Sample records for compound anode flow

  1. Design, fabrication and testing of an air-breathing micro direct methanol fuel cell with compound anode flow field

    NASA Astrophysics Data System (ADS)

    Wang, Luwen; Zhang, Yufeng; Zhao, Youran; An, Zijiang; Zhou, Zhiping; Liu, Xiaowei

    2011-10-01

    An air-breathing micro direct methanol fuel cell (μDMFC) with a compound anode flow field structure (composed of the parallel flow field and the perforated flow field) is designed, fabricated and tested. To better analyze the effect of the compound anode flow field on the mass transfer of methanol, the compound flow field with different open ratios (ratio of exposure area to total area) and thicknesses of current collectors is modeled and simulated. Micro process technologies are employed to fabricate the end plates and current collectors. The performances of the μDMFC with a compound anode flow field are measured under various operating parameters. Both the modeled and the experimental results show that, comparing the conventional parallel flow field, the compound one can enhance the mass transfer resistance of methanol from the flow field to the anode diffusion layer. The results also indicate that the μDMFC with an anode open ratio of 40% and a thickness of 300 µm has the optimal performance under the 7 M methanol which is three to four times higher than conventional flow fields. Finally, a 2 h stability test of the μDMFC is performed with a methanol concentration of 7 M and a flow velocity of 0.1 ml min-1. The results indicate that the μDMFC can work steadily with high methanol concentration.

  2. Microbial fuel cell with improved anode

    DOEpatents

    Borole, Abhijeet P.

    2010-04-13

    The present invention relates to a method for preparing a microbial fuel cell, wherein the method includes: (i) inoculating an anodic liquid medium in contact with an anode of the microbial fuel cell with one or more types of microorganisms capable of functioning by an exoelectrogenic mechanism; (ii) establishing a biofilm of the microorganisms on and/or within the anode along with a substantial absence of planktonic forms of the microorganisms by substantial removal of the planktonic microorganisms during forced flow and recirculation conditions of the anodic liquid medium; and (iii) subjecting the microorganisms of the biofilm to a growth stage by incorporating one or more carbon-containing nutritive compounds in the anodic liquid medium during biofilm formation or after biofilm formation on the anode has been established.

  3. Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell.

    PubMed

    Zeppilli, Marco; Villano, Marianna; Aulenta, Federico; Lampis, Silvia; Vallini, Giovanni; Majone, Mauro

    2015-05-01

    A methane-producing microbial electrolysis cell (MEC) was continuously fed at the anode with a synthetic solution of soluble organic compounds simulating the composition of the soluble fraction of a municipal wastewater. The MEC performance was assessed at different anode potentials in terms of chemical oxygen demand (COD) removal efficiency, methane production, and energy efficiency. As a main result, about 72-80% of the removed substrate was converted into current at the anode, and about 84-86% of the current was converted into methane at the cathode. Moreover, even though both COD removed and methane production slightly decreased as the applied anode potential decreased, the energy efficiency (i.e., the energy recovered as methane with respect to the energy input into the system) increased from 54 to 63%. Denaturing gradient gel electrophoresis (DGGE) analyses revealed a high diversity in the anodic bacterial community with the presence of both fermentative (Proteiniphilum acetatigenes and Petrimonas sulphurifila) and aerobic (Rhodococcus qingshengii) microorganisms, whereas only two microorganisms (Methanobrevibacter arboriphilus and Methanosarcina mazei), both assignable to methanogens, were observed in the cathodic community.

  4. Polyoxometalate flow battery

    DOEpatents

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  5. Situ treatment of contaminated groundwater

    DOEpatents

    McNab, Jr., Walt W.; Ruiz, Roberto; Pico, Tristan M.

    2001-01-01

    A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

  6. Fuel cell with internal flow control

    DOEpatents

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun [Karnataka, IN

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  7. The microbe electric: conversion of organic matter to electricity.

    PubMed

    Lovley, Derek R

    2008-12-01

    Broad application of microbial fuel cells will require substantial increases in current density. A better understanding of the microbiology of these systems may help. Recent studies have greatly expanded the range of microorganisms known to function either as electrode-reducing microorganisms at the anode or as electrode-oxidizing microorganisms at the cathode. Microorganisms that can completely oxidize organic compounds with an electrode serving as the sole electron acceptor are expected to be the primary contributors to power production. Several mechanisms for electron transfer to anodes have been proposed including: direct electron transfer via outer-surface c-type cytochromes, long-range electron transfer via microbial nanowires, electron flow through a conductive biofilm matrix containing cytochromes, and soluble electron shuttles. Which mechanisms are most important depend on the microorganisms and the thickness of the anode biofilm. Emerging systems biology approaches to the study, design, and evolution of microorganisms interacting with electrodes are expected to contribute to improved microbial fuel cells.

  8. Solid oxide fuel cell having compound cross flow gas patterns

    DOEpatents

    Fraioli, A.V.

    1983-10-12

    A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

  9. Solid oxide fuel cell having compound cross flow gas patterns

    DOEpatents

    Fraioli, Anthony V.

    1985-01-01

    A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

  10. Extended OLED operational lifetime through phosphorescent dopant profile management

    DOEpatents

    Forrest, Stephen R.; Zhang, Yifan

    2017-05-30

    This disclosure relates, at least in part, an organic light emitting device, which in some embodiments comprises an anode; a cathode; a first emissive layer disposed between the anode and the cathode, the first emissive layer comprising an electron transporting compound and a phosphorescent emissive dopant compound; and wherein the phosphorescent emissive dopant compound has a concentration gradient, in the emissive layer, which varies from the cathode side of the first emissive layer to the anode side of the emissive layer.

  11. Electrolytic production of neodymium without perfluorinated carbon compounds on the offgases

    DOEpatents

    Keller, R.; Larimer, K.T.

    1998-09-22

    A method is described for producing neodymium in an electrolytic cell without formation of perfluorinated carbon gases (PFCs), the method comprising the steps of providing an electrolyte in the electrolytic cell and providing an anode in an anode region of the electrolyte and providing a cathode in a cathode region of the electrolytic cell. Dissolving an oxygen-containing neodymium compound in the electrolyte in the anode region and maintaining a more intense electrolyte circulation in the anode region than in the cathode region. Passing an electrolytic current between said anode and said cathode and depositing neodymium metal at the cathode, preventing the formation of perfluorinated carbon gases by limiting anode over voltage. 4 figs.

  12. Electrolytic production of neodymium without perfluorinated carbon compounds on the offgases

    DOEpatents

    Keller, Rudolf; Larimer, Kirk T.

    1998-01-01

    A method of producing neodymium in an electrolytic cell without formation of perfluorinated carbon gases (PFCs), the method comprising the steps of providing an electrolyte in the electrolytic cell and providing an anode in an anode region of the electrolyte and providing a cathode in a cathode region of the electrolytic cell. Dissolving an oxygen-containing neodymium compound in the electrolyte in the anode region and maintaining a more intense electrolyte circulation in the anode region than in the cathode region. Passing an electrolytic current between said anode and said cathode and depositing neodymium metal at the cathode, preventing the formation of perfluorinated carbon gases by limiting anode over voltage.

  13. Design and fabrication of novel anode flow-field for commercial size solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Canavar, Murat; Timurkutluk, Bora

    2017-04-01

    In this study, nickel based woven meshes are tested as not only anode current collecting meshes but also anode flow fields instead of the conventional gas channels fabricated by machining. For this purpose, short stacks with different anode flow fields are designed and built by using different number of meshes with various wire diameters and widths of opening. A short stack with classical machined flow channels is also constructed. Performance and impedance measurements of the short stacks with commercial size cells of 81 cm2 active area are performed and compared. The results reveal that it is possible to create solid oxide fuel cell anode flow fields with woven meshes and obtain acceptable power with a proper selection of the mesh number, type and orientation.

  14. Effects of Anode Flow Field Design on CO2 Bubble Behavior in μDMFC

    PubMed Central

    Li, Miaomiao; Liang, Junsheng; Liu, Chong; Sun, Gongquan; Zhao, Gang

    2009-01-01

    Clogging of anode flow channels by CO2 bubbles is a vital problem for further performance improvements of the micro direct methanol fuel cell (μDMFC). In this paper, a new type anode structure using the concept of the non-equipotent serpentine flow field (NESFF) to solve this problem was designed, fabricated and tested. Experiments comparing the μDMFC with and without this type of anode flow field were implemented using a home-made test loop. Results show that the mean-value, amplitude and frequency of the inlet-to-outlet pressure drops in the NESFF is far lower than that in the traditional flow fields at high μDMFC output current. Furthermore, the sequential images of the CO2 bubbles as well as the μDMFC performance with different anode flow field pattern were also investigated, and the conclusions are in accordance with those derived from the pressure drop experiments. Results of this study indicate that the non-equipotent design of the μDMFC anode flow field can effectively mitigate the CO2 clogging in the flow channels, and hence lead to a significant promotion of the μDMFC performance. PMID:22412313

  15. Mechanism of p-substituted phenol oxidation at a Ti4O7 reactive electrochemical membrane.

    PubMed

    Zaky, Amr M; Chaplin, Brian P

    2014-05-20

    This research investigated the removal mechanisms of p-nitrophenol, p-methoxyphenol, and p-benzoquinone at a porous Ti4O7 reactive electrochemical membrane (REM) under anodic polarization. Cross-flow filtration experiments and density functional theory (DFT) calculations indicated that p-benzoquinone removal was primarily due to reaction with electrochemically formed OH(•), while the dominant removal mechanism of p-nitrophenol and p-methoxyphenol was a function of the anodic potential. At low anodic potentials (1.7-1.8 V/SHE), p-nitrophenol and p-methoxyphenol were removed primarily by an electrochemical adsorption/polymerization mechanism on the REM. Increasing anodic potentials (1.9-3.2 V/SHE) resulted in the electroassisted adsorption mechanism contributing far less to p-methoxyphenol removal compared to p-nitrophenol. DFT calculations indicated that an increase in anodic potential resulted in a shift in p-methoxyphenol removal from a 1e(-) direct electron transfer (DET) reaction that resulted in radical formation and significant adsorption/polymerization, to a 2e(-) DET reaction that formed nonadsorbing products (i.e., p-benzoquinone). However, the anodic potentials were too low for the 2e(-) DET reaction to be thermodynamically favorable for p-nitrophenol. The decreased COD adsorption for p-nitrophenol at higher anodic potentials was attributed to reaction of soluble/adsorbed organics with OH(•). These results provide the first mechanistic explanation for p-substituted phenolic compound removal during advanced electrochemical oxidation processes.

  16. Three-dimensional anode engineering for the direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Oloman, C. W.; Gyenge, E. L.

    Catalyzed graphite felt three-dimensional anodes were investigated in direct methanol fuel cells (DMFCs) operated with sulfuric acid supporting electrolyte. With a conventional serpentine channel flow field the preferred anode thickness was 100 μm, while a novel flow-by anode showed the best performance with a thickness of 200-300 μm. The effects of altering the methanol concentration, anolyte flow rate and operating temperature on the fuel cell superficial power density were studied by full (2 3 + 1) factorial experiments on a cell with anode area of 5 cm 2 and excess oxidant O 2 at 200 kPa(abs). For operation in the flow-by mode with 2 M methanol at 2 cm 3 min -1 and 353 K the peak power density was 2380 W m -2 with a PtRuMo anode catalyst, while a PtRu catalyst yielded 2240 W m -2 under the same conditions.

  17. Microscale Digital Vacuum Electronic Gates

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Mojarradi, Mohammed M. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement microscale digital vacuum electronic gates. In one embodiment, a microscale digital vacuum electronic gate includes: a microscale field emitter that can emit electrons and that is a microscale cathode; and a microscale anode; where the microscale field emitter and the microscale anode are disposed within at least a partial vacuum; where the microscale field emitter and the microscale anode are separated by a gap; and where the potential difference between the microscale field emitter and the microscale anode is controllable such that the flow of electrons between the microscale field emitter and the microscale anode is thereby controllable; where when the microscale anode receives a flow of electrons, a first logic state is defined; and where when the microscale anode does not receive a flow of electrons, a second logic state is defined.

  18. Generalized alternating stimulation: a novel method to reduce stimulus artifact in electrically evoked compound action potentials.

    PubMed

    Alvarez, Isaac; de la Torre, Angel; Sainz, Manuel; Roldan, Cristina; Schoesser, Hansjoerg; Spitzer, Philipp

    2007-09-15

    Stimulus artifact is one of the main limitations when considering electrically evoked compound action potential for clinical applications. Alternating stimulation (average of recordings obtained with anodic-cathodic and cathodic-anodic bipolar stimulation pulses) is an effective method to reduce stimulus artifact when evoked potentials are recorded. In this paper we extend the concept of alternating stimulation by combining anodic-cathodic and cathodic-anodic recordings with a weight in general different to 0.5. We also provide an automatic method to obtain an estimation of the optimal weights. Comparison with conventional alternating, triphasic stimulation and masker-probe paradigm shows that the generalized alternating method improves the quality of electrically evoked compound action potential responses.

  19. Anodization process produces opaque, reflective coatings on aluminum

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Opaque, reflective coatings are produced on aluminum articles by an anodizing process wherein the anodizing bath contains an aqueous dispersion of finely divided insoluble inorganic compounds. These particles appear as uniformly distributed occlusions in the anodic deposit on the aluminum.

  20. Ultrabright fluorescent OLEDS using triplet sinks

    DOEpatents

    Zhang, Yifan; Forrest, Stephen R; Thompson, Mark

    2013-06-04

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer further comprises an organic host compound, an organic emitting compound capable of fluorescent emission at room temperature, and an organic dopant compound. The triplet energy of the dopant compound is lower than the triplet energy of the host compound. The dopant compound does not strongly absorb the fluorescent emission of the emitting compound.

  1. Phosphorescent organic light emitting diodes with high efficiency and brightness

    DOEpatents

    Forrest, Stephen R; Zhang, Yifan

    2015-11-12

    An organic light emitting device including a) an anode; b) a cathode; and c) an emissive layer disposed between the anode and the cathode, the emissive layer comprising an organic host compound and a phosphorescent compound exhibiting a Stokes Shift overlap greater than 0.3 eV. The organic light emitting device may further include a hole transport layer disposed between the emissive layer and the anode; and an electron transport layer disposed between the emissive layer and the cathode. In some embodiments, the phosphorescent compound exhibits a phosphorescent lifetime of less than 10 .mu.s. In some embodiments, the concentration of the phosphorescent compound ranges from 0.5 wt. % to 10 wt. %.

  2. Anode power deposition in applied-field MPD thrusters

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Soulas, George C.

    1992-01-01

    Anode power deposition is the principle performance limiter of magnetoplasmadynamic (MPD) thrusters. Current thrusters lose between 50 and 70 percent of the input power to the anode. In this work, anode power deposition was studied for three cylindrical applied magnetic field thrusters for a range of argon propellant flow rates, discharge currents, and applied-field strengths. Between 60 and 95 percent of the anode power deposition resulted from electron current conduction into the anode, with cathode radiation depositing between 5 and 35 percent of the anode power, and convective heat transfer from the hot plasma accounting for less than 5 percent. While the fractional anode power loss decreased with increasing applied-field strength and anode size, the magnitude of the anode power increased. The rise in anode power resulted from a linear rise in the anode fall voltage with applied-field strength and anode radius. The anode fall voltage also rose with decreasing propellant flow rate. The trends indicate that the anode fall region is magnetized, and suggest techniques for reducing the anode power loss in MPD thrusters.

  3. Anode Fall As Relevant to Plasma Thrusters.

    DTIC Science & Technology

    1997-06-01

    considered, whether induced or external magnetic fields are included, as to how the flow chemistry is modeled, among others. For the cathode, sheath...the extent of the anode fall region, a region where flow chemistry becomes paramount, determining plasma equilibrium. But is the anode fall stable...i * =n* * = =0 and when the plasma boundary is approached. The latter condition immediately emphasizes the flow chemistry , ionization and

  4. Movable anode x-ray source with enhanced anode cooling

    DOEpatents

    Bird, C.R.; Rockett, P.D.

    1987-08-04

    An x-ray source is disclosed having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events. 5 figs.

  5. Movable anode x-ray source with enhanced anode cooling

    DOEpatents

    Bird, Charles R.; Rockett, Paul D.

    1987-01-01

    An x-ray source having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events.

  6. Integrated Microfluidic Flow-Through Microbial Fuel Cells

    PubMed Central

    Jiang, Huawei; Ali, Md. Azahar; Xu, Zhen; Halverson, Larry J.; Dong, Liang

    2017-01-01

    This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm3 and a surface power density of 89.4 μW/cm2 using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time. PMID:28120875

  7. Integrated Microfluidic Flow-Through Microbial Fuel Cells

    NASA Astrophysics Data System (ADS)

    Jiang, Huawei; Ali, Md. Azahar; Xu, Zhen; Halverson, Larry J.; Dong, Liang

    2017-01-01

    This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm3 and a surface power density of 89.4 μW/cm2 using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time.

  8. Effect of mass and charge transport speed and direction in porous anodes on microbial electrolysis cell performance.

    PubMed

    Sleutels, Tom H J A; Hamelers, Hubertus V M; Buisman, Cees J N

    2011-01-01

    The use of porous electrodes like graphite felt as anode material has the potential of achieving high volumetric current densities. High volumetric current densities, however, may also lead to mass transport limitations within these porous materials. Therefore, in this study we investigated the mass and charge transport limitations by increasing the speed of the forced flow and changing the flow direction through the porous anode. Increase of the flow speed led to a decrease in current density when the flow was directed towards the membrane caused by an increase in anode resistance. Current density increased at higher flow speed when the flow was directed away from the membrane. This was caused by a decrease in transport resistance of ions through the membrane which increased the buffering effect of the system. Furthermore, the increase in flow speed led to an increase of the coulombic efficiency by 306%. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Simulation of Flow Through Porous Anode in Mfc at Higher Power Density

    NASA Astrophysics Data System (ADS)

    Su, W. W.; Xu, Y. S.; Yan, W. W.; Liu, Y.

    Microbial fuel cell (MFC) is a new environmental friendly energy device which has received greatly attention due to its technology for producing electricity directly from organic or inorganic matter using bacteria as catalyst. To date, many studies have been carried out on advective flow through porous anode in a continuous flow MFC. However, the precise mechanical mechanism of flow through porous anode and the quantified relationship between porous media and MFC performance are not yet clearly understood. It has been found experimentally the power density can be increased apparently at certain spacing configuration. Based on these available experimental data, we studied the effect of spacing between electrodes and the Darcy number of porous anode on the power generation performance of MFC using lattice Boltzmann method. The simulation results indicated that the spacing between electrodes significantly influence the flow velocity profile and residence time in the MFC. Moreover, it was found that the Darcy number of porous anode could regulate the output efficiency of MFC. Our results would be helpful to optimize MFC design.

  10. Heat Transfer to Anode of Arc as Function of Transverse Magnetic Field and Lateral Gas Flow Velocity

    NASA Astrophysics Data System (ADS)

    Zama, Yoshiyuki; Shiino, Toru; Ishii, Yoko; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    Gas tungsten arc welding has useful joining technology because of high-energy and high-current characteristics. It can be flexible from the transverse magnetic field and lateral gas flow velocity. In this case, the weld defect occurs. In this research, the heat transfer to the anode of the arc as a function of the transverse magnetic field and lateral gas flow velocity is elucidated. That magnetic flux density and lateral gas velocity were varied from 0 to 3 mT and 0 to 50?m?s -1, respectively. The axial plasma gas argon flow rates were 3?slm. A transverse magnetic field is applied to the arc using Helmholtz coil. The anode is used by a water-cooled copper plate, and the heat transfer is measured by temperature of cooled water. As a result, the arc is deflected by the Lorentz force and lateral gas convection. Thus, the heat transfer to the anode of the arc decreases with increasing the transverse magnetic field and lateral gas flow velocity. In addition, the heat transfer to the anode changes with different attachments modes. The lateral gas flow causes a convective heat loss from the arc to the chamber walls.

  11. Nanocomposite protective coatings for battery anodes

    DOEpatents

    Lemmon, John P; Xiao, Jie; Liu, Jun

    2014-01-21

    Modified surfaces on metal anodes for batteries can help resist formation of malfunction-inducing surface defects. The modification can include application of a protective nanocomposite coating that can inhibit formation of surface defects. such as dendrites, on the anode during charge/discharge cycles. For example, for anodes having a metal (M'), the protective coating can be characterized by products of chemical or electrochemical dissociation of a nanocomposite containing a polymer and an exfoliated compound (M.sub.a'M.sub.b''X.sub.c). The metal, M', comprises Li, Na, or Zn. The exfoliated compound comprises M' among lamella of M.sub.b''X.sub.c, wherein M'' is Fe, Mo, Ta, W, or V, and X is S, O, or Se.

  12. Microbial fuel cell treatment of ethanol fermentation process water

    DOEpatents

    Borole, Abhijeet P [Knoxville, TN

    2012-06-05

    The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

  13. Process for forming sulfuric acid

    DOEpatents

    Lu, Wen-Tong P.

    1981-01-01

    An improved electrode is disclosed for the anode in a sulfur cycle hydrogen generation process where sulfur dioxie is oxidized to form sulfuric acid at the anode. The active compound in the electrode is palladium, palladium oxide, an alloy of palladium, or a mixture thereof. The active compound may be deposited on a porous, stable, conductive substrate.

  14. Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance

    PubMed Central

    Shin, Hyun-Seop; Jung, Kyu-Nam; Jo, Yong Nam; Park, Min-Sik; Kim, Hansung; Lee, Jong-Won

    2016-01-01

    There is a great deal of current interest in the development of rechargeable sodium (Na)-ion batteries (SIBs) for low-cost, large-scale stationary energy storage systems. For the commercial success of this technology, significant progress should be made in developing robust anode (negative electrode) materials with high capacity and long cycle life. Sn-P compounds are considered promising anode materials that have considerable potential to meet the required performance of SIBs, and they have been typically prepared by high-energy mechanical milling. Here, we report Sn-P-based anodes synthesised through solvothermal transformation of Sn metal and their electrochemical Na storage properties. The temperature and time period used for solvothermal treatment play a crucial role in determining the phase, microstructure, and composition of the Sn-P compound and thus its electrochemical performance. The Sn-P compound prepared under an optimised solvothermal condition shows excellent electrochemical performance as an SIB anode, as evidenced by a high reversible capacity of ~560 mAh g−1 at a current density of 100 mA g−1 and cycling stability for 100 cycles. The solvothermal route provides an effective approach to synthesising Sn-P anodes with controlled phases and compositions, thus tailoring their Na storage behaviour. PMID:27189834

  15. Numerical Study of the Buoyancy-Driven Flow in a Four-Electrode Rectangular Electrochemical Cell

    NASA Astrophysics Data System (ADS)

    Sun, Zhanyu; Agafonov, Vadim; Rice, Catherine; Bindler, Jacob

    2009-11-01

    Two-dimensional numerical simulation is done on the buoyancy-driven flow in a four-electrode rectangular electrochemical cell. Two kinds of electrode layouts, the anode-cathode-cathode-anode (ACCA) and the cathode-anode-anode-cathode (CAAC) layouts, are studied. In the ACCA layout, the two anodes are placed close to the channel outlets while the two cathodes are located between the two anodes. The CAAC layout can be converted from the ACCA layout by applying higher electric potential on the two middle electrodes. Density gradient was generated by the electrodic reaction I3^-+2e^- =3I^-. When the electrochemical cell is accelerated axially, buoyancy-driven flow occurs. In our model, electro-neutrality is assumed except at the electrodes. The Navier-Stokes equations with the Boussinesq approximation and the Nernst-Planck equations are employed to model the momentum and mass transports, respectively. It is found that under a given axial acceleration, the electrolyte density between the two middle electrodes determines the bulk flow through the electrochemical cell. The cathodic current difference is found to be able to measure the applied acceleration. Other important electro-hydrodynamic characteristics are also discussed.

  16. Micro-sized organometallic compound of ferrocene as high-performance anode material for advanced lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Feng, Li; Su, Xiaoru; Qin, Chenyang; Zhao, Kun; Hu, Fang; Zhou, Mingjiong; Xia, Yongyao

    2018-01-01

    An organometallic compound of ferrocene is first investigated as a promising anode for lithium-ion batteries. The electrochemical properties of ferrocene are conducted by galvanostatic charge and discharge. The ferrocene anode exhibits a high reversible capacity and great cycling stability, as well as superior rate capability. The electrochemical reaction of ferrocene is semi-reversible and some metallic Fe remains in the electrode even after delithiation. The metallic Fe formed in electrode and the stable solid electrolyte interphase should be responsible for its excellent electrochemical performance.

  17. Manufacturing of Dysprosium-Iron Alloys by Electrolysis in Fluoride-Based Electrolytes. Electrolysis in a Laboratory-Scale Cell

    NASA Astrophysics Data System (ADS)

    Martinez, Ana Maria; Osen, Karen Sende; Støre, Anne; Gudbrandsen, Henrik; Kjos, Ole Sigmund; Solheim, Asbjørn; Wang, Zhaohui; Oury, Alexandre; Namy, Patrick

    2018-04-01

    Electrolytic production of light rare earth elements and rare earth alloys with transition elements takes place in a fluoride-based electrolyte using rare earth oxides as raw material. The optimization of this method, mainly in terms of the energy efficiency and environmental impact control, is rather challenging. Anode effects, evolution of fluorine-containing compounds and side cathode reactions could largely be minimized by good control of the amount of rare earth oxide species dissolved in the fluoride-based electrolyte and their dissolution rate. The Dy2O3 feed rate needed for stable cell operation was studied by following up the anode voltage and gas analysis. On-line analysis of the cell off-gases by FTIR showed that the electrochemical reaction for the formation of Dy-Fe alloy gives mainly CO gas and that CF4 is starting to evolve gradually at anode voltages of ca. 3.25 V. The limiting current density for the discharge of the oxide ions at the graphite anode was in the range of 0.1 to 0.18 A cm-2 at dissolved Dy2O3 contents of ca. 1 wt pct. Modeling of the laboratory cell reactor was also carried out by implementing two models, i.e., an electrical model simulating the current density distribution at the electrodes and a laminal bubbly flow model that explains the electrolyte velocity induced by gas bubble production at the anode.

  18. Impact of electrode sequence on electrochemical removal of trichloroethylene from aqueous solution

    PubMed Central

    Rajic, Ljiljana; Fallahpour, Noushin; Alshawabkeh, Akram N.

    2015-01-01

    The electrode sequence in a mixed flow-through electrochemical cell is evaluated to improve the hydrodechlorination (HDC) of trichloroethylene (TCE) in aqueous solutions. In a mixed (undivided) electrochemical cell, oxygen generated at the anode competes with the transformation of target contaminants at the cathode. In this study, we evaluate the effect of placing the anode downstream from the cathode and using multiple electrodes to promote TCE reduction. Experiments with a cathode followed by an anode (C→A) and an anode followed by a cathode (A→C) were conducted using mixed metal oxide (MMO) and iron as electrode materials. The TCE removal rates when the anode is placed downstream of the cathode (C→A) were 54% by MMO→MMO, 64% by MMO→Fe and 87% by Fe→MMO sequence. Removal rates when the anode is placed upstream of the cathode (A→C) were 38% by MMO→MMO, 58% by Fe→MMO and 69% by MMO→Fe sequence. Placing the anode downstream of the cathode positively improves (by 26%) the degradation of aqueous TCE in a mixed flow-through cell as it minimizes the influence of oxygen generated at the MMO anode on TCE reduction at the cathode. Furthermore, placing the MMO anode downstream of the cathode neutralizes pH and redox potential of the treated solution. Higher flow velocity under the C→A setup increases TCE mass flux reduction rate. Using multiple cathodes and an iron foam cathode up stream of the anode increase the removal rate by 1.6 and 2.4 times, respectively. More than 99% of TCE was removed in the presence of Pd catalyst on carbon and as an iron foam coating. Enhanced reaction rates found in this study imply that a mixed flow-through electrochemical cell with multiple cathodes up stream of an anode is an effective method to promote the reduction of TCE in groundwater. PMID:25931774

  19. Investigation of anodic and chemical oxides grown on p-type InP with applications to surface passivation for n(+)-p solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Faur, Maria; Faur, Mircea; Goradia, Manju; Goradia, Chandra; Jenkins, Phillip; Jayne, Douglas; Weinberg, Irving

    1991-01-01

    Most of the previously reported InP anodic oxides were grown on a n-type InP with applications to fabrication of MISFET structures and were described as a mixture of In2O3 and P2O5 stoichiometric compounds or nonstoichiometric phases which have properties similar to crystalline compounds In(OH)3, InPO4, and In(PO3)3. Details of the compositional change of the anodic oxides grown under different anodization conditions were previously reported. The use of P-rich oxides grown either by anodic or chemical oxidation are investigated for surface passivation of p-type InP and as a protective cap during junction formation by closed-ampoule sulfur diffusion. The investigation is based on but not limited to correlations between PL intensity and X-ray photoelectron spectroscopy (XPS) chemical composition data.

  20. Electrochemical wastewater treatment: influence of the type of carbon and of nitrogen on the organic load removal.

    PubMed

    Fernandes, Annabel; Coelho, João; Ciríaco, Lurdes; Pacheco, Maria José; Lopes, Ana

    2016-12-01

    Boron-doped diamond (BDD) and Ti/Pt/PbO 2 anodes were utilized to perform the electrodegradation of synthetic samples containing humic acid in the presence of different organic and inorganic carbon-containing and nitrogen-containing compounds. The influence of the chloride ion in the degradation process of the different synthetic samples was also assessed. The results showed that the anodic oxidation process can efficiently degrade recalcitrant compounds such as humic acid. The presence of carbonate in solution enhances the nitrogen removal, whereas it hinders the oxidation of the organic compounds. When organic nitrogen is present, it is converted to NH 4 + , which in turn is oxidized to nitrate and to volatile nitrogen compounds. Hydroxyl radicals are more prone to oxidize the organic nitrogen than the ammonium nitrogen. The presence of chloride enhances the organic matter and nitrogen removal rates, BDD being the anode material that yields the highest removals.

  1. Fuel cell electrode interconnect contact material encapsulation and method

    DOEpatents

    Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.

    2016-05-31

    A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.

  2. A XANES Study of Sulfur Speciation and Reactivity in Cokes for Anodes Used in Aluminum Production

    NASA Astrophysics Data System (ADS)

    Jahrsengene, Gøril; Wells, Hannah C.; Rørvik, Stein; Ratvik, Arne Petter; Haverkamp, Richard G.; Svensson, Ann Mari

    2018-03-01

    Availability of anode raw materials in the growing aluminum industry results in a wider range of petroleum cokes being used to produce carbon anodes. The boundary between anode grade cokes and what previously was considered non-anode grades are no longer as distinct as before, leading to introduction of cokes with higher sulfur and higher trace metal impurity content in anode manufacturing. In this work, the chemical nature of sulfur in five industrial cokes, ranging from 1.42 to 5.54 wt pct S, was investigated with K-edge XANES, while the reactivity of the cokes towards CO2 was measured by a standard mass loss test. XANES identified most of the sulfur as organic sulfur compounds. In addition, a significant amount is identified (16 to 53 pct) as S-S bound sulfur. A strong inverse correlation is observed between CO2-reactivity and S-S bound sulfur in the cokes, indicating that the reduction in reactivity is more dependent on the amount of this type of sulfur compound rather than the total amount of sulfur or the amount of organic sulfur.

  3. A XANES Study of Sulfur Speciation and Reactivity in Cokes for Anodes Used in Aluminum Production

    NASA Astrophysics Data System (ADS)

    Jahrsengene, Gøril; Wells, Hannah C.; Rørvik, Stein; Ratvik, Arne Petter; Haverkamp, Richard G.; Svensson, Ann Mari

    2018-06-01

    Availability of anode raw materials in the growing aluminum industry results in a wider range of petroleum cokes being used to produce carbon anodes. The boundary between anode grade cokes and what previously was considered non-anode grades are no longer as distinct as before, leading to introduction of cokes with higher sulfur and higher trace metal impurity content in anode manufacturing. In this work, the chemical nature of sulfur in five industrial cokes, ranging from 1.42 to 5.54 wt pct S, was investigated with K-edge XANES, while the reactivity of the cokes towards CO2 was measured by a standard mass loss test. XANES identified most of the sulfur as organic sulfur compounds. In addition, a significant amount is identified (16 to 53 pct) as S-S bound sulfur. A strong inverse correlation is observed between CO2-reactivity and S-S bound sulfur in the cokes, indicating that the reduction in reactivity is more dependent on the amount of this type of sulfur compound rather than the total amount of sulfur or the amount of organic sulfur.

  4. Experimental study of humidity changes on the performance of an elliptical single four-channel PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Mohammad; Ghazikhani, Mohsen; Khazaee, Iman

    2017-01-01

    Humidity and humidification in a proton exchange membrane fuel cells (PEM) can significantly affect the performance of these energy generating devices. Since protons (H+) needs to be accompanied by water molecules to pass from the anode side to the cathode side, the PEM fuel cell membrane should be sufficiently wet. Low or high amount of water in the membrane can interrupt the flow of protons and thus reduce the efficiency of the fuel cell. In this context, several experimental studies and modeling have been carried out on PEM fuel cell and interesting results have been achieved. In this paper, the humidity and flow rate of gas in the anode and cathode are modified to examine its effect on fuel cell performance. The results show that the effect of humidity changing in the anode side is greater than that of the cathode so that at zero humidity of anode and 70 % humidity of the cathode, a maximum current flow of 0.512 A/cm2 for 0.12 V was obtained. However, at 70 % anode humidity and zero cathode humidity, a maximum flow of 0.86 A/cm2 for 0.13 V was obtained.

  5. Methods for performing electrochemical nitration reactions

    DOEpatents

    Lister, Tedd Edward; Fox, Robert Vincent

    2010-05-11

    A method for the electrochemical synthesis of dinitro compounds is disclosed. The method comprises using an anode to oxidize an inactive chemical mediator, such as a ferrocyanide (Fe(CN).sub.6.sup.-4) ion, to an active chemical mediator or oxidizing agent, such as a ferricyanide (Fe(CN).sub.6.sup.-3) ion, in the presence of a differential voltage. The oxidizing agent reacts with a nitro compound and a nitrite ion to form a geminal dinitro compound. The anode may continuously oxidize ferrocyanide to regenerate active ferricyanide, thus keeping sufficient amounts of ferricyanide available for reaction..

  6. Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis.

    PubMed

    Masuda, Masaki; Freguia, Stefano; Wang, Yung-Fu; Tsujimura, Seiya; Kano, Kenji

    2010-06-01

    Cyclic voltammograms of yeast extract-containing medium exhibit a clear redox peak around -0.4V vs. Ag|AgCl. Fermentative bacterium Lactococcus lactis was hereby shown to exploit this redox compound for extracellular electron transfer towards a graphite anode using glucose as an electron donor. High performance liquid chromatography revealed that this may be a flavin-type compound. The ability of L. lactis to exploit exogenous flavins for anodic glucose oxidation was confirmed by tests where flavin-type compounds were supplied to the bacterium in well defined media. Based on its mid-point potential, riboflavin can be regarded as a near-optimal mediator for microbially catalyzed anodic electron transfer. Riboflavin derivative flavin mononucleotide (FMN) was also exploited by L. lactis as a redox shuttle, unlike flavin adenine dinucleotide (FAD), possibly due to the absence of a specific transporter for the latter. The use of yeast extract in microbial fuel cell media is herein discouraged based on the related unwanted artificial addition of redox mediators which may distort experimental results. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Magnetically insulated transmission line oscillator

    DOEpatents

    Bacon, Larry D.; Ballard, William P.; Clark, M. Collins; Marder, Barry M.

    1988-01-01

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.

  8. Magnetically insulated transmission line oscillator

    DOEpatents

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  9. Modeling studies of electrolyte flow and bubble behavior in advanced Hall cells

    NASA Astrophysics Data System (ADS)

    Shekhar, R.; Evans, J. W.

    Much research was performed in recent years by corporations and university/government labs on materials for use in advanced Hall-Heroult cells. Attention has focussed on materials for use as wettable cathodes and inert anodes and much was achieved in terms of material development. Comparatively less attention was devoted to how these materials might be incorporated in new or existing cells, i.e., to how the cells should be designed and redesigned, to take full advantage of these materials. The effort, supported by the U.S. Department of Energy, to address this issue, is described. The primary objectives are cell design where electrolyte flow can be managed to promote both the removal of the anode gas bubbles and the convection of dissolved alumina in the inter-electrode region, under conditions where the anode-cathode distance is small. The principal experimental tool was a water model consisting of a large tank in which simulated anodes can be suspended in either the horizontal or vertical configurations. Gas generation was by forcing compressed air through porous graphite and the fine bubbles characteristic of inert anodes were produced by adding butanol to the water. Velocities were measured using a laser Doppler velocimeter. Velocity measurements with two different anode designs (one that is flat and the other that has grooves) are presented. The results show that the electrode configuration has a significant effect on the fluid flow pattern in the inter-electrode region. Furthermore, it is shown that rapid fluid flow is obtained when the cell is operated with a submerged anode.

  10. Experimental Studies of the Effects of Anode Composition and Process Parameters on Anode Slime Adhesion and Cathode Copper Purity by Performing Copper Electrorefining in a Pilot-Scale Cell

    NASA Astrophysics Data System (ADS)

    Zeng, Weizhi; Wang, Shijie; Free, Michael L.

    2016-10-01

    Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles' coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.

  11. Effect of Anode Change on Heat Transfer and Magneto-hydrodynamic Flow in Aluminum Reduction Cell

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Li, Baokuan; Fafard, Mario

    2016-02-01

    In order to explore the impact of anode replacement on heat transfer and magneto-hydrodynamic flow in aluminum smelting cells, a transient three-dimensional coupled mathematical model has been developed. With a steady state magnetic field, an electrical potential approach was used to obtain electromagnetic fields. Joule heating and Lorentz force, which were the source terms in the energy and momentum equations, were updated at each iteration. The phase change of molten electrolyte (bath) was modeled by an enthalpy-based technique in which the mushy zone was treated as a porous medium with porosity equal to the liquid fraction. A reasonable agreement between the test data and simulated results was achieved. Under normal conditions, the bath at the middle of the cell is hotter, while becoming colder at the four corners. Due to the heat extracted from the bath, the temperature of the new cold anode increases over time. The temperature of the bath under the new cold anode therefore quickly drops, resulting in a decrease of the electrical conductivity. More Joule effect is created. In addition, the bath under the new cold anode gradually freezes and flows more slowly. The temperature of the new anode located at the middle of the cell rises faster because of the warmer bath. It is easier to eliminate the effect of anode change when it occurs in the middle of the cell.

  12. Biotransformation of Furanic and Phenolic Compounds with Hydrogen Gas Production in a Microbial Electrolysis Cell.

    PubMed

    Zeng, Xiaofei; Borole, Abhijeet P; Pavlostathis, Spyros G

    2015-11-17

    Furanic and phenolic compounds are problematic byproducts resulting from the breakdown of lignocellulosic biomass during biofuel production. The capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H2) using a mixture of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the substrate in the bioanode was assessed. The rate and extent of biotransformation of the five compounds and efficiency of H2 production, as well as the structure of the anode microbial community, were investigated. The five compounds were completely transformed within 7-day batch runs and their biotransformation rate increased with increasing initial concentration. At an initial concentration of 1200 mg/L (8.7 mM) of the mixture of the five compounds, their biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode Coulombic efficiency was 44-69%, which is comparable to that of wastewater-fed MECs. The H2 yield varied from 0.26 to 0.42 g H2-COD/g COD removed in the anode, and the bioanode volume-normalized H2 production rate was 0.07-0.1 L/L-d. The biotransformation of the five compounds took place via fermentation followed by exoelectrogenesis. The major identified fermentation products that did not transform further were catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H2 production were inhibited at an initial substrate concentration of 1200 mg/L, resulting in acetate accumulation at a much higher level than that measured in other batch runs conducted with a lower initial concentration of the five compounds. The anode microbial community consisted of exoelectrogens, putative degraders of the five compounds, and syntrophic partners of exoelectrogens. The MEC H2 production demonstrated in this study is an alternative to the currently used process of reforming natural gas to supply H2 needed to upgrade bio-oils to stable hydrocarbon fuels.

  13. Solid oxide fuel cell having monolithic cross flow core and manifolding

    DOEpatents

    Poeppel, Roger B.; Dusek, Joseph T.

    1984-01-01

    This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageway and the oxidant passageways are disposed transverse to one another.

  14. Solid oxide fuel cell having monolithic cross flow core and manifolding

    DOEpatents

    Poeppel, R.B.; Dusek, J.T.

    1983-10-12

    This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageways and the oxidant passageways are disposed transverse to one another.

  15. Microbial production of multi-carbon chemicals and fuels from water and carbon dioxide using electric current

    DOEpatents

    Lovley, Derek R; Nevin, Kelly

    2015-11-03

    The invention provides systems and methods for generating organic compounds using carbon dioxide as a source of carbon and electrical current as an energy source. In one embodiment, a reaction cell is provided having a cathode electrode and an anode electrode that are connected to a source of electrical power, and which are separated by a permeable membrane. A biological film is provided on the cathode. The biological film comprises a bacterium that can accept electrons and that can convert carbon dioxide to a carbon-bearing compound and water in a cathode half-reaction. At the anode, water is decomposed to free molecular oxygen and solvated protons in an anode half-reaction. The half-reactions are driven by the application of electrical current from an external source. Compounds that have been produced include acetate, butanol, 2-oxobutyrate, propanol, ethanol, and formate.

  16. Microbial production of multi-carbon chemicals and fuels from water and carbon dioxide using electric current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovley, Derek R.; Nevin, Kelly P.

    The invention provides systems and methods for generating organic compounds using carbon dioxide as a source of carbon and electrical current as an energy source. In one embodiment, a reaction cell is provided having a cathode electrode and an anode electrode that are connected to a source of electrical power, and which are separated by a permeable membrane. A biological film is provided on the cathode. The biological film comprises a bacterium that can accept electrons and that can convert carbon dioxide to a carbon-bearing compound and water in a cathode half-reaction. At the anode, water is decomposed to freemore » molecular oxygen and solvated protons in an anode half-reaction. The half-reactions are driven by the application of electrical current from an external source. Compounds that have been produced include acetate, butanol, 2-oxobutyrate, propanol, ethanol, and formate.« less

  17. Anodic oxidation of benzoquinone using diamond anode.

    PubMed

    Panizza, Marco

    2014-01-01

    The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5-2 A), BQ concentration (1-2 g dm(-3)), temperature (20-45 °C) and flow rate (100-300 dm(3) h(-1)) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature.

  18. Microbial fuel cell treatment of fuel process wastewater

    DOEpatents

    Borole, Abhijeet P; Tsouris, Constantino

    2013-12-03

    The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing electrical energy from the oxidative degradation, and directing the produced electrical energy to drive an electrosorption mechanism that operates to reduce the concentration of one or more inorganic salts in the fuel processing effluent, wherein the anode is in electrical communication with a cathode of the microbial fuel cell. The invention is also directed to an apparatus for practicing the method.

  19. Method for making nanotubes and nanoparticles

    DOEpatents

    Zettl, Alexander Karlwalter; Cohen, Marvin Lou

    2000-01-01

    The present invention is an apparatus and method for producing nano-scale tubes and particles. The apparatus comprises novel electrodes for use in arc discharge techniques. The electrodes have interior conduits for delivery and withdrawal of material from the arc region where product is formed. In one embodiment, the anode is optionally made from more than one material and is termed a compound anode. The materials used in the compound anode assist in the reaction that forms product in the arc region of the apparatus. The materials assist either by providing reaction ingredients, catalyst, or affecting the reaction kinetics. Among other uses, the inventive apparatus is used to produce nanotubes and nanoparticles having a variety of electrical and mechanical properties.

  20. Electrohydrodynamically patterned colloidal crystals

    NASA Technical Reports Server (NTRS)

    Hayward, Ryan C. (Inventor); Poon, Hak F. (Inventor); Xiao, Yi (Inventor); Saville, Dudley A. (Inventor); Aksay, Ilhan A. (Inventor)

    2003-01-01

    A method for assembling patterned crystalline arrays of colloidal particles using ultraviolet illumination of an optically-sensitive semiconducting anode while using the anode to apply an electronic field to the colloidal particles. The ultraviolet illumination increases current density, and consequently, the flow of the colloidal particles. As a result, colloidal particles can be caused to migrate from non-illuminated areas of the anode to illuminated areas of the anode. Selective illumination of the anode can also be used to permanently affix colloidal crystals to illuminated areas of the anode while not affixing them to non-illuminated areas of the anode.

  1. REGULATOR FOR CALUTRON ION SOURCE

    DOEpatents

    Miller, B.F.

    1958-09-01

    Improvements are described in electric discharge devices and circuits for a calutron and, more specifically, presents an arc discharge regulator circuit for the ion source of the calatron. In general, the source comprises a filament which bombards a cathode with electrons, a griid control electrode between the filament and the cathode, and an anode electrode. The control electrode has a DC potential which is varied in response to changes in the anode current flow by means of a saturable reactor installed in its power supply energizing line having the anode current flowing through its control winding. In this manner the bombardment current to the cathode may be decreased when the anode current increases beyond a predetermined level.

  2. A 3D mathematical model for the horizontal anode baking furnace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocaefe, Y.S.; Dernedde, E.; Kocaefe, D.

    In the aluminum industry, carbon anodes are baked in large horizontal or vertical ring-type furnaces. The anode quality depends strongly on the baking conditions (heating rate, soaking time and final anode temperature). A three-dimensional mathematical model has been developed for a horizontal anode baking furnace to assess the effects of different parameters on the baking process and to improve the furnace operation and design at Noranda Aluminum Smelter in New Madrid, Missouri. The commercial CFD code CFDS-FLOW3D is used to solve the governing differential equations. The model gives the temperature, velocity and concentration distributions in the flue, and the variationmore » of the temperature distribution with time in the pit. In this paper, a description of the 3D model for the horizontal anode baking furnace will be given. Some of the results from a case study will also be presented. The results show clearly the importance of flue geometry on the gas flow distribution in the flue and the heat transfer to the anodes.« less

  3. Direct Conversion of Wheat Straw into Electricity with a Biomass Flow Fuel Cell Mediated by Two Redox Ion Pairs.

    PubMed

    Gong, Jian; Liu, Wei; Du, Xu; Liu, Congmin; Zhang, Zhe; Sun, Feifei; Yang, Le; Xu, Dong; Guo, Hua; Deng, Yulin

    2017-02-08

    In this paper, a biomass flow fuel cell to directly convert wheat straw to electricity at low temperature (80-90 °C) and atmospheric pressure is presented. Two redox ion pairs, Fe 3+ /Fe 2+ and VO 2 + /VO 2+ , acting as redox catalysts and charge carriers, were used in the anode and cathode flow tanks, respectively. The wheat straw was first oxidized by Fe 3+ in the anode tank at approximately 100 °C. The reduced Fe 2+ in the anode was used to construct a fuel cell with VO 2 + in the cathode. The VO 2 + ions were reduced to VO 2+ and regenerated to VO 2 + by oxygen oxidation. The wheat straw flow fuel cell showed a power output of 100 mW cm -2 . Mediated with liquid Fe 3+ carriers, the solid powder of wheat straw could be gradually degraded into low-molecular-weight organic molecules and even oxidized to CO 2 at the anode without using noble-metal catalysts. The overpotential for the electrodes of the flow fuel cell was examined and the energy cost was estimated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Modelling of crater formation on anode surface by high-current vacuum arcs

    NASA Astrophysics Data System (ADS)

    Tian, Yunbo; Wang, Zhenxing; Jiang, Yanjun; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua; Nordlund, Kai; Djurabekova, Flyura

    2016-11-01

    Anode melting and crater formation significantly affect interruption of high-current vacuum arcs. The primary objective of this paper is to theoretically investigate the mechanism of anode surface crater formation, caused by the combined effect of surface heating during the vacuum arc and pressure exerted on the molten surface by ions and electrons from the arc plasma. A model of fluid flow and heat transfer in the arc anode is developed and combined with a magnetohydrodynamics model of the vacuum arc plasma. Crater formation is observed in simulation for a peak arcing current higher than 15 kA on 40 mm diam. Cu electrodes spaced 10 mm apart. The flow of liquid metal starts after 4 or 5 ms of arcing, and the maximum velocities are 0.95 m/s and 1.39 m/s for 20 kA and 25 kA arcs, respectively. This flow redistributes thermal energy, and the maximum temperature of the anode surface does not remain in the center. Moreover, the condition for the liquid droplet formation on the anode surfaces is developed. The solidification process after current zero is also analyzed. The solidification time has been found to be more than 3 ms after 25 kA arcing. The long solidification time and sharp features on crater rims induce Taylor cone formation.

  5. Computational Fluid Dynamics-Population Balance Model Simulation of Effects of Cell Design and Operating Parameters on Gas-Liquid Two-Phase Flows and Bubble Distribution Characteristics in Aluminum Electrolysis Cells

    NASA Astrophysics Data System (ADS)

    Zhan, Shuiqing; Wang, Junfeng; Wang, Zhentao; Yang, Jianhong

    2018-02-01

    The effects of different cell design and operating parameters on the gas-liquid two-phase flows and bubble distribution characteristics under the anode bottom regions in aluminum electrolysis cells were analyzed using a three-dimensional computational fluid dynamics-population balance model. These parameters include inter-anode channel width, anode-cathode distance (ACD), anode width and length, current density, and electrolyte depth. The simulations results show that the inter-anode channel width has no significant effect on the gas volume fraction, electrolyte velocity, and bubble size. With increasing ACD, the above values decrease and more uniform bubbles can be obtained. Different effects of the anode width and length can be concluded in different cell regions. With increasing current density, the gas volume fraction and electrolyte velocity increase, but the bubble size keeps nearly the same. Increasing electrolyte depth decreased the gas volume fraction and bubble size in particular areas and the electrolyte velocity increased.

  6. Carbon nanotube polymer composition and devices

    DOEpatents

    Liu, Gao [Oakland, CA; Johnson, Stephen [Richmond, CA; Kerr, John B [Oakland, CA; Minor, Andrew M [El Cerrito, CA; Mao, Samuel S [Castro Valley, CA

    2011-06-14

    A thin film device and compound having an anode, a cathode, and at least one light emitting layer between the anode and cathode, the at least one light emitting layer having at least one carbon nanotube and a conductive polymer.

  7. Efficient photocatalytic degradation of gaseous N,N-dimethylformamide in tannery waste gas using doubly open-ended Ag/TiO2 nanotube array membranes

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Ma, Lin; Chang, Wenkai; Huang, Zhiding; Feng, Xugen; Qi, Xiaoxia; Li, Zenghe

    2018-06-01

    Gaseous N,N-dimethylformamide (DMF), typical volatile organic compound exhausted from manufacturing factories, may damage the health of workers under long-term exposure even at low levels. The defined geometry, porous surface and highly ordered channels make the free-standing anodic TiO2 nanotube (TiNT) arrays particularly suitable for applications of practical air purification by flow-through photocatalysis. In the present work, crystallized doubly open-ended Ag/TiNT array membranes were designed and prepared by employing a lift-off process based on an anodization-annealing-anodization-etching sequence, followed by uniform Ag nanoparticles decoration. For the photocatalytic degradation of gaseous DMF at low concentration levels close to that found in realistic pollutant air, an analytical methodology for the monitoring and determination of degradation process was developed based on the coupling of headspace sampling with gas chromatography mass spectrometry (HS-GC-MS). The doubly open-ended Ag/TiNT arrays exhibited higher removal efficiency of gaseous DMF from air compared with conventional bottom-closed Ag/TiNT arrays and pure bottomless TiNT arrays. These results indicated that the photocatalytic properties of TiNT arrays were improved with the open-bottom morphology and the Ag nanoparticles decoration. Based on the analysis with GC-MS and high performance ion chromatography (HPIC), it was found that demethylation is the main pathway of DMF degradation in photocatalytic reactions. Furthermore, decontamination of actual polluted tannery waste gas collected in leather factory proved that the photocatalysis on doubly open-ended Ag/TiNT array membrane is an efficient way and a promising application to treat air contaminated by DMF despite the complexity of various volatile organic compounds.

  8. Advanced screening of electrode couples

    NASA Technical Reports Server (NTRS)

    Giner, J. D.; Cahill, K.

    1980-01-01

    The chromium (Cr(3+)/Cr(2+)) redox couple (electrolyte and electrode) was investigated to determine its suitability as negative electrode for the iron (Fe(3+)/Fe(2+))-chromium (Cr(3+)/Cr(2+)) redox flow battery. Literature search and laboratory investigation established that the solubility and stability of aqueous acidic solutions of chromium(3) chloride and chromium(2) chloride are sufficient for redox battery application. Four categories of electrode materials were tested; namely, metals and metalloid materials (elements and compounds), alloys, plated materials, and Teflon-bonded materials. In all, the relative performance of 26 candidate electrode materials was evaluated on the basis of slow scan rate linear sweep voltammetry in stirred solution. No single material tested gave both acceptable anodic an acceptable cathodic performance. However, the identification of lead as a good cathodic electrocatalyst and gold as a good anodic electrocatalyst led to the invention of the lead/gold combination electrocatalyst. This type of catalyst can be fabricated in several ways and appears to offer the advantages of each metal without the disadvantages associated with their use as single materials. This lead/gold electrocatalyst was tested by NASA-Lewis Research Center in complete, flowing, redox batteries comprising a stack of several cells. A large improvement in the battery's coulombic and energy efficiency was observed.

  9. Metal-air flow batteries using oxygen enriched electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jian-ping; Andrei, Petru; Shellikeri, Annadanesh

    A metal air flow battery includes an electrochemical reaction unit and an oxygen exchange unit. The electrochemical reaction unit includes an anode electrode, a cathode electrode, and an ionic conductive membrane between the anode and the cathode, an anode electrolyte, and a cathode electrolyte. The oxygen exchange unit contacts the cathode electrolyte with oxygen separate from the electrochemical reaction unit. At least one pump is provided for pumping cathode electrolyte between the electrochemical reaction unit and the oxygen exchange unit. A method for producing an electrical current is also disclosed.

  10. Metal-air flow batteries using oxygen enriched electrolyte

    DOEpatents

    Zheng, Jian-ping; Andrei, Petru; Shellikeri, Annadanesh; Chen, Xujie

    2017-08-01

    A metal air flow battery includes an electrochemical reaction unit and an oxygen exchange unit. The electrochemical reaction unit includes an anode electrode, a cathode electrode, and an ionic conductive membrane between the anode and the cathode, an anode electrolyte, and a cathode electrolyte. The oxygen exchange unit contacts the cathode electrolyte with oxygen separate from the electrochemical reaction unit. At least one pump is provided for pumping cathode electrolyte between the electrochemical reaction unit and the oxygen exchange unit. A method for producing an electrical current is also disclosed.

  11. Room-Temperature Solution Synthesis of Mesoporous Silicon for Lithium Ion Battery Anodes.

    PubMed

    Sun, Lin; Wang, Fei; Su, Tingting; Du, Hongbin

    2017-11-22

    As an important optoelectronic and energy-storage material, porous silicon (PSi) has attracted great interest in various fields. The preparation of PSi, however, usually suffers from low yields and/or complicated syntheses. Herein, we report a facile solution method to prepare PSi with controllable high specific surface area. Commercial Zintl compound Mg 2 Si readily reacts with HSiCl 3 in the presence of amines at room temperature to produce amorphous PSi in high yields, where in situ formed salt byproducts serve as templates to generate uniform mesopores of ca. 3.8 nm in diameter. After crystallization treatment at 700 °C in flow Ar gas for 40 min, the obtained crystalline PSi coated with carbon layers shows excellent electrochemical performance when served as lithium ion battery anodes. The reversible specific capacity is about 2250 mA h g -1 at 0.1 A g -1 and the capacity retention is maintained at 90% after cycling at high current density of 2 A g -1 for 320 times. This simple, facile preparation method is very promising and paves the way for massive production of porous Si as high-performance anodes in Li-ion battery industry or for other applications, such as drug delivery systems and catalysis.

  12. Intermetallic Growth Induced Large-Scale Void Growth and Cracking Failure in Line-Type Cu/Solder/Cu Joints Under Current Stressing

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Tian, Wenya; Li, Junhui; Zhu, Wenhui

    2018-04-01

    In order to study the electromigration (EM) behavior of solder joints in electronics packaging, especially under high-current and high-temperature working conditions, line-type Cu/solder/Cu butting samples were prepared to observe the microstructural evolution under 1.0 × 104 A/cm2 current stressing. A prominent polarity effect was found such that the Cu6Sn5 intermetallic compound (IMC) layer at the anode side, which thickened linearly with time, was much thicker than that at the cathode side. Compared to the samples subjected to thermal aging at the same temperature of 180°C, EM enhanced the Cu3Sn growth at both the anode and the cathode. Two distinct types of damage were observed after extended duration of current stressing. Back-flow of Cu into Cu3Sn was found at the Cu3Sn/Cu6Sn5 interface of the anode side, causing large voids, while strip cracks developed at the cathode solder/Cu6Sn5 interface, causing a significant increase of joint electrical resistance. With the mass transport characteristics that determine the IMC growth and vacancy accumulation analyzed in detail at each interface, formation mechanisms of the two types of damages are discussed.

  13. Anode power deposition in quasi-steady MPD arcs. [accelerator anode heat flux measurement

    NASA Technical Reports Server (NTRS)

    Saber, A. J.; Jahn, R. G.

    1973-01-01

    The power deposited in the anode of a quasi-steady MPD accelerator has been measured directly by thermocouples attached to the inside surface of a shell anode which provide a local measurement of anode heat flux. The results over a range of arc currents from 5.5 to 44 kiloamperes and argon mass flows from 1 g/sec to 48 g/sec show that the fraction of the total input power deposited in the anode decreases drastically from 50% at an arc power of 200 kW to 10% at 20 MW, and that anode power is not uniformly deposited in the anode. A theoretical model of the anode heat transfer, including effects of anode work function, electron thermal energy, and anode sheath, can be brought into reasonable agreement with the measurements, provided the effective range of the conduction electrons from within the discharge plasma to the anode surface is properly acknowledged.

  14. Compositional control of continuously graded anode functional layer

    NASA Astrophysics Data System (ADS)

    McCoppin, J.; Barney, I.; Mukhopadhyay, S.; Miller, R.; Reitz, T.; Young, D.

    2012-10-01

    In this work, solid oxide fuel cells (SOFC's) are fabricated with linear-compositionally graded anode functional layers (CGAFL) using a computer-controlled compound aerosol deposition (CCAD) system. Cells with different CGAFL thicknesses (30 um and 50 um) are prepared with a continuous compositionally graded interface deposited between the electrolyte and anode support current collecting regions. The compositional profile was characterized using energy dispersive X-ray spectroscopic mapping. An analytical model of the compound aerosol deposition was developed. The model predicted compositional profiles for both samples that closely matched the measured profiles, suggesting that aerosol-based deposition methods are capable of creating functional gradation on length scales suitable for solid oxide fuel cell structures. The electrochemical performances of the two cells are analyzed using electrochemical impedance spectroscopy (EIS).

  15. Lifetime Extension of the Gas Discharge Detectors with Plasma Etching of Silicon Deposits in 80%CF4 + 20%CO2

    NASA Astrophysics Data System (ADS)

    Gavrilov, G. E.; Vakhtel, V. M.; Maysuzenko, D. A.; Tavtorkina, T. A.; Fetisov, A. A.; Shvetsova, N. Yu.

    2017-12-01

    A method of elimination of silicon compounds from the anode wire of an aged proportional counter is presented. The aging of a counter with a 70%Ar + 30%CO2 and a 60%Ar + 30%CO2 + 10%CF4 working mixture was stimulated by a 90Sr β source. To accelerate the process of aging, the gas mixture flow to the counter was supplied through a pipe with RTV coated wall. As a result, the amplitude of the signal decreased 70% already at accumulated charge of Q = 0.03 C/cm. The etching of the silicon compounds on the wire surface with an 80%CF4 + 20%CO2 gas mixture discharge led to full recovery of the operating characteristics of detector and an increase in the lifetime. A scanning electron microscopy and X-ray spectroscopy analysis of the recovered wire surface were performed. In accordance with the results, a good quality of wire cleaning from SiO2 compounds was obtained.

  16. Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode

    NASA Astrophysics Data System (ADS)

    Lanas, Vanessa; Ahn, Yongtae; Logan, Bruce E.

    2014-02-01

    Larger scale microbial fuel cells (MFCs) require compact architectures to efficiently treat wastewater. We examined how anode-brush diameter, number of anodes, and electrode spacing affected the performance of the MFCs operated in fed-batch and continuous flow mode. All anodes were initially tested with the brush core set at the same distance from the cathode. In fed-batch mode, the configuration with three larger brushes (25 mm diameter) produced 80% more power (1240 mW m-2) than reactors with eight smaller brushes (8 mm) (690 mW m-2). The higher power production by the larger brushes was due to more negative and stable anode potentials than the smaller brushes. The same general result was obtained in continuous flow operation, although power densities were reduced. However, by moving the center of the smaller brushes closer to the cathode (from 16.5 to 8 mm), power substantially increased from 690 to 1030 mW m-2 in fed batch mode. In continuous flow mode, power increased from 280 to 1020 mW m-2, resulting in more power production from the smaller brushes than the larger brushes (540 mW m-2). These results show that multi-electrode MFCs can be optimized by selecting smaller anodes, placed as close as possible to the cathode.

  17. Plasma properties and heating at the anode of a 1 kW arcjet using electrostatic probes

    NASA Astrophysics Data System (ADS)

    Tiliakos, Nicholas

    A 1 kW hydrazine arcjet thruster has been modified for internal probing of the near-anode boundary layer with an array of fourteen electrostatic micro-probes. The main objectives of this experimental investigation were to: (1) obtain axial and azimuthal distributions of floating potential phisbf, anode sheath potential phisbs, probe current density at zero volts jsba, electron number density nsbes, electron temperature Tsbes, and anode heating due to electrons qsbe for arc currents Isbarc, between 7.8 and 10.6 A, propellant flow rates m = 40-60 mg/s, and specific energies, 18.8 MJ/kg ≤ P/m ≤ 27.4 MJ/kg; (2) probe the anode boundary layer using flush-mounted and cylindrical micro-probes; (3) verify azimuthal current symmetry; (4) understand what affects anode heating, a critical thruster lifetime issue; and (5) provide experimental data for validation of the Megli-Krier-Burton (MKB) model. All of the above objectives were met through the design, fabrication and implementation of fourteen electrostatic micro-probes, of sizes ranging from 0.170 mm to 0.43 mm in diameter. A technique for cleaning and implementing these probes was developed. Two configurations were used: flush-mounted planar probes and cylindrical probes extended 0.10-0.30 mm into the plasma flow. The main results of this investigation are: (1) electrostatic micro-probes can successfully be used in the harsh environment of an arcjet; (2) under all conditions tested the plasma is highly non-equilibrium in the near-anode region; (3) azimuthal current symmetry exists for most operating conditions; (4) the propellant flow rate affects the location of maximum anode sheath potential, current density, and anode heating more than the arc current; (5) the weighted anode sheath potential is always positive and varies from 8-17 V depending on thruster operating conditions; (6) the fraction of anode heating varies from 18-24% of the total input power over the range of specific energies tested; and (7) based on an energy loss factor of delta = 1200, reasonable correlation between the experimental data and the MKB model was found.

