Method of passivating semiconductor surfaces
Wanlass, M.W.
1990-06-19
A method is described for passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.
Method of passivating semiconductor surfaces
Wanlass, Mark W.
1990-01-01
A method of passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.
Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview
NASA Astrophysics Data System (ADS)
Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo
2018-05-01
Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.
Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul
2014-01-28
A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul A.
2016-12-27
A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with onemore » or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.« less
Surface passivation process of compound semiconductor material using UV photosulfidation
Ashby, Carol I. H.
1995-01-01
A method for passivating compound semiconductor surfaces by photolytically disrupting molecular sulfur vapor with ultraviolet radiation to form reactive sulfur which then reacts with and passivates the surface of compound semiconductors.
Controlling the stoichiometry and doping of semiconductor materials
Albin, David; Burst, James; Metzger, Wyatt; Duenow, Joel; Farrell, Stuart; Colegrove, Eric
2016-08-16
Methods for treating a semiconductor material are provided. According to an aspect of the invention, the method includes annealing the semiconductor material in the presence of a compound that includes a first element and a second element. The first element provides an overpressure to achieve a desired stoichiometry of the semiconductor material, and the second element provides a dopant to the semiconductor material.
Photo-voltaic power generating means and methods
Kroger, Ferdinand A.; Rod, Robert L.; Panicker, M. P. Ramachandra
1983-08-23
A photo-voltaic power cell based on a photoelectric semiconductor compound and the method of using and making the same. The semiconductor compound in the photo-voltaic power cell of the present invention can be electrolytically formed at a cathode in an electrolytic solution by causing discharge or decomposition of ions or molecules of a non-metallic component with deposition of the non-metallic component on the cathode and simultaneously providing ions of a metal component which discharge and combine with the non-metallic component at the cathode thereby forming the semiconductor compound film material thereon. By stoichiometrically adjusting the amounts of the components, or otherwise by introducing dopants into the desired amounts, an N-type layer can be formed and thereafter a P-type layer can be formed with a junction therebetween. The invention is effective in producing homojunction semiconductor materials and heterojunction semiconductor materials. The present invention also provides a method of using three electrodes in order to form the semiconductor compound material on one of these electrodes. Various examples are given for manufacturing different photo-voltaic cells in accordance with the present invention.
Photo-voltaic power generating means and methods
Kroger, Ferdinand A.; Rod, Robert L.; Panicker, Ramachandra M. P.; Knaster, Mark B.
1984-01-10
A photo-voltaic power cell based on a photoelectric semiconductor compound and the method of using and making the same. The semiconductor compound in the photo-voltaic power cell of the present invention can be electrolytically formed at a cathode in an electrolytic solution by causing discharge or decomposition of ions or molecules of a non-metallic component with deposition of the non-metallic component on the cathode and simultaneously providing ions of a metal component which discharge and combine with the non-metallic component at the cathode thereby forming the semiconductor compound film material thereon. By stoichiometrically adjusting the amounts of the components, or otherwise by introducing dopants into the desired amounts, an N-type layer can be formed and thereafter a P-type layer can be formed with a junction therebetween. The invention is effective in producing homojunction semiconductor materials and heterojunction semiconductor materials. The present invention also provides a method of using three electrodes in order to form the semiconductor compound material on one of these electrodes. Various examples are given for manufacturing different photo-voltaic cells in accordance with the present invention.
Semiconductor apparatus utilizing gradient freeze and liquid-solid techniques
NASA Technical Reports Server (NTRS)
Fleurial, Jean-Pierre (Inventor); Caillat, Thierry F. (Inventor); Borshchevsky, Alexander (Inventor)
1998-01-01
Transition metals of Group VIII (Co, Rh and Ir) have been prepared as semiconductor compounds with the general formula TSb.sub.3. The skutterudite-type crystal lattice structure of these semiconductor compounds and their enhanced thermoelectric properties results in semiconductor materials which may be used in the fabrication of thermoelectric elements to substantially improve the efficiency of the resulting thermoelectric device. Semiconductor materials having the desired skutterudite-type crystal lattice structure may be prepared in accordance with the present invention by using vertical gradient freezing techniques and/or liquid phase sintering techniques. Measurements of electrical and thermal transport properties of selected semiconductor materials prepared in accordance with the present invention, demonstrated high Hall mobilities (up to 1200 cm.sup.2.V.sup.-1.s.sup.-1) and good Seebeck coefficients (up to 150 .mu.VK.sup.-1 between 300.degree. C. and 700.degree. C.). Optimizing the transport properties of semiconductor materials prepared from elemental mixtures Co, Rh, Ir and Sb resulted in a substantial increase in the thermoelectric figure of merit (ZT) at temperatures as high as 400.degree. C. for thermoelectric elements fabricated from such semiconductor materials.
MERCURY COMPOUNDS, CADMIUM COMPOUNDS, TELLURIDES, NEODYMIUM COMPOUNDS, PHOSPHATES , ELECTRON TRANSITIONS, INFRARED OPTICAL MATERIALS, CRYSTAL GROWTH, MAGNESIUM OXIDES, PHOSPHORESCENT MATERIALS, SEMICONDUCTOR DIODES, MICROELECTRONICS
Dry etching method for compound semiconductors
Shul, Randy J.; Constantine, Christopher
1997-01-01
A dry etching method. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators.
Dry etching method for compound semiconductors
Shul, R.J.; Constantine, C.
1997-04-29
A dry etching method is disclosed. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators. 1 fig.
New materials and structures for photovoltaics
NASA Astrophysics Data System (ADS)
Zunger, Alex; Wagner, S.; Petroff, P. M.
1993-01-01
Despite the fact that over the years crystal chemists have discovered numerous semiconducting substances, and that modern epitaxial growth techniques are able to produce many novel atomic-scale architectures, current electronic and opto-electronic technologies are based but on a handful of ˜10 traditional semiconductor core materials. This paper surveys a number of yet-unexploited classes of semiconductors, pointing to the much-needed research in screening, growing, and characterizing promising members of these classes. In light of the unmanageably large number of a-priori possibilities, we emphasize the role that structural chemistry and modern computer-aided design must play in screening potentially important candidates. The basic classes of materials discussed here include nontraditional alloys, such as non-isovalent and heterostructural semiconductors, materials at reduced dimensionality, including superlattices, zeolite-caged nanostructures and organic semiconductors, spontaneously ordered alloys, interstitial semiconductors, filled tetrahedral structures, ordered vacancy compounds, and compounds based on d and f electron elements. A collaborative effort among material predictor, material grower, and material characterizer holds the promise for a successful identification of new and exciting systems.
Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul
1999-01-01
A luminescent semiconductor nanocrystal compound is described which is capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation (luminescing) in a narrow wavelength band and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The luminescent semiconductor nanocrystal compound is linked to an affinity molecule to form an organo luminescent semiconductor nanocrystal probe capable of bonding with a detectable substance in a material being analyzed, and capable of emitting electromagnetic radiation in a narrow wavelength band and/or absorbing, scattering, or diffracting energy when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam. The probe is stable to repeated exposure to light in the presence of oxygen and/or other radicals. Further described is a process for making the luminescent semiconductor nanocrystal compound and for making the organo luminescent semiconductor nanocrystal probe comprising the luminescent semiconductor nanocrystal compound linked to an affinity molecule capable of bonding to a detectable substance. A process is also described for using the probe to determine the presence of a detectable substance in a material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Tatsuo, E-mail: dr.tatsuosuzuki@gmail.com
Group III-V compounds are very important as the materials of semiconductor devices. Stable structures of the monolayers of group III-V binary compounds have been discovered by using first-principles calculations. The primitive unit cell of the discovered structures is a rectangle, which includes four group-III atoms and four group-V atoms. A group-III atom and its three nearest-neighbor group-V atoms are placed on the same plane; however, these connections are not the sp{sup 2} hybridization. The bond angles around the group-V atoms are less than the bond angle of sp{sup 3} hybridization. The discovered structure of GaP is an indirect transition semiconductor,more » while the discovered structures of GaAs, InP, and InAs are direct transition semiconductors. Therefore, the discovered structures of these compounds have the potential of the materials for semiconductor devices, for example, water splitting photocatalysts. The discovered structures may become the most stable structures of monolayers which consist of other materials.« less
Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul
2006-09-05
A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.
Weiss, Shimon [Pinole, CA; Bruchez, Jr., Marcel; Alivisatos, Paul [Oakland, CA
2004-03-02
A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe, causing the emission of electromagnetic radiation. Further described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.
Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul
2005-08-09
A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.
Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul
2002-01-01
A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in he probe, causing the emission of electromagnetic radiation. Further described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.
Weiss, Shimon [Pinole, CA; Bruchez, Jr., Marcel; Alivisatos, Paul [Oakland, CA
2008-01-01
A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) an affinity molecule linked to the semiconductor nanocrystal. The semiconductor nanocrystal is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Exposure of the semiconductor nanocrystal to excitation energy will excite the semiconductor nanocrystal causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.
1992-05-22
Evaluation and Control of Compound Semiconductor Materials and Technologies (EXMATEC) at Ecole Centrale de Lyon (Ecully, France, 19th to 22nd May...semiconductor technologies to manufacture advanced devices with improved reproducibility, better reliability and lower cost. -’Device structures...concepts are required for expert evaluation and control of still developing technologies . In this context, the EXMATEC series will constitute a major
Design and exploration of semiconductors from first principles: A review of recent advances
NASA Astrophysics Data System (ADS)
Oba, Fumiyasu; Kumagai, Yu
2018-06-01
Recent first-principles approaches to semiconductors are reviewed, with an emphasis on theoretical insight into emerging materials and in silico exploration of as-yet-unreported materials. As relevant theory and methodologies have developed, along with computer performance, it is now feasible to predict a variety of material properties ab initio at the practical level of accuracy required for detailed understanding and elaborate design of semiconductors; these material properties include (i) fundamental bulk properties such as band gaps, effective masses, dielectric constants, and optical absorption coefficients; (ii) the properties of point defects, including native defects, residual impurities, and dopants, such as donor, acceptor, and deep-trap levels, and formation energies, which determine the carrier type and density; and (iii) absolute and relative band positions, including ionization potentials and electron affinities at semiconductor surfaces, band offsets at heterointerfaces between dissimilar semiconductors, and Schottky barrier heights at metal–semiconductor interfaces, which are often discussed systematically using band alignment or lineup diagrams. These predictions from first principles have made it possible to elucidate the characteristics of semiconductors used in industry, including group III–V compounds such as GaN, GaP, and GaAs and their alloys with related Al and In compounds; amorphous oxides, represented by In–Ga–Zn–O transparent conductive oxides (TCOs), represented by In2O3, SnO2, and ZnO; and photovoltaic absorber and buffer layer materials such as CdTe and CdS among group II–VI compounds and chalcopyrite CuInSe2, CuGaSe2, and CuIn1‑ x Ga x Se2 (CIGS) alloys, in addition to the prototypical elemental semiconductors Si and Ge. Semiconductors attracting renewed or emerging interest have also been investigated, for instance, divalent tin compounds, including SnO and SnS; wurtzite-derived ternary compounds such as ZnSnN2 and CuGaO2; perovskite oxides such as SrTiO3 and BaSnO3; and organic–inorganic hybrid perovskites, represented by CH3NH3PbI3. Moreover, the deployment of first-principles calculations allows us to predict the crystal structure, stability, and properties of as-yet-unreported materials. Promising materials have been explored via high-throughput screening within either publicly available computational databases or unexplored composition and structure space. Reported examples include the identification of nitride semiconductors, TCOs, solar cell photoabsorber materials, and photocatalysts, some of which have been experimentally verified. Machine learning in combination with first-principles calculations has emerged recently as a technique to accelerate and enhance in silico screening. A blend of computation and experimentation with data science toward the development of materials is often referred to as materials informatics and is currently attracting growing interest.
1988-01-01
usually be traced to a combination of new semiconductors one on top of the other, then concepts, materials, and device principles, the process is called...example, growth techniques. New combinations of compound semiconductors such as GaAs have an materials called heterostructures can be made intrinsically...of combinations of metals, have direct energy band gaps that facilitate semiconductor, and insulators. Quantum the efficient recombination of
Method of doping a semiconductor
Yang, Chiang Y.; Rapp, Robert A.
1983-01-01
A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.
The Electronic and Electro-Optic Future of III-V Semiconductor Compounds.
1978-12-01
An assessment of material development of III-V compounds for electro - optic , microwave and millimeter wave technology is presented. Questions concerning material selection, needs and processing is addressed. (Author)
2012-03-22
covalent bond with four adjacent atoms. Compound semiconductors such as GaAs have a crystal lattice similar to the diamond lattice, but since the...are found in both elemental (e.g. Si) and compound form (e.g. GaAs), but every semiconductor material is characterized by the properties of its crystal...lattice. The covalent bonds formed within a semiconducting material determine the shape of the crystal lattice [8]. For an in depth explanation
Crystal growth of device quality GaAs in space
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Lagowski, J.
1986-01-01
It was established that the findings on elemental semiconductors Ge and Si regarding crystal growth, segregation, chemical composition, defect interactions, and materials properties-electronic properties relationships are not necessarily applicable to GaAs (and to other semiconductor compounds). In many instances totally unexpected relationships were found to prevail. It was further established that in compound semiconductors with a volatile constituent, control of stoichiometry is far more critical than any other crystal growth parameter. It was also shown that, due to suppression of nonstoichiometric fluctuations, the advantages of space for growth of semiconductor compounds extend far beyond those observed in elemental semiconductors. A novel configuration was discovered for partial confinement of GaAs melt in space which overcomes the two major problems associated with growth of semiconductors in total confinement. They are volume expansion during solidification and control of pressure of the volatile constituent. These problems are discussed in detail.
A study of the semiconductor compound СuAlO2 by the method of nuclear quadrupole resonance of Cu
NASA Astrophysics Data System (ADS)
Matukhin, V. L.; Khabibulin, I. Kh.; Shul'gin, D. A.; Smidt, S. V.
2012-07-01
The method of nuclear quadrupole resonance of Cu (NQR Cu) is used to study the samples of a semiconductor compound CuAlO2. The crystal structure of CuAlO2 belongs to the family of delafossite - the mineral of a basic CuFeO2 structure. Transparent semiconductor oxides, such as CuAlO2, have attracted recent attention as promising thermoelectric materials.
1975-07-01
Physics of Refractory Materials (ERDA) ..... 160 J. Holder - Mechanical Properties of Solids (NSF) ...... 163 A. Granato - Anharmonic Effects in Solids...ERDA) ........ 166 6. Semiconductor Materials and Devices. N. Holonyak - Luinescence, Lasers, Carrier and Impurity Effects in Compound Semiconductors...1975. Dr. P. A. Egelstaff, University of Guelph, Ontario, Canada, "Three-Body Effects in Simple Fluids," April 9, 1975. Professor G. Leibfried, Oak
Growth of Wide Band Gap II-VI Compound Semiconductors by Physical Vapor Transport
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Sha, Yi-Gao
1995-01-01
The studies on the crystal growth and characterization of II-VI wide band gap compound semiconductors, such as ZnTe, CdS, ZnSe and ZnS, have been conducted over the past three decades. The research was not quite as extensive as that on Si, III-V, or even narrow band gap II-VI semiconductors because of the high melting temperatures as well as the specialized applications associated with these wide band gap semiconductors. In the past several years, major advances in the thin film technology such as Molecular Beam Epitaxy (MBE) and Metal Organic Chemical Vapor Deposition (MOCVD) have demonstrated the applications of these materials for the important devices such as light-emitting diode, laser and ultraviolet detectors and the tunability of energy band gap by employing ternary or even quaternary systems of these compounds. At the same time, the development in the crystal growth of bulk materials has not advanced far enough to provide low price, high quality substrates needed for the thin film growth technology.
Tuning and synthesis of semiconductor nanostructures by mechanical compression
Fan, Hongyou; Li, Binsong
2015-11-17
A mechanical compression method can be used to tune semiconductor nanoparticle lattice structure and synthesize new semiconductor nanostructures including nanorods, nanowires, nanosheets, and other three-dimensional interconnected structures. II-VI or IV-VI compound semiconductor nanoparticle assemblies can be used as starting materials, including CdSe, CdTe, ZnSe, ZnS, PbSe, and PbS.
Transparent contacts for stacked compound photovoltaic cells
Tauke-Pedretti, Anna; Cederberg, Jeffrey; Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis
2016-11-29
A microsystems-enabled multi-junction photovoltaic (MEM-PV) cell includes a first photovoltaic cell having a first junction, the first photovoltaic cell including a first semiconductor material employed to form the first junction, the first semiconductor material having a first bandgap. The MEM-PV cell also includes a second photovoltaic cell comprising a second junction. The second photovoltaic cell comprises a second semiconductor material employed to form the second junction, the second semiconductor material having a second bandgap that is less than the first bandgap, the second photovoltaic cell further comprising a first contact layer disposed between the first junction of the first photovoltaic cell and the second junction of the second photovoltaic cell, the first contact layer composed of a third semiconductor material having a third bandgap, the third bandgap being greater than or equal to the first bandgap.
Methods for the additive manufacturing of semiconductor and crystal materials
Stowe, Ashley C.; Speight, Douglas
2016-11-22
A method for the additive manufacturing of inorganic crystalline materials, including: physically combining a plurality of starting materials that are used to form an inorganic crystalline compound to be used as one or more of a semiconductor, scintillator, laser crystal, and optical filter; heating or melting successive regions of the combined starting materials using a directed heat source having a predetermined energy characteristic, thereby facilitating the reaction of the combined starting materials; and allowing each region of the combined starting materials to cool in a controlled manner, such that the desired inorganic crystalline compound results. The method also includes, prior to heating or melting the successive regions of the combined starting materials using the directed heat source, heating the combined starting materials to facilitate initial reaction of the combined starting materials. The method further includes translating the combined starting materials and/or the directed heat source between successive locations. The method still further includes controlling the mechanical, electrical, photonic, and/or optical properties of the inorganic crystalline compound.
Static sublimation purification process and characterization of LiZnAs semiconductor material
NASA Astrophysics Data System (ADS)
Montag, Benjamin W.; Reichenberger, Michael A.; Edwards, Nathaniel S.; Ugorowski, Philip B.; Sunder, Madhana; Weeks, Joseph; McGregor, Douglas S.
2016-03-01
Refinement of the class AIBIICV materials continue as a candidate for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled 3He and 10BF3 detectors. The 6Li(n,t)4He reaction yields a total Q value of 4.78 MeV, larger than 10B, and easily identified above background radiations. Hence, devices composed of either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) may provide a semiconductor material for compact high efficiency neutron detectors. A sub-branch of the III-V semiconductors, the filled tetrahedral compounds, AIBIICV, known as Nowotny-Juza compounds, are known for their desirable cubic crystal structure. Starting material was synthesized by equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules with a boron nitride lining, and reacted in a compounding furnace [1]. The synthesized material showed signs of high impurity levels from material and electrical property characterization. In the present work, a static vacuum sublimation of synthesized LiZnAs loaded in a quartz vessel was performed to help purify the synthesized material. The chemical composition of the sublimed material and remains material was confirmed by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Lithium was not detected in the sublimed material, however, near stoichiometric amounts of each constituent element were found in the remains material for LiZnAs. X-ray diffraction phase identification scans of the remains material and sublimed material were compared, and further indicated the impurity materials were removed from the synthesized materials. The remaining powder post the sublimation process showed characteristics of a higher purity ternary compound.
III-V semiconductor solid solution single crystal growth
NASA Technical Reports Server (NTRS)
Gertner, E. R.
1982-01-01
The feasibility and desirability of space growth of bulk IR semiconductor crystals for use as substrates for epitaxial IR detector material were researched. A III-V ternary compound (GaInSb) and a II-VI binary compound were considered. Vapor epitaxy and quaternary epitaxy techniques were found to be sufficient to permit the use of ground based binary III-V crystals for all major device applications. Float zoning of CdTe was found to be a potentially successful approach to obtaining high quality substrate material, but further experiments were required.
DFT Studies of Semiconductor and Scintillator Detection Materials
NASA Astrophysics Data System (ADS)
Biswas, Koushik
2013-03-01
Efficient radiation detection technology is dependent upon the development of new semiconductor and scintillator materials with advanced capabilities. First-principles based approaches can provide vital information about the structural, electrical, optical and defect properties that will help develop new materials. In addition to the predictive power of modern density functional methods, these techniques can be used to establish trends in properties that may lead to identifying new materials with optimum properties. We will discuss the properties of materials that are of current interest both in the field of scintillators and room temperature semiconductor detectors. In case of semiconductors, binary compounds such as TlBr, InI, CdTe and recently developed ternary chalcohalide Tl6SeI4 will be discussed. Tl6SeI4 mixes a halide (TlI) with a chalcogenide (Tl2Se), which results in an intermediate band gap (1.86 eV) between that of TlI (2.75 eV) and Tl2Se (0.6 eV). For scintillators, we will discuss the case of the elpasolite compounds whose rich chemical compositions should enable the fine-tuning of the band gap and band edges to achieve high light yield and fast scintillation response.
Real-time and online screening method for materials emitting volatile organic compounds
NASA Astrophysics Data System (ADS)
Kim, Changhyuk; Sul, Yong Tae; Pui, David Y. H.
2016-09-01
In the semiconductor industry, volatile organic compounds (VOCs) in the cleanroom air work as airborne molecular contamination, which reduce the production yield of semiconductor chips by forming nanoparticles and haze on silicon wafers and photomasks under ultraviolet irradiation during photolithography processes. Even though VOCs in outdoor air are removed by gas filters, VOCs can be emitted from many kinds of materials used in cleanrooms, such as organic solvents and construction materials (e.g., adhesives, flame retardants and sealants), threatening the production of semiconductors. Therefore, finding new replacements that emit lower VOCs is now essential in the semiconductor industry. In this study, we developed a real-time and online method to screen materials for developing the replacements by converting VOCs into nanoparticles under soft X-ray irradiation. This screening method was applied to measure VOCs emitted from different kinds of organic solvents and adhesives. Our results showed good repeatability and high sensitivity for VOCs, which come from aromatic compounds, some alcohols and all tested adhesives (Super glue and cleanroom-use adhesives). In addition, the overall trend of measured VOCs from cleanroom-use adhesives was well matched with those measured by a commercial thermal desorption-gas chromatography-mass spectrometry, which is a widely used off-line method for analyzing VOCs. Based on the results, this screening method can help accelerate the developing process for reducing VOCs in cleanrooms.
Facet-Selective Epitaxy of Compound Semiconductors on Faceted Silicon Nanowires.
Mankin, Max N; Day, Robert W; Gao, Ruixuan; No, You-Shin; Kim, Sun-Kyung; McClelland, Arthur A; Bell, David C; Park, Hong-Gyu; Lieber, Charles M
2015-07-08
Integration of compound semiconductors with silicon (Si) has been a long-standing goal for the semiconductor industry, as direct band gap compound semiconductors offer, for example, attractive photonic properties not possible with Si devices. However, mismatches in lattice constant, thermal expansion coefficient, and polarity between Si and compound semiconductors render growth of epitaxial heterostructures challenging. Nanowires (NWs) are a promising platform for the integration of Si and compound semiconductors since their limited surface area can alleviate such material mismatch issues. Here, we demonstrate facet-selective growth of cadmium sulfide (CdS) on Si NWs. Aberration-corrected transmission electron microscopy analysis shows that crystalline CdS is grown epitaxially on the {111} and {110} surface facets of the Si NWs but that the Si{113} facets remain bare. Further analysis of CdS on Si NWs grown at higher deposition rates to yield a conformal shell reveals a thin oxide layer on the Si{113} facet. This observation and control experiments suggest that facet-selective growth is enabled by the formation of an oxide, which prevents subsequent shell growth on the Si{113} NW facets. Further studies of facet-selective epitaxial growth of CdS shells on micro-to-mesoscale wires, which allows tuning of the lateral width of the compound semiconductor layer without lithographic patterning, and InP shell growth on Si NWs demonstrate the generality of our growth technique. In addition, photoluminescence imaging and spectroscopy show that the epitaxial shells display strong and clean band edge emission, confirming their high photonic quality, and thus suggesting that facet-selective epitaxy on NW substrates represents a promising route to integration of compound semiconductors on Si.
Mickelsen, Reid A.; Chen, Wen S.
1983-01-01
Apparatus for forming thin-film, large area solar cells having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n-type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order of about 2.5 microns to about 5.0 microns (.congruent.2.5 .mu.m to .congruent.5.0 .mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the transient n-type material in the first semiconductor layer to evolve into p-type material, thereby defining a thin layer heterojunction device characterized by the absence of voids, vacancies and nodules which tend to reduce the energy conversion efficiency of the system.
Metal oxides for optoelectronic applications.
Yu, Xinge; Marks, Tobin J; Facchetti, Antonio
2016-04-01
Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III-V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p-n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories.
Metal oxides for optoelectronic applications
NASA Astrophysics Data System (ADS)
Yu, Xinge; Marks, Tobin J.; Facchetti, Antonio
2016-04-01
Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III-V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p-n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories.
Zone leveling and solution growth of complex compound semiconductors in space
NASA Technical Reports Server (NTRS)
Bachmann, K. J.
1986-01-01
A research program on complex semiconducting compounds and alloys was completed that addressed the growth of single crystals of CdSe(y)Te(1-y), Zn(x)Cd(1-x)Te, Mn(x)Cd(1-x)Te, InP(y)As(1-y) and CuInSe2 and the measurement of fundamental physico-chemical properties characterizing the above materials. The purpose of this ground based research program was to lay the foundations for further research concerning the growth of complex ternary compound semiconductors in a microgravity environment.
Ab initio study of II-(VI)2 dichalcogenides.
Olsson, P; Vidal, J; Lincot, D
2011-10-12
The structural stabilities of the (Zn,Cd)(S,Se,Te)(2) dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe(2) pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications.
Skutterudite Compounds For Power Semiconductor Devices
NASA Technical Reports Server (NTRS)
Fleurial, Jean-Pierre; Caillat, Thierry; Borshchevsky, Alexander; Vandersande, Jan
1996-01-01
New semiconducting materials with p-type carrier mobility values much higher than state-of-art semiconductors discovered. Nine compounds, antimonides CoSb(sub3), RhSb(sub3), IrSb(sub3), arsenides CoAs(sub3), RhAs(sub3), IrAs(sub3), and phosphides CoP(sub3), RhP(sub3) and IrP(sub3), exhibit same skutterudite crystallographic structure and form solid solutions of general composition Co(1-x-y)RH(x)Ir(y)P(1-w-z)As(w)Sb(z). Materials exhibit high hole mobilities, high doping levels, and high electronic figures of merit. Some compositions show great potential for application to thermoelectric devices.
Electrochemical photovoltaic cell having ternary alloy film
Russak, Michael A.
1984-01-01
A thin film compound semiconductor electrode comprising CdSe.sub.1-x Te.sub.x (0.ltoreq.x.ltoreq.1) is deposited on a transparent conductive substrate. An electrolyte contacts the film to form a photoactive site. The semiconductor material has a narrow energy bandgap permitting high efficiency for light conversion. The film may be fabricated by: (1) co-evaporation of two II-VI group compounds with a common cation, or (2) evaporation of three elements, concurrenty.
NASA Astrophysics Data System (ADS)
Basu, A.; Das, B.; Middya, T. R.; Bhattacharya, D. P.
2018-03-01
Compound semiconductors being piezoelectric in nature, the intrinsic thermal vibration of the lattice atoms at any temperature gives rise to an additional potential field that perturbs the periodic potential field of the atoms. This is over and above the intrinsic deformation acoustic potential field which is always produced in every material. The scattering of the electrons through the piezoelectric perturbing potential is important in all compound semiconductors, particularly at the low lattice temperatures. Thus, the electrical transport in such materials is principally controlled by the combined interaction of the electrons with the deformation potential acoustic and piezoelectric phonons at low lattice temperatures. The study here, deals with the problem of phonon growth characteristics, considering the combined scattering of the non-equilibrium electrons in compound semiconductors, at low lattice temperatures. Beside degeneracy, other low temperature features, like the inelasticity of the electron-phonon collisions, and the full form of the phonon distribution have been duly considered. The distribution function of the degenerate ensemble of carriers, as given by the heated Fermi-Dirac function, has been approximated by a simplified, well-tested model. The model which has been proposed earlier, makes it much easier to carry out analytically the integrations without usual oversimplified approximations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camarda, G. S.; Bolotnikov, A. E.; Cui, Y.
The goal of this project is to obtain and characterize scintillators, emerging- and commercial-compoundsemiconductor radiation- detection materials and devices provided by vendors and research organizations. The focus of our proposed research is to clarify the role of the deleterious defects and impurities responsible for the detectors' non-uniformity in scintillating crystals, commercial semiconductor radiation-detector materials, and in emerging R&D ones. Some benefits of this project addresses the need for fabricating high-performance scintillators and compound-semiconductor radiation-detectors with the proven potential for large-scale manufacturing. The findings help researchers to resolve the problems of non-uniformities in scintillating crystals, commercial semiconductor radiation-detector materials, and inmore » emerging R&D ones.« less
High-mobility pyrene-based semiconductor for organic thin-film transistors.
Cho, Hyunduck; Lee, Sunyoung; Cho, Nam Sung; Jabbour, Ghassan E; Kwak, Jeonghun; Hwang, Do-Hoon; Lee, Changhee
2013-05-01
Numerous conjugated oligoacenes and polythiophenes are being heavily studied in the search for high-mobility organic semiconductors. Although many researchers have designed fused aromatic compounds as organic semiconductors for organic thin-film transistors (OTFTs), pyrene-based organic semiconductors with high mobilities and on-off current ratios have not yet been reported. Here, we introduce a new pyrene-based p-type organic semiconductor showing liquid crystal behavior. The thin film characteristics of this material are investigated by varying the substrate temperature during the deposition and the gate dielectric condition using the surface modification with a self-assembled monolayer, and systematically studied in correlation with the performances of transistor devices with this compound. OTFT fabricated under the optimum deposition conditions of this compound, namely, 1,6-bis(5'-octyl-2,2'-bithiophen-5-yl)pyrene (BOBTP) shows a high-performance transistor behavior with a field-effect mobility of 2.1 cm(2) V(-1) s(-1) and an on-off current ratio of 7.6 × 10(6) and enhanced long-term stability compared to the pentacene thin-film transistor.
SYNTHESIZING ORGANIC COMPOUNDS USING LIGHT-ACTIVATED TIO2
High-value organic compounds have been synthesized successfully from linear and cyclic hydrocarbons, by photocatalytic oxidation using a semiconductor material, titanium dioxide (TiO2). Various hydrocarbons were partially oxgenated in both liquid and gaseous phase reactors usi...
Tunable multifunctional topological insulators in ternary Heusler and related compounds
NASA Astrophysics Data System (ADS)
Felser, Claudia
2011-03-01
Recently the quantum spin Hall effect was theoretically predicted and experimentally realized in quantum wells based on the binary semiconductor HgTe. The quantum spin Hall state and topological insulators are new states of quantum matter interesting for both fundamental condensed-matter physics and material science. Many Heusler compounds with C1b structure are ternary semiconductors that are structurally and electronically related to the binary semiconductors. The diversity of Heusler materials opens wide possibilities for tuning the bandgap and setting the desired band inversion by choosing compounds with appropriate hybridization strength (by the lattice parameter) and magnitude of spin--orbit coupling (by the atomic charge). Based on first-principle calculations we demonstrate that around 50 Heusler compounds show band inversion similar to that of HgTe. The topological state in these zero-gap semiconductors can be created by applying strain or by designing an appropriate quantumwell structure, similar to the case of HgTe. Many of these ternary zero-gap semiconductors (LnAuPb, LnPdBi, LnPtSb and LnPtBi) contain the rare-earth element Ln, which can realize additional properties ranging from superconductivity (for example LaPtBi) to magnetism (for example GdPtBi) and heavy fermion behaviour (for example YbPtBi). These properties can open new research directions in realizing the quantized anomalous Hall effect and topological superconductors. Heusler compounds are similar to a stuffed diamond, correspondingly, it should be possible to find the ``high Z'' equivalent of graphene in a graphite-like structure with 18 valence electrons and with inverted bands. Indeed the ternary compounds, such as LiAuSe and KHgSb with a honeycomb structure of their Au-Se and Hg-Sb layers feature band inversion very similar to HgTe which is a strong precondition for existence of the topological surface states. These materials have a gap at the Fermi energy and are therefore candidates for 3D-topological insulators. Additionally they are centro-symmetric, therefore, it is possible to determine the parity of their wave functions, and hence, their topological character. Surprisingly, the compound KHgSb with the strong SOC is topologically trivial, whereas LiAuSe is found to be a topological non-trivial insulator.
High-Performance Thermoelectric Semiconductors
NASA Technical Reports Server (NTRS)
Fleurial, Jean-Pierre; Caillat, Thierry; Borshchevsky, Alexander
1994-01-01
Figures of merit almost double current state-of-art thermoelectric materials. IrSb3 is semiconductor found to exhibit exceptional thermoelectric properties. CoSb3 and RhSb3 have same skutterudite crystallographic structure as IrSb3, and exhibit exceptional transport properties expected to contribute to high thermoelectric performance. These three compounds form solid solutions. Combination of properties offers potential for development of new high-performance thermoelectric materials for more efficient thermoelectric power generators, coolers, and detectors.
Mo(3)Sb(7-x)Te(x) for Thermoelectric Power Generation
NASA Technical Reports Server (NTRS)
Snyder, G. Jeffrey; Gascoin, Frank S.; Rasmussen, Julia
2009-01-01
Compounds having compositions of Mo(3)Sb(7-x)Te(x) (where x = 1.5 or 1.6) have been investigated as candidate thermoelectric materials. These compounds are members of a class of semiconductors that includes previously known thermoelectric materials. All of these compounds have complex crystalline and electronic structures. Through selection of chemical compositions and processing conditions, it may be possible to alter the structures to enhance or optimize thermoelectric properties.
Advanced thermoelectric materials with enhanced crystal lattice structure and methods of preparation
NASA Technical Reports Server (NTRS)
Fleurial, Jean-Pierre (Inventor); Caillat, Thierry F. (Inventor); Borshchevsky, Alexander (Inventor)
1998-01-01
New skutterudite phases including Ru.sub.0.5 Pd.sub.0.5 Sb.sub.3, RuSb.sub.2 Te, and FeSb.sub.2 Te, have been prepared having desirable thermoelectric properties. In addition, a novel thermoelectric device has been prepared using skutterudite phase Fe.sub.0.5 Ni.sub.0.5 Sb.sub.3. The skutterudite-type crystal lattice structure of these semiconductor compounds and their enhanced thermoelectric properties results in semiconductor materials which may be used in the fabrication of thermoelectric elements to substantially improve the efficiency of the resulting thermoelectric device. Semiconductor materials having the desired skutterudite-type crystal lattice structure may be prepared in accordance with the present invention by using powder metallurgy techniques. Measurements of electrical and thermal transport properties of selected semiconductor materials prepared in accordance with the present invention, demonstrated high Hall mobilities and good Seebeck coefficients. These materials have low thermal conductivity and relatively low electrical resistivity, and are good candidates for low temperature thermoelectric applications.
Low-Resistivity Zinc Selenide for Heterojunctions
NASA Technical Reports Server (NTRS)
Stirn, R. J.
1986-01-01
Magnetron reactive sputtering enables doping of this semiconductor. Proposed method of reactive sputtering combined with doping shows potential for yielding low-resistivity zinc selenide films. Zinc selenide attractive material for forming heterojunctions with other semiconductor compounds as zinc phosphide, cadmium telluride, and gallium arsenide. Semiconductor junctions promising for future optoelectronic devices, including solar cells and electroluminescent displays. Resistivities of zinc selenide layers deposited by evaporation or chemical vapor deposition too high to form practical heterojunctions.
Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors
NASA Astrophysics Data System (ADS)
Dey, Anup; Maiti, Biswajit; Chanda Sarkar, Debasree
2014-04-01
A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k→) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg1-xCdxTe, and In1-xGaxAsyP1-y lattice matched to InP, as example of III-V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.
GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies.
Yoon, Jongseung; Jo, Sungjin; Chun, Ik Su; Jung, Inhwa; Kim, Hoon-Sik; Meitl, Matthew; Menard, Etienne; Li, Xiuling; Coleman, James J; Paik, Ungyu; Rogers, John A
2010-05-20
Compound semiconductors like gallium arsenide (GaAs) provide advantages over silicon for many applications, owing to their direct bandgaps and high electron mobilities. Examples range from efficient photovoltaic devices to radio-frequency electronics and most forms of optoelectronics. However, growing large, high quality wafers of these materials, and intimately integrating them on silicon or amorphous substrates (such as glass or plastic) is expensive, which restricts their use. Here we describe materials and fabrication concepts that address many of these challenges, through the use of films of GaAs or AlGaAs grown in thick, multilayer epitaxial assemblies, then separated from each other and distributed on foreign substrates by printing. This method yields large quantities of high quality semiconductor material capable of device integration in large area formats, in a manner that also allows the wafer to be reused for additional growths. We demonstrate some capabilities of this approach with three different applications: GaAs-based metal semiconductor field effect transistors and logic gates on plates of glass, near-infrared imaging devices on wafers of silicon, and photovoltaic modules on sheets of plastic. These results illustrate the implementation of compound semiconductors such as GaAs in applications whose cost structures, formats, area coverages or modes of use are incompatible with conventional growth or integration strategies.
1982-05-01
semiconductor Schottky-barrier contacts are used in many semiconductor devices, including switches, rectifiers, varactors , IMPATTs, mixer and detector...ionic materials such as most of the II-VI compound semiconductors (e.g. ZnS and ZnO) and the transition-metal oxides , the barrier height is strongly...the alloying process described above is nonuniformity, due to the incomplete removal of residual surface oxides prior to the evaporation of the metal
Qin, Fei; Meng, Zi-Ming; Zhong, Xiao-Lan; Liu, Ye; Li, Zhi-Yuan
2012-06-04
We present a versatile technique based on nano-imprint lithography to fabricate high-quality semiconductor-polymer compound nonlinear photonic crystal (NPC) slabs. The approach allows one to infiltrate uniformly polystyrene materials that possess large Kerr nonlinearity and ultrafast nonlinear response into the cylindrical air holes with diameter of hundred nanometers that are perforated in silicon membranes. Both the structural characterization via the cross-sectional scanning electron microscopy images and the optical characterization via the transmission spectrum measurement undoubtedly show that the fabricated compound NPC samples have uniform and dense polymer infiltration and are of high quality in optical properties. The compound NPC samples exhibit sharp transmission band edges and nondegraded high quality factor of microcavities compared with those in the bare silicon PC. The versatile method can be expanded to make general semiconductor-polymer hybrid optical nanostructures, and thus it may pave the way for reliable and efficient fabrication of ultrafast and ultralow power all-optical tunable integrated photonic devices and circuits.
Method For Growth of Crystal Surfaces and Growth of Heteroepitaxial Single Crystal Films Thereon
NASA Technical Reports Server (NTRS)
Powell, J. Anthony (Inventor); Larkin, David J. (Inventor); Neudeck, Philip G. (Inventor); Matus, Lawrence G. (Inventor)
2000-01-01
A method of growing atomically-flat surfaces and high quality low-defect crystal films of semiconductor materials and fabricating improved devices thereon is discussed. The method is also suitable for growing films heteroepitaxially on substrates that are different than the film. The method is particularly suited for growth of elemental semiconductors (such as Si), compounds of Groups III and V elements of the Periodic Table (such as GaN), and compounds and alloys of Group IV elements of the Periodic Table (such as SiC).
Electrolytic photodissociation of chemical compounds by iron oxide electrodes
Somorjai, Gabor A.; Leygraf, Christofer H.
1984-01-01
Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor diode having visible light as its sole source of energy. The diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.
Electrolytic photodissociation of chemical compounds by iron oxide photochemical diodes
Somorjai, Gabor A.; Leygraf, Christofer H.
1985-01-01
Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor photochemical diode having visible light as its sole source of energy. The photochemical diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.
Ground-based research of crystal growth of II-VI compound semiconductors by physical vapor transport
NASA Technical Reports Server (NTRS)
Volz, M. P.; Gillies, D. C.; Szofran, F. R.; Lehoczky, S. L.; Su, Ching-Hua; Sha, Yi-Gao; Zhou, W.; Dudley, M.; Liu, Hao-Chieh; Brebrick, R. F.;
1994-01-01
Ground-based investigation of the crystal growth of II-VI semiconductor compounds, including CdTe, CdS, ZnTe, and ZnSe, by physical vapor transport in closed ampoules was performed. The crystal growth experimental process and supporting activities--preparation and heat treatment of starting materials, vapor partial pressure measurements, and transport rate measurements are reported. The results of crystal characterization, including microscopy, microstructure, optical transmission photoluminescence, synchrotron radiation topography, and chemical analysis by spark source mass spectrography, are also discussed.
NASA Astrophysics Data System (ADS)
Wei, Hui-Ling; Shi, Ya-Rui; Liu, Yu-Fang
2015-06-01
A series of phenyl end-capped derivatives of benzo[d,d‧]thieno[3,2-b4,5- b‧]dithiophene (BTDT) with periphery-fluorinated substitutions (PFS) were systematically investigated by using density functional theory (DFT) combined with the Marcus-Hush electron transfer theory. The substituting effects of PFS were discussed. Compared with the original compounds, (i) the PFS compounds have a relatively higher efficiency of charge transport, lower barriers of electron injection, and larger HOMO-LUMO gaps; (ii) the air-stability and the device performance are enhanced by PFS; and (iii) the HOMO-LUMO transitions in the absorption spectrum of the PFS compounds show an obvious blue-shift trend. The perfluorophenylbisbenzo[d, d‧]thieno[3,2-b4,5-b‧]dithiophene (BpF-BTDT) is found to be the most stable and most effective compound in charge transport among the investigated compounds, and it is suggested as an ambipolar semiconducting material. The results of electronic coupling of the bisbenzo[d, d‧]thieno[3,2-b 4,5- b‧]dithiophene (BBTDT) derivatives show that the orbital interaction is mainly contributed by the neighboring molecule in the two dimensional (2D) layer. The PFS compounds have lower oxidization potential, ionization potential, and electron affinity values than the corresponding original ones, which suggest that fluorination can enhance the performance of the thiophene-based organic solar cells. These findings provide a better understanding of the PFS effects on organic semiconductors and may help to design high-performance semiconductor materials.
