energy dispersive X-ray spectroscopy (EDX) in a scanning transmission electron microscope (STEM) and atom probe tomography (APT) in terms of composition analysis of AlGaN/GaN multilayers. Both techniques give comparable results with a composition accuracy better than 0.6 % even for layers as thin as 3 nm. In case of EDX, we show the relevance of correcting the X-ray absorption by simultaneous determination of the mass thickness and chemical composition at each point of the analysis. Limitations of both techniques are discussed when applied to specimens with different geometries or compositions.
Validating predictions made by a thermo-mechanical model of melt segregation in sub-volcanic systems
NASA Astrophysics Data System (ADS)
Roele, Katarina; Jackson, Matthew; Morgan, Joanna
2014-05-01
A quantitative understanding of the spatial and temporal evolution of melt distribution in the crust is crucial in providing insights into the development of sub-volcanic crustal stratigraphy and composition. This work aims to relate numerical models that describe the base of volcanic systems with geophysical observations. Recent modelling has shown that the repetitive emplacement of mantle-derived basaltic sills, at the base of the lower crust, acts as a heat source for anatectic melt generation, buoyancy-driven melt segregation and mobilisation. These processes form the lowermost architecture of complex sub-volcanic networks as upward migrating melt produces high melt fraction layers. These 'porosity waves' are separated by zones with high compaction rates and have distinctive polybaric chemical signatures that suggest mixed crust and mantle origins. A thermo-mechanical model produced by Solano et al in 2012 has been used to predict the temperatures and melt fractions of successive high porosity layers within the crust. This model was used as it accounts for the dynamic evolution of melt during segregation and migration through the crust; a significant process that has been neglected in previous models. The results were used to input starting compositions for each of the layers into the rhyolite-MELTS thermodynamic simulation. MELTS then determined the approximate bulk composition of the layers once they had cooled and solidified. The mean seismic wave velocities of the polymineralic layers were then calculated using the relevant Voight-Reuss-Hill mixture rules, whilst accounting for the pressure and temperature dependence of seismic wave velocity. The predicted results were then compared with real examples of reflectivity for areas including the UK, where lower crustal layering is observed. A comparison between the impedance contrasts at compositional boundaries is presented as it confirms the extent to which modelling is able to make predictions that are consistent with the real data. This highlights improvements that could be made to the thermo-mechanical model, such as an extension into 3-D that would be capable of capturing the effects of convective instabilities. In addition, it describes how far numerical models are capable of reducing the uncertainty in the parameter space for poorly defined crustal properties. Most importantly however, it gives an improved understanding of the intrusion and development of melt zones in the continental crust that ultimately control the formation of volcanic systems. [1] Solano, J. M. S., M. D. Jackson, R. S. J. Sparks, J. D. Blundy, and C. Annen (2012). Melt segregation in deep crustal hot zones: a mechanism for chemical differentiation, crustal assimilation and the formation of evolved magmas. Journal of Petrology, 53, Number 10, Pages 1999-2026. DOI: 10.1093/petrology/egs041.
NASA Astrophysics Data System (ADS)
Jensen, E. J.; Karcher, B.; Ueyama, R.; Pfister, L.; Bui, T. V.; Diskin, G. S.; DiGangi, J. P.; Woods, S.; Lawson, P.; Froyd, K. D.; Murphy, D. M.
2017-12-01
Laboratory experiments over the past decade have advanced our understanding of the physical state and ice nucleation efficacy of aerosols with atmospherically-relevant compositions at low temperatures. We use these laboratory results along with measurements of upper-tropospheric aerosol composition to develop a parameterization if the ice nuclei number, and activity dependence on ice supersaturation and temperature in the cold tropical tropopause layer (TTL, 13-18 km). We show that leading candidates for aerosol types serving as effective ice nuclei are glassy organic-containing aerosols, crystalline ammonium sulfate, and mineral dust. We apply the low-temperature heterogeneous ice nucleation parameterization in a detailed model of TTL transport and cirrus formation. The model treats heterogeneous ice nucleation and homogeneous freezing of aqueous aerosols, deposition growth and sublimation of ice crystals, and sedimentation of ice crystals. The model is driven by meteorological fields with high-frequency waves superimposed, and simulated cirrus microphysical properties are statistically compared with recent measurements of TTL cirrus microphysical properties and ice supersaturation from recent high-altitude aircraft campaigns. We show that effective ice nuclei concentrations on the order of 50-100/L can dominate over homogeneous freezing production of TTL cirrus ice crystals. Glassy organic-containing aerosols or crystalline ammonium sulfate could conceivably provide more abundant sources of ice nuclei, but the simulations indicate that high concentrations of effective IN would prevent observed occurrence of large supersaturations and high ice concentrations. We will also show the impact of heterogeneous ice nuclei on TTL cirrus microphysical properties and occurrence frequencies.
Furstoss, C; Reniers, B; Bertrand, M J; Poon, E; Carrier, J-F; Keller, B M; Pignol, J P; Beaulieu, L; Verhaegen, F
2009-05-01
A Monte Carlo (MC) study was carried out to evaluate the effects of the interseed attenuation and the tissue composition for two models of 125I low dose rate (LDR) brachytherapy seeds (Medi-Physics 6711, IBt InterSource) in a permanent breast implant. The effect of the tissue composition was investigated because the breast localization presents heterogeneities such as glandular and adipose tissue surrounded by air, lungs, and ribs. The absolute MC dose calculations were benchmarked by comparison to the absolute dose obtained from experimental results. Before modeling a clinical case of an implant in heterogeneous breast, the effects of the tissue composition and the interseed attenuation were studied in homogeneous phantoms. To investigate the tissue composition effect, the dose along the transverse axis of the two seed models were calculated and compared in different materials. For each seed model, three seeds sharing the same transverse axis were simulated to evaluate the interseed effect in water as a function of the distance from the seed. A clinical study of a permanent breast 125I implant for a single patient was carried out using four dose calculation techniques: (1) A TG-43 based calculation, (2) a full MC simulation with realistic tissues and seed models, (3) a MC simulation in water and modeled seeds, and (4) a MC simulation without modeling the seed geometry but with realistic tissues. In the latter, a phase space file corresponding to the particles emitted from the external surface of the seed is used at each seed location. The results were compared by calculating the relevant clinical metrics V85, V100, and V200 for this kind of treatment in the target. D90 and D50 were also determined to evaluate the differences in dose and compare the results to the studies published for permanent prostate seed implants in literature. The experimental results are in agreement with the MC absolute doses (within 5% for EBT Gafchromic film and within 7% for TLD-100). Important differences between the dose along the transverse axis of the seed in water and in adipose tissue are obtained (10% at 3.5 cm). The comparisons between the full MC and the TG-43 calculations show that there are no significant differences for V85 and V100. For V200, 8.4% difference is found coming mainly from the tissue composition effect. Larger differences (about 10.5% for the model 6711 seed and about 13% for the InterSource125) are determined for D90 and D50. These differences depend on the composition of the breast tissue modeled in the simulation. A variation in percentage by mass of the mammary gland and adipose tissue can cause important differences in the clinical dose metrics V200, D90, and D50. Even if the authors can conclude that clinically, the differences in V85, V100, and V200 are acceptable in comparison to the large variation in dose in the treated volume, this work demonstrates that the development of a MC treatment planning system for LDR brachytherapy will improve the dose determination in the treated region and consequently the dose-outcome relationship, especially for the skin toxicity.
NASA Astrophysics Data System (ADS)
Crusius, J.; Schroth, A.; Resing, J.; Cullen, J. T.; Campbell, R. W.