  18. Biotransformation of furanic and phenolic compounds with hydrogen gas production in a microbial electrolysis cell

    DOE PAGES

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    2015-10-27

    In this study, furanic and phenolic compounds are problematic byproducts resulting from the decomposition of lignocellulosic biomass during biofuel production. This study assessed the capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H 2) using a mixture of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the sole carbon and energy source in the bioanode. The rate and extent of biotransformation of the five compounds, efficiency of H 2 production, as well as the anode microbial community structure were investigated. The five compoundsmore » were completely transformed within 7-day batch runs and their biotransformation rate increased with increasing initial concentration. At an initial concentration of 1,200 mg/L (8.7 mM) of the mixture of the five compounds, their biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode coulombic efficiency was 44-69%, which is comparable to wastewater-fed MECs. The H 2 yield varied from 0.26 to 0.42 g H 2-COD/g COD removed in the anode, and the bioanode volume-normalized H 2 production rate was 0.07-0.1 L/L-d. The major identified fermentation products that did not transform further were catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H 2 production were inhibited at an initial substrate concentration of 1,200 mg/L, resulting in acetate accumulation at a much higher level than that measured in other batch runs conducted with a lower initial concentration of the five compounds. The anode microbial community consisted of exoelectrogens, putative degraders of the five compounds, and syntrophic partners of exoelectrogens. The H 2 production route demonstrated in this study has proven to be an alternative to the currently used process of reforming natural gas to supply H 2 needed to upgrade bio-oils to stable hydrocarbon fuels.« less

  19. Experimental Study of the Morphology and Dynamics of Gas-Laden Layers Under the Anodes in an Air-Water Model of Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Vékony, Klára; Kiss, László I.

    2012-10-01

    The bubble layer formed under an anode and the bubble-induced flow play a significant role in the aluminum electrolysis process. The bubbles covering the anode bottom reduce the efficient surface that can carry current. In our experiments, we filmed and studied the bubble layer under the anode in a real-size air-water electrolysis cell model. Three different flow regimes were found depending on the gas generation rate. The covering factor was found to be proportional to the gas generation rate and inversely proportional to the angle of inclination. A correlation between the average height of the entire bubble layer and the position under the anode was determined. From this correlation and the measured contact sizes, the volume of the accumulated gas was calculated. The sweeping effect of large bubbles was observed. Moreover, the small bubbles under the inner edge of the anode were observed to move backward as a result of the escape of huge gas pockets, which means large momentum transport occurs in the bath.

  20. Methanol sensor operated in a passive mode

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    A sensor outputs a signal related to a concentration of methanol in an aqueous solution adjacent the sensor. A membrane electrode assembly (MEA) is included with an anode side and a cathode side. An anode current collector supports the anode side of the MEA and has a flow channel therethrough for flowing a stream of the aqueous solution and forms a physical barrier to control access of the methanol to the anode side of the MEA. A cathode current collector supports the cathode side of the MEA and is configured for air access to the cathode side of the MEA. A current sensor is connected to measure the current in a short circuit across the sensor electrodes to provide an output signal functionally related to the concentration of methanol in the aqueous solution.

  1. Electrochemical cell structure including an ionomeric barrier

    DOEpatents

    Lambert, Timothy N.; Hibbs, Michael

    2017-06-20

    An apparatus includes an electrochemical half-cell comprising: an electrolyte, an anode; and an ionomeric barrier positioned between the electrolyte and the anode. The anode may comprise a multi-electron vanadium phosphorous alloy, such as VP.sub.x, wherein x is 1-5. The electrochemical half-cell is configured to oxidize the vanadium and phosphorous alloy to release electrons. A method of mitigating corrosion in an electrochemical cell includes disposing an ionomeric barrier in a path of electrolyte or ion flow to an anode and mitigating anion accumulation on the surface of the anode.

  2. Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation.

    PubMed

    Cotillas, Salvador; Llanos, Javier; Cañizares, Pablo; Mateo, Sara; Rodrigo, Manuel A

    2013-04-01

    In this work, a novel integrated electrochemical process for urban wastewater regeneration is described. The electrochemical cell consists in a Boron Doped Diamond (BDD) or a Dimensionally Stable Anode (DSA) as anode, a Stainless Steel (SS) as cathode and a perforated aluminum plate, which behaves as bipolar electrode, between anode and cathode. Thus, in this cell, it is possible to carry out, at the same time, two different electrochemical processes: electrodisinfection (ED) and electrocoagulation (EC). The treatment of urban wastewater with different anodes and different operating conditions is studied. First of all, in order to check the process performance, experiments with synthetic wastewaters were carried out, showing that it is possible to achieve a 100% of turbidity removal by the electrodissolution of the bipolar electrode. Next, the effect of the current density and the anode material are studied during the ED-EC process of actual effluents. Results show that it is possible to remove Escherichia coli and turbidity simultaneously of an actual effluent from a WasteWater Treatment Facility (WWTF). The use of BDD anodes allows to remove the E. coli completely at an applied electric charge of 0.0077 A h dm(-3) when working with a current density of 6.65 A m(-2). On the other hand, with DSA anodes, the current density necessary to achieve the total removal of E. coli is higher (11.12 A m(-2)) than that required with BDD anodes. Finally, the influence of cell flow path and flow rate have been studied. Results show that the performance of the process strongly depends on the characteristics of the initial effluent (E. coli concentration and Cl(-)/NH(4)(+) initial ratio) and that a cell configuration cathode (inlet)-anode (outlet) and a higher flow rate enhance the removal of the turbidity from the treated effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Occurrence and Removal of Organic Micropollutants in Landfill Leachates Treated by Electrochemical Advanced Oxidation Processes.

    PubMed

    Oturan, Nihal; van Hullebusch, Eric D; Zhang, Hui; Mazeas, Laurent; Budzinski, Hélène; Le Menach, Karyn; Oturan, Mehmet A

    2015-10-20

    In recent years, electrochemical advanced oxidation processes have been shown to be an effective alternative for the removal of refractory organic compounds from water. This study is focused on the effective removal of recalcitrant organic matter (micropollutants, humic substances, etc.) present in municipal solid waste landfill leachates. A mixture of eight landfill leachates has been studied by the electro-Fenton process using a Pt or boron-doped diamond (BDD) anode and a carbon felt cathode or by the anodic oxidation process with a BDD anode. These processes exhibit great oxidation ability due to the in situ production of hydroxyl radicals ((•)OH), a highly powerful oxidizing species. Both electrochemical processes were shown to be efficient in the removal of dissolved total organic carbon (TOC) from landfill leachates. Regarding the electro-Fenton process, the replacement of the classical anode Pt by the anode BDD allows better performance in terms of dissolved TOC removal. The occurrence and removal yield of 19 polycyclic aromatic hydrocarbons, 15 volatile organic compounds, 7 alkylphenols, 7 polychlorobiphenyls, 5 organochlorine pesticides, and 2 polybrominated diphenyl ethers in landfill leachate were also investigated. Both electrochemical processes allow one to reach a quasicomplete removal (about 98%) of these organic micropollutants.

  4. Electrokinetic delivery of persulfate to remediate PCBs polluted soils: effect of injection spot.

    PubMed

    Fan, Guangping; Cang, Long; Fang, Guodong; Qin, Wenxiu; Ge, Liqiang; Zhou, Dongmei

    2014-12-01

    Persulfate-based in situ chemical oxidation (ISCO) is a promising technique for the remediation of organic compounds contaminated soils. Electrokinetics (EK) provides an alternative method to deliver oxidants into the target zones especially in low permeable-soil. In this study, the flexibility of delivering persulfate by EK to remediate polychlorinated biphenyls (PCBs) polluted soil was investigated. 20% (w/w) of persulfate was injected at the anode, cathode and both electrodes to examine its transport behaviors under electrical field, and the effect of field inversion process was also evaluated. The results showed that high dosage of persulfate could be delivered into S4 section (near cathode) by electroosmosis when persulfate was injected from anode, 30.8% of PCBs was removed from the soil, and the formed hydroxyl precipitation near the cathode during EK process impeded the transportation of persulfate. In contrast, only 18.9% of PCBs was removed with the injection of persulfate from cathode, although the breakthrough of persulfate into the anode reservoir was observed. These results indicated that the electroosmotic flow is more effective for the transportation of persulfate into soil. The addition of persulfate from both electrodes did not significantly facilitate the PCBs oxidation as well as the treatment of electrical field reversion, the reinforced negative depolarization function occurring in the cathode at high current consumed most of the oxidant. Furthermore, it was found that strong acid condition near the anode favored the oxidation of PCBs by persulfate and the degradation of PCBs was in consistent with the oxidation of Soil TOC in EK/persulfate system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Electrochemical oxidation of nitrogen-heterocyclic compounds at boron-doped diamond electrode.

    PubMed

    Xing, Xuan; Zhu, Xiuping; Li, Hongna; Jiang, Yi; Ni, Jinren

    2012-01-01

    Nitrogen-heterocyclic compounds (NHCs) are toxic and bio-refractory contaminants widely spread in environment. This study investigated electrochemical degradation of NHCs at boron-doped diamond (BDD) anode with particular attention to the effect of different number and position of nitrogen atoms in molecular structure. Five classical NHCs with similar structures including indole (ID), quinoline (QL), isoquinoline (IQL), benzotriazole (BT) and benzimidazole (BM) were selected as the target compounds. Results of bulk electrolysis showed that degradation of all NHCs was fit to a pseudo first-order equation. The five compounds were degraded with the following sequence: ID>QL>IQL>BT>BM in terms of their rates of oxidation. Quantum chemical calculation was combined with experimental results to describe the degradation character of NHCs at BDD anode. A linear relationship between degradation rate and delocalization energy was observed, which demonstrated that electronic charge was redistributed through the conjugation system and accumulated at the active sites under the attack of hydroxyl radicals produced at BDD anode. Moreover, atom charge was calculated by semi empirical PM3 method and active sites of NHCs were identified respectively. Analysis of intermediates by GC-MS showed agreement with calculation results. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Simulative research on the anode plasma dynamics in the high-power electron beam diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Dan; Liu, Lie; Ju, Jin-Chuan

    2015-07-15

    Anode plasma generated by electron beams could limit the electrical pulse-length, modify the impedance and stability of diode, and affect the generator to diode power coupling. In this paper, a particle-in-cell code is used to study the dynamics of anode plasma in the high-power electron beam diode. The effect of gas type, dynamic characteristic of ions on the diode operation with bipolar flow model are presented. With anode plasma appearing, the amplitude of diode current is increased due to charge neutralizations of electron flow. The lever of neutralization can be expressed using saturation factor. At same pressure of the anodemore » gas layer, the saturation factor of CO{sub 2} is bigger than the H{sub 2}O vapor, namely, the generation rate of C{sup +} ions is larger than the H{sup +} ions at the same pressure. The transition time of ions in the anode-cathode gap could be used to estimate the time of diode current maximum.« less

  7. High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion

    DOEpatents

    Forrest, Stephen; Zhang, Yifan

    2015-02-10

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include an organic host compound and at least one organic emitting compound capable of fluorescent emission at room temperature. Various configurations are described for providing a range of current densities in which T-T fusion dominates over S-T annihilation, leading to very high efficiency fluorescent OLEDs.

  8. Aerogel and xerogel composites for use as carbon anodes

    DOEpatents

    Cooper, John F [Oakland, CA; Tillotson, Thomas M [Tracy, CA; Hrubesh, Lawrence W [Pleasanton, CA

    2008-08-12

    Disclosed herein are aerogel and xerogel composite materials suitable for use as anodes in fuel cells and batteries. Precursors to the aerogel and xerogel compounds are infused with inorganic polymeric materials or carbon particles and then gelled. The gels are then pyrolyzed to form composites with internal structural support.

  9. Numerical Investigation on the Impact of Anode Change on Heat Transfer and Fluid Flow in Aluminum Smelting Cells

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Gosselin, Louis; Fafard, Mario; Peng, Jianping; Li, Baokuan

    2016-04-01

    In order to understand the impact of anode change on heat transfer and magnetohydrodynamic flow in aluminum smelting cells, a transient three-dimensional (3D) coupled mathematical model has been developed. The solutions of the mass, momentum, and energy conservation equations were simultaneously implemented by the finite volume method with full coupling of the Joule heating and Lorentz force through solving the electrical potential equation. The volume of fluid approach was employed to describe the two-phase flow. The phase change of molten electrolyte (bath) as well as molten aluminum (metal) was modeled by an enthalpy-based technique, where the mushy zone is treated as a porous medium with a porosity equal to the liquid fraction. The effect of the new anode temperature on recovery time was also analyzed. A reasonable agreement between the test data and simulated results is obtained. The results indicate that the temperature of the bath under cold anodes first decreases reaching the minimal value and rises under the effect of increasing Joule heating, and finally returns to steady state. The colder bath decays the velocity, and the around ledge becomes thicker. The lowest temperature of the bath below new anodes increases from 1118 K to 1143 K (845 °C to 870 °C) with the new anode temperature ranging from 298 K to 498 K (25°C to 225°C), and the recovery time reduces from 22.5 to 20 hours.

  10. Thermal investigation of an electrical high-current arc with porous gas-cooled anode

    NASA Technical Reports Server (NTRS)

    Eckert, E. R. G.; Schoeck, P. A.; Winter, E. R. F.

    1984-01-01

    The following guantities were measured on a high-intensity electric arc with tungsten cathode and transpiration-cooled graphite anode burning in argon: electric current and voltage, cooling gas flow rate (argon), surface temperature of the anode and of the anode holder, and temperature profile in three cross-sections of the arc are column. The last mentioned values were obtained from spectroscopic photographs. From the measured quantities, the following values were calculated: the heat flux into the anode surface, the heat loss of the anode by radiation and conduction, and the heat which was regeneratively transported by the cooling gas back into the arc space. Heat balances for the anode were also obtained. The anode losses (which are approximately 80% of the total arc power for free burning arcs) were reduced by transpiration cooling to 20%. The physical processes of the energy transfer from the arc to the anode are discussed qualitatively.

  11. Nanoporous anodic titanium dioxide layers as potential drug delivery systems: Drug release kinetics and mechanism.

    PubMed

    Jarosz, Magdalena; Pawlik, Anna; Szuwarzyński, Michał; Jaskuła, Marian; Sulka, Grzegorz D

    2016-07-01

    Nanoporous anodic titanium dioxide (ATO) layers on Ti foil were prepared via a three step anodization process in an electrolyte based on an ethylene glycol solution with fluoride ions. Some of the ATO samples were heat-treated in order to achieve two different crystallographic structures - anatase (400°C) and a mixture of anatase and rutile (600°C). The structural and morphological characterizations of ATO layers were performed using a field emission scanning electron microscope (SEM). The hydrophilicity of ATO layers was determined with contact angle measurements using distilled water. Ibuprofen and gentamicin were loaded effectively inside the ATO nanopores. Afterwards, an in vitro drug release was conducted for 24h under a static and dynamic flow conditions in a phosphate buffer solution at 37°C. The drug concentrations were determined using UV-Vis spectrophotometry. The absorbance of ibuprofen was measured directly at 222nm, whether gentamicin was determined as a complex with silver nanoparticles (Ag NPs) at 394nm. Both compounds exhibited long term release profiles, despite the ATO structure. A new release model, based on the desorption of the drug from the ATO top surface followed by the desorption and diffusion of the drug from the nanopores, was derived. The proposed release model was fitted to the experimental drug release profiles, and kinetic parameters were calculated. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Phenol Contaminated Water Treatment on Several Modified Dimensionally Stable Anodes.

    PubMed

    Jayathilaka, Pavithra Bhakthi; Hapuhinna, Kushani Umanga Kumari; Bandara, Athula; Nanayakkara, Nadeeshani; Subasinghe, Nalaka Deepal

    2017-08-01

      Phenolic compounds are some of the most common hazardous organics in wastewater. Removal of these pollutants is important. Physiochemical method such as electrochemical oxidation on dimensionally stable anodes is more convenient in removing such organic pollutants. Therefore, this study focuses on development of three different anodes for phenol contaminated water treatment. The performances of steel/IrO2, steel/IrO2-Sb2O3, and Ti/IrO2-Sb2O3 anodes were tested and compared. Nearly 50, 76, and 84% of chemical oxygen demand removal efficiencies were observed for steel/IrO2, steel/IrO2-Sb2O3, and Ti/IrO2-Sb2O3 anodes, respectively. The formation of intermediates was monitored for three anodes and the Ti/IrO2-Sb2O3 anode showed the most promising results. Findings suggest that the developed anode materials can enhance phenol oxidation efficiency and that mixed metal oxide layer has major influence on the anode. Among the selected metal oxide mixtures IrO2-Sb2O3 was the most suitable under given experimental conditions.

  13. Electrochemical impedance spectroscopy analysis of a thin polymer film-based micro-direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Schulz, Tobias; Weinmüller, Christian; Nabavi, Majid; Poulikakos, Dimos

    A single cell micro-direct methanol fuel cell (micro-DMFC) was investigated using electrochemical impedance spectroscopy. The electrodes consisted of thin, flexible polymer (SU8) film microchannel structures fabricated in-house using microfabrication techniques. AC impedance spectroscopy was used to separate contributions to the overall cell polarization from the anode, cathode and membrane. A clear distinction between the different electrochemical phenomena occurring in the micro-DMFC, especially the distinction between double layer charging and Faradaic reactions was shown. The effect of fuel flow rate, temperature, and anode flow channel structure on the impedance of the electrode reactions and membrane/electrode double layer charging were investigated. Analysis of impedance data revealed that the performance of the test cell was largely limited by the presence of intermediate carbon monoxide in the anode reaction. Higher temperatures increase cell performance by enabling intermediate CO to be oxidized at much higher rates. The results also revealed that serpentine anode flow microchannels show a lower tendency to intermediate CO coverage and a more stable cell behavior than parallel microchannels.

  14. Analytic model of a magnetically insulated transmission line with collisional flow electrons

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Wagoner, T. C.; Ives, H. C.; Corcoran, P. A.; Cuneo, M. E.; Douglas, J. W.; Gilliland, T. L.; Mazarakis, M. G.; Ramirez, J. J.; Seamen, J. F.; Seidel, D. B.; Spielman, R. B.

    2006-09-01

    We have developed a relativistic-fluid model of the flow-electron plasma in a steady-state one-dimensional magnetically insulated transmission line (MITL). The model assumes that the electrons are collisional and, as a result, drift toward the anode. The model predicts that in the limit of fully developed collisional flow, the relation between the voltage Va, anode current Ia, cathode current Ik, and geometric impedance Z0 of a 1D planar MITL can be expressed as Va=IaZ0h(χ), where h(χ)≡[(χ+1)/4(χ-1)]1/2-ln⁡⌊χ+(χ2-1)1/2⌋/2χ(χ-1) and χ≡Ia/Ik. The relation is valid when Va≳1MV. In the minimally insulated limit, the anode current Ia,min⁡=1.78Va/Z0, the electron-flow current If,min⁡=1.25Va/Z0, and the flow impedance Zf,min⁡=0.588Z0. {The electron-flow current If≡Ia-Ik. Following Mendel and Rosenthal [Phys. Plasmas 2, 1332 (1995)PHPAEN1070-664X10.1063/1.871345], we define the flow impedance Zf as Va/(Ia2-Ik2)1/2.} In the well-insulated limit (i.e., when Ia≫Ia,min⁡), the electron-flow current If=9Va2/8IaZ02 and the flow impedance Zf=2Z0/3. Similar results are obtained for a 1D collisional MITL with coaxial cylindrical electrodes, when the inner conductor is at a negative potential with respect to the outer, and Z0≲40Ω. We compare the predictions of the collisional model to those of several MITL models that assume the flow electrons are collisionless. We find that at given values of Va and Z0, collisions can significantly increase both Ia,min⁡ and If,min⁡ above the values predicted by the collisionless models, and decrease Zf,min⁡. When Ia≫Ia,min⁡, we find that, at given values of Va, Z0, and Ia, collisions can significantly increase If and decrease Zf. Since the steady-state collisional model is valid only when the drift of electrons toward the anode has had sufficient time to establish fully developed collisional flow, and collisionless models assume there is no net electron drift toward the anode, we expect these two types of models to provide theoretical bounds on Ia, If, and Zf.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    In this study, furanic and phenolic compounds are problematic byproducts resulting from the decomposition of lignocellulosic biomass during biofuel production. This study assessed the capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H 2) using a mixture of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the sole carbon and energy source in the bioanode. The rate and extent of biotransformation of the five compounds, efficiency of H 2 production, as well as the anode microbial community structure were investigated. The five compoundsmore » were completely transformed within 7-day batch runs and their biotransformation rate increased with increasing initial concentration. At an initial concentration of 1,200 mg/L (8.7 mM) of the mixture of the five compounds, their biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode coulombic efficiency was 44-69%, which is comparable to wastewater-fed MECs. The H 2 yield varied from 0.26 to 0.42 g H 2-COD/g COD removed in the anode, and the bioanode volume-normalized H 2 production rate was 0.07-0.1 L/L-d. The major identified fermentation products that did not transform further were catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H 2 production were inhibited at an initial substrate concentration of 1,200 mg/L, resulting in acetate accumulation at a much higher level than that measured in other batch runs conducted with a lower initial concentration of the five compounds. The anode microbial community consisted of exoelectrogens, putative degraders of the five compounds, and syntrophic partners of exoelectrogens. The H 2 production route demonstrated in this study has proven to be an alternative to the currently used process of reforming natural gas to supply H 2 needed to upgrade bio-oils to stable hydrocarbon fuels.« less

  16. Design and Evaluation of a Boron Dipyrrin Electrophore for Redox Flow Batteries.

    PubMed

    Heiland, Niklas; Cidarér, Clemens; Rohr, Camilla; Piescheck, Mathias; Ahrens, Johannes; Bröring, Martin; Schröder, Uwe

    2017-08-29

    A boron dipyrrin (BODIPY) dye was designed as a molecular single-component electrophore for redox flow batteries. All positions of the BODIPY core were assessed on the basis of literature data, in particular cyclic voltammetry and density functional calculations, and a minimum required substitution pattern was designed to provide solubility, aggregation, radical cation and anion stabilities, a large potential window, and synthetic accessibility. In-depth electrochemical and physical studies of this electrophore revealed suitable cathodic behavior and stability of the radical anion but rapid anodic decomposition of the radical cation. The three products that formed under the conditions of controlled oxidative electrolysis were isolated, and their structures were determined by spectroscopy and comparison with a synthetic model compound. From these structures, a benzylic radical reactivity, initiated by one-electron oxidation, was concluded to play the major role in this unexpected decomposition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Anode power in quasisteady magnetoplasmadynamic accelerators

    NASA Technical Reports Server (NTRS)

    Saber, A. J.; Jahn, R. G.

    1978-01-01

    Anode heat flux in a quasi-steady MPD accelerator has been measured directly and locally by thermocouples attached to the inside surface of a shell anode. These measurements show that over a range of arc current from 5.5 to 44 kA, and argon mass flow from 1 to 48 g/s, the fraction of the total arc power deposited in the anode decreases from 50% at 200 kW to 10% at 20 MW. A theoretical model of the anode heat transfer asserts that energy exchange between electrons and heavy particles in the plasma near the anode occurs over distances greater than the anode sheath thickness, and hence the usual anode fall voltage, electron temperature, and work function contributions to the anode heat flux are supplemented by a contribution from the interelectrode potential. Calculations of anode heat flux using the measured current density, plasma potential, and electron temperature in the plasma adjacent to the anode agree with the direct measurements and indicate that the decrease in anode power fraction at higher arc powers can be attributed to the smaller mean free paths in the interelectrode plasma.

  18. Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system.

    PubMed

    Xie, Shan; Liang, Peng; Chen, Yang; Xia, Xue; Huang, Xia

    2011-01-01

    A coupled microbial fuel cell (MFC) system comprising of an oxic-biocathode MFC (O-MFC) and an anoxic-biocathode MFC (A-MFC) was implemented for simultaneous removal of carbon and nitrogen from a synthetic wastewater. The chemical oxygen demand (COD) of the influent was mainly reduced at the anodes of the two MFCs; ammonium was oxidized to nitrate in the O-MFC's cathode, and nitrate was electrochemically denitrified in the A-MFC's cathode. The coupled MFC system reached power densities of 14 W/m(3) net cathodic compartment (NCC) and 7.2 W/m(3) NCC for the O-MFC and the A-MFC, respectively. In addition, the MFC system obtained a maximum COD, NH(4)(+)-N and TN removal rate of 98.8%, 97.4% and 97.3%, respectively, at an A-MFC external resistance of 5 Ω, a recirculation ratio (recirculated flow to total influent flow) of 2:1, and an influent flow ratio (O-MFC anode flow to A-MFC anode flow) of 1:1. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Non-aqueous electrolytes for electrochemical cells

    DOEpatents

    Zhang, Zhengcheng; Dong, Jian; Amine, Khalil

    2016-06-14

    An electrolyte electrochemical device includes an anodic material and an electrolyte, the electrolyte including an organosilicon solvent, a salt, and a hybrid additiving having a first and a second compound, the hybrid additive configured to form a solid electrolyte interphase film on the anodic material upon application of a potential to the electrochemical device.

  20. The influence of geometrical characteristics on the photocatalytic activity of TiO2 nanotube arrays for degradation of refractory organic pollutants in wastewater.

    PubMed

    Noeiaghaei, T; Yun, J-H; Nam, S W; Zoh, K D; Gomes, V G; Kim, J O; Chae, S R

    2015-01-01

    The effects of geometrical characteristics such as surface area (SA) and porosity of TiO2 nanotube arrays (TNAs) on its photocatalytic activity were investigated by applying variable voltages and reaction times for the anodization of Ti substrates. While larger SA of nanotubes was observed under higher applied potential, the porosity of TNAs decreased by increasing anodizing voltage. Under applied potential of 80 V, the SA of TNAs increased from 0.164 to 0.471 m2/g as anodization time increased from 1 to 5 hours, respectively. However, no significant effect on the porosity of TNAs was observed. On the other hand, both SA and porosity of TNAs, synthesized at 60 V, increased by augmenting the anodization time from 1 to 3 hours. But further increasing of anodization time to 5 hours resulted in a decreased SA of TNAs with no effect on their porosity. Accordingly, the TNAs with SA of 0.368 m2/g and porosity of 47% showed the highest photocatalytic activity for degradation of 4-chlorobenzoic acid (4CBA). Finally, the degradation of refractory model compounds such as carbamazepine and bisphenol-A was tested and more than 50% of both compounds could be degraded under UV-A irradiation (λmax=365 nm).

  1. Performance evaluation of a continuous-flow bioanode microbial electrolysis cell fed with furanic and phenolic compounds

    DOE PAGES

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    2016-07-04

    Furanic and phenolic compounds, formed during the pretreatment of lignocellulosic biomass, are problematic byproducts in down-stream biofuel processes. A microbial electrolysis cell (MEC) is an alternative technology to handle furanic and phenolic compounds and produce renewable hydrogen (H 2). In this study, we evaluated the performance of a continuous-flow bioanode MEC fed with furanic and phenolic compounds at different operating conditions. All hydraulic retention times (HRTs) tested (6-24 h) resulted in complete transformation of the parent compounds at an organic loading rate (OLR) of 0.2g L -1 per d and applied voltage of 0.6 V. Increasing the OLR to 0.8more » g L -1 per d at an HRT of 6h resulted in an increased H 2 production rate from 0.07 to 0.14 L L anode 1 per d, but an OLR of 3.2 g L -1 per d did not lead to a higher H 2 production rate. Significant methane production was observed at an OLR of 3.2 g L -1 per d. The lack of increased H 2 production at the highest OLR tested was due to a limited rate of exoelectrogenesis but not fermentation, evidenced by the accumulation of high acetate levels and higher growth of fermenters and methanogens over exoelectrogens. Increasing applied voltage from 0.6 to 1.0V at an OLR of 3.2 g L -1 per d and HRT of 6h enhanced exoelectrogenesis and resulted in a 1.7-fold increase of H 2 production. Under all operating conditions, more than 90% of the biomass was biofilm-associated. Lastly, the present study provides new insights into the performance of continuous-flow bioelectrochemical systems fed with complex waste streams resulting from the pretreatment of lignocellulosic biomass.« less

  2. Electrochemically induced dual reactive barriers for transformation of TCE and mixture of contaminants in groundwater.

    PubMed

    Mao, Xuhui; Yuan, Songhu; Fallahpour, Noushin; Ciblak, Ali; Howard, Joniqua; Padilla, Ingrid; Loch-Caruso, Rita; Alshawabkeh, Akram N

    2012-11-06

    A novel reactive electrochemical flow system consisting of an iron anode and a porous cathode is proposed for the remediation of mixture of contaminants in groundwater. The system consists of a series of sequentially arranged electrodes, a perforated iron anode, a porous copper cathode followed by a mesh-type mixed metal oxide anode. The iron anode generates ferrous species and a chemically reducing environment, the porous cathode provides a reactive electrochemically reducing barrier, and the inert anode provides protons and oxygen to neutralize the system. The redox conditions of the electrolyte flowing through this system can be regulated by controlling the distribution of the electric current. Column experiments are conducted to evaluate the process and study the variables. The electrochemical reduction on a copper foam cathode produced an electrode-based reductive potential capable of reducing TCE and nitrate. Rational electrodes arrangement, longer residence time of electrolytes and higher surface area of the foam electrode improve the reductive transformation of TCE. More than 82.2% TCE removal efficiency is achieved for the case of low influent concentration (<7.5 mg/L) and high current (>45 mA). The ferrous species produced from the iron anode not only enhance the transformation of TCE on the cathode, but also facilitates transformation of other contaminants including dichromate, selenate and arsenite. Removal efficiencies greater than 80% are achieved for these contaminants in flowing contaminated water. The overall system, comprising the electrode-based and electrolyte-based barriers, can be engineered as a versatile and integrated remedial method for a relatively wide spectrum of contaminants and their mixtures.

  3. Monopolar fuel cell stack coupled together without use of top or bottom cover plates or tie rods

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor)

    2009-01-01

    A monopolar fuel cell stack comprises a plurality of sealed unit cells coupled together. Each unit cell comprises two outer cathodes adjacent to corresponding membrane electrode assemblies and a center anode plate. An inlet and outlet manifold are coupled to the anode plate and communicate with a channel therein. Fuel flows from the inlet manifold through the channel in contact with the anode plate and flows out through the outlet manifold. The inlet and outlet manifolds are arranged to couple to the inlet and outlet manifolds respectively of an adjacent one of the plurality of unit cells to permit fuel flow in common into all of the inlet manifolds of the plurality of the unit cells when coupled together in a stack and out of all of the outlet manifolds of the plurality of unit cells when coupled together in a stack.

  4. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    DOEpatents

    Ruka, Roswell J [Pittsburgh, PA; Basel, Richard A [Pittsburgh, PA; Zhang, Gong [Murrysville, PA

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  5. The critical pressure drop for the purge process in the anode of a fuel cell

    NASA Astrophysics Data System (ADS)

    Yu, Xiao; Pingwen, Ming; Ming, Hou; Baolian, Yi; Shao, Zhi-Gang

    Purge operation is an effective way to remove the accumulated liquid water in the anode of proton exchange membrane fuel cells (PEMFCs). This paper studies the phenomenon of the two-phase flow as well as the pressure drop fluctuation inside the flow field of a single cell during the purge process. The flow patterns are identified as intermittent purge and annular purge, and the two purge processes are contrastively analyzed and discussed. The intermittent purge greatly affects the fuel cell performance and thus it is not suitable for the in situ application. The annular purge process requires a higher pressure drop, and the critical pressure drop is calculated from the annular purge model. Furthermore, this value is quantitatively analyzed and validated by experiments. The results show that the annular purge is appropriate for removing liquid water out of the anode in the fuel cell.

  6. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, M.S.; Zawodzinski, C.

    1998-08-25

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.

  7. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    2001-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  8. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    1998-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  9. Integrated structure vacuum tube: A Concept

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Kerwin, W. J.

    1974-01-01

    Cathode emission is made to occur by heating entire structure to 600 C, and positive potential is applied to anode with negative potential on grids. Electron flow takes place from ring to circular anode through electric field produced by grids.

  10. Anode power in a quasi-steady MPD thruster. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Saber, A. J.

    1974-01-01

    Local anode heat flux in a quasi-steady MPD thruster is measured by thermocouples attached to the inside surface of a shell anode. Over a range of arc currents J from 5.5 to 44 kiloamperes and argon propellant mass flows m from 1 to 48 g/sec, with the ratio J2/m held constant, the fraction of arc power deposited in the anode is found to decrease with increasing arc power. Specifically, this anode power fraction decreases from 50% at 200 kW arc power, to 10% at 20 MW. In an effort to account for this functional behavior, the current density, plasma potential, and electron temperature in the plasma adjacent to the anode are measured with probes, and the results are used in a theoretical anode heat flux model. The model asserts that energy exchange between electrons and heavy particles in the plasma near the anode occur over distances greater than the anode sheath thickness.

  11. μPIV measurements of two-phase flows of an operated direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Burgmann, Sebastian; Blank, Mirja; Panchenko, Olha; Wartmann, Jens

    2013-05-01

    In direct methanol fuel cells (DMFCs), two-phase flows appear in the channels of the anode side (CO2 bubbles in a liquid water-methanol environment) as well as of the cathode side (water droplets or films in an ambient air flow). CO2 bubbles or water droplets may almost completely fill the cross-section of a channel. The instantaneous effect of the formation of two-phase flows on the cell performance has not been investigated in detail, yet. In the current project, the micro particle image velocimetry (μPIV) technique is used to elucidate the corresponding flow phenomena on the anode as well as on the cathode side of a DMFC and to correlate those phenomena with the performance of the cell. A single-channel DMFC with optical access at the anode and the cathode side is constructed and assembled that allows for μPIV measurements at both sides as well as a detailed time-resolved cell voltage recording. The appearance and evolution of CO2 bubbles on the anode side is qualitatively and quantitatively investigated. The results clearly indicate that the cell power increases when the free cross-section area of the channel is decreased by huge bubbles. Methanol is forced into the porous gas diffusion layer (GDL) between the channels and the membrane is oxidized to CO2, and hence, the fuel consumption is increased and the cell performance rises. Eventually, a bubble forms a moving slug that effectively cleans the channel from CO2 bubbles on its way downstream. The blockage effect is eliminated; the methanol flow is not forced into the GDL anymore. The remaining amount of methanol in the GDL is oxidized. The cell power decreases until enough CO2 is produced to eventually form bubbles again and the process starts again. On the other hand under the investigated conditions, water on the cathode side only forms liquid films on the channels walls rather than channel-filling droplets. Instantaneous changes of the cell power due to liquid water formation could not be observed. The timescales of the two-phase flow on the cathode side are significantly larger than on the anode side. However, the μPIV measurements at the cathode side demonstrate the ability of feeding gas flows in microchannels with liquid tracer particles and the ability to measure in two-phase flows in such a configuration.

  12. Hybrid anode for semiconductor radiation detectors

    DOEpatents

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  13. (abstract) Effect of Electrolyte Composition on Carbon Electrode Performance

    NASA Technical Reports Server (NTRS)

    Huang, C-K.; Surampudi, S.; Shen, D. H.; Halpert, G.

    1993-01-01

    Rechargeable lithium cells containing lithium foil anodes are reported to have limited cycle life (at 100% DOD) performance and safety problems. These limitations are understood to be due to the high reactivity of elemental Li with the electrolyte and the formation of high surface area Li during cycling. To mitigate these problems, several lithium alloys and lithium intercalation compounds are being investigated as alternate lithium anode materials. Li(sub x)C has been identified as a promising lithium anode material due to its low equivalent weight, low voltage vs. Li, and improved stability towards various electrolytes. In this paper, we report the results of our studies on the electrolyte evaluation for the Li(sub x)C anode.

  14. An Insoluble Titanium-Lead Anode for Sulfate Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferdman, Alla

    2005-05-11

    The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead compositemore » material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no measurable anode weight loss during this time period. Quantitative chemical analysis of the anode surface showed that the lead content after testing remained at its initial level. No lead dissolution or transfer from the anode to the product occurred.A key benefit of the titanium-lead anode design is that cobalt additions to copper electrolyte should be eliminated. Cobalt is added to the electrolyte to help stabilize the lead oxide surface of conventional lead anodes. The presence of the titanium intimately mixed with the lead should eliminate the need for cobalt stabilization of the lead surface. The anode should last twice as long as the conventional lead anode. Energy savings should be achieved due to minimizing and stabilizing the anode-cathode distance in the electrowinning cells. The anode is easily substitutable into existing tankhouses without a rectifier change.The copper electrowinning test data indicate that the titanium-lead anode is a good candidate for further testing as a possible replacement for a conventional lead anode. A key consideration is the cost. Titanium costs have increased. One of the ways to get the anode cost down is manufacturing the anodes with fewer cylinders. Additional prototypes having different number of cylinders were constructed for a long-term commercial testing in a circuit without cobalt. The objective of the testing is to evaluate the need for cobalt, investigate the effect of decreasing the number of cylinders on the anode performance, and to optimize further the anode design in order to meet the operating requirements, minimize the voltage, maximize the life of the anode, and to balance this against a reasonable cost for the anode. It is anticipated that after testing of the additional prototypes, a whole cell commercial test will be conducted to complete evaluation of the titanium-lead anode costs/benefits.« less

  15. Ordered and Ultra-High Aspect Ratio Nanocapillary Arrays as a Model System

    DTIC Science & Technology

    2015-10-13

    formation and deep pore growth of anodized aluminum oxide ( AAO )-based nanocapillary arrays as the basis for high density, safe and high rate gas... anodized aluminum oxide , nanocapillary arrays 16. SECURITY CLASSIFICATION OF: Unclassified 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME... Aluminum Page 7 Copyright © 2015 Mainstream Engineering Corporation CPE Mitigation Schemes  Control thermal and flow profile -> even anodization

  16. Internal passivation of Al-based microchannel devices by electrochemical anodization

    NASA Astrophysics Data System (ADS)

    Hymel, Paul J.; Guan, D. S.; Mu, Yang; Meng, W. J.; Meng, Andrew C.

    2015-02-01

    Metal-based microchannel devices have wide-ranging applications. We report here a method to electrochemically anodize the internal surfaces of Al microchannels, with the purpose of forming a uniform and dense anodic aluminum oxide (AAO) layer on microchannel internal surfaces for chemical passivation and corrosion resistance. A pulsed electrolyte flow was utilized to emulate conventional anodization processes while replenishing depleted ionic species within Al microtubes and microchannels. After anodization, the AAO film was sealed in hot water to close the nanopores. Focused ion beam (FIB) sectioning, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were utilized to characterize the AAO morphology and composition. Potentiodynamic polarization corrosion testing of anodized Al microtube half-sections in a NaCl solution showed an order of magnitude decrease in anodic corrosion current when compared to an unanodized tube. The surface passivation process was repeated for Al-based microchannel heat exchangers. A corrosion testing method based on the anodization process showed higher resistance to ion transport through the anodized specimens than unanodized specimens, thus verifying the internal anodization and sealing process as a viable method for surface passivation of Al microchannel devices.

  17. Generator of the low-temperature heterogeneous plasma flow

    NASA Astrophysics Data System (ADS)

    Yusupov, D. I.; Gadzhiev, M. Kh; Tyuftyaev, A. S.; Chinnov, V. F.; Sargsyan, M. A.

    2018-01-01

    A generator of low-temperature dc plasma with an expanding channel of an output electrode for gas-thermal spraying was designed and constructed. The delivery of the sprayed powder into the cathode and anode arc-binding zones or into the plasma jet below the anode binding was realized. The electrophysical characteristics of both the plasma torch and the heterogeneous plasma flow with Al2O3 powder are studied. It is shown that the current-voltage characteristic (CVC) of a plasma torch depends on the gas flow rate. If the flow rate varies from 1 to 3 g/s, the falling CVC becomes gradually increasing. The speed and temperature of the sprayed powder are determined.

  18. Effect of H(2)SO(4) and HCl in the anode purging solution for the electrokinetic-Fenton remediation of soil contaminated with phenanthrene.

    PubMed

    Kim, Jung-Hwan; Kim, Jong Yun; Kim, Soo-Sam

    2009-09-01

    The Electrokinetic-Fenton (EK-Fenton) process is a powerful technology to remediate organic-contaminated soil. The behavior of salts and acids introduced for the pH control has significant influence on the H(2)O(2) stabilization and destruction of organic contaminants. In this study, the effects of the type and concentration of acids, which were introduced at the anode, were investigated for the treatment of clayey soil contaminated with phenanthrene. In experiments with H(2)SO(4) as the anode solution, H(2)O(2) concentration in the anode reservoir decreased due to reaction between reduced species of sulfate and H(2)O(2), as time elapsed. By contrast, HCl as an electrolyte in the anode reservoir did not decrease the H(2)O(2) concentration in the anode reservoir. The reaction between the reduced species of sulfate and H(2)O(2) hindered the stabilization of H(2)O(2) in the soil and anode reservoir. In experiments with HCl for pH control, Cl(.), and Cl(2)(. -), which could be generated with mineral catalyzed Fenton-like reaction, did not significantly hinder H(2)O(2) stabilization. H(2)O(2) transportation with electro-osmotic flow and mineral catalyzed Fenton-like reaction on the soil surface resulted in the simultaneous transport and degradation of phenanthrene, which are dependent of the advancement rate of the acid front and electro-osmotic flow toward the cathode according to HCl and H(2)SO(4) concentrations in the anode purging solution.

  19. Numerical simulation of the baking of porous anode carbon in a vertical flue ring furnace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, M.; Melaaen, M.C.

    The interaction of pitch pyrolysis in porous anode carbon during heating and volatiles combustion in the flue gas channel has been analyzed to gain insight in the anode baking process. A two-dimensional geometry of a flue gas channel adjacent to a porous flue gas wall, packing coke, and an anode was used for studying the effect of heating rate on temperature gradients and internal gas pressure in the anodes. The mathematical model included porous heat and mass transfer, pitch pyrolysis, combustion of volatiles, radiation, and turbulent channel flow. The mathematical model was developed through source code modification of the computationalmore » fluid dynamics code FLUENT. The model was useful for studying the effects of heating rate, geometry, and anode properties.« less

  20. Solid oxide fuel cell power plant with an anode recycle loop turbocharger

    DOEpatents

    Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.

    2015-07-14

    An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).

  1. Solid oxide fuel cell power plant with an anode recycle loop turbocharger

    DOEpatents

    Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.

    2016-09-27

    An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).

  2. Method of detecting defects in ion exchange membranes of electrochemical cells by chemochromic sensors

    DOEpatents

    Brooker, Robert Paul; Mohajeri, Nahid

    2016-01-05

    A method of detecting defects in membranes such as ion exchange membranes of electrochemical cells. The electrochemical cell includes an assembly having an anode side and a cathode side with the ion exchange membrane in between. In a configuration step a chemochromic sensor is placed above the cathode and flow isolation hardware lateral to the ion exchange membrane which prevents a flow of hydrogen (H.sub.2) between the cathode and anode side. The anode side is exposed to a first reactant fluid including hydrogen. The chemochromic sensor is examined after the exposing for a color change. A color change evidences the ion exchange membrane has at least one defect that permits H.sub.2 transmission therethrough.

  3. Method and apparatus for spatially uniform electropolishing and electrolytic etching

    DOEpatents

    Mayer, Steven T.; Contolini, Robert J.; Bernhardt, Anthony F.

    1992-01-01

    In an electropolishing or electrolytic etching apparatus the anode is separated from the cathode to prevent bubble transport to the anode and to produce a uniform current distribution at the anode by means of a solid nonconducting anode-cathode barrier. The anode extends into the top of the barrier and the cathode is outside the barrier. A virtual cathode hole formed in the bottom of the barrier below the level of the cathode permits current flow while preventing bubble transport. The anode is rotatable and oriented horizontally facing down. An extended anode is formed by mounting the workpiece in a holder which extends the electropolishing or etching area beyond the edge of the workpiece to reduce edge effects at the workpiece. A reference electrode controls cell voltage. Endpoint detection and current shut-off stop polishing. Spatially uniform polishing or etching can be rapidly performed.

  4. Method and apparatus for spatially uniform electropolishing and electrolytic etching

    DOEpatents

    Mayer, S.T.; Contolini, R.J.; Bernhardt, A.F.

    1992-03-17

    In an electropolishing or electrolytic etching apparatus the anode is separated from the cathode to prevent bubble transport to the anode and to produce a uniform current distribution at the anode by means of a solid nonconducting anode-cathode barrier. The anode extends into the top of the barrier and the cathode is outside the barrier. A virtual cathode hole formed in the bottom of the barrier below the level of the cathode permits current flow while preventing bubble transport. The anode is rotatable and oriented horizontally facing down. An extended anode is formed by mounting the workpiece in a holder which extends the electropolishing or etching area beyond the edge of the workpiece to reduce edge effects at the workpiece. A reference electrode controls cell voltage. Endpoint detection and current shut-off stop polishing. Spatially uniform polishing or etching can be rapidly performed. 6 figs.

  5. Cu--Ni--Fe anode for use in aluminum producing electrolytic cell

    DOEpatents

    Bergsma, S. Craig; Brown, Craig W.; Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2006-07-18

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900.degree. C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable Cu--Ni--Fe anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.

  6. Stabilizing the baseline current of a microbial fuel cell-based biosensor through overpotential control under non-toxic conditions.

    PubMed

    Stein, Nienke E; Hamelers, Hubertus V M; Buisman, Cees N J

    2010-04-01

    A MFC-based biosensor can act as online toxicity sensor. Electrical current is a direct linear measure for metabolic activity of electrochemically active microorganisms. Microorganisms gain energy from anodic overpotential and current strongly depends on anodic overpotential. Therefore control of anodic overpotential is necessary to detect toxic events and prevent false positive alarms. Anodic overpotential and thus current is influenced by anode potential, pH, substrate and bicarbonate concentrations. In terms of overpotential all factor showed a comparable effect, anode potential 1.2% change in current density per mV, pH 0.43%/mV, bicarbonate 0.75%/mV and acetate 0.8%/mV. At acetate saturation the maximum acetate conversion rate is reached and with that a constant bicarbonate concentration. Control of acetate and bicarbonate concentration can be less strict than control of anode potential and pH. Current density changes due to changing anode potential and pH are in the same order of magnitude as changes due to toxicity. Strict control of pH and anode potential in a small range is required. The importance of anodic overpotential control for detection of toxic compounds is shown. To reach a stable baseline current under nontoxic conditions a MFC-based biosensor should be operated at controlled anode potential, controlled pH and saturated substrate concentrations. 2009 Elsevier B.V. All rights reserved.

  7. Determination of effects of turbulence flow in a cathode environment on electricity generation using a tidal mud-based cylindrical-type sediment microbial fuel cell.

    PubMed

    An, Junyeong; Lee, Soo-Jin; Ng, How Yong; Chang, In Seop

    2010-12-01

    We examined the possibility of harvesting electricity from the surface of a tidal mud flat using a cylindrical-type sediment microbial fuel cell (SMFC), a marine mud battery (MMB), which can be applied in a sea environment where the ebb and flow occur due to tidal difference. In addition, we indirectly investigated the influence of ebb and flow in a lab, using aeration, argon gassing, and by agitating the cathodic solution. The MMBs consisted of cylindrical acrylic compartments containing a nylon membrane, an anode, and a cathode in a single body. The MMBs were stuck vertically into an artificial tidal mud flat such that the anode electrode was in direct contact with the tidal mud surface. As a result, the maximum current and power density generated were 35 mA/m(2) and 9 mW/m(2), respectively, thus verifying that it is possible to harvest electricity from the surface of a tidal mud flat using an MMB without burying the anode electrode in the tidal mud. Furthermore, the results of tests using an artificial turbulence flow showed the flow induced by the tidal ebb and flow could allow the performance of MMBs to be enhanced. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. The effect of segmented anodes on the performance and plume of a Hall thruster

    NASA Astrophysics Data System (ADS)

    Kieckhafer, Alexander W.

    Development of alternative propellants for Hall thruster operation is an active area of research. Xenon is the current propellant of choice for Hall thrusters, but can be costly in large thrusters and for extended test periods. Condensible propellants may offer an alternative to xenon, as they will not require costly active pumping to remove from a test facility, and may be less expensive to purchase. A method has been developed which uses segmented electrodes in the discharge channel of a Hall thruster to divert discharge current to and from the main anode and thus control the anode temperature. By placing a propellant reservoir in the anode, the evaporation rate, and hence, mass flow of propellant can be controlled. Segmented electrodes for thermal control of a Hall thruster represent a unique strategy of thruster design, and thus the performance of the thruster must be measured to determine the effect the electrodes have on the thruster. Furthermore, the source of any changes in thruster performance due to the adjustment of discharge current between the shims and the main anode must be characterized. A Hall thruster was designed and constructed with segmented electrodes. It was then tested at anode voltages between 300 and 400 V and mass flows between 4 and 6 mg/s, as well as 100%, 75%, 50%, 25%, and <5% of the discharge current on the shim electrodes. The level of current on the shims was adjusted by changing the shim voltage. At each operating point, the thruster performance, plume divergence, ion energy, and multiply charged ion fraction were measured. Thruster performance exhibited a small change with the level of discharge current on the shim electrodes. Thrust and specific impulse increased by as much as 6% and 7.7%, respectively, as discharge current was shifted from the main anode to the shims at constant anode voltage. Thruster efficiency did not change. Plume divergence was reduced by approximately 4 degrees of half-angle at high levels of current on the shims and at all combinations of mass flow and anode voltage. The fraction of singly charged xenon in the thruster plume varied between approximately 80% and 95% as the anode voltage and mass flow were changed, but did not show a significant change with shim current. Doubly and triply charged xenon made up the remainder of the ions detected. Ion energy exhibited a mixed behavior. The highest voltage present in the thruster largely dictated the most probable energy; either shim or anode voltage, depending on which was higher. The overall change in most probable ion energy was 20-30 eV, the majority of which took place while the shim voltage was higher than the anode voltage. The thrust, specific impulse, plume divergence, and ion energy all indicate that the thruster is capable of a higher performance output at high levels of discharge current on the shims. The lack of a change in efficiency and fraction of multiply charged ions indicate that the thruster can be operated at any level of current on the shims without detrimental effect, and thus a condensible propellant thruster can control the anode temperature without a decrease in efficiency or a change in the multiply charged ion fraction.

  9. Improved cell for water-vapor electrolysis

    NASA Technical Reports Server (NTRS)

    Aylward, J. R.

    1981-01-01

    Continuous-flow electrolytic cells decompose water vapor in steam and room air into hydrogen and oxygen. Sintered iridium oxide catalytic anode coating yields dissociation rates hundredfold greater than those obtained using platinum black. Cell consists of two mirror-image cells, with dual cathode sandwiched between two anodes. Gas traverses serpentine channels within cell and is dissociated at anode. Oxygen mingles with gas stream, while hydrogen migrates through porous matrix and is liberated as gas at cathode.

  10. Fuel cell system combustor

    DOEpatents

    Pettit, William Henry

    2001-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

  11. Enzymatic Fuel Cells: Integrating Flow-Through Anode and Air-Breathing Cathode into a Membrane-Less Biofuel Cell Design (Postprint)

    DTIC Science & Technology

    2011-06-01

    AFRL-RX-TY-TP-2011-0081 ENZYMATIC FUEL CELLS: INTEGRATING FLOW- THROUGH ANODE AND AIR-BREATHING CATHODE INTO A MEMBRANE-LESS BIOFUEL CELL...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 01-JUN-2011 Journal Article (POSTPRINT) 01-JAN-2010 -- 31-JAN-2011 Enzymatic Fuel Cells...unlimited. Ref Public Affairs Case # 88ABW-2011-2228, 14 Apr 11. Document contains color images. One of the key goals of enzymatic biofuel cells

  12. Effects of wastewater constituents and operational conditions on the composition and dynamics of anodic microbial communities in bioelectrochemical systems.

    PubMed

    Kokko, Marika; Epple, Stefanie; Gescher, Johannes; Kerzenmacher, Sven

    2018-06-01

    Over the last decade, there has been an ever-growing interest in bioelectrochemical systems (BES) as a sustainable technology enabling simultaneous wastewater treatment and biological production of, e.g. electricity, hydrogen, and further commodities. A key component of any BES degrading organic matter is the anode where electric current is biologically generated from the oxidation of organic compounds. The performance of BES depends on the interactions of the anodic microbial communities. To optimize the operational parameters and process design of BES a better comprehension of the microbial community dynamics and interactions at the anode is required. This paper reviews the abundance of different microorganisms in anodic biofilms and discusses their roles and possible side reactions with respect to their implications on the performance of BES utilizing wastewaters. The most important operational parameters affecting anodic microbial communities grown with wastewaters are highlighted and guidelines for controlling the composition of microbial communities are given. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Dissecting anode swelling in commercial lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Ningxin; Tang, Huaqiong

    2012-11-01

    An innovative method is applied to investigate anode swelling during electrochemical processes in commercial lithium-ion batteries. Cathode surface is partially covered with a piece of paste to block the transportation of lithium ion from active material during charging/discharging, and the corresponding part on the anode film shows no formation of Li-graphite compounds during different electrochemical processes, which is confirmed by XRD analysis. The increases of anode thickness within and outside lithiated zone are measured, and defined as electrochemical swelling and physical swelling respectively. The microscopic lattice expansion of graphite due to lithiation process correlates to mesoscopic electrochemical swelling synchronically, while physical swelling tends to decrease steadily with time. The relationship among the microscopic stress due to lithium-ion intercalation, the mesoscopic stress resulting in anode swelling, and the macroscopic rippling of pouch cell after a large number of cycle test, is analyzed and correlated in terms of stress evolution across different scales, and suggestions for solving anode swelling are provided.

  14. Zero Liquid Discharge approach in plating industry: treatment of degreasing effluents by electrocoagulation and anodic oxidation.

    PubMed

    Hermon, S; Grange, D; Pellet, Y; Lloret, G; Oyonarte, S; Bosch, F; Coste, M

    2008-01-01

    Degreasing waste effluents issued from a surface treatment plant were treated by electrochemical techniques in an attempt to reduce COD so that clean water can be returned to the rinse bath. Electrocoagulation, both with iron and aluminium anodes, and anodic oxidation with boron doped diamond (BDD) anodes were tested. In the electrocoagulation tests, the nature of the anodes did not impact significantly the reduction of COD. Electrocoagulation showed good COD removal rates, superior to 80%, but it was not able to reduce COD down to low levels. Anodic oxidation was able to reduce COD down to discharge limits; the oxidation efficiency was superior to 50%. Economical calculations show that anodic oxidation is best used as a polishing step after electrocoagulation. The bulk of the COD would be reduced by electrocoagulation and, then, anodic oxidation would reduce COD below discharge limits. The maximum treatable flow is somewhat hindered by the small sizes of current BDD installation but it would reach 600 m(3)/year if anodic oxidation is coupled with electrocoagulation, the operational cost being 2.90 Euros /m(3). (c) IWA Publishing 2008.

  15. Enhanced water vapour flow in silica microchannels and interdiffusive water vapour flow through anodic aluminium oxide (AAO) membranes

    NASA Astrophysics Data System (ADS)

    Lei, Wenwen; McKenzie, David R.

    2015-12-01

    Enhanced liquid water flows through carbon nanotubes reinvigorated the study of moisture permeation through membranes and micro- and nano-channels. The study of water vapour through micro-and nano-channels has been neglected even though water vapour is as important as liquid water for industry, especially for encapsulation of electronic devices. Here we measure moisture flow rates in silica microchannels and interdiffusive water vapour flows in anodic aluminium oxide (AAO) membrane channels for the first time. We construct theory for the flow rates of the dominant modes of water transport through four previously defined standard configurations and benchmark it against our new measurements. The findings show that measurements of leak behaviour made using other molecules, such as helium, are not reliable. Single phase water vapour flow is overestimated by a helium measurement, while Washburn or capillary flow is underestimated or for all channels when boundary slip applies, to an extent that depends on the slip length for the liquid phase flows.

  16. Electrochemical membrane incinerator

    DOEpatents

    Johnson, Dennis C.; Houk, Linda L.; Feng, Jianren

    2001-03-20

    Electrochemical incineration of p-benzoquinone was evaluated as a model for the mineralization of carbon in toxic aromatic compounds. A Ti or Pt anode was coated with a film of the oxides of Ti, Ru, Sn and Sb. This quaternary metal oxide film was stable; elemental analysis of the electrolyzed solution indicated the concentration of these metal ions to be 3 .mu.g/L or less. The anode showed good reactivity for the electrochemical incineration of benzoquinone. The use of a dissolved salt matrix as the so-called "supporting electrolyte" was eliminated in favor of a solid-state electrolyte sandwiched between the anode and cathode.

  17. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    PubMed Central

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-01-01

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multi-electron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored. PMID:26063629

  18. Room temperature, hybrid sodium-based flow batteries with multi-electron transfer redox reactions

    DOE PAGES

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; ...

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volumemore » of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. Furthermore, the critical barriers to mature this new HNFBs have also been explored.« less

  19. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    NASA Astrophysics Data System (ADS)

    Zhu, X. P.; Zhang, Z. C.; Pushkarev, A. I.; Lei, M. K.

    2016-01-01

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200-300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  20. Physical and electrochemical properties of alkaline earth doped, rare earth vanadates

    NASA Astrophysics Data System (ADS)

    Adijanto, Lawrence; Balaji Padmanabhan, Venu; Holmes, Kevin J.; Gorte, Raymond J.; Vohs, John M.

    2012-06-01

    The effect of partial substitution of alkaline earth (AE) ions, Sr2+ and Ca2+, for the rare earth (RE) ions, La3+, Ce3+, Pr3+, and Sm3+, on the physical properties of REVO4 compounds were investigated. The use of the Pechini method to synthesize the vanadates allowed for high levels of AE substitution to be obtained. Coulometric titration was used to measure redox isotherms for these materials and showed that the addition of the AE ions increased both reducibility and electronic conductivity under typical solid oxide fuel cell (SOFC) anode conditions, through the formation of compounds with mixed vanadium valence. In spite of their high electronic conductivity, REVO4-yttira stabilized zirconia (YSZ) composite anodes exhibited only modest performance when used in SOFCs operating with H2 fuel at 973 K due to their low catalytic activity. High performance was obtained, however, after the addition of a small amount of catalytically active Pd to the anode.

  1. Investigation of the Effects of Cathode Flow Fraction and Position on the Performance and Operation of the High Voltage Hall Accelerator

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In- Space Propulsion Technology office is sponsoring NASA Glenn Research Center (GRC) to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. Tests were performed within NASA GRC Vacuum Facility 5 at background pressure levels that were six times lower than what has previously been attained in other vacuum facilities. A study was conducted to assess the impact of varying the cathode-to-anode flow fraction and cathode position on the performance and operational characteristics of the High Voltage Hall Accelerator (HiVHAc) thruster. In addition, the impact of injecting additional xenon propellant in the vicinity of the cathode was also assessed. Cathode-to-anode flow fraction sensitivity tests were performed for power levels between 1.0 and 3.9 kW. It was found that varying the cathode flow fraction from 5 to approximately 10% of the anode flow resulted in the cathode-to-ground voltage becoming more positive. For an operating condition of 3.8 kW and 500 V, varying the cathode position from a distance of closest approach to 600 mm away did not result in any substantial variation in thrust but resulted in the cathode-to-ground changing from -17 to -4 V. The change in the cathode-to-ground voltage along with visual observations indicated a change in how the cathode plume was coupling to the thruster discharge. Finally, the injection of secondary xenon flow in the vicinity of the cathode had an impact similar to increasing the cathode-to-anode flow fraction, where the cathode-to-ground voltage became more positive and discharge current and thrust increased slightly. Future tests of the HiVHAc thruster are planned with a centrally mounted cathode in order to further assess the impact of cathode position on thruster performance.

  2. Modeling a Hall Thruster from Anode to Plume Far Field

    DTIC Science & Technology

    2008-12-31

    Two dimensional ax symmetric simulations of xenon plasma plume flow fields from a D55 Anode layer Hall thruster is performed. A hybrid particle-fluid...method is used for the Simulations. The magnetic field surrounding the Hall thruster exit is included in the Calculation. The plasma properties

  3. 76 FR 9982 - Airworthiness Directives; Bombardier, Inc. Model DHC-8-400 Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ... manufactured with an outlet fitting containing red anodized threads. These MFCV do not provide adequate... that some motive flow check valves (MFCV) were manufactured with an outlet fitting containing red... containing red anodized threads. These MFCV do not provide adequate electrical bonding between the valve and...

