NASA Technical Reports Server (NTRS)
Russell, L. M.
1978-01-01
Film injection from discrete holes in a smooth, flat plate was studied for two configurations: (1) spanwise injection through a four hole staggered array; and (2) compound angle injection through a 49 hole staggered array. The ratio of boundary layer thicknesses to hole diameter and the Reynolds number were typical of gas turbine film cooling applications. Streaklines showing the motion of the injected air were obtained by photographing small, neutrally buoyant, helium-filled soap bubbles that followed the flow field.
NASA Astrophysics Data System (ADS)
Shine, S. R.; Sunil Kumar, S.; Suresh, B. N.
2012-05-01
An experimental investigation is conducted to bring out the effects of coolant injector configuration on film cooling effectiveness, film cooled length and film uniformity associated with gaseous and liquid coolants. A series of measurements are performed using hot air as the core gas and gaseous nitrogen and water as the film coolants in a cylindrical test section simulating a thrust chamber. Straight and compound angle injection at two different configurations of 30°-10° and 45°-10° are investigated for the gaseous coolant. Tangential injection at 30° and compound angle injection at 30°-10° are examined for the liquid coolant. The analysis is based on measurements of the film-cooling effectiveness and film uniformity downstream of the injection location at different blowing ratios. Measured results showed that compound angle configuration leads to lower far-field effectiveness and shorter film length compared to tangential injection in the case of liquid film cooling. For similar injector configurations, effectiveness along the stream wise direction showed flat characteristics initially for the liquid coolant, while it was continuously dropping for the gaseous coolant. For liquid coolant, deviations in temperature around the circumference are very low near the injection point, but increases to higher values for regions away from the coolant injection locations. The study brings out the existance of an optimum gaseous film coolant injector configuration for which the effectiveness is maximum.
NASA Technical Reports Server (NTRS)
Colladay, R. S.; Russell, L. M.
1976-01-01
Film injection from discrete holes in a three-row, staggered array with five-diameter spacing was studied for three hole angles: (1) normal, (2) slanted 30 deg to the surface in the direction of the main stream, and (3) slanted 30 deg to the surface and 45 deg laterally to the main stream. The ratio of the boundary layer thickness-to-hole diameter and Reynolds number were typical of gas-turbine film-cooling applications. Detailed streaklines showing the turbulent motion of the injected air were obtained by photographing very small neutrally buoyant, helium-filled soap bubbles which follow the flow field.
Full-coverage film cooling. I - Comparison of heat transfer data for three injection angles
NASA Technical Reports Server (NTRS)
Crawford, M. E.; Kays, W. M.; Moffat, R. J.
1980-01-01
Wind tunnel experiments were carried out at Stanford between 1971 and 1977 to study the heat transfer characteristics of full-coverage film cooled surfaces with three geometries; normal-, 30 deg slant-, and 30 deg x 45 deg compound-angled injection. A flat full-coverage section and downstream recovery section comprised the heat transfer system. The experimental objectives were to determine, for each geometry, the effects on surface heat flux of injection blowing ratio, injection temperature ratio, and upstream initial conditions. Spanwise-averaged Stanton numbers were measured for blowing ratios from 0 to 1.3, and for two values of injection temperature at each blowing ratio. The heat transfer coefficient was defined on the basis of a mainstream-to-wall temperature difference. Initial momentum and enthalpy thickness Reynolds numbers were varied from 500 to about 3000.
Effects of film injection angle on turbine vane cooling
NASA Technical Reports Server (NTRS)
Gauntner, J. W.
1977-01-01
Film ejection from discrete holes in the suction surface of a turbine vane was studied for hole axes (1) slanted 30 deg to the surface in the streamwise direction and (2) slanted 30 deg to the surface and 45 deg from the streamwise direction toward the hub. The holes were near the throat area in a five-row staggered array with 8-diameter spacing. Mass flux ratios were as high as 1.2. The data were obtained in an annular sector cascade at conditions where both the ratio of the boundary layer momentum thickness-to-hole diameter and the momentum thickness Reynolds number were typical of an advanced turbofan engine at both takeoff and cruise. Wall temperatures were measured downstream of each of the rows of holes. Results of this study are expressed as a comparison of cooling effectiveness between the in-line angle injection and the compound-angle injection as a function of mass flux ratio. These heat transfer results are also compared with the results of a referenced flow visualization study. Also included is a closed-form analytical solution for temperature within the film cooled wall.
Full-coverage film cooling on flat, isothermal surfaces: Data and predictions
NASA Technical Reports Server (NTRS)
Crawford, M. E.; Kays, W. M.; Moffat, R. J.
1980-01-01
The heat transfer and fluid mechanics characteristics of full-coverage film cooling were investigated. The results for flat, isothermal plates for three injection geometries (normal, slant, and compound angle) are summarized and data concerning the spanwise distribution of the heat transfer coefficient within the blowing region are presented. Data are also presented for two different numbers of rows of holes (6 and 11). The experimental results summarized can be predicted with a two dimensional boundary layer code, STANCOOL, by providing descriptors of the injection parameters as inputs.
[Changes of structures of anterior chamber angle in rabbit chronic high intraocular pressure model].
Lei, Xun-wen; Wei, Ping; Li, Xiao-lin; Yang, Kan; Lei, Jian-zhen
2009-10-01
To observe the anterior chamber angle changes occurred in compound Carbomer-induced chronic high intraocular pressure (IOP) model in rabbit eyes. It was an experimental study. Thirty two rabbits were randomly divided into eight groups. Compound Carbomer (0.3%, 0.3 ml) was injected into the left anterior chamber. A group of rabbits were randomly killed after 1, 2, 3, 4, 6, 8, 10 and 12 weeks. The anterior chamber of the rabbit eye specimens was observed. IOP increased slowly following the application of the drug, high IOP lasted for 3 months. The drug-induced changes of anterior chamber angle consisted of early inflammatory response and late fibrous changes. Inflammatory response occurred in early stage and reduced or disappeared after 3 weeks. Fibrous degeneration and adhesion obstruction occurred in the anterior chamber angle after 4 weeks. Under the electron microscope, the trabecular was expanded and deformed, with hyperplasia of collagen and elastic fibers. Endothelial cells were separated from the trabecular, and showed the morphology of lymphocytes, with the function similar to the macrophages. Phagocytized Carbomer particles were transported through the vacuoles of Schlemm's canal endothelial cells. Large vacuoles gradually reduced. Excessive Carbomer particles were accumulated in the endothelial cells and obstructed the Schlemm's canal. This induced the fibrous proliferation and the destruction of anterior chamber angle structures. The obstruction of aqueous humor outflow induced by compound Carbomer in rabbit high IOP model is caused mainly by the changes in trabecular endothelial cells.
Film cooling performance of a row of dual-fanned holes at various injection angles
NASA Astrophysics Data System (ADS)
Li, Guangchao; Wang, Haofeng; Zhang, Wei; Kou, Zhihai; Xu, Rangshu
2017-10-01
Film cooling performance about a row of dual-fanned holes with injection angles of 30°, 60 ° and 90° were experimentally investigated at blowing ratios of 1.0 and 2.0. Dual-fanned hole is a novel shaped hole which has both inlet expansion and outlet expansion. A transient thermochromic liquid crystal technique was used to reveal the local values of film cooling effectiveness and heat transfer coefficient. The results show that injection angles have strong influence on the two dimensional distributions of film cooling effectiveness and heat transfer coefficient. For the small injection angle of 30 degree and small blowing ratio of 1.0, there is only a narrow spanwise region covered with film. The increase of injection angle and blowing ratio both leads to the enhanced spanwise film diffusion, but reduced local cooling ability far away from the hole. Injection angles have comprehensive influence on the averaged film cooling effectiveness for various x/d locations. As injection angles are 30 and 60 degree, two bands of high heat transfer coefficients are found in mixing region of the gas and coolant. As injection angle increases to 90 degree, the mixing leads to the enhanced heat transfer region near the film hole. The averaged heat transfer coefficient increases with the increase of injection angle.
The myth of the 90 degrees-angle intramuscular injection.
Katsma, D L; Katsma, R
2000-01-01
This article shows that the textbook 90 degrees-angle requirement for intramuscular injections is unrealistic. Trigonometry demonstrates that an injection given at 72 degrees reaches 95% of the depth of an injection given at 90 degrees. This relation between needle angle and needle depth, previous research into the kinematics of hand motion during an intramuscular injection, and other practical considerations support the proposal for a new, relaxed standard: Intramuscular injections administered at a comfortable angle between 72 degrees and 90 degrees.
Numerical and experimental investigation of plasma plume deflection with MHD flow control
NASA Astrophysics Data System (ADS)
Kai, ZHAO; Feng, LI; Baigang, SUN; Hongyu, YANG; Tao, ZHOU; Ruizhi, SUN
2018-04-01
This paper presents a composite magneto hydrodynamics (MHD) method to control the low-temperature micro-ionized plasma flow generated by injecting alkali salt into the combustion gas to realize the thrust vector of an aeroengine. The principle of plasma flow with MHD control is analyzed. The feasibility of plasma jet deflection is investigated using numerical simulation with MHD control by loading the User-Defined Function model. A test rig with plasma flow controlled by MHD is established. An alkali salt compound with a low ionization energy is injected into combustion gas to obtain the low-temperature plasma flow. Finally, plasma plume deflection is obtained in different working conditions. The results demonstrate that plasma plume deflection with MHD control can be realized via numerical simulation. A low-temperature plasma flow can be obtained by injecting an alkali metal salt compound with low ionization energy into a combustion gas at 1800–2500 K. The vector angle of plasma plume deflection increases with the increase of gas temperature and the magnetic field intensity. It is feasible to realize the aim of the thrust vector of aeroengine by using MHD to control plasma flow deflection.
Halabian, Mahdi; Beigzadeh, Borhan; Karimi, Alireza; Shirazi, Hadi Asgharzadeh; Shaali, Mohammad Hasan
2016-12-01
One of the main clinical applications of the needles is its practical usage in the femoral vein catheterization. Annually more than two million peoples in the United States are exposed to femoral vein catheterization. How to use the input needles into the femoral vein has a key role in the sense of pain in post-injection and possible injuries, such as tissue damage and bleeding. It has been shown that there might be a correlation between the stresses and deformations due to femoral injection to the tissue and the sense of pain and, consequently, injuries caused by needles. In this study, the stresses and deformations induced by the needle to the femoral tissue were experimentally and numerically investigated in response to an input needle at four different angles, i.e., 30°, 45°, 60°, and 90°, via finite element method. In addition, a set of experimental injections at different angles were carried out to compare the numerical results with that of the experimental ones, namely pain score. The results revealed that by increasing the angle of injection up to 60°, the strain at the interaction site of the needle-tissue is increased accordingly while a significant falling is observed at the angle of 90°. In contrast, the stress due to injection was decreased at the region of needle-tissue interaction with showing the lowest one at the angle of 90°. Experimental results were also well confirmed the numerical observations since the lowest pain score was seen at the angle of 90°. The results suggest that the most effective angle of injection would be 90° due to a lower amount of stresses and deformations compared to the other angles of injection. These findings may have implications not only for understating the stresses and deformations induced during injection around the needle-tissue interaction, but also to give an outlook to the doctors to implement the most suitable angle of injection in order to reduce the pain as well as post injury of the patients.
NASA Technical Reports Server (NTRS)
Lecuyer, M. R.; Hanus, G. J.
1976-01-01
An experimental study of gas film cooling was conducted on a 3X size model turbine vane. Injection in the leading edge region was from a single row of holes angled in a spanwise direction. Measurements of the local heat flux downstream from the row of coolant holes, both with and without film coolant flow, were used to determine the film cooling performance presented in terms of the Stanton number ratio. Results for a range of coolant blowing ratio, M = 0 to 2.0, indicate a reduction in heat flux of up to 15 to 30 percent at a point 10 to 11 hole diameters downstream from injection. An optimum coolant blowing ratio corresponds to a coolant-to-freestream velocity ratio in the range of 0.5. The shallow injection angle resulted in superior cooling performance for injection closest to stagnation, while the effect of injection angle was insignificant for injection further from stagnation.
Liquid sprays and flow studies in the direct-injection diesel engine under motored conditions
NASA Technical Reports Server (NTRS)
Nguyen, Hung Lee; Carpenter, Mark H.; Ramos, Juan I.; Schock, Harold J.; Stegeman, James D.
1988-01-01
A two dimensional, implicit finite difference method of the control volume variety, a two equation model of turbulence, and a discrete droplet model were used to study the flow field, turbulence levels, fuel penetration, vaporization, and mixing in diesel engine environments. The model was also used to study the effects of engine speed, injection angle, spray cone angle, droplet distribution, and intake swirl angle on the flow field, spray penetration and vaporization, and turbulence in motored two-stroke diesel engines. It is shown that there are optimum conditions for injection, which depend on droplet distribution, swirl, spray cone angle, and injection angle. The optimum conditions result in good spray penetration and vaporization and in good fuel mixing. The calculation presented clearly indicates that internal combustion engine models can be used to assess, at least qualitatively, the effects of injection characteristics and engine operating conditions on the flow field and on the spray penetration and vaporization in diesel engines.
Turbine vane leading edge gas film cooling with spanwise angled coolant holes
NASA Technical Reports Server (NTRS)
Hanus, G. J.; Lecuyer, M. R.
1976-01-01
An experimental film cooling study was conducted on a 3x size model turbine vane. Injection at the leading edge was from a single row of holes angled in a spanwise direction for two configurations of holes at 18 or 35 deg to the surface. The reduction in the local Stanton number for injection at a coolant-to-mainstream density ratio of 2.18 was calculated from heat flux measurements downstream of injection. Results indicate that optimum cooling occurs near a coolant-to-mainstream velocity ratio of 0.5. Shallow injection angles appear to be most beneficial when injecting into a highly accelerated mainstream.
Adjustable Powder Injector For Vacuum Plasma Sprayer
NASA Technical Reports Server (NTRS)
Burns, D. H.; Woodford, W. H.; Mckechnie, T. N.; Mcferrin, D. C.; Davis, W. M.; Beason, G. P., Jr.
1993-01-01
Attachment for plasma spray gun provides four degrees of freedom for adjustment of position and orientation at which powder injected externally into plasma flame. Manipulator provides for adjustment of pitch angle of injection tube: set to inject powder at any angle ranging from perpendicular to parallel to cylindrical axis. Scribed lines on extension bar and manipulator indicate pitch angle of extension tube. Collar changed to adapt injector to different gun.
Cooler and particulate separator for an off-gas stack
Wright, George T.
1992-01-01
An off-gas stack for a melter comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes pervents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.
Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept
NASA Technical Reports Server (NTRS)
Flamm, Jeffrey D.; Deere, Karen A.; Mason, Mary L.; Berrier, Bobby L.; Johnson, Stuart K.
2006-01-01
A Dual Throat Nozzle fluidic thrust vectoring technique that achieves higher thrust-vectoring efficiencies than other fluidic techniques, without sacrificing thrust efficiency has been developed at NASA Langley Research Center. The nozzle concept was designed with the aid of the structured-grid, Reynolds-averaged Navier-Stokes computational fluidic dynamics code PAB3D. This new concept combines the thrust efficiency of sonic-plane skewing with increased thrust-vectoring efficiencies obtained by maximizing pressure differentials in a separated cavity located downstream of the nozzle throat. By injecting secondary flow asymmetrically at the upstream minimum area, a new aerodynamic minimum area is formed downstream of the geometric minimum and the sonic line is skewed, thus vectoring the exhaust flow. The nozzle was tested in the NASA Langley Research Center Jet Exit Test Facility. Internal nozzle performance characteristics were defined for nozzle pressure ratios up to 10, with a range of secondary injection flow rates up to 10 percent of the primary flow rate. Most of the data included in this paper shows the effect of secondary injection rate at a nozzle pressure ratio of 4. The effects of modifying cavity divergence angle, convergence angle and cavity shape on internal nozzle performance were investigated, as were effects of injection geometry, hole or slot. In agreement with computationally predicted data, experimental data verified that decreasing cavity divergence angle had a negative impact and increasing cavity convergence angle had a positive impact on thrust vector angle and thrust efficiency. A curved cavity apex provided improved thrust ratios at some injection rates. However, overall nozzle performance suffered with no secondary injection. Injection holes were more efficient than the injection slot over the range of injection rates, but the slot generated larger thrust vector angles for injection rates less than 4 percent of the primary flow rate.
Effect on Gaseous Film Cooling of Coolant Injection Through Angled Slots and Normal Holes
NASA Technical Reports Server (NTRS)
Papell, S. Stephen
1960-01-01
A study was made to determine the effect of coolant injection angularity on gaseous film-cooling effectiveness. In the correlation of experimental data an effective injection angle was defined by a vector summation of the coolant and mainstream gas flows. The cosine of this angle was used as a parameter to empirically develop a corrective term to qualify a correlating equation presented in Technical Note D-130 that was limited to tangential injection of the coolant. Data were also obtained for coolant injection through rows of holes normal to the test plate. The slot correlating equation was adapted to fit these data by the definition of an effective slot height. An additional corrective term was then determined to correlate these data.
Navier-Stokes calculations for 3D gaseous fuel injection with data comparisons
NASA Technical Reports Server (NTRS)
Fuller, E. J.; Walters, R. W.
1991-01-01
Results from a computational study and experiments designed to further expand the knowledge of gaseous injection into supersonic cross-flows are presented. Experiments performed at Mach 6 included several cases of gaseous helium injection with low transverse angles and injection with low transverse angles coupled with a low yaw angle. Both experimental and computational data confirm that injector yaw has an adverse effect on the helium core decay rate. An array of injectors is found to give higher penetration into the freestream without loss of core injectant decay as compared to a single injector. Lateral diffusion plays a major role in lateral plume spreading, eddy viscosity, injectant plume, and injectant-freestream mixing. Grid refinement makes it possible to capture the gradients in the streamwise direction accurately and to vastly improve the data comparisons. Computational results for a refined grid are found to compare favorably with experimental data on injectant overall and core penetration provided laminar lateral diffusion was taken into account using the modified Baldwin-Lomax turbulence model.
NASA Astrophysics Data System (ADS)
Buttinelli, M.; Improta, L.; Bagh, S.; Chiarabba, C.
2016-11-01
Since 2006 wastewater has been injected below the Val d’Agri Quaternary basin, the largest on-land oilfield in Europe, inducing micro-seismicity in the proximity of a high-rate injection well. In this study, we have the rare opportunity to revise a massive set of 2D/3D seismic and deep borehole data in order to investigate the relationship between the active faults that bound the basin and the induced earthquakes. Below the injection site we identify a Pliocene thrusts and back-thrusts system inherited by the Apennines compression, with no relation with faults bounding the basin. The induced seismicity is mostly confined within the injection reservoir, and aligns coherently with a NE-dipping back-thrust favorably oriented within the current extensional stress field. Earthquakes spread upwards from the back-thrust deep portion activating a 2.5-km wide patch. Focal mechanisms show a predominant extensional kinematic testifying to an on-going inversion of the back-thrust, while a minor strike-slip compound suggests a control exerted by a high angle inherited transverse fault developed within the compressional system, possibly at the intersection between the two fault sets. We stress that where wastewater injection is active, understanding the complex interaction between injection-linked seismicity and pre-existing faults is a strong requisite for safe oilfield exploitation.
Wang, Wei; Zhou, Fang; Zhao, Liang; Zhang, Jian-Rong; Zhu, Jun-Jie
2008-02-01
A simple method of hydrostatic pressure sample injection towards a disposable microchip CE device was developed. The liquid level in the sample reservoir was higher than that in the sample waste reservoir (SWR) by tilting microchip and hydrostatic pressure was generated, the sample was driven to pass through injection channel into SWR. After sample loading, the microchip was levelled for separation under applied high separation voltage. Effects of tilted angle, initial liquid height and injection duration on electrophoresis were investigated. With enough injection duration, the injection result was little affected by tilted angle and initial liquid heights in the reservoirs. Injection duration for obtaining a stable sample plug was mainly dependent on the tilted angle rather than the initial height of liquid. Experimental results were consistent with theoretical prediction. Fluorescence observation and electrochemical detection of dopamine and catechol were employed to verify the feasibility of tilted microchip hydrostatic pressure injection. Good reproducibility of this injection method was obtained. Because the instrumentation was simplified and no additional hardware was needed in this technology, the proposed method would be potentially useful in disposable devices.
Energy spectra and pitch angle distributions of storm-time and substorm injected protons.
NASA Technical Reports Server (NTRS)
Konradi, A.; Williams, D. J.; Fritz, T. A.
1973-01-01
Discussion of the energy spectra and pitch angle distributions of ring current protons observed with the solid-state proton detector of Explorer 45 during the main and fast recovery phases of a storm on Dec. 17, 1971. Appearances of characteristic changes in the pitch angle distributions of roughly 100-eV protons are interpreted as pitch angle dispersion of rapidly injected protons during their azimuthal drift at L values above 5.
NASA Astrophysics Data System (ADS)
Lan, Ke; Li, Zhichao; Xie, Xufei; Chen, Yao-Hua; Zheng, Chunyang; Zhai, Chuanlei; Hao, Liang; Yang, Dong; Huo, Wen Yi; Ren, Guoli; Peng, Xiaoshi; Xu, Tao; Li, Yulong; Li, Sanwei; Yang, Zhiwen; Guo, Liang; Hou, Lifei; Liu, Yonggang; Wei, Huiyue; Liu, Xiangming; Cha, Weiyi; Jiang, Xiaohua; Mei, Yu; Li, Yukun; Deng, Keli; Yuan, Zheng; Zhan, Xiayu; Zhang, Haijun; Jiang, Baibin; Zhang, Wei; Deng, Xuewei; Liu, Jie; Du, Kai; Ding, Yongkun; Wei, Xiaofeng; Zheng, Wanguo; Chen, Xiaodong; Campbell, E. M.; He, Xian-Tu
2017-03-01
Octahedral spherical hohlraums with a single laser ring at an injection angle of 55∘ are attractive concepts for laser indirect drive due to the potential for achieving the x-ray drive symmetry required for high convergence implosions. Laser-plasma instabilities, however, are a concern given the long laser propagation path in such hohlraums. Significant stimulated Raman scattering has been observed in cylindrical hohlraums with similar laser propagation paths during the ignition campaign on the National Ignition Facility (NIF). In this Rapid Communication, experiments demonstrating low levels of laser-driven plasma instability (LPI) in spherical hohlraums with a laser injection angle of 55∘ are reported and compared to that observed with cylindrical hohlraums with injection angles of 28 .5∘ and 55∘, similar to that of the NIF. Significant LPI is observed with the laser injection of 28 .5∘ in the cylindrical hohlraum where the propagation path is similar to the 55∘ injection angle for the spherical hohlraum. The experiments are performed on the SGIII laser facility with a total 0.35 -μ m incident energy of 93 kJ in a 3 nsec pulse. These experiments demonstrate the role of hohlraum geometry in LPI and demonstrate the need for systematic experiments for choosing the optimal configuration for ignition studies with indirect drive inertial confinement fusion.
Lan, Ke; Li, Zhichao; Xie, Xufei; Chen, Yao-Hua; Zheng, Chunyang; Zhai, Chuanlei; Hao, Liang; Yang, Dong; Huo, Wen Yi; Ren, Guoli; Peng, Xiaoshi; Xu, Tao; Li, Yulong; Li, Sanwei; Yang, Zhiwen; Guo, Liang; Hou, Lifei; Liu, Yonggang; Wei, Huiyue; Liu, Xiangming; Cha, Weiyi; Jiang, Xiaohua; Mei, Yu; Li, Yukun; Deng, Keli; Yuan, Zheng; Zhan, Xiayu; Zhang, Haijun; Jiang, Baibin; Zhang, Wei; Deng, Xuewei; Liu, Jie; Du, Kai; Ding, Yongkun; Wei, Xiaofeng; Zheng, Wanguo; Chen, Xiaodong; Campbell, E M; He, Xian-Tu
2017-03-01
Octahedral spherical hohlraums with a single laser ring at an injection angle of 55^{∘} are attractive concepts for laser indirect drive due to the potential for achieving the x-ray drive symmetry required for high convergence implosions. Laser-plasma instabilities, however, are a concern given the long laser propagation path in such hohlraums. Significant stimulated Raman scattering has been observed in cylindrical hohlraums with similar laser propagation paths during the ignition campaign on the National Ignition Facility (NIF). In this Rapid Communication, experiments demonstrating low levels of laser-driven plasma instability (LPI) in spherical hohlraums with a laser injection angle of 55^{∘} are reported and compared to that observed with cylindrical hohlraums with injection angles of 28.5^{∘} and 55^{∘}, similar to that of the NIF. Significant LPI is observed with the laser injection of 28.5^{∘} in the cylindrical hohlraum where the propagation path is similar to the 55^{∘} injection angle for the spherical hohlraum. The experiments are performed on the SGIII laser facility with a total 0.35-μm incident energy of 93 kJ in a 3 nsec pulse. These experiments demonstrate the role of hohlraum geometry in LPI and demonstrate the need for systematic experiments for choosing the optimal configuration for ignition studies with indirect drive inertial confinement fusion.
Cooler and particulate separator for an off-gas stack
Wright, G.T.
1991-04-08
This report describes an off-gas stack for a melter, furnace or reaction vessel comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes prevents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.
ECRH launching scenario in FFHR-d1
NASA Astrophysics Data System (ADS)
Yanagihara, Kota; Kubo, Shin; Shimozuma, Takashi; Yoshimura, Yasuo; Igami, Hiroe; Takahashi, Hiromi; Tsujimura, Tohru; Makino, Ryohhei
2016-10-01
ECRH is promising as a principal heating system in a prototype helical reactor FFHR-d1 where the heating power of 80 MW is required to bring the plasma parameter to break even condition. To generate the plasma and bring it to ignition condition in FFHR-d1, it is effective to heat the under/over-dense plasma with normal ECRH or Electron Bernstein Wave (EBW). Normal ECRH is well established but heating via EBW need sophisticated injection control. EBW can be excited via the O(ordinary)-X(extraordinary)-B(EBW) mode conversion process by launching the ordinary wave from the low field side to plasma cut-off layer with optimum injection angle, and the range of injection angle to get high OXB mode conversion rate is called OXB mode conversion window. Since the window position can change as the plasma parameter, it is necessary to optimize the injection angle so as to aim the window in response to the plasma parameters. Candidates of antenna positions are determined by optimum injection points on the plasma facing wall calculated by the injection angle. Given such picked up area, detailed analysis using ray-tracing calculations and engineering antenna design will be performed.
Effects of spray angle variation on mixing in a cold supersonic combustor with kerosene fuel
NASA Astrophysics Data System (ADS)
Zhu, Lin; Luo, Feng; Qi, Yin-Yin; Wei, Min; Ge, Jia-Ru; Liu, Wei-Lai; Li, Guo-Li; Jen, Tien-Chien
2018-03-01
Effective fuel injection and mixing is of particular importance for scramjet engines to be operated reliably because the fuel must be injected into high-speed crossflow and mixed with the supersonic air at an extremely short time-scale. This study numerically characterizes an injection jet under different spray angles in a cold kerosene-fueled supersonic flow and thus assesses the effects of the spray angle on the mixing between incident shock wave and transverse cavity injection. A detailed computational fluid dynamics model is developed in accordance with the real scramjet combustor. Next, the spray angles are designated as 45°, 90°, and 135° respectively with the other constant operational conditions (such as the injection diameter, velocity and pressure). Next, a combination of a three dimensional Couple Level Set & Volume of Fluids with an improved Kelvin-Helmholtz & Rayleigh-Taylor model is used to investigate the interaction between kerosene and supersonic air. The numerical predictions are focused on penetration depth, span expansion area, angle of shock wave and sauter mean diameter distribution of the kerosene droplets with or without evaporation. Finally, validation has been implemented by comparing the calculated to the measured in literature with good qualitative agreement. Results show that no matter whether the evaporation is considered, the penetration depth, span-wise angle and expansion area of the kerosene droplets are all increased with the spray angle, and most especially, that the size of the kerosene droplets is surely reduced with the spray angle increase. These calculations are beneficial to better understand the underlying atomization mechanism in the cold kerosene-fueled supersonic flow and hence provide insights into scramjet design improvement.
Impact of Fluidic Chevrons on Jet Noise
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Kinzie, Kevin W.; Whitmire, Julia; Abeysinghe, Amal
2005-01-01
The impact of alternating fluidic core chevrons on the production of jet noise is investigated. Core nozzles for a representative 1/9th scale, bypass ratio 5 model system were manufactured with slots cut near the trailing edges to allow for air injection into the core and fan streams. The injectors followed an alternating pattern around the nozzle perimeter so that the injection alternated between injection into the core stream and injection into the fan stream. For the takeoff condition and a forward flight Mach number of 0.10, the overall sound pressure levels at the peak jet noise angle decrease with increasing injection pressure. Sound pressure levels increase for observation angles less than 110o at higher injection pressures due to increases in high frequency noise. Greater increases in high frequency noise are observed when the number of injectors increases from 8 to 12. When the forward flight Mach number is increased to 0.28, jet noise reduction (relative to the baseline) is observed at aft angles for increasing injection pressure while significant increases in jet noise are observed at forward observation angles due to substantial acoustic radiation at high frequencies. A comparison between inflow and alternating injectors shows that, for equal mass injection rates, the inflow nozzle produces greater low frequency noise reduction (relative to the baseline) than the alternating injectors at 90o and aft observation angles and a forward flight Mach number of 0.28. Preliminary computational fluid dynamic simulations indicate that the spatial decay rate of the hot potential core flow is less for the inflow nozzle than for the alternating nozzles which indicates that gentle mixing may be preferred over sever mixing when fluidic chevrons are used for jet noise reduction.
Ramos-Gallardo, Guillermo; Orozco-Rentería, David; Medina-Zamora, Pablo; Mota-Fonseca, Eduardo; García-Benavides, Leonel; Cuenca-Pardo, Jesus; Contreras-Bulnes, Livia; Ambriz-Plasencia, Ana Rosa; Curiel-Beltran, Jesus Aaron
2017-05-09
Liposuction is a popular surgical procedure. As in any surgery, there are risks and complications, especially when combined with fat injection. Case reports of fat embolism have described a possible explanation as the puncture and tear of gluteal vessels during the procedure, especially when a deep injection is planned. A total of 10 dissections were performed in five fresh cadavers. Each buttocks was divided into four quadrants. We focused on the location where the gluteal vessels enter the muscle and the diameter of the vessels. Colorant at two different angles was injected (30° and 45°). We evaluated the relation of the colorant with the main vessels. We found two perforators per quadrant. The thickness of the gluteal muscle was 2.84 ± 1.54 cm. The area under the muscle where the superior gluteal vessels traverse the muscle was located 6.4 ± 1.54 cm from the intergluteal crease and 5.8 ± 1.13 cm from the superior border of the muscle. The inferior gluteal vessels were located 8.3 ± 1.39 cm from the intergluteal crease and 10 ± 2.24 cm from the superior border of the muscle. When we compared the fat injected at a 30° angle, the colorant stayed in the muscle. Using a 45° angle, the colorant was in contact with the superior gluteal artery and the sciatic nerve. No puncture or tear was observed in the vessels or the nerve. The location where the vessels come in contact with the muscle, which can be considered for fat injection, were located in quadrants 1 and 3. A 30° angle allows for an injection into the muscle without passing into deeper structures, unlike a 45° injection angle.
NASA Technical Reports Server (NTRS)
Fearn, R. L.; Weston, R. P.
1979-01-01
A subsonic round jet injected from a flat plate into a subsonic crosswind of the same temperature was investigated. Velocity and pressure measurements in planes perpendicular to the path of the jet were made for nominal jet injection angles of 45 deg, 60 deg, 75 deg, 90 deg, and 105 deg and for jet/cross flow velocity ratios of four and eight. The velocity measurements were obtained to infer the properties of the vortex pair associated with a jet in a cross flow. Jet centerline and vortex trajectories were determined and fit with an empirical equation that includes the effects of jet injection angle, jet core length, and jet/cross flow velocity ratios.
NASA Technical Reports Server (NTRS)
Flamm, Jeffrey D.; Deere, Karen A.; Mason, Mary L.; Berrier, Bobby L.; Johnson, Stuart K.
2007-01-01
An axisymmetric version of the Dual Throat Nozzle concept with a variable expansion ratio has been studied to determine the impacts on thrust vectoring and nozzle performance. The nozzle design, applicable to a supersonic aircraft, was guided using the unsteady Reynolds-averaged Navier-Stokes computational fluid dynamics code, PAB3D. The axisymmetric Dual Throat Nozzle concept was tested statically in the Jet Exit Test Facility at the NASA Langley Research Center. The nozzle geometric design variables included circumferential span of injection, cavity length, cavity convergence angle, and nozzle expansion ratio for conditions corresponding to take-off and landing, mid climb and cruise. Internal nozzle performance and thrust vectoring performance was determined for nozzle pressure ratios up to 10 with secondary injection rates up to 10 percent of the primary flow rate. The 60 degree span of injection generally performed better than the 90 degree span of injection using an equivalent injection area and number of holes, in agreement with computational results. For injection rates less than 7 percent, thrust vector angle for the 60 degree span of injection was 1.5 to 2 degrees higher than the 90 degree span of injection. Decreasing cavity length improved thrust ratio and discharge coefficient, but decreased thrust vector angle and thrust vectoring efficiency. Increasing cavity convergence angle from 20 to 30 degrees increased thrust vector angle by 1 degree over the range of injection rates tested, but adversely affected system thrust ratio and discharge coefficient. The dual throat nozzle concept generated the best thrust vectoring performance with an expansion ratio of 1.0 (a cavity in between two equal minimum areas). The variable expansion ratio geometry did not provide the expected improvements in discharge coefficient and system thrust ratio throughout the flight envelope of typical a supersonic aircraft. At mid-climb and cruise conditions, the variable geometry design compromised thrust vector angle achieved, but some thrust vector control would be available, potentially for aircraft trim. The fixed area, expansion ratio of 1.0, Dual Throat Nozzle provided the best overall compromise for thrust vectoring and nozzle internal performance over the range of NPR tested compared to the variable geometry Dual Throat Nozzle.
Influence of the nozzle angle on refrigeration performance of a gas wave refrigerator
NASA Astrophysics Data System (ADS)
Liu, P.; Zhu, Y.; Wang, H.; Zhu, C.; Zou, J.; Wu, J.; Hu, D.
2017-05-01
A gas wave refrigerator (GWR) is a novel refrigerating device that refrigerates a medium by shock waves and expansion waves generated by gas pressure energy. In a typical GWR, the injection energy losses between the nozzle and the expansion tube are essential factors which influence the refrigeration efficiency. In this study, numerical simulations are used to analyze the underlying mechanism of the injection energy losses. The results of simulations show that the vortex loss, mixing energy loss, and oblique shock wave reflection loss are the main factors contributing to the injection energy losses in the expansion tube. Furthermore, the jet angle of the gas is found to dominate the injection energy losses. Therefore, the optimum jet angle is theoretically calculated based on the velocity triangle method. The value of the optimum jet angle is found to be 4^{circ }, 8^{circ }, and 12^{circ } when the refrigeration efficiency is the first-order, second-order, and third-order maximum value over all working ranges of jet frequency, respectively. Finally, a series of experiments are conducted with the jet angle ranging from -4^{circ } to 12^{circ } at a constant expansion ratio. The results indicate the optimal jet angle obtained by the experiments is in good agreement with the calculated value. The isentropic refrigeration efficiency increased by about 4 % after the jet angle was optimized.
Three Dimensional Solution of Pneumatic Active Control of Forebody Vortex Asymmetry
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; SharafEl-Din, Hazem H.; Liu, C. H.
1995-01-01
Pneumatic active control of asymmetric vortical flows around a slender pointed forebody is investigated using the three dimensional solution for the compressible thin-layer Navier-Stokes equation. The computational applications cover the normal and tangential injection control of asymmetric flows around a 5 degree semi-apex angle cone at a 40 degree angle of attack, 1.4 freestream Mach number and 6 x 10(exp 6) freestream Reynolds number (based on the cone length). The effective tangential angle range of 67.5 approaches minus 67.5 degrees is used for both normal and tangential ports of injection. The effective axial length of injection is varied from 0.03 to 0.05. The computational solver uses the implicit, upwind, flux difference splitting finite volume scheme, and the grid consists of 161 x 55 x 65 points in the wrap around, normal and axial directions, respectively. The results show that tangential injection is more effective than normal injection.
[Effect of Tween 80 on yuxingcao injection and volatile oils from Houttuynia cordata].
Tan, Zhigao; Chao, Zhimao; Sui, Yu; Liu, Haiping; Wu, Xiaoyi; Sun, Jian; Yan, Han
2011-01-01
To research the effect of polysorbate 80 (Tween 80) on Yuxingcao injection and volatile oils from Houttuynia cordata. 1H-NMR spectra of aldehydic and new matter in Yuxingcao injection, volatile oils of H. cordata, and solutions of Tween 80 and volatile oil of H. cordata are determined and compared from various angles of growing origin, storage temperature, and storage time. Three aldehydic singlets in 1H-NMR spectra of every volatile oil from 4 aerial part of H. cordata were observed. These aldehydic peaks were basically disappeared and a new peak at delta 8.30 was found in 1H-NMR spectra of the volatile oil solutions in tween 80. Any obvious aldehydic peak in 1H-NMR spectra did not be observed in Yuxincao injection. A weak peak at 8 8.30 was found in 1H-NMR spectra in Yuxincao injection, and the peak high of delta 8.30 was remarked gone up when the injection was stored in 40 degrees C for 1 to 3 months. Tween 80 might cause the obvious reduce of aldehydic compounds contents and the production of a novel singal at delta 8.30 in 1H-NMR spectra when it was mixed with the volatile oil from the aerial part of H. cordata. The novel signal at delta 8.30 in 1H-NMR spectra existed in Yuxincao injection and was very small, but was increased remarkably when the Yuxincao injection was stored at 40 degrees C for 1 month at least.
A Computational Study of a New Dual Throat Fluidic Thrust Vectoring Nozzle Concept
NASA Technical Reports Server (NTRS)
Deere, Karen A.; Berrier, Bobby L.; Flamm, Jeffrey D.; Johnson, Stuart K.
2005-01-01
A computational investigation of a two-dimensional nozzle was completed to assess the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The nozzle was designed with a recessed cavity to enhance the throat shifting method of fluidic thrust vectoring. Several design cycles with the structured-grid, computational fluid dynamics code PAB3D and with experiments in the NASA Langley Research Center Jet Exit Test Facility have been completed to guide the nozzle design and analyze performance. This paper presents computational results on potential design improvements for best experimental configuration tested to date. Nozzle design variables included cavity divergence angle, cavity convergence angle and upstream throat height. Pulsed fluidic injection was also investigated for its ability to decrease mass flow requirements. Internal nozzle performance (wind-off conditions) and thrust vector angles were computed for several configurations over a range of nozzle pressure ratios from 2 to 7, with the fluidic injection flow rate equal to 3 percent of the primary flow rate. Computational results indicate that increasing cavity divergence angle beyond 10 is detrimental to thrust vectoring efficiency, while increasing cavity convergence angle from 20 to 30 improves thrust vectoring efficiency at nozzle pressure ratios greater than 2, albeit at the expense of discharge coefficient. Pulsed injection was no more efficient than steady injection for the Dual Throat Nozzle concept.
Angled injection: Hybrid fluid film bearings for cryogenic applications
NASA Technical Reports Server (NTRS)
SanAndres, Luis
1995-01-01
A computational bulk-flow analysis for prediction of the force coefficients of hybrid fluid film bearings with angled orifice injection is presented. Past measurements on water-lubricated hybrid bearings with angle orifice injection have demonstrated improved rotordynamic performance with virtual elimination of cross-coupled stiffness coefficients and nul or negative whirl frequency ratios. A simple analysis reveals that the fluid momentum exchange at the orifice discharge produces a pressure rise in the recess which retards the shear flow induced by journal rotation, and consequently, reduces cross-coupling forces. The predictions from the model correlate well with experimental measurements from a radial and 45 deg angled orifice injection, five recess water hybrid bearings (C = 125 microns) operating at 10.2, 17.4, and 24.6 krpm and with nominal supply pressures equal to 4, 5.5, and 7 MPa. An application example for a liquid oxygen six recess/pad hybrid journal bearing shows the advantages of tangential orifice injection on the rotordynamic force coefficients and stability indicator for forward whirl motions and without performance degradation on direct stiffness and damping coefficients. The computer program generated, 'hydrojet,' extends and complements previously developed codes.
Aeroacoustic Improvements to Fluidic Chevron Nozzles
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Kinzie, Kevin; Whitmire, Julia; Abeysinghe, Amal
2006-01-01
Fluidic chevrons use injected air near the trailing edge of a nozzle to emulate mixing and jet noise reduction characteristics of mechanical chevrons. While previous investigations of "first generation" fluidic chevron nozzles showed only marginal improvements in effective perceived noise levels when compared to nozzles without injection, significant improvements in noise reduction characteristics were achieved through redesigned "second generation" nozzles on a bypass ratio 5 model system. The second-generation core nozzles had improved injection passage contours, external nozzle contour lines, and nozzle trailing edges. The new fluidic chevrons resulted in reduced overall sound pressure levels over that of the baseline nozzle for all observation angles. Injection ports with steep injection angles produced lower overall sound pressure levels than those produced by shallow injection angles. The reductions in overall sound pressure levels were the result of noise reductions at low frequencies. In contrast to the first-generation nozzles, only marginal increases in high frequency noise over that of the baseline nozzle were observed for the second-generation nozzles. The effective perceived noise levels of the new fluidic chevrons are shown to approach those of the core mechanical chevrons.
Factors influencing the effective spray cone angle of pressure-swirl atomizers
NASA Astrophysics Data System (ADS)
Chen, S. K.; Lefebvre, A. H.; Rollbuhler, J.
1992-01-01
The spray cone angles produced by several simplex pressure-swirl nozzles are examined using three liquids whose viscosities range from 0.001 to 0.012 kg/ms (1 to 12 cp). Measurements of both the visible spray cone angle and the effective spray cone angle are carried out over wide ranges of injection pressure and for five different values of the discharge orifice length/diameter ratio. The influence of the number of swirl chamber feed slots on spray cone angle is also examined. The results show that the spray cone angle widens with increase in injection pressure but is reduced by increases in liquid viscosity and/or discharge orifice length/diameter ratio. Variation in the number of swirl chamber feed slots between one and three has little effect on the effective spray cone angle.
NASA Technical Reports Server (NTRS)
Nguyen, H. L.; Carpenter, M. H.; Ramos, J. I.
1987-01-01
A numerical analysis is presented on the effects of the engine speed, injection angle, droplet distribution function, and spray cone angle on the flow field, spray penetration and vaporization, and turbulence in a turbocharged motored two-stroke diesel engine. The results indicate that the spray penetration and vaporization, velocity, and turbulence kinetic energy increase with the intake swirl angle. Good spray penetration, vaporization, and mixing can be achieved by injecting droplets of diameters between 50 and 100 microns along a 120-deg cone at about 315 deg before top-dead-center for an intake swirl angle of 30 deg. The spray penetration and vaporization were found to be insensitive to the turbulence levels within the cylinder. The results have also indicated that squish is necessary in order to increase the fuel vaporization rate and mixing.
Computational Study of Fluidic Thrust Vectoring using Separation Control in a Nozzle
NASA Technical Reports Server (NTRS)
Deere, Karen; Berrier, Bobby L.; Flamm, Jeffrey D.; Johnson, Stuart K.
2003-01-01
A computational investigation of a two- dimensional nozzle was completed to assess the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The nozzle was designed with a recessed cavity to enhance the throat shifting method of fluidic thrust vectoring. The structured-grid, computational fluid dynamics code PAB3D was used to guide the design and analyze over 60 configurations. Nozzle design variables included cavity convergence angle, cavity length, fluidic injection angle, upstream minimum height, aft deck angle, and aft deck shape. All simulations were computed with a static freestream Mach number of 0.05. a nozzle pressure ratio of 3.858, and a fluidic injection flow rate equal to 6 percent of the primary flow rate. Results indicate that the recessed cavity enhances the throat shifting method of fluidic thrust vectoring and allows for greater thrust-vector angles without compromising thrust efficiency.
Holm, René; Borkenfelt, Simon; Allesø, Morten; Andersen, Jens Enevold Thaulov; Beato, Stefania; Holm, Per
2016-02-10
Compounds wettability is critical for a number of central processes including disintegration, dispersion, solubilisation and dissolution. It is therefore an important optimisation parameter both in drug discovery but also as guidance for formulation selection and optimisation. Wettability for a compound is determined by its contact angle to a liquid, which in the present study was measured using the sessile drop method applied to a disc compact of the compound. Precise determination of the contact angle is important should it be used to either rank compounds or selected excipients to e.g. increase the wetting from a solid dosage form. Since surface roughness of the compact has been suggested to influence the measurement this study investigated if the surface quality, in terms of surface porosity, had an influence on the measured contact angle. A correlation to surface porosity was observed, however for six out of seven compounds similar results were obtained by applying a standard pressure (866 MPa) to the discs in their preparation. The data presented in the present work therefore suggest that a constant high pressure should be sufficient for most compounds when determining the contact angle. Only for special cases where compounds have poor compressibility would there be a need for a surface-quality-control step before the contact angle determination. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liang, Yu; Zhou, Liying; Huang, Haomin; Xu, Mingfei; Guo, Mei; Chen, Xin
2018-01-01
A set of GDI system is installed on a F188 single-cylinder, air-cooled and direct injection diesel engine, which is used for ethanol injection, with the injection time controlled by the crank angle signal collected by AVL angle encoder. The injection of ethanol amounts to half of the thermal equivalent of an original diesel fuel. A 3D combustion model is established for the ethanol - diesel dual direct injection engine. Diesel was injected from the original fuel injection system, with a fuel supply advance angle of 20°CA. The ethanol was injected into the cylinder during compression process. Diesel injection began after the completion of ethanol injection. Ethanol injection starting point of 240°CA, 260°CA, 280°CA, 300°CA and 319.4°CA were simulated and analyzed. Due to the different timing of ethanol injection, the ignition of the ethanol mixture when diesel fires, results in non-uniform ignition distribution and flame propagation rate, since the distribution and concentration gradients of the ethanol mixture in the cylinder are different, thus affecting the combustion process. The results show that, when ethanol is injected at 319.4°CA, the combustion heat release rate and the pressure rise rate during the initial stage are the highest. Also, the maximum combustion pressure, with a relatively advance phase, is the highest. In case of later initial ethanol injection, the average temperature in the cylinder during the initial combustion period will have a faster rise. In case of initial injection at 319.4°CA, the average temperature in the cylinder is the highest, followed by 240°CA ethanol injection. In the post-combustion stage, the earlier ethanol injection will result in higher average temperature in the cylinder and more complete fuel combustion. The injection of ethanol at 319.4°CA produces earlier and highest NOX emissions.
NASA Technical Reports Server (NTRS)
Deere, Karen A.; Flamm, Jeffrey D.; Berrier, Bobby L.; Johnson, Stuart K.
2007-01-01
A computational investigation of an axisymmetric Dual Throat Nozzle concept has been conducted. This fluidic thrust-vectoring nozzle was designed with a recessed cavity to enhance the throat shifting technique for improved thrust vectoring. The structured-grid, unsteady Reynolds- Averaged Navier-Stokes flow solver PAB3D was used to guide the nozzle design and analyze performance. Nozzle design variables included extent of circumferential injection, cavity divergence angle, cavity length, and cavity convergence angle. Internal nozzle performance (wind-off conditions) and thrust vector angles were computed for several configurations over a range of nozzle pressure ratios from 1.89 to 10, with the fluidic injection flow rate equal to zero and up to 4 percent of the primary flow rate. The effect of a variable expansion ratio on nozzle performance over a range of freestream Mach numbers up to 2 was investigated. Results indicated that a 60 circumferential injection was a good compromise between large thrust vector angles and efficient internal nozzle performance. A cavity divergence angle greater than 10 was detrimental to thrust vector angle. Shortening the cavity length improved internal nozzle performance with a small penalty to thrust vector angle. Contrary to expectations, a variable expansion ratio did not improve thrust efficiency at the flight conditions investigated.
NASA Technical Reports Server (NTRS)
Miller, R. H.; Gombosi, T. I.; Gary, S. P.; Winske, D.
1991-01-01
The direction of propagation of low frequency magnetic fluctuations generated by cometary ion pick-up is examined by means of 1D electromagnetic hybrid simulations. The newborn ions are injected at a constant rate, and the helicity and direction of propagation of magnetic fluctuations are explored for cometary ion injection angles of 0 and 90 deg relative to the solar wind magnetic field. The parameter eta represents the relative contribution of wave energy propagating in the direction away from the comet, parallel to the beam. For small (quasi-parallel) injection angles eta was found to be of order unity, while for larger (quasi-perpendicular) angles eta was found to be of order 0.5.
Film cooling effectiveness and heat transfer with injection through holes
NASA Technical Reports Server (NTRS)
Eriksen, V. L.
1971-01-01
An experimental investigation of the local film cooling effectiveness and heat transfer downstream of injection of air through discrete holes into a turbulent boundary layer of air on a flat plate is reported. Secondary air is injected through a single hole normal to the main flow and through both a single hole and a row of holes spaced at three diameter intervals with an injection angle of 35 deg to the main flow. Two values of the mainstream Reynolds number are used; the blowing rate is varied from 0.1 to 2.0. Photographs of a carbon dioxide-water fog injected into the main flow at an angle of 90 deg are also presented to show interaction between the jet and mainstream.
NASA Astrophysics Data System (ADS)
Hashim, Akasha; Khalid, Amir; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Nizam, Akmal
2017-09-01
Efficiency of combustion engines are highly affected by the formation of air-fuel mixture prior to ignition and combustion process. This research investigate the mixture formation and spray characteristics of biodiesel blends under variant in high ambient and injection conditions using Computational Fluid Dynamics (CFD). The spray characteristics such as spray penetration length, spray angle and fluid flow were observe under various operating conditions. Results show that increase in injection pressure increases the spray penetration length for both biodiesel and diesel. Results also indicate that higher spray angle of biodiesel can be seen as the injection pressure increases. This study concludes that spray characteristics of biodiesel blend is greatly affected by the injection and ambient conditions.
Preparation of hydrophobic coatings
Branson, Eric D [Albuquerque, NM; Shah, Pratik B [Albuquerque, NM; Singh, Seema [Rio Rancho, NM; Brinker, C Jeffrey [Albuquerque, NM
2009-02-03
A method for preparing a hydrophobic coating by preparing a precursor sol comprising a metal alkoxide, a solvent, a basic catalyst, a fluoroalkyl compound and water, depositing the precursor sol as a film onto a surface, such as a substrate or a pipe, heating, the film and exposing the film to a hydrophobic silane compound to form a hydrophobic coating with a contact angle greater than approximately 150.degree.. The contact angle of the film can be controlled by exposure to ultraviolet radiation to reduce the contact angle and subsequent exposure to a hydrophobic silane compound to increase the contact angle.
Karimi, Alireza; Razaghi, Reza; Biglari, Hasan; Sabbaghi, Hamideh; Sera, Toshihiro; Kudo, Susumu
2018-04-20
This study was aimed at investigating the role of IVI angle on the induced stresses and deformations among the components of the eye. Thereafter, the most optimal angle of IVI to minimize the complications of post IVI at the injection site on a basis of the computed stresses via a Fluid-Structure Interaction (FSI) computational model was proposed. IntraVitreal Injection (IVI) is broadly employed as a principal treatment of vascular vitro-retinal diseases. So far, there have been reports regarding the complications of post IVI and determine them as severe uveitis, tractional retinal detachment, IntraOcular Pressure (IOP) elevation as well as ocular haemorrhage. However, there is a lack of knowledge on how to reduce the subsequent ocular tissue damage and patient symptoms in the injection site. Seven different IVI angles were simulated, including 0∘, 15∘, 30∘, 45∘, 60∘, 75∘, and 90∘, through the Finite Element (FE) code; and the term, 'post IVI complication' or 'injury', in the results was interpreted as the level of maximal principal stress in the eye components. The results revealed the lowest amount of stresses at the angle of 45∘ in respect to the horizontal line (acute to the surface of the sclera) for the lens, iris, vitreous body, aqueous body, ciliary body, sclera, retina, and choroid. The cornea illustrated the same amount of stress at the angles of 45∘, 60∘, 75∘, and 90∘ with the highest one at the IVI angle of 30∘. The lowest and the highest stresses among the eye components regardless of IVI angle were observed in the choroid and retina/sclera, respectively, which imply the importance of the IVI angle on the stresses of these eye components. The findings of the contemporary research revealed that the IVI angle of 45∘ would trigger less post IVI complications and, as a result, a more effective surgery outcome compared to the other angles, i.e., 0∘, 15∘, 30∘, 60∘, 75∘, and 90∘.
Light extinction method on high-pressure diesel injection
NASA Astrophysics Data System (ADS)
Su, Tzay-Fa; El-Beshbeeshy, Mahmound S.; Corradini, Michael L.; Farrell, Patrick V.
1995-09-01
A two dimensional optical diagnostic technique based on light extinction was improved and demonstrated in an investigation of diesel spray characteristics at high injection pressures. Traditional light extinction methods require the spray image to be perpendicular to the light path. In the improved light extinction scheme, a tilted spray image which has an angle with the light path is still capable of being processed. This technique utilizes high speed photography and digital image analysis to obtain qualitative and quantitative information of the spray characteristics. The injection system used was an electronically controlled common rail unit injector system with injection pressures up to 100 MPa. The nozzle of the injector was a mini-sac type with six holes on the nozzle tip. Two different injection angle nozzles, 125 degree(s) and 140 degree(s), producing an in-plane tilted spray and an out of plane tilted spray were investigated. The experiments were conducted on a constant volume spray chamber with the injector mounted tilted at an angle of 62.5 degree(s)$. Only one spray plume was viewed, and other sprays were free to inject to the chamber. The spray chamber was pressurized with argon and air under room temperature to match the combustion chamber density at the start of the injection. The experimental results show that the difference in the spray tip penetration length, spray angle, and overall average Sauter mean diameter is small between the in- plane tilted spray and the out of plane tilted spray. The results also show that in-plane tilted spray has a slightly larger axial cross- section Sauter mean diameter than the out of plane tilted spray.
NASA Astrophysics Data System (ADS)
Sahoo, N.; Kulkarni, V.; Jagadeesh, G.; Reddy, K. P. J.
Effect of coolant gas injection in the stagnation region on the surface heat transfer rates and aerodynamic drag for a large angle blunt body flying at hypersonic Mach number is reported for two stagnation enthalpies. A 60° apex-angle blunt cone model is employed for this purpose with air injection at the nose through a hole of 2mm diameter. The convective surface heating rates and aerodynamic drag are measured simultaneously using surface mounted platinum thin film sensors and internally mounted accelerometer balance system, respectively. About 35-40% reduction in surface heating rates is observed in the vicinity of stagnation region whereas 15-25% reduction in surface heating rates is felt beyond the stagnation region at stagnation enthalpy of 1.6MJ/kg. The aerodynamic drag expressed in terms of drag coefficient is found to increase by 20% due to the air injection.
Persulfate injection into a gasoline source zone
NASA Astrophysics Data System (ADS)
Sra, Kanwartej S.; Thomson, Neil R.; Barker, Jim F.
2013-07-01
One pore volume of unactivated sodium persulfate was delivered into an emplaced gasoline residual source zone at CFB Borden. Concentrations of inorganic species (S2O82 -, SO42 -, Na+, dissolved inorganic carbon (DIC)) and selected gasoline compounds (benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes and naphthalene) were monitored across a transect equipped with 90 multilevel sampling points for > 10 months post-injection. Mass loading (M˙) of compounds constructed from the transect data was used for assessment purposes. Breakthrough of inorganic species was observed when the injection slug crossed the monitoring transect. An increase in M indicated persulfate consumption during oxidation of gasoline compounds or degradation due to the interaction with aquifer materials. M increased by > 100% suggesting some mineralization of gasoline compounds during treatment. Mass loading for all the monitored gasoline compounds reduced by 46 to 86% as the inorganic slug crossed the monitoring transect. The cumulative mass discharge across the monitoring transect was 19 to 58% lower than that expected without persulfate injection. After the inorganic injection slug was flushed from the source zone a partial rebound (40 to 80% of baseline levels) of mass discharge of the monitored gasoline compounds was observed. The ensemble of data collected provides insight into the fate and transport of the injected persulfate solution, and the accompanying treatment of a gasoline the source zone.
Impact of Air Injection on Jet Noise
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Norum, Tom
2007-01-01
The objective of this viewgraph presentation is to review the program to determine impact of core fluidic chevrons on noise produced by dual stream jets (i.e., broadband shock noise - supersonic, and mixing noise - subsonic and supersonic). The presentation reviews the sources of jet noise. It shows designs of Generation II Fluidic Chevrons. The injection impacts shock structure and stream disturbances through enhanced mixing. This may impact constructive interference between acoustic sources. The high fan pressures may inhibit mixing produced by core injectors. A fan stream injection may be required for better noise reduction. In future the modification of Gen II nozzles to allow for some azimuthal control: will allow for higher mass flow rates and will allow for shallower injection angles A Flow field study is scheduled for spring, 2008 The conclusions are that injection can reduce well-defined shock noise and injection reduces mixing noise near peak jet noise angle
Effects of injection pressure variation on mixing in a cold supersonic combustor with kerosene fuel
NASA Astrophysics Data System (ADS)
Liu, Wei-Lai; Zhu, Lin; Qi, Yin-Yin; Ge, Jia-Ru; Luo, Feng; Zou, Hao-Ran; Wei, Min; Jen, Tien-Chien
2017-10-01
Spray jet in cold kerosene-fueled supersonic flow has been characterized under different injection pressures to assess the effects of the pressure variation on the mixing between incident shock wave and transverse cavity injection. Based on the real scramjet combustor, a detailed computational fluid dynamics model is developed. The injection pressures are specified as 0.5, 1.0, 2.0, 3.0 and 4.0 MPa, respectively, with the other constant operation parameters (such as the injection diameter, angle and velocity). A three dimensional Couple Level Set & Volume of Fluids approach incorporating an improved Kelvin-Helmholtz & Rayleigh-Taylor model is used to investigate the interaction between kerosene and supersonic air. The numerical simulations primarily concentrate on penetration depth, span expansion area, angle of shock wave and sauter mean diameter distribution of the kerosene droplets with/without evaporation. Validation has been implemented by comparing the calculated against the measured in literature with good qualitative agreement. Results show that the penetration depth, span-wise angle and expansion area of the transverse cavity jet are all increased with the injection pressure. However, when the injection pressure is further increased, the value in either penetration depth or expansion area increases appreciably. This study demonstrates the feasibility and effectiveness of the combination of Couple Level Set & Volume of Fluids approach and an improved Kelvin-Helmholtz & Rayleigh-Taylor model, in turn providing insights into scramjet design improvement.
Reduction of Altitude Diffuser Jet Noise Using Water Injection
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.
2014-01-01
A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.
Reduction of Altitude Diffuser Jet Noise Using Water Injection
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.
2011-01-01
A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.
1991-12-01
I~~.s~ -11 g~~u 0 Li o II >O Lr~ DJC): I-z 0( r- 4 LA- F. Lncn ~ n L-I- 168) " to Neem in in u zq sI 03*S .3 II to In I o I -1 - 0 - ’ -’. 169 1...H , 1 0 9,0 9.0 t’D Z0 ’ oiLs /i~s 179 C\\2 z 00 Ziin > W= 180 0 Q - C., 9 N 0 0I F-4~ H* 9,I- o * , Oj~s/,C 1810~ C’Q I IC O) E- C)- F-4 C/) Z
Persulfate injection into a gasoline source zone.
Sra, Kanwartej S; Thomson, Neil R; Barker, Jim F
2013-07-01
One pore volume of unactivated sodium persulfate was delivered into an emplaced gasoline residual source zone at CFB Borden. Concentrations of inorganic species (S2O8(2-), SO4(2-), Na(+), dissolved inorganic carbon (DIC)) and selected gasoline compounds (benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes and naphthalene) were monitored across a transect equipped with 90 multilevel sampling points for >10months post-injection. Mass loading (M˙) of compounds constructed from the transect data was used for assessment purposes. Breakthrough of inorganic species was observed when the injection slug crossed the monitoring transect. An increase in [Formula: see text] indicated persulfate consumption during oxidation of gasoline compounds or degradation due to the interaction with aquifer materials. M˙DIC increased by >100% suggesting some mineralization of gasoline compounds during treatment. Mass loading for all the monitored gasoline compounds reduced by 46 to 86% as the inorganic slug crossed the monitoring transect. The cumulative mass discharge across the monitoring transect was 19 to 58% lower than that expected without persulfate injection. After the inorganic injection slug was flushed from the source zone a partial rebound (40 to 80% of baseline levels) of mass discharge of the monitored gasoline compounds was observed. The ensemble of data collected provides insight into the fate and transport of the injected persulfate solution, and the accompanying treatment of a gasoline the source zone. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lewis, B. J.; Cimbala, J. M.; Wouden, A. M.
2014-03-01
At their best efficiency point (BEP), hydroturbines operate at very high efficiency. However, with the ever-increasing penetration of alternative electricity generation, it has become common to operate hydroturbines at off-design conditions in order to maintain stability in the electric power grid. This paper demonstrates a method for improving hydroturbine performance during off-design operation by injecting water through slots at the trailing edges of the wicket gates. The injected water causes a change in bulk flow direction at the inlet of the runner. This change in flow angle from the wicket gate trailing-edge jets provides the capability of independently varying the flow rate and swirl angle through the runner, which in current designs are both determined by the wicket gate opening angle. When properly tuned, altering the flow angle results in a significant improvement in turbine efficiency during off-design operation.
Study on atomization and combustion characteristics of LOX/methane pintle injectors
NASA Astrophysics Data System (ADS)
Fang, Xin-xin; Shen, Chi-bing
2017-07-01
Influences of main structural parameters of the LOX/methane pintle injectors on atomization cone angles and combustion performances were studied by experiments and numerical simulation respectively. In addition, improvement was brought up to the structure of the pintle injectors and combustion flow fields of two different pintle engines were obtained. The results indicate that, with increase of the gas-liquid mass flow ratio, the atomization cone angle decreases. In the condition of the same gas-liquid mass flow ratio, as the thickness of the LOX-injection gap grows bigger, the atomization cone angle becomes smaller. In the opposite, when the half cone angle of the LOX-injection gap grows bigger, the atomization cone angle becomes bigger. Moreover, owing to the viscous effects of the pintle tip, with increase of the 'skip distance', the atomization cone angle gets larger. Two big recirculation zones in the combustor lead to combustion stability of the pintle engines. When the value of the non-dimensional 'skip distance' is near 1, the combustion efficiency of the pintle engines is the highest. Additionally, pintle engines with LOX injected in quadrangular slots can acquire better mixing efficiency of the propellants and higher combustion efficiency as the gas methane can pass through the adjacent slots. However, the annular-channel type of pintle injectors has an 'enclosed' area near the pintle tip which has a great negative influence on the combustion efficiency.
The effect of CNC and manual laser machining on electrical resistance of HDPE/MWCNT composite
NASA Astrophysics Data System (ADS)
Mohammadi, Fatemeh; Farshbaf Zinati, Reza; Fattahi, A. M.
2018-05-01
In this study, electrical conductivity of high-density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) composite was investigated after laser machining. To this end, produced using plastic injection process, nano-composite samples were laser machined with various combinations of input parameters such as feed rate (35, 45, and 55 mm/min), feed angle with injection flow direction (0°, 45°, and 90°), and MWCNT content (0.5, 1, and 1.5 wt%). The angle between laser feed and injected flow direction was set via either of two different methods: CNC programming and manual setting. The results showed that the parameters of angle between laser line and melt flow direction and feed rate were both found to have statistically significance and physical impacts on electrical resistance of the samples in manual setting. Also, maximum conductivity was seen when the angle between laser line and melt flow direction was set to 90° in manual setting, and maximum conductivity was seen at feed rate of 55 mm/min in both of CNC programming and manual setting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausnerova, Berenika; Sanetrnik, Daniel; Paravanova, Gordana
2014-05-15
The paper deals with the rheological behavior of highly filled compounds proceeded via powder injection molding (PIM) and applied in many sectors of industry (automotive, medicine, electronic or military). Online rheometer equipped with slit dies varying in surface roughness and dimensions was applied to investigate the wall-slip as a rheological phenomenon, which can be considered as a parameter indicating the separation of compound components (polymer binder and metallic powder) during high shear rates when injection molded.