2016-12-01
Particulate matter (PM) in the atmosphere is known to cause adverse cardiorespiratory health effects. It has been suggested that the ability of PM to generate oxidative stress leads to a proinflammatory response. In this work, we study the biological relevance of using a chemical oxidative potential (OP) assay to evaluate proinflammatory response in airway epithelial cells. Here we study the OPs of laboratory secondary organic aerosol (SOA) and metal mixtures, ambient PM from India, ash from the 2016 Alberta wildfires, and diesel exhaust particles. We use SOA derived from naphthalene and from monoterpenes as model systems for SOA. We measure OP using the dithiothreitol (DTT) assay, and cytosolic reactive oxygen species (ROS) production in BEAS-2B cell culture was measured using CellROX assay. We found that both SOA and copper show high OPs individually, but the OP of the combined SOA/copper mixture, which is more atmospherically relevant, was lower than either of the individual OPs. The reduced activity is attributed to chelation between metals and organic compounds using proton nuclear magnetic resonance. There is reasonable association between DTT activity and cellular ROS production within each particle type, but weak association across different particle types, suggesting that particle composition plays an important role in distinguishing between antioxidant consumption and ROS production. Our results highlight that while oxidative potential is a useful metric of PM's ability to generate oxidative stress, the chemical composition and cellular environment should be considered in understanding health impacts of PM.
Compositional Models of Glass/Melt Properties and their Use for Glass Formulation
Vienna, John D.; USA, Richland Washington
2014-12-18
Nuclear waste glasses must simultaneously meet a number of criteria related to their processability, product quality, and cost factors. The properties that must be controlled in glass formulation and waste vitrification plant operation tend to vary smoothly with composition allowing for glass property-composition models to be developed and used. Models have been fit to the key glass properties. The properties are transformed so that simple functions of composition (e.g., linear, polynomial, or component ratios) can be used as model forms. The model forms are fit to experimental data designed statistically to efficiently cover the composition space of interest. Examples ofmore » these models are found in literature. The glass property-composition models, their uncertainty definitions, property constraints, and optimality criteria are combined to formulate optimal glass compositions, control composition in vitrification plants, and to qualify waste glasses for disposal. An overview of current glass property-composition modeling techniques is summarized in this paper along with an example of how those models are applied to glass formulation and product qualification at the planned Hanford high-level waste vitrification plant.« less
NASA Technical Reports Server (NTRS)
Intriligator, D. S.; Steele, G. R.
1982-01-01
The effects of inserting a spherical conducting model, large in comparison with the Debye length, into a free streaming high-energy 1 kV) unmagnetized hydrogen plasma are investigated in order to measure energies and compositions directly relevant to solar wind and astrophysical plasma phenomena. Holding the incident plasma parameters constant, transverse profiles of the net Langmuir probe current are plotted at various locations downstream in the model wake and are divided into three regions (the shadow, transition, and boundary). Results attributable to the use of a high-energy plasma show that enhancements in the shadow exist at downstream locations where the Mach ratio is less than one, and turbulence exists in the transition region on the shadow edges and outside in the boundary region. In addition, a small current enhancement is found in the boundary and can be attributed to the plasma/model interaction. It is concluded that many similar features observed by spacecraft downstream from planetary bodies are relatively permanent and are due to the intrinsic nature of the interaction between the solar wind plasma and the obstacle.
Semmens, Brice X; Ward, Eric J; Moore, Jonathan W; Darimont, Chris T
2009-07-09
Variability in resource use defines the width of a trophic niche occupied by a population. Intra-population variability in resource use may occur across hierarchical levels of population structure from individuals to subpopulations. Understanding how levels of population organization contribute to population niche width is critical to ecology and evolution. Here we describe a hierarchical stable isotope mixing model that can simultaneously estimate both the prey composition of a consumer diet and the diet variability among individuals and across levels of population organization. By explicitly estimating variance components for multiple scales, the model can deconstruct the niche width of a consumer population into relevant levels of population structure. We apply this new approach to stable isotope data from a population of gray wolves from coastal British Columbia, and show support for extensive intra-population niche variability among individuals, social groups, and geographically isolated subpopulations. The analytic method we describe improves mixing models by accounting for diet variability, and improves isotope niche width analysis by quantitatively assessing the contribution of levels of organization to the niche width of a population.
Biophysical stimulation for in vitro engineering of functional cardiac tissues.
Korolj, Anastasia; Wang, Erika Yan; Civitarese, Robert A; Radisic, Milica
2017-07-01
Engineering functional cardiac tissues remains an ongoing significant challenge due to the complexity of the native environment. However, our growing understanding of key parameters of the in vivo cardiac microenvironment and our ability to replicate those parameters in vitro are resulting in the development of increasingly sophisticated models of engineered cardiac tissues (ECT). This review examines some of the most relevant parameters that may be applied in culture leading to higher fidelity cardiac tissue models. These include the biochemical composition of culture media and cardiac lineage specification, co-culture conditions, electrical and mechanical stimulation, and the application of hydrogels, various biomaterials, and scaffolds. The review will also summarize some of the recent functional human tissue models that have been developed for in vivo and in vitro applications. Ultimately, the creation of sophisticated ECT that replicate native structure and function will be instrumental in advancing cell-based therapeutics and in providing advanced models for drug discovery and testing. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Zhang, Xiuming; Mormino, Elizabeth C; Sun, Nanbo; Sperling, Reisa A; Sabuncu, Mert R; Yeo, B T Thomas
2016-10-18
We used a data-driven Bayesian model to automatically identify distinct latent factors of overlapping atrophy patterns from voxelwise structural MRIs of late-onset Alzheimer's disease (AD) dementia patients. Our approach estimated the extent to which multiple distinct atrophy patterns were expressed within each participant rather than assuming that each participant expressed a single atrophy factor. The model revealed a temporal atrophy factor (medial temporal cortex, hippocampus, and amygdala), a subcortical atrophy factor (striatum, thalamus, and cerebellum), and a cortical atrophy factor (frontal, parietal, lateral temporal, and lateral occipital cortices). To explore the influence of each factor in early AD, atrophy factor compositions were inferred in beta-amyloid-positive (Aβ+) mild cognitively impaired (MCI) and cognitively normal (CN) participants. All three factors were associated with memory decline across the entire clinical spectrum, whereas the cortical factor was associated with executive function decline in Aβ+ MCI participants and AD dementia patients. Direct comparison between factors revealed that the temporal factor showed the strongest association with memory, whereas the cortical factor showed the strongest association with executive function. The subcortical factor was associated with the slowest decline for both memory and executive function compared with temporal and cortical factors. These results suggest that distinct patterns of atrophy influence decline across different cognitive domains. Quantification of this heterogeneity may enable the computation of individual-level predictions relevant for disease monitoring and customized therapies. Factor compositions of participants and code used in this article are publicly available for future research.
Experimental Design for Hanford Low-Activity Waste Glasses with High Waste Loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piepel, Gregory F.; Cooley, Scott K.; Vienna, John D.
This report discusses the development of an experimental design for the initial phase of the Hanford low-activity waste (LAW) enhanced glass study. This report is based on a manuscript written for an applied statistics journal. Appendices A, B, and E include additional information relevant to the LAW enhanced glass experimental design that is not included in the journal manuscript. The glass composition experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC involving 15 LAW glass components. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directlymore » applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this report. One of the glass components, SO 3, has a solubility limit in glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO 3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO 3 solubility limit had previously been modeled by a partial quadratic mixture model expressed in the relative proportions of the 14 other components. The partial quadratic mixture model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This report describes how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study. A layered design consists of points on an outer layer, and inner layer, and a center point. There were 18 outer-layer glasses chosen using optimal experimental design software to augment 147 existing glass compositions that were within the LAW glass composition experimental region. Then 13 inner-layer glasses were chosen with the software to augment the existing and outer-layer glasses. The experimental design was completed by a center-point glass, a Vitreous State Laboratory glass, and replicates of the center point and Vitreous State Laboratory glasses.« less
Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seitzman, Jerry; Lieuwen, Timothy
2014-09-30
This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixturesmore » having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These results provide evidence that the leading points model can provide useful predictions of turbulent flame speed over a wide range of operating conditions and flow geometries.« less
NASA Astrophysics Data System (ADS)
Reynard, B.; Neri, A.; Sotin, C.