Technology Roadmaps for Compound Semiconductors
Bennett, Herbert S.
2000-01-01
The roles cited for compound semiconductors in public versions of existing technology roadmaps from the National Electronics Manufacturing Initiative, Inc., Optoelectronics Industry Development Association, Microelectronics Advanced Research Initiative on Optoelectronic Interconnects, and Optoelectronics Industry and Technology Development Association (OITDA) are discussed and compared within the context of trends in the Si CMOS industry. In particular, the extent to which these technology roadmaps treat compound semiconductors at the materials processing and device levels will be presented for specific applications. For example, OITDA’s Optical Communications Technology Roadmap directly connects the information demand of delivering 100 Mbit/s to the home to the requirement of producing 200 GHz heterojunction bipolar transistors with 30 nm bases and InP high electron mobility transistors with 100 nm gates. Some general actions for progress towards the proposed International Technology Roadmap for Compound Semiconductors (ITRCS) and methods for determining the value of an ITRCS will be suggested. But, in the final analysis, the value added by an ITRCS will depend on how industry leaders respond. The technical challenges and economic opportunities of delivering high quality digital video to consumers provide concrete examples of where the above actions and methods could be applied. PMID:27551615
Induced Charge Fluctuations in Semiconductor Detectors with a Cylindrical Geometry
NASA Astrophysics Data System (ADS)
Samedov, Victor V.
2018-01-01
Now, compound semiconductors are very appealing for hard X-ray room-temperature detectors for medical and astrophysical applications. Despite the attractive properties of compound semiconductors, such as high atomic number, high density, wide band gap, low chemical reactivity and long-term stability, poor hole and electron mobility-lifetime products degrade the energy resolution of these detectors. The main objective of the present study is in development of a mathematical model of the process of the charge induction in a cylindrical geometry with accounting for the charge carrier trapping. The formulae for the moments of the distribution function of the induced charge and the formulae for the mean amplitude and the variance of the signal at the output of the semiconductor detector with a cylindrical geometry were derived. It was shown that the power series expansions of the detector amplitude and the variance in terms of the inverse bias voltage allow determining the Fano factor, electron mobility lifetime product, and the nonuniformity level of the trap density of the semiconductor material.
NASA Astrophysics Data System (ADS)
Biyikli, Necmi; Haider, Ali
2017-09-01
In this paper, we present the progress in the growth of nanoscale semiconductors grown via atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became a widespread tool to grow functional films and conformal ultra-thin coatings for various applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with sub-monolayer thickness control and ultimate conformality, makes ALD attractive for semiconductor device applications. Towards this end, precursors and low-temperature growth recipes are developed to deposit crystalline thin films for compound and elemental semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced techniques have been exploited to achieve device-compatible film quality. Metal-oxides, III-nitrides, sulfides, and selenides are among the most popular semiconductor material families studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors as well using either template-assisted growth methods or bottom-up controlled nucleation mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core-shell versions of the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount of applications including functional coatings, catalysis and photocatalysis, renewable energy conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this review, we give an overview of the current state-of-the-art in ALD-based nanoscale semiconductor research including the already demonstrated and future applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abernathy, C.R.; Hobson, W.S.; Hong, J.
1998-11-04
Current and future generations of sophisticated compound semiconductor devices require the ability for submicron scale patterning. The situation is being complicated since some of the new devices are based on a wider diversity of materials to be etched. Conventional IUE (Reactive Ion Etching) has been prevalent across the industry so far, but has limitations for materials with high bond strengths or multiple elements. IrI this paper, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma), for the etching of ternary compound semiconductors (InGaP, AIInP, AlGaP) which are employed for electronic devices like heterojunctionmore » bipolar transistors (HBTs) or high electron mobility transistors (HEMTs), and photonic devices such as light-emitting diodes (LEDs) and lasers. High density plasma sources, opeiating at lower pressure, are expected to meet target goals determined in terms of etch rate, surface morphology, surface stoichiometry, selectivity, etc. The etching mechanisms, which are described in this paper, can also be applied to other III-V (GaAs-based, InP-based) as well as III-Nitride since the InGaAIP system shares many of the same properties.« less
Alivisatos, A. Paul; Colvin, Vicki L.
1998-01-01
Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed.
Bulk semiconducting scintillator device for radiation detection
Stowe, Ashley C.; Burger, Arnold; Groza, Michael
2016-08-30
A bulk semiconducting scintillator device, including: a Li-containing semiconductor compound of general composition Li-III-VI.sub.2, wherein III is a Group III element and VI is a Group VI element; wherein the Li-containing semiconductor compound is used in one or more of a first mode and a second mode, wherein: in the first mode, the Li-containing semiconductor compound is coupled to an electrical circuit under bias operable for measuring electron-hole pairs in the Li-containing semiconductor compound in the presence of neutrons and the Li-containing semiconductor compound is also coupled to current detection electronics operable for detecting a corresponding current in the Li-containing semiconductor compound; and, in the second mode, the Li-containing semiconductor compound is coupled to a photodetector operable for detecting photons generated in the Li-containing semiconductor compound in the presence of the neutrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Dongseok; Young, James L.; Lim, Haneol
Despite their excellent photophysical properties and record-high solar-to-hydrogen conversion efficiency, the high cost and limited stability of III-V compound semiconductors prohibit their practical application in solar-driven photoelectrochemical water splitting. Here in this paper we present a strategy for III-V photocatalysis that can circumvent these difficulties via printed assemblies of epitaxially grown compound semiconductors. A thin film stack of GaAs-based epitaxial materials is released from the growth wafer and printed onto a non-native transparent substrate to form an integrated photocatalytic electrode for solar hydrogen generation. The heterogeneously integrated electrode configuration together with specialized epitaxial design serve to decouple the material interfacesmore » for illumination and electrocatalysis. Subsequently, this allows independent control and optimization of light absorption, carrier transport, charge transfer, and material stability. Using this approach, we construct a series-connected wireless tandem system of GaAs photoelectrodes and demonstrate 13.1% solar-to-hydrogen conversion efficiency of unassisted-mode water splitting.« less
The control of purity and stoichiometry of compound semiconductors by high vapor pressure transport
NASA Technical Reports Server (NTRS)
Bachmann, Klaus J.; Ito, Kazufumi; Scroggs, Jeffery S.; Tran, Hien T.
1995-01-01
In this report we summarize the results of a three year research program on high pressure vapor transport (HPVT) of compound semiconductors. Most of our work focused onto pnictides, in particular ZnGeP2, as a model system. Access to single crystals of well controlled composition of this material is desired for advancing the understanding and control of its point defect chemistry in the contest of remote, real-time sensing of trace impurities, e.g., greenhouse gases, in the atmosphere by ZnGeP2 optical parametric oscillators (OPO's).
NASA Astrophysics Data System (ADS)
Elsayed, H.; Olguín, D.; Cantarero, A.
2017-12-01
This work presents an ab initio study of the effects of hydrostatic pressure on the Seebeck coefficients and thermoelectric power factors of the ɛ-polytype of InSe, GaSe, and InGaSe2 semiconductor compounds. Our study is performed using the semi-classical Boltzmann theory and the rigid band approach. The electronic band structures of these materials are calculated using the full-potential linearized augmented plane-wave method. The obtained thermoelectric properties are discussed in terms of the results of the electronic structure calculations. As we will show, our calculated Seebeck coefficient values indicate that these materials are good alternatives to other well-studied thermoelectric systems.
Rhenium ion beam for implantation into semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulevoy, T. V.; Seleznev, D. N.; Alyoshin, M. E.
2012-02-15
At the ion source test bench in Institute for Theoretical and Experimental Physics the program of ion source development for semiconductor industry is in progress. In framework of the program the Metal Vapor Vacuum Arc ion source for germanium and rhenium ion beam generation was developed and investigated. It was shown that at special conditions of ion beam implantation it is possible to fabricate not only homogenous layers of rhenium silicides solid solutions but also clusters of this compound with properties of quantum dots. At the present moment the compound is very interesting for semiconductor industry, especially for nanoelectronics andmore » nanophotonics, but there is no very developed technology for production of nanostructures (for example quantum sized structures) with required parameters. The results of materials synthesis and exploration are presented.« less
Method for producing nanocrystalline multicomponent and multiphase materials
Eastman, Jeffrey A.; Rittner, Mindy N.; Youngdahl, Carl J.; Weertman, Julia R.
1998-01-01
A process for producing multi-component and multiphase nanophase materials is provided wherein a plurality of elements are vaporized in a controlled atmosphere, so as to facilitate thorough mixing, and then condensing and consolidating the elements. The invention also provides for a multicomponent and multiphase nanocrystalline material of specified elemental and phase composition having component grain sizes of between approximately 1 nm and 100 nm. This material is a single element in combination with a binary compound. In more specific embodiments, the single element in this material can be a transition metal element, a non-transition metal element, a semiconductor, or a semi-metal, and the binary compound in this material can be an intermetallic, an oxide, a nitride, a hydride, a chloride, or other compound.
Baranowski, Lauryn L.; Zawadzki, Pawel; Lany, Stephan; ...
2016-11-10
Defects are critical to understanding the electronic properties of semiconducting compounds, for applications such as light-emitting diodes, transistors, photovoltaics, and thermoelectrics. In this review, we describe our work investigating defects in tetrahedrally bonded, multinary semiconductors, and discuss the place of our research within the context of publications by other groups. We applied experimental and theory techniques to understand point defects, structural disorder, and extended antisite defects in one semiconductor of interest for photovoltaic applications, Cu 2SnS 3. We contrast our findings on Cu 2SnS 3 with other chemically related Cu-Sn-S compounds, as well as structurally related compounds such as Cumore » 2ZnSnS 4 and Cu(In,Ga)Se 2. We find that evaluation of point defects alone is not sufficient to understand defect behavior in multinary tetrahedrally bonded semiconductors. In the case of Cu 2SnS 3 and Cu 2ZnSnS 4, structural disorder and entropy-driven cation clustering can result in nanoscale compositional inhomogeneities which detrimentally impact the electronic transport. Therefore, it is not sufficient to assess only the point defect behavior of new multinary tetrahedrally bonded compounds; effects such as structural disorder and extended antisite defects must also be considered. Altogether, this review provides a framework for evaluating tetrahedrally bonded semiconducting compounds with respect to their defect behavior for photovoltaic and other applications, and suggests new materials that may not be as prone to such imperfections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baranowski, Lauryn L.; Zawadzki, Pawel; Lany, Stephan
Defects are critical to understanding the electronic properties of semiconducting compounds, for applications such as light-emitting diodes, transistors, photovoltaics, and thermoelectrics. In this review, we describe our work investigating defects in tetrahedrally bonded, multinary semiconductors, and discuss the place of our research within the context of publications by other groups. We applied experimental and theory techniques to understand point defects, structural disorder, and extended antisite defects in one semiconductor of interest for photovoltaic applications, Cu 2SnS 3. We contrast our findings on Cu 2SnS 3 with other chemically related Cu-Sn-S compounds, as well as structurally related compounds such as Cumore » 2ZnSnS 4 and Cu(In,Ga)Se 2. We find that evaluation of point defects alone is not sufficient to understand defect behavior in multinary tetrahedrally bonded semiconductors. In the case of Cu 2SnS 3 and Cu 2ZnSnS 4, structural disorder and entropy-driven cation clustering can result in nanoscale compositional inhomogeneities which detrimentally impact the electronic transport. Therefore, it is not sufficient to assess only the point defect behavior of new multinary tetrahedrally bonded compounds; effects such as structural disorder and extended antisite defects must also be considered. Altogether, this review provides a framework for evaluating tetrahedrally bonded semiconducting compounds with respect to their defect behavior for photovoltaic and other applications, and suggests new materials that may not be as prone to such imperfections.« less
NASA Technical Reports Server (NTRS)
1982-01-01
The technique of electromigration, i.e., electric field induced forced convection, can be used to grow semiconductor material and other compounds from solution by passing electric current through the growth interface while the temperature of the system is maintained constant. Current controlled electromigration, referred to as electroepitaxy, was successfully applied to grow epitaxial layers of various semiconductors and garnets.
Mounet, Nicolas; Gibertini, Marco; Schwaller, Philippe; Campi, Davide; Merkys, Andrius; Marrazzo, Antimo; Sohier, Thibault; Castelli, Ivano Eligio; Cepellotti, Andrea; Pizzi, Giovanni; Marzari, Nicola
2018-03-01
Two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic applications. Yet, only a few dozen 2D materials have been successfully synthesized or exfoliated. Here, we search for 2D materials that can be easily exfoliated from their parent compounds. Starting from 108,423 unique, experimentally known 3D compounds, we identify a subset of 5,619 compounds that appear layered according to robust geometric and bonding criteria. High-throughput calculations using van der Waals density functional theory, validated against experimental structural data and calculated random phase approximation binding energies, further allowed the identification of 1,825 compounds that are either easily or potentially exfoliable. In particular, the subset of 1,036 easily exfoliable cases provides novel structural prototypes and simple ternary compounds as well as a large portfolio of materials to search from for optimal properties. For a subset of 258 compounds, we explore vibrational, electronic, magnetic and topological properties, identifying 56 ferromagnetic and antiferromagnetic systems, including half-metals and half-semiconductors.
NASA Astrophysics Data System (ADS)
Mounet, Nicolas; Gibertini, Marco; Schwaller, Philippe; Campi, Davide; Merkys, Andrius; Marrazzo, Antimo; Sohier, Thibault; Castelli, Ivano Eligio; Cepellotti, Andrea; Pizzi, Giovanni; Marzari, Nicola
2018-02-01
Two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic applications. Yet, only a few dozen 2D materials have been successfully synthesized or exfoliated. Here, we search for 2D materials that can be easily exfoliated from their parent compounds. Starting from 108,423 unique, experimentally known 3D compounds, we identify a subset of 5,619 compounds that appear layered according to robust geometric and bonding criteria. High-throughput calculations using van der Waals density functional theory, validated against experimental structural data and calculated random phase approximation binding energies, further allowed the identification of 1,825 compounds that are either easily or potentially exfoliable. In particular, the subset of 1,036 easily exfoliable cases provides novel structural prototypes and simple ternary compounds as well as a large portfolio of materials to search from for optimal properties. For a subset of 258 compounds, we explore vibrational, electronic, magnetic and topological properties, identifying 56 ferromagnetic and antiferromagnetic systems, including half-metals and half-semiconductors.
Alivisatos, A.P.; Colvin, V.L.
1998-05-12
Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed. 10 figs.
New two-dimensional V-V binary compounds with a honeycomb-like structure: a first-principles study
NASA Astrophysics Data System (ADS)
Xiao, Wen-Zhi; Xiao, Gang; Rong, Qing-Yan; Wang, Ling-Ling
2018-03-01
We systematically search for the stable structures of two-dimensional (2D) V-V binary compounds with honeycomb-like structure by using the first-principles calculation. We identify 26 stable structures out of 54 2D V-V compounds based on various assessments of stabilities: total energy, thermodynamics, and mechanics. Among them, 12 2D V-V compounds are previously unrecognized structures. For each class V-V isomer, the most stable structures are found to be β-AsP, β-SbAs, α-BiAs, α-BiSb, α 2-SbP, and α 2-BiP. For all isomers of the AsP, they are always stable, and hence PAs monolayer is most likely to be prepared experimentally. All the stable structures are semiconductors with bandgaps ranging from 0.06 eV to 2.52 eV at the Heyd-Scuseria-Ernzerhof level. Therefore, they are potential materials for versatile semiconductor devices. Our findings provide a new clue to facilitate the design of 2D materials for potential applications.
Growing Organic Crystals By The Czochralski Method
NASA Technical Reports Server (NTRS)
Shields, Angela; Frazier, Donald O.; Penn, Benjamin G.; Aggarwal, M. D.; Wang, W. S.
1994-01-01
Apparatus grows high-quality single crystals of organic compounds by Czochralski method. In Czochralski process, growing crystal lifted from middle of molten material without touching walls. Because of low melting temperatures of organic crystals, glass vessels usable. Traditional method for inorganic semiconductors adapted to optically nonlinear organic materials.
Jie, Wenjing; Hao, Jianhua
2014-06-21
Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.
NASA Astrophysics Data System (ADS)
Jie, Wenjing; Hao, Jianhua
2014-05-01
Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.
The measurement of alpha particle emissions from semiconductor memory materials
NASA Astrophysics Data System (ADS)
Bouldin, D. P.
1981-07-01
With the increasing concern for the affects of alpha particles on the reliability of semiconductor memories, an interest has arisen in characterizing semiconductor manufacturing materials for extremely low-level alpha-emitting contaminants. It is shown that four elements are of primary concern: uranium, thorium, radium, and polonium. Measurement of contamination levels are given relevance by first correlating them with alpha flux emission levels and then corre1ating these flux values with device soft error rates. Measurement techniques involve either measurements of elemental concentrations-applicable to only uranium and thorium - or direct measurements of alpha emission fluxes. Alpha fluxes are most usefully measured by means of ZnS scintillation counting, practical details of which are discussed. Materials measurements are reported for ceramics, solder, silicon, quartz, and various metals and organic materials. Ceramics and most metals have contamination levels of concern, but the high temperature processing normally used in semiconductor manufacturing and low total amounts reduce problems, at least for metals. Silicon, silicon compounds, and organic materials have been found to have no detectable alpha emitters. Finally, a brief discussion of the calibration of alpha sources for accelerated device testing is given, including practical details on the affects of source/chip separation and alignment variations.
NASA Astrophysics Data System (ADS)
Unger, K.
1988-11-01
An analysis is made of the theoretical problems encountered in precision calculations of refractive indices of semiconductor materials arising in connection with the use of superlattices as active layers in double-heterostructure lasers and in connection with the use of the impurity-induced disordering effect, i.e., the ability to transform selectively a superlattice into a corresponding solid solution. This can be done by diffusion or ion implantation. A review is given of calculations of refractive indices based on the knowledge of the energy band structure and the role of disorder is considered particularly. An anomaly observed in the (InAl)As system is considered. It is shown that the local field effects and exciton transitions are important. A reasonable approach is clearly a direct calculation of the difference between the refractive indices of superlattices based on compounds and of those based on their solid solutions.
Stable surface passivation process for compound semiconductors
Ashby, Carol I. H.
2001-01-01
A passivation process for a previously sulfided, selenided or tellurated III-V compound semiconductor surface. The concentration of undesired mid-gap surface states on a compound semiconductor surface is reduced by the formation of a near-monolayer of metal-(sulfur and/or selenium and/or tellurium)-semiconductor that is effective for long term passivation of the underlying semiconductor surface. Starting with the III-V compound semiconductor surface, any oxidation present thereon is substantially removed and the surface is then treated with sulfur, selenium or tellurium to form a near-monolayer of chalcogen-semiconductor of the surface in an oxygen-free atmosphere. This chalcogenated surface is then contacted with a solution of a metal that will form a low solubility chalcogenide to form a near-monolayer of metal-chalcogen-semiconductor. The resulting passivating layer provides long term protection for the underlying surface at or above the level achieved by a freshly chalcogenated compound semiconductor surface in an oxygen free atmosphere.
Crystal Growth and Characterization of the Narrow-Band-Gap Semiconductors OsPn 2 (Pn = P, As, Sb)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bugaris, Daniel E.; Malliakas, Christos D.; Shoemaker, Daniel P.
2014-09-15
Using metal fluxes, crystals of the binary osmium dipnictides OsPn(2) (Pn = P, As, Sb) have been grown for the first time. Single-crystal X-ray diffraction confirms that these compounds crystallize in the marcasite structure type with orthorhombic space group Pnnm. The structure is a three-dimensional framework of corner- and edge-sharing OsPn(6) octahedra, as well as [Pn(2)(-4)] anions. Raman spectroscopy shows the presence of PP single bonds, consistent with the presence of [Pn(2)(-4)] anions and formally Os4+ cations. Optical-band-gap and high-temperature electrical resistivity measurements indicate that these materials are narrow-band-gap semiconductors. The experimentally determined Seebeck coefficients reveal that nominally undoped OsP2more » and OsSb2 are n-type semiconductors, whereas OsAs2 is p-type. Electronic band structure using density functional theory calculations shows that these compounds are indirect narrow-band-gap semiconductors. The bonding p orbitals associated with the Pn(2) dimer are below the Fermi energy, and the corresponding antibonding states are above, consistent with a PnPn single bond. Thermopower calculations using Boltzmann transport theory and constant relaxation time approximation show that these materials are potentially good thermoelectrics, in agreement with experiment.« less
Expanding frontiers in materials chemistry and physics with multiple anions.
Kageyama, Hiroshi; Hayashi, Katsuro; Maeda, Kazuhiko; Attfield, J Paul; Hiroi, Zenji; Rondinelli, James M; Poeppelmeier, Kenneth R
2018-02-22
During the last century, inorganic oxide compounds laid foundations for materials synthesis, characterization, and technology translation by adding new functions into devices previously dominated by main-group element semiconductor compounds. Today, compounds with multiple anions beyond the single-oxide ion, such as oxyhalides and oxyhydrides, offer a new materials platform from which superior functionality may arise. Here we review the recent progress, status, and future prospects and challenges facing the development and deployment of mixed-anion compounds, focusing mainly on oxide-derived materials. We devote attention to the crucial roles that multiple anions play during synthesis, characterization, and in the physical properties of these materials. We discuss the opportunities enabled by recent advances in synthetic approaches for design of both local and overall structure, state-of-the-art characterization techniques to distinguish unique structural and chemical states, and chemical/physical properties emerging from the synergy of multiple anions for catalysis, energy conversion, and electronic materials.
High-luminosity blue and blue-green gallium nitride light-emitting diodes.
Morkoç, H; Mohammad, S N
1995-01-06
Compact and efficient sources of blue light for full color display applications and lighting eluded and tantalized researchers for many years. Semiconductor light sources are attractive owing to their reliability and amenability to mass manufacture. However, large band gaps are required to achieve blue color. A class of compound semiconductors formed by metal nitrides, GaN and its allied compounds AIGaN and InGaN, exhibits properties well suited for not only blue and blue-green emitters, but also for ultraviolet emitters and detectors. What thwarted engineers and scientists from fabricating useful devices from these materials in the past was the poor quality of material and lack of p-type doping. Both of these obstacles have recently been overcome to the point where highluminosity blue and blue-green light-emitting diodes are now available in the marketplace.
Method for producing nanocrystalline multicomponent and multiphase materials
Eastman, J.A.; Rittner, M.N.; Youngdahl, C.J.; Weertman, J.R.
1998-03-17
A process for producing multi-component and multiphase nanophase materials is provided wherein a plurality of elements are vaporized in a controlled atmosphere, so as to facilitate thorough mixing, and then condensing and consolidating the elements. The invention also provides for a multicomponent and multiphase nanocrystalline material of specified elemental and phase composition having component grain sizes of between approximately 1 nm and 100 nm. This material is a single element in combination with a binary compound. In more specific embodiments, the single element in this material can be a transition metal element, a non-transition metal element, a semiconductor, or a semi-metal, and the binary compound in this material can be an intermetallic, an oxide, a nitride, a hydride, a chloride, or other compound. 6 figs.
Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin; Shih, Hung-Dah
1998-01-01
Interest in optical devices which can operate in the visible spectrum has motivated research interest in the II-VI wide band gap semiconductor materials. The recent challenge for semiconductor opto-electronics is the development of a laser which can operate at short visible wavelengths, In the past several years, major advances in thin film technology such as molecular beam epitaxy and metal organic chemical vapor deposition have demonstrated the applicability of II-VI materials to important devices such as light-emitting diodes, lasers, and ultraviolet detectors.The demonstration of its optical bistable properties in bulk and thin film forms also make ZnSe a possible candidate material for the building blocks of a digital optical computer. Despite this, developments in the crystal growth of bulk II-VI semiconductor materials has not advanced far enough to provide the low price, high quality substrates needed for the thin film growth technology. The electrical and optical properties of semiconductor materials depend on the native point defects, (the deviation from stoichiometry), and the impurity or dopant distribution. To date, the bulk growth of ZnSe substrates has been plagued with problems related to defects such as non-uniform distributions of native defects, impurities and dopants, lattice strain, dislocations, grain boundaries, and second phase inclusions which greatly effect the device performance. In the bulk crystal growth of some technologically important semiconductors, such as ZnTe, CdS, ZnSe and ZnS, vapor growth techniques have significant advantages over melt growth techniques due to the high melting points of these materials.
Kang, Dongseok; Young, James L.; Lim, Haneol; ...
2017-03-27
Despite their excellent photophysical properties and record-high solar-to-hydrogen conversion efficiency, the high cost and limited stability of III-V compound semiconductors prohibit their practical application in solar-driven photoelectrochemical water splitting. Here in this paper we present a strategy for III-V photocatalysis that can circumvent these difficulties via printed assemblies of epitaxially grown compound semiconductors. A thin film stack of GaAs-based epitaxial materials is released from the growth wafer and printed onto a non-native transparent substrate to form an integrated photocatalytic electrode for solar hydrogen generation. The heterogeneously integrated electrode configuration together with specialized epitaxial design serve to decouple the material interfacesmore » for illumination and electrocatalysis. Subsequently, this allows independent control and optimization of light absorption, carrier transport, charge transfer, and material stability. Using this approach, we construct a series-connected wireless tandem system of GaAs photoelectrodes and demonstrate 13.1% solar-to-hydrogen conversion efficiency of unassisted-mode water splitting.« less
NASA Astrophysics Data System (ADS)
Kang, Dongseok; Young, James L.; Lim, Haneol; Klein, Walter E.; Chen, Huandong; Xi, Yuzhou; Gai, Boju; Deutsch, Todd G.; Yoon, Jongseung
2017-03-01
Despite their excellent photophysical properties and record-high solar-to-hydrogen conversion efficiency, the high cost and limited stability of III-V compound semiconductors prohibit their practical application in solar-driven photoelectrochemical water splitting. Here we present a strategy for III-V photocatalysis that can circumvent these difficulties via printed assemblies of epitaxially grown compound semiconductors. A thin film stack of GaAs-based epitaxial materials is released from the growth wafer and printed onto a non-native transparent substrate to form an integrated photocatalytic electrode for solar hydrogen generation. The heterogeneously integrated electrode configuration together with specialized epitaxial design serve to decouple the material interfaces for illumination and electrocatalysis. Subsequently, this allows independent control and optimization of light absorption, carrier transport, charge transfer, and material stability. Using this approach, we construct a series-connected wireless tandem system of GaAs photoelectrodes and demonstrate 13.1% solar-to-hydrogen conversion efficiency of unassisted-mode water splitting.
White, Miles A; Medina-Gonzalez, Alan M; Vela, Javier
2018-03-12
Filled tetrahedral semiconductors are a rich family of compounds with tunable electronic structure, making them ideal for applications in thermoelectrics, photovoltaics, and battery anodes. Furthermore, these materials crystallize in a plethora of related structures that are very close in energy, giving rise to polytypism through the manipulation of synthetic parameters. This Minireview highlights recent advances in the solution-phase synthesis and nanostructuring of these materials. These methods enable the synthesis of metastable phases and polytypes that were previously unobtainable. Additionally, samples synthesized in solution phase have enhanced thermoelectric performance due to their decreased grain size. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ab initio Thermal Transport in Compound Semiconductors
2013-04-02
upper bound to the thermal conductivities of cubic aluminum-V, gallium -V, and indium-V compounds as limited by anharmonic phonon scattering. The effects...and GaP [red circles (Ref. 51) and red triangles (Ref. 52)]. B. Gallium -V compounds We previously presented results for κL and P for wurtzite GaN and...data was found. We used this approach to examine κL in aluminum-V, gallium -V, and indium-V compounds as well as the technologically important materials
NASA Astrophysics Data System (ADS)
Tang, Liangliang; Xu, Chang; Liu, Zhuming
2017-01-01
Zn diffusion in III-V compound semiconductorsare commonly processed under group V-atoms rich conditions because the vapor pressure of group V-atoms is relatively high. In this paper, we found that group V-atoms in the diffusion sources would not change the shaped of Zn profiles, while the Zn diffusion would change dramatically undergroup III-atoms rich conditions. The Zn diffusions were investigated in typical III-V semiconductors: GaAs, GaSb and InAs. We found that under group V-atoms rich or pure Zn conditions, the double-hump Zn profiles would be formed in all materials except InAs. While under group III-atoms rich conditions, single-hump Zn profiles would be formed in all materials. Detailed diffusion models were established to explain the Zn diffusion process; the surface self-diffusion of matrix atoms is the origin of the abnormal Zn diffusion phenomenon.
de Echegaray, Paula; Mancheño, María J; Arrechea-Marcos, Iratxe; Juárez, Rafael; López-Espejo, Guzmán; López Navarrete, J Teodomiro; Ramos, María Mar; Seoane, Carlos; Ortiz, Rocío Ponce; Segura, José L
2016-11-18
There is a great interest in peryleneimide (PI)-containing compounds given their unique combination of good electron accepting ability, high abosorption in the visible region, and outstanding chemical, thermal, and photochemical stabilities. Thus, herein we report the synthesis of perylene imide derivatives endowed with a 1,2-diketone functionality (PIDs) as efficient intermediates to easily access peryleneimide (PI)-containing organic semiconductors with enhanced absorption cross-section for the design of tunable semiconductor organic materials. Three processable organic molecular semiconductors containing thiophene and terthiophene moieties, PITa, PITb, and PITT, have been prepared from the novel PIDs. The tendency of these semiconductors for molecular aggregation have been investigated by NMR spectroscopy and supported by quantum chemical calculations. 2D NMR experiments and theoretical calculations point to an antiparallel π-stacking interaction as the most stable conformation in the aggregates. Investigation of the optical and electrochemical properties of the materials is also reported and analyzed in combination with DFT calculations. Although the derivatives presented here show modest electron mobilities of ∼10 -4 cm 2 V -1 s -1 , these preliminary studies of their performance in organic field effect transistors (OFETs) indicate the potential of these new building blocks as n-type semiconductors.
Electrically coupling complex oxides to semiconductors: A route to novel material functionalities
Ngai, J. H.; Ahmadi-Majlan, K.; Moghadam, J.; ...
2017-01-12
Complex oxides and semiconductors exhibit distinct yet complementary properties owing to their respective ionic and covalent natures. By electrically coupling complex oxides to traditional semiconductors within epitaxial heterostructures, enhanced or novel functionalities beyond those of the constituent materials can potentially be realized. Essential to electrically coupling complex oxides to semiconductors is control of the physical structure of the epitaxially grown oxide, as well as the electronic structure of the interface. In this paper, we discuss how composition of the perovskite A- and B-site cations can be manipulated to control the physical and electronic structure of semiconductor—complex oxide heterostructures. Two prototypicalmore » heterostructures, Ba 1-xSr xTiO 3/Ge and SrZr xTi 1-xO 3/Ge, will be discussed. In the case of Ba 1-xSr xTiO 3/Ge, we discuss how strain can be engineered through A-site composition to enable the re-orientable ferroelectric polarization of the former to be coupled to carriers in the semiconductor. In the case of SrZr xTi 1-xO 3/Ge we discuss how B-site composition can be exploited to control the band offset at the interface. Finally, analogous to heterojunctions between compound semiconducting materials, control of band offsets, i.e., band-gap engineering, provides a pathway to electrically couple complex oxides to semiconductors to realize a host of functionalities.« less
Electrically coupling complex oxides to semiconductors: A route to novel material functionalities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ngai, J. H.; Ahmadi-Majlan, K.; Moghadam, J.
Complex oxides and semiconductors exhibit distinct yet complementary properties owing to their respective ionic and covalent natures. By electrically coupling complex oxides to traditional semiconductors within epitaxial heterostructures, enhanced or novel functionalities beyond those of the constituent materials can potentially be realized. Essential to electrically coupling complex oxides to semiconductors is control of the physical structure of the epitaxially grown oxide, as well as the electronic structure of the interface. In this paper, we discuss how composition of the perovskite A- and B-site cations can be manipulated to control the physical and electronic structure of semiconductor—complex oxide heterostructures. Two prototypicalmore » heterostructures, Ba 1-xSr xTiO 3/Ge and SrZr xTi 1-xO 3/Ge, will be discussed. In the case of Ba 1-xSr xTiO 3/Ge, we discuss how strain can be engineered through A-site composition to enable the re-orientable ferroelectric polarization of the former to be coupled to carriers in the semiconductor. In the case of SrZr xTi 1-xO 3/Ge we discuss how B-site composition can be exploited to control the band offset at the interface. Finally, analogous to heterojunctions between compound semiconducting materials, control of band offsets, i.e., band-gap engineering, provides a pathway to electrically couple complex oxides to semiconductors to realize a host of functionalities.« less
Methods for making thin layers of crystalline materials
Lagally, Max G; Paskiewicz, Deborah M; Tanto, Boy
2013-07-23
Methods for making growth templates for the epitaxial growth of compound semiconductors and other materials are provided. The growth templates are thin layers of single-crystalline materials that are themselves grown epitaxially on a substrate that includes a thin layer of sacrificial material. The thin layer of sacrificial material, which creates a coherent strain in the single-crystalline material as it is grown thereon, includes one or more suspended sections and one or more supported sections.
Fernández, J J; Tablero, C; Wahnón, P
2004-06-08
In this paper we present an analysis of the convergence of the band structure properties, particularly the influence on the modification of the bandgap and bandwidth values in half metallic compounds by the use of the exact exchange formalism. This formalism for general solids has been implemented using a localized basis set of numerical functions to represent the exchange density. The implementation has been carried out using a code which uses a linear combination of confined numerical pseudoatomic functions to represent the Kohn-Sham orbitals. The application of this exact exchange scheme to a half-metallic semiconductor compound, in particular to Ga(4)P(3)Ti, a promising material in the field of high efficiency solar cells, confirms the existence of the isolated intermediate band in this compound. (c) 2004 American Institute of Physics.
Microfabricated thermionic detector
Lewis, Patrick R; Manginell, Ronald P; Wheeler, David R; Trudell, Daniel E
2012-10-30
A microfabricated TID comprises a microhotplate and a thermionic source disposed on the microhotplate. The microfabricated TID can provide high sensitivity and selectivity to nitrogen- and phosphorous-containing compounds and other compounds containing electronegative function groups. The microfabricated TID can be microfabricated with semiconductor-based materials. The microfabricated TID can be combined with a microfabricated separation column and used in microanalytical system for the rapid on-site detection of pesticides, chemical warfare agents, explosives, pharmaceuticals, and other organic compounds that contain nitrogen or phosphorus.
Growth of Bulk Wide Bandgap Semiconductor Crystals and Their Potential Applications
NASA Technical Reports Server (NTRS)
Chen, Kuo-Tong; Shi, Detang; Morgan, S. H.; Collins, W. Eugene; Burger, Arnold
1997-01-01
Developments in bulk crystal growth research for electro-optical devices in the Center for Photonic Materials and Devices since its establishment have been reviewed. Purification processes and single crystal growth systems employing physical vapor transport and Bridgman methods were assembled and used to produce high purity and superior quality wide bandgap materials such as heavy metal halides and II-VI compound semiconductors. Comprehensive material characterization techniques have been employed to reveal the optical, electrical and thermodynamic properties of crystals, and the results were used to establish improved material processing procedures. Postgrowth treatments such as passivation, oxidation, chemical etching and metal contacting during the X-ray and gamma-ray device fabrication process have also been investigated and low noise threshold with improved energy resolution has been achieved.
Sokolov, Anatoliy N.; Atahan-Evrenk, Sule; Mondal, Rajib; Akkerman, Hylke B.; Sánchez-Carrera, Roel S.; Granados-Focil, Sergio; Schrier, Joshua; Mannsfeld, Stefan C.B.; Zoombelt, Arjan P.; Bao, Zhenan; Aspuru-Guzik, Alán
2011-01-01
For organic semiconductors to find ubiquitous electronics applications, the development of new materials with high mobility and air stability is critical. Despite the versatility of carbon, exploratory chemical synthesis in the vast chemical space can be hindered by synthetic and characterization difficulties. Here we show that in silico screening of novel derivatives of the dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene semiconductor with high hole mobility and air stability can lead to the discovery of a new high-performance semiconductor. On the basis of estimates from the Marcus theory of charge transfer rates, we identified a novel compound expected to demonstrate a theoretic twofold improvement in mobility over the parent molecule. Synthetic and electrical characterization of the compound is reported with single-crystal field-effect transistors, showing a remarkable saturation and linear mobility of 12.3 and 16 cm2 V−1 s−1, respectively. This is one of the very few organic semiconductors with mobility greater than 10 cm2 V−1 s−1 reported to date. PMID:21847111
Semiconductor quantum dots: synthesis and water-solubilization for biomedical applications.
Yu, William W
2008-10-01
Quantum dots (QDs) are generally nanosized inorganic particles. They have distinctive size-dependent optical properties due to their very small size (mostly < 10 nm). QDs are regarded as promising new fluorescent materials for biological labeling and imaging because of their superior properties compared with traditional organic molecular dyes. These properties include high quantum efficiency, long-term photostability and very narrow emission but broad absorption spectra. Recent developments in synthesizing high quality semiconductor QDs (mainly metal-chalcogenide compounds) and forming biocompatible structures for biomedical applications are discussed in this paper. This information may facilitate the research to create new materials/technologies for future clinical applications.
Kim, Sung Yoon; Seo, Jae Hwa; Yoon, Young Jun; Lee, Ho-Young; Lee, Seong Min; Cho, Seongjae; Kang, In Man
2015-10-01
In this work, we design and analyze complementary metal-oxide-semiconductor (CMOS)-compatible III-V compound electron-hole bilayer (EHB) tunneling field-effect transistors (TFETs) by using two-dimensional (2D) technology computer-aided design (TCAD) simulations. A recently proposed EHB TFET exploits a bias-induced band-to-band tunneling (BTBT) across the electron-hole bilayer by an electric field from the top and bottom gates. This is in contrast to conventional planar p(+)-p(-)-n TFETs, which utilize BTBT across the source-to-channel junction. We applied III-V compound semiconductor materials to the EHB TFETs in order to enhance the current drivability and switching performance. Devices based on various compound semiconductor materials have been designed and analyzed in terms of their primary DC characteristics. In addition, the operational principles were validated by close examination of the electron concentrations and energy-band diagrams under various operation conditions. The simulation results of the optimally designed In0.533Ga0.47As EHB TFET show outstanding performance, with an on-state current (Ion) of 249.5 μA/μm, subthreshold swing (S) of 11.4 mV/dec, and threshold voltage (Vth) of 50 mV at VDS = 0.5 V. Based on the DC-optimized InGaAs EHB TFET, the CMOS inverter circuit was simulated in views of static and dynamic behaviors of the p-channel device with exchanges between top and bottom gates or between source and drain electrodes maintaining the device structure.
Engineering half-Heusler thermoelectric materials using Zintl chemistry
NASA Astrophysics Data System (ADS)
Zeier, Wolfgang G.; Schmitt, Jennifer; Hautier, Geoffroy; Aydemir, Umut; Gibbs, Zachary M.; Felser, Claudia; Snyder, G. Jeffrey
2016-06-01
Half-Heusler compounds based on XNiSn and XCoSb (X = Ti, Zr or Hf) have rapidly become important thermoelectric materials for converting waste heat into electricity. In this Review, we provide an overview on the electronic properties of half-Heusler compounds in an attempt to understand their basic structural chemistry and physical properties, and to guide their further development. Half-Heusler compounds can exhibit semiconducting transport behaviour even though they are described as ‘intermetallic’ compounds. Therefore, it is most useful to consider these systems as rigid-band semiconductors within the framework of Zintl (or valence-precise) compounds. These considerations aid our understanding of their properties, such as the bandgap and low hole mobility because of interstitial Ni defects in XNiSn. Understanding the structural and bonding characteristics, including the presence of defects, will help to develop different strategies to improve and design better half-Heusler thermoelectric materials.
Chen, Yantong; Li, Chao; Xu, Xiuru; Liu, Ming; He, Yaowu; Murtaza, Imran; Zhang, Dongwei; Yao, Chao; Wang, Yongfeng; Meng, Hong
2017-03-01
One of the most striking features of organic semiconductors compared with their corresponding inorganic counterparts is their molecular diversity. The major challenge in organic semiconductor material technology is creating molecular structural motifs to develop multifunctional materials in order to achieve the desired functionalities yet to optimize the specific device performance. Azo-compounds, because of their special photoresponsive property, have attracted extensive interest in photonic and optoelectronic applications; if incorporated wisely in the organic semiconductor groups, they can be innovatively utilized in advanced smart electronic applications, where thermal and photo modulation is applied to tune the electronic properties. On the basis of this aspiration, a novel azo-functionalized liquid crystal semiconductor material, (E)-1-(4-(anthracen-2-yl)phenyl)-2-(4-(decyloxy)phenyl)diazene (APDPD), is designed and synthesized for application in organic thin-film transistors (OTFTs). The UV-vis spectra of APDPD exhibit reversible photoisomerizaton upon photoexcitation, and the thin films of APDPD show a long-range orientational order based on its liquid crystal phase. The performance of OTFTs based on this material as well as the effects of thermal treatment and UV-irradiation on mobility are investigated. The molecular structure, stability of the material, and morphology of the thin films are characterized by thermal gravimetric analysis (TGA), polarizing optical microscopy (POM), (differential scanning calorimetry (DSC), UV-vis spectroscopy, atomic force microscopy (AFM), and scanning tunneling microscopy (STM). This study reveals that our new material has the potential to be applied in optical sensors, memories, logic circuits, and functional switches.