NASA Astrophysics Data System (ADS)
Hausnerova, Berenika; Sanetrnik, Daniel; Paravanova, Gordana
2014-05-01
The paper deals with the rheological behavior of highly filled compounds proceeded via powder injection molding (PIM) and applied in many sectors of industry (automotive, medicine, electronic or military). Online rheometer equipped with slit dies varying in surface roughness and dimensions was applied to investigate the wall-slip as a rheological phenomenon, which can be considered as a parameter indicating the separation of compound components (polymer binder and metallic powder) during high shear rates when injection molded.
40 MHz high-frequency ultrafast ultrasound imaging.
Huang, Chih-Chung; Chen, Pei-Yu; Peng, Po-Hsun; Lee, Po-Yang
2017-06-01
Ultrafast high-frame-rate ultrasound imaging based on coherent-plane-wave compounding has been developed for many biomedical applications. Most coherent-plane-wave compounding systems typically operate at 3-15 MHz, and the image resolution for this frequency range is not sufficient for visualizing microstructure tissues. Therefore, the purpose of this study was to implement a high-frequency ultrafast ultrasound imaging operating at 40 MHz. The plane-wave compounding imaging and conventional multifocus B-mode imaging were performed using the Field II toolbox of MATLAB in simulation study. In experiments, plane-wave compounding images were obtained from a 256 channel ultrasound research platform with a 40 MHz array transducer. All images were produced by point-spread functions and cyst phantoms. The in vivo experiment was performed from zebrafish. Since high-frequency ultrasound exhibits a lower penetration, chirp excitation was applied to increase the imaging depth in simulation. The simulation results showed that a lateral resolution of up to 66.93 μm and a contrast of up to 56.41 dB were achieved when using 75-angles plane waves in compounding imaging. The experimental results showed that a lateral resolution of up to 74.83 μm and a contrast of up to 44.62 dB were achieved when using 75-angles plane waves in compounding imaging. The dead zone and compounding noise are about 1.2 mm and 2.0 mm in depth for experimental compounding imaging, respectively. The structure of zebrafish heart was observed clearly using plane-wave compounding imaging. The use of fewer than 23 angles for compounding allowed a frame rate higher than 1000 frames per second. However, the compounding imaging exhibits a similar lateral resolution of about 72 μm as the angle of plane wave is higher than 10 angles. This study shows the highest operational frequency for ultrafast high-frame-rate ultrasound imaging. © 2017 American Association of Physicists in Medicine.
NASA Technical Reports Server (NTRS)
Sibeck, D. G.; Mcentire, R. W.; Lui, A. T. Y.; Lopez, R. E.; Krimigis, S. M.
1987-01-01
This paper presents a magnetic field drift shell-splitting model for the unusual butterfly and head-and-shoulder energetic (E greater than 25 keV) particle pitch angle distributions (PADs) which appear deep within the dayside magnetosphere during the course of storms and substorms. Drift shell splitting separates the high and low pitch angle particles in nightside injections as they move to the dayside magnetosphere, so that the higher pitch angle particles move radially away from earth. Consequently, butterfly PADs with a surplus of low pitch angle particles form on the inner edge of the injection, but head-and-shoulder PADs with a surplus of high pitch angle particles form on the outer edge. A similar process removes high pitch angle particles from the inner dayside magnetosphere during storms, leaving the remaining lower pitch angle particles to form butterfly PADs on the inner edge of the ring current. A detailed case and statistical study of Charge Composition Explorer/Medium-energy Particle Analyzer observations, as well as a review of previous work, shows most examples of unusual PADs to be consistent with the model.
Aćimović, Srđan G.; Zeng, Quan; McGhee, Gayle C.; Sundin, George W.; Wise, John C.
2015-01-01
Management of fire blight is complicated by limitations on use of antibiotics in agriculture, antibiotic resistance development, and limited efficacy of alternative control agents. Even though successful in control, preventive antibiotic sprays also affect non-target bacteria, aiding the selection for resistance which could ultimately be transferred to the pathogen Erwinia amylovora. Trunk injection is a target-precise pesticide delivery method that utilizes tree xylem to distribute injected compounds. Trunk injection could decrease antibiotic usage in the open environment and increase the effectiveness of compounds in fire blight control. In field experiments, after 1–2 apple tree injections of either streptomycin, potassium phosphites (PH), or acibenzolar-S-methyl (ASM), significant reduction of blossom and shoot blight symptoms was observed compared to water injected control trees. Overall disease suppression with streptomycin was lower than typically observed following spray applications to flowers. Trunk injection of oxytetracycline resulted in excellent control of shoot blight severity, suggesting that injection is a superior delivery method for this antibiotic. Injection of both ASM and PH resulted in the significant induction of PR-1, PR-2, and PR-8 protein genes in apple leaves indicating induction of systemic acquired resistance (SAR) under field conditions. The time separating SAR induction and fire blight symptom suppression indicated that various defensive compounds within the SAR response were synthesized and accumulated in the canopy. ASM and PH suppressed fire blight even after cessation of induced gene expression. With the development of injectable formulations and optimization of doses and injection schedules, the injection of protective compounds could serve as an effective option for fire blight control. PMID:25717330
Seok, Hyun; Kim, Seong-Gon; Kim, Min-Keun; Jang, Insan; Ahn, Janghoon
2018-12-01
The objective of this study was to evaluate the influence of masticatory muscle injection of botulinum toxin type A (BTX-A) on the growth of the mandibular bone in vivo. Eleven Sprague-Dawley rats were used, and BTX-A ( n = 6) or saline ( n = 5) was injected at 13 days of age. All injections were given to the right masseter muscle, and the BTX-A dose was 0.5 units. All of the rats were euthanized at 60 days of age. The skulls of the rats were separated and fixed with 10% formalin for micro-computed tomography (micro-CT) analysis. The anthropometric analysis found that the ramus heights and bigonial widths of the BTX-A-injected group were significantly smaller than those of the saline-injected group ( P < 0.05), and the mandibular plane angle of the BTX-A-injected group was significantly greater than in the saline-injected group ( P < 0.001). In the BTX-A-injected group, the ramus heights II and III and the mandibular plane angles I and II showed significant differences between the injected and non-injected sides ( P < 0.05). The BTX-A-injected side of the mandible in the masseter group showed significantly lower mandibular bone growth compared with the non-injected side. BTX-A injection into the masseter muscle influences mandibular bone growth.
Numerical simulation of transverse fuel injection
NASA Technical Reports Server (NTRS)
Mao, Marlon; Riggins, David W.; Mcclinton, Charles R.
1991-01-01
A review of recent work at NASA Langley Research Center to compare the predictions of transverse fuel injector flow fields and mixing performance with experimental results is presented. Various cold (non-reactive) mixing studies were selected for code calibration which include the effects of boundary layer thickness and injection angle for sonic hydrogen injection into supersonic air. Angled injection of helium is also included. This study was performed using both the three-dimensional elliptic and the parabolized Navier-Stokes (PNS) versions of SPARK. Axial solution planes were passed from PNS to elliptic and elliptic to PNS in order to efficiently generate solutions. The PNS version is used both upstream and far downstream of the injector where the flow can be considered parabolic in nature. The comparisons are used to identify experimental deficiencies and computational procedures to improve agreement.
NASA Astrophysics Data System (ADS)
Vorobyov, A. M.; Abdurashidov, T. O.; Bakulev, V. L.; But, A. B.; Kuznetsov, A. B.; Makaveev, A. T.
2015-04-01
The present work experimentally investigates suppression of acoustic fields generated by supersonic jets of the rocket-launch vehicles at the initial period of launch by water injection. Water jets are injected to the combined jet along its perimeter at an angle of 0° and 60°. The solid rocket motor with the rocket-launch vehicles simulator case is used at tests. Effectiveness of reduction of acoustic loads on the rocket-launch vehicles surface by way of creation of water barrier was proved. It was determined that injection angle of 60° has greater effectiveness to reduce pressure pulsation levels.
Film cooling effectiveness on a large angle blunt cone flying at hypersonic speed
NASA Astrophysics Data System (ADS)
Sahoo, Niranjan; Kulkarni, Vinayak; Saravanan, S.; Jagadeesh, G.; Reddy, K. P. J.
2005-03-01
Effectiveness of film cooling technique to reduce convective heating rates for a large angle blunt cone flying at hypersonic Mach number and its effect on the aerodynamic characteristics is investigated experimentally by measuring surface heat-transfer rates and aerodynamic drag coefficient simultaneously. The test model is a 60° apex-angle blunt cone with an internally mounted accelerometer balance system for measuring aerodynamic drag and an array of surface mounted platinum thin film gauges for measuring heat-transfer rates. The coolant gas (air, carbon dioxide, and/or helium) is injected into the hypersonic flow at the nose of the test model. The experiments are performed at a flow free stream Mach number of 5.75 and 0° angle of attack for stagnation enthalpies of 1.16MJ/kg and 1.6MJ/kg with and without gas injection. About 30%-45% overall reduction in heat-transfer rates is observed with helium as coolant gas except at stagnation regions. With all other coolants, the reduction in surface heat-transfer rate is between 10%-25%. The aerodynamic drag coefficient is found to increase by 12% with helium injection whereas with other gases this increase is about 27%.
TOPICAL REVIEW: Monitoring of polymer melt processing
NASA Astrophysics Data System (ADS)
Alig, Ingo; Steinhoff, Bernd; Lellinger, Dirk
2010-06-01
The paper reviews the state-of-the-art of in-line and on-line monitoring during polymer melt processing by compounding, extrusion and injection moulding. Different spectroscopic and scattering techniques as well as conductivity and viscosity measurements are reviewed and compared concerning their potential for different process applications. In addition to information on chemical composition and state of the process, the in situ detection of morphology, which is of specific interest for multiphase polymer systems such as polymer composites and polymer blends, is described in detail. For these systems, the product properties strongly depend on the phase or filler morphology created during processing. Examples for optical (UV/vis, NIR) and ultrasonic attenuation spectra recorded during extrusion are given, which were found to be sensitive to the chemical composition as well as to size and degree of dispersion of micro or nanofillers in the polymer matrix. By small-angle light scattering experiments, process-induced structures were detected in blends of incompatible polymers during compounding. Using conductivity measurements during extrusion, the influence of processing conditions on the electrical conductivity of polymer melts with conductive fillers (carbon black or carbon nanotubes) was monitored.
NASA Technical Reports Server (NTRS)
Rines, Glen A. (Inventor); Moulton, Peter F. (Inventor); Harrison, James (Inventor)
1993-01-01
A wavelength-tunable, injection-seeded, dispersion-compensated, dispersively-pumped solid state laser includes a lasing medium; a highly reflective mirror; an output coupler; at least one isosceles Brewster prism oriented to the minimum deviation angle between the medium and the mirror for directing light of different wavelengths along different paths; means for varying the angle of the highly reflective mirror relative to the light from at least one Brewster angle for selecting a predetermined laser operating wavelength; a dispersion compensation apparatus associated with the lasing medium; a laser injection seeding port disposed between the dispersion compensation apparatus and one of the mirror and coupler and including a reflective surface at an acute non-Brewster angle to the laser beam for introducing a seed input; a dispersion compensation apparatus associated with the laser medium including opposite chirality optical elements; the lasing medium including a pump surface disposed at an acute angle to the laser beam to define a discrete path for the pumping laser beam separate from the pumped laser beam.
Single-element optical injection locking of diode-laser arrays
Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert
1988-01-01
By optically injecting a single end-element of a semiconductor laser array, both the spatial and spectral emission characteristics of the entire laser array is controlled. With the output of the array locked, the far-field emission angle of the array is continuously scanned over several degrees by varying the injection frequency.
Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel
NASA Astrophysics Data System (ADS)
Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari
2017-08-01
Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.
Li, Dao-rui; Lin, Hong-sheng
2011-04-01
To evaluate the effectiveness and safety of large dose compound Sophora flavescens Ait injection in the treatment of advanced malignant tumors. A non-randomized case control trial was conducted. Ninety six patients with pathologically confirmed advanced non-small-cell lung cancer, gastric cancer and colorectal cancer were divided into traditional Chinese medicine group and chemotherapy group, 48 cases each. Patients of the traditional Chinese medicine group received treatment with large dose of compound Sophora flavescens Ait injection (20 ml/d), and 21 days as a cycle. Forty-seven patients of the traditional Chinese medicine group and 46 patients of the chemotherapy group completed their treatment, respectively. The clinical benefit rate (CBR) in the traditional Chinese medicine group was 83.0%, significantly higher than that in the chemotherapy group (69.6%) (P < 0.01). The Karnofsky performance status and weight improvement in the traditional Chinese medicine group was superior to that in the chemotherapy group (P < 0.05). Except the skin irritation in one patient in the traditional Chinese medicine group, there were no other clinical adverse effects related with the large dose compound Sophora flavescens Ait injection. Large dose compound Sophora flavescens Ait injection in the treatment of advanced malignant tumors is safe and effective. The recommended dose is 20 ml/d.
Depth-estimation-enabled compound eyes
NASA Astrophysics Data System (ADS)
Lee, Woong-Bi; Lee, Heung-No
2018-04-01
Most animals that have compound eyes determine object distances by using monocular cues, especially motion parallax. In artificial compound eye imaging systems inspired by natural compound eyes, object depths are typically estimated by measuring optic flow; however, this requires mechanical movement of the compound eyes or additional acquisition time. In this paper, we propose a method for estimating object depths in a monocular compound eye imaging system based on the computational compound eye (COMPU-EYE) framework. In the COMPU-EYE system, acceptance angles are considerably larger than interommatidial angles, causing overlap between the ommatidial receptive fields. In the proposed depth estimation technique, the disparities between these receptive fields are used to determine object distances. We demonstrate that the proposed depth estimation technique can estimate the distances of multiple objects.
Precipitated Fluxes of Radiation Belt Electrons via Injection of Whistler-Mode Waves
NASA Astrophysics Data System (ADS)
Kulkarni, P.; Inan, U. S.; Bell, T. F.
2005-12-01
Inan et al. (U.S. Inan et al., Controlled precipitation of radiation belt electrons, Journal of Geophysical Research-Space Physics, 108 (A5), 1186, doi: 10.1029/2002JA009580, 2003.) suggested that the lifetime of energetic (a few MeV) electrons in the inner radiation belts may be moderated by in situ injection of whistler mode waves at frequencies of a few kHz. We use the Stanford 2D VLF raytracing program (along with an accurate estimation of the path-integrated Landau damping based on data from the HYDRA instrument on the POLAR spacecraft) to determine the distribution of wave energy throughout the inner radiation belts as a function of injection point, wave frequency and injection wave normal angle. To determine the total wave power injected and its initial distribution in k-space (i.e., wave-normal angle), we apply the formulation of Wang and Bell ( T.N.C. Wang and T.F. Bell, Radiation resistance of a short dipole immersed in a cold magnetoionic medium, Radio Science, 4 (2), 167-177, February 1969) for an electric dipole antenna placed at a variety of locations throughout the inner radiation belts. For many wave frequencies and wave normal angles the results establish that most of the radiated power is concentrated in waves whose wave normals are located near the resonance cone. The combined use of the radiation pattern and ray-tracing including Landau damping allows us to make quantitative estimates of the magnetospheric distribution of wave power density for different source injection points. We use these results to estimate the number of individual space-based transmitters needed to significantly impact the lifetimes of energetic electrons in the inner radiation belts. Using the wave power distribution, we finally determine the energetic electron pitch angle scattering and the precipitated flux signatures that would be detected.
Miikkulainen, Ville; Rasilainen, Tiina; Puukilainen, Esa; Suvanto, Mika; Pakkanen, Tapani A
2008-05-06
The wetting properties of polypropylene (PP) surfaces were modified by adjusting the dimensions of the surface nanostructure. The nanostructures were generated by injection molding with nanoporous anodized aluminum oxide (AAO) as the mold insert. Atomic layer deposition (ALD) of molybdenum nitride film was used to control the pore diameters of the AAO inserts. The original 50-nm pore diameter of AAO was adjusted by depositing films of thickness 5, 10, and 15 nm on AAO. Bis(tert-butylimido)-bis(dimethylamido)molybdenum and ammonia were used as precursors in deposition. The resulting pore diameters in the nitride-coated AAO inserts were 40, 30, and 20 nm, respectively. Injection molding of PP was conducted with the coated inserts, as well as with the non-coated insert. Besides the pore diameter, the injection mold temperature was varied with temperatures of 50, 70, and 90 degrees C tested. Water contact angles of PP casts were measured and compared with theoretical contact angles calculated from Wenzel and Cassie-Baxter theories. The highest contact angle, 140 degrees , was observed for PP molded with the AAO mold insert with 30-nm pore diameter. The Cassie-Baxter theory showed better fit than the Wenzel theory to the experimental values. With the optimal AAO mask, the nanofeatures in the molded PP pieces were 100 nm high. In explanation of this finding, it is suggested that some sticking and stretching of the nanofeatures occurs during the molding. Increase in the mold temperature increased the contact angle.
Electron Injections Caused by a Dipolarization Flux Bundle
NASA Astrophysics Data System (ADS)
Kabin, K.; Kalugin, G. A.; Donovan, E.; Spanswick, E.
2017-12-01
We study electron injections caused by an earthward propagating electromagnetic pulse. The background magnetic field model is fully three-dimensional and includes the day-night asymmetry, however, the field lines are contained in the meridional planes. The transient pulse fields, which are prescribed analytically, are also three-dimensional. We study electron energization as a function of the initial radial position and the initial energy. We present results for equatorially-mirroring particles as well as for particles with several other values of the initial pitch angles. The pitch-angle dependence of the energization rates is relatively weak for the equatorial pitch angles greater than about 60o, but particles with smaller pitch angles gain significantly less energy than the equatorial ones. Energy gain factors of 3 to 10 are easily achievable in our model which is sufficient to produce observable features in ground based observations, such as those done by riometers.
NASA Astrophysics Data System (ADS)
Ye, Junye; le Roux, Jakobus A.; Arthur, Aaron D.
2016-08-01
We study the physics of locally born interstellar pickup proton acceleration at the nearly perpendicular solar wind termination shock (SWTS) in the presence of a random magnetic field spiral angle using a focused transport model. Guided by Voyager 2 observations, the spiral angle is modeled with a q-Gaussian distribution. The spiral angle fluctuations, which are used to generate the perpendicular diffusion of pickup protons across the SWTS, play a key role in enabling efficient injection and rapid diffusive shock acceleration (DSA) when these particles follow field lines. Our simulations suggest that variation of both the shape (q-value) and the standard deviation (σ-value) of the q-Gaussian distribution significantly affect the injection speed, pitch-angle anisotropy, radial distribution, and the efficiency of the DSA of pickup protons at the SWTS. For example, increasing q and especially reducing σ enhances the DSA rate.
Kodavasal, Janardhan; Kolodziej, Christopher P.; Ciatti, Stephen A.; ...
2016-11-03
In this study, we study the effects of injector nozzle inclusion angle, injection pressure, boost, and swirl ratio on gasoline compression ignition combustion. Closed-cycle computational fluid dynamics simulations using a 1/7th sector mesh representing a single cylinder of a four-cylinder 1.9 L diesel engine, operated in gasoline compression ignition mode with 87 anti-knock index (AKI) gasoline, were performed. Two different operating conditions were studied—the first is representative of idle operation (4 mg fuel/cylinder/cycle, 850 r/min), and the second is representative of a low-load condition (10 mg fuel/cylinder/cycle, 1500 r/min). The mixture preparation and reaction space from the simulations were analyzedmore » to gain insights into the effects of injection pressure, nozzle inclusion angle, boost, and swirl ratio on achieving stable low-load to idle gasoline compression ignition operation. It was found that narrower nozzle inclusion angles allow for more reactivity or propensity to ignition (determined qualitatively by computing constant volume ignition delays) and are suitable over a wider range of injection timings. Under idle conditions, it was found that lower injection pressures helped to reduce overmixing of the fuel, resulting in greater reactivity and ignitability (ease with which ignition can be achieved) of the gasoline. However, under the low-load condition, lower injection pressures did not increase ignitability, and it is hypothesized that this is because of reduced chemical residence time resulting from longer injection durations. Reduced swirl was found to maintain higher in-cylinder temperatures through compression, resulting in better ignitability. It was found that boosting the charge also helped to increase reactivity and advanced ignition timing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodavasal, Janardhan; Kolodziej, Christopher P.; Ciatti, Stephen A.
In this study, we study the effects of injector nozzle inclusion angle, injection pressure, boost, and swirl ratio on gasoline compression ignition combustion. Closed-cycle computational fluid dynamics simulations using a 1/7th sector mesh representing a single cylinder of a four-cylinder 1.9 L diesel engine, operated in gasoline compression ignition mode with 87 anti-knock index (AKI) gasoline, were performed. Two different operating conditions were studied—the first is representative of idle operation (4 mg fuel/cylinder/cycle, 850 r/min), and the second is representative of a low-load condition (10 mg fuel/cylinder/cycle, 1500 r/min). The mixture preparation and reaction space from the simulations were analyzedmore » to gain insights into the effects of injection pressure, nozzle inclusion angle, boost, and swirl ratio on achieving stable low-load to idle gasoline compression ignition operation. It was found that narrower nozzle inclusion angles allow for more reactivity or propensity to ignition (determined qualitatively by computing constant volume ignition delays) and are suitable over a wider range of injection timings. Under idle conditions, it was found that lower injection pressures helped to reduce overmixing of the fuel, resulting in greater reactivity and ignitability (ease with which ignition can be achieved) of the gasoline. However, under the low-load condition, lower injection pressures did not increase ignitability, and it is hypothesized that this is because of reduced chemical residence time resulting from longer injection durations. Reduced swirl was found to maintain higher in-cylinder temperatures through compression, resulting in better ignitability. It was found that boosting the charge also helped to increase reactivity and advanced ignition timing.« less
Scramjet sidewall burning: Preliminary shock tunnel results
NASA Technical Reports Server (NTRS)
Morgan, R. G.; Paull, A.; Morris, N.; Stalker, R. J.
1985-01-01
Experiments performed with a two dimensional model scramjet with particular emphasis on the effect of fuel injection from a wall are reported. Air low with a nominal Mach number of 3.5 and varied enthalpies was produced. It was found that neither hydrogen injection angle nor combustor divergence angle had any appreciable effect on thrust values while increased combustor length appeared to increase thrust levels. Specific impulse was observed to peak when hydrogen was injected at an equivalence ratio of about 2. Lowering the Mach number of the injected hydrogen at low equivalence ratios, less than 4, appeared to benefit specific impulse while hydrogen Mach number had little effect at higher equivalence ratios. When a 1:1 mixture by volume of nitrogen and oxygen is used instead of air as a test gas, it is found that hydrogen combustion is enhanced but only at high enthalpies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bu, L.; Zhao, J.
The supercritical water mixing phenomenon is investigated with a wide range of conditions, i.e. the inlet temperature of the streams ranges from 323.15 K to 723.15 K and the pressure ranges from 25 MPa to 45 MPa. A sensitivity study is carried out for the jet and main flow velocity ratio (VR) which is varying from 1 to 40. In addition, the effect of the inject angles of branch flow to main flow on the mixing is conducted by varying the inject angle from 80 deg. to 100 deg.. The results show that the maximum temperature gradient appears on themore » wall of the upstream side in all the cases, and the inclined angles can be optimized to mitigate the thermal stress. (authors)« less
Basics of Sterile Compounding: Biopharmaceutics of Injectable Dosage Forms.
Akers, Michael J
2017-01-01
Biopharmaceutics studies the relationship between the drug product and what happens after the product is administered. Since the majority of injectables are administered by the intravenous route, thus avoiding the need for drug absorption, not many articles are published compared to other routes of drug administration. However, other routes of administration for drug injection are becoming more frequent because of greater commercial availability of sustained- and controlled-release drug delivery systems. This article reviews basic principles of drug absorption, distribution, metabolism, and elimination of injectable drugs and certain physicochemical and physiological factors affecting injectable drug biopharmaceutics. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
NASA Astrophysics Data System (ADS)
Wang, C. R.; Papell, S. S.; Graham, R. W.
Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30 degree inclination angle.
NASA Technical Reports Server (NTRS)
Wang, C. R.; Papell, S. S.; Graham, R. W.
1981-01-01
Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30 degree inclination angle.
NASA Astrophysics Data System (ADS)
Wang, C. R.; Papell, S. S.; Graham, R. W.
1981-03-01
Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center-line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30-deg inclination angle.
NASA Technical Reports Server (NTRS)
Wang, C. R.; Papell, S. S.; Graham, R. W.
1981-01-01
Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center-line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30-deg inclination angle.
An evaluation of modeled plume injection height with satellite-derived observed plume height
Sean M. Raffuse; Kenneth J. Craig; Narasimhan K. Larkin; Tara T. Strand; Dana Coe Sullivan; Neil J.M. Wheeler; Robert Solomon
2012-01-01
Plume injection height influences plume transport characteristics, such as range and potential for dilution. We evaluated plume injection height from a predictive wildland fire smoke transport model over the contiguous United States (U.S.) from 2006 to 2008 using satellite-derived information, including plume top heights from the Multi-angle Imaging SpectroRadiometer (...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Y.F.; Cai, W.; Zhang, J.X.
2000-04-03
The microstructural development inside the stress induced martensite (SIM) variants in Ti-Ni-Nb alloy with various degrees of deformation have been revealed by electron microscopic observations. The orientation relationship between the SIM and the parent phase has been found: [1{bar 1}0]{sub M}{parallel}[11{bar 1}]{sub B2}, (001){sub M} 5{degree} away from (101){sub B2}. The lattice invariant shear of the SIM variants at the slightly deformed stage is dominantly (11{bar 1}) Type I twin. Besides the ordinary slip, the adjustment and development of the internal secondary twinning from (11{bar 1}) Type I twin to {l_angle}011{r_angle} Type II/ or (011) Type I twin, (001)compound twinmore » and (111) Type I twin happen concurrently or in combination inside the SIM variants with the further deformation. The corresponding deformation mechanisms include stress induced reorientation of SIM substructural bands by the most favorably oriented twin system, stress induced migration of the SIM substructural boundary through internal twinning and stress induced injection of foreign SIM variant to the preexisting substructural bands.« less
Spatial and temporal distribution of trunk-injected imidacloprid in apple tree canopies.
Aćimović, Srđan G; VanWoerkom, Anthony H; Reeb, Pablo D; Vandervoort, Christine; Garavaglia, Thomas; Cregg, Bert M; Wise, John C
2014-11-01
Pesticide use in orchards creates drift-driven pesticide losses which contaminate the environment. Trunk injection of pesticides as a target-precise delivery system could greatly reduce pesticide losses. However, pesticide efficiency after trunk injection is associated with the underinvestigated spatial and temporal distribution of the pesticide within the tree crown. This study quantified the spatial and temporal distribution of trunk-injected imidacloprid within apple crowns after trunk injection using one, two, four or eight injection ports per tree. The spatial uniformity of imidacloprid distribution in apple crowns significantly increased with more injection ports. Four ports allowed uniform spatial distribution of imidacloprid in the crown. Uniform and non-uniform spatial distributions were established early and lasted throughout the experiment. The temporal distribution of imidacloprid was significantly non-uniform. Upper and lower crown positions did not significantly differ in compound concentration. Crown concentration patterns indicated that imidacloprid transport in the trunk occurred through radial diffusion and vertical uptake with a spiral pattern. By showing where and when a trunk-injected compound is distributed in the apple tree canopy, this study addresses a key knowledge gap in terms of explaining the efficiency of the compound in the crown. These findings allow the improvement of target-precise pesticide delivery for more sustainable tree-based agriculture. © 2014 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
St.John, D.; Samuelsen, G. S.
2000-01-01
The mixing of air jets into hot, fuel-rich products of a gas turbine primary zone is an important step in staged combustion. Often referred to as "quick quench," the mixing occurs with chemical conversion and substantial heat release. An experiment has been designed to simulate and study this process, and the effect of varying the entry angle (0 deg, 22.5 deg and 45 deg from normal) and number of the air jets (7, 9, and 11) into the main flow, while holding the jet-to-crossflow mass-low ratio, MR, and momentum-flux ratio, J, constant (MR = 2.5;J = 25). The geometry is a crossflow confined in a cylindrical duct with side-wall injection of jets issuing from orifices equally spaced around the perimeter. A specially designed reactor, operating on propane, presents a uniform mixture to a module containing air jet injection tubes that can be changed to vary orifice geometry. Species concentrations of O2, CO, CO2, NO(x) and HC were obtained one duct diameter upstream (in the rich zone), and primarily one duct radius downstream. From this information, penetration of the jet, the spatial extent of chemical reaction, mixing, and the optimum jet injection angle and number of jets can be deduced.
NASA Astrophysics Data System (ADS)
Prajapati, Anil
Thermal efficiency and power output of gas turbines can be increased by increasing the turbine blade inlet temperature. However, the main problem is the durability of the turbine blade due to the thermal stress on it at high temperature. This has led to the development of film cooling technology, in which coolant is injected from a series of cooling holes made on the blade surface to form an insulating blanket over the blade surface. However, it has to pay the aerodynamic penalties due to the injection of coolant, which are not fully understood. Pressure loss coefficient is one of the easy and widely used parameters to determine the aerodynamic loss occurred on a turbine blade. The losses occurred on the turbine blade with forward injection and backward injection cooling are studied at a different blowing ratios by a numerical simulation, which shows that the loss is higher in the case of backward injection than in forward injection. Fan-shaped cooling holes are also considered to compare with the cylindrical holes. It is observed that the loss is increased due to the fan-shaped holes in the forward injection whereas there is not a substantial difference due to the fan-shaped holes in the backward injection. The aerodynamic loss due to the location of coolant injection is studied by using injection from the leading edge, pressure side, suction side and trailing edge respectively. The study is performed to determine the effect of incidence angles and coolant injection angles on the aerodynamic loss.
Investigation on the Characteristics of Pellet Ablation in a Toroidal Plasma
NASA Astrophysics Data System (ADS)
Sato, K. N.; Sakakita, H.; Fujita, H.
2003-06-01
Characteristics of a cloud ablated from an ice pellet has been investigated in detail in the JIPP T-IIU tokamak plasma by utilizing a new scheme of pellet injection system, "the injection-angle controllable system". A long "helical tail" of ablation light has been observed using CCD cameras and a high speed framing photograph in the case of on-axis and off-axis injection with the injection angle smaller than a certain value. The direction of the helical tail is found to be independent to that of the total magnetic field lines of the torus. From the experiments with the combination of two toroildal filed directions and two plasma current directions, it is considered that the tail seems to rotate, in most cases, to the electron diamagnetic direction poloidally, and to the opposite to the plasma current direction toroidally. Consideration on various cross sections including charge exchange, ionization and elastic collisions leads us to the conclusion that the tail-shaped phenomena may come from the situation of charge exchange equilibrium of hydrogen ions and neutrals at extremely high density regime in the cloud. The relation of ablation behavior with plasma potential and rotation has also been studied. Potential measurements of pellet-injected plasmas using heavy ion beam probe (HIBP) method were carried out for the first time. In the case of an injection angle to be anti-parallel to the electron diamagnetic direction in the poloidal plane, the result shows that the direction of potential change is negative, and consequently the potential after the injection should be negative because it has been measured to be negative in usual ohmic plasmas without pellet injection. Thus, the direction of the "tail" structure seems to be consistent to that of the plasma potential measured, if it is considered that tail structure may be caused by the effect of the plasma potential and the rotation.
Two-step impression/ injection, an alternative putty/ wash impression technique: case report.
Caputi, S; Murmura, G; Sinjari, B; Varvara, G
2012-01-01
We here describe a new technique for making a definitive impression that we refer to as the two-step impression/injection technique. This technique initially follows the classical one-step putty/ light-body impression technique with the polymerization of the putty and the light-body compound. This is then followed by the second step: injection of extra-light-body compound into the preparation through a hole in the metal stock tray. The aim of this additional step is to control the wash bulk and minimize the changes that can produce unfavorable impression results. This new two-step impression/injection technique allows displacement of soft tissues, such as the tongue, during the first seating of the putty and wash materials, while in the second step, the extra-light-body compound records all of the finer details without being compressed.
Quality investigation of hydroxyprogesterone caproate active pharmaceutical ingredient and injection
Chollet, John L.; Jozwiakowski, Michael J.
2012-01-01
The purpose of this study was to investigate the quality of hydroxyprogesterone caproate (HPC) active pharmaceutical ingredient (API) sources that may be used by compounding pharmacies, compared to the FDA-approved source of the API; and to investigate the quality of HPC injection samples obtained from compounding pharmacies in the US, compared to the FDA-approved product (Makena®). Samples of API were obtained from every source confirmed to be an original manufacturer of the drug for human use, which were all companies in China that were not registered with FDA. Eight of the ten API samples (80%) did not meet the impurity specifications required by FDA for the API used in the approved product. One API sample was found to not be HPC at all; additional laboratory testing showed that it was glucose. Thirty samples of HPC injection obtained from com pounding pharmacies throughout the US were also tested, and eight of these samples (27%) failed to meet the potency requirement listed in the USP monograph for HPC injection and/or the HPLC assay. Sixteen of the thirty injection samples (53%) exceeded the impurity limit setforthe FDA-approved drug product. These results confirm the inconsistency of compounded HPC Injections and suggest that the risk-benefit ratio of using an unapproved compounded preparation, when an FDA-approved drug product is available, is not favorable. PMID:22329865
Yousefi, Morteza; Inthavong, Kiao; Tu, Jiyuan
2017-10-01
A key issue in pulmonary drug delivery is improvement of the delivery device for effective and targeted treatment. Pressurized metered dose inhalers (pMDIs) are the most popular aerosol therapy device for treating lung diseases. This article studies the effect of spray characteristics: injection velocity, spray cone angle, particle size distribution (PSD), and its mass median aerodynamic diameter (MMAD) on drug delivery. An idealized oral airway geometry, extending from mouth to the main bronchus, was connected to a pMDI device. Inhalation flow rates of 15, 30, and 60 L/min were used and drug particle tracking was a one-way coupled Lagrangian model. The results showed that most particles deposited in the pharynx, where the airway has a reduced cross-sectional area. Particle deposition generally decreased with initial spray velocity and with increased spray cone angle for 30 and 60 L/min flow rates. However, for 15 L/min flow rate, the deposition increased slightly with an increase in the spray velocity and cone angle. The effect of spray cone angle was more significant than the initial spray velocity on particle deposition. When the MMAD of a PSD was reduced, the deposition efficiency also reduces, suggesting greater rates of particle entry into the lung. The deposition rate showed negligible change when the MMAD was more than 8 μm. Spray injection angle and velocity change the drug delivery efficacy; however, the efficiency shows more sensitivity to the injection angle. The 30 L/min airflow rate delivers spray particles to the lung more efficiently than 15 and 60 L/min airflow rate, and reducing MMAD can help increase drug delivery to the lung.
TRAJECTORY AND INCINERATION OF ROGUE DROPLETS IN A TURBULENT DIFFUSION FLAME
The trajectory and incineration efficiency of individual droplet streams of a fuel mixture injected into a swirling gas turbulent diffusion flame were measured as a function of droplet size, droplet velocity, interdroplet spacing, and droplet injection angle. Additional experimen...
Polymers And Riblets Reduce Hydrodynamic Skin Friction
NASA Technical Reports Server (NTRS)
Bushnell, Dennis M.; Reed, Jason C.
1991-01-01
Polymers injected into riblet grooves dramatically reduce polymer flow rate required for drag reduction. Polymer solution injected into valleys of grooves through array of holes or slots angled downstream to keep injected streams within grooves. Injection repeated some distance downstream because volumes of grooves finite and polymer becomes depleted as slowly pulled from groove by turbulence. Potentially useful for oil tankers as means of markedly reducing cost of fuel and used extensively on submarines, other ships, and other marine vehicles.
NASA Astrophysics Data System (ADS)
Seager, David J.; Liburdy, James A.
1997-11-01
To further understand the effect of both compound angle holes and hole shaping on film cooling, detailed heat transfer measurements were obtained using hue based thermochromic liquid crystal method. The data were analyzed to measure both the full surface adiabatic effectiveness and heat transfer coefficient. The compound angles that were evaluated consist of holes that were aligned 0 degrees, 45 degrees, 60 degrees and 90 degrees to the main cross flow direction. Hole shaping variations from the traditional cylindrical shaped hole include forward diffused and laterally diffused hole geometries. Geometric parameters that were selected were the length to diameter ratio of 3.0, and the inclination angle 35 degrees. A density ratio of 1.55 was obtained for all teste. For each set of conditions the blowing ratio was varied to be 0.88, 1.25, and 1.88. Adiabatic effectiveness was obtained using a steady state test, while an active heating surface was used to determine the heat transfer coefficient using a transient method. The experimental method provides a unique method of analyzing a three-temperature heat transfer problem by providing detailed surface transport properties. Based on these results for the different hole geometries at each blowing ratio conclusions are drawn relative to the effects of compound angle holes on the overall film cooling performance.
van Bree, H; Van Rijssen, B; Tshamala, M; Maenhout, T
1992-09-01
Arthrographic quality and synovial inflammatory response were examined to compare the use of iopromide with that of iotrolan for arthrography of the scapulohumeral joint in 6 dogs. Radiographs obtained 1 and 3 minutes after injection of either nonionic compound were of similar quality, but radiographs obtained 5 minutes after injection of iotrolan were significantly (P less than 0.05) better than those obtained after injection of iopromide. Results of analysis of synovial fluid samples obtained at 1, 3, 7, and 14 days after injection of contrast media were not significantly different between the 2 groups. Histologic examination of synovium and articular cartilage 2 weeks after injection of iopromide or iotrolan revealed minimal inflammatory response for both contrast agents. Injection of iopromide and iotrolan into the scapulohumeral joints of dogs had less effect on synovial fluid than that reported after injection of ionic compounds.
NASA Technical Reports Server (NTRS)
Wear, J. D.; Schultz, D. F.
1972-01-01
Tests of various fuel nozzles were conducted with natural gas fuel in a full-annulus combustor. The nozzles were designed to provide either axial, angled, or radial fuel injection. Each fuel nozzle was evaluated by measuring combustion efficiency at relatively severe combustor operating conditions. Combustor blowout and altitude ignition tests were also used to evaluate nozzle designs. Results indicate that angled injection gave higher combustion efficiency, less tendency toward combustion instability, and altitude relight characteristics equal to or superior to those of the other fuel nozzles that were tested.
Basics of Sterile Compounding: Particulate Matter.
Akers, Michael J
2017-01-01
This article focuses on the requirements for particulate matter in sterile products. Topics include particles and quality, particulate matter standards (large- and small-volume injectables), development of the small-volume injectable test, electronic (light obscuration) and microscope testing, and special requirements for particulate matter in biopharmaceutical preparations. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
An Outbreak of Streptococcus Endophthalmitis after Intravitreal Injection of Bevacizumab
Goldberg, Roger A.; Flynn, Harry W.; Isom, Ryan F.; Miller, Darlene; Gonzalez, Serafin
2011-01-01
Purpose To report a series of patients with Streptococcus endophthalmitis after injection with intravitreal bevacizumab prepared by the same compounding pharmacy. Design Non-comparative consecutive case series. Methods Medical records and microbiology results of patients who presented with endophthalmitis after injection with intravitreal bevacizumab between July 5 and July 8, 2011, were reviewed. Results Twelve patients were identified with endophthalmitis, presenting 1-6 days after receiving an intravitreal injection of bevacizumab. The injections occurred at four different locations in South Florida. All patients received bevacizumab prepared by the same compounding pharmacy. None of the infections originated at the Bascom Palmer Eye Institute, Miami, FL, although nine patients presented to its tertiary-care ophthalmic emergency room for treatment, and three additional patients were seen in consultation. All patients were treated initially with a vitreous tap and injection; eight patients subsequently received a vitrectomy. Microbiology cultures for ten patients were positive for Streptococcus mitis/oralis. Seven unused syringes of bevacizumab prepared by the compounding pharmacy at the same time as those prepared for the affected patients also were positive for S. mitis/oralis. After four months of follow-up, all but one patient had count-fingers or worse visual acuity, and three required evisceration or enucleation. Local, state and federal health department officials have been investigating the source of the contamination. Conclusions In this outbreak of endophthalmitis after intravitreal bevacizumab injection, Streptococcus mitis/oralis was cultured from the majority of patients and from all unused syringes. Visual outcomes were generally poor. The most likely cause of this outbreak was contamination during syringe preparation by the compounding pharmacy. PMID:22264943
Bis[2-(hy-droxy-imino-meth-yl)phenolato]nickel(II): a second monoclinic polymorph.
Rusanova, Julia A; Buvaylo, Elena A; Rusanov, Eduard B
2011-01-15
The title compound, [Ni(C(7)H(6)NO(2))(2)], (I), is a second monoclinic polymorph of the compound, (II), reported by Srivastava et al. [Acta Cryst. (1967), 22, 922] and Mereiter [Private communication (2002) CCDC refcode NISALO01]. The bond lengths and angles are similar in both structures. The mol-ecule in both structures lies on a crystallographic inversion center and both have an inter-nal hydrogen bond. The title compound crystallizes in the space group P2(1)/c (Z = 2), whereas compound (II) is in the space group P2(1)/n (Z = 2) with a similar cell volume but different cell parameters. In both polymorphs, mol-ecules are arranged in the layers but in contrast to the previously published compound (II) where the dihedral angle between the layers is 86.3°, in the title polymorph the same dihedral angle is 29.4°. The structure of (I) is stabilized by strong intra-molecular O-H⋯O hydrogen bonding between the O-H group and the phenolate O atom.
NASA Technical Reports Server (NTRS)
Trinh, Huu P. (Inventor); Myers, William Neill (Inventor)
2014-01-01
A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The tangential inlet area for each throttleable stage is calculated. The correlation between the tangential inlet areas and delta pressure values is used to calculate the spring displacement and variable inlet geometry. An injector designed using the method includes a plurality of geometrically calculated tangential inlets in an injection tube; an injection tube cap with a plurality of inlet slots slidably engages the injection tube. A pressure differential across the injector element causes the cap to slide along the injection tube and variably align the inlet slots with the tangential inlets.
Computational study of fuel injection in a shcramjet inlet
NASA Astrophysics Data System (ADS)
Parent, Bernard
The primary objective of this investigation is to present the mixing of fuel with air in the inlet of a shock-induced combustion ramjet (shcramjet). The study is limited to non-reacting hydrogen-air mixing in an external-compression inlet at a flight Mach number of 11 and at a dynamic pressure of 1400 psf (67032 Pa), using an array of cantilevered ramp injectors. A numerical method based on the Yee-Roe scheme and block-implicit approximate factorization is developed to solve the FANS equations closed by the Wilcox ko turbulence model. A new acceleration technique for streamwise-separated hypersonic flow, dubbed the "marching window", is presented. The dilatational dissipation correction is seen to affect the mixing efficiency considerably for a cantilevered ramp injector flowfield even at a vanishing convective Mach number, due to the high turbulent Mach number generated by the high cross-stream shear induced by the ramp-generated axial vortices. Due to the fuel being injected at a very high speed, fuel injection in the inlet is found to increase considerably the thrust potential, with a gain exceeding the loss by 40--120%. Losses due to skin friction are seen to play a significant role in the inlet, as they are estimated to make up as much as 50--70% of the thrust potential losses. The use of a turbulence model that can predict accurately the wall shear stress is hence crucial in assessing the losses accurately in a shcramjet inlet. Substituting the second inlet shock by a Prandtl-Meyer compression fan is encouraged as it decreases the thrust potential losses, reduces the risk of premature ignition by reducing the static temperature, while decreasing the mixing efficiency by a mere 6%. One approach that is observed herein to be successful at increasing the mixing efficiency in the inlet is by alternating the injection angle along the injector array. The use of two injection angles of 9 and 16 degrees is seen to result in a 32% increase in the mixing efficiency at the expense of a 14% increase in the losses when compared to a single injection angle of 10 degrees. Using alternating injection angles, the mixing efficiency reaches as much as 0.47 at the inlet exit.
Zhang, Xinyu; Zhao, Liang; Wang, Yexin; Xu, Yunping; Zhou, Liping
2013-07-01
Preparative capillary GC (PCGC) is a powerful tool for the separation and purification of compounds from any complex matrix, which can be used for compound-specific radiocarbon analysis. However, the effect of PCGC parameters on the trapping efficiency is not well understood. Here, we present a comprehensive study on the optimization of parameters based on 11 reference compounds with different physicochemical properties. Under the optimum conditions, the trapping efficiencies of these 11 compounds (including high-boiling-point n-hentriacontane and methyl lignocerate) are about 80% (60-89%). The isolation of target compounds from standard solutions, plant and soil samples demonstrates that our optimized method is applicable for different classes of compounds including n-alkanes, fatty acid esters, long-chain fatty alcohol esters, polycyclic aromatic hydrocarbons (PAHs) and steranes. By injecting 25 μL in large volume injection mode, over 100 μg, high purity (>90%) target compounds are harvested within 24 h. The recovery ranges of two real samples are about 70% (59.9-83.8%) and about 83% (77.2-88.5%), respectively. Compared to previous studies, our study makes significant improvement in the recovery of PCGC, which is important for its wide application in biogeochemistry, environmental sciences, and archaeology. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kocur, Chris M D; Lomheim, Line; Boparai, Hardiljeet K; Chowdhury, Ahmed I A; Weber, Kela P; Austrins, Leanne M; Edwards, Elizabeth A; Sleep, Brent E; O'Carroll, Denis M
2015-07-21
A pilot scale injection of nanoscale zerovalent iron (nZVI) stabilized with carboxymethyl cellulose (CMC) was performed at an active field site contaminated with a range of chlorinated volatile organic compounds (cVOC). The cVOC concentrations and microbial populations were monitored at the site before and after nZVI injection. The remedial injection successfully reduced parent compound concentrations on site. A period of abiotic degradation was followed by a period of enhanced biotic degradation. Results suggest that the nZVI/CMC injection created conditions that stimulated the native populations of organohalide-respiring microorganisms. The abundance of Dehalococcoides spp. immediately following the nZVI/CMC injection increased by 1 order of magnitude throughout the nZVI/CMC affected area relative to preinjection abundance. Distinctly higher cVOC degradation occurred as a result of the nZVI/CMC injection over a 3 week evaluation period when compared to control wells. This suggests that both abiotic and biotic degradation occurred following injection.
Higton, D M
2001-01-01
An improvement to the procedure for the rapid optimisation of mass spectrometry (PROMS), for the development of multiple reaction methods (MRM) for quantitative bioanalytical liquid chromatography/tandem mass spectrometry (LC/MS/MS), is presented. PROMS is an automated protocol that uses flow-injection analysis (FIA) and AppleScripts to create methods and acquire the data for optimisation. The protocol determines the optimum orifice potential, the MRM conditions for each compound, and finally creates the MRM methods needed for sample analysis. The sensitivities of the MRM methods created by PROMS approach those created manually. MRM method development using PROMS currently takes less than three minutes per compound compared to at least fifteen minutes manually. To further enhance throughput, approaches to MRM optimisation using one injection per compound, two injections per pool of five compounds and one injection per pool of five compounds have been investigated. No significant difference in the optimised instrumental parameters for MRM methods were found between the original PROMS approach and these new methods, which are up to ten times faster. The time taken for an AppleScript to determine the optimum conditions and build the MRM methods is the same with all approaches. Copyright 2001 John Wiley & Sons, Ltd.
Yu, Kate; Di, Li; Kerns, Edward; Li, Susan Q; Alden, Peter; Plumb, Robert S
2007-01-01
We report in this paper an ultra-performance liquid chromatography/tandem mass spectrometric (UPLC(R)/MS/MS) method utilizing an ESI-APCI multimode ionization source to quantify structurally diverse analytes. Eight commercial drugs were used as test compounds. Each LC injection was completed in 1 min using a UPLC system coupled with MS/MS multiple reaction monitoring (MRM) detection. Results from three separate sets of experiments are reported. In the first set of experiments, the eight test compounds were analyzed as a single mixture. The mass spectrometer was switching rapidly among four ionization modes (ESI+, ESI-, APCI-, and APCI+) during an LC run. Approximately 8-10 data points were collected across each LC peak. This was insufficient for a quantitative analysis. In the second set of experiments, four compounds were analyzed as a single mixture. The mass spectrometer was switching rapidly among four ionization modes during an LC run. Approximately 15 data points were obtained for each LC peak. Quantification results were obtained with a limit of detection (LOD) as low as 0.01 ng/mL. For the third set of experiments, the eight test compounds were analyzed as a batch. During each LC injection, a single compound was analyzed. The mass spectrometer was detecting at a particular ionization mode during each LC injection. More than 20 data points were obtained for each LC peak. Quantification results were also obtained. This single-compound analytical method was applied to a microsomal stability test. Compared with a typical HPLC method currently used for the microsomal stability test, the injection-to-injection cycle time was reduced to 1.5 min (UPLC method) from 3.5 min (HPLC method). The microsome stability results were comparable with those obtained by traditional HPLC/MS/MS.
Some Factors Affecting Combustion in an Internal-Combustion Engine
NASA Technical Reports Server (NTRS)
Rothrock, A M; Cohn, Mildred
1936-01-01
An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.
Experimental assessment of film cooling performance of short cylindrical holes on a flat surface
NASA Astrophysics Data System (ADS)
Singh, Kuldeep; Premachandran, B.; Ravi, M. R.
2016-12-01
The present study is an experimental investigation of film-cooling over a flat surface from the short cylindrical holes. The film cooling holes used in the combustion chamber and the afterburner liner of an aero engine has length-to-diameter (L/D) typically in the range 1-2, while the cooling holes used in turbine blades has L/D > 3. Based on the classification given in the literature, cooling holes with L/D ≤ 3 are named as short holes and cooling holes with L/D > 3 are named as long holes. Short film cooling holes cause jetting of the secondary fluid whereas the secondary fluid emerging from long holes has characteristics similar to fully developed turbulent flow in pipe. In order to understand the difference in the film cooling performance of long and short cooling holes, experimental study is carried out for five values of L/D in the range 1-5, five injection angles, α = 15°-90° and five mainstream Reynolds number 1.25 × 105-6.25 × 105 and two blowing ratios, M = 0.5-1.0. The surface temperature of the test plate is monitored using infrared thermography. The results obtained from the present study showed that the film-cooling effectiveness is higher for the longest holes (L/D = 5) investigated in the present work in comparison to that for the shorter holes. Short holes are found to give better effectiveness at the lowest investigated injection angle i.e. α = 15° in the near cooling hole region, whereas film cooling effectiveness obtained at injection angle, α = 45° is found to be better than other injection angles for longest investigated holes, i.e. L/D = 5.
Experimental and raytrace results for throat-to-throat compound parabolic concentrators
NASA Technical Reports Server (NTRS)
Leviton, D. B.; Leitch, J. W.
1986-01-01
Compound parabolic concentrators are nonimaging cone-shaped optics with useful angular transmission characteristics. Two cones used throat-to-throat accept radiant flux within one well-defined acceptance angle and redistribute it into another. If the entrance cone is fed with Lambertian flux, the exit cone produces a beam whose half-angle is the exit cone's acceptance angle and whose cross section shows uniform irradiance from near the exit mouth to infinity. (The pair is a beam angle transformer). The design of one pair of cones is discussed, also an experiment to map the irradiance of the emergent beam, and a raytracing program which models the cones fed by Lambertian flux. Experimental results compare favorably with raytrace results.
NASA Astrophysics Data System (ADS)
Hanan, M. R. Abdul; Daud, N. M.; Ismail, L. H.; Saidin, S.
2017-05-01
An injectable calcium phosphate (CaP) bone cement has been widely used for musculoskeletal and bone disorder due to its biocompatible and osteoconductive properties. In this study, CaP was successfully synthesized from crab shells by a wet chemical route. Poly(lactic-co-glycolic acid) (PLGA) microspheres which have been produced through a double emulsion technique were incorporated into the CaP mixture for the purpose of bone cement solidification. The ratio of both compounds, CaP and PLGA, were set at 8:2. The CaP and PLGA/CaP bone cement were analyzed by ATR-FTIR, FESEM-EDX and contact angle analyses. The bone cement was composed of CaP and PLGA where the micro-powders of CaP were agglomerated on the PLGA microspheres. Addition of the PLGA has increased the hydrophilicity of the bone cement which will be beneficial for materials degradation and bone integration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derenzo, Stephen E.; Moses, William W.
An embodiment of a liquid chromatography detection unit includes a fluid channel and a radiation detector. The radiation detector is operable to image a distribution of a radiolabeled compound as the distribution travels along the fluid channel. An embodiment of a liquid chromatography system includes an injector, a separation column, and a radiation detector. The injector is operable to inject a sample that includes a radiolabeled compound into a solvent stream. The position sensitive radiation detector is operable to image a distribution of the radiolabeled compound as the distribution travels along a fluid channel. An embodiment of a method ofmore » liquid chromatography includes injecting a sample that comprises radiolabeled compounds into a solvent. The radiolabeled compounds are then separated. A position sensitive radiation detector is employed to image distributions of the radiolabeled compounds as the radiolabeled compounds travel along a fluid channel.« less
Influence of several factors on ignition lag in a compression-ignition engine
NASA Technical Reports Server (NTRS)
Gerrish, Harold C; Voss, Fred
1932-01-01
This investigation was made to determine the influence of fuel quality, injection advance angle, injection valve-opening pressure, inlet-air pressure, compression ratio, and engine speed on the time lag of auto-ignition of a Diesel fuel oil in a single-cylinder compression-ignition engine as obtained from an analysis of indicator diagrams. Three cam-operated fuel-injection pumps, two pumps cams, and an automatic injection valve with two different nozzles were used. Ignition lag was considered to be the interval between the start of injection of the fuel as determined with a Stroborama and the start of effective combustion as determined from the indicator diagram, the latter being the point where 4.0 x 10(exp-6) pound of fuel had been effectively burned. For this particular engine and fuel it was found that: (1) for a constant start and the same rate of fuel injection up the point of cut-off, a variation in fuel quantity from 1.2 x 10(exp-4) to 4.1 x 10(exp-4) pound per cycle has no appreciable effect on the ignition lag; (2) injection advance angle increases or decreases the lag according to whether density, temperature, or turbulence has the controlling influence; (3) increase in valve-opening pressure slightly increases the lag; and (4) increase of inlet-air pressure, compression ratio, and engine speed reduces the lag.
21 CFR 510.440 - Injectable iron preparations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... § 510.440 Injectable iron preparations. There has been an increasing interest in the use of injectable iron compounds for the prevention or treatment of iron-deficiency anemia in animals. Although some such... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Injectable iron preparations. 510.440 Section 510...
21 CFR 510.440 - Injectable iron preparations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... § 510.440 Injectable iron preparations. There has been an increasing interest in the use of injectable iron compounds for the prevention or treatment of iron-deficiency anemia in animals. Although some such... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Injectable iron preparations. 510.440 Section 510...
21 CFR 510.440 - Injectable iron preparations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... § 510.440 Injectable iron preparations. There has been an increasing interest in the use of injectable iron compounds for the prevention or treatment of iron-deficiency anemia in animals. Although some such... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Injectable iron preparations. 510.440 Section 510...
21 CFR 510.440 - Injectable iron preparations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... § 510.440 Injectable iron preparations. There has been an increasing interest in the use of injectable iron compounds for the prevention or treatment of iron-deficiency anemia in animals. Although some such... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Injectable iron preparations. 510.440 Section 510...
Research on Precision Tracking on Fast Steering Mirror and Control Strategy
NASA Astrophysics Data System (ADS)
Di, Lin; Yi-ming, Wu; Fan, Zhu
2018-01-01
Fast steering mirror is a device used for controlling the beam direction precisely. Due to the short travel of the push-pull FSM, a compound fast steering mirror system driven by both limited-angle voice coil motor and push-pull FSM together is proposed. In the compound FSM system, limited-angle voice coil motor quickly swings at wide angle, while the push-pull FSM do high frequency movement in a small range, which provides the system with the high bandwidth and long travel. In the control strategy, the method of combining feed-forward control in Kalman filtering with auto-disturbance rejection control is used to improve trajectory tracking accuracy. The simulation result shows that tracking accuracy measured by the compound method can be improved by more than 5 times than that of the conventional PID.
2010-10-01
0.03 0.02 0.03 (a) Positive Ion Density (mŗ) yd») ( b ) Electron Temperature ( K ) Figure 17. Comparison of (a) axial total positive ion number...T0 - 2600 K , T = 1250 K , P = 25 kPa and J = 4 ( b ) discontinuous combustion of hydrogen at T0 = 2900 K , T = 1500 K , P = 25 kPa and J = 2.9, (c...crossflow (M = 2.4) at / = 2.4 and (a) 60° injection angle, and ( b ) 30° injection angle. Freestream conditions are T= 1500 K , T0 = 2800 K ,p = 40 kPa
NASA Technical Reports Server (NTRS)
Wing, David J.
1994-01-01
A static investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel of two thrust-vectoring concepts which utilize fluidic mechanisms for deflecting the jet of a two-dimensional convergent-divergent nozzle. One concept involved using the Coanda effect to turn a sheet of injected secondary air along a curved sidewall flap and, through entrainment, draw the primary jet in the same direction to produce yaw thrust vectoring. The other concept involved deflecting the primary jet to produce pitch thrust vectoring by injecting secondary air through a transverse slot in the divergent flap, creating an oblique shock in the divergent channel. Utilizing the Coanda effect to produce yaw thrust vectoring was largely unsuccessful. Small vector angles were produced at low primary nozzle pressure ratios, probably because the momentum of the primary jet was low. Significant pitch thrust vector angles were produced by injecting secondary flow through a slot in the divergent flap. Thrust vector angle decreased with increasing nozzle pressure ratio but moderate levels were maintained at the highest nozzle pressure ratio tested. Thrust performance generally increased at low nozzle pressure ratios and decreased near the design pressure ratio with the addition of secondary flow.
Corne, S. J.; Edge, N. D.
1958-01-01
Pempidine (1:2:2:6:6-pentamethylpiperidine) is a long-acting ganglion-blocking compound which is effective by mouth. By intravenous injection it has a similar potency to hexamethonium on the preganglionically stimulated nictitating membrane of the cat. The compound blocks the effects of intravenous nicotine and of peripheral vagal stimulation on the blood pressure; it also causes dilatation of the pupil after removal of the sympathetic innervation. On the guinea-pig ileum, the predominant effect of the compound is to inhibit nicotine contractions. Pempidine is well absorbed from the gastro-intestinal tract as judged by (a) the low ratio (6.9) of oral to intravenous toxicities, (b) the rapid development of mydriasis in mice after oral administration of small doses, and (c) the rapid onset of hypotension when the compound is injected directly into the duodenum of anaesthetized cats. Other actions include neuromuscular paralysis of curare-like type when large doses of the compound are injected intravenously and central effects such as tremors which occur with near toxic doses. In cats with a low blood pressure, large intravenous doses have a slight pressor action. PMID:13584741
Aramburu, Jorge; Antón, Raúl; Rivas, Alejandro; Ramos, Juan Carlos; Sangro, Bruno; Bilbao, José Ignacio
2017-12-01
Liver radioembolization is a promising treatment option for combating liver tumors. It is performed by placing a microcatheter in the hepatic artery and administering radiation-emitting microspheres through the arterial bloodstream so that they get lodged in the tumoral bed. In avoiding nontarget radiation, the standard practice is to conduct a pretreatment, in which the microcatheter location and injection velocity are decided. However, between pretreatment and actual treatment, some of the parameters that influence the particle distribution in the liver can vary, resulting in radiation-induced complications. The present study aims to analyze the influence of a commercially available microcatheter with an angled tip and particle injection velocity in terms of segment-to-segment particle distribution. Specifically, 4 tip orientations and 2 injection velocities are combined to yield a set of 8 numerical simulations of the particle-hemodynamics in a patient-specific truncated hepatic artery. For each simulation, 4 cardiac pulses are simulated. Particles are injected during the first cycle, and the remaining pulses enable the majority of the injected particles to exit the computational domain. Results indicate that, in terms of injection velocity, particles are more spread out in the cross-sectional lumen areas as the injection velocity increases. The tip's orientation also plays a role because it influences the near-tip hemodynamics, therefore altering the particle travel through the hepatic artery. However, results suggest that particle distribution tries to match the blood flow split, therefore particle injection velocity and microcatheter tip orientation playing a minor role in segment-to-segment particle distribution. Copyright © 2017 John Wiley & Sons, Ltd.
Whistler mode plasma waves observed on Electron Echo 2
NASA Technical Reports Server (NTRS)
Monson, S. J.; Kellogg, P. J.; Cartwright, D. G.
1976-01-01
Observations of whistler-mode waves associated with beams of electrons injected into the ionosphere are reported. The measurements are from the plasma-wave experiments carried on the Electron Echo 2 sounding rocket launched on September 24, 1972. Over 2000 electron injections were made with durations of 8 ms and 64 ms and pitch angles from 0 to 180 deg. The electric field receivers carried on the ejected nose cone observed strong whistler waves in the range from less than 100 kHz up to the electron cyclotron frequency of 1400 kHz. The whistler characteristics fall into four distinct types depending on pitch angle and gun energy. Both frequency and amplitude showed strong dependence on time from the start of the pulse and pitch angle. Cases of enhancement at the leading edge of a gun pulse, growth during a pulse, and echoes after the end of a pulse were all observed.
Curved film cooling admission tube
NASA Astrophysics Data System (ADS)
Graham, R. W.; Papell, S. S.
1980-10-01
Effective film cooling to protect a wall surface from a hot fluid which impinges on or flows along the surface is provided. A film of cooling fluid having increased area is provided by changing the direction of a stream of cooling fluid through an angle of from 135 deg. to 165 deg. before injecting it through the wall into the hot flowing gas. The 1, cooling fluid is injected from an orifice through a wall into a hot flowing gas at an angle to form a cooling fluid film. Cooling fluid is supplied to the orifice from a cooling fluid source via a turbulence control passageway having a curved portion between two straight portions. The angle through which the direction of the cooling fluid is turned results in less mixing of the cooling fluid with the hot gas, thereby substantially increasing the length of the film in a downstream direction.
Curved film cooling admission tube
NASA Technical Reports Server (NTRS)
Graham, R. W.; Papell, S. S. (Inventor)
1980-01-01
Effective film cooling to protect a wall surface from a hot fluid which impinges on or flows along the surface is provided. A film of cooling fluid having increased area is provided by changing the direction of a stream of cooling fluid through an angle of from 135 deg. to 165 deg. before injecting it through the wall into the hot flowing gas. The 1, cooling fluid is injected from an orifice through a wall into a hot flowing gas at an angle to form a cooling fluid film. Cooling fluid is supplied to the orifice from a cooling fluid source via a turbulence control passageway having a curved portion between two straight portions. The angle through which the direction of the cooling fluid is turned results in less mixing of the cooling fluid with the hot gas, thereby substantially increasing the length of the film in a downstream direction.
Ehrlich, G.G.; Godsy, E.M.; Pascale, C.A.; Vecchioli, John
1979-01-01
An industrial waste liquid containing organonitrile compounds and nitrate ion has been injected into the lower limestone of the Floridan aquifer near Pensacola, Florida since June 1975. Chemical analyses of water from monitor wells and backflow from the injection well indicate that organic carbon compounds are converted to CO2 and nitrate is converted to N2. These transformations are caused by bacteria immediately after injection, and are virtually completed within 100 m of the injection well. The zone near the injection well behaves like an anaerobic filter with nitrate respiring bacteria dominating the microbial flora in this zone.Sodium thiocyanate contained in the waste is unaltered during passage through the injection zone and is used to detect the degree of mixing of injected waste liquid with native water at a monitor well 312 m (712 ft) from the injection well. The dispersivity of the injection zone was calculated to be 10 m (33 ft). Analyses of samples from the monitor well indicate 80 percent reduction in chemical oxygen demand and virtually complete loss of organonitriles and nitrate from the waste liquid during passage from the injection well to the monitor well. Bacterial densities were much lower at the monitor well than in backflow from the injection well.