2016-12-01
Icy satellites and similar objects likely form from a mixture of hydrated rocky material, such as the CI chondrites, and various amounts of ices. Mass-balance estimates show that hydrous silicates such as serpentine, and brucite, the simple Mg-Fe hydroxide, dominate fully hydrated mineralogy. The inferred iron content of these minerals is, however, very dependent on assumptions of iron redox state, and whether it forms sulfides or segregates into a metal core. From the determination of the moment of inertia inferred from gravity measurements at Jupiter and Saturn by the Galileo and Cassini spacecraft, Ganymede and Europa would have a differentiated iron-rich core whereas Titan and Enceladus would not. Whatever the case, iron content is generally significantly higher than that of the terrestrial ultrabasic rocks used as analogs in modeling of hydrated satellite cores. Thus, we investigated the phase relations of iron-rich ultrabasic systems based on chondritic composition by combining thermodynamic modeling and preliminary high-pressure experiments. Our starting composition model is that of CI carbonaceous chondrites. Stable mineral assemblages are calculated with the PerpleX package (Connolly, 1990), assuming excess water, and various amounts of iron in the silicate phase through varying the amount of iron sulfide (troilite) or iron oxide (magnetite). Results show stable hydrated minerals are serpentine, chlorite, brucite, Na-phlogopite and in extreme cases, talc in the 1.5-5 GPa range relevant to bodies larger than about 1000 km in radius. Dehydration temperatures are extremely sensitive to the iron content, hence on the chosen amount of iron bearing phase (troilite or magnetite), and to a lower extent on average CI composition. An experimental approach was developed to simulate hydrous alteration of CI-like material. A mixture of synthetic silicates, troilite, and organic compounds, to which excess water is added, is used. Mineralogy and composition is checked using scanning electron microscopy and Raman spectroscopy. Preliminary results at 1.5 GPa are consistent with thermodynamic calculations. Implications for rocky cores are discussed. Connolly, J. A. D. (1990). Multivariable phase diagrams : an algorithm based on generalized thermodynamics, American Journal of Science, 290, 666-718.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langton, C.; Meeussen, J.; Sloot, H.
2010-03-31
The objective of the work described in this report is to demonstrate the capabilities of the current version of LeachXS{trademark}/ORCHESTRA for simulating chemical behavior and constituent release processes in a range of applications that are relevant to the CBP. This report illustrates the use of LeachXS{trademark}/ORCHESTRA for the following applications: (1) Comparing model and experimental results for leaching tests for a range of cementitious materials including cement mortars, grout, stabilized waste, and concrete. The leaching test data includes liquid-solid partitioning as a function of pH and release rates based on laboratory column, monolith, and field testing. (2) Modeling chemical speciationmore » of constituents in cementitious materials, including liquid-solid partitioning and release rates. (3) Evaluating uncertainty in model predictions based on uncertainty in underlying composition, thermodynamic, and transport characteristics. (4) Generating predominance diagrams to evaluate predicted chemical changes as a result of material aging using the example of exposure to atmospheric conditions. (5) Modeling coupled geochemical speciation and diffusion in a three layer system consisting of a layer of Saltstone, a concrete barrier, and a layer of soil in contact with air. The simulations show developing concentration fronts over a time period of 1000 years. (6) Modeling sulfate attack and cracking due to ettringite formation. A detailed example for this case is provided in a separate article by the authors (Sarkar et al. 2010). Finally, based on the computed results, the sensitive input parameters for this type of modeling are identified and discussed. The chemical speciation behavior of substances is calculated for a batch system and also in combination with transport and within a three layer system. This includes release from a barrier to the surrounding soil as a function of time. As input for the simulations, the physical and chemical properties of the materials are used. The test cases used in this demonstration are taken from Reference Cases for Use in the Cementitious Barriers Partnership (Langton et al. 2009). Before it is possible to model the release of substances from stabilized waste or radioactive grout through a cement barrier into the engineered soil barrier or natural soil, the relevant characteristics of such materials must be known. Additional chemical characteristics are needed for mechanistic modeling to be undertaken, not just the physical properties relevant for modeling of transport. The minimum required properties for modeling are given in Section 5.0, 'Modeling the chemical speciation of a material'.« less
NASA Astrophysics Data System (ADS)
Leng, Xiaodan
The trion model was developed using the Mountcastle organizational principle for the column as the basic neuronal network in the cortex and the physical system analogy of Fisher's ANNNI spin model. An essential feature is that it is highly structured in time and in spatial connections. Simulations of a network of trions have shown that large numbers of quasi-stable, periodic spatial-temporal firing patterns can be excited. Characteristics of these patterns include the quality of being readily enhanced by only a small change in connection strengths, and that the patterns evolve in certain natural sequences from one to another. With only somewhat different parameters than used for studying memory and pattern recognition, much more flowing and intriguing patterns emerged from the simulations. The results were striking when these probabilistic evolutions were mapped onto pitches and instruments to produce music: For example different simple mappings of the same evolution give music having the "flavor" of a minuet, a waltz, folk music, or styles of specific periods. A theme can be learned so that evolutions have this theme and its variations reoccurring more often. That the trion model is a viable model for the coding of musical structure in human composition and perception is suggested. It is further proposed that model is relevant for examining creativity in the higher cognitive functions of mathematics and chess, which are similar to music. An even higher level of cortical organization was modeled by coupling together several trion networks. Further, one of the crucial features of higher brain function, especially in music composition or appreciation, is the role of emotion and mood as controlled by the many neuromodulators or neuropeptides. The MILA model whose underlying basis is zero-level representation of Kac-Moody algebra is used to modulate periodically the firing threshold of each network. Our preliminary results show that the introduction of "neuromodulation" into the dynamics of a few coupled trion networks greatly enhanced the richness of the music. Neuromodulation plays a very important role in cognitive processes. I discuss many aspects of cognitive processes such as, leaning and memory, innervation of cortical functions and coordination between music and emotions. The implications of my work are discussed.
NASA Astrophysics Data System (ADS)
Khouri, R.; Beaulieu, C.; Henson, S.; Martin, A. P.; Edwards, M.
2016-02-01
It is believed that changes in phytoplankton community have happened in the North Sea and NE Atlantic in the past decades. Since phytoplankton are the base of the marine food web, it is essential to understand the causes of such behaviour due its potential to induce change in the wider ecosystem. Whilst the impact of environmental controls, such as climate, have received considerable attention, phytoplankton can also be affected by zooplankton grazing. We investigate how changes in zooplankton impact phytoplankton populations and community composition, and vice-versa. We use data from the Continuous Plankton Recorder survey, an unique dataset that uses the same sampling methodology since 1958 and thus provides long and comparable plankton time-series. We apply statistical modelling to describe the interaction between phytoplankton and zooplankton. The analysis is inspired from techniques available in econometrics literature, which do not require assumptions of normality, independence or stationarity of the time-series. In particular, we discuss wether climatic factors or zooplankton grazing are more relevant to the variability in phytoplankton abundance and community composition.
How the variability issue was uncovered: the history of the UK residue variability findings.
Harris, C A
2000-07-01
As a result of routine monitoring data on carrots generated in the 1990s indicating MRL exceedances, further studies showed that residues of organophosphorus compounds in individual roots could vary up to 25 times the levels found in composite samples. Additional work found that this phenomenon also extended to other crops including apples, peaches and celery. Variability (defined as the highest residue level found in any one crop item divided by the level found in a composite sample from the same batch) of up to 34 times mean values was found in one batch of plums. Conventional deterministic methods used in consumer assessments were likely to give gross overestimates of short-term exposure because of the assumptions employed. This led to the development of probabilistic models which made the best use of all available information and was capable of indicating percentages of consumers that could exceed relevant toxicological end points. This indicated that there was unlikely to be serious health effects as a result of ingesting these residues and has subsequently proved to be a useful aid to regulatory decision making.
NASA Technical Reports Server (NTRS)
Berthet, S.; Malavergne, V.; Righter, K.; Corgne, A.; Combes, R.