Stoumpos, Constantinos C; Malliakas, Christos D; Kanatzidis, Mercouri G
2013-08-05
A broad organic-inorganic series of hybrid metal iodide perovskites with the general formulation AMI3, where A is the methylammonium (CH3NH3(+)) or formamidinium (HC(NH2)2(+)) cation and M is Sn (1 and 2) or Pb (3 and 4) are reported. The compounds have been prepared through a variety of synthetic approaches, and the nature of the resulting materials is discussed in terms of their thermal stability and optical and electronic properties. We find that the chemical and physical properties of these materials strongly depend on the preparation method. Single crystal X-ray diffraction analysis of 1-4 classifies the compounds in the perovskite structural family. Structural phase transitions were observed and investigated by temperature-dependent single crystal X-ray diffraction in the 100-400 K range. The charge transport properties of the materials are discussed in conjunction with diffuse reflectance studies in the mid-IR region that display characteristic absorption features. Temperature-dependent studies show a strong dependence of the resistivity as a function of the crystal structure. Optical absorption measurements indicate that 1-4 behave as direct-gap semiconductors with energy band gaps distributed in the range of 1.25-1.75 eV. The compounds exhibit an intense near-IR photoluminescence (PL) emission in the 700-1000 nm range (1.1-1.7 eV) at room temperature. We show that solid solutions between the Sn and Pb compounds are readily accessible throughout the composition range. The optical properties such as energy band gap, emission intensity, and wavelength can be readily controlled as we show for the isostructural series of solid solutions CH3NH3Sn(1-x)Pb(x)I3 (5). The charge transport type in these materials was characterized by Seebeck coefficient and Hall-effect measurements. The compounds behave as p- or n-type semiconductors depending on the preparation method. The samples with the lowest carrier concentration are prepared from solution and are n-type; p-type samples can be obtained through solid state reactions exposed in air in a controllable manner. In the case of Sn compounds, there is a facile tendency toward oxidation which causes the materials to be doped with Sn(4+) and thus behave as p-type semiconductors displaying metal-like conductivity. The compounds appear to possess very high estimated electron and hole mobilities that exceed 2000 cm(2)/(V s) and 300 cm(2)/(V s), respectively, as shown in the case of CH3NH3SnI3 (1). We also compare the properties of the title hybrid materials with those of the "all-inorganic" CsSnI3 and CsPbI3 prepared using identical synthetic methods.
de Jong, Maarten; Chen, Wei; Notestine, Randy; Persson, Kristin; Ceder, Gerbrand; Jain, Anubhav; Asta, Mark; Gamst, Anthony
2016-10-03
Materials scientists increasingly employ machine or statistical learning (SL) techniques to accelerate materials discovery and design. Such pursuits benefit from pooling training data across, and thus being able to generalize predictions over, k-nary compounds of diverse chemistries and structures. This work presents a SL framework that addresses challenges in materials science applications, where datasets are diverse but of modest size, and extreme values are often of interest. Our advances include the application of power or Hölder means to construct descriptors that generalize over chemistry and crystal structure, and the incorporation of multivariate local regression within a gradient boosting framework. The approach is demonstrated by developing SL models to predict bulk and shear moduli (K and G, respectively) for polycrystalline inorganic compounds, using 1,940 compounds from a growing database of calculated elastic moduli for metals, semiconductors and insulators. The usefulness of the models is illustrated by screening for superhard materials.
de Jong, Maarten; Chen, Wei; Notestine, Randy; Persson, Kristin; Ceder, Gerbrand; Jain, Anubhav; Asta, Mark; Gamst, Anthony
2016-01-01
Materials scientists increasingly employ machine or statistical learning (SL) techniques to accelerate materials discovery and design. Such pursuits benefit from pooling training data across, and thus being able to generalize predictions over, k-nary compounds of diverse chemistries and structures. This work presents a SL framework that addresses challenges in materials science applications, where datasets are diverse but of modest size, and extreme values are often of interest. Our advances include the application of power or Hölder means to construct descriptors that generalize over chemistry and crystal structure, and the incorporation of multivariate local regression within a gradient boosting framework. The approach is demonstrated by developing SL models to predict bulk and shear moduli (K and G, respectively) for polycrystalline inorganic compounds, using 1,940 compounds from a growing database of calculated elastic moduli for metals, semiconductors and insulators. The usefulness of the models is illustrated by screening for superhard materials. PMID:27694824
de Jong, Maarten; Chen, Wei; Notestine, Randy; ...
2016-10-03
Materials scientists increasingly employ machine or statistical learning (SL) techniques to accelerate materials discovery and design. Such pursuits benefit from pooling training data across, and thus being able to generalize predictions over, k-nary compounds of diverse chemistries and structures. This work presents a SL framework that addresses challenges in materials science applications, where datasets are diverse but of modest size, and extreme values are often of interest. Our advances include the application of power or Hölder means to construct descriptors that generalize over chemistry and crystal structure, and the incorporation of multivariate local regression within a gradient boosting framework. Themore » approach is demonstrated by developing SL models to predict bulk and shear moduli (K and G, respectively) for polycrystalline inorganic compounds, using 1,940 compounds from a growing database of calculated elastic moduli for metals, semiconductors and insulators. The usefulness of the models is illustrated by screening for superhard materials.« less
Environment, health and safety issues for sources used in MOVPE growth of compound semiconductors
NASA Astrophysics Data System (ADS)
Shenai-Khatkhate, Deodatta V.; Goyette, Randall J.; DiCarlo, Ronald L., Jr.; Dripps, Gregory
2004-12-01
As metalorganic vapor-phase epitaxy (MOVPE) is becoming well-established production technology, there are equally growing concerns associated with its bearing on personnel and community safety, environmental impact and maximum quantities of hazardous materials permissible in the device fabrication operations. Safety as well as responsible environmental care has always been of paramount importance in the MOVPE-based crystal growth of compound semiconductors. In this paper, we present the findings from workplace exposure monitoring studies on conventional MOVPE sources such as trimethylgallium, triethylgallium, trimethylantimony and diethylzinc. Also reviewed are the environmental, health and safety hazard aspects for metalorganic sources of routine elements, and the means to minimize the risks (i.e., engineering controls) involved while using these MOVPE sources.
Novel engineered compound semiconductor heterostructures for advanced electronics applications
NASA Astrophysics Data System (ADS)
Stillman, Gregory E.; Holonyak, Nick, Jr.; Coleman, James J.
1992-06-01
To provide the technology base that will enable SDIO capitalization on the performance advantages offered through novel engineered multiple-lavered compound semiconductor structures, this project has focussed on three specific areas: (1) carbon doping of AlGaAs/GaAs and InP/InGaAs materials for reliable high frequency heterojunction bipolar transistors; (2) impurity induced layer disordering and the environmental degradation of AlxGal-xAs-GaAs quantum-well heterostructures and the native oxide stabilization of AlxGal-xAs-GaAs quantum well heterostructure lasers; and (3) non-planar and strained-layer quantum well heterostructure lasers and laser arrays. The accomplishments in this three year research are reported in fifty-six publications and the abstracts included in this report.
Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Brebrick, R. F.; Burger, A.; Dudley, M.; Matyi, R.; Ramachandran, N.; Sha, Yi-Gao; Volz, M.; Shih, Hung-Dah
1999-01-01
Complete and systematic ground-based experimental and theoretical analyses on the Physical Vapor Transport (PVT) of ZnSe and related ternary compound semiconductors have been performed. The analyses included thermodynamics, mass flux, heat treatment of starting material, crystal growth, partial pressure measurements, optical interferometry, chemical analyses, photoluminescence, microscopy, x-ray diffraction and topography as well as theoretical, analytical and numerical analyses. The experimental results showed the influence of gravity orientation on the characteristics of: (1) the morphology of the as-grown crystals as well as the as-grown surface morphology of ZnSe and Cr doped ZnSe crystals; (2) the distribution of impurities and defects in ZnSe grown crystals; and (3) the axial segregation in ZnSeTe grown crystals.
OXYGENATION OF HYDROCARBONS USING NANOSTRUCTURED TIO2 AS A PHOTOCATALYST: A GREEN ALTERNATIVE
High-value organic compounds have been synthesized successfully from linear and cyclic saturated hydrocarbons by a photocatalytic oxidation process using a semiconductor material, titanium dioxide (TiO2). Various hydrocarbons were partially oxygenated in both aqueous and gaseous...
TOPICAL REVIEW: Semiconductors for terahertz photonics applications
NASA Astrophysics Data System (ADS)
Krotkus, Arūnas
2010-07-01
Generation and measurement of ultrashort, subpicosecond pulses of electromagnetic radiation with their characteristic Fourier spectra that reach far into terahertz (THz) frequency range has recently become a versatile tool of far-infrared spectroscopy and imaging. This technique, THz time-domain spectroscopy, in addition to a femtosecond pulse laser, requires semiconductor components manufactured from materials with a short photoexcited carrier lifetime, high carrier mobility and large dark resistivity. Here we will review the most important developments in the field of investigation of such materials. The main characteristics of low-temperature-grown or ion-implanted GaAs and semiconducting compounds sensitive in the wavelength ranges around 1 µm and 1.5 µm will be surveyed. The second part of the paper is devoted to the effect of surface emission of THz transients from semiconductors illuminated by femtosecond laser pulses. The main physical mechanisms leading to this emission as well as their manifestation in various crystals will be described.
III-V arsenide-nitride semiconductor
NASA Technical Reports Server (NTRS)
Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)
2000-01-01
III-V arsenide-nitride semiconductor are disclosed. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V materials varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V material can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.
Methods for forming group III-arsenide-nitride semiconductor materials
NASA Technical Reports Server (NTRS)
Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)
2002-01-01
Methods are disclosed for forming Group III-arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.
Methods for forming group III-V arsenide-nitride semiconductor materials
NASA Technical Reports Server (NTRS)
Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)
2000-01-01
Methods are disclosed for forming Group III--arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.
Method of making compound semiconductor films and making related electronic devices
Basol, Bulent M.; Kapur, Vijay K.; Halani, Arvind T.; Leidholm, Craig R.; Roe, Robert A.
1999-01-01
A method of forming a compound film includes the steps of preparing a source material, depositing the source material on a base to form a precursor film, and heating the precursor film in a suitable atmosphere to form a film. The source material includes Group IB-IIIA alloy-containing particles having at least one Group IB-IIIA alloy phase, with Group IB-IIIA alloys constituting greater than about 50 molar percent of the Group IB elements and greater than about 50 molar percent of the Group IIIA elements in the source material. The film, then, includes a Group IB-IIIA-VIA compound. The molar ratio of Group IB to Group IIIA elements in the source material may be greater than about 0.80 and less than about 1.0, or substantially greater than 1.0, in which case this ratio in the compound film may be reduced to greater than about 0.80 and less than about 1.0. The source material may be prepared as an ink from particles in powder form. The alloy phase may include a dopant. Compound films including a Group IIB-IVA-VA compound or a Group IB-VA-VIA compound may be substituted using appropriate substitutions in the method. The method, also, is applicable to fabrication of solar cells and other electronic devices.
NASA Astrophysics Data System (ADS)
Khan, Amin; Ali, Zahid; Khan, Imad; Ahmad, Iftikhar
2018-03-01
Ternary palladates CdPd3O4 and TlPd3O4 have been studied theoretically using the generalized gradient approximation (GGA), modified Becke-Johnson, and spin-orbit coupling (GGA-SOC) exchange-correlation functionals in the density functional theory (DFT) framework. From the calculated ground-state properties, it is found that SOC effects are dominant in these palladates. Mechanical properties reveal that both compounds are ductile in nature. The electronic band structures show that CdPd3O4 is metallic, whereas TlPd3O4 is an indirect-bandgap semiconductor with energy gap of 1.1 eV. The optical properties show that TlPd3O4 is a good dielectric material. The dense electronic states, narrow-gap semiconductor nature, and Seebeck coefficient of TlPd3O4 suggest that it could be used as a good thermoelectric material. The magnetic susceptibility calculated by post-DFT treatment confirmed the paramagnetic behavior of these compounds.
Vapor phase growth technique of III-V compounds utilizing a preheating step
NASA Technical Reports Server (NTRS)
Olsen, Gregory Hammond (Inventor); Zamerowski, Thomas Joseph (Inventor); Buiocchi, Charles Joseph (Inventor)
1978-01-01
In the vapor phase epitaxy fabrication of semiconductor devices and in particular semiconductor lasers, the deposition body on which a particular layer of the laser is to be grown is preheated to a temperature about 40.degree. to 60.degree. C. lower than the temperature at which deposition occurs. It has been discovered that by preheating at this lower temperature there is reduced thermal decomposition at the deposition surface, especially for semiconductor materials such as indium gallium phosphide and gallium arsenide phosphide. A reduction in thermal decomposition reduces imperfections in the deposition body in the vicinity of the deposition surface, thereby providing a device with higher efficiency and longer lifetime.
NASA Astrophysics Data System (ADS)
Oulachgar, El Hassane
As the semiconductors industry is moving toward nanodevices, there is growing need to develop new materials and thin films deposition processes which could enable strict control of the atomic composition and structure of thin film materials in order to achieve precise control on their electrical and optical properties. The accurate control of thin film characteristics will become increasingly important as the miniaturization of semiconductor devices continue. There is no doubt that chemical synthesis of new materials and their self assembly will play a major role in the design and fabrication of next generation semiconductor devices. The objective of this work is to investigate the chemical vapor deposition (CVD) process of thin film using a polymeric precursor as a source material. This process offers many advantages including low deposition cost, hazard free working environment, and most importantly the ability to customize the polymer source material through polymer synthesis and polymer functionalization. The combination between polymer synthesis and CVD process will enable the design of new generation of complex thin film materials with a wide range of improved chemical, mechanical, electrical and optical properties which cannot be easily achieved through conventional CVD processes based on gases and small molecule precursors. In this thesis we mainly focused on polysilanes polymers and more specifically poly(dimethylsilanes). The interest in these polymers is motivated by their distinctive electronic and photonic properties which are attributed to the delocalization of the sigma-electron along the Si-Si backbone chain. These characteristics make polysilane polymers very promising in a broad range of applications as a dielectric, a semiconductor and a conductor. The polymer-based CVD process could be eventually extended to other polymer source materials such as polygermanes, as well as and a variety of other inorganic and hybrid organic-inorganic polymers. This work has demonstrated that a polysilane polymeric source can be used to deposit a wide range of thin film materials exhibiting similar properties with conventional ceramic materials such as silicon carbide (SiC), silicon oxynitride (SiON), silicon oxycarbide (SiOC) silicon dioxide (SiO2) and silicon nitride (Si3N4). The strict control of the deposition process allows precise control of the electrical, optical and chemical properties of polymer-based thin films within a broad range. This work has also demonstrated for the first time that poly(dimethylsilmaes) polymers deposited by CVD can be used to effectively passivate both silicon and gallium arsenide MOS devices. This finding makes polymer-based thin films obtained by CVD very promising for the development of high-kappa dielectric materials for next generation high-mobility CMOS technology. Keywords. Thin films, Polymers, Vapor Phase Deposition, CVD, Nanodielectrics, Organosilanes, Polysilanes, GaAs Passivation, MOSFET, Silicon Oxynitride, Integrated Waveguide, Silicon Carbide, Compound Semiconductors.
Method of manufacturing semiconductor having group II-group VI compounds doped with nitrogen
Compaan, Alvin D.; Price, Kent J.; Ma, Xianda; Makhratchev, Konstantin
2005-02-08
A method of making a semiconductor comprises depositing a group II-group VI compound onto a substrate in the presence of nitrogen using sputtering to produce a nitrogen-doped semiconductor. This method can be used for making a photovoltaic cell using sputtering to apply a back contact layer of group II-group VI compound to a substrate in the presence of nitrogen, the back coating layer being doped with nitrogen. A semiconductor comprising a group II-group VI compound doped with nitrogen, and a photovoltaic cell comprising a substrate on which is deposited a layer of a group II-group VI compound doped with nitrogen, are also included.
Nano-Scale Fabrication Using Optical-Near-Field
NASA Astrophysics Data System (ADS)
Yatsui, Takashi; Ohtsu, Motoichi
This paper reviews the specific nature of nanophotonics, i.e., a novel optical nano-technology, utilizing dressed photon excited in the nano-material. As examples of nanophotnic fabrication, optical near-field etching and increased spatial homogeneity of contents in compound semiconductors is demonstrated with a self-organized manner.
RLE (Research Laboratory of Electronics) Progress Report Number 129.
1987-01-01
8217," ’,/’.’t MICROCOP ,"Y RESOLUTION TEST C-’HA"-/’%’.’."."% "-’- -" "."o -- - -" " OI FILE COPYAJ MASSACHUSETTS INSTITUTE OF EHOGYD The RESEARCH LABORATORY of...Intercalation Compound Structures and Transitions .................................. 59 10.0 Semiconductor Surface Studies...understanding of the HEMT, which is the basic block in building surface superlattices on III-V compound materials, our device structure has been simu
Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials
Parker, David; Singh, David J
2013-01-01
We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli—roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature. PMID:27877610
Method for the preparation of inorganic single crystal and polycrystalline electronic materials
NASA Technical Reports Server (NTRS)
Groves, W. O. (Inventor)
1969-01-01
Large area, semiconductor crystals selected from group 3-5 compounds and alloys are provided for semiconductor device fabrication by the use of a selective etching operation which completely removes the substrate on which the desired crystal was deposited. The substrate, selected from the same group as the single crystal, has a higher solution rate than the epitaxial single crystal which is essentially unaffected by the etching solution. The preparation of gallium phosphide single crystals using a gallium arsenide substrate and a concentrated nitric acid etching solution is described.
Mn-based ferromagnetic semiconductors
NASA Astrophysics Data System (ADS)
Dietl, Tomasz; Sawicki, Maciej
2003-07-01
The present status of research and prospects for device applications of ferromagnetic (diluted magnetic) semiconductors (DMS) is presented. We review the nature of the electronic states and the mechanisms of the carrier-mediated exchange interactions (mean-field Zener model) in p-type Mn-based III-V and II-VI compounds, highlighting a good correspondence of experimental findings and theoretical predictions. An account of the latest progress on the road of increasing the Currie point to above the room temperature is given for both families of compounds. We comment on a possibility of obtaining ferromagnetism in n-type materials, taking (Zn,Mn)O:Al as the example. Concerning technologically important issue of easy axis and domain engineering, we present theoretical predictions and experimental results on the temperature and carrier concentration driven change of magnetic anisotropy in (Ga,Mn)As.
Metallization for Yb14MnSb11-Based Thermoelectric Materials
NASA Technical Reports Server (NTRS)
Firdosy, Samad; Li, Billy Chun-Yip; Ravi, Vilupanur; Sakamoto, Jeffrey; Caillat, Thierry; Ewell, Richard C.; Brandon, Erik J.
2011-01-01
Thermoelectric materials provide a means for converting heat into electrical power using a fully solid-state device. Power-generating devices (which include individual couples as well as multicouple modules) require the use of ntype and p-type thermoelectric materials, typically comprising highly doped narrow band-gap semiconductors which are connected to a heat collector and electrodes. To achieve greater device efficiency and greater specific power will require using new thermoelectric materials, in more complex combinations. One such material is the p-type compound semiconductor Yb14MnSb11 (YMS), which has been demonstrated to have one of the highest ZT values at 1,000 C, the desired operational temperature of many space-based radioisotope thermoelectric generators (RTGs). Despite the favorable attributes of the bulk YMS material, it must ultimately be incorporated into a power-generating device using a suitable joining technology. Typically, processes such as diffusion bonding and/or brazing are used to join thermoelectric materials to the heat collector and electrodes, with the goal of providing a stable, ohmic contact with high thermal conductivity at the required operating temperature. Since YMS is an inorganic compound featuring chemical bonds with a mixture of covalent and ionic character, simple metallurgical diffusion bonding is difficult to implement. Furthermore, the Sb within YMS readily reacts with most metals to form antimonide compounds with a wide range of stoichiometries. Although choosing metals that react to form high-melting-point antimonides could be employed to form a stable reaction bond, it is difficult to limit the reactivity of Sb in YMS such that the electrode is not completely consumed at an operating temperature of 1,000 C. Previous attempts to form suitable metallization layers resulted in poor bonding, complete consumption of the metallization layer or fracture within the YMS thermoelement (or leg).
Solid Solutions Formation: Improving the Thermoelectric Properties of Skutterudites
NASA Technical Reports Server (NTRS)
Borshchevsky, A.; Caillat, T.; Fleurial, J. P.
1996-01-01
Materials with skutterudite structure have been known for a long time. Some of them are semiconductors. A typical skutterudite is CoSb(sub 3) and its thermoelectric properties were partially studied in the 1960's. Recently, it has been discovered that many skutterudite compounds are thermoelectrics with promising future.
Reactive codoping of GaAlInP compound semiconductors
Hanna, Mark Cooper [Boulder, CO; Reedy, Robert [Golden, CO
2008-02-12
A GaAlInP compound semiconductor and a method of producing a GaAlInP compound semiconductor are provided. The apparatus and method comprises a GaAs crystal substrate in a metal organic vapor deposition reactor. Al, Ga, In vapors are prepared by thermally decomposing organometallic compounds. P vapors are prepared by thermally decomposing phospine gas, group II vapors are prepared by thermally decomposing an organometallic group IIA or IIB compound. Group VIB vapors are prepared by thermally decomposing a gaseous compound of group VIB. The Al, Ga, In, P, group II, and group VIB vapors grow a GaAlInP crystal doped with group IIA or IIB and group VIB elements on the substrate wherein the group IIA or IIB and a group VIB vapors produced a codoped GaAlInP compound semiconductor with a group IIA or IIB element serving as a p-type dopant having low group II atomic diffusion.
Materials chemistry. Composition-matched molecular "solders" for semiconductors.
Dolzhnikov, Dmitriy S; Zhang, Hao; Jang, Jaeyoung; Son, Jae Sung; Panthani, Matthew G; Shibata, Tomohiro; Chattopadhyay, Soma; Talapin, Dmitri V
2015-01-23
We propose a general strategy to synthesize largely unexplored soluble chalcogenidometallates of cadmium, lead, and bismuth. These compounds can be used as "solders" for semiconductors widely used in photovoltaics and thermoelectrics. The addition of solder helped to bond crystal surfaces and link nano- or mesoscale particles together. For example, CdSe nanocrystals with Na2Cd2Se3 solder was used as a soluble precursor for CdSe films with electron mobilities exceeding 300 square centimeters per volt-second. CdTe, PbTe, and Bi2Te3 powders were molded into various shapes in the presence of a small additive of composition-matched chalcogenidometallate or chalcogel, thus opening new design spaces for semiconductor technologies. Copyright © 2015, American Association for the Advancement of Science.
New Icosahedral Boron Carbide Semiconductors
NASA Astrophysics Data System (ADS)
Echeverria Mora, Elena Maria
Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto-resistance, however, these results suggest practical device applications, especially as such effects are manifested in nanoscale films with facile fabrication. Overall, the greater negative magneto-resistance, when undoped with an aromatic, suggests a material with more defects and is consistent with a shorter carrier lifetime.
2009-09-01
Group V element to make them n or p material. Another common group of semiconductors are called III–V compounds , such as gallium arsenide (GaAs), or...these compounds used for photovoltaics are Cadmium Telluride (CdTe), and Copper Indium Gallium DiSelenide, commonly referred to as CIGS [49]. Figure...INDIUM GALLIUM DISELENIDE PHOTOVOLTAIC CELLS TO EXTEND THE ENDURANCE AND CAPABILITIES OF UNMANNED AERIAL VEHICLES by William R. Hurd
NASA Astrophysics Data System (ADS)
Montag, Benjamin W.; Ugorowski, Philip B.; Nelson, Kyle A.; Edwards, Nathaniel S.; McGregor, Douglas S.
2016-11-01
Nowotny-Juza compounds continue to be explored as candidates for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled 3He and 10BF3 detectors. The 6Li(n,t)4He reaction yields a total Q-value of 4.78 MeV, larger than 10B, an energy easily identified above background radiations. Hence, devices fabricated from semiconductor compounds having either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) as constituent atoms may provide a material for compact high efficiency neutron detectors. Starting material was synthesized by preparing equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace [1]. The raw synthesized material indicated the presence high impurity levels (material and electrical property characterizations). A static vacuum sublimation in quartz was performed to help purify the synthesized material [2,3]. Bulk crystalline samples were grown from the purified material [4,5]. Samples were cut using a diamond wire saw, and processed into devices. Bulk resistivity was determined from I-V curve measurements, ranging from 106-1011 Ω cm. Devices were characterized for sensitivity to 5.48 MeV alpha particles, 337 nm laser light, and neutron sensitivity in a thermal neutron diffracted beam at the Kansas State University TRIGA Mark II nuclear reactor. Thermal neutron reaction product charge induction was measured with a LiZnP device, and the reaction product spectral response was observed.
Thin film heterojunction photovoltaic cells and methods of making the same
Basol, Bulent M.; Tseng, Eric S.; Rod, Robert L.
1983-06-14
A method of fabricating a thin film heterojunction photovoltaic cell which comprises depositing a film of a near intrinsic or n-type semiconductor compound formed of at least one of the metal elements of Class II B of the Periodic Table of Elements and at least tellurium and then heating said film at a temperature between about 250.degree. C. and 500.degree. C. for a time sufficient to convert said film to a suitably low resistivity p-type semiconductor compound. Such film may be deposited initially on the surface of an n-type semiconductor substrate. Alternatively, there may be deposited on the converted film a layer of n-type semiconductor compound different from the film semiconductor compound. The resulting photovoltaic cell exhibits a substantially increased power output over similar cells not subjected to the method of the present invention.
1997-11-01
The purpose of the experiments for the Advanced Automated Directional Solidification Furnace (AADSF) is to determine how gravity-driven convection affects the composition and properties of alloys (mixtures of two or more materials, usually metal). During the USMP-4 mission, the AADSF will solidify crystals of lead tin telluride and mercury cadmium telluride, alloys of compound semiconductor materials used to make infrared detectors and lasers, as experiment samples. Although these materials are used for the same type application their properties and compositional uniformity are affected differently during the solidification process.
Electrostatic modification of novel materials
NASA Astrophysics Data System (ADS)
Ahn, C. H.; Bhattacharya, A.; di Ventra, M.; Eckstein, J. N.; Frisbie, C. Daniel; Gershenson, M. E.; Goldman, A. M.; Inoue, I. H.; Mannhart, J.; Millis, Andrew J.; Morpurgo, Alberto F.; Natelson, Douglas; Triscone, Jean-Marc
2006-10-01
Application of the field-effect transistor principle to novel materials to achieve electrostatic doping is a relatively new research area. It may provide the opportunity to bring about modifications of the electronic and magnetic properties of materials through controlled and reversible changes of the carrier concentration without modifying the level of disorder, as occurs when chemical composition is altered. As well as providing a basis for new devices, electrostatic doping can in principle serve as a tool for studying quantum critical behavior, by permitting the ground state of a system to be tuned in a controlled fashion. In this paper progress in electrostatic doping of a number of materials systems is reviewed. These include structures containing complex oxides, such as cuprate superconductors and colossal magnetoresistive compounds, organic semiconductors, in the form of both single crystals and thin films, inorganic layered compounds, single molecules, and magnetic semiconductors. Recent progress in the field is discussed, including enabling experiments and technologies, open scientific issues and challenges, and future research opportunities. For many of the materials considered, some of the results can be anticipated by combining knowledge of macroscopic or bulk properties and the understanding of the field-effect configuration developed during the course of the evolution of conventional microelectronics. However, because electrostatic doping is an interfacial phenomenon, which is largely an unexplored field, real progress will depend on the development of a better understanding of lattice distortion and charge transfer at interfaces in these systems.
Additional compound semiconductor nanowires for photonics
NASA Astrophysics Data System (ADS)
Ishikawa, F.
2016-02-01
GaAs related compound semiconductor heterostructures are one of the most developed materials for photonics. Those have realized various photonic devices with high efficiency, e. g., lasers, electro-optical modulators, and solar cells. To extend the functions of the materials system, diluted nitride and bismide has been paid attention over the past decade. They can largely decrease the band gap of the alloys, providing the greater tunability of band gap and strain status, eventually suppressing the non-radiative Auger recombinations. On the other hand, selective oxidation for AlGaAs is a vital technique for vertical surface emitting lasers. That enables precisely controlled oxides in the system, enabling the optical and electrical confinement, heat transfer, and mechanical robustness. We introduce the above functions into GaAs nanowires. GaAs/GaAsN core-shell nanowires showed clear redshift of the emitting wavelength toward infrared regime. Further, the introduction of N elongated the carrier lifetime at room temperature indicating the passivation of non-radiative surface recombinations. GaAs/GaAsBi nanowire shows the redshift with metamorphic surface morphology. Selective and whole oxidations of GaAs/AlGaAs core-shell nanowires produce semiconductor/oxide composite GaAs/AlGaOx and oxide GaOx/AlGaOx core-shell nanowires, respectively. Possibly sourced from nano-particle species, the oxide shell shows white luminescence. Those property should extend the functions of the nanowires for their application to photonics.
Spin Interactions and Spin Dynamics in Electronic Nanostructures
2006-08-31
in Semiconductor Nanostructures,” D. D. Awschalom, Plenary Speaker, 36th International Symposium on Compound Semiconductors, San Diego, CA, August 25...Electrical Manipulation of Spin Orientation in Compound Semiconductors”, M. E. Flatté, W. H. Lau, C. E. Pryor, and I. Tifrea, International Symposium...on Compound Semiconductors 2003, San Diego, August 25, 2003. 73. “Spin Dynamics in Semiconductors”, M. E. Flatté, SPINTECH II: 2nd International
Semiconductors: Still a Wide Open Frontier for Scientists/Engineers
NASA Astrophysics Data System (ADS)
Seiler, David G.
1997-10-01
A 1995 Business Week article described several features of the explosive use of semiconductor chips today: ``Booming'' personal computer markets are driving high demand for microprocessors and memory chips; (2) New information superhighway markets will `ignite' sales of multimedia and communication chips; and (3) Demand for digital-signal-processing and data-compression chips, which speed up video and graphics, is `red hot.' A Washington Post article by Stan Hinden said that technology is creating an unstoppable demand for electronic elements. This ``digital pervasiveness'' means that a semiconductor chip is going into almost every high-tech product that people buy - cars, televisions, video recorders, telephones, radios, alarm clocks, coffee pots, etc. ``Semiconductors are everywhere.'' Silicon and compound semiconductors are absolutely essential and are pervasive enablers for DoD operations and systems. DoD's Critical Technologies Plan of 1991 says that ``Semiconductor materials and microelectronics are critically important and appropriately lead the list of critical defense technologies.'' These trends continue unabated. This talk describes some of the frontiers of semiconductors today and shows how scientists and engineers can effectively contribute to its advancement. Cooperative, multidisciplinary efforts are increasing. Specific examples will be given for scanning capacitance microscopy and thin-film metrology.
Contributive research in compound semiconductor material and related devices
NASA Astrophysics Data System (ADS)
Twist, James R.
1988-05-01
The objective of this program was to provide the Electronic Device Branch (AFWAL/AADR) with the support needed to perform state of the art electronic device research. In the process of managing and performing on the project, UES has provided a wide variety of scientific and engineering talent who worked in-house for the Avionics Laboratory. These personnel worked on many different types of research programs from gas phase microwave driven lasers, CVD and MOCVD of electronic materials to Electronic Device Technology for new devices. The fields of research included MBE and theoretical research in this novel growth technique. Much of the work was slanted towards the rapidly developing technology of GaAs and the general thrust of the research that these tasks started has remained constant. This work was started because the Avionics Laboratory saw a chance to advance the knowledge and level of the current device technology by working in the compounds semiconductor field. UES is pleased to have had the opportunity to perform on this program and is looking forward to future efforts with the Avionics Laboratory.
NASA Astrophysics Data System (ADS)
Cai, Xiuyu
2007-12-01
Organic semiconductors are attracting more and more interest as a promising set of materials in the field of electronics research. This thesis focused on several new organic semiconductors and a novel high-kappa dielectric thin film (SrTiO3), which are two essential parts in Organic Thin Film Transistors (OTFTs). Structure and morphology of thin films of tricyanovinyl capped oligothiophenes were studied using atomic force microscopy and x-ray diffraction. Thin film transistors of one compound exhibited a reasonable electron mobility of 0.02 cm2/Vs. Temperature dependent measurements on the thin film transistor based on this compound revealed shallow trap states that were interpreted in terms of a multiple trap and release model. Moreover, inversion of the majority charge carrier type from electrons to holes was observed when the number of oligothiophene rings increased to six and ambipolar transport behavior was observed for tricyanovinyl sexithiophene. Another interesting organic semiconductor compound is the fluoalkylquarterthiophene, which showed ambipolar transport and large hysteresis in the transfer curve. Due to the bistable state at floating gate, the thin film transistor was exploited to study non-volatile floating gate memory effects. The temperature dependence of the retention time for this memory device revealed that the electron trapping was an activated process. Following the earlier work on hybrid acene-thiophene organic semiconductors, new compounds with similar structure were studied to reveal the mechanism of the air-stability exhibited by some compounds. They all formed highly crystalline thin films and showed reasonable device performances which are well correlated with the molecular structures, thin film microstructures, and solid state packing. The most air-stable compound had no observable degradation with exposure to air for 15 months. SrTiO3 was developed to be employed in OTFTs. Optimization of thin film growth was performed using reactive sputtering growth. Excellent SrTiO3 epitaixal thin film growth was revealed on conductive SrTiO 3:Nb substrates. A maximum charge carrier density of 1014 cm-2 was obtained based on pentacene and perylene diimide thin film transistors. Some new physical phenomena, such as step-like transfer characteristic curve and negative transconductance, were observed at such high field effect induced charge carrier density.
Panitz, Janda K.; Reed, Scott T.; Ashley, Carol S.; Neiser, Richard A.; Moffatt, William C.
1999-01-01
Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties.
NASA Astrophysics Data System (ADS)
Facchetti, Antonio; Yoon, Myung-Han; Katz, Howard E.; Marks, Tobin J.
2003-11-01
Recent progress in the field of organic electronics is due to a fruitful combination of both innovative molecular design and promising low-cost material/device assembly. Targeting the first strategy, we present here the general synthesis of fluoroarene-containing thiophene-based semiconductors and the study of their properties with respect to the corresponding fluorine-free hole-transporting analogues. The new compounds have been characterized by elemental analysis, mass spectrometry, and 1H- and 19F NMR. The dramatic influence of fluorine substitution and molecular architecture has been investigated by solution/film optical absorption, fluorescence emission, and cyclic voltammetry. Single crystal data for all of the oligomers have been obtained and will be presented. Film microstructure and morphology of this new class of materials have been studied by XRD and SEM. Particular emphasis will be posed on the solution-processable oligomers and polymers.
NASA Astrophysics Data System (ADS)
Du, Mao-Hua; Biswas, Koushik; Singh, David J.
2012-10-01
In this paper, we report theoretical studies of native defects and dopants in a number of room-temperature semiconductor radiation detection materials, i.e., CdTe, TlBr, and Tl6SeI4. We address several important questions, such as what causes high resistivity in these materials, what explains good μτ product (carrier mobility-lifetime product) in soft-lattice ionic compounds that have high defect density, and how to obtain high resistivity and low carrier trapping simultaneously. Our main results are: (1) shallow donors rather than deep ones are responsible for high resistivity in high-quality detectorgrade CdTe; (2) large dielectric screening and the lack of deep levels from low-energy native defects may contribute to the good μτ products for both electrons and holes in TlBr; (3) the polarization phenomenon in Tl6SeI4 is expected to be much reduced compared to that in TlBr.
Ptak, Aaron Joseph; Lin, Yong; Norman, Andrew; Alberi, Kirstin
2015-05-26
A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a spinel substrate using a sacrificial buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The sacrificial buffer material and semiconductor materials may be deposited using lattice-matching epitaxy or coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The sacrificial buffer layer may be dissolved using an epitaxial liftoff technique in order to separate the semiconductor device from the spinel substrate, and the spinel substrate may be reused in the subsequent fabrication of other semiconductor devices. The low-defect density semiconductor materials produced using this method result in the enhanced performance of the semiconductor devices that incorporate the semiconductor materials.
Ultralow Thermal Conductivity in Full Heusler Semiconductors.
He, Jiangang; Amsler, Maximilian; Xia, Yi; Naghavi, S Shahab; Hegde, Vinay I; Hao, Shiqiang; Goedecker, Stefan; Ozoliņš, Vidvuds; Wolverton, Chris
2016-07-22
Semiconducting half and, to a lesser extent, full Heusler compounds are promising thermoelectric materials due to their compelling electronic properties with large power factors. However, intrinsically high thermal conductivity resulting in a limited thermoelectric efficiency has so far impeded their widespread use in practical applications. Here, we report the computational discovery of a class of hitherto unknown stable semiconducting full Heusler compounds with ten valence electrons (X_{2}YZ, X=Ca, Sr, and Ba; Y=Au and Hg; Z=Sn, Pb, As, Sb, and Bi) through high-throughput ab initio screening. These new compounds exhibit ultralow lattice thermal conductivity κ_{L} close to the theoretical minimum due to strong anharmonic rattling of the heavy noble metals, while preserving high power factors, thus resulting in excellent phonon-glass electron-crystal materials.
Oxide-based method of making compound semiconductor films and making related electronic devices
Kapur, Vijay K.; Basol, Bulent M.; Leidholm, Craig R.; Roe, Robert A.
2000-01-01
A method for forming a compound film includes the steps of preparing a source material, depositing the source material on a base and forming a preparatory film from the source material, heating the preparatory film in a suitable atmosphere to form a precursor film, and providing suitable material to said precursor film to form the compound film. The source material includes oxide-containing particles including Group IB and IIIA elements. The precursor film includes non-oxide Group IB and IIIA elements. The compound film includes a Group IB-IIIA-VIA compound. The oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the source material. Similarly, non-oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the precursor film. The molar ratio of Group IB to Group IIIA elements in the source material may be greater than about 0.6 and less than about 1.0, or substantially greater that 1.0, in which case this ratio in the compound film may be reduced to greater than about 0.6 and less than about 1.0. The source material may be prepared as an ink from particles in powder form. The oxide-containing particles may include a dopant, as may the compound film. Compound films including a Group IIB-IVA-VA compound may be substituted using appropriate substitutions in the method. The method, also, is applicable to fabrication of solar cells and other electronic devices.
CATALYTIC PROPERTIES OF SEMICONDUCTORS.
SEMICONDUCTORS, CATALYSTS), (*CATALYSIS, REACTION KINETICS), (* SODIUM COMPOUNDS, TUNGSTATES), (*GALLIUM ALLOYS, ARSENIC ALLOYS), (*YTTERBIUM...COMPOUNDS, SILICIDES ), (*GERMANIUM, CATALYSIS), INTERNAL CONVERSION, EXCHANGE REACTIONS, HEAT OF ACTIVATION, THERMODYNAMICS, DEUTERIUM, POWDERS, SURFACES, HYDROGEN
Semiclassical transport properties of IrGa3: a promising thermoelectric material.
Alvarez Quiceno, Juan Camilo; Dalpian, Gustavo; Fazzio, Adalberto; Osorio-Guillén, Jorge M
2018-01-09
IrGa3 is an intermetallic compound which is expected to be a metal, but a study on the electronic properties of this material to confirm its metallic character is not available in the literature. In this work, we report for the first time a first-principles Density Functional Theory and semiclassical Boltzmann theory study of the structural, electronic and transport properties of this material. The inclusion of the spin-orbit coupling term is crucial to calculate accurately the electronic properties of this compound. We have established that IrGa3 is an indirect semiconductor with a narrow gap of 0.07 eV. From semiclassical Boltzmann transport theory, it is inferred that this material, with the appropriate hole concentration, could have a thermoelectric figure of merit at room temperature comparable to other intermetallic compounds such as FeGa3, though the transport properties of IrGa3 are highly anisotropic. . © 2018 IOP Publishing Ltd.
III-V aresenide-nitride semiconductor materials and devices
NASA Technical Reports Server (NTRS)
Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)
1997-01-01
III-V arsenide-nitride semiconductor crystals, methods for producing such crystals and devices employing such crystals. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.
NASA Astrophysics Data System (ADS)
Yedukondalu, N.; Kunduru, Lavanya; Roshan, S. C. Rakesh; Sainath, M.
2018-04-01
Assessment of band gaps for nine alkaline-earth chalcogenides namely MX (M = Ca, Sr, Ba and X = S, Se Te) compounds are reported using Tran Blaha-modified Becke Johnson (TB-mBJ) potential and its new parameterization. From the computed electronic band structures at the equilibrium lattice constants, these materials are found to be indirect band gap semiconductors at ambient conditions. The calculated band gaps are improved using TB-mBJ and its new parameterization when compared to local density approximation (LDA) and Becke Johnson potentials. We also observe that TB-mBJ new parameterization for semiconductors below 7 eV reproduces the experimental trends very well for the small band gap semiconducting alkaline-earth chalcogenides. The calculated band profiles look similar for MX compounds (electronic band structures are provided for BaS for representation purpose) using LDA and new parameterization of TB-mBJ potentials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, M. B.; Garlea, V. O.; Gillon, B.
2017-01-23
One rare example of a Kondo lattice compound with ferromagnetic dominated RKKY interactions is Ybmore » $$_{14}$$MnSb$$_{11}$$. As a ferromagnetic semiconductor with $$T_c \\approx 53$$~K, it is also a potential compound for exploration of spintronic devices. This material is furthermore one of the most efficient high temperature thermoelectrics. We describe measurements which answer remaining questions regarding the energy scales of the exchange interactions, the valence and the magnetization density distribution in this system. We also find that the system consists of RKKY exchange coupled Mn$$^{2+}$$ sites with nearest and next nearest exchange interactions dominating the magnetic spectrum with no significant magnetization density localized on other atomic sites. The extended spread of a negative magnetization around each of the Mn ions supports a Kondo screening cloud scenario for Yb$$_{14}$$MnSb$$_{11}$$.« less
Panitz, J.K.; Reed, S.T.; Ashley, C.S.; Neiser, R.A.; Moffatt, W.C.
1999-07-20
Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties. 6 figs.
PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators
Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.; ...
2018-02-13
Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory (DFT), have found widespread use in the calculation of point-defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT) tomore » expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. As a result, we anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.« less
PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators
NASA Astrophysics Data System (ADS)
Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.; Yu, Guodong; Canning, Andrew; Haranczyk, Maciej; Asta, Mark; Hautier, Geoffroy
2018-05-01
Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory (DFT), have found widespread use in the calculation of point-defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT) to expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. We anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.
PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.
Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory DFT), have found widespread use in the calculation of point defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT)more » to expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. We anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.« less
PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.
Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory (DFT), have found widespread use in the calculation of point-defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT) tomore » expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. As a result, we anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.« less
Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers
Norman, Andrew
2016-08-23
A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a silicon substrate using a compliant buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The compliant buffer material and semiconductor materials may be deposited using coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The coincident site lattice matching epitaxial process, as well as the use of a ductile buffer material, reduce the internal stresses and associated crystal defects within the deposited semiconductor materials fabricated using the disclosed method. As a result, the semiconductor devices provided herein possess enhanced performance characteristics due to a relatively low density of crystal defects.
Thermoelectric materials ternary penta telluride and selenide compounds
Sharp, Jeffrey W.
2001-01-01
Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.
Thermoelectric materials: ternary penta telluride and selenide compounds
Sharp, Jeffrey W.
2002-06-04
Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.
Photovoltaic Device Including A Boron Doping Profile In An I-Type Layer
Yang, Liyou
1993-10-26
A photovoltaic cell for use in a single junction or multijunction photovoltaic device, which includes a p-type layer of a semiconductor compound including silicon, an i-type layer of an amorphous semiconductor compound including silicon, and an n-type layer of a semiconductor compound including silicon formed on the i-type layer. The i-type layer including an undoped first sublayer formed on the p-type layer, and a boron-doped second sublayer formed on the first sublayer.
Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations.
Roknuzzaman, Md; Ostrikov, Kostya Ken; Wang, Hongxia; Du, Aijun; Tesfamichael, Tuquabo
2017-10-25
Lead (Pb) free non-toxic perovskite solar cells have become more important in the commercialization of the photovoltaic devices. In this study the structural, electronic, optical and mechanical properties of Pb-free inorganic metal halide cubic perovskites CsBX 3 (B = Sn, Ge; X = I, Br, Cl) for perovskite solar cells are simulated using first-principles Density Functional Theory (DFT). These compounds are semiconductors with direct band gap energy and mechanically stable. Results suggest that the materials have high absorption coefficient, low reflectivity and high optical conductivity with potential application in solar cells and other optoelectronic energy devices. On the basis of the optical properties, one can expect that the Germanium (Ge) would be a better replacement of Pb as Ge containing compounds have higher optical absorption and optical conductivity than that of Pb containing compounds. A combinational analysis of the electronic, optical and mechanical properties of the compounds suggests that CsGeI 3 based perovskite is the best Pb-free inorganic metal halide semiconductor for the solar cell application. However, the compound with solid solution of CsGe(I 0.7 Br 0.3 ) 3 is found to be mechanically more ductile than CsGeI 3 . This study will also guide to obtain Pb-free organic perovskites for optoelectronic devices.
Integrated Multi-Color Light Emitting Device Made with Hybrid Crystal Structure
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)
2017-01-01
An integrated hybrid crystal Light Emitting Diode ("LED") display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.
Integrated Multi-Color Light Emitting Device Made with Hybrid Crystal Structure
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)
2016-01-01
An integrated hybrid crystal Light Emitting Diode ("LED") display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.
Solid-binding peptides: smart tools for nanobiotechnology.
Care, Andrew; Bergquist, Peter L; Sunna, Anwar
2015-05-01
Over the past decade, solid-binding peptides (SBPs) have been used increasingly as molecular building blocks in nanobiotechnology. These peptides show selectivity and bind with high affinity to the surfaces of a diverse range of solid materials including metals, metal oxides, metal compounds, magnetic materials, semiconductors, carbon materials, polymers, and minerals. They can direct the assembly and functionalisation of materials, and have the ability to mediate the synthesis and construction of nanoparticles and complex nanostructures. As the availability of newly synthesised nanomaterials expands rapidly, so too do the potential applications for SBPs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Intrinsically High Thermoelectric Performance in AgInSe2 n-Type Diamond-Like Compounds.
Qiu, Pengfei; Qin, Yuting; Zhang, Qihao; Li, Ruoxi; Yang, Jiong; Song, Qingfeng; Tang, Yunshan; Bai, Shengqiang; Shi, Xun; Chen, Lidong
2018-03-01
Diamond-like compounds are a promising class of thermoelectric materials, very suitable for real applications. However, almost all high-performance diamond-like thermoelectric materials are p-type semiconductors. The lack of high-performance n-type diamond-like thermoelectric materials greatly restricts the fabrication of diamond-like material-based modules and their real applications. In this work, it is revealed that n-type AgInSe 2 diamond-like compound has intrinsically high thermoelectric performance with a figure of merit ( zT ) of 1.1 at 900 K, comparable to the best p-type diamond-like thermoelectric materials reported before. Such high zT is mainly due to the ultralow lattice thermal conductivity, which is fundamentally limited by the low-frequency Ag-Se "cluster vibrations," as confirmed by ab initio lattice dynamic calculations. Doping Cd at Ag sites significantly improves the thermoelectric performance in the low and medium temperature ranges. By using such high-performance n-type AgInSe 2 -based compounds, the diamond-like thermoelectric module has been fabricated for the first time. An output power of 0.06 W under a temperature difference of 520 K between the two ends of the module is obtained. This work opens a new window for the applications using the diamond-like thermoelectric materials.
Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Brebrick, Robert F.; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin; Shih, Hung-Dah
2000-01-01
Interest in optical devices which can operate in the visible spectrum has motivated research interest in the II-VI wide band gap semiconductor materials. The recent challenge for semiconductor opto-electronics is the development of a laser which can operate at short visible wavelengths. In the past several years, major advances in thin film technology such as molecular beam epitaxy and metal organic chemical vapor deposition have demonstrated the applicability of II-VI materials to important devices such as light-emitting diodes, lasers, and ultraviolet detectors. With an energy gap of 2.7 eV at room temperature, and an efficient band- to-band transition, ZnSe has been studied extensively as the primary candidate for a blue light emitting diode for optical displays, high density recording, and military communications. By employing a ternary or quaternary system, the energy band gap of II-VI materials can be tuned to a specific range. While issues related to the compositional inhomogeneity and defect incorporation are still to be fully resolved, ZnSe bulk crystals and ZnSe-based heterostructures such as ZnSe/ZnSeS, ZnSe/ZnCdSe and ZnCdSe/ZnSeS have showed photopumped lasing capability in the blue-green region at a low threshold power and high temperatures. The demonstration of its optical bistable properties in bulk and thin film forms also make ZnSe a possible candidate material for the building blocks of a digital optical computer. Despite this, developments in the crystal growth of bulk H-VI semiconductor materials has not advanced far enough to provide the low price, high quality substrates needed for the thin film growth technology.
Optoelectronic Devices and Materials
NASA Astrophysics Data System (ADS)
Sweeney, Stephen; Adams, Alfred
Unlike the majority of electronic devices, which are silicon based, optoelectronic devices are predominantly made using III-V semiconductor compounds such as GaAs, InP, GaN and GaSb and their alloys due to their direct band gap. Understanding the properties of these materials has been of vital importance in the development of optoelectronic devices. Since the first demonstration of a semiconductor laser in the early 1960s, optoelectronic devices have been produced in their millions, pervading our everyday lives in communications, computing, entertainment, lighting and medicine. It is perhaps their use in optical-fibre communications that has had the greatest impact on humankind, enabling high-quality and inexpensive voice and data transmission across the globe. Optical communications spawned a number of developments in optoelectronics, leading to devices such as vertical-cavity surface-emitting lasers, semiconductor optical amplifiers, optical modulators and avalanche photodiodes. In this chapter we discuss the underlying theory of operation of the most important optoelectronic devices. The influence of carrier-photon interactions is discussed in the context of producing efficient emitters and detectors. Finally we discuss how the semiconductor band structure can be manipulated to enhance device properties using quantum confinement and strain effects, and how the addition of dilute amounts of elements such as nitrogen is having a profound effect on the next generation of optoelectronic devices.
NASA Technical Reports Server (NTRS)
Gilbert, Percy; Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.
1987-01-01
Using a recently developed technology called thermal-wave microscopy, NASA Lewis Research Center has developed a computer controlled submicron thermal-wave microscope for the purpose of investigating III-V compound semiconductor devices and materials. This paper describes the system's design and configuration and discusses the hardware and software capabilities. Knowledge of the Concurrent 3200 series computers is needed for a complete understanding of the material presented. However, concepts and procedures are of general interest.
Semiconductor structure and recess formation etch technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Bin; Sun, Min; Palacios, Tomas Apostol
2017-02-14
A semiconductor structure has a first layer that includes a first semiconductor material and a second layer that includes a second semiconductor material. The first semiconductor material is selectively etchable over the second semiconductor material using a first etching process. The first layer is disposed over the second layer. A recess is disposed at least in the first layer. Also described is a method of forming a semiconductor structure that includes a recess. The method includes etching a region in a first layer using a first etching process. The first layer includes a first semiconductor material. The first etching processmore » stops at a second layer beneath the first layer. The second layer includes a second semiconductor material.« less
The Seminal Literature of Nanotechnology Research
2005-01-01
membrane-based synthetic approach to nanomaterials (Martin, 1994) was followed by synthesis of thiol derivatized gold nanoparticles in a two phase liquid... nanoparticles into macroscopic materials (Mirkin et al, 1996). A study on general synthesis of compound semiconductor nanowires provided a rational...Bethell D, Schiffrin DJ, Whyman R. (1994). Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. Journal of the
Microwave, Semiconductor Research - Materials, Devices and Circuits.
1984-03-01
Phenomena, Gamisch/Partenkirchen, Germany, 1982 (Springer-Verlag, Berlin). 3. "Observation of nonlinear refractive index in molecular liquids by...in non-walled dielectric waveguide including a novel use of transverse resonance equivalent circuits for the treatment of dispersion in graded index ...number) This program covers the growth and assessment of Gallium Arsenide, and related compounds and alloys, for use in microwave, millimeter, and
Single crystal, liquid crystal, and hybrid organic semiconductors
NASA Astrophysics Data System (ADS)
Twieg, Robert J.; Getmanenko, Y.; Lu, Z.; Semyonov, A. N.; Huang, S.; He, P.; Seed, A.; Kiryanov, A.; Ellman, B.; Nene, S.
2003-07-01
The synthesis and characterization of organic semiconductors is being pursued in three primary structure formats: single crystal, liquid crystal and organic-inorganic hybrid. The strategy here is to share common structures, synthesis methods and fabrication techniques across these formats and to utilize common characterization tools such as the time of flight technique. The single crystal efforts concentrate on aromatic and heteroaromatic compounds including simple benzene derivatives and derivatives of the acenes. The structure-property relationships due to incorporation of small substituents and heteroatoms are being examined. Crystals are grown by solution, melt or vapor transport techniques. The liquid crystal studies exploit their self-organizing properties and relative ease of sample preparation. Though calamitic systems tha deliver the largest mobilities are higher order smectics, even some unusual twist grain boundary phases are being studied. We are attempting to synthesize discotic acene derivatives with appropriate substitution patterns to render them mesogenic. The last format being examined is the hybrid organic-inorganic class. Here, layered materials of alternating organic and inorganic composition are designed and synthesized. Typical materials are conjugated aromatic compounds, usually functinalized with an amine or a pyridine and reacted with appropriate reactive metal derivatives to incorporate them into metal oxide or sulfide layers.
Doping-assisted defect control in compound semiconductors
Specht, Petra; Weber, Eicke R.; Weatherford, Todd Russell
2006-07-11
The present invention relates to the production of thin film epilayers of III–V and other compounds with acceptor doping wherein the acceptor thermally stabilizes the epilayer, stabilize the naturally incorporated native defect population and therewith maintain the epilayer's beneficial properties upon annealing among other advantageous effects. In particular, balanced doping in which the acceptor concentration is similar to (but does not exceed) the antisite defects in the as-grown material is shown to be particularly advantageous in providing thermal stability, high resistivity and ultrashort trapping times. In particular, MBE growth of LT-GaAs epilayers with balanced Be doping is described in detail. The growth conditions greatly enhance the materials reproducibility (that is, the yield in processed devices). Such growth techniques can be transferred to other III–V materials if the growth conditions are accurately reproduced. Materials produced herein also demonstrate advantages in reproducibility, reliability and radiation hardening.
Growth of Gallium Nitride Nanowires: A Study Using In Situ Transmission Electron Microscopy
NASA Astrophysics Data System (ADS)
Diaz Rivas, Rosa Estela
Owing to their special characteristics, group III-Nitride semiconductors have attracted special attention for their application in a wide range of optoelectronic devices. Of particular interest are their direct and wide band gaps that span from ultraviolet to the infrared wavelengths. In addition, their stronger bonds relative to the other compound semiconductors makes them thermally more stable, which provides devices with longer life time. However, the lattice mismatch between these semiconductors and their substrates cause the as-grown films to have high dislocation densities, reducing the life time of devices that contain these materials. One possible solution for this problem is to substitute single crystal semiconductor nanowires for epitaxial films. Due to their dimensionality, semiconductor nanowires typically have stress-free surfaces and better physical properties. In order to employ semiconductor nanowires as building blocks for nanoscale devices, a precise control of the nanowires' crystallinity, morphology, and chemistry is necessary. This control can be achieved by first developing a deeper understanding of the processes involved in the synthesis of nanowires, and then by determining the effects of temperature and pressure on their growth. This dissertation focuses on understanding of the growth processes involved in the formation of GaN nanowires. Nucleation and growth events were observed in situ and controlled in real-time using an environmental transmission electron microscope. These observations provide a satisfactory elucidation of the underlying growth mechanism during the formation of GaN nanowires. Nucleation of these nanowires appears to follow the vapor-liquid-solid mechanism. However, nanowire growth is found to follow both the vapor-liquid-solid and vapor-solid-solid mechanisms. Direct evidence of the effects of III/V ratio on nanowire growth is also reported, which provides important information for tailoring the synthesis of GaN nanowires. These findings suggest in situ electron microscopy is a powerful tool to understand the growth of GaN nanowires and also that these experimental approach can be extended to study other binary semiconductor compound such as GaP, GaAs, and InP, or even ternary compounds such as InGaN. However, further experimental work is required to fully elucidate the kinetic effects on the growth process. A better control of the growth parameters is also recommended.
NASA Astrophysics Data System (ADS)
Umamaheswari, R.; Yogeswari, M.; Kalpana, G.
2013-02-01
Self-consistent scalar relativistic band structure calculations for AMO (A=Li, Na, K and Rb; M=Ag and Cu) compounds have been performed using the tight-binding linear muffin-tin orbital (TB-LMTO) method within the local density approximation (LDA). At ambient conditions, these compounds are found to crystallize in tetragonal KAgO-type structure with two different space group I-4m2 and I4/mmm. Nowadays, hypothetical structures are being considered to look for new functional materials. AMO compounds have stoichiometry similar to eight-electron half-Heusler materials of type I-I-VI which crystallizes in cubic (C1b) MgAgAs-type structure with space group F-43m. For all these compounds, by interchanging the positions of atoms in the hypothetical cubic structure, three phases (α, β and γ) are formed. The energy-volume relation for these compounds in tetragonal KAgO-type structure and cubic α, β and γ phases of related structure have been obtained. Under ambient conditions these compounds are more stable in tetragonal KAgO-type (I4/mmm) structure. The total energies calculated within the atomic sphere approximation (ASA) were used to determine the ground state properties such as equilibrium lattice parameters, c/a ratio, bulk modulus, cohesive energy and are compared with the available experimental results. The results of the electronic band structure calculations at ambient condition show that LiCuO and NaMO are indirect band gap semiconductors whereas KMO and RbMO are direct band gap semiconductors. At high pressure the band gap decreases and the phenomenon of band overlap metallization occur. Also these compounds undergo structural phase transition from tetragonal I-4m2 phase to cubic α-phase and transition pressures were calculated.
Prediction of weak and strong topological insulators in layered semiconductors.
NASA Astrophysics Data System (ADS)
Felser, Claudia
2013-03-01
We investigate a new class of ternary materials such as LiAuSe and KHgSb with a honeycomb structure in Au-Se and Hg-Sb layers. We demonstrate the band inversion in these materials similar to HgTe, which is a strong precondition for existence of the topological surface states. In contrast with graphene, these materials exhibit strong spin-orbit coupling and a small direct band gap at the point. Since these materials are centrosymmetric, it is straightforward to determine the parity of their wave functions, and hence their topological character. Surprisingly, the compound with strong spin-orbit coupling (KHgSb) is trivial, whereas LiAuSe is found to be a topological insulator. However KHgSb is a weak topological insulators in case of an odd number of layers in the primitive unit cell. Here, the single-layered KHgSb shows a large bulk energy gap of 0.24 eV. Its side surface hosts metallic surface states, forming two anisotropic Dirac cones. Although the stacking of even-layered structures leads to trivial insulators, the structures can host a quantum spin Hall layer with a large bulk gap, if an additional single layer exists as a stacking fault in the crystal. The reported honeycomb compounds can serve as prototypes to aid in the finding of new weak topological insulators in layered small-gap semiconductors. In collaboration with Binghai Yan, Lukas Müchler, Hai-Jun Zhang, Shou-Cheng Zhang and Jürgen Kübler.
Variable temperature semiconductor film deposition
Li, X.; Sheldon, P.
1998-01-27
A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.
Variable temperature semiconductor film deposition
Li, Xiaonan; Sheldon, Peter
1998-01-01
A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.
Wholly Aromatic Ether-Imides as n-Type Semiconductors
NASA Technical Reports Server (NTRS)
Weiser, Erik; St. Clair, Terry L.; Dingemans, Theo J.; Samulski, Edward T.; Irene, Gene
2006-01-01
Some wholly aromatic ether-imides consisting of rod-shaped, relatively-low-mass molecules that can form liquid crystals have been investigated for potential utility as electron-donor-type (ntype) organic semiconductors. It is envisioned that after further research to improve understanding of their physical and chemical properties, compounds of this type would be used to make thin film semiconductor devices (e.g., photovoltaic cells and field-effect transistors) on flexible electronic-circuit substrates. This investigation was inspired by several prior developments: Poly(ether-imides) [PEIs] are a class of engineering plastics that have been used extensively in the form of films in a variety of electronic applications, including insulating layers, circuit boards, and low-permittivity coatings. Wholly aromatic PEIs containing naphthalene and perylene moieties have been shown to be useful as electrochromic polymers. More recently, low-molecular-weight imides comprising naphthalene-based molecules with terminal fluorinated tails were shown to be useful as n-type organic semiconductors in such devices as field-effect transistors and Schottky diodes. Poly(etherimide)s as structural resins have been extensively investigated at NASA Langley Research Center for over 30 years. More recently, the need for multi-functional materials has become increasingly important. This n-type semiconductor illustrates the scope of current work towards new families of PEIs that not only can be used as structural resins for carbon-fiber reinforced composites, but also can function as sensors. Such a multi-functional material would permit so-called in-situ health monitoring of composite structures during service. The work presented here demonstrates that parts of the PEI backbone can be used as an n-type semiconductor with such materials being sensitive to damage, temperature, stress, and pressure. In the near future, multi-functional or "smart" composite structures are envisioned to be able to communicate such important parameters to the flight crew and provide vital information with respect to the operational status of their aircraft.
A microprocessor based on a two-dimensional semiconductor.
Wachter, Stefan; Polyushkin, Dmitry K; Bethge, Ole; Mueller, Thomas
2017-04-11
The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor-molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.
A microprocessor based on a two-dimensional semiconductor
NASA Astrophysics Data System (ADS)
Wachter, Stefan; Polyushkin, Dmitry K.; Bethge, Ole; Mueller, Thomas
2017-04-01
The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor--molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.
Metal-Semiconductor Nanocomposites for High Efficiency Thermoelectric Power Generation
2013-12-07
standard III–V compound semiconductor processing techniques with terbium- doped InGaAs of high terbium concentration, Journal of Vacuum Science...even lower the required temperature for strong covalent bonding. We performed the oxide bonding for this substrate transfer task (see Figure 16 for...appropriate controls for assessing ErSb:InGaSb and other nanocomposites of p-type III-V compound semiconductors and their alloys. UCSC group calculated
Kent, Tyler; Chagarov, Evgeniy; Edmonds, Mary; Droopad, Ravi; Kummel, Andrew C
2015-05-26
Studies have shown that metal oxide semiconductor field-effect transistors fabricated utilizing compound semiconductors as the channel are limited in their electrical performance. This is attributed to imperfections at the semiconductor/oxide interface which cause electronic trap states, resulting in inefficient modulation of the Fermi level. The physical origin of these states is still debated mainly because of the difficulty in assigning a particular electronic state to a specific physical defect. To gain insight into the exact source of the electronic trap states, density functional theory was employed to model the intrinsic physical defects on the InGaAs (2 × 4) surface and to model the effective passivation of these defects by utilizing both an oxidant and a reductant to eliminate metallic bonds and dangling-bond-induced strain at the interface. Scanning tunneling microscopy and spectroscopy were employed to experimentally determine the physical and electronic defects and to verify the effectiveness of dual passivation with an oxidant and a reductant. While subsurface chemisorption of oxidants on compound semiconductor substrates can be detrimental, it has been shown theoretically and experimentally that oxidants are critical to removing metallic defects at oxide/compound semiconductor interfaces present in nanoscale channels, oxides, and other nanostructures.
NASA Technical Reports Server (NTRS)
Anderson, T. J.; Narayanan, R.
1987-01-01
Directional solidification of the pseudobinary compound semiconductor material Pb sub 1-x Sn sub x Te by the Bridgman crystal growth process will be studied. Natural convection in the molten sample will be visualized with a novel electrochemical cell technique that employs the solid electrolyte material yttria-stabilized zirconia. Mass transfer by both diffusion and convection will be measured by detecting the motion of oxygen tracer in the liquid. Additional applications for electrochemical cells in semiconductor crystal growth are suggested. Unsteady convection in the melt will also be detected by the appearance of temperature oscillations. The purpose of this study is to experimentally characterize the overstable conditions for a Pb sub 1-x Sn sub x Te melt in the vertical Bridgman crystal growth technique and use a linear analysis to predict the onset of convection for this system.
Crystal growth of device quality GaAs in space
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Lagowski, J.
1985-01-01
The present program has been aimed at solving the fundamental and technological problems associated with Crystal Growth of Device Quality in Space. The initial stage of the program was devoted strictly to ground-based research. The unsolved problems associated with the growth of bulk GaAs in the presence of gravitational forces were explored. Reliable chemical, structural and electronic characterization methods were developed which would permit the direct relation of the salient materials parameters (particularly those affected by zero gravity conditions) to the electronic characteristics of single crystal GaAs, in turn to device performance. These relationships are essential for the development of optimum approaches and techniques. It was concluded that the findings on elemental semiconductors Ge and Si regarding crystal growth, segregation, chemical composition, defect interactions, and materials properties-electronic properties relationships are not necessarily applicable to GaAs (and to other semiconductor compounds). In many instances totally unexpected relationships were found to prevail.
NASA Astrophysics Data System (ADS)
Kaur, Kulwinder; Rai, D. P.; Thapa, R. K.; Srivastava, Sunita
2017-07-01
We explore the structural, electronic, mechanical, and thermoelectric properties of a new half Heusler compound HfPtPb, an all metallic heavy element, recently proposed to be stable [Gautier et al., Nat. Chem. 7, 308 (2015)]. In this work, we employ density functional theory and semi-classical Boltzmann transport equations with constant relaxation time approximation. The mechanical properties, such as shear modulus, Young's modulus, elastic constants, Poisson's ratio, and shear anisotropy factor, have been investigated. The elastic and phonon properties reveal that this compound is mechanically and dynamically stable. Pugh's ratio and Frantsevich's ratio demonstrate its ductile behavior, and the shear anisotropic factor reveals the anisotropic nature of HfPtPb. The band structure predicts this compound to be a semiconductor with a band gap of 0.86 eV. The thermoelectric transport parameters, such as Seebeck coefficient, electrical conductivity, electronic thermal conductivity, and lattice thermal conductivity, have been calculated as a function of temperature. The highest value of Seebeck coefficient is obtained for n-type doping at an optimal carrier concentration of 1.0 × 1020 e/cm3. We predict the maximum value of figure of merit (0.25) at 1000 K. Our investigation suggests that this material is an n-type semiconductor.
Asphaltenes as new objects for nanoelectronics
NASA Astrophysics Data System (ADS)
Dolomatov, M. Yu; Petrov, A. M.; Bakhtizin, R. Z.; Dolomatova, M. M.; Khairudinov, I. R.; Shutkova, S. A.; Kovaleva, E. A.; Paymurzina, N. Kh
2017-05-01
Abstract. Modern carbon nanomaterials (carbon nanotubes, graphenes, fullerenes, polycyclic molecules) are products of rather complicated technologies. Therefore development of new not expensive materials on the basis of natural substances, in particular high-molecular compounds of oil - asphaltenes, is actual for nanoelectronics. Asphaltenes are complex materials that are found in crude oil, bitumen and high-boiling hydrocarbons distillates. Usually asphaltenes are composed mainly of polyaromatic carbon with a small amount of vanadium and nickel, which are in porphyrin structures. Molecules of asphaltenes may contain 5-10-member benzene and naphthenic rings in their structure and also have paramagnetic centers. A variety of techniques: electronic phenomenological spectroscopy (EPS), atomic force microscopy (AFM) and quantum chemistry calculations were used to define the structure of oil asphaltenes. It was supposed that asphaltene fraction is a strong donor (ionization potential 4.10-6.70 eV) and an acceptor (electron affinity 1.80-2.50 eV). The structures of asphaltenes fragments were calculated by RHF-6-31G** methods. AFM images of asphaltenes obtained from crude oil showed the presence of structure fragments ranged from 3 to 10 nm, disposed to strong intermolecular interactions. We used doped compounds for formation of wide band gap amorphous semiconductors from a concentrates of asphaltens. Changes of conductivity in dispersed petroleum systems (DPS) were studied during a pyrolysis at 500 K. The numerous experiments defined of conductivity testify about phase transitions dielectric - semiconductor in DPS for range of 360 - 400 K. The main conclusion is paramagnetic phase of asphaltenes is organic amorphous wide band gap semiconductor. Besides this substance can be consider as an organic spin glasses.
Electronic defects in the halide antiperovskite semiconductor Hg3Se2I2
NASA Astrophysics Data System (ADS)
Kim, Joon-Il; Peters, John A.; He, Yihui; Liu, Zhifu; Das, Sanjib; Kontsevoi, Oleg Y.; Kanatzidis, Mercouri G.; Wessels, Bruce W.
2017-10-01
Halide perovskites have emerged as a potential photoconducting material for photovoltaics and hard radiation detection. We investigate the nature of charge transport in the semi-insulating chalcohalide Hg3Se2I2 compound using the temperature dependence of dark current, thermally stimulated current (TSC) spectroscopy, and photoconductivity measurements as well as first-principles density functional theory (DFT) calculations. Dark conductivity measurements and TSC spectroscopy indicate the presence of multiple shallow and deep level traps that have relatively low concentrations of the order of 1013-1015c m-3 and capture cross sections of ˜10-16c m2 . A distinct persistent photoconductivity is observed at both low temperatures (<170 K ) and high temperatures (>230 K), with major implications for room-temperature compound semiconductor radiation detection. From preliminary DFT calculations, the origin of the traps is attributed to intrinsic vacancy defects (VHg, VSe, and VI) and interstitials (Seint) or other extrinsic impurities. The results point the way for future improvements in crystal quality and detector performance.
High quality lamella preparation of gallium nitride compound semiconductor using Triple Beam™ system
NASA Astrophysics Data System (ADS)
Sato, T.; Nakano, K.; Matsumoto, H.; Torikawa, S.; Nakatani, I.; Kiyohara, M.; Isshiki, T.
2017-09-01
Gallium nitride (GaN) compound semiconductors have been known to be very sensitive to Ga focused ion beam (FIB) processing. Due to the nature of GaN based materials it is often difficult to produce damage-free lamellae, therefore applying the Triple Beam™ system which incorporates an enhanced method for amorphous removal is presented to make a high quality lamella. The damage or distortion layer thickness of GaN single crystal prepared with 30 kV Ga FIB and 1 kV Ga FIB were about 17 nm and 1.5 nm respectively. The crystallinity at the uppermost surface remained unaffected when the condition of 1 kV Ar ion milling with the Triple Beam™ system was used. The technique of combining traditional Ga FIB processing with an enhanced method for amorphous layer removal by low energy Ar ion milling allows us to analyse the InGaN/GaN interface using aberration corrected scanning transmission electron microscopy at atomic resolution levels.
n-Channel semiconductor materials design for organic complementary circuits.
Usta, Hakan; Facchetti, Antonio; Marks, Tobin J
2011-07-19
Organic semiconductors have unique properties compared to traditional inorganic materials such as amorphous or crystalline silicon. Some important advantages include their adaptability to low-temperature processing on flexible substrates, low cost, amenability to high-speed fabrication, and tunable electronic properties. These features are essential for a variety of next-generation electronic products, including low-power flexible displays, inexpensive radio frequency identification (RFID) tags, and printable sensors, among many other applications. Accordingly, the preparation of new materials based on π-conjugated organic molecules or polymers has been a central scientific and technological research focus over the past decade. Currently, p-channel (hole-transporting) materials are the leading class of organic semiconductors. In contrast, high-performance n-channel (electron-transporting) semiconductors are relatively rare, but they are of great significance for the development of plastic electronic devices such as organic field-effect transistors (OFETs). In this Account, we highlight the advances our team has made toward realizing moderately and highly electron-deficient n-channel oligomers and polymers based on oligothiophene, arylenediimide, and (bis)indenofluorene skeletons. We have synthesized and characterized a "library" of structurally related semiconductors, and we have investigated detailed structure-property relationships through optical, electrochemical, thermal, microstructural (both single-crystal and thin-film), and electrical measurements. Our results reveal highly informative correlations between structural parameters at various length scales and charge transport properties. We first discuss oligothiophenes functionalized with perfluoroalkyl and perfluoroarene substituents, which represent the initial examples of high-performance n-channel semiconductors developed in this project. The OFET characteristics of these compounds are presented with an emphasis on structure-property relationships. We then examine the synthesis and properties of carbonyl-functionalized oligomers, which constitute second-generation n-channel oligothiophenes, in both vacuum- and solution-processed FETs. These materials have high carrier mobilities and good air stability. In parallel, exceptionally electron-deficient cyano-functionalized arylenediimide derivatives are discussed as early examples of thermodynamically air-stable, high-performance n-channel semiconductors; they exhibit record electron mobilities of up to 0.64 cm(2)/V·s. Furthermore, we provide an overview of highly soluble ladder-type macromolecular semiconductors as OFET components, which combine ambient stability with solution processibility. A high electron mobility of 0.16 cm(2)/V·s is obtained under ambient conditions for solution-processed films. Finally, examples of polymeric n-channel semiconductors with electron mobilities as high as 0.85 cm(2)/V·s are discussed; these constitute an important advance toward fully printed polymeric electronic circuitry. Density functional theory (DFT) computations reveal important trends in molecular physicochemical and semiconducting properties, which, when combined with experimental data, shed new light on molecular charge transport characteristics. Our data provide the basis for a fundamental understanding of charge transport in high-performance n-channel organic semiconductors. Moreover, our results provide a road map for developing functional, complementary organic circuitry, which requires combining p- and n-channel transistors.
Organic photosensitive cells grown on rough electrode with nano-scale morphology control
Yang, Fan [Piscataway, NJ; Forrest, Stephen R [Ann Arbor, MI
2011-06-07
An optoelectronic device and a method for fabricating the optoelectronic device includes a first electrode disposed on a substrate, an exposed surface of the first electrode having a root mean square roughness of at least 30 nm and a height variation of at least 200 nm, the first electrode being transparent. A conformal layer of a first organic semiconductor material is deposited onto the first electrode by organic vapor phase deposition, the first organic semiconductor material being a small molecule material. A layer of a second organic semiconductor material is deposited over the conformal layer. At least some of the layer of the second organic semiconductor material directly contacts the conformal layer. A second electrode is deposited over the layer of the second organic semiconductor material. The first organic semiconductor material is of a donor-type or an acceptor-type relative to the second organic semiconductor material, which is of the other material type.
The chemical deposition of semiconductor thin-films for photovoltaic devices
NASA Astrophysics Data System (ADS)
Breen, Marc Louis
Initially, possible precursors to metal sulfide films formed by metal-organic chemical vapor deposition (MOCVD), the standard commercial technique for manufacturing photovoltaic semiconductors, were synthesized. Triple-junction GaInP 2/GaAs/Ge solar cells, prepared by this method, were studied to understand how chemical properties and material defects can effect the performance of photovoltaic devices. Finally, novel methods for the low-temperature, solution growth of CdS, CdSe, and CuInSe2 photovoltaic materials were targeted which will reduce manufacturing costs and increase the economic feasibility of solar energy conversion. A series of dialkyldithiocarbamate copper, gallium and indium compounds were studied as possible metal sulfide MOCVD precursors. Metal powders were oxidized by dialkylthiurams in 3- or 4-methylpyridine using standard techniques for handling air and moisture-sensitive compounds. Metal chlorides reacted directly with the sodium dialkyldithiocarbamate salts. In these complexes, the metal was found in a roughly octahedral orientation, surrounded by dithiocarbamate ligands and/or solvent molecules. Triple-junction GaInP2/GaAs/Ge cells were composed of thin-films of GaInP2 and GaAs grown monolithically on top of a germanium substrate. Each layer of semiconductor material had a different bandgap and absorbed a different portion of the solar spectrum, thus improving the overall efficiency of the cell. Work focused on dark current-voltage behavior which is known to limit solar cell open-circuit voltage, fill factor, and conversion efficiency. Cells were studied using microscopic and spectroscopic techniques to correlate the effect of physical defects in the materials with poor performance of the devices as evaluated through current vs. voltage measurements. Films of US and CdSe were readily prepared in solution through an "ion-by-ion" deposition of Cd2+ and S2- (or Se 2-) generated from the slow hydrolysis of thiourea (or dimethylthiourea). The bath chemistry was carefully controlled by the adjustment of pH to slow hydrolysis and with chelating agents to sequester the cadmium ions. Triethanolamine and ethylenediamine were both effective chelators with the latter producing thicker, clearer films. Finally, US films were grown over electrodeposited CuInSe2 to form working photovoltaic devices. In summary, contributions were made which (a) advance current methods for manufacturing photovoltaic semiconductors and (b) offer an alternative route to producing new forms of thin-film solar cell devices.
Method for manufacturing electrical contacts for a thin-film semiconductor device
Carlson, David E.; Dickson, Charles R.; D'Aiello, Robert V.
1988-11-08
A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.
Electrical contacts for a thin-film semiconductor device
Carlson, David E.; Dickson, Charles R.; D'Aiello, Robert V.
1989-08-08
A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.
Senanayake, S D; Idriss, H
2006-01-31
We report the conversion of a large fraction of formamide (NH(2)CHO) to high-molecular-weight compounds attributed to nucleoside bases on the surface of a TiO(2) (001) single crystal in ultra-high vacuum conditions. If true, we present previously unreported evidence for making biologically relevant molecules from a C1 compound on any single crystal surface in high vacuum and in dry conditions. An UV light of 3.2 eV was necessary to make the reaction. This UV light excites the semiconductor surface but not directly the adsorbed formamide molecules or the reaction products. There thus is no need to use high energy in the form of photons or electrical discharge to make the carbon-carbon and carbon-nitrogen bonds necessary for life. Consequently, the reaction products may accumulate with time and may not be subject to decomposition by the excitation source. The formation of these molecules, by surface reaction of formamide, is proof that some minerals in the form of oxide semiconductors are active materials for making high-molecular-weight organic molecules that may have acted as precursors for biological compounds required for life in the universe.
In situ growth of metal particles on 3D urchin-like WO3 nanostructures.
Xi, Guangcheng; Ye, Jinhua; Ma, Qiang; Su, Ning; Bai, Hua; Wang, Chao
2012-04-18
Metal/semiconductor hybrid materials of various sizes and morphologies have many applications in areas such as catalysis and sensing. Various organic agents are necessary to stabilize metal nanoparticles during synthesis, which leads to a layer of organic compounds present at the interfaces between the metal particles and the semiconductor supports. Generally, high-temperature oxidative treatment is used to remove the organics, which can extensively change the size and morphology of the particles, in turn altering their activity. Here we report a facile method for direct growth of noble-metal particles on WO(3) through an in situ redox reaction between weakly reductive WO(2.72) and oxidative metal salts in aqueous solution. This synthetic strategy has the advantages that it takes place in one step and requires no foreign reducing agents, stabilizing agents, or pretreatment of the precursors, making it a practical method for the controlled synthesis of metal/semiconductor hybrid nanomaterials. This synthetic method may open up a new way to develop metal-nanoparticle-loaded semiconductor composites. © 2012 American Chemical Society
Band-engineering of TiO2 as a wide-band gap semiconductor using organic chromophore dyes
NASA Astrophysics Data System (ADS)
Wahyuningsih, S.; Kartini, I.; Ramelan, A. H.; Saputri, L. N. M. Z.; Munawaroh, H.
2017-07-01
Bond-engineering as applied to semiconductor materials refers to the manipulation of the energy bands in order to control charge transfer processes in a device. When the device in question is a photoelectrochemical cell, the charges affected by drift become the focus of the study. The ideal band gap of semiconductors for enhancement of photocatalyst activity can be lowered to match with visible light absorption and the location of conduction Band (CB) should be raised to meet the reducing capacity. Otherwise, by the addition of the chromofor organic dyes, the wide-band gab can be influences by interacation resulting between TiO2 surface and the dyes. We have done the impruvisation wide-band gap of TiO2 by the addition of organic chromophore dye, and the addition of transition metal dopand. The TiO2 morphology influence the light absorption as well as the surface modification. The organic chromophore dye was syntesized by formation complexes compound of Co(PAR)(SiPA)(PAR)= 4-(2-piridylazoresorcinol), SiPA = Silyl propil amine). The result showed that the chromophore groups adsorbed onto TiO2 surface can increase the visible light absorption of wide-band gab semiconductor. Initial absorption of a chromophore will affect light penetration into the material surfaces. The use of photonic material as a solar cell shows this phenomenon clearly from the IPCE (incident photon to current conversion efficiency) measurement data. Organic chromophore dyes of Co(PAR)(SiPA) exhibited the long wavelength absorption character compared to the N719 dye (from Dyesol).
Zinc Alloys for the Fabrication of Semiconductor Devices
NASA Technical Reports Server (NTRS)
Ryu, Yungryel; Lee, Tae S.
2009-01-01
ZnBeO and ZnCdSeO alloys have been disclosed as materials for the improvement in performance, function, and capability of semiconductor devices. The alloys can be used alone or in combination to form active photonic layers that can emit over a range of wavelength values. Materials with both larger and smaller band gaps would allow for the fabrication of semiconductor heterostructures that have increased function in the ultraviolet (UV) region of the spectrum. ZnO is a wide band-gap material possessing good radiation-resistance properties. It is desirable to modify the energy band gap of ZnO to smaller values than that for ZnO and to larger values than that for ZnO for use in semiconductor devices. A material with band gap energy larger than that of ZnO would allow for the emission at shorter wavelengths for LED (light emitting diode) and LD (laser diode) devices, while a material with band gap energy smaller than that of ZnO would allow for emission at longer wavelengths for LED and LD devices. The amount of Be in the ZnBeO alloy system can be varied to increase the energy bandgap of ZnO to values larger than that of ZnO. The amount of Cd and Se in the ZnCdSeO alloy system can be varied to decrease the energy band gap of ZnO to values smaller than that of ZnO. Each alloy formed can be undoped or can be p-type doped using selected dopant elements, or can be n-type doped using selected dopant elements. The layers and structures formed with both the ZnBeO and ZnCdSeO semiconductor alloys - including undoped, p-type-doped, and n-type-doped types - can be used for fabricating photonic and electronic semiconductor devices for use in photonic and electronic applications. These devices can be used in LEDs, LDs, FETs (field effect transistors), PN junctions, PIN junctions, Schottky barrier diodes, UV detectors and transmitters, and transistors and transparent transistors. They also can be used in applications for lightemitting display, backlighting for displays, UV and visible transmitters and detectors, high-frequency radar, biomedical imaging, chemical compound identification, molecular identification and structure, gas sensors, imaging systems, and for the fundamental studies of atoms, molecules, gases, vapors, and solids.
Method of producing strained-layer semiconductor devices via subsurface-patterning
Dodson, Brian W.
1993-01-01
A method is described for patterning subsurface features in a semiconductor device, wherein the semiconductor device includes an internal strained layer. The method comprises creating a pattern of semiconductor material over the semiconductor device, the semiconductor material having a predetermined thickness which stabilizes areas of the strained semiconductor layer that lie beneath the pattern. Subsequently, a heating step is applied to the semiconductor device to cause a relaxation in areas of the strained layer which do not lie beneath the semiconductor material pattern, whereby dislocations result in the relaxed areas and impair electrical transport therethrough.
Thermodynamic properties of semiconductor compounds studied based on Debye-Waller factors
NASA Astrophysics Data System (ADS)
Van Hung, Nguyen; Toan, Nguyen Cong; Ba Duc, Nguyen; Vuong, Dinh Quoc
2015-08-01
Thermodynamic properties of semiconductor compounds have been studied based on Debye-Waller factors (DWFs) described by the mean square displacement (MSD) which has close relation with the mean square relative displacement (MSRD). Their analytical expressions have been derived based on the statistical moment method (SMM) and the empirical many-body Stillinger-Weber potentials. Numerical results for the MSDs of GaAs, GaP, InP, InSb, which have zinc-blende structure, are found to be in reasonable agreement with experiment and other theories. This paper shows that an elements value for MSD is dependent on the binary semiconductor compound within which it resides.