Injection of thermal and suprathermal seed particles into coronal shocks of varying obliquity
NASA Astrophysics Data System (ADS)
Battarbee, M.; Vainio, R.; Laitinen, T.; Hietala, H.
2013-10-01
Context. Diffusive shock acceleration in the solar corona can accelerate solar energetic particles to very high energies. Acceleration efficiency is increased by entrapment through self-generated waves, which is highly dependent on the amount of accelerated particles. This, in turn, is determined by the efficiency of particle injection into the acceleration process. Aims: We present an analysis of the injection efficiency at coronal shocks of varying obliquity. We assessed injection through reflection and downstream scattering, including the effect of a cross-shock potential. Both quasi-thermal and suprathermal seed populations were analysed. We present results on the effect of cross-field diffusion downstream of the shock on the injection efficiency. Methods: Using analytical methods, we present applicable injection speed thresholds that were compared with both semi-analytical flux integration and Monte Carlo simulations, which do not resort to binary thresholds. Shock-normal angle θBn and shock-normal velocity Vs were varied to assess the injection efficiency with respect to these parameters. Results: We present evidence of a significant bias of thermal seed particle injection at small shock-normal angles. We show that downstream isotropisation methods affect the θBn-dependence of this result. We show a non-negligible effect caused by the cross-shock potential, and that the effect of downstream cross-field diffusion is highly dependent on boundary definitions. Conclusions: Our results show that for Monte Carlo simulations of coronal shock acceleration a full distribution function assessment with downstream isotropisation through scatterings is necessary to realistically model particle injection. Based on our results, seed particle injection at quasi-parallel coronal shocks can result in significant acceleration efficiency, especially when combined with varying field-line geometry. Appendices are available in electronic form at http://www.aanda.org
Integrated injection-locked semiconductor diode laser
Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert
1991-01-01
A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.
Pauling, Linus
1978-01-01
An equation for the bond angles OC—M—CO for tetracarbonyl groups in which the transition metal atom M is enneacovalent, derived from the simple theory of hybrid sp3d5 bond orbitals, is tested by comparison of the calculated values of the angles with the experimental values reported for many compounds containing M(CO)4 groups, especially those with M = Fe, Mn, Re, Cr, or Mo. The importance of the energy of resonance of single bonds and double bonds in stabilizing octahedral complexes of chromium and manganese with carbonyl, phosphine, arsine, and thio groups is also discussed. PMID:16592490
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-16
... October 21, 2011, as supplemented on November 2, 2011, by Compound Photonics Ltd. of London, United Kingdom and Compound Photonics U.S. Corporation of Phoenix, Arizona (collectively ``Compound Photonics... Unfair Import Investigation was named as a participating party. On October 17, 2012, Compound Photonics...
Sato, Taira; Kikuchi, Masanori; Aizawa, Mamoru
2017-03-01
The anti-washout property, viscosity, and cytocompatibility to an osteoblastic cell line, MG-63, of anti-washout pastes were investigated. Mixing a hydroxyapatite/collagen bone-like nanocomposite (HAp/Col), an aqueous solution of sodium alginate (Na-Alg), which is a paste hardening and lubricant agent, and supplementation of calcium carbonate or calcium citrate (Ca-Cit) as a calcium resource for the hardening reaction realized an injectable bone paste. Adding Ca-Cit at a concentration greater than eight times the Ca 2+ ion concentration to Na-Alg improved the anti-washout property. Although the viscosity test indicated a gradual increase in the paste viscosity as the calcium compounds increased, pastes with excess supplementation of calcium compounds exhibited injectability through a syringe with a 1.8 mm inner diameter, realizing an injectable bone filler. Furthermore, the anti-washout pastes with Ca-Cit had almost the same cell proliferation rate as that of the HAp/Col dense body. Therefore, HAp/Col injectable anti-washout pastes composed of the HAp/Col, Na-Alg, and Ca-Cit are potential candidates for bioresorbable bone filler pastes.
Khan, Arif O
2005-01-01
To evaluate the effectiveness of a proposed new protocol for the primary treatment for very large angle esotropia: two muscle horizontal rectus muscle surgery with simultaneous botulinum toxin A injection in a small pilot study. Eight patients who had esotropia at near (ET') greater than 60 prism diopters (in actuality 70 to 100 prism diopters ET') underwent 2 muscle horizontal rectus surgery with simultaneous botulinum toxin A injection of the medial rectus intraoperatively. This was the only surgical procedure for all patients included in this report. Seven patients underwent bilateral medial rectus recession and bilateral injection, and one patient underwent a unilateral medial rectus recession / lateral rectus resection procedure with unilateral medial rectus injection. Postoperatively, 6 of the 8 patients demonstrated residual esotropia at near of less than 10 prism diopters and were considered "successful" by the conventional criteria of binocular alignment within 8 prism diopters of orthotropia. Two undercorrections occurred in patients with 100 and 85 prism diopters of preop ET' respectively. But 3 other patients with such large deviations had satisfactory results. All patients and families were satisfied with postoperative binocular alignment, so no further surgery was undertaken. The patient who underwent unilateral surgery had the least surgical effect and was the largest undercorrection, probably because only one medial rectus received a Botox injection. Considering only the bilateral cases, results were "successful" in 6 of 7 cases. Most patients suffered an extended period of Botox induced exotropia in the postop' period before recovery from the paresis. One patient had a transient, successfully treated, postoperative strabismic amblyopia while exotropic. Bilateral medial rectus recession with simultaneous botulinum injection is a safe and effective primary surgical procedure for very large angle esotropia. A more extensive study is indicated to confirm these findings.
Compound Danshen injection improves endotoxin-induced microcirculatory disturbance in rat mesentery
Han, Jing-Yan; Horie, Yoshinori; Miura, Soichiro; Akiba, Yasutada; Guo, Jun; Li, Dan; Fan, Jing-Yu; Liu, Yu-Ying; Hu, Bai-He; An, Li-Hua; Chang, Xin; Xu, Man; Guo, De-An; Sun, Kai; Yang, Ji-Ying; Fang, Shu-Ping; Xian, Ming-Ji; Kizaki, Masahiro; Nagata, Hiroshi; Hibi, Toshifumi
2007-01-01
AIM: To investigate the effect of compound Danshen injection on lipopolysaccharide (LPS)-induced rat mesenteric microcirculatory dysfunctions and the underlying possible mechanism by an inverted intravital microscope and high-speed video camera system. METHODS: LPS was continuously infused through the jugular artery of male Wistar rats at the dose of 2 mg/kg per hour. Changes in mesenteric microcirculation, such as diameters of arterioles and venules, velocity of RBCs in venules, leukocyte rolling, adhesion and emigration, free radicals released from post-capillary venules, FITC-albumin leakage and mast cell degranulation, were observed through an inverted intravital microscope assisted with CCD camera and SIT camera. Meanwhile, the expression of adhesion molecules CD11b/CD18 and the production of free radical in neutrophils, and the expression of intercellular adhesion molecule 1 (ICAM-1) in human umbilical vein endothelial cells (HUVECs) were quantified by flow cytometry (FACS) in vitro. RESULTS: The continuous infusion with LPS resulted in a number of responses in microcirculation, including a significant increase in the positive region of venule stained with Monastral blue B, rolling and adhesion of leukocytes, production of oxygen radical in venular wall, albumin efflux and enhanced mast cell degranulation in vivo, all of which, except for the leukocyte rolling, were attenuated by the treatment with compound Danshen injection. Experiments performed in vitro further revealed that the expression of CD11b/CD18 and the production of oxygen free radical in neutrophils, and the expression of ICAM-1 in HUVECs were increased by exposure to LPS, and they were attenuated by compound Danshen injection. CONCLUSION: These results suggest that compound Danshen injection is an efficient drug with multi-targeting potential for improving the microcirculatory disturbance. PMID:17659708
Compound Danshen injection improves endotoxin-induced microcirculatory disturbance in rat mesentery.
Han, Jing-Yan; Horie, Yoshinori; Miura, Soichiro; Akiba, Yasutada; Guo, Jun; Li, Dan; Fan, Jing-Yu; Liu, Yu-Ying; Hu, Bai-He; An, Li-Hua; Chang, Xin; Xu, Man; Guo, De-An; Sun, Kai; Yang, Ji-Ying; Fang, Shu-Ping; Xian, Ming-Ji; Kizaki, Masahiro; Nagata, Hiroshi; Hibi, Toshifumi
2007-07-14
To investigate the effect of compound Danshen injection on lipopolysaccharide (LPS)-induced rat mesenteric microcirculatory dysfunctions and the underlying possible mechanism by an inverted intravital microscope and high-speed video camera system. LPS was continuously infused through the jugular artery of male Wistar rats at the dose of 2 mg/kg per hour. Changes in mesenteric microcirculation, such as diameters of arterioles and venules, velocity of RBCs in venules, leukocyte rolling, adhesion and emigration, free radicals released from post-capillary venules, FITC-albumin leakage and mast cell degranulation, were observed through an inverted intravital microscope assisted with CCD camera and SIT camera. Meanwhile, the expression of adhesion molecules CD11b/CD18 and the production of free radical in neutrophils, and the expression of intercellular adhesion molecule 1 (ICAM-1) in human umbilical vein endothelial cells (HUVECs) were quantified by flow cytometry (FACS) in vitro. The continuous infusion with LPS resulted in a number of responses in microcirculation, including a significant increase in the positive region of venule stained with Monastral blue B, rolling and adhesion of leukocytes, production of oxygen radical in venular wall, albumin efflux and enhanced mast cell degranulation in vivo, all of which, except for the leukocyte rolling, were attenuated by the treatment with compound Danshen injection. Experiments performed in vitro further revealed that the expression of CD11b/CD18 and the production of oxygen free radical in neutrophils, and the expression of ICAM-1 in HUVECs were increased by exposure to LPS, and they were attenuated by compound Danshen injection. These results suggest that compound Danshen injection is an efficient drug with multi-targeting potential for improving the microcirculatory disturbance.
Assessing the immediate impact of botulinum toxin injection on impedance of spastic muscle.
Li, Xiaoyan; Shin, Henry; Li, Le; Magat, Elaine; Li, Sheng; Zhou, Ping
2017-05-01
This study aimed to investigate the immediate impacts of Botulinum Toxin A (BoNT-A) injections on the inherent electrical properties of spastic muscles using a newly developed electrical impedance myography (EIM) technique. Impedance measures were performed before and after a BoNT-A injection in biceps brachii muscles of 14 subjects with spasticity. Three major impedance variables, resistance (R), reactance (X) and phase angle (θ) were obtained from three different configurations, and were evaluated using the conventional EIM frequency at 50kHz as well as multiple frequency analysis. Statistical analysis demonstrated a significant decrease of resistance in the injected muscles (Multiple-frequency: R pre =25.17±1.94Ohm, R post =23.65±1.63Ohm, p<0.05; 50kHz: R pre =29.06±2.16Ohm, R post =27.7±1.89Ohm, p<0.05). Despite this decrease, there were no substantial changes in the reactance, phase angle, or anisotropy features after a BoNT-A injection. The significant changes of muscle resistance were most likely associated with the liquid injection of the BoNT-A-saline solution rather than the immediate toxin effects on the muscle. This study demonstrated high sensitivity of the EIM technique in the detection of alterations to muscle composition. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
A novel method for the induction of experimental glaucoma using magnetic microspheres.
Samsel, Paulina A; Kisiswa, Lilian; Erichsen, Jonathan T; Cross, Stephen D; Morgan, James E
2011-03-25
The development of a method for the sustained elevation of intraocular pressure in experimental glaucoma based on the anterior chamber injection of paramagnetic microbeads. Unilateral glaucoma was induced in adult male Norwegian Brown rats by the injection of paramagnetic polystyrene microspheres. A handheld 0.45 Tesla magnet was used to draw the beads into the iridocorneal angle to impede aqueous drainage via the trabecular meshwork. Elevated intraocular pressures (IOPs) were induced in 61 rats, resulting in a mean elevation of 5.8 mm Hg ± 1.0 (SEM) relative to the contralateral control eye. The mean duration of sustained IOP elevation (defined as >5 mm Hg relative to the control eye for at least 7 consecutive days) after a single injection was 12.8 days ± 0.9 (SEM, maximum duration 27 days). In all eyes, the visual axis remained clear from the time of injection, with minimal inflammation after injection. Retinal ganglion cell loss was determined in 21 animals (mean integral IOP, 194.5 mm Hg days ± 87.5 [SEM]) as 36.4% ± 2.4 (SEM) compared with the contralateral, untreated eye. The use of paramagnetic microbeads for the occlusion of the iridocorneal angle produces a sustained elevation of IOP with fewer injections and avoids the risk of visual axis occlusion. It represents a simple and effective method for the induction of experimental glaucoma.
Achievement of Runaway Electron Energy Dissipation by High-Z Gas Injection in DIII-D
NASA Astrophysics Data System (ADS)
Hollmann, E. M.
2014-10-01
Disruption runaway electron (RE) formation followed by RE beam-wall strikes is a concern for future tokamaks, motivating the study of mitigation techniques to reduce the RE beam energy in a controlled manner. A promising approach for doing this is the injection of high-Z gas into the RE beam. Massive (100 torr-l) injection of high-Z gas into RE beams in DIII-D is shown to significantly dissipate both RE magnetic and kinetic energy. For example, injection of argon into a typical 300 kA current RE beam is observed to cause a drop in kinetic energy from 50 kJ to 10 kJ in 10 ms, thus rapidly reducing the damage-causing capability of the RE beam. Both the RE kinetic energy and pitch angle are important for determining the resulting wall damage, with high energy, high pitch angle electrons typically considered most dangerous. The RE energy distribution is found to be more skewed toward low energies than predicted by avalanche theory. The pitch angle is not found to be constant, as is frequently assumed, but is shown to drop from sin(θ) ~ 1 for energies less than 1 MeV to sin(θ) ~ 0 . 2 for energies greater than 10 MeV. Injection of high-Z impurities does not appear to change the overall shape of the energy or pitch angle distributions dramatically. The enhanced RE energy dissipation appears to be caused primarily via collisions with the cold plasma leading to line radiation. Synchrotron power loss only becomes significant in the absence of high-Z impurities, while radial transport loss of REs is seen to become dominant if the RE beam moves sufficiently close to the vessel walls. The experiments demonstrate that avalanche theory somewhat underestimates collisional dissipation of REs in the presence of high-Z atoms, even in the absence of radial transport losses, meaning that reducing RE wall damage in large tokamaks should be easier than previously expected. Supported by the US Department of Energy under DE-FG02-07ER54917 and DE-FC02-04ER54698.
NASA Astrophysics Data System (ADS)
Weng, Can; Wang, Fei; Zhou, Mingyong; Yang, Dongjiao; Jiang, Bingyan
2018-04-01
A comparison of processes and wettability characteristics was presented for injection molded superhydrophobic polypropylene surfaces from two fabricating strategies. One is the biomimetic replication of patterns from indocalamus leaf in nature. The contact angle of water sitting on this PP surface was measured as 152 ± 2°, with comparable wetting behavior to natural indocalamus leaf surface. The other strategy is the fabrication of superhydrophobic structure by combining methods that produce structures at different length scales. Regarding both the machinability of mold inserts and function-oriented design, three micro-quadrangular arrays and one hierarchical micro-nano cylinder array were designed with the goal of superhydrophobicity. Particularly, a simple approach to the fabrication of hierarchical structures was proposed by combining the anodized plate and the punching plate. The function-oriented design targets as superhydrophobicity were all reached for the designed four structures. The measured contact angles of droplet for these structures were almost consistent with the calculated equilibrium contact angles from thermodynamic analysis. Among them, the contact angle of droplet on the surface of designed hierarchical structure reached about 163° with the sliding angle of 5°, resulting in self-cleaning characteristic. The superhydrophobicity of function-oriented designed polymer surfaces could be modified and controlled, which is exactly the limitation of replicating from natural organisms.
Karm, Myong-Hwan; Park, Jun Young; Kim, Doo Hwan; Cho, Hyun-Seok; Lee, Jae-Young; Kwon, Koo; Suh, Jeong Hun
2017-01-01
Objective: A cervical epidural steroid injection is one of the most commonly performed interventions to manage chronic neck pain and cervical radiculopathy. Despite its many severe complications, cervical transforaminal epidural steroid injection (CTFESI) is a clinically necessary modality for managing neck pain and cervical radiculopathy. We aimed in this study to find a safer optimal needle entry angle to decrease the chance of an accidental vertebral artery (VA) puncture even with a proper needle entry angle and to visualize the target of the needle tip. Methods: This retrospective study included 312 patients with neck pain or cervical radiculopathy who had undergone magnetic resonance imaging scans for diagnosis and treatment. The first line was drawn from the midpoint of the two articular pillars and passed through the exact midline of the spinous process. The second line was drawn parallel to the ventral lamina line (conventional transforaminal approach line, CTAL). The third line was drawn parallel to the ventral margin at the midpoint of the superior articular process's ventral border (new transforaminal approach line, NTAL). The angle of intersection between the midline and CTAL versus with NTAL were measured from both sides (right and left) at C5-6, C6-7, and C7-T1 levels. Also, the distance of CTAL and NTAL from VA were measured from both sides at each level. We examined whether the CTAL and NTAL would penetrate the ipsilateral VA, internal carotid artery (ICA), and internal jugular vein (IJV). Results: There were significant differences between CTAL and NTAL angles at all levels (P < 0.001). There were significant differences between the distance of CTAL and NTAL from VA at all levels (P < 0.001). There were also significant differences between the observed frequency of CTAL and NTAL that would penetrate the major ipsilateral vessel (VA, ICA, and IJV) on all levels and sides (P < 0.001~0.030). Conclusion: The angle of NTAL (approximately 70°) is safer than the angle of CTAL (approximately 50°) when considering vascular injuries to vessels, such as the VA, ICA, and IJV. PMID:28553170
Hajrezaie, Maryam; Hassandarvish, Pouya; Moghadamtousi, Soheil Zorofchian; Gwaram, Nura Suleiman; Golbabapour, Shahram; Najihussien, Abdrabuh; Almagrami, Amel Abdullah; Zahedifard, Maryam; Rouhollahi, Elham; Karimian, Hamed; Fani, Somaye; Kamalidehghan, Behnam; Majid, Nazia Abdul; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen
2014-01-01
Based on the potential of Schiff base compounds to act as sources for the development of cancer chemotherapeutic agents, this in vivo study was performed to investigate the inhibitory properties of the synthetic Schiff base compound Cu(BrHAP)2 on colonic aberrant crypt foci (ACF). This study involved five groups of male rats. The negative control group was injected with normal saline once a week for 2 weeks and fed 10% Tween 20 for 10 weeks, the cancer control group was subcutaneously injected with 15 mg/kg azoxymethane once per week for two consecutive weeks, the positive control group was injected with 15 mg/kg azoxymethane once per week for two consecutive weeks and 35 mg/kg 5-fluorouracil (injected intra-peritoneally) for 4 weeks, and the experimental groups were first injected with 15 mg/kg azoxymethane once per week for two consecutive weeks and then fed 2.5 or 5 mg/kg of the Schiff base compound once a day for 10 weeks. Application of the Schiff base compound suppressed total colonic ACF formation by up to 72% to 74% (P<0.05) when compared with the cancer control group. Analysis of colorectal specimens revealed that treatments with the Schiff base compound decreased the mean crypt scores in azoxymethane-treated rats. Significant elevations of superoxide dismutase, glutathione peroxidase and catalase activities and a reduction in the level of malondialdehyde were also observed. Histologically, all treatment groups exhibited significant decreases in dysplasia compared to the cancer control group (P<0.05). Immunohistochemical staining demonstrated down-regulation of the PCNA protein. Comparative western blot analysis revealed that COX-2 and Bcl2 were up-regulated and Bax was down-regulated compared with the AOM control group. The current study demonstrated that the Cu(BrHAP)2 compound has promising chemoprotective activities that are evidenced by significant decreases in the numbers of ACFs in azoxymethane-induced colon cancer.
Hajrezaie, Maryam; Hassandarvish, Pouya; Moghadamtousi, Soheil Zorofchian; Gwaram, Nura Suleiman; Golbabapour, Shahram; NajiHussien, Abdrabuh; Almagrami, Amel Abdullah; Zahedifard, Maryam; Rouhollahi, Elham; Karimian, Hamed; Fani, Somaye; Kamalidehghan, Behnam; Majid, Nazia Abdul; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen
2014-01-01
Background Based on the potential of Schiff base compounds to act as sources for the development of cancer chemotherapeutic agents, this in vivo study was performed to investigate the inhibitory properties of the synthetic Schiff base compound Cu(BrHAP)2 on colonic aberrant crypt foci (ACF). Methodology This study involved five groups of male rats. The negative control group was injected with normal saline once a week for 2 weeks and fed 10% Tween 20 for 10 weeks, the cancer control group was subcutaneously injected with 15 mg/kg azoxymethane once per week for two consecutive weeks, the positive control group was injected with 15 mg/kg azoxymethane once per week for two consecutive weeks and 35 mg/kg 5-fluorouracil (injected intra-peritoneally) for 4 weeks, and the experimental groups were first injected with 15 mg/kg azoxymethane once per week for two consecutive weeks and then fed 2.5 or 5 mg/kg of the Schiff base compound once a day for 10 weeks. Application of the Schiff base compound suppressed total colonic ACF formation by up to 72% to 74% (P<0.05) when compared with the cancer control group. Analysis of colorectal specimens revealed that treatments with the Schiff base compound decreased the mean crypt scores in azoxymethane-treated rats. Significant elevations of superoxide dismutase, glutathione peroxidase and catalase activities and a reduction in the level of malondialdehyde were also observed. Histologically, all treatment groups exhibited significant decreases in dysplasia compared to the cancer control group (P<0.05). Immunohistochemical staining demonstrated down-regulation of the PCNA protein. Comparative western blot analysis revealed that COX-2 and Bcl2 were up-regulated and Bax was down-regulated compared with the AOM control group. Conclusion The current study demonstrated that the Cu(BrHAP)2 compound has promising chemoprotective activities that are evidenced by significant decreases in the numbers of ACFs in azoxymethane-induced colon cancer. PMID:24618844
Flow visualization study of grooved surface/surfactant/air sheet interaction
NASA Technical Reports Server (NTRS)
Reed, Jason C.; Weinstein, Leonard M.
1989-01-01
The effects of groove geometry, surfactants, and airflow rate have been ascertained by a flow-visualization study of grooved-surface models which addresses the possible conditions for skin friction-reduction in marine vehicles. It is found that the grooved surface geometry holds the injected bubble stream near the wall and, in some cases, results in a 'tube' of air which remains attached to the wall. It is noted that groove dimension and the use of surfactants can substantially affect the stability of this air tube; deeper grooves, surfactants with high contact angles, and angled air injection, are all found to increase the stability of the attached air tube, while convected disturbances and high shear increase interfacial instability.
MBE Growth of Ferromagnetic Metal/Compound Semiconductor Heterostructures for Spintronics
Palmstrom, Chris [University of California, Santa Barbara, California, United States
2017-12-09
Electrical transport and spin-dependent transport across ferromagnet/semiconductor contacts is crucial in the realization of spintronic devices. Interfacial reactions, the formation of non-magnetic interlayers, and conductivity mismatch have been attributed to low spin injection efficiency. MBE has been used to grow epitaxial ferromagnetic metal/GA(1-x)AL(x)As heterostructures with the aim of controlling the interfacial structural, electronic, and magnetic properties. In situ, STM, XPS, RHEED and LEED, and ex situ XRD, RBS, TEM, magnetotransport, and magnetic characterization have been used to develop ferromagnetic elemental and metallic compound/compound semiconductor tunneling contacts for spin injection. The efficiency of the spin polarized current injected from the ferromagnetic contact has been determined by measuring the electroluminescence polarization of the light emitted from/GA(1-x)AL(x)As light-emitting diodes as a function of applied magnetic field and temperature. Interfacial reactions during MBE growth and post-growth anneal, as well as the semiconductor device band structure, were found to have a dramatic influence on the measured spin injection, including sign reversal. Lateral spin-transport devices with epitaxial ferromagnetic metal source and drain tunnel barrier contacts have been fabricated with the demonstration of electrical detection and the bias dependence of spin-polarized electron injection and accumulation at the contacts. This talk emphasizes the progress and achievements in the epitaxial growth of a number of ferromagnetic compounds/III-V semiconductor heterostructures and the progress towards spintronic devices.
Nadir Ayrilmis; Turgay Akbulut; Turker Dundar; Robert H. White; Fatih Mengeloglu; Zeki Candan; Umit Buyuksari; Erkan Avci
2011-01-01
Physical, mechanical, and fire properties of the injection-molded wood flour/polypropylene composites (WPCs) incorporated with different levels of boron compounds, borax/boric acid (BX/BA) (0.5:0.5 wt %) and zinc borate (ZB) (4, 8, or 12 wt %) were investigated. The effect of the coupling agent loading (2, 4, or 6 wt %), maleic anhydride-grafted PP (MAPP), on the...
Woo, Minji; Noh, Jeong Sook; Cho, Eun Ju; Song, Yeong Ok
2018-05-16
This study investigated the inhibitory effects of kimchi bioactive compounds against endoplasmic reticulum (ER) stress-induced apoptosis in amyloid beta (Aβ)-injected mice. Mice received a single intracerebroventricular injection of Aβ 25-35 , except for the normal group. Mice were subjected to oral administration of 10 mg of capsaicin, 50 mg of 3-(4'-hydroxyl-3',5'-dimethoxyphenyl)propionic acid (HDMPPA), 50 mg of quercetin, 50 mg of ascorbic acid, or 200 mg of kimchi methanol extract (KME) per kilogram of body weight for 2 weeks ( n = 7 per group). In the in vitro blood-brain barrier (BBB) permeability test, all bioactive compounds penetrated the BBB except ascorbic acid. The protein expression level of APP, BACE, and p-Tau elevated by Aβ injection was decreased by kimchi bioactive compounds ( P < 0.05). Quercetin, HDMPPA, and KME decreased oxidative stress, as indicated by ROS and TBARS levels ( P < 0.05). The protein expression level of ER stress markers GRP78, p-PERK, p-eIF2α, XBP1, and CHOP and the proapoptotic molecules Bax, p-JNK, and cleaved caspases-3 and -9 decreased ( P < 0.05). In contrast, the protein expression level of antiapoptotic molecules Bcl2 and cIAP increased ( P < 0.05). These results were supported by histological analysis.
[On relationship of acupoint-injection with injury of peripheral nerves].
Guo, Chang-Qing; Chen, You-Nan
2007-04-01
To provide basis for strengthening safety of acupoint-injection and increasing clinical therapeutic effect. Analyze and study on the relative articles from the databank of whole articles of Chinese periodicals of CNKI by information retrieval with computer, with acupoint-injection, nerve injury as key words. Most of clinical reports focus on acupoint-injection for treatment of nervous injury induced by trauma and birth injury. The studies indicate that the injuries of the peripheral nerves induced by acupoint-injection can be divided into 3 grades and the injury mechanisms can be divided into 3 classifications. The injuring causes include improper posture of the patients, improper angle and depth of injection and improper medicine selection. Acupoint-injection can be applied more widely as soon as the accomplishment of the standardization of operation.
Integrated injection-locked semiconductor diode laser
Hadley, G.R.; Hohimer, J.P.; Owyoung, A.
1991-02-19
A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.
Dependence of Whistler-mode Wave Induced Electron Precipitation on k-vector Direction.
NASA Astrophysics Data System (ADS)
Kulkarni, P.; Inan, U. S.; Bell, T. F.; Bortnik, J.
2007-12-01
Whistler-mode waves that are either spontaneously generated in-situ (i.e., chorus), or externally injected (lightning, VLF transmitters) are known to be responsible for the loss of radiation belt electrons. An important determinant in the quantification of this loss is the dependence of the cyclotron resonant pitch angle scattering on the initial wave normal angles of the driving waves. Inan et al. (U.S. Inan et al., Controlled precipitation of radiation belt electrons, Journal of Geophysical Research-Space Physics, 108 (A5), 1186, doi: 10.1029/2002JA009580, 2003.) suggested that the lifetime of > 1 MeV electrons in the inner radiation belts might be moderated by in situ injection of VLF whistler mode waves at frequencies of a few kHz. The formulation of Wang and Bell (T.N.C. Wang and T.F. Bell, Radiation resisitance of a short dipole immersed in a cold magnetoionic medium, Radio Science, 4(2), 167-177, February 1969) for an electric dipole antenna located in the inner magnetosphere established that most of the radiated power is concentrated in waves whose wave normal angles lie near the local resonance cone. Such waves, compared to those injected at less oblique initial wave normal angles, undergo several more magnetospheric reflections, persist in the magnetospheric cavity for longer periods of time, and resonate with electrons of higher energies. Accordingly, such waves may be highly effective in contributing to the loss of electrons from the inner belt and slot regions [Inan et al., 2006]. Nevertheless, it has been noted (Inan et al. [2006], Inan and Bell [1991] and Albert [1999]) that > 1 MeV electrons may not be effectively scattered by waves propagating with very high wave normal angles, due to the generally reduced gyroresonant diffusion coefficients for wave normals near the resonance cone. We use the Stanford 2D VLF raytracing program to determine the energetic electron pitch angle scattering and the precipitated flux signatures that would be detected for a range of initial wave normal angles. We conclude that whistler-mode waves with highly oblique wave normal angles may be more effective than previously believed at precipitating > 1 MeV electrons, despite the dependence of the scattering coefficients on wave normal direction.
Porous polymer packings have been used successfully in many applications of direct aqueous injection gas chromatography. The authors have expanded the use of aqueous injection to the quantitative analysis of 68 alcohols, acetates, ketones, ethers, sulfides, aldehydes, diols, dion...
Angles between orthogonal spd bond orbitals with maximum strength.
Pauling, L
1976-05-01
An equation is derived for values of bond angles for two equivalent best spd hybrid bond orbitals with given amounts of s, p, and d character, and is applied in the discussion of structures of transargononic compounds, including the xenon and halogen fluorides. Bond orbitals with a rather small amount of d character tend to lie at angles 90 degrees and 180 degrees , and those with a larger amount, at somewhat smaller angles.
A conceptual approach of a novel application of in-situ thermal processes that would either use a steam injection process or a steam/surfactant injection process was considered to remediate petroleum contaminated sediment residing in an abandoned canal. Laboratory tests were c...
Marshell, R; Kearney-Ramos, T; Brents, L K; Hyatt, W S; Tai, S; Prather, P L; Fantegrossi, W E
2014-09-01
Human users of synthetic cannabinoids (SCBs) JWH-018 and JWH-073 typically smoke these drugs, but preclinical studies usually rely on injection for drug delivery. We used the cannabinoid tetrad and drug discrimination to compare in vivo effects of inhaled drugs with injected doses of these two SCBs, as well as with the phytocannabinoid Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Mice inhaled various doses of Δ(9)-THC, JWH-018 or JWH-073, or were injected intraperitoneally (IP) with these same compounds. Rectal temperature, tail flick latency in response to radiant heat, horizontal bar catalepsy, and suppression of locomotor activity were assessed in each animal. In separate studies, mice were trained to discriminate Δ(9)-THC (IP) from saline, and tests were performed with inhaled or injected doses of the SCBs. Both SCBs elicited Δ(9)-THC-like effects across both routes of administration, and effects following inhalation were attenuated by pretreatment with the CB1 antagonist/inverse agonist rimonabant. No cataleptic effects were observed following inhalation, but all compounds induced catalepsy following injection. Injected JWH-018 and JWH-073 fully substituted for Δ(9)-THC, but substitution was partial (JWH-073) or required relatively higher doses (JWH-018) when drugs were inhaled. These studies demonstrate that the SCBs JWH-018 and JWH-073 elicit dose-dependent, CB1 receptor-mediated Δ(9)-THC-like effects in mice when delivered via inhalation or via injection. Across these routes of administration, differences in cataleptic effects and, perhaps, discriminative stimulus effects, may implicate the involvement of active metabolites of these compounds. Copyright © 2014 Elsevier Inc. All rights reserved.
Fries, Peter; Runge, Val M; Bücker, Arno; Schürholz, Hellmut; Reith, Wolfgang; Robert, Philippe; Jackson, Carney; Lanz, Titus; Schneider, Günther
2009-04-01
The aim of this study was to evaluate lesion enhancement (LE) and contrast-to-noise ratio (CNR) properties of P846, a new intermediate sized, high relaxivity Gd-based contrast agent at 3 Tesla in a rat brain glioma model, and to compare this contrast agent with a high relaxivity, macromolecular compound (P792), and a standard extracellular Gd-chelate (Gd-DOTA). Seven rats with experimental induced brain glioma were evaluated using 3 different contrast agents, with each MR examination separated by at least 24 hours. The time between injections assured sufficient clearance of the agent from the tumor, before the next examination. P792 (Gadomelitol, Guerbet, France) and P846 (a new compound from Guerbet Research) are macromolecular and high relaxivity contrast agents with no protein binding, and were compared with the extracellular agent Gd-DOTA (Dotarem, Guerbet, France). T1w gradient echo sequences (TR/TE 200 milliseconds/7.38 milliseconds, flip angle = 90 degrees , acquisition time: 1:42 minutes:sec, voxel size: 0.2 x 0.2 x 2.0 mm, FOV = 40 mm, acquisition matrix: 256 x 256) were acquired before and at 5 consecutive time points after each intravenous contrast injection in the identical slice orientation, using a dedicated 4-channel head array animal coil. The order of contrast media injection was randomized, with however Gd-DOTA used either as the first or second contrast agent. Contrast agent dose was adjusted to compensate for the different T1 relaxivities of the 3 agents. Signal-to-noise ratio, CNR, and LE were evaluated using region-of-interest analysis. A veterinary histopathologist confirmed the presence of a glioma in each subject, after completion of the imaging study. P792 showed significantly less LE as compared with Gd-DOTA within the first 7 minutes after contrast agent injection (P < 0.05) with, however, reaching comparable LE values at 9 minutes after injection (P = 0.07). However, P792 provided significantly less CNR as compared with Gd-DOTA (P < 0.05) for all examination time points. P846 provided comparable but persistent LE as compared with Gd-DOTA (P < 0.05) and demonstrated significantly greater LE and CNR when compared with P792 (P < 0.05). No statistically significant differences between CNR values for Gd-DOTA and P846 were noted for all examination time points (P < 0.05), with P846 administered at one-fourth the dose as compared with Gd-DOTA. The intravascular contrast medium P792 showed significantly less LE and CNR in comparison to Gd-DOTA and P846, suggesting that it does not show marked extravasation from tumor neocapillaries and does not significantly cross the disrupted blood brain-barrier in this rat glioma model. In distinction, P846 provides comparable enhancement properties at a field strength of 3 Tesla to the extracellular contrast agent Gd-DOTA, using the adjusted dose, suggesting that it crosses the disrupted blood-brain-barrier and tumor capillaries, most likely based on the decreased molecular weight as compared with P792. At the same time, the high relaxivity of this compound allows for decreasing the injected gadolinium dose by a factor of 4 whereas providing comparable enhancement properties when compared with a standard extracellular Gd-chelate (Gd-DOTA) at a dose of 0.1 mmol/kg body weight.
Determination of intrinsic spin Hall angle in Pt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yi; Deorani, Praveen; Qiu, Xuepeng
2014-10-13
The spin Hall angle in Pt is evaluated in Pt/NiFe bilayers by spin torque ferromagnetic resonance measurements and is found to increase with increasing the NiFe thickness. To extract the intrinsic spin Hall angle in Pt by estimating the total spin current injected into NiFe from Pt, the NiFe thickness dependent measurements are performed and the spin diffusion in the NiFe layer is taken into account. The intrinsic spin Hall angle of Pt is determined to be 0.068 at room temperature and is found to be almost constant in the temperature range of 13–300 K.
Skalicky, Simon E; Ho, Ivan; Agar, Ashish; Bank, Allan
2012-07-01
To document cases of sustained elevation of intraocular pressure (IOP) while receiving intravitreal anti-vascular endothelial growth factor (VEGF) agents and subsequent management. A retrospective series of all cases managed by the authors and colleagues was performed. Six patients developed sustained elevated IOP; five received ranibizumab and one bevacizumab. Four received unilateral and two received bilateral injections. Two had preexisting primary open-angle glaucoma and one had pseudoexfoliative glaucoma, all with stable IOP prior to anti-VEGF treatment. Angles were open in all cases. Peak IOP averaged 43 mm Hg (range: 34 to 60 mm Hg). The mean number of injections preceding the IOP increase was 10 (range: 1 to 20). Four patients required trabeculectomy, one selective laser trabeculoplasty, and one multiple topical medications. A sustained increase in IOP requiring glaucoma filtering surgery is a rare but important treatment complication for patients receiving intravitreal anti-VEGF therapy, especially those with preexisting glaucoma or glaucoma risk factors. Copyright 2012, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Qi, Y. L.; Xu, B. Y.; Cai, S. L.
2006-12-01
To control fuel injection, optimize combustion and reduce emissions for LPG (liquefied petroleum gas) engines, it is necessary and important to understand the characteristics of LPG sprays. The present work investigates the geometry of LPG sprays, including spray tip penetration, spray angle, projected spray area and spray volume, by using schlieren photography and digital image processing techniques. Two types of single nozzle injectors were studied, with the same nozzle diameter, but one with and one without a double-hole flow-split head. A code developed to analyse the results directly from the digitized images is shown to be more accurate and efficient than manual measurement and analysis. Test results show that a higher injection pressure produces a longer spray tip penetration, a larger projected spray area and spray volume, but a smaller spray cone angle. The injector with the double-hole split-head nozzle produces better atomization and shorter tip penetration at medium and late injection times, but longer tip penetration in the early stage.
Fluidic Thrust Vectoring of an Axisymmetric Exhaust Nozzle at Static Conditions
NASA Technical Reports Server (NTRS)
Wing, David J.; Giuliano, Victor J.
1997-01-01
A sub-scale experimental static investigation of an axisymmetric nozzle with fluidic injection for thrust vectoring was conducted at the NASA Langley Jet Exit Test Facility. Fluidic injection was introduced through flush-mounted injection ports in the divergent section. Geometric variables included injection-port geometry and location. Test conditions included a range of nozzle pressure ratios from 2 to 10 and a range of injection total pressure ratio from no-flow to 1.5. The results indicate that fluidic injection in an axisymmetric nozzle operating at design conditions produced significant thrust-vector angles with less reduction in thrust efficiency than that of a fluidically-vectored rectangular jet. The axisymmetric geometry promoted a pressure relief mechanism around the injection slot, thereby reducing the strength of the oblique shock and the losses associated with it. Injection port geometry had minimal effect on thrust vectoring.
Studies of beam injection with a compensated bump and uncompensated bump in a synchrotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbar Fakhri, Ali; Prajapati, S. K.; Ghodke, A. D.
2013-08-15
Synchrotron radiation sources Indus-1 and Indus-2 have a synchrotron as the common injector. A three kicker compensated bump injection scheme was employed for beam injection into this synchrotron. The stored beam current in the synchrotron is higher, when all the three kickers are operated at the same current than when kickers are operated at currents required to generate compensated bump. Beam dynamics studies have been done to understand why this happens. Theoretical studies indicate that higher stored current in the later case is attributed to smaller residual oscillations of injected beam. These studies also reveal that if the angle ofmore » the injected beam during beam injection is kept varying, the performance could be further improved. This is experimentally confirmed by injecting the beam on rising part of the injection septum magnet current pulse.« less
High-performance liquid chromatographic method for guanylhydrazone compounds.
Cerami, C; Zhang, X; Ulrich, P; Bianchi, M; Tracey, K J; Berger, B J
1996-01-12
A high-performance liquid chromatographic method has been developed for a series of aromatic guanylhydrazones that have demonstrated therapeutic potential as anti-inflammatory agents. The compounds were separated using octadecyl or diisopropyloctyl reversed-phase columns, with an acetonitrile gradient in water containing heptane sulfonate, tetramethylammonium chloride, and phosphoric acid. The method was used to reliably quantify levels of analyte as low as 785 ng/ml, and the detector response was linear to at least 50 micrograms/ml using a 100 microliters injection volume. The assay system was used to determine the basic pharmacokinetics of a lead compound, CNI-1493, from serum concentrations following a single intravenous injection in rats.
Powder collection apparatus/method
Anderson, I.E.; Terpstra, R.L.; Moore, J.A.
1994-01-11
Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing. 4 figures.
Powder collection apparatus/method
Anderson, Iver E.; Terpstra, Robert L.; Moore, Jeffery A.
1994-01-11
Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing.
Angles between orthogonal spd bond orbitals with maximum strength*
Pauling, Linus
1976-01-01
An equation is derived for values of bond angles for two equivalent best spd hybrid bond orbitals with given amounts of s, p, and d character, and is applied in the discussion of structures of transargononic compounds, including the xenon and halogen fluorides. Bond orbitals with a rather small amount of d character tend to lie at angles 90° and 180°, and those with a larger amount, at somewhat smaller angles. PMID:16592315
NASA Astrophysics Data System (ADS)
Lee, Harry; Wen, Baole; Doering, Charles
2017-11-01
The rate of viscous energy dissipation ɛ in incompressible Newtonian planar Couette flow (a horizontal shear layer) imposed with uniform boundary injection and suction is studied numerically. Specifically, fluid is steadily injected through the top plate with a constant rate at a constant angle of injection, and the same amount of fluid is sucked out vertically through the bottom plate at the same rate. This set-up leads to two control parameters, namely the angle of injection, θ, and the Reynolds number of the horizontal shear flow, Re . We numerically implement the `background field' variational problem formulated by Constantin and Doering with a one-dimensional unidirectional background field ϕ(z) , where z aligns with the distance between the plates. Computation is carried out at various levels of Re with θ = 0 , 0 .1° ,1° and 2°, respectively. The computed upper bounds on ɛ scale like Re0 as Re > 20 , 000 for each fixed θ, this agrees with Kolmogorov's hypothesis on isotropic turbulence. The outcome provides new upper bounds to ɛ among any solution to the underlying Navier-Stokes equations, and they are sharper than the analytical bounds presented in Doering et al. (2000). This research was partially supported by the NSF Award DMS-1515161, and the University of Michigan's Rackham Graduate Student Research Grant.
Fuel Vaporization and Its Effect on Combustion in a High-Speed Compression-Ignition Engine
NASA Technical Reports Server (NTRS)
Rothrock, A M; Waldron, C D
1933-01-01
The tests discussed in this report were conducted to determine whether or not there is appreciable vaporization of the fuel injected into a high-speed compression-ignition engine during the time available for injection and combustion. The effects of injection advance angle and fuel boiling temperature were investigated. The results show that an appreciable amount of the fuel is vaporized during injection even though the temperature and pressure conditions in the engine are not sufficient to cause ignition either during or after injection, and that when the conditions are such as to cause ignition the vaporization process affects the combustion. The results are compared with those of several other investigators in the same field.
Centrifugal study of zone of influence during air-sparging.
Hu, Liming; Meegoda, Jay N; Du, Jianting; Gao, Shengyan; Wu, Xiaofeng
2011-09-01
Air sparging (AS) is one of the groundwater remediation techniques for remediating volatile organic compounds (VOCs) in saturated soil. However, in spite of the success of air sparging as a remediation technique for the cleanup of contaminated soils, to date, the fundamental mechanisms or the physics of air flow through porous media is not well understood. In this study, centrifugal modeling tests were performed to investigate air flow rates and the evolution of the zone of influence during the air sparging under various g-levels. The test results show that with the increase in sparging pressure the mass flow rate of the air sparging volume increases. The air mass flow rate increases linearly with the effective sparging pressure ratio, which is the difference between sparging pressure and hydrostatic pressure normalized with respect to the effective overburden pressure at the sparging point. Also the slope of mass flow rate with effective sparging pressure ratio increases with higher g-levels. This variation of the slope of mass flow rate of air sparging volume versus effective sparging pressure ratio, M, is linear with g-level confirming that the air flow through soil for a given effective sparging pressure ratio only depends on the g-level. The test results also show that with increasing sparging pressure, the zone of influence (ZOI), which consists of the width at the tip of the cone or lateral intrusion and the cone angle, will lead to an increase in both lateral intrusion and the cone angle. With a further increase in air injection pressure, the cone angle reaches a constant value while the lateral intrusion becomes the main contributor to the enlargement of the ZOI. However, beyond a certain value of effective sparging pressure ratio, there is no further enlargement of the ZOI.
Needle echogenicity in ultrasound-guided lumbar spine injections: a cadaveric study.
Gofeld, Michael; Krashin, Daniel L; Ahn, Sangmin
2013-01-01
Echogenicity of regional anesthesia needles has been tested on different preclinical models; however, previous studies were done in an ideal experimental setting utilizing high-frequency insonation and superficially located targets. Because steep-angle deep injections are typically required for spinal and other chronic pain procedures, and low-frequency transducers are used, further feasibility study is warranted. To determine effectiveness of steep-angle deep injections, typically required for spinal and other chronic pain procedures. Experimental laboratory study. Willed Body Program, University of Washington. In-plane lumbar spine procedures with 50° and 70° angles were performed on a human cadaver. The images and video clips of a non-echogenic (Quincke-type) and echogenic (SonoPlex, StimuQuick, and EchoStim) needle placements were presented to 3 blinded assessors who rated the needle visibility on a 4-point scale. The data was statistically analyzed to determine the differences in visibility between the needles with and without the digital image enhancement, and to compare the video clips to captured images. ANOVA analysis demonstrated that overall SonoPlex was significantly better (P = 0.02) than other needles. SonoPlex maintained its superiority in the subset of facet joint injections (P = 0.02), followed by Quincke-type, then the StimuQuik, and EchoStim needles. In deep procedures, EchoStim was comparable with SonoPlex (P = 0.03), and they both were better than the other 2 needles. The enhanced images received higher rates, with a 0.6 point mean improved rating (P = 0). This study is limited by choice of needles, number of experiments performed, and potential postmortem changes of echogenicity. The SonoPlex needle appeared to have better echogenicity in this study. While non-echogenic Quincke-type needle visibility was adequate in superficial placements, it was limited in deep injections. An imaging enhancement is effective in improving needle visibility and should be used whenever possible.
Evolution and transition mechanisms of internal swirling flows with tangential entry
NASA Astrophysics Data System (ADS)
Wang, Yanxing; Wang, Xingjian; Yang, Vigor
2018-01-01
The characteristics and transition mechanisms of different states of swirling flow in a cylindrical chamber have been numerically investigated using the Galerkin finite element method. The effects of the Reynolds number and swirl level were examined, and a unified theory connecting different flow states was established. The development of each flow state is considered as a result of the interaction and competition between basic mechanisms: (1) the centrifugal effect, which drives an axisymmetric central recirculation zone (CRZ); (2) flow instabilities, which develop at the free shear layer and the central solid-body rotating flow; (3) the bouncing and restoring effects of the injected flow, which facilitate the convergence of flow on the centerline and the formation of bubble-type vortex breakdown; and (4) the damping effect of the end-induced flow, which suppresses the development of the instability waves. The results show that the CRZ, together with the free shear layer on its surface, composes the basic structure of swirling flow. The development of instability waves produces a number of discrete vortex cores enclosing the CRZ. The azimuthal wave number is primarily determined by the injection angle. Generally, the wave number is smaller at a higher injection angle, due to the reduction of the perimeter of the free shear layer. At the same time, the increase in the Reynolds number facilitates the growth of the wave number. The end-induced flow tends to reduce the wave number near the head end and causes a change in wave number from the head end to the downstream region. Spiral-type vortex breakdown can be considered as a limiting case at a high injection angle, with a wave number equal to 0 near the head end and equal to 1 downstream. At lower Reynolds numbers, the bouncing and restoring effect of the injected flow generates bubble-type vortex breakdown.
Sarmah, Nabin; Richards, Bryce S; Mallick, Tapas K
2011-07-01
We present a detailed design concept and optical performance evaluation of stationary dielectric asymmetric compound parabolic concentrators (DiACPCs) using ray-tracing methods. Three DiACPC designs, DiACPC-55, DiACPC-66, and DiACPC-77, of acceptance half-angles (0° and 55°), (0° and 66°), and (0° and 77°), respectively, are designed in order to optimize the concentrator for building façade photovoltaic applications in northern latitudes (>55 °N). The dielectric concentrator profiles have been realized via truncation of the complete compound parabolic concentrator profiles to achieve a geometric concentration ratio of 2.82. Ray-tracing simulation results show that all rays entering the designed concentrators within the acceptance half-angle range can be collected without escaping from the parabolic sides and aperture. The maximum optical efficiency of the designed concentrators is found to be 83%, which tends to decrease with the increase in incidence angle. The intensity is found to be distributed at the receiver (solar cell) area in an inhomogeneous pattern for a wide range of incident angles of direct solar irradiance with high-intensity peaks at certain points of the receiver. However, peaks become more intense for the irradiation incident close to the extreme acceptance angles, shifting the peaks to the edge of the receiver. Energy flux distribution at the receiver for diffuse radiation is found to be homogeneous within ±12% with an average intensity of 520 W/m².
3D visualization of molecular structures in the MOGADOC database
NASA Astrophysics Data System (ADS)
Vogt, Natalja; Popov, Evgeny; Rudert, Rainer; Kramer, Rüdiger; Vogt, Jürgen
2010-08-01
The MOGADOC database (Molecular Gas-Phase Documentation) is a powerful tool to retrieve information about compounds which have been studied in the gas-phase by electron diffraction, microwave spectroscopy and molecular radio astronomy. Presently the database contains over 34,500 bibliographic references (from the beginning of each method) for about 10,000 inorganic, organic and organometallic compounds and structural data (bond lengths, bond angles, dihedral angles, etc.) for about 7800 compounds. Most of the implemented molecular structures are given in a three-dimensional (3D) presentation. To create or edit and visualize the 3D images of molecules, new tools (special editor and Java-based 3D applet) were developed. Molecular structures in internal coordinates were converted to those in Cartesian coordinates.
The effect of changing condition of walking speed on the knee angle of rats with osteoarthritis.
Nam, Chan-Woo; Kim, Kyoung; Na, Sang-Su
2017-08-01
[Purpose] The purpose of this study was to investigate the positive effect of exercise on knee osteoarthritis in rats with osteoarthritis induced by applying effective walking speed when changing speed conditions during walking. [Subjects and Methods] The rats used in this study were male Sprague-Dawley rats weighing 300 g and 7 weeks old, and 20 rats were used. The Osteoarthritis (OA) rats model was induced by MIA (monoiodoacetate). The rats was randomly divided into experimental group (MIA injection group) and control group (normal cell line injection group). Treadmill exercise was provided two groups for 2 weeks, 4 days per week. The knee joint angle of the stance was divided into pre-test and post-test, and each group was subjected to paired sample test. Independent sample t-test was conducted to examine the difference between experimental group and control group. [Results] There were statistically significant changes in the control and experimental groups. The knee angle was changed from 99.70 ± 2.40 to 85.60 ± 2.67 in the control group. The knee angle was changed from 100.96 ± 1.36 to 87.71 ± 1.57 in the experimental group. [Conclusion] In conclusion, the angle of the knee gradually decreases. It is considered a characteristic of progressive osteoarthritis. The change of knee angle was less in the experimental group than in the control group. This means that the stiffness of the joints during the walking exercise was less progressed in the experimental group than in the control group.
The effect of changing condition of walking speed on the knee angle of rats with osteoarthritis
Nam, Chan-Woo; Kim, Kyoung; Na, Sang-Su
2017-01-01
[Purpose] The purpose of this study was to investigate the positive effect of exercise on knee osteoarthritis in rats with osteoarthritis induced by applying effective walking speed when changing speed conditions during walking. [Subjects and Methods] The rats used in this study were male Sprague-Dawley rats weighing 300 g and 7 weeks old, and 20 rats were used. The Osteoarthritis (OA) rats model was induced by MIA (monoiodoacetate). The rats was randomly divided into experimental group (MIA injection group) and control group (normal cell line injection group). Treadmill exercise was provided two groups for 2 weeks, 4 days per week. The knee joint angle of the stance was divided into pre-test and post-test, and each group was subjected to paired sample test. Independent sample t-test was conducted to examine the difference between experimental group and control group. [Results] There were statistically significant changes in the control and experimental groups. The knee angle was changed from 99.70 ± 2.40 to 85.60 ± 2.67 in the control group. The knee angle was changed from 100.96 ± 1.36 to 87.71 ± 1.57 in the experimental group. [Conclusion] In conclusion, the angle of the knee gradually decreases. It is considered a characteristic of progressive osteoarthritis. The change of knee angle was less in the experimental group than in the control group. This means that the stiffness of the joints during the walking exercise was less progressed in the experimental group than in the control group. PMID:28878468
NASA Astrophysics Data System (ADS)
Schneider, Ling; Laustsen, Milan; Mandsberg, Nikolaj; Taboryski, Rafael
2016-02-01
We discuss the influence of surface structure, namely the height and opening angles of nano- and microcones on the surface wettability. We show experimental evidence that the opening angle of the cones is the critical parameter on sample superhydrophobicity, namely static contact angles and roll-off angles. The textured surfaces are fabricated on silicon wafers by using a simple one-step method of reactive ion etching at different processing time and gas flow rates. By using hydrophobic coating or hydrophilic surface treatment, we are able to switch the surface wettability from superhydrophilic to superhydrophobic without altering surface structures. In addition, we show examples of polymer replicas (polypropylene and poly(methyl methacrylate) with different wettability, fabricated by injection moulding using templates of the silicon cone-structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehrke, Christopher R.; Radovanovic, Michael S.; Milam, David M.
2008-04-01
Low-temperature combustion of diesel fuel was studied in a heavy-duty, single-cylinder optical engine employing a 15-hole, dual-row, narrow-included-angle nozzle (10 holes x 70/mD and 5 holes x 35/mD) with 103-/gmm-diameter orifices. This nozzle configuration provided the spray targeting necessary to contain the direct-injected diesel fuel within the piston bowl for injection timings as early as 70/mD before top dead center. Spray-visualization movies, acquired using a high-speed camera, show that impingement of liquid fuel on the piston surface can result when the in-cylinder temperature and density at the time of injection are sufficiently low. Seven single- and two-parameter sweeps around amore » 4.82-bar gross indicated mean effective pressure load point were performed to map the sensitivity of the combustion and emissions to variations in injection timing, injection pressure, equivalence ratio, simulated exhaust-gas recirculation, intake temperature, intake boost pressure, and load. High-speed movies of natural luminosity were acquired by viewing through a window in the cylinder wall and through a window in the piston to provide quasi-3D information about the combustion process. These movies revealed that advanced combustion phasing resulted in intense pool fires within the piston bowl, after the end of significant heat release. These pool fires are a result of fuel-films created when the injected fuel impinged on the piston surface. The emissions results showed a strong correlation with pool-fire activity. Smoke and NO/dx emissions rose steadily as pool-fire intensity increased, whereas HC and CO showed a dramatic increase with near-zero pool-fire activity.« less
Analysis of Fuel Vaporization, Fuel-Air Mixing, and Combustion in Integrated Mixer-Flame Holders
NASA Technical Reports Server (NTRS)
Deur, J. M.; Cline, M. C.
2004-01-01
Requirements to limit pollutant emissions from the gas turbine engines for the future High-Speed Civil Transport (HSCT) have led to consideration of various low-emission combustor concepts. One such concept is the Integrated Mixer-Flame Holder (IMFH). This report describes a series of IMFH analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. To meet the needs of this study, KIVA-II's boundary condition and chemistry treatments are modified. The study itself examines the relationships between fuel vaporization, fuel-air mixing, and combustion. Parameters being considered include: mixer tube diameter, mixer tube length, mixer tube geometry (converging-diverging versus straight walls), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases are run with and without combustion to examine the variations in fuel-air mixing and potential for flashback due to the above parameters. The degree of fuel-air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state. Results indicate that fuel-air mixing can be enhanced by a variety of means, the best being a combination of air inlet swirl and a converging-diverging mixer tube geometry. With the IMFH configuration utilized in the present study, flashback becomes more common as the mixer tube diameter is increased and is instigated by disturbances associated with the dilution hole flow.
Bayen, Stéphane; Yi, Xinzhu; Segovia, Elvagris; Zhou, Zhi; Kelly, Barry C
2014-04-18
Emerging contaminants such as antibiotics have received recent attention as they have been detected in natural waters and health concerns over potential antibiotic resistance. With the purpose to investigate fast and high-throughput analysis, and eventually the continuous on-line analysis of emerging contaminants, this study presents results on the analysis of seven selected antibiotics (sulfadiazine, sulfamethazine, sulfamerazine, sulfamethoxazole, chloramphenicol, lincomycin, tylosin) in surface freshwater and seawater using direct injection of a small sample volume (20μL) in liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Notably, direct injection of seawater in the LC-ESI-MS/MS was made possible on account of the post-column switch on the system, which allows diversion of salt-containing solutions flushed out of the column to the waste. Mean recoveries based on the isotope dilution method average 95±14% and 96±28% amongst the compounds for spiked freshwater and seawater, respectively. Linearity across six spiking levels was assessed and the response was linear (r(2)>0.99) for all compounds. Direct injection concentrations were compared for real samples to those obtained with the conventional SPE-based analysis and both techniques concurs on the presence/absence and levels of the compounds in real samples. These results suggest direct injection is a reliable method to detect antibiotics in both freshwater and seawater. Method detection limits for the direct injection technique (37pg/L to 226ng/L in freshwater, and from 16pg/to 26ng/L in seawater) are sufficient for a number of environmental applications, for example the fast screening of water samples for ecological risk assessments. In the present study of real samples, this new method allowed for example the positive detection of some compounds (e.g. lincomycin) down to the sub ng/L range. The direct injection method appears to be relatively cheaper and faster, requires a smaller sample size, and is more robust to equipment cross-contamination as compared to the conventional SPE-based method. Copyright © 2014 Elsevier B.V. All rights reserved.
Impact of Fluidic Chevrons on Supersonic Jet Noise
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Norum, Thomas
2007-01-01
The impact of fluidic chevrons on broadband shock noise and mixing noise for single stream and coannular jets was investigated. Air was injected into the core flow of a bypass ratio 5 nozzle system using a core fluidic chevron nozzle. For the single stream experiments, the fan stream was operated at the wind tunnel conditions and the core stream was operated at supersonic speeds. For the dual stream experiments, the fan stream was operated at supersonic speeds and the core stream was varied between subsonic and supersonic conditions. For the single stream jet at nozzle pressure ratio (NPR) below 2.0, increasing the injection pressure of the fluidic chevron increased high frequency noise at observation angles upstream of the nozzle exit and decreased mixing noise near the peak jet noise angle. When the NPR increased to a point where broadband shock noise dominated the acoustic spectra at upstream observation angles, the fluidic chevrons significantly decreased this noise. For dual stream jets, the fluidic chevrons reduced broadband shock noise levels when the fan NPR was below 2.3, but had little or no impact on shock noise with further increases in fan pressure. For all fan stream conditions investigated, the fluidic chevron became more effective at reducing mixing noise near the peak jet noise angle as the core pressure increased.
Mehand, Massinissa Si; Srinivasan, Bala; De Crescenzo, Gregory
2015-01-01
Surface plasmon resonance-based biosensors have been successfully applied to the study of the interactions between macromolecules and small molecular weight compounds. In an effort to increase the throughput of these SPR-based experiments, we have already proposed to inject multiple compounds simultaneously over the same surface. When specifically applied to small molecular weight compounds, such a strategy would however require prior knowledge of the refractive index increment of each compound in order to correctly interpret the recorded signal. An additional experiment is typically required to obtain this information. In this manuscript, we show that through the introduction of an additional global parameter corresponding to the ratio of the saturating signals associated with each molecule, the kinetic parameters could be identified with similar confidence intervals without any other experimentation. PMID:26515024
The ECRH/ECCD system on Tore Supra, a major step towards continuous operation
NASA Astrophysics Data System (ADS)
Lennholm, M.; Agarici, G.; Berger-By, G.; Bosia, P.; Bouquey, F.; Cellier, E.; Clary, J.; Clapit, M.; Darbos, C.; Giruzzi, G.; Jung, M.; Magne, R.; Roux, D.; Segui, J. L.; Traisnel, E.; Zou, X.
2003-11-01
The 118 GHz electron cyclotron heating and current drive (ECRH/ECCD) system under development in Cadarache, France, for use on the Tore Supra tokamak (Pain M. et al 1994 Proc. 18th SOFT (Karlsruhe) pp 481 4: Darbos C. et al 2000 Proc. 21st SOFT (Madrid) pp 605 9), is designed to launch 2.4 MW of power for up to 10 min into the plasma. At present two out of six gyrotrons are installed and available for injection of up to 800 kW. This paper concentrates on the generation and transmission of the ECRH/ECCD power for very long pulse operation. The power is injected into the plasma as Gaussian beams by an antenna which, using actively cooled mirrors inside the Tore Supra vacuum vessel, allows extensive control of both the poloidal and toroidal injection angles. The toroidal field on Tore Supra is normally in the range of 3.8 4 T, which for 118 GHz gives almost central deposition at the fundamental electron cyclotron resonance. A pair of actively cooled corrugated mirrors is installed in each matching optics unit at the output of each gyrotron allowing complete control of the polarization of the wave transmitted to the antenna, with the result that pure O-mode—or pure X-mode—power injection can be achieved for all injection angles. In tokamak experiments, a world record energy of 17.8 MJ has been injected into the plasma. New upgraded gyrotrons specified to produce 400 kW for up to 10 min will be introduced over the next 3 4 years.
On the prediction of spray angle of liquid-liquid pintle injectors
NASA Astrophysics Data System (ADS)
Cheng, Peng; Li, Qinglian; Xu, Shun; Kang, Zhongtao
2017-09-01
The pintle injector is famous for its capability of deep throttling and low cost. However, the pintle injector has been seldom investigated. To get a good prediction of the spray angle of liquid-liquid pintle injectors, theoretical analysis, numerical simulations and experiments were conducted. Under the hypothesis of incompressible and inviscid flow, a spray angle formula was deduced from the continuity and momentum equations based on a control volume analysis. The formula was then validated by numerical and experimental data. The results indicates that both geometric and injection parameters affect the total momentum ratio (TMR) and then influence the spray angle formed by liquid-liquid pintle injectors. TMR is the pivotal non-dimensional number that dominates the spray angle. Compared with gas-gas pintle injectors, spray angle formed by liquid-liquid injectors is larger, which benefits from the local high pressure zone near the pintle wall caused by the impingement of radial and axial sheets.
Mitani, Kurie; Narimatsu, Shizuo; Izushi, Fumio; Kataoka, Hiroyuki
2003-07-14
A simple and rapid method was developed for analyzing contamination of endocrine disruptors in liquid medicines and intravenous injection solutions. Endocrine disrupting compounds such as bisphenol A (BPA), alkylphenols and phthalates were quantitated by on-line in-tube solid-phase microextraction coupled with high performance liquid chromatography (in-tube SPME/HPLC) with UV detection. The liquid medicines and intravenous injection solutions could be used directly without any pretreatment, and the BPA, alkylphenols and phthalates in these solutions were automatically analyzed. The limits of quantification for these compounds were 1-10 ng/ml. Recoveries of these compounds spiked to the intravenous injection solutions was over 80%, except for some phthalates. Di-n-butyl phthalate (DBP) was detected at a concentration of 7-60 ng/ml in most intravenous injection solutions in plastic containers, but it was not detected in solutions in glass bottles. Diethyl phthalate, di-n-propyl phthalate, DBP and di-2-ethylhexyl phthalate (DEHP) were also detected in syrup, lotion and eye drops in plastic containers. On the other hand, BPA and alkylphenols were not detected at all in these solutions. DEHP contamination from an administration set increased when total vitamin formulation was added to the infusion solution. DEHP was easily leached from polyvinyl chloride tubing by polysorbate 80. The in-tube SPME/HPLC method is simple, rapid and automatic, and it provides a useful tool for the screening and determination of endocrine disruptor contamination in liquid medicines and intravenous injection solutions.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-25
... the Tariff Act of 1930, as amended, 19 U.S.C. 1337, on behalf of Compound Photonics Ltd. of the United Kingdom and Compound Photonics U.S. Corporation of Phoenix, Arizona. A supplement to the Complaint was... upon which this notice of investigation shall be served: (a) The complainants are: Compound Photonics...