2006-01-01
Chondrite groups are characterized by variations in bulk composition and oxidation state, illustrating in part heterogeneity in the early solar nebula. Planetary accretion could be explained by at least two different scenarios: the homogeneous [1] and heterogeneous accretion models [2, 3]. In particular, for the formation of the Earth, some studies (e.g. [2, 3]) assume that one component is highly reduced material comparable to enstatite chondrites, devoid of volatile elements but containing all other elements in C1 abundance ratios. To derive constraints on the understanding of early differentiation processes, studies of the silicate phase relations and their interactions with metal, at relevant P-T-fO2, are required. Melting relations and equilibrium partitioning behaviour have been studied on peridotitic and chondritic starting compositions at pressures and temperatures corresponding to the transition zone and lower mantle [4, 5, 6]. However, enstatite chondrites, which are highly reduced primitive meteorites, have not yet been studied experimentally under such conditions. Thus, multianvil experiments have been performed at 20-25 GPa and 2000-2400 C on the EH4 chondrite Indarch.
Stötzel, Sabine; Schurink, Marloes; Wienk, Hans; Siebler, Uschi; Burg-Roderfeld, Monika; Eckert, Thomas; Kulik, Bianca; Wechselberger, Rainer; Sewing, Judith; Steinmeyer, Jürgen; Oesser, Steffen; Boelens, Rolf; Siebert, Hans-Christian
2012-09-17
Heterogeneous mixtures of collagen fragments can be used as nutrition supplement or as key ingredients for ointments with therapeutic relevance in wound healing. Some mixtures of collagen fragments are referred to as collagen hydrolysates owing to the production process with hydrolytic enzymes. Since the precise composition of collagen hydrolysates is generally unknown, it is of interest to analyze samples containing various collagen fragments with appropriate biophysical methods. Any product optimization without a profound knowledge concerning the size and the molecular weight distribution of its components is nearly impossible. It turned out that a combination of AFM methods with NMR techniques is exceptionally suited to examine the size range and the aggregation behavior of the collagen fragments in the hydrolysates of fish, jellyfish, chicken, porcine and bovine collagen. Supported by molecular modeling calculations, the AFM and NMR experiments provide a detailed knowledge about the composition of collagen hydrolysates and collagen ointments. Furthermore, the data allow a correlation between the size of the fragments and their potential bioactivity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.
1994-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Astrophysics Data System (ADS)
Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.
1994-03-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.
Villa, Federica; Secundo, Francesco; Polo, Andrea; Cappitelli, Francesca
2015-07-01
The effects of two commercially available immobilized enzymes (namely the glycosidase pectinase and the protease subtilisin A) at sub-lethal concentrations were investigated in terms of their influence on biofilm genesis, on the composition of the biofilm matrix, and their antibiotic synergy against Escherichia coli biofilm, used as a model system of bacterial biofilms. The best antibiofilm performance of solid-supported hydrolases was obtained at the surface concentration of 0.022 and 0.095 U/cm(2) with a reduction of 1.2 and 2.3 log CFU/biofilm for pectinase and subtilisin, respectively. At these enzyme surface concentrations, the biocatalysts affected the structural composition of the biofilm matrix, impacting biofilm thickness. Finally, the immobilized hydrolases enhanced biofilm sensitivity to a clinically relevant concentration of the antibiotic ampicillin. At the final antibiotic concentration of 0.1 mg/ml, a reduction of 2 and 3.5 log10 units in presence of 0.022 Upectinase/cm(2) and 0.095 Usubtilisin/cm(2) was obtained, respectively, in comparison the antibiotic alone. Immobilized pectinase and subtilisin at sub-lethal concentrations demonstrated a great potential for antibiofilm applications.
Gennemark, P; Trägårdh, M; Lindén, D; Ploj, K; Johansson, A; Turnbull, A; Carlsson, B; Antonsson, M
2017-07-01
In this study, we present the translational modeling used in the discovery of AZD1979, a melanin-concentrating hormone receptor 1 (MCHr1) antagonist aimed for treatment of obesity. The model quantitatively connects the relevant biomarkers and thereby closes the scaling path from rodent to man, as well as from dose to effect level. The complexity of individual modeling steps depends on the quality and quantity of data as well as the prior information; from semimechanistic body-composition models to standard linear regression. Key predictions are obtained by standard forward simulation (e.g., predicting effect from exposure), as well as non-parametric input estimation (e.g., predicting energy intake from longitudinal body-weight data), across species. The work illustrates how modeling integrates data from several species, fills critical gaps between biomarkers, and supports experimental design and human dose-prediction. We believe this approach can be of general interest for translation in the obesity field, and might inspire translational reasoning more broadly. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
Jenke, Dennis; Egert, Thomas; Hendricker, Alan; Castner, James; Feinberg, Tom; Houston, Christopher; Hunt, Desmond G; Lynch, Michael; Nicholas, Kumudini; Norwood, Daniel L; Paskiet, Diane; Ruberto, Michael; Smith, Edward J; Holcomb, Frank; Markovic, Ingrid
2017-01-01
A simulating leaching (migration) study was performed on a model container-closure system relevant to parenteral and ophthalmic drug products. This container-closure system consisted of a linear low-density polyethylene bottle (primary container), a polypropylene cap and an elastomeric cap liner (closure), an adhesive label (labeling), and a foil overpouch (secondary container). The bottles were filled with simulating solvents (aqueous salt/acid mixture at pH 2.5, aqueous buffer at pH 9.5, and 1/1 v/v isopropanol/water), a label was affixed to the filled and capped bottles, the filled bottles were placed into the foil overpouch, and the filled and pouched units were stored either upright or inverted for up to 6 months at 40 °C. After storage, the leaching solutions were tested for leached substances using multiple complementary analytical techniques to address volatile, semi-volatile, and non-volatile organic and inorganic extractables as potential leachables.The leaching data generated supported several conclusions, including that (1) the extractables (leachables) profile revealed by a simulating leaching study can qualitatively be correlated with compositional information for materials of construction, (2) the chemical nature of both the extracting medium and the individual extractables (leachables) can markedly affect the resulting profile, and (3) while direct contact between a drug product and a system's material of construction may exacerbate the leaching of substances from that material by the drug product, direct contact is not a prerequisite for migration and leaching to occur. LAY ABSTRACT: The migration of container-related extractables from a model pharmaceutical container-closure system and into simulated drug product solutions was studied, focusing on circumstances relevant to parenteral and ophthalmic drug products. The model system was constructed specifically to address the migration of extractables from labels applied to the outside of the primary container. The study demonstrated that (1) the extractables that do migrate can be correlated to the composition of the materials used to construct the container-closure systems, (2) the extent of migration is affected by the chemical nature of the simulating solutions and the extractables themselves, and (3) even though labels may not be in direct contact with a contained solution, label-related extractables can accumulate as leachables in those solutions. © PDA, Inc. 2017.
Food effects in paediatric medicines development for products Co-administered with food.
Batchelor, Hannah; Kaukonen, Ann Marie; Klein, Sandra; Davit, Barbara; Ju, Rob; Ternik, Robert; Heimbach, Tycho; Lin, Wen; Wang, Jian; Storey, David
2018-02-05
A small amount of food is commonly used to aid administration of medicines to children to improve palatability and/or swallowability. However the impact of this co-administered food on the absorption and subsequent pharmacokinetic profile of the drug is unknown. Existing information on food effects is limited to standard protocols used to evaluate the impact of a high fat meal in an adult population using the adult medication. In the absence of a substantial body of data, there are no specific guidelines available during development of paediatric products relating to low volumes of potentially low calorie food. This paper brings together expertise to consider how the impact of co-administered food can be risk assessed during the development of a paediatric medicine. Two case studies were used to facilitate discussions and seek out commonalities in risk assessing paediatric products; these case studies used model drugs that differed in their solubility, a poorly soluble drug that demonstrated a positive food effect in adults and a highly soluble drug where a negative food effect was observed. For poorly soluble drugs risk assessments are centred upon understanding the impact of food on the in vivo solubility of the drug which requires knowledge of the composition of the food and the volumes present within the paediatric gastrointestinal tract. Further work is required to develop age appropriate in vitro and in silico models that are representative of paediatric populations. For soluble drugs it is more important to understand the mechanisms that may lead to a food effect, this may include interactions with transporters or the impact of the food composition on gastro-intestinal transit or even altered gastric motility. In silico models have the most promise for highly soluble drug products although it is essential that these models reflect the relevant mechanisms involved in potential food effects. The development of appropriate in vitro and in silico tools is limited by the lack of available clinical data that is critical to validate any tool. Further work is required to identify globally acceptable and available vehicles that should be the first option for co-administration with medicines to enable rapid and relevant risk assessment. Copyright © 2017 Elsevier B.V. All rights reserved.