Structural Disorder and Magnetism in the Spin-Gapless Semiconductor CoFeCrAl
2016-08-24
of the Fe doped half-Heusler and Heusler compounds CoFexCrAl and Co2-xFexCrAl (x = 0, 0.25, 0.5, 0.75, 1.0), respectively, have been studied both...Oogane, A. Hirohata, and V. K. Lazarov, “The Effect of Cobalt -Sublattice Disorder on Spin Polarisation in Co2FexMn1−xSi Heusler Alloys,” Materials 7
Bulk Growth of Wide Band Gap II-VI Compound Semiconductors by Physical Vapor Transport
NASA Technical Reports Server (NTRS)
Su, Ching-Hua
1997-01-01
The mechanism of physical vapor transport of II-VI semiconducting compounds was studied both theoretically, using a one-dimensional diffusion model, as well as experimentally. It was found that the vapor phase stoichiometry is critical in determining the vapor transport rate. The experimental heat treatment methods to control the vapor composition over the starting materials were investigated and the effectiveness of the heat treatments was confirmed by partial pressure measurements using an optical absorption technique. The effect of residual (foreign) gas on the transport rate was also studies theoretically by the diffusion model and confirmed experimentally by the measurements of total pressure and compositions of the residual gas. An in-situ dynamic technique for the transport rate measurements and a further extension of the technique that simultaneously measured the partial pressures and transport rates were performed and, for the first time, the experimentally determined mass fluxes were compared with those calculated, without any adjustable parameters, from the diffusion model. Using the information obtained from the experimental transport rate measurements as guideline high quality bulk crystal of wide band gap II-VI semiconductor were grown from the source materials which undergone the same heat treatment methods. The grown crystals were then extensively characterized with emphasis on the analysis of the crystalline structural defects.
Method of making photovoltaic cell
Cruz-Campa, Jose Luis; Zhou, Xiaowang; Zubia, David
2017-06-20
A photovoltaic solar cell comprises a nano-patterned substrate layer. A plurality of nano-windows are etched into an intermediate substrate layer to form the nano-patterned substrate layer. The nano-patterned substrate layer is positioned between an n-type semiconductor layer composed of an n-type semiconductor material and a p-type semiconductor layer composed of a p-type semiconductor material. Semiconductor material accumulates in the plurality of nano-windows, causing a plurality of heterojunctions to form between the n-type semiconductor layer and the p-type semiconductor layer.
Intrinsically High Thermoelectric Performance in AgInSe2 n‐Type Diamond‐Like Compounds
Qiu, Pengfei; Qin, Yuting; Zhang, Qihao; Li, Ruoxi; Song, Qingfeng; Tang, Yunshan; Bai, Shengqiang
2017-01-01
Abstract Diamond‐like compounds are a promising class of thermoelectric materials, very suitable for real applications. However, almost all high‐performance diamond‐like thermoelectric materials are p‐type semiconductors. The lack of high‐performance n‐type diamond‐like thermoelectric materials greatly restricts the fabrication of diamond‐like material‐based modules and their real applications. In this work, it is revealed that n‐type AgInSe2 diamond‐like compound has intrinsically high thermoelectric performance with a figure of merit (zT) of 1.1 at 900 K, comparable to the best p‐type diamond‐like thermoelectric materials reported before. Such high zT is mainly due to the ultralow lattice thermal conductivity, which is fundamentally limited by the low‐frequency Ag‐Se “cluster vibrations,” as confirmed by ab initio lattice dynamic calculations. Doping Cd at Ag sites significantly improves the thermoelectric performance in the low and medium temperature ranges. By using such high‐performance n‐type AgInSe2‐based compounds, the diamond‐like thermoelectric module has been fabricated for the first time. An output power of 0.06 W under a temperature difference of 520 K between the two ends of the module is obtained. This work opens a new window for the applications using the diamond‐like thermoelectric materials. PMID:29593972
Itinerant magnetism in doped semiconducting β-FeSi2 and CrSi2
Singh, David J.; Parker, David
2013-01-01
Novel or unusual magnetism is a subject of considerable interest, particularly in metals and degenerate semiconductors. In such materials the interplay of magnetism, transport and other Fermi liquid properties can lead to fascinating physical behavior. One example is in magnetic semiconductors, where spin polarized currents may be controlled and used. We report density functional calculations predicting magnetism in doped semiconducting β-FeSi2 and CrSi2 at relatively low doping levels particularly for n-type. In this case, there is a rapid cross-over to a half-metallic state as a function of doping level. The results are discussed in relation to the electronic structure and other properties of these compounds. PMID:24343332
The thermodynamic scale of inorganic crystalline metastability
Sun, Wenhao; Dacek, Stephen T.; Ong, Shyue Ping; Hautier, Geoffroy; Jain, Anubhav; Richards, William D.; Gamst, Anthony C.; Persson, Kristin A.; Ceder, Gerbrand
2016-01-01
The space of metastable materials offers promising new design opportunities for next-generation technological materials, such as complex oxides, semiconductors, pharmaceuticals, steels, and beyond. Although metastable phases are ubiquitous in both nature and technology, only a heuristic understanding of their underlying thermodynamics exists. We report a large-scale data-mining study of the Materials Project, a high-throughput database of density functional theory–calculated energetics of Inorganic Crystal Structure Database structures, to explicitly quantify the thermodynamic scale of metastability for 29,902 observed inorganic crystalline phases. We reveal the influence of chemistry and composition on the accessible thermodynamic range of crystalline metastability for polymorphic and phase-separating compounds, yielding new physical insights that can guide the design of novel metastable materials. We further assert that not all low-energy metastable compounds can necessarily be synthesized, and propose a principle of ‘remnant metastability’—that observable metastable crystalline phases are generally remnants of thermodynamic conditions where they were once the lowest free-energy phase. PMID:28138514
Precise measurement of charged defects in III-V compounds (supplement 2)
NASA Technical Reports Server (NTRS)
Soest, J. F.
1973-01-01
Experimental methods and related theory which will permit the measurement of low concentrations of vacancies and other defects in III-V compound semiconductors are discussed. Once the nature of these defects has been determined, this information can be incorporated into a transport theory for devices constructed from these materials, and experiments conducted to test the theory. The vacancies and other defects in the III-V compounds are detected by measurement of the nuclear magnetic resonance (NMR) line width. Most of the III-V compounds have at least one isotope with a nuclear quadrupole moment. In a crystal with a cubic crystal field (characteristic of most III-V compounds) there is no quadrupole splitting of the Zeeman resonance line. However, a defect removes the cubic symmetry locally and causes splitting which result in a change of the NMR width. This change can be used to detect the presence of vacancies.
NASA Astrophysics Data System (ADS)
Graziosi, Patrizio; Neophytou, Neophytos
2018-02-01
Newly emerged materials from the family of Heuslers and complex oxides exhibit finite bandgaps and ferromagnetic behavior with Curie temperatures much higher than even room temperature. In this work, using the semiclassical top-of-the-barrier FET model, we explore the operation of a spin-MOSFET that utilizes such ferromagnetic semiconductors as channel materials, in addition to ferromagnetic source/drain contacts. Such a device could retain the spin polarization of injected electrons in the channel, the loss of which limits the operation of traditional spin transistors with non-ferromagnetic channels. We examine the operation of four material systems that are currently considered some of the most prominent known ferromagnetic semiconductors: three Heusler-type alloys (Mn2CoAl, CrVZrAl, and CoVZrAl) and one from the oxide family (NiFe2O4). We describe their band structures by using data from DFT (Density Functional Theory) calculations. We investigate under which conditions high spin polarization and significant ION/IOFF ratio, two essential requirements for the spin-MOSFET operation, are both achieved. We show that these particular Heusler channels, in their bulk form, do not have adequate bandgap to provide high ION/IOFF ratios and have small magnetoconductance compared to state-of-the-art devices. However, with confinement into ultra-narrow sizes down to a few nanometers, and by engineering their spin dependent contact resistances, they could prove promising channel materials for the realization of spin-MOSFET transistor devices that offer combined logic and memory functionalities. Although the main compounds of interest in this paper are Mn2CoAl, CrVZrAl, CoVZrAl, and NiFe2O4 alone, we expect that the insight we provide is relevant to other classes of such materials as well.
Photovoltaic cell with nano-patterned substrate
Cruz-Campa, Jose Luis; Zhou, Xiaowang; Zubia, David
2016-10-18
A photovoltaic solar cell comprises a nano-patterned substrate layer. A plurality of nano-windows are etched into an intermediate substrate layer to form the nano-patterned substrate layer. The nano-patterned substrate layer is positioned between an n-type semiconductor layer composed of an n-type semiconductor material and a p-type semiconductor layer composed of a p-type semiconductor material. Semiconductor material accumulates in the plurality of nano-windows, causing a plurality of heterojunctions to form between the n-type semiconductor layer and the p-type semiconductor layer.
Light emitting diode with porous SiC substrate and method for fabricating
Li, Ting; Ibbetson, James; Keller, Bernd
2005-12-06
A method and apparatus for forming a porous layer on the surface of a semiconductor material wherein an electrolyte is provided and is placed in contact with one or more surfaces of a layer of semiconductor material. The electrolyte is heated and a bias is introduced across said electrolyte and the semiconductor material causing a current to flow between the electrolyte and the semiconductor material. The current forms a porous layer on the one or more surfaces of the semiconductor material in contact with the electrolyte. The semiconductor material with its porous layer can serve as a substrate for a light emitter. A semiconductor emission region can be formed on the substrate. The emission region is capable of emitting light omnidirectionally in response to a bias, with the porous layer enhancing extraction of the emitting region light passing through the substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascarenhas, Angelo
Isoelectronic co-doping of semiconductor compounds and alloys with acceptors and deep donors is used to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. For example, Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, B and Bi, to customize solar cells, and other semiconductor devices. Isoelectronically co-doped Group II-VI compounds and alloys are also included.
Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier
Forrest, Stephen R.; Wei, Guodan
2010-07-06
A plurality of layers of a first semiconductor material and a plurality of dots-in-a-fence barriers disposed in a stack between a first electrode and a second electrode. Each dots-in-a-fence barrier consists essentially of a plurality of quantum dots of a second semiconductor material embedded between and in direct contact with two layers of a third semiconductor material. Wave functions of the quantum dots overlap as at least one intermediate band. The layers of the third semiconductor material are arranged as tunneling barriers to require a first electron and/or a first hole in a layer of the first material to perform quantum mechanical tunneling to reach the second material within a respective quantum dot, and to require a second electron and/or a second hole in a layer of the first semiconductor material to perform quantum mechanical tunneling to reach another layer of the first semiconductor material.
Characterization of Interface State in Silicon Carbide Metal Oxide Semiconductor Capacitors
NASA Astrophysics Data System (ADS)
Kao, Wei-Chieh
Silicon carbide (SiC) has always been considered as an excellent material for high temperature and high power devices. Since SiC is the only compound semiconductor whose native oxide is silicon dioxide (SiO2), it puts SiC in a unique position. Although SiC metal oxide semiconductor (MOS) technology has made significant progress in recent years, there are still a number of issues to be overcome before more commercial SiC devices can enter the market. The prevailing issues surrounding SiC MOSFET devices are the low channel mobility, the low quality of the oxide layer and the high interface state density at the SiC/SiO2 interface. Consequently, there is a need for research to be performed in order to have a better understanding of the factors causing the poor SiC/SiO2 interface properties. In this work, we investigated the generation lifetime in SiC materials by using the pulsed metal oxide semiconductor (MOS) capacitor method and measured the interface state density distribution at the SiC/SiO2 interface by using the conductance measurement and the high-low frequency capacitance technique. These measurement techniques have been performed on n-type and p-type SiC MOS capacitors. In the course of our investigation, we observed fast interface states at semiconductor-dielectric interfaces in SiC MOS capacitors that underwent three different interface passivation processes, such states were detected in the nitrided samples but not observed in PSG-passivated samples. This result indicate that the lack of fast states at PSG-passivated interface is one of the main reasons for higher channel mobility in PSG MOSFETs. In addition, the effect of mobile ions in the oxide on the response time of interface states has been investigated. In the last chapter we propose additional methods of investigation that can help elucidate the origin of the particular interface states, enabling a more complete understanding of the SiC/SiO2 material system.
Possible New Irdome Materials for Transmission to 4.5-5 Micrometers.
1978-02-01
transmission completel to 5 microns and it has quite a high index or fraction. Several nitrides may be possible candidates with silicon nitride currently...receiving some consideration.1 However, it only transmits to 4.5 microns and also has a fairly high index or fraction. Many mixed nitride compounds are...should meet the IR transmission requirements but these generally have high indices of fraction . Many sulf ides, other chalcogenides, and semi-conductors
Thermal Transport in Novel Semiconductors and Nanomaterials from First Principles
2016-03-29
Jesus Carrete. Natalia Mingo. D. A. Broido. and T. L. Reinecke. Physical Review B 89 155426 (2014). 3. Anomalous pressure dependence o[thermal...conductivities o[large mass ratio compounds, L. Lindsay, D. A. Broido, Jesus Carrete, Natalia Mingo, and T. L. Reinecke, Physical Review B 91, 121202...2015). 4. Phvsicallv founded phonon dispersions o{few-laver materials, and the case o{borophene, Jesus Carrete, Wu Li, Lucas Lindsay. David A. Broido
Mascarenhas, Angelo
2015-07-07
Isoelectronic co-doping of semiconductor compounds and alloys with acceptors and deep donors is sued to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. For example, Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, B and Bi, to customize solar cells, and other semiconductor devices. Isoelectronically co-doped Group II-VI compounds and alloys are also included.
Silina, Yuliya E; Volmer, Dietrich A
2013-12-07
Analytical applications often require rapid measurement of compounds from complex sample mixtures. High-speed mass spectrometry approaches frequently utilize techniques based on direct ionization of the sample by laser irradiation, mostly by means of matrix-assisted laser desorption/ionization (MALDI). Compounds of low molecular weight are difficult to analyze by MALDI, however, because of severe interferences in the low m/z range from the organic matrix used for desorption/ionization. In recent years, surface-assisted laser desorption/ionization (SALDI) techniques have shown promise for small molecule analysis, due to the unique properties of nanostructured surfaces, in particular, the lack of a chemical background in the low m/z range and enhanced production of analyte ions by SALDI. This short review article presents a summary of the most promising recent developments in SALDI materials for MS analysis of low molecular weight analytes, with emphasis on nanostructured materials based on metals and semiconductors.
Zinc oxide and related compounds: order within the disorder
NASA Astrophysics Data System (ADS)
Martins, R.; Pereira, Luisa; Barquinha, P.; Ferreira, I.; Prabakaran, R.; Goncalves, G.; Goncalves, A.; Fortunato, E.
2009-02-01
This paper discusses the effect of order and disorder on the electrical and optical performance of ionic oxide semiconductors based on zinc oxide. These materials are used as active thin films in electronic devices such as pn heterojunction solar cells and thin-film transistors. Considering the expected conduction mechanism in ordered and disordered semiconductors the role of the spherical symmetry of the s electron conduction bands will be analyzed and compared to covalent semiconductors. The obtained results show p-type c-Si/a-IZO/poly-ZGO solar cells exhibiting efficiencies above 14%, in device areas of about 2.34 cm2. Amorphous oxide TFTs based on the Ga-Zn-Sn-O system demonstrate superior performance than the polycrystalline TFTs based on ZnO, translated by ION/IOFF ratio exceeding 107, turn-on voltage below 1-2 V and saturation mobility above 25 cm2/Vs. Apart from that, preliminary data on p-type oxide TFT based on the Zn-Cu-O system will also be presented.
Composition/bandgap selective dry photochemical etching of semiconductor materials
Ashby, Carol I. H.; Dishman, James L.
1987-01-01
A method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg.sub.1 in the presence of a second semiconductor material of a different composition and direct bandgap Eg.sub.2, wherein Eg.sub.2 >Eg.sub.1, said second semiconductor material substantially not being etched during said method, comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg.sub.1 but less than Eg.sub.2, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.
Substrate solder barriers for semiconductor epilayer growth
Drummond, Timothy J.; Ginley, David S.; Zipperian, Thomas E.
1989-01-01
During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.
Substrate solder barriers for semiconductor epilayer growth
Drummond, T.J.; Ginley, D.S.; Zipperian, T.E.
1989-05-09
During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.
Substrate solder barriers for semiconductor epilayer growth
Drummond, T.J.; Ginley, D.S.; Zipperian, T.E.
1987-10-23
During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In molecular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating. 1 tab.
Method and structure for passivating semiconductor material
Pankove, Jacques I.
1981-01-01
A structure for passivating semiconductor material comprises a substrate of crystalline semiconductor material, a relatively thin film of carbon disposed on a surface of the crystalline material, and a layer of hydrogenated amorphous silicon deposited on the carbon film.
Method for depositing high-quality microcrystalline semiconductor materials
Guha, Subhendu [Bloomfield Hills, MI; Yang, Chi C [Troy, MI; Yan, Baojie [Rochester Hills, MI
2011-03-08
A process for the plasma deposition of a layer of a microcrystalline semiconductor material is carried out by energizing a process gas which includes a precursor of the semiconductor material and a diluent with electromagnetic energy so as to create a plasma therefrom. The plasma deposits a layer of the microcrystalline semiconductor material onto the substrate. The concentration of the diluent in the process gas is varied as a function of the thickness of the layer of microcrystalline semiconductor material which has been deposited. Also disclosed is the use of the process for the preparation of an N-I-P type photovoltaic device.
Mg2BIV: Narrow Bandgap Thermoelectric Semiconductors
NASA Astrophysics Data System (ADS)
Kim, Il-Ho
2018-05-01
Thermoelectric materials can convert thermal energy directly into electric energy and vice versa. The electricity generation from waste heat via thermoelectric devices can be considered as a new energy source. For instance, automotive exhaust gas and all industrial processes generate an enormous amount of waste heat that can be converted to electricity by using thermoelectric devices. Magnesium compound Mg2BIV (BIV = Si, Ge or Sn) has a favorable combination of physical and chemical properties and can be a good base for the development of new efficient thermoelectrics. Because they possess similar properties to those of group BIV elemental semiconductors, they have been recognized as good candidates for thermoelectric applications. Mg2Si, Mg2Ge and Mg2Sn with an antifluorite structure are narrow bandgap semiconductors with indirect band gaps of 0.77 eV, 0.74 eV, and 0.35 eV, respectively. Mg2BIV has been recognized as a promising material for thermoelectric energy conversion at temperatures ranging from 500 K to 800 K. Compared to other thermoelectric materials operating in the similar temperature range, such as PbTe and filled skutterudites, the important aspects of Mg2BIV are non-toxic and earth-abundant elements. Based on classical thermoelectric theory, the material factor β ( m* / m e)3/2μκ L -1 can be utilized as the criterion for thermoelectric material selection, where m* is the density-of-states effective mass, me is the mass of an electron, μ is the carrier mobility, and κL is the lattice thermal conductivity. The β for magnesium silicides is 14, which is very high compared to 0.8 for iron silicides, 1.4 for manganese silicides, and 2.6 for silicon-germanium alloys. In this paper, basic phenomena of thermoelectricity and transport parameters for thermoelectric materials were briefly introduced, and thermoelectric properties of Mg2BIV synthesized by using a solid-state reaction were reviewed. In addition, various Mg2BIV compounds were discussed: intrinsic Mg2Si, doped Mg2Si:Dm (D = Al, In, Bi, Sb, Te or Se), and solid solutions of intrinsic/doped Mg2Si1 - x Sn x :D m and Mg2Si1 - x Ge x :D m .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barron, A.R.
1996-12-31
An overview of the development of a new dielectric material, cubic-GaS, from the synthesis of new organometallic compounds to the fabrication of a new class of gallium arsenide based transistor is presented as a representative example of the possibility that inorganic chemistry can directly effect the development of new semiconductor devices. The gallium sulfido compound [({sup t}Bu)GaS]{sub 4}, readily prepared from tri-tert-butyl gallium, may be used as a precursor for the growth of GaS thin films by metal organic chemical vapor deposition (MOCVD). Photoluminescence and electronic measurements indicate that this material provides a passivation coating for GaAs. Furthermore, the insulatingmore » properties of cubic-GaS make it suitable as the insulating gate layer in a new class of GaAs transistor: a field effect transistor with a sulfide heterojunction (FETISH).« less
Crystal growth of device quality GaAs in space
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Lagowski, J.
1984-01-01
The crystal growth, device processing and device related properties and phenomena of GaAs are investigated. Our GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor materials (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; (3) investigation of electronic properties and phenomena controlling device applications and device performance. The ground based program is developed which would insure successful experimentation with and eventually processing of GaAs in a near zero gravity environment.
Activities of Combined TiO2 Semiconductor Nanocatalysts Under Solar Light on the Reduction of CO2.
Liu, Hongfang; Dao, Anh Quang; Fu, Chaoyang
2016-04-01
The materials based on TiO2 semiconductors are a promising option for electro-photocatalytic systems working as solar energy low-carbon fuels exchanger. These materials' structures are modified by doping metals and metal oxides, by metal sulfides sensitization, or by graphene supported membrane, enhancing their catalytic activity. The basic phenomenon of CO2 reduction to CH4 on Pd modified TiO2 under UV irradiation could be enhanced by Pd, or RuO2 co-doped TiO2. Sensitization with metal sulfide QDs is effective by moving of photo-excited electron from QDs to TiO2 particles. Based on characteristics of the catalysts various combinations of catalysts are proposed in order to creat catalyst systems with good CO2 reduction efficiency. From this critical review of the CO2 reduction to organic compounds by converting solar light and CO2 to storable fuels it is clear that more studies are still attractive and needed.
Direct growth of single-crystalline III–V semiconductors on amorphous substrates
Chen, Kevin; Kapadia, Rehan; Harker, Audrey; ...
2016-01-27
The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–V’s on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–V’s of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. Themore » patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO 2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. In conclusion, the work presents an important advance towards universal integration of III–V’s on application-specific substrates by direct growth.« less
Direct growth of single-crystalline III–V semiconductors on amorphous substrates
Chen, Kevin; Kapadia, Rehan; Harker, Audrey; Desai, Sujay; Seuk Kang, Jeong; Chuang, Steven; Tosun, Mahmut; Sutter-Fella, Carolin M.; Tsang, Michael; Zeng, Yuping; Kiriya, Daisuke; Hazra, Jubin; Madhvapathy, Surabhi Rao; Hettick, Mark; Chen, Yu-Ze; Mastandrea, James; Amani, Matin; Cabrini, Stefano; Chueh, Yu-Lun; Ager III, Joel W.; Chrzan, Daryl C.; Javey, Ali
2016-01-01
The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–V's on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–V's of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. The patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. The work presents an important advance towards universal integration of III–V's on application-specific substrates by direct growth. PMID:26813257
NASA Astrophysics Data System (ADS)
Choi, Donghun
Integration of III-V compound semiconductors on silicon substrates has recently received much attention for the development of optoelectronic and high speed electronic devices. However, it is well known that there are some key challenges for the realization of III-V device fabrication on Si substrates: (i) the large lattice mismatch (in case of GaAs: 4.1%), and (ii) the formation of antiphase domain (APD) due to the polar compound semiconductor growth on non-polar elemental structure. Besides these growth issues, the lack of a useful surface passivation technology for compound semiconductors has precluded development of metal-oxide-semiconductor (MOS) devices and causes high surface recombination parasitics in scaled devices. This work demonstrates the growth of high quality III-V materials on Si via an intermediate Ge buffer layer and some surface passivation methods to reduce interface defect density for the fabrication of MOS devices. The initial goal was to achieve both low threading dislocation density (TDD) and low surface roughness on Ge-on-Si heterostructure growth. This was achieved by repeating a deposition-annealing cycle consisting of low temperature deposition + high temperature-high rate deposition + high temperature hydrogen annealing, using reduced-pressure chemical-vapor deposition (CVD). We then grew III-V materials on the Ge/Si virtual substrates using molecular-beam epitaxy (MBE). The relationship between initial Ge surface configuration and antiphase boundary formation was investigated using surface reflection high-energy electron diffraction (RHEED) patterns and atomic force microscopy (AFM) image analysis. In addition, some MBE growth techniques, such as migration enhanced epitaxy (MEE) and low temperature GaAs growth, were adopted to improve surface roughness and solve the Ge self-doping problem. Finally, an Al2O3 gate oxide layer was deposited using atomic-layer-deposition (ALD) system after HCl native oxide etching and ALD in-situ pre-annealing at 400 °C. A 100 nm thick aluminum layer was deposited to form the gate contact for a MOS device fabrication. C-V measurement results show very small frequency dispersion and 200-300 mV hysteresis, comparable to our best results for InGaAs/GaAs MOS structures on GaAs substrate. Most notably, the quasi-static C-V curve demonstrates clear inversion layer formation. I-V curves show a reasonable leakage current level. The inferred midgap interface state density, Dit, of 2.4 x 1012 eV-1cm-2 was calculated by combined high-low frequency capacitance method. In addition, we investigated the interface properties of amorphous LaAlO 3/GaAs MOS capacitors fabricated on GaAs substrate. The surface was protected during sample transfer between III-V and oxide molecular beam deposition (MBD) chambers by a thick arsenic-capping layer. An annealing method, a low temperature-short time RTA followed by a high temperature RTA, was developed, yielding extremely small hysteresis (˜ 30 mV), frequency dispersion (˜ 60 mV), and interface trap density (mid 1010 eV-1cm -2). We used capacitance-voltage (C-V) and current-voltage (I-V) measurements for electrical characterization of MOS devices, tapping-mode AFM for surface morphology analysis, X-ray photoelectron spectroscopy (XPS) for chemical elements analysis of interface, cross section transmission-electron microscopy (TEM), X-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), and photoluminescence (PL) measurement for film quality characterization. This successful growth and appropriate surface treatments of III-V materials provides a first step for the fabrication of III-V optical and electrical devices on the same Si-based electronic circuits.
Nanomembrane structures having mixed crystalline orientations and compositions
Lagally, Max G.; Scott, Shelley A.; Savage, Donald E.
2014-08-12
The present nanomembrane structures include a multilayer film comprising a single-crystalline layer of semiconductor material disposed between two other single-crystalline layers of semiconductor material. A plurality of holes extending through the nanomembrane are at least partially, and preferably entirely, filled with a filler material which is also a semiconductor, but which differs from the nanomembrane semiconductor materials in composition, crystal orientation, or both.
Method of Promoting Single Crystal Growth During Melt Growth of Semiconductors
NASA Technical Reports Server (NTRS)
Su, Ching-Hua (Inventor)
2013-01-01
The method of the invention promotes single crystal growth during fabrication of melt growth semiconductors. A growth ampoule and its tip have a semiconductor source material placed therein. The growth ampoule is placed in a first thermal environment that raises the temperature of the semiconductor source material to its liquidus temperature. The growth ampoule is then transitioned to a second thermal environment that causes the semiconductor source material in the growth ampoule's tip to attain a temperature that is below the semiconductor source material's solidus temperature. The growth ampoule so-transitioned is then mechanically perturbed to induce single crystal growth at the growth ampoule's tip.
Defect identification in semiconductors with positron annihilation: experiment and theory
NASA Astrophysics Data System (ADS)
Tuomisto, Filip
2015-03-01
Positron annihilation spectroscopy is a very powerful technique for the detection, identification and quantification of vacancy-type defects in semiconductors. In the past decades, it has been used to reveal the relationship between opto-electronic properties and specific defects in a wide variety of materials - examples include parasitic yellow luminescence in GaN, dominant acceptor defects in ZnO and broad-band absorption causing brown coloration in natural diamond. In typical binary compound semiconductors, the selective sensitivity of the technique is rather strongly limited to cation vacancies that possess significant open volume and suitable charge (negative of neutral). On the other hand, oxygen vacancies in oxide semiconductors are a widely debated topic. The properties attributed to oxygen vacancies include the inherent n-type conduction, poor p-type dopability, coloration (absorption), deep level luminescence and non-radiative recombination, while the only direct experimental evidence of their existence has been obtained on the crystal surface. We will present recent advances in combining state-of-the-art positron annihilation experiments and ab initio computational approaches. The latter can be used to model both the positron lifetime and the electron-positron momentum distribution - quantities that can be directly compared with experimental results. We have applied these methods to study vacancy-type defects in III-nitride semiconductors (GaN, AlN, InN) and oxides such as ZnO, SnO2, In2O3andGa2O3. We will show that cation-vacancy-related defects are important compensating centers in all these materials when they are n-type. In addition, we will show that anion (N, O) vacancies can be detected when they appear as complexes with cation vacancies.
Optical Computing, 1991, Technical Digest Series, Vol. 6
1992-05-22
lasers). Compound semiconductors may satisfy these requirements. For example, optical signal amplification by two-beam coupling and amplified phase... compound semiconductors can provide this type of implementationi. This paper presents results from a detailed investigation on potentials of the...conductivity to achieve high multichannel cell performance. We describe several high performance Gallium Phosphide multichannel Bragg cells which employ these
N-doping of organic semiconductors by bis-metallosandwich compounds
Barlow, Stephen; Qi, Yabing; Kahn, Antoine; Marder, Seth; Kim, Sang Bok; Mohapatra, Swagat K.; Guo, Song
2016-01-05
The various inventions disclosed, described, and/or claimed herein relate to the field of methods for n-doping organic semiconductors with certain bis-metallosandwich compounds, the doped compositions produced, and the uses of the doped compositions in organic electronic devices. Metals can be manganese, rhenium, iron, ruthenium, osmium, rhodium, or iridium. Stable and efficient doping can be achieved.
Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications
Hui, Rongqing [Lenexa, KS; Jiang, Hong-Xing [Manhattan, KS; Lin, Jing-Yu [Manhattan, KS
2008-03-18
The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bavdaz, M.; Kraft, S.; Peacock, A.
1998-12-31
The use of some specific compound semiconductors in the fabrication of high energy X-ray detectors shows significant potential for X-ray astrophysics space missions. The authors are currently investigating three high purity crystals--CdZnTe, GaAs and TlBr--as the basis for future hard X-ray detectors (above 10 keV). In this paper the authors present the first results on CdZnTe and GaAs based detectors and evaluate the factors currently still constraining the performance. Energy resolutions (FWHM) of 0.9 keV and 1.1 keV at 14 keV and 60 keV, respectively, have been obtained with an epitaxial GaAs detector, while 0.7 keV and 1.5 keV FWHMmore » were measured at the same energies with a CdZnTe detector. Based on these results it is clear, that the next generation of X-ray astrophysics missions now in the planning phase may well consider extending the photon energy range up to {approximately} 100 keV by use of efficient detectors with reasonable spectroscopic capabilities.« less
Composition/bandgap selective dry photochemical etching of semiconductor materials
Ashby, C.I.H.; Dishman, J.L.
1985-10-11
Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg/sub 1/ in the presence of a second semiconductor material of a different composition and direct bandgap Eg/sub 2/, wherein Eg/sub 2/ > Eg/sub 1/, said second semiconductor material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg/sub 1/ but less than Eg/sub 2/, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.
Walters, Diane M.; Lyubimov, Ivan; de Pablo, Juan J.; Ediger, M. D.
2015-01-01
Physical vapor deposition is commonly used to prepare organic glasses that serve as the active layers in light-emitting diodes, photovoltaics, and other devices. Recent work has shown that orienting the molecules in such organic semiconductors can significantly enhance device performance. We apply a high-throughput characterization scheme to investigate the effect of the substrate temperature (Tsubstrate) on glasses of three organic molecules used as semiconductors. The optical and material properties are evaluated with spectroscopic ellipsometry. We find that molecular orientation in these glasses is continuously tunable and controlled by Tsubstrate/Tg, where Tg is the glass transition temperature. All three molecules can produce highly anisotropic glasses; the dependence of molecular orientation upon substrate temperature is remarkably similar and nearly independent of molecular length. All three compounds form “stable glasses” with high density and thermal stability, and have properties similar to stable glasses prepared from model glass formers. Simulations reproduce the experimental trends and explain molecular orientation in the deposited glasses in terms of the surface properties of the equilibrium liquid. By showing that organic semiconductors form stable glasses, these results provide an avenue for systematic performance optimization of active layers in organic electronics. PMID:25831545
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azam, Sikander; Khan, Saleem Ayaz; Goumri-Said, Souraya, E-mail: Souraya.Goumri-Said@chemistry.gatech.edu
Highlights: • Zintl tetragonal phase ACdGeAs{sub 2} (A = K, Rb) are chalcopyrite and semiconductors. • Their direct band gap is suitable for PV, optolectronic and thermoelectric applications. • Combination of DFT and Boltzmann transport theory is employed. • The present arsenides are found to be covalent materials. - Abstract: Chalcopyrite semiconductors have attracted much attention due to their potential implications in photovoltaic and thermoelectric applications. First principle calculations were performed to investigate the electronic, optical and thermoelectric properties of the Zintl tetragonal phase ACdGeAs{sub 2} (A = K, Rb) using the full potential linear augmented plane wave method andmore » the Engle–Vosko GGA (EV–GGA) approximation. The present compounds are found semiconductors with direct band gap and covalent bonding character. The optical transitions are investigated via the dielectric function (real and imaginary parts) along with other related optical constants including refractive index, reflectivity and energy-loss spectrum. Combining results from DFT and Boltzmann transport theory, we reported the thermoelectric properties such as the Seebeck’s coefficient, electrical and thermal conductivity, figure of merit and power factor as function of temperatures. The present chalcopyrite Zintl quaternary arsenides deserve to be explored for their potential applications as thermoelectric materials and for photovoltaic devices.« less
Crystal Growth of Device Quality Gaas in Space
NASA Technical Reports Server (NTRS)
Gatos, H. C.
1985-01-01
The GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and (3) investigation of electronic properties and phenomena controlling device applications and device performance. This effort is aimed at the essential ground-based program which would insure successful experimentation with and eventually processing of GaAs in near zero gravity environment. It is believed that this program addresses in a unique way materials engineering aspects which bear directly on the future exploitation of the potential of GaAs and related materials in device and systems applications.
Semiconductor radiation detector
Bell, Zane W.; Burger, Arnold
2010-03-30
A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.
New Insights into Intrinsic Point Defects in V2VI3 Thermoelectric Materials.
Zhu, Tiejun; Hu, Lipeng; Zhao, Xinbing; He, Jian
2016-07-01
Defects and defect engineering are at the core of many regimes of material research, including the field of thermoelectric study. The 60-year history of V 2 VI 3 thermoelectric materials is a prime example of how a class of semiconductor material, considered mature several times, can be rejuvenated by better understanding and manipulation of defects. This review aims to provide a systematic account of the underexplored intrinsic point defects in V 2 VI 3 compounds, with regard to (i) their formation and control, and (ii) their interplay with other types of defects towards higher thermoelectric performance. We herein present a convincing case that intrinsic point defects can be actively controlled by extrinsic doping and also via compositional, mechanical, and thermal control at various stages of material synthesis. An up-to-date understanding of intrinsic point defects in V 2 VI 3 compounds is summarized in a (χ, r)-model and applied to elucidating the donor-like effect. These new insights not only enable more innovative defect engineering in other thermoelectric materials but also, in a broad context, contribute to rational defect design in advanced functional materials at large.
NASA Astrophysics Data System (ADS)
Caban Acevedo, Miguel
The success of solar energy technologies depends not only on highly efficient solar-to-electrical energy conversion, charge storage or chemical fuel production, but also on dramatically reduced cost, to meet the future terawatt energy challenges we face. The enormous scale involved in the development of impactful solar energy technologies demand abundant and inexpensive materials, as well as energy-efficient and cost-effective processes. As a result, the investigation of semiconductor, catalyst and electrode materials made of earth-abundant and sustainable elements may prove to be of significant importance for the long-term adaptation of solar energy technologies on a larger scale. Among earth-abundant semiconductors, iron pyrite (cubic FeS2) has been considered the most promising solar energy absorber with the potential to achieve terawatt energy-scale deployment. Despite extensive synthetic progress and device efforts, the solar conversion efficiency of iron pyrite has remained below 3% since the 1990s, primarily due to a low open circuit voltage (V oc). The low photovoltage (Voc) of iron pyrite has puzzled scientists for decades and limited the development of cost-effective solar energy technologies based on this otherwise promising semiconductor. Here I report a comprehensive investigation of the syntheses and properties of iron pyrite materials, which reveals that the Voc of iron pyrite is limited by the ionization of a high density of intrinsic bulk defect states despite high density surface states and strong surface Fermi level pinning. Contrary to popular belief, bulk defects most-likely caused by intrinsic sulfur vacancies in iron pyrite must be controlled in order to enable this earth-abundant semiconductor for cost-effective and sustainable solar energy conversion. Lastly, the investigation of iron pyrite presented here lead to the discovery of ternary pyrite-type cobalt phosphosulfide (CoPS) as a highly-efficient earth-abundant catalyst material for electrochemical and solar energy driven hydrogen production.
Jung, Youngho; Shim, Jaeho; Kwon, Kyungmook; You, Jong-Bum; Choi, Kyunghan; Yu, Kyoungsik
2016-01-01
Optofluidic manipulation mechanisms have been successfully applied to micro/nano-scale assembly and handling applications in biophysics, electronics, and photonics. Here, we extend the laser-based optofluidic microbubble manipulation technique to achieve hybrid integration of compound semiconductor microdisk lasers on the silicon photonic circuit platform. The microscale compound semiconductor block trapped on the microbubble surface can be precisely assembled on a desired position using photothermocapillary convective flows induced by focused laser beam illumination. Strong light absorption within the micro-scale compound semiconductor object allows real-time and on-demand microbubble generation. After the assembly process, we verify that electromagnetic radiation from the optically-pumped InGaAsP microdisk laser can be efficiently coupled to the single-mode silicon waveguide through vertical evanescent coupling. Our simple and accurate microbubble-based manipulation technique may provide a new pathway for realizing high precision fluidic assembly schemes for heterogeneously integrated photonic/electronic platforms as well as microelectromechanical systems. PMID:27431769
NASA Technical Reports Server (NTRS)
Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.; Gilbert, Percy
1989-01-01
Computer-controlled thermal-wave microscope developed to investigate III-V compound semiconductor devices and materials. Is nondestructive technique providing information on subsurface thermal features of solid samples. Furthermore, because this is subsurface technique, three-dimensional imaging also possible. Microscope uses intensity-modulated electron beam of modified scanning electron microscope to generate thermal waves in sample. Acoustic waves generated by thermal waves received by transducer and processed in computer to form images displayed on video display of microscope or recorded on magnetic disk.
The section TiInSe/sub 2/-TiSbSe/sub 2/ of the system Ti-In-Sb-Se
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guseinov, G.D.; Chapanova, L.M.; Mal'sagov, A.U.
1985-09-01
The ternary compounds A /SUP I/ B /SUP III/ C/sub 2/ /SUP VI/ (A /SUP I/ is univalent Ti; B /SUP III/ is Ga or In; and C /SUP VI/ is S, Se or Te) form a class of semiconductors with a large number of different gap widths. The compounds crystallize in the chalcopyrite structure. Solid solutions based on these compounds, which permit varying smoothly the gap width and other physical parameters over wide limits, are of great interest. The authors synthesized the compounds TiInSe/sub 2/ and TiSbSe/sub 2/ from the starting materials Ti-000, In-000, Sb-000 and Se-OSCh-17-4 by directmore » fusion of the components, taken in a stoichiometric ratio, in quartz ampules evacuated to 1.3 X 10/sup -3/ Pa and sealed.« less
NASA Astrophysics Data System (ADS)
Narang, Prineha
This thesis puts forth a theory-directed approach coupled with spectroscopy aimed at the discovery and understanding of light-matter interactions in semiconductors and metals. The first part of the thesis presents the discovery and development of Zn-IV nitride materials. The commercial prominence in the optoelectronics industry of tunable semiconductor alloy materials based on nitride semiconductor devices, specifically InGaN, motivates the search for earth-abundant alternatives for use in efficient, high-quality optoelectronic devices. II-IV-N2 compounds, which are closely related to the wurtzite-structured III-N semiconductors, have similar electronic and optical properties to InGaN namely direct band gaps, high quantum efficiencies and large optical absorption coefficients. The choice of different group II and group IV elements provides chemical diversity that can be exploited to tune the structural and electronic properties through the series of alloys. The first theoretical and experimental investigation of the ZnSnxGe1--xN2 series as a replacement for III-nitrides is discussed here. The second half of the thesis shows ab-initio calculations for surface plasmons and plasmonic hot carrier dynamics. Surface plasmons, electromagnetic modes confined to the surface of a conductor-dielectric interface, have sparked renewed interest because of their quantum nature and their broad range of applications. The decay of surface plasmons is usually a detriment in the field of plasmonics, but the possibility to capture the energy normally lost to heat would open new opportunities in photon sensors, energy conversion devices and switching. A theoretical understanding of plasmon-driven hot carrier generation and relaxation dynamics in the ultrafast regime is presented here. Additionally calculations for plasmon-mediated upconversion as well as an energy-dependent transport model for these non-equilibrium carriers are shown. Finally, this thesis gives an outlook on the potential of non-equilibrium phenomena in metals and semiconductors for future light-based technologies.
Emission factors of air toxics from semiconductor manufacturing in Korea.
Eom, Yun-Sung; Hong, Ji-Hyung; Lee, Suk-Jo; Lee, Eun-Jung; Cha, Jun-Seok; Lee, Dae-Gyun; Bang, Sun-Ae
2006-11-01
The development of local, accurate emission factors is very important for the estimation of reliable national emissions and air quality management. For that, this study is performed for pollutants released to the atmosphere with source-specific emission tests from the semiconductor manufacturing industry. The semiconductor manufacturing industry is one of the major sources of air toxics or hazardous air pollutants (HAPs); thus, understanding the emission characteristics of the emission source is a very important factor in the development of a control strategy. However, in Korea, there is a general lack of information available on air emissions from the semiconductor industry. The major emission sources of air toxics examined from the semiconductor manufacturing industry were wet chemical stations, coating applications, gaseous operations, photolithography, and miscellaneous devices in the wafer fabrication and semiconductor packaging processes. In this study, analyses of emission characteristics, and the estimations of emission data and factors for air toxics, such as acids, bases, heavy metals, and volatile organic compounds from the semiconductor manufacturing process have been performed. The concentration of hydrogen chloride from the packaging process was the highest among all of the processes. In addition, the emission factor of total volatile organic compounds (TVOCs) for the packaging process was higher than that of the wafer fabrication process. Emission factors estimated in this study were compared with those of Taiwan for evaluation, and they were found to be of similar level in the case of TVOCs and fluorine compounds.
NASA Astrophysics Data System (ADS)
Flint, J. P.; Martinez, B.; Betz, T. E. M.; Mackenzie, J.; Kumar, F. J.; Burgess, L.