Serum Albumin Beads: An Injectable, Biodegradable System for the Sustained Release of Drugs
NASA Astrophysics Data System (ADS)
Lee, Timothy K.; Sokoloski, Theodore D.; Royer, Garfield P.
1981-07-01
Biologically active compounds were entrapped in cross-linked serum albumin microbeads. Injection of these drug-impregnated beads into rabbits produced no adverse immunological reactions. Sustained release (20 days) of progesterone was demonstrated in vivo.
Micromachined needles and lancets with design adjustable bevel angles
NASA Astrophysics Data System (ADS)
Sparks, Douglas; Hubbard, Timothy
2004-08-01
A new method of micromachining hollow needles and two-dimensional needle arrays from single crystal silicon is described. The process involves a combination of fusion bonding, photolithography and anisotropic plasma etching. The cannula produced with this process can have design adjustable bevel angles, wall thickness and channel dimensions. A subset of processing steps can be employed to produce silicon blades and lancets with design adjustable bevel angles and shaft dimensions. Applications for this technology include painless drug infusion, blood diagnosis, glucose monitoring, cellular injection and the manufacture of microkeratomes for ocular, vascular and neural microsurgery.
Experiences on Cryogenic Injection under Supercritical Condition
2000-05-22
and Roshko [2] for incompressible but variable-density gaseous turbulent mixing layers. Fractal analysis of the jet boundary also shows a similarity to...spreading angle versus the chamber-to-injectant density ratio.(* refers to data taken at AFRL. - FRACTAL ANALYSIS OF THE JET RaLhtINRECDPSUE *This appeared to...be a suitable analysis method to investigate the morphology of the interfacial phenomena and in recent years a number of applications of fractal
Gallegos-Lopez, Gabriel
2012-10-02
Methods, system and apparatus are provided for increasing voltage utilization in a five-phase vector controlled machine drive system that employs third harmonic current injection to increase torque and power output by a five-phase machine. To do so, a fundamental current angle of a fundamental current vector is optimized for each particular torque-speed of operating point of the five-phase machine.
Estimation of equivalence ratio distribution in diesel spray using a computational fluid dynamics
NASA Astrophysics Data System (ADS)
Suzuki, Yasumasa; Tsujimura, Taku; Kusaka, Jin
2014-08-01
It is important to understand the mechanism of mixing and atomization of the diesel spray. In addition, the computational prediction of mixing behavior and internal structure of a diesel spray is expected to promote the further understanding about a diesel spray and development of the diesel engine including devices for fuel injection. In this study, we predicted the formation of diesel fuel spray with 3D-CFD code and validated the application by comparing experimental results of the fuel spray behavior and the equivalence ratio visualized by Layleigh-scatter imaging under some ambient, injection and fuel conditions. Using the applicable constants of KH-RT model, we can predict the liquid length spray on a quantitative level. under various fuel injection, ambient and fuel conditions. On the other hand, the change of the vapor penetration and the fuel mass fraction and equivalence ratio distribution with change of fuel injection and ambient conditions quantitatively. The 3D-CFD code used in this study predicts the spray cone angle and entrainment of ambient gas are predicted excessively, therefore there is the possibility of the improvement in the prediction accuracy by the refinement of fuel droplets breakup and evaporation model and the quantitative prediction of spray cone angle.
SEPTUM MAGNET DESIGN FOR THE APS-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abliz, M.; Jaski, M.; Xiao, A.
2017-06-25
The Advanced Photon Source is in the process of upgrading its storage ring from a double-bend to a multi-bend lattice as part of the APS Upgrade Project (APS-U). A swap-out injection scheme is planned for the APS-U to keep a constant beam current and to enable a small dynamic aperture. A septum magnet with a minimum thickness of 2 mm and an injection field of 1.06 T has been designed, delivering the required total deflecting angle is 89 mrad with a ring energy of 6 GeV. The stored beam chamber has an 8 mm x 6 mm super-ellipsoidal aperture. Themore » magnet is straight; however, it is tilted in yaw, roll, and pitch from the stored beam chamber to meet the on axis swap out injection requirements for the APS-U lattice. In order to minimize the leakage field inside the stored beam chamber, four different techniques were utilized in the design. As a result, the horizontal deflecting angle of the stored beam was held to only 5 µrad, and the integrated skew quadrupole inside the stored beam chamber was held to 0.09 T. The detailed techniques that were applied to the design, field multipoles, and resulting trajectories of the injected and stored beams are reported.« less
Fredrickson, E. D.; Belova, E. V.; Battaglia, D. J.; ...
2017-06-29
In this paper we present data from experiments on the National Spherical Torus Experiment Upgrade, where it is shown for the first time that small amounts of high pitch-angle beam ions can strongly suppress the counterpropagating global Alfven eigenmodes (GAE). GAE have been implicated in the redistribution of fast ions and modification of the electron power balance in previous experiments on NSTX. The ability to predict the stability of Alfven modes, and developing methods to control them, is important for fusion reactors like the International Tokamak Experimental Reactor, which are heated by a large population of nonthermal, super-Alfvenic ions consistingmore » of fusion generated alpha's and beam ions injected for current profile control. We present a qualitative interpretation of these observations using an analytic model of the Doppler-shifted ion-cyclotron resonance drive responsible for GAE instability which has an important dependence on k(perpendicular to rho L). A quantitative analysis of this data with the HYM stability code predicts both the frequencies and instability of the GAE prior to, and suppression of the GAE after the injection of high pitch-angle beam ions.« less
Spike-Nosed Bodies and Forward Injected Jets in Supersonic Flow
NASA Technical Reports Server (NTRS)
Gilinsky, M.; Washington, C.; Blankson, I. M.; Shvets, A. I.
2002-01-01
The paper contains new numerical simulation and experimental test results of blunt body drag reduction using thin spikes mounted in front of a body and one- or two-phase jets injected against a supersonic flow. Numerical simulations utilizing the NASA CFL3D code were conducted at the Hampton University Fluid Mechanics and Acoustics Laboratory (FM&AL) and experimental tests were conducted using the facilities of the IM/MSU Aeromechanics and Gas Dynamics Laboratory. Previous results were presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Those results were based on some experimental and numerical simulation tests for supersonic flow around spike-nosed or shell-nosed bodies, and numerical simulations were conducted only for a single spike-nosed or shell-nosed body at zero attack angle, alpha=0. In this paper, experimental test results of gas, liquid and solid particle jet injection against a supersonic flow are presented. In addition, numerical simulation results for supersonic flow around a multiple spike-nosed body with non-zero attack angles and with a gas and solid particle forward jet injection are included. Aerodynamic coefficients: drag, C(sub D), lift, C(sub L), and longitudinal momentum, M(sub z), obtained by numerical simulation and experimental tests are compared and show good agreement.
Spike-Nosed Bodies and Forward Injected Jets in Supersonic Flow
NASA Technical Reports Server (NTRS)
Gilinsky, M.; Washington, C.; Blankson, I. M.; Shvets, A. I.
2002-01-01
The paper contains new numerical simulation and experimental test results of blunt body drag reduction using thin spikes mounted in front of a body and one- or two-phase jets injected against a supersonic flow. Numerical simulations utilizing the NASA CFL3D code were conducted at the Hampton University Fluid Mechanics and Acoustics Laboratory (FM&AL) and experimental tests were conducted using the facilities of the IM/MSU Aeromechanics and Gas Dynamics Laboratory. Previous results were presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Those results were based on some experimental and numerical simulation tests for supersonic flow around spike-nosed or shell-nosed bodies, and numerical simulations were conducted only for a single spike-nosed or shell-nosed body at zero attack angle, alpha = 0 degrees. In this paper, experimental test results of gas, liquid and solid particle jet injection against a supersonic flow are presented. In addition, numerical simulation results for supersonic flow around a multiple spike-nosed body with non-zero attack angles and with a gas and solid particle forward jet injection are included. Aerodynamic coefficients: drag, C (sub D), lift, C(sub L), and longitudinal momentum, M(sub z), obtained by numerical simulation and experimental tests are compared and show good agreement.
Goldberg, Roger A; Flynn, Harry W; Miller, Darlene; Gonzalez, Serafin; Isom, Ryan F
2013-07-01
To report the 1-year clinical outcomes of an outbreak of Streptococcus endophthalmitis after intravitreal injection of bevacizumab, including visual acuity outcomes, microbiological testing, and compound pharmacy investigations by the Food and Drug Administration (FDA). Retrospective consecutive case series. Twelve eyes of 12 patients who developed endophthalmitis after receiving intravitreal bevacizumab prepared by a single compounding pharmacy. Medical records of patients were reviewed; phenotypic and DNA analyses were performed on microbes cultured from patients and from unused syringes. An inspection report by the FDA based on site visits to the pharmacy that prepared the bevacizumab syringes was summarized. Visual acuity, interventions received, time to intervention, microbiological consistency, and FDA inspection findings. Between July 5 and 8, 2011, 12 patients developed endophthalmitis after intravitreal bevacizumab from syringes prepared by a single compounding pharmacy. All patients received initial vitreous tap and injection, and 8 patients (67%) subsequently underwent pars plana vitrectomy (PPV). After 12 months follow-up, outcomes have been poor. Seven patients (58%) required evisceration or enucleation, and only 1 patient regained pre-injection visual acuity. Molecular testing using real-time polymerase chain reaction, partial sequencing of the groEL gene, and multilocus sequencing of 7 housekeeping genes confirmed the presence of a common strain of Streptococcus mitis/oralis in vitreous specimens and 7 unused syringes prepared by the compounding pharmacy at the same time. An FDA investigation of the compounding pharmacy noted deviations from standard sterile technique, inconsistent documentation, and inadequate testing of equipment required for safe preparation of medications. In this outbreak of endophthalmitis, outcomes have been generally poor, and PPV did not improve visual results at 1-year follow-up. Molecular testing confirmed a common strain of S. mitis/oralis. Contamination seems to have occurred at the compounding pharmacy, where numerous problems in sterile technique were noted by public health investigators. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Goldberg, Roger A.; Flynn, Harry W.; Miller, Darlene; Gonzalez, Serafin; Isom, Ryan F.
2013-01-01
Purpose To report the one-year clinical outcomes of an outbreak of Streptococcus endophthalmitis after intravitreal injection of bevacizumab, including visual acuity outcomes, microbiological testing and compound pharmacy investigations by the Food and Drug Administration (FDA). Design Retrospective consecutive case series. Participants 12 eyes of 12 patients who developed endophthalmitis after receiving intravitreal bevacizumab prepared by a single compounding pharmacy. Methods Medical records of patients were reviewed; phenotypic and DNA analyses were performed on microbes cultured from patients and from unused syringes. An inspection report by the FDA based on site-visits to the pharmacy that prepared the bevacizumab syringes was summarized. Main Outcome Measures Visual acuity, interventions received, time-to-intervention; microbiological consistency; FDA inspection findings. Results Between July 5 and July 8, 2011, 12 patients developed endophthalmitis after intravitreal bevacizumab from syringes prepared by a single compounding pharmacy. All patients received initial vitreous tap and injection, and eight (67%) subsequently underwent pars plana vitrectomy (PPV). After twelve months follow-up, outcomes have been poor: 7 patients (58%) required evisceration or enucleation, and only one patient regained pre-injection visual acuity. Molecular testing using real time polymerase chain reaction, partial sequencing of the groEL gene, and multilocus sequencing of 7 housekeeping genes confirmed the presence of a common strain of Streptococcus mitis/oralis in vitreous specimens and seven unused syringes prepared by the compounding pharmacy at the same time. An FDA investigation of the compounding pharmacy noted deviations from standard sterile technique, inconsistent documentation, and inadequate testing of equipment required for safe preparation of medications. Conclusions In this outbreak of endophthalmitis, outcomes have been generally poor and PPV did not improve visual results at one year follow-up. Molecular testing confirmed a common strain of Streptococcus mitis/oralis. Contamination appears to have occurred at the compounding pharmacy, where numerous problems in sterile technique were noted by public health investigators. PMID:23453511
NASA Astrophysics Data System (ADS)
Kolesnikov, E. K.; Klyushnikov, G. N.
2018-05-01
In the paper we continue the study of precipitation regions of high-energy charged particles, carried out by the authors since 2002. In contrast to previous papers, where a stationary source of electrons was considered, it is assumed that the source moves along a low circular near-earth orbit with a constant velocity. The orbit position is set by the inclination angle of the orbital plane to the equatorial plane and the longitude of the ascending node. The total number of injected electrons is determined by the source strength and the number of complete revolutions that the source makes along the circumference. Construction of precipitation regions is produced using the computational algorithm based on solving of the system of ordinary differential equations. The features of the precipitation regions structure for the dipole approximation of the geomagnetic field and the symmetrical arrangement of the orbit relative to the equator are noted. The dependencies of the precipitation regions on different orbital parametres such as the incline angle, the ascending node position and kinetic energy of injected particles have been considered.
NASA Technical Reports Server (NTRS)
Rothrock, A M; Waldron, C D
1936-01-01
An optical indicator and a high-speed motion-picture camera capable of operating at the rate of 2,000 frames per second were used to record simultaneously the pressure development and the flame formation in the combustion chamber of the NACA combustion apparatus. Tests were made at engine speeds of 570 and 1,500 r.p.m. The engine-jacket temperature was varied from 100 degrees to 300 degrees F. And the injection advance angle from 13 degrees after top center to 120 degrees before top center. The results show that the course of the combustion is largely controlled by the temperature and pressure of the air in the chamber from the time the fuel is injected until the time at which combustion starts and by the ignition lag. The conclusion is presented that in a compression-ignition engine with a quiescent combustion chamber the ignition lag should be the longest that can be used without excessive rates of pressure rise; any further shortening of the ignition lag decreased the effective combustion of the engine.
Compound floating pivot micromechanisms
Garcia, Ernest J.
2001-04-24
A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use compound floating pivot structures to attain far greater tilt angles than are practical using other micromechanical techniques. The new mechanisms are also capable of bi-directional tilt about multiple axes.
MTBE and priority contaminant treatment with high energy electron beam injection
NASA Astrophysics Data System (ADS)
Cooper, William J.; Nickelsen, Michael G.; Mezyk, Stephen P.; Leslie, Greg; Tornatore, Paul M.; Hardison, Wayne; Hajali, Paris A.
2002-11-01
A study was conducted to examine the removal of methyl tert-butyl ether (MTBE) and 15 other organic compounds, as well as perchlorate ion, in waters of different quality. The 15 organic compounds consisted of halogenated solvents (chlorination), disinfection by-products, pesticides, and nitrosodimethylamine (NDMA). These studies were conducted using a pilot scale 20 kW mobile electron beam system at Water Factory 21, Orange County, CA where wastewater is treated and re-injected into the ground as a barrier to salt water intrusion. Future applications for this treated water include water reuse. Ground water and treated wastewater, after having gone through a reverse osmosis-polishing step (RO permeate), were used to prepare mixtures of the compounds. Using fundamental radiation chemistry, it was possible to examine the factors effecting removal efficiency of all the compounds as well as MTBE destruction and reaction by-product formation and removal. All of the organic compounds were destroyed in the studies and we also observed the destruction of perchlorate ion in one of the waters.
NASA Astrophysics Data System (ADS)
Masuram, N. B.; Roux, J. A.; Jeswani, A. L.
2016-06-01
Liquid resin is injected into the tapered injection chamber through the injection slots to completely wetout the fiber reinforcements in a resin injection pultrusion process. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the centerline causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to effectively penetrate through the fibers and achieve complete wetout. Fiber volume fraction in the final pultruded composite is a key to decide the mechanical and/or chemical properties of the composite. If the fiber volume fraction is too high, more fibers are squeezed together creating a fiber lean region near the wall and fiber rich region away from the wall. Also, the design of the injection chamber significantly affects the minimum injection pressure required to completely wet the fibers. A tapered injection chamber is considered such that wetout occurs at lower injection pressures due to the taper angle of the injection chamber. In this study, the effect of fiber volume fraction on the fiber reinforcement compaction and complete fiber wetout for a tapered injection chamber is investigated.
Fea, Antonio M; Belda, Jose I; Rękas, Marek; Jünemann, Anselm; Chang, Lydia; Pablo, Luis; Voskanyan, Lilit; Katz, L Jay
2014-01-01
Purpose The purpose of this study was to compare outcomes of subjects with open-angle glaucoma (OAG) not controlled on one medication who underwent either implantation of two iStent inject® trabecular micro-bypass devices or received medical therapy consisting of a fixed combination of latanoprost/timolol. Patients and methods Of 192 subjects who qualified for the study and were enrolled, 94 were randomized to surgery with implantation of two iStent inject® devices in the treated eye and 98 to receive medical therapy. Results At the month 12 visit, 94.7% of eyes (89/94) in the stent group reported an unmedicated intraocular pressure (IOP) reduction of ≥20% versus baseline unmedicated IOP, and 91.8% of eyes (88/98) in the medical therapy group reported an IOP reduction ≥20% versus baseline unmedicated IOP. A 17.5% between-group treatment difference in favor of the iStent inject group was statistically significant (P=0.02) at the ≥50% level of IOP reduction. An IOP ≤18 mmHg was reported in 92.6% of eyes (87/94) in the iStent inject group and 89.8% of eyes (88/98) in the medical therapy group. Mean (standard deviation) IOP decreases from screening of 8.1 (2.6) mmHg and 7.3 (2.2) mmHg were reported in the iStent inject and medical therapy groups, respectively. A high safety profile was also noted in this study in both the iStent inject and medical therapy groups, as measured by stable best corrected visual acuity, cup-to-disc ratio, and adverse events. Conclusion These data show that the use of iStent inject is at least as effective as two medications, with the clinical benefit of reducing medication burden and assuring continuous treatment with full compliance to implant therapy as well as having a highly favorable safety profile. PMID:24855336
Aromatherapy: composition of the gaseous phase at equilibrium with liquid bergamot essential oil.
Leggio, Antonella; Leotta, Vanessa; Belsito, Emilia Lucia; Di Gioia, Maria Luisa; Romio, Emanuela; Santoro, Ilaria; Taverna, Domenico; Sindona, Giovanni; Liguori, Angelo
2017-11-02
This work compares the composition at different temperatures of gaseous phase of bergamot essential oil at equilibrium with the liquid phase. A new GC-MS methodology to determine quantitatively the volatile aroma compounds was developed. The adopted methodology involved the direct injection of headspace gas into injection port of GC-MS system and of known amounts of the corresponding authentic volatile compounds. The methodology was validated. This study showed that gaseous phase composition is different from that of the liquid phase at equilibrium with it.
Tsukada, Sachiyuki; Wakui, Motohiro; Hoshino, Akiho
2014-09-03
Although epidural analgesia has been used for postoperative pain control after total knee arthroplasty, its usefulness is being reevaluated because of possible adverse effects. Recent studies have proven the efficacy of periarticular analgesic injection and its low prevalence of adverse effects. The present study compares the clinical efficacies of epidural analgesia and periarticular injection after total knee arthroplasty. This is a prospective, single-center, randomized controlled trial involving patients scheduled for unilateral total knee arthroplasty. One hundred and eleven patients were randomly assigned to periarticular injection or epidural analgesia groups. All patients were managed with spinal anesthesia. The surgical technique and postoperative medication protocol were identical in both groups. The primary outcome was postoperative pain at rest, quantified as the area under the curve of the scores on a visual analog pain scale to seventy-two hours postoperatively. The Student t test and chi-square test were used to compare the data between groups. In the intention-to-treat analysis, the periarticular injection group had a significantly lower area under the curve for pain score at rest (788.0 versus 1065.9; p = 0.0059). In the periarticular injection group, the mean knee flexion angle was small but significantly better at postoperative day 1 (64.2° versus 54.6°; p = 0.0072) and postoperative day 2 (70.3° versus 64.6°; p = 0.021) than in the epidural analgesia group. The incidence of nausea at postoperative day 1 was significantly lower in the periarticular injection group (4.0% versus 44.3%; p < 0.0001). Transient peroneal nerve palsy was frequently seen in the periarticular injection group (12.0% versus 1.6%; p = 0.026). Compared with epidural analgesia, periarticular injection offers better postoperative pain relief, earlier recovery of knee flexion angle, and lower incidence of nausea. Care should be taken to avoid transient peroneal nerve palsy when using periarticular injection. Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
Novel molecule targets cytokinesis.
2015-01-01
Researchers have identified a new compound, OTS964, that blocks cytokinesis. Injections of the compound eliminated human lung tumors that had been transplanted into mice. Clinical trials of OTS964 may start next year. ©2014 American Association for Cancer Research.
Method for inhibiting silica precipitation and scaling in geothermal flow systems
Harrar, Jackson E.; Lorensen, Lyman E.; Locke, Frank E.
1982-01-01
A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Y.-H.; Jen, L.-N.; Su, H.-Y.
Garlic and its active components are known to possess antioxidant and antiinflammatory effects. The present study investigated the effects of garlic oil and its organosulfur compounds on endotoxin-induced intestinal mucosal damage. Wistar rats received by gavage 50 or 200 mg/kg body weight garlic oil (GO), 0.5 mmol/kg body weight diallyl disulfide or diallyl trisulfide, or the vehicle (corn oil; 2 ml/kg body weight) every other day for 2 weeks before being injected with endotoxin (i.p., 5 mg/kg body weight). Control rats were administered with corn oil and were injected with sterile saline. Samples for the measurement of proinflammatory cytokines weremore » collected 3 h after injection, and all other samples were collected 18 h after injection. The low dose of GO suppressed endotoxin-induced inducible nitric oxide synthase (iNOS) activity, ulceration, and apoptosis in the intestinal mucosa (P < 0.05). The high dose of GO significantly lowered the peripheral level of nitrate/nitrite and endotoxin-induced iNOS activity in the intestinal mucosa (P < 0.05) but worsened intestinal mucosal damage accompanied by elevated peripheral proinflammatory cytokines. Diallyl trisulfide but not diallyl disulfide showed similar toxic effect as that of high-dose GO. These results suggest the preventive effect and possible toxicity of garlic oil and its organosulfur compounds in endotoxin-induced systemic inflammation and intestinal damage.« less
Sharp plasma pinnacle structure based on shockwave for an improved laser wakefield accelerator
NASA Astrophysics Data System (ADS)
Fang, Ming; Zhang, Zhijun; Wang, Wentao; Liu, Jiansheng; Li, Ruxin
2018-07-01
We created a sharp plasma pinnacle structure for localized electron injection and controlled acceleration in a laser wakefield accelerator. The formation of this shockwave-based pinnacle structure was investigated using aerodynamic theory. Details and scaling laws for the shockwave angle, shock position, shock width, and density ratio were experimentally and theoretically presented. Such work is crucial to yielding an expected plasma density distribution in a laser–plasma experiment but has had little discussion in the literature. Compared with the commonly used shock downramp structure, the particle-in-cell simulations demonstrated that the e beam injected in the created pinnacle structure could be accelerated to higher energy with much smaller root-mean-square relative energy spread. Moreover, this study indicated that the beam charge and transverse emittance can be tuned by the shock angle.
Hossain, Mohammad Uzzal; Khan, Md. Arif; Rakib-Uz-Zaman, S. M.; Ali, Mohammad Tuhin; Islam, Md. Saidul; Keya, Chaman Ara; Salimullah, Md.
2016-01-01
Diabetes mellitus (DM) is one of the most prevalent metabolic disorders which can affect the quality of life severely. Injectable insulin is currently being used to treat DM which is mainly associated with patient inconvenience. Small molecules that can act as insulin receptor (IR) agonist would be better alternatives to insulin injection. Herein, ten bioactive small compounds derived from Gymnema sylvestre (G. sylvestre) were chosen to determine their IR binding affinity and ADMET properties using a combined approach of molecular docking study and computational pharmacokinetic elucidation. Designing structural analogues were also performed for the compounds associated with toxicity and less IR affinity. Among the ten parent compounds, six were found to have significant pharmacokinetic properties with considerable binding affinity towards IR while four compounds were associated with toxicity and less IR affinity. Among the forty structural analogues, four compounds demonstrated considerably increased binding affinity towards IR and less toxicity compared with parent compounds. Finally, molecular interaction analysis revealed that six parent compounds and four analogues interact with the active site amino acids of IR. So this study would be a way to identify new therapeutics and alternatives to insulin for diabetic patients. PMID:27034931
Hossain, Mohammad Uzzal; Khan, Md Arif; Rakib-Uz-Zaman, S M; Ali, Mohammad Tuhin; Islam, Md Saidul; Keya, Chaman Ara; Salimullah, Md
2016-01-01
Diabetes mellitus (DM) is one of the most prevalent metabolic disorders which can affect the quality of life severely. Injectable insulin is currently being used to treat DM which is mainly associated with patient inconvenience. Small molecules that can act as insulin receptor (IR) agonist would be better alternatives to insulin injection. Herein, ten bioactive small compounds derived from Gymnema sylvestre (G. sylvestre) were chosen to determine their IR binding affinity and ADMET properties using a combined approach of molecular docking study and computational pharmacokinetic elucidation. Designing structural analogues were also performed for the compounds associated with toxicity and less IR affinity. Among the ten parent compounds, six were found to have significant pharmacokinetic properties with considerable binding affinity towards IR while four compounds were associated with toxicity and less IR affinity. Among the forty structural analogues, four compounds demonstrated considerably increased binding affinity towards IR and less toxicity compared with parent compounds. Finally, molecular interaction analysis revealed that six parent compounds and four analogues interact with the active site amino acids of IR. So this study would be a way to identify new therapeutics and alternatives to insulin for diabetic patients.
ANALYSIS OF VOLATILES AND SEMIVOLATILES BY DIRECT AQUEOUS INJECTION
Direct aqueous injection analysis (DAI) with gas chromatographic separation and ion trap mass spectral detection was used to analyze aqueous samples for g/L levels of 54 volatile and semivolatile compounds, and problematic non-purgeables and non-extractables. The method reduces ...
Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D
NASA Astrophysics Data System (ADS)
Shiraki, D.; Commaux, N.; Baylor, L. R.; Cooper, C. M.; Eidietis, N. W.; Hollmann, E. M.; Paz-Soldan, C.; Combs, S. K.; Meitner, S. J.
2018-05-01
We report on the first demonstration of dissipation of fully avalanched post-disruption runaway electron (RE) beams by shattered pellet injection in the DIII-D tokamak. Variation of the injected species shows that dissipation depends strongly on the species mixture, while comparisons with massive gas injection do not show a significant difference between dissipation by pellets or by gas, suggesting that the shattered pellet is rapidly ablated by the relativistic electrons before significant radial penetration into the runaway beam can occur. Pure or dominantly neon injection increases the RE current dissipation through pitch-angle scattering due to collisions with impurity ions. Deuterium injection is observed to have the opposite effect from neon, reducing the high-Z impurity content and thus decreasing the dissipation, and causing the background thermal plasma to completely recombine. When injecting mixtures of the two species, deuterium levels as low as ∼10% of the total injected atoms are observed to adversely affect the resulting dissipation, suggesting that complete elimination of deuterium from the injection may be important for optimizing RE mitigation schemes.
Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraki, D.; Commaux, N.; Baylor, L. R.
Here, we report on the first demonstration of dissipation of fully avalanched post-disruption runaway electron (RE) beams by shattered pellet injection in the DIII-D tokamak. Variation of the injected species shows that dissipation depends strongly on the species mixture, while comparisons with massive gas injection do not show a significant difference between dissipation by pellets or by gas, suggesting that the shattered pellet is rapidly ablated by the relativistic electrons before significant radial penetration into the runaway beam can occur. Pure or dominantly neon injection increases the RE current dissipation through pitch-angle scattering due to collisions with impurity ions. Deuteriummore » injection is observed to have the opposite effect from neon, causing the background thermal plasma to completely recombine, reducing the high-Z impurity content and thus decreasing the dissipation. When injecting mixtures of the two species, deuterium levels as low as ~10% of the total injected atoms are observed to adversely affect the resulting dissipation, suggesting that complete elimination of deuterium from the injection may be important for optimizing RE mitigation schemes.« less
Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D
Shiraki, D.; Commaux, N.; Baylor, L. R.; ...
2018-03-07
Here, we report on the first demonstration of dissipation of fully avalanched post-disruption runaway electron (RE) beams by shattered pellet injection in the DIII-D tokamak. Variation of the injected species shows that dissipation depends strongly on the species mixture, while comparisons with massive gas injection do not show a significant difference between dissipation by pellets or by gas, suggesting that the shattered pellet is rapidly ablated by the relativistic electrons before significant radial penetration into the runaway beam can occur. Pure or dominantly neon injection increases the RE current dissipation through pitch-angle scattering due to collisions with impurity ions. Deuteriummore » injection is observed to have the opposite effect from neon, causing the background thermal plasma to completely recombine, reducing the high-Z impurity content and thus decreasing the dissipation. When injecting mixtures of the two species, deuterium levels as low as ~10% of the total injected atoms are observed to adversely affect the resulting dissipation, suggesting that complete elimination of deuterium from the injection may be important for optimizing RE mitigation schemes.« less
Dai, Lei; Wang, Chi; Duan, Suping; ...
2015-08-10
Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeVelectron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L ~ 5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ~40 s and a dispersionless injection of electrons up to ~3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarizationmore » front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.« less
Catadioptric planar compound eye with large field of view.
Deng, Huaxia; Gao, Xicheng; Ma, Mengchao; Li, Yunyang; Li, Hang; Zhang, Jin; Zhong, Xiang
2018-05-14
The planar compound eye has the advantages of simple structure and no requirement for complex relay optical elements, but the field of view (FOV) is very difficult to expand. Overcoming the limitation of FOV, especially with simple structures, is a great challenge for the development of planar compound eyes. Different from the existing designs that only considering refraction, this article proposes a catadioptric planar compound eye based on the reflection and refraction to expand the FOV. In the proposed design, the incident light from a large angle is reflected into the lenslet array by two rotationally symmetric mirrors whose surface equations are optimized by mathematical and optical softwares. The FOV of the proposed catadioptric planar compound eye theoretically can reach 96.6°, which is much wider than the opening record of 70°. Moreover, no distortion of the imaging system can be obtained theoretically in this design. Simulation results show a linearity of better than 99% for the most of the incident angles. The verification experiments show that the FOV of the proposed device can reach 90.7° while the FOV of the corresponding planar compound eye without mirrors is 41.6°. The proposed catadioptric planar compound eye has the great potential in monitoring, detection and virtual reality since the FOV has been widen significantly.
Duval, Johanna; Colas, Cyril; Pecher, Virginie; Poujol, Marion; Tranchant, Jean-François; Lesellier, Eric
2017-08-04
An analytical method based on Ultra-High-Performance Supercritical Fluid Chromatography (UHPSFC) coupled with Atmospheric Pressure Chemical Ionization - High-resolution mass spectrometry (APCI-Q-TOF-HRMS) was developed for compounds screening from oily samples. The hyphenation was made using a commercial UHPLC device coupled to a CO 2 pump in order to perform the chromatographic analysis. An adaptation of the injection system for compressible fluids was accomplished for this coupling: this modification of the injection sequence was achieved to prevent unusual variations of the injected volume related to the use of a compressible fluid. UHPSFC-HRMS hyphenation was optimized to enhance the response of the varied compounds from a seed extract (anthraquinones, free fatty acids, diacylglycerols, hydroxylated triacylglycerols and triacylglycerols). No split was used prior to the APCI ionization source, allowing introducing all the compounds in the spectrometer, ensuring a better sensitivity for minor compounds. The effects of a mechanical make-up (T-piece) added before this ionization source was discussed in terms of standard deviation of response, response intensity and fragmentation percentage. The location of the T-piece with regards to the backpressure regulator (BPR), the flow rate and the nature of the make-up solvent were studied. Results show that the effects of the studied parameters depend on the nature of the compounds, whereas the make-up addition favours the robustness of the mass response (quantitative aspect). Copyright © 2017 Elsevier B.V. All rights reserved.
Parametric Studies of Flow Separation using Air Injection
NASA Technical Reports Server (NTRS)
Zhang, Wei
2004-01-01
Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as a function of the key variables. Next, the variables such as the slot geometry can be optimized using the build-in optimizer within JMP. Finally, a wind tunnel testing will be conducted using the optimized slot geometry and other key variables to verify the empirical statistical model. The long term goal for this effort is to assess the impacts of active flow control using air injection at system level as one of the task plan included in the NASAs URETI program with Georgia Institute of Technology.
Fang, Fang; Liu, Gengtao
2007-12-01
The aim of the present study was to access the protective effect of a novel synthesized squamosamide cyclic analogue, compound FLZ, on memory impairment in artificially senescent mice induced by chronic injection of D-galactose and sodium nitrite (NaNO(2)). Artificially senescent mouse model was induced by consecutive injection of D-galactose (120 mg/kg) and NaNO(2) (90 mg/kg) once daily for 60 days. Compound FLZ (75 and 150 mg/kg) was orally administered once daily for 30 days after D-galactose and NaNO(2) injection for 30 days. The water maze test was used to evaluate the learning and memory function of mice. The content of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in serum were determined using different biochemical kits. The alterations in hippocampus morphology were assessed by light and electronic microscope. Immunoreactive cells of Bcl-2 in the hippocampus were counted by immunohistochemical staining, and Bcl-2 protein expression was analysed by Western blot method. The results indicate that injection of D-galactose and NaNO(2) induces memory impairment and neuronal damage in hippocampus of mice. In addition, serum SOD and GSH-Px activities decreased, while MDA level increased. Bcl-2-positive neurons and Bcl-2 protein expression in the hippocampus decreased remarkably. Oral administration of FLZ for 30 days significantly improved the cognitive deficits and the biochemical markers mentioned above, and also reduced the pathological alterations in mouse hippocampus. The results suggest that FLZ ameliorates memory deficits and pathological injury in artificially senescent mice induced by chronic injection of D-galactose and NaNO(2), indicating that FLZ is worth further studies for fighting antisenescence and dementia.
Modeling of lithium granule injection in NSTX using M3D-C1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fil, A.; Kolemen, E.; Ferraro, N.
In this paper, we present simulations of pedestal control by lithium granule injection (LGI) in NSTX. A model for small granule ablation has been implemented in the M3D-C1 code (Jardin et al 2012 Comput. Sci. Discovery 5 014002), allowing the simulation of realistic lithium granule injections. 2D and 3D simulations of Li injections in NSTX H-mode plasmas are performed and the effect of granule size, injection angle and velocity on the pedestal gradient increase is studied. The amplitude of the local pressure perturbation caused by the granules is found to be highly dependent on the solid granule size. Adjusting themore » granule injection velocity allows one to inject more particles at the pedestal top. 3D simulations show the destabilization of high order MHD modes whose amplitude is directly linked to the localized pressure perturbation, which is found to depend on the toroidal localization of the granule density source.« less
Modeling of lithium granule injection in NSTX using M3D-C1
Fil, A.; Kolemen, E.; Ferraro, N.; ...
2017-04-06
In this paper, we present simulations of pedestal control by lithium granule injection (LGI) in NSTX. A model for small granule ablation has been implemented in the M3D-C1 code (Jardin et al 2012 Comput. Sci. Discovery 5 014002), allowing the simulation of realistic lithium granule injections. 2D and 3D simulations of Li injections in NSTX H-mode plasmas are performed and the effect of granule size, injection angle and velocity on the pedestal gradient increase is studied. The amplitude of the local pressure perturbation caused by the granules is found to be highly dependent on the solid granule size. Adjusting themore » granule injection velocity allows one to inject more particles at the pedestal top. 3D simulations show the destabilization of high order MHD modes whose amplitude is directly linked to the localized pressure perturbation, which is found to depend on the toroidal localization of the granule density source.« less
Method for inhibiting silica precipitation and scaling in geothermal flow systems
Harrar, J.E.; Lorensen, L.E.; Locke, F.E.
1980-06-13
A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds is described.
Searching for O-X-B mode-conversion window with monitoring of stray microwave radiation in LHD
NASA Astrophysics Data System (ADS)
Igami, H.; Kubo, S.; Laqua, H. P.; Nagasaki, K.; Inagaki, S.; Notake, T.; Shimozuma, T.; Yoshimura, Y.; Mutoh, T.; LHD Experimental Group
2006-10-01
In the Large Helical Device, the stray microwave radiation is monitored by using so-called sniffer probes during electron cyclotron heating. In monitoring the stray radiation, we changed the microwave beam injection angle and search the O-X-B mode-conversion window to excite electron Bernstein waves (EBWs). When the microwave beam is injected toward the vicinity of the predicted O-X-B mode-conversion window, the electron temperature rises in the central part of overdense plasmas. In that case, the stray radiation level near the injection antenna becomes low. These results indicate that monitoring the stray radiation near the injection antenna is helpful in confirming the effectiveness of excitation of EBWs simply without precise analysis.
Premixed direct injection nozzle for highly reactive fuels
Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang
2013-09-24
A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.
Local monitoring of post-treatment drinking water using bench-top mass spectrometers could identify target compounds in a mass spectral library. However, a terrorist might seek to incite greater hysteria by injecting or infusing a mixture of unanticipated compounds of unknown tox...
Nadir Ayrilmis; Turgay Akbulut; Turker Dundar; Robert H. White; Fatih Mengeloglu; Umit Buyuksari; Zeki Candan; Erkan Avci
2012-01-01
Physical, mechanical, and fire properties of the injection-molded wood flour/polypropylene composites incorporated with different contents of boron compounds; borax/boric acid and zinc borate, and phosphate compounds; mono and diammonium phosphates were investigated. The effect of the coupling agent content, maleic anhydride-grafted polypropylene, on the properties of...
Wang, Hao; Wang, Yi-Bin; Liu, Bo-Nian; Tang, Shi-Gui; Wei, Ping
2008-01-01
In the title compound C21H21P, the P atom is situated on a crystallographic threefold rotatory-inversion axis, resulting in threefold rotation symmetry of the title compound. The dihedral angles between the symmetry-related benzene rings are 87.40 (18)°. PMID:21201763
Georlette, O; Gordon, J M
1994-07-01
Generalized nonimaging compound elliptical luminaires (CEL's) and compound hyperbolic luminaires (CHL's) are developed for pair-overlap illumination applications. A comprehensive analysis of CEL's and CHL's is presented. This includes the possibility of reflector truncation, as well as the extreme direction that spans the full range from positive to negative. Negative extreme direction devices have been overlooked in earlier studies and are shown to be well suited to illumination problems for which large cutoff angles are required. Flux maps can be calculated analytically without the need for computer ray tracing. It is demonstrated that, for a broad range of cutoff angles, adjacent pairs of CEL's and CHL's can generate highly uniform far-field illuminance while maintaining maximal lighting efficiency and excellent glare control. The trade-off between luminaire compactness and flux homogeneity is also illustrated. For V troughs, being a special case of CHL's and being well suited to simple, inexpensive fabri ation, we identify geometries that closely approach the performance characteristics of the optimized CEL's and CHL's.
1992-12-01
composite system was made of carbon black-filled proprietary rubber compound matrix and 1260/2 39- 6 nylon cord reinforcement laid at an angle of +/-38...1.5 urn. 2) These are ternary compounds without the additional complication of added phosphorous as in the common compound InGaAsP. 3) Recent...theoretical coirputations indicate that these compounds may have large optical nonlinearities. For thin layers the lattice mismatch induces internal strain
LABORATORY MICROCOSM EXPERIMENTS OF OXIDATION PROCESSES AFTER STEAM INJECTION
Aggressive thermal methods such as steam injection or resistive heating are known to be effective for the recovery of many types of volatile and semivolatile compounds. It has been suggested that oxidation or other chemical reactions that occur at remediation temperatures can ai...
IDENTIFICATION OF BIS(2-CHLOROETHYL) ETHER HYDROLYSIS PRODUCTS BY DIRECT AQUEOUS INJECTION GC/FT-IR
Gas chromatography coupled to Fourier-transform infrared spectroscopy (GC/FT-IR) is rapidly becoming an accepted analytical technique complementary to GC/mass spectroscopy for identifying organic compounds in mixtures at low to moderate concentrations. irect aqueous injection (DA...
DNP System Output Volume Reduction Using Inert Fluids
Peterson, Eric T; Gordon, Jeremy W; Erickson, Matthew G; Fain, Sean B; Rowland, Ian J
2011-01-01
Purpose To present a method for significantly increasing the concentration of a hyperpolarized compound produced by a commercial DNP polarizer, enabling the polarization process to be more suitable for pre-clinical applications. Materials and Methods Using a HyperSense® DNP polarizer, we have investigated the combined use of perfluorocarbon and water to warm and dissolve the hyperpolarized material from the polarization temperature of 1.4 K to produce material at temperatures suitable for injection. Results By replacing 75% of the water in the dissolution volume with a chemically and biologically inert liquid that is immiscible with water, the injection volume can be reduced fourfold Rapid separation of the water and perfluorocarbon mixture enables the aqueous layer containing polarized material to be easily and rapidly collected. Conclusion The approach provides a significantly increased concentration of compound in a volume for injection that is more appropriate for small animal studies. This is demonstrated for 13C labeled pyruvic acid and 13C labeled succinate, but may be applied to the majority of nuclei and compounds hyperpolarized by the DNP method. PMID:21448970
Al-Fahdan, Najat Saeed; Asiri, Abdullah M; Irfan, Ahmad; Basaif, Salem A; El-Shishtawy, Reda M
2014-12-01
Squaraine dyes have attracted significant attention in many areas of daily life from biomedical imaging to semiconducting materials. Moreover, these dyes are used as photoactive materials in the field of solar cells. In the present study, we investigated the structural, electronic, photophysical, and charge transport properties of six benzothiazole-based squaraine dyes (Cis-SQ1-Cis-SQ3 and Trans-SQ1-Trans-SQ3). The effect of electron donating (-OCH3) and electron withdrawing (-COOH) groups was investigated intensively. Ground state geometry and frequency calculations were performed by applying density functional theory (DFT) at B3LYP/6-31G** level of theory. Absorption spectra were computed in chloroform at the time-dependent DFT/B3LYP/6-31G** level of theory. The driving force of electron injection (ΔG (inject)), relative driving force of electron injection (ΔG r (inject)), electronic coupling constants (|VRP|) and light harvesting efficiency (LHE) of all six compounds were calculated and compared with previously studied sensitizers. The ΔG (inject), ΔG r (inject) and |VRP| of all six compounds revealed that these sensitizers would be efficient dye-sensitized solar cell materials. Cis/Trans-SQ3 exhibited superior LHE as compared to other derivatives. The Cis/Trans geometric effect was studied and discussed with regard to electro-optical and charge transport properties.
Su, Ya-Ling; Cheng, Shu-Hua
2015-12-11
In this work, an electrochemical sensor coupled with an effective flow-injection amperometry (FIA) system is developed, targeting the determination of gallic acid (GA) in a mild neutral condition, in contrast to the existing electrochemical methods. The sensor is based on a thin electroactive poly(melamine) film immobilized on a pre-anodized screen-printed carbon electrode (SPCE*/PME). The characteristics of the sensing surface are well-characterized by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and surface water contact angle experiments. The proposed assay exhibits a wide linear response to GA in both pH 3 and pH 7.0 phosphate buffer solutions (PBS) under the optimized flow-injection amperometry. The detection limit (S/N = 3) is 0.076 μM and 0.21 μM in the pH 3 and pH 7 solutions, respectively. A relative standard deviation (RSD) of 3.9% is obtained for 57 successive measurements of 50 μM GA in pH 7 solutions. Interference studies indicate that some inorganic salts, catechol, caffeine and ascorbic acid do not interfere with the GA assay. The interference effects from some orthodiphenolic compounds are also investigated. The proposed method and a conventional Folin-Ciocalteu method are applied to detect GA in green tea samples using the standard addition method, and satisfactory spiked recoveries are obtained. Copyright © 2015 Elsevier B.V. All rights reserved.
Fate and Transport of Select Hydraulic Fracturing Compounds of Potential Concern
Use of proprietary mixtures of reagents in fracing fluids injected in deep zones, has led to controversy over potential contamination of drinking water aquifers. This presentation focuses on the different classes of compounds identified in fracing fluids.
Ab interno trabecular bypass surgery with iStent for open angle glaucoma
Le, Jimmy T; Bicket, Amanda K; Li, Tianjing
2018-01-01
This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: The primary objective is to assess the comparative effectiveness and safety of ab interno trabecular bypass surgery with iStent or iStent inject for OAG in comparison to conventional medical, laser, or surgical treatment. A secondary objective is to examine the effectiveness and safety of iStent or iStent Inject surgery in people who have concomitant phacoemulsification. PMID:27526051
6-Methyluracil derivatives as acetylcholinesterase inhibitors for treatment of Alzheimer's disease.
Zueva, I V; Semenov, V E; Mukhamedyarov, M A; Lushchekina, S V; Kharlamova, A D; Petukhova, E O; Mikhailov, A S; Podyachev, S N; Saifina, L F; Petrov, K A; Minnekhanova, O A; Zobov, V V; Nikolsky, E E; Masson, P; Reznik, V S
2015-01-01
Alzheimer's disease (AD) is the major age-related progressive neurodegenerative disorder. The brain of AD patients suffers from loss of cholinergic neurons and decreased number of synapses [1]. AD is caused by an imbalance between Aβ production and clearance, resulting in increased amount of Aβ in various forms [2]. Reduction of Aβ production and increasing clearance of Aβ pathogenic forms are key targets in the development of potential therapeutic agents for AD treatment. Unfortunately, only nosotropic approaches for treatment of AD are currently effective in humans. These approaches mainly focus on the inhibition of brain acetyl-cholinesterase (AChE) to increase lifetime of cerebral acetylcholine [3]. It is important to emphasize that AChE itself promotes the formation of Aβ fibrils in vitro and Aβ plaques in the cerebral cortex of transgenic mouse models of AD [4]. This property of AChE results from interaction between Aβ and the peripheral anionic site of the enzyme (PAS) [5]. Dual binding site inhibitors of both catalytic active site (CAS) and PAS can simultaneously improve cognition and slow down the rate of Aβ-induced neural degeneration. Unfortunately, the assortment of AChE PAS ligands is still extremely limited. To study putative advantages of AChE non-charged PAS inhibitors based on 6-methyluracil derivatives for the treatment of Alzheimer's disease. In vitro studies. Concentration of drug producing 50% of AChE/BuChE activity inhibition (IC50) was measured using the method of Ellman et al. [6]. Toxicological experiments were performed using IP injection of the different compounds in mice. LD50, dose (in mg/kg) causing lethal effects in 50% of animals was taken as a criterion of toxicity [7]. The ability of compound to block in vitro AChE-induced Aβ1-40 aggregation was studied using a thioflavin T (ThT) fluorescent probe [8].In vivo biological assays. For in vivo blood-brain barrier permeation assay brains were removed 30 min after IP injection of LD50 dose of tested compound injection. The inhibitory potency was measured using the method of Ellman.Scopolamine and transgenic models of AD were used to evaluate the influence of compound 35 on spatial memory performance.Water solution of scopolamine was injected to mice (ip) 20 minutes before starting memory test during 14 days [9]. Mice were assigned to 7 groups, including 4 groups receiving injection (ip) of compound in different dosages, donepezil-treated mice (donepezil is conventionally used to treat Alzheimer's disease), positive and negative control groups. Double transgenic (APP/PS1) mice expressing a chimeric mouse/human amyloid precursor protein and a mutant of human presenilin-1 [10] were assigned to 4 groups, including transgenic animals injected (ip) with compound 35 or donepezil solution, positive (transgenes injected with water) and negative (wild-type mice) controls.To evaluate spatial memory performance, mice were trained on a reward alternation task using a conventional T-maze [11]. The criterion for a mouse having learned the rewarded alternation task was 3 consecutive days of at least 5 correct responses out of the 6 free trials.For β-amyloid peptide load was evaluated quantitatively as a number and summary area of Thioflavine S fluorescent spots in cerebral cortex and hippocampal images using Image J program. Statistical analyses were performed using the Mann-Whitney test. We evaluated the acute toxicity of the most active compounds. The most potent AChE inhibitor compound 35 (IC50 (AChE) = 5 ± 0.5 nM) exhibited the lowest LD50 values (51 mg/kg) and inhibited brain AChE by more than 71 ± 1%. Compound 35 at 10 nM, exhibited a significant (35 ± 9%) inhibitory activity toward human AChE-induced Aβ aggregation.Scopolamine injection induced significant decrease in correct choice percentage in T-maze, as well as decrease in percentage of mice reaching criterion for learning the task by day 14. This memory deficit was relieved to some extent either by compound 35 (5 mg/kg) or donepezil (reference compound) treatment (0.75 mg/kg). Interestingly, higher doses of compound 35 (10 and 15 mg/kg) produced less therapeutic effect on spatial memory deficit.Group of APP/PS1 mice showed 3 times lower percentage of reaching behavioral criterion and lower percentage of correct choice in T-maze alternation task comparing to WT mice, whereas compound 35 (5 mg/kg) or Donepezil treatment effectively improved these parameters in APP/PS1 mice.Compound 35 treatment (5 mg/kg) during 14 days significantly reduced percentage of summary area and number of β-amyloid peptide (βAP) deposits visualized in sections of cerebral cortex, dentate gyrus, and hippocampal CA3 area in APP/PS1 mice. The most prominent reduction of βAP load by compound 35 treatment was found in CA3 area and cerebral cortex. Meanwhile, Donepezil treatment (1 mg/kg) during 14 days significantly reduced βAP load in cerebral cortex but not in dentate gyrus and CA3 area. Experiments showed that the most potent AChE inhibitor compound 35 (6-methyluracil derivative) permeated the blood-brain barrier, improved working memory in the APP/PS1 transgenic mice and significantly reduced the number and area of Aβ plaques in the brain. Thus, compound 35 is a promising candidate as a bi-functional inhibitor of AChE for treatment of AD.
Asymmetric design for Compound Elliptical Concentrators (CEC) and its geometric flux implications
NASA Astrophysics Data System (ADS)
Jiang, Lun; Winston, Roland
2015-08-01
The asymmetric compound elliptical concentrator (CEC) has been a less discussed subject in the nonimaging optics society. The conventional way of understanding an ideal concentrator is based on maximizing the concentration ratio based on a uniformed acceptance angle. Although such an angle does not exist in the case of CEC, the thermodynamic laws still hold and we can produce concentrators with the maximum concentration ratio allowed by them. Here we restate the problem and use the string method to solve this general problem. Built on the solution, we can discover groups of such ideal concentrators using geometric flux field, or flowline method.
A tapered dielectric waveguide solar concentrator for a compound semiconductor photovoltaic cell.
Park, Minkyu; Oh, Kyunghwan; Kim, Jeong; Shin, Hyun Woo; Oh, Byung Du
2010-01-18
A novel tapered dielectric waveguide solar concentrator is proposed for compound semiconductor solar cells utilizing optical fiber preform. Its light collecting capability is numerically simulated and experimentally demonstrated for feasibility and potential assessments. Utilizing tapered shape of an optical fiber preform with a step-index profile, low loss guidance was enhanced and the limitation in the acceptance angle of solar radiation was alleviated by an order of magnitude. Using a solar simulator the device performances were experimentally investigated and discussed in terms of the photocurrent improvements. Total acceptance angle exceeding +/- 6 degrees was experimentally achieved sustaining a high solar flux.
Cortés, Camilo; de Los Reyes-Guzmán, Ana; Scorza, Davide; Bertelsen, Álvaro; Carrasco, Eduardo; Gil-Agudo, Ángel; Ruiz-Salguero, Oscar; Flórez, Julián
2016-01-01
Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury). The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement. The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton. This approximation is rough since their kinematic structures differ. Motion capture systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup. Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing parallel kinematic chains. EIKPE has been tested with single DOF movements of the wrist and elbow joints. This paper presents the assessment of EIKPE with elbow-shoulder compound movements (i.e., object prehension). Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage). The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compound movement execution, especially for the shoulder joint angles. This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types.
Effect of reflection losses on stationary dielectric-filled nonimaging concentrators
NASA Astrophysics Data System (ADS)
Madala, Srikanth; Boehm, Robert F.
2016-10-01
The effect of Fresnel reflection and total internal reflection (TIR) losses on the performance parameters in refractive solar concentrators has often been downplayed because most refractive solar concentrators are traditionally the imaging type, yielding a line or point image on the absorber surface when solely interacted with paraxial etendue ensured by solar tracking. Whereas, with refractive-type nonimaging solar concentrators that achieve two-dimensional (rectangular strip) focus or three-dimensional (circular or elliptical) focus through interaction with both paraxial and nonparaxial etendue within the acceptance angle, the Fresnel reflection and TIR losses are significant as they will affect the performance parameters and, thereby, energy collection. A raytracing analysis has been carried out to illustrate the effects of Fresnel reflection and TIR losses on four different types of stationary dielectric-filled nonimaging concentrators, namely V-trough, compound parabolic concentrator, compound elliptical concentrator, and compound hyperbolic concentrator. The refractive index (RI) of a dielectric fill material determines the acceptance angle of a solid nonimaging collector. Larger refractive indices yield larger acceptance angles and, thereby, larger energy collection. However, they also increase the Fresnel reflection losses. This paper also assesses the relative benefit of increasing RI from an energy collection standpoint.
Impulsive Injection for Compressor Stator Separation Control
NASA Technical Reports Server (NTRS)
Culley, Dennis E.; Braunscheidel, Edward P.; Bright, Michelle M.
2005-01-01
Flow control using impulsive injection from the suction surface of a stator vane has been applied in a low speed axial compressor. Impulsive injection is shown to significantly reduce separation relative to steady injection for vanes that were induced to separate by an increase in vane stagger angle of 4 degrees. Injected flow was applied to the airfoil suction surface using spanwise slots pitched in the streamwise direction. Injection was limited to the near-hub region, from 10 to 36 percent of span, to affect the dominant loss due to hub leakage flow. Actuation was provided externally using high-speed solenoid valves closely coupled to the vane tip. Variations in injected mass, frequency, and duty cycle are explored. The local corrected total pressure loss across the vane at the lower span region was reduced by over 20 percent. Additionally, low momentum fluid migrating from the hub region toward the tip was effectively suppressed resulting in an overall benefit which reduced corrected area averaged loss through the passage by 4 percent. The injection mass fraction used for impulsive actuation was typically less than 0.1 percent of the compressor through flow.
NASA Astrophysics Data System (ADS)
Thomas, Randal; Conaway, Christopher; Saad, Nabil; Kharaka, Yousif
2013-04-01
Identification of fluid migration and escape from intentionally altered subsurface geologic systems, such as in hydraulic fracturing, enhanced oil recovery, and carbon sequestration activities, is an important issue for environmental regulators based on the traction that the "fracking" process is gathering across the United States. Given diverse injected fluid compositions and the potential for toxic or regulated compounds to be released, one of the most important steps in the process is accurately identifying evidence of injected fluid escape during and after injection processes. An important tool in identifying differences between the natural groundwater and injected fluid is the isotopic composition of dissolved constituents including inorganic components such as Sr and carbon isotopes of the dissolved organic compounds. Since biological processes in the mesothermal subsurface can rapidly alter the organic composition of a fluid, stable carbon isotopes of the dissolved organic compounds (DOC) are an effective means to identify differences in the origin of two fluids, especially when coupled with inorganic compound analyses. The burgeoning field of cavity ring-down spectroscopy (CRDS) for isotopic analysis presents an opportunity to obtain rapid, reliable and cost-effective isotopic measurements of DOC in potentially affected groundwater for the identification of leakage or the improvement of hydrogeochemical pathway models. Here we adapt the use of the novel hyphenated TOC-CRDS carbon isotope analyzer for the analysis of DOC in produced water by wet oxidation and describe the methods to evaluate performance and obtain useful information at higher salinities. Our methods are applied to a specific field example in a CO2-enhanced EOR field in Cranfield, Mississippi (USA) as a means to demonstrate the ability to distinguish natural and injected DOC using the stable isotopic composition of the dissolved organic carbon when employing the novel TOC-CRDS instrumentation set up.
Li, Ming-Quan; Xie, Yan-Ming; Zhao, Jian-Jun
2012-09-01
Shuxuetong injection is a kind of compound injection which is made from traditional Chinese medicine Hirudo and Pheretime, which has a clear anticoagulant, fibrinolytic promoting, blood rheology improving, blood lipids regulating and cell protecting effect, and the injection has been widely used in clinical. Especially, the injection has often been combined with other Chinese and modern medicine in the treatment of cerebral infarction disease. However, there are still many non-standard and irrational aspects in clinical practice so as to make a more reasonable and safer use of Shuxuetong injection. In order to avoid the occurrence of adverse reactions to provide a reference for regulating the use of the injection,the paper systematically expounds the Shuxuetong injection's main clinical problems and the reasonable combination.
NASA Technical Reports Server (NTRS)
Wang, C. R.; Papell, S. S.
1983-01-01
Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.
NASA Astrophysics Data System (ADS)
Wang, C. R.; Papell, S. S.
1983-09-01
Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.
Tunable polarization plasma channel undulator for narrow bandwidth photon emission
Rykovanov, S. G.; Wang, J. W.; Kharin, V. Yu.; ...
2016-09-09
The theory of a plasma undulator excited by a short intense laser pulse in a parabolic plasma channel is presented. The undulator fields are generated either by the laser pulse incident off-axis and/or under the angle with respect to the channel axis. Linear plasma theory is used to derive the wakefield structure. It is shown that the electrons injected into the plasma wakefields experience betatron motion and undulator oscillations. Optimal electron beam injection conditions are derived for minimizing the amplitude of the betatron motion, producing narrow-bandwidth undulator radiation. Polarization control is readily achieved by varying the laser pulse injection conditions.
Multi-residue analysis of organic pollutants in hair and urine for matrices comparison.
Hardy, Emilie M; Duca, Radu C; Salquebre, Guillaume; Appenzeller, Brice M R
2015-04-01
Urine being currently the most classically used matrix for the assessment of human exposure to pesticides, a growing interest is yet observed in hair analysis for the detection of organic pollutants. The aim of the present work was to develop and to validate multi-residue analytical methods, as similar as possible, in order to determine pesticides and their metabolites in these two biological matrices despite their different nature. The list of parent compounds and their metabolites investigated here consisted of 56 compounds, including organochlorines, organophosphates, pyrethroids, carbamates, other pesticides and polychlorinated biphenyls (PCBs). Two different approaches were necessary for the analysis of non-polar compounds (mainly parents) on one hand and polar analytes (mainly metabolites) on the other hand. In the final procedure, extraction from hair was carried out with acetonitrile/water after sample decontamination and pulverization. Extract was split into two fractions, which were analyzed directly with solid phase microextraction (SPME) injection for non-polar compounds and after derivatization with liquid injection for polar compounds. In urine, non-polar compounds were analyzed directly using SPME. Polar compounds were analyzed after acidic hydrolysis, liquid-liquid extraction with acetonitrile-cyclohexane-ethyl acetate, derivatization and liquid injection. Analysis was performed with gas chromatography tandem mass spectrometry operating in negative chemical ionization (GC-MS/MS-NCI) for all the compounds (non-polar and polar) in the two matrices. In hair, limits of quantification (LOQ) ranged from 0.02 pg/mg for trifluralin to 5.5 pg/mg for diethylphosphate. In urine, LOQ ranged from 0.4 pg/mL for α-endosulfan to 4 ng/mL for dimethyldithiophosphate. The analysis of samples supplemented with standards and samples collected from an animal previously submitted to chronic exposure to pesticides confirmed that all the compounds were analyzable in both hair and urine. In addition, the levels of sensitivity reached with these methods were quite satisfactory with regard to previously published studies, and also considering the number of compounds investigated. Copyright © 2014. Published by Elsevier Ireland Ltd.
Allen, J.L.; Hunn, J.B.
1977-01-01
Channel catfish, Ictalurus punctatus Rafinesque, injected intraperitoneally with 2-methyl-quinoline sulphate (QdSO4) or 3-trifluoromethyl-4-nitrophenol (TFM) eliminate most of the dose of these compounds by extra-renal routes. Patterns of renal excretion of Na+, K+, Ca2+, Mg2+, and Cl- (pEq kg-1 h-1) appeared to be associated with the 'stress' of the urine collection technique rather than with the elimination of either compound. Concentrations of Na+, K+, Ca2+, Mg2+, and Cl- (mEq/1) were determined in urine, plasma and gall bladder bile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.
The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less
Exhaust after-treatment system with in-cylinder addition of unburnt hydrocarbons
Coleman, Gerald N.; Kesse, Mary L.
2007-10-30
Certain exhaust after-treatment devices, at least periodically, require the addition of unburnt hydrocarbons in order to create reductant-rich exhaust conditions. The present disclosure adds unburnt hydrocarbons to exhaust from at least one combustion chamber by positioning, at least partially within a combustion chamber, a mixed-mode fuel injector operable to inject fuel into the combustion chamber in a first spray pattern with a small average angle relative to a centerline of the combustion chamber and a second spray pattern with a large average angle relative to the centerline of the combustion chamber. An amount of fuel is injected in the first spray pattern into a non-combustible environment within the at least one combustion chamber during at least one of an expansion stroke and exhaust stroke. The exhaust with the unburnt amount of fuel is moved into an exhaust passage via an exhaust valve.
Insulating Material Requirements for Low-Power-Consumption Electrowetting-Based Liquid Lenses.
Chevalliot, Stéphanie; Malet, Géraldine; Keppner, Herbert; Berge, Bruno
2016-12-27
Insulating materials from the parylene family were investigated for use in low-power-consumption electrowetting-based liquid lenses. It was shown that for DC-driven operations, parylene C leads to hysteresis, regardless of the presence of a hydrophobic top coat. This hysteresis was attributed to the non-negligible time needed to reach a stable contact angle, due to charge injection and finite conductivity of the material. It was further demonstrated that by using materials with better insulating properties, such as parylene HT and VT4, satisfactory results can be obtained under DC voltages, reaching a low contact angle hysteresis of below 0.2°. We propose a simplified model that takes into account the injection of charges from both sides of the insulating material (the liquid side and the electrode side), showing that electrowetting response can be both increased and decreased.
Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; ...
2018-04-13
The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less
NASA Astrophysics Data System (ADS)
Huang, Xiaojun; Yang, Helin; Shen, Zhaoyang; Chen, Jiao; Lin, Hail; Yu, Zetai
2017-09-01
We present a water-injected all-dielectric metamaterial that can offer an extremely wide bandwidth of electromagnetic absorption and prominent wide incident angle range. Different from conventional metal-dielectric based metamaterial absorbers, the absorption mechanism of the proposed all-dielectric metamaterial absorber is to take advantage of the dispersion of water, rather than electric or/and magnetic resonance, which thoroughly overcomes the defects of narrow bandwidth and oblique incidence from metal-dielectric based metamaterial absorber. The simulated absorption was over 90% in 8.1-22.9 GHz with the relative bandwidth of 95.5% when the incident angle reaches 60°, and the corresponding microwave experiment is performed to support the simulations. The obtained excellent absorption performance reveals a possible application of the proposed absorber, which can be exploited for electromagnetic stealth purposes, especially for electromagnetic stealth of sea targets.
NASA Astrophysics Data System (ADS)
Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; Lehe, Remi; Mao, Hann-Shin; Mittelberger, Daniel E.; Steinke, Sven; Nakamura, Kei; van Tilborg, Jeroen; Schroeder, Carl; Esarey, Eric; Geddes, Cameron G. R.; Leemans, Wim
2018-04-01
The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically varied the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔEFWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-ramp width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.
Gas-liquid mass transfer and flow phenomena in the Peirce-Smith converter: a water model study
NASA Astrophysics Data System (ADS)
Zhao, Xing; Zhao, Hong-liang; Zhang, Li-feng; Yang, Li-qiang
2018-01-01
A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow characteristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume ( Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coefficient), and gas utilization ratio ( η) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and η steadily increased. When the converter was rotated clockwise, both Ak/V and η increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these parameters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3·h-1 and 10°, respectively.
Experimental investigation of a jet inclined to a subsonic crossflow
NASA Technical Reports Server (NTRS)
Aoyagi, K.; Snyder, P. K.