  4. Emitron: microwave diode

    DOEpatents

    Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

    1982-05-06

    The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

  5. Investigation of electrochemical phenomena related to corrosion in high temperature aqueous systems

    NASA Astrophysics Data System (ADS)

    Biswas, Ritwik

    1999-11-01

    Three separate phenomena, each related to the problem of corrosion of metals, in high temperature aqueous solutions, have been studied. These are: (1) Kinetics of the Hydrogen Oxidation Reaction (HOR), (2) Effect of solutions containing sulfur oxyanions on Stainless Steel 347 and Inconel 600, and (3) Characterization of electrochemical behavior of intermetallic compounds Ni3Nb and Ni3(TiAl). The anodic transfer coefficient and the Tafel constant, for the HOR, on platinized nickel, in 0.1 m NaOH solution, was experimentally measured over the temperature range of 25°C to 300°C. Potentiodynamic polarization experiments, under controlled hydrodynamic flow conditions, in a cell with annular flow geometry, were used for these measurements. The anodic transfer coefficient and the Tafel constant were found to increase with increase in solution temperature. At high anodic potentials (>1V vs. rest potential), passivation of the platinum electrode was observed. Electron tunneling theory was used to determine that this was the result of formation of platinum oxide (PtO) on the surface of the platinum electrode. The relative corrosion properties of Stainless Steel 347 and Inconel 600, exposed to an aqueous electrolyte containing sulfur oxyanions, at temperatures up to 285°C, was studied using electrochemical tests, mathematical modeling and surface analysis. The presence of sulfur oxyanions was found to cause the breakdown of the protective passive film on both the alloy surfaces, and increase their corrosion rates. As a result of exposure to the electrolyte, a porous layer of corrosion product was formed on both alloys. This porous layer was composed principally of Ni3S2 in the case of Inconel 600 and Fe3O4 in the case of Stainless Steel 347. The corrosive effect of sulfur oxyanions was found to be greater on Inconel 600 than Stainless Steel 347. Galvanic coupling experiments were conducted on the intermetallics Ni 3Nb and Ni3(TiAl) and a nickel rich alloy. It was determined that the intermetallics acted as the anodes when coupled with the nickel rich alloy material. At room temperature, both galvanic current and galvanic potential displayed oscillatory behavior as a function of time. These were analyzed using dynamic systems theory. It was determined from such analysis that the galvanic coupling process can be theoretically described by two coupled ordinary differential equations.

  6. Design and optimization of anode flow field of a large proton exchange membrane fuel cell for high hydrogen utilization

    NASA Astrophysics Data System (ADS)

    Yesilyurt, Serhat; Rizwandi, Omid

    2016-11-01

    We developed a CFD model of the anode flow field of a large proton exchange membrane fuel cell that operates under the ultra-low stoichiometric (ULS) flow conditions which intend to improve the disadvantages of the dead-ended operation such as severe voltage transient and carbon corrosion. Very small exit velocity must be high enough to remove accumulated nitrogen, and must be low enough to retain hydrogen in the active area. Stokes equations are used to model the flow distribution in the flow field, Maxwell-Stefan equations are used to model the transport of the species, and a voltage model is developed to model the reactions kinetics. Uniformity of the distribution of hydrogen concentration is quantified as the normalized area of the region in which the hydrogen mole fraction remains above a certain level, such as 0.9. Geometry of the anode flow field is modified to obtain optimal configuration; the number of baffles at the inlet, width of the gaps between baffles, width of the side gaps, and length of the central baffle are used as design variables. In the final design, the hydrogen-depleted region is less than 0.2% and the hydrogen utilization is above 99%. This work was supported by The Scientific and Technolo-gical Research Council of Turkey, TUBITAK-213M023.

  7. Growth and Filling Regularities of Filamentary Channels in Non-Metallic Inorganic Coatings Under Anodic Oxidation of Valve Metals. Mathematical Modeling

    NASA Astrophysics Data System (ADS)

    Mamaev, A. I.; Mamaeva, V. A.; Kolenchin, N. F.; Chubenko, A. K.; Kovalskaya, Ya. B.; Dolgova, Yu. N.; Beletskaya, E. Yu.

    2015-12-01

    Theoretical models are developed for growth and filling processes in filamentary channels of nanostructured non-metallic coatings produced by anodizing and microplasma oxidation. Graphical concentration distributions are obtained for channel-reacting anions, cations, and sparingly soluble reaction products depending on the time of electric current transmission and the length of the filamentary channel. Graphical distributions of the front moving velocity for the sparingly soluble compound are presented. The resulting model representation increases the understanding of the anodic process nature and can be used for a description and prediction of porous anodic film growth and filling. It is shown that the character of the filamentary channel growth and filling causes a variety of processes determining the textured metal - nonmetallic inorganic coating phase boundary formation.

  8. Method of forming and starting a sodium sulfur battery

    DOEpatents

    Paquette, David G.

    1981-01-01

    A method of forming a sodium sulfur battery and of starting the reactive capability of that battery when heated to a temperature suitable for battery operation is disclosed. An anodic reaction zone is constructed in a manner that sodium is hermetically sealed therein, part of the hermetic seal including fusible material which closes up openings through the container of the anodic reaction zone. The hermetically sealed anodic reaction zone is assembled under normal atmospheric conditions with a suitable cathodic reaction zone and a cation-permeable barrier. When the entire battery is heated to an operational temperature, the fusible material of the hermetically sealed anodic reaction zone is fused, thereby allowing molten sodium to flow from the anodic reaction zone into reactive engagement with the cation-permeable barrier.

  9. Annular arc accelerator shock tube

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P. (Inventor)

    1976-01-01

    An annular arc accelerator shock tube employs a cold gas driver to flow a stream of gas from an expansion section through a high voltage electrode section to a test section, thus driving a shock wave in front of it. A glow discharge detects the shock wave and actuates a trigger generator which in turn fires spark-gap switches to discharge a bank of capacitors across a centered cathode and an annular anode in tandem electrode sections. The initial shock wave passes through the anode section from the cathode section thereby depositing energy into the flow gas without the necessity of any diaphragm opening in the gas flow from the expansion section through the electrode sections.

  10. Liquid Metal Anode for JP-8 Fuel Cell

    DTIC Science & Technology

    2009-01-15

    bases. They react preferentially with acidic sulfur and its compounds, S, SO2 and H2S. These reactions of cerium oxides with sulfur and its...by sulfur . The dominating thermodynamic reaction is the formation of metal sulfides or sulfates , not the desired electrochemical reduction...oxidation of sulfur to make sulfuric acid . Vanadium carbide used as a fuel cell anode has been evaluated by Japanese researchers and CellTech Power. Its

  11. Outward electron transfer by Saccharomyces cerevisiae monitored with a bi-cathodic microbial fuel cell-type activity sensor.

    PubMed

    Ducommun, Raphaël; Favre, Marie-France; Carrard, Delphine; Fischer, Fabian

    2010-03-01

    A Janus head-like bi-cathodic microbial fuel cell was constructed to monitor the electron transfer from Saccharomyces cerevisiae to a woven carbon anode. The experiments were conducted during an ethanol cultivation of 170 g/l glucose in the presence and absence of yeast-peptone medium. First, using a basic fuel-cell type activity sensor, it was shown that yeast-peptone medium contains electroactive compounds. For this purpose, 1% solutions of soy peptone and yeast extract were subjected to oxidative conditions, using a microbial fuel cell set-up corresponding to a typical galvanic cell, consisting of culture medium in the anodic half-cell and 0.5 M K(3)Fe(CN)(6) in the cathodic half-cell. Second, using a bi-cathodic microbial fuel cell, it was shown that electrons were transferred from yeast cells to the carbon anode. The participation of electroactive compounds in the electron transport was separated as background current. This result was verified by applying medium-free conditions, where only glucose was fed, confirming that electrons are transferred from yeast cells to the woven carbon anode. Knowledge about the electron transfer through the cell membrane is of importance in amperometric online monitoring of yeast fermentations and for electricity production with microbial fuel cells. Copyright (c) 2009 John Wiley & Sons, Ltd.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    Furanic and phenolic compounds, formed during the pretreatment of lignocellulosic biomass, are problematic byproducts in down-stream biofuel processes. A microbial electrolysis cell (MEC) is an alternative technology to handle furanic and phenolic compounds and produce renewable hydrogen (H 2). In this study, we evaluated the performance of a continuous-flow bioanode MEC fed with furanic and phenolic compounds at different operating conditions. All hydraulic retention times (HRTs) tested (6-24 h) resulted in complete transformation of the parent compounds at an organic loading rate (OLR) of 0.2g L -1 per d and applied voltage of 0.6 V. Increasing the OLR to 0.8more » g L -1 per d at an HRT of 6h resulted in an increased H 2 production rate from 0.07 to 0.14 L L anode 1 per d, but an OLR of 3.2 g L -1 per d did not lead to a higher H 2 production rate. Significant methane production was observed at an OLR of 3.2 g L -1 per d. The lack of increased H 2 production at the highest OLR tested was due to a limited rate of exoelectrogenesis but not fermentation, evidenced by the accumulation of high acetate levels and higher growth of fermenters and methanogens over exoelectrogens. Increasing applied voltage from 0.6 to 1.0V at an OLR of 3.2 g L -1 per d and HRT of 6h enhanced exoelectrogenesis and resulted in a 1.7-fold increase of H 2 production. Under all operating conditions, more than 90% of the biomass was biofilm-associated. Lastly, the present study provides new insights into the performance of continuous-flow bioelectrochemical systems fed with complex waste streams resulting from the pretreatment of lignocellulosic biomass.« less

  13. Encapsulated Vanadium-Based Hybrids in Amorphous N-Doped Carbon Matrix as Anode Materials for Lithium-Ion Batteries.

    PubMed

    Long, Bei; Balogun, Muhammad-Sadeeq; Luo, Lei; Luo, Yang; Qiu, Weitao; Song, Shuqin; Zhang, Lei; Tong, Yexiang

    2017-11-01

    Recently, researchers have made significant advancement in employing transition metal compound hybrids as anode material for lithium-ion batteries and developing simple preparation of these hybrids. To this end, this study reports a facile and scalable method for fabricating a vanadium oxide-nitride composite encapsulated in amorphous carbon matrix by simply mixing ammonium metavanadate and melamine as anode materials for lithium-ion batteries. By tuning the annealing temperature of the mixture, different hybrids of vanadium oxide-nitride compounds are synthesized. The electrode material prepared at 700 °C, i.e., VM-700, exhibits excellent cyclic stability retaining 92% of its reversible capacity after 200 cycles at a current density of 0.5 A g -1 and attractive rate performance (220 mAh g -1 ) under the current density of up to 2 A g -1 . The outstanding electrochemical properties can be attributed to the synergistic effect from heterojunction form by the vanadium compound hybrids, the improved ability of the excellent conductive carbon for electron transfer, and restraining the expansion and aggregation of vanadium oxide-nitride in cycling. These interesting findings will provide a reference for the preparation of transition metal oxide and nitride composites as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electrochemical Deburring

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1983-01-01

    Electrochemical deburring removes burrs from assembled injector tubes. Since process uses liquid anodic dissolution in liquid electrolyte to proide deburring action, smoothes surfaces and edges in otherwise inaccessible areas. Tool consists of sleeve that contains metallic ring cathode. Sleeve is placed over tube, and electrolytic solution is forced to flow between tube and sleeve. The workpiece serves an anode.

  15. Laser collisional induced fluorescence electron density measurements as a function of ring bias and the onset of anode spot formation in a ring cusp magnetic field

    NASA Astrophysics Data System (ADS)

    Arthur, N. A.; Foster, J. E.; Barnat, E. V.

    2018-05-01

    Two-dimensional electron density measurements are made in a magnetic ring cusp discharge using laser collisional induced fluorescence. The magnet rings are isolated from the anode structure such that they can be biased independently in order to modulate electron flows through the magnetic cusps. Electron density images are captured as a function of bias voltage in order to assess the effects of current flow through the cusp on the spatial extent of the cusp. We anticipated that for a fixed current density being funneled through the magnetic cusp, the leak width would necessarily increase. Unexpectedly, the leak width, as measured by LCIF images, does not increase. This suggests that the current density is not constant, and that possibly either electrons are being heated or additional ionization events are occurring within the cusp. Spatially resolving electron temperature would be needed to determine if electrons are being heated within the cusp. We also observe breakdown of the anode magnetosheath and formation of anode spots at high bias voltage.

  16. Study on ammonium and organics removal combined with electricity generation in a continuous flow microbial fuel cell.

    PubMed

    Liu, Shuxin; Li, Lan; Li, Huiqiang; Wang, Hui; Yang, Ping

    2017-11-01

    A continuous microbial fuel cell system was constructed treating ammonium/organics rich wastewater. Operational performance of MFC system, mechanisms of ammonium removal, effect of ammonium on organics removal and energy output, C and N balance of anode chamber and microbial community analysis of anode chamber were studied. It was concluded that 0.0914kg/m 3 d NH 4 + -N and 5.739kg/m 3 d COD were removed from anode chamber and simultaneous nitrification and denitrification (SND) occurred in cathode chamber resulting in COD, TN removal rate of 88.53%, 71.35% respectively. Excess ammonium affected energy output and the MFC system reached maximum energy output of 816.8mV and 62.94mW/m 3 . In anode chamber, Spirochaetes bacterium sp., Methanobacterium formicicum sp. was predominant in bacteria, archaea communities respectively which contributed to wastewater treatment and electricity generation. This study showed the potential for practical application of continuous flow MFC system treating ammonium/organics rich wastewater and achieving electricity generation simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Enhanced electrochemical etching of ion irradiated silicon by localized amorphization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, Z. Y.; Breese, M. B. H.; Lin, Y.

    2014-05-12

    A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such asmore » cesium over a wide range of fluences and irradiation geometries.« less

  18. AAO-CNTs electrode on microfluidic flow injection system for rapid iodide sensing.

    PubMed

    Phokharatkul, Ditsayut; Karuwan, Chanpen; Lomas, Tanom; Nacapricha, Duangjai; Wisitsoraat, Anurat; Tuantranont, Adisorn

    2011-06-15

    In this work, carbon nanotubes (CNTs) nanoarrays in anodized aluminum oxide (AAO-CNTs) nanopore is integrated on a microfluidic flow injection system for in-channel electrochemical detection of iodide. The device was fabricated from PDMS (polydimethylsiloxane) microchannel bonded on glass substrates that contains three-electrode electrochemical system, including AAO-CNTs as a working electrode, silver as a reference electrode and platinum as an auxiliary electrode. Aluminum, stainless steel catalyst, silver and platinum layers were sputtered on the glass substrate through shadow masks. Aluminum layer was then anodized by two-step anodization process to form nanopore template. CNTs were then grown in AAO template by thermal chemical vapor deposition. The amperometric detection of iodide was performed in 500-μm-wide and 100-μm-deep microchannels on the microfluidic chip. The influences of flow rate, injection volume and detection potential on the current response were optimized. From experimental results, AAO-CNTs electrode on chip offers higher sensitivity and wider dynamic range than CNTs electrode with no AAO template. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Pulsed electromagnetic acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1973-01-01

    Direct measurements of the power deposited in the anode of a multimegawatt MPD accelerator using thermocouples attached to a thin shell anode reveal a dramatic decrease in the fractional anode power from 50% at 200 KW input power to less than 10% at 20 MW power. The corresponding local power flux peak at a value of 10,000 W/sq cm at the lip of the anode exhaust orifice, a distribution traced to a corresponding peak in the local current density at the anode. A comparison of voltage-current characteristics and spectral photographs of the MPD discharge using quartz, boron nitride and plexiglas insulators with various mass injection configurations led to the identification of different voltage modes and regions of ablation free operation. The technique of piezoelectric impact pressure measurement in the MPD exhaust flow was refined to account for the effects due to probe yaw angle.

  20. Mass, momentum and energy flow from an MPD accelerator. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cory, J. S.

    1971-01-01

    The mass, momentum, and energy flows are measured over a current range of 8 to 50 kA and inlet mass flows of 2 to 36q/sec of argon. The momentum flux profile indicates that the accelerator produces a uniform, 2-inch diameter axial jet at the anode which expands into a Gaussian profile at an axial station 11 inches from the anode. The electromagnetic component of the thrust is found to follow the familiar quadratic dependence on arc current, while a more complex empirical relation is needed to correlate the gasdynamic contribution with the current and mass flow rate. Using available time-of-flight velocity profiles at a current of 16 kA and a mass flow of 5.9 g/sec, calculated flux profiles of mass and kinetic energy exhibit a tendency for some fraction of the inlet mass flow to leak out at a low velocity around the central high velocity core.

  1. Ion source with improved primary arc collimation

    DOEpatents

    Dagenhart, William K.

    1985-01-01

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power, thereby preventing the exposure of the anode to the full arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  2. A type of cylindrical Hall thruster with a magnetically insulated anode

    NASA Astrophysics Data System (ADS)

    Yongjie, Ding; Yu, Xu; Wuji, Peng; Liqiu, Wei; Hongbo, Su; Hezhi, Sun; Peng, Li; Hong, Li; Daren, Yu

    2017-04-01

    In this paper, a type of magnetically insulated anode structure is proposed for the design of a low-power cylindrical Hall thruster. The magnetic field distribution in the channel is guided by the magnetically insulated anode, altering the intersection status of the magnetic field line passing through the anode and wall. Experimental and simulation results show that a high potential is formed near the wall by the magnetically insulated anode. As the ionization moves towards the outlet, the energy and flux of the ions bombarding the channel wall can be reduced effectively. Due to the reduction in the bombardment of the wall from high-energy ions, the thrust and specific impulse greatly increase compared with those of the non-magnetically insulated anode. For anode mass flow rates of 0.3 and 0.35 mg s-1 and discharge voltages in the 100-200 V range, the thrust can be increased by more than 33% and the anode efficiency can be improved by more than 7%. Meanwhile, the length of the sputtering area is clearly reduced. The starting position of the sputtering area is in front of the magnetic pole, which can effectively prolong the service life of the thruster.

  3. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, X. P.; Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024; Zhang, Z. C.

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, takingmore » into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.« less

  4. Electrical Characteristics of a Seawater MHD Thruster

    DTIC Science & Technology

    1990-06-01

    rt tt % t1r (4k aia. da O :hityc, F iY#) 4.S7 ’outin, iljxJm mbr pud.ar v ~& OUi f th 4 fi.Lii1 11U.1, .1 :Ufrtt Of 10 4TIpt ure 1 ftn II 1 ( I- 4...cathode- the top surface as the anode; the sidewalls were made from non-conducting materials. This channel was fully submerged in the water flow. A...were fulls submerged in the water flow were also mnvestigated isee Fig 2(h). For both channels the bottom wall wa-as the cathode. the top wall the anode

  5. A multi-electron redox mediator for redox-targeting lithium-sulfur flow batteries

    NASA Astrophysics Data System (ADS)

    Li, Guochun; Yang, Liuqing; Jiang, Xi; Zhang, Tianran; Lin, Haibin; Yao, Qiaofeng; Lee, Jim Yang

    2018-02-01

    The lithium-sulfur flow battery (LSFB) is a new addition to the rechargeable lithium flow batteries (LFBs) where sulfur or a sulfur compound is used as the cathode material against the lithium anode. We report here our evaluation of an organic sulfide - dimethyl trisulfide (DMTS), as 1) a catholyte of a LFB and 2) a multi-electron redox mediator for discharging and charging a solid sulfur cathode without any conductive additives. The latter configuration is also known as the redox-targeting lithium-sulfur flow battery (RTLSFB). The LFB provides an initial discharge capacity of 131.5 mAh g-1DMTS (1.66 A h L-1), which decreases to 59 mAh g-1DMTS (0.75 A h L-1) after 40 cycles. The RTLSFB delivers a significantly higher application performance - initial discharge capacity of 1225.3 mAh g-1sulfur (3.83 A h L-1), for which 1030.9 mAh g-1sulfur (3.23 A h L-1) is still available after 40 cycles. The significant increase in the discharge and charge duration of the LFB after sulfur addition indicates that DMTS is better used as a redox mediator in a RTLSFB than as a catholyte in a LFB.

  6. Combined carbon mesh and small graphite fiber brush anodes to enhance and stabilize power generation in microbial fuel cells treating domestic wastewater

    NASA Astrophysics Data System (ADS)

    Wu, Shijia; He, Weihua; Yang, Wulin; Ye, Yaoli; Huang, Xia; Logan, Bruce E.

    2017-07-01

    Microbial fuel cells (MFCs) need to have a compact architecture, but power generation using low strength domestic wastewater is unstable for closely-spaced electrode designs using thin anodes (flat mesh or small diameter graphite fiber brushes) due to oxygen crossover from the cathode. A composite anode configuration was developed to improve performance, by joining the mesh and brushes together, with the mesh used to block oxygen crossover to the brushes, and the brushes used to stabilize mesh potentials. In small, fed-batch MFCs (28 mL), the composite anode produced 20% higher power densities than MFCs using only brushes, and 150% power densities compared to carbon mesh anodes. In continuous flow tests at short hydraulic retention times (HRTs, 2 or 4 h) using larger MFCs (100 mL), composite anodes had stable performance, while brush anode MFCs exhibited power overshoot in polarization tests. Both configurations exhibited power overshoot at a longer HRT of 8 h due to lower effluent CODs. The use of composite anodes reduced biomass growth on the cathode (1.9 ± 0.2 mg) compared to only brushes (3.1 ± 0.3 mg), and increased coulombic efficiencies, demonstrating that they successfully reduced oxygen contamination of the anode and the bio-fouling of cathode.

  7. Hydrogen production profiles using furans in microbial electrolysis cells.

    PubMed

    Catal, Tunc; Gover, Tansu; Yaman, Bugra; Droguetti, Jessica; Yilancioglu, Kaan

    2017-06-01

    Microbial electrochemical cells including microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) are novel biotechnological tools that can convert organic substances in wastewater or biomass into electricity or hydrogen. Electroactive microbial biofilms used in this technology have ability to transfer electrons from organic compounds to anodes. Evaluation of biofilm formation on anode is crucial for enhancing our understanding of hydrogen generation in terms of substrate utilization by microorganisms. In this study, furfural and hydroxymethylfurfural (HMF) were analyzed for hydrogen generation using single chamber membrane-free MECs (17 mL), and anode biofilms were also examined. MECs were inoculated with mixed bacterial culture enriched using chloroethane sulphonate. Hydrogen was succesfully produced in the presence of HMF, but not furfural. MECs generated similar current densities (5.9 and 6 mA/cm 2 furfural and HMF, respectively). Biofilm samples obtained on the 24th and 40th day of cultivation using aromatic compounds were evaluated by using epi-fluorescent microscope. Our results show a correlation between biofilm density and hydrogen generation in single chamber MECs.

  8. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes

    NASA Astrophysics Data System (ADS)

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  9. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes.

    PubMed

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  10. Critical flow rate of anode fuel exhaust in a PEM fuel cell system

    NASA Astrophysics Data System (ADS)

    Zhu, Wenhua H.; Payne, Robert U.; Tatarchuk, Bruce J.

    A manual purge line was added into the exterior fuel exhaust stream of a Ballard PEM stack in a Nexa™ power module. With the addition of manual exhaust purge, high levels of inert gases were intentionally added to the anode feed without changing normal operational procedures. A new method of determining the critical minimum flow rate in the anode exhaust stream was given by an anode mass balance. This type of operation makes dual use of membranes in the MEAs as both gas purifiers and as solid electrolytes. The PEM stack was successfully operated with up to ca. 7% nitrogen or carbon dioxide in the absence of a palladium-based hydrogen separator at ca. 200 W power level. Nitrogen in the anode stream was concentrated from 7.5% to 91.6%. The system maintained a fuel efficiency of 99% at a manual purge rate of 2.22 ml s -1 and no auto purge. The fuel cell stack efficiency was 64% and the stack output efficiency was 75%. The overall system efficiency was 39%. After troublesome CO and H 2S poisons were removed, a hydrocarbon reformate containing high levels of CO 2 and H 2O was further used in the Nexa™ stack. The size and complexity of the fuel processing system may be reduced at a specified power level by using this operational method.

  11. Surface characterization of anodized zirconium for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sanchez, A. Gomez; Schreiner, W.; Duffó, G.; Ceré, S.

    2011-05-01

    Mechanical properties and corrosion resistance of zirconium make this material suitable for biomedical implants. Its good in vivo performance is mainly due to the presence of a protective oxide layer that minimizes corrosion rate, diminishes the amount of metallic ions released to the biological media and facilitates the osseointegration process. Since the implant surface is the region in contact with living tissues, the characteristics of the surface film are of great interest. Surface modification is a route to enhance both biocompatibility and corrosion resistance of permanent implant materials. Anodizing is presented as an interesting process to modify metal surfaces with good reproducibility and independence of the geometry. In this work the surface of zirconium before and after anodizing in 1 mol/L phosphoric acid solution at a fixed potential between 3 and 30 V, was characterized by means of several surface techniques. It was found that during anodization the surface oxide grows with an inhomogeneous coverage on zirconium surface, modifying the topography. The incorporation of P from the electrolyte to the surface oxide during the anodizing process changes the surface chemistry. After 30 days of immersion in Simulated Body Fluid (SBF) solution, Ca-P rich compounds were present on anodized zirconium.

  12. Alloy-Based Anode Materials toward Advanced Sodium-Ion Batteries.

    PubMed

    Lao, Mengmeng; Zhang, Yu; Luo, Wenbin; Yan, Qingyu; Sun, Wenping; Dou, Shi Xue

    2017-12-01

    Sodium-ion batteries (SIBs) are considered as promising alternatives to lithium-ion batteries owing to the abundant sodium resources. However, the limited energy density, moderate cycling life, and immature manufacture technology of SIBs are the major challenges hindering their practical application. Recently, numerous efforts are devoted to developing novel electrode materials with high specific capacities and long durability. In comparison with carbonaceous materials (e.g., hard carbon), partial Group IVA and VA elements, such as Sn, Sb, and P, possess high theoretical specific capacities for sodium storage based on the alloying reaction mechanism, demonstrating great potential for high-energy SIBs. In this review, the recent research progress of alloy-type anodes and their compounds for sodium storage is summarized. Specific efforts to enhance the electrochemical performance of the alloy-based anode materials are discussed, and the challenges and perspectives regarding these anode materials are proposed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels

    PubMed Central

    Lee, Pil Hyong; Hwang, Sang Soon

    2009-01-01

    In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0–100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane. PMID:22291556

  14. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels.

    PubMed

    Lee, Pil Hyong; Hwang, Sang Soon

    2009-01-01

    In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0-100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane.

  15. Electrodegradation of the Acid Green 28 dye using Ti/β-PbO2 and Ti-Pt/β-PbO2 anodes.

    PubMed

    Irikura, Kallyni; Bocchi, Nerilso; Rocha-Filho, Romeu C; Biaggio, Sonia R; Iniesta, Jesús; Montiel, Vicente

    2016-12-01

    The statistical Response Surface Methodology (RSM) is applied to investigate the effect of different parameters (current density, j, NaCl concentration, [NaCl], pH, and temperature, θ) and their interactions on the electrochemical degradation of the Acid Green (AG) 28 dye using a Ti/β-PbO2 or Ti-Pt/β-PbO2 anode in a filter-press reactor. LC/MS is employed to identify intermediate compounds. For both anodes, the best experimental conditions are j = 50 mA cm(-2), [NaCl] = 1.5 g L(-1), pH = 5, and θ = 25 °C. After 3 h of electrolysis, a dye solution treated under these conditions presents the following parameters: electric charge per unit volume of the electrolyzed solution required for 90% decolorization (Q(90)) of 0.34-0.37 A h L(-1), %COD removal of ∼100%, specific energy consumption of 18-20 kW h m(-3), and %TOC removal of 32-33%. No loss of the β-PbO2 film is observed during all the experiments. The β-PbO2 films present excellent stability for solutions with pH ≥ 5 ([Pb(2+)] < 0.5 mg L(-1)). Chloroform is the only volatile organic halo compound present in the treated solution under those optimized conditions. Hydroxylated anthraquinone derivatives, aromatic chloramines, and naphthoquinones are formed during the electrolyses. The Ti/β-PbO2 and Ti-Pt/β-PbO2 anodes show significantly better performance than a commercial DSA anode for the electrochemical degradation of the AG 28 dye. The Ti/β-PbO2 anode, prepared as described in this work, is an excellent option for the treatment of textile effluents because of its low cost of fabrication and good performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. In situ electrochemical and photo-electrochemical generation of the fenton reagent: a potentially important new water treatment technology.

    PubMed

    Peralta-Hernández, J M; Meas-Vong, Yunny; Rodríguez, Francisco J; Chapman, Thomas W; Maldonado, Manuel I; Godínez, Luis A

    2006-05-01

    In this work, the design and construction of an annular tube reactor for the electrochemical and photo-electrochemical in situ generation of H2O2 are described. By cathodic reduction of dissolved oxygen and the coupled oxidation of water at a UV-illuminated nanocrystalline-TiO2 semiconductor anode, it was found that the electrochemically generated H2O2 can be employed to readily oxidize the model compound Direct Yellow-52 in dilute acidic solution at high rates in the presence of small quantities of dissolved iron(II). Although, the model organic compound is chemically stable under UV radiation, its electrochemical oxidation rate increases substantially when the semiconductor anode is illuminated as compared to the same processes carried out in the dark.

  17. Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Chao; Xu, Gui-Liang; Ji, Xiao

    Sustainable sodium-ion batteries (SSIBs) using renewable organic electrodes are promising alternatives to lithium-ion batteries for the large-scale renewable energy storage. However, the lack of high-performance anode material impedes the development of SSIBs. Herein, we report a new type of organic anode material based on azo group for SSIBs. Azobenzene-4,4'-dicarboxylic acid sodium salt is used as a model to investigate the electrochemical behaviors and reaction mechanism of azo compound. It exhibits a reversible capacity of 170 mAhg -1 at 0.2C. When current density is increased to 20C, the reversible capacities of 98 mAhg -1 can be retained for 2000 cycles, demonstratingmore » excellent cycling stability and high rate capability. The detailed characterizations reveal that azo group acts as an electrochemical active site to reversibly bond with Na +. The reversible redox chemistry between azo compound and Na ions offer opportunities for developing longcycle-life and high-rate SSIBs.« less

  18. Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries

    DOE PAGES

    Luo, Chao; Xu, Gui-Liang; Ji, Xiao; ...

    2018-01-29

    Sustainable sodium-ion batteries (SSIBs) using renewable organic electrodes are promising alternatives to lithium-ion batteries for the large-scale renewable energy storage. However, the lack of high-performance anode material impedes the development of SSIBs. Herein, we report a new type of organic anode material based on azo group for SSIBs. Azobenzene-4,4'-dicarboxylic acid sodium salt is used as a model to investigate the electrochemical behaviors and reaction mechanism of azo compound. It exhibits a reversible capacity of 170 mAhg -1 at 0.2C. When current density is increased to 20C, the reversible capacities of 98 mAhg -1 can be retained for 2000 cycles, demonstratingmore » excellent cycling stability and high rate capability. The detailed characterizations reveal that azo group acts as an electrochemical active site to reversibly bond with Na +. The reversible redox chemistry between azo compound and Na ions offer opportunities for developing longcycle-life and high-rate SSIBs.« less

  19. Rydberg gas theory of a glow discharge plasma: I. Application to the electrical behaviour of a fast flowing glow discharge plasma.

    PubMed

    Mason, Rod S; Mitchell, David J; Dickinson, Paul M

    2010-04-21

    Current-voltage (I-V) curves have been measured, independent of the main discharge, for electricity passing through the steady state fast flowing 'afterglow' plasma of a low power dc glow discharge in Ar. Voltage profiles along the axial line of conduction have been mapped using fixed probes and potentiometry, and the mass spectra of cations emerging from the downstream sampling Cone, also acting as a probe anode, were recorded simultaneously. Floating double probe experiments were also carried out. The electrical behavior is consistent with the well established I-V characteristics of such discharges, but does not comply with classical plasma theory predictions. The plasma decays along the line of conduction, with a lifetime of approximately 1 ms, despite carrying a steady state current, and its potential is below that of the large surface area anode voltage; a situation which cannot exist in the presence of a conventional free ion-electron plasma, unless the electron temperature is super cold. Currents, large by comparison with the main discharge current, and independent of it, are induced to flow through the downstream plasma, from the Anode (acting as a cathode) to the anodic ion exit Cone, induced by electron impact ionisation at the anode, but without necessarily increasing the plasma density. It appears to be conducted by direct charge transfer between a part of the anode surface (acting as cathode to the auxiliary circuit) and the plasma, without secondary electron emission or heating, which suggests the direct involvement of Rydberg atom intermediates. The reaction energy defect (= the work function of the electrode surface) fits with the plasma potential threshold observed for the cathodic reaction to occur. A true free ion-electron plasma is readily detected by the observation of cations at the anode surface, when induced at the downstream anode, at high bias voltages, by the electron impact ionisation in the boundary region. In contrast to the classical model, the complex electrical (and mass spectrometric) behaviour fits qualitatively, but can be understood well, with the Rydberg gas model described in papers II and III (R. S. Mason, and R. S. Mason and P. Douglas, PCCP, 2010, DOI: 10.1039/b918081h and b918083d) over a wide range of probe bias voltages. The full cycle of behavior is then described for the development of a true secondary discharge within the downstream plasma.

  20. Hydrodechlorination of TCE in a circulated electrolytic column at high flow rate.

    PubMed

    Fallahpour, Noushin; Yuan, Songhu; Rajic, Ljiljana; Alshawabkeh, Akram N

    2016-02-01

    Palladium-catalytic hydrodechlorination of trichloroethylene (TCE) by cathodic H2 produced from water electrolysis has been tested. For a field in-well application, the flow rate is generally high. In this study, the performance of Pd-catalytic hydrodechlorination of TCE using cathodic H2 is evaluated under high flow rate (1 L min(-1)) in a circulated column system, as expected to occur in practice. An iron anode supports reduction conditions and it is used to enhance TCE hydrodechlorination. However, the precipitation occurs and high flow rate was evaluated to minimize its adverse effects on the process (electrode coverage, clogging, etc.). Under the conditions of 1 L min(-1) flow, 500 mA current, and 5 mg L(-1) initial TCE concentration, removal efficacy using iron anodes (96%) is significantly higher than by mixed metal oxide (MMO) anodes (66%). Two types of cathodes (MMO and copper foam) in the presence of Pd/Al2O3 catalyst under various currents (250, 125, and 62 mA) were used to evaluate the effect of cathode materials on TCE removal efficacy. The similar removal efficiencies were achieved for both cathodes, but more precipitation generated with copper foam cathode (based on the experiments done by authors). In addition to the well-known parameters such as current density, electrode materials, and initial TCE concentration, the high velocities of groundwater flow can have important implications, practically in relation to the flush out of precipitates. For potential field application, a cost-effective and sustainable in situ electrochemical process using a solar panel as power supply is being evaluated. Published by Elsevier Ltd.

  1. Hydrodechlorination of TCE in a circulated electrolytic column at high flow rate

    PubMed Central

    Fallahpour, Noushin; Yuan, Songhu; Rajic, Ljiljana; Alshawabkeh, Akram N.

    2015-01-01

    Palladium-catalytic hydrodechlorination of trichloroethylene (TCE) by cathodic H2 produced from water electrolysis has been tested. For a field in-well application, the flow rate is generally high. In this study, the performance of Pd-catalytic hydrodechlorination of TCE using cathodic H2 is evaluated under high flow rate (1 L min−1) in a circulated column system, as expected to occur in practice. An iron anode supports reduction conditions and it is used to enhance TCE hydrodechlorination. However, the precipitation occurs and high flow rate was evaluated to minimize its advers effects on the process (electrode coverage, clogging, etc.). Under the conditions of 1 L min−1 flow, 500 mA current, and 5 mg L−1 initial TCE concentration, removal efficacy using iron anodes (96%) is significantly higher than by mixed metal oxide (MMO) anodes (66%). Two types of cathodes (MMO and copper foam) in the presence of Pd/Al2O3 catalyst under various currents (250, 125, and 62 mA) were used to evaluate the effect of cathode materials on TCE removal efficacy. The similar removal efficiencies were achieved for both cathodes, but more precipitation generated with copper foam cathode (based on the experiments done by authors). In addition to the well-known parameters such as current density, electrode materials, and initial TCE concentration, the high velocities of groundwater flow can have important implications, practically in relation to the flush out of precipitates. For potential field application, a cost-effective and sustainable in situ electrochemical process using a solar panel as power supply is being evaluated. PMID:26344148

  2. Surface study of stainless steel electrode deposition from soil electrokinetic (EK) treatment using X-ray photoelectron spectroscopy (XPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Embong, Zaidi, E-mail: zaidi@uthm.edu.my; Research Centre for Soft Soils; Johar, Saffuwan

    2015-04-29

    Electrokinetic (EK) remediation relies upon application of a low-intensity direct current through the soil between stainless steel electrodes that are divided into a cathode array and an anode array. This mobilizes charged species, causing ions and water to move toward the electrodes. Metal ions and positively charged organic compounds move toward the cathode. Anions such as chloride, fluoride, nitrate, and negatively charged organic compounds move toward the anode. Here, this remediation techniques lead to a formation of a deposition at the both cathode and anode surface that mainly contributed byanion and cation from the remediated soil. In this research, Renggam-Jerangaumore » soil species (HaplicAcrisol + RhodicFerralsol) with a surveymeter reading of 38.0 ± 3.9 μR/hr has been investigation in order to study the mobility of the anion and cation under the influence electric field. Prior to the EK treatment, the elemental composition of the soil and the stainless steel electrode are measured using XRF analyses. Next, the soil sample is remediated at a constant electric potential of 30 V within an hour of treatment period. A surface study for the deposition layer of the cathode and anode using X-ray Photoelectron spectroscopy (XPS) revealed that a narrow photoelectron signal from oxygen O 1s, carbon, C 1s silica, Si 2p, aluminium, Al 2p and chromium, Cr 2p exhibited on the electrode surface and indicate that a different in photoelectron intensity for each element on both electrode surface. In this paper, the mechanism of Si{sup 2+} and Al{sup 2+} cation mobility under the influence of voltage potential between the cathode and anode will be discussed in detail.« less

  3. Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries.

    PubMed

    Wu, Xing-Long; Guo, Yu-Guo; Wan, Li-Jun

    2013-09-01

    Lithium-ion batteries (LIBs) represent the state-of-the-art technology in rechargeable energy-storage devices and they currently occupy the prime position in the marketplace for powering an increasingly diverse range of applications. However, the fast development of these applications has led to increasing demands being placed on advanced LIBs in terms of higher energy/power densities and longer life cycles. For LIBs to meet these requirements, researchers have focused on active electrode materials, owing to their crucial roles in the electrochemical performance of batteries. For anode materials, compounds based on Group IVA (Si, Ge, and Sn) elements represent one of the directions in the development of high-capacity anodes. Although these compounds have many significant advantages when used as anode materials for LIBs, there are still some critical problems to be solved before they can meet the high requirements for practical applications. In this Focus Review, we summarize a series of rational designs for Group IVA-based anode materials, in terms of their chemical compositions and structures, that could address these problems, that is, huge volume variations during cycling, unstable surfaces/interfaces, and invalidation of transport pathways for electrons upon cycling. These designs should at least include one of the following structural benefits: 1) Contain a sufficient number of voids to accommodate the volume variations during cycling; 2) adopt a "plum-pudding"-like structure to limit the volume variations during cycling; 3) facilitate an efficient and permanent transport pathway for electrons and lithium ions; or 4) show stable surfaces/interfaces to stabilize the in situ formed SEI layers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Lipon coatings for high voltage and high temperature Li-ion battery cathodes

    DOEpatents

    Dudney, Nancy J.; Liang, Chengdu; Nanda, Jagjit; Veith, Gabriel M.; Kim, Yoongu; Martha, Surendra Kumar

    2017-02-14

    A lithium ion battery includes an anode and a cathode. The cathode includes a lithium, manganese, nickel, and oxygen containing compound. An electrolyte is disposed between the anode and the cathode. A protective layer is deposited between the cathode and the electrolyte. The protective layer includes pure lithium phosphorus oxynitride and variations that include metal dopants such as Fe, Ti, Ni, V, Cr, Cu, and Co. A method for making a cathode and a method for operating a battery are also disclosed.

  5. Lipon coatings for high voltage and high temperature Li-ion battery cathodes

    DOEpatents

    Dudney, Nancy J.; Liang, Chengdu; Nanda, Jagjit; Veith, Gabriel M.; Kim, Yoongu; Martha, Surendra Kumar

    2017-12-05

    A lithium ion battery includes an anode and a cathode. The cathode includes a lithium, manganese, nickel, and oxygen containing compound. An electrolyte is disposed between the anode and the cathode. A protective layer is deposited between the cathode and the electrolyte. The protective layer includes pure lithium phosphorus oxynitride and variations that include metal dopants such as Fe, Ti, Ni, V, Cr, Cu, and Co. A method for making a cathode and a method for operating a battery are also disclosed.

  6. Nonaqueous Hybrid Lithium-Ion and Sodium-Ion Capacitors.

    PubMed

    Wang, Huanwen; Zhu, Changrong; Chao, Dongliang; Yan, Qingyu; Fan, Hong Jin

    2017-12-01

    Hybrid metal-ion capacitors (MICs) (M stands for Li or Na) are designed to deliver high energy density, rapid energy delivery, and long lifespan. The devices are composed of a battery anode and a supercapacitor cathode, and thus become a tradeoff between batteries and supercapacitors. In the past two decades, tremendous efforts have been put into the search for suitable electrode materials to overcome the kinetic imbalance between the battery-type anode and the capacitor-type cathode. Recently, some transition-metal compounds have been found to show pseudocapacitive characteristics in a nonaqueous electrolyte, which makes them interesting high-rate candidates for hybrid MIC anodes. Here, the material design strategies in Li-ion and Na-ion capacitors are summarized, with a focus on pseudocapacitive oxide anodes (Nb 2 O 5 , MoO 3 , etc.), which provide a new opportunity to obtain a higher power density of the hybrid devices. The application of Mxene as an anode material of MICs is also discussed. A perspective to the future research of MICs toward practical applications is proposed to close. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. NaAlTi 3O 8, A Novel Anode Material for Sodium Ion Battery

    DOE PAGES

    Ma, Xuetian; An, Ke; Bai, Jianmin; ...

    2017-03-13

    Sodium ion batteries are being considered as an alternative to lithium ion batteries in large-scale energy storage applications owing to the low cost. In this paper, a novel titanate compound, NaAlTi 3O 8, was successfully synthesized and tested as a promising anode material for sodium ion batteries. Powder X-ray Diffraction (XRD) and refinement were used to analyze the crystal structure. Electrochemical cycling tests under a C/10 rate between 0.01 - 2.5 V showed that ~83 mAh/g capacity could be achieved in the second cycle, with ~75% of which retained after 100 cycles, which corresponds to 0.75 Na + insertion andmore » extraction. The influence of synthesis conditions on electrochemical performances was investigated and discussed. Finally, NaAlTi 3O 8 not only presents a new anode material with low average voltage of ~0.5 V, but also provides a new type of intercalation anode with a crystal structure that differentiates from the anodes that have been reported.« less

  8. Negative ion generator

    DOEpatents

    Stinnett, R.W.

    1984-05-08

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

  9. Negative ion generator

    DOEpatents

    Stinnett, Regan W.

    1984-01-01

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions.

  10. Bio-electro oxidation of indigo carmine by using microporous activated carbon fiber felt as anode and bioreactor support.

    PubMed

    Garcia, Luane Ferreira; Rodrigues Siqueira, Ana Claudia; Lobón, Germán Sanz; Marcuzzo, Jossano Saldanha; Pessela, Benevides Costa; Mendez, Eduardo; Garcia, Telma Alves; de Souza Gil, Eric

    2017-11-01

    The bioremediation and electro-oxidation (EO) processes are included among the most promising cleaning and decontamination mechanisms of water. The efficiency of bioremediation is dictated by the biological actuator for a specific substrate, its suitable immobilization and all involved biochemical concepts. The EO performance is defined by the anode efficiency to perform the complete mineralization of target compounds and is highlighted by the low or null use of reagent. Recently, the combination of both technologies has been proposed. Thus, the development of high efficient, low cost and eco-friendly anodes for sustainable EO, as well as, supporting devices for immobilization of biological systems applied in bioremediation is an open field of research. Therefore, the aim of this work was to promote the bio-electrochemical remediation of indigo carmine dye (widely common in textile industry), using new anode based on a microporous activated carbon fiber felt (ACFF) and ACFF with immobilized Laccase (Lcc) from Pycnoporus sanguineus. The results were discolorations of 62.7% with ACFF anode and 83.60% with ACFF-MANAE-Lcc anode, both for 60 min in tap water. This remediation rates show that this new anode has low cost and efficiency in the degradation of indigo dye and can be applied for other organic pollutant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Influence of anodizing conditions on generation of internal cracks in anodic porous tin oxide films grown in NaOH electrolyte

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Gawlak, Karolina; Gurgul, Magdalena; Dziurka, Magdalena; Nowak, Marlena; Gilek, Dominika; Sulka, Grzegorz D.

    2018-05-01

    Nanoporous tin oxide layers were synthesized via simple one-step anodic oxidation of a low-purity Sn foil (98.8%) in sodium hydroxide electrolyte. The process of pore formation at the early stage of anodization was discussed on the basis of concepts of oxygen bubble mould effect and viscous flow of oxide. The effect of anodizing conditions on the generation of internal cracks and fractures within the anodic film was investigated in detail. It was confirmed that crack-free tin oxide films can be obtained if the anodization is carried out at the potential of 4 V independently of the electrolyte concentration. On the other hand, the porous anodic film with a totally stacked internal morphology is obtained at the potential of 5 V in 0.1 M NaOH electrolyte. The generation of internal cracks and voids can be attributed to a much lower surface porosity and local trapping of O2 inside the pores of the oxide layer. However, increasing electrolyte concentration allows for obtaining less cracked porous films due to effective and uniform liberation of oxygen bubbles from the channels through completely open pore mouths. Furthermore, it was confirmed that uniformity of the anodic tin oxide layers can be significantly improved by vigorous electrolyte stirring. Finally, we observed that the addition of ethanol to the electrolyte can reduce anodic current density and the oxide growth rate. In consequence, less cracked anodic film can be formed even at the potential of 6 V. The generation of oxygen at the pore bottoms, together with the open pore mouths were found to be critical factors responsible for the anodic formation of crack-free porous tin oxide films.

  12. Shape Effect of Electrochemical Chloride Extraction in Structural Reinforced Concrete Elements Using a New Cement-Based Anodic System

    PubMed Central

    Carmona, Jesús; Climent, Miguel-Ángel; Antón, Carlos; de Vera, Guillem; Garcés, Pedro

    2015-01-01

    This article shows the research carried out by the authors focused on how the shape of structural reinforced concrete elements treated with electrochemical chloride extraction can affect the efficiency of this process. Assuming the current use of different anode systems, the present study considers the comparison of results between conventional anodes based on Ti-RuO2 wire mesh and a cement-based anodic system such as a paste of graphite-cement. Reinforced concrete elements of a meter length were molded to serve as laboratory specimens, to closely represent authentic structural supports, with circular and rectangular sections. Results confirm almost equal performances for both types of anode systems when electrochemical chloride extraction is applied to isotropic structural elements. In the case of anisotropic ones, such as rectangular sections with no uniformly distributed rebar, differences in electrical flow density were detected during the treatment. Those differences were more extreme for Ti-RuO2 mesh anode system. This particular shape effect is evidenced by obtaining the efficiencies of electrochemical chloride extraction in different points of specimens.

  13. Morphological evolution of TiO2 nanotube arrays with lotus-root-shaped nanostructure

    NASA Astrophysics Data System (ADS)

    Yu, Dongliang; Song, Ye; Zhu, Xufei; Yang, Ruiquan; Han, Aijun

    2013-07-01

    TiO2 nanotube arrays (TNAs) with lotus-root-shaped nanostructure have been fabricated by a modified two-step electrochemical anodization method. In the present work, different morphologies formed under different anodizing voltages are investigated in detail by field-emission scanning electron microscope. The results show that the concaves left by the first-step anodization can guide the uniform growth of TNAs in some degree as the second-step anodizing voltage is the same with that in the first step, however, when lower voltages are adopted in the second-step anodization, no guidance can be achieved, and different morphological TNAs with lotus-root-shaped nanostructure are fabricated. And we find that the nanotube diameters are directly proportional to the applied voltage in the second-step anodization. Furthermore, a possible mechanism for the growth of the TiO2 nanotubes with the special morphology is proposed for the first time, which depends on both the oxygen bubble mold and the viscous flow of the barrier oxide from the pore base to the pore wall.

  14. Ion source with improved primary arc collimation

    DOEpatents

    Dagenhart, W.K.

    1983-12-16

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  15. Polarity-Dependent Misperception of Subjective Visual Vertical during and after Transcranial Direct Current Stimulation (tDCS).

    PubMed

    Santos-Pontelli, Taiza E G; Rimoli, Brunna P; Favoretto, Diandra B; Mazin, Suleimy C; Truong, Dennis Q; Leite, Joao P; Pontes-Neto, Octavio M; Babyar, Suzanne R; Reding, Michael; Bikson, Marom; Edwards, Dylan J

    2016-01-01

    Pathologic tilt of subjective visual vertical (SVV) frequently has adverse functional consequences for patients with stroke and vestibular disorders. Repetitive transcranial magnetic stimulation (rTMS) of the supramarginal gyrus can produce a transitory tilt on SVV in healthy subjects. However, the effect of transcranial direct current stimulation (tDCS) on SVV has never been systematically studied. We investigated whether bilateral tDCS over the temporal-parietal region could result in both online and offline SVV misperception in healthy subjects. In a randomized, sham-controlled, single-blind crossover pilot study, thirteen healthy subjects performed tests of SVV before, during and after the tDCS applied over the temporal-parietal region in three conditions used on different days: right anode/left cathode; right cathode/left anode; and sham. Subjects were blind to the tDCS conditions. Montage-specific current flow patterns were investigated using computational models. SVV was significantly displaced towards the anode during both active stimulation conditions when compared to sham condition. Immediately after both active conditions, there were rebound effects. Longer lasting after-effects towards the anode occurred only in the right cathode/left anode condition. Current flow models predicted the stimulation of temporal-parietal regions under the electrodes and deep clusters in the posterior limb of the internal capsule. The present findings indicate that tDCS over the temporal-parietal region can significantly alter human SVV perception. This tDCS approach may be a potential clinical tool for the treatment of SVV misperception in neurological patients.

  16. Flavin redox bifurcation as a mechanism for controlling the direction of electron flow during extracellular electron transfer.

    PubMed

    Okamoto, Akihiro; Hashimoto, Kazuhito; Nealson, Kenneth H

    2014-10-06

    The iron-reducing bacterium Shewanella oneidensis MR-1 has a dual directional electronic conduit involving 40 heme redox centers in flavin-binding outer-membrane c-type cytochromes (OM c-Cyts). While the mechanism for electron export from the OM c-Cyts to an anode is well understood, how the redox centers in OM c-Cyts take electrons from a cathode has not been elucidated at the molecular level. Electrochemical analysis of live cells during switching from anodic to cathodic conditions showed that altering the direction of electron flow does not require gene expression or protein synthesis, but simply redox potential shift about 300 mV for a flavin cofactor interacting with the OM c-Cyts. That is, the redox bifurcation of the riboflavin cofactor in OM c-Cyts switches the direction of electron conduction in the biological conduit at the cell-electrode interface to drive bacterial metabolism as either anode or cathode catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Solid oxide fuel cell power plant having a bootstrap start-up system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, Michael T

    The bootstrap start-up system (42) achieves an efficient start-up of the power plant (10) that minimizes formation of soot within a reformed hydrogen rich fuel. A burner (48) receives un-reformed fuel directly from the fuel supply (30) and combusts the fuel to heat cathode air which then heats an electrolyte (24) within the fuel cell (12). A dilute hydrogen forming gas (68) cycles through a sealed heat-cycling loop (66) to transfer heat and generated steam from an anode side (32) of the electrolyte (24) through fuel processing system (36) components (38, 40) and back to an anode flow field (26)more » until fuel processing system components (38, 40) achieve predetermined optimal temperatures and steam content. Then, the heat-cycling loop (66) is unsealed and the un-reformed fuel is admitted into the fuel processing system (36) and anode flow (26) field to commence ordinary operation of the power plant (10).« less

  18. Improving the sodium storage capacity of tunnel structured NaxFexTi2-xO4 (x = 1, 0.9 & 0.8) anode materials by tuning sodium deficiency

    NASA Astrophysics Data System (ADS)

    Bhange, Deu S.; Ali, Ghulam; Kim, Ji-Young; Chung, Kyung Yoon; Nam, Kyung-Wan

    2017-10-01

    Due to their abundance and environmentally benign nature, iron and titanium present as the most attractive potential elements for use in rechargeable sodium-ion batteries (SIBs). Accordingly, two structurally different Fe and Ti based compounds, stoichiometric NaFeTiO4 and sodium deficient NaxFexTi2-xO4 (where x = 0.9, and 0.8), are explored as anode materials for SIBs. Their structure and sodium storage capacity are systematically investigated by using combined structural and electrochemical analysis. Rietveld refinement analysis reveals that the sodium deficiency leads to the structural transformation from a single-tunnel structure (NaFeTiO4) to a zigzag-type double-tunnel structure (Na0.9Fe0.9Ti1.1O4 and Na0.8Fe0.8Ti1.2O4). The series of sodium deficient compounds bears systematic sodium ion vacancies in their structure up to 20%. Sodium deficiency in the NaxFexTi2-xO4 logically provides additional space for accommodating the excess sodium ions as such the NaxFexTi2-xO4 compounds with higher level of sodium deficiency show higher specific capacities than the stoichiometric NaFeTiO4. All the compounds exhibited very good electrochemical cycling stability, with minimal capacity loss during cycling. The present approach is a model example of improvement in the sodium storage capacity of the anode materials by tuning the chemical composition, and could facilitate the performance improvement of known or new electrode materials for SIBs.

  19. Novel drift structures for silicon and compound semiconductor X-ray and gamma-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.E.; Iwanczyk, J.S.

    Recently developed silicon- and compound-semiconductor-based drift detector structures have produced excellent performance for charged particles, X-rays, and gamma rays and for low-signal visible light detection. The silicon drift detector (SDD) structures that the authors discuss relate to direct X-ray detectors and scintillation photon detectors coupled with scintillators for gamma rays. Recent designs include several novel features that ensure very low dark current and hence low noise. In addition, application of thin window technology ensures a very high quantum efficiency entrance window on the drift photodetector. The main features of the silicon drift structures for X rays and light detection aremore » very small anode capacitance independent of the overall detector size, low noise, and high throughput. To take advantage of the small detector capacitance, the first stage of the electronics needs to be integrated into the detector anode. In the gamma-ray application, factors other than electronic noise dominate, and there is no need to integrate the electronics into the anode. Thus, a different drift structure is needed in conjunction with a high-Z material. The main features in this case are large active detector volume and electron-only induced signal.« less

  20. Method and device for the detection of phenol and related compounds. [in an electrochemical cell

    NASA Technical Reports Server (NTRS)

    Schiller, J. G.; Liu, C. C. (Inventor)

    1979-01-01

    A method is described which permits the selective oxidation and potentiometric detection of phenol and related compounds in an electrochemical cell. An anode coated with a gel immobilized oxidative enzyme and a cathode are each placed in an electrolyte solution. The potential of the cell is measured by a potentiometer connected to the electrodes.

  1. Importance of Electrode Material in the Electrochemical Treatment of Wastewater Containing Organic Pollutants

    NASA Astrophysics Data System (ADS)

    Panizza, Marco

    Electrochemical oxidation is a promising method for the treatment of wastewaters containing organic compounds. As a general rule, the electrochemical incineration of organics at a given electrode can take place at satisfactory rates and without electrode deactivation only at high anodic potentials in the region of the water discharge due to the participation of the intermediates of oxygen evolution. The nature of the electrode material strongly influences both the selectivity and the efficiency of the process. In particular, anodes with low oxygen evolution overpotential (i.e., good catalysts for oxygen evolution reactions), such as graphite, IrO2, RuO2, and Pt only permit the partial oxidation of organics, while anodes with high oxygen evolution overpotential (i.e., anodes that are poor catalysts for oxygen evolution reactions), such as SnO2, PbO2, and boron-doped diamond (BDD) favor the complete oxidation of organics to CO2 and so are ideal electrodes for wastewater treatment.However, the application of SnO2 and PbO2 anodes may be limited by their short service life and the risk of lead contamination, while BDD electrodes exhibit good chemical and electrochemical stability, a long life, and a wide potential window for water discharge, and are thus promising anodes for industrial-scale wastewater treatment.

  2. Chemical Evolution in Silicon–Graphite Composite Anodes Investigated by Vibrational Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruther, Rose E.; Hays, Kevin A.; An, Seong Jin

    Silicon–graphite composites are under development for the next generation of high-capacity lithium-ion anodes, and vibrational spectroscopy is a powerful tool to identify the different mechanisms that contribute to performance loss. With alloy anodes, the underlying causes of cell failure are significantly different in half-cells with lithium metal counter electrodes compared to full cells with standard cathodes. However, most studies which take advantage of vibrational spectroscopy have only examined half-cells. In this work, a combination of FTIR and Raman spectroscopy describes several factors that lead to degradation in full pouch cells with LiNi 0.5Mn 0.3Co 0.2O 2 (NMC532) cathodes. The spectroscopicmore » signatures evolve after longer term cycling compared to the initial formation cycles. Several side-reactions that consume lithium ions have clear FTIR signatures, and comparison to a library of reference compounds facilitates identification. Raman microspectroscopy combined with mapping shows that the composite anodes are not homogeneous but segregate into graphite-rich and silicon-rich phases. Lithiation does not proceed uniformly either. A basis analysis of Raman maps identifies electrochemically inactive regions of the anodes. In conclusion, the spectroscopic results presented here emphasize the importance of improving electrode processing and SEI stability to enable practical composite anodes with high silicon loadings.« less

  3. Chemical Evolution in Silicon–Graphite Composite Anodes Investigated by Vibrational Spectroscopy

    DOE PAGES

    Ruther, Rose E.; Hays, Kevin A.; An, Seong Jin; ...

    2018-05-24

    Silicon–graphite composites are under development for the next generation of high-capacity lithium-ion anodes, and vibrational spectroscopy is a powerful tool to identify the different mechanisms that contribute to performance loss. With alloy anodes, the underlying causes of cell failure are significantly different in half-cells with lithium metal counter electrodes compared to full cells with standard cathodes. However, most studies which take advantage of vibrational spectroscopy have only examined half-cells. In this work, a combination of FTIR and Raman spectroscopy describes several factors that lead to degradation in full pouch cells with LiNi 0.5Mn 0.3Co 0.2O 2 (NMC532) cathodes. The spectroscopicmore » signatures evolve after longer term cycling compared to the initial formation cycles. Several side-reactions that consume lithium ions have clear FTIR signatures, and comparison to a library of reference compounds facilitates identification. Raman microspectroscopy combined with mapping shows that the composite anodes are not homogeneous but segregate into graphite-rich and silicon-rich phases. Lithiation does not proceed uniformly either. A basis analysis of Raman maps identifies electrochemically inactive regions of the anodes. In conclusion, the spectroscopic results presented here emphasize the importance of improving electrode processing and SEI stability to enable practical composite anodes with high silicon loadings.« less

  4. Electrode erosion in arc discharges at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Hardy, T. L.

    1985-01-01

    An experimental investigation was performed in an effort to measure and increase lifetime of electrodes in an arcjet thruster. The electrode erosion of various anode and cathode materials was measured after tests in an atmospheric pressure nitrogen arc discharge at powers less than 1 kW. A free-burning arc configuration and a constricted arc configuration were used to test the materials. Lanthanum hexboride and thoriated tungsten had low cathode erosion rates while thoriated tungsten and pure tungsten had the lowest anode erosion rates of the materials tested. Anode cooling, reverse gas flow, an external magnetic fields were all found to reduce electrode mass loss.

  5. Development of Portable Flow-Through Electrochemical Sanitizing Unit to Generate Near Neutral Electrolyzed Water.

    PubMed

    Zhang, Jufang; Yang, Hongshun; Chan, Joel Zhi Yang

    2018-03-01

    We developed a portable flow-through, electrochemical sanitizing unit to produce near neutral pH electrolyzed water (producing NEW). Two methods of redirecting cathode yields back to the anode chamber and redirecting anode yields the cathode chamber were used. The NEW yields were evaluated, including: free available chlorine (FAC), oxidation-reduction potential (ORP), and pH. The performances of 2 electrodes (RuO 2 -IrO 2 /TiO 2 and IrO 2 -Ta 2 O 5 /TiO 2 ) were investigated. The unit produced NEW at pH 6.46 to 7.17, an ORP of 805.5 to 895.8 mV, and FAC of 3.7 to 82.0 mg/L. The NEW produced by redirecting cathode yields had stronger bactericidal effects than the NEW produced by redirecting anode yields or NEW produced by mixing the commercial unit's anode and cathode product (P < 0.05). Electron spin resonance results showed hydroxyl free radicals and superoxide anion free radicals were present in the NEW produced by developed unit. The NEW generator is a promising sanitizing unit for consumers and the food industry to control foodborne pathogens. Current commercial NEW-producing units are quite large and are not convenient for family using. The developed portable flow-through, NEW-producing unit has great potential in a wide range of applications, such as organic farm, households, and small food industries. The examined sanitizing treatments showed effective control of Escherichia coli O157:H7 and Listeria monocytogenes. © 2018 Institute of Food Technologists®.

  6. Optimization of the electrochemical degradation process of the antibiotic ciprofloxacin using a double-sided β-PbO2 anode in a flow reactor: kinetics, identification of oxidation intermediates and toxicity evaluation.

    PubMed

    Wachter, Naihara; Aquino, José M; Denadai, Marina; Barreiro, Juliana C; Silva, Adilson J; Cass, Quezia B; Rocha-Filho, Romeu C; Bocchi, Nerilso

    2018-06-06

    The electrochemical degradation of ciprofloxacin-CIP (50 mg L -1 in 0.10 mol L -1 Na 2 SO 4 ) was investigated using a double-sided Ti-Pt/β-PbO 2 anode in a filter-press flow reactor, with identification of oxidation intermediates and follow-up of antimicrobial activity against Escherichia coli. The effect of solution pH, flow rate, current density, and temperature on the CIP removal rate was evaluated. All of these parameters did affect the CIP removal performance; thus, optimized electrolysis conditions were further explored: pH = 10, q V  = 6.5 L min -1 , j = 30 mA cm -2 , and θ = 25 °C. Therefore, CIP was removed within 2 h, whereas ~75% of the total organic carbon concentration (TOC) was removed after 5 h and then, the solution no longer presented antimicrobial activity. When the electrochemical degradation of CIP was investigated using a single-sided boron-doped diamond (BDD) anode, its performance in TOC removal was similar to that of the Ti-Pt/β-PbO 2 anode; considering the higher oxidation power of BDD, the surprisingly good comparative performance of the Ti-Pt/β-PbO 2 anode was ascribed to significantly better hydrodynamic conditions attained in the filter-press reactor used with this electrode. Five initial oxidation intermediates were identified by LC-MS/MS and completely removed after 4 h of electrolysis; since they have also been determined in other degradation processes, there must be similarities in the involved oxidation mechanisms. Five terminal oxidation intermediates (acetic, formic, oxamic, propionic, and succinic acids) were identified by LC-UV and all of them (except acetic acid) were removed after 10 h of electrolysis.