SEARCH: Spatially Explicit Animal Response to Composition of Habitat.
Pauli, Benjamin P; McCann, Nicholas P; Zollner, Patrick A; Cummings, Robert; Gilbert, Jonathan H; Gustafson, Eric J
2013-01-01
Complex decisions dramatically affect animal dispersal and space use. Dispersing individuals respond to a combination of fine-scale environmental stimuli and internal attributes. Individual-based modeling offers a valuable approach for the investigation of such interactions because it combines the heterogeneity of animal behaviors with spatial detail. Most individual-based models (IBMs), however, vastly oversimplify animal behavior and such behavioral minimalism diminishes the value of these models. We present program SEARCH (Spatially Explicit Animal Response to Composition of Habitat), a spatially explicit, individual-based, population model of animal dispersal through realistic landscapes. SEARCH uses values in Geographic Information System (GIS) maps to apply rules that animals follow during dispersal, thus allowing virtual animals to respond to fine-scale features of the landscape and maintain a detailed memory of areas sensed during movement. SEARCH also incorporates temporally dynamic landscapes so that the environment to which virtual animals respond can change during the course of a simulation. Animals in SEARCH are behaviorally dynamic and able to respond to stimuli based upon their individual experiences. Therefore, SEARCH is able to model behavioral traits of dispersing animals at fine scales and with many dynamic aspects. Such added complexity allows investigation of unique ecological questions. To illustrate SEARCH's capabilities, we simulated case studies using three mammals. We examined the impact of seasonally variable food resources on the weight distribution of dispersing raccoons (Procyon lotor), the effect of temporally dynamic mortality pressure in combination with various levels of behavioral responsiveness in eastern chipmunks (Tamias striatus), and the impact of behavioral plasticity and home range selection on disperser mortality and weight change in virtual American martens (Martes americana). These simulations highlight the relevance of SEARCH for a variety of applications and illustrate benefits it can provide for conservation planning.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb
2014-01-01
SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.
Brulhart-Meynet, Marie-Claude; Braunersreuther, Vincent; Brinck, Jonas; Montecucco, Fabrizio; Prost, Jean-Christophe; Thomas, Aurelien; Galan, Katia; Pelli, Graziano; Pedretti, Sarah; Vuilleumier, Nicolas; Mach, François; Lecour, Sandrine; James, Richard W; Frias, Miguel A
2015-01-01
New evidence shows that high density lipoproteins (HDL) have protective effects beyond their role in reverse cholesterol transport. Reconstituted HDL (rHDL) offer an attractive means of clinically exploiting these novel effects including cardioprotection against ischemia reperfusion injury (IRI). However, basic rHDL composition is limited to apolipoprotein AI (apoAI) and phospholipids; addition of bioactive compound may enhance its beneficial effects. The aim of this study was to investigate the role of rHDL in post-ischemic model, and to analyze the potential impact of sphingosine-1-phosphate (S1P) in rHDL formulations. The impact of HDL on IRI was investigated using complementary in vivo, ex vivo and in vitro IRI models. Acute post-ischemic treatment with native HDL significantly reduced infarct size and cell death in the ex vivo, isolated heart (Langendorff) model and the in vivo model (-48%, p<0.01). Treatment with rHDL of basic formulation (apoAI + phospholipids) had a non-significant impact on cell death in vitro and on the infarct size ex vivo and in vivo. In contrast, rHDL containing S1P had a highly significant, protective influence ex vivo, and in vivo (-50%, p<0.01). This impact was comparable with the effects observed with native HDL. Pro-survival signaling proteins, Akt, STAT3 and ERK1/2 were similarly activated by HDL and rHDL containing S1P both in vitro (isolated cardiomyocytes) and in vivo. HDL afford protection against IRI in a clinically relevant model (post-ischemia). rHDL is significantly protective if supplemented with S1P. The protective impact of HDL appears to target directly the cardiomyocyte.
Characteristics of cellulose-microalgae composite
NASA Astrophysics Data System (ADS)
Hwang, Kyo-Jung; Kwon, Gu-Joong; Yang, Ji-Wook; Kim, Sung-yeol; Kim, Dae-Young
2017-10-01
The composites were prepared in order of mixing the cellulose with the N. commune, dissolution-regeneration procedure by LiOH/Urea aqueous solution and freeze-drying. Before the freeze-drying, internal pores of the composites were substituted with an organic solvent. SEM analysis showed that the increase of N. commune results in blockage of cellulose network structure. Brunauer-Emmett-Teller (BET) surface area analysis showed the decrease of mesopore and macropore as the N. commune ratio increases, also the decrease of the specific surface area was shown. The composites appear to have different thermogravimetric analysis properties with the pure N. commune or cellulose itself. Fourier transform infrared spectroscopy (FT-IR) spectra of the composites have specific peaks of the cellulose and N. commune, and increase of N. commune ratio results broadening of peaks relevant to proteins, lipids, and fatty acids. The composites showed higher adsorptivity as the N. commune ratio increases. Especially, the adsorptivity was higher than active carbon before 120 minutes of adsorption. The composite is expected to be used for the situations which need urgent adsorption.
Gao, Zaifeng; Flevaris, Anastasia V; Robertson, Lynn C; Bentin, Shlomo
2011-07-01
We used the composite-face illusion and Navon stimuli to determine the consequences of priming local or global processing on subsequent face recognition. The composite-face illusion reflects the difficulty of ignoring the task-irrelevant half-face while attending the task-relevant half if the half-faces in the composite are aligned. On each trial, participants first matched two Navon stimuli, attending to either the global or the local level, and then matched the upper halves of two composite faces presented sequentially. Global processing of Navon stimuli increased the sensitivity to incongruence between the upper and the lower halves of the composite face, relative to a baseline in which the composite faces were not primed. Local processing of Navon stimuli did not influence the sensitivity to incongruence. Although incongruence induced a bias toward different responses, this bias was not modulated by priming. We conclude that global processing of Navon stimuli augments holistic processing of the face.
NASA Astrophysics Data System (ADS)
Tan, S. P.; Kargel, J. S.; Adidharma, H.; Marion, G. M.
2014-12-01
Until in-situ measurements can be made regularly on extraterrestrial bodies, thermodynamic models are the only tools to investigate the properties and behavior of chemical systems on those bodies. The resulting findings are often critical in describing physicochemical processes in the atmosphere, surface, and subsurface in planetary geochemistry and climate studies. The extremely cold conditions on Triton, Pluto and other Kuiper Belt Objects, and Titan introduce huge non-ideality that prevents conventional models from performing adequately. At such conditions, atmospheres as a whole—not components individually—are subject to phase equilibria with their equilibrium solid phases or liquid phases or both. A molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, the development of which is still in progress, was shown to reproduce the vertical composition profile of Titan's atmospheric methane measured by the Huygens probe (Tan et al., Icarus 2013, 222, 53). Recently, the model was also used to describe Titan's global circulation where the calculated composition of liquid in Ligeia Mare is consistent with the bathymetry and microwave absorption analysis of T91 Cassini fly-by data (Tan et al., 2014, submitted). Its capability to deal with equilibria involving solid phases has also been demonstrated (Tan et al., Fluid Phase Equilib. 2013, 360, 320). With all those previous works done, our attention is now shifting to the lower temperatures in Titan's tropopause and on Pluto's surface, where much technical development remains for CRYOCHEM to assure adequate performance at low temperatures. In these conditions, solid-vapor equilibrium (SVE) is the dominant phase behavior that determines the composition of the atmosphere and the existing ices. Another potential application is for the subsurface phase equilibrium, which also involves liquid, thus three-phase equilibrium: solid-liquid-vapor (SLV). This presentation will discuss the current state of CRYOCHEM in representing the SVE and SLV of chemical systems at temperatures and pressures relevant to Titan's tropopause and Pluto and the upper crusts of these objects.