1981-01-01
Experimental investigations have been conducted to determine the surface-pressure distribution on a flat plate and a body of revolution with a jet issuing at a large angle to the free stream and to obtain a better understanding of the entrainment mechanism close to the jet exit by quantitative mean velocity surveys. Pressure data were obtained with a flat plate model at several nozzle injection angles using a single round nozzle. For the body of revolution model, data were obtained with a round jet exhausting perpendicular to the crossflow and with two round jets spaced two to six nozzle diameters apart. Mean velocity measurements were obtained with laser velocimeter surveys near the base of a round jet exhausting normal to a flat plate. For the flat plate model, the pressure field shifts downstream and the entrainment effect decreases with decreasing nozzle injection angle. For the body of revolution model with two jets, the jet-induced effect of the rear jet on the surface-pressure distribution was less than the front jet. The flow regions close to the jet are defined by the laser surveys, but further mean velocity surveys are required to understand the entrainment mechanism.
Trapped Energetic Electrons in the Magnetosphere of Ganymede
NASA Technical Reports Server (NTRS)
Eviatar, Aharon; Williams, Donald J.; Paranicas, Chris; McEntire, Richard W.; Mauk, Barry H.; Kivelson, Margaret G.
2000-01-01
On May 7, 1997, the Galileo orbiter flew through the magnetosphere of Ganymede and crossed flux tubes connected at both ends to the satellite. Energetic electrons, observed during this encounter by means of the Energetic Particle Detector on board Galileo, showed double loss cones and "butterfly" type pitch angle distributions, as has been noted in past publications. In addition, as the spacecraft flew toward Ganymede, both the shape and magnitude of the spectrum changed. The intensities decreased, with the greatest depletion observed at the lowest energies, and the monotonic slope characteristic of the Jovian environment was replaced by a rollover of the spectrum at the low-energy end. The spectra lead us to infer a strongly energy-dependent injection efficiency into the trapping region. As on previous encounters, the pitch angle distributions confirmed the position of the magnetopause as indicated by the magnetometer measurements, but the spectra remained Jovian until the trapping region was reached. Various physical mechanisms capable of generating the observed spectra and pitch angle distributions, including downstream reconnection insertion followed by magnetic gradient drift and absorption of the lowest-energy electrons by Ganymede and injection from Jovian flux tubes upstream are assessed.
Effect of Boron and Phosphate compounds on Thermal and Fire Properties of wood/HDPE composites
Turgay Akbulut; Nadir Ayrilmis; Turker Dundar; Ali Durmus; Robert H. White; Murat Teker
2011-01-01
Melting and non-isothermal crystallization behaviors, oxidative induction time, and fire performance of the injection-molded wood flour-high density polyethylene (HDPE) composites (WPCs) incorporated with different levels (4, 8, or 12 wt %) of boron compounds [borax/boric acid (BX/BA) (0.5:0.5 wt %), zinc borate (ZB)] and phosphorus compounds [mono- and di-ammonium...
NASA Astrophysics Data System (ADS)
Ramírez, A. I.; Som, S.; Aggarwal, Suresh K.; Kastengren, A. L.; El-Hannouny, E. M.; Longman, D. E.; Powell, C. F.
2009-07-01
A quantitative and time-resolved X-ray radiography technique has been used for detailed measurements of high-pressure fuel sprays in the near-nozzle region of a diesel engine injector. The technique provides high spatial and temporal resolution, especially in the relatively dense core region. A single spray plume from a hydraulically actuated electronically controlled unit injector model 315B injector with a 6-hole nozzle was isolated and studied at engine-like densities for two different injection pressures. Optical spray imaging was also employed to evaluate the effectiveness of the shield used to isolate a single spray plume. The steady state fuel distributions for both injection pressures are similar and show a dense spray region along the axis of the spray, with the on-axis spray density decreasing as the spray progresses downstream. The higher injection pressure case exhibits a larger cone angle and spray broadening at the exit of the nozzle. For some time periods, the near-nozzle penetration speed is lower for the high injection pressure case than the low injection pressure case, which is unexpected, but can be attributed to the needle and flow dynamics inside the injector causing slower pressure build-up for the former case. Rate of injection testing was performed to further understand near-nozzle behavior. Mass distribution data were obtained and used to find mass-averaged velocity of the spray. Comparisons of the radiography data with that from a common rail single-hole light duty injectors under similar injection conditions show several significant differences. The current data show a larger cone angle and lower penetration speed than that from the light-duty injector. Moreover, these data display a Gaussian mass distribution across the spray near the injector, whereas in previous light-duty injector measurements, the mass distribution had steeper sides and a flatter peak. Measurements are also used to examine the spray models in the STAR-CD software.
Versatile Chromium-Doped Zinc Selenide Infrared Laser Sources
2010-05-01
ability of the fixed- angle curved mirrors in the Z- cavity to compensate for the increasing astigmatism from the Brewster - angle thermal lens in the...duty cycle at varying PRFs. 20 Table 4: Thermal Lensing Power at 1 kHz PRF, 1 W peak power, Q-switched Laser PRF (kHz) Thermal lens power (m-1...with it some negative astigmatism effects which are compounded by thermal lensing in the crystal which is now at an angle . To counteract this
Premixed direct injection disk
York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho
2013-04-23
A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.
Methods and systems to enhance flame holding in a gas turbine engine
Zuo, Baifang [Simpsonville, SC; Lacy, Benjamin Paul [Greer, SC; Stevenson, Christian Xavier [Inman, SC
2012-01-31
A fuel nozzle including a swirler assembly that includes a shroud, a hub, and a plurality of vanes extending between the shroud and the hub. Each vane includes a pressure sidewall and an opposite suction sidewall coupled to the pressure sidewall at a leading edge and at a trailing edge. At least one suction side fuel injection orifice is formed adjacent to the leading edge and extends from a first fuel supply passage to the suction sidewall. A fuel injection angle is oriented with respect to the suction sidewall. The suction side fuel injection orifice is configured to discharge fuel outward from the suction sidewall. At least one pressure side fuel injection orifice extends from a second fuel supply passage to the pressure sidewall and is substantially parallel to the trailing edge. The pressure side fuel injection orifice is configured to discharge fuel tangentially from the trailing edge.
Hydrogen Gas as a Fuel in Direct Injection Diesel Engine
NASA Astrophysics Data System (ADS)
Dhanasekaran, Chinnathambi; Mohankumar, Gabriael
2016-04-01
Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.
NASA Astrophysics Data System (ADS)
Botos, J.; Murail, N.; Heidemeyer, P.; Kretschmer, K.; Ulmer, B.; Zentgraf, T.; Bastian, M.; Hochrein, T.
2014-05-01
The typical offline color measurement on injection molded or pressed specimens is a very expensive and time-consuming process. In order to optimize the productivity and quality, it is desirable to measure the color already during the production. Therefore several systems have been developed to monitor the color e.g. on melts, strands, pellets, the extrudate or injection molded part already during the process. Different kinds of inline, online and atline methods with their respective advantages and disadvantages will be compared. The criteria are e.g. the testing time, which ranges from real-time to some minutes, the required calibration procedure, the spectral resolution and the final measuring precision. The latter ranges between 0.05 to 0.5 in the CIE L*a*b* system depending on the particular measurement system. Due to the high temperatures in typical plastics processes thermochromism of polymers and dyes has to be taken into account. This effect can influence the color value in the magnitude of some 10% and is barely understood so far. Different suitable methods to compensate thermochromic effects during compounding or injection molding by using calibration curves or artificial neural networks are presented. Furthermore it is even possible to control the color during extrusion and compounding almost in real-time. The goal is a specific developed software for adjusting the color recipe automatically with the final objective of a closed-loop control.
Smart textile device using ion polymer metal compound.
Nakamura, Taro; Ihara, Tadashi
2013-01-01
We have developed a smart textile device that detects angular displacement of attached surface using ion polymer metal compound. The device was composed of ion polymer metal compound (IPMC) which was fabricated from Nafion resin by heat-press and chemical gold plating. The generated voltage from IPMC was measured as a function of bending angle. Fabricated IPMC device was weaved into a cotton cloth and multidirectional movements were detected.
Modified fluoroscopy-guided sacroiliac joint injection: a technical report.
Liliang, Po-Chou; Liang, Cheng-Loong; Lu, Kang; Weng, Hui-Ching; Syu, Fei-Kai
2014-09-01
Sacroiliac joint (SIJ) injection can occasionally be challenging. We describe our experience in using conventional technique, and we developed an adjustment to overcome difficulties incurred. Conventional technique required superimposition of the posterior and anterior SIJ lines. If this technique failed to provide entry into the joint, fluoroscopy was slightly adjusted to obtain an oblique view. Of 50 SIJ injections, 29 (58%; 44-72%) were successfully performed using conventional technique. In another 21 procedures, 18 (85.7%; 64-99%) were subsequently completed using oblique view technique. The medial joint line, viewed from this angle, corresponded to the posterior joint line in 17 cases. The lateral joint line corresponded to the posterior joint line in one case. Oblique view technique can improve the success rate of SIJ injection. Wiley Periodicals, Inc.
Ultra low injection angle fuel holes in a combustor fuel nozzle
York, William David
2012-10-23
A fuel nozzle for a combustor includes a mixing passage through which fluid is directed toward a combustion area and a plurality of swirler vanes disposed in the mixing passage. Each swirler vane of the plurality of swirler vanes includes at least one fuel hole through which fuel enters the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes thereby decreasing a flameholding tendency of the fuel nozzle. A method of operating a fuel nozzle for a combustor includes flowing a fluid through a mixing passage past a plurality of swirler vanes and injecting a fuel into the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes.
Flow injection method for sulphide determination using an organic mercury compound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaqoob, M.; Anwar, M.; Masood, A.S.
1991-04-01
A simple flow injection analysis method is described for the determination of soluble sulfide, based on the complexation of sulfide with p-hydroxymercurbenzoic acid, in the presence of dithizone used as an indicator. The reaction is very rapid, with a sampling rate of 90/hr. and requires a very short length post injection reaction coil. The detection limit and precision are 0.01 mM and 0.7%, respectively.
2'-Chloro-4-meth-oxy-3-nitro-benzil.
Nithya, G; Thanuja, B; Chakkaravarthi, G; Kanagam, Charles C
2011-06-01
In the title compound, C(15)H(10)ClNO(5), the dihedral angle between the aromatic rings is 87.99 (5)°. The O-C-C-O torsion angle between the two carbonyl units is -119.03 (16)°. The crystal structure is stabilized by a weak intermolecular C-H⋯O hydrogen bond.
Staged direct injection diesel engine
Baker, Quentin A.
1985-01-01
A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.
Lean direct wall fuel injection method and devices
NASA Technical Reports Server (NTRS)
Choi, Kyung J. (Inventor); Tacina, Robert (Inventor)
2000-01-01
A fuel combustion chamber, and a method of and a nozzle for mixing liquid fuel and air in the fuel combustion chamber in lean direct injection combustion for advanced gas turbine engines, including aircraft engines. Liquid fuel in a form of jet is injected directly into a cylindrical combustion chamber from the combustion chamber wall surface in a direction opposite to the direction of the swirling air at an angle of from about 50.degree. to about 60.degree. with respect to a tangential line of the cylindrical combustion chamber and at a fuel-lean condition, with a liquid droplet momentum to air momentum ratio in the range of from about 0.05 to about 0.12. Advanced gas turbines benefit from lean direct wall injection combustion. The lean direct wall injection technique of the present invention provides fast, uniform, well-stirred mixing of fuel and air. In addition, in order to further improve combustion, the fuel can be injected at a venturi located in the combustion chamber at a point adjacent the air swirler.
An artificial compound eye of photon Sieves
NASA Astrophysics Data System (ADS)
Jiang, Wenbo; Hu, Song; He, Yu; Bu, Yun
2015-11-01
The compound eye of insects has numerous extraordinary optical performances, such as minimum chromatic aberration, wide-angle field of view, and high sensitivity to the incidence light. Inspired by these unique performances, we present a novel artificial compound eye of photon sieves in this paper, where the photon sieves play the roles of insects' ommatidia. These photon sieves have the same focal length. The incidence light can be focused into the same focal plane and produce the superposition effect, the utilization ratio of energy can be largely improved. Through the numerical simulation, the results show that this novel structure has similar focusing performance with the conventional photon sieves, but has higher utilization ratio of energy and wider angle field of view than that of the conventional photon sieves. Our findings provide a new direction for optics and biology researchers, which will be beneficial for medical imaging, astronomy, etc.
Experimental Investigation of Diffuser Hub Injection to Improve Centrifugal Compressor Stability
NASA Technical Reports Server (NTRS)
Skoch, Gary J.
2004-01-01
Results from a series of experiments to investigate whether centrifugal compressor stability could be improved by injecting air through the diffuser hub surface are reported. The research was conducted in a 4:1 pressure ratio centrifugal compressor configured with a vane-island diffuser. Injector nozzles were located just upstream of the leading edge of the diffuser vanes. Nozzle orientations were set to produce injected streams angled at 8, 0 and +8 degrees relative to the vane mean camber line. Several injection flow rates were tested using both an external air supply and recirculation from the diffuser exit. Compressor flow range did not improve at any injection flow rate that was tested. Compressor flow range did improve slightly at zero injection due to the flow resistance created by injector openings on the hub surface. Leading edge loading and semi-vaneless space diffusion showed trends similar to those reported earlier from shroud surface experiments that did improve compressor flow range. Opposite trends are seen for hub injection cases where compressor flow range decreased. The hub injection data further explain the range improvement provided by shroud-side injection and suggest that different hub-side techniques may produce range improvement in centrifugal compressors.
Asano, Ryuji; Nagami, Amon; Fukumoto, Yuki; Miura, Kaori; Yazama, Futoshi; Ito, Hideyuki; Sakata, Isao; Tai, Akihiro
2014-03-01
New boron-containing chlorin derivatives 9 and 13 as agents for both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT) of cancer were synthesized from photoprotoporphyrin IX dimethyl ester (2) and L-4-boronophenylalanine-related compounds. The in vivo biodistribution and clearance of 9 and 13 were investigated in tumor-bearing mice. The time to maximum accumulation of compound 13 in tumor tissue was one-fourth of that of compound 9, and compound 13 showed rapid clearance from normal tissues within 24h after injection. The in vivo therapeutic efficacy of PDT using 13 was evaluated by measuring tumor growth rates in tumor-bearing mice with 660 nm light-emitting diode irradiation at 3h after injection of 13. Tumor growth was significantly inhibited by PDT using 13. These results suggested that 13 might be a good candidate for both PDT and BNCT of cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guharoy, Roy; Noviasky, John; Haydar, Ziad; Fakih, Mohamad G; Hartman, Christian
2013-04-01
Compounding pharmacies serve a critical role in modern health care to meet special patient care needs. Although the US Food and Drug Administration (FDA) has clearly delineated jurisdiction over drug companies and products manufactured under Good Manufacturing Practice (GMP) regulations to ensure quality, potency, and purity, compounding pharmacies are regulated by the State Boards and are not registered by the FDA. In recent years, some compounding pharmacies acted like a manufacturer, preparing large amounts of injectable drugs with interstate activities. Multiple outbreaks have been linked to compounding pharmacies, including a recent outbreak of fungal meningitis related to contaminated methylprednisolone, exposing > 14,000 patients in multiple states. This tragedy underscores the urgency of addressing safety related to compounding pharmacies. There is a call for action at the federal and state levels to set minimum production standards, impose new labeling conditions on compounded drugs, and require large-scale compounders be regulated by the FDA. "Industrial" compounding must come under FDA oversight, require those pharmacies to meet GMP standards, and ensure quality and safe products for patient use. Moreover, compliance with the Institute for Safe Medication Practices 2011 recommendations that any type of sterile compounding must be in compliance with the United States Pharmacopoeia chapter 797 guidelines will reduce the risk of patient harm from microbial contamination. Finally, other critical factors that require close attention include addressing injectable products compounded in hospitals and other outpatient health-care centers. The FDA and State Boards of Pharmacy must be adequately funded to exercise the oversight effectively.
Marsol-Vall, Alexis; Balcells, Mercè; Eras, Jordi; Canela-Garayoa, Ramon
2016-07-01
A novel method consisting of injection-port derivatization coupled to gas chromatography-tandem mass spectrometry is described. The method allows the rapid assessment of 5-hydroxymethylfurfural (HMF) and patulin content in apple and pear derivatives. The chromatographic separation of the compounds was achieved in a short chromatographic run (12.2min) suitable for routine controls of these compounds in the fruit juice industry. The optimal conditions for the injection-port derivatization were at 270°C, 0.5min purge-off, and a 1:2 sample:derivatization reagent ratio (v/v). These conditions represent an important saving in terms of derivatization reagent consumption and sample preparation time. Quality parameters were assessed for the target compounds, giving LOD of 0.7 and 1.6μg/kg and LOQ of 2 and 5μg/kg for patulin and HMF, respectively. These values are below the maximum patulin concentration in food products intended for infants and young children. Repeatability (%RSD n=5) was below 12% for both compounds. In addition, the method linearity ranged between 25 and 1000μg/kg and between 5 and 192μg/kg for HMF and patulin, respectively. Finally, the method was applied to study HMF and patulin content in various fruit juice samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Fernandes, Elizabeth S; Passos, Giselle F; Medeiros, Rodrigo; da Cunha, Fernanda M; Ferreira, Juliano; Campos, Maria M; Pianowski, Luiz F; Calixto, João B
2007-08-27
This study evaluated the anti-inflammatory properties of two sesquiterpenes isolated from Cordia verbenacea's essential oil, alpha-humulene and (-)-trans-caryophyllene. Our results revealed that oral treatment with both compounds displayed marked inhibitory effects in different inflammatory experimental models in mice and rats. alpha-humulene and (-)-trans-caryophyllene were effective in reducing platelet activating factor-, bradykinin- and ovoalbumin-induced mouse paw oedema, while only alpha-humulene was able to diminish the oedema formation caused by histamine injection. Also, both compounds had important inhibitory effects on the mouse and rat carrageenan-induced paw oedema. Systemic treatment with alpha-humulene largely prevented both tumor necrosis factor-alpha (TNFalpha) and interleukin-1beta (IL-1beta) generation in carrageenan-injected rats, whereas (-)-trans-caryophyllene diminished only TNFalpha release. Furthermore, both compounds reduced the production of prostaglandin E(2) (PGE(2)), as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) expression, induced by the intraplantar injection of carrageenan in rats. The anti-inflammatory effects of alpha-humulene and (-)-trans-caryophyllene were comparable to those observed in dexamethasone-treated animals, used as positive control drug. All these findings indicate that alpha-humulene and (-)-trans-caryophyllene, derived from the essential oil of C. verbenacea, might represent important tools for the management and/or treatment of inflammatory diseases.
Enzymatic recontouring of auricular cartilage in a rabbit model.
Massengill, Phillip L; Goco, Paulino E; Norlund, L Layne; Muir-Padilla, Jeanne
2005-01-01
To evaluate the effectiveness of contouring auricular cartilage in a rabbit model using biologically active enzymes injected subcutaneously. The first phase determined the most effective volume and concentration required to affect the cartilage. To accomplish this task, we used ex vivo rabbit ears from a slaughterhouse. In the second phase, we injected 1 mL of hyaluronidase (150 U per milliliter of isotonic sodium chloride solution [saline]), elastase (1 mg per milliliter of saline), or saline into the ears of live rabbits. The study took place at the Madigan Army Medical Center (Tacoma, Wash), and included 10 animals. In each rabbit, we injected the test compound in one ear and saline in the other ear (control). We injected hyaluronidase in 5 ears and elastase in 5 ears. After injection, the ears were contoured and splinted for 4 weeks. In the third phase, we changed the injection pathway in 5 animals. At 4 weeks, 4 (80%) of the 5 ears injected with hyaluronidase showed full response and 1 (20%) had a partial response. Of the 5 ears injected with elastase, 4 (80%) showed a full response while 1 (20%) demonstrated a partial response. There was a response in all 10 of the ears injected with a test compound. Of the 10 control ears, 3 (30%) showed a partial response. At 6 weeks, approximately 6 (30%) of the ears had maintained contour demonstrating a full response. The difference between the test ears and the control ears was statistically significant (P = .006). Compared with the control ears, the results were statistically significant for elastase (P = .004) and hyaluronidase (P = .02). Overall, both agents demonstrated a subjective and objective response compared with control ears. This study demonstrates that bioactive enzymes and splinting can be effective in correcting ear deformities in a rabbit model.
Sun, Harold Huimin; Hanna, Dave; Zhang, Jizhong; Hu, Liangjun; Krivitzky, Eric M.; Larosiliere, Louis M.; Baines, Nicholas C.
2013-08-27
In one example, a turbocharger for an internal combustion engine is described. The turbocharger comprises a casing containing an impeller having a full blade coupled to a hub that rotates about an axis of rotation. The casing includes a bleed port and an injection port. The full blade includes a hub edge, a casing edge, and a first distribution of angles, each angle measured between the axis of rotation and a mean line at the hub edge at a meridional distance along the hub edge. The full blade includes a second distribution of angles, each angle measured between the axis of rotation and a mean line at the casing edge at a meridional distance along the casing edge. Further, various systems are described for affecting the aerodynamic properties of the compressor and turbine components in a way that may extend the operating range of the turbocharger.
Subcritical and supercritical fuel injection and mixing in single and binary species systems
NASA Astrophysics Data System (ADS)
Roy, Arnab
Subcritical and supercritical fluid injection using a single round injector into a quiescent atmosphere comprising single and binary species was investigated using optical diagnostics. Different disintegration and mixing modes are expected for the two cases. In the binary species case, the atmosphere comprised an inert gas of a different composition than that of the injected fluid. In single species case, the atmosphere consisted of the same species as that of the injected fluid. Density values were quantified and density gradient profiles were inferred from the experimental data. A novel method was applied for the detection of detailed structures throughout the entire jet center plane. Various combinations of injectant and chamber conditions were tested and a wide range of density ratios were covered. The subcritical cases demonstrated the importance of surface tension and inertial forces, while the supercritical cases showed no signs of surface tension and, in most situations, resembled the mixing characteristics of a gaseous jet injected into a gaseous environment. A comparison between the single and binary species systems has also been provided. A detailed laser calibration procedure was undertaken to account for the laser absorption through the gas and liquid phases and for fluorescence in the non-linear excitation regime for high laser pulse energy. Core lengths were measured for binary species cases and correlated with visualization results. An eigenvalue approach was taken to determine the location of maximum gradients for determining the core length. Jet divergence angles were also calculated and were found to increase with chamber-to-injectant density ratio for both systems. A model was proposed for the spreading angle dependence on density ratio for both single and binary species systems and was compared to existing theoretical studies and experimental work. Finally, a linear stability analysis was performed for the jet injected into both subcritical and supercritical atmospheres. The subcritical cases showed good correlation with previous and current experimental results. The supercritical solutions, which have not yet been solved earlier by researchers, are found here through an asymptotic solution of the dispersion equation for exceedingly high Weber numbers.
Werk, Tobias; Mahler, Hanns-Christian; Ludwig, Imke Sonja; Luemkemann, Joerg; Huwyler, Joerg; Hafner, Mathias
Dual-chamber syringes were originally designed to separate a solid substance and its diluent. However, they can also be used to separate liquid formulations of two individual drug products, which cannot be co-formulated due to technical or regulatory issues. A liquid/liquid dual-chamber syringe can be designed to achieve homogenization and mixing of both solutions prior to administration, or it can be used to sequentially inject both solutions. While sequential injection can be easily achieved by a dual-chamber syringe with a bypass located at the needle end of the syringe barrel, mixing of the two fluids may provide more challenges. Within this study, the mixing behavior of surrogate solutions in different dual-chamber syringes is assessed. Furthermore, the influence of parameters such as injection angle, injection speed, agitation, and sample viscosity were studied. It was noted that mixing was poor for the commercial dual-chamber syringes (with a bypass designed as a longitudinal ridge) when the two liquids significantly differ in their physical properties (viscosity, density). However, an optimized dual-chamber syringe design with multiple bypass channels resulted in improved mixing of liquids. Dual-chamber syringes were originally designed to separate a solid substance and its diluent. However, they can also be used to separate liquid formulations of two individual drug products. A liquid/liquid dual-chamber syringe can be designed to achieve homogenization and mixing of both solutions prior to administration, or it can be used to sequentially inject both solutions. While sequential injection can be easily achieved by a dual-chamber syringe with a bypass located at the needle end of the syringe barrel, mixing of the two fluids may provide more challenges. Within this study, the mixing behavior of surrogate solutions in different dual-chamber syringes is assessed. Furthermore, the influence of parameters such as injection angle, injection speed, agitation, and sample viscosity were studied. It was noted that mixing was poor for the commercially available dual-chamber syringes when the two liquids significantly differ in viscosity and density. However, an optimized dual-chamber syringe design resulted in improved mixing of liquids. © PDA, Inc. 2017.
IDENTIFICATION OF POLAR VOLATILE ORGANIC COMPOUNDS IN CONSUMER PRODUCTS AND COMMON MICROENVIRONMENTS
Polar volatile organic compounds were identified in the headspace of 31 fragrance products such as perfumes, colognes and soaps. About 150 different chemicals were identified in a semiquantitative fashion, using two methods to analyze the headspace: direct injection into a gas ch...
Trotier, Aurélien J; Castets, Charles R; Lefrançois, William; Ribot, Emeline J; Franconi, Jean-Michel; Thiaudière, Eric; Miraux, Sylvain
2016-08-01
To develop and assess a 3D-cine self-gated method for cardiac imaging of murine models. A 3D stack-of-stars (SOS) short echo time (STE) sequence with a navigator echo was performed at 7T on healthy mice (n = 4) and mice with acute myocardial infarction (MI) (n = 4) injected with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. In all, 402 spokes were acquired per stack with the incremental or the golden angle method using an angle increment of (360/402)° or 222.48°, respectively. A cylindrical k-space was filled and repeated with a maximum number of repetitions (NR) of 10. 3D cine cardiac images at 156 μm resolution were reconstructed retrospectively and compared for the two methods in terms of contrast-to-noise ratio (CNR). The golden angle images were also reconstructed with NR = 10, 6, and 3, to assess cardiac functional parameters (ejection fraction, EF) on both animal models. The combination of 3D SOS-STE and USPIO injection allowed us to optimize the identification of cardiac peaks on navigator signal and generate high CNR between blood and myocardium (15.3 ± 1.0). The golden angle method resulted in a more homogeneous distribution of the spokes inside a stack (P < 0.05), enabling reducing the acquisition time to 15 minutes. EF was significantly different between healthy and MI mice (P < 0.05). The method proposed here showed that 3D-cine images could be obtained without electrocardiogram or respiratory gating in mice. It allows precise measurement of cardiac functional parameters even on MI mice. J. Magn. Reson. Imaging 2016;44:355-365. © 2016 Wiley Periodicals, Inc.
Li, Ying; Fabiano-Tixier, Anne Sylvie; Ruiz, Karine; Rossignol Castera, Anne; Bauduin, Pierre; Diat, Olivier; Chemat, Farid
2015-04-15
Since the polar paradox theory rationalised the fact that polar antioxidants are more effective in nonpolar media, extractions of phenolic compounds in vegetable oils were inspired and achieved in this study for obtaining oils enriched in phenolic compounds. Moreover, the influence of surfactants on the extractability of phenolic compounds was experimentally studied first, followed by the small angle X-ray scattering analysis for the oil structural observation before and after extraction so as to better understand the dissolving mechanism underpinning the extraction. The results showed a significant difference on the extraction yield of phenolic compounds among oils, which was mainly dependent on their composition instead of the unsaturation of fatty acids. Appropriate surfactant additions could significantly improve extraction yield for refined sunflower oils, which 1% w/w addition of glyceryl oleate was determined as the optimal. Besides, 5% w/w addition of lecithin performed the best in oil enrichments compared with mono- and di-glycerides. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sun, Meng; Lin, Yuanyuan; Zhang, Jie; Zheng, Shaohua; Wang, Sicen
2016-03-01
A rapid analytical method based on online solid-phase extraction with high-performance liquid chromatography and mass spectrometry has been established and applied to the determination of tannin compounds that may cause adverse effects in traditional Chinese medicine injections. Different solid-phase extraction sorbents have been compared and the elution buffer was optimized. The performance of the method was verified by evaluation of recovery (≥40%), repeatability (RSD ≤ 6%), linearity (r(2) ≥ 0.993), and limit of quantification (≤0.35 μg/mL). Five tannin compounds, gallic acid, cianidanol, gallocatechin gallate, ellagic acid, and penta-O-galloylglucose, were identified with concentrations ranging from 3.1-37.4 μg/mL in the analyzed traditional Chinese medicine injections. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Finite element modeling of drug distribution in the vitreous humor of the rabbit eye.
Friedrich, S; Cheng, Y L; Saville, B
1997-01-01
Direct intravitreal injection of drug is a common method for treating diseases of the retina or vitreous. The stagnant nature of the vitreous humor and surrounding tissue barriers creates concentration gradients within the vitreous that must be accounted for when developing drug therapy. The objective of this research was to study drug distribution in the vitreous humor of the rabbit eye after an intravitreal injection, using a finite element model. Fluorescein and fluorescein glucuronide were selected as model compounds due to available experimental data. All required model parameters were known except for the permeability of these compounds through the retina, which was determined by fitting model predictions to experimental data. The location of the intravitreal injection in the experimental studies was not precisely known; therefore, several injection locations were considered, and best-fit retinal permeability was determined for each case. Retinal permeability of fluorescein and fluorescein glucuronide estimated by the model ranged from 1.94 x 10(-5) to 3.5 x 10(-5) cm s(-1) and from 0 to 7.62 x 10(-7) cm s(-1), respectively, depending on the assumed site of the injection. These permeability values were compared with values previously calculated from other models, and the limitations of the models are discussed. Intravitreal injection position was found to be an important variable that must be controlled in both experimental and clinical settings.
USDA-ARS?s Scientific Manuscript database
Dried Distillers Grain with Solubles (DDGS) is evaluated as a bio-based fiber reinforcement. Injection molded composites of high density polyethylene (HDPE), 25% by weight of DDGS, and either 5% of 0% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding and injection mo...
Properties of high density polyethylene – Paulownia wood flour composites via injection molding
USDA-ARS?s Scientific Manuscript database
Paulownia wood (PW) flour is evaluated as a bio-based fiber reinforcement. Composites of high density polyethylene (HDPE), 25% by weight of PW, and either 0% or 5% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding followed by injection molding. Molded test composite...
Optomechatronic System For Automated Intra Cytoplasmic Sperm Injection
NASA Astrophysics Data System (ADS)
Shulev, Assen; Tiankov, Tihomir; Ignatova, Detelina; Kostadinov, Kostadin; Roussev, Ilia; Trifonov, Dimitar; Penchev, Valentin
2015-12-01
This paper presents a complex optomechatronic system for In-Vitro Fertilization (IVF), offering almost complete automation of the Intra Cytoplasmic Sperm Injection (ICSI) procedure. The compound parts and sub-systems, as well as some of the computer vision algorithms, are described below. System capabilities for ICSI have been demonstrated on infertile oocyte cells.
40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?
Code of Federal Regulations, 2011 CFR
2011-07-01
... for both the liquid and propellant phases), California Air Resources Board Method 310—Determination of... Pollutant Compounds in Paints and Coatings by Direct Injection into a Gas Chromatograph (40 CFR part 63... Injection into a Gas Chromatograph (40 CFR part 63, appendix A) results, the California Air Resources Board...
In-situ remediation system for groundwater and soils
Corey, John C.; Kaback, Dawn S.; Looney, Brian B.
1993-01-01
A method and system for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants.
In-situ remediation system for groundwater and soils
Corey, J.C.; Kaback, D.S.; Looney, B.B.
1993-11-23
A method and system are presented for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants. 4 figures.
Comparative erythropoietic effects of three vanadium compounds.
Hogan, G R
2000-07-10
The biotoxic effects of vanadium are variable depending upon a number of factors including the oxidation state of the test compound. This study reports the effects of three vanadium compounds on peripheral erythrocytes. On day 0 female ICR mice received a single injection of vanadium chloride (V-III), vanadyl sulfate (V-IV), or sodium orthovandate (V-V). At scheduled intervals post-injection, the number of circulating erythrocytes [red blood cells per millimeter cubed (RBC/mm3)], reticulocyte percentages, and radioiron uptake percentages were determined and compared to mice receiving saline only. Data show that all three test substances promoted a significant lowering of RBC/mm3 beginning on day 1 for V-IV and V-V and on day 2 for V-III through day 4. The reticulocyte percentages increase followed the same time course as that of the peripheral RBC decrease. Peak reticulocytosis was noted on days 2 and 4 for all three vanadium-treated groups; for V-IV and V-V the increase continued to day 6. Radioiron data showed an erythropoietic stimulation by a significant increase in uptake percentages on days 4-6 after vanadium injections compared to saline-treated controls.
Recovery of tritium from tritiated molecules
Swansiger, William A.
1987-01-01
A method of recovering tritium from tritiated compounds comprises the steps of heating tritiated water and other co-injected tritiated compounds in a preheater to temperatures of about 600.degree. C. The mixture is injected into a reactor charged with a mixture of uranium and uranium dioxide. The injected mixture undergoes highly exothermic reactions with the uranium causing reaction temperatures to occur in excess of the melting point of uranium, and complete decomposition of the tritiated compounds to remove tritium therefrom. The uranium dioxide functions as an insulating material and heat sink preventing the reactor side walls from attaining reaction temperatures to thereby minimize tritium permeation rates. The uranium dioxide also functions as a diluent to allow for volumetric expansion of the uranium as it is converted to uranium dioxide. The reactor vessel is preferably stainless steel of sufficient mass so as to function as a heat sink preventing the reactor side walls from approaching high temperatures. A disposable copper liner extends between the reaction chamber and stainless steel outer vessel to prevent alloying of the uranium with the outer vessel. Apparatus used to carry out the method of the invention is also disclosed.
Cabeza, Y; Candela, L; Ronen, D; Teijon, G
2012-11-15
The occurrence of 166 emerging compounds and four heavy metals (Cd, Ni, Hg and Pb) in treated wastewater and groundwater has been monitored at the Llobregat delta (Barcelona, Spain) over a period of 3 years. Selected compounds were pharmaceuticals, personal care products (PCPs), dioxins, polycyclic aromatic hydrocarbons (PAHs) and priority substances included in the 2008/105/CE Directive. Analysis was performed in tertiary treated wastewater (TWW), after an additional treatment of ultrafiltration reverse osmosis and UV disinfection, and groundwater from a deep confined aquifer. This aquifer is artificially recharged with TWW through injection wells. After the advanced treatment, 38 pharmaceuticals, 9 PCPs, 9 pesticides and 7 PAHs still showed a frequency of detection higher than 25% in the TWW, although at low concentration levels (ng/l). Not all active compounds found in the TWW were present in groundwater, indicating possible degradation within the aquifer media after the injection. A number of chemicals, mainly 10 pesticides and 10 pharmaceuticals were only present in groundwater samples, confirming a different origin than the injected TWW, probably agricultural activities and/or infiltration of poorly treated wastewater. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Winckler, J. R.; Erickson, K. N.; Abe, Y.; Steffen, J. E.; Malcolm, P. R.
1985-07-01
Orthogonal probes on a free-flying plasma diagnostics payload are used to study ELF electric disturbances in the auroral ionosphere that are due to the injection of powerful electron beams. Frequency spectrograms are presented for various pitch angles, pulsing characteristics, and other properties of the injected beams; the large scale DC ionospheric convection electric field is measured, together with auroral particle precipitation, visual auroral forms, and ionospheric parameters. In view of the experimental results obtained, it is postulated that the observed ELF waves are in the Alfven and drift modes, and are generated by the positive vehicle potential during beam injection.
Phenomena induced by charged particle beams. [experimental design for Spacelab
NASA Technical Reports Server (NTRS)
Beghin, C.
1981-01-01
The injection of energetic particles along the Earth's magnetic field lines is a possible remote sensing method for measuring the electric fields parallel to the magnetic field with good time resolution over the entire magnetic field. Neutralization processes, return-current effects, dynamics of the beams, triggered instabilities, and waves must be investigated before the fundamental question about proper experimental conditions, such as energy, intensity and divergence of the beams, pitch-angle injection, ion species, proper probes and detectors and their location, and rendezvous conditions, can be resolved. An experiment designed to provide a better understanding of these special physical processes and to provide some answers to questions concerning beam injection techniques is described.
Some Characteristics of Fuel Sprays at Low-injection Pressures
NASA Technical Reports Server (NTRS)
Rothrock, A M; Waldron, C D
1931-01-01
This report presents the results of tests conducted at the Langley Memorial Aeronautical Laboratory, Langley Field, Va., to determine some of the characteristics of the fuel sprays obtained from an 0.008-inch and a 0.020-inch open nozzle when injection pressures from 100 to 500 pounds per square inch were used. Fuel oil and gasoline were injected into air at densities of atmospheric land 0.325 pound per cubic foot. It was found that the penetration rate at these low pressures was about the same as the rate obtained with higher pressures. Spray cone-angles were small and individual oil drops were visible in all the sprays. Gasoline and fuel oil sprays had similar characteristics.
NASA Astrophysics Data System (ADS)
Cai, Guobiao; Cao, Binbin; Zhu, Hao; Tian, Hui; Ma, Xuan
2017-11-01
The objective of this effort is to study the combustion performance of a hybrid rocket motor with the help of 3D steady-state numerical simulation, which applies 90% hydrogen peroxide as the oxidizer and hydroxyl-terminated polybutadiene as the fuel. A method of secondary oxidizer injection in post-chamber is introduced to investigate the flow field characteristics and combustion efficiency. The secondary injection medium is the mixed gas coming from liquid hydrogen peroxide catalytic decomposition. The secondary injectors are uniformly set along the circumferential direction of the post-chamber. The simulation results obtained by above model are verified by experimental data. Three influencing parameters are considered: secondary injection diameter, secondary injection angle and secondary injection numbers. Simulation results reveals that this design could improve the combustion efficiency with respect to the same motor without secondary injection. Besides, the secondary injection almost has no effect on the regression rate and fuel sueface temperature distribution. It is also presented that the oxidizer is injected by 8 secondary injectors with a diameter of 7-8 mm in the direction of 120°in post-chamber is identified as the optimized secondary injection pattern, through which combustion efficiency, specific impulse efficiency as well as utilization of propellants are all improved obviously.
Koleoglu, Gun; Goodwin, Paul H; Reyes-Quintana, Mariana; Hamiduzzaman, Mollah Md; Guzman-Novoa, Ernesto
2017-01-01
Honey bee (Apis mellifera) gene expression related to immunity for hymenoptaecin (AmHym) and defensin-1 (AmDef-1), longevity for vitellogenin (AmVit2) and stem cell proliferation for poly U binding factor 68 kDa (AmPuf68) was compared following Varroa destructor parasitism, buffer injection and injection of V. destructor compounds in its homogenate. In adults, V. destructor parasitism decreased expression of all four genes, while buffer injection decreased expression of AmHym, AmPuf68 and AmVit2, and homogenate injection decreased expression of AmPuf68 and AmVit2 but increased expression of AmDef-1 relative to their respective controls. The effect of V. destructor parasitism in adults relative to the controls was not significantly different from buffer injection for AmHym and AmVit2 expression, and it was not significantly different from homogenate injection for AmPuf68 and AmVit2. In brood, V. destructor parasitism, buffer injection and homogenate injection decreased AmVit2 expression, whereas AmHym expression was decreased by V. destructor parasitism but increased by buffer and homogenate injection relative to the controls. The effect of varroa parasitism in brood was not significantly different from buffer or homogenate injection for AmPuf68 and AmVit2. Expression levels of the four genes did not correlate with detectable viral levels in either brood or adults. The results of this study indicate that the relative effects of V. destructor parasitism on honey bee gene expression are also shared with other types of stresses. Therefore, some of the effects of V. destructor on honey bees may be mostly due to wounding and injection of foreign compounds into the hemolymph of the bee during parasitism. Although both brood and adults are naturally parasitized by V. destructor, their gene expression responded differently, probably the result of different mechanisms of host responses during development.
Koleoglu, Gun; Goodwin, Paul H.; Reyes-Quintana, Mariana; Hamiduzzaman, Mollah Md.; Guzman-Novoa, Ernesto
2017-01-01
Honey bee (Apis mellifera) gene expression related to immunity for hymenoptaecin (AmHym) and defensin-1 (AmDef-1), longevity for vitellogenin (AmVit2) and stem cell proliferation for poly U binding factor 68 kDa (AmPuf68) was compared following Varroa destructor parasitism, buffer injection and injection of V. destructor compounds in its homogenate. In adults, V. destructor parasitism decreased expression of all four genes, while buffer injection decreased expression of AmHym, AmPuf68 and AmVit2, and homogenate injection decreased expression of AmPuf68 and AmVit2 but increased expression of AmDef-1 relative to their respective controls. The effect of V. destructor parasitism in adults relative to the controls was not significantly different from buffer injection for AmHym and AmVit2 expression, and it was not significantly different from homogenate injection for AmPuf68 and AmVit2. In brood, V. destructor parasitism, buffer injection and homogenate injection decreased AmVit2 expression, whereas AmHym expression was decreased by V. destructor parasitism but increased by buffer and homogenate injection relative to the controls. The effect of varroa parasitism in brood was not significantly different from buffer or homogenate injection for AmPuf68 and AmVit2. Expression levels of the four genes did not correlate with detectable viral levels in either brood or adults. The results of this study indicate that the relative effects of V. destructor parasitism on honey bee gene expression are also shared with other types of stresses. Therefore, some of the effects of V. destructor on honey bees may be mostly due to wounding and injection of foreign compounds into the hemolymph of the bee during parasitism. Although both brood and adults are naturally parasitized by V. destructor, their gene expression responded differently, probably the result of different mechanisms of host responses during development. PMID:28081188
Hydrophobization of track membrane surface by ion-plasma sputtering method
NASA Astrophysics Data System (ADS)
Kuklin, I. E.; Khlebnikov, N. A.; Barashev, N. R.; Serkov, K. V.; Polyakov, E. V.; Zdorovets, M. V.; Borgekov, D. B.; Zhidkov, I. S.; Cholakh, S. O.; Kozlovskiy, A. L.
2017-09-01
This article reviews the possibility of applying inorganic coatings of metal compounds on PTM by ion-plasma sputtering. The main aim of this research is to increase the contact angle of PTM surfaces and to impart the properties of a hydrophobic material to it. After the modification, the initial contact angle increased from 70° to 120°.
(E)-N'-[1-(Thio-phen-2-yl)ethyl-idene]isonicotinohydrazide.
Dileep, C S; Abdoh, M M M; Chakravarthy, M P; Mohana, K N; Sridhar, M A
2012-10-01
In the title compound, C(12)H(11)N(3)OS, the dihedral angle between the pyridine and thio-phene rings is 46.70 (9)° and the C-N-N-C torsion angle is 178.61 (15)°. In the crystal, inversion dimers linked by pairs of N-H⋯O hydrogen bonds generate R(2) (2)(8) loops.
2′-Chloro-4-methoxy-3-nitrobenzil
Nithya, G.; Thanuja, B.; Chakkaravarthi, G.; Kanagam, Charles C.
2011-01-01
In the title compound, C15H10ClNO5, the dihedral angle between the aromatic rings is 87.99 (5)°. The O—C—C—O torsion angle between the two carbonyl units is −119.03 (16)°. The crystal structure is stabilized by a weak intermolecular C—H⋯O hydrogen bond. PMID:21754895
Landucci, E C; Antunes, E; Donato, J L; Faro, R; Hyslop, S; Marangoni, S; Oliveira, B; Cirino, G; de Nucci, G
1995-01-01
1. The effect of purified crotapotin, a non-toxic non-enzymatic chaperon protein normally complexed to a phospholipase A2 (PLA2) in South America rattlesnake venom, was studied in the acute inflammatory response induced by carrageenin (1 mg/paw), compound 48/80 (3 micrograms/paw) and 5-hydroxytryptamine (5-HT) (3 micrograms/paw) in the rat hind-paw. The effects of crotapotin on platelet aggregation, mast cell degranulation and eicosanoid release from guinea-pig isolated lung were also investigated. 2. Subplantar co-injection of crotapotin (1 and 10 micrograms/paw) with carrageenin or injection of crotapotin (10 micrograms/paw) into the contralateral paw significantly inhibited the carrageenin-induced oedema. This inhibition was also observed when crotapotin (10-30 micrograms/paw) was administered either intraperitoneally or orally. Subplantar injection of heated crotapotin (15 min at 60 degrees C) failed to inhibit carrageenin-induced oedema. Subplantar injection of crotapotin (10 micrograms/paw) also significantly inhibited the rat paw oedema induced by compound 48/80, but it did not affect 5-HT-induced oedema. 3. In adrenalectomized animals, subplantar injection of crotapotin markedly inhibited the oedema induced by carrageenin. The inhibitory effect of crotapotin was also observed in rats depleted of histamine and 5-HT stores. 4. Crotapotin (30 micrograms/paw) had no effect on either the histamine release induced by compound 48/80 in vitro or on the platelet aggregation induced by both arachidonic acid (1 nM) and platelet activating factor (1 microM) in human platelet-rich plasma. The platelet aggregation and thromboxane B2 (TXB2) release induced by thrombin (100 mu ml-1) in washed human platelets were also not affected by crotapotin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7537590
Fabrication of sinterable silicon nitride by injection molding
NASA Technical Reports Server (NTRS)
Quackenbush, C. L.; French, K.; Neil, J. T.
1982-01-01
Transformation of structural ceramics from the laboratory to production requires development of near net shape fabrication techniques which minimize finish grinding. One potential technique for producing large quantities of complex-shaped parts at a low cost, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material. Binder selection methodology, compounding of ceramic and binder components, injection molding techniques, and problems in binder removal are discussed. Strength, oxidation resistance, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material.
Cerebellar inactivation impairs memory of learned prism gaze-reach calibrations.
Norris, Scott A; Hathaway, Emily N; Taylor, Jordan A; Thach, W Thomas
2011-05-01
Three monkeys performed a visually guided reach-touch task with and without laterally displacing prisms. The prisms offset the normally aligned gaze/reach and subsequent touch. Naive monkeys showed adaptation, such that on repeated prism trials the gaze-reach angle widened and touches hit nearer the target. On the first subsequent no-prism trial the monkeys exhibited an aftereffect, such that the widened gaze-reach angle persisted and touches missed the target in the direction opposite that of initial prism-induced error. After 20-30 days of training, monkeys showed long-term learning and storage of the prism gaze-reach calibration: they switched between prism and no-prism and touched the target on the first trials without adaptation or aftereffect. Injections of lidocaine into posterolateral cerebellar cortex or muscimol or lidocaine into dentate nucleus temporarily inactivated these structures. Immediately after injections into cortex or dentate, reaches were displaced in the direction of prism-displaced gaze, but no-prism reaches were relatively unimpaired. There was little or no adaptation on the day of injection. On days after injection, there was no adaptation and both prism and no-prism reaches were horizontally, and often vertically, displaced. A single permanent lesion (kainic acid) in the lateral dentate nucleus of one monkey immediately impaired only the learned prism gaze-reach calibration and in subsequent days disrupted both learning and performance. This effect persisted for the 18 days of observation, with little or no adaptation.
Cerebellar inactivation impairs memory of learned prism gaze-reach calibrations
Hathaway, Emily N.; Taylor, Jordan A.; Thach, W. Thomas
2011-01-01
Three monkeys performed a visually guided reach-touch task with and without laterally displacing prisms. The prisms offset the normally aligned gaze/reach and subsequent touch. Naive monkeys showed adaptation, such that on repeated prism trials the gaze-reach angle widened and touches hit nearer the target. On the first subsequent no-prism trial the monkeys exhibited an aftereffect, such that the widened gaze-reach angle persisted and touches missed the target in the direction opposite that of initial prism-induced error. After 20–30 days of training, monkeys showed long-term learning and storage of the prism gaze-reach calibration: they switched between prism and no-prism and touched the target on the first trials without adaptation or aftereffect. Injections of lidocaine into posterolateral cerebellar cortex or muscimol or lidocaine into dentate nucleus temporarily inactivated these structures. Immediately after injections into cortex or dentate, reaches were displaced in the direction of prism-displaced gaze, but no-prism reaches were relatively unimpaired. There was little or no adaptation on the day of injection. On days after injection, there was no adaptation and both prism and no-prism reaches were horizontally, and often vertically, displaced. A single permanent lesion (kainic acid) in the lateral dentate nucleus of one monkey immediately impaired only the learned prism gaze-reach calibration and in subsequent days disrupted both learning and performance. This effect persisted for the 18 days of observation, with little or no adaptation. PMID:21389311
Cortés, Camilo; de los Reyes-Guzmán, Ana; Scorza, Davide; Bertelsen, Álvaro; Carrasco, Eduardo; Gil-Agudo, Ángel; Ruiz-Salguero, Oscar; Flórez, Julián
2016-01-01
Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury). The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement. The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton. This approximation is rough since their kinematic structures differ. Motion capture systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup. Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing parallel kinematic chains. EIKPE has been tested with single DOF movements of the wrist and elbow joints. This paper presents the assessment of EIKPE with elbow-shoulder compound movements (i.e., object prehension). Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage). The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compound movement execution, especially for the shoulder joint angles. This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types. PMID:27403420
NASA Astrophysics Data System (ADS)
Kocur, C. M.; Lomheim, L.; Boparai, H. K.; Chowdhury, A. I.; Weber, K.; Austrins, L. M.; Sleep, B.; O'Carroll, D. M.; Edwards, E.
2014-12-01
Injection of carboxymethyl-cellulose stabilized nanoscale Zero Valent Iron (CMC/nZVI) has received significant attention in the last decade as an emerging alternative for in-situ remediation of chlorinated solvents and other recalcitrant compounds. There has also been some indication that injection of nZVI will create conditions that will stimulate in-situ microbial populations, leading to further contaminant degradation. Carboxy-methyl cellulose (CMC) is commonly used for nZVI synthesis as it provides steric stabilization for the nanoparticles, however, the CMC is equally important as a subsurface amendment as it may act as a fermentable substrate for microorganisms in-situ. In this study, microbial communities were monitored over a 2.5 year period following the injection of CMC/nZVI at a chlorinated solvent remediation site. Dehalococcoides spp. genetic markers and vinyl chloride reductase genes (vcrA) were targeted in the 16s RNA using quantitative polymerase chain reaction (qPCR). This analysis was complimented with a suite of aqueous chlorinated ethene, ethane, and methane compounds to monitor degradation. Following the injection of CMC/nZVI a decline of parent chlorinated compound concentrations was observed as well as the emergence of daughter products. A period of abiotic nZVI oxidation is believed to be responsible for a portion of the degradation at the site, however, a prolonged period of contaminant degradation followed and is believed to be the result of organohalide-respiring microorganisms native to the site. Further analysis was performed on the microbial samples using 454 pyrotag sequencing of amplified 16S rRNA genes to obtain the genetic profile of the microbial community. Of particular interest within this large genomic profile is the characterization of the stable population of important organohalide-respiring microorganisms on site. Results suggest that there is a distinctly different response in the organohalide-respiring microbial community in areas of the site where CMC/nZVI amendments were injected compared to a background response.
The concurrent determination of pesticidal and non-pesticidal organotin compounds in several water matrices, using a simultaneous in situ ethylation and liquid-liquid extraction followed by splitless injection mode capillary gas chromatography with pulsed flame photometric detect...
NASA Technical Reports Server (NTRS)
Tedder, S. A.; OByrne, S.; Danehy, P. M.; Cutler, A. D.
2005-01-01
The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) method was used to measure temperature and the absolute mole fractions of N2, O2 and H2 in a supersonic combustor. Experiments were conducted in the NASA Langley Direct-Connect Supersonic Combustion Test Facility. CARS measurements were performed at the facility nozzle exit and at three planes downstream of fuel injection. Processing the CARS measurements produced maps of the mean temperature, as well as quantitative N2 and O2 and qualitative H2 mean mole fraction fields at each plane. The CARS measurements were also used to compute correlations between fluctuations of the different simultaneously measured parameters. Comparisons were made between this 90 degree angle fuel injection case and a 30 degree fuel injection case previously presented at the 2004 Reno AIAA Meeting.
Kоbyli nska, L I; Havrylyuk, D Ya; Mitina, N E; Zaichenko, A S; Lesyk, R B; Zіme nkovsky, B S; Stoika, R S
2016-01-01
The aim of this study was to compare the effect of new synthetic 4-thiazolidinone derivatives (potential anticancer compounds denoted as 3882, 3288 and 3833) and doxorubicin (positive control) in free form and in their complexes with synthetic polyethylene glycol-containing nanoscale polymeric carrier on the biochemical indicators of nephrotoxicity in blood serum of rats. The concentration of total protein, urea, creatinine, glucose, ions of sodium, potassium, calcium, iron and chloride was measured. It was found that after injection of the investigated compounds, the concentration of sodium cations and chloride anions in blood serum was increased compared with control (untreated animals). Doxorubicin’s injection was accompanied by a decrease in the concentration of iron cations. The concentration of total protein, urea and creatinine decreased under the influence of the studied compounds. Complexation of these аntineoplastic substances with a synthetic polymeric nanocarrier lowered the concentration of the investigated metabolites substantially compared to the effect of these compounds in free form. The normalization of concentration of total protein, urea and creatinine in blood serum of rats treated with complexes of the studied compounds with the polymeric carrier comparing with increased concentration of these indicators at the introduction of such compounds in free form was found.
Rock samples analysis with the pyrolysis system of the Mars Organic Molecule Analyzer (MOMA)
NASA Astrophysics Data System (ADS)
Steininger, H.; Goetz, W.; Goesmann, F.
2012-12-01
The Mars Organic Molecule Analyzer (MOMA) is a combined pyrolysis gas chromatograph mass spectrometer (GC-MS) and laser desorption mass spectrometer (LD-MS). It will be the key instrument of the ESA/Roscosmos ExoMars 2018 mission to search for extinct and extant life. Additionally the instrument will be able to detect the organic background which has possibly been delivered to Mars by meteorites. Several samples containing a wide range of organic molecules have been tested with a flight analog injection system. The results of the tests were compared to results obtained by a commercial pyrolysis system, the Pyrola pyrolysis unit. The first experimental setup (Pyrola unit) consists of a small quartz tube with an electrically heated platinum filament. A constant helium flow transports the volatilized compounds through an injection needle directly into the injector of the GC. The whole system is heated to 175°C. The second experimental setup (flight analog injection system) consists of a 6 mm diameter platinum oven connected to a microvalve plate to route the gas from the oven to the GC. The microvalves can be switched electrically. The volatiles are subsequently trapped in a cold trap consisting of a Tenax filed tube. Heating this tube releases the volatiles and injects them through an injection needle into the GC. A Varian 4000 GC-MS with RTX-5 column was used to separate and analyze the volatiles generated from both experimental setups. During the experiments several natural rock samples with a broad content of organic material have been analyzed. The sample material was crushed and ground. To obtain comparable results the same amount of sample was used in both setups. Lower temperatures were used in the flight analog injection system due to restrictions of the reusable oven. Lower temperatures normally lead to only a slight decrease in the very heavy and non-volatile compounds but do not change the overall appearance of the chromatogram. Significant differences in the amount and composition of organic compounds have been found in the GC traces. In the flight like configuration an increase of the light volatile compounds was observed especially for benzene and toluene. We want to acknowledge the support by DLR (FKZ 50QX1001).
Borzacchiello, A; Mayol, L; Gärskog, O; Dahlqvist, A; Ambrosio, L
2005-06-01
The viscoelastic properties of vocal folds after injection of hyaluronic acid (hyaluronan, HA) based materials have been studied in an animal model (rabbit) six months after injection. The results indicate that the viscoelastic properties of the vocal folds injected with the HA based materials are similar to the healthy vocal folds (non-injected samples) used as control. Histological analysis has been also performed to investigate on the fate of the injected materials after six months from the implant. The HA based materials remain up to six months and they recruited fibroblasts that induce the ingrowth of new connective tissue resulting in an endogenous soft tissue augmentation. The HA based compounds are good candidate for further studies aimed at restoring/preserving the vibratory capacity of the vocal folds with injection treatment in glottal insufficiency.
Driscoll, David F; Silvestri, Anthony P; Bistrian, Bruce R; Mikrut, Bernard A
2007-02-15
The physical stability of two emulsions compounded as part of a total nutrient admixture (TNA) was studied in lipids packaged in either glass or plastic containers. Five weight-based adult TNA formulations that were designed to meet the full nutritional needs of adults with body weights between 40 and 80 kg were studied. Triplicate preparations of each TNA were assessed over 30 hours at room temperature by applying currently proposed United States Pharmacopeia (USP) criteria for mean droplet diameter, large-diameter tail, and globule-size distribution (GSD) for lipid injectable emulsions. In accordance with conditions set forth in USP chapter 729, the higher levels of volume-weighted percent of fat exceeding 5 microm (PFAT(5)) should not exceed 0.05% of the total lipid concentration. Significant differences were noted among TNA admixtures based on whether the lipid emulsion product was manufactured in glass or plastic. The plastic-contained TNAs failed the proposed USP methods for large-diameter fat globules in all formulations from the outset, and 60% had significant growth in large-diameter fat globules over time. In contrast, glass-contained TNAs were stable throughout and in all cases would have passed proposed USP limits. Certain lipid injectable emulsions packaged in plastic containers have baseline abnormal GSD profiles compared with those packaged in glass containers. When used to compound TNAs, the abnormal profile worsens and produces less stable TNAs than those compounded with lipid injectable emulsions packaged in glass containers.
Hama, A T; Lloyd, G K; Menzaghi, F
2001-03-01
The analgesic effect of intrathecal injection of epibatidine, clonidine and neostigmine, compounds that elevate ACh, was examined in the formalin test, a model of post-injury central sensitization in the rat. The compounds were injected alone and in combination. Intrathecal injection of epibatidine alone did not alter pain behaviors, compared to vehicle-treated rats. Intrathecal injection of clonidine dose-dependently reduced tonic pain behaviors (ED(50)+/-95% confidence limits=6.7+/-4.8 microg). The combination of clonidine and epibatidine (C:E), in the ratio of 26:1, dose-dependently reduced tonic pain behaviors; and the ED(50) of C:E was 1.1+/-0.98 microg a significant 6-fold leftward shift of the dose response curve, compared with clonidine alone. The antinociceptive effect of C:E (26:1) was attenuated by pre-treatment with the nAChR antagonist mecamylamine. Neostigmine dose-dependently reduced tonic pain behaviors (ED(50)=1.5+/-1.3 microg). The combination of neostigmine and epibatidine, in a ratio of 8:1, significantly shifted the dose response curve 4-fold to the left (ED(50)=0.4+/-0.3 microg). The effect is mediated in part by the activation of the nAChR and possibly by the enhanced release of ACh. These data demonstrate significant enhancement of the antinociceptive effects of spinally delivered analgesics by a nAChR agonist, suggesting that this class of compounds may have utility as adjuvants when combined with conventional therapeutics.
Genetic algorithm optimization of a film cooling array on a modern turbine inlet vane
NASA Astrophysics Data System (ADS)
Johnson, Jamie J.
In response to the need for more advanced gas turbine cooling design methods that factor in the 3-D flowfield and heat transfer characteristics, this study involves the computational optimization of a pressure side film cooling array on a modern turbine inlet vane. Latin hypersquare sampling, genetic algorithm reproduction, and Reynolds-Averaged Navier Stokes (RANS) computational fluid dynamics (CFD) as an evaluation step are used to assess a total of 1,800 film cooling designs over 13 generations. The process was efficient due to the Leo CFD code's ability to estimate cooling mass flux at surface grid cells using a transpiration boundary condition, eliminating the need for remeshing between designs. The optimization resulted in a unique cooling design relative to the baseline with new injection angles, compound angles, cooling row patterns, hole sizes, a redistribution of cooling holes away from the over-cooled midspan to hot areas near the shroud, and a lower maximum surface temperature. To experimentally confirm relative design trends between the optimized and baseline designs, flat plate infrared thermography assessments were carried out at design flow conditions. Use of flat plate experiments to model vane pressure side cooling was justified through a conjugate heat transfer CFD comparison of the 3-D vane and flat plate which showed similar cooling performance trends at multiple span locations. The optimized flat plate model exhibited lower minimum surface temperatures at multiple span locations compared to the baseline. Overall, this work shows promise of optimizing film cooling to reduce design cycle time and save cooling mass flow in a gas turbine.
Acute toxicity of nickel nanoparticles in rats after intravenous injection
Magaye, Ruth R; Yue, Xia; Zou, Baobo; Shi, Hongbo; Yu, Hongsheng; Liu, Kui; Lin, Xialu; Xu, Jin; Yang, Cui; Wu, Aiguo; Zhao, Jinshun
2014-01-01
This study was carried out to add scientific data in regard to the use of metallic nanoparticles in nanomedicine. The acute toxicity of nickel (Ni) nanoparticles (50 nm), intravenously injected through the dorsal penile vein of Sprague Dawley rats was evaluated in this study. Fourteen days after injection, Ni nanoparticles induced liver and spleen injury, lung inflammation, and caused cardiac toxicity. These results indicate that precautionary measures should be taken with regard to the use of Ni nanoparticles or Ni compounds in nanomedicine. PMID:24648736
Subashi, Ergys; Choudhury, Kingshuk R; Johnson, G Allan
2014-03-01
The pharmacokinetic parameters derived from dynamic contrast-enhanced (DCE) MRI have been used in more than 100 phase I trials and investigator led studies. A comparison of the absolute values of these quantities requires an estimation of their respective probability distribution function (PDF). The statistical variation of the DCE-MRI measurement is analyzed by considering the fundamental sources of error in the MR signal intensity acquired with the spoiled gradient-echo (SPGR) pulse sequence. The variance in the SPGR signal intensity arises from quadrature detection and excitation flip angle inconsistency. The noise power was measured in 11 phantoms of contrast agent concentration in the range [0-1] mM (in steps of 0.1 mM) and in onein vivo acquisition of a tumor-bearing mouse. The distribution of the flip angle was determined in a uniform 10 mM CuSO4 phantom using the spin echo double angle method. The PDF of a wide range of T1 values measured with the varying flip angle (VFA) technique was estimated through numerical simulations of the SPGR equation. The resultant uncertainty in contrast agent concentration was incorporated in the most common model of tracer exchange kinetics and the PDF of the derived pharmacokinetic parameters was studied numerically. The VFA method is an unbiased technique for measuringT1 only in the absence of bias in excitation flip angle. The time-dependent concentration of the contrast agent measured in vivo is within the theoretically predicted uncertainty. The uncertainty in measuring K(trans) with SPGR pulse sequences is of the same order, but always higher than, the uncertainty in measuring the pre-injection longitudinal relaxation time (T10). The lowest achievable bias/uncertainty in estimating this parameter is approximately 20%-70% higher than the bias/uncertainty in the measurement of the pre-injection T1 map. The fractional volume parameters derived from the extended Tofts model were found to be extremely sensitive to the variance in signal intensity. The SNR of the pre-injection T1 map indicates the limiting precision with which K(trans) can be calculated. Current small-animal imaging systems and pulse sequences robust to motion artifacts have the capacity for reproducible quantitative acquisitions with DCE-MRI. In these circumstances, it is feasible to achieve a level of precision limited only by physiologic variability.
Wermes, Clint; Cannon, Robert; Haasnoot, Sytze; Colstee, Hans; Niedeveld, Cor; Koopmanschap, Gijs; Da Costa, Neil C
2017-11-01
Thiols are often highly odor active molecules and as such can significantly contribute to aroma while being present at extremely low concentrations. This paper details the identification of thiols in yellow onion juice by solvent extraction followed by thiol enrichment using a mercuric agarose gel column. Due to the inherent thermal instability and low concentrations of thiols in onion, chromatographic analysis utilized larger volume solvent elimination injections. New sulfur compounds in onion included 1,1-propanedithiol, bis-(1-sulfanylpropyl)-sulfide, 1-methylsulfanyl-1-propanethiol, 1-propylsulfanyl-1-propanethiol, and 1-allylsulfanyl-1-propanethiol. A discussion on the potential route of formation for each compound is included along with the orthonasal and retronasal evaluations of the synthesized molecules. This work investigated and identified 5 newly identified compounds present in onions that can impart onion character at low concentrations levels. © 2017 Institute of Food Technologists®.