  7. Combined current collector and electrode separator

    DOEpatents

    Gerenser, R.J.; Littauer, E.L.

    1983-08-23

    This relates to reactive metal cells wherein there is a cathode and a consumable anode. It is necessary to separate the cathode from the anode so that an electrolyte may constantly flow over the face of the anode opposing the cathode. It has been found that this separator may also beneficially function as a current collector. The combined current collector and separator includes a peripheral supporting frame of which a portion may function as a bus-bar. A plurality of bars or ribs extend in parallel relation across the opening defined by the supporting frame and are electrically connected to the bus-bar portion. It is preferred that each bar or rib have a pointed or line edge which will engage and slightly bite into the associated anode to maintain the bar or rib in electrical contact with the anode. This abstract forms no part of the specification of this application and is not to be construed as limiting the claims of the application. 6 figs.

  8. Combined current collector and electrode separator

    DOEpatents

    Gerenser, Robert J.; Littauer, Ernest L.

    1983-01-01

    This relates to reactive metal cells wherein there is a cathode and a consumable anode. It is necessary to separate the cathode from the anode so that an electrolyte may constantly flow over the face of the anode opposing the cathode. It has been found that this separator may also beneficially function as a current collector. The combined current collector and separator includes a peripheral supporting frame of which a portion may function as a bus-bar. A plurality of bars or ribs extend in parallel relation across the opening defined by the supporting frame and are electrically connected to the bus-bar portion. It is preferred that each bar or rib have a pointed or line edge which will engage and slightly bite into the associated anode to maintain the bar or rib in electrical contact with the anode. This abstract forms no part of the specification of this application and is not to be construed as limiting the claims of the application.

  9. A method for achieving ignition of a low voltage gas discharge device

    DOEpatents

    Kovarik, Vincent J.; Hershcovitch, Ady; Prelec, Krsto

    1988-01-01

    An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a larger number of gas atoms, thus reducing the voltage necesary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.

  10. Low-voltage gas-discharge device

    DOEpatents

    Kovarik, V.J.; Hershcovitch, A.; Prelec, K.

    1982-06-08

    An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region is described. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a large number of gas atoms, thus reducing the voltage necessary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.

  11. Study of a new type anode of OLED by MIC poly-Si

    NASA Astrophysics Data System (ADS)

    Li, Yang; Meng, Zhiguo; Wu, Chunya; Man, Wong; Hoi, Kwok Sing; Xiong, Shaozhen

    2007-11-01

    In this paper, a boron-doped poly-Si crystallized by solution-based metal induced (S-MIC) as the anode of organic light emitting diode (OLED) was studied. The semi-transparent and semi-reflective anode of OLED systemized with the high reflectivity of Al cathode could form a micro-cavity structure with a low Q to improve the efficiency. The maximum luminance efficiency of red OLED made by Alq3: DCJTB (1.5wt %)( 30nm) with the poly-Si anode is 2.66cd/A, higher than that of the OLED with the ITO anodes by 30%. In order to improve the device performance, some key to optimize the character of MIC poly-Si thin film are analyzed theoretically. A new kind of TFT/OLED coupling structure in AMOLED was proposed, in which the pixel electrode of OLED was made by the same poly-Si thin film with its driver TFT's drain electrode. So that this coupling structure will simplify the AMOLED processes flow.

  12. Kinetics of (reversible) internal reforming of methane in solid oxide fuel cells under stationary and APU conditions

    NASA Astrophysics Data System (ADS)

    Timmermann, H.; Sawady, W.; Reimert, R.; Ivers-Tiffée, E.

    The internal reforming of methane in a solid oxide fuel cell (SOFC) is investigated and modeled for flow conditions relevant to operation. To this end, measurements are performed on anode-supported cells (ASC), thereby varying gas composition (y CO = 4-15%, yH2 = 5 - 17 % , yCO2 = 6 - 18 % , yH2O = 2 - 30 % , yCH4 = 0.1 - 20 %) and temperature (600-850 °C). In this way, operating conditions for both stationary applications (methane-rich pre-reformate) as well as for auxiliary power unit (APU) applications (diesel-POX reformate) are represented. The reforming reaction is monitored in five different positions alongside the anodic gas channel by means of gas chromatography. It is shown that methane is converted in the flow field for methane-rich gas compositions, whereas under operation with diesel reformate the direction of the reaction is reversed for temperatures below 675 °C, i.e. (exothermic) methanation occurs along the anode. Using a reaction model, a rate equation for reforming could be derived which is also valid in the case of methanation. By introducing this equation into the reaction model the methane conversion along a catalytically active Ni-YSZ cermet SOFC anode can be simulated for the operating conditions specified above.

  13. Control assembly for controlling a fuel cell system during shutdown and restart

    DOEpatents

    Venkataraman, Ramki; Berntsen, George; Carlson, Glenn L.; Farooque, Mohammad; Beachy, Dan; Peterhans, Stefan; Bischoff, Manfred

    2010-06-15

    A fuel cell system and method in which the fuel cell system receives and an input oxidant gas and an input fuel gas, and in which a fuel processing assembly is provided and is adapted to at least humidify the input fuel gas which is to be supplied to the anode of the fuel cell of the system whose cathode receives the oxidant input gas via an anode oxidizing assembly which is adapted to couple the output of the anode of the fuel cell to the inlet of the cathode of the fuel cell during normal operation, shutdown and restart of the fuel cell system, and in which a control assembly is further provided and is adapted to respond to shutdown of the fuel cell system during which input fuel gas and input oxidant gas cease to be received by the fuel cell system, the control assembly being further adapted to, when the fuel cell system is shut down: control the fuel cell system so as to enable a purging gas to be able to flow through the fuel processing assembly to remove humidified fuel gas from the processing assembly and to enable a purging gas to be able to flow through the anode of the fuel cell.

  14. Method for providing uranium articles with a corrosion resistant anodized coating

    DOEpatents

    Waldrop, Forrest B.; Washington, Charles A.

    1982-01-01

    Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75.degree. C. with a current flow of less than about 0.036 A/cm.sup.2 of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.

  15. Resistive anode image converter

    NASA Technical Reports Server (NTRS)

    Lampton, M. L.; Paresce, F. (Inventor)

    1976-01-01

    The invention of an apparatus for imaging soft X-ray and ultraviolet electromagnetic radiation and charged particles was described. The apparatus includes a pair of microchannel electron multiplier plates connected in a cascaded chevron configuration which intercepts an incident beam of radiation or charged particles. Incident photons or charged particles strike the front surface of the chevron configuration causing emission of electrons. The electrons are accelerated by a voltage gradient and strike the inner side walls of the individual channels, causing emission of secondary electrons. Accelerated and multiplied secondary electrons impinge upon a resistive anode after they transverse the chevron configuration. A pulse position circuit converts the magnitude or transit time of the currents flowing from the point of impact of the electrons on the resistive anode to four contact electrodes mounted on their periphery of the resistive anode into the spatial coordinates of electron impact.

  16. Methods and apparatus for using gas and liquid phase cathodic depolarizers

    NASA Technical Reports Server (NTRS)

    Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor)

    1998-01-01

    The invention provides methods for using gas and liquid phase cathodic depolarizers in an electrochemical cell having a cation exchange membrane in intimate contact with the anode and cathode. The electrochemical conversion of cathodic depolarizers at the cathode lowers the cell potential necessary to achieve a desired electrochemical conversion, such as ozone evolution, at the anode. When gaseous cathodic depolarizers, such as oxygen, are used, a gas diffusion cathode having the cation exchange membrane bonded thereto is preferred. When liquid phase cathodic depolarizers are used, the cathode may be a flow-by electrode, flow-through electrode, packed-bed electrode or a fluidized-bed electrode in intimate contact with the cation exchange membrane.

  17. Low pressure spark gap triggered by an ion diode

    DOEpatents

    Prono, Daniel S.

    1985-01-01

    Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.

  18. Low-pressure spark gap triggered by an ion diode

    DOEpatents

    Prono, D.S.

    1982-08-31

    Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.

  19. Electrogenerative oxidation of lower alcohols to useful products

    DOEpatents

    Meshbesher, Thomas M.

    1987-01-01

    In the disclosed electrogenerative process for converting alcohols such as ethanol to aldehydes such as acetaldehyde, the alcohol starting material is an aqueous solution containing more than the azeotropic amount of water. Good first-pass conversions (<40% and more typically <50%) are obtained at operating cell voltages in the range of about 80 to about 350 millivolts at ordinary temperatures and pressures by using very high flow rates of alcohol to the exposed anode surface (i.e. the "gas" side of an anode whose other surface is in contact with the electrolyte). High molar flow rates of vaporized aqueous alcohol also help to keep formation of undesired byproducts at a low level.

  20. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode.

    PubMed

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-05-15

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12h, the COD was decreased from 532 to 99 mg L(-1) (<100 mg L(-1), the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xuetian; An, Ke; Bai, Jianmin

    Sodium ion batteries are being considered as an alternative to lithium ion batteries in large-scale energy storage applications owing to the low cost. In this paper, a novel titanate compound, NaAlTi 3O 8, was successfully synthesized and tested as a promising anode material for sodium ion batteries. Powder X-ray Diffraction (XRD) and refinement were used to analyze the crystal structure. Electrochemical cycling tests under a C/10 rate between 0.01 - 2.5 V showed that ~83 mAh/g capacity could be achieved in the second cycle, with ~75% of which retained after 100 cycles, which corresponds to 0.75 Na + insertion andmore » extraction. The influence of synthesis conditions on electrochemical performances was investigated and discussed. Finally, NaAlTi 3O 8 not only presents a new anode material with low average voltage of ~0.5 V, but also provides a new type of intercalation anode with a crystal structure that differentiates from the anodes that have been reported.« less

  2. Electrochemical research on corrosion behavior of A3 steel in compound sodium molybadate and organic inhibitor solution

    NASA Astrophysics Data System (ADS)

    Sun, C. X.; Chen, Y. M.; Xu, H. W.; Zhang, M.; Chen, M.; Xue, M.; Wu, J. Y.; Huang, C. S.

    2015-07-01

    The electrochemical corrosion behavior of A3 in compound sodium molybdate and organic inhibitor solution was tested by the electrochemical workstation method. The concentration of the compound inhibitor set to range 250 mg/L to 3000 mg/L. The polarization curve results of A3 in different concentration inhibitor solutions show that the inhibitor markedly represses the anodic processes. The EIS has two time constant. The extreme concentration is 1500 mg/L.

  3. Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate.

    PubMed

    Hari, Ananda Rao; Katuri, Krishna P; Gorron, Eduardo; Logan, Bruce E; Saikaly, Pascal E

    2016-07-01

    Microbial electrolysis cells (MECs) provide a viable approach for bioenergy generation from fermentable substrates such as propionate. However, the paths of electron flow during propionate oxidation in the anode of MECs are unknown. Here, the paths of electron flow involved in propionate oxidation in the anode of two-chambered MECs were examined at low (4.5 mM) and high (36 mM) propionate concentrations. Electron mass balances and microbial community analysis revealed that multiple paths of electron flow (via acetate/H2 or acetate/formate) to current could occur simultaneously during propionate oxidation regardless of the concentration tested. Current (57-96 %) was the largest electron sink and methane (0-2.3 %) production was relatively unimportant at both concentrations based on electron balances. At a low propionate concentration, reactors supplemented with 2-bromoethanesulfonate had slightly higher coulombic efficiencies than reactors lacking this methanogenesis inhibitor. However, an opposite trend was observed at high propionate concentration, where reactors supplemented with 2-bromoethanesulfonate had a lower coulombic efficiency and there was a greater percentage of electron loss (23.5 %) to undefined sinks compared to reactors without 2-bromoethanesulfonate (11.2 %). Propionate removal efficiencies were 98 % (low propionate concentration) and 78 % (high propionate concentration). Analysis of 16S rRNA gene pyrosequencing revealed the dominance of sequences most similar to Geobacter sulfurreducens PCA and G. sulfurreducens subsp. ethanolicus. Collectively, these results provide new insights on the paths of electron flow during propionate oxidation in the anode of MECs fed with low and high propionate concentrations.

  4. Facile synthesis of nickel-doped Co9S8 hollow nanoparticles with large surface-controlled pseudocapacitive and fast sodium storage

    NASA Astrophysics Data System (ADS)

    Zhou, Hepeng; Cao, Yijun; Ma, Zilong; Li, Shulei

    2018-05-01

    Transition metal sulfides are considered to be promising candidates as anodes for sodium ion batteries (SIBs). However, their further applications are limited by poor electrical conductivity and sluggish electrochemical kinetics. We report, for the first time, nickel-doped Co9S8 hollow nanoparticles as SIB anodes with enhanced electrical conductivity and a large pseudocapacitive effect, leading to fast kinetics. This compound exhibits excellent sodium storage performance, including a high capacity of 556.7 mA h g-1, a high rate capability of 2000 mA g-1 and an excellent stability up to 200 cycles. The results demonstrate that nickel-doped Co9S8 hollow nanoparticles are a promising anode material for SIBs.

  5. Recent Studies on Metal Oxides as Anodes for Li-ION Batteries

    NASA Astrophysics Data System (ADS)

    Sharma, N.; Subba Rao, G. V.; Chowdari, B. V. R.

    Commercial lithium ion batteries (LIB) use layer-type compounds as the electrode materials and Li-ion conducting liquid or polymeric gel as the electrolyte. The preferred cathode and anode are LiCoO2 and graphite respectively. Efforts to improve the performance as well as safety-in-operation of LIB led to the search for alternate electrode materials. As regards the anodes, metal-oxide systems received special attention: Tin (Sn) containing mixed oxides and various 3d- and 4d- transition metal (M) mixed oxides. The reversible capacities in these systems arise either from alloying/de-alloying, formation/decomposition of Li2O aided by the nanosize metal (M) particles/Li-M-O bronze or Li-intercalation/de-intercalation. A brief account of the recent studies is presented.

  6. Mechanical process for enhancing metal hydride for the anode of a Ni-MH secondary battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeya, T.; Kumai, K.; Iwahori, T.

    1993-11-01

    This study attempted to find a simpler method for modifying hydrogen storage alloys that are used as anodes in Ni-MH batteries to prolong their cycle life. The alloy was modified by mechanical grinding with cobalt metal powder. A short grinding time yielded samples with a higher discharge capacity and longer cycle life than those of the alloy which was mixed with the cobalt powder without the mechanical treatment. However, prolonged grinding caused a decrease in the discharge capacity because of amorphization of the alloy by mechanical stress. The authors believed the formation of a cobalt compound on the alloy surfacemore » plus closer contact between particle enhanced the cyclic durability and discharge capacity of metal hydride anodes.« less

  7. Facile synthesis of nickel-doped Co9S8 hollow nanoparticles with large surface-controlled pseudocapacitive and fast sodium storage.

    PubMed

    Zhou, Hepeng; Cao, Yijun; Ma, Zilong; Li, Shulei

    2018-05-11

    Transition metal sulfides are considered to be promising candidates as anodes for sodium ion batteries (SIBs). However, their further applications are limited by poor electrical conductivity and sluggish electrochemical kinetics. We report, for the first time, nickel-doped Co 9 S 8 hollow nanoparticles as SIB anodes with enhanced electrical conductivity and a large pseudocapacitive effect, leading to fast kinetics. This compound exhibits excellent sodium storage performance, including a high capacity of 556.7 mA h g -1 , a high rate capability of 2000 mA g -1 and an excellent stability up to 200 cycles. The results demonstrate that nickel-doped Co 9 S 8 hollow nanoparticles are a promising anode material for SIBs.

  8. Cells having cathodes containing polycarbon disulfide materials

    DOEpatents

    Okamoto, Yoshi; Skotheim, Terje A.; Lee, Hung S.

    1995-08-15

    The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS.sub.x).sub.n, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode.

  9. Layered double hydroxide films on nanoporous anodic aluminum oxide/aluminum wire: a new fiber for rapid analysis of Origanum vulgare essential oils.

    PubMed

    Piryaei, Marzieh

    2018-01-01

    Zn/Al layered double hydroxide (LDH) films were fabricated in situ with anodic aluminium oxide aluminium as both the substrate and the sole aluminium source by means of urea hydrolysis. Headspace solid phase microextraction using LDH fibre in combination with capillary GC-MS was utilised as a monitoring technique for the collection and detection of the volatile compounds of Origanum vulgare. Experimental parameters, including the sample weight, microwave power, extraction time and humidity effect, were examined and optimised.

  10. Two-dimensional ultra-thin SiO(x) (0 < x < 2) nanosheets with long-term cycling stability as lithium ion battery anodes.

    PubMed

    Sun, Lin; Su, Tingting; Xu, Lei; Liu, Meipin; Du, Hong-Bin

    2016-03-21

    Ultra-thin SiO(x) (0 < x < 2) nanosheets were obtained via a convenient solvothermal route from a Zintl compound CaSi2. After carbon coating, the SiOx@C nanosheet anodes exhibit high capacity, good rate and superior cycling performance for high-capacity lithium ion battery applications. The specific capacity can be maintained as high as 760 mA h g(-1) with almost no capacity decay after 400 cycles at a current density of 0.5 A g(-1).

  11. Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration.

    PubMed

    Li, Meng; Hua, Bin; Luo, Jing-Li; Jiang, San Ping; Pu, Jian; Chi, Bo; Li, Jian

    2016-04-27

    Conventional anode materials for solid oxide fuel cells (SOFCs) are Ni-based cermets, which are highly susceptible to deactivation by contaminants in hydrocarbon fuels. Hydrogen sulfide is one of the commonly existed contaminants in readily available natural gas and gasification product gases of pyrolysis of biomasses. Development of sulfur tolerant anode materials is thus one of the critical challenges for commercial viability and practical application of SOFC technologies. Here we report a viable approach to enhance substantially the sulfur poisoning resistance of a Ni-gadolinia-doped ceria (Ni-GDC) anode through impregnation of proton conducting perovskite BaCe0.9Yb0.1O3-δ (BCYb). The impregnation of BCYb nanoparticles improves the electrochemical performance of the Ni-GDC anode in both H2 and H2S containing fuels. Moreover, more importantly, the enhanced stability is observed in 500 ppm of H2S/H2. The SEM and XPS analysis indicate that the infiltrated BCYb fine particles inhibit the adsorption of sulfur and facilitate sulfur removal from active sites, thus preventing the detrimental interaction between sulfur and Ni-GDC and the formation of cerium sulfide. The preliminary results of the cell with the BCYb+Ni-GDC anode in methane fuel containing 5000 ppm of H2S show the promising potential of the BCYb infiltration approach in the development of highly active and stable Ni-GDC-based anodes fed with hydrocarbon fuels containing a high concentration of sulfur compounds.

  12. Electricity generation from tetrathionate in microbial fuel cells by acidophiles.

    PubMed

    Sulonen, Mira L K; Kokko, Marika E; Lakaniemi, Aino-Maija; Puhakka, Jaakko A

    2015-03-02

    Inorganic sulfur compounds, such as tetrathionate, are often present in mining process and waste waters. The biodegradation of tetrathionate was studied under acidic conditions in aerobic batch cultivations and in anaerobic anodes of two-chamber flow-through microbial fuel cells (MFCs). All four cultures originating from biohydrometallurgical process waters from multimetal ore heap bioleaching oxidized tetrathionate aerobically at pH below 3 with sulfate as the main soluble metabolite. In addition, all cultures generated electricity from tetrathionate in MFCs at pH below 2.5 with ferric iron as the terminal cathodic electron acceptor. The maximum current and power densities during MFC operation and in the performance analysis were 79.6 mA m(-2) and 13.9 mW m(-2) and 433 mA m(-2) and 17.6 mW m(-2), respectively. However, the low coulombic efficiency (below 5%) indicates that most of the electrons were directed to other processes, such as aerobic oxidation of tetrathionate and unmeasured intermediates. The microbial community analysis revealed that the dominant species both in the anolyte and on the anode electrode surface of the MFCs were Acidithiobacillus spp. and Ferroplasma spp. This study provides a proof of concept that tetrathionate serves as electron donor for biological electricity production in the pH range of 1.2-2.5. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Characterization of argon direct-current glow discharge with a longitudinal electric field applied at ambient air

    NASA Astrophysics Data System (ADS)

    Jiang, Weiman; Tang, Jie; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2014-09-01

    A direct-current-driven plasma jet is developed by applying a longitudinal electric field on the flowing argon at ambient air. This plasma shows a torch shape with its cross-section increased from the anode to the cathode. Comparison with its counterparts indicates that the gas flow plays a key role in variation of the plasma structure and contributes much to enlarging the plasma volume. It is also found that the circular hollow metal base promotes generation of plasma with a high-power volume density in a limited space. The optical emission spectroscopy (OES) diagnosis indicates that the plasma comprises many reactive species, such as OH, O, excited N2, and Ar metastables. Examination of the rotational and vibrational temperature indicates that the plasma is under nonequilibrium condition and the excited species OH(A 2Σ+), O(5P), and N2(C 3Πu) are partly generated by energy transfer from argon metastables. The spatially resolved OES of plasma reveals that the negative glow, Faraday dark space, and positive column are distributed across the gas gap. The absence of the anode glow is attributed to the fact that many electrons in the vicinity of the anode follow ions into the positive column due to the ambipolar diffusion in the flowing gas.

  14. Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries.

    PubMed

    Luo, Chao; Xu, Gui-Liang; Ji, Xiao; Hou, Singyuk; Chen, Long; Wang, Fei; Jiang, Jianjun; Chen, Zonghai; Ren, Yang; Amine, Khalil; Wang, Chunsheng

    2018-03-05

    Sustainable sodium-ion batteries (SSIBs) using renewable organic electrodes are promising alternatives to lithium-ion batteries for the large-scale renewable energy storage. However, the lack of high-performance anode material impedes the development of SSIBs. Herein, we report a new type of organic anode material based on azo group for SSIBs. Azobenzene-4,4'-dicarboxylic acid sodium salt is used as a model to investigate the electrochemical behaviors and reaction mechanism of azo compound. It exhibits a reversible capacity of 170 mAh g -1 at 0.2C. When current density is increased to 20C, the reversible capacities of 98 mAh g -1 can be retained for 2000 cycles, demonstrating excellent cycling stability and high rate capability. The detailed characterizations reveal that azo group acts as an electrochemical active site to reversibly bond with Na + . The reversible redox chemistry between azo compound and Na ions offer opportunities for developing long-cycle-life and high-rate SSIBs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Modulation of Electroosmotic Flow through Skin: Effect of Poly(Amidoamine) Dendrimers

    PubMed Central

    Kim, Hye Ji; Oh, Seaung Youl

    2018-01-01

    The objective of this work is to evaluate the effect of polyamidoamine (PAMAM) dendrimers on electroosmotic flow (EOF) through skin. The effect of size and concentration of dendrimer was studied, using generation 1, 4 and 7 dendrimer (G1, G4 and G7, respectively). As a marker molecule for the direction and magnitude of EOF, a neutral molecule, acetoaminophen (AAP) was used. The visualization of dendrimer permeation into the current conducting pore (CCP) of skin was made using G4–fluorescein isothiocyanate (FITC) conjugate and confocal microscopy. Without dendrimer, anodal flux of AAP was much higher than cathodal or passive flux. When G1 dendrimer was added, anodal flux decreased, presumably due to the decrease in EOF by the association of G1 dendrimer with net negative charge in CCP. As the generation increased, larger decrease in anodal flux was observed, and the direction of EOF was reversed. Small amount of methanol used for the preparation of dendrimer solution also contributed to the decrease in anodal flux of AAP. Cross-sectional view perpendicular to the skin surface by confocal laser scanning microscope (CLSM) study showed that G4 dendrimer-FITC conjugate (G4-FITC) can penetrate into the viable epidermis and dermis under anodal current. The permeation route seemed to be localized on hair follicle region. These results suggest that PAMAM dendrimers can permeate into CCP and change the magnitude and direction of EOF. Overall, we obtained a better understanding on the mechanistic insights into the electroosmosis phenomena and its role on flux during iontophoresis. PMID:29310428

  16. Polarity-Dependent Misperception of Subjective Visual Vertical during and after Transcranial Direct Current Stimulation (tDCS)

    PubMed Central

    Santos-Pontelli, Taiza E. G.; Rimoli, Brunna P.; Favoretto, Diandra B.; Mazin, Suleimy C.; Truong, Dennis Q.; Leite, Joao P.; Pontes-Neto, Octavio M.; Babyar, Suzanne R.; Reding, Michael; Bikson, Marom; Edwards, Dylan J.

    2016-01-01

    Pathologic tilt of subjective visual vertical (SVV) frequently has adverse functional consequences for patients with stroke and vestibular disorders. Repetitive transcranial magnetic stimulation (rTMS) of the supramarginal gyrus can produce a transitory tilt on SVV in healthy subjects. However, the effect of transcranial direct current stimulation (tDCS) on SVV has never been systematically studied. We investigated whether bilateral tDCS over the temporal-parietal region could result in both online and offline SVV misperception in healthy subjects. In a randomized, sham-controlled, single-blind crossover pilot study, thirteen healthy subjects performed tests of SVV before, during and after the tDCS applied over the temporal-parietal region in three conditions used on different days: right anode/left cathode; right cathode/left anode; and sham. Subjects were blind to the tDCS conditions. Montage-specific current flow patterns were investigated using computational models. SVV was significantly displaced towards the anode during both active stimulation conditions when compared to sham condition. Immediately after both active conditions, there were rebound effects. Longer lasting after-effects towards the anode occurred only in the right cathode/left anode condition. Current flow models predicted the stimulation of temporal-parietal regions under the electrodes and deep clusters in the posterior limb of the internal capsule. The present findings indicate that tDCS over the temporal-parietal region can significantly alter human SVV perception. This tDCS approach may be a potential clinical tool for the treatment of SVV misperception in neurological patients. PMID:27031726

  17. Effect of the electronegativity on the electrosorption selectivity of anions during capacitive deionization.

    PubMed

    Sun, Zhumei; Chai, Liyuan; Liu, Mingshi; Shu, Yude; Li, Qingzhu; Wang, Yunyan; Qiu, Dingfan

    2018-03-01

    The effect of electronegativity on the electrosorption selectivity of anions during capacitive deionization was investigated via a combination of experimental and theoretical studies. A model was developed based on chemical thermodynamics and the classic Stern's model to reveal the role of the anode potential and to describe electrosorption selectivity behavior during capacitive deionization. The effects of the anode potential on the adsorption of Cl - and ReO 4 - were studied and the obtained data were used to validate the model. Using the validated model, the effects of the anode potential and electronegativity of various anions, including Cl - , ReO 4 - , SO 4 2- and NO 3 - were assessed. The experimental results for the electrosorption of Cl - and ReO 4 - corresponded well with the developed model. The electrosorption capacity demonstrates a logarithmic relationship with the anode potential. The model showed that the electronegativity significantly affects the selectivity. In a mixed Cl - , ReO 4 - , SO 4 2- and NO 3 - solution, ReO 4 - was preferentially adsorbed over the other three anions, and the following selectivity was exhibited: ReO 4 -  > NO 3 -  > Cl -  > SO 4 2- . The results showed that the effect of flow rates on the electrosorption selectivity can be considered negligible when the flow rates are higher than 112 mL min -1 . The anions selectivity can be further enhanced by increasing the anode potential, and electrosorption selectivity is no appreciable decline after 6 experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Samaria-doped Ceria Modified Ni/YSZ Anode for Direct Methane Fuel in Tubular Solid Oxide Fuel Cells by Impregnation Method

    NASA Astrophysics Data System (ADS)

    Zhang, Long-shan; Gao, Jian-feng; Tian, Rui-fen; Xia, Chang-rong

    2009-08-01

    A porous NiO/yttria-stabilized zirconia anode substrate for tubular solid oxide fuel cells was prepared by gel casting technique. Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate to modify the anode microstructure by the impregnation of solution of Sm(NO3)3 and Ce(NO3)3. Electrochemical impedance spectroscopy, current-voltage and current-powder curves of the cells were measured using an electrochemical workstation. Scanning electron microcopy was used to observe the microstructure. The results indicate that the stability of the performance of the cell operated on humidified methane can be significantly improved by incorporating the nano-structured SDC particles, compared with the unmodified cell. This verifies that the coated SDC electrodes are very effective in suppressing catalytic carbon formation by blocking methane from approaching the Ni, which is catalytically active towards methane pyrolysis. In addition, it was found that a small amount of deposited carbon is beneficial to the performance of the anode. The cell showed a peak power density of 225 mW/cm2 when it was fed with H2 fuel at 700 °C, but the power density increased to 400 mW/cm2 when the fuel was switched from hydrogen to methane at the same flow rate. Methane conversion achieved about 90%, measured by gas chromatogram with a 10.0 mL/min flow rate of fuel at 700 °C. Although the carbon deposition was not suppressed absolutely, some deposited carbon was beneficial for performance improvement.

  19. Free-Flow Open-Chamber Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Free-flow open-chamber electrophoresis variant of free-flow electrophoresis performed in chamber with open ends and in which velocity of electro-osmotic flow adjusted equal to and opposite mean electrophoretic velocity of sample. Particles having electrophoretic mobilities greater than mean mobility of sample particles move toward cathode, those with mobilities less move toward anode. Technique applied to separation of components of mixtures of biologically important substances. Sensitivity enhanced by use of tapered chamber.

  20. Electrochemical reduction of hexahydro-1,3,5-trinitro-1,3,5-triazine in aqueous solutions.

    PubMed

    Bonin, Pascale M L; Bejan, Dorin; Schutt, Leah; Hawari, Jalal; Bunce, Nigel J

    2004-03-01

    Electrochemical reduction of RDX, hexahydro-1,3,5-trinitro-1,3,5-triazine, a commercial and military explosive, was examined as a possible remediation technology for treating RDX-contaminated groundwater. A cascade of divided flow-through cells was used, with reticulated vitreous carbon cathodes and IrO2/Ti dimensionally stable anodes, initially using acetonitrile/water solutions to increase the solubility of RDX. The major degradation pathway involved reduction of RDX to the corresponding mononitroso compound, followed by ring cleavage to yield formaldehyde and methylenedinitramine. The reaction intermediates underwent further reduction and/or hydrolysis, the net result being the complete transformation of RDX to small molecules. The rate of degradation increased with current density, but the current efficiency was highest at low current densities. The technique was extended successfully both to 100% aqueous solutions of RDX and to an undivided electrochemical cell.

  1. Solid oxide fuel cell power plant having a fixed contact oxidation catalyzed section of a multi-section cathode air heat exchanger

    DOEpatents

    Saito, Kazuo; Lin, Yao

    2015-02-17

    The multi-section cathode air heat exchanger (102) includes at least a first heat exchanger section (104), and a fixed contact oxidation catalyzed section (126) secured adjacent each other in a stack association. Cool cathode inlet air flows through cool air channels (110) of the at least first (104) and oxidation catalyzed sections (126). Hot anode exhaust flows through hot air channels (124) of the oxidation catalyzed section (126) and is combusted therein. The combusted anode exhaust then flows through hot air channels (112) of the first section (104) of the cathode air heat exchanger (102). The cool and hot air channels (110, 112) are secured in direct heat exchange relationship with each other so that temperatures of the heat exchanger (102) do not exceed 800.degree. C. to minimize requirements for using expensive, high-temperature alloys.

  2. Hydrogen production from a rectangular horizontal filter press Divergent Electrode-Flow-Through (DEFT™) alkaline electrolysis stack

    NASA Astrophysics Data System (ADS)

    Gillespie, M. I.; Kriek, R. J.

    2017-12-01

    A membraneless Divergent Electrode-Flow-Through (DEFT™) alkaline electrolyser, for unlocking profitable hydrogen production by combining a simplistic, inexpensive, modular and durable design, capable of overcoming existing technology current density thresholds, is ideal for decentralised renewable hydrogen production, with the only requirement of electrolytic flow to facilitate high purity product gas separation. Scale-up of the technology was performed, representing a deviation from the original tested stack design, incorporating elongated electrodes housed in a filter press assembly. The pilot plant operating parameters were limited to a low flow velocity range (0.03 m s-1 -0.04 m s-1) with an electrode gap of 2.5 mm. Performance of this pilot plant demonstrated repeatability to results previously obtained. Mesh electrodes with geometric area of 344.32 cm2 were used for plant performance testing. A NiO anode and Ni cathode combination developed optimal performance yielding 508 mA cm-2 at 2 VDC in contrast to a Ni anode and cathode combination providing 467 mA cm-2 at 2.26 VDC at 0.04 m s-1, 30% KOH and 80 °C. An IrO2/RuO2/TiO2 anode and Pt cathode combination underwent catalyst deactivation. Owing to the nature of the gas/liquid separation system, gas qualities were inadequate compared to results achieved previously. Future improvements will provide qualities similar to results achieved before.

  3. In situ Van der Pauw measurements of the Ni/YSZ anode during exposure to syngas with phosphine contaminant

    NASA Astrophysics Data System (ADS)

    Demircan, Oktay; Xu, Chunchuan; Zondlo, John; Finklea, Harry O.

    Solid oxide fuel cells (SOFCs) represent an option to provide a bridging technology for energy conversion (coal syngas) as well as a long-term technology (hydrogen from biomass). Whether the fuel is coal syngas or hydrogen from biomass, the effect of impurities on the performance of the anode is a vital question. The anode resistivity during SOFC operation with phosphine-contaminated syngas was studied using the in situ Van der Pauw method. Commercial anode-supported solid oxide fuel cells (Ni/YSZ composite anodes, YSZ electrolytes) were exposed to a synthetic coal syngas mixture (H 2, H 2O, CO, and CO 2) at a constant current and their performance evaluated periodically with electrochemical methods (cyclic voltammetry, impedance spectroscopy, and polarization curves). In one test, after 170 h of phosphine exposure, a significant degradation of cell performance (loss of cell voltage, increase of series resistance and increase of polarization resistance) was evident. The rate of voltage loss was 1.4 mV h -1. The resistivity measurements on Ni/YSZ anode by the in situ Van der Pauw method showed that there were no significant changes in anode resistivity both under clean syngas and syngas with 10 ppm PH 3. XRD analysis suggested that Ni 5P 2 and P 2O 5 are two compounds accumulated on the anode. XPS studies provided support for the presence of two phosphorus phases with different oxidation states on the external anode surface. Phosphorus, in a positive oxidation state, was observed in the anode active layer. Based on these observations, the effect of 10 ppm phosphine impurity (or its reaction products with coal syngas) is assigned to the loss of performance of the Ni/YSZ active layer next to the electrolyte, and not to any changes in the thick Ni/YSZ support layer.

  4. Li Metal Anodes and Rechargeable Lithium Metal Batteries. Springer Series in Materials Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiguang; Xu, Wu; Henderson, Wesley A.

    Lithium (Li) metal is an ideal anode material for rechargeable batteries. With the urgent need for the “next generation” rechargeable batteries, such as Li-S, Li-air batteries as well as rechargeable Li metal batteries using Li intercalation compounds as the cathode, the use of Li metal anode has attracted significant interests in recent years. Unfortunately, rechargeable batteries based on Li metal anode have not yet been commercialized mainly due to two barriers: one is the growth of Li dendrites and associated safety hazard, and another is the low Coulombic efficiency (CE) of Li cycling and associated early battery failure due tomore » Li powdering and increasing cell impedance. To have a high CE, minimum side reactions between freshly/native deposited Li and electrolyte has to be minimized. These reactions are proportional to the chemical and electrochemical activity of native Li when they are in direct contact with surrounding electrolyte. They are also proportional to the surface area of deposited Li. This means that high CE of Li deposition/stripping always related to a low surface area Li deposition and suppressed Li dendrite growth. Therefore, the enhancement of CE is a more fundamental factors controlling long term, stable cycling of Li metal anode. In this book, we will first review the general models of the dendrite growth mechanism. The effect of SEI layer on the modeling of Li dendrite growth will also be discussed. Then we will discuss various instruments/tools that are critical for the investigation of Li dendrite growth. In the Chapter 3, various factors which affect CE of Li cycling and dendrite growth will be discussed together with an emphasize on enhancement of CE. Chapter 4 of the book will discuss the specific application of Li metal anode in several key rechargeable Li metal batteries, including Li-air batteries, Li-S batteries and Li metal batteries using intercalation compounds as cathode. At last, the perspective on the future development and application of Li metal batteries will be discussed in the Chapter 5.« less

  5. Thermal runaway inhibitors

    DOEpatents

    Mandal, Braja K.; Filler, Robert

    2004-06-08

    The present invention provides for a battery having an anode, a cathode, and a flame-retarding electrolyte with a conductivity greater than about 10.sup.-3 S/cm at ambient temperature and which includes a compound that chemically interferes with flame propagation.

  6. Direct measurements of anode/cathode gap plasma in cylindrically imploding loads on the Z machine

    NASA Astrophysics Data System (ADS)

    Porwitzky, A.; Dolan, D. H.; Martin, M. R.; Laity, G.; Lemke, R. W.; Mattsson, T. R.

    2018-06-01

    By deploying a photon Doppler velocimetry based plasma diagnostic, we have directly observed low density plasma in the load anode/cathode gap of cylindrically converging pulsed power targets. The arrival of this plasma is temporally correlated with gross current loss and subtle power flow differences between the anode and the cathode. The density is in the range where Hall terms in the electromagnetic equations are relevant, but this physics is lacking in the magnetohydrodynamics codes commonly used to design, analyze, and optimize pulsed power experiments. The present work presents evidence of the importance of physics beyond traditional resistive magnetohydrodynamics for the design of pulsed power targets and drivers.

  7. Electrically rechargeable REDOX flow cell

    NASA Technical Reports Server (NTRS)

    Thaller, L. H. (Inventor)

    1976-01-01

    A bulk energy storage system is designed with an electrically rechargeable reduction-oxidation (REDOX) cell divided into two compartments by a membrane, each compartment containing an electrode. An anode fluid is directed through the first compartment at the same time that a cathode fluid is directed through the second compartment. Means are provided for circulating the anode and cathode fluids, and the electrodes are connected to an intermittent or non-continuous electrical source, which when operating, supplies current to a load as well as to the cell to recharge it. Ancillary circuitry is provided for disconnecting the intermittent source from the cell at prescribed times and for circulating the anode and cathode fluids according to desired parameters and conditions.

  8. Method for providing uranium articles with a corrosion-resistant anodized coating

    DOEpatents

    Waldrop, F.B.; Washington, C.A.

    1981-01-07

    Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75/sup 0/C with a current flow of less than about 0.036 A/cm/sup 2/ of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.

  9. Double-walled structure of anodic TiO2 nanotubes in H3PO4/NH4F mixed electrolyte

    NASA Astrophysics Data System (ADS)

    Chen, Siyu; Chen, Ying; Li, Chengyuan; Ouyang, Huijun; Qin, Shuai; Song, Ye

    2018-04-01

    Normally, the well-ordered anodic TiO2 nanotubes (ATNTs) are obtained in NH4F electrolyte, after annealing, the double-walled structure of nanotubes will appear. Here, after adding H3PO4 into NHF4 electrolyte, we got the double-walled structure of nanotubes by anodizing without annealing, which means the direct existence of anion-contaminated layer in ATNTs. Influence of H3PO4 content on anodizing voltage and morphology of ATNTs were compared in detail. The XRD pattern illustrated that the crystallinity decreases with increasing H3PO4 concentration, and the anion-contaminated layer thickens with the increase of H3PO4 concentration. Meanwhile, the existence of the anion-contaminated layer also proved the limitations of the filed-assisted dissolution theory, while the double-walled structure can be explained by oxygen bubble model and plastic flow model.

  10. Local potential evolutions during proton exchange membrane fuel cell operation with dead-ended anode - Part II: Aging mitigation strategies based on water management and nitrogen crossover

    NASA Astrophysics Data System (ADS)

    Abbou, S.; Dillet, J.; Maranzana, G.; Didierjean, S.; Lottin, O.

    2017-02-01

    Proton exchange membrane (PEM) fuel cells operate with dead-ended anode in order to reduce system cost and complexity when compared with hydrogen re-circulation systems. In the first part of this work, we showed that localized fuel starvation events may occur, because of water and nitrogen accumulation in the anode side, which could be particularly damaging to the cell performance. To prevent these degradations, the anode compartment must be purged which may lead to an overall system efficiency decrease because of significant hydrogen waste. In the second part, we present several purge strategies in order to minimize both hydrogen waste and membrane-electrode assembly degradations during dead-ended anode operation. A linear segmented cell with reference electrodes was used to monitor simultaneously the current density distribution along the gas channel and the time evolution of local anode and cathode potentials. To asses MEA damages, Platinum ElectroChemical Surface Area (ECSA) and cell performance were periodically measured. The results showed that dead-end mode operation with an anode plate maintained at a temperature 5 °C hotter than the cathode plate limits water accumulation in the anode side, reducing significantly purge frequency (and thus hydrogen losses) as well as MEA damages. As nitrogen contribution to hydrogen starvation is predominant in this thermal configuration, we also tested a microleakage solution to discharge continuously most the nitrogen accumulating in the anode side while ensuring low hydrogen losses and minimum ECSA losses provided the right microleakage flow rate is chosen.

  11. Application of electrochemical technology for removing petroleum hydrocarbons from produced water using lead dioxide and boron-doped diamond electrodes.

    PubMed

    Gargouri, Boutheina; Gargouri, Olfa Dridi; Gargouri, Bochra; Trabelsi, Souhel Kallel; Abdelhedi, Ridha; Bouaziz, Mohamed

    2014-12-01

    Although diverse methods exist for treating polluted water, the most promising and innovating technology is the electrochemical remediation process. This paper presents the anodic oxidation of real produced water (PW), generated by the petroleum exploration of the Petrobras plant-Tunisia. Experiments were conducted at different current densities (30, 50 and 100 mA cm(-2)) using the lead dioxide supported on tantalum (Ta/PbO2) and boron-doped diamond (BDD) anodes in an electrolytic batch cell. The electrolytic process was monitored by the chemical oxygen demand (COD) and the residual total petroleum hydrocarbon [TPH] in order to know the feasibility of electrochemical treatment. The characterization and quantification of petroleum wastewater components were performed by gas chromatography mass spectrometry. The COD removal was approximately 85% and 96% using PbO2 and BDD reached after 11 and 7h, respectively. Compared with PbO2, the BDD anode showed a better performance to remove petroleum hydrocarbons compounds from produced water. It provided a higher oxidation rate and it consumed lower energy. However, the energy consumption and process time make useless anodic oxidation for the complete elimination of pollutants from PW. Cytotoxicity has shown that electrochemical oxidation using BDD could be efficiently used to reduce more than 90% of hydrocarbons compounds. All results suggest that electrochemical oxidation could be an effective approach to treat highly concentrated organic pollutants present in the industrial petrochemical wastewater and significantly reduce the cost and time of treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effect of NaNO3 concentration on anodic electrochemical behavior on the Sb surface in NaOH solution

    NASA Astrophysics Data System (ADS)

    He, Yun-long; Xu, Rui-dong; He, Shi-wei; Chen, Han-sen; Li, Kuo; Zhu, Yun; Shen, Qing-feng

    2018-03-01

    The effect of NaNO3 concentration on the anodic electrochemical behavior of antimony in 4 M NaOH solution was investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses. The mechanism of NO 3 - concentration effect on the anodic electrochemical behavior of antimony was proposed, and its availability was confirmed by experimental results. The effect of NaNO3 on the anodic behavior of antimony in NaOH solution can be interpreted as a stepwise formation of different antimony compounds with different NaNO3 concentrations. Metallic antimony is apt to be oxidized into Sb2O3 within the NaNO3 concentration range of 0-0.48 M. NaSbO3 can be found on the antimony surface when the NaNO3 concentration increases gradually. Insoluable NaSbO3 inhibits the anodic oxidation of antimony due to its shielding effect on the mass transport of the reactants and products. Surface morphology and composition were analyzed by X-ray photoelectron spectroscopy (XPS), scanning electronic microscopy (SEM), and electron dispersion spectroscopy (EDS) analyses. Results indicate that the anodic oxidation layer is composed of Sb2O3, NaSbO3, and Sb. The atomic proportion of antimony in the form of NaSbO3 increases with increasing NaNO3 concentration due to the powerful oxidizing property of NaNO3.

  13. On matching the anode ring with the magnetic field in an ATON-type Hall effect thruster

    NASA Astrophysics Data System (ADS)

    Liu, Jinwen; Li, Hong; Zhang, Xu; Ding, Yongjie; Wei, Liqiu; Li, Jianzhi; Yu, Daren; Wang, Xiaogang

    2018-06-01

    In an ATON-type Hall effect thruster, a ring-shaped anode and a cusped magnetic field intersect the match between the anode shape and the field topology thus must be clarified to optimize the electron transport to the anode and consequently the design of a high-efficiency thruster. By changing the match pattern with both the change in the length of the anode ring and the axial displacement of the cusp magnetic field, this study experimentally investigated the influence of the match pattern on the discharge characteristics of an ATON-type thruster—P100—under the condition of a moderate discharge voltage. The experimental results show that there is a match pattern that always optimizes the performance of the P100 thruster. At the rated operation parameters (300 V of discharge voltage and 5 mg/s of propellant mass flow rate) and the rated magnetic field strength, the observed improvements on thrust (˜79 mN to ˜85 mN) and anode efficiency (˜46% to ˜55%) are significant. Through further theoretical analysis, this study revealed that the change in the characteristics of electron momentum and energy transfer in the near-anode region, induced by the change of the match pattern, is the basic reason. The findings of this work are instructive for both understanding the electron motion in a cusp magnetic field and guiding the design of the anode ring intersecting with a cusp magnetic field in an ATON-type Hall effect thruster.

  14. TRANSVERSE IMPEDANCE OF THE SQUID GIANT AXON DURING CURRENT FLOW

    PubMed Central

    Cole, Kenneth S.; Baker, Richard F.

    1941-01-01

    The change in the transverse impedance of the squid giant axon caused by direct current flow has been measured at frequencies from 1 kc. per second to 500 kc. per second. The impedance change is equivalent to an increase of membrane conductance at the cathode to a maximum value approximately the same as that obtained during activity and a decrease at the anode to a minimum not far from zero. There is no evidence of appreciable membrane capacity change in either case. It then follows that the membrane has the electrical characteristics of a rectifier. Interpreting the membrane conductance as a measure of ion permeability, this permeability is increased at the cathode and decreased at the anode. PMID:19873233

  15. Performance of Zinc Anodes for Cathodic Protection of Reinforced Concrete Bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covino, Bernard S. Jr.; Cramer, Stephen D.; Bullard, Sophie J.

    2002-03-01

    Operation of thermal spray zinc (Zn) anodes for cathodic protection (CP) of reinforced concrete structures was investigated in laboratory and field studies conducted by the Albany Research Center (ARC) in collaboration with the Oregon Department of Transportation. The purposes of the research presented in this report were: evaluate the need for preheating concrete to improve the adhesion of the anode; estimate the service life of thermal spray Zn CP anodes; determine the optimum thickness for Zn CP anodes; characterize the anode-concrete interfacial chemistry; and correlate field and laboratory results. Laboratory studies involved accelerated electrochemical aging of thermal sprayed Zn anodesmore » on concrete slabs, some of which were periodically wetted while others were unwetted. Concrete used in the slabs contained either 1.2 or 3 kg NaCl /m3 (2 or 5 lbs NaCl /yd3) as part of the concrete mix design. The Zn anodes were applied to the slabs using the twin wire arc-spray technique. Half of the slabs were preheated to 120-160 C (250-320 F) to improve the initial Zn anode bond strength and the other half were not. Accelerated aging was done at a current density of 0.032 A/m2 (3 mA/ft2), 15 times that used on Oregon DOT Coastal bridges, i.e, . 0.0022 A/m2 (0.2 mA/ft2) Cores from the Cape Creek Bridge (OR), the Richmond San Rafael Bridge (CA), and the East Camino Underpass (CA) were used to study the anode-concrete interfacial chemistry, to relate the chemistry to electrochemical age at the time of sampling, and to compare the chemistry of the field anodes to the chemistry of anodes from the laboratory studies. Cores from a CALTRANS study of a silane sealant used prior to the application of the Zn anodes and cores with galvanized rebar from the Longbird Bridge (Bermuda) were also studied. Aged laboratory and field anodes were characterized by measuring some or all of the following parameters: thickness, bond strength, anode-concrete interfacial chemistry, bulk chemistry, anode resistance, circuit resistance, electrochemical age, and air and water permeability. Models are presented for the operation of periodically-wetted and unwetted thermal spray Zn anodes from the initial energizing of the anode to the end of its service life. The models were developed in terms of bond strength, circuit resistance, anode-concrete interfacial chemistry, electrochemical age, and anode condition. The most significant results of the research are: (1) preheating concrete surfaces prior to coating with Zn is unnecessary; (2) anodes generally fail due to loss of bond strength rather than Zn consumption; (3) Unwetted anodes fail more quickly than periodically-wetted anodes; (4) 0.47-0.60 mm (12-15 mil) anode thickness is adequate for most Oregon DOT coastal impressed current CP (ICCP) installations; (5) based on bond strength, thermal spray Zn ICCP anode service life is approximately 27 years at 0.0022 A/m2 (0.2 mA/ft2); (6) anode reaction products alter the anode-concrete interface by rejecting Ca from the cement paste, by replacing it with Zn, and by the accumulation of a Zn mineral layer that includes chloride and sulfur compounds; (7) CP system circuit resistance provides an effective means for monitoring the condition of Zn ICCP anodes as they age.« less

  16. Quantification of ionic transport within thermally-activated batteries using electron probe micro-analysis

    DOE PAGES

    Humplik, Thomas; Stirrup, Emily K.; Grillet, Anne M.; ...

    2016-04-30

    The transient transport of electrolytes in thermally-activated batteries is studied in this paper using electron probe micro-analysis (EPMA), demonstrating the robust capability of EPMA as a useful tool for studying and quantifying mass transport within porous materials, particularly in difficult environments where classical flow measurements are challenging. By tracking the mobility of bromine and potassium ions from the electrolyte stored within the separator into the lithium silicon anode and iron disulfide cathode, we are able to quantify the transport mechanisms and physical properties of the electrodes including permeability and tortuosity. Due to the micron to submicron scale porous structure ofmore » the initially dry anode, a fast capillary pressure driven flow is observed into the anode from which we are able to set a lower bound on the permeability of 10 -1 mDarcy. The transport into the cathode is diffusion-limited because the cathode originally contained some electrolyte before activation. Finally, using a transient one-dimensional diffusion model, we estimate the tortuosity of the cathode electrode to be 2.8 ± 0.8.« less

  17. Na-Ion Battery Anodes: Materials and Electrochemistry.

    PubMed

    Luo, Wei; Shen, Fei; Bommier, Clement; Zhu, Hongli; Ji, Xiulei; Hu, Liangbing

    2016-02-16

    The intermittent nature of renewable energy sources, such as solar and wind, calls for sustainable electrical energy storage (EES) technologies for stationary applications. Li will be simply too rare for Li-ion batteries (LIBs) to be used for large-scale storage purposes. In contrast, Na-ion batteries (NIBs) are highly promising to meet the demand of grid-level storage because Na is truly earth abundant and ubiquitous around the globe. Furthermore, NIBs share a similar rocking-chair operation mechanism with LIBs, which potentially provides high reversibility and long cycling life. It would be most efficient to transfer knowledge learned on LIBs during the last three decades to the development of NIBs. Following this logic, rapid progress has been made in NIB cathode materials, where layered metal oxides and polyanionic compounds exhibit encouraging results. On the anode side, pure graphite as the standard anode for LIBs can only form NaC64 in NIBs if solvent co-intercalation does not occur due to the unfavorable thermodynamics. In fact, it was the utilization of a carbon anode in LIBs that enabled the commercial successes. Anodes of metal-ion batteries determine key characteristics, such as safety and cycling life; thus, it is indispensable to identify suitable anode materials for NIBs. In this Account, we review recent development on anode materials for NIBs. Due to the limited space, we will mainly discuss carbon-based and alloy-based anodes and highlight progress made in our groups in this field. We first present what is known about the failure mechanism of graphite anode in NIBs. We then go on to discuss studies on hard carbon anodes, alloy-type anodes, and organic anodes. Especially, the multiple functions of natural cellulose that is used as a low-cost carbon precursor for mass production and as a soft substrate for tin anodes are highlighted. The strategies of minimizing the surface area of carbon anodes for improving the first-cycle Coulombic efficiency are also outlined, where graphene oxide was employed as dehydration agent and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) was used to unzip wood fiber. Furthermore, surface modification by atomic layer deposition technology is introduced, where we discover that a thin layer of Al2O3 can function to encapsulate Sn nanoparticles, leading to a much enhanced cycling performance. We also highlight recent work about the phosphorene/graphene anode, which outperformed other anodes in terms of capacity. The aromatic organic anode is also studied as anode with very high initial sodiation capacity. Furthermore, electrochemical intercalation of Na ions into reduced graphene oxide is applied for fabricating transparent conductors, demonstrating the great feasibility of Na ion intercalation for optical applications.

  18. Solid state electrochemical current source

    DOEpatents

    Potanin, Alexander Arkadyevich; Vedeneev, Nikolai Ivanovich

    2002-04-30

    A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

  19. Electrostatic/magnetic ion acceleration through a slowly diverging magnetic nozzle between a ring anode and an on-axis hollow cathode

    NASA Astrophysics Data System (ADS)

    Sasoh, A.; Mizutani, K.; Iwakawa, A.

    2017-06-01

    Ion acceleration through a slowly diverging magnetic nozzle between a ring anode and a hollow cathode set on the axis of symmetry has been realized. Xenon was supplied as the propellant gas from an annular slit along the inner surface of the ring anode so that it was ionized near the anode, and the applied electric potential was efficiently transformed to an ion kinetic energy. As an electrostatic thruster, within the examined operation conditions, the thrust, F, almost scaled with the propellant mass flow rate; the discharge current, Jd, increased with the discharge voltage, Vd. An important characteristic was that the thrust also exhibited electromagnetic acceleration performance, i.e., the so-called "swirl acceleration," in which F ≅JdB Ra /√{2 }, where B and Ra were a magnetic field and an anode inner radius, respectively. Such a unique thruster performance combining both electrostatic and electromagnetic accelerations is expected to be useful as another option for in-space electric propulsion in its broad functional diversity.

  20. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOEpatents

    Balazs, G. Bryan; Chiba, Zoher; Lewis, Patricia R.; Nelson, Norvell; Steward, G. Anthony

    1999-01-01

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO.sub.2. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement.

  1. Cells having cathodes containing polycarbon disulfide materials

    DOEpatents

    Okamoto, Y.; Skotheim, T.A.; Lee, H.S.

    1995-08-15

    The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS{sub x}){sub n}, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode. 5 figs.

  2. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOEpatents

    Abraham, Kuzhikalail M.; Rohan, James F.; Foo, Conrad C.; Pasquariello, David M.

    1999-01-01

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).

  3. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOEpatents

    Abraham, K.M.; Rohan, J.F.; Foo, C.C.; Pasquariello, D.M.

    1999-01-12

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn{sub 2}O{sub 4} positive electrode (cathode). 8 figs.

  4. An electrode comprising of graphene nanopowder inserted in an enclosed structure in anodic aluminium oxide coated with PANI by using low temperature hydrothermal process

    NASA Astrophysics Data System (ADS)

    Shivhare, Sugam; Vyas, Supriya; Bagal, Vivekanand S.; Sharma, Malvika; Gautam, Mangla Dave

    2018-04-01

    Elements like C and its allotropes (Graphene) Sn, Al, Ge, and their compounds are commonly used anodic materials in Li-ion secondary batteries. Out of them Graphene is a promising anodic material for Li-ion batteries as it having high theoretical capacity of 4100 mAh/g as it formed Li4.4C. However, the formation of Li4.4C induces a large volume expansion in the electrode and leads to a rapid drop in capacity. To overcome this problem many experiments and theoretical efforts have been focused on enhancing structural stability of Graphene in electrode. Several methods have been also reported for the fabrication of three-dimensional electrode arrays. In this study, we report an improvement of the cycling performance of graphene nanopowder-based electrode. Graphene nanopowder was inserted and confined on the anodic aluminum oxide coated with polyaniline (PANI) by using a new method. It is confirmed from this study that cycling behavior of the graphene powder electrode can be significantly improved by using the method proposed in this study.

  5. Electricity generation from acetate and glucose by sedimentary bacterium attached to electrode in microbial-anode fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Enren; Xu, Wei; Diao, Guowang; Shuang, Chendong

    Microbial-anode fuel cells (MAFCs) with high electron recovery (>50%) from acetate and glucose have been constructed in this study. By inoculating fresh sedimentary microorganisms into anaerobic anode compartments, a stable current (∼0.42 mA for acetate-fed MAFCs; ∼0.35 mA for glucose-fed MAFCs) is generated from the oxidation of the added organic matter until its concentration decreases to a low level. SEM micrographs indicate that thick biofilms of microbial communities (coccoid cells with a diameter of ∼0.5 μm in acetate-fed MAFCs; rod-shaped cells with a length of 2.0-4.0 μm and a width of 0.5-0.7 μm in glucose-fed MAFCs) completely cover the anode electrodes. These anodophillic biofilms are thought to be responsible for the current generation, and make these microbial-anode fuel cells exhibit good performance even when the growth medium is replaced by a salt buffer without any growth factor. In comparison with those microbial fuel cells that require the addition of artificial electron transfer-mediating compounds, the findings in this study imply a potential way to develop excellent mediator-less MAFCs for electricity generation from organic matter by using substrate-induced anodophillic microbial species.

  6. Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium-oxygen battery

    NASA Astrophysics Data System (ADS)

    Togasaki, Norihiro; Momma, Toshiyuki; Osaka, Tetsuya

    2016-03-01

    Stable charge-discharge cycling behavior for a lithium metal anode in a dimethylsulfoxide (DMSO)-based electrolyte is strongly desired of lithium-oxygen batteries, because the Li anode is rapidly exhausted as a result of side reactions during cycling in the DMSO solution. Herein, we report a novel electrolyte design for enhancing the cycling performance of Li anodes by using a highly concentrated DMSO-based electrolyte with a specific Li salt. Lithium nitrate (LiNO3), which forms an inorganic compound (Li2O) instead of a soluble product (Li2S) on a lithium surface, exhibits a >20% higher coulombic efficiency than lithium bis(trifluoromethanesulfonyl)imide, lithium bis(fluorosulfonyl)imide, and lithium perchlorate, regardless of the loading current density. Moreover, the stable cycling of Li anodes in DMSO-based electrolytes depends critically on the salt concentration. The highly concentrated electrolyte 4.0 M LiNO3/DMSO displays enhanced and stable cycling performance comparable to that of carbonate-based electrolytes, which had not previously been achieved. We suppose this enhancement is due to the absence of free DMSO solvent in the electrolyte and the promotion of the desolvation of Li ions on the solid electrolyte interphase surface, both being consequences of the unique structure of the electrolyte.

  7. Effect of Slotted Anode on Gas Bubble Behaviors in Aluminum Reduction Cell

    NASA Astrophysics Data System (ADS)

    Sun, Meijia; Li, Baokuan; Li, Linmin; Wang, Qiang; Peng, Jianping; Wang, Yaowu; Cheung, Sherman C. P.

    2017-12-01

    In the aluminum reduction cells, gas bubbles are generated at the bottom of the anode which eventually reduces the effective current contact area and the system efficiency. To encourage the removal of gas bubbles, slotted anode has been proposed and increasingly adopted by some industrial aluminum reduction cells. Nonetheless, the exact gas bubble removal mechanisms are yet to be fully understood. A three-dimensional (3D) transient, multiphase flow mathematical model coupled with magnetohydrodynamics has been developed to investigate the effect of slotted anode on the gas bubble movement. The Eulerian volume of fluid approach is applied to track the electrolyte (bath)-molten aluminum (metal) interface. Meanwhile, the Lagrangian discrete particle model is employed to handle the dynamics of gas bubbles with considerations of the buoyancy force, drag force, virtual mass force, and pressure gradient force. The gas bubble coalescence process is also taken into account based on the O'Rourke's algorithm. The two-way coupling between discrete bubbles and fluids is achieved by the inter-phase momentum exchange. Numerical predictions are validated against the anode current variation in an industrial test. Comparing the results using slotted anode with the traditional one, the time-averaged gas bubble removal rate increases from 36 to 63 pct; confirming that the slotted anode provides more escaping ways and shortens the trajectories for gas bubbles. Furthermore, the slotted anode also reduces gas bubble's residence time and the probability of coalescence. Moreover, the bubble layer thickness in aluminum cell with slotted anode is reduced about 3.5 mm (17.4 pct), so the resistance can be cut down for the sake of energy saving and the metal surface fluctuation amplitude is significantly reduced for the stable operation due to the slighter perturbation with smaller bubbles.

  8. An Approach Toward Replacing Vanadium: A Single Organic Molecule for the Anode and Cathode of an Aqueous Redox-Flow Battery.

    PubMed

    Janoschka, Tobias; Friebe, Christian; Hager, Martin D; Martin, Norbert; Schubert, Ulrich S

    2017-04-01

    By combining a viologen unit and a 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) radical in one single combi-molecule, an artificial bipolar redox-active material, 1-(4-(((1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl)oxy)carbonyl)benzyl)-1'-methyl-[4,4'-bipyridine]-1,1'-diium-chloride ( VIOTEMP ), was created that can serve as both the anode (-0.49 V) and cathode (0.67 V vs. Ag/AgCl) in a water-based redox-flow battery. While it mimics the redox states of flow battery metals like vanadium, the novel aqueous electrolyte does not require strongly acidic media and is best operated at pH 4. The electrochemical properties of VIOTEMP were investigated by using cyclic voltammetry, rotating disc electrode experiments, and spectroelectrochemical methods. A redox-flow battery was built and the suitability of the material for both electrodes was demonstrated through a polarity-inversion experiment. Thus, an organic aqueous electrolyte system being safe in case of cross contamination is presented.

  9. Batteries using molten salt electrolyte

    DOEpatents

    Guidotti, Ronald A.

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  10. Plasma torch for ignition, flameholding and enhancement of combustion in high speed flows

    NASA Technical Reports Server (NTRS)

    O'Brien, Walter F. (Inventor); Billingsley, Matthew C. (Inventor); Sanders, Darius D. (Inventor); Schetz, Joseph A. (Inventor)

    2009-01-01

    Preheating of fuel and injection into a plasma torch plume fro adjacent the plasma torch plume provides for only ignition with reduced delay but improved fuel-air mixing and fuel atomization as well as combustion reaction enhancement. Heat exchange also reduced erosion of the anode of the plasma torch. Fuel mixing atomization, fuel mixture distribution enhancement and combustion reaction enhancement are improved by unsteady plasma torch energization, integral formation of the heat exchanger, fuel injection nozzle and plasma torch anode in a more compact, low-profile arrangement which is not intrusive on a highspeed air flow with which the invention is particularly effective and further enhanced by use of nitrogen as a feedstock material and inclusion of high pressure gases in the fuel to cause effervescence during injection.