2017-02-01
Cadmium Zinc Telluride (Cd1-xZnxTe or CZT) is a compound semiconductor substrate material that has been used for infrared detector (IR) applications for many years. CZT is a perfect substrate for the epitaxial growth of Mercury Cadmium Telluride (Hg1-xCdxTe or MCT) epitaxial layers and remains the material of choice for many high performance IR detectors and focal plane arrays that are used to detect across wide IR spectral bands. Critical to the fabrication of high performance MCT IR detectors is a high quality starting CZT substrate, this being a key determinant of epitaxial layer crystallinity, defectivity and ultimately device electro-optical performance. In this work we report on a new source of substrates suitable for IR detector applications, grown using the Travelling Heater Method (THM). This proven method of crystal growth has been used to manufacture high quality IR specification CZT substrates where industry requirements for IR transmission, dislocations, tellurium precipitates and copper impurity levels have been met. Results will be presented for the chemo-mechanical (CMP) polishing of CZT substrates using production tool sets that are identical to those that are used to produce epitaxy-ready surface finishes on related IR compound semiconductor materials such as GaSb and InSb. We will also discuss the requirements to scale CZT substrate manufacture and how with a new III-V like approach to both CZT crystal growth and substrate polishing, we can move towards a more standardized product and one that can ultimately deliver a standard round CZT substrate, as is the case for competing IR materials such as GaSb, InSb and InP.
Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)
1994-01-01
A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.
Guha, Subhendu; Ovshinsky, Stanford R.
1988-10-04
An n-type microcrystalline semiconductor alloy material including a band gap widening element; a method of fabricating p-type microcrystalline semiconductor alloy material including a band gap widening element; and electronic and photovoltaic devices incorporating said n-type and p-type materials.
Methods for forming thin-film heterojunction solar cells from I-III-VI{sub 2}
Mickelsen, R.A.; Chen, W.S.
1985-08-13
An improved thin-film, large area solar cell, and methods for forming the same are disclosed, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI{sub 2} chalcopyrite ternary materials which is vacuum deposited in a thin ``composition-graded`` layer ranging from on the order of about 2.5 microns to about 5.0 microns ({approx_equal}2.5 {mu}m to {approx_equal}5.0 {mu}m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii) a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion occurs (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer. 16 figs.
Methods for forming thin-film heterojunction solar cells from I-III-VI[sub 2
Mickelsen, R.A.; Chen, W.S.
1982-06-15
An improved thin-film, large area solar cell, and methods for forming the same are disclosed, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (1) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI[sub 2] chalcopyrite ternary materials which is vacuum deposited in a thin composition-graded'' layer ranging from on the order of about 2.5 microns to about 5.0 microns ([approx equal]2.5[mu]m to [approx equal]5.0[mu]m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (2), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, is allowed.
Body of Knowledge (BOK) for Copper Wire Bonds
NASA Technical Reports Server (NTRS)
Rutkowski, E.; Sampson, M. J.
2015-01-01
Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications. An evaluation of copper wire bond technology for applicability to spaceflight hardware may be warranted along with concurrently compiling a comprehensive understanding of the failure mechanisms involved with copper wire bonded semiconductor devices.
Reducing leakage current in semiconductor devices
Lu, Bin; Matioli, Elison de Nazareth; Palacios, Tomas Apostol
2018-03-06
A semiconductor device includes a first region having a first semiconductor material and a second region having a second semiconductor material. The second region is formed over the first region. The semiconductor device also includes a current blocking structure formed in the first region between first and second terminals of the semiconductor device. The current blocking structure is configured to reduce current flow in the first region between the first and second terminals.
Methods for forming thin-film heterojunction solar cells from I-III-VI.sub. 2
Mickelsen, Reid A.; Chen, Wen S.
1982-01-01
An improved thin-film, large area solar cell, and methods for forming the same, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order of about 2.5 microns to about 5.0 microns (.congruent.2.5.mu.m to .congruent.5.0.mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the transient n-type material in The Government has rights in this invention pursuant to Contract No. EG-77-C-01-4042, Subcontract No. XJ-9-8021-1 awarded by the U.S. Department of Energy.
Electronic and optical properties of mixed Be-chalcogenides
NASA Astrophysics Data System (ADS)
Khan, Imad; Ahmad, Iftikhar; Zhang, D.; Rahnamaye Aliabad, H. A.; Jalali Asadabadi, S.
2013-02-01
The electronic and optical properties of BeSxSe1-x, BeSxTe1-x and BeSexTe1-x, (0≤x≤1) are studied using the highly accurate modified Beck and Johnson (mBJ) potential. The binary Be-chalcogenides are wide and indirect band gap semiconductors and hence they are not efficient materials for optoelectronics. In order to modify them into optically active materials, the anion chalcogen atoms are partially replaced by other chalcogen atoms like BeSxSe1-x, BeSxTe1-x and BeSexTe1-x (0≤x≤1). The modified ternary compounds are of direct band gap nature and hence they are optically active. Some of these direct band gap materials are lattice matched with silicon and can possibly replace Si in semiconductor devices. Keeping in view the importance of these materials in optoelectronics, the optical properties of BeSxSe1-x, BeSxTe1-x and BeSexTe1-x in the full composition range are investigated. It is found that these materials are transparent in the IR, visible and near UV spectral regions. The alloys for the most of the concentrations have band gaps larger than 3 eV, so it is expected that they may be efficient materials for blue, green and UV light emitting diodes.
High Performance High Temperature Thermoelectric Composites with Metallic Inclusions
NASA Technical Reports Server (NTRS)
Firdosy, Samad A. (Inventor); Kaner, Richard B. (Inventor); Ma, James M. (Inventor); Fleurial, Jean-Pierre (Inventor); Star, Kurt (Inventor); Bux, Sabah K. (Inventor); Ravi, Vilupanur A. (Inventor)
2017-01-01
The present invention provides a composite thermoelectric material. The composite thermoelectric material can include a semiconductor material comprising a rare earth metal. The atomic percent of the rare earth metal in the semiconductor material can be at least about 20%. The composite thermoelectric material can further include a metal forming metallic inclusions distributed throughout the semiconductor material. The present invention also provides a method of forming this composite thermoelectric material.
Highly Sensitive Detection of UV Radiation Using a Uranium Coordination Polymer.
Liu, Wei; Dai, Xing; Xie, Jian; Silver, Mark A; Zhang, Duo; Wang, Yanlong; Cai, Yawen; Diwu, Juan; Wang, Jian; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao
2018-02-07
The accurate detection of UV radiation is required in a wide range of chemical industries and environmental or biological related applications. Conventional methods taking advantage of semiconductor photodetectors suffer from several drawbacks such as sophisticated synthesis and manufacturing procedure, not being able to measure the accumulated UV dosage as well as high defect density in the material. Searching for new strategies or materials serving as precise UV dosage sensor with extremely low detection limit is still highly desirable. In this work, a radiation resistant uranium coordination polymer [UO 2 (L)(DMF)] (L = 5-nitroisophthalic acid, DMF = N,N-dimethylformamide, denoted as compound 1) was successfully synthesized through mild solvothermal method and investigated as a unique UV probe with the detection limit of 2.4 × 10 -7 J. On the basis of the UV dosage dependent luminescence spectra, EPR analysis, single crystal structure investigation, and the DFT calculation, the UV-induced radical quenching mechanism was confirmed. Importantly, the generated radicals are of significant stability which offers the opportunity for measuring the accumulated UV radiation dosage. Furthermore, the powder material of compound 1 was further upgraded into membrane material without loss in luminescence intensity to investigate the real application potentials. To the best of our knowledge, compound 1 represents the most sensitive coordination polymer based UV dosage probe reported to date.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeier, Wolfgang G.; Anand, Shashwat; Huang, Lihong
The 18-electron rule is a widely used criterion in the search for new half-Heusler thermoelectric materials. However, several 19-electron compounds such as NbCoSb have been found to be stable and exhibit thermoelectric properties rivaling state-of-the art materials. Using synchrotron X-ray diffraction and density functional theory calculations, we show that samples with nominal (19-electron) composition NbCoSb actually contain a half-Heusler phase with composition Nb0.84CoSb. The large amount of stable Nb vacancies reduces the overall electron count, which brings the stoichiometry of the compound close to an 18-electron count, and stabilizes the material. Excess electrons beyond 18 electrons provide heavy doping neededmore » to make these good thermoelectric materials. This work demonstrates that considering possible defect chemistry and allowing small variation of electron counting leads to extra degrees of freedom for tailoring thermoelectric properties and exploring new compounds. Here we discuss the 18-electron rule as a guide to find defect-free half-Heusler semiconductors. Other electron counts such as 19-electron NbCoSb can also be expected to be stable as n-type metals, perhaps with cation vacancy defects to reduce the electron count.« less
Eisler, Hans J [Stoneham, MA; Sundar, Vikram C [Stoneham, MA; Walsh, Michael E [Everett, MA; Klimov, Victor I [Los Alamos, NM; Bawendi, Moungi G [Cambridge, MA; Smith, Henry I [Sudbury, MA
2008-12-30
A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II-VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.
Eisler, Hans J.; Sundar, Vikram C.; Walsh, Michael E.; Klimov, Victor I.; Bawendi, Moungi G.; Smith, Henry I.
2006-12-19
A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II–VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.
Semiclassical Calculation of Reaction Rate Constants for Homolytical Dissociations
NASA Technical Reports Server (NTRS)
Cardelino, Beatriz H.
2002-01-01
There is growing interest in extending organometallic chemical vapor deposition (OMCVD) to III-V materials that exhibit large thermal decomposition at their optimum growth temperature, such as indium nitride. The group III nitrides are candidate materials for light-emitting diodes and semiconductor lasers operating into the blue and ultraviolet regions. To overcome decomposition of the deposited compound, the reaction must be conducted at high pressures, which causes problems of uniformity. Microgravity may provide the venue for maintaining conditions of laminar flow under high pressure. Since the selection of optimized parameters becomes crucial when performing experiments in microgravity, efforts are presently geared to the development of computational OMCVD models that will couple the reactor fluid dynamics with its chemical kinetics. In the present study, we developed a method to calculate reaction rate constants for the homolytic dissociation of III-V compounds for modeling OMCVD. The method is validated by comparing calculations with experimental reaction rate constants.
Klimov, Victor I.; Hollingsworth, Jennifer A.; Crooker, Scott A.; Kim, Hyungrak
2010-06-22
Multifunctional nanocomposites are provided including a core of either a magnetic material or an inorganic semiconductor, and, a shell of either a magnetic material or an inorganic semiconductor, wherein the core and the shell are of differing materials, such multifunctional nanocomposites having multifunctional properties including magnetic properties from the magnetic material and optical properties from the inorganic semiconductor material. Various applications of such multifunctional nanocomposites are also provided.
Prospects of nanoscience with nanocrystals
Kovalenko, Maksym V.; Manna, Liberato; Cabot, Andreu; ...
2015-01-22
Colloidal nanocrystals (NCs, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from medicine to electronic and optoelectronic devices. Today’s strong research focus on NCs has been prompted by the tremendous progress in their synthesis. Impressively narrow size distributions of just a few percent, rational shape-engineering, compositional modulation, electronic doping, and tailored surface chemistries are now feasible for a broad range of inorganic compounds. The performance of inorganic NC-based photovoltaic and light-emitting devices has become competitive to other state-of-the-art materials. Semiconductor NCs hold unique promise for near- and mid-infrared technologies, where very fewmore » semiconductor materials are available. On a purely fundamental side, new insights into NC growth, chemical transformations, and self-organization can be gained from rapidly progressing in situ characterization and direct imaging techniques. In addition, new phenomena are constantly being discovered in the photophysics of NCs and in the electronic properties of NC solids. In this Nano Focus, we review the state of the art in research on colloidal NCs focusing on the most recent works published in the last 2 years.« less
Quaternary laser devices: history and state of the art
NASA Astrophysics Data System (ADS)
Eliseev, Petr G.
1993-05-01
Quaternary alloys of semiconductor compounds are suitable materials for wide-spectrum optoelectronic applications. The most important property of these efficient luminescent materials is the opportunity to fit the lattice parameter in some range to a given value corresponding to another crystalline material. This leads to the method to construct defect-free and stress-free heterojunctions, which was used for the preparation of a number of laser and LED devices. Quaternaries of InGaAsP, InGaSbAs, InSbAsP, PbSnTeSe, and other alloys were introduced into practical usage particularly in diode laser devices. The alloy InGaAsP appears to be one of the most widely used in optoelectronic applications at present as it covers ranges near 1.3 and 1.55 micrometers wavelengths of fiber-optic communication. For the spectral range near 2 micrometers the alloy InGaSbAs seems to be most attractive, and cw-operating diode lasers at room temperature were demonstrated at 2.0 - 2.4 micrometers . The alloy PbSnTeSe was used to obtain a longest wave of diode laser emission 46 micrometers . Quaternaries played an important role in the development of the semiconductor optoelectronics during the last two decades.
Prospects of nanoscience with nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalenko, Maksym V.; Manna, Liberato; Cabot, Andreu
Colloidal nanocrystals (NCs, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from medicine to electronic and optoelectronic devices. Today’s strong research focus on NCs has been prompted by the tremendous progress in their synthesis. Impressively narrow size distributions of just a few percent, rational shape-engineering, compositional modulation, electronic doping, and tailored surface chemistries are now feasible for a broad range of inorganic compounds. The performance of inorganic NC-based photovoltaic and light-emitting devices has become competitive to other state-of-the-art materials. Semiconductor NCs hold unique promise for near- and mid-infrared technologies, where very fewmore » semiconductor materials are available. On a purely fundamental side, new insights into NC growth, chemical transformations, and self-organization can be gained from rapidly progressing in situ characterization and direct imaging techniques. In addition, new phenomena are constantly being discovered in the photophysics of NCs and in the electronic properties of NC solids. In this Nano Focus, we review the state of the art in research on colloidal NCs focusing on the most recent works published in the last 2 years.« less
NASA Astrophysics Data System (ADS)
Savenkov, G. G.; Kardo-Sysoev, A. F.; Zegrya, A. G.; Os'kin, I. A.; Bragin, V. A.; Zegrya, G. G.
2017-10-01
The first findings concerning the initiation of explosive conversions in energy-saturated nanoporous silicon-based compounds via the electrical explosion of a semiconductor bridge are presented. The obtained results indicate that the energy parameters of an explosive conversion depend on the mass of a combustible agent—namely, nanoporous silicon—and the silicon-doping type.
Understanding Mechanism of Photocatalytic Microbial Decontamination of Environmental Wastewater
Regmi, Chhabilal; Joshi, Bhupendra; Ray, Schindra K.; Gyawali, Gobinda; Pandey, Ramesh P.
2018-01-01
Several photocatalytic nanoparticles are synthesized and studied for potential application for the degradation of organic and biological wastes. Although these materials degrade organic compounds by advance oxidation process, the exact mechanisms of microbial decontamination remains partially known. Understanding the real mechanisms of these materials for microbial cell death and growth inhibition helps to fabricate more efficient semiconductor photocatalyst for large-scale decontamination of environmental wastewater or industries and hospitals/biomedical labs generating highly pathogenic bacteria and toxic molecules containing liquid waste by designing a reactor. Recent studies on microbial decontamination by photocatalytic nanoparticles and their possible mechanisms of action is highlighted with examples in this mini review. PMID:29541632
MBE Growth of Ferromagnetic Metal/Compound Semiconductor Heterostructures for Spintronics
Palmstrom, Chris [University of California, Santa Barbara, California, United States
2017-12-09
Electrical transport and spin-dependent transport across ferromagnet/semiconductor contacts is crucial in the realization of spintronic devices. Interfacial reactions, the formation of non-magnetic interlayers, and conductivity mismatch have been attributed to low spin injection efficiency. MBE has been used to grow epitaxial ferromagnetic metal/GA(1-x)AL(x)As heterostructures with the aim of controlling the interfacial structural, electronic, and magnetic properties. In situ, STM, XPS, RHEED and LEED, and ex situ XRD, RBS, TEM, magnetotransport, and magnetic characterization have been used to develop ferromagnetic elemental and metallic compound/compound semiconductor tunneling contacts for spin injection. The efficiency of the spin polarized current injected from the ferromagnetic contact has been determined by measuring the electroluminescence polarization of the light emitted from/GA(1-x)AL(x)As light-emitting diodes as a function of applied magnetic field and temperature. Interfacial reactions during MBE growth and post-growth anneal, as well as the semiconductor device band structure, were found to have a dramatic influence on the measured spin injection, including sign reversal. Lateral spin-transport devices with epitaxial ferromagnetic metal source and drain tunnel barrier contacts have been fabricated with the demonstration of electrical detection and the bias dependence of spin-polarized electron injection and accumulation at the contacts. This talk emphasizes the progress and achievements in the epitaxial growth of a number of ferromagnetic compounds/III-V semiconductor heterostructures and the progress towards spintronic devices.
Conducting single-molecule magnet materials.
Cosquer, Goulven; Shen, Yongbing; Almeida, Manuel; Yamashita, Masahiro
2018-05-11
Multifunctional molecular materials exhibiting electrical conductivity and single-molecule magnet (SMM) behaviour are particularly attractive for electronic devices and related applications owing to the interaction between electronic conduction and magnetization of unimolecular units. The preparation of such materials remains a challenge that has been pursued by a bi-component approach of combination of SMM cationic (or anionic) units with conducting networks made of partially oxidized (or reduced) donor (or acceptor) molecules. The present status of the research concerning the preparation of molecular materials exhibiting SMM behaviour and electrical conductivity is reviewed, describing the few molecular compounds where both SMM properties and electrical conductivity have been observed. The evolution of this research field through the years is discussed. The first reported compounds are semiconductors in spite being able to present relatively high electrical conductivity, and the SMM behaviour is observed at low temperatures where the electrical conductivity of the materials is similar to that of an insulator. During the recent years, a breakthrough has been achieved with the coexistence of high electrical conductivity and SMM behaviour in a molecular compound at the same temperature range, but so far without evidence of a synergy between these properties. The combination of high electrical conductivity with SMM behaviour requires not only SMM units but also the regular and as far as possible uniform packing of partially oxidized molecules, which are able to provide a conducting network.
Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication
Ashby, C.I.H.; Myers, D.R.; Vook, F.L.
1988-06-16
An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.
Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication
Ashby, Carol I. H.; Myers, David R.; Vook, Frederick L.
1989-01-01
An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.
Semiconductor bridge (SCB) detonator
Bickes, Jr., Robert W.; Grubelich, Mark C.
1999-01-01
The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.
Novel Engineered Compound Semiconductor Heterostructures for Advanced Electronics Applications
1992-06-22
and using an optimal 100 A set-back layer. This is an indication that carbon exhibits a low diffusivity in Ino.53GaO.47As films , too. Several issues...number of hydrocar- CC14 flow of 100 sccm. The p-type carrier concentration is bon sources has either not been successful, or has led to films highest...in InP by measuring the acceptor luminescence in undoped InP grown by LPE , PH3-VPE and LEC techniques and in intentionally doped material prepared by
Advanced Antireflection Coatings for High-Performance Solar Energy Applications
NASA Technical Reports Server (NTRS)
Pan, Noren
2015-01-01
Phase II objectives: Develop and refine antireflection coatings incorporating lanthanum titanate as an intermediate refractive index material; Investigate wet/dry thermal oxidation of aluminum containing semiconductor compounds as a means of forming a more transparent window layer with equal or better optical properties than its unoxidized form; Develop a fabrication process that allows integration of the oxidized window layer and maintains the necessary electrical properties for contacting the solar cell; Conduct an experimental demonstration of the best candidates for improved antireflection coatings.
NASA Technical Reports Server (NTRS)
Crouch, R. K.; Fripp, A. L.; Debnam, W. J.; Clark, I. O.
1981-01-01
Crystals of the intermetallic compound Pb1-xSnxTe will be grown in furnaces on the Space Shuttle. The reasons for conducting this growth in space, the program of investigation to develop the space experiment and the requirements that are placed on the Space Shuttle furnace are discussed. Also included are relevent thermophysical properties of Pb1-xSnxTe to the degree which they are known.
2014-04-24
position, policy or decision, unless so designated by other documentation. 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research ...an MBE environment, qualitative detection of the amount of material deposited on the surface by measuring the intensity of the Auger peaks. Testing ...Electron Spectroscopy Foreword The objective of the Phase 1 work was to test an innovative approach using a new design for an Auger Electron
Methods for forming thin-film heterojunction solar cells from I-III-VI.sub. 2
Mickelsen, Reid A [Bellevue, WA; Chen, Wen S [Seattle, WA
1985-08-13
An improved thin-film, large area solar cell, and methods for forming the same, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order ot about 2.5 microns to about 5.0 microns (.congruent.2.5 .mu.m to .congruent.5.0 .mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the The Government has rights in this invention pursuant to Contract No. EG-77-C-01-4042, Subcontract No. XJ-9-8021-1 awarded by the U.S. Department of Energy.
Thermal neutron detector and gamma-ray spectrometer utilizing a single material
Stowe, Ashley; Burger, Arnold; Lukosi, Eric
2017-05-02
A combined thermal neutron detector and gamma-ray spectrometer system, including: a detection medium including a lithium chalcopyrite crystal operable for detecting thermal neutrons in a semiconductor mode and gamma-rays in a scintillator mode; and a photodetector coupled to the detection medium also operable for detecting the gamma rays. Optionally, the detection medium includes a .sup.6LiInSe.sub.2 crystal. Optionally, the detection medium comprises a compound formed by the process of: melting a Group III element; adding a Group I element to the melted Group III element at a rate that allows the Group I and Group III elements to react thereby providing a single phase I-III compound; and adding a Group VI element to the single phase I-III compound and heating; wherein the Group I element includes lithium.
Designing small molecule polyaromatic p- and n-type semiconductor materials for organic electronics
NASA Astrophysics Data System (ADS)
Collis, Gavin E.
2015-12-01
By combining computational aided design with synthetic chemistry, we are able to identify core 2D polyaromatic small molecule templates with the necessary optoelectronic properties for p- and n-type materials. By judicious selection of the functional groups, we can tune the physical properties of the material making them amenable to solution and vacuum deposition. In addition to solubility, we observe that the functional group can influence the thin film molecular packing. By developing structure-property relationships (SPRs) for these families of compounds we observe that some compounds are better suited for use in organic solar cells, while others, varying only slightly in structure, are favoured in organic field effect transistor devices. We also find that the processing conditions can have a dramatic impact on molecular packing (i.e. 1D vs 2D polymorphism) and charge mobility; this has implications for material and device long term stability. We have developed small molecule p- and n-type materials for organic solar cells with efficiencies exceeding 2%. Subtle variations in the functional groups of these materials produces p- and ntype materials with mobilities higher than 0.3 cm2/Vs. We are also interested in using our SPR approach to develop materials for sensor and bioelectronic applications.
Alpha-ray spectrometry at high temperature by using a compound semiconductor detector.
Ha, Jang Ho; Kim, Han Soo
2013-11-01
The use of conventional radiation detectors in harsh environments is limited by radiation damage to detector materials and by temperature constraints. We fabricated a wide-band gap semiconductor radiation detector based on silicon carbide. All the detector components were considered for an application in a high temperature environment like a nuclear reactor core. The radiation response, especially to alpha particles, was measured using an (241)Am source at variable operating voltages at room temperature in the air. The temperature on detector was controlled from 30°C to 250°C. The alpha-particle spectra were measured at zero bias operation. Even though the detector is operated at high temperature, the energy resolution as a function of temperature is almost constant within 3.5% deviation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Brebrick, Robert F.; Volz, Martin P.; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin P.; Shih, Hung-Dah
2001-01-01
Crystal growth by vapor transport has several distinct advantages over melt growth techniques. Among various potential benefits from material processing in reduced gravity the followings two are considered to be related to crystal growth by vapor transport: (1) elimination of the crystal weight and its influence on the defect formation and (2) reduction of natural buoyancy-driven convective flows arising from thermally and/ or solutally induced density gradient in fluids. The previous results on vapor crystal growth of semiconductors showed the improvements in surface morphology, crystalline quality, electrical properties and dopant distribution of the crystals grown in reduced gravity as compared to the crystals grown on Earth. But the mechanisms, which are responsible for the improvements and cause the gravitational effects on the complicated and coupled processes of vapor mass transport and growth kinetics, are not well understood.
Strain-compensated infrared photodetector and photodetector array
Kim, Jin K; Hawkins, Samuel D; Klem, John F; Cich, Michael J
2013-05-28
A photodetector is disclosed for the detection of infrared light with a long cutoff wavelength in the range of about 4.5-10 microns. The photodetector, which can be formed on a semiconductor substrate as an nBn device, has a light absorbing region which includes InAsSb light-absorbing layers and tensile-strained layers interspersed between the InAsSb light-absorbing layers. The tensile-strained layers can be formed from GaAs, InAs, InGaAs or a combination of these III-V compound semiconductor materials. A barrier layer in the photodetector can be formed from AlAsSb or AlGaAsSb; and a contact layer in the photodetector can be formed from InAs, GaSb or InAsSb. The photodetector is useful as an individual device, or to form a focal plane array.
76 FR 65751 - Notice of intent to grant exclusive license
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-24
... Crystalline Semiconductor Alloys on Basal Plane of Trigonal or Hexagonal Crystal,'' U.S. Patent Application No. 12/254,134 entitled ``Hybrid Bandgap Engineering for Super-Hetero- Epitaxial Semiconductor Materials... Semiconductor Materials on Trigonal Substrate with Single Crystal Properties and Devices Based on Such Materials...
Entropy-driven loss of gas-phase Group 5 species from GOLD/3-5 compound semiconductor systems
NASA Astrophysics Data System (ADS)
Pugh, J. H.; Williams, R. S.
1986-02-01
Temperature dependent chemical interactions between Au and nine 3-5 compound semiconductors (3=A1, Ga, In and V=P, As, Sb) have been calculated using bulk thermodynamic properties. Enthalpic considerations alone are insufficient to predict metal/compound-semiconductor reactivities. The entropy of vaporization of the group 5 elements is shown to be an extremely important driving force for chemical reactions involving the 3-5's, since it enables several endothermic reactions to occur spontaneously under certain temperature and pressure conditions. Plots of either Gibb's free energies of reaction or equilibrium vapor pressure of the group 5 element versus temperature are used to predict critical reaction temperatures for each of the systems studied. These plots agree extremely well with previous experimental observations of thin film reactions of Au on GaAs.
Lattice thermal expansion for normal tetrahedral compound semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omar, M.S.
2007-02-15
The cubic root of the deviation of the lattice thermal expansion from that of the expected value of diamond for group IV semiconductors, binary compounds of III-V and II-VI, as well as several ternary compounds from groups I-III-VI{sub 2}, II-IV-V{sub 2} and I-IV{sub 2}V{sub 3} semiconductors versus their bonding length are given straight lines. Their slopes were found to be 0.0256, 0.0210, 0.0170, 0.0259, 0.0196, and 0.02840 for the groups above, respectively. Depending on the valence electrons of the elements forming these groups, a formula was found to correlate all the values of the slopes mentioned above to that ofmore » group IV. This new formula which depends on the melting point and the bonding length as well as the number of valence electrons for the elements forming the compounds, will gives best calculated values for lattice thermal expansion for all compounds forming the groups mentioned above. An empirical relation is also found between the mean ionicity of the compounds forming the groups and their slopes mentioned above and that gave the mean ionicity for the compound CuGe{sub 2}P{sub 3} in the range of 0.442.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachhuber, Frederik; School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland; Krach, Alexander
2015-03-15
Pyrite-type and related systems appear for a wide range of binary and ternary combinations of transition metals and main group elements that form Zintl type dumbbell anion units. Those representatives with 20 valence electrons exhibit an extraordinary structural flexibility and interesting properties as low-gap semiconductors or thermoelectric and electrode materials. This work is devoted to the systematic exploration of novel compounds within the class of MTCh compounds (M=Ni, Pd, Pt; T=Si, Ge, Sn, Pb; Ch=S, Se, Te) by means of density functional calculations. Their preferred structures are predicted from an extended scheme of colored pyrites and marcasites. To determine theirmore » stabilities, competing binary MT{sub 2} and MCh{sub 2} boundary phases are taken into account as well as ternary M{sub 3}T{sub 2}Ch{sub 2} and M{sub 2}T{sub 3}Ch{sub 3} systems. Recently established stability diagrams are presented to account for MTCh ordering phenomena with a focus on a not-yet-reported ordering variant of the NiAs{sub 2} type. Due to the good agreement with experimental data available for several PtTCh systems, the predictions for the residual systems are considered sufficiently accurate. - Graphical abstract: Compositional and structural stability of MTCh compounds is investigated from first principle calculations. A conceptional approach is presented to study and predict novel stable and metastable compounds and structures of low gap semiconductors with TCh dumbbell units that are isoelectronic and structurally related to pyrite (FeS{sub 2}). - Highlights: • Study of compositional stability of MTCh vs. M{sub 3}T{sub 2}Ch{sub 2} and M{sub 2}T{sub 3}Ch{sub 3} compounds. • Study of structural stability of known and novel MTCh compounds. • Prediction of novel stable and metastable structures and compounds isoelectronic to pyrite, FeS{sub 2}.« less
High-throughput density-functional perturbation theory phonons for inorganic materials
NASA Astrophysics Data System (ADS)
Petretto, Guido; Dwaraknath, Shyam; P. C. Miranda, Henrique; Winston, Donald; Giantomassi, Matteo; van Setten, Michiel J.; Gonze, Xavier; Persson, Kristin A.; Hautier, Geoffroy; Rignanese, Gian-Marco
2018-05-01
The knowledge of the vibrational properties of a material is of key importance to understand physical phenomena such as thermal conductivity, superconductivity, and ferroelectricity among others. However, detailed experimental phonon spectra are available only for a limited number of materials, which hinders the large-scale analysis of vibrational properties and their derived quantities. In this work, we perform ab initio calculations of the full phonon dispersion and vibrational density of states for 1521 semiconductor compounds in the harmonic approximation based on density functional perturbation theory. The data is collected along with derived dielectric and thermodynamic properties. We present the procedure used to obtain the results, the details of the provided database and a validation based on the comparison with experimental data.
Quasiparticle semiconductor band structures including spin-orbit interactions.
Malone, Brad D; Cohen, Marvin L
2013-03-13
We present first-principles calculations of the quasiparticle band structure of the group IV materials Si and Ge and the group III-V compound semiconductors AlP, AlAs, AlSb, InP, InAs, InSb, GaP, GaAs and GaSb. Calculations are performed using the plane wave pseudopotential method and the 'one-shot' GW method, i.e. G(0)W(0). Quasiparticle band structures, augmented with the effects of spin-orbit, are obtained via a Wannier interpolation of the obtained quasiparticle energies and calculated spin-orbit matrix. Our calculations explicitly treat the shallow semicore states of In and Ga, which are known to be important in the description of the electronic properties, as valence states in the quasiparticle calculation. Our calculated quasiparticle energies, combining both the ab initio evaluation of the electron self-energy and the vector part of the pseudopotential representing the spin-orbit effects, are in generally very good agreement with experimental values. These calculations illustrate the predictive power of the methodology as applied to group IV and III-V semiconductors.
NASA Astrophysics Data System (ADS)
Ali, Md. Lokman; Rahaman, Md. Zahidur
2018-04-01
By using first principles calculation dependent on the density functional theory (DFT), we have investigated the mechanical, structural properties and the Debye temperature of Fe2ScM (M=P and As) compounds under various pressures up to 60 GPa. The optical properties have been investigated under zero pressure. Our calculated optimized structural parameters of both the materials are in good agreement with other theoretical predictions. The calculated elastic constants show that Fe2ScM (M=P and As) compounds are mechanically stable under external pressure below 60 GPa. From the elastic constants, the shear modulus G, the bulk modulus B, Young’s modulus E, anisotropy factor A and Poisson’s ratio ν are calculated by using the Voigt-Reuss-Hill approximation. The Debye temperature and average sound velocities are also investigated from the obtained elastic constants. The detailed analysis of all optical functions reveals that both compounds are good dielectric material.
Wu, Chien-Hou; Lin, Ming-Nan; Feng, Chien-Tai; Yang, Kuang-Ling; Lo, Yu-Shiu; Lo, Jiunn-Guang
2003-05-09
A method for the qualitative and quantitative analysis of volatile organic compounds (VOCs) in the air of class-100 clean rooms at semiconductor fabrication facilities was developed. Air samples from two semiconductor factories were collected each hour on multisorbent tubes (including Carbopack B, Carbopack C, and Carbosieve SIII) with a 24-h automatic active sampling system and analyzed using adsorption/thermal desorption coupled with gas chromatography-mass spectrometry. Experimental parameters, including thermal desorption temperature, desorption time, and cryofocusing temperature, were optimized. The average recoveries and the method detection limits for the target compounds were in the range 94-101% and 0.31-0.89 ppb, respectively, under the conditions of a 1 L sampling volume and 80% relative humidity. VOCs such as acetone, isopropyl alcohol, 2-heptanone, and toluene, which are commonly used in the semiconductor and electronics industries, were detected and accurately quantified with the established method. Temporal variations of the analyte concentrations observed were attributed to the improper use of organic solvents during operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Zhao; Chen, Jun; Jiang, Xingxing
Zero thermal expansion (ZTE) behavior is rare but important for both fundamental studies and practical applications of functional materials. Up to now, most available ZTE materials are either electrical insulating oxides or conductive metallic compounds. Very few ZTE materials exhibit the semiconductor feature. Here we report a ZTE in semiconducting ferroelectric of 0.6PbTiO 3-0.4Bi(Co 0.55Ti 0.45)O 3-δ. Its unit cell volume exhibits a negligible change over a broad temperature range from room temperature to 500 °C. The ZTE is supposed to be correlated with the spontaneous volume ferroelectronstriction. Intriguingly, the present ZTE material also exhibits the semiconducting characteristic accompanied bymore » negative temperature coefficient of resistance. The mechanism of electric conduction is attributed to the electronic hopping from one ionic (Ti 3+) to another (Ti 4+). The semiconductor nature has also been confirmed by the noticeable visible-light absorption with the relative lower band-gap (E g) value of 1.5 eV, while ferroelectric property can be well maintained with large polarization. The first-principles calculations reveal that the drastically narrowed E g is related to the Co-Ti substitution. Finally, the present multifunctional material containing ZTE, semiconducting and ferroelectric properties is suggested to enable new applications such as the substrate for solar conversion devices.« less
Pan, Zhao; Chen, Jun; Jiang, Xingxing; ...
2017-02-16
Zero thermal expansion (ZTE) behavior is rare but important for both fundamental studies and practical applications of functional materials. Up to now, most available ZTE materials are either electrical insulating oxides or conductive metallic compounds. Very few ZTE materials exhibit the semiconductor feature. Here we report a ZTE in semiconducting ferroelectric of 0.6PbTiO 3-0.4Bi(Co 0.55Ti 0.45)O 3-δ. Its unit cell volume exhibits a negligible change over a broad temperature range from room temperature to 500 °C. The ZTE is supposed to be correlated with the spontaneous volume ferroelectronstriction. Intriguingly, the present ZTE material also exhibits the semiconducting characteristic accompanied bymore » negative temperature coefficient of resistance. The mechanism of electric conduction is attributed to the electronic hopping from one ionic (Ti 3+) to another (Ti 4+). The semiconductor nature has also been confirmed by the noticeable visible-light absorption with the relative lower band-gap (E g) value of 1.5 eV, while ferroelectric property can be well maintained with large polarization. The first-principles calculations reveal that the drastically narrowed E g is related to the Co-Ti substitution. Finally, the present multifunctional material containing ZTE, semiconducting and ferroelectric properties is suggested to enable new applications such as the substrate for solar conversion devices.« less
Pan, Zhao; Chen, Jun; Jiang, Xingxing; Lin, Zheshuai; Zhang, Linxing; Fan, Longlong; Rong, Yangchun; Hu, Lei; Liu, Hui; Ren, Yang; Kuang, Xiaojun; Xing, Xianran
2017-03-06
Zero thermal expansion (ZTE) behavior is rare but important for both fundamental studies and practical applications of functional materials. Until now, most available ZTE materials are either electrical insulating oxides or conductive metallic compounds. Very few ZTE materials exhibit the semiconductor feature. Here we report a ZTE in a semiconducting ferroelectric of 0.6PbTiO 3 -0.4Bi(Co 0.55 Ti 0.45 )O 3-δ . Its unit cell volume exhibits a negligible change over a broad temperature range from room temperature to 500 °C. The ZTE is supposed to be correlated with the spontaneous volume ferroelectronstriction. Intriguingly, the present ZTE material also exhibits the semiconducting characteristic accompanied by negative temperature coefficient of resistance. The mechanism of electric conduction is attributed to the electronic hopping from one ion (Ti 3+ ) to another (Ti 4+ ). The semiconductor nature has also been confirmed by the noticeable visible-light absorption with the relatively lower band gap (E g ) value of 1.5 eV, while the ferroelectric property can be well-maintained with large polarization. The first-principles calculations reveal that the drastically narrowed E g is related to the Co-Ti substitution. The present multifunctional material containing ZTE, semiconducting, and ferroelectric properties is suggested to enable new applications such as the substrate for solar conversion devices.
Architectures and criteria for the design of high efficiency organic photovoltaic cells
Rand, Barry; Forrest, Stephen R; Burk, Diana Pendergrast
2015-03-24
An organic photovoltaic cell includes an anode and a cathode, and a plurality of organic semiconductor layers between the anode and the cathode. At least one of the anode and the cathode is transparent. Each two adjacent layers of the plurality of organic semiconductor layers are in direct contact. The plurality of organic semiconductor layers includes an intermediate layer consisting essentially of a photoconductive material, and two sets of at least three layers. A first set of at least three layers is between the intermediate layer and the anode. Each layer of the first set consists essentially of a different organic semiconductor material having a higher LUMO and a higher HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the cathode. A second set of at least three layers is between the intermediate layer and the cathode. Each layer of the second set consists essentially of a different organic semiconductor material having a lower LUMO and a lower HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the anode.
Thermally robust semiconductor optical amplifiers and laser diodes
Dijaili, Sol P.; Patterson, Frank G.; Walker, Jeffrey D.; Deri, Robert J.; Petersen, Holly; Goward, William
2002-01-01
A highly heat conductive layer is combined with or placed in the vicinity of the optical waveguide region of active semiconductor components. The thermally conductive layer enhances the conduction of heat away from the active region, which is where the heat is generated in active semiconductor components. This layer is placed so close to the optical region that it must also function as a waveguide and causes the active region to be nearly the same temperature as the ambient or heat sink. However, the semiconductor material itself should be as temperature insensitive as possible and therefore the invention combines a highly thermally conductive dielectric layer with improved semiconductor materials to achieve an overall package that offers improved thermal performance. The highly thermally conductive layer serves two basic functions. First, it provides a lower index material than the semiconductor device so that certain kinds of optical waveguides may be formed, e.g., a ridge waveguide. The second and most important function, as it relates to this invention, is that it provides a significantly higher thermal conductivity than the semiconductor material, which is the principal material in the fabrication of various optoelectronic devices.
Mixed ternary heterojunction solar cell
Chen, Wen S.; Stewart, John M.
1992-08-25
A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.
Semiconductor Metal-Organic Frameworks: Future Low-Bandgap Materials.
Usman, Muhammad; Mendiratta, Shruti; Lu, Kuang-Lieh
2017-02-01
Metal-organic frameworks (MOFs) with low density, high porosity, and easy tunability of functionality and structural properties, represent potential candidates for use as semiconductor materials. The rapid development of the semiconductor industry and the continuous miniaturization of feature sizes of integrated circuits toward the nanometer (nm) scale require novel semiconductor materials instead of traditional materials like silicon, germanium, and gallium arsenide etc. MOFs with advantageous properties of both the inorganic and the organic components promise to serve as the next generation of semiconductor materials for the microelectronics industry with the potential to be extremely stable, cheap, and mechanically flexible. Here, a perspective of recent research is provided, regarding the semiconducting properties of MOFs, bandgap studies, and their potential in microelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dopant type and/or concentration selective dry photochemical etching of semiconductor materials
Ashby, Carol I. H.; Dishman, James L.
1987-01-01
A method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method, comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p- type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.
Dopant type and/or concentration selective dry photochemical etching of semiconductor materials
Ashby, C.R.H.; Dishman, J.L.
1985-10-11
Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p-type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.
High resolution energy-sensitive digital X-ray
Nygren, David R.
1995-01-01
An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays From the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detect or such that each one of the of semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction.
High resolution energy-sensitive digital X-ray
Nygren, D.R.
1995-07-18
An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays from the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detector such that each one of the semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction. 5 figs.
Dalal, Shakeel S.; Walters, Diane M.; Lyubimov, Ivan; ...
2015-03-23
Physical vapor deposition is commonly used to prepare organic glasses that serve as the active layers in light-emitting diodes, photovoltaics, and other devices. Recent work has shown that orienting the molecules in such organic semiconductors can significantly enhance device performance. In this paper, we apply a high-throughput characterization scheme to investigate the effect of the substrate temperature (T substrate) on glasses of three organic molecules used as semiconductors. The optical and material properties are evaluated with spectroscopic ellipsometry. We find that molecular orientation in these glasses is continuously tunable and controlled by T substrate/T g, where T g is themore » glass transition temperature. All three molecules can produce highly anisotropic glasses; the dependence of molecular orientation upon substrate temperature is remarkably similar and nearly independent of molecular length. All three compounds form “stable glasses” with high density and thermal stability, and have properties similar to stable glasses prepared from model glass formers. Simulations reproduce the experimental trends and explain molecular orientation in the deposited glasses in terms of the surface properties of the equilibrium liquid. Finally, by showing that organic semiconductors form stable glasses, these results provide an avenue for systematic performance optimization of active layers in organic electronics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zheng; Lü, Tie-Yu; Wang, Hui-Qiong
We have investigated the thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap(n-type) semiconductors SiC, GaN, and ZnO based on first-principles calculations and Boltzmann transport theory. Our results show that the thermoelectric performance increases from 3C to 6H, 4H, and 2H structures with an increase of hexagonality for SiC. However, for GaN and ZnO, their power factors show a very weak dependence on the polytype. Detailed analysis of the thermoelectric properties with respect to temperature and carrier concentration of 4H-SiC, 2H-GaN, and 2H-ZnO shows that the figure of merit of these three compounds increases with temperature,more » indicating the promising potential applications of these thermoelectric materials at high temperature. The significant difference of the polytype-dependent thermoelectric properties among SiC, GaN, and ZnO might be related to the competition between covalency and ionicity in these semiconductors. Our calculations may provide a new way to enhance the thermoelectric properties of wide-band-gap semiconductors through atomic structure design, especially hexagonality design for SiC.« less
Alternative photocatalysts to TiO2 for the photocatalytic reduction of CO2
NASA Astrophysics Data System (ADS)
Nikokavoura, Aspasia; Trapalis, Christos
2017-01-01
The increased concentration of CO2 in the atmosphere, originating from the burning of fossil fuels in stationary and mobile sources, is referred as the "Anthropogenic Greenhouse Effect" and constitutes a major environmental concern. The scientific community is highly concerned about the resulting enhancement of the mean atmospheric temperature, so a vast diversity of methods has been applied. Thermochemical, electrochemical, photocatalytic, photoelectrochemical processes, as well as combination of solar electricity generation and water splitting processes have been performed in order to lower the CO2 atmospheric levels. Photocatalytic methods are environmental friendly and succeed in reducing the atmospheric CO2 concentration and producing fuels or/and useful organic compounds at the same time. The most common photocatalysts for the CO2 reduction are the inorganic, the carbon based semiconductors and the hybrids based on semiconductors, which combine stability, low cost and appropriate structure in order to accomplish redox reactions. In this review, inorganic semiconductors such as single-metal oxide, mixed-metal oxides, metal oxide composites, layered double hydroxides (LDHs), salt composites, carbon based semiconductors such as graphene based composites, CNT composites, g-C3N4 composites and hybrid organic-inorganic materials (ZIFs) were studied. TiO2 and Ti based photocatalysts are extensively studied and therefore in this review they are not mentioned.