Identification of polar volatile organic compounds in consumer products and common microenvironments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, L.A.; Nelson, W.C.; Pellizzari, E.
1991-03-01
Polar volatile organic compounds were identified in the headspace of 31 fragrance products such as perfumes, colognes and soaps. About 150 different chemicals were identified in a semiquantitative fashion, using two methods to analyze the headspace: direct injection into a gas chromatograph and collection by an evacuated canister, each followed by GC-MS analysis. The canister method displayed low recoveries for most of the 25 polar chemical standards tested. However, reconstructed ion chromatograms (RICs) from the canister showed good agreement with RICs from the direct injection method except for some high boiling point compounds. Canister samples collected in 15 microenvironments expectedmore » to contain the fragrance products tested (potpourri stores, fragrance sections of department stores, etc.) showed relatively low concentrations of most of these polar chemicals compared with certain common nonpolar chemicals. The results presented will be useful for models of personal exposure and indoor air quality.« less
NASA Astrophysics Data System (ADS)
Kwak, Musun; Chung, Hanrok; Kwon, Hyukmin; Kim, Jehyun; Han, Daekyung; Yi, Yoonseon; Lee, Sangmun; Lee, Chulgu; Cha, Sooyoul
Using frictional force microscopy (FFM), the friction surface characteristics were compared between twisted nematic (TN) mode and vertical alignment (VA) mode alignment films (AFs). The friction asymmetry was detected depending on temperature conditions on TN mode AF, but not on VA mode AF. The difference between two modes was explained by leaning intermolecular repulsion caused by the pre-tilt angle uniformity and the density of side chain. No level difference according to temperature conditions appeared when the pre-tilt angle were measured after liquid crystal (LC) injection.
Perrine, Shane A.; Michaels, Mark S.; Ghoddoussi, Farhad; Hyde, Elisabeth M.; Tancer, Manuel E.; Galloway, Matthew P.
2010-01-01
Despite the potential for deleterious (even fatal) effects on cardiac physiology, 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse abounds driven mainly by its euphoric effects. Acute exposure to MDMA has profound cardiovascular effects on blood pressure and heart rate in humans and animals. To determine the effects of MDMA on cardiac metabolites in rats, MDMA (0, 5, or 10 mg/kg) was injected every 2 h for a total of four injections; animals were sacrificed 2 h after the last injection (8 h drug exposure), and their hearts removed and tissue samples from left ventricular wall dissected. High resolution magic angle spinning proton magnetic resonance spectroscopy (1H-MRS) at 11.7 T, a specialized version of MRS aptly suited for analysis of semi-solid materials such as intact tissue samples, was used to measure the cardiac metabolomic profile, including alanine, lactate, succinate, creatine, and carnitine, in heart tissue from rats treated with MDMA. MDMA effects on MR-visible choline, glutamate, glutamine, and taurine were also determined. Body temperature was measured following each MDMA administration and serotonin and norepinephrine (NE) levels were measured by high pressure liquid chromatography (HPLC) in heart tissue from treated animals. MDMA significantly and dose-dependently increased body temperature, a hallmark of amphetamines. Serotonin, but not NE, levels were significantly and dose-dependently decreased by MDMA in the heart wall. MDMA significantly altered the MR-visible profile with an increase in carnitine and no change in other key compounds involved in cardiomyocyte energy metabolomics. Finally, choline levels were significantly decreased by MDMA in heart. The results are consistent with the notion that MDMA has significant effects on cardiovascular serotonergic tone and disrupts the metabolic homeostasis of energy regulation in cardiac tissue, potentially increasing utilization of fatty acid metabolism. The contributions of serotonergic signaling on MDMA-induced changes in cardiac metabolism remain to be determined. PMID:18985626
Perrine, Shane A; Michaels, Mark S; Ghoddoussi, Farhad; Hyde, Elisabeth M; Tancer, Manuel E; Galloway, Matthew P
2009-05-01
Despite the potential for deleterious (even fatal) effects on cardiac physiology, 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse abounds driven mainly by its euphoric effects. Acute exposure to MDMA has profound cardiovascular effects on blood pressure and heart rate in humans and animals. To determine the effects of MDMA on cardiac metabolites in rats, MDMA (0, 5, or 10 mg/kg) was injected every 2 h for a total of four injections; animals were sacrificed 2 h after the last injection (8 h drug exposure), and their hearts removed and tissue samples from left ventricular wall dissected. High resolution magic angle spinning proton magnetic resonance spectroscopy ((1)H-MRS) at 11.7 T, a specialized version of MRS aptly suited for analysis of semi-solid materials such as intact tissue samples, was used to measure the cardiac metabolomic profile, including alanine, lactate, succinate, creatine, and carnitine, in heart tissue from rats treated with MDMA. MDMA effects on MR-visible choline, glutamate, glutamine, and taurine were also determined. Body temperature was measured following each MDMA administration and serotonin and norepinephrine (NE) levels were measured by high pressure liquid chromatography (HPLC) in heart tissue from treated animals. MDMA significantly and dose-dependently increased body temperature, a hallmark of amphetamines. Serotonin, but not NE, levels were significantly and dose-dependently decreased by MDMA in the heart wall. MDMA significantly altered the MR-visible profile with an increase in carnitine and no change in other key compounds involved in cardiomyocyte energy metabolomics. Finally, choline levels were significantly decreased by MDMA in heart. The results are consistent with the notion that MDMA has significant effects on cardiovascular serotonergic tone and disrupts the metabolic homeostasis of energy regulation in cardiac tissue, potentially increasing utilization of fatty acid metabolism. The contributions of serotonergic signaling on MDMA-induced changes in cardiac metabolism remain to be determined.
Flame structure of wall-impinging diesel fuel sprays injected by group-hole nozzles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Jian; Moon, Seoksu; Nishida, Keiya
This paper describes an investigation of the flame structure of wall-impinging diesel sprays injected by group-hole nozzles in a constant-volume combustion vessel at experimental conditions typical of a diesel engine. The particular emphasis was on the effect of the included angle between two orifices (0-15 deg. in current study) on the flame structure and combustion characteristics under various simulated engine load conditions. The laser absorption scattering (LAS) technique was applied to analyze the spray and mixture properties. Direct flame imaging and OH chemiluminescence imaging were utilized to quantify the ignition delay, flame geometrical parameters, and OH chemiluminescence intensity. The imagesmore » show that the asymmetric flame structure emerges in wall-impinging group-hole nozzle sprays as larger included angle and higher engine load conditions are applied, which is consistent with the spray shape observed by LAS. Compared to the base nozzle, group-hole nozzles with large included angles yield higher overall OH chemiluminescence intensity, wider flame area, and greater proportion of high OH intensity, implying the better fuel/air mixing and improved combustion characteristics. The advantages of group-hole nozzle are more pronounced under high load conditions. Based on the results, the feasibility of group-hole nozzle for practical direct injection diesel engines is also discussed. It is concluded that the asymmetric flame structure of a group-hole nozzle spray is favorable to reduce soot formation over wide engine loads. However, the hole configuration of the group-hole nozzle should be carefully considered so as to achieve proper air utilization in the combustion chamber. Stoichiometric diesel combustion is another promising application of group-hole nozzle. (author)« less
NASA Astrophysics Data System (ADS)
Son, Min; Radhakrishnan, Kanmaniraja; Yoon, Youngbin; Koo, Jaye
2017-06-01
A pintle injector is a movable injector capable of controlling injection area and velocities. Although pintle injectors are not a new concept, they have become more notable due to new applications such as planet landers and low-cost engines. However, there has been little consistent research on pintle injectors because they have many design variations and mechanisms. In particular, simulation studies are required for bipropellant applications. In this study, combustion simulation was conducted using methane and oxygen to determine the effects of injection condition and geometries upon combustion characteristics. Steady and two-dimensional axisymmetric conditions were assumed and a 6-step Jones-Lindstedt mechanism with an eddy-dissipation concept model was used for turbulent kinetic reaction. As a result, the results with wide flame angles showed good combustion performances with a large recirculation under the pintle tip. Under lower mass flow-rate conditions, the combustion performance got worse with lower flame angles. To solve this problem, decreasing the pintle opening distance was very effective and the flame angle recovered. In addition, a specific recirculation zone was observed near the post, suggesting that proper design of the post could increase the combustion performance, while the geometry without a recirculation zone had the poor performance.
A GRB and Broad-lined Type Ic Supernova from a Single Central Engine
NASA Astrophysics Data System (ADS)
Barnes, Jennifer; Duffell, Paul C.; Liu, Yuqian; Modjaz, Maryam; Bianco, Federica B.; Kasen, Daniel; MacFadyen, Andrew I.
2018-06-01
Unusually high velocities (≳0.1c) and correspondingly high kinetic energies have been observed in a subset of Type Ic supernovae (so-called “broad-lined Ic” supernovae; SNe Ic-BL), prompting a search for a central engine model capable of generating such energetic explosions. A clue to the explosion mechanism may lie in the fact that all supernovae that accompany long-duration gamma-ray bursts (GRBs) belong to the SN Ic-BL class. Using a combination of two-dimensional relativistic hydrodynamics and radiation transport calculations, we demonstrate that the central engine responsible for long GRBs can also trigger an SN Ic-BL. We find that a reasonable GRB engine injected into a stripped Wolf–Rayet progenitor produces a relativistic jet with energy ∼1051 erg, as well as an SN whose synthetic light curves and spectra are fully consistent with observed SNe Ic-BL during the photospheric phase. As a result of the jet’s asymmetric energy injection, the SN spectra and light curves depend on viewing angle. The impact of viewing angle on the spectrum is particularly pronounced at early times, while the viewing-angle dependence for the light curves (∼10% variation in bolometric luminosity) persists throughout the photospheric phase.
Injection-Sensitive Mechanics of Hydraulic Fracture Interaction with Discontinuities
NASA Astrophysics Data System (ADS)
Chuprakov, D.; Melchaeva, O.; Prioul, R.
2014-09-01
We develop a new analytical model, called OpenT, that solves the elasticity problem of a hydraulic fracture (HF) contact with a pre-existing discontinuity natural fracture (NF) and the condition for HF re-initiation at the NF. The model also accounts for fluid penetration into the permeable NFs. For any angle of fracture intersection, the elastic problem of a blunted dislocation discontinuity is solved for the opening and sliding generated at the discontinuity. The sites and orientations of a new tensile crack nucleation are determined based on a mixed stress- and energy-criterion. In the case of tilted fracture intersection, the finite offset of the new crack initiation point along the discontinuity is computed. We show that aside from known controlling parameters such stress contrast, cohesional and frictional properties of the NFs and angle of intersection, the fluid injection parameters such as the injection rate and the fluid viscosity are of first-order in the crossing behavior. The model is compared to three independent laboratory experiments, analytical criteria of Blanton, extended Renshaw-Pollard, as well as fully coupled numerical simulations. The relative computational efficiency of OpenT model (compared to the numerical models) makes the model attractive for implementation in modern engineering tools simulating hydraulic fracture propagation in naturally fractured environments.
NASA Astrophysics Data System (ADS)
Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.
Experiments have been complete to characterize coal-water slurry sprays from a electronically-controlled accumulator fuel injection system of diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions 50% (by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3), the break-up time was 0.30 ms. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as the time and locations of the measurement. The time-averaged cone angle for the base case conditions was 13.6 degrees. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.
A wavelength scannable XeCl oscillator-ring amplifier laser system
NASA Technical Reports Server (NTRS)
Pacala, T. J.; Mcdermid, I. S.; Laudenslager, J. B.
1982-01-01
A holographic grating at grazing angle of incidence was used to achieve tunable, narrow bandwidth (0.005 nm) operation of a XeCl oscillator for injection locking of a ring amplifier. The amplifier's narrow bandwidth output energy was constant and equal to the untuned, broadband output (approximately 15 mJ) in regions where injection locking was achieved. Scanning was provided by use of a stepping motor-driven differential micrometer on the tuning mirror. This system was used to produce a laser excitation spectrum of hydroxyl radicals (OH) in a flame.
NASA Technical Reports Server (NTRS)
Prust, H. W., Jr.
1972-01-01
Demonstration that the change in output of a cooled turbine blade row relative to the specific output of the uncooled blade row can be positive, negative, or zero, depending on the velocity, injection location, injection angle, and temperature of the coolant. Comparisons between the analytical results and experimental results for four different cases of coolant discharge, all at a coolant temperature ratio of unity, show good agreement for three cases, and rather poor agreement for the other.
NASA Astrophysics Data System (ADS)
Leem, Jung Woo; Song, Young Min; Yu, Jae Su
2013-10-01
We report the biomimetic artificial silicon (Si) compound eye structures for broadband and wide-angle antireflection by integrating nanostructures (NSs) into periodically patterned microstructures (p-MSs) via thermal dewetting of gold and subsequent dry etching. The truncated cone microstructures with a two-dimensional hexagonal symmetry pattern were fabricated by photolithography and dry etching processes. The desirable shape and density of the nanostructures were obtained by controlled dewetting. The incorporation of p-MSs into the NS/Si surface further reduced the surface total reflectance over a wide wavelength range of 300-1030 nm at near normal incidence, indicating the average reflectance (Ravg) and solar weighted reflectance (RSWR) values of ~2.5% and 2%, respectively, compared to the only NSs on the flat Si surface (i.e., Ravg ~ 4.9% and RSWR ~ 4.5%). Additionally, the resulting structure improved the angle-dependent antireflection property due to its relatively omnidirectional shape, which exhibited the Ravg < 4.3% and RSWR < 3.7% in the wavelength region of 300-1100 nm even at a high incident light angle of 70° in the specular reflectance.We report the biomimetic artificial silicon (Si) compound eye structures for broadband and wide-angle antireflection by integrating nanostructures (NSs) into periodically patterned microstructures (p-MSs) via thermal dewetting of gold and subsequent dry etching. The truncated cone microstructures with a two-dimensional hexagonal symmetry pattern were fabricated by photolithography and dry etching processes. The desirable shape and density of the nanostructures were obtained by controlled dewetting. The incorporation of p-MSs into the NS/Si surface further reduced the surface total reflectance over a wide wavelength range of 300-1030 nm at near normal incidence, indicating the average reflectance (Ravg) and solar weighted reflectance (RSWR) values of ~2.5% and 2%, respectively, compared to the only NSs on the flat Si surface (i.e., Ravg ~ 4.9% and RSWR ~ 4.5%). Additionally, the resulting structure improved the angle-dependent antireflection property due to its relatively omnidirectional shape, which exhibited the Ravg < 4.3% and RSWR < 3.7% in the wavelength region of 300-1100 nm even at a high incident light angle of 70° in the specular reflectance. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr02806b
Chen, Feng; Li, Li; Xu, Fang; Sun, Yan; Du, Feifei; Ma, Xutao; Zhong, Chenchun; Li, Xiuxue; Wang, Fengqing; Zhang, Nating; Li, Chuan
2013-09-01
Flavonols and terpene lactones are putatively responsible for the properties of Ginkgo biloba leaf extracts that relate to prevention and treatment of cardiovascular disease and cerebral insufficiency. Here, we characterized rat systemic and cerebral exposure to these ginkgo compounds after dosing, as well as the compounds' pharmacokinetics. Rats received single or multiple doses of ShuXueNing injection (prepared from GBE50 for intravenous administration) or GBE50 (a standardized extract of G. biloba leaves for oral administration). Brain delivery of the ginkgo compounds was assessed with microdialysis. Various rat samples were analysed using liquid chromatography/mass spectrometry. Slow terminal elimination features of the flavonols counterbalanced the influence of poor oral bioavailability on their systemic exposure levels, which also resulted in significant accumulation of the compounds in plasma during the subchronic treatment with ShuXueNing injection and GBE50. Unlike the flavonols, the terpene lactones had poor enterohepatic circulation due to their rapid renal excretion and unknown metabolism. The flavonol glycosides occurred as major forms in plasma after dosing with ShuXueNing injection, while the flavonol aglycone conjugates were predominant in plasma after dosing with GBE50. Cerebral exposure was negligible for the flavonols and low for the terpene lactones. Unlike the significant systemic exposure levels, the levels of cerebral exposure to the flavonols and terpene lactones are low. The elimination kinetic differences between the two classes of ginkgo compounds influence their relative systemic exposure levels. The information gained is relevant to linking ginkgo administration to the medicinal effects. © 2013 The Authors. British Journal of Pharmacology published by John Wiley &. Sons Ltd on behalf of The British Pharmacological Society.
Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-D.
Lasnier, C J; Allen, S L; Ellis, R E; Fenstermacher, M E; McLean, A G; Meyer, W H; Morris, K; Seppala, L G; Crabtree, K; Van Zeeland, M A
2014-11-01
An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in diverted and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. Demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.
NASA Technical Reports Server (NTRS)
Schetz, J. A.; Jakubowski, A. K.; Aoyagi, K.
1983-01-01
A jet in a cross flow is of interest in practical situations including jet-powered VTOL aircraft. Three aspects of the problem have received little prior study. First is the effect of the angle of the jet to the crossflow. Second is the performance of dual-jet configurations. The third item for further study is a jet injected from a body of revolution as opposed to a flat plate. The Test Plan for this work was designed to address these three aspects. The experiments were conducted in the 7 x 10 tunnel at NASA Ames at velocities 14.5 - 35.8 m/sec (47.6 - 117.4 ft/sec). Detailed pressure distributions are presented for single and dual jets over a range of velocity ratios from 3 to 8, spacings from 2 to 6 diameters and injection angles of 90, 75 and 60 degrees. Some flowfield measurements are also presented, and it is shown that a simple analysis is capable of predicting the trajectories of the jets.
NASA Astrophysics Data System (ADS)
Smith, James D.; Sick, Volker
2005-11-01
An innovative technique has been demonstrated to achieve crank-angle-resolved planar laser-induced fluorescence (PLIF) of fuel followed by OH* chemiluminescence imaging in a firing direct-injected spark-ignition engine. This study used two standard KrF excimer lasers to excite toluene for tracking fuel distribution. The intensified camera system was operated at single crank-angle resolution at 2000 revolutions per minute (RPM) for 500 consecutive cycles. Through this work, it has been demonstrated that toluene and OH* can be imaged through the same optical setup while similar signal levels are obtained from both species, even at these high rates. The technique is useful for studying correlations between fuel distribution and subsequent ignition and flame propagation without the limitations of phase-averaging imaging approaches. This technique is illustrated for the effect of exhaust gas recirculation on combustion and will be useful for studies of misfire causes. Finally, a few general observations are presented as to the effect of preignition fuel distribution on subsequent combustion.
Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-D
Lasnier, Charles J.; Allen, Steve L.; Ellis, Ronald E.; ...
2014-08-26
An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in divertedmore » and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. As a result, demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.« less
A study for the installation of the TEXT heavy-ion beam probe on DIII-D
NASA Astrophysics Data System (ADS)
Edmonds, P. H.; Solano, E. R.; Bravenec, R. V.; Wootton, A. J.; Schoch, P. M.; Crowley, T. P.; Hickok, R. L.; West, W. P.; Leuer, J.; Anderson, P.
1997-01-01
An assessment of the feasibility of installing the TEXT 2 MeV heavy-ion beam probe on the DIII-D tokamak has been completed. Detailed drawings of the machine cross section were imported into the CAD application AutoCAD. A set of programs written in AutoLisp were used to generate trajectories. Displays of the accessible cross section of the plasma, scan lines for the entire range of primary beam energy and injection angle ranges, and sample-volume dimensions can be rapidly generated. Because of the large deflection between the primary input beam and the emergent secondary beam, either the analyzer needs to be tracked over a ±20° angle or secondary poloidal deflector plates need to be installed at the exit port. Toroidal deflector plates will be installed at both the injection and exit ports to compensate for toroidal displacements and deflections. The sample volumes generated by this procedure are within a few centimeters of the locations derived from a full three-dimensional calculation.
NASA Technical Reports Server (NTRS)
Bain, D. B.; Smith, C. E.; Holdeman, J. D.
1992-01-01
A CFD study was performed to analyze the mixing potential of opposed rows of staggered jets injected into confined crossflow in a rectangular duct. Three jet configurations were numerically tested: (1) straight (0 deg) slots; (2) perpendicular slanted (45 deg) slots angled in opposite directions on top and bottom walls; and (3) parallel slanted (45 deg) slots angled in the same direction on top and bottom walls. All three configurations were tested at slot spacing-to-duct height ratios (S/H) of 0.5, 0.75, and 1.0; a jet-to-mainstream momentum flux ratio (J) of 100; and a jet-to-mainstream mass flow ratio of 0.383. Each configuration had its best mixing performance at S/H of 0.75. Asymmetric flow patterns were expected and predicted for all slanted slot configurations. The parallel slanted slot configuration was the best overall configuration at x/H of 1.0 for S/H of 0.75.
Smith, James D; Sick, Volker
2005-11-01
An innovative technique has been demonstrated to achieve crank-angle-resolved planar laser-induced fluorescence (PLIF) of fuel followed by OH* chemiluminescence imaging in a firing direct-injected spark-ignition engine. This study used two standard KrF excimer lasers to excite toluene for tracking fuel distribution. The intensified camera system was operated at single crank-angle resolution at 2000 revolutions per minute (RPM) for 500 consecutive cycles. Through this work, it has been demonstrated that toluene and OH* can be imaged through the same optical setup while similar signal levels are obtained from both species, even at these high rates. The technique is useful for studying correlations between fuel distribution and subsequent ignition and flame propagation without the limitations of phase-averaging imaging approaches. This technique is illustrated for the effect of exhaust gas recirculation on combustion and will be useful for studies of misfire causes. Finally, a few general observations are presented as to the effect of preignition fuel distribution on subsequent combustion.
Cationic surfactants can be used to modify surfaces of soils and subsurface materials to promote sorption of hydrophobic organic compounds (HOC) and retard their migration. For example, cationic surfactants could be injected into an aquifer downgradient from a source of HOC conta...
The concurrent determination of pesticidal and non-pesticidal organotin compounds in several water matrices, using a simultaneous in situ ethylation and liquid-liquid extraction followed by splitless injection mode capillary gas chromatography with pulsed flame photometric detect...
In vivo screening of candidate pretreatment compounds against cyanide using mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiser, R.C.; Olson, C.T.; Menton, R.G.
1993-05-13
An in vivo screening procedure was established at Battelle's Medical Research and Evaluation Facility (MREF) to evaluate the efficacy of candidate pretreatment compounds in mice challenged with the blood agent, sodium cyanide (NaCN). Male albino mice of ICR outbred stock weighing between 22.5 and 27.5 g are challenged by intramuscular (i.m.) injection, at a volume of 0.5 mL/kg, of a dose of NaCN twice the LD50 of untreated mice as determined on that day of testing. Candidate drugs are tested at fractions of their LD50 or their limit of solubility in the most optimum vehicle and given intraperitoneally (i.p.) tomore » separate groups of mice at either 60 or 15 min prior to NaCN challenge. Sodium thiosulfate (1000 mg/kg)/sodium nitrite (100 mg/kg) controls are injected i.p. only at 60 min prior to challenge. A test compound is deemed effective if, at any of three concentrations tested, or at either pretreatment time, it is statistically more efficacious in preventing lethality than is a negative control substance (candidate compound vehicle).« less
Sterile compounding: clinical, legal, and regulatory implications for patient safety.
Qureshi, Nabeel; Wesolowicz, Laurie; Stievater, Trish; Lin, Alexandra Tungol
2014-12-01
Poor compounding practices by the New England Compounding Center resulted in the 2012-2013 fungal infections outbreak. Contaminated injectable methylprednisolone led to the diagnosis of fungal infections in 751 patients and 64 deaths. In the United States, pharmacy compounding has traditionally been regulated by state boards of pharmacy rather than the FDA. To minimize safety risks related to pharmacy compounding, the Drug Quality and Security Act (DQSA) was signed into law November 27, 2013, to improve regulation of compounding pharmacies. To (a) review the literature regarding clinical, legal, and regulatory implications of pharmacy compounding for patient safety during the 2012-2013 fungal infections outbreak and (b) discuss strategies that managed care organizations (MCOs) can use to promote safe compounding practices. A literature search was conducted via PubMed for original articles on fungal infections related to drug compounding published October 2012 to March 2014. Specific search terms included "drug compounding and fungal infection" and "fungal meningitis outbreak." The FDA website was also utilized for material related to the Food, Drug, and Cosmetic Act and the DQSA. Four articles met inclusion criteria. The 2012-2013 fungal infections outbreak was attributed to 3 lots of preservative-free methylprednisolone acetate, which comprised 17,675 vials distributed to 76 facilities across 23 states. Median incubation period (from time of last injection to initial diagnosis) was 47 days, ranging from 0 to 249 days. According to the FDA, a total of 30 recalls regarding compounded products were issued by pharmacies during March through December 2013. Pharmacy compounding has the potential for significant safety risks. The purpose of the DQSA is to improve regulation of compounding pharmacies. Since registration as an outsourcing facility is voluntary, uncertainty still remains regarding advancement in safe compounding practices. MCOs can employ multiple strategies to ensure patient safety and promote appropriate drug therapy.
NASA Astrophysics Data System (ADS)
Liu, Peisong; Niu, Liyong; Li, Xiaohong; Zhang, Zhijun
2017-12-01
The super-hydrophobic silica nanoparticles are applied to alter the wettability of rock surface from water-wet to oil-wet. The aim of this is to reduce injection pressure so as to enhance water injection efficiency in low permeability reservoirs. Therefore, a new type of environmentally responsive nanosilica (denote as ERS) is modified with organic compound containing hydrophobic groups and "pinning" groups by covalent bond and then covered with a layer of hydrophilic organic compound by chemical adsorption to achieve excellent water dispersibility. Resultant ERS is homogeneously dispersed in water with a size of about 4-8 nm like a micro-emulsion system and can be easily injected into the macro or nano channels of ultra-low permeability reservoirs. The hydrophobic nanosilica core can be released from the aqueous delivery system owing to its strong dependence on the environmental variation from normal condition to injection wells (such as pH and salinity). Then the exposed silica nanoparticles form a thin layer on the surface of narrow pore throat, leading to the wettability from water-wet to oil-wet. More importantly, the two rock cores with different permeability were surface treated with ERS dispersion with a concentration of 2 g/L, exhibit great reduce of water injection pressure by 57.4 and 39.6%, respectively, which shows great potential for exploitation of crude oil from ultra-low permeability reservoirs during water flooding. [Figure not available: see fulltext.
[Study of selegiline and related compounds with x-ray diffraction].
Simon, K; Böcskei, Z; Török, Z
1992-09-01
Selegiline and its parent compounds were studied by X-ray diffraction. It was established that the racemates of primary and secondary amines (p-fluoro-amphetamine, methamphetamine, p-fluoro-methamphetamine) hydrochloride do not form racemic compounds but crystalline as conglomerates, at the same time tertiary amines like selegiline and p-fluoro-selegiline hydrochlorides do. The crystalline structure of five enantiomeric hydrochlorides were determined, the CPhe-C-C-N torsion angle is anti-periplanar in all cases but in p-fluoro-amphetamine where it is gauche.
NASA Technical Reports Server (NTRS)
Heier, W. C. (Inventor)
1974-01-01
A method is described for compression molding of thermosetting plastics composition. Heat is applied to the compressed load in a mold cavity and adjusted to hold molding temperature at the interface of the cavity surface and the compressed compound to produce a thermal front. This thermal front advances into the evacuated compound at mean right angles to the compression load and toward a thermal fence formed at the opposite surface of the compressed compound.
[Profile-effect on quality control of Houttuynia cordata injection].
Lu, Hong-mei; Liang, Yi-zeng; Qian, Pin
2005-12-01
To find corresponding relationship between the fingerprint of Houttuynia cordata injections from different factories and their effects. Houttuynia cordata injections from six different factories were determined by gas chromatography (GC) and gas chromatography-mass spectra (GC-MS), and GC fingerprints were classified by hierarchical clustering. The anti-inflammatory activity of Houttuynia cordata injections was characterized through the rat pleurisy model induced by carrageenin and the mice ear edema model by dimethylbenzene. The anti-inflammatory effect of the injections from the first class factories on the two model was significant, while those from the second class not. GC-MS analysis result indicated that main effect compounds in Houttuynia cordata injections are methyl n-nonyl ketone, decanoylacetaldehyde, lauryl aldehyde, capryl aldehyde, beta-pinene, beta-linalool, 1-nonanol, 4-terpineol, alpha-terpineol, bornyl acetate, n-decanoic acid and acetic acid, geraniol ester etc. There is corresponding relationship between the fingerprint of Houttuynia cordata injections and effect to a certain extent.
Chisholm, Jessica; Gareau, Alison J; Byun, Stephanie; Paletz, Justin L; Tang, David; Williams, Jason; LeVatte, Terry; Bezuhly, Michael
2017-11-01
Although surgical excision and intralesional collagenase injection are mainstays in Dupuytren disease treatment, no effective medical therapy exists for recurrent disease. Compound 21, a selective agonist of the angiotensin II type 2 receptor, has been shown to protect against fibrosis in models of myocardial infarction and stroke. The authors investigated the potential use of compound 21 in the treatment of Dupuytren disease. Human dermal fibroblasts were treated in vitro with compound 21 and assessed for viability using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, migration by means of scratch assay, and profibrotic gene transcription by means of quantitative reverse transcription polymerase chain reaction. Compound 21 effects in vivo were assessed using a xenograft model. Dupuytren disease cord specimens from patients undergoing open partial fasciectomy were divided into two segments. Segments were implanted under the dorsal skin of nude mouse pairs. Beginning on day 5, one mouse from each pair received daily intraperitoneal injections of compound 21 (10 μg/kg/day), and the other received vehicle. On day 10, segments were explanted and submitted for immunohistochemistry. Human dermal fibroblasts treated with compound 21 displayed decreased migration and decreased gene expression of connective tissue growth factor, fibroblast specific protein-1, transforming growth factor-β1, Smad3, and Smad4. Dupuytren disease segments from compound 21-treated mice demonstrated significantly reduced alpha-smooth muscle actin and Ki67 staining, with increased density of CD31 staining vessels. Compound 21 significantly decreases expression of profibrotic genes and decreases myofibroblast proliferation as indicated by reduced Ki67 and alpha-smooth muscle actin expression. These findings support compound 21 as a potential novel treatment modality for Dupuytren disease.
Partitioning Behavior of Organic Contaminants in Carbon Storage Environments: A Critical Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burant, Aniela; Lowry, Gregory V; Karamalidis, Athanasios K
2012-12-04
Carbon capture and storage is a promising strategy for mitigating the CO{sub 2} contribution to global climate change. The large scale implementation of the technology mandates better understanding of the risks associated with CO{sub 2} injection into geologic formations and the subsequent interactions with groundwater resources. The injected supercritical CO{sub 2} (sc-CO{sub 2}) is a nonpolar solvent that can potentially mobilize organic compounds that exist at residual saturation in the formation. Here, we review the partitioning behavior of selected organic compounds typically found in depleted oil reservoirs in the residual oil–brine–sc-CO{sub 2} system under carbon storage conditions. The solubility ofmore » pure phase organic compounds in sc-CO{sub 2} and partitioning of organic compounds between water and sc-CO{sub 2} follow trends predicted based on thermodynamics. Compounds with high volatility and low aqueous solubility have the highest potential to partition to sc-CO{sub 2}. The partitioning of low volatility compounds to sc-CO{sub 2} can be enhanced by co-solvency due to the presence of higher volatility compounds in the sc-CO{sub 2}. The effect of temperature, pressure, salinity, pH, and dissolution of water molecules into sc-CO{sub 2} on the partitioning behavior of organic compounds in the residual oil-brine-sc-CO{sub 2} system is discussed. Data gaps and research needs for models to predict the partitioning of organic compounds in brines and from complex mixtures of oils are presented. Models need to be able to better incorporate the effect of salinity and co-solvency, which will require more experimental data from key classes of organic compounds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudoyarova, V. Kh., E-mail: kudoyarova@mail.ioffe.ru; Tolmachev, V. A.; Gushchina, E. V.
2013-03-15
Rutherford backscattering, IR spectroscopy, ellipsometry, and atomic-force microscopy are used to perform an integrated study of the composition, structure and optical properties of a-Si{sub 1-x}C{sub x}:H Left-Pointing-Angle-Bracket Er Right-Pointing-Angle-Bracket amorphous films. The technique employed to obtain the a-Si{sub 1-x}C{sub x}:H Left-Pointing-Angle-Bracket Er Right-Pointing-Angle-Bracket amorphous films includes the high-frequency decomposition of a mixture of gases, (SiH{sub 4}){sub a} + (CH{sub 4}){sub b}, and the simultaneous thermal evaporation of a complex compound, Er(pd){sub 3}. It is demonstrated that raising the amount of CH{sub 4} in the gas mixture results in an increase in the carbon content of the films under study andmore » an increase in the optical gap E{sub g}{sup opt} from 1.75 to 2.2 eV. Changes in the composition of a-Si{sub 1-x}C{sub x}:H Left-Pointing-Angle-Bracket Er Right-Pointing-Angle-Bracket amorphous films, accompanied, in turn, by changes in the optical constants, are observed in the IR spectra. The ellipsometric spectra obtained are analyzed in terms of multiple-parameter models. The conclusion is made on the basis of this analysis that the experimental and calculated spectra coincide well when variation in the composition of the amorphous films with that of the gas mixture is taken into account. The existence of a thin (6-8 nm) silicon-oxide layer on the surface of the films under study and the validity of using the double-layer model in ellipsometric calculations is confirmed by the results of structural analyses by atomic-force microscopy.« less
Crucial role of nuclear dynamics for electron injection in a dye–semiconductor complex
Monti, Adriano; Negre, Christian F. A.; Batista, Victor S.; ...
2015-06-05
In this study, we investigate the electron injection from a terrylene-based chromophore to the TiO 2 semiconductor bridged by a recently proposed phenyl-amide-phenyl molecular rectifier. The mechanism of electron transfer is studied by means of quantum dynamics simulations using an extended Hückel Hamiltonian. It is found that the inclusion of the nuclear motion is necessary to observe the photoinduced electron transfer. In particular, the fluctuations of the dihedral angle between the terrylene and the phenyl ring modulate the localization and thus the electronic coupling between the donor and acceptor states involved in the injection process. The electron propagation shows characteristicmore » oscillatory features that correlate with interatomic distance fluctuations in the bridge, which are associated with the vibrational modes driving the process. The understanding of such effects is important for the design of functional dyes with optimal injection and rectification properties.« less
Combustion of hydrogen injected into a supersonic airstream (a guide to the HISS computer program)
NASA Technical Reports Server (NTRS)
Dyer, D. F.; Maples, G.; Spalding, D. B.
1976-01-01
A computer program based on a finite-difference, implicit numerical integration scheme is described for the prediction of hydrogen injected into a supersonic airstream at an angle ranging from normal to parallel to the airstream main flow direction. Results of calculations for flow and thermal property distributions were compared with 'cold flow data' taken by NASA/Langley and show excellent correlation. Typical results for equilibrium combustion are presented and exhibit qualitatively plausible behavior. Computer time required for a given case is approximately one minute on a CDC 7600. A discussion of the assumption of parabolic flow in the injection region is given which demonstrates that improvement in calculation in this region could be obtained by a partially-parabolic procedure which has been developed. It is concluded that the technique described provides an efficient and reliable means for analyzing hydrogen injection into supersonic airstreams and the subsequent combustion.
An investigation of air solubility in Jet A fuel at high pressures
NASA Technical Reports Server (NTRS)
Faeth, G. M.
1981-01-01
Problems concerned with the supercritical injection concept are discussed. Supercritical injection involves dissolving air into a fuel prior to injection. A similar effect is obtained by preheating the fuel so that a portion of the fuel flashes when its pressure is reduced. Flashing improves atomization properties and the presence of air in the primary zone of a spray flame reduces the formation of pollutants. The investigation is divided into three phases: (1) measure the solubility and density properties of fuel/gas mixtures, including Jet A/air, at pressures and correlate these results using theory; (2) investigate the atomization properties of flashing liquids, including fuel/dissolved gas systems. Determine and correlate the effect of inlet properties and injector geometry on mass flow rates, Sauter mean diameter and spray angles; (3) examine the combustion properties of flashing injection in an open burner flame, considering flame shape and soot production.
Electron beam injection during active experiments. I - Electromagnetic wave emissions
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Kellogg, P. J.
1990-01-01
The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.
NASA Astrophysics Data System (ADS)
Movahednejad, E.; Ommi, F.; Nekofar, K.
2013-04-01
The structures of the port injector spray dominates the mixture preparation process and strongly affect the subsequent engine combustion characteristics over a wide range of operating conditions in port-injection gasoline engines. All these spray characteristics are determined by particular injector design and operating conditions. In this paper, an experimental study is made to characterize the breakup mechanism and spray characteristics of a injector with multi-disc nozzle (SAGEM,D2159MA). A comparison was made on injection characteristics of the multi-hole injectors and its effects on various fuel pressure and temperature. The distributions of the droplet size and velocity and volume flux were characterized using phase Doppler anemometry (PDA) technique. Through this work, it was found that the injector produces a finer spray with a wide spray angle in higher fuel pressure and temperature.
Flow in a discrete slotted nozzle with massive injection. [water table tests
NASA Technical Reports Server (NTRS)
Perkins, H. C.
1974-01-01
An experimental investigation has been conducted to determine the effect of massive wall injection on the flow characteristics in a slotted nozzle. Some of the experiments were performed on a water table with a slotted-nozzle test section. This has 45 deg and 15 deg half angles of convergence and divergence, respectively, throat radius of 2.5 inches, and throat width of 3 inches. The hydraulic analogy was employed to qualitatively extend the results to a compressible gas flow through the nozzle. Experimental results from the water table include contours of constant Froude and Mach number with and without injection. Photographic results are also presented for the injection through slots of CO2 and Freon-12 into a main-stream air flow in a convergent-divergent nozzle in a wind tunnel. Schlieren photographs were used to visualize the flow, and qualititative agreement between the results from the gas tunnel and water table is good.
The Velocity Distribution Of Pickup He+ Measured at 0.3 AU by MESSENGER
NASA Astrophysics Data System (ADS)
Gershman, Daniel J.; Fisk, Lennard A.; Gloeckler, George; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.
2014-06-01
During its interplanetary trajectory in 2007-2009, the MErcury Surface, Space ENvrionment, GEochemistry, and Ranging (MESSENGER) spacecraft passed through the gravitational focusing cone for interstellar helium multiple times at a heliocentric distance R ≈ 0.3 AU. Observations of He+ interstellar pickup ions made by the Fast Imaging Plasma Spectrometer sensor on MESSENGER during these transits provide a glimpse into the structure of newly formed inner heliospheric pickup-ion distributions. This close to the Sun, these ions are picked up in a nearly radial interplanetary magnetic field. Compared with the near-Earth environment, pickup ions observed near 0.3 AU will not have had sufficient time to be energized substantially. Such an environment results in a nearly pristine velocity distribution function that should depend only on pickup-ion injection velocities (related to the interstellar gas), pitch-angle scattering, and cooling processes. From measured energy-per-charge spectra obtained during multiple spacecraft observational geometries, we have deduced the phase-space density of He+ as a function of magnetic pitch angle. Our measurements are most consistent with a distribution that decreases nearly monotonically with increasing pitch angle, rather than the more commonly modeled isotropic or hemispherically symmetric forms. These results imply that pitch-angle scattering of He+ may not be instantaneous, as is often assumed, and instead may reflect the velocity distribution of initially injected particles. In a slow solar wind stream, we find a parallel-scattering mean free path of λ || ~ 0.1 AU and a He+ production rate of ~0.05 m-3 s-1 within 0.3 AU.
Laser Diagnostic System Validation and Ultra-Compact Combustor Characterization
2008-03-01
conventional non-reheat Brayton cycle. An ITB consist of a fueled-cavity type flame holder combined with an injection of air in an angled manner from the...Applied Combustion Diagnostics. New York, NY: Taylor & Francis, 2002. 23. Kohse-Hoinghaus, K. Laser Techniques for the Quantitative
Quantum chemical determination of young?s modulus of lignin. Calculations on ß-O-4' model compound
Thomas Elder
2007-01-01
The calculation of Young?s modulus of lignin has been examined by subjecting a dimeric model compound to strain, coupled with the determination of energy and stress. The computational results, derived from quantum chemical calculations, are in agreement with available experimental results. Changes in geometry indicate that modifications in dihedral angles occur in...
Interferometric rotation sensor
NASA Technical Reports Server (NTRS)
Walsh, T. M. (Inventor)
1973-01-01
An interferometric rotation sensor and control system is provided which includes a compound prism interferometer and an associated direction control system. Light entering the interferometer is split into two paths with the light in the respective paths being reflected an unequal number of times, and then being recombined at an exit aperture in phase differing relationships. Incoming light is deviated from the optical axis of the device by an angle, alpha. The angle causes a similar displacement of the two component images at the exit aperture which results in a fringe pattern. Fringe numbers are directly related to angle alpha. Various control systems of the interferometer are given.
(E)-N′-[1-(Thiophen-2-yl)ethylidene]isonicotinohydrazide
Dileep, C. S.; Abdoh, M. M. M; Chakravarthy, M. P.; Mohana, K. N.; Sridhar, M. A.
2012-01-01
In the title compound, C12H11N3OS, the dihedral angle between the pyridine and thiophene rings is 46.70 (9)° and the C—N—N—C torsion angle is 178.61 (15)°. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R 2 2(8) loops. PMID:23125752
Domarkas, Juozas; Dudouit, Fabienne; Williams, Christopher; Qiyu, Qiu; Banerjee, Ranjita; Brahimi, Fouad; Jean-Claude, Bertrand Jacques
2006-06-15
According to the "combi-targeting" concept, the EGFR tyrosine kinase (TK) inhibitory potency of compounds termed "combi-molecules" is critical for selective growth inhibition of tumor cells with disordered expression of EGFR or its closest family member erbB2. Here we report on the optimization of the EGFR TK inhibitory potency of the combi-molecules of the nitrosourea class by comparison with their aminoquinazoline and ureidoquinazoline precursors. This led to the discovery of a new structural parameter that influences their EGFR TK inhibitory potency, i.e., the torsion angle between the plane of the quinazoline ring and the ureido or the nitrosoureido moiety of the synthesized drugs. Compounds (3'-Cl and Br series) with small angles (0.5-3 degrees ) were generally stronger EGFR TK inhibitors than those with large angles (18-21 degrees ). This was further corroborated by ligand-receptor van der Waals interaction calculations that showed significant binding hindrance imposed by large torsion angles in the narrow ATP cleft of EGFR. Selective antiproliferative studies in a pair of mouse fibroblast NIH3T3 cells, one of which NIH3T3/neu being transfected with the erbB2 oncogene, showed that IC(50) values for inhibition of EGFR TK could be good predictors of their selective potency against the serum-stimulated growth of the erbB2-tranfected cell line (Pearson r = 0.8). On the basis of stability (t(1/2)), EGFR TK inhibitory potency (IC(50)), and selective erbB2 targeting, compound 23, a stable nitrosourea, was considered to have the structural requirements for further development.
Kinematics of Visually-Guided Eye Movements
Hess, Bernhard J. M.; Thomassen, Jakob S.
2014-01-01
One of the hallmarks of an eye movement that follows Listing’s law is the half-angle rule that says that the angular velocity of the eye tilts by half the angle of eccentricity of the line of sight relative to primary eye position. Since all visually-guided eye movements in the regime of far viewing follow Listing’s law (with the head still and upright), the question about its origin is of considerable importance. Here, we provide theoretical and experimental evidence that Listing’s law results from a unique motor strategy that allows minimizing ocular torsion while smoothly tracking objects of interest along any path in visual space. The strategy consists in compounding conventional ocular rotations in meridian planes, that is in horizontal, vertical and oblique directions (which are all torsion-free) with small linear displacements of the eye in the frontal plane. Such compound rotation-displacements of the eye can explain the kinematic paradox that the fixation point may rotate in one plane while the eye rotates in other planes. Its unique signature is the half-angle law in the position domain, which means that the rotation plane of the eye tilts by half-the angle of gaze eccentricity. We show that this law does not readily generalize to the velocity domain of visually-guided eye movements because the angular eye velocity is the sum of two terms, one associated with rotations in meridian planes and one associated with displacements of the eye in the frontal plane. While the first term does not depend on eye position the second term does depend on eye position. We show that compounded rotation - displacements perfectly predict the average smooth kinematics of the eye during steady- state pursuit in both the position and velocity domain. PMID:24751602
del Nogal Sánchez, Miguel; Pérez-Pavón, José Luis; Moreno Cordero, Bernardo
2010-07-01
In the present work, a strategy for the qualitative and quantitative analysis of 24 volatile compounds listed as suspected allergens in cosmetics by the European Union is reported. The list includes benzyl alcohol, limonene, linalool, methyl 2-octynoate, beta-citronellol, geraniol, citral (two isomers), 7-hydroxycitronellal, anisyl alcohol, cinnamal, cinnamyl alcohol, eugenol, isoeugenol (two isomers), coumarin, alpha-isomethyl ionone, lilial, alpha-amylcinnamal, lyral, alpha-amylcinnamyl alcohol, farnesol (three isomers), alpha-hexyl cinnamal, benzyl cinnamate, benzyl benzoate, and benzyl salicylate. The applicability of a headspace (HS) autosampler in combination with a gas chromatograph (GC) equipped with a programmable temperature vaporizer (PTV) and a quadrupole mass spectrometry (qMS) detector is explored. By using a headspace sampler, sample preparation is reduced to introducing the sample into the vial. This reduces the analysis time and the experimental errors associated with this step of the analytical process. Two different injection techniques were used: solvent-vent injection and hot-split injection. The first offers a way to improve sensitivity at the same time maintaining the simple headspace instrumentation and it is recommended for compounds at trace levels. The use of a liner packed with Tenax-TA allowed the compounds of interest to be retained during the venting process. The signals obtained when hot-split injection was used allowed quantification of all the compounds according to the thresholds of the European Cosmetics Directive. Monodimensional gas chromatography coupled to a conventional quadrupole mass spectrometry detector was used and the 24 analytes were separated appropriately along a run time of about 12 min. Use of the standard addition procedure as a quantification technique overcame the matrix effect. It should be emphasized that the method showed good precision and accuracy. Furthermore, it is rapid, simple, and--in view of the results--highly suitable for the determination of suspected allergens in different cosmetic products.
Arendt, Andreas; Baz, El-Sayed; Stengl, Monika
2017-04-01
The circadian pacemaker of the Madeira cockroach, Rhyparobia (Leucophaea) maderae, is located in the accessory medulla (AME). Ipsi- and contralateral histaminergic compound eyes are required for photic entrainment. Light pulses delay locomotor activity rhythm during the early night and advance it during the late night. Thus, different neuronal pathways might relay either light-dependent delays or advances to the clock. Injections of neuroactive substances combined with running-wheel assays suggested that GABA, pigment-dispersing factor, myoinhibitory peptides (MIPs), and orcokinins (ORCs) were part of both entrainment pathways, whereas allatotropin (AT) only delayed locomotor rhythms at the early night. To characterize photic entrainment further, histamine and corazonin were injected. Histamine injections resulted in light-like phase delays and advances, indicating that the neurotransmitter of the compound eyes participates in both entrainment pathways. Because injections of corazonin only advanced during the late subjective night, it was hypothesized that corazonin is only part of the advance pathway. Multiple-label immunocytochemistry in combination with neurobiotin backfills demonstrated that a single cell expressed corazonin in the optic lobes that belonged to the group of medial AME interneurons. It colocalized GABA and MIP but not AT or ORC immunoreactivity. Corazonin-immunoreactive (-ir) terminals overlapped with projections of putatively light-sensitive interneurons from the ipsi- and contralateral compound eye. Thus, we hypothesize that the corazonin-ir medial neuron integrates ipsi- and contralateral light information as part of the phase-advancing light entrainment pathway to the circadian clock. J. Comp. Neurol. 525:1250-1272, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Are gadolinium contrast agents suitable for gadolinium neutron capture therapy?
De Stasio, Gelsomina; Rajesh, Deepika; Casalbore, Patrizia; Daniels, Matthew J; Erhardt, Robert J; Frazer, Bradley H; Wiese, Lisa M; Richter, Katherine L; Sonderegger, Brandon R; Gilbert, Benjamin; Schaub, Sebastien; Cannara, Rachel J; Crawford, John F; Gilles, Mary K; Tyliszczak, Tolek; Fowler, John F; Larocca, Luigi M; Howard, Steven P; Mercanti, Delio; Mehta, Minesh P; Pallini, Roberto
2005-06-01
Gadolinium neutron capture therapy (GdNCT) is a potential treatment for malignant tumors based on two steps: (1) injection of a tumor-specific (157)Gd compound; (2) tumor irradiation with thermal neutrons. The GdNC reaction can induce cell death provided that Gd is proximate to DNA. Here, we studied the nuclear uptake of Gd by glioblastoma (GBM) tumor cells after treatment with two Gd compounds commonly used for magnetic resonance imaging, to evaluate their potential as GdNCT agents. Using synchrotron X-ray spectromicroscopy, we analyzed the Gd distribution at the subcellular level in: (1) human cultured GBM cells exposed to Gd-DTPA or Gd-DOTA for 0-72 hours; (2) intracerebrally implanted C6 glioma tumors in rats injected with one or two doses of Gd-DOTA, and (3) tumor samples from GBM patients injected with Gd-DTPA. In cell cultures, Gd-DTPA and Gd-DOTA were found in 84% and 56% of the cell nuclei, respectively. In rat tumors, Gd penetrated the nuclei of 47% and 85% of the tumor cells, after single and double injection of Gd-DOTA, respectively. In contrast, in human GBM tumors 6.1% of the cell nuclei contained Gd-DTPA. Efficacy of Gd-DTPA and Gd-DOTA as GdNCT agents is predicted to be low, due to the insufficient number of tumor cell nuclei incorporating Gd. Although multiple administration schedules in vivo might induce Gd penetration into more tumor cell nuclei, a search for new Gd compounds with higher nuclear affinity is warranted before planning GdNCT in animal models or clinical trials.
2010-02-01
conditions. The TMI and trimethylgallium ( TMG ) precursors are injected simultaneously c) growth surface response via PARS signal The link between...ternary or quaternary alloys such as InGaN or InGaAlN is illustrated in Fig. 10. Here, the injection of the metal precursors, TMI and TMG , are separated...digital InGaN alloy formation, for the control of phase segregations, as well as to adjust the injection parameter to the different TMI and TMG growth
Husarik, Daniela B; Bashir, Mustafa R; Weber, Paul W; Nichols, Eli B; Howle, Laurens E; Merkle, Elmar M; Nelson, Rendon C
2012-02-01
To evaluate the effect of the contrast medium (CM) concentration and the saline chaser volume and injection rate on first-pass aortic enhancement characteristics in contrast-enhanced magnetic resonance angiography using a physiologic flow phantom. Imaging was performed on a 3.0-T magnetic resonance system (MAGNETOM Trio, Siemens Healthcare Solutions, Inc, Erlangen, Germany) using a 2-dimensional fast low angle shot T1-weighted sequence (repetition time, 500 milliseconds; echo time, 1.23 milliseconds; flip angle, 8 degrees; 1 frame/s × 60 seconds). The following CM concentrations injected at 2 mL/s were used with 3 different contrast agents (gadolinium [Gd]-BOPTA, Gd-HP-DO3A, Gd-DTPA): 20 mL of undiluted CM (100%) and 80%, 40%, 20%, 10%, 5%, and 2.5% of the full amount, all diluted in saline to a volume of 20 mL to ensure equal bolus volume. The CM was followed by saline chasers of 20 to 60 mL injected at 2 mL/s and 6 mL/s. Aortic signal intensity (SI) was measured, and normalized SI versus time (SI/Tn) curves were generated. The maximal SI (SI(max)), bolus length, and areas under the SI/Tn curve were calculated. Decreasing the CM concentration from 100% to 40% resulted in a decrease of SI(max) to 86.1% (mean). Further decreasing the CM concentration to 2.5% decreased SI(max) to 5.1% (mean). Altering the saline chaser volume had no significant effect on SI(max). Increasing the saline chaser injection rate had little effect (mean increase, 2.2%) on SI(max) when using ≥40% of CM. There was a larger effect (mean increase, 19.6%) when ≤20% of CM were used. Bolus time length was significantly shorter (P < 0.001), and area under the SI/T(n) curve was significantly smaller (P < 0.01) for the CM protocols followed by a saline chaser injected at 6 mL/s compared with a saline chaser injected at 2 mL/s. With 40% of CM and a fast saline chaser, SImax close to that with undiluted CM can be achieved. An increased saline chaser injection rate has a more pronounced effect on aortic enhancement characteristics at lower CM concentrations than at higher CM concentrations.
Liu, Jie; Zhong, Zhencheng; Ma, Rui; Zhang, Weichen; Li, Jiding
2016-01-01
In this study, flat sheet asymmetric polyphenylsulfone (PPSU) ultrafiltration membranes with enhanced antifouling properties were prepared with a non-solvent induced phase separation (NIPS) method through compound additives containing a polymeric pore-forming agent, a small molecular non-solvent and a surfactant. The formation processes of the porous asymmetric membranes with different kinds of additives were studied in detail, and the microstructure controllable preparation of membrane was achieved by establishing a bridge between the membrane preparation parameters and separation performances. All prepared membranes were characterized by using a scanning electron microscope (SEM), contact angle analysis, porosity, maximum pore size, water and BSA solution permeability studies. The performance efficiency of the membrane was evaluated by using BSA as a model foulant in terms of permeability, solute rejection (R), Rm (membrane inherent resistance), Rc (cake layer resistance), and Rp (pore plugging resistance). The results showed that when the compound additives were used, the inter-connected pores were observed, maximum pore size, contact angle and membrane filtration resistance decreased, while the porosity increased. When PVP compound additives were added, the water flux increased from 80.4 to 148.1 L/(m2·h), the BSA rejection increased from 53.2% to 81.5%. A similar trend was observed for membranes with added PEG compound additives; the water flux and BSA rejection simultaneously increased. The filtration resistance decreased as a result of compound additives. The uniformity of membrane and the number of effective pores could be enhanced by adding compound additives through the cooperation of different additives. PMID:27338487
Liu, Jie; Zhong, Zhencheng; Ma, Rui; Zhang, Weichen; Li, Jiding
2016-06-21
In this study, flat sheet asymmetric polyphenylsulfone (PPSU) ultrafiltration membranes with enhanced antifouling properties were prepared with a non-solvent induced phase separation (NIPS) method through compound additives containing a polymeric pore-forming agent, a small molecular non-solvent and a surfactant. The formation processes of the porous asymmetric membranes with different kinds of additives were studied in detail, and the microstructure controllable preparation of membrane was achieved by establishing a bridge between the membrane preparation parameters and separation performances. All prepared membranes were characterized by using a scanning electron microscope (SEM), contact angle analysis, porosity, maximum pore size, water and BSA solution permeability studies. The performance efficiency of the membrane was evaluated by using BSA as a model foulant in terms of permeability, solute rejection (R), Rm (membrane inherent resistance), Rc (cake layer resistance), and Rp (pore plugging resistance). The results showed that when the compound additives were used, the inter-connected pores were observed, maximum pore size, contact angle and membrane filtration resistance decreased, while the porosity increased. When PVP compound additives were added, the water flux increased from 80.4 to 148.1 L/(m²·h), the BSA rejection increased from 53.2% to 81.5%. A similar trend was observed for membranes with added PEG compound additives; the water flux and BSA rejection simultaneously increased. The filtration resistance decreased as a result of compound additives. The uniformity of membrane and the number of effective pores could be enhanced by adding compound additives through the cooperation of different additives.
Powell, Scott E; Davis, Shane M; Lee, Emily H; Lee, Robert K; Sung, Ryan M; McGroder, Claire; Kouk, Shalen; Lee, Christopher S
2015-02-01
The aim of this study was to determine the accuracy of anatomic palpation-directed injections in the office setting. Two hundred twenty-six shoulders in 208 patients were studied using a 0.2-Tesla extremity scanner after the injection of gadolinium-diethylene triamine pentaacetic acid-saline. All patients were injected in a sterile fashion by a single board-certified shoulder surgeon using an anterior approach by palpating the rotator interval anterior to the acromioclavicular joint and angling the needle 45° lateral and 45° caudad. All injections, successful or otherwise, were single injections. Magnetic resonance (MR) arthrograms were retrospectively read by 2 musculoskeletal fellowship-trained, board certified radiologists to determine whether the injection was in the glenohumeral joint. Two hundred one of the 226 injections were successful (88.9%). Of the 25 unsuccessful injections, the contrast material extravasated out of the capsule in 5 cases and into the subscapularis tendon in 10 cases. The contrast material was injected into the subacromial space in 9 cases, into the rotator interval fat in 9 cases, and into extracapsular tissue in 6 cases. There was insufficient volume of contrast material in 10 cases. The accuracy rate was 88.9%. There were no complications. The palpation-directed rotator interval anterior approach technique for intra-articular glenohumeral MR arthrogram injections performed by a single surgeon was 88.9% accurate. Level IV, therapeutic case series. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Flury, Pascale; Vesga, Pilar; Péchy-Tarr, Maria; Aellen, Nora; Dennert, Francesca; Hofer, Nicolas; Kupferschmied, Karent P.; Kupferschmied, Peter; Metla, Zane; Ma, Zongwang; Siegfried, Sandra; de Weert, Sandra; Bloemberg, Guido; Höfte, Monica; Keel, Christoph J.; Maurhofer, Monika
2017-01-01
Particular groups of plant-beneficial fluorescent pseudomonads are not only root colonizers that provide plant disease suppression, but in addition are able to infect and kill insect larvae. The mechanisms by which the bacteria manage to infest this alternative host, to overcome its immune system, and to ultimately kill the insect are still largely unknown. However, the investigation of the few virulence factors discovered so far, points to a highly multifactorial nature of insecticidal activity. Antimicrobial compounds produced by fluorescent pseudomonads are effective weapons against a vast diversity of organisms such as fungi, oomycetes, nematodes, and protozoa. Here, we investigated whether these compounds also contribute to insecticidal activity. We tested mutants of the highly insecticidal strains Pseudomonas protegens CHA0, Pseudomonas chlororaphis PCL1391, and Pseudomonas sp. CMR12a, defective for individual or multiple antimicrobial compounds, for injectable and oral activity against lepidopteran insect larvae. Moreover, we studied expression of biosynthesis genes for these antimicrobial compounds for the first time in insects. Our survey revealed that hydrogen cyanide and different types of cyclic lipopeptides contribute to insecticidal activity. Hydrogen cyanide was essential to full virulence of CHA0 and PCL1391 directly injected into the hemolymph. The cyclic lipopeptide orfamide produced by CHA0 and CMR12a was mainly important in oral infections. Mutants of CMR12a and PCL1391 impaired in the production of the cyclic lipopeptides sessilin and clp1391, respectively, showed reduced virulence in injection and feeding experiments. Although virulence of mutants lacking one or several of the other antimicrobial compounds, i.e., 2,4-diacetylphloroglucinol, phenazines, pyrrolnitrin, or pyoluteorin, was not reduced, these metabolites might still play a role in an insect background since all investigated biosynthetic genes for antimicrobial compounds of strain CHA0 were expressed at some point during insect infection. In summary, our study identified new factors contributing to insecticidal activity and extends the diverse functions of antimicrobial compounds produced by fluorescent pseudomonads from the plant environment to the insect host. PMID:28217113
Bielza, Concha; Benavides-Piccione, Ruth; López-Cruz, Pedro; Larrañaga, Pedro; DeFelipe, Javier
2014-08-01
Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas.
Bielza, Concha; Benavides-Piccione, Ruth; López-Cruz, Pedro; Larrañaga, Pedro; DeFelipe, Javier
2014-01-01
Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas. PMID:25081193
Measurements of advancing and receding contact angles of water on PMMA and CR-39 at various g-levels
NASA Astrophysics Data System (ADS)
Mireault, Nicolas; Abel, Gilles; Andrzejewski, Lukasz; Ross, Guy
2005-03-01
The main purpose of this work is to clarify the controversy that has been widely discussed after the publication of Ward et al. [1, 2, 3] about whether varying g-levels should have an influence on contact angles of liquids on solid surfaces. Surface modification using PBII has been used to vary the contact angles of water on PMMA and CR-39 samples by implantation of O2 and Ar ions. Advancing and receding contact angles (θa and θr) have been measured using the injection and the withdrawn of a 3 μL water drop at a 2 μL/min rate on these PMMA and CR-39 samples, implanted or not. Analysis of the recorded frames of the whole parabola yielded the θa and θr vs g plots that are shown and discussed, while g-level vary from g˜0.03 up to g˜2.5. Comparison of the variable g hystereses with those measured in constant 1 g using the same samples is also made. Angle variations being lower than the measurement precision, the results indicate that the contact angles do not vary with g-level.
Effect of air-entry angle on performance of a 2-stroke-cycle compression-ignition engine
NASA Technical Reports Server (NTRS)
Earle, Sherod L; Dutee, Francis J
1937-01-01
An investigation was made to determine the effect of variations in the horizontal and vertical air-entry angles on the performance characteristics of a single-cylinder 2-stroke-cycle compression-ignition test engine. Performance data were obtained over a wide range of engine speed, scavenging pressure, fuel quantity, and injection advance angle with the optimum guide vanes. Friction and blower-power curves are included for calculating the indicated and net performances. The optimum horizontal air-entry angle was found to be 60 degrees from the radial and the optimum vertical angle to be zero, under which conditions a maximum power output of 77 gross brake horsepower for a specific fuel consumption of 0.52 pound per brake horsepower-hour was obtained at 1,800 r.p.m. and 16-1/2 inches of Hg scavenging pressure. The corresponding specific output was 0.65 gross brake horsepower per cubic inch of piston displacement. Tests revealed that the optimum scavenging pressure increased linearly with engine speed. The brake mean effective pressure increased uniformly with air quantity per cycle for any given vane angle and was independent of engine speed and scavenging pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, F.C.
1996-08-01
The performance of soil vapor extraction systems for the recovery of volatile and semi-volatile organic compounds is potentially enhanced by the injection of heated air to increase soil temperatures. The soil temperature increase is expected to improve soil vapor extraction (SVE) performance by increasing target compound vapor pressures and by increasing soil permeability through drying. The vapor pressure increase due to temperature rise relieves the vapor pressure limit on the feasibility of soil vapor extraction. However, the system still requires an air flow through the soil system to deliver heat and to recover mobilized contaminants. Although the soil permeability canmore » be increased through drying, very low permeability soils and low permeability soils adjacent to high permeability air flow pathways will be treated slowly, if at all. AR thermal enhancement methods face this limitation. Heated air injection offers advantages relative to other thermal techniques, including low capital and operation costs. Heated air injection is at a disadvantage relative to other thermal techniques due to the low heat capacity of air. To be effective, heated air injection requires that higher air flows be established than for steam injection or radio frequency heating. Heated air injection is not economically feasible for the stratified soil system developed as a standard test for this document. This is due to the inability to restrict heated air flow to the clay stratum when a low-resistance air flow pathway is available in the adjoining sand. However, the technology should be especially attractive, both technically and economically, for low-volatile contaminant recovery from relatively homogeneous soil formations. 16 refs., 2 tabs.« less
Müller, Marco; Wasmer, Katharina; Vetter, Walter
2018-06-29
Countercurrent chromatography (CCC) is an all liquid based separation technique typically used for the isolation and purification of natural compounds. The simplicity of the method makes it easy to scale up CCC separations from analytical to preparative and even industrial scale. However, scale-up of CCC separations requires two different instruments with varying coil dimensions. Here we developed two variants of the CCC multiple injection mode as an alternative to increase the throughput and enhance productivity of a CCC separation when using only one instrument. The concept is based on the parallel injection of samples at different points in the CCC column system and the simultaneous separation using one pump only. The wiring of the CCC setup was modified by the insertion of a 6-port selection valve, multiple T-pieces and sample loops. Furthermore, the introduction of storage sample loops enabled the CCC system to be used with repeated injection cycles. Setup and advantages of both multiple injection modes were shown by the isolation of the furan fatty acid 11-(3,4-dimethyl-5-pentylfuran-2-yl)-undecanoic acid (11D5-EE) from an ethyl ester oil rich in 4,7,10,13,16,19-docosahexaenoic acid (DHA-EE). 11D5-EE was enriched in one step from 1.9% to 99% purity. The solvent consumption per isolated amount of analyte could be reduced by ∼40% compared to increased throughput CCC and by ∼5% in the repeated multiple injection mode which also facilitated the isolation of the major compound (DHA-EE) in the sample. Copyright © 2018 Elsevier B.V. All rights reserved.