NASA Astrophysics Data System (ADS)
Gudex-Cross, D.; Pontius, J.; Adams, A.
2017-12-01
Monitoring trends in the abundance and distribution of tree species is essential to understanding potential impacts of climate change on forested ecosystems. Related studies to date have largely focused on modeling distributional shifts according to future climate scenarios or used field inventory data to examine compositional changes across broader landscapes. Here, we leverage a novel remote sensing technique that utilizes field data, multitemporal Landsat imagery, and spectral unmixing to model regional changes in the abundance (percent basal area) of key northeastern US species over a 30-year period (1985-2015). We examine patterns in how species abundance has changed, as well as their relationship with climate, landscape, and soil characteristics using spatial regression models. Results show significant declines in overall abundance for sugar maple ( 8.6% 30-yr loss), eastern hemlock ( 7.8% 30-yr loss), balsam fir ( 5.0% 30-yr loss), and red spruce ( 3.8% total 30-yr loss). Species that saw significant increasing abundance include American beech ( 7.0% 30-yr gain) and red maple ( 2.5% 30-yr gain). However, these changes were not consistent across the landscape. For example, red spruce is increasing at upper elevations with concurrent losses in balsam fir and birch species. Similarly, sugar maple decreases are concentrated at lower elevations, likely due to increases in American beech. Various abiotic factors were significantly associated with changes in species composition including landscape position (e.g. longitude, elevation, and heat load index) and ecologically-relevant climate variables (e.g. growing season precipitation and annual temperature range). Interestingly, there was a stronger relationship in abundance changes across longitudes, rather than latitudes or elevations as predicted in modeled species migration scenarios.These results indicate that the dominant composition of northeastern forests is changing in ways that run counter to accepted successional patterns and land use history effects. We hypothesize that climate change and other anthropogenic stress agents (e.g. acid deposition legacy) are likely altering the competitive relationships among co-occurring species, with potential implications for forest management and ecosystem modeling efforts.
Wang, Zhengzhi; Chiang, Martin Y M
2016-04-01
The effect of filler content in dental restorative composites on the polymerization shrinkage stress (PS) is not straightforward and has caused much debate in the literature. Our objective in this study was to clarify the PS/filler content relationship based on analytical and experimental approaches, so that guidelines for materials comparison in terms of PS and clinical selection of dental composites with various filler content can be provided. Analytically, a simplified model based on linear elasticity was utilized to predict PS as a function of filler content under various compliances of the testing system, a cantilever beam-based instrument used in this study. The predictions were validated by measuring PS of composites synthesized using 50/50 mixtures of two common dimethacrylate resins with a variety of filler contents. Both experiments and predictions indicated that the influence of filler content on the PS highly depended on the compliance of the testing system. Within the clinic-relevant range of compliances and for the specific sample configuration tested, the PS increased with increasing filler content at low compliance of instrument, while increasing the compliance caused the effect of filler content on the PS to gradually diminish. Eventually, at high compliance, the PS inverted and decreased with increasing filler content. This compliance-dependent effect of filler content on PS suggests: (1) for materials comparison in terms of PS, the specific compliance at which the comparison being done should always be reported and (2) clinically, composites with relatively lower filler content could be selected for such cavities with relatively lower compliance (e.g. a Class-I cavity with thick tooth walls or the basal part in a cavity) and vice versa in order to reduce the final PS. Published by Elsevier Ltd.
Costas-Rodríguez, Marta; Anoshkina, Yulia; Lauwens, Sara; Van Vlierberghe, Hans; Delanghe, Joris; Vanhaecke, Frank
2015-03-01
The isotopic composition of blood serum Cu has been investigated as a potential parameter for the diagnosis and prognosis of liver cirrhosis. Serum samples from supposedly healthy women (reference population) and from a group of female patients suffering from liver cirrhosis of different etiologies were analysed. The procedure for isolation of serum Cu and the measurement protocol for its isotopic analysis by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) were evaluated. Significant differences in the isotopic composition of Cu were observed between the reference population and the patients. A wide spread in δ(65)Cu was observed within the cirrhosis population and δ(65)Cu seems to be linked to the severity of the disease. Patients with end-stage liver disease showed a significantly lighter serum Cu isotopic composition. Many clinical parameters used for the diagnosis and monitoring of liver diseases, i.e. the levels of aspartate aminotransferase, De Ritis ratio, prothrombin and international normalized ratio, albumin, bilirubin, Na and C-reactive protein, correlate well with the δ(65)Cu values, as did the ceruloplasmin level and the ceruloplasmin/Cu concentration ratio. The isotopic composition of serum Cu appears to reveal the synthetic and hepatocellular function of the liver synergistically with inflammation and fluid retention in the cohort studied. A relevant relationship was also observed between δ(65)Cu and scores of mortality risk, such as the Model for End-stage Liver Disease (MELD) and MELD-Na. Thus, the isotopic composition of serum Cu shows potential as a new approach for the prognosis of liver disease, and although further investigation is required, for evaluation of the mortality risk in end-stage liver disease and prioritization of liver transplants.
Salaffi, F; Ciapetti, A; Sarzi Puttini, P; Atzeni, F; Iannuccelli, C; Di Franco, M; Cazzola, M; Bazzichi, L
2012-03-19
Fibromyalgia (FM) is a complex syndrome that, in Italy, affects at least 2% of the adult population. It is characterized by chronic widespread musculoskeletal pain often accompanied by multiple other symptoms. The aim of this study was to identify a set of clinical domains for FM considered relevant by both clinicians and patients using a consensus process. Consensus was achieved using the Delphi method based on questionnaires and systematic, controlled opinion feedback. The Delphi exercise involved a panel of 252 rheumatologists and 86 patients with FM as defined by the American College of Rheumatology criteria. All of the patients and clinicians were asked to rank the relative different domains of FM in order of priority. The content validity index (CVI) was used to establish the percentage agreement. The importance of each item was ranked on a 0-3 Likert scale. The frequency, mean relevance scores, and frequency importance product were also calculated. The Delphi exercise showed that the domains ranked highest by patients were similar to those of the clinicians, with the exception of tender point intensity (considered relevant by the clinicians but not by the patients) and environmental sensitivity (considered important by the patients but not by the clinicians). A final 8-item model was developed which was considered to demonstrate adequate validity. The Delphi exercises identified and ranked relevant key clinical domains that need to be assessed in FM research. On the basis of these results, a new patient-reported composite outcome index can be developed and used in clinical trials.
The structure and function of cell membranes studied by atomic force microscopy.
Shi, Yan; Cai, Mingjun; Zhou, Lulu; Wang, Hongda
2018-01-01
The cell membrane, involved in almost all communications of cells and surrounding matrix, is one of the most complicated components of cells. Lack of suitable methods for the detection of cell membranes in vivo has sparked debates on the biochemical composition and structure of cell membranes over half a century. The development of single molecule techniques, such as AFM, SMFS, and TREC, provides a versatile platform for imaging and manipulating cell membranes in biological relevant environments. Here, we discuss the latest developments in AFM and the progress made in cell membrane research. In particular, we highlight novel structure models and dynamic processes, including the mechanical properties of the cell membranes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study
Alfonso, Dominic R.; Tafen, De Nyago
2015-04-28
The atomic diffusion in fcc NiAl binary alloys was studied by kinetic Monte Carlo simulation. The environment dependent hopping barriers were computed using a pair interaction model whose parameters were fitted to relevant data derived from electronic structure calculations. Long time diffusivities were calculated and the effect of composition change on the tracer diffusion coefficients was analyzed. These results indicate that this variation has noticeable impact on the atomic diffusivities. A reduction in the mobility of both Ni and Al is demonstrated with increasing Al content. As a result, examination of the pair interaction between atoms was carried out formore » the purpose of understanding the predicted trends.« less
Assessment of NDE reliability data
NASA Technical Reports Server (NTRS)
Yee, B. G. W.; Couchman, J. C.; Chang, F. H.; Packman, D. F.