  11. Child-Langmuir flow with periodically varying anode voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokhlenko, A.

    Using the Lagrangian technique, we study settled Child-Langmuir flows in a one dimensional planar diodes whose anode voltages periodically vary around given positive values. Our goal is to find analytically if the average currents in these systems can exceed the famous Child-Langmuir limit found for the stationary current a long time ago. The main result of our study is that in a periodic quasi-stationary regime the average current can be larger than the Child-Langmuir maximum even by 50% compared with its adiabatic average value. The cathode current in this case has the form of rectangular pulses which are formed bymore » a very special triangular voltage modulation. This regime, i.e., periodicity, shape of pulses, and their amplitude, needs to be carefully chosen for the best performance.« less

  12. Nafion-coating of the electrodes improves the flow-stability of the Ag/SiO2/Ag2O electroosmotic pump.

    PubMed

    Shin, Woonsup; Zhu, Enhua; Nagarale, Rajaram Krishna; Kim, Chang Hwan; Lee, Jong Myung; Shin, Samuel Jaeho; Heller, Adam

    2011-06-15

    When a current or a voltage is applied across the ceramic membrane of the nongassing Ag/Ag(2)O-SiO(2)-Ag/Ag(2)O pump, protons produced in the anodic reaction 2Ag(s) + H(2)O → Ag(2)O(s) + 2H(+) + 2e(-) are driven to the cathode, where they are consumed by the reaction Ag(2)O(s) + H(2)O + 2e(-) → 2Ag(s) + 2 OH(-). The flow of water is induced by momentum transfer from the electric field-driven proton-sheet at the surface of the ceramic membrane. About 10(4) water molecules flowed per reacted electron. Because dissolved ions decrease the field at the membrane surface, the flow decreases upon increasing the ionic strength. For this reason Ag(+) ions introduced through the anodic reaction and by dissolution of Ag(2)O decrease the flow. Their accumulation is reduced by applying Nafion-films to the electrodes. The 20 μL min(-1) flow rate of 6 mm i.d. pumps with Nafion coated electrodes operate daily for 5 min at 1 V for 1 month, for 70 h when the pump is pulsed for 30 s every 30 min, and for 2 h when operating continuously.

  13. A Microsystem Based on Porous Silicon-Glass Anodic Bonding for Gas and Liquid Optical Sensing

    PubMed Central

    De Stefano, Luca; Malecki, Krzysztof; Della Corte, Francesco G.; Moretti, Luigi; Rea, Ilaria; Rotiroti, Lucia; Rendina, Ivo

    2006-01-01

    We have recently presented an integrated silicon-glass opto-chemical sensor for lab-on-chip applications, based on porous silicon and anodic bonding technologies. In this work, we have optically characterized the sensor response on exposure to vapors of several organic compounds by means of reflectivity measurements. The interaction between the porous silicon, which acts as transducer layer, and the organic vapors fluxed into the glass sealed microchamber, is preserved by the fabrication process, resulting in optical path increase, due to the capillary condensation of the vapors into the pores. Using the Bruggemann theory, we have calculated the filled pores volume for each substance. The sensor dynamic has been described by time-resolved measurements: due to the analysis chamber miniaturization, the response time is only of 2 s. All these results have been compared with data acquired on the same PSi structure before the anodic bonding process.

  14. Aerobic granular sludge inoculated microbial fuel cells for enhanced epoxy reactive diluent wastewater treatment.

    PubMed

    Cheng, Kai; Hu, Jingping; Hou, Huijie; Liu, Bingchuan; Chen, Qin; Pan, Keliang; Pu, Wenhong; Yang, Jiakuan; Wu, Xu; Yang, Changzhu

    2017-04-01

    Microbial consortiums aggregated on the anode surface of microbial fuel cells (MFCs) are critical factors for electricity generation as well as biodegradation efficiencies of organic compounds. Here in this study, aerobic granular sludge (AGS) was assembled on the surface of the MFC anode to form an AGS-MFC system with superior performance on epoxy reactive diluent (ERD) wastewater treatment. AGS-MFCs successfully shortened the startup time from 13d to 7d compared to the ones inoculated with domestic wastewater. Enhanced toxicity tolerance as well as higher COD removal (77.8% vs. 63.6%) were achieved. The higher ERD wastewater treatment efficiency of AGS-MFC is possibly attributed to the diverse microbial population on MFC biofilm, as well as the synergic degradation of contaminants by both the MFC anode biofilm and AGS granules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Degradation of chloroacetanilide herbicides by anodic fenton treatment.

    PubMed

    Friedman, Carey L; Lemley, Ann T; Hay, Anthony

    2006-04-05

    Anodic Fenton treatment (AFT) is an electrochemical treatment employing the Fenton reaction for the generation of hydroxyl radicals, strong oxidants that can degrade organic compounds via hydrogen abstraction. AFT has potential use for the remediation of aqueous pesticide waste. The degradation rates of chloroacetanilides by AFT were investigated in this work, which demonstrates that AFT can be used to rapidly and completely remove chloroacetanilide herbicides from aqueous solutions. Acetochlor, alachlor, butachlor, metolachlor, and propachlor were treated by AFT, and parent compound concentrations were analyzed over the course of the treatment time. Degradation curves were plotted and fitted by the AFT kinetic model for each herbicide, and AFT model kinetic parameters were used to calculate degradation rate constants. The reactivity order of these five active ingredients toward hydroxyl radical was acetochlor approximately metolachlor > butachlor approximately alachlor > propachlor. Treatment of the chloroacetanilides by AFT removed the parent compounds but did not completely mineralize them. However, AFT did result in an increase in the biodegradability of chloroacetanilide aqueous solutions, as evidenced by an increase in the 5-day biochemical oxygen demand to chemical oxygen demand ratio (BOD5/COD) to >0.3, indicating completely biodegradable solutions. Several degradation products were formed and subsequently degraded, although not always completely. Some of these were identified by mass spectral analyses. Among the products, isomers of phenolic and carbonyl derivatives of parent compounds were common to each of the herbicides analyzed. More extensively oxidized products were not detected. Degradation pathways are proposed for each of the parent compounds and identified products.

  16. Fluoroethylene Carbonate as a Directing Agent in Amorphous Silicon Anodes: Electrolyte Interface Structure Probed by Sum Frequency Vibrational Spectroscopy and Ab Initio Molecular Dynamics.

    PubMed

    Horowitz, Yonatan; Han, Hui-Ling; Soto, Fernando A; Ralston, Walter T; Balbuena, Perla B; Somorjai, Gabor A

    2018-02-14

    Fluorinated compounds are added to carbonate-based electrolyte solutions in an effort to create a stable solid electrolyte interphase (SEI). The SEI mitigates detrimental electrolyte redox reactions taking place on the anode's surface upon applying a potential in order to charge (discharge) the lithium (Li) ion battery. The need for a stable SEI is dire when the anode material is silicon as silicon cracks due to its expansion and contraction upon lithiation and delithiation (charge-discharge) cycles, consequently limiting the cyclability of a silicon-based battery. Here we show the molecular structures for ethylene carbonate (EC): fluoroethylene carbonate (FEC) solutions on silicon surfaces by sum frequency generation (SFG) vibrational spectroscopy, which yields vibrational spectra of molecules at interfaces and by ab initio molecular dynamics (AIMD) simulations at open circuit potential. Our AIMD simulations and SFG spectra indicate that both EC and FEC adsorb to the amorphous silicon (a-Si) through their carbonyl group (C═O) oxygen atom with no further desorption. We show that FEC additives induce the reorientation of EC molecules to create an ordered, up-right orientation of the electrolytes on the Si surface. We suggest that this might be helpful for Li diffusion under applied potential. Furthermore, FEC becomes the dominant species at the a-Si surface as the FEC concentration increases above 20 wt %. Our finding at open circuit potential can now initiate additive design to not only act as a sacrificial compound but also to produce a better suited SEI for the use of silicon anodes in the Li-ion vehicular industry.

  17. Electrochemical treatment of cetrimonium chloride with boron-doped diamond anodes. A technical and economical approach.

    PubMed

    de Araújo, Brenda R S; Linares León, José J

    2018-05-15

    This study presents the results of the electrochemical degradation of the emulsifier cetrimonium chloride (CTAC) on a boron-doped diamond (BDD) anode under different current densities and flow rates. Higher values of these parameters result in a more rapid removal. Nevertheless, operation at low current reduces the required applied charge and increases the chemical oxygen demand (COD) removal efficiency, as there is less development of ineffective parasitic reactions. On the other hand, high flow rates reduce the required volumetric applied charge and increase the COD removal current efficiency. In order to assist and enrich the study, an economic analysis has been performed. For short expected plant lifespans, operation at low current is advantageous due to the lower investment required, whereas for longer expected lifespans, the operational costs make the lower current densities less costly. High flow rates are always advantageous from a financial point of view. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Removal of organic carbon and nitrogen in a membraneless flow-through microbial electrolysis cell.

    PubMed

    Hussain, Abid; Lebrun, Frédérique Matteau; Tartakovsky, Boris

    2017-07-01

    This study evaluated performance of an upflow membraneless microbial electrolysis cell (MEC) with flow-through electrodes for wastewater treatment. First, methane production and COD removal were evaluated in continuous flow experiments carried out using synthetic and municipal wastewater. A 29-75% increase in methane production was observed under bioelectrochemical conditions as compared to an anaerobic control. Next, simultaneous removal of COD and nitrogen was studied under microaerobic conditions created by continuous air injection to the anodic compartment of the MEC. While the presence of oxygen decreased Coulombic efficiency due to aerobic degradation of COD, enhanced ammonium removal with near zero nitrite and nitrate effluent concentrations was observed. Evidence of direct ammonium oxidation at the anode as well as nitrite and nitrate reduction at the cathode was obtained by comparing performances of MECs operated under anaerobic and microaerobic conditions with the control reactor operated at zero applied voltage. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  19. Analysis of Percent On-Cell Reformation of Methane in SOFC Stacks and the Effects on Thermal, Electrical, and Mechanical Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recknagle, Kurtis P.; Koeppel, Brian J.; Sun, Xin

    2007-04-30

    Numerical simulations were performed to determine the effect that varying the percent on-cell steam-methane reformation would have on the thermal, electrical, and mechanical performance of generic, planar solid oxide fuel cell stacks. The study was performed using three-dimensional model geometries for cross-, co-, and counter-flow configuration stacks of 10x10- and 20x20-cm cell sizes. The analysis predicted the stress and temperature difference would be minimized for the 10x10-cm counter- and cross-flow stacks when 40 to 50% of the reformation reaction occurred on the anode. Gross electrical power density was virtually unaffected by the reforming. The co-flow stack benefited most from themore » on-cell reforming and had the lowest anode stresses of the 20x20-cm stacks. The analyses also suggest that airflows associated with 15% air utilization may be required for cooling the larger (20x20-cm) stacks.« less

  20. Anomalous - viscosity current drive

    DOEpatents

    Stix, Thomas H.; Ono, Masayuki

    1988-01-01

    An apparatus and method for maintaining a steady-state current in a toroidal magnetically confined plasma. An electric current is generated in an edge region at or near the outermost good magnetic surface of the toroidal plasma. The edge current is generated in a direction parallel to the flow of current in the main plasma and such that its current density is greater than the average density of the main plasma current. The current flow in the edge region is maintained in a direction parallel to the main current for a period of one or two of its characteristic decay times. Current from the edge region will penetrate radially into the plasma and augment the main plasma current through the mechanism of anomalous viscosity. In another aspect of the invention, current flow driven between a cathode and an anode is used to establish a start-up plasma current. The plasma-current channel is magnetically detached from the electrodes, leaving a plasma magnetically insulated from contact with any material obstructions including the cathode and anode.

  1. Enhanced electricity generation by triclosan and iron anodes in the three-chambered membrane bio-chemical reactor (TC-MBCR).

    PubMed

    Song, Jing; Liu, Lifen; Yang, Fenglin; Ren, Nanqi; Crittenden, John

    2013-11-01

    A three-chambered membrane bio-chemical reactor (TC-MBCR) was developed. The stainless steel membrane modules were used as cathodes and iron plates in the middle chamber served as the anode. The TC-MBCR was able to reduce fouling, remove triclosan (TCS) from a synthetic wastewater treatment and enhance electricity generation by ~60% compared with the cell voltage before TCS addition. The TC-MBCR system generated a relatively stable power output (cell voltage ~0.2V) and the corrosion of iron plates contributed to electricity generation together with microbes on iron anode. The permeation flow from anode to cathode chamber was considered important in electricity generation. In addition, the negatively charged cathode membrane and Fe(2+)/Fe(3+) released by iron plates mitigated membrane fouling by approximately 30%, as compared with the control. The removal of COD and total phosphorus was approximately 99% and 90%. The highest triclosan removal rate reached 97.9%. Copyright © 2013. Published by Elsevier Ltd.

  2. Direct Internal Reformation and Mass Transport in the Solid Oxide Fuel Cell Anode: A Pore-Scale Lattice Boltzmann Study with Detailed Reaction Kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grew, Kyle N.; Joshi, Abhijit S.; Chiu, W. K. S.

    2010-11-30

    The solid oxide fuel cell (SOFC) allows the conversion of chemical energy that is stored in a given fuel, including light hydrocarbons, to electrical power. Hydrocarbon fuels, such as methane, are logistically favourable and provide high energy densities. However, the use of these fuels often results in a decreased efficiency and life. An improved understanding of the reactive flow in the SOFC anode can help address these issues. In this study, the transport and heterogeneous internal reformation of a methane based fuel is addressed. The effect of the SOFC anode's complex structure on transport and reactions is shown to exhibitmore » a complicated interplay between the local molar concentrations and the anode structure. Strong coupling between the phenomenological microstructures and local reformation reaction rates are recognised in this study, suggesting the extension to actual microstructures may provide new insights into the reformation processes.« less

  3. Chemometric study on the electrochemical incineration of diethylenetriaminepentaacetic acid using boron-doped diamond anode.

    PubMed

    Xian, Jiahui; Liu, Min; Chen, Wei; Zhang, Chunyong; Fu, Degang

    2018-05-01

    The electrochemical incineration of diethylenetriaminepentaacetic acid (DTPA) with boron-doped diamond (BDD) anode had been initially performed under galvanostatic conditions. The main and interaction effects of four operating parameters (flow rate, applied current density, sulfate concentration and initial DTPA concentration) on mineralization performance were investigated. Under similar experimental conditions, Doehlert matrix (DM) and central composite rotatable design (CCRD) were used as statistical multivariate methods in the optimization of the anodic oxidation processes. A comparison between DM model and CCRD model revealed that the former was more accurate, possibly due to its higher operating level numbers employed (7 levels for two variables). Despite this, these two models resulted in quite similar optimum operating conditions. The maximum TOC removal percentages at 180 min were 76.2% and 73.8% for case of DM and CCRD, respectively. In addition, with the aid of quantum chemistry calculation and LC/MS analysis, a plausible degradation sequence of DTPA on BDD anode was also proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Chemical Fouling Reduction of a Submersible Steel Spectrophotometer in Estuarine Environments Using a Sacrificial Zinc Anode.

    PubMed

    Tait, Zachary S; Thompson, Megan; Stubbins, Aron

    2015-07-01

    The availability of in situ spectrophotometers, such as the S::CAN spectro::lyser, has expanded the possibilities for high-frequency water quality data collection. However, biological and chemical fouling can degrade the performance of in situ spectrophotometers, especially in saline environments with rapid flow rates. A complex freshwater washing system has been previously designed to reduce chemical fouling for the S::CAN spectro::lyser spectrophotometer. In the current study, we present a simpler, cheaper alternative: the attachment of a sacrificial zinc anode. Results are presented detailing the S::CAN spectro::lyser performance with and without the addition of the sacrificial anode. Attachment of the zinc anode provided efficient corrosion protection during 2-wk deployments in a highly dynamic (average tidal range, 2.5 m) saline tidal saltmarsh creek at Groves Creek, Skidaway Institute of Oceanography, Savannah, GA. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. FY-16 Technology Gap Study Technical Report: Analysis of Undissolved Anode Materials of Mark-IV Electrorefiner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Tae-Sic; Vaden, DeeEarl; Westphal, Brian Robert

    2016-01-01

    The Experimental Breeder Reactor II (EBR-II) is a sodium cooled fast reactor developed at Argonne National Laboratory (ANL). The used fuels from the EBR-II are currently being treated in the Fuel Conditioning Facility (FCF) at the Idaho National Laboratory (INL). The Mark IV (Mk-IV) electrorefiner (ER) is a unit process in the FCF, which is primarily assigned to treating the used driver fuels. The stainless steel anode baskets hold the chopped spent driver fuel segments. During electrorefining, the anode baskets are immersed into the electrolyte and the used fuel is dissolved electrochemically. Perforated sides and bottoms allow the flow ofmore » the electrolyte into and out of the anode baskets. The steel cathode is also immersed into the electrolyte and collects the reduced products. The active metal contents in the used fuel (e.g., Cs, Sr, lanthanides, Pu, etc.) reacts with uranium cations in the electrolyte and progressively reports to the electrolyte. Noble metals are mostly retained in the cladding hulls. Varying quantities of zirconium are retained in the cladding hulls depending on the operational conditions of the Mk-IV ER. The undissolved anode materials are removed from the anode baskets and stored for subsequent metal waste form processing. These undissolved materials typically include undissolved fuels, stainless steel cladding, and adhering electrolyte. A couple of hulls are retrieved for chemical analysis and used for estimating the composition of the entire undissolved anode materials. The mass balance attempt based on this practice of estimating the undissolved anode materials has been a challenge due to inherently high sampling errors associated with heterogeneous undissolved material compositions. Responding to the prescribed challenge, this report investigates chemical analysis data as a whole and finds noticeable trends in the compositions of undissolved anode material samples with respect to the mass of the whole undissolved anode materials. Based upon this discovery, an empirical model is proposed.« less

  6. The effect of a miniature argon flow rate on the spectral characteristics of a direct current atmospheric pressure glow micro-discharge between an argon microjet and a small sized flowing liquid cathode

    NASA Astrophysics Data System (ADS)

    Jamróz, Piotr; Żyrnicki, Wiesław; Pohl, Paweł

    2012-07-01

    A stable direct current atmospheric pressure glow microdischarge (dc-μAPGD) was generated between a miniature Ar flow microjet and a small sized flowing liquid cathode. The microdischarge was operated in the open to air atmosphere. High energy species, including OH, NH, NO, N2, H, O and Ar were identified in the emission spectra of this microdischarge. Additionally, atomic lines of metals dissolved in water solutions were easily excited. The near cathode and the near anode zones of the microdischarge were investigated as a function of an Ar flow rate up to 300 sccm. The spectroscopic parameters, i.e., the excitation, the vibrational and the rotational temperatures as well as the electron number density, were determined in the near cathode and the near anode regions of the microdischarge. In the near cathode region, the rotational temperatures obtained for OH (2000-2600 K) and N2 bands (1600-1950 K) were significantly lower than the excitation temperatures of Ar (7400 K-7800 K) and H (11 000-15 500 K) atoms. Vibrational temperatures of N2, OH and NO varied from 3400 to 4000 K, from 2900 to 3400 K and from 2700 to 3000 K, respectively. In the near anode region, rotational temperatures of OH (350-1750 K) and N2 (400-1350 K) and excitation temperatures of Ar (5200-5500 K) and H (3600-12 600 K) atoms were lower than those measured in the near cathode region. The effect of the introduction of a liquid sample on the microdischarge radiation and spectroscopic parameters was also investigated in the near cathode zone. The electron number density was calculated from the Stark broadening of the Hβ line and equals to (0.25-1.1) × 1015 cm- 3 and (0.68-1.2) × 1015 cm- 3 in the near cathode and the near anode zones, respectively. The intensity of the Na I emission line and the signal to background ratio (SBR) of this line were investigated in both zones to evaluate the excitation properties of the developed excitation microsource. The limit of detection for Na was determined at the level of 3 ng mL- 1.

  7. Accelerated corrosion of stainless steel in thiocyanate-containing solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistorius, P Chris; Li, Wen

    2012-09-19

    It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, whichmore » is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide (visible as a black corrosion product) forms during anodic dissolution. The sulfide is electronically conductive, and gives an increase of several orders of magnitude in the electrode capacitance; the sulfide also causes anodic activation to persist after the pure metals and steels were removed from the thiocyanate-containing electrolyte and transferred to a thiocyanate-free electrolyte. The main practical implications of this work are that low concentrations of reduced sulfur compounds strongly affect anodic dissolution of stainless steels, and that selecting steels with elevated concentrations of chromium, nickel or molybdenum would serve to limit the anodic dissolution rate in the presence of reduced sulfur compounds.« less

  8. Control of malodorous hydrogen sulfide compounds using microbial fuel cell.

    PubMed

    Eaktasang, Numfon; Min, Hyeong-Sik; Kang, Christina; Kim, Han S

    2013-10-01

    In this study, a microbial fuel cell (MFC) was used to control malodorous hydrogen sulfide compounds generated from domestic wastewaters. The electricity production demonstrated a distinct pattern of a two-step increase during 170 h of system run: the first maximum current density was 118.6 ± 7.2 mA m⁻² followed by a rebound of current density increase, reaching the second maximum of 176.8 ± 9.4 mA m⁻². The behaviors of the redox potential and the sulfate level in the anode compartment indicated that the microbial production of hydrogen sulfide compounds was suppressed in the first stage, and the hydrogen sulfide compounds generated from the system were removed effectively as a result of their electrochemical oxidation, which contributed to the additional electricity production in the second stage. This was also directly supported by sulfur deposits formed on the anode surface, which was confirmed by analyses on those solids using a scanning electron microscope equipped with energy dispersive X-ray spectroscopy as well as an elemental analyzer. To this end, the overall reduction efficiencies for HS⁻ and H₂S(g) were as high as 67.5 and 96.4 %, respectively. The correlations among current density, redox potential, and sulfate level supported the idea that the electricity signal generated in the MFC can be utilized as a potential indicator of malodor control for the domestic wastewater system.

  9. Diazo dye Congo Red degradation using a Boron-doped diamond anode: An experimental study on the effect of supporting electrolytes.

    PubMed

    Jalife-Jacobo, H; Feria-Reyes, R; Serrano-Torres, O; Gutiérrez-Granados, S; Peralta-Hernández, Juan M

    2016-12-05

    Diazo dye Congo Red (CR) solutions at 100mg/L, were degraded using different supporting electrolytes in an electrochemical advanced oxidation process (EAOPs), like the anodic oxidation (AOx/BDD). All experiments were carried out in a 3L flow reactor with a Boron-doped diamond (BDD) anode and stainless steel cathode (AISI 304), at 7.5, 15, 30 and 50mA/cm(2) current densities (j). Furthermore, each experiment was carried out under a flow rate of 7L/min. Additionally, HClO4, NaCl, Na2SO4, and H2SO4 were tested as supporting electrolytes at a 50mM concentration. The degradation process was at all times considerably faster in NaCl medium. Solutions containing SO4(2-) or ClO4(-) ions were less prompted to degradation due to the low oxidation power of these species into the bulk. Dissolved organic carbon (DOC) analysis, was carried out to evaluate the mineralization of CR. The degradation of CR, was evaluated with the HPLC analysis of the treated solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Rechargeable LiNiO2/carbon cells

    NASA Astrophysics Data System (ADS)

    Dahn, J. R.; von Sacken, U.; Juzkow, M. W.; Al-Janaby, H.

    1991-08-01

    Rechargeable cells can be made using two different intercalation compounds, in which the chemical potential of the intercalant differs by several eV, for the electrodes. The factors that play a role in the selection of appropriate lithium intercalation compounds for such cells are discussed. For the ease of cell assembly, the cathode should be stable in air when it is fully intercalated, like LiNiO2. For the anode, the chemical potential of the intercalated Li should be close to that of Li metal, like it is in Li(x)C6. The intercalation of Li in LiNiO2 is discussed, and then in petroleum coke. Then, it is shown that LiNiO2/coke cells have high energy density, long cycle life, excellent high-temperature performance, low self-discharge rates, can be repeatedly discharged to zero volts without damage, and are easily fabricated. It is considered that this type of cell shows far more promise for widespread applications than traditional secondary Li cells using metallic Li anodes.

  11. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOEpatents

    Bates, John B.

    1996-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphorus lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  12. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOEpatents

    Bates, John B.

    1997-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphous lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  13. Surface analysis of anodized aluminum clamps from NASA-LDEF satellite

    NASA Technical Reports Server (NTRS)

    Grammer, H. L.; Wightman, J. P.; Young, Philip R.

    1992-01-01

    Surface analysis results of selected anodized aluminum clamps containing black (Z306) and white (A276) paints which received nearly six years of Low Earth Orbit (LEO) exposure on the Long Duration Exposure Facility are reported. Surface analytical techniques, including x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and scanning electron microscopy/energy dispersive analysis by x-ray (SEM/EDAX), showed significant differences in the surface composition of these materials depending upon the position on the LDEF. Differences in the surface composition are attributed to varying amounts of atomic oxygen and vacuum ultraviolet radiation (VUV). Silicon containing compounds were the primary contaminant detected on the materials.

  14. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOEpatents

    Balazs, G.B.; Chiba, Z.; Lewis, P.R.; Nelson, N.; Steward, G.A.

    1999-06-15

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO[sub 2]. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement. 2 figs.

  15. High specific power, direct methanol fuel cell stack

    DOEpatents

    Ramsey, John C [Los Alamos, NM; Wilson, Mahlon S [Los Alamos, NM

    2007-05-08

    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  16. Scaled-up dual anode/cathode microbial fuel cell stack for actual ethanolamine wastewater treatment.

    PubMed

    An, Byung-Min; Heo, Yoon; Maitlo, Hubdar-Ali; Park, Joo-Yang

    2016-06-01

    The aim of this work was to develop the scale-up microbial fuel cell technology for actual ethanolamine wastewater treatment, dual anode/cathode MFC stacks connected in series to achieve any desired current, treatment capacity, and volume capacity. However, after feeding actual wastewater into the MFC, maximum power density decreased while the corresponding internal resistance increased. With continuous electricity production, a stack of eight MFCs in series achieved 96.05% of COD removal and 97.30% of ammonia removal at a flow rate of 15.98L/d (HRT 12h). The scaled-up dual anode/cathode MFC stack system in this research was demonstrated to treat actual ETA wastewater with the added benefit of harvesting electricity energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries.

    PubMed

    Wei, Xiaoliang; Xu, Wu; Vijayakumar, Murugesan; Cosimbescu, Lelia; Liu, Tianbiao; Sprenkle, Vincent; Wang, Wei

    2014-12-03

    A TEMPO-based non-aqueous electrolyte with the TEMPO concentration as high as 2.0 m is demonstrated as a high-energy-density catholyte for redox flow battery applications. With a hybrid anode, Li|TEMPO flow cells using this electrolyte deliver an energy efficiency of ca. 70% and an impressively high energy density of 126 W h L(-1) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Maximization of current efficiency for organic pollutants oxidation at BDD, Ti/SnO2-Sb/PbO2, and Ti/SnO2-Sb anodes.

    PubMed

    Xing, Xuan; Ni, Jinren; Zhu, Xiuping; Jiang, Yi; Xia, Jianxin

    2018-08-01

    Whereas electrochemical oxidation is noted for its ability to degrade bio-refractory organics, it has also been incorrectly criticized for excessive energy consumption. The present paper rectifies this misunderstanding by demonstrating that the energy actually consumed in the degradation process is much less than that wasted in the side reaction of oxygen evolution. To minimize the side reaction, the possible highest instantaneous current efficiency (PHICE) for electrochemical oxidation of phenol at Boron-doped Diamond (BDD), Ti/SnO 2 -Sb/PbO 2 (PbO 2 ), and Ti/SnO 2 -Sb (SnO 2 ) anodes has been investigated systematically, and found to reach almost 100% at the BDD anode compared with 23% at the PbO 2 anode and 9% at the SnO 2 anode. The significant discrepancy between PHICE values at the various anodes is interpreted in terms of different existing forms of hydroxyl radicals. For each anode system, the PHICEs are maintained experimentally using a computer-controlled exponential decay current mode throughout the electrolysis process. For applications, the minimized energy consumption is predicted by response surface methodology, and demonstrated for the BDD anode system. Consequently, almost 100% current efficiency is achieved (for a relatively meagre energy consumption of 17.2 kWh kgCOD -1 ) along with excellent COD degradation efficiency by optimizing the initial current density, flow rate, electrolysis time, and exponential decay constant. Compared with galvanostatic conditions, over 70% of the energy is saved in the present study, thus demonstrating the great potential of electrochemical oxidation for practical applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Numerical Simulation of Multiphase Magnetohydrodynamic Flow and Deformation of Electrolyte-Metal Interface in Aluminum Electrolysis Cells

    NASA Astrophysics Data System (ADS)

    Hua, Jinsong; Rudshaug, Magne; Droste, Christian; Jorgensen, Robert; Giskeodegard, Nils-Haavard

    2018-06-01

    A computational fluid dynamics based multiphase magnetohydrodynamic (MHD) flow model for simulating the melt flow and bath-metal interface deformation in realistic aluminum reduction cells is presented. The model accounts for the complex physics of the MHD problem in aluminum reduction cells by coupling two immiscible fluids, electromagnetic field, Lorentz force, flow turbulence, and complex cell geometry with large length scale. Especially, the deformation of bath-metal interface is tracked directly in the simulation, and the condition of constant anode-cathode distance (ACD) is maintained by moving anode bottom dynamically with the deforming bath-metal interface. The metal pad deformation and melt flow predicted by the current model are compared to the predictions using a simplified model where the bath-metal interface is assumed flat. The effects of the induced electric current due to fluid flow and the magnetic field due to the interior cell current on the metal pad deformation and melt flow are investigated. The presented model extends the conventional simplified box model by including detailed cell geometry such as the ledge profile and all channels (side, central, and cross-channels). The simulations show the model sensitivity to different side ledge profiles and the cross-channel width by comparing the predicted melt flow and metal pad heaving. In addition, the model dependencies upon the reduction cell operation conditions such as ACD, current distribution on cathode surface and open/closed channel top, are discussed.

  20. Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution.

    PubMed

    Balke, Nina; Jesse, Stephen; Kim, Yoongu; Adamczyk, Leslie; Tselev, Alexander; Ivanov, Ilia N; Dudney, Nancy J; Kalinin, Sergei V

    2010-09-08

    The electrical bias driven Li-ion motion in silicon anode materials in thin film battery heterostructures is investigated using electrochemical strain microscopy (ESM), which is a newly developed scanning probe microscopy based characterization method. ESM utilizes the intrinsic link between bias-controlled Li-ion concentration and molar volume of electrode materials, providing the capability for studies on the sub-20 nm scale, and allows the relationship between Li-ion flow and microstructure to be established. The evolution of Li-ion transport during the battery charging is directly observed.

  1. Lead electrowinning in a fluoborate medium. Use of hydrogen diffusion anodes

    NASA Astrophysics Data System (ADS)

    Expósito, E.; González-García, J.; Bonete, P.; Montiel, V.; Aldaz, A.

    The results of an investigation of the electrowinning of lead employing a fluoboric acid bath are reported. The electrodeposition lead reaction was studied by voltammetric methods and scanning electron microscopy (SEM) microphotographs of the electrodeposited lead were taken. The effects of current density, temperature, catholyte flow and H + concentration were investigated on a laboratory scale to optimise operating conditions. Finally, the substitution of the traditionally used Dimensionally Stable Anode (DSA) by a Hydrogen Diffusion Electrode (HDE) was made in order to decrease the energy consumption (EC) of the overall process.

  2. On-column reduction of catecholamine quinones in stainless steel columns during liquid chromatography.

    PubMed

    Xu, R; Huang, X; Kramer, K J; Hawley, M D

    1995-10-10

    The chromatographic behavior of quinones derived from the oxidation of dopamine and N-acetyldopamine has been studied using liquid chromatography (LC) with both a diode array detector and an electrochemical detector that has parallel dual working electrodes. When stainless steel columns are used, an anodic peak for the oxidation of the catecholamine is observed at the same retention time as a cathodic peak for the reduction of the catecholamine quinone. In addition, the anodic peak exhibits a tail that extends to a second anodic peak for the catecholamine. The latter peak occurs at the normal retention time of the catecholamine. The origin of this phenomenon has been studied and metallic iron in the stainless steel components of the LC system has been found to reduce the quinones to their corresponding catecholamines. The simultaneous appearance of a cathodic peak for the reduction of catecholamine quinone and an anodic peak for the oxidation of the corresponding catecholamine occurs when metallic iron in the exit frit reduces some of the quinones as the latter exits the column. This phenomenon is designated as the "concurrent anodic-cathodic response." It is also observed for quinones of of 3,4-dihydroxybenzoic acid and probably occurs with o- or p-quinones of other dihydroxyphenyl compounds. The use of nonferrous components in LC systems is recommended to eliminate possible on-column reduction of quinones.

  3. Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Campbell, Brennan; Ionescu, Robert; Favors, Zachary; Ozkan, Cengiz S.; Ozkan, Mihrimah

    2015-09-01

    Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents.

  4. Degradation pathway of malachite green in a novel dual-tank photoelectrochemical catalytic reactor.

    PubMed

    Diao, Zenghui; Li, Mingyu; Zeng, Fanyin; Song, Lin; Qiu, Rongliang

    2013-09-15

    A novel dual-tank photoelectrochemical catalytic reactor was designed to investigate the degradation pathway of malachite green. A thermally formed TiO₂/Ti thin film electrode was used as photoanode, graphite was used as cathode, and a saturated calomel electrode was employed as the reference electrode in the reactor. In the reactor, the anode and cathode tanks were connected by a cation exchange membrane. Results showed that the decolorization ratio of malachite green in the anode and cathode was 98.5 and 96.5% after 120 min, respectively. Malachite green in the two anode and cathode tanks was oxidized, achieving the bipolar double effect. Malachite green in both the anode and cathode tanks exhibited similar catalytic degradation pathways. The double bond of the malachite green molecule was attacked by strong oxidative hydroxyl radicals, after which the organic compound was degraded by the two pathways into 4,4-bis(dimethylamino) benzophenone, 4-(dimethylamino) benzophenone, 4-(dimethylamino) phenol, and other intermediate products. Eventually, malachite green was degraded into oxalic acid as a small molecular organic acid, which was degraded by processes such as demethylation, deamination, nitration, substitution, addition, and other reactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries.

    PubMed

    Campbell, Brennan; Ionescu, Robert; Favors, Zachary; Ozkan, Cengiz S; Ozkan, Mihrimah

    2015-09-29

    Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents.

  6. Computational investigation of the flow field contribution to improve electricity generation in granular activated carbon-assisted microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Li, Jian; Battaglia, Francine; He, Zhen

    2016-11-01

    Microbial fuel cells (MFCs) offer an alternative approach to treat wastewater with less energy input and direct electricity generation. To optimize MFC anodic performance, adding granular activated carbon (GAC) has been proved to be an effective way, most likely due to the enlarged electrode surface for biomass attachment and improved mixing of the flow field. The impact of a flow field on the current enhancement within a porous anode medium (e.g., GAC) has not been well understood before, and thus is investigated in this study by using mathematical modeling of the multi-order Butler-Volmer equation with computational fluid dynamics (CFD) techniques. By comparing three different CFD cases (without GAC, with GAC as a nonreactive porous medium, and with GAC as a reactive porous medium), it is demonstrated that adding GAC contributes to a uniform flow field and a total current enhancement of 17%, a factor that cannot be neglected in MFC design. However, in an actual MFC operation, this percentage could be even higher because of the microbial competition and energy loss issues within a porous medium. The results of the present study are expected to help with formulating strategies to optimize MFC with a better flow pattern design.

  7. An Approach Toward Replacing Vanadium: A Single Organic Molecule for the Anode and Cathode of an Aqueous Redox‐Flow Battery

    PubMed Central

    Janoschka, Tobias; Friebe, Christian; Hager, Martin D.; Martin, Norbert

    2017-01-01

    Abstract By combining a viologen unit and a 2,2,6,6‐tetramethylpiperidin‐1‐oxyl (TEMPO) radical in one single combi‐molecule, an artificial bipolar redox‐active material, 1‐(4‐(((1‐oxyl‐2,2,6,6‐tetramethylpiperidin‐4‐yl)oxy)carbonyl)benzyl)‐1′‐methyl‐[4,4′‐bipyridine]‐1,1′‐diium‐chloride (VIOTEMP), was created that can serve as both the anode (−0.49 V) and cathode (0.67 V vs. Ag/AgCl) in a water‐based redox‐flow battery. While it mimics the redox states of flow battery metals like vanadium, the novel aqueous electrolyte does not require strongly acidic media and is best operated at pH 4. The electrochemical properties of VIOTEMP were investigated by using cyclic voltammetry, rotating disc electrode experiments, and spectroelectrochemical methods. A redox‐flow battery was built and the suitability of the material for both electrodes was demonstrated through a polarity‐inversion experiment. Thus, an organic aqueous electrolyte system being safe in case of cross contamination is presented. PMID:28413754

  8. A microfluidic direct formate fuel cell on paper.

    PubMed

    Copenhaver, Thomas S; Purohit, Krutarth H; Domalaon, Kryls; Pham, Linda; Burgess, Brianna J; Manorothkul, Natalie; Galvan, Vicente; Sotez, Samantha; Gomez, Frank A; Haan, John L

    2015-08-01

    We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane-less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co-laminar flow of the anode stream and oxidant stream to prevent mixing. However, in paper microfluidics, capillary action drives flow while minimizing stream mixing. In this work, we demonstrate a paper MFC that uses formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using these materials we achieve a maximum power density of nearly 2.5 mW/mg Pd. In a series configuration, our MFC achieves an open circuit voltage just over 1 V, and in a parallel configuration, short circuit of 20 mA absolute current. We also demonstrate that the MFC does not require continuous flow of fuel and oxidant to produce power. We found that we can pre-saturate the materials on the paper, stop the electrolyte flow, and still produce approximately 0.5 V for 15 min. This type of paper MFC has potential applications in point-of-care diagnostic devices and other electrochemical sensors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions

    NASA Astrophysics Data System (ADS)

    Ren, Lijiao; Ahn, Yongtae; Hou, Huijie; Zhang, Fang; Logan, Bruce E.

    2014-07-01

    Power production of four hydraulically connected microbial fuel cells (MFCs) was compared with the reactors operated using individual electrical circuits (individual), and when four anodes were wired together and connected to four cathodes all wired together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative to the combined MFCs. Based on the power curves, power produced by the combined MFCs (2.12 ± 0.03 mW, 200 Ω) was the same as the summed power (2.13 mW, 50 Ω) produced by the four individual reactors in fed-batch mode. With continuous flow through the four MFCs, the maximum power (0.59 ± 0.01 mW) produced by the combined MFCs was slightly lower than the summed maximum power of the four individual reactors (0.68 ± 0.02 mW). There was a small parasitic current flow from adjacent anodes and cathodes, but overall performance was relatively unaffected. These findings demonstrate that optimal power production by reactors hydraulically and electrically connected can be predicted from performance by individual reactors.

  10. Electrokinetic remediation of contaminated soil with waste-lubricant oils and zinc.

    PubMed

    Park, Sung-Woo; Lee, Jae-Young; Yang, Jung-Seok; Kim, Kyoung-Jo; Baek, Kitae

    2009-09-30

    The feasibility of electrokinetic technology on the remediation of mixed-waste-contaminated railroad soil, contaminated by lubricant oil and zinc, was investigated. To enhance the removal efficiency, catholyte purging with 0.1M HNO(3) and a supply of non-ionic surfactant, secondary alcohol ethoxylate, was applied to the anode to remove Zn and to solubilize the lubricant oil. The catholyte purging maintained the soil pH as acidic and enhanced desorption of zinc from the soil, where the zeta potential of the acidic soil became positive. Thereafter, the direction of electro-osmotic flow was changed from the cathode to anode and the flow rate was reduced. The lesser in magnitude reverse electro-osmotic flow inhibited the migration of zinc and the lubricant oil was removed by the electro-osmotic flow. The removal of zinc and lubricant oil was enhanced with an increase in voltage gradient; however, a higher voltage gradient resulted in higher energy expenditure. After electrokinetic operation over 17 days, the removal efficiency of zinc was 22.1-24.3%, and that of lubricant oil was 45.1-55.0%. Although the removal of lubricant oil was quite high, the residual concentration did not meet Korean regulation levels.

  11. Full-color laser cathode ray tube (L-CRT) projector

    NASA Astrophysics Data System (ADS)

    Kozlovskiy, Vladimir; Nasibov, Alexander S.; Popov, Yuri M.; Reznikov, Parvel V.; Skasyrsky, Yan K.

    1995-04-01

    A full color TV projector based on three laser cathode-ray tubes (L-CRT) is described. A water-cooled laser screen (LS) is the radiation element of the L-CRT. We have produced three main colors (blue, green and red) by using the LS made of three II-VI compounds: ZnSe ((lambda) equals 475 nm), CdS ((lambda) equals 530 nm) and ZnCdSe (630 nm). The total light flow reaches 1500 Lm, and the number of elements per line is not less than 1000. The LS efficiency may be about 10 Lm/W. In our experiments we have tested new electron optics: - (30 - 37) kV are applied to the cathode unit of the electron gun; the anode of the e-gun and the e-beam intensity modulator are under low potential; the LS has a potential + (30 - 37) kV. The accelerating voltage is divided into two parts, and this enables us to diminish the size and weight of the projector.

  12. Computational modeling of transport and electrochemical reactions in proton-exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Um, Sukkee

    A comprehensive, multi-physics computational fuel cell dynamics (CFCD) model integrating electrochemical kinetics, charge transport, mass transport (particularly water transport), and flow dynamics is developed in this thesis. The numerical model is validated against published experimental data and utilized to generate results that reveal the internal operation of a PEM fuel cell. A number of model applications are demonstrated in the present work. First, the CFCD model is applied to explore hydrogen dilution effects in the anode feed. Detailed two-dimensional electrochemical and flow/transport simulations are provided to examine substantial anode concentration polarization due to hydrogen depletion at the reaction sites. A transient simulation of the cell current response to a step change in cell voltage is also attempted to elucidate characteristics of the dynamic response of a fuel cell for the first time. After the two-dimensional computational study, the CFCD model is applied to illustrate three-dimensional interactions between mass transfer and electrochemical kinetics. Emphasis is placed on obtaining a fundamental understanding of fully three-dimensional flow in the air cathode with interdigitated flowfield design and how it impacts the transport and electrochemical reaction processes. The innovative design concept for enhanced oxygen transport to, and effective water removal from the cathode, is explored numerically. Next, an analytical study of water transport is performed to investigate various water transport regimes of practical interest. The axial locations characteristic of anode water loss and cathode flooding are predicted theoretically and compared with numerical results. A continuous stirred fuel cell reactor (CSFCR) model is also proposed for the limiting situation where the anode and cathode sides reach equilibrium in water concentration with a thin ionomer membrane in between. In addition to the analytical solutions, a detailed water transport model extending the CFCD framework is developed in which a unified water equation is arrived at using the equilibrium water uptake curve between the gas and membrane phases. Various modes of water transport, i.e. diffusion, convection, and electro-osmotic drag, are incorporated in the unified water transport equation. This water transport model is then applied to elucidate water management in three-dimensional fuel cells with dry to low humidified inlet gases after its validation against available experimental data with dry oxidant and fuel streams. An internal circulation of water with the aid of counter-flow design is found to be essential for low-humidity operation, for example, in portable application of a PEM fuel cell without external humidifier. Finally, to handle the most important issue associated with PEM fuel cells using reformate gas, namely the CO poisoning anode Pt catalysts, a major modification of the present CFCD model is made to include CO oxidation processes. A four-step CO poisoning mechanism is implemented here and anode species equation for CO is added to model the electro- and chemical-oxidation processes on the anode. Numerical results of CO poisoning effects using a commercial package, STAR-CD, are presented. Basic features of CO poisoning are delineated and discussed. Future research areas of the fuel cell modeling are also indicated. As an example, preliminary results of extending the CFCD model to include heat transfer using a commercial package, FLUENTRTM, are given to demonstrate the need for careful thermal management in a multi-cell stack design.

  13. Electrodeionization Using Microseparated Bipolar Membranes

    NASA Technical Reports Server (NTRS)

    Lyons, Donald; Jackson, George; Andrews, Craig C.; Tennakoon, Charles L, K.; Singh, Waheguru; Hitchens, G. Duncan; Jabs, Harry; Chepin, James F.; Archer, Shivaun; Gonzalez-Martinez, Anukia; hide

    2004-01-01

    An electrochemical technique for deionizing water, now under development, is intended to overcome a major limitation of prior electrically-based water-purification techniques. The limitation in question is caused by the desired decrease in the concentration of ions during purification: As the concentration of ions decreases, the electrical resistivity of the water increases, posing an electrical barrier to the removal of the remaining ions. In the present technique, this limitation is overcome by use of electrodes, a flowfield structure, and solid electrolytes configured to provide conductive paths for the removal of ions from the water to be deionized, even when the water has already been purified to a high degree. The technique involves the use of a bipolar membrane unit (BMU), which includes a cation-exchange membrane and an anion-exchange membrane separated by a nonconductive mesh that has been coated by an ionically conductive material (see figure). The mesh ensures the desired microseparation between the ion-exchange membranes: The interstices bounded by the inner surfaces of the membranes and the outer surfaces of the coated mesh constitute a flow-field structure that allows the water that one seeks to deionize (hereafter called "process water" for short) to flow through the BMU with a low pressure drop. The flow-field structure is such that the distance between any point in the flow field and an ionically conductive material is small; thus, the flow-field structure facilitates the diffusion of molecules and ions to and from the ion-exchange membranes. The BMU is placed between an anode and a cathode, but not in direct contact with these electrodes. Instead, the space between the anion-exchange membrane and the anode is denoted the anode compartment and is filled with an ionic solution. Similarly, the space between the cation-exchange membrane and the cathode is denoted the cathode compartment and is filled with a different ionic solution. The electrodes are made of titanium coated with platinum.

  14. Submersed sensing electrode used in fuel-cell type hydrogen detector

    NASA Technical Reports Server (NTRS)

    Niedrach, L. W.; Rudek, F. P.; Rutkoneski, M. D.

    1971-01-01

    Electrode has silicone rubber diffusion barrier with fixed permeation constant for hydrogen. Barrier controls flow of hydrogen to anode and Faraday relationship establishes upper limit for current through cell. Electrode fabrication is described.

  15. Understanding the impact of flow rate and recycle on the conversion of a complex biorefinery stream using a flow-through microbial electrolysis cell

    DOE PAGES

    Lewis, Alex J.; Borole, Abhijeet P.

    2016-06-16

    We investigated the effect of flow rate and recycle on the conversion of a biomass-derived pyrolysis aqueous phase in amicrobial electrolysis cell (MEC) to demonstrate production of renewable hydrogen in biorefinery. A continuous MEC operation was investigated under one-pass and recycle conditions usingthe complex, biomass-derived, fermentable, mixed substrate feed at a constant concentration of 0.026 g/L,while testing flow rates ranging from 0.19 to 3.6 mL/min. This corresponds to an organic loading rate (OLR) of 0.54₋10 g/L-day. Mass transfer issues observed at low flow rates were alleviated using high flow rates.Increasing the flow rate to 3.6 mL/min (3.7 min HRT) duringmore » one-pass operation increased the hydrogen productivity 3-fold, but anode conversion efficiency (ACE) decreased from 57.9% to 9.9%. Recycle of the anode liquid helped to alleviate kinetic limitations and the ACE increased by 1.8-fold and the hydrogen productivity by 1.2-fold compared to the one-pass condition at the flow rate of 3.6 mL/min (10 g/L-d OLR). High COD removal was also achieved under recycle conditions, reaching 74.2 1.1%, with hydrogen production rate of 2.92 ± 0.51 L/L-day. This study demonstrates the advantages of combining faster flow rates with a recycle process to improve rate of hydrogen production from a switchgrass-derived stream in the biorefinery.« less

  16. Abatement of the antibiotic levofloxacin in a solar photoelectro-Fenton flow plant: Modeling the dissolved organic carbon concentration-time relationship.

    PubMed

    Coria, Gabriela; Pérez, Tzayam; Sirés, Ignasi; Brillas, Enric; Nava, José L

    2018-05-01

    The degradation of solutions of the antibiotic levofloxacin (LVN) in sulfate medium at pH 3.0 has been investigated at pre-pilot scale by solar photoelectro-Fenton (SPEF) process. The flow plant included an FM01-LC filter-press cell equipped with a Ti|Pt anode and a three-dimensional-like air-diffusion cathode, connected to a compound parabolic collector as photoreactor and a continuous stirred tank under recirculation batch mode. The effect of volumetric flow rate on H 2 O 2 electrogeneration from O 2 reduction was assessed. Then, the influence of initial LVN concentration and Fe 2+ concentration as catalyst on dissolved organic carbon (DOC) removal was thoroughly investigated. LVN was gradually mineralized by SPEF process, with faster DOC abatement at 0.50 mM Fe 2+ , yielding 100% after 360 min at applied cathodic potential of -0.30 V|SHE. The high mineralization current efficiency (MCE) and low specific energy consumption (EC DOC ) revealed the extraordinary role of homogeneous hydroxyl radicals and natural UV light, which allowed the degradation of the antibiotic and its by-products with MCE values greater than 100%. Five cyclic by-products, N,N-diethylformamide and three short-chain linear carboxylic acids were detected by GC-MS and HPLC analyses. A parametric model to simulate the DOC decay versus electrolysis time was implemented for the SPEF pre-pilot flow plant, showing good agreement with experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. A Low-Erosion Starting Technique for High-Performance Arcjets

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.; Curran, Francis M.

    1994-01-01

    The NASA arcjet program is currently sponsoring development of high specific impulse thrusters for next generation geosynchronous communications satellites (2 kW-class) and low-power arcjets for power limited spacecraft (approx. 0.5 kW-class). Performance goals in both of these efforts will require up to 1000 starts at propellant mass flow rates significantly below those used in state-of-the-art arcjet thruster systems (i.e., high specific power levels). Reductions in mass flow rate can lead to damaging modes of operation, particularly at thruster ignition. During the starting sequence, the gas dynamic force due to low propellant flow is often insufficient to rapidly push the arc anode attachment to its steady-state position in the diverging section of the nozzle. This paper describes the development and demonstration of a technique which provides for non-damaging starts at low steady-state flow rates. The technique employs a brief propellant pressure pulse at ignition to increase gas dynamic forces during the critical ignition/transition phase of operation. Starting characteristics obtained using both pressure-pulsed and conventional starting techniques were compared across a wide range of propellant flow rates. The pressure-pulsed starting technique provided reliable starts at mass flow rates down to 21 mg/s, typically required for 700 s specific impulse level operation of 2 kW thrusters. Following the comparison, a 600 start test was performed across a wide flow rate range. Post-test inspection showed minimal erosion of critical arcjet anode/nozzle surfaces.

  18. The charge-discharge characteristics and diffusion mechanism of Ti-Si-Al thin film anode using an electrically induced crystallization process

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Ting; Hung, Fei-Yi; Lui, Truan-Sheng

    2018-04-01

    In this study, an Al-Si-Ti multilayer thin film structure is designed as the anode of a lithium ion battery. The novel structure restricts the expansion of Si during charge-discharge, and its battery capacity can reach 1112 mA h g-1 after a 100-cycle charge-charging test under a 0.2 C charge-discharge rate without annealing. Notably, after a 200 °C vacuum annealing process, the cyclic capacity of the anode rises to 1208 mA h g-1 through crystallization of the Al and Ti buffer layer. However, its thermal diffusion behavior in the Al/Si or Ti/Si interfaces seriously reduces the performance and restricts the expansion of Si. The electrically induced crystallization (EIC) process not only performs crystallization but also controls the interfacial stability, after which its capacity can obviously improve to 1602 mA h g-1 after 100 cycles. Using EIC, the electron flow drives the Cu and Al atoms to endow the Si matrix with doping properties and further increases the electron conductivity of the anode. This result demonstrates that the EIC process is a suitable post-treatment process for multilayer anodes and provides a reference for future battery designs.

  19. Simultaneous efficient removal of oxyfluorfen with electricity generation in a microbial fuel cell and its microbial community analysis.

    PubMed

    Zhang, Qinghua; Zhang, Lei; Wang, Han; Jiang, Qinrui; Zhu, Xiaoyu

    2018-02-01

    The performance of a microbial fuel cell (MFC) to degrade oxyfluorfen was investigated. Approximately 77% of 50 mg/L oxyfluorfen was degraded within 24 h by anodic biofilm. The temperature, pH, and initial oxyfluorfen concentration had a significant effect on oxyfluorfen degrading, and a maximum degradation rate of 94.95% could theoretically be achieved at 31.96 °C, a pH of 7.65, and an initial oxyfluorfen concentration of 120.05 mg/L. Oxyfluorfen was further catabolized through various microbial metabolism pathways. Moreover, the anodic biofilm exhibited multiple catabolic capacities to 4-nitrophenol, chloramphenicol, pyraclostrobin, and sulfamethoxazole. Microbial community analysis indicated that functional bacteria Arcobacter, Acinetobacter, Azospirillum, Azonexus, and Comamonas were the predominant genera in the anodic biofilm. In terms of the efficient removal of various organic compounds and energy recovery, the MFC seemed to be a promising approach for the treatment of environmental contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Aerogel and xerogel composites for use as carbon anodes

    DOEpatents

    Cooper, John F.; Tillotson, Thomas M.; Hrubesh, Lawrence W.

    2010-10-12

    A method for forming a reinforced rigid anode monolith and fuel and product of such method. The method includes providing a solution of organic aerogel or xerogel precursors including at least one of a phenolic resin, phenol (hydroxybenzene), resorcinol(1,3-dihydroxybenzene), or catechol(1,2-dihydroxybenzene); at least one aldehyde compound selected from the group consisting of formaldehyde, acetaldehyde, and furfuraldehyde; and an alkali carbonate or phosphoric acid catalyst; adding internal reinforcement materials comprising carbon to said precursor solution to form a precursor mixture; gelling said precursor mixture to form a composite gel; drying said composite gel; and pyrolyzing said composite gel to form a wettable aerogel/carbon composite or a wettable xerogel/carbon composite, wherein said composites comprise chars and said internal reinforcement materials, and wherein said composite is suitable for use as an anode with the chars being fuel capable of being combusted in a molten salt electrochemical fuel cell in the range from 500 C to 800 C to produce electrical energy. Additional methods and systems/compositions are also provided.

  1. Electrochemical screening of organic and inorganic inhibitors for the corrosion of ASTM A-470 steel in concentrated sodium hydroxide solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moccari, A.; MacDonald, D.D.

    The corrosion of ASTM A-470 turbine disk steel in concentrated sodium hydroxide solution (10 mol/kg) containing sodium silicate, sodium dihydrogen phosphate, sodium chromate, aniline and some of its derivatives, tannic acid, L-(-)-phenylalanine (aminopropionic acid) and octadecylamine as potential inhibitors has been studied using the potentiodynamic, AC impedance, and Tafel extrapolation techniques. All tests were performed at 115 + or - 2 C. The anodic and cathodic polarization data show that aniline and its derivatives, L-(-)-phenylalanine, NaH/sub 2/PO/sub 4/, Na/sub 2/SiO/sub 3/, and Na/sub 2/CrO/sub 4/ inhibit the anodic process, whereas tannic acid inhibits the cathodic reaction. Octadecylamine was found tomore » inhibit both the anodic and cathodic processes. The mechanisms of inhibition for some of these compounds have been inferred from the wide band width frequency dispersions of the interfacial impedance.« less

  2. Performance of AA5052 alloy anode in alkaline ethylene glycol electrolyte with dicarboxylic acids additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, DaPeng; Zhang, DaQuan; Lee, KangYong; Gao, LiXin

    2015-11-01

    Dicarboxylic acid compounds, i.e. succinic acid (SUA), adipic acid (ADA) and sebacic acid (SEA), are used as electrolyte additives in the alkaline ethylene glycol solution for AA5052 aluminium-air batteries. It shows that the addition of dicarboxylic acids lowers the hydrogen gas evolution rate of commercial AA5052 aluminium alloy anode. AA5052 aluminium alloy has wide potential window for electrochemical activity and better discharge performance in alkaline ethylene glycol solution containing dicarboxylic acid additives. ADA has the best inhibition effect for the self-corrosion of AA5052 anode among the three dicarboxylic acid additives. Fourier transform infrared spectroscopy (FT-IR) reveals that dicarboxylic acids and aluminium ions can form coordination complexes. Quantum chemical calculations shows that ADA has a smaller energy gap (ΔE, the energy difference between the lowest unoccupied orbital and the highest occupied orbital), indicating that ADA has the strongest interaction with aluminium ions.

  3. Impact of cell design and operating conditions on the performances of SOFC fuelled with methane

    NASA Astrophysics Data System (ADS)

    Laurencin, J.; Lefebvre-Joud, F.; Delette, G.

    An in-house-model has been developed to study the thermal and electrochemical behaviour of a planar SOFC fed directly with methane and incorporated in a boiler. The usual Ni-YSZ cermet has been considered for the anode material. It has been found that methane reforming into hydrogen occurs only at the cell inlet in a limited depth within the anode. A sensitivity analysis has allowed establishing that anode thicknesses higher than ∼400-500 μm are required to achieve both the optimal methane conversion and electrochemical performances. The direct internal reforming (DIR) mechanisms and the impact of operating conditions on temperature gradients and SOFC electrical efficiencies have been investigated considering the anode supported cell configuration. It has been shown that the temperature gradient is minimised in the autothermal mode of cell operation. Thermal equilibrium in the stack has been found to be strongly dependent on radiative heat losses with the stack envelope. Electrochemical performance and cell temperature maps have been established as a function of methane flow rates and cell voltages.

  4. More About Arc-Welding Process for Making Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M.; Leidecker, Henning

    2005-01-01

    High-quality batches of carbon nanotubes are produced at relatively low cost in a modified atmospheric-pressure electric-arc welding process that does not include the use of metal catalysts. What would normally be a welding rod and a weldment are replaced by an amorphous carbon anode rod and a wider, hollow graphite cathode rod. Both electrodes are water-cooled. The cathode is immersed in ice water to about 0.5 cm from the surface. The system is shielded from air by flowing helium during arcing. As the anode is consumed during arcing at 20 to 25 A, it is lowered to maintain it at an approximately constant distance above the cathode. The process causes carbon nanotubes to form on the lowest 5 cm of the anode. The arcing process is continued until the anode has been lowered to a specified height. The nanotube-containing material is then harvested. The additional information contained in the instant report consists mostly of illustrations of carbon nanotubes and a schematic diagram of the arc-welding setup, as modified for the production of carbon nanotubes.

  5. Cryogenic plasma-processed silicon microspikes as a high-performance anode material for lithium ion-batteries

    NASA Astrophysics Data System (ADS)

    Sakai, Joe; Luais, Erwann; Wolfman, Jérôme; Tillocher, Thomas; Dussart, Rémi; Tran-Van, Francois; Ghamouss, Fouad

    2017-10-01

    Micro- or nano-structuring is essential in order to use Si as an anode material for lithium ion batteries. In the present study, we attempted to use Si wafers with a spiky microstructure (SMS), the so-called black-Si, prepared by a cryogenic reactive ion etching process with an SF6/O2 gas mixture, for Li half-cells. The SMS with various sizes of spikes from 2.0 μm (height) × 0.2 μm (width) to 21 μm × 1.0 μm was etched by varying the SF6/O2 gas flow ratio. An anode of SMS of 11 μm-height in average showed stable charge/discharge capacity and Coulombic efficiency higher than 99% for more than 300 cycles, causing no destruction to any part of the Si wafer. The spiky structure turned columnar after cycles, suggesting graded lithiation levels along the length. The present results suggest a strategy to utilize a wafer-based Si material for an anode of a lithium ion battery durable against repetitive lithiation/delithiation cycles.

  6. Local ion direction of motion and electron flow in a magnetically insulated diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maron, Y.; Litwin, C.

    Ion motion in the acceleration region of a magnetically insulated ion diode and electron flux to the anode are studied locally. Two classes of slowly growing ion deflections are observed, indicating the presence of transverse electric fields in the diode gap. A simple model, which treates the diode as an emitting surface perturbed away from planarity, is offered to infer profiles of the electric field. These profiles are consistent with the observation that one of the ion-deflection classes is associated with a significant fraction of the increases of the electron flux to the anode. The inferred growth rates of themore » perturbations suggest that the observed ion deflections are caused by a nonuniform expansion of the anode plasma. The transverse electric fields associated with the perturbations constitute a significant (as much as 20%) fraction of the diode accelerating field. Short duration ion deflections accompanied by intense electron bursts to the anode are also observed. The data suggest that these deflections and the electron bursts originate at processes in the cathode plasma.« less

  7. Pulsed electromagnetic gas acceleration. [magnetohydrodynamics, plasma power sources and plasma propulsion

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1975-01-01

    Terminal voltage measurements with various cathodes and anodes in a high power, quasi-steady magnetoplasmadynamic (MPD) are discussed. The magnitude of the current at the onset of voltage fluctuations is shown to be an increasing function of cathode area and a weaker decreasing function of anode area. Tests with a fluted cathode indicated that the fluctuations originate in the plasma adjacent to the cathode rather than at the cathode surface. Measurements of radiative output from an optical cavity aligned to examine the current-carrying portion of a two-dimensional, 56 kA magnetoplasmadynamic discharge reveal no lasing in that region, consistent with calculations of electron excitation and resonance radiation trapping. A voltage-swept double probe technique allows single-shot determination of electron temperature and electron number density in the recombining MPD exhaust flow. Current distributions within the cavity of MPD hollow cathodes for various static prefills with no injected mass flow are examined.

  8. Annular feed air breathing fuel cell stack

    DOEpatents

    Wilson, Mahlon S.

    1996-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  9. Heat-power working regimes of a high-frequency (0.44 MHz) 1000-kW induction plasmatron

    NASA Astrophysics Data System (ADS)

    Gorbanenko, V. M.; Farnasov, G. A.; Lisafin, A. B.