Effect of compound nuclear reaction mechanism in 12C(6Li,d) reaction at sub-Coulomb energy
NASA Astrophysics Data System (ADS)
Mondal, Ashok; Adhikari, S.; Basu, C.
2017-09-01
The angular distribution of the 12C(6Li,d) reaction populating the 6.92 and 7.12 MeV states of 16O at sub-Coulomb energy (Ecm=3 MeV) are analysed in the framework of the Distorted Wave Born Approximation (DWBA). Recent results on excitation function measurements and backward angle angular distributions derive ANC for both the states on the basis of an alpha transfer mechanism. In the present work, we show that considering both forward and backward angle data in the analysis, the 7.12 MeV state at sub-Coulomb energy is populated from Compound nuclear process rather than transfer process. The 6.92 MeV state is however produced from direct reaction mechanism.
Hartman, Rachel R; Kompella, Uday B
Even though the very thought of an injection into the eye may be frightening, an estimated 6 million intravitreal (IVT) injections were made in the USA during 2016. With the introduction of new therapeutic agents, this number is expected to increase. In addition, drug products that are injectable in ocular compartments other than the vitreous humor are expected to enter the back of the eye market in the not so distant future. Besides the IVT route, some of the most actively investigated routes of invasive administration to the eye include periocular, subretinal, and suprachoroidal (SC) routes. While clinical efficacy is the driving force behind new injectable drug product development for the eye, safety is also being improved with time. In the case of IVT injections, the procedural guidelines have evolved over the years to improve patient comfort and reduce injection-related injury and infection. Similar advances are anticipated for other routes of administration of injectable products to the eye. In addition to procedural improvements, the design of needles, particularly those with smaller diameters, length, and controlled bevel angles are expected to improve overall safety and acceptance of injected ophthalmic drug products. A key development in this area is the introduction of microneedles of a length less than a millimeter that can target the SC space. In the future, needles with smaller diameters and lengths, potentially approaching nanodimensions, are expected to revolutionize ophthalmic disease management.
NASA Technical Reports Server (NTRS)
Pappas, Constantine C.; Ukuno, Arthur F.
1960-01-01
Measurements of average skin friction of the turbulent boundary layer have been made on a 15deg total included angle cone with foreign gas injection. Measurements of total skin-friction drag were obtained at free-stream Mach numbers of 0.3, 0.7, 3.5, and 4.7 and within a Reynolds number range from 0.9 x 10(exp 6) to 5.9 x 10(exp 6) with injection of helium, air, and Freon-12 (CCl2F2) through the porous wall. Substantial reductions in skin friction are realized with gas injection within the range of Mach numbers of this test. The relative reduction in skin friction is in accordance with theory-that is, the light gases are most effective when compared on a mass flow basis. There is a marked effect of Mach number on the reduction of average skin friction; this effect is not shown by the available theories. Limited transition location measurements indicate that the boundary layer does not fully trip with gas injection but that the transition point approaches a forward limit with increasing injection. The variation of the skin-friction coefficient, for the lower injection rates with natural transition, is dependent on the flow Reynolds number and type of injected gas; and at the high injection rates the skin friction is in fair agreement with the turbulent boundary layer results.
Contamination of injectable solutions with 2-mercaptobenzothiazole leached from rubber closures.
Reepmeyer, J C; Juhl, Y H
1983-11-01
An impurity, discovered in a sample of digoxin injectable solution commercially packaged in a syringe for single-dose delivery, was found to originate from the rubber closure of the syringe and was identified as 2-mercaptobenzothiazole, a common accelerator for rubber vulcanization. Several similarly packaged injectable solutions of a variety of drugs from various manufacturers were examined and over half contained 2-mercaptobenzothiazole. The compound was identified by UV spectrophotometry (including a pH-dependent shift in its absorbance maximum), by mass spectrometry, and by comparison with standard 2-mercaptobenzothiazole using silica gel and reverse-phase high-performance liquid chromatography (HPLC). The presence of this impurity in injectable solutions may have implications with regard to toxicity and may interfere with the assay of digoxin injectable solution by HPLC.
Kobylinska, L I; Havrylyuk, D Ya; Ryabtseva, A O; Mitina, N E; Zaichenko, O S; Lesyk, R B; Zimenkovsky, B S; Stoika, R S
2015-01-01
The aim of this study was to compare the effect of new synthetic 4-tiazolidinone derivatives (compounds 3882, 3288 and 3833) and doxorubicin (positive control) in free form and in their complexes with synthetic polyethyleneglycol-containing nanoscale polymeric carrier on the biochemical indicators of hepatotoxicity in blood serum of rats. The activity of enzymes considered as the markers of hepatotoxicity, as well as. the concentration of total protein, urea and creatinine were measured in blood serum of rats. It was found that after injection of investigated compounds the activities ofalanine aminotransferase, alkaline phosphatase and α-amylase increased in comparison to control. Doxorubicin injection was accompanied by 4-fold increase in the activity of γ-glutamyltransferase, and injection ofcompound 3833 led to 2.5-fold elevation ofthe activity of this enzyme. Complexation ofthese antineoplastic derivatives with a synthetic nanocarrier lowered the activity ofthe investigated enzymes substantially if compared to the effect of these compounds infreeform. The most evident decrease was measured for α-amylase, γ-glutamyltransferase and lactate dehydrogenase activities. The normalization of concentrations of total protein, urea and creatinine in blood serum of rats treated with complexes of the studied compounds with a polymeric carrier comparing with their introduction infreeform was also detected. Thus, the immobilization by novel polymeric carrier of anticancer drugs possessing high general toxicity in the treated organism mitigates their toxic effect, which is evident as normalization of specific biochemical indicators of the hepatodestructive effects of the anticancer drugs.
Borman, Christopher J.; Sullivan, B. Patrick; Eggleston, Carrick M.; Colberg, Patricia J. S.
2009-01-01
An evaluation of flow-injection analysis with chemiluminescence detection (FIA-CL) to quantify Fe2+(aq) in freshwaters was performed. Iron-coordinating and/or iron-reducing compounds, dissolved organic matter (DOM), and samples from two natural water systems were used to amend standard solutions of Fe2+(aq). Slopes of the response curves from ferrous iron standards (1 – 100 nM) were compared to the response curves of iron standards containing the amendments. Results suggest that FIA-CL is not suitable for systems containing ascorbate, hydroxylamine, cysteine or DOM. Little or no change in sensitivity occurred in solutions of oxalate and glycine or in natural waters with little organic matter. PMID:22408532
Compact surface plasmon resonance biosensor utilizing an injection-molded prism
NASA Astrophysics Data System (ADS)
Chen, How-Foo; Chen, Chih-Han; Chang, Yun-Hsiang; Chuang, Hsin-Yuan
2016-05-01
Targeting at a low cost and accessible diagnostic device in clinical practice, a compact surface plasmon resonance (SPR) biosensor with a large dynamic range in high sensitivity is designed to satisfy commercial needs in food safety, environmental bio-pollution monitoring, and fast clinical diagnosis. The core component integrates an optical coupler, a sample-loading plate, and angle-tuning reflectors is injection-molded as a free-from prism made of plastic optics. This design makes a matching-oil-free operation during operation. The disposability of this low-cost component ensures testing or diagnosis without cross contamination in bio-samples.
Faraday-cup-type lost fast ion detector on Heliotron J.
Yamamoto, S; Ogawa, K; Isobe, M; Darrow, D S; Kobayashi, S; Nagasaki, K; Okada, H; Minami, T; Kado, S; Ohshima, S; Weir, G M; Nakamura, Y; Konoshima, S; Kemmochi, N; Ohtani, Y; Mizuuchi, T
2016-11-01
A Faraday-cup type lost-fast ion probe (FLIP) has been designed and installed in Heliotron J for the purpose of the studies of interaction between fast ions and MHD instabilities. The FLIP can measure the co-going fast ions whose energy is in the range of 1.7-42.5 keV (proton) and pitch angle of 90 ∘ -140 ∘ , especially for fast ions having the injection energy of neutral beam injection (NBI). The FLIP successfully measured the re-entering passing ions and trapped lost-fast ions caused by fast-ion-driven energetic particle modes in NBI heated plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, S., E-mail: yamamoto.satoshi.6n@kyoto-u.ac.jp; Kobayashi, S.; Nagasaki, K.
A Faraday-cup type lost-fast ion probe (FLIP) has been designed and installed in Heliotron J for the purpose of the studies of interaction between fast ions and MHD instabilities. The FLIP can measure the co-going fast ions whose energy is in the range of 1.7–42.5 keV (proton) and pitch angle of 90{sup ∘}–140{sup ∘}, especially for fast ions having the injection energy of neutral beam injection (NBI). The FLIP successfully measured the re-entering passing ions and trapped lost-fast ions caused by fast-ion-driven energetic particle modes in NBI heated plasmas.
ARCS 3 ionospheric artificial argon ion beam injections - Waves near the heavy ion gyrofrequencies
NASA Technical Reports Server (NTRS)
Erlandson, R. E.; Cahill, L. J., Jr.; Kaufmann, R. L.; Arnoldy, R. L.; Pollock, C. J.
1989-01-01
Low-frequency electric field data below the proton gyrofrequency are presented for the duration of the argon ion beam experiment conducted as part of the Argon Release for Controlled Studies (ARCS) program. An argon ion beam was injected from the subpayload antiparallel or perpendicular to the magnetic field at altitudes from 250 to 405 km. During the injections, the wave spectra were broadband near the subpayload and narrow-band near heavy ion gyrofrequencies at perpendicular separation distances between 42 and 254 m. It is suggested that the narrow-band waves are associated with both the perpendicular argon ion beam and an unexpected flux of low-energy ions which peaked in energy near 15 eV and pitch angle near 90 deg with respect to the magnetic field.
Effect of injection-gas concentration on the electron beam quality from a laser-plasma accelerator
NASA Astrophysics Data System (ADS)
Mirzaie, Mohammad; Zhang, Guobo; Li, Song; Gao, Kai; Li, Guangyu; Ain, Quratul; Hafz, Nasr A. M.
2018-04-01
By using 25-45 TW ultra-short (30 fs) laser pulses, we report on the effect of the injection gas concentration on the quality of electron beams generated by a laser-driven plasma wakefield acceleration employing the ionization-injection. For a plasma formed from helium-nitrogen gas mixture and depending on the concentration of the nitrogen gas, we could distinguish a clear trend for the quality of the generated electron beams in terms of their peak energy, energy-spread, divergence angle, and beam charge. The results clearly showed that the lower the nitrogen concentration, the better the quality (higher peak energy, smaller energy spread, and smaller emittance) of the generated electron beams. The results are in reasonable agreement with two-dimensional particle-in-cell simulations.
Landmeyer, J.E.; Bradley, P.M.
2003-01-01
The effect of pre-existing factors, e.g., hydrologic, geochemical, and microbiological properties, on the results of oxygen addition to a reformulated gasoline-contaminated groundwater system was studied. Oxygen addition with an oxygen-release compound (a proprietary form of magnesium peroxide produced different results with respect to dissolved oxygen (DO) generation and contaminant decrease in the two locations. Oxygen-release compound injected at the former UST source area did not significantly change measured concentrations of DO, benzene, toluene, or MTBE. Conversely, oxygen-release compound injected 200 m downgradient of the former UST source area rapidly increased DO levels, and benzene, toluene, and MTBE concentrations decreased substantially. The different results could be related to differences in hydrologic and geochemical conditions that characterized the two locations prior to oxygen addition. The lack of recharge to ground water in the paved UST source area led to a much larger geochemical sink for DO compared to ground water in the unpaved area.
Advanced diesel electronic fuel injection and turbocharging
NASA Astrophysics Data System (ADS)
Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.
1993-12-01
The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.
Optimal angle of needle insertion for fluoroscopy-guided transforaminal epidural injection of L5.
Ra, In-Hoo; Min, Woo-Kie
2015-06-01
Unlike other sites, there is difficulty in performing TFESI at the L5-S1 level because the iliac crest is an obstacle to needle placement. The objective of this study was to identify the optimal angle of fluoroscopy for insertion and advancement of a needle during L5 TEFSI. We conducted an observational study of patients undergoing fluoroscopy-guided L5 TFESI in the prone position. A total of 80 patients (40 men and 40 women) with radiating pain of lower limbs were enrolled. During TFESI, we measured the angle at which the L5 vertebral body forms a rectangular shape and compared men and women. Then, we measured area of safe triangle in tilting angle of fluoroscopy from 15° to 35° and compared men and women. The mean cephalocaudal angle, where the vertebral body takes the shape of a rectangle, was 11.0° in men and 13.9° in women (P = 0.007). In men, the triangular area was maximal at 18.3 mm² with an oblique view angle of 25°. In women, the area was maximal at 23.6 mm² with an oblique view angle of 30°. At an oblique view angle of 30° and 35°, the area was significantly greater in women (P < 0.05). When TFESI is performed at the L5 region in the prone position, placement of fluoroscopy at a cephalocaudal angle of 11.0° and an oblique angle of 25° in men and cephalocaudal angle of 13.9° and an oblique angle of 30° in women would be most reasonable. © 2014 World Institute of Pain.
Simulation of Liquid Injection Thrust Vector Control for Mars Ascent Vehicle
NASA Technical Reports Server (NTRS)
Gudenkauf, Jared
2017-01-01
The Jet Propulsion Laboratory is currently in the initial design phase for a potential Mars Ascent Vehicle; which will be landed on Mars, stay on the surface for period of time, collect samples from the Mars 2020 rover, and then lift these samples into orbit around Mars. The engineers at JPL have down selected to a hybrid wax-based fuel rocket using a liquid oxidizer based on nitrogen tetroxide, or a Mixed Oxide of Nitrogen. To lower the gross lift-off mass of the vehicle the thrust vector control system will use liquid injection of the oxidizer to deflect the thrust of the main nozzle instead of using a gimbaled nozzle. The disadvantage of going with the liquid injection system is the low technology readiness level with a hybrid rocket. Presented in this paper is an effort to simulate the Mars Ascent Vehicle hybrid rocket nozzle and liquid injection thrust vector control system using the computational fluid dynamic flow solver Loci/Chem. This effort also includes determining the sensitivity of the thrust vector control system to a number of different design variables for the injection ports; including axial location, number of adjacent ports, injection angle, and distance between the ports.
Ultrasound-guided injection of botulinum toxin A in the treatment of iliopsoas spasticity
Sconfienza, L.M.; Perrone, N.; Lacelli, F.; Lentino, C.; Serafini, G.
2008-01-01
Purpose Intramuscular injection of botulinum toxin A (BTX-A) is a common treatment for iliopsoas muscle spasticity, but it is not easy to position the needle in this muscle without guidance. In this paper we describe an ultrasound-guided technique for the intramuscular injection of BTX-A to treat spasticity of the iliopsoas muscle. Its effectiveness was assessed in 10 patients. Method and materials The ultrasound-guided technique for BTX-A injection was used on 10 patients. The needle was inserted into the muscle belly at an angle of 45° along the longitudinal axis of the muscle when allowed by patient's condition. Results In all cases, the iliopsoas muscle was easily identified and both the iliac and psoas components were assessed. Introduction of the needle and drug injection were entirely carried out under ultrasonographic guidance. The procedure was successful in all patients, even in those with a high-grade spasticity, and general anesthesia was not required. Conclusions This ultrasound-guided technique allows accurate guidance for the injection of BTX-A, and it can be considered as an alternate supportive therapy in patients with spasticity and dystonia. PMID:23396653
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subashi, Ergys; Choudhury, Kingshuk R.; Johnson, G. Allan, E-mail: gjohnson@duke.edu
2014-03-15
Purpose: The pharmacokinetic parameters derived from dynamic contrast-enhanced (DCE) MRI have been used in more than 100 phase I trials and investigator led studies. A comparison of the absolute values of these quantities requires an estimation of their respective probability distribution function (PDF). The statistical variation of the DCE-MRI measurement is analyzed by considering the fundamental sources of error in the MR signal intensity acquired with the spoiled gradient-echo (SPGR) pulse sequence. Methods: The variance in the SPGR signal intensity arises from quadrature detection and excitation flip angle inconsistency. The noise power was measured in 11 phantoms of contrast agentmore » concentration in the range [0–1] mM (in steps of 0.1 mM) and in onein vivo acquisition of a tumor-bearing mouse. The distribution of the flip angle was determined in a uniform 10 mM CuSO{sub 4} phantom using the spin echo double angle method. The PDF of a wide range of T1 values measured with the varying flip angle (VFA) technique was estimated through numerical simulations of the SPGR equation. The resultant uncertainty in contrast agent concentration was incorporated in the most common model of tracer exchange kinetics and the PDF of the derived pharmacokinetic parameters was studied numerically. Results: The VFA method is an unbiased technique for measuringT1 only in the absence of bias in excitation flip angle. The time-dependent concentration of the contrast agent measured in vivo is within the theoretically predicted uncertainty. The uncertainty in measuring K{sup trans} with SPGR pulse sequences is of the same order, but always higher than, the uncertainty in measuring the pre-injection longitudinal relaxation time (T1{sub 0}). The lowest achievable bias/uncertainty in estimating this parameter is approximately 20%–70% higher than the bias/uncertainty in the measurement of the pre-injection T1 map. The fractional volume parameters derived from the extended Tofts model were found to be extremely sensitive to the variance in signal intensity. The SNR of the pre-injection T1 map indicates the limiting precision with which K{sup trans} can be calculated. Conclusions: Current small-animal imaging systems and pulse sequences robust to motion artifacts have the capacity for reproducible quantitative acquisitions with DCE-MRI. In these circumstances, it is feasible to achieve a level of precision limited only by physiologic variability.« less
NASA Astrophysics Data System (ADS)
Herrero-Martín, Sara; Nijenhuis, Ivonne; Schmidt, Marie; Wolfram, Diana; Richnow, Hans. H.; Gehre, Matthias
2013-04-01
Groundwater pollution remains one of the major environmental and health concerns. A thorough understanding of sources, sinks and transformation processes of groundwater contaminants is needed to improve risk management evaluation, and to design efficient remediation and water treatment strategies. Isotopic tools provide unique information for an in-depth understanding of the fate of organic chemicals in the environment. During the last decades compound specific isotope analysis (CSIA) of complex mixtures, using gas chromatography-isotope ratio mass spectrometry (GC-IRMS), has gained popularity for the characterization and risk assessment of hazardous waste sites and for isotope forensics of organic contaminants. Multi-element isotope fingerprinting of organic substances provides a more robust framework for interpretation than the isotope analysis of only one element. One major challenge for application of CSIA is the analysis of trace levels of organic compounds in environmental matrices. It is necessary to inject 1 nmol carbon or 8 nmol hydrogen on column, to obtain an accurate and precise measurement of the isotope ratios, which is between two and three orders of magnitude larger than the amount of compound needed for conventional analysis of compound concentrations. Therefore, efficient extraction and pre-concentration techniques have to be integrated with GC-IRMS. Further research is urgently needed in this field, to evaluate the potential of novel and environmental-friendly sample pre-treatment techniques for CSIA to lower the detection limits and extending environmental applications. In this study, the novel coupling of a headspace autosampler (HS) with a programmed temperature vaporizer (PTV), allowing large volume injection of headspace samples, is proposed to improve the sensitivity of CSIA. This automatic, fast and solvent free strategy provides a significant increase on the sensitivity of GC-based methods maintaining the simple headspace instrumentation. The method was developed for the multi-element isotope analysis (carbon and hydrogen) of priority volatile organic groundwater pollutants (methyl tert-butyl ether (MTBE), benzene, toluene, ethylbenzene and o-xylene (BTEX)), and for carbon isotope analysis of chlorinated benzenes and ethenes. The extraction and injection conditions were optimized in terms of maximum sensitivity and minimum isotope effects. During the injection of the headspace sample, the liner is maintained at a low temperature, such that the compounds are retained in a hydrophobic insert packing while the water vapor is eliminated through the split line. With the optimized conditions, it was possible to inject up to 5mL headspace sample with no significant carbon or hydrogen isotopic effects except for the most hydrophobic substance (MTBE), which was subject to a small and reproducible isotope fractionation for hydrogen. The increment on method sensitivity was at least 20 fold in comparison with conventional static headspace analysis. The environmental applicability of the HS-PTV-GC-IRMS method was evaluated by the analysis of groundwater samples from different contaminated field sites, containing BTEX and chlorinated volatile organic contaminants in the low µg/L range. The results obtained demonstrate that this pre-concentration technique is highly promising to enhance the limits of detection of current CSIA methods and broaden its possibilities.
Jun Peng; Philip J. Walsh; Ronald C. Sabo; Lih-Sheng Turng; Craig M. Clemons
2016-01-01
Cellulose nanocrystals (CNCs) are a biorenewable filler and can be an excellent nucleating agent for the development of microcellular foamed polymeric nanocomposites. However, their relatively low degradation temperature limits their use with engineering resins like polyamide 6 (PA6) in typical melt processing techniques such as injection molding, compounding, and...
A practical and sensitive method to assess volatile organic compounds (VOCs) from JP-8 jet fuel in human whole blood was developed by modifying previously established liquid-liquid extraction procedures, optimizing extraction times, solvent volume, specific sample processing te...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alhaider, A.A.
1986-03-05
In a previous work, they synthesized some new 2-substituted-4-phenylquinoline derivatives which demonstrated potent antidepressant activities as revealed by their antagonism to the uptake of /sup 3/(H)-norepinephrine and /sup 3/(H)-serotonin into brain synaptosomal preparation. Also, these compounds have demonstrated less anticholinergic, antihistamine and cardiovascular effects as compared to imipramine in animal models. In this present work, the chronic effects of some of these compounds on the sensitivity of the noradrenergic cyclic-AMP generating system on rat brain cortex has been conducted by the daily injection of 20 mg/kg i.p. for a period of three weeks. Imipramine and trazodone were utilized as standards,more » representing typical and atypical antidepressants, respectively. Acute treatment (single dose 20 mg/kg) and subchronic treatment (20 mg/kg for 10 days) produced no significant desensitization of the B-adrenoceptors. However, chronic treatment with the compounds significantly decreased isoprenaline-induced increase in c-AMP in the cortex which suggests desensitization of B-adrenoceptors. This effect coupled with the previous findings point to a potential rule of these compounds as suitable antidepressant candidates.« less
Preservative-free triamcinolone acetonide suspension developed for intravitreal injection.
Bitter, Christoph; Suter, Katja; Figueiredo, Verena; Pruente, Christian; Hatz, Katja; Surber, Christian
2008-02-01
All commercially available triamcinolone acetonide (TACA) suspensions, used for intravitreal treatment, contain retinal toxic vehicles (e.g., benzyl alcohol, solubilizer). Our aim was to find a convenient and reproducible method to compound a completely preservative-free TACA suspension, adapted to the intraocular physiology, with consistent quality (i.e., proven sterility and stability, constant content and dose uniformity, defined particle size, and 1 year shelf life). We evaluated two published (Membrane-filter, Centrifugation) and a newly developed method (Direct Suspending) to compound TACA suspensions for intravitreal injection. Parameters as TACA content (HPLC), particle size (microscopy and laser spectrometry), sterility, and bacterial endotoxins were assessed. Stability testing (at room temperature and 40 degrees C) was performed: color and homogeneity (visually), particle size (microscopically), TACA content and dose uniformity (HPLC) were analyzed according to International Conference on Harmonisation guidelines. Contrary to the known methods, the direct suspending method is convenient, provides a TACA suspension, which fulfills all compendial requirements, and has a 2-year shelf life. We developed a simple, reproducible method to compound stable, completely preservative-free TACA suspensions with a reasonable shelf-life, which enables to study the effect of intravitreal TACA--not biased by varying doses and toxic compounds or their residues.
Viscous peeling with capillary suction
NASA Astrophysics Data System (ADS)
Peng, Gunnar; Lister, John
2014-11-01
If an elastic tape is stuck to a rigid substrate by a thin film of viscous fluid and then peeled off by pulling at a small angle to the horizontal, then both viscous and capillary forces affect the peeling speed (McEwan and Taylor, 1966). If there is no capillary meniscus (e.g. if the peeling is due to viscous fluid being injected under the tape), then the peeling speed is given by a Cox-Voinov-like law, and is an increasing function of the peeling angle. We show that, with a meniscus present, the effect of the capillary forces is to suck down the tape, reducing the effective peeling angle and hence the peeling speed. When surface tension dominates and the peeling speed tends to zero, the system transitions to a new state whose time-evolution can be described by a system of coupled ordinary differential equations. These asymptotic results are confirmed by numerical calculations. Similar results hold for the peeling-by-bending of elastic beams, with ``angle'' replaced by ``curvature'' (i.e. bending moment).
NASA Astrophysics Data System (ADS)
Perez, J. D.; Goldstein, J.; McComas, D. J.; Valek, P. W.; Fok, M. C. H.; Hwang, K. J.
2015-12-01
On 17-18 March 2015, there was a large (minimum SYM/H < -200 nT) geomagnetic storm. The Two Wide-Angle Imaging Neutral Atom Spectrometers (TWINS) mission, the first stereoscopic ENA magnetospheric imager, provides global images of the inner magnetosphere from which global distributions of ion flux, energy spectra, and pitch angle distributions are obtained. We will show how the observed ion pressure correlates with SYM/H. Examples of multiple peaks in the ion spatial distribution which may be due to multiple injections and/or energy and pitch angle dependent drift will be illustrated. Energy spectra will be shown to be non-Maxwellian, frequently having two peaks, one in the 10 keV range and another near 40 keV. Pitch angle distributions will be shown to have generally perpendicular anisotropy and that this can be time, space and energy dependent. The results are consistent with Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model simulations.
A contoured gap coaxial plasma gun with injected plasma armature.
Witherspoon, F Douglas; Case, Andrew; Messer, Sarah J; Bomgardner, Richard; Phillips, Michael W; Brockington, Samuel; Elton, Raymond
2009-08-01
A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 microg of plasma with density above 10(17) cm(-3) to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 microg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.
Experimental Investigation of Centrifugal Compressor Stabilization Techniques
NASA Technical Reports Server (NTRS)
Skoch, Gary J.
2003-01-01
Results from a series of experiments to investigate techniques for extending the stable flow range of a centrifugal compressor are reported. The research was conducted in a high-speed centrifugal compressor at the NASA Glenn Research Center. The stabilizing effect of steadily flowing air-streams injected into the vaneless region of a vane-island diffuser through the shroud surface is described. Parametric variations of injection angle, injection flow rate, number of injectors, injector spacing, and injection versus bleed were investigated for a range of impeller speeds and tip clearances. Both the compressor discharge and an external source were used for the injection air supply. The stabilizing effect of flow obstructions created by tubes that were inserted into the diffuser vaneless space through the shroud was also investigated. Tube immersion into the vaneless space was varied in the flow obstruction experiments. Results from testing done at impeller design speed and tip clearance are presented. Surge margin improved by 1.7 points using injection air that was supplied from within the compressor. Externally supplied injection air was used to return the compressor to stable operation after being throttled into surge. The tubes, which were capped to prevent mass flux, provided 9.3 points of additional surge margin over the baseline surge margin of 11.7 points.
NASA Astrophysics Data System (ADS)
Zhao, H.; Li, X.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Baker, D. N.; Jaynes, A. N.; Malaspina, D. M.
2014-12-01
The pitch angle distribution (PAD) of energetic electrons in the slot region and inner radiation belt received little attention in the past decades due to the lack of quality measurements. Using the state-of-the-art pitch angle-resolved data from the Magnetic Electron Ion Spectrometer instrument onboard the Van Allen Probes, a detailed analysis of hundreds of keV electron PADs below L = 4 is performed, in which the PADs are categorized into three types: normal (flux peaking at 90°), cap (exceedingly peaking narrowly around 90°), and 90° minimum (lower flux at 90°) PADs. By examining the characteristics of the PADs of ˜460 keV electrons for over a year, we find that the 90° minimum PADs are generally present in the inner belt (L<2), while normal PADs dominate at L˜3.5-4. In the region between, 90° minimum PADs dominate during injection times and normal PADs dominate during quiet times. Cap PADs appear mostly at the decay phase of storms in the slot region and are likely caused by the pitch angle scattering of hiss waves. Fitting the normal PADs into sinnα form, the parameter n is much higher below L = 3 than that in the outer belt and relatively constant in the inner belt but changes significantly in the slot region (2 < L < 3) during injection times. As for the 90° minimum PADs, by performing a detailed case study, we find in the slot region this type of PAD is likely caused by chorus wave heating, but this mechanism can hardly explain the formation of 90° minimum PADs at the center of inner belt.
Effects of Spent Cooling and Swirler Angle on a 9-Point Swirl-Venturi Injector
NASA Technical Reports Server (NTRS)
He, Zhuohui J.; Tacina, Kathleen M.; Lee, Chi-Ming; Tacina, Robert R.; Lee, Phil
2014-01-01
This paper presents multipoint Lean-Direct-Injection (LDI) emissions results for flame tube combustion tests at an inlet pressure of 1034 kPa and inlet temperatures between 835 and 865 K; these are the combustor inlet conditions that the High Speed Research (HSR) program used for supersonic cruise. It focuses on one class of LDI geometry, 9-point swirl-venturi LDI (SV-LDI). Two parameters are compared in this paper: the use of dome cooling air and the swirler blade angle. Dome cooling air is called "spent cooling" and is at combustor inlet conditions. Three cooling variations are studied: cooling at the venturi throat, cooling at the dome face, and no cooling at all. Two swirler blade angles are studied: 45deg and 60deg. The HSR 9-point SV-LDI emissions are also compared to a similar 9-point SV-LDI design which was used in the later ultra-efficient engine technology (UEET) program. The HSR and UEET designs cannot be compared directly due to different UEET combustor conditions. Therefore, this paper uses previously published UEET correlation equations to make comparisons. Results show that using a 45deg swirler produces lower NOx emissions than using a 60deg swirler. This is consistent with the later UEET results. The effects of spent cooling depend on swirler angle, spent cooling location, and the test conditions. For the configuration with 45deg swirlers, spent cooling delivers lower NOx emissions when it is injected at the throat. For the 60deg swirler, spent cooling does not have much effect on NOx emissions. These results might be caused by the location and the intensity of the flame recirculation zone.
Effects of Spent Cooling and Swirler Angle on a 9-point Swirl-Venturi Injector
NASA Technical Reports Server (NTRS)
He, ZH., Joe; Tacina, Kathleen M.; Lee, Chi-Ming; Tacina, Robert R.; Lee, Phil
2013-01-01
This paper presents multipoint lean-direct-injection (LDI) emissions results for flame tube combustion tests at an inlet pressure of 1034 kPa and inlet temperatures between 835 and 865 K; these are the combustor inlet conditions that the High Speed Research (HSR) program used for supersonic cruise. It focuses on one class of LDI geometry, 9-point swirl-venturi LDI (SV-LDI). Two parameters are compared in this paper: the use of dome cooling air and the swirler blade angle. Dome cooling air is called 'spent cooling' and is at combustor inlet conditions. Three cooling variations are studied: cooling at the venturi throat, cooling at the dome face, and no cooling at all. Two swirler blade angles are studied: 45 deg and 60 deg. The HSR 9-point SV-LDI emissions are also compared to a similar 9-point SV-LDI design which was used in the later ultra-efficient engine technology (UEET) program. The HSR and UEET designs cannot be compared directly due to different UEET combustor conditions. Therefore, this paper uses previously published UEET correlation equations to make comparisons. Results show that using a 45 deg swirler produces lower NOx emissions than using a 60 deg swirler. This is consistent with the later UEET results. The effects of spent cooling depend on swirler angle, spent cooling location, and the test conditions. For the configuration with 45 deg swirlers, spent cooling delivers lower NOx emissions when it is injected at the throat. For the 60 deg swirler, spent cooling does not have much effect on NOx emissions. These results might be caused by the location and the intensity of the flame recirculation zone.
NASA Astrophysics Data System (ADS)
Moritzer, E.; Müller, E.; Kleeschulte, R.
2014-05-01
Today, the global market poses major challenges for industrial product development. Complexity, the wide range of variants, flexibility and individuality are just some of the features that products have to fulfil. Product series additionally have shorter and shorter lifetimes. Because of their high capacity for adaptation, polymers are increasingly able to substitute traditional materials such as wood, glass and metals in various fields of application [1]. But polymers can only substitute other materials if they are optimally suited to the applications in question. Hence, product-specific material development is becoming increasingly important [2]. The problem is that the traditional development process for new polymer formulations is much too complex, too slow and therefore too expensive. Product-specific material development is thus out of the question for most processors. Integrating the compounding step in the injection moulding process would lead to a more efficient and faster development process for a new polymer formulation, providing an opportunity to create new product-specific materials. This process is called inline-compounding on an injection moulding machine. In order to develop this innovative formulation concept, with the focus on fibre reinforced thermoplastics, different screw-concepts are compared with regard to the resultant performance characteristics in the part, such as mechanical properties and fibre length distribution.
NASA Astrophysics Data System (ADS)
Moritzer, Elmar; Müller, Ellen; Martin, Yannick; Kleeschulte, Rainer
2015-05-01
Today the global market poses great challenges for industrial product development. Complexity, diversity of variants, flexibility and individuality are just some of the features that products have to offer today. In addition, the product series have shorter lifetimes. Because of their high capacity for adaption, polymers are increasingly able to displace traditional materials such as wood, glass and metals from various fields of application. Polymers can only be used to substitute other materials, however, if they are optimally suited to the applications in question. Hence, product-specific material development is becoming increasingly important. Integrating the compounding step in the injection moulding process permits a more efficient and faster development process for a new polymer formulation, making it possible to create new product-specific materials. This process is called inline-compounding on an injection moulding machine. The entire process sequence is supported by software from Bayer Technology called Product Design Workbench (PDWB), which provides assistance in all the individual steps from data management, via analysis and model compilation, right through to the optimization of the formulation and the design of experiments. The software is based on artificial neural networks and can model the formulation-property correlations and thus enable different formulations to be optimized. In the study presented, the workflow and the modelling with the software are presented.
Abou Mrad, Ninette; Duvernay, Fabrice; Theulé, Patrice; Chiavassa, Thierry; Danger, Grégoire
2014-08-19
This contribution presents an original analytical system for studying volatile organic compounds (VOC) coming from the heating and/or irradiation of interstellar/cometary ice analogues (VAHIIA system) through laboratory experiments. The VAHIIA system brings solutions to three analytical constraints regarding chromatography analysis: the low desorption kinetics of VOC (many hours) in the vacuum chamber during laboratory experiments, the low pressure under which they sublime (10(-9) mbar), and the presence of water in ice analogues. The VAHIIA system which we developed, calibrated, and optimized is composed of two units. The first is a preconcentration unit providing the VOC recovery. This unit is based on a cryogenic trapping which allows VOC preconcentration and provides an adequate pressure allowing their subsequent transfer to an injection unit. The latter is a gaseous injection unit allowing the direct injection into the GC-MS of the VOC previously transferred from the preconcentration unit. The feasibility of the online transfer through this interface is demonstrated. Nanomoles of VOC can be detected with the VAHIIA system, and the variability in replicate measurements is lower than 13%. The advantages of the GC-MS in comparison to infrared spectroscopy are pointed out, the GC-MS allowing an unambiguous identification of compounds coming from complex mixtures. Beyond the application to astrophysical subjects, these analytical developments can be used for all systems requiring vacuum/cryogenic environments.
NASA Astrophysics Data System (ADS)
Barbaro, J. R.; Barker, J. F.; Lemon, L. A.; Mayfield, C. I.
1992-11-01
Three natural-gradient injection experiments in the Borden aquifer (Ontario, Canada) (˜ 100-300 days in duration) and a 452-day laboratory microcosm experiment were performed to evaluate the biotransformation of BTEX (benzene, toluene, ethylbenzene and o-, m-, p-xylenes) derived from gasoline under anaerobic, denitrifying conditions. Both NO 3-- amended and unamended control (i.e. no NO 3- added) experiments were performed. In the unamended control injection experiment, toluene biotransformed between 1 and 5 m from the injection well. All other aromatic compounds were recalcitrant in this field experiment and all aromatic compounds were recalcitrant in unamended control microcosms. After an acclimatization period, toluene biotransformed relatively rapidly in the presence of NO 3- in both the laboratory and field to a residual level of ˜ 100 μg L -1. In the presence of NO 3- the xylene isomers and ethylbenzene biotransformed to a lesser degree. Benzene was recalcitrant in all experiments. The acetylene blockage technique was used to demonstrate that denitrifying bacteria were active in the presence of NO 3-. In the NO 3--amended injection experiments, little BTEX mass loss occurred beyond the 1-m multilevel-piezometer fence. However, NO 3- continued to decline downgradient, suggesting that other sources of carbon were being utilized by denitrifying bacteria in preference to residual BTEX. In addition to observations on mass loss, these experiments provided evidence of inhibition of BTEX biotransformation in the presence of acetylene, and competitive utilization between toluene, ethylbenzene and the xylene isomers. Given the recalcitrance of benzene and high thresholds of the compounds that did biotransform, the addition of NO 3- as an alternate electron acceptor would not be successful in this aquifer as a remedial measure.
Khojasteh, Nasrin Baghban; Pazirandeh, Ali; Jameie, Behnam; Goodarzi, Samereh
2012-06-01
Distribution of (10)B in different regions of rat normal brain was studied. Two groups were chosen as control and trial. Trial group received 2 ml of neutral boron compound. 2, 4 and 6 h after the injection brain removed, coronal sections of forebrain, midbrain and hindbrain were sandwiched between two pieces of polycarbonate. Autoradiography plots of (10)B distribution showed significant differences in three regions with the highest (10)B concentration in the forebrain during 4 h after injection. Copyright © 2012 Elsevier Ltd. All rights reserved.
Abtahi-Naeini, Bahareh; Faghihi, Gita; Shahmoradi, Zabihollah; Saffaei, Ali
2018-01-07
Polydimethylsiloxane (PDMS), also called liquid silicone, belongs to a group of polymeric compounds that are commonly referred to as silicones. These filling agents have been used as injectable filler for soft tissue augmentation. There are limited experiences about management of the severe complications related to filler migration associated with PDMS injection. We present a 35-year-old female with severe erythema, edema over her cheeks and neck, and multiple irregularities following cosmetic lip augmentation with PDMS. Further studies are required for management of this complicated case of PDMS injection. © 2018 Wiley Periodicals, Inc.
An unusual case of suicide attempt using intravenous injection of kerosene.
Jayaprasad, Sushmitha; Metikurke, Vijayashankar
2013-01-01
Kerosene is refined oil belonging to the hydrocarbon group of compounds, available for domestic use in developing countries. Poisoning is due to inhalation, ingestion. Kerosene. We report a rare case of attempted suicide by means of intravenous injection of kerosene. It has a devastating effect and it is important to initiate active and immediate surgical intervention. Psychotherapy should also be an integral part of the management.
Antihypoxants, thiasolo[5,4-b]indole derivatives, increase exercise performance in rats and mice.
Marysheva, V V; Shabanov, P D
2009-01-01
The actoptrotective activity of 12 new antihypoxants of the thiasolo[5,4-b]indole series was studied on the model of treadmill running until exhaustion 1 and 24 h after intraperitoneal injection. Highly active compounds more effective than the reference drugs bemithyl and phenamine were found. They increased exercise performance 1 or 24 h after injection or maintained high performance throughout 24 h.
2014-02-24
Suite 600 Washington, DC 20036 NRL/MR/ 6110 --14-9521 Approved for public release; distribution is unlimited. 1Science & Engineering Apprenticeship...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/ 6110 --14-9521 Chemometric Deconvolution of Continuous Electrokinetic Injection Micellar... Engineering Apprenticeship Program American Society for Engineering Education Washington, DC Kevin Johnson Navy Technology Center for Safety and
Nanocomposites from lignin-containing cellulose nanocrystals and poly(lactic acid)
Liqing Wei; Umesh Agarwal; Nicole Stark; Ronald Sabo
2017-01-01
Utilizing lignin-containing cellulose nanocrystals (HLCNCs) as reinforcing agents to poly(lactic acid) (PLA) for nanocomposites was studied for the first time. The PLA/HLCNCs nanocomposites were prepared by extrusion and injecting molding. The freeze-dried HLCNCs showed micron scale agglomerates. As indicated by the water contact angle measurements, the HLCNCs were...
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Tacina, Kathleen M.; Anderson, Robert C.
2017-01-01
This paper examines the fundamentals of fuel-air mixing in a lean direct injection concept. Results are presented to investigate the effects of air swirler angle, element spacing, and center element offset on recirculation zone formation, flame stability and gaseous emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Tatsuo, E-mail: dr.tatsuosuzuki@gmail.com
Group III-V compounds are very important as the materials of semiconductor devices. Stable structures of the monolayers of group III-V binary compounds have been discovered by using first-principles calculations. The primitive unit cell of the discovered structures is a rectangle, which includes four group-III atoms and four group-V atoms. A group-III atom and its three nearest-neighbor group-V atoms are placed on the same plane; however, these connections are not the sp{sup 2} hybridization. The bond angles around the group-V atoms are less than the bond angle of sp{sup 3} hybridization. The discovered structure of GaP is an indirect transition semiconductor,more » while the discovered structures of GaAs, InP, and InAs are direct transition semiconductors. Therefore, the discovered structures of these compounds have the potential of the materials for semiconductor devices, for example, water splitting photocatalysts. The discovered structures may become the most stable structures of monolayers which consist of other materials.« less
[Effects of Liangxue Jiedu Decoction in treating psoriasis in a mouse psoriasis model].
Gu, Min-Jie; Gao, Shang-Pu; Li, Yong-Mei
2009-06-01
To study the effects of Liangxue Jiedu Decoction, a compound traditional Chinese herbal medicine with the function of blood-cooling and detoxicating, in treating psoriasis in mice and to explore its mechanism. (1) Sixty mice were randomly divided into Liangxue Jiedu Decoction group, compound Indigo Naturalis capsule group, acitretin capsule group and normal saline group. Another 10 mice were selected as blank control. After 2-week administration, mice were sacrificed to obtain samples. After hematoxylin and eosin (HE) staining, tail scales with granular layers were calculated by an optical microscope. (2) Except for ten mice in blank group, sixty female mice were injected intraperitoneally with diethylstilbestrol once daily. After 3-day injection, mice were randomly divided into four groups and treated as above description. After 2-week treatment, all mice were injected intraperitoneally with colchicine (2 mg/kg), and sacrificed 6 h after the injection. The mitotic rate in virginal epithelium was calculated after HE staining. Compared with normal saline, Liangxue Jiedu Decoction could significantly inhibit the mitosis of mouse vaginal epithelium (P < 0.01) and promote the formation of granular layers in mouse tail-scale epidermis (P < 0.01). The mechanism of Liangxue Jiedu Decoction in treating psoriasis may be related to promoting granular cell growth and inhibiting proliferation of epidermic cells.
Zhang, Jingdan; Zhang, Xiaoxue; Zhao, Yangyang; Song, Aihua; Sun, Wei; Yin, Ran
2018-02-01
In this study, a reliable and sensitive ultra-high performance liquid chromatography coupled with fourier transform ion cyclotron resonance mass spectrometry method was developed for the systematic study of the metabolic profile of Kudiezi injection in rat plasma, bile, urine, and feces after intravenous administration of a single dose. The chromatographic separation was performed on an Agilent Eclipse Plus C 18 column (4.6 mm × 50 mm, 1.8 μm) and the identification of prototype components and metabolites was achieved on a Bruker Solarix 7.0 T ultra-high resolution spectrometer in negative ion mode. Results indicated that a total of 76 constituents including 29 prototype compounds and 47 metabolites (10 phase I metabolites and 37 phase II metabolites) were tentatively identified. And the metabolic pathways of these prototype compounds including hydroxylation, dehydrogenation, glucuronidation, and sulfate conjugation. In conclusion, the developed method with high resolution and sensitivity was effective for screening and identification of prototypes and metabolites of Kudiezi injection in vivo. Moreover, these results would provide significant information for further pharmacokinetic and pharmacological research of Kudiezi injection in vivo. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Embryo toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin to the wood duck (Aix sponsa)
Augspurger, T.P.; Tillitt, D.E.; Bursian, S.J.; Fitzgerald, S.D.; Hinton, D.E.; Di Giulio, R.T.
2008-01-01
We examined the sensitivity of the wood duck (Aix sponsa) embryo to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) by injecting the toxicant into their eggs. Six groups of wood duck eggs (n = 35 to 211 per trial) were injected with 0 to 4600 pg TCDD/g egg between 2003 and 2005. Injections were made into yolk prior to incubation, and eggs were subsequently incubated and assessed weekly for mortality. Significant TCDD-induced mortality was not observed through day 25 (90% of incubation). Liver, heart, eye, and brain histology were generally unremarkable. Hepatic ethoxyresorufin-O-deethylase activity, a biomarker of dioxin-like compound exposure, was induced by 12-fold in the 4600 pg/g treatment relative to controls. The median lethal dose for chicken (Gallus domesticus) eggs we dosed identically to wood duck eggs was about 100 pg/g, similar to other assessments of chickens. Among dioxin-like compound embryo lethality data for 15 avian genera, the wood duck 4600 pg/g no-observed-effect level ranks near the middle. Because no higher doses were tested, wood ducks may be like other waterfowl (order Anseriformes), which are comparatively tolerant to embryo mortality from polychlorinated dibenzo-p-dioxins and dibenzofurans when exposed by egg injection. ?? 2008 US Government.
Moshkin, M P; Akulov, A E; Petrovskiĭ, D V; Saĭk, O V; Petrovskiĭ, E D; Savelov, A A; Koptug, I V
2012-10-01
In vivo proton magnetic resonance spectroscopy (1H MRS) of ICR male mice was used to study the brain (hippocampus) metabolic response to the acute deficiency of the available energy or to the pro-inflammatory stimulus. Inhibition of glycolysis by means of an intraperitoneal injection with 2-deoxy-D-glucose (2DG) reduced the levels of gamma-aminobutiric acid (GABA), N-acetylaspartate (NAA) and choline compounds, and at the same time increased the levels of glutamate and glutamine. An opposite effect was found after injection with bacterial lipopolysaccharide (LPS)--a very common pro-inflammatory inducer. An increase in the amounts of GABA, NAA and choline compounds in the brain occurred three hours after the injection of LPS. Different metabolic responses to the energy deficiency and the pro-inflammatory stimuli can explain the contradictory results of the brain MRS studies under neurodegenerative pathology, which is accompanied by both mitochondrial dysfunction and inflammation. Prevalence of the excitatory metabolites such as glutamate and glutamine in 2DG treated mice is in good agreement with excitation observed during temporary reduction of the available energy under acute hypoxia or starvation. In turn, LPS, as an inducer of the sickness behavior, shifts brain metabolic pattern to prevalence of the inhibitory neurotransmitter GABA.
NASA Astrophysics Data System (ADS)
Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.
2018-04-01
High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.
Ramos, Susie Medeiros Oliveira; Glavam, Adriana Pereira; Kubo, Tadeu Takao Almodovar; de Sá, Lidia Vasconcellos
2014-01-01
To develop a study aiming at optimizing myocardial perfusion imaging. Imaging of an anthropomorphic thorax phantom with a GE SPECT Ventri gamma camera, with varied activities and acquisition times, in order to evaluate the influence of these parameters on the quality of the reconstructed medical images. The (99m)Tc-sestamibi radiotracer was utilized, and then the images were clinically evaluated on the basis of data such as summed stress score, and on the technical image quality and perfusion. The software ImageJ was utilized in the data quantification. The results demonstrated that for the standard acquisition time utilized in the procedure (15 seconds per angle), the injected activity could be reduced by 33.34%. Additionally, even if the standard scan time is reduced by 53.34% (7 seconds per angle), the standard injected activity could still be reduced by 16.67%, without impairing the image quality and the diagnostic reliability. The described method and respective results provide a basis for the development of a clinical trial of patients in an optimized protocol.
A study for the installation of the TEXT heavy-ion beam probe on DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmonds, P.H.; Solano, E.R.; Bravenec, R.V.
1997-01-01
An assessment of the feasibility of installing the TEXT 2 MeV heavy-ion beam probe on the DIII-D tokamak has been completed. Detailed drawings of the machine cross section were imported into the CAD application AutoCAD. A set of programs written in AutoLisp were used to generate trajectories. Displays of the accessible cross section of the plasma, scan lines for the entire range of primary beam energy and injection angle ranges, and sample{endash}volume dimensions can be rapidly generated. Because of the large deflection between the primary input beam and the emergent secondary beam, either the analyzer needs to be tracked overmore » a {plus_minus}20{degree} angle or secondary poloidal deflector plates need to be installed at the exit port. Toroidal deflector plates will be installed at both the injection and exit ports to compensate for toroidal displacements and deflections. The sample volumes generated by this procedure are within a few centimeters of the locations derived from a full three-dimensional calculation.{copyright} {ital 1997 American Institute of Physics.}« less
Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kastengren, A.; Ilavsky, J.; Viera, Juan Pablo
Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzlemore » until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. As a result, liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.« less
Ramos, Susie Medeiros Oliveira; Glavam, Adriana Pereira; Kubo, Tadeu Takao Almodovar; de Sá, Lidia Vasconcellos
2014-01-01
Objective To develop a study aiming at optimizing myocardial perfusion imaging. Materials and Methods Imaging of an anthropomorphic thorax phantom with a GE SPECT Ventri gamma camera, with varied activities and acquisition times, in order to evaluate the influence of these parameters on the quality of the reconstructed medical images. The 99mTc-sestamibi radiotracer was utilized, and then the images were clinically evaluated on the basis of data such as summed stress score, and on the technical image quality and perfusion. The software ImageJ was utilized in the data quantification. Results The results demonstrated that for the standard acquisition time utilized in the procedure (15 seconds per angle), the injected activity could be reduced by 33.34%. Additionally, even if the standard scan time is reduced by 53.34% (7 seconds per angle), the standard injected activity could still be reduced by 16.67%, without impairing the image quality and the diagnostic reliability. Conclusion The described method and respective results provide a basis for the development of a clinical trial of patients in an optimized protocol. PMID:25741088
Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering
Kastengren, A.; Ilavsky, J.; Viera, Juan Pablo; ...
2017-03-16
Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzlemore » until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. As a result, liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganguly, A.; Haldar, A.; Sinha, J.
2014-09-15
The effect of spin torque from the spin Hall effect in Pt/Ni{sub 81}Fe{sub 19} rectangular bilayer film was investigated using time-resolved magneto-optical Kerr microscopy. Current flow through the stack resulted in a linear variation of effective damping up to ±7%, attributed to spin current injection from the Pt into the Ni{sub 81}Fe{sub 19}. The spin Hall angle of Pt was estimated as 0.11 ± 0.03. The modulation of the damping depended on the angle between the current and the bias magnetic field. These results demonstrate the importance of optical detection of precessional magnetization dynamics for studying spin transfer torque due to spinmore » Hall effect.« less
Hansen, Hendrik H.G.; Richards, Michael S.; Doyley, Marvin M.; de Korte, Chris L.
2013-01-01
Atherosclerotic plaque rupture can initiate stroke or myocardial infarction. Lipid-rich plaques with thin fibrous caps have a higher risk to rupture than fibrotic plaques. Elastic moduli differ for lipid-rich and fibrous tissue and can be reconstructed using tissue displacements estimated from intravascular ultrasound radiofrequency (RF) data acquisitions. This study investigated if modulus reconstruction is possible for noninvasive RF acquisitions of vessels in transverse imaging planes using an iterative 2D cross-correlation based displacement estimation algorithm. Furthermore, since it is known that displacements can be improved by compounding of displacements estimated at various beam steering angles, we compared the performance of the modulus reconstruction with and without compounding. For the comparison, simulated and experimental RF data were generated of various vessel-mimicking phantoms. Reconstruction errors were less than 10%, which seems adequate for distinguishing lipid-rich from fibrous tissue. Compounding outperformed single-angle reconstruction: the interquartile range of the reconstructed moduli for the various homogeneous phantom layers was approximately two times smaller. Additionally, the estimated lateral displacements were a factor of 2–3 better matched to the displacements corresponding to the reconstructed modulus distribution. Thus, noninvasive elastic modulus reconstruction is possible for transverse vessel cross sections using this cross-correlation method and is more accurate with compounding. PMID:23478602
NASA Astrophysics Data System (ADS)
Bacchi, Alessia; Pelizzi, Giancarlo
1999-07-01
The antibiotic activity (via inhibition of DNA-dependent RNA polymerase, DDRP) of rifamycins has been correlated to the conformation of the ansa chain, which can be described by means of 17 torsion angles defined along the ansa backbone. It has been shown that favourable or unfavourable conformations of the ansa chain in rifamycin crystals are generally diagnostic of activity or inactivity against isolated DDRP. The principles of structure correlation suggest that the torsional variety observed in rifamycin crystals should mimic the dynamic flexibility of the ansa chain in solution. Twenty-six crystal structures of rifamycins are grouped into two classes (active and non-active). For each class the variance of the 17 ansa backbone torsion angles is analysed. Active compounds show a well-defined common pattern, while non-active molecules are more scattered, mainly due to steric constraints forcing the molecules into unfavourable conformations. The experimental distributions of torsion angles are compared to the torsional freedom of the ansa chain simulated by molecular dynamics calculations performed at different temperatures and conditions on rifamycin S and rifamycin O, which represent a typical active and a typical sterically constrained molecule, respectively. It is shown that the torsional variety found in the crystalline state samples the dynamic behaviour of the ansa chain for active compounds. The methods of circular statistics are illustrated to describe torsion angle distributions.
Measurement of 13C chemical shift tensor principal values with a magic-angle turning experiment.
Hu, J Z; Orendt, A M; Alderman, D W; Pugmire, R J; Ye, C; Grant, D M
1994-08-01
The magic-angle turning (MAT) experiment introduced by Gan is developed into a powerful and routine method for measuring the principal values of 13C chemical shift tensors in powdered solids. A large-volume MAT probe with stable rotation frequencies down to 22 Hz is described. A triple-echo MAT pulse sequence is introduced to improve the quality of the two-dimensional baseplane. It is shown that measurements of the principal values of chemical shift tensors in complex compounds can be enhanced by using either short contact times or dipolar dephasing pulse sequences to isolate the powder patterns from protonated or non-protonated carbons, respectively. A model compound, 1,2,3-trimethoxybenzene, is used to demonstrate these techniques, and the 13C principal values in 2,3-dimethylnaphthalene and Pocahontas coal are reported as typical examples.
NASA Astrophysics Data System (ADS)
Hamamoto, Satoru; Fujioka, Shuhei; Kanai, Yuina; Yamagami, Kohei; Nakatani, Yasuhiro; Nakagawa, Koya; Fujiwara, Hidenori; Kiss, Takayuki; Higashiya, Atsushi; Yamasaki, Atsushi; Kadono, Toshiharu; Imada, Shin; Tanaka, Arata; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Matsumoto, Keisuke T.; Onimaru, Takahiro; Takabatake, Toshiro; Sekiyama, Akira
2017-12-01
We report experimentally observed linear dichroism in angle-resolved core-level photoemission spectra of PrIr2Zn20 and PrB6 with cubic symmetry. The different anisotropic 4f charge distributions between the compounds due to the crystalline-electric-field splitting are responsible for the difference in the linear dichroism, which has been verified by spectral simulations with the full multiplet theory for a single-site Pr3+ ion with cubic symmetry. The observed linear dichroism and polarization-dependent spectra in two different photoelectron directions for PrIr2Zn20 are reproduced by theoretical analysis for the Γ3 ground state, whereas those of the Pr 3d and 4d core levels indicate the Γ5 ground state for PrB6.
Yes, one can obtain better quality structures from routine X-ray data collection.
Sanjuan-Szklarz, W Fabiola; Hoser, Anna A; Gutmann, Matthias; Madsen, Anders Østergaard; Woźniak, Krzysztof
2016-01-01
Single-crystal X-ray diffraction structural results for benzidine dihydrochloride, hydrated and protonated N,N,N,N-peri(dimethylamino)naphthalene chloride, triptycene, dichlorodimethyltriptycene and decamethylferrocene have been analysed. A critical discussion of the dependence of structural and thermal parameters on resolution for these compounds is presented. Results of refinements against X-ray data, cut off to different resolutions from the high-resolution data files, are compared to structural models derived from neutron diffraction experiments. The Independent Atom Model (IAM) and the Transferable Aspherical Atom Model (TAAM) are tested. The average differences between the X-ray and neutron structural parameters (with the exception of valence angles defined by H atoms) decrease with the increasing 2θmax angle. The scale of differences between X-ray and neutron geometrical parameters can be significantly reduced when data are collected to the higher, than commonly used, 2θmax diffraction angles (for Mo Kα 2θmax > 65°). The final structural and thermal parameters obtained for the studied compounds using TAAM refinement are in better agreement with the neutron values than the IAM results for all resolutions and all compounds. By using TAAM, it is still possible to obtain accurate results even from low-resolution X-ray data. This is particularly important as TAAM is easy to apply and can routinely be used to improve the quality of structural investigations [Dominiak (2015 ▸). LSDB from UBDB. University of Buffalo, USA]. We can recommend that, in order to obtain more adequate (more accurate and precise) structural and displacement parameters during the IAM model refinement, data should be collected up to the larger diffraction angles, at least, for Mo Kα radiation to 2θmax = 65° (sin θmax/λ < 0.75 Å(-1)). The TAAM approach is a very good option to obtain more adequate results even using data collected to the lower 2θmax angles. Also the results of translation-libration-screw (TLS) analysis and vibrational entropy values are more reliable for 2θmax > 65°.
Studies on Plasmoid Merging using Compact Toroid Injectors
NASA Astrophysics Data System (ADS)
Allfrey, Ian; Matsumoto, Tadafumi; Roche, Thomas; Gota, Hiroshi; Edo, Takahiro; Asai, Tomohiko; Sheftman, Daniel; Osin Team; Dima Team
2017-10-01
C-2 and C-2U experiments have used magnetized coaxial plasma guns (MCPG) to inject compact toroids (CTs) for refueling the long-lived advanced beam-driven field-reversed configuration (FRC) plasma. This refueling method will also be used for the C-2W experiment. To minimize momentum transfer from the CT to the FRC two CTs are injected radially, diametrically opposed and coincident in time. To improve understanding of the CT characteristics TAE has a dedicated test bed for the development of CT injectors (CTI), where plasmoid merging experiments are performed. The test bed has two CTIs on axis with both axial and transverse magnetic fields. The 1 kG magnetic fields, intended to approximate the magnetic field strength and injection angle on C-2W, allow studies of cross-field transport and merging. Both CTIs are capable of injecting multiple CTs at up to 1 kHz. The resulting merged CT lives >100 μs with a radius of 25 cm. More detailed results of CT parameters will be presented.
Combustion of hydrogen injected into a supersonic airstream (the SHIP computer program)
NASA Technical Reports Server (NTRS)
Markatos, N. C.; Spalding, D. B.; Tatchell, D. G.
1977-01-01
The mathematical and physical basis of the SHIP computer program which embodies a finite-difference, implicit numerical procedure for the computation of hydrogen injected into a supersonic airstream at an angle ranging from normal to parallel to the airstream main flow direction is described. The physical hypotheses built into the program include: a two-equation turbulence model, and a chemical equilibrium model for the hydrogen-oxygen reaction. Typical results for equilibrium combustion are presented and exhibit qualitatively plausible behavior. The computer time required for a given case is approximately 1 minute on a CDC 7600 machine. A discussion of the assumption of parabolic flow in the injection region is given which suggests that improvement in calculation in this region could be obtained by use of the partially parabolic procedure of Pratap and Spalding. It is concluded that the technique described herein provides the basis for an efficient and reliable means for predicting the effects of hydrogen injection into supersonic airstreams and of its subsequent combustion.
Flow visualization of discrete hole film cooling for gas turbine applications
NASA Technical Reports Server (NTRS)
Colladay, R. S.; Russell, L. M.
1975-01-01
Film injection from discrete holes in a three row staggered array with 5-diameter spacing is studied for three different hole angles: (1) normal, (2) slanted 30 deg to the surface in the direction of the mainstream, and (3) slanted 30 deg to the surface and 45 deg laterally to the mainstream. The boundary layer thickness-to-hole diameter ratio and Reynolds number are typical of gas turbine film cooling applications. Two different injection locations are studied to evaluate the effect of boundary layer thickness on film penetration and mixing. Detailed streaklines showing the turbulent motion of the injected air are obtained by photographing very small neutrally buoyant helium filled 'soap' bubbles which follow the flow field. Unlike smoke, which diffuses rapidly in the high turbulent mixing region associated with discrete hole blowing, the bubble streaklines passing downstream injection locations are clearly identifiable and can be traced back to their origin. Visualization of surface temperature patterns obtained from infrared photographs of a similar film cooled surface are also included.
NASA Technical Reports Server (NTRS)
Howard, F. G.; Strokowski, A. J.
1978-01-01
Experiments were conducted to determine the reduction in surface skin friction and the effectiveness of surface cooling downstream of one to four successive flush slots injecting cold air at an angle of 10 deg into a turbulent Mach 6 boundary layer. Data were obtained by direct measurement of surface shear and equilibrium temperatures, respectively. Increasing the number of slots decreased the skin friction, but the incremental improvement in skin-friction reduction decreased as the number of slots was increased. Cooling effectiveness was found to improve, for a given total mass injection, as the number of slots was increased from one to four. Comparison with previously reported step-slot data, however, indicated that step slots with tangential injection are more effective for both reducing skin friction and cooling than the present flush-slot configuration. Finite-difference predictions are in reasonable agreement with skin-friction data and with boundary-layer profile data.
Factitious thyrotoxicosis induced by mesotherapy: a case report.
Danilovic, Debora Lucia Seguro; Bloise, Walter; Knobel, Meyer; Marui, Suemi
2008-06-01
Mesotherapy consists of cutaneous injections of a mixture of compounds and has recently been used for cosmetic purposes to reduce local fat and cellulite. To date, several reports have described only local adverse events related to this therapy. We describe the first report of a female patient who developed thyrotoxicosis due to cosmetic mesotherapy with triiodothyroacetic acid in its formulation. Apart from mechanical rupture of the epidermal barrier, a disturbance of type III deiodinase activity or skin fibroblast paracrine function and vascular alterations related to simultaneously injected vasoactive compounds were observed. These findings could be related to thyroid hormone metabolite absorption and systemic consequences in the reported case. We describe factitious thyrotoxicosis induced by mesotherapy, to raise awareness of a systemic adverse effect resulting from this widespread cosmetic practice.
Johnson, Timothy J; Locascio, Laurie E
2002-08-01
Recently, a series of slanted wells on the floor of a microfluidic channel were experimentally shown to successfully induce off-axis transport and mixing of two confluent streams when operating under electroosmotic (EO) flow. This paper will further explore, through numerical simulations, the parameters that affect off-axis transport under EO flow with an emphasis on optimizing the mixing rate of (a). two confluent streams in steady-state or (b). the transient scenario of two confluent plugs of material, which simulates mixing after an injection. For the steady-state scenario, the degree of mixing was determined to increase by changing any of the following parameters: (1). increasing the well depth, (2). decreasing the well angle relative to the axis of the channel, and (3). increasing the EO mobility of the well walls relative to the mobility of the main channel. Also, it will be shown that folding of the fluid can occur when the well angle is sufficiently reduced and/or when the EO mobility of the wells is increased relative to the channel. The optimum configuration for the transient problem of mixing two confluent plugs includes shallow wells to minimize the well residence time, and an increased EO mobility of the well walls relative to the main channel as well as small well angles to maximize off-axis transport. The final design reported here for the transient study reduces the standard deviation of the concentration across the channel by 72% while only increasing the axial dispersion of the injected plug by 8.6 % when compared to a plug injected into a channel with no wells present. These results indicate that a series of slanted wells on the wall of a microchannel provides a means for controlling and achieving a high degree of off-axis transport and mixing in a passive manner for micro total analysis system (microTAS) devices that are driven by electroosmosis.