New organic semiconductor thin film derived from p-toluidine monomer
NASA Astrophysics Data System (ADS)
Al-Hossainy, A. F.; Zoromba, M. Sh
2018-03-01
p-Toluidine was used as a precursor to synthesize new organic compound [(E)-4-methyl-N1-((E)-4-methyl-6-(p-tolylimino) cyclohex-3-en-1-ylidene)-N2-(p-tolyl) benzene-1,2-diamine] (MBD) by oxidative reaction via potassium dichromate as oxidizing agent at room temperature. Spin coater was used to fabricate nano-size crystalline thin film of the MBD with thickness 73 nm. The characterizations of the MBD powder and thin film have been described by various techniques including Fourier Transform Infrared (FT-IR), Mass Spectra, X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), UV-Visible measurements and Atomic Force Microscope (AFM). The results revealed that the MBD as an organic material is semi-crystalline containing benzenoid (Bensbnd Nsbnd Ben) and quinonoid (Quin = N = Quin) structures. Various optical constants such as refractive index (n), and the absorption index, (k) of the MBD thin film were determined. The effect of temperature on the electrical resistivity of MBD film was studied by a Keithley 6517B electrometer. The energy band gap value of the MBD thin film was found to be 2.24 eV. Thus, MBD is located in the semiconductor materials range. In addition, structural and optical mechanisms of MBD nanostructured thin film were investigated. The obtained results illustrate the possibility of controlling the organic semiconductor MBD thin film for the optoelectronic applications.
Overview of atomic layer etching in the semiconductor industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanarik, Keren J., E-mail: keren.kanarik@lamresearch.com; Lill, Thorsten; Hudson, Eric A.
2015-03-15
Atomic layer etching (ALE) is a technique for removing thin layers of material using sequential reaction steps that are self-limiting. ALE has been studied in the laboratory for more than 25 years. Today, it is being driven by the semiconductor industry as an alternative to continuous etching and is viewed as an essential counterpart to atomic layer deposition. As we enter the era of atomic-scale dimensions, there is need to unify the ALE field through increased effectiveness of collaboration between academia and industry, and to help enable the transition from lab to fab. With this in mind, this article providesmore » defining criteria for ALE, along with clarification of some of the terminology and assumptions of this field. To increase understanding of the process, the mechanistic understanding is described for the silicon ALE case study, including the advantages of plasma-assisted processing. A historical overview spanning more than 25 years is provided for silicon, as well as ALE studies on oxides, III–V compounds, and other materials. Together, these processes encompass a variety of implementations, all following the same ALE principles. While the focus is on directional etching, isotropic ALE is also included. As part of this review, the authors also address the role of power pulsing as a predecessor to ALE and examine the outlook of ALE in the manufacturing of advanced semiconductor devices.« less
Homogeneity study of a GaAs:Cr pixelated sensor by means of X-rays
NASA Astrophysics Data System (ADS)
Billoud, T.; Leroy, C.; Papadatos, C.; Pichotka, M.; Pospisil, S.; Roux, J. S.
2018-04-01
Direct conversion semiconductor detectors have become an indispensable tool in radiation detection by now. In order to obtain a high detection efficiency, especially when detecting X or γ rays, high-Z semiconductor sensors are necessary. Like other compound semiconductors GaAs, compensated by chromium (GaAs:Cr), suffers from a number of defects that affect the charge collection efficiency and homogeneity of the material. A precise knowledge of this problem is important to predict the performance of such detectors and eventually correct their response in specific applications. In this study we analyse the homogeneity and mobility-lifetime products (μe τe) of a 500 μ m thick GaAs:Cr pixelated sensor connected to a Timepix chip. The detector is irradiated by 23 keV X-rays, each pixel recording the number of photon interactions and the charge they induce on its electrode. The μe τe products are extracted on a per-pixel basis, using the Hecht equation corrected for the small pixel effect. The detector shows a good time stability in the experimental conditions. Significant inhomogeneities are observed in photon counting and charge collection efficiencies. An average μe τe of 1.0 ṡ 10‑4 cm2V‑1 is found, and compared with values obtained by other methods for the same material. Solutions to improve the response are discussed.
1991-10-01
classical image potential in an ideal creasing gap separation, that is specific to the form of the metal- insulator -semiconductor (MIS) junction...with which one can precisely adjust s, and hence continuously vary the vacvuum barrier, is a potentially valuable tool for investigating this effect- By... insulator -semiconductor (MIS) junction similar to that shown in Fig. I diverge at the semiconductor-vacuum and vacuum-metal interfaces [7,81. These
Semiconductor bridge (SCB) detonator
Bickes, R.W. Jr.; Grubelich, M.C.
1999-01-19
The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.
Novel drift structures for silicon and compound semiconductor X-ray and gamma-ray detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patt, B.E.; Iwanczyk, J.S.
Recently developed silicon- and compound-semiconductor-based drift detector structures have produced excellent performance for charged particles, X-rays, and gamma rays and for low-signal visible light detection. The silicon drift detector (SDD) structures that the authors discuss relate to direct X-ray detectors and scintillation photon detectors coupled with scintillators for gamma rays. Recent designs include several novel features that ensure very low dark current and hence low noise. In addition, application of thin window technology ensures a very high quantum efficiency entrance window on the drift photodetector. The main features of the silicon drift structures for X rays and light detection aremore » very small anode capacitance independent of the overall detector size, low noise, and high throughput. To take advantage of the small detector capacitance, the first stage of the electronics needs to be integrated into the detector anode. In the gamma-ray application, factors other than electronic noise dominate, and there is no need to integrate the electronics into the anode. Thus, a different drift structure is needed in conjunction with a high-Z material. The main features in this case are large active detector volume and electron-only induced signal.« less
Nikolic, Rebecca J.; Conway, Adam M.; Nelson, Art J.; Payne, Stephen A.
2012-09-04
In one embodiment, a system comprises a semiconductor gamma detector material and a hole blocking layer adjacent the gamma detector material, the hole blocking layer resisting passage of holes therethrough. In another embodiment, a system comprises a semiconductor gamma detector material, and an electron blocking layer adjacent the gamma detector material, the electron blocking layer resisting passage of electrons therethrough, wherein the electron blocking layer comprises undoped HgCdTe. In another embodiment, a method comprises forming a hole blocking layer adjacent a semiconductor gamma detector material, the hole blocking layer resisting passage of holes therethrough. Additional systems and methods are also presented.
Hybrid anode for semiconductor radiation detectors
Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B
2013-11-19
The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).
Review of - SiC wide-bandgap heterostructure properties as an alternate semiconductor material
NASA Astrophysics Data System (ADS)
Rajput Priti, J.; Patankar, Udayan S.; Koel, Ants; Nitnaware, V. N.
2018-05-01
Silicon substance (is also known as Quartz) is an abundant in nature and the electrical properties it exhibits, plays a vital role in developing its usage in the field of semiconductor. More than decades we can say that Silicon has shown desirable signs but at the later parts it has shown some research potential for development of alternative material as semiconductor devices. This need has come to light as we started scaling down in size of the Silicon material and up in speed. This semiconductor material started exhibiting several fundamental physical limits that include the minimum gate oxide thickness and the maximum saturation velocity of carriers which determines the operation frequency. Though the alternative semiconductors provide some answers (such as III-V's for high speed devices) for a path to skirt these problems, there also may be some ways to extend the life of silicon itself. Two paths are used as for alternative semiconductors i.e alternative gate dielectrics and silicon-based heterostructures. The SiC material has some strength properties under different conditions and find out the defects available in the material.
Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.
Zhang, Jing; Xu, Wei; Sheng, Peng; Zhao, Guangyao; Zhu, Daoben
2017-07-18
Organic donor-acceptor (DA) complexes have attracted wide attention in recent decades, resulting in the rapid development of organic binary system electronics. The design and synthesis of organic DA complexes with a variety of component structures have mainly focused on metallicity (or even superconductivity), emission, or ferroelectricity studies. Further efforts have been made in high-performance electronic investigations. The chemical versatility of organic semiconductors provides DA complexes with a great number of possibilities for semiconducting applications. Organic DA complexes extend the semiconductor family and promote charge separation and transport in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). In OFETs, the organic complex serves as an active layer across extraordinary charge pathways, ensuring the efficient transport of induced charges. Although an increasing number of organic semiconductors have been reported to exhibit good p- or n-type properties (mobilities higher than 1 or even 10 cm 2 V -1 s -1 ), critical scientific challenges remain in utilizing the advantages of existing semiconductor materials for more and wider applications while maintaining less complicated synthetic or device fabrication processes. DA complex materials have revealed new insight: their unique molecular packing and structure-property relationships. The combination of donors and acceptors could offer practical advantages compared with their unimolecular materials. First, growing crystals of DA complexes with densely packed structures will reduce impurities and traps from the self-assembly process. Second, complexes based on the original structural components could form superior mixture stacking, which can facilitate charge transport depending on the driving force in the coassembly process. Third, the effective use of organic semiconductors can lead to tunable band structures, allowing the operation mode (p- or n-type) of the transistor to be systematically controlled by changing the components. Finally, theoretical calculations based on cocrystals with unique stacking could widen our understanding of structure-property relationships and in turn help us design high-performance semiconductors based on DA complexes. In this Account, we focus on discussing organic DA complexes as a new class of semiconducting materials, including their design, growth methods, packing modes, charge-transport properties, and structure-property relationships. We have also fabricated and investigated devices based on these binary crystals. This interdisciplinary work combines techniques from the fields of self-assembly, crystallography, condensed-matter physics, and theoretical chemistry. Researchers have designed new complex systems, including donor and acceptor compounds that self-assemble in feasible ways into highly ordered cocrystals. We demonstrate that using this crystallization method can easily realize ambipolar or unipolar transport. To further improve device performance, we propose several design strategies, such as using new kinds of donors and acceptors, modulating the energy alignment of the donor (ionization potential, IP) and acceptor (electron affinity, EA) components, and extending the π-conjugated backbones. In addition, we have found that when we use molecular "doping" (2:1 cocrystallization), the charge-transport nature of organic semiconductors can be switched from hole-transport-dominated to electron-transport-dominated. We expect that the formation of cocrystals through the complexation of organic donor and acceptor species will serve as a new strategy to develop semiconductors for organic electronics with superior performances over their corresponding individual components.
Apparatus and methods of measuring minority carrier lifetime using a liquid probe
Li, Jian
2016-04-12
Methods and apparatus for measuring minority carrier lifetimes using liquid probes are provided. In one embodiment, a method of measuring the minority carrier lifetime of a semiconductor material comprises: providing a semiconductor material having a surface; forming a rectifying junction at a first location on the surface by temporarily contacting the surface with a conductive liquid probe; electrically coupling a second junction to the semiconductor material at a second location, wherein the first location and the second location are physically separated; applying a forward bias to the rectifying junction causing minority carrier injection in the semiconductor material; measuring a total capacitance as a function of frequency between the rectifying junction and the second junction; determining an inflection frequency of the total capacitance; and determining a minority lifetime of the semiconductor material from the inflection frequency.
Compound semiconductor optical waveguide switch
Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.
2003-06-10
An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.
Versatile buffer layer architectures based on Ge1-xSnx alloys
NASA Astrophysics Data System (ADS)
Roucka, R.; Tolle, J.; Cook, C.; Chizmeshya, A. V. G.; Kouvetakis, J.; D'Costa, V.; Menendez, J.; Chen, Zhihao D.; Zollner, S.
2005-05-01
We describe methodologies for integration of compound semiconductors with Si via buffer layers and templates based on the GeSn system. These layers exhibit atomically flat surface morphologies, low defect densities, tunable thermal expansion coefficients, and unique ductile properties, which enable them to readily absorb differential stresses produced by mismatched overlayers. They also provide a continuous selection of lattice parameters higher than that of Ge, which allows lattice matching with technologically useful III-V compounds. Using this approach we have demonstrated growth of GaAs, GeSiSn, and pure Ge layers at low temperatures on Si(100). These materials display extremely high-quality structural, morphological, and optical properties opening the possibility of versatile integration schemes directly on silicon.
NASA Astrophysics Data System (ADS)
Gorgun, Kamuran; Caglar, Yasemin
2018-04-01
Carbazole compounds in particular represent one of the most intensely used and studied class of semiconducting materials. In this study, considering the information given in the literature the Ullman and Suzuki-Miyaura coupling reaction were carried out using carbazole, 1,4-dibromobenzene and pyrene-1-boronic acid. The synthesized carbazole derivatives are characterized by 1H NMR and elemental analysis. The spectroscopic and thermal properties of the synthesized novel carbazole derivative 9-(4-(pyren-4-yl)phenyl)-9H-carbazole (Cz-py) were investigated. And also, the n-Si/p-Cz:py heterojunction diode was fabricated. The electrical properties of this diode were characterized by current-voltage (I-V) and capacitance-voltage (C-V) measurements.
Electro-chemical sensors, sensor arrays and circuits
Katz, Howard E.; Kong, Hoyoul
2014-07-08
An electro-chemical sensor includes a first electrode, a second electrode spaced apart from the first electrode, and a semiconductor channel in electrical contact with the first and second electrodes. The semiconductor channel includes a trapping material. The trapping material reduces an ability of the semiconductor channel to conduct a current of charge carriers by trapping at least some of the charge carriers to localized regions within the semiconductor channel. The semiconductor channel includes at least a portion configured to be exposed to an analyte to be detected, and the trapping material, when exposed to the analyte, interacts with the analyte so as to at least partially restore the ability of the semiconductor channel to conduct the current of charge carriers.
Method of plasma etching Ga-based compound semiconductors
Qiu, Weibin; Goddard, Lynford L.
2012-12-25
A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.
Method of plasma etching GA-based compound semiconductors
Qiu, Weibin; Goddard, Lynford L.
2013-01-01
A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent thereto. The chamber contains a Ga-based compound semiconductor sample in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. SiCl.sub.4 and Ar gases are flowed into the chamber. RF power is supplied to the platen at a first power level, and RF power is supplied to the source electrode. A plasma is generated. Then, RF power is supplied to the platen at a second power level lower than the first power level and no greater than about 30 W. Regions of a surface of the sample adjacent to one or more masked portions of the surface are etched at a rate of no more than about 25 nm/min to create a substantially smooth etched surface.
Nanoscale doping of compound semiconductors by solid phase dopant diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Jaehyun, E-mail: jaehyun.ahn@utexas.edu; Koh, Donghyi; Roy, Anupam
2016-03-21
Achieving damage-free, uniform, abrupt, ultra-shallow junctions while simultaneously controlling the doping concentration on the nanoscale is an ongoing challenge to the scaling down of electronic device dimensions. Here, we demonstrate a simple method of effectively doping ΙΙΙ-V compound semiconductors, specifically InGaAs, by a solid phase doping source. This method is based on the in-diffusion of oxygen and/or silicon from a deposited non-stoichiometric silicon dioxide (SiO{sub x}) film on InGaAs, which then acts as donors upon activation by annealing. The dopant profile and concentration can be controlled by the deposited film thickness and thermal annealing parameters, giving active carrier concentration ofmore » 1.4 × 10{sup 18 }cm{sup −3}. Our results also indicate that conventional silicon based processes must be carefully reviewed for compound semiconductor device fabrication to prevent unintended doping.« less
Controlled growth of larger heterojunction interface area for organic photosensitive devices
Yang, Fan [Somerset, NJ; Forrest, Stephen R [Ann Arbor, MI
2009-12-29
An optoelectronic device and a method of fabricating a photosensitive optoelectronic device includes depositing a first organic semiconductor material on a first electrode to form a continuous first layer having protrusions, a side of the first layer opposite the first electrode having a surface area at least three times greater than an underlying lateral cross-sectional area; depositing a second organic semiconductor material directly on the first layer to form a discontinuous second layer, portions of the first layer remaining exposed; depositing a third organic semiconductor material directly on the second layer to form a discontinuous third layer, portions of at least the second layer remaining exposed; depositing a fourth organic semiconductor material on the third layer to form a continuous fourth layer, filling any exposed gaps and recesses in the first, second, and third layers; and depositing a second electrode on the fourth layer, wherein at least one of the first electrode and the second electrode is transparent, and the first and third organic semiconductor materials are both of a donor-type or an acceptor-type relative to second and fourth organic semiconductor materials, which are of the other material type.
Micro-opto-mechanical devices and systems using epitaxial lift off
NASA Technical Reports Server (NTRS)
Camperi-Ginestet, C.; Kim, Young W.; Wilkinson, S.; Allen, M.; Jokerst, N. M.
1993-01-01
The integration of high quality, single crystal thin film gallium arsenide (GaAs) and indium phosphide (InP) based photonic and electronic materials and devices with host microstructures fabricated from materials such as silicon (Si), glass, and polymers will enable the fabrication of the next generation of micro-opto-mechanical systems (MOMS) and optoelectronic integrated circuits. Thin film semiconductor devices deposited onto arbitrary host substrates and structures create hybrid (more than one material) near-monolithic integrated systems which can be interconnected electrically using standard inexpensive microfabrication techniques such as vacuum metallization and photolithography. These integrated systems take advantage of the optical and electronic properties of compound semiconductor devices while still using host substrate materials such as silicon, polysilicon, glass and polymers in the microstructures. This type of materials optimization for specific tasks creates higher performance systems than those systems which must use trade-offs in device performance to integrate all of the function in a single material system. The low weight of these thin film devices also makes them attractive for integration with micromechanical devices which may have difficulty supporting and translating the full weight of a standard device. These thin film devices and integrated systems will be attractive for applications, however, only when the development of low cost, high yield fabrication and integration techniques makes their use economically feasible. In this paper, we discuss methods for alignment, selective deposition, and interconnection of thin film epitaxial GaAs and InP based devices onto host substrates and host microstructures.
Tice, Jesse B; Chizmeshya, A V G; Tolle, J; D' Costa, V R; Menendez, J; Kouvetakis, J
2010-05-21
The (SiH₃)₃P hydride is introduced as a practical source for n-doping of group IV semiconductors and as a highly-reactive delivery agent of -(SiH₃)₂P functionalities in exploratory synthesis. In contrast to earlier methods, the compound is produced here in high purity quantitative yields via a new single-step method based on reactions of SiH₃Br and (Me₃Sn)₃P, circumventing the need for toxic and unstable starting materials. As an initial demonstration of its utility we synthesized monosubstituted Me₂M-P(SiH₃)₂ (M = Al, Ga, In) derivatives of Me₃M containing the (SiH₃)₂P ligand for the first time, in analogy to the known Me₂M-P(SiMe₃)₂ counterparts. A dimeric structure of Me₂M-P(SiH₃)₂ is proposed on the basis of spectroscopic characterizations and quantum chemical simulations. Next, in the context of materials synthesis, the (SiH₃)₃P compound was used to dope germanium for the first time by building a prototype p(++)Si(100)/i-Ge/n-Ge photodiode structure. The resultant n-type Ge layers contained active carrier concentrations of 3-4 × 10¹⁹ atoms cm⁻³ as determined by spectroscopic ellipsometry and confirmed by SIMS. Strain analysis using high resolution XRD yielded a Si content of 4 × 10²⁰ atoms cm⁻³ in agreement with SIMS and within the range expected for incorporating Si₃P type units into the diamond cubic Ge matrix. Extensive characterizations for structure, morphology and crystallinity indicate that the Si co-dopant plays essentially a passive role and does not compromise the device quality of the host material nor does it fundamentally alter its optical properties.
Semiconductor wire array structures, and solar cells and photodetectors based on such structures
Kelzenberg, Michael D.; Atwater, Harry A.; Briggs, Ryan M.; Boettcher, Shannon W.; Lewis, Nathan S.; Petykiewicz, Jan A.
2014-08-19
A structure comprising an array of semiconductor structures, an infill material between the semiconductor materials, and one or more light-trapping elements is described. Photoconverters and photoelectrochemical devices based on such structure also described.
Hybridization gap in the semiconducting compound SrIr 4In 2Ge 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calta, Nicholas P.; Im, Jino; Fang, Lei
Here, large single crystals of SrIr 4In 2Ge 4 were synthesized using the In flux method. This compound is a hybridization gap semiconductor with an experimental optical band gap of E g = 0.25(3) eV. It crystallizes in the tetragonal EuIr 4In 2Ge 4 structure type with space group 1more » $$\\overline{4}$$2m and unit cell parameters a = 6.9004(5) Å and c = 8.7120(9) Å. The electronic structure is very similar to both EuIr 4In 2Ge 4 and the parent structure Ca 3Ir 4Ge 4, suggesting that these compounds comprise a new family of hybridization gap materials that exhibit indirect gap, semiconducting behavior at a valence electron count of 60 per formula unit, similar to the Heusler alloys.« less
Hybridization gap in the semiconducting compound SrIr 4In 2Ge 4
Calta, Nicholas P.; Im, Jino; Fang, Lei; ...
2016-11-18
Here, large single crystals of SrIr 4In 2Ge 4 were synthesized using the In flux method. This compound is a hybridization gap semiconductor with an experimental optical band gap of E g = 0.25(3) eV. It crystallizes in the tetragonal EuIr 4In 2Ge 4 structure type with space group 1more » $$\\overline{4}$$2m and unit cell parameters a = 6.9004(5) Å and c = 8.7120(9) Å. The electronic structure is very similar to both EuIr 4In 2Ge 4 and the parent structure Ca 3Ir 4Ge 4, suggesting that these compounds comprise a new family of hybridization gap materials that exhibit indirect gap, semiconducting behavior at a valence electron count of 60 per formula unit, similar to the Heusler alloys.« less
NASA Astrophysics Data System (ADS)
Zhang, Y. J.; Liu, Z. H.; Liu, G. D.; Ma, X. Q.; Cheng, Z. X.
2018-03-01
Compensated ferrimagnets, due to their zero net magnetization and potential for large spin-polarization, have been attracting more and more attention in the field of spintronics. We demonstrate potential candidate materials among the inverse Heusler compounds Ti2VZ (Z = P, As, Sb, Bi) by first principles calculations. It is found that these compounds with 18 valence electrons per unit cell have zero net magnetic moment with compensated sublattice magnetization, as anticipated by a variant of Slater-Pauling rule of Mt = NV - 18, where Mt is the total spin magnetic moment per formula unit and NV is the number of valence electrons per formula unit, and show semiconducting behavior in both spin channels with a moderate exchange splitting, as with ordinary ferromagnetic semiconductors. Furthermore, the fully compensated ferrimagnetism and semiconductivity are rather robust over a wide range of lattice contraction and expansion. Due to the above distinct advantages, these compounds will be promising candidates for spintronic applications.
Learning physical descriptors for materials science by compressed sensing
NASA Astrophysics Data System (ADS)
Ghiringhelli, Luca M.; Vybiral, Jan; Ahmetcik, Emre; Ouyang, Runhai; Levchenko, Sergey V.; Draxl, Claudia; Scheffler, Matthias
2017-02-01
The availability of big data in materials science offers new routes for analyzing materials properties and functions and achieving scientific understanding. Finding structure in these data that is not directly visible by standard tools and exploitation of the scientific information requires new and dedicated methodology based on approaches from statistical learning, compressed sensing, and other recent methods from applied mathematics, computer science, statistics, signal processing, and information science. In this paper, we explain and demonstrate a compressed-sensing based methodology for feature selection, specifically for discovering physical descriptors, i.e., physical parameters that describe the material and its properties of interest, and associated equations that explicitly and quantitatively describe those relevant properties. As showcase application and proof of concept, we describe how to build a physical model for the quantitative prediction of the crystal structure of binary compound semiconductors.
NASA Astrophysics Data System (ADS)
Williams, Jared Brett
Society has become increasingly more aware of the negative impacts which nonrenewable energy sources have on the environment, and therefore the search for new and more efficient means of energy production has become an important research endeavor. Thermoelectric modules possess the unique ability to convert wasted heat into useful electrical energy via solid state processes, which could vastly improve the efficiency of a number of applications. The materials which accomplish this are typically comprised of semiconductors which exhibit high electrical conductivity, Seebeck coefficient, and thermal resistivity. Together these properties give us a gauge for the overall efficiency of the thermal to electrical energy conversion. Phase change materials are a class of materials primarily used for optical data storage in CDs, DVDs, and Blu-Ray discs. Today's state of the art phase change materials are based on alloys of GeTe and Sb2Te3. These materials have also been found to exhibit high thermoelectric efficiencies. These high efficiencies stem from their complex crystal structure and degenerate semiconducting nature. The purpose of this work was to study and engineer the thermoelectric properties of various alloys and compounds which belong to this family of materials. Specifically studied were the compounds Ge4SbTe5 and Ge17Sb2Te20. In each case various synthesis and processing strategies were implemented to increase the thermoelectric performance and better understand the fundamental electrical and thermal properties. Finally various proposals for future work on these materials are presented, all of which are based on the findings described herein.
Photovoltaic healing of non-uniformities in semiconductor devices
Karpov, Victor G.; Roussillon, Yann; Shvydka, Diana; Compaan, Alvin D.; Giolando, Dean M.
2006-08-29
A method of making a photovoltaic device using light energy and a solution to normalize electric potential variations in the device. A semiconductor layer having nonuniformities comprising areas of aberrant electric potential deviating from the electric potential of the top surface of the semiconductor is deposited onto a substrate layer. A solution containing an electrolyte, at least one bonding material, and positive and negative ions is applied over the top surface of the semiconductor. Light energy is applied to generate photovoltage in the semiconductor, causing a redistribution of the ions and the bonding material to the areas of aberrant electric potential. The bonding material selectively bonds to the nonuniformities in a manner such that the electric potential of the nonuniformities is normalized relative to the electric potential of the top surface of the semiconductor layer. A conductive electrode layer is then deposited over the top surface of the semiconductor layer.
Electronic Properties, Screening, and Efficient Carrier Transport in NaSbS 2
Sun, Jifeng; Singh, David J.
2017-02-13
NaSbS 2 is a semiconductor that was recently shown to have remarkable efficacy as a solar absorber indicating efficient charge collection even in material containing defects. We report first-principles calculations of properties that show (1) an indirect gap only slightly smaller than the direct gap, which may impede the recombination of photoexcited carriers, (2) highly anisotropic electronic and optical properties reflecting a layered crystal structure, (3) a pushed-up valence-band maximum due to repulsion from the Sb 5s states, and (4) cross-gap hybridization between the S p—derived valence bands and the Sb 5p states. This latter feature leads to enhanced Bornmore » effective charges that can provide local screening and, therefore, defect tolerance. Finally, these features are discussed in relation to the performance of the compound as a semiconductor with efficient charge collection.« less
The Role of Metal Halide Perovskites in Next-Generation Lighting Devices.
Lozano, Gabriel
2018-06-28
The development of smart illumination sources represents a central challenge of the current technology. In this context, the quest for novel materials that enable efficient light generation is essential. Metal halide compounds with perovskite crystalline structure (ABX3) have gained tremendous interest in the last five years since they come as easy-to-prepare high performance semiconductors. Perovskite absorbers are driving the power-conversion-efficiencies of thin film photovoltaics to unprecedented values. Nowadays, mixed-cation mixed-halide lead perovskite solar cells reach efficiencies consistently over 20% and promise to get close to 30% in multi-junction devices when combined with silicon cells at no surcharge. Nonetheless, perovskites' fame extends further since extensive research on these novel semiconductors has also revealed their brightest side. Soon after their irruption in the photovoltaic scenario, demonstration of efficient color tunable -with high color purity- perovskite emitters has opened new avenues for light generation applications that are timely to discuss herein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Araujo, Rafael B., E-mail: rafaelbna@gmail.com; Almeida, J. S. de, E-mail: jailton-almeida@hotmail.com; Ferreira da Silva, A.
In this work, we use density functional theory to investigate the influence of semilocal exchange and correlation effects on the electronic properties of III-nitride semiconductors considering zinc-blende and wurtzite crystal structures. We find that the inclusion of such effects through the use of the Tran-Blaha modified Becke-Johnson potential yields an excellent description of the electronic structures of these materials giving energy band gaps which are systematically larger than the ones obtained with standard functionals such as the generalized gradient approximation. The discrepancy between the experimental and theoretical band gaps is then significantly reduced with semilocal exchange and correlation effects. However,more » the effective masses are overestimated in the zinc-blende nitrides, but no systematic trend is found in the wurtzite compounds. New results for energy band gaps and effective masses of zinc-blende and wurtzite indium nitrides are presented.« less
Material growth and characterization for solid state devices
NASA Technical Reports Server (NTRS)
Collis, Ward J.; Abul-Fadl, Ali; Iyer, Shanthi
1988-01-01
During the period of this research grant, the process of liquid phase electroepitaxy (LPEE) was used to grow ternary and quaternary alloy III-V semiconductor thin films. Selective area growth of InGaAs was performed on InP substrates using a patterned sputtered quartz or spin-on glass layer. The etch back and growth characteristics with respect to substrate orientation were investigated. The etch back behavior is somewhat different from wet chemical etching with respect to the sidewall profiles which are observed. LPEE was also employed to grow epitaxial layers of InGaAsP alloys on InP substrates. The behavior of Mn as an acceptor dopant was investigated with low temperature Hall coefficient and photoluminescence measurements. A metal-organic vapor phase epitaxy system was partially complete within the grant period. This atmospheric pressure system will be used to deposit III-V compound and alloy semiconductor layers in future research efforts.
NASA Astrophysics Data System (ADS)
Park, Younbong
In last two decades great efforts have been exerted to find new materials with interesting optical, electrical, and catalytic properties. Metal chalcogenides have been studied extensively because of their interesting physical properties and rich structural chemistry, among the potential materials. Prior to this work, most known metal chalcogenides had been synthesized at high temperature (T > 500^circC). Intermediate temperature synthesis in solid state chemistry was seldom pursued because of the extremely slow diffusion rates between reactants. This intermediate temperature regime could be a new synthesis condition if one looks for new materials with unusual structural features and properties. Metastable or kinetically stable compounds can be stabilized in this intermediate temperature regime, in contrast to the thermodynamically stable high temperature compounds. Molten salts, especially alkali metal polychalcogenide fluxes, can provide a route for exploring new chalcogenide materials at intermediate temperatures. These fluxes are very reactive and melt as low as 145^circC (mp of K_2S_4). Using these fluxes as reaction media, we have encountered many novel chalcogenide compounds with unusual structures and interesting electrical properties (semiconductors to metallic conductors). Low-dimensional polychalcogenide compounds of alpha-ACuQ_4 (A = K, Cs; Q = S, Se), beta -KCuS_4, KAuQ_5 (Q = S, Se), K_3AuSe_ {13}, Na_3AuSe _8, and CsAuSe_3 exhibit the beautiful structural diversity and bonding flexibility of the polychalcogenide ligands. In addition, many novel chalcogenide compounds of Cu, Hg, and Au with low-dimensional structures. The preparation of novel mixed -valence Cu compounds, K_2Cu _5Te_5, Cs _3Cu_8Te_ {10}, Na_3Cu _4Se_4, K _3Cu_8S_4 Te_2, and KCu_4 S_2Te, which show interesting metallic properties, especially underscores the enormous potential of the molten salt method for the synthesis of new chalcogenide materials with interesting physical properties. The materials prepared in this study can be classified as a new class of chalcogenide compounds due to their unique structures. In this dissertation the synthesis, characterization with emphasis on structures, charge transport properties, and magnetic susceptibilities of the materials will be illustrated.
Welch, James D.
2000-01-01
Disclosed are semiconductor systems, such as integrated circuits utilizing Schotky barrier and/or diffused junction technology, which semiconductor systems incorporate material(s) that form rectifying junctions in both metallurgically and/or field induced N and P-type doping regions, and methods of their use. Disclosed are Schottky barrier based inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems and which can be operated as modulators, N and P-channel MOSFETS and CMOS formed therefrom, and (MOS) gate voltage controlled rectification direction and gate voltage controlled switching devices, and use of such material(s) to block parasitic current flow pathways. Simple demonstrative five mask fabrication procedures for inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.
Germanium Based Field-Effect Transistors: Challenges and Opportunities
Goley, Patrick S.; Hudait, Mantu K.
2014-01-01
The performance of strained silicon (Si) as the channel material for today’s metal-oxide-semiconductor field-effect transistors may be reaching a plateau. New channel materials with high carrier mobility are being investigated as alternatives and have the potential to unlock an era of ultra-low-power and high-speed microelectronic devices. Chief among these new materials is germanium (Ge). This work reviews the two major remaining challenges that Ge based devices must overcome if they are to replace Si as the channel material, namely, heterogeneous integration of Ge on Si substrates, and developing a suitable gate stack. Next, Ge is compared to compound III-V materials in terms of p-channel device performance to review how it became the first choice for PMOS devices. Different Ge device architectures, including surface channel and quantum well configurations, are reviewed. Finally, state-of-the-art Ge device results and future prospects are also discussed. PMID:28788569
Zhou, Xu; Li, Fei; Li, Xiaona; Li, Hua; Wang, Yong; Sun, Licheng
2015-01-14
Photocatalytic oxidation of organic compounds proceeded efficiently in a hybrid system with ruthenium aqua complexes as catalysts, BiVO4 as a light absorber, [Co(NH3)5Cl](2+) as a sacrificial electron acceptor and water as an oxygen source. The photogenerated holes in the semiconductor are used to oxidize molecular catalysts into the high-valent Ru(IV)=O intermediates for 2e(-) oxidation.
NASA Technical Reports Server (NTRS)
Collis, Ward J.; Abul-Fadl, Ali
1988-01-01
The purpose of this research is to design, install and operate a metal-organic chemical vapor deposition system which is to be used for the epitaxial growth of 3-5 semiconductor binary compounds, and ternary and quaternary alloys. The long-term goal is to utilize this vapor phase deposition in conjunction with existing current controlled liquid phase epitaxy facilities to perform hybrid growth sequences for fabricating integrated optoelectronic devices.
Metal organic chemical vapor deposition of 111-v compounds on silicon
Vernon, Stanley M.
1986-01-01
Expitaxial composite comprising thin films of a Group III-V compound semiconductor such as gallium arsenide (GaAs) or gallium aluminum arsenide (GaAlAs) on single crystal silicon substrates are disclosed. Also disclosed is a process for manufacturing, by chemical deposition from the vapor phase, epitaxial composites as above described, and to semiconductor devices based on such epitaxial composites. The composites have particular utility for use in making light sensitive solid state solar cells.
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor)
2011-01-01
Hetero-epitaxial semiconductor materials comprising cubic crystalline semiconductor alloys grown on the basal plane of trigonal and hexagonal substrates, in which misfit dislocations are reduced by approximate lattice matching of the cubic crystal structure to underlying trigonal or hexagonal substrate structure, enabling the development of alloyed semiconductor layers of greater thickness, resulting in a new class of semiconductor materials and corresponding devices, including improved hetero-bipolar and high-electron mobility transistors, and high-mobility thermoelectric devices.
Emission characteristics of volatile organic compounds from semiconductor manufacturing.
Chein, HungMin; Chen, Tzu Ming
2003-08-01
A huge amount of volatile organic compounds (VOCs) is produced and emitted with waste gases from semiconductor manufacturing processes, such as cleaning, etching, and developing. VOC emissions from semiconductor factories located at Science-Based Industrial Park, Hsin-chu, Taiwan, were measured and characterized in this study. A total of nine typical semiconductor fabricators (fabs) were monitored over a 12-month period (October 2000-September 2001). A flame ionization analyzer was employed to measure the VOC emission rate continuously in a real-time fashion. The amount of chemical use was adopted from the data that were reported to the Environmental Protection Bureau in Hsin-chu County as per the regulation of the Taiwan Environmental Protection Administration. The VOC emission factor, defined as the emission rate (kg/month) divided by the amount of chemical use (L/month), was determined to be 0.038 +/- 0.016 kg/L. A linear regression equation is proposed to fit the data with the correlation coefficient (R2)=0.863. The emission profiles of VOCs, which were drawn using the gas chromatograph/mass spectrometer analysis method, show that isopropyl alcohol is the dominant compound in most of the fabs.
Methods of forming semiconductor devices and devices formed using such methods
Fox, Robert V; Rodriguez, Rene G; Pak, Joshua
2013-05-21
Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.
NASA Astrophysics Data System (ADS)
Haider, F. A.; Chee, F. P.; Abu Hassan, H.; Saafie, S.
2017-01-01
Radiation effects on Gallium Arsenide (GaAs) have been tested by exposing samples to Cesium-137 (137Cs) gamma rays. Gallium Arsenide is a basic photonic material for most of the space technology communication, and, therefore, lends itself for applications where this is of concern. Monte Carlo simulations of interaction between direct ionizing radiation and GaAs structure have been performed in TRIM software, being part of SRIM 2011 programming package. An adverse results shows that energy dose does not govern the displacement of atoms and is dependent on the changes of incident angles and thickness of the GaAs target element. At certain thickness of GaAs and incident angle of 137Cs ion, the displacement damage is at its highest value. From the simulation result, it is found that if the thickness of the GaAs semiconductor material is small compared to the projected range at that particular incident energy, the energy loss in the target GaAs will be small. Hence, when the depth of semiconductor material is reduced, the range of damage in the target also decreased. However, the other factors such as quantum size effect, the energy gap between the conduction and valence band must also be taken into consideration when the dimension of the device is diminished.
NASA Astrophysics Data System (ADS)
The state-of-the-art in amorphous solar cells is reviewed in terms of polycrystalline silicon solar cells, single crystal silicon solar cells, and methods of characterizing solar cells, including dielectric liquid immersion to increase cell efficiency. Compound semiconductor solar cells are explored, and new structures and advanced solar cell materials are discussed. Film deposition techniques for fabricating amorphous solar cells are presented, and the characterization, in addition to the physics and the performance, of amorphous solar cells are examined.
Sb-Based n- and p-Channel Heterostructure FETs for High-Speed, Low-Power Applications
2008-07-01
Laboratory are presented. 2. InAlSb/InAs HEMTs The HEMT material was grown by solid-source molecu- lar beam epitaxy (MBE) on a semi-insulating (100) GaAs...and S.Y. Lin, “Strained quantum well modulation-doped InGaSb/AlGaSb struc- tures grown by molecular beam epitaxy ,” J. Electron. Mater., vol.22, no.3...where he majored in solid state physics and researched growth by molecular - beam epitaxy (MBE) of certain compound semiconductor ma- terials. Since
Rare earth-doped materials with enhanced thermoelectric figure of merit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkatasubramanian, Rama; Cook, Bruce Allen; Levin, Evgenii M.
A thermoelectric material and a thermoelectric converter using this material. The thermoelectric material has a first component including a semiconductor material and a second component including a rare earth material included in the first component to thereby increase a figure of merit of a composite of the semiconductor material and the rare earth material relative to a figure of merit of the semiconductor material. The thermoelectric converter has a p-type thermoelectric material and a n-type thermoelectric material. At least one of the p-type thermoelectric material and the n-type thermoelectric material includes a rare earth material in at least one ofmore » the p-type thermoelectric material or the n-type thermoelectric material.« less
Comprehensive mass spectrometric analysis of novel organic semiconductor molecules
NASA Astrophysics Data System (ADS)
Prada, Svitlana
This work presents a comprehensive mass spectrometry (MS) study of novel organic semiconductor molecules including ion mobility/reactivity measurements and trace elemental analysis. The organic molecules investigated here are important semiconductor materials for molecular electronic devices such as Organic Field-Effect Transistors (OFETs) and Light Emitted Diodes (LED). A high-performance orthogonal time-of flight mass spectrometer (TOF-MS) in combination with a matrix assisted laser desorption/ionization (MALDI) source operating at elevated pressure was used to perform MALDI/TOF analyses of pentacene and some of its derivatives with and without an added matrix. The observation of ion-molecule reactions between "cold" analyte ions and neutral analyte molecules in the gas phase has provided some insight into the mechanism of pentacene cluster formation and its functionalized derivatives. Furthermore, some of the matrices employed to assist the desorption/ionization process of these compounds were observed to influence the outcome via ion-molecule reactions of analyte ions and matrix molecules in the gas phase. The stability and reactivity of the compounds and their clusters in the MALDI plume during gas-phase expansion were evaluated; possible structures of the resulting clusters are discussed. The MALDI/TOF technique was also helpful in distinguishing between two isomeric forms of bis-[(triisopropylsilyl)-ethynyl]-pentacene. Furthermore, we reported ion mobility measurements of functionalized pentacene ions with a modified triple quadrupole mass spectrometer fitted with an ion molecule reactor (IMR). The IMR is equipped with a variable axial electrostatic drift field (ADF) and is able to trap ions for a prolong period of time. These capabilities were successfully employed in the measurement of ion mobilities in different modes of the IMR operation. Theoretical modeling of the drift dynamics and the special localization of the large ion packet was successfully implemented. The contribution of the quadrupole RF field to the drift dynamics also was taken into consideration. The IMR was successfully employed in the ion-molecule reactions study of four functionalized pentacene derivatives such as TIPS, o-TIPS, 6,13-bis-[(triisopropylsilyl)-ethynyl]-pentacene-2,3-dicarbonitrile (TIPS(CN)2), and 6,13-bis-[(triisopropylsilyl)-ethynyl]-pentacene-2,3,9,10-tetracarbonitrile (TIPS(CN)4). Details of the IMR operation in this mode are extensively discussed. The purity of the starting material is one of the most important parameters for the fabrication of a molecular electronic device. We report the method of determination of trace elemental impurities (Li, Na, Al, Mg, Be, Pb, Mn, Co, Ti, Sn, Cu, Cr, V, Zn, Fe, Ca, K and Ni) in organic semiconductor materials, such as Tetracene, Anthracene, Pentacene, TIPS and Rubrene, using an inductively coupled plasma quadrupole mass spectrometer (ICP-MS) fitted with a dynamic reaction cell (DRC). The determination of Fe, Ca, K and Ni in the organic semiconductor materials was carried out using NH3 as a reaction gas in the DRC mode to obviate the effect of polyatomic isobaric interferences. The other trace elements such as Li, Na, Al, Mg, Be, Pb, Mn, Co, Ti, Sn, Cu, Cr, V and Zn have been determined under standard operating conditions.