    2015-12-01

    The energy working regimes of a superpower high-frequency induction (HFI) plasmatron with a high-frequency (HF) generator are studied. The HFI plasmatron with a power of 1000 kVA and a working frequency of 440 kHz, in which air is used as a plasma-forming gas, can be used for treatment of various oxide powder materials. The energy regimes substantially influence finish products and their costs. Various working regimes of the HFI plasma unit and the following characteristics are studied: the dependence of the vibration power on the anode power, the dependence of the power losses on the anode power at various of plasma-forming gas flow rates, and the coefficients of efficiency of the plasmatron and the HFI-plasma unit at various powers. The effect of the plasma-forming gas flow rate on the bulk temperature is determined.

  10. Polyarene mediators for mediated redox flow battery

    DOEpatents

    Delnick, Frank M.; Ingersoll, David; Liang, Chengdu

    2018-01-02

    The fundamental charge storage mechanisms in a number of currently studied high energy redox couples are based on intercalation, conversion, or displacement reactions. With exception to certain metal-air chemistries, most often the active redox materials are stored physically in the electrochemical cell stack thereby lowering the practical gravimetric and volumetric energy density as a tradeoff to achieve reasonable power density. In a general embodiment, a mediated redox flow battery includes a series of secondary organic molecules that form highly reduced anionic radicals as reaction mediator pairs for the reduction and oxidation of primary high capacity redox species ex situ from the electrochemical cell stack. Arenes are reduced to stable anionic radicals that in turn reduce a primary anode to the charged state. The primary anode is then discharged using a second lower potential (more positive) arene. Compatible separators and solvents are also disclosed herein.

  11. Electrosorption of organic acids from aqueous bio-oil and conversion into hydrogen via microbial electrolysis cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Lydia Kyoung-Eun; Satinover, Scott J.; Yiacoumi, Sotira

    Neutralization of the bio-oil pH has been shown to generate a neutralized bio-oil aqueous phase (NBOAP) that includes most of the acidic components and a neutralized bio-oil organic phase (NBOOP) that includes hydrophobic organics, such as phenols. NBOOP can be used for fuel production, while NBOAP can be fed to microbial electrolysis cells (MECs) for hydrogen production. After pH neutralization, some organic acidic components remain in NBOOP. This work is focused on capturing acidic compounds from NBOOP through water extraction and electrosorption, and demonstrating hydrogen production via MECs. Capacitive deionization (CDI) is proven effective in capturing ions from NBOOP-contacted watermore » and NBOAP via electrosorption. Captured acidic compounds enable the MEC application to effectively produce renewable hydrogen. Chemical oxygen demand (COD) removal of 49.2%, 61.5%, and 60.8% for 2, 4, and 10 g/L-anode/day loading were observed, corresponding to a total COD degradation of 0.19 g/L, 0.79 g/L, and 1.3 g/L, respectively. A maximum hydrogen productivity of 4.3 L-H 2/L-anode/day was obtained. Major compounds in the water phase such as fatty acids, sugar derivatives, furanic and phenolic compounds were converted to hydrogen with an efficiency of 80–90%. Lastly, this approach may lead the entire biomass pyrolysis process to be an overall carbon-neutral process.« less

  12. Electrosorption of organic acids from aqueous bio-oil and conversion into hydrogen via microbial electrolysis cells

    DOE PAGES

    Park, Lydia Kyoung-Eun; Satinover, Scott J.; Yiacoumi, Sotira; ...

    2018-02-17

    Neutralization of the bio-oil pH has been shown to generate a neutralized bio-oil aqueous phase (NBOAP) that includes most of the acidic components and a neutralized bio-oil organic phase (NBOOP) that includes hydrophobic organics, such as phenols. NBOOP can be used for fuel production, while NBOAP can be fed to microbial electrolysis cells (MECs) for hydrogen production. After pH neutralization, some organic acidic components remain in NBOOP. This work is focused on capturing acidic compounds from NBOOP through water extraction and electrosorption, and demonstrating hydrogen production via MECs. Capacitive deionization (CDI) is proven effective in capturing ions from NBOOP-contacted watermore » and NBOAP via electrosorption. Captured acidic compounds enable the MEC application to effectively produce renewable hydrogen. Chemical oxygen demand (COD) removal of 49.2%, 61.5%, and 60.8% for 2, 4, and 10 g/L-anode/day loading were observed, corresponding to a total COD degradation of 0.19 g/L, 0.79 g/L, and 1.3 g/L, respectively. A maximum hydrogen productivity of 4.3 L-H 2/L-anode/day was obtained. Major compounds in the water phase such as fatty acids, sugar derivatives, furanic and phenolic compounds were converted to hydrogen with an efficiency of 80–90%. Lastly, this approach may lead the entire biomass pyrolysis process to be an overall carbon-neutral process.« less

  13. Metal-supported solid oxide fuel cells operated in direct-flame configuration

    DOE PAGES

    Tucker, Michael C.; Ying, Andrew S.

    2017-08-19

    Metal-supported solid oxide fuel cells (MS-SOFC) with infiltrated catalysts on both anode and cathode side are operated in direct-flame configuration, with a propane flame impinging on the anode. Placing thermal insulation on the cathode dramatically increases cell temperature and performance. The optimum burner-to-cell gap height is a strong function of flame conditions. Cell performance at the optimum gap is determined within the region of stable non-coking conditions, with equivalence ratio from 1 to 1.9 and flow velocity from 100 to 300 cm s -1. In this region, performance is most strongly correlated to flow velocity and open circuit voltage. Themore » highest peak power density achieved is 633 mW cm -2 at 833°C, for equivalence ratio of 1.8 and flow velocity of 300 cm s -1. The cell starts to produce power within 10 s of being placed in the flame, and displays stable performance over 10 extremely rapid thermal cycles. The cell provides stable performance for >20 h of semi-continuous operation.« less

  14. Experimental study of low-temperature plasma of electrical discharges with liquid electrodes

    NASA Astrophysics Data System (ADS)

    Zheltukhin, Viktor; Gaisin, Almaz

    2016-09-01

    Results of the experimental research of discharge between the liquid jet cathode (LJC) and the metal anode are presented. The discharge was studied over the voltage range U = 100 - 600 V, discharge current range I = 0 . 1 - 0 . 25 A, external pressure range P =105 Pa, discharge power Pd = 10 - 150 W. We used the techniques of infrared thermography and spectral measurements. Schlieren's photography is applied for describing the processes in liquid and gas phase. Results of the experimental researches of discharge current-voltage characteristic (CVC), the surface temperature distribution both on the LJC and the metal anode, a spectral measurements are showed. Effects of action both of breakdown and discharge on the jet flow as well as on the air flow near the discharge are described. It is found that the discharge CVC has an ascending behavior due to increase of plasma current density. The discharge is generated on the borders between the LJC and the metal anode as well as along the LJC misshaping this one. It is established that both the convection streams and an electrolyte drops are formed during the discharge burn. It is found that the discharge temperature in the vicinity of electrode surface reaches T 348 K. The work was funded by RFBR, according to the research projects No.,14-01-0755.

  15. Planar fuel cell utilizing nail current collectors for increased active surface area

    DOEpatents

    George, Thomas J.; Meacham, G. B. Kirby

    2002-03-26

    A plurality of nail current collector members are useful in the gas flow passages of an electrochemical device to optimize the active surfaces of the device and to provide structural support. In addition, the thicknesses of cathode and anode layers within the electrochemical device are varied according to current flow through the device to reduce resistance and increase operating efficiency.

  16. Planar fuel cell utilizing nail current collectors for increased active surface area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Thomas J.; Meacham, G.B. Kirby

    1999-11-26

    A plurality of nail current collector members are useful in the gas flow passages of an electrochemical device to optimize the active surfaces of the device and to provide structural support. In addition, the thicknesses of cathode and anode layers within the electrochemical device are varied according to current flow through the device to reduce resistance and increase operating efficiency.

  17. Compact Fuel-Cell System Would Consume Neat Methanol

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Kindler, Andrew; Valdez, Thomas

    2007-01-01

    In a proposed direct methanol fuel-cell electric-power-generating system, the fuel cells would consume neat methanol, in contradistinction to the dilute aqueous methanol solutions consumed in prior direct methanol fuel-cell systems. The design concept of the proposed fuel-cell system takes advantage of (1) electro-osmotic drag and diffusion processes to manage the flows of hydrogen and water between the anode and the cathode and (2) evaporative cooling for regulating temperature. The design concept provides for supplying enough water to the anodes to enable the use of neat methanol while ensuring conservation of water for the whole fuel-cell system.

  18. Studies on sulfur poisoning and development of advanced anodic materials for waste-to-energy fuel cells applications

    NASA Astrophysics Data System (ADS)

    Zaza, Fabio; Paoletti, Claudia; LoPresti, Roberto; Simonetti, Elisabetta; Pasquali, Mauro

    Biomass is the renewable energy source with the most potential penetration in energy market for its positive environmental and socio-economic consequences: biomass live cycles for energy production is carbon neutral; energy crops promote alternative and productive utilizations of rural sites creating new economic opportunities; bioenergy productions promote local energy independence and global energy security defined as availability of energy resource supply. Different technologies are currently available for energy production from biomass, but a key role is played by fuel cells which have both low environmental impacts and high efficiencies. High temperature fuel cells, such as molten carbonate fuel cells (MCFC), are particularly suitable for bioenergy production because it can be directly fed with biogas: in fact, among its principal constituents, methane can be transformed to hydrogen by internal reforming; carbon dioxide is a safe diluent; carbon monoxide is not a poison, but both a fuel, because it can be discharged at the anode, and a hydrogen supplier, because it can produce hydrogen via the water-gas shift reaction. However, the utilization of biomass derived fuels in MCFC presents different problems not yet solved, such as the poisoning of the anode due to byproducts of biofuel chemical processing. The chemical compound with the major negative effects on cell performances is hydrogen sulfide. It reacts with nickel, the main anodic constituent, forming sulfides and blocking catalytic sites for electrode reactions. The aim of this work is to study the hydrogen sulfide effects on MCFC performances for defining the poisoning mechanisms of conventional nickel-based anode, recommending selection criteria of sulfur-tolerant materials, and selecting advanced anodes for MCFC fed with biogas.

  19. Electromigration effect on intermetallic growth and Young's modulus in SAC solder joint

    NASA Astrophysics Data System (ADS)

    Xu, Luhua; Pang, John H. L.; Ren, Fei; Tu, K. N.

    2006-12-01

    Solid-state intermetallic compound (IMC) growth behavior plays and important role in solder joint reliability of electronic packaging assemblies. The directional impact of electromigration (EM) on the growth of interfacial IMCs in Ni/SAC/Ni, Cu/SAC/Ni single BGA ball solder joint, and fine pitch ball-grid-array (FPBGA) at the anode and cathode sides is reported in this study. When the solder joint was subjected to a current density of 5,000 A/cm2 at 125°C or 150°C, IMC layer growth on the anode interface was faster than that on the cathode interface, and both were faster than isothermal aging due to the Joule heating effect. The EM affects the IMC growth rate, as well as the composition and mechanical properties. The Young’s modulus and hardness were measured by the nanoindentation continuous stiffness measurement (CSM) from planar IMC surfaces after EM exposure. Different values were observed at the anode and cathode. The energy-dispersive x-ray (EDX) line scan analysis was conducted at the interface from the cathode to anode to study the presence of species; Ni was found in the anode IMC at SAC/Cu in the Ni/SAC/Cu joint, but not detected when the current was reverse. Electron-probe microanalysis (EPMA) measurement on the Ni/SAC/Ni specimen also confirmed the polarized Ni and Cu distributions in cathode and anode IMCs, which were (Ni0.57Cu0.43)3Sn4 and (Cu0.73Ni0.27)6Sn5, respectively. Thus, the Young’s moduli of the IMC are 141 and 175 GPa, respectively.

  20. Electricity generation from real industrial wastewater using a single-chamber air cathode microbial fuel cell with an activated carbon anode.

    PubMed

    Mohamed, Hend Omar; Obaid, M; Sayed, Enas Taha; Liu, Yang; Lee, Jinpyo; Park, Mira; Barakat, Nasser A M; Kim, Hak Yong

    2017-08-01

    This study introduces activated carbon (AC) as an effective anode for microbial fuel cells (MFCs) using real industrial wastewater without treatment or addition of external microorganism mediators. Inexpensive activated carbon is introduced as a proper electrode alternative to carbon cloth and carbon paper materials, which are considered too expensive for the large-scale application of MFCs. AC has a porous interconnected structure with a high bio-available surface area. The large surface area, in addition to the high macro porosity, facilitates the high performance by reducing electron transfer resistance. Extensive characterization, including surface morphology, material chemistry, surface area, mechanical strength and biofilm adhesion, was conducted to confirm the effectiveness of the AC material as an anode in MFCs. The electrochemical performance of AC was also compared to other anodes, i.e., Teflon-treated carbon cloth (CCT), Teflon-treated carbon paper (CPT), untreated carbon cloth (CC) and untreated carbon paper (CP). Initial tests of a single air-cathode MFC display a current density of 1792 mAm -2 , which is approximately four times greater than the maximum value of the other anode materials. COD analyses and Coulombic efficiency (CE) measurements for AC-MFC show the greatest removal of organic compounds and the highest CE efficiency (60 and 71%, respectively). Overall, this study shows a new economical technique for power generation from real industrial wastewater with no treatment and using inexpensive electrode materials.

  1. Electrocoagulation of bio-filtrated landfill leachate: Fractionation of organic matter and influence of anode materials.

    PubMed

    Dia, Oumar; Drogui, Patrick; Buelna, Gerardo; Dubé, Rino; Ihsen, Ben Salah

    2017-02-01

    Electrocoagulation (EC) was employed to treat residual organic matter from a landfill leachate pretreated by an aerated bio-filter system. Organic matter (humic acids (HA), fulvic acids (FA) and hydrophilic compounds (Hyl)) was fractionated using DAX-8 resin in order to estimate the efficiency of EC on each fraction. Initial characterization of the bio-filtrated landfill leachate showed that humic substances (HA + FA) represented nearly 90% of TOC. The effects of current densities, type of anode (Aluminum versus iron), and treatment time on the performance of COD removal were investigated. The best COD removal performances were recorded at a current density ranging between 8.0 and 10 mA cm -2 during 20 min of treatment time. Under these conditions, 70% and 65% of COD were removed using aluminum and iron electrodes, respectively. The fractionating of organic matter after EC treatment revealed that HA was completely removed using either aluminum or iron anode. However, FA and Hyl fractions were partially removed, with the percentages varying from 57 to 60% and 37-46%, respectively. FA and Hyl removal were quite similar using either aluminum or iron anode. Likewise, a significant decrease in 254-nm absorbance was recorded (UV 254 removal of 79-80%) using either type of anode. These results proved that EC is a suitable and efficient approach for treating the residual refractory organic matter from a landfill leachate previously treated by a biological system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The aluminum electrode in AlCl3-alkali-halide melts.

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.; Giner, J.

    1972-01-01

    Passivation phenomena have been observed upon cathodic and anodic polarization of the Al electrode in AlCl3-KCl-NaCl melts between 100 and 160 C. They are caused by formation of a solid salt layer at the electrode surface resulting from concentration changes upon current flow. The anodic limiting currents increased with temperature and with decreasing AlCl3 content of the melt. Current voltage curves obtained on a rotating aluminum disk showed a linear relationship between the anodic limiting current and omega to the minus 1/2 power. Upon cathodic polarization, dendrite formation occurs at the Al electrode. The activation overvoltage in AlCl3-KCl-NaCl was determined by galvanostatic current step methods. An apparent exchange current density of 270 mA/sq cm at 130 C and a double layer capacity of 40 plus or minus 10 microfarad/sq cm were measured.

  3. Electrochemical separation and concentration of hydrogen sulfide from gas mixtures

    DOEpatents

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  4. ELECTROCHEMICAL SEPARATION AND CONCENTRATION OF HYDROGEN SULFIDE FROM GAS MIXTURES

    DOEpatents

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  5. Investigation of a subsonic-arc-attachment thruster using segmented anodes

    NASA Technical Reports Server (NTRS)

    Berns, Darren H.; Sankovic, John M.; Sarmiento, Charles J.

    1993-01-01

    To investigate high frequency arc instabilities observed in subsonic-arc-attachment thrusters, a 3 kW, segmented-anode arc jet was designed and tested using hydrogen as the propellant. The thruster nozzle geometry was scaled from a 30 kW design previously tested in the 1960's. By observing the current to each segment and the arc voltage, it was determined that the 75-200 kHz instabilities were results of axial movements of the arc anode attachment point. The arc attachment point was fully contained in the subsonic portion of the nozzle for nearly all flow rates. The effects of isolating selected segments were investigated. In some cases, forcing the arc downstream caused the restrike to cease. Finally, decreasing the background pressure from 18 to 0.05 Pa affected the pressure distribution in the nozzle including the pressure in the subsonic arc chamber.

  6. Investigation of a subsonic-arc-attachment thruster using segmented anodes

    NASA Technical Reports Server (NTRS)

    Berns, Darren H.; Sankovic, John M.; Sarmiento, Charles J.

    1993-01-01

    To investigate high frequency arc instabilities observed in subsonic-arc-attachment thrusters, a 3 kW, segmented-anode arcjet was designed and tested using hydrogen as the propellant. The thruster nozzle geometry was scaled from a 30 kW design previously tested in the 1960's. By observing the current to each segment and the arc voltage, it was determined that the 75-200 kHz instabilities were results of axial movements of the arc anode attachment point. The arc attachment point was fully contained in the subsonic portion of the nozzle for nearly all flow rates. The effects of isolating selected segments were investigated. In some cases, forcing the arc downstream caused the restrike to cease. Finally, decreasing the background pressure from 18 Pa to 0.05 Pa affected the pressure distribution in the nozzle, including the pressure in the subsonic arc chamber.

  7. Fabrication of large area Si cylindric drift detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, W.; Kraner, H.W.; Li, Z.

    1993-04-01

    Advanced Si drift detector, a large area cylindrical drift detector (CDD), processing steps, with the exception of the ion implantation, were carried out in the BNL class 100 cleanroom. The double-side planer process technique was developed for the fabrication of CDD. Important improvements of the double-side planer process in this fabrication are the introduction of Al implantation protection mask and the remaining of a 1000 Angstroms oxide layer in the p-window during the implantation. Another important design of the CDD is the structure called ``river,`` which ,allows the current generated on Si-SiO{sub 2} interface to ``flow`` into the guard anode,more » and thus can minimize the leakage current at the signed anode. The test result showed that most of the signal anodes have the leakage current about 0.3 nA/cm{sup 2} for the best detector.« less

  8. Serially connected solid oxide fuel cells having monolithic cores

    DOEpatents

    Herceg, Joseph E.

    1987-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick. Between 2 and 50 cell segments may be connected in series.

  9. Electrochemical separation and concentration of sulfur containing gases from gas mixtures

    DOEpatents

    Winnick, Jack

    1981-01-01

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4.sup.= or, in the case of H.sub.2 S, to S.sup.=. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  10. Fuel cell plates with skewed process channels for uniform distribution of stack compression load

    DOEpatents

    Granata, Jr., Samuel J.; Woodle, Boyd M.

    1989-01-01

    An electrochemical fuel cell includes an anode electrode, a cathode electrode, an electrolyte matrix sandwiched between electrodes, and a pair of plates above and below the electrodes. The plate above the electrodes has a lower surface with a first group of process gas flow channels formed thereon and the plate below the electrodes has an upper surface with a second group of process gas flow channels formed thereon. The channels of each group extend generally parallel to one another. The improvement comprises the process gas flow channels on the lower surface of the plate above the anode electrode and the process gas flow channels on the upper surface of the plate below the cathode electrode being skewed in opposite directions such that contact areas of the surfaces of the plates through the electrodes are formed in crisscross arrangements. Also, the plates have at least one groove in areas of the surfaces thereof where the channels are absent for holding process gas and increasing electrochemical activity of the fuel cell. The groove in each plate surface intersects with the process channels therein. Also, the opposite surfaces of a bipolar plate for a fuel cell contain first and second arrangements of process gas flow channels in the respective surfaces which are skewed the same amount in opposite directions relative to the longitudinal centerline of the plate.

  11. Comparative Metagenomic Analysis of Electrogenic Microbial Communities in Differentially Inoculated Swine Wastewater-Fed Microbial Fuel Cells

    PubMed Central

    Sorokin, Anatoly A.; Kiseleva, Larisa; Simpson, David J. W.; Fedorovich, V.; Sharipova, Margarita R.; Kainuma, Mami; Cohen, Michael F.; Goryanin, Igor

    2017-01-01

    Bioelectrochemical systems such as microbial fuel cells (MFCs) are promising new technologies for efficient removal of organic compounds from industrial wastewaters, including that generated from swine farming. We inoculated two pairs of laboratory-scale MFCs with sludge granules from a beer wastewater-treating anaerobic digester (IGBS) or from sludge taken from the bottom of a tank receiving swine wastewater (SS). The SS-inoculated MFC outperformed the IGBS-inoculated MFC with regard to COD and VFA removal and electricity production. Using a metagenomic approach, we describe the microbial diversity of the MFC planktonic and anodic communities derived from the different inocula. Proteobacteria (mostly Deltaproteobacteria) became the predominant phylum in both MFC anodic communities with amplification of the electrogenic genus Geobacter being the most pronounced. Eight dominant and three minor species of Geobacter were found in both MFC anodic communities. The anodic communities of the SS-inoculated MFCs had a higher proportion of Clostridium and Bacteroides relative to those of the IGBS-inoculated MFCs, which were enriched with Pelobacter. The archaeal populations of the SS- and IGBS-inoculated MFCs were dominated by Methanosarcina barkeri and Methanothermobacter thermautotrophicus, respectively. Our results show a long-term influence of inoculum type on the performance and microbial community composition of swine wastewater-treating MFCs. PMID:29158944

  12. Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries

    PubMed Central

    Campbell, Brennan; Ionescu, Robert; Favors, Zachary; Ozkan, Cengiz S.; Ozkan, Mihrimah

    2015-01-01

    Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents. PMID:26415917

  13. USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL

    NASA Technical Reports Server (NTRS)

    Venuto, Charles

    1987-01-01

    In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.

  14. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.

    PubMed

    Wang, Lili; Zhu, Yongchun; Guo, Cong; Zhu, Xiaobo; Liang, Jianwen; Qian, Yitai

    2014-01-01

    Ferric chloride-graphite intercalation compounds (FeCl3 -GICs) with stage 1 and stage 2 structures were synthesized by reacting FeCl3 and expanded graphite (EG) in air in a stainless-steel autoclave. As rechargeable Li-ion batteries, these FeCl3 -GICs exhibit high capacity, excellent cycling stability, and superior rate capability, which could be attributed to their unique intercalation features. This work may enable new possibilities for the fabrication of Li-ion batteries. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Oil well flow assurance through static electric potential: An experimental investigation

    NASA Astrophysics Data System (ADS)

    Hashmi, Muhammad Ihtsham Asmat

    Flow assurance technology deals with the deposition of organic and inorganic solids in the oil flow path, which results in constriction of the production tubing and surface flow lines and drastically reduces the kinetic energy of the fluid. The major contributors to this flow restriction are inorganic scales, asphaltene, wax and gas hydrates, in addition to minor contribution from formation fines and corrosion products. Some of these materials (particularly asphaltene and inorganic scales) carry surface charges on their nuclei and seen to be attracted by electrode having opposite charge. The focus of the present research is to find the possibilities of inhibiting the deposition of asphaltene and inorganic scales in the production tubing by applying static electrical potential. With this objective, two flow set ups were made; one for asphaltene and the other for scale deposition studies, attached with precision pumps, pressure recording system and DC power supply. In each set up there were two flow loops, one was converted as Anode and the other as Cathode. A series of flow studies were conducted using the flow set ups, in which oil-dilution ratio, temperature and most importantly DC potential difference was varied and the deposition behavior of the asphaltene aggregates and calcium carbonate scale to the walls of the test loops were observed through rise of differential pressure across the loop due to possible deposition and constriction of the flow path. Two different sets of flow studies; one without oil dilution and other with the diluted oil (with n-heptane), were performed. Both experiments were investigated under the influence of static potential applied across the two test loops. Experimental results indicated that asphaltene deposition in the cathode can be retarded or stopped by applying a suitable negative potential; an increase in the static potential resulted in enhanced control over the asphaltene aggregation and hence the deposition. In the second study, scale deposition and retardation through static potential is studied through a series of flow experiments. Under the influence of static potential, scale deposition at the room temperature showed an increase in the deposition rates, whereas, at the elevated temperatures, scale deposition rates were observed to be retarded and delayed. Beyond a certain value of the static potential, this decreasing trend in deposition rates become directly proportional to the applied static potential. Results showed that the scale deposition may be controlled if not completely stopped, in the anode, if a suitable positive potential can be applied to it. The overall conclusion of this study is as follows: • Asphaltene deposition can be arrested almost completely by converting the production well into a cathode. • Scale deposition can be retarded or deposition rate can be much delayed by converting the production well into an anode.

  16. Electron concentration distribution in a glow discharge in air flow

    NASA Astrophysics Data System (ADS)

    Mukhamedzianov, R. B.; Gaisin, F. M.; Sabitov, R. A.

    1989-04-01

    Electron concentration distributions in a glow discharge in longitudinal and vortex air flows are determined from the attenuation of the electromagnetic wave passing through the plasma using microwave probes. An analysis of the distribution curves obtained indicates that electron concentration decreases in the direction of the anode. This can be explained by charge diffusion toward the chamber walls and electron recombination and sticking within the discharge.

  17. Global Visualization in Water using AnodizedAluminum PressureSensitive Paint and Dissolved Oxygen as Tracer

    NASA Astrophysics Data System (ADS)

    Ozaki, Tatsuya; Ishikawa, Hitoshi; Sakaue, Hirotaka

    2009-11-01

    We have developed anodized-aluminum pressuresensitive paint (AA-PSP) for flow visualization in water using dissolved oxygen as a tracer. Developed AA-PSP is characterized using water calibration setup by controlling a dissolved oxygen concentration. It is shown that the developed AA-PSP gives 4.0 percent change in luminescence per 1 mg/l of oxygen concentration. This AA-PSP is applied to visualize flows in a water tunnel. Oxygen concentrations of the water tunnel and the dissolved oxygen are 9.5 mg/l and 20 mg/l, respectively. We can capture horseshoe vortices over the base of 10 mm cylinder by using this technique at Reynolds number of 1000 and a water speed of 100 mm/s, respectively. Unlike conventional tracers such as ink, milk, and fluorescent dyes, this visualization technique gives flow information on the AA-PSP coated surface without integrating flows between the AA-PSP and an optical detector. Because of using dissolved oxygen as a tracer, it holds the material properties of testing water except for the amount of oxygen. The tracer does not interfere with optical measurements and it does not contaminate the testing water. A conventional visualization technique using milk as a tracer is also employed for comparison.

  18. Low work function, stable compound clusters and generation process

    DOEpatents

    Dinh, Long N.; Balooch, Mehdi; Schildbach, Marcus A.; Hamza, Alex V.; McLean, II, William

    2000-01-01

    Low work function, stable compound clusters are generated by co-evaporation of a solid semiconductor (i.e., Si) and alkali metal (i.e., Cs) elements in an oxygen environment. The compound clusters are easily patterned during deposition on substrate surfaces using a conventional photo-resist technique. The cluster size distribution is narrow, with a peak range of angstroms to nanometers depending on the oxygen pressure and the Si source temperature. Tests have shown that compound clusters when deposited on a carbon substrate contain the desired low work function property and are stable up to 600.degree. C. Using the patterned cluster containing plate as a cathode baseplate and a faceplate covered with phosphor as an anode, one can apply a positive bias to the faceplate to easily extract electrons and obtain illumination.

  19. Anodized aluminum pressure sensitive paint for unsteady aerodynamic applications

    NASA Astrophysics Data System (ADS)

    Sakaue, Hirotaka

    2003-06-01

    A comprehensive study of anodized aluminum pressure sensitive paint (AA-PSP) is documented. The study consisted of the development of AA-PSP and its application to unsteady aerodynamic fields at atmospheric conditions. Luminophore application mechanism and two-component application on anodized aluminum was studied for the development. Two-component application includes hydrophobic-coated AA-PSP and bi-luminophore system. It was found that the polarity of solvents and the surface charge of anodized aluminum determine the optimized luminophore application. As a result, a wide variation of luminophore can be applied on anodized aluminum. To apply both components on anodized aluminum, optimum solvent polarities for each component should match. AA-PSP performances, such as pressure sensitivity, temperature dependency, signal level, and aging were improved by the luminophore application mechanism and two-component application. AA-PSPs demonstrate the capability of measuring surface pressures on unsteady aerodynamic fields. For an application to the Purdue Mach 4 Quiet Flow Ludwieg Tube, surface pressures on the order of a hundred Pascals were measured for approximately 200ms. The measurement uncertainty of the pressure was on the order of 5%. The main uncertainty source comes from fitting the adsorption control model to calibration points. The results compared qualitatively well to CFD calculations. A miniature fluidic oscillator was used to demonstrate the capability of measuring oscillating unsteady aerodynamic fields with 6.4kHz primary frequency. Flow oscillation images as well as pressure maps of various phases were captured by AA-PSP with PtTFPP as a luminophore (AA-PSPPtTFPP ). Main uncertainty source comes from fitting the adsorption control model to calibration points and from the pulse width of illumination. The measurement uncertainty of the pressure was 4.68%. AA-PSPPtTFPP was applied to a high-amplified acoustic fielding in a standing wave tube. The maximum pressure change created was 171dB (1.04psi). Sinusoidal pressure wave images inside a standing wave tube were captured at various phases. From these images, the integrated pressure map was obtained. In this case, measurement uncertainty was 3.64% and was due mainly to the pulse width and from fitting of the adsorption controlled model. Comparison with theoretical model is necessary to validate the integrated map as a streaming pattern.

  20. The Effects of Voltage and Concentration of Sodium Bicarbonate on Electrochemical Synthesis of Ethanol from Carbon Dioxide Using Brass as Cathode

    NASA Astrophysics Data System (ADS)

    Ramadan, Septian; Fariduddin, Sholah; Rizki Aminudin, Afianti; Kurnia Hayatri, Antisa; Riyanto

    2017-11-01

    The effects of voltage and concentration of sodium bicarbonate were investigated to determine the optimum conditions of the electrochemical synthesis process to convert carbon dioxide into ethanol. The conversion process is carried out using a sodium bicarbonate electrolyte solution in an electrochemical synthesis reactor equipped with a cathode and anode. As the cathode was used brass, while as the anode carbon was utilized. Sample of the electrochemical synthesis process was analyzed by gas chromatography to determine the content of the compounds produced. The optimum electrochemical synthesis conditions to convert carbon dioxide into ethanol are voltage and concentration of sodium bicarbonate are 3 volts and 0.4 M with ethanol concentration of 1.33%.

  1. Potential Dependence of Pt and Co Dissolution from Platinum-Cobalt Alloy PEFC Catalysts Using Time-Resolved Measurements

    DOE PAGES

    Ahluwalia, Rajesh K.; Papadias, Dionissios D.; Kariuki, Nancy N.; ...

    2018-02-09

    An electrochemical flow cell system with catalyst-ionomer ink deposited on glassy carbon is used to investigate the aqueous stability of commercial PtCo alloys under cyclic potentials. An on-line inductively coupled plasma-mass spectrometer, capable of real-time measurements, is used to resolve the anodic and cathodic dissolution of Pt and Co during square-wave and triangle-wave potential cycles. We observe Co dissolution at all potentials, distinct peaks in anodic and cathodic Pt dissolution rates above 0.9 V, and potential-dependent Pt and Co dissolution rates. The amount of Pt that dissolves cathodically is smaller than the amount that dissolves anodically if the upper potentialmore » limit (UPL) is lower than 0.9 V. At the highest UPL investigated, 1.0 V, the cathodic dissolution greatly exceeds the anodic dissolution. A non-ideal solid solution model indicates that the anodic dissolution can be associated with the electrochemical oxidation of Pt and PtOH to Pt 2+, and the cathodic dissolution to electrochemical reduction of a higher Pt oxide, PtO x (x > 1), to Pt 2+. Pt also dissolves oxidatively during the cathodic scans but in smaller amounts than due to the reductive dissolution of PtO x. The relative amounts Pt dissolving oxidatively as Pt and PtOH depend on the potential cycle and UPL.« less

  2. Potential Dependence of Pt and Co Dissolution from Platinum-Cobalt Alloy PEFC Catalysts Using Time-Resolved Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahluwalia, Rajesh K.; Papadias, Dionissios D.; Kariuki, Nancy N.

    An electrochemical flow cell system with catalyst-ionomer ink deposited on glassy carbon is used to investigate the aqueous stability of commercial PtCo alloys under cyclic potentials. An on-line inductively coupled plasma-mass spectrometer, capable of real-time measurements, is used to resolve the anodic and cathodic dissolution of Pt and Co during square-wave and triangle-wave potential cycles. We observe Co dissolution at all potentials, distinct peaks in anodic and cathodic Pt dissolution rates above 0.9 V, and potential-dependent Pt and Co dissolution rates. The amount of Pt that dissolves cathodically is smaller than the amount that dissolves anodically if the upper potentialmore » limit (UPL) is lower than 0.9 V. At the highest UPL investigated, 1.0 V, the cathodic dissolution greatly exceeds the anodic dissolution. A non-ideal solid solution model indicates that the anodic dissolution can be associated with the electrochemical oxidation of Pt and PtOH to Pt 2+, and the cathodic dissolution to electrochemical reduction of a higher Pt oxide, PtO x (x > 1), to Pt 2+. Pt also dissolves oxidatively during the cathodic scans but in smaller amounts than due to the reductive dissolution of PtO x. The relative amounts Pt dissolving oxidatively as Pt and PtOH depend on the potential cycle and UPL.« less

  3. Improvement of performance in low temperature solid oxide fuel cells operated on ethanol and air mixtures using Cu-ZnO-Al2O3 catalyst layer

    NASA Astrophysics Data System (ADS)

    Morales, M.; Espiell, F.; Segarra, M.

    2015-10-01

    Anode-supported single-chamber solid oxide fuel cells with and without Cu-ZnO-Al2O3 catalyst layers deposited on the anode support have been operated on ethanol and air mixtures. The cells consist of gadolinia-doped ceria electrolyte, Ni-doped ceria anode, and La0.6Sr0.4CoO3-δ-doped ceria cathode. Catalyst layers with different Cu-ZnO-Al2O3 ratios are deposited and sintered at several temperatures. Since the performance of single-chamber fuel cells strongly depends on catalytic properties of electrodes for partial oxidation of ethanol, the cells are electrochemically characterized as a function of the temperature, ethanol-air molar ratio and gas flow rate. In addition, catalytic activities of supported anode, catalytic layer-supported anode and cathode for partial oxidation of ethanol are analysed. Afterwards, the effect of composition and sintering temperature of catalyst layer on the cell performance are determined. The results indicate that the cell performance can be significantly enhanced using catalyst layers of 30:35:35 and 40:30:30 wt.% Cu-ZnO-Al2O3 sintered at 1100 °C, achieving power densities above 50 mW cm-2 under 0.45 ethanol-air ratio at temperatures as low as 450 °C. After testing for 15 h, all cells present a gradual loss of power density, without carbon deposition, which is mainly attributed to the partial re-oxidation of Ni at the anode.

  4. Ellipsometry of anodic film growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, C.G.

    1978-08-01

    An automated computer interpretation of ellisometer measurements of anodic film growth was developed. Continuous mass and charge balances were used to utilize more fully the time dependence of the ellipsometer data and the current and potential measurements. A multiple-film model was used to characterize the growth of films which proceeds via a dissolution--precipitation mechanism; the model also applies to film growth by adsorption and nucleation mechanisms. The characteristic parameters for film growth describe homogeneous and heterogeneous crystallization rates, film porosities and degree of hydration, and the supersaturation of ionic species in the electrolyte. Additional descriptions which may be chosen aremore » patchwise film formation, nonstoichiometry of the anodic film, and statistical variations in the size and orientation of secondary crystals. Theories were developed to describe the optical effects of these processes. An automatic, self-compensating ellipsometer was used to study the growth in alkaline solution of anodic films on silver, cadmium, and zinc. Mass-transport conditions included stagnant electrolyte and forced convection in a flow channel. Multiple films were needed to characterize the optical properties of these films. Anodic films grew from an electrolyte supersatuated in the solution-phase dissolution product. The degree of supersaturation depended on transport conditions and had a major effect on the structure of the film. Anodic reaction rates were limited by the transport of charge carriers through a primary surface layer. The primary layers on silver, zinc, and cadmium all appeared to be nonstoichiometric, containing excess metal. Diffusion coefficients, transference numbers, and the free energy of adsorption of zinc oxide were derived from ellipsometer measurements. 97 figures, 13 tables, 198 references.« less

  5. Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry.

    PubMed

    Soga, Tomoyoshi; Igarashi, Kaori; Ito, Chiharu; Mizobuchi, Katsuo; Zimmermann, Hans-Peter; Tomita, Masaru

    2009-08-01

    We describe a sheath flow capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS) method in the negative mode using a platinum electrospray ionization (ESI) spray needle, which allows the comprehensive analysis of anionic metabolites. The material of the spray needle had significant effect on the measurement of anions. A stainless steel spray needle was oxidized and corroded at the anodic electrode due to electrolysis. The precipitation of iron oxides (rust) plugged the capillary outlet, resulting in shortened capillary lifetime. Many anionic metabolites also formed complexes with the iron oxides or migrating nickel ion, which was also generated by electrolysis and moved toward the cathode (the capillary inlet). The metal-anion complex formation significantly reduced detection sensitivity of the anionic compounds. The use of a platinum ESI needle prevented both oxidation of the metals and needle corrosion. Sensitivity using the platinum needle increased from several- to 63-fold, with the largest improvements for anions exhibiting high metal chelating properties such as carboxylic acids, nucleotides, and coenzyme A compounds. The detection limits for most anions were between 0.03 and 0.87 micromol/L (0.8 and 24 fmol) at a signal-to-noise ratio of 3. This method is quantitative, sensitive, and robust, and its utility was demonstrated by the analysis of the metabolites in the central metabolic pathways extracted from mouse liver.

  6. Electrochemical Hydrogen Peroxide Generator

    NASA Technical Reports Server (NTRS)

    Tennakoon, Charles L. K.; Singh, Waheguru; Anderson, Kelvin C.

    2010-01-01

    Two-electron reduction of oxygen to produce hydrogen peroxide is a much researched topic. Most of the work has been done in the production of hydrogen peroxide in basic media, in order to address the needs of the pulp and paper industry. However, peroxides under alkaline conditions show poor stabilities and are not useful in disinfection applications. There is a need to design electrocatalysts that are stable and provide good current and energy efficiencies to produce hydrogen peroxide under acidic conditions. The innovation focuses on the in situ generation of hydrogen peroxide using an electrochemical cell having a gas diffusion electrode as the cathode (electrode connected to the negative pole of the power supply) and a platinized titanium anode. The cathode and anode compartments are separated by a readily available cation-exchange membrane (Nafion 117). The anode compartment is fed with deionized water. Generation of oxygen is the anode reaction. Protons from the anode compartment are transferred across the cation-exchange membrane to the cathode compartment by electrostatic attraction towards the negatively charged electrode. The cathode compartment is fed with oxygen. Here, hydrogen peroxide is generated by the reduction of oxygen. Water may also be generated in the cathode. A small amount of water is also transported across the membrane along with hydrated protons transported across the membrane. Generally, each proton is hydrated with 3-5 molecules. The process is unique because hydrogen peroxide is formed as a high-purity aqueous solution. Since there are no hazardous chemicals or liquids used in the process, the disinfection product can be applied directly to water, before entering a water filtration unit to disinfect the incoming water and to prevent the build up of heterotrophic bacteria, for example, in carbon based filters. The competitive advantages of this process are: 1. No consumable chemicals are needed in the process. The only raw materials needed are water and oxygen or air. 2. The product is pure and can therefore be used in disinfection applications directly or after proper dilution with water. 3. Oxygen generated in the anode compartment is used in the electrochemical reduction process; in addition, external oxygen is used to establish a high flow rate in the cathode compartment to remove the desired product efficiently. Exiting oxygen can be recycled after separation of liquid hydrogen peroxide product, if so desired. 4. The process can be designed for peroxide generation under microgravity conditions. 5. High concentrations of the order of 6-7 wt% can be generated by this method. This method at the time of this reporting is superior to what other researchers have reported. 6. The cell design allows for stacking of cells to increase the hydrogen peroxide production. 7. The catalyst mix containing a diquaternary ammonium compound enabled not only higher concentration of hydrogen peroxide but also higher current efficiency, improved energy efficiency, and catalyst stability. 8. The activity of the catalyst is maintained even after repeated periods of system shutdown. 9. The catalyst system can be extended for fuel-cell cathodes with suitable modifications.

  7. Unsteady pressure measurement instrumentation using anodized-aluminium PSP applied in a transonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Mérienne, Marie-Claire; LeSant, Yves; Ancelle, Jacques; Soulevant, Didier

    2004-12-01

    The objective of this work is to demonstrate the feasibility of pressure measurement instrumentation using anodized-aluminium pressure-sensitive paint (or AA-PSP) for application in unsteady flows. An anodized procedure was applied to an aluminium tape that can be easily placed on a model even when it is mounted in a wind tunnel. The response time of the PSP coating is assessed using a calibration rig that generates fast pressure steps or sinusoidal pressure fluctuations up to 1 kHz. A pointwise measurement system made with a Cassegrain telescope and a photomultiplier tube was designed to collect the PSP luminescence. The spot displacement on the model surface was carried out by using a 3D moving bench. A camera is used to identify the spot position according to the model geometry. An application in a wind tunnel was performed on a forced shock wave oscillation test, generating amplitude variations up to 25 kPa. The calibration problem due to non-uniformity of the anodized properties did not allow quantitative data processing of pressure levels. Nevertheless frequency analysis demonstrates that the coating is able to follow the pressure fluctuations, as shown by comparison with standard pressure transducers.

  8. The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mössbauer spectroscopies

    DOE PAGES

    Baggetto, Loïc; Hah, Hien-Yoong; Jumas, Jean-Claude; ...

    2014-06-01

    The electrochemical reaction of Sb and SnSb anode materials with Na results in the formation of amorphous materials. To understand the resulting phases and electrochemical capacities we studied the reaction products local order using 119Sn and 121Sb Mössbauer spectroscopies in conjunction with measurements performed on model powder compounds of Na-Sn and Na-Sb to further clarify the reactions steps. For pure Sb the discharge (sodiation) starts with the formation of an amorphous phase composed of atomic environments similar to those found in NaSb, and proceeds further by the formation of environments similar to that present in Na 3Sb. The reversible reactionmore » takes place during a large portion of the charge process. At full charge the anode material still contains a substantial fraction of Na, which explains the lack of recrystallization into crystalline Sb. The reaction of SnSb yields Na 3Sb crystalline phase at full discharge at higher temperatures (65 and 95°C) while the room temperature reaction yields amorphous compounds. The electrochemically-driven, solid-state amorphization reaction occurring at room temperature is governed by the simultaneous formation of Na-coordinated Sn and Sb environments, as monitored by the decrease (increase) of the 119Sn ( 121Sb) Mössbauer isomer shifts. Overall, the monitoring of the hyperfine parameters enables to correlate the changes in Na content to the individual Sn and Sb local chemical environments.« less

  9. Water electrolysis

    NASA Technical Reports Server (NTRS)

    Schubert, Franz H. (Inventor); Grigger, David J. (Inventor)

    1992-01-01

    This disclosure is directed to an electrolysis cell forming hydrogen and oxygen at space terminals. The anode terminal is porous and able to form oxygen within the cell and permit escape of the gaseous oxygen through the anode and out through a flow line in the presence of backpressure. Hydrogen is liberated in the cell at the opposing solid metal cathode which is permeable to hydrogen but not oxygen so that the migratory hydrogen formed in the cell is able to escape from the cell. The cell is maintained at an elevated pressure so that the oxygen liberated by the cell is delivered at elevated pressure without pumping to raise the pressure of the oxygen.

  10. MPD work at MIT

    NASA Technical Reports Server (NTRS)

    Martinez-Sanchez, Manuel

    1991-01-01

    MPD work at MIT is presented in the form of the view-graphs. The following subject areas are covered: the MIT program, its goals, achievements, and roadblocks; quasi one-dimensional modeling; two-dimensional modeling - transport effects and Hall effect; microscopic instabilities in MPD flows and modified two stream instability; electrothermal stability theory; separation of onset and anode depletion; exit plane spectroscopic measurements; phenomena of onset as performance limiter; explanations of onset; geometry effects on onset; onset at full ionization and its consequences; relationship to anode depletion; summary on self-field MPD; applied field MPD - the logical growth path; the case for AF; the challenges of AF MPD; and recommendations.

  11. Hydrothermal vanadium manganese oxides: Anode and cathode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Simões, Mário; Surace, Yuri; Yoon, Songhak; Battaglia, Corsin; Pokrant, Simone; Weidenkaff, Anke

    2015-09-01

    Vanadium manganese oxides with Mn content up to 33 at% were synthesized by a low temperature hydrothermal route allowing for the preparation of both anodic and cathodic materials for Li-ion batteries. Low amounts of manganese (below 13 at%) lead to the formation of elongated particles of layered hydrated vanadium oxides with manganese and water intercalated between the V2O5 slabs, while for higher Mn content of 33 at%, monoclinic MnV2O6 is formed. Former materials are suitable for high energy cathodes while the latter one is an anodic compound. The material containing 10 at% Mn has the composition Mn0.2V2O5·0.9H2O and shows the best cathodic activity with 20% capacity improvement over V2O5·0.5H2O. Lithiated MnV2O6 with Li5MnV2O6 composition prepared electrochemically was evaluated for the first time as anode in a full-cell against Mn0.2V2O5·0.9H2O cathode. An initial capacity ca. 300 A h kg-1 was measured with this battery corresponding to more than 500 Wh kg-1. These results confirm the prospect of using Li5MnV2O6 anodes in lithium-ion batteries as well as high-capacity layered hydrated vanadium oxides cathodes such as V2O5·0.5H2O and Mn0.2V2O5·0.9H2O.

  12. Routes to ultra-pure alkyls of indium and gallium and their adducts with ethers, phosphines and amines

    NASA Astrophysics Data System (ADS)

    Jones, Anthony C.; Holliday, A. Kenneth; Cole-Hamilton, David J.; Ahmad, M. Munir; Gerrard, Neil D.

    1984-09-01

    Electrolysis of tetrahydrofuran (thf) solutions of dimethylmagnesium containing tetraethylammonium percholrate using a gallium anode gives [Me 3Ga·thf], but higher yields of both [Me 3Ga·thf] and [Me 3In·thf] are obtained on electrolysis of thf solutions of Grignard reagents with sacrificial metal anodes in the absence of a carrying electrolyte. The thf adducts can be converted into adducts with other Lewis bases, [ Me3M· L], M = Ga or In, L = PMe 3, PEt 3, NEt 3, by simple base exchange reactions. Base-free trimethylgallium can be prepared from: (i) reaction of methyl iodide with the intermetallic compound [Mg 5Ga 2] in a high boiling ether; (ii) electrolysis of Grignard reagents in high boiling ethers using sacrificial gallium anodes; (iii) reactions of GaCl 3 with Grignard reagents in high boiling ethers or (iv) ether exchange reaction between [Me 3Ga·OEt 2] and high boiling ethers. All of these reactions lead to adducts between trimethylgallium and the high boiling ether which, on heating, decompose to give base-free trimethylgallium. [Me 3Ga·OEt 2] can be prepared from reaction of Grignard reagents with gallium trichloride in diethylether or from electrolysis of Grignard reagents in diethyl ether using a sacrificial gallium anode. Similar reactions using an indium anode lead to [Me 3In·OEt 2] from which base-free trimethylindium can be liberated using known chemistry. The use of alkyls prepared in this way for vapour phase epitaxy as well as the purity of the alkyls are discussed.

  13. Method of forming a package for MEMS-based fuel cell

    DOEpatents

    Morse, Jeffrey D; Jankowski, Alan F

    2013-05-21

    A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.

  14. Method of forming a package for mems-based fuel cell

    DOEpatents

    Morse, Jeffrey D.; Jankowski, Alan F.

    2004-11-23

    A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMOS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.

  15. Glucose oxidase bioanodes for glucose conversion and H2O2 production for horseradish peroxidase biocathodes in a flow through glucose biofuel cell design

    NASA Astrophysics Data System (ADS)

    Abreu, Caroline; Nedellec, Yannig; Ondel, Olivier; Buret, Francois; Cosnier, Serge; Le Goff, Alan; Holzinger, Michael

    2018-07-01

    Bioelectrocatalytic carbon nanotube pellets comprising glucose oxidase (GOx) at the anode and horseradish peroxidase (HRP) at the cathode were integrated in a glucose/H2O2 flow-through fuel cell setup. The porous bioelectrodes, separated with a cellulose membrane, were assembled in a design allowing the fuel/electrolyte flow through the entire fuel cell with controlled direction. An air saturated 5 mmol L-1 glucose solution was directed through the anode where glucose is used for power conversion and for the enzymatic generation of hydrogen peroxide supplying the HRP biocathode with its substrate. This configuration showed an open circuit voltage (OCV) of 0.6 V and provided 0.7 ± 0.035 mW at 0.41 V. Furthermore, different charge/discharge cycles at 500 Ω and 3 kΩ were applied to show the long term stability of this setup producing 290 μW h (1.04 J) of energy after 48 h. The biofuel cell design further allows a convenient assembly of several glucose biofuel cells in reduced volumes and its connection in parallel or in series.

  16. The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes

    NASA Astrophysics Data System (ADS)

    Bordes, Arnaud; Eom, KwangSup; Fuller, Thomas F.

    2014-07-01

    When fluoroethylene carbonate (FEC) is added to the ethylene carbonate (EC)-diethyl carbonate (DEC) electrolyte, the capacity and cyclability of full-cells employing Si-graphene anode and lithium nickel cobalt aluminum oxide cathode (NCA) cathode are improved due to formation of a thin (30-50 nm) SEI layer with low ionic resistance (∼2 ohm cm2) on the surface of Si-graphene anode. These properties are confirmed with electrochemical impedance spectroscopy and a cross-sectional image analysis using Focused Ion Beam (FIB)-SEM. Approximately 5 wt.% FEC in EC:DEC (1:1 wt.%) shows the highest capacity and most stability. This high capacity and low capacity fade is attributed to a more stable SEI layer containing less CH2OCO2Li, Li2CO3 and LiF compounds, which consume cyclable Li. Additionally, a greater amount of polycarbonate (PC), which is known to form a more robust passivation layer, thus reducing further reduction of electrolyte, is confirmed with X-ray photoelectron spectroscopy (XPS).

  17. A direct ascorbate fuel cell with an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Muneeb, Omar; Do, Emily; Tran, Timothy; Boyd, Desiree; Huynh, Michelle; Ghosn, Gregory; Haan, John L.

    2017-05-01

    Ascorbic Acid (Vitamin C) is investigated as a renewable alternative fuel for alkaline direct liquid fuel cells (DLFCs). The environmentally- and biologically-friendly compound, L-ascorbic acid (AA) has been modeled and studied experimentally under acidic fuel cell conditions. In this work, we demonstrate that ascorbic acid is a more efficient fuel in alkaline media than in acidic media. An operating direct ascorbate fuel cell is constructed with the combination of L-ascorbic acid and KOH as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, metal or carbon black anode materials and metal cathode catalyst. Operation of the fuel cell at 60 °C using 1 M AA and 1 M KOH as the anode fuel and electrolyte, respectively, and oxygen gas at the cathode, produces a maximum power density of 73 mW cm-2, maximum current density of 497 mA cm-2 and an open circuit voltage of 0.90 V. This performance is significantly greater than that of an ascorbic acid fuel cell with a cation exchange membrane, and it is competitive with alkaline DLFCs fueled by alcohols.

  18. Multi-element microelectropolishing method

    DOEpatents

    Lee, Peter J.

    1994-01-01

    A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle.

  19. The Influence of Electrode and Channel Configurations on Flow Battery Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darling, RM; Perry, ML

    2014-05-21

    Flow batteries with flow-through porous electrodes are compared to cells with porous electrodes adjacent to either parallel or interdigitated channels. Resistances and pressure drops are measured for different configurations to augment the electrochemical data. Cell tests are done with an electrolyte containing VO2+ and VO2+ in sulfuric acid that is circulated through both anode and cathode from a single reservoir. Performance is found to depend sensitively on the combination of electrode and flow field. Theoretical explanations for this dependence are provided. Scale-up of flow through and interdigitated designs to large active areas is also discussed. (C) 2014 The Electrochemical Society.more » All rights reserved.« less

  20. Concentration of carbon dioxide by a high-temperature electrochemical membrane cell

    NASA Technical Reports Server (NTRS)

    Kang, M. P.; Winnick, J.

    1985-01-01

    The performance of a molten carbonate carbon dioxide concentrator (MCCDC) cell, as a device for removal of CO2 from manned spacecraft cabins without fuel expenditure, is investigated. The test system consists of an electrochemical cell (with an Li2CO3-38 mol pct K2CO3 membrane contained in a LiAlO2 matrix), a furnace, and a flow IR analyzer for monitoring CO2. Operation of the MCCDC-driven cell was found to be suitable for the task of CO2 removal: the cell performed at extremely low CO2 partial pressures (at or above 0.1 mm Hg); cathode CO2 efficiencies of 97 percent were achieved with 0.25 CO2 inlet concentration at 19 mA sq cm, at temperatures near 873 K. Anode concentrations of up to 5.8 percent were obtained. Simple cathode and anode performance equations applied to correlate cell performance agreed well with those measured experimentally. A flow diagram for the process is included.

  1. Annular feed air breathing fuel cell stack

    DOEpatents

    Wilson, Mahlon S.; Neutzler, Jay K.

    1997-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  2. Redox flow cell energy storage systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1979-01-01

    NASA-Redox systems are electrochemical storage devices that use two fully soluble Redox couples, anode and cathode fluids, as active electrode materials separated by a highly selective ion exchange membrane. The reactants are contained in large storage tanks and pumped through a stack of Redox flow cells where the electrochemical reactions (reduction and oxidation) take place at porous carbon felt electrodes. A string or stack of these power producing cells is connected in series in a bipolar manner. Redox energy storage systems promise to be inexpensive and possess many features that provide for flexible design, long life, high reliability and minimal operation and maintenance costs. These features include independent sizing of power and storage capacity requirements and inclusion within the cell stack of a cell that monitors the state of charge of the system as a whole, and a rebalance cell which permits continuous correction to be made for minor side reactions that would tend to result in the anode fluid and cathode fluids becoming electrochemically out of balance. These system features are described and discussed.

  3. The role of stress in self-ordered porous anodic oxide formation and corrosion of aluminum

    NASA Astrophysics Data System (ADS)

    Capraz, Omer Ozgur

    The phenomenon of plastic flow induced by electrochemical reactions near room temperature is significant in porous anodic oxide (PAO) films, charging of lithium batteries and stress-corrosion cracking (SCC). As this phenomenon is poorly understood, fundamental insight into flow from our work may provide useful information for these problems. In-situ monitoring of the stress state allows direct correlation between stress and the current or potential, thus providing fundamental insight into technologically important deformation and failure mechanisms induced by electrochemical reactions. A phase-shifting curvature interferometry was designed to investigate the stress generation mechanisms on different systems. Resolution of our curvature interferometry was found to be ten times more powerful than that obtained by state-of-art multiple deflectometry technique and the curvature interferometry helps to resolve the conflicting reports in the literature. During this work, formation of surface patterns during both aqueous corrosion of aluminum and formation of PAO films were investigated. Interestingly, for both cases, stress induced plastic flow controls the formation of surface patterns. Pore formation mechanisms during anodizing of the porous aluminum oxide films was investigated . PAO films are formed by the electrochemical oxidation of metals such as aluminum and titanium in a solution where oxide is moderately soluble. They have been used extensively to design numerous devices for optical, catalytic, and biological and energy related applications, due to their vertically aligned-geometry, high-specific surface area and tunable geometry by adjusting process variables. These structures have developed empirically, in the absence of understanding the process mechanism. Previous experimental studies of anodizing-induced stress have extensively focused on the measurement of average stress, however the measurement of stress evolution during anodizing does not provide sufficient information to understand the potential stress mechanisms. We developed a new method, which enables us to discriminate the potential stress mechanisms during anodizing and characterize the evolution of the stress profile during film growth. Using stress measurement and characterization techniques, we demonstrated the evolution of the stress profile during the film formation and discussed the role of stress on the PAO film formation. Compressive stress builds up linearly during the anodizing, while barrier oxide film gets thicker until the onset of the pore initiation. Both barrier layer thickness and the integrated oxide stress decreased rapidly to the steady-state period when pore initiation began. The morphology change and stress transients points out the transition from elastic to plastic oxide behavior, similar to those observed in other situations such as lithium intercalation into silicon. The stress profile is consistent with the stress gradient needed to drive plastic flow observed experimentally. We also addressed the dependence of overall stress generation on applied current density. Apparently, stress caused by expansion or contraction of oxide and metal interface depends on the volume change due to overall reactions. In the last chapter, the stress generation during alkaline Al corrosion will be discussed. The enhancement of mechanical degradation by corrosion is the basis for the damage process such as stress-corrosion cracking. Understanding the synergistic effect of stress on stress-corrosion cracking mechanism is necessary to design new materials to improve the safety and viability of existing energy conversion systems. the high-resolution in-situ stress measurements during Al corrosion in alkaline solution was presented, supported by characterization techniques and Fast Fourier Transform analysis. Unprecedented curvature resolution of curvature interferometry permits the monitoring of stress during extended periods of corrosion of thick metal samples. Evolution of concaved-shaped surface patterns is in a great harmony with recorded tensile stress. Furthermore, absolute value of tensile stress onset of the plasticity depends on the dissolution rate of metal and yield stress of metal. The measurements reveal corrosion-induced tensile stress generation, leading to surface plasticity. This finding is evidence that corrosion can directly bring about plasticity, and may be relevant to mechanism of corrosion-induced degradation.

  4. Density functional theory study for the enhanced sulfur tolerance of Ni catalysts by surface alloying

    NASA Astrophysics Data System (ADS)

    Hwang, Bohyun; Kwon, Hyunguk; Ko, Jeonghyun; Kim, Byung-Kook; Han, Jeong Woo

    2018-01-01

    Sulfur compounds in fuels deactivate the surface of anode materials in solid oxide fuel cells (SOFCs), which adversely affect the long-term durability. To solve this issue, it is important to design new SOFC anode materials with high sulfur tolerance. Unfortunately, it is difficult to completely replace the traditional Ni anode owing to its outstanding reactivity with low cost. As an alternative, alloying Ni with transition metals is a practical strategy to enhance the sulfur resistance while taking advantage of Ni metal. Therefore, in this study, we examined the effects of transition metal (Cu, Rh, Pd, Ag, Pt, and Au) doping into a Ni catalyst on not only the adsorption of H2S, HS, S, and H but also H2S decomposition using density functional theory (DFT) calculations. The dopant metals were selected rationally by considering the stability of the Ni-based binary alloys. The interactions between sulfur atoms produced by H2S dissociation and the surface are weakened by the dopant metals at the topmost layer. In addition, the findings show that H2S dissociation can be suppressed by doping transition metals. It turns out that these effects are maximized in the Au-doped Ni catalyst. Our DFT results will provide useful insights into the design of sulfur-tolerant SOFC anode materials.

  5. Magnetic field controlled single crystal growth and surface modification of titanium alloys exposed for biocompatibility

    NASA Astrophysics Data System (ADS)

    Hermann, Regina; Uhlemann, Margitta; Wendrock, Horst; Gerbeth, Gunter; Büchner, Bernd

    2011-03-01

    The aim of this work is growth and characterisation of Ti55Nb45 (wt%) single crystals by floating-zone single crystal growth of intermetallic compounds using two-phase radio-frequency (RF) electromagnetic heating. Thereby, the process and, in particular, the flow field in the molten zone is influenced by additional magnetic fields. The growth of massive intermetallic single crystals is very often unsuccessful due to an unfavourable solid-liquid interface geometry enclosing concave fringes. It is generally known that the crystallization process stability is enhanced if the crystallization interface is convex. For this, a tailored magnetic two-phase stirrer system has been developed, which enables a controlled influence on the melt ranging from intensive inwards to outwards flows. Since Ti is favourably light, strong and biocompatible, it is one of the few materials that naturally match the requirements for implantation in the human body. Therefore, the magnetic system was applied to crystal growth of Ti alloys. The grown crystals were oriented and cut to cubes with the desired crystallographic orientations [1 0 0] and [1 0 1] normally on a plane. The electron backscatter diffraction (EBSD) technique was applied to clearly determine crystal orientation and to localize grain boundaries. The formation of oxidic nanotubes on Ti surfaces in dependence of the grain orientation was investigated, performed electrochemically by anodic oxidation from fluoride containing electrolyte.

  6. Continuous-flow multi-pulse electroporation at low DC voltages by microfluidic flipping of the voltage space topology

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, N.; Horowitz, L. F.; Folch, A.

    2016-10-01

    Concerns over biosafety, cost, and carrying capacity of viral vectors have accelerated research into physical techniques for gene delivery such as electroporation and mechanoporation. Advances in microfabrication have made it possible to create high electric fields over microscales, resulting in more efficient DNA delivery and higher cell viability. Continuous-flow microfluidic methods are typically more suitable for cellular therapies where a large number of cells need to be transfected under sterile conditions. However, the existing continuous-flow designs used to generate multiple pulses either require expensive peripherals such as high-voltage (>400 V) sources or function generators, or result in reduced cell viability due to the proximity of the cells to the electrodes. In this paper, we report a continuous-flow microfluidic device whose channel geometry reduces instrumentation demands and minimizes cellular toxicity. Our design can generate multiple pulses of high DC electric field strength using significantly lower voltages (15-60 V) than previous designs. The cells flow along a serpentine channel that repeatedly flips the cells between a cathode and an anode at high throughput. The cells must flow through a constriction each time they pass from an anode to a cathode, exposing them to high electric field strength for short durations of time (the "pulse-width"). A conductive biocompatible poly-aniline hydrogel network formed in situ is used to apply the DC voltage without bringing the metal electrodes close to the cells, further sheltering cells from the already low voltage electrodes. The device was used to electroporate multiple cell lines using electric field strengths between 700 and 800 V/cm with transfection efficiencies superior than previous flow-through designs.

  7. Continuous-flow multi-pulse electroporation at low DC voltages by microfluidic flipping of the voltage space topology.