Recurrent flares in active region NOAA 11283
NASA Astrophysics Data System (ADS)
Romano, P.; Zuccarello, F.; Guglielmino, S. L.; Berrilli, F.; Bruno, R.; Carbone, V.; Consolini, G.; de Lauretis, M.; Del Moro, D.; Elmhamdi, A.; Ermolli, I.; Fineschi, S.; Francia, P.; Kordi, A. S.; Landi Degl'Innocenti, E.; Laurenza, M.; Lepreti, F.; Marcucci, M. F.; Pallocchia, G.; Pietropaolo, E.; Romoli, M.; Vecchio, A.; Vellante, M.; Villante, U.
2015-10-01
Context. Flares and coronal mass ejections (CMEs) are solar phenomena that are not yet fully understood. Several investigations have been performed to single out their related physical parameters that can be used as indices of the magnetic complexity leading to their occurrence. Aims: In order to shed light on the occurrence of recurrent flares and subsequent associated CMEs, we studied the active region NOAA 11283 where recurrent M and X GOES-class flares and CMEs occurred. Methods: We use vector magnetograms taken by HMI/SDO to calculate the horizontal velocity fields of the photospheric magnetic structures, the shear and the dip angles of the magnetic field, the magnetic helicity flux distribution, and the Poynting fluxes across the photosphere due to the emergence and the shearing of the magnetic field. Results: Although we do not observe consistent emerging magnetic flux through the photosphere during the observation time interval, we detected a monotonic increase of the magnetic helicity accumulated in the corona. We found that both the shear and the dip angles have high values along the main polarity inversion line (PIL) before and after all the events. We also note that before the main flare of X2.1 GOES class, the shearing motions seem to inject a more significant energy than the energy injected by the emergence of the magnetic field. Conclusions: We conclude that the very long duration (about 4 days) of the horizontal displacement of the main photospheric magnetic structures along the PIL has a primary role in the energy release during the recurrent flares. This peculiar horizontal velocity field also contributes to the monotonic injection of magnetic helicity into the corona. This process, coupled with the high shear and dip angles along the main PIL, appears to be responsible for the consecutive events of loss of equilibrium leading to the recurrent flares and CMEs. A movie associated to Fig. 4 is available in electronic form at http://www.aanda.org
Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line 10-m...
Hierarchical structures of metal micro- and nanoparticles for PIM
NASA Astrophysics Data System (ADS)
Pervikov, Aleksandr; Rodkevich, Nikolay; Glazkova, Elena; Lerner, Marat
2017-12-01
The design of the metal nanopowder composition to prepare the feedstock for powder injection molding was researched. The treatment of aluminum nanopowders with organic compounds was studied. The organic compounds sorbed on the surface of the nanoparticles was shown to change drastically the physico-mechanical characteristics of the nanopowders. These nanopowders demonstrate enhanced characteristics, in particularly, low reactivity, high compatibility with organic binder for feedstocks.
Spin-Polarized Tunneling at Interfaces Between Oxides and Metals or Semiconductors
2006-09-01
solution 3 3. Several miscellaneous compounds , including molecular oxygen and organic biradicals 4. Metals When a variable magnetic field is...substrate layer) Heusler alloys are considered to be prime candidates, because they show great potential for spin-injection contacts to compound and...usually employ simple parabolic bands and/or momentum and energy independent tunneling matrix elements. The classical theory of tunneling assumes that the
Intense source of slow positrons
NASA Astrophysics Data System (ADS)
Perez, P.; Rosowsky, A.
2004-10-01
We describe a novel design for an intense source of slow positrons based on pair production with a beam of electrons from a 10 MeV accelerator hitting a thin target at a low incidence angle. The positrons are collected with a set of coils adapted to the large production angle. The collection system is designed to inject the positrons into a Greaves-Surko trap (Phys. Rev. A 46 (1992) 5696). Such a source could be the basis for a series of experiments in fundamental and applied research and would also be a prototype source for industrial applications, which concern the field of defect characterization in the nanometer scale.
Investigations of flowfields found in typical combustor geometries
NASA Technical Reports Server (NTRS)
Lilley, D. G.; Mclaughlin, D. K.
1981-01-01
The flowfields of gas turbine combustion chambers were investigated. Six flowfield configurations with sidewall angles alpha = 90 and 45 deg. and swirl vane angles phi = 0, 45 and 70 deg. are characterized. Photography of neutrally-buoyant helium-filled soap bubbles, tufts, and injected smoke helps to characterize the time-mean streamlines, recirculation zones and regions of highly turbulent flow. Five-hole pitot probe pressure measurements allow the determination of time-mean velocities u, v and w. An advanced computer code equipped with a standard two-equation kappa-epsilon turbulence model was used to predict corresponding flow situations and to compare results with the experimental data.
Petroleum dynamics in the sea and influence of subsea dispersant injection during Deepwater Horizon.
Gros, Jonas; Socolofsky, Scott A; Dissanayake, Anusha L; Jun, Inok; Zhao, Lin; Boufadel, Michel C; Reddy, Christopher M; Arey, J Samuel
2017-09-19
During the Deepwater Horizon disaster, a substantial fraction of the 600,000-900,000 tons of released petroleum liquid and natural gas became entrapped below the sea surface, but the quantity entrapped and the sequestration mechanisms have remained unclear. We modeled the buoyant jet of petroleum liquid droplets, gas bubbles, and entrained seawater, using 279 simulated chemical components, for a representative day (June 8, 2010) of the period after the sunken platform's riser pipe was pared at the wellhead (June 4-July 15). The model predicts that 27% of the released mass of petroleum fluids dissolved into the sea during ascent from the pared wellhead (1,505 m depth) to the sea surface, thereby matching observed volatile organic compound (VOC) emissions to the atmosphere. Based on combined results from model simulation and water column measurements, 24% of released petroleum fluid mass became channeled into a stable deep-water intrusion at 900- to 1,300-m depth, as aqueously dissolved compounds (∼23%) and suspended petroleum liquid microdroplets (∼0.8%). Dispersant injection at the wellhead decreased the median initial diameters of simulated petroleum liquid droplets and gas bubbles by 3.2-fold and 3.4-fold, respectively, which increased dissolution of ascending petroleum fluids by 25%. Faster dissolution increased the simulated flows of water-soluble compounds into biologically sparse deep water by 55%, while decreasing the flows of several harmful compounds into biologically rich surface water. Dispersant injection also decreased the simulated emissions of VOCs to the atmosphere by 28%, including a 2,000-fold decrease in emissions of benzene, which lowered health risks for response workers.
Development of an HPLC method for determination of metabolic compounds in myocardial tissue.
Volonté, M G; Yuln, G; Quiroga, P; Consolini, A E
2004-05-28
The determination of adenine nucleotides and creatine compounds has great importance in the characterization of ischemic myocardial injury and post-ischemic recovery. It was developed by an HPLC method for the quantification of creatine (Cr), creatine phosphate (CrP), hypoxanthine (HX), AMP, adenosine (Ad), ADP and ATP in isolated perfused rat hearts. The chromatographic conditions were: RP 18 column; mobile phase composed by KH(2)PO(4) (215 mM), tetrabutylammonium hydrogen sulfate (2.3mM), acetonitrile (4%) and KOH (1M 0.4%); flow rate 1 ml min(-1); temperature 25 degrees C; injection volume 20 microl; detection at 220 nm and height peak (HP) as the integration parameter. The method was validated by means of linearity and sensitivity evaluations, using calibration curves done with five concentration levels of each compound. The limits of quantification (LOQ) were also determined. The system precision was calculated as the coefficient of variation for five injections for each compound tested. The purity of the peaks was established using enzymatic peak shift analysis with hexokinase and creatine kinase and also comparing HP at various wavelengths. Frozen hearts were homogenized with a mechanical homogenizer for 3 min at 0 degrees C added with 5 ml of 0.4N HCLO(4). After precipitation with 0.8 ml of 2M KOH the extract was shaked for 2 min and later centrifuged at 0 degrees C for 10 min. The supernatant was kept on ice, filtrated and injected into the HPLC system. The results show that the method for the determination of Cr, CrP, HX, AMP, Ad, ADP and ATP by HPLC here described has good linearity, LOQ, precision, specificity and is simple and rapid to perform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korenkova, Eva; Matisova, Eva; Slobodnik, Jaroslav
2006-07-01
Organic solvent and water extracts of fly ash from a Milan (Italy) municipal solid waste incinerator (MSWI) were analyzed by large volume injection-gas chromatography-mass spectrometry (LVI-GC-MS) with programmable temperature vaporizer (PTV). Using injection volumes of 10-100 {mu}l, typically over a hundred compounds were detected in organic solvent extracts and ca. 35% of them could be tentatively identified from their electron impact ionization mass spectra. A protocol for the determination of the maximum amount of a potential environmental pollutant available for leaching (availability test) was developed for four selected target compounds: pentachlorobenzene (PeCB), hexachlorobenzene (HxCB), o-terphenyl (o-TPH) and m-terphenyl (m-TPH). Keymore » parameters, extraction time and liquid-to-solid ratio (L/S), were studied in more detail. Recoveries of PeCB, HxCB and o-TPH spiked into the fly ash samples at two concentration levels ranged from 38% to 53% for freshly spiked and from 14% to 40% for 40-day aged fly ash. Recoveries of m-TPH were 8% to 11% from freshly spiked and less than 3% from aged spiked fly ash. The native amounts in Milan MSWI fly ash, determined in an interlaboratory exercise using the developed protocol, were 31 ng/g PeCB, 34 ng/g HxCB, 72 ng/g o-TPH and 4.4 ng/g m-TPH. A separate methodology was developed for the determination of compounds extracted from fly ash by water (leaching test). Following 8-h sonication at L/S 20, the leached amounts of PeCB, HxCB and o-TPH were 1.1, 3.1 and 6.0 ng/g fly ash, respectively.« less
Chen, Feng; Li, Li; Xu, Fang; Sun, Yan; Du, Feifei; Ma, Xutao; Zhong, Chenchun; Li, Xiuxue; Wang, Fengqing; Zhang, Nating; Li, Chuan
2013-01-01
BACKGROUND AND PURPOSE Flavonols and terpene lactones are putatively responsible for the properties of Ginkgo biloba leaf extracts that relate to prevention and treatment of cardiovascular disease and cerebral insufficiency. Here, we characterized rat systemic and cerebral exposure to these ginkgo compounds after dosing, as well as the compounds’ pharmacokinetics. EXPERIMENTAL APPROACH Rats received single or multiple doses of ShuXueNing injection (prepared from GBE50 for intravenous administration) or GBE50 (a standardized extract of G. biloba leaves for oral administration). Brain delivery of the ginkgo compounds was assessed with microdialysis. Various rat samples were analysed using liquid chromatography/mass spectrometry. KEY RESULTS Slow terminal elimination features of the flavonols counterbalanced the influence of poor oral bioavailability on their systemic exposure levels, which also resulted in significant accumulation of the compounds in plasma during the subchronic treatment with ShuXueNing injection and GBE50. Unlike the flavonols, the terpene lactones had poor enterohepatic circulation due to their rapid renal excretion and unknown metabolism. The flavonol glycosides occurred as major forms in plasma after dosing with ShuXueNing injection, while the flavonol aglycone conjugates were predominant in plasma after dosing with GBE50. Cerebral exposure was negligible for the flavonols and low for the terpene lactones. CONCLUSION AND IMPLICATIONS Unlike the significant systemic exposure levels, the levels of cerebral exposure to the flavonols and terpene lactones are low. The elimination kinetic differences between the two classes of ginkgo compounds influence their relative systemic exposure levels. The information gained is relevant to linking ginkgo administration to the medicinal effects. PMID:23808355
Petroleum dynamics in the sea and influence of subsea dispersant injection during Deepwater Horizon
Gros, Jonas; Socolofsky, Scott A.; Dissanayake, Anusha L.; Jun, Inok; Zhao, Lin; Boufadel, Michel C.; Reddy, Christopher M.; Arey, J. Samuel
2017-01-01
During the Deepwater Horizon disaster, a substantial fraction of the 600,000–900,000 tons of released petroleum liquid and natural gas became entrapped below the sea surface, but the quantity entrapped and the sequestration mechanisms have remained unclear. We modeled the buoyant jet of petroleum liquid droplets, gas bubbles, and entrained seawater, using 279 simulated chemical components, for a representative day (June 8, 2010) of the period after the sunken platform’s riser pipe was pared at the wellhead (June 4–July 15). The model predicts that 27% of the released mass of petroleum fluids dissolved into the sea during ascent from the pared wellhead (1,505 m depth) to the sea surface, thereby matching observed volatile organic compound (VOC) emissions to the atmosphere. Based on combined results from model simulation and water column measurements, 24% of released petroleum fluid mass became channeled into a stable deep-water intrusion at 900- to 1,300-m depth, as aqueously dissolved compounds (∼23%) and suspended petroleum liquid microdroplets (∼0.8%). Dispersant injection at the wellhead decreased the median initial diameters of simulated petroleum liquid droplets and gas bubbles by 3.2-fold and 3.4-fold, respectively, which increased dissolution of ascending petroleum fluids by 25%. Faster dissolution increased the simulated flows of water-soluble compounds into biologically sparse deep water by 55%, while decreasing the flows of several harmful compounds into biologically rich surface water. Dispersant injection also decreased the simulated emissions of VOCs to the atmosphere by 28%, including a 2,000-fold decrease in emissions of benzene, which lowered health risks for response workers. PMID:28847967
Politi, Lucia; Groppi, Angelo; Polettini, Aldo; Montagna, Maria
2004-05-10
A high performance liquid chromatographic method for toxicological drug screening of gastric content has been developed. The samples were diluted (1:3-1:30) in 0.01 N hydrochloric acid and injected into a reverse phase column for separation by gradient elution. Mobile phase consisted of solvent A (acetonitrile/water 90:10, 0.01 M sodium dodecylsulphate, 0.5% v/v glacial acetic acid) and solvent B (water/acetonitrile 90:10, 0.01 M sodium dodecylsulphate, 0.5% v/v glacial acetic acid); the gradient was programmed from 20 to 80% A in 30 min. The flow was kept constant at 1.5 ml/min. Two home-made internal standards, butyrylsalicylic acid and diacetyltubocurarine with retention times of 5.6 and 21.4 min, respectively, were used. Drugs are identified by matching their relative retention times and UV spectra (200-400 nm) with those contained in a home made library of more than 340 reference compounds (9 analgesics, 22 antidepressants, 30 antihistamines, 14 antihypertensives, 21 antirheumatics, 15 beta-blockers, 9 bronchodilators, 10 Ca antagonists, 14 diuretics, 26 neuroleptics, 25 tranquilizers, and other significant xenobiotic compounds). The fluorometric (FLD) emission spectrum (280-700 nm; excitation wavelength, 230 nm) was used as a further identification. At 50mg/l analyte concentrations, the injection of gastric content after dilution (1:3) produced S/N ratios in the range 8-140. The method is simple, rapid, rather inexpensive and proved to be a useful means of investigation if used in combination with GC-MS screening in blood. On the other hand, the system suffers from a relatively limited sensitivity for compounds with a low UV absorption and from interferences due to the presence in the matrix of some highly UV- and FL-responsive compounds (e.g. tryptophan).
Takai, Kazuya; Suzuki, Toshio; Kawazu, Kazuyoshi
2004-01-01
In an earlier paper the authors reported the creation of a novel emamectin benzoate 40 g litre(-1) liquid formulation (Shot Wan Liquid Formulation). The injection of this formulation exerted a preventative effect against the pine wilt disease caused by the pine wood nematode, Bursaphelenchus xylophilus (Steiner & Buhrer) Nickle, and this effect lasted for at least 3 years. The present study was carried out to show experimentally that the marked effect of this formulation was due to the presence and persistence in pine tissues of sufficient amounts of emamectin benzoate to inhibit nematode propagation. A cleanup procedure prior to quantitative analysis of emamectin benzoate by fluorescence HPLC was devised. The presence of the compound in concentrations sufficient to inhibit nematode propagation in the shoots of current growth and its persistence for 3 years explained the marked preventative effect. Non-distribution of emamectin benzoate in some parts of the lower trunk suggested that the formulation should be injected at several points for large trees in order to distribute the compound uniformly to lower branches.
Koleoglu, Gun; Goodwin, Paul H; Reyes-Quintana, Mariana; Hamiduzzaman, Mollah Md; Guzman-Novoa, Ernesto
2018-04-01
Circulating hemocytes are responsible for defensive and healing mechanisms in the honey bee, Apis mellifera. Parasitism by the mite Varroa destructor and injection of V. destructor homogenate in buffer, but not buffer injection, showed similar reductions in total hemocyte concentrations in both Africanized and European adult honey bees. This indicated that compounds in V. destructor homogenate can have similar effects as V. destructor parasitism and that the response is not solely due to wounding. Samples from honey bees with different hemocyte concentrations were compared for the expression patterns of hemolectin (AmHml), prophenol oxidase (AmPpo), and class C scavenger receptor (AmSRC-C). Of the genes tested, only the expression of AmPpo correlated well with hemocyte counts for all the treatments, indicating that melanization is associated with those responses. Thus, the expression of AmPpo might be a suitable biomarker for hemocyte counts as part of cellular defenses against injection of buffer or mite compounds and V. destructor parasitism and perhaps other conditions involving healing and immunity.
Tontrong, Sopa; Khonyoung, Supada; Jakmunee, Jaroon
2012-05-01
A flow injection (FI) spectrophotometric method with using natural reagent extracted from Morinda citrifolia root has been developed for determination of aluminium. The extract contained anthraquinone compounds which could react with Al(3+) to form reddish complexes which had maximum absorption wavelength at 499.0nm. The extract could be used as a reagent in FI system without further purification to obtain pure compound. A sensitive method for determination of aluminium in concentration range of 0.1-1.0mgL(-1), with detection limit of 0.05mgL(-1) was achieved. Relative standard deviations of 1.2% and 1.7% were obtained for the determination of 0.1 and 0.6mgL(-1) Al(3+) (n=11). Sample throughput of 35h(-1) was achieved with the consumption of 3mL each of carrier and reagent solutions per injection. The developed method was successfully applied to tea samples, validated by the FAAS standard method. The method is simple, fast, economical and could be classified as a greener analytical method. Copyright © 2011 Elsevier Ltd. All rights reserved.
Rapid Evaporation in Fuel Injection
NASA Astrophysics Data System (ADS)
McCahan, S.; Kessler, C.
1997-11-01
Preheating fuel prior to injection through a nozzle can induce a superheated state during expansion. The resulting rapid evaporation improves atomization of the fluid and, therefore, may improve combustion efficiency. A sufficient degree of superheat im posed on a fuel with a high specific heat (retrograde fluid) can theoretically result in complete evaporation. In the work done by Sloss and McCahan (APS/DFD meeting 1996), dodecane, fuel oil, kerosene, and diesel oil were studied. In this continuation of the same study, decane and tetradecane are preheated to temperatures ranging from 20^oC to 330^oC at a p ressure of 10 bar and injected into a chamber at 1 bar. A simple converging nozzle is used. Photographs taken of the resulting sprays are used to determine cone angles and make qualitative observations of droplet size and spray structure.
Development of an Impinging-jet Fuel-injection Valve Nozzle
NASA Technical Reports Server (NTRS)
Spanogle, J A; Hemmeter, G H
1931-01-01
During an investigation to determine the possibilities and limitations of a two-stroke-cycle engine and ignition, it was necessary to develop a fuel injection valve nozzle to produce a disk-shaped, well dispersed spray. Preliminary tests showed that two smooth jets impinging upon each other at an angle of 74 degrees gave a spray with the desired characteristics. Nozzles were built on this basis and, when used in fuel-injection valves, produced a spray that fulfilled the original requirements. The spray is so well dispersed that it can be carried along with an air stream of comparatively low velocity or entrained with the fuel jet from a round-hole orifice. The characteristics of the spray from an impinging-jet nozzle limits its application to situations where wide dispersion is required by the conditions in the engine cylinder and the combustion chamber.
Zhang, Renlin; Kook, Sanghoon
2014-07-15
The current understanding of soot particle morphology in diesel engines and their dependency on the fuel injection timing and pressure is limited to those sampled from the exhaust. In this study, a thermophoretic sampling and subsequent transmission electron microscope imaging were applied to the in-flame soot particles inside the cylinder of a working diesel engine for various fuel injection timings and pressures. The results show that the number count of soot particles per image decreases by more than 80% when the injection timing is retarded from -12 to -2 crank angle degrees after the top dead center. The late injection also results in over 90% reduction of the projection area of soot particles on the TEM image and the size of soot aggregates also become smaller. The primary particle size, however, is found to be insensitive to the variations in fuel injection timing. For injection pressure variations, both the size of primary particles and soot aggregates are found to decrease with increasing injection pressure, demonstrating the benefits of high injection velocity and momentum. Detailed analysis shows that the number count of soot particles per image increases with increasing injection pressure up to 130 MPa, primarily due to the increased small particle aggregates that are less than 40 nm in the radius of gyration. The fractal dimension shows an overall decrease with the increasing injection pressure. However, there is a case that the fractal dimension shows an unexpected increase between 100 and 130 MPa injection pressure. It is because the small aggregates with more compact and agglomerated structures outnumber the large aggregates with more stretched chain-like structures.
Oh, Jin-Aa; Lee, Jun-Bae; Lee, Soo-Hyung; Shin, Ho-Sang
2014-10-01
Direct injection and solid-phase extraction methods for the determination of diquat and paraquat in surface and drinking water were developed using liquid chromatography with tandem mass spectrometry. The signal intensities of analytes based on six ion-pairing reagents were compared with each other, and 12.5 mM nonafluoropentanoic acid was selected as the best suited amongst them. A clean-up method was developed using Oasis hydrophilic-lipophilic balance; this was compared to the direct injection method, with respect to limits of detection, interference, precision, and accuracy. Limits of quantification of diquat and paraquat were 0.03 and 0.01 μg/L using the direct injection method, and 0.002 and 0.001 μg/L using the hydrophilic-lipophilic balance method. When the hydrophilic-lipophilic balance method was used to analyze target compounds in 114 surface water and 30 drinking water samples, paraquat and diquat were detected within a concentration range of 0.001-0.12 and 0.002-0.038 μg/L in surface water, respectively. When the direct injection method was used to analyze target compounds in the same samples, the detected concentrations of paraquat and diquat were within 25% in samples being >0.015 μg/L using the hydrophilic-lipophilic balance method. The liquid chromatography with tandem mass spectrometry method using direct injection can thus be used for routine monitoring of paraquat and diquat in surface and drinking water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Nie, Qu-yang; Zhang, Fang-hui
2018-05-01
The inverted bottom-emitting organic light-emitting devices (IBOLEDs) were prepared, with the structure of ITO/Al ( x nm)/LiF (1 nm)/Bphen (40 nm)/CBP: GIr1 (14%):R-4b (2%) (10 nm)/BCP (3 nm)/CBP:GIr1 (14%):R-4b (2%) (20 nm)/TCTA (10 nm)/NPB (40 nm)/MoO3 (40 nm)/Al (100 nm), where the thickness of electron injection layer Al ( x) are 0 nm, 2 nm, 3 nm, 4 nm and 5 nm, respectively. In this paper, the electron injection condition and luminance properties of inverted devices were investigated by changing the thickness of Al layer in Al/LiF compound thin film. It turns out that the introduction of Al layer can improve electron injection of the devices dramatically. Furthermore, the device exerts lower driving voltage and higher current efficiency when the thickness of electron injection Al layer is 3 nm. For example, the current efficiency of the device with 3-nm-thick Al layer reaches 19.75 cd·A-1 when driving voltage is 7 V, which is 1.24, 1.17 and 17.03 times larger than those of the devices with 2 nm, 4 nm and 5 nm Al layer, respectively. The device property reaches up to the level of corresponding conventional device. In addition, all inverted devices with electron injection Al layer show superior stability of color coordinate due to the adoption of co-evaporation emitting layer and BCP spacer-layer, and the color coordinate of the inverted device with 3-nm-thick Al layer only changes from (0.580 6, 0.405 6) to (0.532 8, 0.436 3) when driving voltage increases from 6 V to 10 V.
Komaki, Alireza; Abdollahzadeh, Fatemeh; Sarihi, Abdolrahman; Shahidi, Siamak; Salehi, Iraj
2014-01-01
Anxiety is among the most common and treatable mental disorders. Adrenergic and cannabinoid systems have an important role in the neurobiology of anxiety. The elevated plus-maze (EPM) has broadly been used to investigate anxiolytic and anxiogenic compounds. The present study investigated the effects of intraperitoneal (IP) injection of cannabinoid CB1 receptor antagonist (AM251) in the presence of alpha-1 adrenergic antagonist (Prazosin) on rat behavior in the EPM. In this study, the data were obtained from male Wistar rat, which weighing 200- 250 g. Animal behavior in EPM were videotaped and saved in computer for 10 min after IP injection of saline, AM251 (0.3 mg/kg), Prazosin (0.3 mg/kg) and AM251 + Prazosin, subsequently scored for conventional indices of anxiety. During the test period, the number of open and closed arms entries, the percentage of entries into the open arms of the EPM, and the spent time in open and closed arms were recorded. Diazepam was considered as a positive control drug with anxiolytic effect (0.3, 0.6, 1.2 mg/kg). Diazepam increased the number of open arm entries and the percentage of spent time on the open arms. IP injection of AM251 before EPM trial decreased open arms exploration and open arm entry. Whereas, Prazosin increased open arms exploration and open arm entry. This study showed that both substances in simultaneous injection have conflicting effects on the responses of each of these two compounds in a single injection. Injection of CB1 receptor antagonist may have an anxiogenic profile in rat, whereas adrenergic antagonist has an anxiolytic effect. Further investigations are essential for better understanding of anxiolytic and anxiogenic properties and neurobiological mechanisms of action and probable interactions of the two systems.
Creating unstable velocity-space distributions with barium injections
NASA Technical Reports Server (NTRS)
Pongratz, M. B.
1983-01-01
Ion velocity-space distributions resulting from barium injections from orbiting spacecraft and shaped charges are discussed. Active experiments confirm that anomalous ionization processes may operate, but photoionization accounts for the production of the bulk of the barium ions. Pitch-angle diffusion and/or velocity-space diffusion may occur, but observations of barium ions moving upwards against gravity suggests that the ions retain a significant enough fraction of their initial perpendicular velocity to provide a mirror force. The barium ion plasmas should have a range of Alfven Mach numbers and plasma betas. Because the initial conditions can be predicted these active experiments should permit testing plasma instability hypotheses.
NASA Astrophysics Data System (ADS)
Fedorov, A. V.; Bedarev, I. A.; Lavruk, S. A.; Trushlyakov, V. I.; Kudentsov, V. Yu.
2018-03-01
In the present work, a method of mathematical simulation is employed to describe processes occurring in the specimens of new equipment and using the remaining propellant in rocket-engine tanks. Within the framework of certain turbulence models, the authors perform a calculation of the flow field in the volume of the tank of the launch-vehicle stage when a hot gas jet is injected into it. A vortex flow structure is revealed; the characteristics of heat transfer for different angles of injection of the jet are determined. The obtained correlation Nu = Nu(Re) satisfactorily describes experimental data.
NASA Astrophysics Data System (ADS)
Fedorov, A. V.; Bedarev, I. A.; Lavruk, S. A.; Trushlyakov, V. I.; Kudentsov, V. Yu.
2018-05-01
In the present work, a method of mathematical simulation is employed to describe processes occurring in the specimens of new equipment and using the remaining propellant in rocket-engine tanks. Within the framework of certain turbulence models, the authors perform a calculation of the flow field in the volume of the tank of the launch-vehicle stage when a hot gas jet is injected into it. A vortex flow structure is revealed; the characteristics of heat transfer for different angles of injection of the jet are determined. The obtained correlation Nu = Nu(Re) satisfactorily describes experimental data.
Compression ignition engine having fuel system for non-sooting combustion and method
Bazyn, Timothy; Gehrke, Christopher
2014-10-28
A direct injection compression ignition internal combustion engine includes a fuel system having a nozzle extending into a cylinder of the engine and a plurality of spray orifices formed in the nozzle. Each of the spray orifices has an inner diameter dimension of about 0.09 mm or less, and define inter-orifice angles between adjacent spray orifice center axes of about 36.degree. or greater such that spray plumes of injected fuel from each of the spray orifices combust within the cylinder according to a non-sooting lifted flame and gas entrainment combustion pattern. Related methodology is also disclosed.
Park, Taehyung; Joo, Hyun-Woo; Kim, Gyeong-Yeong; Kim, Seunghee; Yoon, Sukhwan; Kwon, Tae-Hyuk
2017-01-01
Injecting and storing of carbon dioxide (CO 2 ) in deep geologic formations is considered as one of the promising approaches for geologic carbon storage. Microbial wettability alteration of injected CO 2 is expected to occur naturally by microorganisms indigenous to the geologic formation or microorganisms intentionally introduced to increase CO 2 storage capacity in the target reservoirs. The question as to the extent of microbial CO 2 wettability alteration under reservoir conditions still warrants further investigation. This study investigated the effect of a lipopeptide biosurfactant-surfactin, on interfacial tension (IFT) reduction and contact angle alteration in CO 2 /water/quartz systems under a laboratory setup simulating in situ reservoir conditions. The temporal shifts in the IFT and the contact angle among CO 2 , brine, and quartz were monitored for different CO 2 phases (3 MPa, 30°C for gaseous CO 2 ; 10 MPa, 28°C for liquid CO 2 ; 10 MPa, 37°C for supercritical CO 2 ) upon cultivation of Bacillus subtilis strain ATCC6633 with induced surfactin secretion activity. Due to the secreted surfactin, the IFT between CO 2 and brine decreased: from 49.5 to 30 mN/m, by ∼39% for gaseous CO 2 ; from 28.5 to 13 mN/m, by 54% for liquid CO 2 ; and from 32.5 to 18.5 mN/m, by ∼43% for supercritical CO 2 , respectively. The contact angle of a CO 2 droplet on a quartz disk in brine increased: from 20.5° to 23.2°, by 1.16 times for gaseous CO 2 ; from 18.4° to 61.8°, by 3.36 times for liquid CO 2 ; and from 35.5° to 47.7°, by 1.34 times for supercritical CO 2 , respectively. With the microbially altered CO 2 wettability, improvement in sweep efficiency of injected and displaced CO 2 was evaluated using 2-D pore network model simulations; again the increment in sweep efficiency was the greatest in liquid CO 2 phase due to the largest reduction in capillary factor. This result provides novel insights as to the role of naturally occurring biosurfactants in CO 2 storage and suggests that biostimulation of biosurfactant production may be a feasible technique for enhancement of CO 2 storage capacity.
Park, Taehyung; Joo, Hyun-Woo; Kim, Gyeong-Yeong; Kim, Seunghee; Yoon, Sukhwan; Kwon, Tae-Hyuk
2017-01-01
Injecting and storing of carbon dioxide (CO2) in deep geologic formations is considered as one of the promising approaches for geologic carbon storage. Microbial wettability alteration of injected CO2 is expected to occur naturally by microorganisms indigenous to the geologic formation or microorganisms intentionally introduced to increase CO2 storage capacity in the target reservoirs. The question as to the extent of microbial CO2 wettability alteration under reservoir conditions still warrants further investigation. This study investigated the effect of a lipopeptide biosurfactant—surfactin, on interfacial tension (IFT) reduction and contact angle alteration in CO2/water/quartz systems under a laboratory setup simulating in situ reservoir conditions. The temporal shifts in the IFT and the contact angle among CO2, brine, and quartz were monitored for different CO2 phases (3 MPa, 30°C for gaseous CO2; 10 MPa, 28°C for liquid CO2; 10 MPa, 37°C for supercritical CO2) upon cultivation of Bacillus subtilis strain ATCC6633 with induced surfactin secretion activity. Due to the secreted surfactin, the IFT between CO2 and brine decreased: from 49.5 to 30 mN/m, by ∼39% for gaseous CO2; from 28.5 to 13 mN/m, by 54% for liquid CO2; and from 32.5 to 18.5 mN/m, by ∼43% for supercritical CO2, respectively. The contact angle of a CO2 droplet on a quartz disk in brine increased: from 20.5° to 23.2°, by 1.16 times for gaseous CO2; from 18.4° to 61.8°, by 3.36 times for liquid CO2; and from 35.5° to 47.7°, by 1.34 times for supercritical CO2, respectively. With the microbially altered CO2 wettability, improvement in sweep efficiency of injected and displaced CO2 was evaluated using 2-D pore network model simulations; again the increment in sweep efficiency was the greatest in liquid CO2 phase due to the largest reduction in capillary factor. This result provides novel insights as to the role of naturally occurring biosurfactants in CO2 storage and suggests that biostimulation of biosurfactant production may be a feasible technique for enhancement of CO2 storage capacity. PMID:28744272
Wang, Ya-Wen; Peng, Yu
2007-12-06
In the title compound, C(18)H(24)O(4)S, the chiral bicyclo-[2.2.1]heptane group is not symmetrical due to the influence of the substituents. The angle between the three-atom bridge plane and the four-atom planes of the boat-shaped six-membered ring are 55.07 (19) and 56.24 (19)°. The bridgehead angle is 92.75 (17)°.
High-Power, Widely-Tunable Cr2+:ZnSe Master Oscillator Power Amplifier Systems
2010-05-01
Z-cavity to compensate for the increasing astigmatism from the Brewster - angle thermal lens in the gain element. However, it should be noted that the...crystal at Brewster’s angle carries with it some negative astigmatism effects which are compounded by thermal lensing in the crystal which is now at an...respect to physical properties [13, 14]. Power scaling of chromium lasers has long been hampered by the problem of thermal lensing due to the high thermo
N-(3-Chloro-1H-indazol-5-yl)-4-meth-oxy-benzene-sulfonamide.
Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen
2013-10-12
In the title compound, C14H12ClN3O3S, the fused five- and six-membered rings are folded slightly along the common edge, forming a dihedral angle of 3.2 (1)°. The mean plane through the indazole system makes a dihedral angle of 30.75 (7)° with the distant benzene ring. In the crystal, N-H⋯O hydrogen bonds link the mol-ecules, forming a two-dimensional network parallel to (001).
1-Allyl-3-chloro-5-nitro-1H-indazole
Chicha, Hakima; Rakib, El Mostapha; Spinelli, Domenico; Saadi, Mohamed; El Ammari, Lahcen
2013-01-01
In the title compound, C10H8ClN3O2, the indazole ring system makes a dihedral angle of 7.9 (3)° with the plane through the nitro group. The allyl group is rotated out of the plane of the indazole ring system [N—N—C—C torsion angle = 104.28 (19)°]. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming zigzag chains propagating along the b-axis direction. PMID:24427047
1-Allyl-3-chloro-5-nitro-1H-indazole.
Chicha, Hakima; Rakib, El Mostapha; Spinelli, Domenico; Saadi, Mohamed; El Ammari, Lahcen
2013-01-01
In the title compound, C10H8ClN3O2, the indazole ring system makes a dihedral angle of 7.9 (3)° with the plane through the nitro group. The allyl group is rotated out of the plane of the indazole ring system [N-N-C-C torsion angle = 104.28 (19)°]. In the crystal, mol-ecules are linked by C-H⋯O hydrogen bonds, forming zigzag chains propagating along the b-axis direction.
High-throughput high-volume nuclear imaging for preclinical in vivo compound screening§.
Macholl, Sven; Finucane, Ciara M; Hesterman, Jacob; Mather, Stephen J; Pauplis, Rachel; Scully, Deirdre; Sosabowski, Jane K; Jouannot, Erwan
2017-12-01
Preclinical single-photon emission computed tomography (SPECT)/CT imaging studies are hampered by low throughput, hence are found typically within small volume feasibility studies. Here, imaging and image analysis procedures are presented that allow profiling of a large volume of radiolabelled compounds within a reasonably short total study time. Particular emphasis was put on quality control (QC) and on fast and unbiased image analysis. 2-3 His-tagged proteins were simultaneously radiolabelled by 99m Tc-tricarbonyl methodology and injected intravenously (20 nmol/kg; 100 MBq; n = 3) into patient-derived xenograft (PDX) mouse models. Whole-body SPECT/CT images of 3 mice simultaneously were acquired 1, 4, and 24 h post-injection, extended to 48 h and/or by 0-2 h dynamic SPECT for pre-selected compounds. Organ uptake was quantified by automated multi-atlas and manual segmentations. Data were plotted automatically, quality controlled and stored on a collaborative image management platform. Ex vivo uptake data were collected semi-automatically and analysis performed as for imaging data. >500 single animal SPECT images were acquired for 25 proteins over 5 weeks, eventually generating >3500 ROI and >1000 items of tissue data. SPECT/CT images clearly visualized uptake in tumour and other tissues even at 48 h post-injection. Intersubject uptake variability was typically 13% (coefficient of variation, COV). Imaging results correlated well with ex vivo data. The large data set of tumour, background and systemic uptake/clearance data from 75 mice for 25 compounds allows identification of compounds of interest. The number of animals required was reduced considerably by longitudinal imaging compared to dissection experiments. All experimental work and analyses were accomplished within 3 months expected to be compatible with drug development programmes. QC along all workflow steps, blinding of the imaging contract research organization to compound properties and automation provide confidence in the data set. Additional ex vivo data were useful as a control but could be omitted from future studies in the same centre. For even larger compound libraries, radiolabelling could be expedited and the number of imaging time points adapted to increase weekly throughput. Multi-atlas segmentation could be expanded via SPECT/MRI; however, this would require an MRI-compatible mouse hotel. Finally, analysis of nuclear images of radiopharmaceuticals in clinical trials may benefit from the automated analysis procedures developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riddle, Gordon B.; Grossie, David A.; Turnbull, Kenneth
2010-11-16
The title compound, C{sub 14}H{sub 10}N{sub 2}O{sub 2}, is one of many sydnones which have been synthesized in order to investigate the influence of substituents and sydnone-ring stability. There is medicinal interest in the sydnone if the ring can predictably release NO. Bond lengths and angles of the sydnone ring were compared with those of other published sydnone compounds and were found to fit the average of the published data.
Effective Wettability Measurements of CO2-Brine-Sandstone System at Different Reservoir Conditions
NASA Astrophysics Data System (ADS)
Al-Menhali, Ali; Krevor, Samuel
2014-05-01
The wetting properties of CO2-brine-rock systems will have a major impact on the management of CO2 injection processes. The wettability of a system controls the flow and trapping efficiency during the storage of CO2 in geological formations as well as the efficiency of enhanced oil recovery operations. Despite its utility in EOR and the continued development of CCS, little is currently known about the wetting properties of the CO2-brine system on reservoir rocks, and no investigations have been performed assessing the impact of these properties on CO2 flooding for CO2 storage or EOR. The wetting properties of multiphase fluid systems in porous media have major impacts on the multiphase flow properties such as the capillary pressure and relative permeability. While recent studies have shown CO2 to generally act as a non-wetting phase in siliciclastic rocks, some observations report that the contact angle varies with pressure, temperature and water salinity. Additionally, there is a wide range of reported contact angles for this system, from strongly to weakly water-wet. In the case of some minerals, intermediate wet contact angles have been observed. Uncertainty with regard to the wetting properties of CO2-brine systems is currently one of the remaining major unresolved issues with regards to reservoir management of CO2 storage. In this study, we make semi-dynamic capillary pressure measurements of supercritical CO2 and brine at reservoir conditions to observe shifts in the wetting properties. We utilize a novel core analysis technique recently developed by Pini et al in 2012 to evaluate a core-scale effective contact angle. Carbon dioxide is injected at constant flow rate into a core that is initially fully saturated with water, while maintaining a constant outlet pressure. In this scenario, the pressure drop across the core corresponds to the capillary pressure at the inlet face of the core. When compared with mercury intrusion capillary pressure measurements, core-scale effective contact angle can be determined. In addition to providing a quantitative measure of the core-averaged wetting properties, the technique allows for the observation of shifts in contact angle with changing conditions. We examine the wettability changes of the CO2-brine system in Berea sandstone with variations in reservoir conditions including supercritical, gaseous and liquid CO2injection. We evaluate wettability variation within a single rock with temperature, pressure, and salinity across a range of conditions relevant to subsurface CO2 storage. This study will include results of measurements in a Berea sandstone sample across a wide range of conditions representative of subsurface reservoirs suitable for CO2 storage (5-20 MPa, 25-90 oC, 0-5 mol kg-1). The measurement uses X-ray CT imaging in a state of the art core flooding laboratory designed to operate at high temperature, pressure, and concentrated brines.
NASA Astrophysics Data System (ADS)
Li, Yinsheng; Garrett, John W.; Li, Ke; Wu, Yijing; Johnson, Kevin; Schafer, Sebastian; Strother, Charles; Chen, Guang-Hong
2018-04-01
Time-resolved C-arm cone-beam CT (CBCT) angiography (TR-CBCTA) images can be generated from a series of CBCT acquisitions that satisfy data sufficiency condition in analytical image reconstruction theory. In this work, a new technique was developed to generate TR-CBCTA images from a single short-scan CBCT data acquisition with contrast media injection. The reconstruction technique enabling this application is a previously developed image reconstruction technique, synchronized multi-artifact reduction with tomographic reconstruction (SMART-RECON). In this new application, the acquired short-scan CBCT projection data were sorted into a union of several sub-sectors of view angles and each sub-sector of view angles corresponds to an individual image volume to be reconstructed. The SMART-RECON method was then used to jointly reconstruct all of these individual image volumes under two constraints: (1) each individual image volume is maximally consistent with the measured cone-beam projection data within the corresponding view angle sector and (2) the nuclear norm of the image matrix is minimized. The difference between these reconstructed individual image volumes is used to generated the desired subtracted angiograms. To validate the technique, numerical simulation data generated from a fractal tree angiogram phantom were used to quantitatively study the accuracy of the proposed method and retrospective in vivo human subject studies were used to demonstrate the feasibility of generating TR-CBCTA in clinical practice.
[Rule of Clinical Application of Auricular Acupuncture Based on Data Mining].
Bao, Na; Wang, Qiong; Sun, Yan-Hui; Shi, Jing; Li, Xiao-Feng; Xu, Jing; Xing, Hai-Jiao; Zhang, Xuan-Ping; Zhang, Xin; Du, Yu-Zhu; Li, Jun-Lei; Yang, Qing-Qing; Feng, Xin-Xin; Jia, Chun-Sheng; Wang, Jian-Ling
2017-02-25
To explore the rule of clinical application of auricular acupuncture therapy by data mining in order to guide clinical practice. The data base about single auricular acupuncture therapy for different clinical diseases was established by collection, sorting, screening, recording, collation, data extraction, statistic analysis on data samples from journals, academic theses dissertations published in near 60 years. The application rules of auricular therapy including its predominant diseases, stimulus modality, therapeutic effect, and angle of needling were summarized by data mining technique. Auricular acupuncture therapy has been widely and mostly used in the internal medicine department, accounting for 48.56%. Of stimulus modalities, auricular point paste and pressure is applied with the highest frequency, accounting for 64%. The highest effective rate is found in the surgery department diseases(81.41%). Pressure is the most effective stimulus in the internal medi-cine department, and bloodletting combined with paste and pressure in the surgery department, auricular point injection in the gynecology and pediatrics departments, bloodletting in the ophthalmology and otorhinolaryngology department, and auricular point incision in the dermatology department. Auricular point injection has remarkable effect. Bloodletting combined with paste and pressure has nearly the same effect as bloodletting in the same medical department except dematology department. Otherwise, angle of needling is rarely studied. Auricular therapy is widely used and has remarkable effect in treating diseases by using different stimulus modalities. Whereas the angle of needling is rarely studied and future investigation is needed.
NASA Technical Reports Server (NTRS)
Tacina, Kathleen M.; Hicks, Yolanda R.
2017-01-01
The combustion dynamics of two 7-point lean direct injection (LDI) combustor configurations are compared. This 7-point LDI configuration has a circular cross section, with a center ("pilot") fuel-air mixer surrounded by six outer ("main") fuel-air mixers. Each fuel-air mixer consists of an axial air swirler followed by a converging-diverging venturi. A simplex fuel injector is inserted through the center of the air swirler, with the fuel injector tip located near the venturi throat. All 7 fuel-air mixers are identical except for the swirler blade angle. In the 'all-60' configuration, the swirler blade angle was 60 deg for all fuel-air mixers. In the '45-60' configuration, the swirler blade angle was 60 deg on the center and 45 deg on the outer fuel-air mixers. Testing was done in a 5-atm flame tube with inlet air temperatures from 630 to 830 F and equivalence ratios from 0.2 to 0.7. Combustion dynamics were measured using a cooled PCB pressure transducer flush-mounted in the wall of the combustor test section. Both configurations had large pressure fluctuations (greater than 2 psi peak-peak) near 730 Hz, the quarter-wave frequency. The all-60 configuration also had large pressure fluctuations near 1170 Hz; the 45-60 configuration did not. The 45-60 configuration had large pressure fluctuations near 480 Hz; the all-60 configuration did not.
Liang, Junkui; Jiang, Xiliang; Zhang, Xiulin; Cao, Wendong; Wang, Yong; Han, Jie
2015-11-01
The objective of this study was to investigate the effectiveness of interventional catheterization with staphylococcin aureus injection on ischemic necrosis of the femoral heads. By percutaneous catheterization of the femoral artery, papaverine, urokinase, compound Danshen, and anisodamine were injected intravenously into the arteries of the femoral head. Staphylococcin aureus injection was injected into the hit joint capsule on the side of the lesion to compare the conditions before and after surgery. The patients did the rehabilitation exercises of the hit joint 48 h after the surgery and had double crutches for 3-6 months. Of the 112 cases, 39 cases (34.8 %) were cured, 51 cases (45.6 %) were markedly effective, and 22 cases (19.6 %) were effective. Interventional catheterization combined with staphylococcin aureus injection given into the hit joint capsule is an effective way to treat ischemic necrosis of the femoral head by influencing the internal and external environments of the femoral head.
Genotoxicity of two arsenic compounds in germ cells and somatic cells of Drosophila melanogaster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos-Morales, P.; Rodriguez-Arnaiz, R.
Two arsenic compounds, sodium arsenite (NaAsO{sup 2}) and sodium arsenate (Na{sub 2}HasO{sub 4}), were tested for their possible genotoxicity in germinal and somatic cells of Drosophila melanagaster. For germinal cells, the sex-linked recessive lethal test (SLRLT) and the sea chromosome loss test (SCLT) were used. In both tests, a broad scheme of 2-3-3 days was employed. Two routes of administration were used for the SLRLT: adult male injection (0.38, 0.77 mM used for Sodium arsenite; and 0.01, 0.02 mM for sodium arsenate). The the SCLT the compounds were injected into males. Controls were treated with a solution of 5% sucrosemore » which was employed as solvent. The somatic mutation and recombination test (SMART) was run in the w{sup +}/w eye assay as well as in the mwh +/+ flr{sup 3} wing test, employing the standard and insecticide-resistant strains. In both tests, third instar larvae were treated for 6 hr with sodium arsenite (0.38, 0.77, 1.15 mM), and sodium arsenate (0.54, 1.34, 2.69 mM). In the SLRLT, both compounds were positive, but they were negative in the SCLT. The genotoxicity of both compounds was localized mainly in somatic cells, in agreement with reports on the carcinogenic potential of arsenical compounds Solium and arsenite was an order of magnitude more toxic and mutagenic than sodium arsenate. This study confirms the reliability of the Drosophila in vivo system to test the genotoxicity of environmental compounds. 75 refs., 4 figs., 4 tabs.« less
[The effect of notch's angle and depth on crack propagation of zirconia ceramics].
Chen, Qingya; Chen, Xinmin
2012-10-01
This paper is aimed to study the effect of notch's angle and depth on crack propagation of zirconia ceramics. We fabricated cuboid-shaped zirconia ceramics samples with the standard sizes of 4. 4 mm x 2. 2 mm x 18 mm for the experiments, divided the samples into 6 groups, and prepared notches on these samples with different angles and depth. We placed the samples with loads until they were broke, and observe the fracture curve of each sample. We then drew coordinates and described the points of the fracture curve under a microscope, and made curve fitting by the software-Origin. When the notch angle beta = 90 degrees, the crack propagation is pure type I; when beta = 60 degrees, the crack propagation is mainly type I; and when beta = 30 degrees, the crack propagation is a compound of type I and type III. With the increasing of the notch depth, the effect of notch angles on crack propagation increases. In addition, Notch angle is a very important fracture mechanics parameter for crack propagation of zirconia ceramics. With the increasing of notch depth, the impact of notch angle increases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xingcai; Ji, Libin; Ma, Junjun
2011-02-15
This paper presents an experimental study on the isooctane active-thermal atmosphere combustion (ATAC) which is assisted by two-stage reaction of n-heptane. The active-thermal atmosphere is created by low- and high-temperature reactions of n-heptane which is injected at intake port, and isooctane is directly injected into combustion chamber near the top dead center. The effects of isooctane injection timing, active-thermal atmosphere intensity, overall equivalence ratio, and premixed ratio on combustion characteristics and emissions are investigated. The experimental results reveal that, the isooctane ignition and combustion can be classified to thermal atmosphere combustion, active atmosphere combustion, and active-thermal atmosphere combustion respectively accordingmore » to the extent of n-heptane oxidation as well as effects of isooctane quenching and charge cooling. n-Heptane equivalence ratio, isooctane equivalence ratio and isooctane delivery advance angle are major control parameters. In one combustion cycle, the isooctane ignited and burned after those of n-heptane, and then this combustion phenomenon can also be named as dual-fuel sequential combustion (DFSC). The ignition timing of the overall combustion event is mainly determined by n-heptane equivalence ratio and can be controlled in flexibility by simultaneously adjusting isooctane equivalence ratio. The isooctane ignition regime, overall thermal efficiency, and NO{sub x} emissions show strong sensitivity to the fuel delivery advance angle between 20 CA BTDC and 25 CA BTDC. (author)« less
Finite element analysis of flowfield in the single hole film cooling technique.
Bazdidi-Tehrani, F; Mahmoodi, A A
2001-05-01
Film cooling is currently used in gas turbine hot sections, such as the combustor wall and the turbine blades, to prevent those sections from failing at elevated temperatures. In the single hole film cooling method, coolant air is injected from a hole into the mainstream and thus the flow is naturally three dimensional. In this paper, the Navier-Stokes and the energy equations are solved on a flat plate by the Finite Element Method (FEM) using brick elements. Algebraic equations are obtained by use of the Petrov-Galerkin method. The pressure term is removed from the momentum equations, by employing the Penalty method. The governing equations are transient and the flow is incompressible and turbulent. The model of turbulence in the near wall region is the wall function method, and in the fully turbulent region is the k-epsilon model. The system of the algebraic equations are solved by the Frontal method. The coolant injection angle and the blowing rate are among the parameters which are studied. In order to examine the present computer code, the results are compared with the Blasius (exact) solution and also with the empirical 1/7th power-law and good agreement is shown. Also, the optimum cooling performance is shown to be at 35 degree angle of coolant injection and the optimum blowing rate is 0.5. The film cooling effectiveness data, at the optimum conditions, is directly compared with the experimental results of Goldstein et al. and good agreement is demonstrated.
NASA Technical Reports Server (NTRS)
Luckey, D. W.; Lecuyer, M. R.
1981-01-01
The stagnation region of a cylinder in a cross flow was used in experiments conducted with both a single row and multiple rows of spanwise angled (25 deg) coolant holes for a range of the coolant blowing ratio with a freestream to wall temperature ratio approximately equal to 1.7 and R(eD) = 90,000. Data from local heat flux measurements are presented for injection from a single row located at 5 deg, 22.9 deg, 40.8 deg, 58.7 deg from stagnation using a hole spacing ratio of S/d(o) = 5 and 10. Three multiple row configurations were also investigated. Data are presented for a uniform blowing distribution and for a nonuniform blowing distribution simulating a plenum supply. The data for local Stanton Number reduction demonstrated a lack of lateral spreading by the coolant jets. Heat flux levels larger than those without film cooling were observed directly behind the coolant holes as the blowing ratio exceeded a particular value. The data were spanwise averaged to illustrate the influence of injection location, blowing ratio and hole spacing. The large values of blowing ratio for the blowing distribution simulating a plenum supply resulted in heat flux levels behind the holes in excess of the values without film cooling. An increase in freestream turbulence intensity from 4.4 to 9.5 percent had a negligible effect on the film cooling performance.
NASA Technical Reports Server (NTRS)
Nelson, David L.; Kahn, Ralph A.
2014-01-01
Airborne particles desert dust, wildfire smoke, volcanic effluent, urban pollution affect Earth's climate as well as air quality and health. They are found in the atmosphere all over the planet, but vary immensely in amount and properties with season and location. Most aerosol particles are injected into the near-surface boundary layer, but some, especially wildfire smoke, desert dust and volcanic ash, can be injected higher into the atmosphere, where they can stay aloft longer, travel farther, produce larger climate effects, and possibly affect human and ecosystem health far downwind. So monitoring aerosol injection height globally can make important contributions to climate science and air quality studies. The Multi-angle Imaging Spectro-Radiometer (MISR) is a space borne instrument designed to study Earths clouds, aerosols, and surface. Since late February 2000 it has been retrieving aerosol particle amount and properties, as well as cloud height and wind data, globally, about once per week. The MINX visualization and analysis tool complements the operational MISR data products, enabling users to retrieve heights and winds locally for detailed studies of smoke plumes, at higher spatial resolution and with greater precision than the operational product and other space-based, passive remote sensing techniques. MINX software is being used to provide plume height statistics for climatological studies as well as to investigate the dynamics of individual plumes, and to provide parameterizations for climate modeling.
Acceleration of low-energy ions at parallel shocks with a focused transport model
Zuo, Pingbing; Zhang, Ming; Rassoul, Hamid K.
2013-04-10
Here, we present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by parallel shocks with a focused transport model. The focused transport equation contains all necessary physics of shock acceleration, but avoids the limitation of diffusive shock acceleration (DSA) that requires a small pitch angle anisotropy. This simulation verifies that the particles with speeds of a fraction of to a few times the shock speed can indeed be directly injected and accelerated into the DSA regime by parallel shocks. At higher energies starting from a few times the shock speed, the energy spectrum of acceleratedmore » particles is a power law with the same spectral index as the solution of standard DSA theory, although the particles are highly anisotropic in the upstream region. The intensity, however, is different from that predicted by DSA theory, indicating a different level of injection efficiency. It is found that the shock strength, the injection speed, and the intensity of an electric cross-shock potential (CSP) jump can affect the injection efficiency of the low-energy particles. A stronger shock has a higher injection efficiency. In addition, if the speed of injected particles is above a few times the shock speed, the produced power-law spectrum is consistent with the prediction of standard DSA theory in both its intensity and spectrum index with an injection efficiency of 1. CSP can increase the injection efficiency through direct particle reflection back upstream, but it has little effect on the energetic particle acceleration once the speed of injected particles is beyond a few times the shock speed. This test particle simulation proves that the focused transport theory is an extension of DSA theory with the capability of predicting the efficiency of particle injection.« less
A wide-angle camera module for disposable endoscopy
NASA Astrophysics Data System (ADS)
Shim, Dongha; Yeon, Jesun; Yi, Jason; Park, Jongwon; Park, Soo Nam; Lee, Nanhee
2016-08-01
A wide-angle miniaturized camera module for disposable endoscope is demonstrated in this paper. A lens module with 150° angle of view (AOV) is designed and manufactured. All plastic injection-molded lenses and a commercial CMOS image sensor are employed to reduce the manufacturing cost. The image sensor and LED illumination unit are assembled with a lens module. The camera module does not include a camera processor to further reduce its size and cost. The size of the camera module is 5.5 × 5.5 × 22.3 mm3. The diagonal field of view (FOV) of the camera module is measured to be 110°. A prototype of a disposable endoscope is implemented to perform a pre-clinical animal testing. The esophagus of an adult beagle dog is observed. These results demonstrate the feasibility of a cost-effective and high-performance camera module for disposable endoscopy.
INFECUNDITY AND CONSUMPTION OF PCB-CONTAMINATED SPORT FISH
Biologic capacity for reproduction, or fecundity, may be threatened by environmental contaminants, especially compounds capable of disrupting endocrine pathways. Telephone interviews that focused on reproductive events were conducted with female members of the New York State Angl...
Zhang, W. -L.; Richard, P.; van Roekeghem, A.; ...
2016-10-31
We performed an angle-resolved photoemission spectroscopy study of BaMn 2As 2 and BaMn 2Sb 2, which are isostructural to the parent compound BaFe 2As 2 of the 122 family of ferropnictide superconductors. We show the existence of a strongly k z-dependent band gap with a minimum at the Brillouin zone center, in agreement with their semiconducting properties. Despite the half filling of the electronic 3d shell, we show that the band structure in these materials is almost not renormalized from the Kohn-Sham bands of density functional theory. Finally, our photon-energy-dependent study provides evidence for Mn-pnictide hybridization, which may play amore » role in tuning the electronic correlations in these compounds.« less
NASA Astrophysics Data System (ADS)
Liu, Guodong; Wang, Chenlu; Zhang, Yan; Hu, Bingfeng; Mou, Daixiang; Yu, Li; Zhao, Lin; Zhou, Xingjiang; Wang, Nanlin; Chen, Chuangtian; Xu, Zuyan
We performed high-resolution angle-resolved photoemission spectroscopy (ARPES) measurement on high quality crystal of HoTe3, an intriguing quasi-two-dimensional rare-earth-element tritelluride charge-density-wave (CDW) compound. The main features of the electronic structure in this compound are established by employing a quasi-CW laser (7eV) and a helium discharging lamp (21.22 eV) as excitation light sources. It reveals many bands back folded according to the CDW periodicity and two incommensurate CDW gaps created by perpendicular Fermi surface (FS) nesting vectors. A large gap is found to open in well nested regions of the Fermi surface sheets, whereas other Fermi surface sections with poor nesting remain ungapped. In particular, some peculiar features are identified by using our ultra-high resolution and bulk sensitive laser-ARPES.
Method of controlling scale in oil recovery operations
Krajicek, Richard W.
1981-01-01
Disclosed is a method of producing highly viscous minerals from a subterranean formation by injection of an acidic, thermal vapor stream without substantial scale buildup in downstream piping, pumps and well bore. The process comprises heating the formation by injection of heat, preferably in the form of a thermal vapor stream composed of combustion gases and steam and injecting an acidic compound simultaneously with the thermal vapor stream into the formation at a temperature above the dew point of the thermal vapor stream. The acidic, thermal vapor stream increases the solubility of metal ions in connate water and thus reduces scaling in the downstream equipment during the production of viscous hydrocarbons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Posylkin, M.; Taylor, A.M.K.P.; Whitelaw, J.H.
The four-valve head of a VTEC engine was mounted on an open cylinder and the valves and fuel injection system operated as in the engine with a rotational speed of 1,200 rpm. Local measurements of droplet characteristics were obtained with a phase-Doppler velocimeter and iso-octane injected over 5 ms intervals, corresponding to 36 crank angle degrees, with manifold depression of 20 mbar. The results show that most of the fuel droplets were located close to the liner and on the side of the cylinder adjacent to the exhaust valves. In the plane of the measurement, 10 mm below TDC, themore » liquid flux diminished as the initiation of injection was advanced before opening of the inlet valves. With injection with the inlet valves closed, there were two waves of droplets, one from each of the two valves and separated by 60 deg CA and both with the Sauter mean diameter of about 120 {micro}m. With injection with the inlet valves open, most of the droplets emerged from the main inlet valve and with Sauter mean diameters of about 50 {micro}m, smaller than those of the unconfined spray.« less
Characterization of kerosene distribution around the ignition cavity in a scramjet combustor
NASA Astrophysics Data System (ADS)
Li, Xipeng; Liu, Weidong; Pan, Yu; Yang, Leichao; An, Bin; Zhu, Jiajian
2017-05-01
Kerosene distribution before its ignition in a scramjet combustor with dual cavity was measured using kerosene-PLIF under transverse injection upstream of the cavity and different injection pressures. The simulated flight condition is Ma 5.5, and the isolator entrance has a Mach number of 2.52, a total pressure of 1.6 MPa and a stagnation temperature of 1486 K. Effects of injection pressure on fuel distribution characteristics were analyzed. The majority of kerosene is present in the cavity shear layer as well as its upper region. Kerosene extends gradually into the cavity, almost, at a constant angle. Large scale structures are evident on the windward side of kerosene. The cavity shear layer plays an important role in determining the kerosene distribution and its entrainment into the cavity. The middle part of cavity is the most suitable location for ignition as a result of a favorable local equivalent ratio. As the injection pressure increases, the penetration height gets higher with the rate of increase getting slower at higher injection pressure. Meanwhile, the portion of kerosene entrained into cavity through shear layer becomes smaller as injection pressure increases. However, the kerosene entrained into cavity still increase due to the increased mass flow rate of kerosene.
Cylindrically symmetric Fresnel lens for high concentration photovoltaic
NASA Astrophysics Data System (ADS)
Hung, Yu-Ting; Su, Guo-Dung
2009-08-01
High concentration photovoltaic (HCPV) utilizes point-focus cost-effective plastic Fresnel lens. And a millimeter-sized Ill-V compound multi-junction solar cell is placed underneath focusing optics which can achieve cell efficiency potential of up to 40.7 %. The advantage of HCPV makes less solar cell area and higher efficiency; however, the acceptance angle of HCPV is about +/-1°, which is very small and the mechanical tracking of the sun is necessary. In order to reduce the power consumption and the angle tracking error of tracking systems, a light collector model with larger acceptance angle is designed with ZEMAX®. In this model, the original radially symmetric Fresnel lens of HCPV is replaced by cylindrically symmetric Fresnel lens and a parabolic reflective surface. Light is collected in two dimensions separately. And a couple of lenses and a light pipe are added before the solar cell chip in order to collect more light when sun light deviates from incident angle of 00. An acceptance angle of +/-10° is achieved with GCR 400.
Andriamampandry, C; Freysz, L; Kanfer, J N; Dreyfus, H; Massarelli, R
1989-01-01
The incubation of neurons from chick embryos in primary culture with [3H]ethanolamine revealed the conversion of this base into monomethyl, dimethyl and choline derivatives, including the corresponding free bases. Labelling with [methyl-3H]monomethylethanolamine and [methyl-3H]dimethylethanolamine supported the conclusion that in chick neuron cultures, phosphoethanolamine appears to be the preferential substrate for methylation, rather than ethanolamine or phosphatidylethanolamine. The methylation of the latter two compounds, in particular that of phosphatidylethanolamine, was seemingly stopped at the level of their monomethyl derivatives. Fetal rat neurons in primary culture incubated with [3H]ethanolamine showed similar results to those observed with chick neurones. However, phosphoethanolamine and phosphatidylethanolamine and, to a lesser extent, free ethanolamine, appeared to be possible substrates for methylation reactions. The methylation of water-soluble ethanolamine compounds de novo was further confirmed by experiments performed in vivo by intraventricular injection of [3H]ethanolamine. Phosphocholine and the monomethyl and dimethyl derivatives of ethanolamine were detected in the brain 15 min after injection. PMID:2604731
Homicide by Sch from a syringe-like dart ejected by a compound crossbow.
Guo, Wei; Luo, Guochang; Wang, Hao; Meng, Xiangzhi
2015-02-01
The compound crossbow can be used to eject syringe-like dart loaded with poisonous solution. Succinylcholine (Sch) is a short-acting neuromuscular blocker medically used to achieve complete relaxation of muscle for a good intubation condition. Without the help of an artificial respirator, intramuscular injection of a large dose of Sch can paralyze the respiratory muscle and result in the receiver's death. In this paper, we present the homicide case of a young male killed by Sch from a syringe-like dart ejected by a compound crossbow. The subcutaneous and muscular hemorrhages observed around the entry were more severe than that caused by a medical injection. Additionally, other autopsy results showed the external appearance of a pinhole, general asphyxia signs and pathological findings which were not characteristic. The discovery of a syringe-like dart at the scene is the critical clue and reason for analyzing for Sch, which is commonly used to load syringe-like dart to paralyze and steal dog in the countryside of China. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.