1975-01-01
Twenty sets of relevant nondestructive test (NDT) reliability data were identified, collected, compiled, and categorized. A criterion for the selection of data for statistical analysis considerations was formulated, and a model to grade the quality and validity of the data sets was developed. Data input formats, which record the pertinent parameters of the defect/specimen and inspection procedures, were formulated for each NDE method. A comprehensive computer program was written and debugged to calculate the probability of flaw detection at several confidence limits by the binomial distribution. This program also selects the desired data sets for pooling and tests the statistical pooling criteria before calculating the composite detection reliability. An example of the calculated reliability of crack detection in bolt holes by an automatic eddy current method is presented.
NASA Astrophysics Data System (ADS)
Speidel, Steven
1992-08-01
Our ultimate goal is to develop neural-like cognitive sensory processing within non-neuronal systems. Toward this end, computational models are being developed for selectivity attending the task-relevant parts of composite sensory excitations in an example sound processing application. Significant stimuli partials are selectively attended through the use of generalized neural adaptive beamformers. Computational components are being tested by experiment in the laboratory and also by use of recordings from sensor deployments in the ocean. Results will be presented. These computational components are being integrated into a comprehensive processing architecture that simultaneously attends memory according to stimuli, attends stimuli according to memory, and attends stimuli and memory according to an ongoing thought process. The proposed neural architecture is potentially very fast when implemented in special hardware.
Coccolith calcite time capsules preserve a molecule-specific record of pCO2
NASA Astrophysics Data System (ADS)
McClelland, H. L. O.; Pearson, A.; Hermoso, M.; Wilkes, E.; Lee, R. B. Y.; Rickaby, R. E. M.
2017-12-01
Coccolithophores are single-celled phytoplankton that have contributed organic matter and calcite to marine sediments since the Late Triassic. The carbon isotopic compositions of both the calcite, and the organic matter, constitute valuable archives of information about the interaction between these organisms and the environments in which they lived. The isotopic composition of alkenone lipids, a recalcitrant component of coccolithophore organic carbon produced by a single family of coccolithophores, has been widely used to reconstruct pCO2 in the geological past. However, the robustness of this approach has remained controversial, due in part to the difficulties associated with reproducing pCO2 changes across periods of known pCO2 change, and uncertainties in relevant physiological variables such as growth rate and cell size. Meanwhile the calcite, produced in the form of plates called coccoliths, and which has had limited utility in paleoclimate reconstructions due to its large and variable departures from the isotopic composition of abiogenic calcite, has garnered increasing attention in recent years for the environmental and physiological information it contains. Here we show that polysaccharides preserved within the calcite crystal lattice of near monospecific fractions of fossil coccoliths constitute an ancient pristine source of organic carbon that unlike alkenones is unambiguously associated with the coccolith1. The isotopic composition of these polysaccharides, in tandem with that of the host coccolith calcite, and morphometrics from the same coccoliths2, can be used simultaneously constrain a recently published cellular carbon isotope flux model3, embedded in a more complex nutrient limitation model, in a powerful new approach to simultaneously predict cellular parameters and pCO2. We demonstrate the validity of this approach across a glacial / interglacial cycle. Lee, R. B. Y., et al,, Nat. Commun. 7, 13144 (2016). McClelland, H. L. O. et al. Sci. Rep. 6, 34263 (2016). McClelland, H. L. O. et al., Nat. Commun. 8, 1-16 (2017)
NASA Technical Reports Server (NTRS)
Kleinhammer, Roger K.; Graber, Robert R.; DeMott, D. L.
2016-01-01
Reliability practitioners advocate getting reliability involved early in a product development process. However, when assigned to estimate or assess the (potential) reliability of a product or system early in the design and development phase, they are faced with lack of reasonable models or methods for useful reliability estimation. Developing specific data is costly and time consuming. Instead, analysts rely on available data to assess reliability. Finding data relevant to the specific use and environment for any project is difficult, if not impossible. Instead, analysts attempt to develop the "best" or composite analog data to support the assessments. Industries, consortia and vendors across many areas have spent decades collecting, analyzing and tabulating fielded item and component reliability performance in terms of observed failures and operational use. This data resource provides a huge compendium of information for potential use, but can also be compartmented by industry, difficult to find out about, access, or manipulate. One method used incorporates processes for reviewing these existing data sources and identifying the available information based on similar equipment, then using that generic data to derive an analog composite. Dissimilarities in equipment descriptions, environment of intended use, quality and even failure modes impact the "best" data incorporated in an analog composite. Once developed, this composite analog data provides a "better" representation of the reliability of the equipment or component. It can be used to support early risk or reliability trade studies, or analytical models to establish the predicted reliability data points. It also establishes a baseline prior that may updated based on test data or observed operational constraints and failures, i.e., using Bayesian techniques. This tutorial presents a descriptive compilation of historical data sources across numerous industries and disciplines, along with examples of contents and data characteristics. It then presents methods for combining failure information from different sources and mathematical use of this data in early reliability estimation and analyses.
SHEDS-HT: An Integrated Probabilistic Exposure Model for ...
United States Environmental Protection Agency (USEPA) researchers are developing a strategy for highthroughput (HT) exposure-based prioritization of chemicals under the ExpoCast program. These novel modeling approaches for evaluating chemicals based on their potential for biologically relevant human exposures will inform toxicity testing and prioritization for chemical risk assessment. Based on probabilistic methods and algorithms developed for The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway Chemicals (SHEDS-MM), a new mechanistic modeling approach has been developed to accommodate high-throughput (HT) assessment of exposure potential. In this SHEDS-HT model, the residential and dietary modules of SHEDS-MM have been operationally modified to reduce the user burden, input data demands, and run times of the higher-tier model, while maintaining critical features and inputs that influence exposure. The model has been implemented in R; the modeling framework links chemicals to consumer product categories or food groups (and thus exposure scenarios) to predict HT exposures and intake doses. Initially, SHEDS-HT has been applied to 2507 organic chemicals associated with consumer products and agricultural pesticides. These evaluations employ data from recent USEPA efforts to characterize usage (prevalence, frequency, and magnitude), chemical composition, and exposure scenarios for a wide range of consumer products. In modeling indirec
NASA Astrophysics Data System (ADS)
Kool, Dilia; Kustas, William P.; Agam, Nurit
2016-04-01
The partitioning of evapotranspiration (ET) into transpiration (T), a productive water use, and soil water evaporation (E), which is generally considered a water loss, is highly relevant to agriculture in the light of increasing desertification and water scarcity. This task is challenged by the complexity of soil and plant interactions, coupled with changes in atmospheric and soil water content conditions. Many of the processes controlling water/energy exchange are not adequately modeled. The two-source energy balance model (TSEB) was evaluated and adapted for independent E and T estimations in an isolated drip-irrigated wine vineyard in the arid Negev desert. The TSEB model estimates ET by computing vegetation and soil energy fluxes using remotely sensed composite surface temperature, local weather data (solar radiation, air temperature and humidity, and wind speed), and vegetation metrics (row spacing, canopy height and width, and leaf area). The soil and vegetation energy fluxes are computed numerically using a system of temperature gradient and resistance equations; where soil and canopy temperatures are derived from the composite surface temperature. For estimation of ET, the TSEB model has been shown to perform well for various agricultural crops under a wide range of environmental conditions, but validation of T and E fluxes is limited to one study in a well-watered cotton crop. Extending the TSEB approach to water-limited vineyards demands careful consideration regarding how the complex canopy structure of vineyards will influence the accuracy of the partitioning between E and T. Data for evaluation of the TSEB model were collected over a season (bud break till harvest). Composite, canopy, and soil surface temperatures were measured using infrared thermometers. The composite vegetation and soil surface energy fluxes were assessed using independent measurements of net radiation, and soil, sensible and latent heat flux. The below canopy energy balance was assessed at the dry midrow position as well as the wet irrigated position directly underneath the vine row, where net radiation and soil heat flux were measured, sensible heat flux was computed indirectly, and E was calculated as the residual. While the below canopy energy balance approach used in this study allowed continuous assessment of E at daily intervals, instantaneous E fluxes could not be assessed due to vertical variability in shading below the canopy. Seasonal partitioning indicated that total E amounted to 9-11% of ET. Initial evaluation of the TSEB model indicated that discrepancies between modeled and measured fluxes can largely be attributed to net radiation partitioning. In addition, large diurnal variation at the soil surface requires adaptation of the soil heat flux formulations. Improved estimation of energy fluxes by accounting for the relatively complex canopy structure of vineyards will be highlighted.