    PubMed

    Bhattacharjee, N; Horowitz, L F; Folch, A

    2016-10-17

    Concerns over biosafety, cost, and carrying capacity of viral vectors have accelerated research into physical techniques for gene delivery such as electroporation and mechanoporation. Advances in microfabrication have made it possible to create high electric fields over microscales, resulting in more efficient DNA delivery and higher cell viability. Continuous-flow microfluidic methods are typically more suitable for cellular therapies where a large number of cells need to be transfected under sterile conditions. However, the existing continuous-flow designs used to generate multiple pulses either require expensive peripherals such as high-voltage (>400 V) sources or function generators, or result in reduced cell viability due to the proximity of the cells to the electrodes. In this paper, we report a continuous-flow microfluidic device whose channel geometry reduces instrumentation demands and minimizes cellular toxicity. Our design can generate multiple pulses of high DC electric field strength using significantly lower voltages (15-60 V) than previous designs. The cells flow along a serpentine channel that repeatedly flips the cells between a cathode and an anode at high throughput. The cells must flow through a constriction each time they pass from an anode to a cathode, exposing them to high electric field strength for short durations of time (the "pulse-width"). A conductive biocompatible poly-aniline hydrogel network formed in situ is used to apply the DC voltage without bringing the metal electrodes close to the cells, further sheltering cells from the already low voltage electrodes. The device was used to electroporate multiple cell lines using electric field strengths between 700 and 800 V/cm with transfection efficiencies superior than previous flow-through designs.

  8. Mobilization of phenol and dichlorophenol in unsaturated soils by non-uniform electrokinetics.

    PubMed

    Luo, Qishi; Zhang, Xihui; Wang, Hui; Qian, Yi

    2005-06-01

    The poor mobility of organic pollutants in contaminated sites frequently results in slow remediation processes. Organics, especially hydrophobic compounds, are generally retained strongly in soil matrix as a result of sorption, sequestration, or even formation into non-aqueous-phase liquids and their mobility is thus greatly reduced. The objective of this study was to evaluate the feasibility of using non-uniform electrokinetic transport processes to enhance the mobility of organic pollutants in unsaturated soils with no injection reagents. Phenol and 2,4-dichlorophenol (2,4-DCP), and kaolin and a natural sandy loam soil were selected as model organics and soils, respectively. The results showed that non-uniform electrokinetics can accelerate the desorption and movement of phenol and 2,4-DCP in unsaturated soils. Electromigration and electroosmotic flow were the main driving forces, and their role in the mobilization of phenol and 2,4-DCP varied with soil pH. The movement of 2,4-DCP in the sandy loam towards the anode (about 1.0 cmd(-1)V(-1)) was 1.0-1.5 cmd(-1)V(-1) slower than that in the kaolin soil, but about 0.5 cmd(-1)V(-1) greater than that of phenol in the sandy loam. When the sandy loam was adjusted to pH 9.3, the movement of phenol and 2,4-DCP towards the anode was about twice and five times faster than that at pH 7.7, respectively. The results also demonstrated that the movement of phenol and 2,4-DCP in soils can be easily controlled by regulating the operational mode of electric field. It is believed that non-uniform electrokinetics has the potential for practical application to in situ remediation of organics-contaminated sites.

  9. Intercalation of biomolecules into NiAl-NO 3 layered double hydroxide films synthesized in situ on anodic alumina/aluminium support

    NASA Astrophysics Data System (ADS)

    Zhao, Hua-Zhang; Chang, Ying-Yue; Yang, Jing; Yang, Qin-Zheng

    2013-03-01

    Layered double hydroxide (LDH) films were synthesized in situ on anodic alumina/aluminium (AAO/Al). Glucose oxidase (GOD) and L-ascorbic acid (vitamin C, VC) were intercalated respectively into the in-situ grown LDH films by anion-exchange in aqueous solutions. Dodecylsulfate (SDS) was used to expand the lamellar structure before GOD intercalation into the LDH film. The resulting products were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis (TGA). The results showed that VC and GOD were successfully intercalated into the in-situ synthesized LDH film. These biomolecules loaded LDH films could have potential applications in electrode modification, safe storage and effective delivery of bioactive compounds.

  10. A novel compensation method for the anode gain non-uniformity of multi-anode photomultiplier tubes

    NASA Astrophysics Data System (ADS)

    Lee, Chan Mi; Kwon, Sun Il; Ko, Guen Bae; Ito, Mikiko; Yoon, Hyun Suk; Lee, Dong Soo; Jong Hong, Seong; Lee, Jae Sung

    2012-01-01

    The position-sensitive multi-anode photomultiplier tube (MA-PMT) is widely used in high-resolution scintillation detectors. However, the anode gain non-uniformity of this device is a limiting factor that degrades the intrinsic performance of the detector module. The aim of this work was to develop a gain compensation method for the MA-PMT and evaluate the resulting enhancement in the performance of the detector. The method employs a circuit that is composed only of resistors and is placed between the MA-PMT and a resistive charge division network (RCN) used for position encoding. The goal of the circuit is to divide the output current from each anode, so the same current flows into the RCN regardless of the anode gain. The current division is controlled by the combination of a fixed-value series resistor with an output impedance that is much larger than the input impedance of the RCN, and a parallel resistor, which detours part of the current to ground. PSpice simulations of the compensation circuit and the RCN were performed to determine optimal values for the compensation resistors when used with Hamamatsu H8500 MA-PMTs. The intrinsic characteristics of a detector module consisting of this MA-PMT and a lutetium-gadolinium-oxyorthosilicate (LGSO) crystal array were tested with and without the gain compensation method. In simulation, the average coefficient of variation and max/min ratio decreased from 15.7% to 2.7% and 2.0 to 1.2, respectively. In the flood map of the LGSO-H8500 detector, the uniformity of the photopeak position for individual crystals and the energy resolution were much improved. The feasibility of the method was shown by applying it to an octagonal prototype positron emission tomography scanner.

  11. Improved Ceramic Anodes for Corrosion Protection.

    DTIC Science & Technology

    1984-11-01

    34 . 4 UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(Whi Data Entered) BLOCK 20 (Continued) ferrite over niobium over Ni- Cr -AI-Y...plasma-sprayed lithium ferrite on a valve metal substrate. Donor doped and reduced solid sintered titanate compounds yielded electrically conductive...Traditionally. impressed current systems have used tion (CEGS) 2310. antides that are either inexpensive and very large (high silicon, chromium

  12. Graphene oxide and H2 production from bioelectrochemical graphite oxidation.

    PubMed

    Lu, Lu; Zeng, Cuiping; Wang, Luda; Yin, Xiaobo; Jin, Song; Lu, Anhuai; Jason Ren, Zhiyong

    2015-11-17

    Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES.

  13. Graphene oxide and H2 production from bioelectrochemical graphite oxidation

    PubMed Central

    Lu, Lu; Zeng, Cuiping; Wang, Luda; Yin, Xiaobo; Jin, Song; Lu, Anhuai; Jason Ren, Zhiyong

    2015-01-01

    Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES. PMID:26573014

  14. Four two-dimensional ternary selenides based on group 13 and 14 metals: Syntheses, crystal structures, and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Wang, Jingrui; Li, Peng; Cai, Ting; Yang, Dan-Dan; Xiong, Wei-Wei

    2018-07-01

    A series of two-dimensional ternary selenides, [NH4]2[Ga2Sn2Se8] (1), [NH4]2[In2Ge2Se8] (2), [NH4]2[In2Sn2Se8] (3), [NH4]2[Ga2Ge2Se8] (4), have been solvothermally synthesized and characterized by single crystal X-ray diffraction, energy dispersive X-ray (EDX) spectroscopy, solid-state UV-Vis diffuse reflectance spectroscopy, and thermogravimetric analyses. The solid-state optical absorption spectra indicated that these compounds were semiconductors with band gaps of 1.71 eV for 1, 1.95 eV for 2, 1.85 eV for 3, and 1.83 eV for 4. In addition, compound 2 was employed as an anode material for lithium ion battery application, which exhibited a high specific capacity of 479 mA h g-1 over 200 cycles at a current density of 200 mA g-1, and an excellent rate capability of 425.2 mA h g-1 at a current density of 1000 mA g-1. Our results suggest that crystalline chalcogenides could be an alternative anode material for high performance LIBs application.

  15. Mechanistic Study of the Validity of Using Hydroxyl Radical Probes To Characterize Electrochemical Advanced Oxidation Processes.

    PubMed

    Jing, Yin; Chaplin, Brian P

    2017-02-21

    The detection of hydroxyl radicals (OH • ) is typically accomplished by using reactive probe molecules, but prior studies have not thoroughly investigated the suitability of these probes for use in electrochemical advanced oxidation processes (EAOPs), due to the neglect of alternative reaction mechanisms. In this study, we investigated the suitability of four OH • probes (coumarin, p-chlorobenzoic acid, terephthalic acid, and p-benzoquinone) for use in EAOPs. Experimental results indicated that both coumarin and p-chlorobenzoic acid are oxidized via direct electron transfer reactions, while p-benzoquinone and terephthalic acid are not. Coumarin oxidation to form the OH • adduct product 7-hydroxycoumarin was found at anodic potentials lower than that necessary for OH • formation. Density functional theory (DFT) simulations found a thermodynamically favorable and non-OH • mediated pathway for 7-hydroxycoumarin formation, which is activationless at anodic potentials > 2.10 V/SHE. DFT simulations also provided estimates of E° values for a series of OH • probe compounds, which agreed with voltammetry results. Results from this study indicated that terephthalic acid is the most appropriate OH • probe compound for the characterization of electrochemical and catalytic systems.

  16. Contribution of the backstreaming ions to the Self-Magnetic pinch (SMP) diode current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, Michael G.; Cuneo, Michael E.; Fournier, Sean D.

    2016-08-08

    Summary form only given. The results presented here were obtained with an SMP diode mounted at the front high voltage end of the RITS accelerator. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulses of six 1.3 MV inductively insulated cavities. Our experiments had two objectives: first to measure the contribution of the back-streaming ion currents emitted from the anode target to the diode beam current, and second to try to evaluate the energy of those ions and hence the actual Anode-Cathode (A-K) gap actual voltage. In any very high voltage inductive voltage addermore » (IVA) utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the anode-cathode (A-K) gap is problematic. The accelerating voltage quoted in the literature is from estimates based on measurements of the anode and cathode currents of the MITL far upstream from the diode and utilizing the para-potential flow theories and inductive corrections. Thus it would be interesting to have another independent measurement to evaluate the A-K voltage. The diode's anode is made of a number of high Z metals in order to produce copious and energetic flash x-rays. The backstreaming currents are a strong fraction of the anode materials and their stage of cleanness and gas adsorption. We have measured the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip for various diode configurations and different techniques of target cleaning treatments, such as heating to very high temperatures with DC and pulsed current, with RF plasma cleaning and with both plasma cleaning and heating. Finally, we have also evaluated the A-K gap voltage by ion filtering techniques.« less

  17. Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane.

    PubMed

    Liu, L; Lee, W; Huang, Z; Scholz, R; Gösele, U

    2008-08-20

    The fabrication of a composite membrane of nanoporous gold nanowires and anodic aluminum oxide (AAO) is demonstrated by the electrodeposition of Au-Ag alloy nanowires into an AAO membrane, followed by selective etching of silver from the alloy nanowires. This composite membrane is advantageous for flow-through type catalytic reactions. The morphology evolution of the nanoporous gold nanowires as a function of the diameter of the Au-Ag nanowire 'precursors' is also investigated.

  18. Molecular Diagnostics for the Study of Hypersonic Flows

    DTIC Science & Technology

    2000-04-01

    between the at the F4 high-enthalpy wind tunnel [21]. Figure 5 electrodes. The fast electrons exit the anode disk shows the image acquired 90 ms after...Discharge Figure 5 Typical F4 run, flow at 90 ms , Grounded Electrode convection imaged 5 jis after beam emission. Figure 4 Schematic diagram of the...accounts for the classical phenomena like absorption and Figure 6 Velocity profile at 90 ms for run of refraction. X(2) is the second-order

  19. Research progress in formation mechanism of anodizing aluminum oxide

    NASA Astrophysics Data System (ADS)

    Lv, Yudong

    2017-12-01

    The self-ordering porous anodizing aluminum oxide (AAO) has attracted much attention because of its potential value of application. Valve metals (Al, Ti, Zr etc.) anodic studies have been conducted for more than 80 years, but the mechanism of the formation of hexagonal prismatic cell structure has so far been different. In this paper, the research results of AAO film formation mechanism are reviewed, and the growth models of several AAO films are summarized, including the field-assisted dissolution (FAD), the viscous flow model, the critical current density effect model, the bulk expansion stress model and the steady-state pore growth model and so on. It analyzed the principle of each model and its rationality. This paper will be of great help to reveal the nature of pore formation and self-ordering, and with the hope that through the study of AAO film formation mechanism, the specific effects of various oxidation parameters on AAO film morphology can be obtained.

  20. Serially connected solid oxide fuel cells having monolithic cores

    DOEpatents

    Herceg, J.E.

    1985-05-20

    Disclosed is a solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output. The cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick. Between 2 and 50 cell segments may be connected in series.

  1. Organic anodes and sulfur/selenium cathodes for advanced Li and Na batteries

    NASA Astrophysics Data System (ADS)

    Luo, Chao

    To address energy crisis and environmental pollution induced by fossil fuels, there is an urgent demand to develop sustainable, renewable, environmental benign, low cost and high capacity energy storage devices to power electric vehicles and enhance clean energy approaches such as solar energy, wind energy and hydroenergy. However, the commercial Li-ion batteries cannot satisfy the critical requirements for next generation rechargeable batteries. The commercial electrode materials (graphite anode and LiCoO 2 cathode) are unsustainable, unrenewable and environmental harmful. Organic materials derived from biomasses are promising candidates for next generation rechargeable battery anodes due to their sustainability, renewability, environmental benignity and low cost. Driven by the high potential of organic materials for next generation batteries, I initiated a new research direction on exploring advanced organic compounds for Li-ion and Na-ion battery anodes. In my work, I employed croconic acid disodium salt and 2,5-Dihydroxy-1,4-benzoquinone disodium salt as models to investigate the effects of size and carbon coating on electrochemical performance for Li-ion and Na-ion batteries. The results demonstrate that the minimization of organic particle size into nano-scale and wrapping organic materials with graphene oxide can remarkably enhance the rate capability and cycling stability of organic anodes in both Li-ion and Na-ion batteries. To match with organic anodes, high capacity sulfur and selenium cathodes were also investigated. However, sulfur and selenium cathodes suffer from low electrical conductivity and shuttle reaction, which result in capacity fading and poor lifetime. To circumvent the drawbacks of sulfur and selenium, carbon matrixes such as mesoporous carbon, carbonized polyacrylonitrile and carbonized perylene-3, 4, 9, 10-tetracarboxylic dianhydride are employed to encapsulate sulfur, selenium and selenium sulfide. The resulting composites exhibit exceptional electrochemical performance owing to the high conductivity of carbon and effective restriction of polysulfides and polyselenides in carbon matrix, which avoids shuttle reaction.

  2. Manufacturing High-Quality Carbon Nanotubes at Lower Cost

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M.; Lidecker, Henning

    2004-01-01

    A modified electric-arc welding process has been developed for manufacturing high-quality batches of carbon nanotubes at relatively low cost. Unlike in some other processes for making carbon nanotubes, metal catalysts are not used and, consequently, it is not necessary to perform extensive cleaning and purification. Also, unlike some other processes, this process is carried out at atmospheric pressure under a hood instead of in a closed, pressurized chamber; as a result, the present process can be implemented more easily. Although the present welding-based process includes an electric arc, it differs from a prior electric-arc nanotube-production process. The welding equipment used in this process includes an AC/DC welding power source with an integral helium-gas delivery system and circulating water for cooling an assembly that holds one of the welding electrodes (in this case, the anode). The cathode is a hollow carbon (optionally, graphite) rod having an outside diameter of 2 in. (approximately equal to 5.1 cm) and an inside diameter of 5/8 in. (approximately equal to 1.6 cm). The cathode is partly immersed in a water bath, such that it protrudes about 2 in. (about 5.1 cm) above the surface of the water. The bottom end of the cathode is held underwater by a clamp, to which is connected the grounding cable of the welding power source. The anode is a carbon rod 1/8 in. (approximately equal to 0.3 cm) in diameter. The assembly that holds the anode includes a thumbknob- driven mechanism for controlling the height of the anode. A small hood is placed over the anode to direct a flow of helium downward from the anode to the cathode during the welding process. A bell-shaped exhaust hood collects the helium and other gases from the process. During the process, as the anode is consumed, the height of the anode is adjusted to maintain an anode-to-cathode gap of 1 mm. The arc-welding process is continued until the upper end of the anode has been lowered to a specified height above the surface of the water bath. The process causes carbon nanotubes to form in the lowest 2.5 cm of the anode. It also causes a deposit reminiscent of a sandcastle to form on the cathode. The nanotube-containing material is harvested. The cathode and anode can then be cleaned (or the anode is replaced, if necessary) and the process repeated to produce more nanotubes. Tests have shown that the process results in approximately equal to 50-percent yield of carbon nanotubes (mostly of the single-wall type) of various sizes. Whereas the unit cost of purified single-wall carbon nanotubes produced by other process is about $1,000/g in the year 2000, it has been estimated that for the present process, the corresponding cost would be about $10/g.

  3. Rechargeable Al/Cl2 battery with molten AlCl4/-/ electrolyte.

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.; Giner, J.; Burrows, B.

    1972-01-01

    A molten salt system based on Al- and Cl2 carbon electrodes, with an AlCl3 alkali chloride eutectic as electrolyte, offers promise as a rechargeable, high energy density battery which can operate at a relatively low temperature. Electrode kinetic studies showed that the electrode reactions at the Al anode were rapid and that the observed passivation phenomena were due to the formation at the electrode surface of a solid salt layer resulting from concentration changes on anodic or cathodic current flow. It was established that carbon electrodes were intrinsically active for chlorine reduction in AlCl3-alkali chloride melts. By means of a rotating vitreous carbon disk electrode, the kinetic parameters were determined.

  4. Static feed water electrolysis subsystem development

    NASA Technical Reports Server (NTRS)

    Schubert, Franz H. (Inventor); Grigger, David J. (Inventor)

    1991-01-01

    This disclosure is directed to an electrolysis cell forming hydrogen and oxygen at spaced terminals. The anode terminal is porous and able to form oxygen within the cell and permit escape of the gaseous oxygen through the anode and out through a flow line in the presence of backpressure. Hydrogen is liberated in the cell at the opposing solid metal cathode which is permeable to hydrogen but not oxygen so that the migratory hydrogen formed in the cell is able to escape from the cell. The cell is maintained at an elevated pressure so that oxygen liberated by the cell is delivered at elevated pressure without pumping to raise the pressure of the oxygen.

  5. The Salty Science of the Aluminum-Air Battery

    NASA Astrophysics Data System (ADS)

    Chasteen, Stephanie V.; Chasteen, N. Dennis; Doherty, Paul

    2008-12-01

    Fruit batteries and saltwater batteries are excellent ways to explore simple circuits in the classroom. These are examples of air batteries in which metal reacts with oxygen in the air in order to generate free electrons, which flow through an external circuit and do work. Students are typically told that the salt or fruit water acts as an electrolyte to bring electrons from the anode to the cathode. That's true, but it leaves the battery as a black box. Physics teachers often don't have the background to explain the chemistry behind these batteries. We've written this paper to explore the electrochemistry behind an air battery using copper cathode, aluminum anode, and saltwater.

  6. Nanoscale Engineering of Heterostructured Anode Materials for Boosting Lithium-Ion Storage.

    PubMed

    Chen, Gen; Yan, Litao; Luo, Hongmei; Guo, Shaojun

    2016-09-01

    Rechargeable lithium-ion batteries (LIBs), as one of the most important electrochemical energy-storage devices, currently provide the dominant power source for a range of devices, including portable electronic devices and electric vehicles, due to their high energy and power densities. The interest in exploring new electrode materials for LIBs has been drastically increasing due to the surging demands for clean energy. However, the challenging issues essential to the development of electrode materials are their low lithium capacity, poor rate ability, and low cycling stability, which strongly limit their practical applications. Recent remarkable advances in material science and nanotechnology enable rational design of heterostructured nanomaterials with optimized composition and fine nanostructure, providing new opportunities for enhancing electrochemical performance. Here, the progress as to how to design new types of heterostructured anode materials for enhancing LIBs is reviewed, in the terms of capacity, rate ability, and cycling stability: i) carbon-nanomaterials-supported heterostructured anode materials; ii) conducting-polymer-coated electrode materials; iii) inorganic transition-metal compounds with core@shell structures; and iv) combined strategies to novel heterostructures. By applying different strategies, nanoscale heterostructured anode materials with reduced size, large surfaces area, enhanced electronic conductivity, structural stability, and fast electron and ion transport, are explored for boosting LIBs in terms of high capacity, long cycling lifespan, and high rate durability. Finally, the challenges and perspectives of future materials design for high-performance LIB anodes are considered. The strategies discussed here not only provide promising electrode materials for energy storage, but also offer opportunities in being extended for making a variety of novel heterostructured nanomaterials for practical renewable energy applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: Efficiency, mechanism and influencing factors.

    PubMed

    Song, Haoran; Yan, Linxia; Ma, Jun; Jiang, Jin; Cai, Guangqiang; Zhang, Wenjuan; Zhang, Zhongxiang; Zhang, Jiaming; Yang, Tao

    2017-06-01

    Electrochemical activation of peroxydisulfate (PDS) at Ti/Pt anode was systematically investigated for the first time in this work. The synergistic effect produced from the combination of electrolysis and the addition of PDS demonstrates that PDS can be activated at Ti/Pt anode. The selective oxidation towards carbamazepine (CBZ), sulfamethoxazole (SMX), propranolol (PPL), benzoic acid (BA) rather than atrazine (ATZ) and nitrobenzene (NB) was observed in electrochemical activation of PDS process. Moreover, addition of excess methanol or tert-butanol had negligible impact on CBZ (model compound) degradation, demonstrating that neither sulfate radical (SO 4 - ) nor hydroxyl radical (HO) was produced in electrochemical activation of PDS process. Direct oxidation (PDS oxidation alone and electrolysis) and nonradical oxidation were responsible for the degradation of contaminants. The results of linear sweep voltammetry (LSV) and chronoamperometry suggest that electric discharge may integrate PDS molecule with anode surface into a unique transition state structure, which is responsible for the nonradical oxidation in electrochemical activation of PDS process. Adjustment of the solution pH from 1.0 to 7.0 had negligible effect on CBZ degradation. Increase of either PDS concentration or current density facilitated the degradation of CBZ. The presence of chloride ion (Cl - ) significantly enhanced CBZ degradation, while addition of bicarbonate (HCO 3 - ), phosphate (PO 4 3- ) and humic acid (HA) all inhibited CBZ degradation with the order of HA > HCO 3 -  > PO 4 3- . The degradation products of CBZ and chlorinated products were also identified. Electrochemical activation of PDS at Ti/Pt anode may serve as a novel technology for selective oxidation of organic contaminants in water and soil. Copyright © 2017. Published by Elsevier Ltd.

  8. Segregation of the Anodic Microbial Communities in a Microbial Fuel Cell Cascade

    PubMed Central

    Hodgson, Douglas M.; Smith, Ann; Dahale, Sonal; Stratford, James P.; Li, Jia V.; Grüning, André; Bushell, Michael E.; Marchesi, Julian R.; Avignone Rossa, C.

    2016-01-01

    Metabolic interactions within microbial communities are essential for the efficient degradation of complex organic compounds, and underpin natural phenomena driven by microorganisms, such as the recycling of carbon-, nitrogen-, and sulfur-containing molecules. These metabolic interactions ultimately determine the function, activity and stability of the community, and therefore their understanding would be essential to steer processes where microbial communities are involved. This is exploited in the design of microbial fuel cells (MFCs), bioelectrochemical devices that convert the chemical energy present in substrates into electrical energy through the metabolic activity of microorganisms, either single species or communities. In this work, we analyzed the evolution of the microbial community structure in a cascade of MFCs inoculated with an anaerobic microbial community and continuously fed with a complex medium. The analysis of the composition of the anodic communities revealed the establishment of different communities in the anodes of the hydraulically connected MFCs, with a decrease in the abundance of fermentative taxa and a concurrent increase in respiratory taxa along the cascade. The analysis of the metabolites in the anodic suspension showed a metabolic shift between the first and last MFC, confirming the segregation of the anodic communities. Those results suggest a metabolic interaction mechanism between the predominant fermentative bacteria at the first stages of the cascade and the anaerobic respiratory electrogenic population in the latter stages, which is reflected in the observed increase in power output. We show that our experimental system represents an ideal platform for optimization of processes where the degradation of complex substrates is involved, as well as a potential tool for the study of metabolic interactions in complex microbial communities. PMID:27242723

  9. TCE TRANSPORT AND DEGRADATION IN SOIL USING ELECTROOSMOSIS

    EPA Science Inventory

    Laboratory experiments were used to characterize the transport and chemical transformation of TCE in undisturbed soil cores. Electroosmotic fluid flow was vertically downwards from anode to cathode. A voltage of 1.4 V/cm was applied to the soil for 4 weeks. More than 95% of the T...

  10. Electrochemical Transformation of Trace Organic Contaminants in the Presence of Halide and Carbonate Ions

    PubMed Central

    2016-01-01

    Electrochemical treatment on anodes shows promise for the oxidation of organic contaminants in industrial wastewater and reverse osmosis concentrate from municipal wastewater recycling due to the high conductivity of the matrix and the concomitant low energy demand. The effect of background electrolyte composition (Cl–, HCO3–, and NH4+) on the formation and fate of electrochemically produced heterogeneous (HO•ads and Cl•ads) and homogeneous (HOCl and HOBr) oxidants was evaluated on Ti–IrO2 and boron-doped diamond (BDD) electrodes using a suite of trace organic contaminants that exhibited varying reactivity with HO•, CO3•–, HOCl, and HOBr. The contributions of adsorbed and bulk oxidants to contaminant degradation were investigated. Results show that transformation rates for most contaminants increased in the presence of chloride and trace amounts of bromide; however, elevated concentrations of HCO3– often altered transformation rates due to formation of selective oxidants, with decreases in reactivity observed for electron-poor contaminants and increases in reactivity observed for compounds with amine and phenolic moieties. Using this information, rates of reactions on anode surfaces and measured production and loss rates for reactive homogeneous species were used to predict contaminant removal in municipal wastewater effluent. Despite some uncertainty in the reaction mechanisms, the model accurately predicted rates of removal of electron-rich contaminants but underestimated the transformation rates of compounds that exhibited low reactivity with HOCl and HOBr, possibly due to the formation of halogen radicals. The approach employed in this study provides a means of identifying key reactions for different classes of contaminants and for predicting the conditions under which anodic treatment of wastewater will be practical. PMID:27599127

  11. Electrochemical Transformation of Trace Organic Contaminants in the Presence of Halide and Carbonate Ions.

    PubMed

    Barazesh, James M; Prasse, Carsten; Sedlak, David L

    2016-09-20

    Electrochemical treatment on anodes shows promise for the oxidation of organic contaminants in industrial wastewater and reverse osmosis concentrate from municipal wastewater recycling due to the high conductivity of the matrix and the concomitant low energy demand. The effect of background electrolyte composition (Cl(-), HCO3(-), and NH4(+)) on the formation and fate of electrochemically produced heterogeneous (HO(•)ads and Cl(•)ads) and homogeneous (HOCl and HOBr) oxidants was evaluated on Ti-IrO2 and boron-doped diamond (BDD) electrodes using a suite of trace organic contaminants that exhibited varying reactivity with HO(•), CO3(•-), HOCl, and HOBr. The contributions of adsorbed and bulk oxidants to contaminant degradation were investigated. Results show that transformation rates for most contaminants increased in the presence of chloride and trace amounts of bromide; however, elevated concentrations of HCO3(-) often altered transformation rates due to formation of selective oxidants, with decreases in reactivity observed for electron-poor contaminants and increases in reactivity observed for compounds with amine and phenolic moieties. Using this information, rates of reactions on anode surfaces and measured production and loss rates for reactive homogeneous species were used to predict contaminant removal in municipal wastewater effluent. Despite some uncertainty in the reaction mechanisms, the model accurately predicted rates of removal of electron-rich contaminants but underestimated the transformation rates of compounds that exhibited low reactivity with HOCl and HOBr, possibly due to the formation of halogen radicals. The approach employed in this study provides a means of identifying key reactions for different classes of contaminants and for predicting the conditions under which anodic treatment of wastewater will be practical.

  12. Conceptual design and experiments of electrochemistry-flushing technology for the remediation of historically Cr(Ⅵ)-contaminated soil.

    PubMed

    Li, Dong; Sun, Delin; Hu, Siyang; Hu, Jing; Yuan, Xingzhong

    2016-02-01

    A conceptual design and experiments, electrochemistry-flushing (E-flushing), using electrochemistry to enhance flushing efficiency for the remediation of Cr(Ⅵ)-contaminated soil is presented. The rector contained three compartments vertically superposed. The upper was airtight cathode compartment containing an iron-cathode. The middle was soil layer. The bottom was anode compartment containing an iron-anode and connected to a container by circulation pumps. H2 and OH(-) ions were produced at cathode. H2 increased the gas pressure in cathode compartment and drove flushing solution into soil layer forming flushing process. OH(-) ions entered into soil layer by eletromigration and hydraulic flow to enhance the desorption of Cr(Ⅵ). High potential gradient was applied to accelerate the electromigration of desorbed Cr(Ⅵ) ions and produced joule heat to increase soil temperature to enhance Cr(Ⅵ) desorption. In anode compartment, Fe(2+) ions produced at iron-anode reduced the desorbed Cr(Ⅵ) into Cr(3+) ions, which reacted with OH(-) ions forming Cr(OH)3. Experimental results show that Cr(Ⅵ) removal efficiency of E-flushing experiments was more than double of flushing experiments and reached the maximum of removal efficiency determined by desorption kinetics. All electrochemistry processes were positively used in E-flushing technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Transient analysis of gas transport in anode channel of a polymer electrolyte membrane fuel cell with dead-ended anode under pressure swing operation

    NASA Astrophysics Data System (ADS)

    Ichikawa, Yasushi; Oshima, Nobuyuki; Tabuchi, Yuichiro; Ikezoe, Keigo

    2014-12-01

    Further cost reduction is a critical issue for commercialization of fuel-cell electric vehicles (FCEVs) based on polymer electrolyte fuel cells (PEFCs). The cost of the fuel-cell system is driven by the multiple parts required to maximize stack performance and maintain durability and robustness. The fuel-cell system of the FCEV must be simplified while maintaining functionality. The dead-ended anode is considered as a means of simplification in this study. Generally, if hydrogen is supplied under constant pressure during dead-ended operation, stable power generation is impossible because of accumulation of liquid water produced by power generation and of nitrogen via leakage from the cathode through the membrane. Herein, pressure oscillation is applied to address this issue. Empirical and CFD data are employed to elucidate the mechanism of stable power generation using the pressure swing supply. Simultaneous and time-continuous measurements of the current distribution and gas concentration distribution are also conducted. The results demonstrate that the nitrogen concentration in the anode channel under pressure constant operation differs from that under pressure swing supply conditions. The transient two-dimensional CFD results indicate that oscillatory flow is generated by pressure swing supply, which periodically sweeps out nitrogen from the active area, resulting in stable power generation.

  14. Hydration and dehydration cycles in polymer electrolyte fuel cells operated with wet anode and dry cathode feed: A neutron imaging and modeling study

    NASA Astrophysics Data System (ADS)

    García-Salaberri, P. A.; Sánchez, D. G.; Boillat, P.; Vera, M.; Friedrich, K. A.

    2017-08-01

    Proper water management plays an essential role in the performance and durability of Polymer Electrolyte Fuel Cells (PEFCs), but it is challenged by the variety of water transport phenomena that take place in these devices. Previous experimental work has shown the existence of fluctuations between low and high current density levels in PEFCs operated with wet hydrogen and dry air feed. The alternation between both performance states is accompanied by strong changes in the high frequency resistance, suggesting a cyclic hydration and dehydration of the membrane. This peculiar scenario is examined here considering liquid water distributions from neutron imaging and predictions from a 3D two-phase non-isothermal model. The results show that the hydration-dehydration cycles are triggered by the periodic condensation and shedding of liquid water at the anode inlet. The input of liquid water humidifies the anode channel and offsets the membrane dry-out induced by the dry air stream, thus leading to the high-performance state. When liquid water is flushed out of the anode channel, the dehydration process takes over, and the cell comes back to the low-performance state. The predicted amplitude of the current oscillations grows with decreasing hydrogen and increasing air flow rates, in agreement with previous experimental data.

  15. Analysis of the interphase of a polyamide bonded to chromic acid anodized Ti-6AL-4V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guinta, R.K.; Kander, R.G.

    2000-01-06

    Structural adhesive joints, when tested as made, typically fail cohesively through the centerline of the adhesive. However, in any study of adhesive joint durability, failure near the adhesive/substrate interface becomes an important consideration. In the current study, an interfacially debonding adhesive test, the notched coating adhesion (NCA) test, was applied to LaRC(trademark) PETI-5 adhesive bonded to chronic acid anodized (CAA) Ti-6Al-4V. Post-failure analysis of the interphase region included X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). Mechanical interlocking between an adhesive and a substrate occurs when the liquid adhesivemore » flows into interstices of the substrate, solidifies, and becomes locked in place. Mechanical interlocking is believed to significantly contribute to the adhesion of substrates that exhibit microroughness, such as metal surfaces treated with chromic acid anodization or sodium hydroxide anodization. Filbey and Wightman found that an epoxy penetrated the pores of CAA Ti-6Al-4V, one of the limited number of pore penetration studies that have been reported. In the current study, the penetration of PETI-5 into the pores of CAA Ti-6Al-4V is investigated through analysis of adhesive/substrate failure surfaces.« less

  16. Enhance performance of micro direct methanol fuel cell by in situ CO2 removal using novel anode flow field with superhydrophobic degassing channels

    NASA Astrophysics Data System (ADS)

    Liang, Junsheng; Luo, Ying; Zheng, Sheng; Wang, Dazhi

    2017-05-01

    Capillary blocking caused by CO2 bubbles in anode flow field (AFF) is one of the bottlenecks for performance improvement of a micro direct methanol fuel cell (μDMFC). In this work, we present a novel AFF structure with nested layout of hydrophilic fuel channels and superhydrophobic degassing channels which can remove most of CO2 from AFF before it is released to the fuel channels. The new AFFs are fabricated on Ti substrates by using micro photochemical etching combined with anodization and fluorination treatments. Performance of the μDMFCs with and without superhydrophobic degassing channels in their AFF is comparatively studied. Results show that the superhydrophobic degassing channels can significantly speed up the exhaust of CO2 from the AFF. CO2 clogging is not observed in the new AFFs even when their comparison AFFs have been seriously blocked by CO2 slugs under the same operating conditions. 55% and 60% of total CO2 produced in μDMFCs with N-serpentine and N-spiral AFF can be respectively removed by the superhydrophobic degassing channels. The power densities of the μDMFCs equipped with new serpentine and spiral AFFs are respectively improved by 30% and 90% compared with those using conventional AFFs. This means that the new AFFs developed in this work can effectively prevent CO2-induced capillary blocking in the fuel channels, and finally significantly improve the performance of the μDMFCs.

  17. Fuel cell and membrane therefore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aindow, Tai-Tsui

    A fuel cell includes first and second flow field plates, and an anode electrode and a cathode electrode between the flow field plates. A polymer electrolyte membrane (PEM) is arranged between the electrodes. At least one of the flow field plates influences, at least in part, an in-plane anisotropic physical condition of the PEM that varies in magnitude between a high value direction and a low value direction. The PEM has an in-plane physical property that varies in magnitude between a high value direction and a low value direction. The PEM is oriented with its high value direction substantially alignedmore » with the high value direction of the flow field plate.« less

  18. [Study on electrochemical mechanism of coronary stent used austenitic stainless steel in flowing artificial body fluid].

    PubMed

    Liang, Chenghao; Guo, Liang; Chen, Wan; Wang, Hua

    2005-08-01

    The electrochemical mechanism of austenitic stainless steel (SUS316L and SUS317L) coronary stents in flowing artificial body fluid has been investigated with electrochemical technologies. The results indicated that the flowing medium coursed the samples' pitting potential Eb shift negatively, increased the pitting corrosion sensitivity, accelerated its anodic dissolution, but had little effects on repassivated potential. The flowing environment had great effects on cathodic process. The oxygen reaction on the samples' surface became faster as the cathodic process was not controlled by oxygen diffusion but by mixed diffusion and electrochemical process. With the increase of velocity of solution, the pitting corrosion becomes liable to occur under this circumstance.

  19. Coordination complex pyrolyzation for the synthesis of nanostructured GeO₂ with high lithium storage properties.

    PubMed

    Li, Xiaona; Liang, Jianwen; Hou, Zhiguo; Zhu, Yongchun; Wang, Yan; Qian, Yitai

    2014-11-21

    A new (NH4)3H(Ge7O16)(H2O)2.72 precursor-pyrolyzation approach was designed and developed for the facile synthesis of nanostructured GeO2, avoiding the use of any hazardous or expensive germanium compounds. The products show promising anode application in lithium ion batteries with high capacity and excellent cycling stability.

  20. Internal reforming characteristics of cermet supported solid oxide fuel cell using yttria stabilized zirconia fed with partially reformed methane

    NASA Astrophysics Data System (ADS)

    Momma, Akihiko; Takano, Kiyonami; Tanaka, Yohei; Negishi, Akira; Kato, Ken; Nozaki, Ken; Kato, Tohru; Ichigi, Takenori; Matsuda, Kazuyuki; Ryu, Takashi

    In order to investigate the internal reforming characteristics in a cermet supported solid oxide fuel cell (SOFC) using YSZ as the electrolyte, the concentration profiles of the gaseous species along the gas flow direction in the anode were measured. Partially reformed methane using a pre-reformer kept at a constant temperature is supplied to the center of the cell which is operated with a seal-less structure at the gas outlet. The anode gas is sucked in via silica capillaries to the initially evacuated gas tanks. The process is simultaneously carried out using five sampling ports. The sampled gas is analyzed by a gas chromatograph. Most of the measurements are made at the cell temperature (T cell) of 750 °C and at various temperatures of the pre-reformer (T ref) with various fuel utilizations (U f) of the cell. The composition of the fuel at the inlet of the anode was confirmed to be almost the same as that theoretically calculated assuming equilibrium at the temperature of the pre-reformer. The effect of internal reforming in the anode is clearly observed as a steady decrease in the methane concentration along the flow axis. The effect of the water-gas shift reaction is also observed as a decrease in the CO 2 concentration and an increase of CO concentration around the gas inlet region, as the water-gas shift reaction inversely proceeds when T cell is higher than T ref. The diffusion of nitrogen from the seal-less outermost edge is observed, and the diffusion is confirmed to be more significant as U f decreases. The observations are compared with the results obtained by the SOFC supported by lanthanum gallate electrolyte. With respect to the internal reforming performance, the cell investigated here is found to be more effective when compared to the previously reported electrolyte supported cell.

  1. Multiplexed electrokinetic sample fractionation, preconcentration and elution for proteomics.

    PubMed

    Hua, Yujuan; Jemere, Abebaw B; Dragoljic, Jelena; Harrison, D Jed

    2013-07-07

    Both 6 and 8-channel integrated microfluidic sample pretreatment devices capable of performing "in space" sample fractionation, collection, preconcentration and elution of captured analytes via sheath flow assisted electrokinetic pumping are described. Coatings and monolithic polymer beds were developed for the glass devices to provide cationic surface charge and anodal electroosmotic flow for delivery to an electrospray emitter tip. A mixed cationic ([2-(methacryloyloxy)ethyl] trimethylammonium chloride) (META) and hydrophobic butyl methacrylate-based monolithic porous polymer, photopolymerized in the 6- or 8-fractionation channels, was used to capture and preconcentrate samples. A 0.45 wt% META loaded bed generated comparable anodic electroosmotic flow to the cationic polymer PolyE-323 coated channel segments in the device. The balanced electroosmotic flow allowed stable electrokinetic sheath flow to prevent cross contamination of separated protein fractions, while reducing protein/peptide adsorption on the channel walls. Sequential elution of analytes trapped in the SPE beds revealed that the monolithic columns could be efficiently used to provide sheath flow during elution of analytes, as demonstrated for neutral carboxy SNARF (residual signal, 0.08% RSD, n = 40) and charged fluorescein (residual signal, 2.5% n = 40). Elution from monolithic columns showed reproducible performance with peak area reproducibility of ~8% (n = 6 columns) in a single sequential elution and the run-to-run reproducibility was 2.4-6.7% RSD (n = 4) for elution from the same bed. The demonstrated ability of this device design and operation to elute from multiple fractionation beds into a single exit channel for sample analysis by fluorescence or electrospray mass spectrometry is a crucial component of an integrated fractionation and assay system for proteomics.

  2. Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient.

    PubMed

    Datta, Abhishek; Baker, Julie M; Bikson, Marom; Fridriksson, Julius

    2011-07-01

    Although numerous published reports have demonstrated the beneficial effects of transcranial direct-current stimulation (tDCS) on task performance, fundamental questions remain regarding the optimal electrode configuration on the scalp. Moreover, it is expected that lesioned brain tissue will influence current flow and should therefore be considered (and perhaps leveraged) in the design of individualized tDCS therapies for stroke. The current report demonstrates how different electrode configurations influence the flow of electrical current through brain tissue in a patient who responded positively to a tDCS treatment targeting aphasia. The patient, a 60-year-old man, sustained a left hemisphere ischemic stroke (lesion size = 87.42 mL) 64 months before his participation. In this study, we present results from the first high-resolution (1 mm(3)) model of tDCS in a brain with considerable stroke-related damage; the model was individualized for the patient who received anodal tDCS to his left frontal cortex with the reference cathode electrode placed on his right shoulder. We modeled the resulting brain current flow and also considered three additional reference electrode positions: right mastoid, right orbitofrontal cortex, and a "mirror" configuration with the anode over the undamaged right cortex. Our results demonstrate the profound effect of lesioned tissue on resulting current flow and the ability to modulate current pattern through the brain, including perilesional regions, through electrode montage design. The complexity of brain current flow modulation by detailed normal and pathologic anatomy suggest: (1) That computational models are critical for the rational interpretation and design of individualized tDCS stroke-therapy; and (2) These models must accurately reproduce head anatomy as shown here. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Free surface profiles in river flows: Can standard energy-based gradually-varied flow computations be pursued?

    NASA Astrophysics Data System (ADS)

    Cantero, Francisco; Castro-Orgaz, Oscar; Garcia-Marín, Amanda; Ayuso, José Luis; Dey, Subhasish

    2015-10-01

    Is the energy equation for gradually-varied flow the best approximation for the free surface profile computations in river flows? Determination of flood inundation in rivers and natural waterways is based on the hydraulic computation of flow profiles. This is usually done using energy-based gradually-varied flow models, like HEC-RAS, that adopts a vertical division method for discharge prediction in compound channel sections. However, this discharge prediction method is not so accurate in the context of advancements over the last three decades. This paper firstly presents a study of the impact of discharge prediction on the gradually-varied flow computations by comparing thirteen different methods for compound channels, where both energy and momentum equations are applied. The discharge, velocity distribution coefficients, specific energy, momentum and flow profiles are determined. After the study of gradually-varied flow predictions, a new theory is developed to produce higher-order energy and momentum equations for rapidly-varied flow in compound channels. These generalized equations enable to describe the flow profiles with more generality than the gradually-varied flow computations. As an outcome, results of gradually-varied flow provide realistic conclusions for computations of flow in compound channels, showing that momentum-based models are in general more accurate; whereas the new theory developed for rapidly-varied flow opens a new research direction, so far not investigated in flows through compound channels.

  4. Ensemble engineering and statistical modeling for parameter calibration towards optimal design of microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Sun, Hongyue; Luo, Shuai; Jin, Ran; He, Zhen

    2017-07-01

    Mathematical modeling is an important tool to investigate the performance of microbial fuel cell (MFC) towards its optimized design. To overcome the shortcoming of traditional MFC models, an ensemble model is developed through integrating both engineering model and statistical analytics for the extrapolation scenarios in this study. Such an ensemble model can reduce laboring effort in parameter calibration and require fewer measurement data to achieve comparable accuracy to traditional statistical model under both the normal and extreme operation regions. Based on different weight between current generation and organic removal efficiency, the ensemble model can give recommended input factor settings to achieve the best current generation and organic removal efficiency. The model predicts a set of optimal design factors for the present tubular MFCs including the anode flow rate of 3.47 mL min-1, organic concentration of 0.71 g L-1, and catholyte pumping flow rate of 14.74 mL min-1 to achieve the peak current at 39.2 mA. To maintain 100% organic removal efficiency, the anode flow rate and organic concentration should be controlled lower than 1.04 mL min-1 and 0.22 g L-1, respectively. The developed ensemble model can be potentially modified to model other types of MFCs or bioelectrochemical systems.

  5. Influence of organic matter on arsenic removal by continuous flow electrocoagulation treatment of weakly mineralized waters.

    PubMed

    Pallier, Virginie; Feuillade-Cathalifaud, Geneviève; Serpaud, Bernard

    2011-03-01

    The aim of this study is to evaluate and understand the electrocoagulation/flocculation (ECF) process to remove arsenic from both model and natural waters with low mineral content and to compare its performances to the coagulation/flocculation (CF) process already optimized. Experiments were thus conducted with iron electrodes in the same specific treatment conditions (4≤current density (mAcm(-2))≤33) to study the influence of organic matter on arsenic removal in conditions avoiding the oxidation step usually required to improve As(III) removal. The process performance was evaluated by combining quantification of arsenic residual concentrations and speciation and dissolved organic carbon residual concentrations with zeta potential and turbidity measurements. When compared to CF, ECF presented several disadvantages: (i) lower As(V) removal yield because of the ferrous iron dissolved from the anode and the subsequent negative zeta potential of the colloidal suspension, (ii) higher residual DOC concentrations because of the fractionation of high molecular weight compounds during the treatment leading to compounds less prone to coagulate and (iii) higher residual turbidities because of the charge neutralization mechanisms involved. However, during this process, As(III) was oxidized to As(V) improving considerably its removal whatever the matrix conditions. ECF thus allowed to improve As(III) removal without applying an oxidation step that could potentially lead to the formation of toxic oxidation by-products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Solid State Multinuclear Magnetic Resonance Investigation of Electrolyte Decomposition Products on Lithium Ion Electrodes

    NASA Technical Reports Server (NTRS)

    DeSilva, J .H. S. R.; Udinwe, V.; Sideris, P. J.; Smart, M. C.; Krause, F. C.; Hwang, C.; Smith, K. A.; Greenbaum, S. G.

    2012-01-01

    Solid electrolyte interphase (SEI) formation in lithium ion cells prepared with advanced electrolytes is investigated by solid state multinuclear (7Li, 19F, 31P) magnetic resonance (NMR) measurements of electrode materials harvested from cycled cells subjected to an accelerated aging protocol. The electrolyte composition is varied to include the addition of fluorinated carbonates and triphenyl phosphate (TPP, a flame retardant). In addition to species associated with LiPF6 decomposition, cathode NMR spectra are characterized by the presence of compounds originating from the TPP additive. Substantial amounts of LiF are observed in the anodes as well as compounds originating from the fluorinated carbonates.

  7. Silicon clathrates for lithium ion batteries: A perspective

    NASA Astrophysics Data System (ADS)

    Warrier, Pramod; Koh, Carolyn A.

    2016-12-01

    Development of novel energy storage techniques is essential for the development of sustainable energy resources. Li-ion batteries have the highest rated energy density among rechargeable batteries and have attracted a lot of attention for energy storage in the last 15-20 years. However, significant advancements are required in anode materials before Li-ion batteries become viable for a wide variety of applications, including in renewable energy storage, grid storage, and electric vehicles. While graphite is the current standard anode material in commercial Li-ion batteries, it is Si that exhibits the highest specific energy density among all materials considered for this purpose. Si, however, suffers from significant volume expansion/contraction and the formation of a thick solid-electrolyte interface layer. To resolve these issues, Si clathrates are being considered for anode materials. Clathrates are inclusion compounds and contain cages in which Li could be captured. While Si clathrates offer promising advantages due to their caged structure which enables negligible volume change upon Li insertion, there remains scientific challenges and knowledge gaps to be overcome before these materials can be utilized for Li-ion battery applications, i.e., understanding lithiation/de-lithiation mechanisms, optimizing guest concentrations, as well as safe and economic synthesis routes.

  8. [Studies on photo-electron-chemical catalytic degradation of the malachite green].

    PubMed

    Li, Ming-yu; Diao, Zeng-hui; Song, Lin; Wang, Xin-le; Zhang, Yuan-ming

    2010-07-01

    A novel two-compartment photo-electro-chemical catalytic reactor was designed. The TiO2/Ti thin film electrode thermally formed was used as photo-anode, and graphite as cathode and a saturated calomel electrode (SCE) as the reference electrode in the reactor. The anode compartment and cathode compartment were connected with the ionic exchange membrane in this reactor. Effects of initial pH, initial concentration of malachite green and connective modes between the anode compartment and cathode compartment on the decolorization efficiency of malachite green were investigated. The degradation dynamics of malachite green was studied. Based on the change of UV-visible light spectrum, the degradation process of malachite green was discussed. The experimental results showed that, during the time of 120 min, the decolouring ratio of the malachite green was 97.7% when initial concentration of malachite green is 30 mg x L(-1) and initial pH is 3.0. The catalytic degradation of malachite green was a pseudo-first order reaction. In the degradation process of malachite green the azo bond cleavage and the conjugated system of malachite green were attacked by hydroxyl radical. Simultaneity, the aromatic ring was oxidized. Finally, malachite green was degraded into other small molecular compounds.

  9. Tailored Organic Electrode Material Compatible with Sulfide Electrolyte for Stable All-Solid-State Sodium Batteries.

    PubMed

    Chi, Xiaowei; Liang, Yanliang; Hao, Fang; Zhang, Ye; Whiteley, Justin; Dong, Hui; Hu, Pu; Lee, Sehee; Yao, Yan

    2018-03-01

    All-solid-state sodium batteries (ASSSBs) with nonflammable electrolytes and ubiquitous sodium resource are a promising solution to the safety and cost concerns for lithium-ion batteries. However, the intrinsic mismatch between low anodic decomposition potential of superionic sulfide electrolytes and high operating potentials of sodium-ion cathodes leads to a volatile cathode-electrolyte interface and undesirable cell performance. Here we report a high-capacity organic cathode, Na 4 C 6 O 6 , that is chemically and electrochemically compatible with sulfide electrolytes. A bulk-type ASSSB shows high specific capacity (184 mAh g -1 ) and one of the highest specific energies (395 Wh kg -1 ) among intercalation compound-based ASSSBs. The capacity retentions of 76 % after 100 cycles at 0.1 C and 70 % after 400 cycles at 0.2 C represent the record stability for ASSSBs. Additionally, Na 4 C 6 O 6 functions as a capable anode material, enabling a symmetric all-organic ASSSB with Na 4 C 6 O 6 as both cathode and anode materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Multi-element microelectropolishing method

    DOEpatents

    Lee, P.J.

    1994-10-11

    A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle. 10 figs.

  11. The contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using diamond anodes.

    PubMed

    Bensalah, Nasr; Dbira, Sondos; Bedoui, Ahmed

    2016-07-01

    In this work, the contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using boron-doped diamond (BDD) anodes was investigated in different electrolytes. A complete mineralization of cyanuric acid was obtained in NaCl; however lower degrees of mineralization of 70% and 40% were obtained in Na2SO4 and NaClO4, respectively. This can be explained by the nature of the oxidants electrogenerated in each electrolyte. It is clear that the contribution of active chlorine (Cl2, HClO, ClO(-)) electrogenerated from oxidation of chlorides on BDD is much more important in the electrolytic degradation of cyanuric acid than the persulfate and hydroxyl radicals produced by electro-oxidation of sulfate and water on BDD anodes. This could be explained by the high affinity of active chlorine towards nitrogen compounds. No organic intermediates were detected during the electrolytic degradation of cyanuric acid in any the electrolytes, which can be explained by their immediate depletion by hydroxyl radicals produced on the BDD surface. Nitrates and ammonium were the final products of electrolytic degradation of cyanuric acid on BDD anodes in all electrolytes. In addition, small amounts of chloramines were formed in the chloride medium. Low current density (≤10mA/cm(2)) and neutral medium (pH in the range 6-9) should be used for high efficiency electrolytic degradation and negligible formation of hazardous chlorate and perchlorate. Copyright © 2016. Published by Elsevier B.V.

  12. Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Yamamoto, K.; Tashiro, S.; Nakata, K.; Yamamoto, E.; Yamazaki, K.; Suzuki, K.; Murphy, A. B.; Lowke, J. J.

    2010-11-01

    A gas tungsten arc (GTA) was modelled taking into account the contamination of the plasma by metal vapour from the molten anode. The whole region of GTA atmosphere including the tungsten cathode, the arc plasma and the anode was treated using a unified numerical model. A viscosity approximation was used to express the diffusion coefficient in terms of viscosity of the shielding gas and metal vapour. The transient two-dimensional distributions of temperature, velocity of plasma flow and iron vapour concentration were predicted, together with the molten pool as a function of time for a 150 A arc current at atmospheric pressure, both for helium and argon gases. It was shown that the thermal plasma in the GTA was influenced by iron vapour from the molten pool surface and that the concentration of iron vapour in the plasma was dependent on the temperature of the molten pool. GTA on high sulfur stainless steel was calculated to discuss the differences between a low sulfur and a high sulfur stainless steel anode. Helium was selected as the shielding gas because a helium GTA produces more metal vapour than an argon GTA. In the GTA on a high sulfur stainless steel anode, iron vapour and current path were constricted. Radiative emission density in the GTA on high sulfur stainless steel was also concentrated in the centre area of the arc plasma together with the iron vapour although the temperature distributions were almost the same as that in the case of a low sulfur stainless steel anode.

  13. ELECTROLYTIC SEPARATION PROCESS AND APPARATUS

    DOEpatents

    McLain, M.E. Jr.; Roberts, M.W.

    1962-03-01

    A method is given for dissolving stainless steel-c lad fuel elements in dilute acids such as half normal sulfuric acid. The fuel element is made the anode in a Y-shaped electrolytic cell which has a flowing mercury cathode; the stainless steel elements are entrained in the mercury and stripped therefrom by a continuous process. (AEC)

  14. Galvanic Cells: Anodes, Cathodes, Signs and Charges

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2011-01-01

    Electrochemistry is a difficult subject for students at school and beyond and even for their teachers. This article explores the difficult "truth" that, when a current flows from a galvanic cell, positive ions within the cell electrolyte move towards the electrode labelled positive. This seems to contravene the basic rule that like charges repel…

  15. Vector-Potential Flow in Relativistic Beam Diodes.

    DTIC Science & Technology

    1980-09-05

    is no plasma formation and consequent loss of energy to accelerated ions. Entering a region close to the ax ik in which an anode plasma does exist...Hubbard 1 copy J. Guillory 1 copy JAYCOR, Inc. 1401 Camino Del Mar Del Mar, CA 92014 Attn: E. Wenaas 1 copy JAYCOR, INC. 300 Unicorn Park Drive Woburn

  16. 2D simulation of active species and ozone production in a multi-tip DC air corona discharge

    NASA Astrophysics Data System (ADS)

    Meziane, M.; Eichwald, O.; Sarrette, J. P.; Ducasse, O.; Yousfi, M.

    2011-11-01

    The present paper shows for the first time in the literature a complete 2D simulation of the ozone production in a DC positive multi-tip to plane corona discharge reactor crossed by a dry air flow at atmospheric pressure. The simulation is undertaken until 1 ms and involves tens of successive discharge and post-discharge phases. The air flow is stressed by several monofilament corona discharges generated by a maximum of four anodic tips distributed along the reactor. The nonstationary hydrodynamics model for reactive gas mixture is solved using the commercial FLUENT software. During each discharge phase, thermal and vibrational energies as well as densities of radical and metastable excited species are locally injected as source terms in the gas medium surrounding each tip. The chosen chemical model involves 10 neutral species reacting following 24 reactions. The obtained results allow us to follow the cartography of the temperature and the ozone production inside the corona reactor as a function of the number of high voltage anodic tips.

  17. Fabrication and Characterization of New Composite Tio2 Carbon Nanofiber Anodic Catalyst Support for Direct Methanol Fuel Cell via Electrospinning Method

    NASA Astrophysics Data System (ADS)

    Abdullah, N.; Kamarudin, S. K.; Shyuan, L. K.; Karim, N. A.

    2017-12-01

    Platinum (Pt) is the common catalyst used in a direct methanol fuel cell (DMFC). However, Pt can lead towards catalyst poisoning by carbonaceous species, thus reduces the performance of DMFC. Thus, this study focuses on the fabrication of a new composite TiO2 carbon nanofiber anodic catalyst support for direct methanol fuel cells (DMFCs) via electrospinning technique. The distance between the tip and the collector (DTC) and the flow rate were examined as influencing parameters in the electrospinning technique. To ensure that the best catalytic material is fabricated, the nanofiber underwent several characterizations and electrochemical tests, including FTIR, XRD, FESEM, TEM, and cyclic voltammetry. The results show that D18, fabricated with a flow rate of 0.1 mLhr-1 and DTC of 18 cm, is an ultrafine nanofiber with the smallest average diameter, 136.73 ± 39.56 nm. It presented the highest catalyst activity and electrochemical active surface area value as 274.72 mAmg-1 and 226.75m2 g-1 PtRu, respectively, compared with the other samples.

  18. Response to 'Comment on 'Three-dimensional numerical investigation of electron transport with rotating spoke in a cylindrical anode layer Hall plasma accelerator''[Phys. Plasmas 20, 014701 (2013)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, D. L.; Qiu, X. M.; Geng, S. F.

    The numerical simulation described in our paper [D. L. Tang et al., Phys. Plasmas 19, 073519 (2012)] shows a rotating dense plasma structure, which is the critical characteristic of the rotating spoke. The simulated rotating spoke has a frequency of 12.5 MHz with a rotational speed of {approx}1.0 Multiplication-Sign 10{sup 6} m/s on the surface of the anode. Accompanied by the almost uniform azimuthal ion distribution, the non-axisymmetric electron distribution introduces two azimuthal electric fields with opposite directions. The azimuthal electric fields have the same rotational frequency and speed together with the rotating spoke. The azimuthal electric fields excite themore » axial electron drift upstream and downstream due to the additional E{sub {theta}} x B field and then the axial shear flow is generated. The axial local charge separation induced by the axial shear electron flow may be compensated by the azimuthal electron transport, finally resulting in the azimuthal electric field rotation and electron transport with the rotating spoke.« less

  19. A 2.5-kW industrial CO2 laser

    NASA Astrophysics Data System (ADS)

    Golov, V. K.; Ivanchenko, A. I.; Krasheninnikov, V. V.; Ponomarenko, A. G.; Shepelenko, A. A.

    1986-06-01

    A fast-flow laser is reported in which the active medium is excited by a self-sustained dc discharge produced by an electric-discharge device with nonsectioned electrodes. In the laser, two discharge gaps are formed by a flat anode and two cathodes, one on each side of the anode. A gas mixture is driven through the gasdynamic channel by a centrifugal fan rotating at 6000 rpm/min. With a mixture of CO2:N2:He = 2.5:7.5:5 mm Hg, the rated power is 2.5 kW; the maximum power is 4 kW with the mixture 2.5:7.5:10 mm Hg. The general design of the laser is described, and its principal performance characteristics are given.

  20. A mathematical model for the iron/chromium redox battery

    NASA Technical Reports Server (NTRS)

    Fedkiw, P. S.; Watts, R. W.

    1984-01-01

    A mathematical model has been developed to describe the isothermal operation of a single anode-separator-cathode unit cell in a redox-flow battery and has been applied to the NASA iron/chromium system. The model, based on porous electrode theory, incorporates redox kinetics, mass transfer, and ohmic effects as well as the parasitic hydrogen reaction which occurs in the chromium electrode. A numerical parameter study was carried out to predict cell performance to aid in the rational design, scale-up, and operation of the flow battery. The calculations demonstrate: (1) an optimum electrode thickness and electrolyte flow rate exist; (2) the amount of hydrogen evolved and, hence, cycle faradaic efficiency, can be affected by cell geometry, flow rate, and charging procedure; (3) countercurrent flow results in enhanced cell performance over cocurrent flow; and (4) elevated temperature operation enhances cell performance.

  1. All-solid state lithium carbon monofluoride batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Chengdu; Rangasamy, Ezhiylmurugan

    A solid state lithium carbon monofluoride battery includes an anode comprising Li, a solid electrolyte, and a cathode including CF.sub.x and LPS. The cathode can also include a carbon compound. The solid electrolyte can include LPS. The LPS can include .beta.-Li.sub.3PS.sub.4. The cathode LPS can include .beta.-Li.sub.3PS.sub.4. A method of making a battery is also disclosed.

  2. Analysis of Dynamic Avalanche Phenomenon in SOI Lateral High-speed Diode during Reverse Recovery and Development of a Novel Device Structure for Suppressing Dynamic Avalanche

    NASA Astrophysics Data System (ADS)

    Tokura, Norihito; Yamamoto, Takao; Kato, Hisato; Nakagawa, Akio

    We have studied the dynamic avalanche phenomenon in an SOI lateral diode during reverse recovery by using a mixed-mode device simulation. In the study, it has been found that local impact ionization occurs near an anode-side field oxide edge, where a high-density hole current flows and a high electric field appears simultaneously. We propose that a p-type anode extension region (AER) along a trench side wall effectively sweeps out stored carriers beneath an anode p-diffusion layer during reverse recovery, resulting in reduction of the electric field and remarkable suppression of the dynamic avalanche. The AER reduces the total recovery charge and does not cause any increase in the total stored charge under a forward bias operation. This effect is verified experimentally by the fabricated device with AER. Thus, the developed SOI lateral diode is promising as a high-speed and highly rugged free-wheeling diode, which can be integrated into next-generation SOI microinverters.

  3. Electricity production and benzene removal from groundwater using low-cost mini tubular microbial fuel cells in a monitoring well.

    PubMed

    Chang, Shih-Hsien; Wu, Chih-Hung; Wang, Ruei-Cyun; Lin, Chi-Wen

    2017-05-15

    A low-cost mini tubular microbial fuel cell (MFC) was developed for treating groundwater that contained benzene in monitoring wells. Experimental results indicate that increasing the length and density, and reducing the size of the char particles in the anode effectively reduced the internal resistance. Additionally, a thinner polyvinyl alcohol (PVA) hydrogel separator and PVA with a higher molecular weight improved electricity generation. The optimal parameters for the MFC were an anode density of 1.22 g cm -3 , a coke of 150 μm, an anode length of 6 cm, a PVA of 105,600 g mol -1 , and a separator thickness of 1 cm. Results of continuous-flow experiments reveal that the increasing the sets of MFCs and connecting them in parallel markedly improved the degradation of benzene. More than 95% of benzene was removed and electricity of 38 mW m -2 was generated. The MFC ran continuously up to 120 days without maintenance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Formic acid production using a microbial electrolysis desalination and chemical-production cell.

    PubMed

    Lu, Yaobin; Luo, Haiping; Yang, Kunpeng; Liu, Guangli; Zhang, Renduo; Li, Xiao; Ye, Bo

    2017-11-01

    The aim of this study was to investigate the feasibility and optimization of formic acid production in the microbial electrolysis desalination and chemical-production cell (MEDCC). The maximum current density in the MEDCC with 72cm of the anode fiber length (72-MEDCC) reached 24.0±2.0A/m 2 , which was much higher than previously reported. The maximum average formic acid production rate in the 72-MEDCC was 5.28 times higher than that in the MEDCC with 24cm of the anode fiber length (37.00±1.15vs. 7.00±0.25mg/h). High performance in the 72-MEDCC was attributed to small membrane spacing (1mm), high flow rate (1500μL/min) on the membrane surface and high anode biomass. The minimum electricity consumption of 0.34±0.04kWh/kg in the 72-MEDCC was only 3.1-18.8% of those in the EDBMs. The MEDCC should be a promising technology for the formic acid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Elimination of pyraclostrobin by simultaneous microbial degradation coupled with the Fenton process in microbial fuel cells and the microbial community.

    PubMed

    Zhao, Huanhuan; Kong, Chui-Hua

    2018-06-01

    The elimination of pyraclostrobin by simultaneous microbial degradation and Fenton oxidation was achieved in a microbial fuel cell (MFC) system. After 12 h of incubation, the removal rate of pyraclostrobin was 1.4 mg/L/h at the anode and 1.7 mg/L/h at the cathode. The pyraclostrobin concentration was less than the detection limit (0.1 mg/L) after 72 h at the anode and 24 h at the cathode. The air flow rate, temperature, and pH of the catholyte had significant effects on the generation of H 2 O 2 . The maximum production of H 2 O 2 was 1.2 mg/L after reaction for 20 h during the Fenton process. Microbial community analysis indicated that functional bacteria in the genera Chryseobacterium, Stenotrophomonas, Arcobacter, and Comamonas were predominant in the anodic biofilm. In conclusion, the MFC-Fenton system provides an effective approach for treating environmental contaminants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Bioinspired Carbon/SnO2 Composite Anodes Prepared from a Photonic Hierarchical Structure for Lithium Batteries.

    PubMed

    Li, Yao; Meng, Qing; Ma, Jun; Zhu, Chengling; Cui, Jingru; Chen, Zhixin; Guo, Zaiping; Zhang, Tao; Zhu, Shenmin; Zhang, Di

    2015-06-03

    A carbon/SnO2 composite (C-SnO2) with hierarchical photonic structure was fabricated from the templates of butterfly wings. We have investigated for the first time its application as the anode material for lithium-ion batteries. It was demonstrated to have high reversible capacities, good cycling stability, and excellent high-rate discharge performance, as shown by a capacitance of ∼572 mAh g(-1) after 100 cycles, 4.18 times that of commercial SnO2 powder (137 mAh g(-1)); a far better recovery capability of 94.3% was observed after a step-increase and sudden-recovery current. An obvious synergistic effect was found between the porous, hierarchically photonic microstructure and the presence of carbon; the synergy guarantees an effective flow of electrolyte and a short diffusion length of lithium ions, provides considerable buffering room, and prevents aggregation of SnO2 particles in the discharge/charge processes. This nature-inspired strategy points out a new direction for the fabrication of alternative anode materials.

  7. Fortissimo: A Japanese Space Test Of Bare Wire Anode Tethers

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Fujii, H. A.; Sanmartin, J. R.

    2008-01-01

    A Japanese led international team is developing a suborbital test of orbital-motion-limited (OML) bare wire anode current collection for application to electrodynamic tether (EDT) propulsion. The tether is a tape with a width of 25 mm, thickness of 0.05 mm, and is 300 m in length. This will be the first space test of OML theory. The mission will launch in the summer of 2009 using an S520 Sounding Rocket. During ascent, and above approx. 100 km in attitude, the tape tether will be deployed at a rate of approx. 8 m/s. Once deployed, the tape tether will serve as an anode, collecting ionospheric electrons. The electrons will be expelled into space by a hollow cathode device, thereby completing the circuit and allowing current to flow. The total amount of current collected will be used to assess the validity of OML theory. This paper will describe the objectives of the proposed mission, the technologies to be employed, and the application of the results to future space missions using EDTs for propulsion or power generation.

  8. Iron-Anode Enhanced Sand Filter for Arsenic Removal from Tube Well Water.

    PubMed

    Xie, Shiwei; Yuan, Songhu; Liao, Peng; Tong, Man; Gan, Yiqun; Wang, Yanxin

    2017-01-17

    Sand filters are widely used for well water purification in endemic arsenicosis areas, but arsenic (As) removal is difficult at low intrinsic iron concentrations. This work developed an enhanced sand filter by electrochemically generated Fe(II) from an iron anode. The efficiency of As removal was tested in an arsenic burdened region in the Jianghan Plain, central China. By controlling a current of 0.6 A and a flow rate of about 12 L/h, the filter removed total As in the tube well water from 196 to 472 μg/L to below 10 μg/L, whereas the residual As was about 110 μg/L without electricity. Adsorption and subsequent oxidation on the surface of Fe(III) precipitates are the main processes controlling the removals of As and Fe. During a 30-day intermittent operation, both effluent As concentration and electrical energy consumption decreased progressively. Although filter clogging was observed, it can be alleviated by replacing the top layer of sand. Our findings suggest that dosing Fe(II) by an iron anode is an effective means to enhance As removal in a sand filter.

  9. Development of low-loading, carbon monoxide tolerant PEM fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Haug, Andrew Thomas

    This work discusses the problems of, and potential solutions to, high catalyst cost of and carbon monoxide (CO) poisoning of the proton-exchange membrane fuel cell (PEMFC). As this is a comprehensive work, background on fuel cells and specifically PEMFCs is first presented. A discussion of the current status of PEMFCs is presented showing ongoing work for stationary, transportation, portable and military applications. This leads into two of the more significant problems preventing widespread commercialization of PEMFC technology: poisoning of the catalyst by CO and the cost of the catalyst. A thorough examination of CO poisoning of the PEMFC anode is presented from how CO comes to be present in the feed stream of the PEMFC anode to how it then poisons the PEMFC anode. The first work presented here describes the development of a novel CO tolerant anode (the Ruthenium filter). It shows that by placing a layer of carbon-supported Ruthenium catalyst between the Pt catalyst and the anode flow field to form a filter, tolerance to CO will be increased relative to a Pt:Ru alloy when oxygen is added to the anode fuel stream. Secondly, after an introduction to catalyst preparation techniques used today and a brief discussion of catalyst-cost in PEMFCs, it is shown how sputter-deposition technology may be used to create more kinetically active PEMFC catalyst electrodes versus standard ink-based techniques. The technologies of the Ru filter and sputter-deposition are then combined to create a low-loading, CO tolerant anode for the PEMFC. In the final work, the effect of the airbleed on CO oxidation is then modeled. In the concluding chapter, it is shown how the work presented can lead the PEMFC closer to large-scale commercialization. The Appendix A provides a detailed method by which PEMFC MEAs were manufactured using catalyst inks. This method served as the basis for all original works presented. Appendix B--F provide further background and information on the mathematical model developed, including a printout of the Fortran code used to generate the model results.

  10. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    DOEpatents

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  11. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes.

    PubMed

    Moreira, Francisca C; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-05-15

    Apart from a high biodegradable fraction consisting of organic acids, sugars and alcohols, winery wastewaters exhibit a recalcitrant fraction containing high-molecular-weight compounds as polyphenols, tannins and lignins. In this context, a winery wastewater was firstly subjected to a biological oxidation to mineralize the biodegradable fraction and afterwards an electrochemical advanced oxidation process (EAOP) was applied in order to mineralize the refractory molecules or transform them into simpler ones that can be further biodegraded. The biological oxidation led to above 97% removals of dissolved organic carbon (DOC), chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5), but was inefficient on the degradation of a bioresistant fraction corresponding to 130 mg L(-1) of DOC, 380 mg O2 L(-1) of COD and 8.2 mg caffeic acid equivalent L(-1) of total dissolved polyphenols. Various EAOPs such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF) were then applied to the recalcitrant effluent fraction using a 2.2 L lab-scale flow plant containing an electrochemical cell equipped with a boron-doped diamond (BDD) anode and a carbon-PTFE air-diffusion cathode and coupled to a photoreactor with compound parabolic collectors (CPCs). The influence of initial Fe(2+) concentration and current density on the PEF process was evaluated. The relative oxidative ability of EAOPs increased in the order AO-H2O2 < EF < PEF ≤ SPEF. The SPEF process using an initial Fe(2+) concentration of 35 mg L(-1), current density of 25 mA cm(-2), pH of 2.8 and 25 °C reached removals of 86% on DOC and 68% on COD after 240 min, regarding the biologically treated effluent, along with energy consumptions of 45 kWh (kg DOC)(-1) and 5.1 kWh m(-3). After this coupled treatment, color, odor, COD, BOD5, NH4(+), NO3(-) and SO4(2-) parameters complied with the legislation targets and, in addition, a total dissolved polyphenols content of 0.35 mg caffeic acid equivalent L(-1) was found. Respirometry tests revealed low biodegradability enhancement along the SPEF process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. [Advanced treatment of coking wastewater with a novel heterogeneous electro-Fenton technology].

    PubMed

    Li, Hai-Tao; Li, Yu-Ping; Zhang, An-Yang; Cao, Hong-Bin; Li, Xin-Gang; Zhang, Yi

    2011-01-01

    A novel electro-catalytic reactor, with oxygen-reduction cathode (PAQ/GF), dimensionally stable anode (IrO2-RuO2 -TiO2/ Ti) and heterogeneous catalysts, is developed for advanced treatment of coking wastewater after biological process, integrating cathodic and anodic simultaneous oxidation processes. A PAQ/GF electrode was synthesized by the electro-polymerization of 2-ethyl anthraquinone on graphite felt, which was characterized with cyclic voltametry measurements; the results indicated that the PAQ/GF electrode showed high reversibility for oxidation-reduction reaction of anthraquinone and catalytic activity for O2 reduction to H2O2; 13.5 mmol/L H2O2 was obtained after electrolysis for 6 h at -0.7 V (vs. SCE) and pH 6 with a current efficiency of 50% in a membrane reactor. Fe-Cu/Y350 catalysts, prepared by impregnation method, could catalyze the production of hydroxyl radicals (*OH) from H2O2, which was confirmed both by fading reaction of crystal violet and oxidation of *OH-probe compound (p-chlorobenzoic acid); Fe-Cu/Y350 also showed high catalytic-activity for the oxidation of organics by hypochlorous sodium, because COD removal of coking wastewater reached 26% in the catalytic process while only 11% of COD removal was obtained in the absence of Fe-Cu/Y350. COD removal of coking wastewater reached 49.4% (26.0% and 23.4% in cathodic system and anodic system, respectively) in the developed electrolytic-reactor, which was higher than that of conventional cathodic-anodic-oxidation process (29.8%). At optimal reaction condition of initial COD = 192 mg/L, I = 10A x m(-2) and pH 4-5, more than 50% COD were removed after electrolysis for 1 h. The mechanism might be as follows: in cathodic system, H2O2 is generated from reduction of O2 on PAQ/GF cathode, and catalyzed by Fe-Cu/Y350 for production of *OH, which causes mineralization and degradation of organic pollutants; in anodic system, Cl2 and HClO are generated from Cl- oxidation on IrO2-RuO2-TiO2/Ti anode and the organic pollutants are oxidized by Cl2, and HClO with Fe-Cu/Y350 catalysts or by direct anodic oxidation.

  13. Electricity generation coupled with wastewater treatment using a microbial fuel cell composed of a modified cathode with a ceramic membrane and cellulose acetate film.

    PubMed

    Seo, Ha Na; Lee, Woo Jin; Hwang, Tae Sik; Park, Doo Hyun

    2009-09-01

    A noncompartmented microbial fuel cell (NCMFC) composed of a Mn(IV)-carbon plate and a Fe(III)-carbon plate was used for electricity generation from organic wastewater without consumption of external energy. The Fe(III)-carbon plate, coated with a porous ceramic membrane and a semipermeable cellulose acetate film, was used as a cathode, which substituted for the catholyte and cathode. The Mn(IV)-carbon plate was used as an anode without a membrane or film coating. A solar cell connected to the NCMFC activated electricity generation and bacterial consumption of organic matter contained in the wastewater. More than 99 degrees of the organic matter was biochemically oxidized during wastewater flow through the four NCMFC units. A predominant bacterium isolated from the anode surface in both the conventional and the solar cell-linked NCMFC was found to be more than 99 degrees similar to a Mn(II)-oxidizing bacterium and Burkeholderia sp., based on 16S rDNA sequence analysis. The isolate reacted electrochemically with the Mn(IV)-modified anode and produced electricity in the NCMFC. After 90 days of incubation, a bacterial species that was enriched on the Mn(IV)-modified anode surface in all of the NCMFC units was found to be very similar to the initially isolated predominant species by comparing 16S rDNA sequences.

  14. Inward Lithium-Ion Breathing of Hierarchically Porous Silicon Anodes

    DOE PAGES

    Xiao, Qiangfeng; Gu, Meng; Yang, Hui; ...

    2015-11-05

    Silicon has been identified as one of the most promising candidates as anode for high performance lithium-ion batteries. The key challenge for Si anodes is the large volume change induced chemomechanical fracture and subsequent rapid capacity fading upon cyclic charge and discharge. Improving capacity retention thus critically relies on smart accommodation of the volume changes through nanoscale structural design. In this work, we report a novel fabrication method for hierarchically porous Si nanospheres (hp-SiNSs), which consist of a porous shell and a hollow core. Upon charge/discharge cycling, the hp-SiNSs accommodate the volume change through reversible inward expansion/contraction with negligible particle-levelmore » outward expansion. Our mechanics analysis revealed that such a unique volume-change accommodation mechanism is enabled by the much stiffer modulus of the lithiated layer than the unlithiated porous layer and the low flow stress of the porous structure. Such inward expansion shields the hp-SiNSs from fracture, opposite to the outward expansion in solid Si during lithiation. Lithium ion battery assembled with this new nanoporous material exhibits high capacity, high power, long cycle life and high coulombic efficiency, which is superior to the current commercial Si-based anode materials. We find the low cost synthesis approach reported here provides a new avenue for the rational design of hierarchically porous structures with unique materials properties.« less

  15. Electrochemical enhancement of nitric oxide removal from simulated lean-burn engine exhaust via solid oxide fuel cells.

    PubMed

    Huang, Ta-Jen; Wu, Chung-Ying; Lin, Yu-Hsien

    2011-07-01

    A solid oxide fuel cell (SOFC) unit is constructed with Ni-YSZ as the anode, YSZ as the electrolyte, and La(0.6)Sr(0.4)CoO(3)-Ce(0.9)Gd(0.1)O(1.95) as the cathode. The SOFC operation is performed at 600 °C with a cathode gas simulating the lean-burn engine exhaust and at various fixed voltage, at open-circuit voltage, and with an inert gas flowing over the anode side, respectively. Electrochemical enhancement of NO decomposition occurs when an operating voltage is generated; higher O(2) concentration leads to higher enhancement. Smaller NO concentration results in larger NO conversion. Higher operating voltage and higher O(2) concentration can lead to both higher NO conversion and lower fuel consumption. The molar rate of the consumption of the anode fuel can be very much smaller than that of NO to N(2) conversion. This makes the anode fuel consumed in the SOFC-DeNO(x) process to be much less than the equivalent amount of ammonia consumed in the urea-based selective catalytic reduction process. Additionally, the NO conversion increases with the addition of propylene and SO(2) into the cathode gas. These are beneficial for the application of the SOFC-DeNO(x) technology on treating diesel and other lean-burn engine exhausts.

  16. Arc initiation in cathodic arc plasma sources

    DOEpatents

    Anders, Andre

    2002-01-01

    A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.

  17. Electrochemical oxidation of cyanide on 3D Ti-RuO2 anode using a filter-press electrolyzer.

    PubMed

    Pérez, Tzayam; López, Rosa L; Nava, José L; Lázaro, Isabel; Velasco, Guillermo; Cruz, Roel; Rodríguez, Israel

    2017-06-01

    The novelty of this communication lies in the use of a Ti-RuO 2 anode which has not been tested for the oxidation of free cyanide in alkaline media at concentrations similar to those found in wastewater from the Merrill Crowe process (100 mg L -1 KCN and pH 11), which is typically used for the recovery of gold and silver. The anode was prepared by the Pechini method and characterized by SEM. Linear sweep voltammetries on a Ti-RuO 2 rotating disk electrode (RDE) confirmed that cyanide is oxidized at 0.45 < E < 1.0 V vs SHE, while significant oxygen evolution reaction (OER) occurred. Bulk oxidation of free cyanide was investigated on Ti-RuO 2 meshes fitted into a filter-press electrolyzer. Bulk electrolyzes were performed at constant potentials of 0.85 V and 0.95 V and at different mean linear flow rates ranging between 1.2 and 4.9 cm s -1 . The bulk anodic oxidation of cyanide at 0.85 V and 3.7 cm s -1 achieved a degradation of 94%, with current efficiencies of 38% and an energy consumption of 24.6 kWh m -3 . Moreover, the degradation sequence of cyanide was also examined by HPLC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Sensitive and selective determination of gallic acid in green tea samples based on an electrochemical platform of poly(melamine) film.

    PubMed

    Su, Ya-Ling; Cheng, Shu-Hua

    2015-12-11

    In this work, an electrochemical sensor coupled with an effective flow-injection amperometry (FIA) system is developed, targeting the determination of gallic acid (GA) in a mild neutral condition, in contrast to the existing electrochemical methods. The sensor is based on a thin electroactive poly(melamine) film immobilized on a pre-anodized screen-printed carbon electrode (SPCE*/PME). The characteristics of the sensing surface are well-characterized by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and surface water contact angle experiments. The proposed assay exhibits a wide linear response to GA in both pH 3 and pH 7.0 phosphate buffer solutions (PBS) under the optimized flow-injection amperometry. The detection limit (S/N = 3) is 0.076 μM and 0.21 μM in the pH 3 and pH 7 solutions, respectively. A relative standard deviation (RSD) of 3.9% is obtained for 57 successive measurements of 50 μM GA in pH 7 solutions. Interference studies indicate that some inorganic salts, catechol, caffeine and ascorbic acid do not interfere with the GA assay. The interference effects from some orthodiphenolic compounds are also investigated. The proposed method and a conventional Folin-Ciocalteu method are applied to detect GA in green tea samples using the standard addition method, and satisfactory spiked recoveries are obtained. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Ultrafast preparation of a polyhedral oligomeric silsesquioxane-based ionic liquid hybrid monolith via photoinitiated polymerization, and its application to capillary electrochromatography of aromatic compounds.

    PubMed

    Zhang, Bingyu; Lei, Xiaoyun; Deng, Lijun; Li, Minsheng; Yao, Sicong; Wu, Xiaoping

    2018-06-06

    An ionic liquid hybrid monolithic capillary column was prepared within 7 min via photoinitiated free-radical polymerization of an ionic liquid monomer (1-butyl-3-vinylimidazolium-bis[(trifluoromethyl)sulfonyl]imide); VBIMNTF 2 ) and a methacryl substituted polyhedral oligomeric silsesquioxane (POSS-MA) acting as a cross-linker. The effects of composition of prepolymerization solution and initiation time on the porous structure and electroosmotic flow (EOF) of monolithic column were investigated. The hybrid monolith was characterized by scanning electron microscopy and FTIR. Owing to the introduction of a rigid nanosized POSS silica core and ionic liquids with multiple interaction sites, the monolithic column has a well-defined 3D skeleton morphology, good mechanical stability, and a stable anodic electroosmotic flow. The hybrid monolithic stationary phase was applied to the capillary electrochromatographic separation of various alkylbenzenes, phenols, anilines and polycyclic aromatic hydrocarbons (PAHs). The column efficiency is highest (98,000 plates/m) in case of alkylbenzenes. Mixed-mode retention mechanisms including hydrophobic interactions, π-π stacking, electrostatic interaction and electrophoretic mobility can be observed. This indicates the potential of this material in terms of efficient separation of analytes of different structural type. Graphical Abstract Preparation of a mixed-mode ionic liquid hybrid monolithic column via photoinitiated polymerization of methacryl substituted polyhedral oligomeric silsesquioxane (POSS-MA) and 1-butyl-3-vinylimidazolium-bis[(trifluoromethyl)sulfonyl]imide (VBIMNTF 2 ) ionic liquid for use in capillary electrochromatography.

  20. Ionic liquids as an electrolyte for the electro synthesis of organic compounds.

    PubMed

    Kathiresan, Murugavel; Velayutham, David

    2015-12-25

    The use of ionic liquids (ILs) as a solvent and an electrolyte for electro organic synthesis has been reviewed. To date several ILs exist, however the ILs based on tetraalkylammonium, pyrrolidinium, piperidinium and imidazolium cations with BF4(-), PF6(-), and TFSI anions have been widely used and explored the most. Electro organic synthesis in ionic liquid media leading to the synthesis of a wide range of organic compounds has been discussed. Anodic oxidation or cathodic reduction will generate radical cation or anion intermediates, respectively. These radicals can undergo self coupling or coupling with other molecules yielding organic compounds of interest. The cation of the IL is known to stabilize the radical anion extensively. This stabilization effect has a specific impact on the electrochemical CO2 reduction and coupling to various organics. The relative stability of the intermediates in IL leads to the formation of specific products in higher yields. Electrochemical reduction of imidazolium or thiazolium based ILs generates N-heterocyclic carbenes that have been shown to catalyze a wide range of base or nucleophile catalyzed organic reactions in IL media, an aspect that falls into the category of organocatalysis. Electrochemical fluorination or selective electrochemical fluorination is another fascinating area that delivers selectively fluorinated organic products in Et3N·nHF or Et4NF·nHF adducts (IL) via anodic oxidation. Oxidative polymerization in ILs has been explored the most; although morphological changes were observed compared to the conventional methods, polymers were obtained in good yields and in some cases ILs were used as dopants to improve the desired properties.

  1. A passive microfluidic hydrogen-air fuel cell with exceptional stability and high performance.

    PubMed

    Mitrovski, Svetlana M; Nuzzo, Ralph G

    2006-03-01

    We describe an advanced microfluidic hydrogen-air fuel cell (FC) that exhibits exceptional durability and high performance, most notably yielding stable output power (>100 days) without the use of an anode-cathode separator membrane. This FC embraces an entirely passive device architecture and, unlike conventional microfluidic designs that exploit laminar hydrodynamics, no external pumps are used to sustain or localize the reagent flow fields. The devices incorporate high surface area/porous metal and metal alloy electrodes that are embedded and fully immersed in liquid electrolyte confined in the channels of a poly(dimethylsiloxane) (PDMS)-based microfluidic network. The polymeric network also serves as a self-supporting membrane through which oxygen and hydrogen are supplied to the cathode and alloy anode, respectively, by permeation. The operational stability of the device and its performance is strongly dependent on the nature of the electrolyte used (5 M H2SO4 or 2.5 M NaOH) and composition of the anode material. The latter choice is optimized to decrease the sensitivity of the system to oxygen cross-over while still maintaining high activity towards the hydrogen oxidation reaction (HOR). Three types of high surface area anodes were tested in this work. These include: high-surface area electrodeposited Pt (Pt); high-surface area electrodeposited Pd (Pd); and thin palladium adlayers supported on a "porous" Pt electrode (Pd/Pt). The FCs display their best performance in 5 M H2SO4 using the Pd/Pt anode. This exceptional stability and performance was ascribed to several factors, namely: the high permeabilities of O2, H2, and CO2 in PDMS; the inhibition of the formation of insoluble carbonate species due to the presence of a highly acidic electrolyte; and the selectivity of the Pd/Pt anode toward the HOR. The stability of the device for long-term operation was modeled using a stack of three FCs as a power supply for a portable display that otherwise uses a 3 V battery.

  2. SOFC seal and cell thermal management

    DOEpatents

    Potnis, Shailesh Vijay [Neenah, WI; Rehg, Timothy Joseph [Huntington Beach, CA

    2011-05-17

    The solid oxide fuel cell module includes a manifold, a plate, a cathode electrode, a fuel cell and an anode electrode. The manifold includes an air or oxygen inlet in communication with divergent passages above the periphery of the cell which combine to flow the air or oxygen radially or inwardly for reception in the center of the cathode flow field. The latter has interconnects providing circuitous cooling passages in a generally radial outward direction cooling the fuel cell and which interconnects are formed of different thermal conductivity materials for a preferential cooling.

  3. Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina

    PubMed Central

    Martín, Jaime; Martín-González, Marisol; Fernández, Jose Francisco; Caballero-Calero, Olga

    2014-01-01

    Three-dimensional nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties, or make a device. However, the amount of compounds with the ability to self-organize in ordered three-dimensional nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards three-dimensional nanostructures. Here we report the simple fabrication of a template based on anodic aluminum oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100 nm range. The three-dimensional templates are then employed to achieve three-dimensional, ordered nanowire-networks in Bi2Te3 and polystyrene. Lastly, we demonstrate the photonic crystal behavior of both the template and the polystyrene three-dimensional nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals, and semiconductors. PMID:25342247

  4. Formation of industrial mixed culture biofilm in chlorophenol cultivated medium of microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Hassan, Huzairy; Jin, Bo; Dai, Sheng; Ngau, Cornelius

    2016-11-01

    The formation of microbial biofilm while maintaining the electricity output is a challenging topic in microbial fuel cell (MFC) studies. This MFC critical factor becomes more significant when handling with industrial wastewater which normally contains refractory and toxic compounds. This study explores the formation of industrial mixed culture biofilm in chlorophenol cultivated medium through observing and characterizing microscopically its establishment on MFC anode surface. The mixed culture was found to develop its biofilm on the anode surface in the chlorophenol environment and established its maturity and dispersal stages with concurrent electricity generation and phenolic degradation. The mixed culture biofilm engaged the electron transfer roles in MFC by generating current density of 1.4 mA/m2 and removing 53 % of 2,4-dichlorophenol. The results support further research especially on hazardous wastewater treatment using a benign and sustainable method.

  5. Ab initio structure prediction of silicon and germanium sulfides for lithium-ion battery materials

    NASA Astrophysics Data System (ADS)

    Hsueh, Connie; Mayo, Martin; Morris, Andrew J.

    Conventional experimental-based approaches to materials discovery, which can rely heavily on trial and error, are time-intensive and costly. We discuss approaches to coupling experimental and computational techniques in order to systematize, automate, and accelerate the process of materials discovery, which is of particular relevance to developing new battery materials. We use the ab initio random structure searching (AIRSS) method to conduct a systematic investigation of Si-S and Ge-S binary compounds in order to search for novel materials for lithium-ion battery (LIB) anodes. AIRSS is a high-throughput, density functional theory-based approach to structure prediction which has been successful at predicting the structures of LIBs containing sulfur and silicon and germanium. We propose a lithiation mechanism for Li-GeS2 anodes as well as report new, theoretically stable, layered and porous structures in the Si-S and Ge-S systems that pique experimental interest.

  6. Electrolytic oxidation of anthracite

    USGS Publications Warehouse

    Senftle, F.E.; Patton, K.M.; Heard, I.

    1981-01-01

    An anthracite slurry can be oxidized only with difficulty by electrolytic methods in which aqueous electrolytes are used if the slurry is confined to the region of the anode by a porous pot or diaphragm. However, it can be easily oxidized if the anthracite itself is used as the anode. No porous pot or diaphragm is needed. Oxidative consumption of the coal to alkali-soluble compounds is found to proceed preferentially at the edges of the aromatic planes. An oxidation model is proposed in which the chief oxidants are molecular and radical species formed by the electrolytic decomposition of water at the coal surface-electrolyte interface. The oxidation reactions proposed account for the opening of the aromatic rings and the subsequent formation of carboxylic acids. The model also explains the observed anisotropic oxidation and the need for the porous pot or diaphragm used in previous studies of the oxidation of coal slurries. ?? 1981.

  7. Aramid Nanofiber Composites for Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Tung, Siu on

    Lithium ion batteries and non-aqueous redox flow batteries represent two of the most important energy storage technologies to efficient electric vehicles and power grid, which are essential to decreasing U.S. dependence on fossil fuels and sustainable economic growth. Many of the developmental roadblocks for these batteries are related to the separator, an electrically insulating layer between the cathode and anode. Lithium dendrite growth has limited the performance and threatened the safety of lithium ion batteries by piercing the separator and causing internal shorts. In non-aqueous redox flow batteries, active material crossover through microporous separators and the general lack of a suitable ion conducting membrane has led to low operating efficiencies and rapid capacity fade. Developing new separators for these batteries involve the combination of different and sometimes seemingly contradictory properties, such as high ionic conductivity, mechanical stability, thermal stability, chemical stability, and selective permeability. In this dissertation, I present work on composites made from Kevlar-drived aramid nanofibers (ANF) through rational design and fabrication techniques. For lithium ion batteries, a dendrite suppressing layer-by-layer composite of ANF and polyethylene oxide is present with goals of high ionic conductivity, improved safety and thermal stability. For non-aqueous redox flow batteries, a nanoporous ANF separator with surface polyelectrolyte modification is used to achieve high coulombic efficiencies and cycle life in practical flow cells. Finally, manufacturability of ANF based separators is addressed through a prototype machine for continuous ANF separator production and a novel separator coated on anode assembly. In combination, these studies serve as a foundation for addressing the challenges in separator engineering for lithium ion batteries and redox flow batteries.

  8. Electrochemical treatment of water containing Microcystis aeruginosa in a fixed bed reactor with three-dimensional conductive diamond anodes.

    PubMed

    Mascia, Michele; Monasterio, Sara; Vacca, Annalisa; Palmas, Simonetta

    2016-12-05

    An electrochemical treatment was investigated to remove Microcystis aeruginosa from water. A fixed bed reactor in flow was tested, which was equipped with electrodes constituted by stacks of grids electrically connected in parallel, with the electric field parallel to the fluid flow. Conductive diamond were used as anodes, platinised Ti as cathode. Electrolyses were performed in continuous and in batch recirculated mode with flow rates corresponding to Re from 10 to 160, current densities in the range 10-60Am(-2) and Cl(-) concentrations up to 600gm(-3). The absorbance of chlorophyll-a pigment and the concentration of products and by-products of electrolysis were measured. In continuous experiments without algae in the inlet stream, total oxidants concentrations as equivalent Cl2, of about 0.7gCl2m(-3) were measured; the maximum values were obtained at Re=10 and i=25Am(-2), with values strongly dependent on the concentration of Cl(-). The highest algae inactivation was obtained under the operative conditions of maximum generation of oxidants; in the presence of microalgae the oxidants concentrations were generally below the detection limit. Results indicated that most of the bulk oxidants electrogenerated is constituted by active chlorine. The prevailing mechanism of M. aeruginosa inactivation is the disinfection by bulk oxidants. The experimental data were quantitatively interpreted through a simple plug flow model, in which the axial dispersion accounts for the non-ideal flow behaviour of the system; the model was successfully used to simulate the performances of the reactor in the single-stack configuration used for the experiments and in multi-stack configurations. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Experimental study of the combined calcination and hydrodesulfurization of high-sulfur green petroleum coke

    NASA Astrophysics Data System (ADS)

    Kilic, Saliha Meltem

    The primary production of aluminum is done by means of the Hall-Heroult process where large amounts of carbon anodes are required and consumed. The quality of carbon anodes used in electrolysis is one of the most important parameters affecting the production of primary aluminum. The anode quality widely depends on the raw materials, one of which is the petroleum coke. Green petroleum coke is produced from the heavy residual fractions of petroleum. Petroleum cokes produced from sour crude oil sources contain high quantity of sulfur. A certain level of sulfur is needed to reduce the anode reactivities; however, the demand for anode-grade coke with acceptable sulfur content is increasing faster than the available supply. High sulfur levels in carbon anodes would have an adverse effect on environment; hence, the desulfurization of high sulfur green petroleum cokes is necessary. There are different ways of desulfurizing green petroleum cokes: solvent extraction, thermal desulfurization, and hydrodesulfurization. Coke produced by solvent extraction is prone to contamination. The thermal approach requires greater energy consumption and causes an increase in coke porosity. The global objective of this master project is to find an alternative solution for desulfurization that will produce quality calcined coke with minimum impact on environment. Hydrodesulfurization seems to be a viable option and was investigated in this study. Water was used for the hydrodesulfurization of commercially available high sulfur green petroleum coke. Different experimental systems were tried during the hydrodesulfurization experiments. A systematic approach was used to investigate the influence of hydrodesulfurization parameters including water injection temperature, duration, and water flow rate as well as coke particle size on the hydrodesulfurization of green petroleum coke. In addition to hydrodesulfurization, a number of thermal desulfurization experiments were carried out with the same green petroleum coke in this study. Sulfur removal as well as weight loss results which were obtained from the two methods were compared. The petroleum coke sulfur content as well as its structure were characterized using C-S analysis equipment, SEM-EDX, XPS, FT-IR, XRD, and helium pycnometer prior to the experiments. Hydrodesulfurized cokes which gave maximum sulfur removal were compared with thermally desulfurized cokes in terms of the degree of desulfurization and coke structure by using the above characterization techniques. This study has indicated that different parameters affect the rate of desulfurization to different extents. Maximum sulfur removal was obtained when the water was injected to coke surface at 1 ml/min flow rate for 60 min at 650°C and 850°C resulting in the removal of 22.87% and 22.60% sulfur, respectively. Weight loss percentages were 26.07% and 24.34%, respectively, under these conditions. Hydrodesulfurization involves the loss of a small quantity of carbon due to gasification of coke by water. The characterization of hydrodesulfurized coke with the highest desulfurization rate showed similar structure with its counterpart which was thermally desulfurized to the same maximum temperature. This result, thus, reveals that the hydrodesulfurization does not create a more porous calcined coke compared to that of thermal desulfurization. Therefore, it seems to be a promising method to produce anode-grade calcined coke with lower sulfur content and suitable structure for carbon anode production.

  10. Effect of Eccentricity in Compound Droplets Subject to a Simple Shear Flow

    NASA Astrophysics Data System (ADS)

    Kim, Sangkyu; Dabiri, Sadegh

    2016-11-01

    A double emulsion, or a compound droplet, is a system where two liquids are separated by an immiscible third liquid, thereby forming an emulsion inside an emulsion. Compound drops benefit from this separation in applications such food sciences, microfluidics, pharmaceutical engineering, and polymer sciences. While the subjects of double emulsion preparations, deformations, and breakup mechanisms are well-explored, the time-evolution of non-concentric compound drops has received far less analytical or computational scrutiny. In this work, we present computational results using finite volume method with front-tracking approach for initially spherical and non-concentric compound drops in a shear flow. Our findings for low Reynolds number flows show that: 1. The surrounding shear flow to the outer drop induces a rotational velocity field inside it, causing the inner drop to tumble with the flow, 2. the tumbling motion persists in time, and acts to increase the eccentricity of the compound drop, and 3. the hemisection-plane to the outer drop that is aligned with the plane of the simple shear defines an unstable equilibrium for inner drop's center, and the inner drop continuously drifts away from that plane. This work suggests a means of favorably configuring compound drops suitable for breakups, and helps to understand their migration in channel flows.

  11. Focused ion beam and field-emission microscopy of metallic filaments in memory devices based on thin films of an ambipolar organic compound consisting of oxadiazole, carbazole, and fluorene units

    USGS Publications Warehouse

    Pearson, Christopher; Bowen, Leon; Lee, Myung Won; Fisher, Alison L.; Linton, Katherine E.; Bryce, Martin R.; Petty, Michael C.

    2013-01-01

    We report on the mechanism of operation of organic thin film resistive memory architectures based on an ambipolar compound consisting of oxadiazole, carbazole, and fluorene units. Cross-sections of the devices have been imaged by electron microscopy both before and after applying a voltage. The micrographs reveal the growth of filaments, with diameters of 50 nm–100 nm, on the metal cathode. We suggest that these are formed by the drift of aluminium ions from the anode and are responsible for the observed switching and negative differential resistance phenomena in the memory devices.

  12. Principles of a multistack electrochemical wastewater treatment design

    NASA Astrophysics Data System (ADS)

    Elsahwi, Essam S.; Dawson, Francis P.; Ruda, Harry E.

    2018-02-01

    Electrolyzer stacks in a bipolar architecture (cells connected in series) are desirable since power provided to a stack can be transferred at high voltages and low currents and thus the losses in the power bus can be reduced. The anode electrodes (active electrodes) considered as part of this study are single sided but there are manufacturing cost advantages to implementing double side anodes in the future. One of the main concerns with a bipolar stack implementation is the existence of leakage currents (bypass currents). The leakage current is associated with current paths that are not between adjacent anode and cathode pairs. This leads to non uniform current density distributions which compromise the electrochemical conversion efficiency of the stack and can also lead to unwanted side reactions. The objective of this paper is to develop modelling tools for a bipolar architecture consisting of two single sided cells that use single sided anodes. It is assumed that chemical reactions are single electron transfer rate limited and that diffusion and convection effects can be ignored. The design process consists of the flowing two steps: development of a large signal model for the stack, and then the extraction of a small signal model from the large signal model. The small signal model facilitates the design of a controller that satisfies current or voltage regulation requirements. A model has been developed for a single cell and two cells in series but can be generalized to more than two cells in series and to incorporate double sided anode configurations in the future. The developed model is able to determine the leakage current and thus provide a quantitative assessment on the performance of the cell.

  13. High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane

    PubMed Central

    Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing

    2015-01-01

    Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage. PMID:26702440

  14. Pumping power considerations in the designs of NASA-Redox flow cells

    NASA Technical Reports Server (NTRS)

    Hoberecht, M. A.

    1981-01-01

    Pressure drop data for six different cell geometries of various flow port, manifold, and cavity dimensions are presented. The redox/energy/storage system uses two fully soluble redox couples as anode and cathode fluids. Both fluids are pumped through a redox cell, or stack of cells, where the electrochemical reactions take place at porous carbon felt electrodes. Pressure drop losses are therefore associated with this system due to the continuous flow of reactant solutions. The exact pressure drop within a redox flow cell is directly dependent on the flow rate as well as the various cell dimensions. Pumping power requirements for a specific set of cell operating conditions are found for various cell geometries once the flow rate and pressure drop are determined. These pumping power requirements contribute to the overall system parasitic energy losses which must be minimized, the choice of cell geometry becomes critical.

  15. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.

    PubMed

    Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing

    2015-11-01

    Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage.

  16. Insights from depth-averaged numerical simulation of flow at bridge abutments in compound channels.

    DOT National Transportation Integrated Search

    2011-07-01

    Two-dimensional, depth-averaged flow models are used to study the distribution of flow around spill-through abutments situated on floodplains in compound channels and rectangular channels (flow on very wide floodplains may be treated as rectangular c...

  17. Intensified nitrate and phosphorus removal in an electrolysis -integrated horizontal subsurface-flow constructed wetland.

    PubMed

    Gao, Y; Xie, Y W; Zhang, Q; Wang, A L; Yu, Y X; Yang, L Y

    2017-01-01

    A novel electrolysis-integrated horizontal subsurface-flow constructed wetland system (E-HFCWs) was developed for intensified removal of nitrogen and phosphorus contaminated water. The dynamics of nitrogen and phosphorus removal and that of main water qualities of inflow and outflow were also evaluated. The hydraulic retention time (HRT) greatly enhanced nitrate removal when the electrolysis current intensity was stabilized at 0.07 mA/cm 2 . When the HRT ranged from 2 h to 12 h, the removal rate of nitrate increased from 20% to 84%. Phosphorus (P) removal was also greatly enhanced-exceeding 90% when the HRT was longer than 4 h in the electrolysis-integrated HFCWs. This improved P removal is due to the in-situ formation of ferric ions by anodizing of sacrificial iron anodes, causing chemical precipitation, physical adsorption and flocculation of phosphorus. Thus, electrolysis plays an important role in nitrate and phosphorus removal. The diversity and communities of bacteria in the biofilm of substrate was established by the analysis of 16S rDNA gene sequences, and the biofilm was abundant with Comamonadaceae and Xanthomonadaceae bacteria in E-HFCWs. Test results illustrated that the electrolysis integrated with horizontal subsurface-flow constructed wetland is a feasible and effective technology for intensified nitrogen and phosphorus removal. Copyright © 2016. Published by Elsevier Ltd.

  18. Corrosion test cell for bipolar plates

    DOEpatents

    Weisbrod, Kirk R.

    2002-01-01

    A corrosion test cell for evaluating corrosion resistance in fuel cell bipolar plates is described. The cell has a transparent or translucent cell body having a pair of identical cell body members that seal against opposite sides of a bipolar plate. The cell includes an anode chamber and an cathode chamber, each on opposite sides of the plate. Each chamber contains a pair of mesh platinum current collectors and a catalyst layer pressed between current collectors and the plate. Each chamber is filled with an electrolyte solution that is replenished with fluid from a much larger electrolyte reservoir. The cell includes gas inlets to each chamber for hydrogen gas and air. As the gases flow into a chamber, they pass along the platinum mesh, through the catalyst layer, and to the bipolar plate. The gas exits the chamber through passageways that provide fluid communication between the anode and cathode chambers and the reservoir, and exits the test cell through an exit port in the reservoir. The flow of gas into the cell produces a constant flow of fresh electrolyte into each chamber. Openings in each cell body is member allow electrodes to enter the cell body and contact the electrolyte in the reservoir therein. During operation, while hydrogen gas is passed into one chamber and air into the other chamber, the cell resistance is measured, which is used to evaluate the corrosion properties of the bipolar plate.

  19. Fast and Universal Approach to Encapsulating Transition Bimetal Oxide Nanoparticles in Amorphous Carbon Nanotubes under an Atmospheric Environment Based on the Marangoni Effect.

    PubMed

    Li, Shuoyu; Liu, Yuyi; Guo, Peisheng; Wang, Chengxin

    2017-09-13

    Transition metal oxide nanoparticles capsuled in amorphous carbon nanotubes (ACNTs) are attractive anode materials of lithium-ion batteries (LIBs). Here, we first designed a fast and universal method with a hydromechanics conception which is called Marangoni flow to fabricate transition bimetal oxides (TBOs) in the ACNT composite with a better electrochemistry performance. Marangoni flows can produce a liquid column with several centimeters of height in a tube with one side immersed in the liquid. The key point to induce a Marangoni flow is to make a gradient of the surface tension between the surface and the inside of the solution. With our research, we control the gradient of the surface tension by controlling the viscosity of a solution. To show how our method could be generally used, we synthesize two anode materials such as (a) CoFe 2 O 4 @ACNTs, and (b) NiFe 2 O 4 @ACNTs. All of these have a similar morphology which is ∼20 μm length with a diameter of 80-100 nm for the ACNTs, and the particles (inside the ACNTs) are smaller than 5 nm. In particular, there are amorphous carbons between the nanoparticles. All of the composite materials showed an outstanding electrochemistry performance which includes a high capacity and cycling stability so that after 600 cycles the capacity changed by less than 3%.

  20. Reduced Graphene Oxide/Tin-Antimony Nanocomposites as Anode Materials for Advanced Sodium-Ion Batteries.

    PubMed

    Ji, Liwen; Zhou, Weidong; Chabot, Victor; Yu, Aiping; Xiao, Xingcheng

    2015-11-11

    Reduced graphene oxides loaded with tin-antimony alloy (RGO-SnSb) nanocomposites were synthesized through a hydrothermal reaction and the subsequent thermal reduction treatments. Transmission electron microscope images confirm that SnSb nanoparticles with an average size of about 20-30 nm are uniformly dispersed on the RGO surfaces. When they were used as anodes for rechargeable sodium (Na)-ion batteries, these as-synthesized RGO-SnSb nanocomposite anodes delivered a high initial reversible capacity of 407 mAh g(-1), stable cyclic retention for more than 80 cycles and excellent cycle stability at ultra high charge/discharge rates up to 30C. The significantly improved performance of the synthesized RGO-SnSb nanocomposites as Na-ion battery anodes can be attributed to the synergetic effects of RGO-based flexible framework and the nanoscale dimension of the SnSb alloy particles (<30 nm). Nanosized intermetallic SnSb compounds can exhibit improved structural stability and conductivity during charge and discharge reactions compared to the corresponding individuals (Sn and Sb particles). In the meantime, RGO sheets can tightly anchor SnSb alloy particles on the surfaces, which can not only effectively suppress the agglomeration of SnSb particles but also maintain excellent electronic conduction. Furthermore, the mechanical flexibility of the RGO phase can accommodate the volume expansion and contraction of SnSb particles during the prolonged cycling, therefore, improve the electrode integrity mechanically and electronically. All of these contribute to the electrochemical performance improvements of the RGO-SnSb nanocomposite-based electrodes in rechargeable Na-ion batteries.

  1. Development of biologically modified anodes for energy harvesting using microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Sumner, James J.; Ganguli, Rahul; Chmelka, Brad

    2012-06-01

    Biological fuel cells hold promise as an alternative energy source to batteries for unattended ground sensor applications due to the fact that they can be extremely long lived. This lifetime can be extended over batteries by scavenging fuel from the deployed environment. Microbial fuel cells (MFC) are one class of such sources that produce usable energy from small organic compounds (i.e. sugars, alcohols, organic acids, and biopolymers) which can be easily containerized or scavenged from the environment. The use of microorganisms as the anodic catalysts is what makes these systems unique from other biofuel cell designs. One of the main drawbacks of engineering a sensor system powered by an MFC is that power densities and current flux are extremely low in currently reported systems. The power density is limited by the mass transfer of the fuel source to the catalyst, the metabolism of the microbial catalysts and the electron transfer from the organism to the anode. This presentation will focus on the development of a new style of microbially-modified anodes which will increase power density to a level where a practical power source can be engineered. This is being achieved by developing a three dimensional matrix as an artificial, conductive biofilm. These artificial biofilms will allow the capture of a consortium of microbes designed for efficient metabolism of the available fuel source. Also it will keep the microbes close to the electrode allowing ready access by fuel and providing a low resistance passage of the liberated electrons from fuel oxidation.

  2. Metal hydride compositions and lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Kwo; Nei, Jean

    Heterogeneous metal hydride (MH) compositions comprising a main region comprising a first metal hydride and a secondary region comprising one or more additional components selected from the group consisting of second metal hydrides, metals, metal alloys and further metal compounds are suitable as anode materials for lithium ion cells. The first metal hydride is for example MgH.sub.2. Methods for preparing the composition include coating, mechanical grinding, sintering, heat treatment and quenching techniques.

  3. Integrated structure vacuum tube

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Kerwin, W. J. (Inventor)

    1976-01-01

    High efficiency, multi-dimensional thin film vacuum tubes suitable for use in high temperature, high radiation environments are described. The tubes are fabricated by placing thin film electrode members in selected arrays on facing interior wall surfaces of an alumina substrate envelope. Cathode members are formed using thin films of triple carbonate. The photoresist used in photolithography aids in activation of the cathodes by carbonizing and reacting with the reduced carbonates when heated in vacuum during forming. The finely powdered triple carbonate is mixed with the photoresist used to delineate the cathode locations in the conventional solid state photolithographic manner. Anode and grid members are formed using thin films of refractory metal. Electron flow in the tubes is between grid elements from cathode to anode as in a conventional three-dimensional tube.

  4. H[sub 2]/Cl[sub 2] fuel cells for power and HCl production - chemical cogeneration

    DOEpatents

    Gelb, A.H.

    1991-08-20

    A fuel cell for the electrolytic production of hydrogen chloride and the generation of electric energy from hydrogen and chlorine gas is disclosed. In typical application, the fuel cell operates from the hydrogen and chlorine gas generated by a chlorine electrolysis generator. The hydrogen chloride output is used to maintain acidity in the anode compartment of the electrolysis cells, and the electric energy provided from the fuel cell is used to power a portion of the electrolysis cells in the chlorine generator or for other chlorine generator electric demands. The fuel cell itself is typically formed by a passage for the flow of hydrogen chloride or hydrogen chloride and sodium chloride electrolyte between anode and cathode gas diffusion electrodes. 3 figures.

  5. Rayleigh Scattering Diagnostic for Simultaneous Measurements of Dynamic Density and Velocity

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Panda, J.

    2000-01-01

    A flow diagnostic technique based on the molecular Rayleigh scattering of laser light is used to obtain dynamic density and velocity data in turbulent flows. The technique is based on analyzing the Rayleigh scattered light with a Fabry-Perot interferometer and recording information about the interference pattern with a multiple anode photomultiplier tube (PMT). An artificial neural network is used to process the signals from the PMT to recover the velocity time history, which is then used to calculate the velocity power spectrum. The technique is illustrated using simulated data. The results of an experiment to measure the velocity power spectrum in a low speed (100 rn/sec) flow are also presented.

  6. Optimization of electrochemical dechlorination of trichloroethylene in reducing electrolytes

    PubMed Central

    Mao, Xuhui; Ciblak, Ali; Baek, Kitae; Amiri, Mohammad; Loch-Caruso, Rita; Alshawabkeh, Akram N.

    2012-01-01

    Electrochemical dechlorination of trichloroethylene (TCE) in aqueous solution is investigated in a closed, liquid-recirculation system. The anodic reaction of cast iron generates ferrous species, creating a chemically reducing electrolyte (negative ORP value). The reduction of TCE on the cathode surface is enhanced under this reducing electrolyte because of the absence of electron competition. In the presence of the iron anode, the performances of different cathodes are compared in a recirculated electrolysis system. The copper foam shows superior capability for dechlorination of aqueous TCE. Electrolysis by cast iron anode and copper foam cathode is further optimized though a multivariable experimental design and analysis. The conductivity of the electrolyte is identified as an important factor for both final elimination efficiency (FEE) of TCE and specific energy consumption. The copper foam electrode exhibits high TCE elimination efficiency in a wide range of initial TCE concentration. Under coulostatic conditions, the optimal conditions to achieve the highest FEE are 9.525 mm thick copper foam electrode, 40 mA current and 0.042 mol L−1 Na2SO4. This novel electrolysis system is proposed to remediate groundwater contaminated by chlorinated organic solvents, or as an improved iron electrocoagulation process capable of treating the wastewater co-contaminated with chlorinated compounds. PMID:22264798

  7. Silicon clathrates for lithium ion batteries: A perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warrier, Pramod, E-mail: pramod.warrier@gmail.com; Koh, Carolyn A.

    2016-12-15

    Development of novel energy storage techniques is essential for the development of sustainable energy resources. Li-ion batteries have the highest rated energy density among rechargeable batteries and have attracted a lot of attention for energy storage in the last 15–20 years. However, significant advancements are required in anode materials before Li-ion batteries become viable for a wide variety of applications, including in renewable energy storage, grid storage, and electric vehicles. While graphite is the current standard anode material in commercial Li-ion batteries, it is Si that exhibits the highest specific energy density among all materials considered for this purpose. Si,more » however, suffers from significant volume expansion/contraction and the formation of a thick solid-electrolyte interface layer. To resolve these issues, Si clathrates are being considered for anode materials. Clathrates are inclusion compounds and contain cages in which Li could be captured. While Si clathrates offer promising advantages due to their caged structure which enables negligible volume change upon Li insertion, there remains scientific challenges and knowledge gaps to be overcome before these materials can be utilized for Li-ion battery applications, i.e., understanding lithiation/de-lithiation mechanisms, optimizing guest concentrations, as well as safe and economic synthesis routes.« less

  8. Synthesis of α-amino-1,3-dicarbonyl compounds via Ugi flow chemistry reaction: access to functionalized 1,2,3-triazoles.

    PubMed

    Vasconcelos, Stanley N S; Fornari, Evelin; Caracelli, Ignez; Stefani, Hélio A

    2017-11-01

    The Ugi multicomponent reaction has been used as an important synthetic route to obtain compounds with potential biological activity. We present the rapid and efficient synthesis of [Formula: see text]-amino-1,3-dicarbonyl compounds in moderate to good yields via Ugi flow chemistry reactions performed with a continuous flow reactor. Such [Formula: see text]-amino-1,3-dicarbonyl compounds can act as precursors for the production of [Formula: see text]-amino acids via hydrolysis of the ethyl ester group as well as building blocks for the synthesis of novel compounds with the 1,2,3-triazole ring. The [Formula: see text]-amino acid derivatives of the Ugi flow chemistry reaction products were then used for dipeptide synthesis.

  9. Development of an Electrochemical Ceramic Membrane Filtration System for Efficient Contaminant Removal from Waters.

    PubMed

    Zheng, Junjian; Wang, Zhiwei; Ma, Jinxing; Xu, Shaoping; Wu, Zhichao

    2018-04-03

    Inability to remove low-molecular-weight anthropogenic contaminants is a critical issue in low-pressure membrane filtration processes for water treatment. In this work, a novel electrochemical ceramic membrane filtration (ECMF) system using TiO 2 @SnO 2 -Sb anode was developed for removing persistent p-chloroaniline (PCA). Results showed that the ECMF system achieved efficient removal of PCA from contaminated waters. At a charging voltage of 3 V, the PCA removal rate of TiO 2 @SnO 2 -Sb ECMF system under flow-through mode was 2.4 times that of flow-by mode. The energy consumption for 50% of PCA removal for TiO 2 @SnO 2 -Sb ECMF at 3 V under flow-through mode was 0.38 Wh/L, much lower than that of flow-by operation (1.5 Wh/L), which was attributed to the improved utilization of the surface adsorbed HO· and dissociated HO· driven by the enhanced mass transfer of PCA toward the anode surface. Benefiting from the increased production of reactive oxygen species such as O 2 •- , H 2 O 2 , and HO· arising from excitation of anatase TiO 2 , TiO 2 @SnO 2 -Sb ECMF exhibited a superior electrocatalytic activity to the SnO 2 -Sb ECMF system. The degradation pathways of PCA initiated by OH· attack were further proposed, with the biodegradable short-chain carboxylic acids (mainly formic, acetic, and oxalic acids) identified as the dominant oxidized products. These results highlight the potential of the ECMF system for cost-effective water purification.

  10. The Generation of Diazo Compounds in Continuous-Flow.

    PubMed

    Hock, Katharina J; Koenigs, Rene M

    2018-03-25

    Toxic, cancerogenic and explosive - these attributes are typically associated with diazo compounds. Nonetheless, diazo compounds are nowadays a highly demanded class of reagents for organic synthesis, yet the concerns with regards to safe and scalable transformations of these compounds are still exceptionally high. Lately, the research area of the continuous-flow synthesis of diazo compounds attracted significant interest and a whole variety of protocols for their "on-demand" preparation have been realized to date. This concept article focuses on the recent developments using continuous-flow technologies to access diazo compounds; thus minimizing risks and hazards when working with this particular class of compounds. In this article we discuss these concepts and highlight different pre-requisites to access and to perform downstream functionalization reaction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Calculated volatilization rates of fuel oxygenate compounds and other gasoline-related compounds from rivers and streams

    USGS Publications Warehouse

    Pankow, J.F.; Rathbun, R.E.; Zogorski, J.S.

    1996-01-01

    Large amounts of the 'fuel-oxygenate' compound methyl-tert-butyl ether (MTBE) are currently being used in gasoline to reduce carbon monoxide and ozone in urban air and to boost fuel octane. Because MTBE can be transported to surface waters in various ways, established theory was used to calculate half-lives for MTBE volatilizing from flowing surface waters. Similar calculations were made for benzene as a representative of the 'BTEX' group of compounds (benzene, toluene, ethyl benzene, and the xylenes), and for tert-butyl alcohol (TBA). The calculations were made as a function of the mean flow velocity u (m/day), the mean flow depth h (m), the ambient temperature, and the wind speed. In deep, slow-moving flows, MTBE volatilizes at rates which are similar to those for the BTEX compounds. In shallow, fast-moving flows, MTBE volatilizes more slowly than benzene, though in such flows both MTBE and benzene volatilize quickly enough that these differences may often not have much practical significance. TBA was found to be essentially nonvolatile from water.

  12. Performance of metal compound on thermolysis and electrolysis on sugar industries waste water treatment: COD and color removal with sludge analysis (batch-experiment)

    NASA Astrophysics Data System (ADS)

    Sahu, Omprakash

    2017-10-01

    The sugar cane industry is one of the most water demanding industries. Sugar industries consume and generate excess amount of water. The generated water contains organic compounds, which would cause pollution. The aim of this research work is to study the effectiveness of metal compound for treatment of sugar industry waste water by thermolysis and electrolysis process. The result shows ferrous metal catalyst shows 80 and 85 % chemical oxygen demand and color removal at pH 6, optimum mass loading 4 kg/m3, treatment temperature 85 °C and treatment time 9 h. When ferrous material was used as electrode, maximum 81 % chemical oxygen demand and 84 % color removal at pH 6, current density 156 Am-2, treatment time 120 min and anode consumption 0.7 g for 1.5 L wastewater were obtained.

  13. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOEpatents

    Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.

    2012-11-06

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  14. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOEpatents

    Poshusta, Joseph C; Booten, Charles W; Martin, Jerry L

    2013-12-24

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  15. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOEpatents

    Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.

    2016-05-17

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  16. High Temperature Solar Electrothermal Processing-III. Zinc from Zinc Oxide at 1200-1675K Using a Non-Consumable Anode.

    DTIC Science & Technology

    1987-09-09

    and the flow of Ar, about 5 1/min, begun. The heliostat was set to track with the doors closed. The instrumentation was activated. Then both furnace...experiment, we closed both doors, stowed the heliostat and reopened the doors to provide good ventilation to the concentrator room. Then we disconnected the

  17. Fabrication and Characterization of New Composite Tio2 Carbon Nanofiber Anodic Catalyst Support for Direct Methanol Fuel Cell via Electrospinning Method.

    PubMed

    Abdullah, N; Kamarudin, S K; Shyuan, L K; Karim, N A

    2017-12-06

    Platinum (Pt) is the common catalyst used in a direct methanol fuel cell (DMFC). However, Pt can lead towards catalyst poisoning by carbonaceous species, thus reduces the performance of DMFC. Thus, this study focuses on the fabrication of a new composite TiO 2 carbon nanofiber anodic catalyst support for direct methanol fuel cells (DMFCs) via electrospinning technique. The distance between the tip and the collector (DTC) and the flow rate were examined as influencing parameters in the electrospinning technique. To ensure that the best catalytic material is fabricated, the nanofiber underwent several characterizations and electrochemical tests, including FTIR, XRD, FESEM, TEM, and cyclic voltammetry. The results show that D18, fabricated with a flow rate of 0.1 mLhr -1 and DTC of 18 cm, is an ultrafine nanofiber with the smallest average diameter, 136.73 ± 39.56 nm. It presented the highest catalyst activity and electrochemical active surface area value as 274.72 mAmg -1 and 226.75m 2  g -1 PtRu , respectively, compared with the other samples.

  18. Mechanism of enhanced performance on a hybrid direct carbon fuel cell using sawdust biofuels

    NASA Astrophysics Data System (ADS)

    Li, Shuangbin; Jiang, Cairong; Liu, Juan; Tao, Haoliang; Meng, Xie; Connor, Paul; Hui, Jianing; Wang, Shaorong; Ma, Jianjun; Irvine, John T. S.

    2018-04-01

    Biomass is expected to play a significant role in power generation in the near future. With the uprising of carbon fuel cells, hybrid direct carbon fuel cells (HDCFCs) show its intrinsic and incomparable advantages in the generation of clean energy with higher efficiency. In this study, two types of biomass treated by physical sieve and pyrolysis from raw sawdust are investigated on an anode-supported HDCFC. The structure and thermal analysis indicate that raw sawdust has well-formed cellulose I phase with very low ash. Electrochemical performance behaviors for sieved and pyrolyzed sawdust combined with various weight ratios of carbonate are compared in N2 and CO2 purge gas. The results show that the power output of sieved sawdust with 789 mWcm-2 is superior to that of pyrolyzed sawdust in CO2 flowing, as well as in N2 flowing. The anode reaction mechanism for the discrepancy of two fuels is explained and the emphasis is also placed on the modified oxygen-reduction cycle mechanism of catalytic effects of Li2CO3 and K2CO3 salts in promoting cell performance.

  19. Physicochemical effects on uncontaminated kaolinite due to electrokinetic treatment using inert electrodes.

    PubMed

    Liaki, Christina; Rogers, Christopher D F; Boardman, David I

    2008-07-01

    To determine the consequences of applying electrokinetics to clay soils, in terms of mechanisms acting and resulting effects on the clay, tests were conducted in which an electrical gradient was applied across controlled specimens of English China Clay (ECC) using 'inert' electrodes and a 'Reverse Osmosis' water feed to the electrodes (i.e., to mimic electrokinetic stabilisation without the stabiliser added or electrokinetic remediation without the contaminant being present). The specimens in which electromigration was induced over time periods of 3, 7, 14 and 28 days were subsequently tested for Atterberg Limits, undrained shear strength using a hand shear vane, water content, pH, conductivity and zeta potential. Water flowed through the system from anode to cathode and directly affected the undrained shear strength of the clay. Acid and alkali fronts were created around the anode and cathode, respectively, causing changes in the pH, conductivity and zeta potential of the soil. Variations in zeta potential were linked to flocculation and dispersion of the soil particles, thus raising or depressing the Liquid Limit and Plastic Limit, and influencing the undrained shear strength. Initial weakening around the anode and cathode was replaced by a regain of strength at the anode once acidic conditions had been created, while highly alkaline conditions at the cathode induced a marked improvement in strength. A novel means of indicating strength improvement by chemical means, i.e., free from water content effects, is presented to assist in interpretation of the results.

  20. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    DOE PAGES

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Mikkelson, Kenneth A.; ...

    2014-12-15

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometrymore » that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. Furthermore, a new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. Additionally, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.« less

Top