Ferraris, Federico; Conti, Alessandro
2014-01-01
The following study asks three principle questions relative to composite finishing and composite polishing: 1) Will the superficial roughness of different restoration surfaces have different values, utilizing the same polishing system (multistep), after finishing with the tungsten carbide or diamond bur? 2) Under the same conditions of finishing and polishing sequences, will the composite surfaces (C), the composite-enamel (CE) and composite-dentin (CD) interfaces show different roughness values? 3) Will the surface roughness of composites of different translucency in the various phases of finishing and polishing, and on different interfaces, have different results? The null hypothesis is represented by the fact that there are no significant differences on roughness of composite restorations when polishing, after finishing with tungsten carbide or diamond burs. Furthermore, the null hypothesis is that there are no significant differences on roughness between polishing on composite surface, composite-enamel and composite-dentin interfaces, and finally there are no differences on roughness after finishing and polishing of two composite with different translucency. For the study, 56 class V cavities were prepared on extracted teeth. Restorations were done in nanofilled composite Filtek XTE (3M Espe) in a standard fashion, and then finished and polished. The 28 buccal cavities were restored on the surface with composite enamel and the 28 palatals with composite body. Finishing was done with fine toothing burs in tungsten carbide (16 blades) or fine grit diamond burs (46 μm), and made by the same manufacturer (Komet). The second phase of finishing was done with burs (with the same form as already mentioned) ultrafine toothing tungsten carbide (30 blades) or with extra and ultrafine grit diamond (25 and 8 μm). The polishing phase for both of the earlier sequences was done with the application of three rubber tips with decreasing abrasiveness and an application with a self-polishing brush. All measurements were taken from surfaces C, and interfaces CE and CD. Statistical analyses were carried out with c2 test (a = 0.05). 1) There were no relevant differences of surface roughness on the different surfaces if the polishing was done after finishing with tungsten carbide or diamond burs. 2) Keeping the same sequence of finishing and polishing, a difference was noticed between C, CE and CD, where the latter showed greater roughness. 3) Analyzing the data in all the phases of finishing and polishing on every interface, it can be concluded that the composite enamel and the composite body did not show different levels of superficial roughness. The clinical relevance could be resumed as follows: no difference after polishing, which is preceded by tungsten carbide or diamond finishing burs. The less favorable interface to be polished is CD, compared to CE and C. Considering two composites with different translucency, no difference on roughness after finishing and polishing were detected.
Versatile Micromechanics Model for Multiscale Analysis of Composite Structures
NASA Astrophysics Data System (ADS)
Kwon, Y. W.; Park, M. S.
2013-08-01
A general-purpose micromechanics model was developed so that the model could be applied to various composite materials such as reinforced by particles, long fibers and short fibers as well as those containing micro voids. Additionally, the model can be used with hierarchical composite materials. The micromechanics model can be used to compute effective material properties like elastic moduli, shear moduli, Poisson's ratios, and coefficients of thermal expansion for the various composite materials. The model can also calculate the strains and stresses at the constituent material level such as fibers, particles, and whiskers from the composite level stresses and strains. The model was implemented into ABAQUS using the UMAT option for multiscale analysis. An extensive set of examples are presented to demonstrate the reliability and accuracy of the developed micromechanics model for different kinds of composite materials. Another set of examples is provided to study the multiscale analysis of composite structures.
Scoring and ranking of metabolic trees to computationally ...
Increasing awareness about endocrine disrupting chemicals (EDCs) in the environment has driven concern about their potential impact on human health and wildlife. Tens of thousands of natural and synthetic xenobiotics are presently in commerce with little to no toxicity data and therefore uncertainty about their impact on estrogen receptor (ER) signaling pathways and other toxicity endpoints. As such, there is a need for strategies that make use of available data to prioritize chemicals for testing. One of the major achievements within the EPA’s Endocrine Disruptor Screening Program (EDSP), was the network model combining 18 ER in vitro assays from ToxCast to predict in vivo estrogenic activity. This model overcomes the limitations of single in vitro assays at different steps of the ER pathway. However, it lacks many relevant features required to estimate safe exposure levels and the composite assays do not consider the complex metabolic processes that might produce bioactive entities in a living system. This problem is typically addressed using in vivo assays. The aim of this work is to design a computational and in vitro approach to prioritize compounds and perform a quantitative safety assessment. To this end, we pursue a tiered approach taking into account bioactivity and bioavailability of chemicals and their metabolites using a human uterine epithelial cell (Ishikawa)-based assay. This biologically relevant fit-for-purpose assay was designed to quantitati
2015-03-06
was formed by ZrO2 rounded grains containing W traces and covered by H3BO3 acicular crystals deriving from hydration of B2O3 after exposure to...TaSi2 grains tended to form large pockets as wide as 3-8 m. Other spurious phases formed upon decomposition of the additive, were identified as SiC
Protein location prediction using atomic composition and global features of the amino acid sequence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherian, Betsy Sheena, E-mail: betsy.skb@gmail.com; Nair, Achuthsankar S.
2010-01-22
Subcellular location of protein is constructive information in determining its function, screening for drug candidates, vaccine design, annotation of gene products and in selecting relevant proteins for further studies. Computational prediction of subcellular localization deals with predicting the location of a protein from its amino acid sequence. For a computational localization prediction method to be more accurate, it should exploit all possible relevant biological features that contribute to the subcellular localization. In this work, we extracted the biological features from the full length protein sequence to incorporate more biological information. A new biological feature, distribution of atomic composition is effectivelymore » used with, multiple physiochemical properties, amino acid composition, three part amino acid composition, and sequence similarity for predicting the subcellular location of the protein. Support Vector Machines are designed for four modules and prediction is made by a weighted voting system. Our system makes prediction with an accuracy of 100, 82.47, 88.81 for self-consistency test, jackknife test and independent data test respectively. Our results provide evidence that the prediction based on the biological features derived from the full length amino acid sequence gives better accuracy than those derived from N-terminal alone. Considering the features as a distribution within the entire sequence will bring out underlying property distribution to a greater detail to enhance the prediction accuracy.« less
Kong, Zhaowei; Sun, Shengyan; Liu, Min; Shi, Qingde
2016-01-01
This study was to determine the effects of five-week high-intensity interval training (HIIT) on cardiorespiratory fitness, body composition, blood glucose, and relevant systemic hormones when compared to moderate-intensity continuous training (MICT) in overweight and obese young women. Methods . Eighteen subjects completed 20 sessions of HIIT or MICT for five weeks. HIIT involved 60 × 8 s cycling at ~90% of peak oxygen consumption ([Formula: see text]) interspersed with 12 s recovery, whereas MICT involved 40-minute continuous cycling at 65% of [Formula: see text]. [Formula: see text], body composition, blood glucose, and fasting serum hormones, including leptin, growth hormone, testosterone, cortisol, and fibroblast growth factor 21, were measured before and after training. Results . Both exercise groups achieved significant improvements in [Formula: see text] (+7.9% in HIIT versus +11.7% in MICT) and peak power output (+13.8% in HIIT versus +21.9% in MICT) despite no training effects on body composition or the relevant systemic hormones. Blood glucose tended to be decreased after the intervention ( p = 0.062). The rating of perceived exertion in MICT was higher than that in HIIT ( p = 0.042). Conclusion . Compared with MICT, short-term HIIT is more time-efficient and is perceived as being easier for improving cardiorespiratory fitness and fasting blood glucose for overweight and obese young women.