NASA Astrophysics Data System (ADS)
Wang, Xiaotian; Cheng, Zhenxiang; Khenata, Rabah; Wu, Yang; Wang, Liying; Liu, Guodong
2017-12-01
The spin-gapless semiconductors with parabolic energy dispersions [1-3] have been recently proposed as a new class of materials for potential applications in spintronic devices. In this work, according to the Slater-Pauling rule, we report the fully-compensated ferrimagnetic (FCF) behavior and spin-gapless semiconducting (SGS) properties for a new inverse Heusler compound Zr2MnGa by means of the plane-wave pseudo-potential method based on density functional theory. With the help of GGA-PBE, the electronic structures and the magnetism of Zr2MnGa compound at its equilibrium and strained lattice constants are systematically studied. The calculated results show that the Zr2MnGa is a new SGS at its equilibrium lattice constant: there is an energy gap between the conduction and valence bands for both the majority and minority electrons, while there is no gap between the majority electrons in the valence band and the minority electrons in the conduction band. Remarkably, not only a diverse physical nature transition, but also different types of spin-gapless features can be observed with the change of the lattice constants. Our calculated results of Zr2MnGa compound indicate that this material has great application potential in spintronic devices.
A new quaternary semiconductor compound (Ba2Sb4GeS10): Ab initio study
NASA Astrophysics Data System (ADS)
Ozisik, Havva Bogaz; Ozisik, Haci; Deligoz, Engin
2017-03-01
The newly synthesised Ba2Sb4GeS10 compound is notable because of the interesting features of the quaternary Sb-containing materials. The first principle method has been used to determine the physical properties of this compound. In particular, the electronic structure has been analysed using both conventional GGA-PBE and HSE06 functional. The values of the band gap for PBE and HSE06 calculations were 1.324 and 1.84 eV, respectively. The calculated elastic constants were used to predict polycrystalline mechanical properties. The estimated Vickers hardness (2.7 GPa) values show that Ba2Sb4GeS10 is soft matter. Moreover, the vibrational properties of the compound have been studied. The calculation of the elastic constants and phonon dispersion curves indicates that the Ba2Sb4GeS10 compound is stable both mechanically and dynamically. Furthermore, the minimum thermal conductivity and optical properties, such as dielectric functions and energy loss function, have also been discussed in detail in this paper.
Tunable surface plasmon devices
Shaner, Eric A [Rio Rancho, NM; Wasserman, Daniel [Lowell, MA
2011-08-30
A tunable extraordinary optical transmission (EOT) device wherein the tunability derives from controlled variation of the dielectric constant of a semiconducting material (semiconductor) in evanescent-field contact with a metallic array of sub-wavelength apertures. The surface plasmon resonance wavelength can be changed by changing the dielectric constant of the dielectric material. In embodiments of this invention, the dielectric material is a semiconducting material. The dielectric constant of the semiconducting material in the metal/semiconductor interfacial region is controllably adjusted by adjusting one or more of the semiconductor plasma frequency, the concentration and effective mass of free carriers, and the background high-frequency dielectric constant in the interfacial region. Thermal heating and/or voltage-gated carrier-concentration changes may be used to variably adjust the value of the semiconductor dielectric constant.
Conduit for high temperature transfer of molten semiconductor crystalline material
NASA Technical Reports Server (NTRS)
Fiegl, George (Inventor); Torbet, Walter (Inventor)
1983-01-01
A conduit for high temperature transfer of molten semiconductor crystalline material consists of a composite structure incorporating a quartz transfer tube as the innermost member, with an outer thermally insulating layer designed to serve the dual purposes of minimizing heat losses from the quartz tube and maintaining mechanical strength and rigidity of the conduit at the elevated temperatures encountered. The composite structure ensures that the molten semiconductor material only comes in contact with a material (quartz) with which it is compatible, while the outer layer structure reinforces the quartz tube, which becomes somewhat soft at molten semiconductor temperatures. To further aid in preventing cooling of the molten semiconductor, a distributed, electric resistance heater is in contact with the surface of the quartz tube over most of its length. The quartz tube has short end portions which extend through the surface of the semiconductor melt and which are lef bare of the thermal insulation. The heater is designed to provide an increased heat input per unit area in the region adjacent these end portions.
The Research Laboratory of Electronics Progress Report Number 133, January 1-December 1990
1990-12-31
4 6 Chapter 7 High-Frequency InAlAs/InGaAs Metal -Insulator-Doped Semiconductor...Epitaxy of Compound Semiconductors Chapter 7 High-Frequency InAlAs/InGaAs Metal -Insulator- Doped Semiconductor Field-Effect Transistors (MIDFETs) for...aligned silicided NMOS posed of refractory metals to allow a subsequentdevice fabrication. We have used cobalt deposi- high temperature anneal. This
NASA Astrophysics Data System (ADS)
Dillert, Ralf; Taffa, Dereje H.; Wark, Michael; Bredow, Thomas; Bahnemann, Detlef W.
2015-10-01
The utilization of solar light for the photoelectrochemical and photocatalytic production of molecular hydrogen from water is a scientific and technical challenge. Semiconductors with suitable properties to promote solar-driven water splitting are a desideratum. A hitherto rarely investigated group of semiconductors are ferrites with the empirical formula MFe2O4 and related compounds. This contribution summarizes the published results of the experimental investigations on the photoelectrochemical and photocatalytic properties of these compounds. It will be shown that the potential of this group of compounds in regard to the production of solar hydrogen has not been fully explored yet.
NASA Astrophysics Data System (ADS)
Waldrop, Spencer Laine
The study of thermoelectrics is nearly two centuries old. In that time a large number of applications have been discovered for these materials which are capable of transforming thermal energy into electricity or using electrical work to create a thermal gradient. Current use of thermoelectric materials is in very niche applications with contemporary focus being upon their capability to recover waste heat. A relatively undeveloped region for thermoelectric application is focused upon Peltier cooling at low temperatures. Materials based on bismuth telluride semiconductors have been the gold standard for close to room temperature applications for over sixty years. For applications below room temperature, semiconductors based on bismuth antimony reign supreme with few other possible materials. The cause of this diculty in developing new, higher performing materials is due to the interplay of the thermoelectric properties of these materials. The Seebeck coecient, which characterizes the phenomenon of the conversion of heat to electricity, the electrical conductivity, and the thermal conductivity are all interconnected properties of a material which must be optimized to generate a high performance thermoelectric material. While for above room temperature applications many advancements have been made in the creation of highly ecient thermoelectric materials, the below room temperature regime has been stymied by ill-suited properties, low operating temperatures, and a lack of research. The focus of this work has been to investigate and optimize the thermoelectric properties of platinum diantimonide, PtSb2, a nearly zero gap semiconductor. The electronic properties of PtSb2 are very favorable for cryogenic Peltier applications, as it exhibits good conductivity and large Seebeck coecient below 200 K. It is shown that both n- and p-type doping may be applied to this compound to further improve its electronic properties. Through both solid solution formation and processing techniques, the thermal conductivity may be reduced in order to increase the thermoelectric gure of merit. Further reduction in thermal conductivity using other novel approaches is identied as an area of promising future research. Continued development of this material has the potential to generate a suitable replacement for some low temperature applications, but will certainly further scientic knowledge and understanding of the optimization of thermoelectric materials in this temperature regime.
High performance thermoelectric materials and methods of preparation
NASA Technical Reports Server (NTRS)
Fleurial, Jean-Pierre (Inventor); Caillat, Thierry F. (Inventor); Borshchevsky, Alexander (Inventor)
1997-01-01
Transition metals (T) of Group VIII (Co, Rh and Ir) have been prepared as semiconductor alloys with Sb having the general formula TSb.sub.3. The skutterudite-type crystal lattice structure of these semiconductor alloys and their enhanced thermoelectric properties results in semiconductor materials which may be used in the fabrication of thermoelectric elements to substantially improve the efficiency of the resulting thermoelectric device. Semiconductor alloys having the desired skutterudite-type crystal lattice structure may be prepared in accordance with the present invention by using vertical gradient freeze techniques, liquid-solid phase sintering techniques, low temperature powder sintering and/or hot-pressing. Measurements of electrical and thermal transport properties of selected semiconductor materials prepared in accordance with the present invention, demonstrated high Hall mobilities (up to 8000 cm.sup.2.V.sup.-1.s.sup.-1), good Seebeck coefficients (up to 400 .mu.VK.sup.-1 between 300.degree. C. and 700.degree. C.), and low thermal conductivities (as low as 15 mW/cmK). Optimizing the transport properties of semiconductor materials prepared from elemental mixtures Co, Rh, Ir and Sb resulted in a two fold increase in the thermoelectric figure of merit (ZT) at temperatures as high as 400.degree. C. for thermoelectric elements fabricated from such semiconductor materials.
Rocksalt nitride metal/semiconductor superlattices: A new class of artificially structured materials
NASA Astrophysics Data System (ADS)
Saha, Bivas; Shakouri, Ali; Sands, Timothy D.
2018-06-01
Artificially structured materials in the form of superlattice heterostructures enable the search for exotic new physics and novel device functionalities, and serve as tools to push the fundamentals of scientific and engineering knowledge. Semiconductor heterostructures are the most celebrated and widely studied artificially structured materials, having led to the development of quantum well lasers, quantum cascade lasers, measurements of the fractional quantum Hall effect, and numerous other scientific concepts and practical device technologies. However, combining metals with semiconductors at the atomic scale to develop metal/semiconductor superlattices and heterostructures has remained a profoundly difficult scientific and engineering challenge. Though the potential applications of metal/semiconductor heterostructures could range from energy conversion to photonic computing to high-temperature electronics, materials challenges primarily had severely limited progress in this pursuit until very recently. In this article, we detail the progress that has taken place over the last decade to overcome the materials engineering challenges to grow high quality epitaxial, nominally single crystalline metal/semiconductor superlattices based on transition metal nitrides (TMN). The epitaxial rocksalt TiN/(Al,Sc)N metamaterials are the first pseudomorphic metal/semiconductor superlattices to the best of our knowledge, and their physical properties promise a new era in superlattice physics and device engineering.
Visible light photoreduction of CO.sub.2 using heterostructured catalysts
Matranga, Christopher; Thompson, Robert L; Wang, Congjun
2015-03-24
The method provides for use of sensitized photocatalyst for the photocatalytic reduction of CO.sub.2 under visible light illumination. The photosensitized catalyst is comprised of a wide band gap semiconductor material, a transition metal co-catalyst, and a semiconductor sensitizer. The semiconductor sensitizer is photoexcited by visible light and forms a Type II band alignment with the wide band gap semiconductor material. The wide band gap semiconductor material and the semiconductor sensitizer may be a plurality of particles, and the particle diameters may be selected to accomplish desired band widths and optimize charge injection under visible light illumination by utilizing quantum size effects. In a particular embodiment, CO.sub.2 is reduced under visible light illumination using a CdSe/Pt/TiO2 sensitized photocatalyst with H.sub.2O as a hydrogen source.
Compositions of doped, co-doped and tri-doped semiconductor materials
Lynn, Kelvin [Pullman, WA; Jones, Kelly [Colfax, WA; Ciampi, Guido [Watertown, MA
2011-12-06
Semiconductor materials suitable for being used in radiation detectors are disclosed. A particular example of the semiconductor materials includes tellurium, cadmium, and zinc. Tellurium is in molar excess of cadmium and zinc. The example also includes aluminum having a concentration of about 10 to about 20,000 atomic parts per billion and erbium having a concentration of at least 10,000 atomic parts per billion.
The electrochemical reduction processes of solid compounds in high temperature molten salts.
Xiao, Wei; Wang, Dihua
2014-05-21
Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.
Recovery of hazardous semiconductor-industry sludge as a useful resource.
Lee, Tzen-Chin; Liu, Feng-Jiin
2009-06-15
Sludge, a solid waste recovered from wastewater of semiconductor-industries composes of agglomerates of nano-particles like SiO(2) and CaF(2). This sludge deflocculates in acidic and alkaline aqueous solutions into nano-particles smaller than 100 nm. Thus, this sludge is potentially hazardous to water resources when improperly dumped. It can cause considerable air-pollution when fed into rotary-kilns as a raw material for cement production. In this study, dried and pulverized sludge was used to replace 5-20 wt.% Portland cement in cement mortar. The compressive strength of the modified mortar was higher than that of plain cement mortar after curing for 3 days and more. In particular, the strength of mortar with 10 wt.% substitution improved by 25-35% after curing for 7-90 days. TCLP studies reveal no detectable release of heavy metals. Preliminary studies showed that nano-particles deflocculated from the sludge, when cured for up to 3 days retain in the modified mortar their nano-size, which become large-sized hydration compounds that contribute to the final mortar strength. Semiconductor sludge can thus be utilized as a useful resource to replace portion of cement in cement mortar, thereby avoiding their potential hazard on the environment.
NASA Astrophysics Data System (ADS)
Zunger, Alex; Zhang, Xiuwen; Abdalla, Leonardo; Liu, Qihang
Currently known topological insulators (TIs) are limited to narrow gap compounds incorporating heavy elements, thus severely limiting the material pool available for such applications. We show how a heterovalent superlattice made of common semiconductor building blocks can transform its non-TI components into a topological heterostructure. The heterovalent nature of such interfaces sets up, in the absence of interfacial atomic exchange, a natural internal electric field that along with the quantum confinement leads to band inversion, transforming these semiconductors into a topological phase while also forming a giant Rashba spin splitting. We demonstrate this paradigm of designing TIs from ordinary semiconductors via first-principle calculations on III-V/II-VI superlattice InSb/CdTe. We illustrate the relationship between the interfacial stability and the topological transition, finding a ``window of opportunity'' where both conditions can be optimized. This work illustrates the general principles of co-evaluation of TI functionality with thermodynamic stability as a route of identifying realistic combination of common insulators that could produce topological heterostructures. This work was supported by Basic Energy Science, MSE division (Grant DE-FG02-13ER46959).
Quantum cascade lasers (QCL) for active hyperspectral imaging
NASA Astrophysics Data System (ADS)
Yang, Quankui; Fuchs, Frank; Wagner, Joachim
2014-04-01
There is an increasing demand for wavelength agile laser sources covering the mid-infrared (MIR, 3.5-12 µm) wavelength range, among others in active imaging. The MIR range comprises a particularly interesting part of the electromagnetic spectrum for active hyperspectral imaging applications, due to the fact that the characteristic `fingerprint' absorption spectra of many chemical compounds lie in that range. Conventional semiconductor diode laser technology runs out of steam at such long wavelengths. For many applications, MIR coherent light sources based on solid state lasers in combination with optical parametric oscillators are too complex and thus bulky and expensive. In contrast, quantum cascade lasers (QCLs) constitute a class of very compact and robust semiconductor-based lasers, which are able to cover the mentioned wavelength range using the same semiconductor material system. In this tutorial, a brief review will be given on the state-of-the-art of QCL technology. Special emphasis will be addressed on QCL variants with well-defined spectral properties and spectral tunability. As an example for the use of wavelength agile QCL for active hyperspectral imaging, stand-off detection of explosives based on imaging backscattering laser spectroscopy will be discussed.
2012-01-01
Colloidal III-V semiconductor nanocrystal quantum dots [NQDs] have attracted interest because they have reduced toxicity compared with II-VI compounds. However, the study and application of III-V semiconductor nanocrystals are limited by difficulties in their synthesis. In particular, it is difficult to control nucleation because the molecular bonds in III-V semiconductors are highly covalent. A synthetic approach of InP NQDs was presented using newly synthesized organometallic phosphorus [P] precursors with different functional moieties while preserving the P-Si bond. Introducing bulky side chains in our study improved the stability while facilitating InP formation with strong confinement at a readily low temperature regime (210°C to 300°C). Further shell coating with ZnS resulted in highly luminescent core-shell materials. The design and synthesis of P precursors for high-quality InP NQDs were conducted for the first time, and we were able to control the nucleation by varying the reactivity of P precursors, therefore achieving uniform large-sized InP NQDs. This opens the way for the large-scale production of high-quality Cd-free nanocrystal quantum dots. PMID:22289352
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colon, Albert; Stan, Liliana; Divan, Ralu
Gate insulation/surface passivation in AlGaN/GaN and InAlN/GaN heterojunction field-effect transistors is a major concern for passivation of surface traps and reduction of gate leakage current. However, finding the most appropriate gate dielectric materials is challenging and often involves a compromise of the required properties such as dielectric constant, conduction/valence band-offsets, or thermal stability. Creating a ternary compound such as Ti-Al-O and tailoring its composition may result in a reasonably good gate material in terms of the said properties. To date, there is limited knowledge of the performance of ternary dielectric compounds on AlGaN/GaN and even less on InAlN/GaN. To approachmore » this problem, the authors fabricated metal-insulator-semiconductor heterojunction (MISH) capacitors with ternary dielectrics Ti-Al-O of various compositions, deposited by atomic layer deposition (ALD). The film deposition was achieved by alternating cycles of TiO2 and Al2O3 using different ratios of ALD cycles. TiO2 was also deposited as a reference sample. The electrical characterization of the MISH capacitors shows an overall better performance of ternary compounds compared to the pure TiO2. The gate leakage current density decreases with increasing Al content, being similar to 2-3 orders of magnitude lower for a TiO2:Al2O3 cycle ratio of 2:1. Although the dielectric constant has the highest value of 79 for TiO2 and decreases with increasing the number of Al2O3 cycles, it is maintaining a relatively high value compared to an Al2O3 film. Capacitance voltage sweeps were also measured in order to characterize the interface trap density. A decreasing trend in the interface trap density was found while increasing Al content in the film. In conclusion, our study reveals that the desired high-kappa properties of TiO2 can be adequately maintained while improving other insulator performance factors. The ternary compounds may be an excellent choice as a gate material for both AlGaN/GaN and InAlN/GaN based devices.« less
Reliability Prediction Models for Discrete Semiconductor Devices
1988-07-01
influence failure rate were device construction, semiconductor material, junction temperature, electrical stress, circuit application., a plication...found to influence failure rate were device construction, semiconductor material, junction temperature, electrical stress, circuit application...MFA Airbreathlng 14issile, Flight MFF Missile, Free Flight ML Missile, Launch MMIC Monolithic Microwave Integrated Circuits MOS Metal-Oxide
BiI 3 Crystals for High Energy Resolution Gamma-Ray Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nino, Juan C.; Baciak, James; Johns, Paul
2017-04-12
BiI 3 had been investigated for its unique properties as a layered compound semiconductor for many decades. However, despite the exceptional atomic, physical, and electronic properties of this material, good resolution gamma ray spectra had never been reported for BiI 3. The shortcomings that previously prevented BiI 3 from reaching success as a gamma ray sensor were, through this project, identified and suppressed to unlock the performance of this promising compound. Included in this work were studies on a number of methods which have, for the first time, enabled BiI 3 to exhibit spectral performance rivaling many other candidate semiconductorsmore » for room temperature gamma ray sensors. New approaches to crystal growth were explored that allow BiI 3 spectrometers to be fabricated with up to 2.2% spectral resolution at 662 keV. Fundamental studies on trap states, dopant incorporation, and polarization were performed to enhance performance of this compound. Additionally, advanced detection techniques were applied to display the capabilities of high quality BiI 3 spectrometers. Overall, through this work, BiI 3 has been revealed as a potentially transformative material for nuclear security and radiation detection sciences.« less
Wafer-fused semiconductor radiation detector
Lee, Edwin Y.; James, Ralph B.
2002-01-01
Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts. The wafer-fused detector is basically formed, for example, by etching spaced grooves across one end of one of two pieces of semiconductor materials, partially filling the grooves with a selected electrical conductor which forms a grid electrode, and then fusing the grooved end of the one semiconductor piece to an end of the other semiconductor piece with a cathode and an anode being formed on opposite ends of the semiconductor pieces.
Semiconductor devices incorporating multilayer interference regions
Biefeld, Robert M.; Drummond, Timothy J.; Gourley, Paul L.; Zipperian, Thomas E.
1990-01-01
A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration.
Rethinking the theoretical description of photoluminescence in compound semiconductors
NASA Astrophysics Data System (ADS)
Valkovskii, V.; Jandieri, K.; Gebhard, F.; Baranovskii, S. D.
2018-02-01
Semiconductor compounds, such as Ga(NAsP)/GaP or GaAsBi/GaAs, are in the focus of intensive research due to their unique features for optoelectronic devices. The optical spectra of compound semiconductors are strongly influenced by the random scattering potentials caused by compositional and structural disorder. The disorder potential is responsible for the red-shift (Stokes shift) of the photoluminescence (PL) peak and for the inhomogeneous broadening of the PL spectra. So far, the anomalous broadening of the PL spectra in Ga(NAsP)/GaP has been explained assuming two coexisting length scales of disorder. However, this interpretation appears in contradiction to the recently observed dependence of the PL linewidth on the excitation intensity. We suggest an alternative approach that describes the PL characteristics in the framework of a model with a single length scale of disorder. The price is the assumption of two types of localized states with different, temperature-dependent non-radiative recombination rates.
Rational design of new materials for spintronics: Co2FeZ (Z=Al, Ga, Si, Ge)
Balke, Benjamin; Wurmehl, Sabine; Fecher, Gerhard H; Felser, Claudia; Kübler, Jürgen
2008-01-01
Spintronic is a multidisciplinary field and a new research area. New materials must be found for satisfying the different types of demands. The search for stable half-metallic ferromagnets and ferromagnetic semiconductors with Curie temperatures higher than room temperature is still a challenge for solid state scientists. A general understanding of how structures are related to properties is a necessary prerequisite for material design. Computational simulations are an important tool for a rational design of new materials. The new developments in this new field are reported from the point of view of material scientists. The development of magnetic Heusler compounds specifically designed as material for spintronic applications has made tremendous progress in the very recent past. Heusler compounds can be made as half-metals, showing a high spin polarization of the conduction electrons of up to 100% in magnetic tunnel junctions. High Curie temperatures were found in Co2-based Heusler compounds with values up to 1120 K in Co2FeSi. The latest results at the time of writing are a tunnelling magnet resistance (TMR) device made from the Co2FeAl0.5Si0.5 Heusler compound and working at room temperature with a (TMR) effect higher than 200%. Good interfaces and a well-ordered compound are the precondition to realize the predicted half-metallic properties. The series Co2FeAl1- xSix is found to exhibit half-metallic ferromagnetism over a broad range, and it is shown that electron doping stabilizes the gap in the minority states for x=0.5. This might be a reason for the exceptional temperature behaviour of Co2FeAl0.5Si0.5 TMR devices. Using x-ray diffraction (XRD), it was shown conclusively that Co2FeAl crystallizes in the B2 structure whereas Co2FeSi crystallizes in the L21 structure. For the compounds Co2FeGa or Co2FeGe, with Curie temperatures expected higher than 1000 K, the standard XRD technique using laboratory sources cannot be used to easily distinguish between the two structures. For this reason, the EXAFS technique was used to elucidate the structure of these two compounds. Analysis of the data indicated that both compounds crystallize in the L21 structure which makes these two compounds suitable new candidates as materials in magnetic tunnel junctions. PMID:27877928
NASA Technical Reports Server (NTRS)
Brandhorst, H. W., Jr. (Inventor)
1978-01-01
A solar cell is disclosed which comprises a first semiconductor material of one conductivity type with one face having the same conductivity type but more heavily doped to form a field region arranged to receive the radiant energy to be converted to electrical energy, and a layer of a second semiconductor material, preferably highly doped, of opposite conductivity type on the first semiconductor material adjacent the first semiconductor material at an interface remote from the heavily doped field region. Instead of the opposite conductivity layer, a metallic Schottky diode layer may be used, in which case no additional back contact is needed. A contact such as a gridded contact, previous to the radiant energy may be applied to the heavily doped field region of the more heavily doped, same conductivity material for its contact.
Four-terminal circuit element with photonic core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampayan, Stephen
A four-terminal circuit element is described that includes a photonic core inside of the circuit element that uses a wide bandgap semiconductor material that exhibits photoconductivity and allows current flow through the material in response to the light that is incident on the wide bandgap material. The four-terminal circuit element can be configured based on various hardware structures using a single piece or multiple pieces or layers of a wide bandgap semiconductor material to achieve various designed electrical properties such as high switching voltages by using the photoconductive feature beyond the breakdown voltages of semiconductor devices or circuits operated basedmore » on electrical bias or control designs. The photonic core aspect of the four-terminal circuit element provides unique features that enable versatile circuit applications to either replace the semiconductor transistor-based circuit elements or semiconductor diode-based circuit elements.« less
Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics
NASA Astrophysics Data System (ADS)
Fukumura, T.; Yamada, Y.; Toyosaki, H.; Hasegawa, T.; Koinuma, H.; Kawasaki, M.
2004-02-01
A review is given for the recent progress of research in the field of oxide-based diluted magnetic semiconductor (DMS), which was triggered by combinatorial discovery of transparent ferromagnet. The possible advantages of oxide semiconductor as a host of DMS are described in comparison with conventional compound semiconductors. Limits and problems for identifying novel ferromagnetic DMS are described in view of recent reports in this field. Several characterization techniques are proposed in order to eliminate unidentified ferromagnetism of oxide-based DMS unidentified ferromagnetic oxide (UFO). Perspectives and possible devices are also given.
Semiconductor Lasers and Their Application in Optical Fiber Communication.
ERIC Educational Resources Information Center
Agrawal, Govind P.
1985-01-01
Working principles and operating characteristics of the extremely compact and highly efficient semiconductor lasers are explained. Topics include: the p-n junction; Fabry-Perot cavity; heterostructure semiconductor lasers; materials; emission characteristics; and single-frequency semiconductor lasers. Applications for semiconductor lasers include…
Kurudirek, Murat; Kurudirek, Sinem V
2015-05-01
Effective atomic numbers, Zeff and electron densities, Ne are widely used for characterization of interaction processes in radiation related studies. A variety of detectors are employed to detect different types of radiations i.e. photons and charged particles. In the present work, some compound semiconductor detectors (CSCD) and solid state nuclear track detectors (SSNTD) were investigated with respect to the partial as well as total electron interactions. Zeff and Ne of the given detectors were calculated for collisional, radiative and total electron interactions in the kinetic energy region 10keV-1GeV. Maximum values of Zeff and Ne were observed at higher kinetic energies of electrons. Significant variations in Zeff and Ne up to ≈20-25% were noticed for the detectors, GaN, ZnO, Amber and CR-39 for total electron interaction. Moreover, the obtained Zeff and Ne for electrons were compared to those obtained for photons in the entire energy region. Significant variations in Zeff were also noted not only for photons (up to ≈40% for GaN) but also between photons and electrons (up to ≈60% for CR-39) especially at lower energies. Except for the lower energies, Zeff and Ne keep more or less constant values for the given materials. The energy regions where Zeff and Ne keep constant clearly show the availability of using these parameters for characterization of the materials with respect to the radiation interaction processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Semiconductor devices incorporating multilayer interference regions
Biefeld, R.M.; Drummond, T.J.; Gourley, P.L.; Zipperian, T.E.
1987-08-31
A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration. 8 figs.
Method of making silicon on insalator material using oxygen implantation
Hite, Larry R.; Houston, Ted; Matloubian, Mishel
1989-01-01
The described embodiments of the present invention provide a semiconductor on insulator structure providing a semiconductor layer less susceptible to single event upset errors (SEU) due to radiation. The semiconductor layer is formed by implanting ions which form an insulating layer beneath the surface of a crystalline semiconductor substrate. The remaining crystalline semiconductor layer above the insulating layer provides nucleation sites for forming a crystalline semiconductor layer above the insulating layer. The damage caused by implantation of the ions for forming an insulating layer is left unannealed before formation of the semiconductor layer by epitaxial growth. The epitaxial layer, thus formed, provides superior characteristics for prevention of SEU errors, in that the carrier lifetime within the epitaxial layer, thus formed, is less than the carrier lifetime in epitaxial layers formed on annealed material while providing adequate semiconductor characteristics.
Disordered Zinc in Zn4Sb3 with Phonon-Glass and Electron-Crystal Thermoelectric Properties
NASA Technical Reports Server (NTRS)
Snyder, G. Jeffrey; Christensen, Mogens; Nishibori, Eiji; Caillat, Thierry; Brummerstedt Iversen, Bo
2004-01-01
By converting waste heat into electricity, thermoelectric generators could be an important part of the solution to today's energy challenges. The compound Zn4Sb3 is one of the most efficient thermoelectric materials known. Its high efficiency results from an extraordinarily low thermal conductivity in conjunction with the electronic structure of a heavily doped semiconductor. Previous structural studies have been unable to explain this unusual combination of properties. Here, we show through a comprehensive structural analysis using single-crystal X-ray and powder-synchrotron-radiation diffraction methods, that both the electronic and thermal properties of Zn4Sb3 can be understood in terms of unique structural features that have been previously overlooked. The identification of Sb3- ions and Sb-2(4-) dimers reveals that Zn4Sb3 is a valence semiconductor with the ideal stoichiometry Zn13Sb10. In addition, the structure contains significant disorder, with zinc atoms distributed over multiple positions. The discovery of glass-like interstitial sites uncovers a highly effective mechanism for reducing thermal conductivity. Thus Zn4Sb3 is in many ways an ideal 'phonon glass, electron crystal' thermoelectric material.
NASA Astrophysics Data System (ADS)
Shahi, Chandra; Sun, Jianwei; Perdew, John P.
2018-03-01
Most of the group IV, III-V, and II-VI compounds crystallize in semiconductor structures under ambient conditions. Upon application of pressure, they undergo structural phase transitions to more closely packed structures, sometimes metallic phases. We have performed density functional calculations using projector augmented wave (PAW) pseudopotentials to determine the transition pressures for these transitions within the local density approximation (LDA), the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA), and the strongly constrained and appropriately normed (SCAN) meta-GGA. LDA underestimates the transition pressure for most of the studied materials. PBE under- or overestimates in many cases. SCAN typically corrects the errors of LDA and PBE for the transition pressure. The accuracy of SCAN is comparable to that of computationally expensive methods like the hybrid functional HSE06, the random phase approximation (RPA), and quantum Monte Carlo (QMC), in cases where calculations with these methods have been reported, but at a more modest computational cost. The improvement from LDA to PBE to SCAN is especially clearcut and dramatic for covalent semiconductor-metal transitions, as for Si and Ge, where it reflects the increasing relative stabilization of the covalent semiconducting phases under increasing functional sophistication.
NASA Astrophysics Data System (ADS)
Liu, Ming; Yin, Xiaobo; Wang, Feng; Zhang, Xiang
2011-10-01
Data communications have been growing at a speed even faster than Moore's Law, with a 44-fold increase expected within the next 10 years. Data Transfer on such scale would have to recruit optical communication technology and inspire new designs of light sources, modulators, and photodetectors. An ideal optical modulator will require high modulation speed, small device footprint and large operating bandwidth. Silicon modulators based on free carrier plasma dispersion effect and compound semiconductors utilizing direct bandgap transition have seen rapid improvement over the past decade. One of the key limitations for using silicon as modulator material is its weak refractive index change, which limits the footprint of silicon Mach-Zehnder interferometer modulators to millimeters. Other approaches such as silicon microring modulators reduce the operation wavelength range to around 100 pm and are highly sensitive to typical fabrication tolerances and temperature fluctuations. Growing large, high quality wafers of compound semiconductors, and integrating them on silicon or other substrates is expensive, which also restricts their commercialization. In this work, we demonstrate that graphene can be used as the active media for electroabsorption modulators. By tuning the Fermi energy level of the graphene layer, we induced changes in the absorption coefficient of graphene at communication wavelength and achieve a modulation depth above 3 dB. This integrated device also has the potential of working at high speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wutzler, Rene, E-mail: r.wutzler@hzdr.de; Rebohle, Lars; Prucnal, Slawomir
2015-05-07
The integration of III–V compound semiconductors in Si is a crucial step towards faster and smaller devices in future technologies. In this work, we investigate the formation process of III–V compound semiconductor nanocrystals, namely, GaAs, GaSb, and InP, by ion implantation and sub-second flash lamp annealing in a SiO{sub 2}/Si/SiO{sub 2} layer stack on Si grown by plasma-enhanced chemical vapor deposition. Raman spectroscopy, Rutherford Backscattering spectrometry, and transmission electron microscopy were performed to identify the structural and optical properties of these structures. Raman spectra of the nanocomposites show typical phonon modes of the compound semiconductors. The formation process of themore » III–V compounds is found to be based on liquid phase epitaxy, and the model is extended to the case of an amorphous matrix without an epitaxial template from a Si substrate. It is shown that the particular segregation and diffusion coefficients of the implanted group-III and group-V ions in molten Si significantly determine the final appearance of the nanostructure and thus their suitability for potential applications.« less
Graphene-based vertical-junction diodes and applications
NASA Astrophysics Data System (ADS)
Choi, Suk-Ho
2017-09-01
In the last decade, graphene has received extreme attention as an intriguing building block for electronic and photonic device applications. This paper provides an overview of recent progress in the study of vertical-junction diodes based on graphene and its hybrid systems by combination of graphene and other materials. The review is especially focused on tunnelling and Schottky diodes produced by chemical doping of graphene or combination of graphene with various semiconducting/ insulating materials such as hexagonal boron nitrides, Si-quantum-dots-embedded SiO2 multilayers, Si wafers, compound semiconductors, Si nanowires, and porous Si. The uniqueness of graphene enables the application of these convergence structures in high-efficient devices including photodetectors, solar cells, resonant tunnelling diodes, and molecular/DNA sensors.
760 nm high-performance VCSEL growth and characterization
NASA Astrophysics Data System (ADS)
Rinaldi, Fernando; Ostermann, Johannes M.; Kroner, Andrea; Riedl, Michael C.; Michalzik, Rainer
2006-04-01
High-performance vertical-cavity surface-emitting lasers (VCSELs) with an emission wavelength of approximately 764 nm are demonstrated. This wavelength is very attractive for oxygen sensing. Low threshold currents, high optical output power, single-mode operation, and stable polarization are obtained. Using the surface relief technique and in particular the grating relief technique, we have increased the single-mode output power to more than 2.5mW averaged over a large device quantity. The laser structure was grown by molecular beam epitaxy (MBE) on GaAs (100)-oriented substrates. The devices are entirely based on the AlGaAs mixed compound semiconductor material system. The growth process, the investigations of the epitaxial material together with the device fabrication and characterization are discussed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillert, Ralf; Laboratorium für Nano- und Quantenengineering, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 39, 30167 Hannover; Taffa, Dereje H.
2015-10-01
The utilization of solar light for the photoelectrochemical and photocatalytic production of molecular hydrogen from water is a scientific and technical challenge. Semiconductors with suitable properties to promote solar-driven water splitting are a desideratum. A hitherto rarely investigated group of semiconductors are ferrites with the empirical formula MFe{sub 2}O{sub 4} and related compounds. This contribution summarizes the published results of the experimental investigations on the photoelectrochemical and photocatalytic properties of these compounds. It will be shown that the potential of this group of compounds in regard to the production of solar hydrogen has not been fully explored yet.
Semiconductor metal oxide compounds based gas sensors: A literature review
NASA Astrophysics Data System (ADS)
Patil, Sunil Jagannath; Patil, Arun Vithal; Dighavkar, Chandrakant Govindrao; Thakare, Kashinath Shravan; Borase, Ratan Yadav; Nandre, Sachin Jayaram; Deshpande, Nishad Gopal; Ahire, Rajendra Ramdas
2015-03-01
This paper gives a statistical view about important contributions and advances on semiconductor metal oxide (SMO) compounds based gas sensors developed to detect the air pollutants such as liquefied petroleum gas (LPG), H2S, NH3, CO2, acetone, ethanol, other volatile compounds and hazardous gases. Moreover, it is revealed that the alloy/composite made up of SMO gas sensors show better gas response than their counterpart single component gas sensors, i.e., they are found to enhance the 4S characteristics namely speed, sensitivity, selectivity and stability. Improvement of such types of sensors used for detection of various air pollutants, which are reported in last two decades, is highlighted herein.
Photovoltaic devices comprising cadmium stannate transparent conducting films and method for making
Wu, Xuanzhi; Coutts, Timothy J.; Sheldon, Peter; Rose, Douglas H.
1999-01-01
A photovoltaic device having a substrate, a layer of Cd.sub.2 SnO.sub.4 disposed on said substrate as a front contact, a thin film comprising two or more layers of semiconductor materials disposed on said layer of Cd.sub.2 SnO.sub.4, and an electrically conductive film disposed on said thin film of semiconductor materials to form a rear electrical contact to said thin film. The device is formed by RF sputter coating a Cd.sub.2 SnO.sub.4 layer onto a substrate, depositing a thin film of semiconductor materials onto the layer of Cd.sub.2 SnO.sub.4, and depositing an electrically conductive film onto the thin film of semiconductor materials.
Liu, Xiao-Ke; Gao, Feng
2018-05-03
Recently, lead halide perovskite materials have attracted extensive interest, in particular, in the research field of solar cells. These materials are fascinating "soft" materials with semiconducting properties comparable to the best inorganic semiconductors like silicon and gallium arsenide. As one of the most promising perovskite family members, organic-inorganic hybrid Ruddlesden-Popper perovskites (HRPPs) offer rich chemical and structural flexibility for exploring excellent properties for optoelectronic devices, such as solar cells and light-emitting diodes (LEDs). In this Perspective, we present an overview of HRPPs on their structural characteristics, synthesis of pure HRPP compounds and thin films, control of their preferential orientations, and investigations of heterogeneous HRPP thin films. Based on these recent advances, future directions and prospects have been proposed. HRPPs are promising to open up a new paradigm for high-performance LEDs.
Crystal growth of device quality GaAs in space
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Lagowski, J.
1983-01-01
GaAs device technology has recently reached a new phase of rapid advancement, made possible by the improvement of the quality of GaAs bulk crystals. At the same time, the transition to the next generation of GaAs integrated circuits and optoelectronic systems for commercial and government applications hinges on new quantum steps in three interrelated areas: crystal growth, device processing and device-related properties and phenomena. Special emphasis is placed on the establishment of quantitative relationships among crystal growth parameters-material properties-electronic properties and device applications. The overall program combines studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and investigation of electronic properties and phenomena controlling device applications and device performance.
Purification and Crystal Growth of Lead Iodide by Physical Vapor Transport Method
NASA Technical Reports Server (NTRS)
Wright, G. W.; Cole, M.; Chen, Y.-F.; Chen, K.-T.; Chen, H.; Chattopadhyay, K.; Burger, A.
1998-01-01
Lead iodide (PbI2) is a layered compound semiconductor being developed as room temperature x- and gamma-ray detector. Compared to the more studied material, mercuric iodide, PbI2 has a higher melting temperature and no phase transition until liquid phase which are indications of better mechanical properties. In this study, the source material was purified by the zone-refining process, and the purest section was extracted from center of the the zone-refined ingot to be grown by physical vapor transport (PVT) method. The zone-refined material and as-grown crystals were characterized by optical microscopy and differential scanning calorimetry (DSC) to reveal the surface morphology, purity and stoichiometry. The results shows that both materials are near-stoichiometric composition, with the purity of the as-grown crystals higher than zone-refined materials. The resistivity of the as-grown crystal (10" Omega-cm) was derived from current-voltage (I-V) measurement, and is 10 times higher than the zone-refined materials. Detail results will be presented and discussed.
Semiconductor-based optical refrigerator
Epstein, Richard I.; Edwards, Bradley C.; Sheik-Bahae, Mansoor
2002-01-01
Optical refrigerators using semiconductor material as a cooling medium, with layers of material in close proximity to the cooling medium that carries away heat from the cooling material and preventing radiation trapping. In addition to the use of semiconducting material, the invention can be used with ytterbium-doped glass optical refrigerators.
Solar cells with low cost substrates and process of making same
Mitchell, Kim W.
1984-01-01
A solar cell having a substrate and an intermediate recrystallized film and a semiconductor material capable of absorbing light with the substrate being selected from one of a synthetic organic resin, graphite, glass and a crystalline material having a grain size less than about 1 micron.sup.2. The intermediate recrystallized film has a grain size in the range of from about 10 microns.sup.2 to about 10,000 microns.sup.2 and a lattice mismatch with the semiconductor material not greater than about 4%. The semiconductor material has a grain size not less than about 10 microns.sup.2. An anti-reflective layer and electrical contact means are provided. Also disclosed is a subcombination of substrate, intermediate recrystallized film and semiconductor material. Also, methods of formulating the solar cell and subcombination are disclosed.
Solar cells with low cost substrates, process of making same and article of manufacture
Mitchell, K.W.
A solar cell is disclosed having a substrate and an intermediate recrystallized film and a semiconductor material capable of absorbing light with the substrate being selected from one of a synthetic organic resin, graphite, glass and a crystalline material having a grain size less than about 1 micron/sup 2/. The intermediate recrystallized film has a grain size in the range of from about 10 microns/sup 2/ to about 10,000 microns/sup 2/ and a lattice mismatch with the semiconductor material not greater than about 4%. The semiconductor material has a grain size not less than about 10 microns/sup 2/. An anti-reflective layer and electrical contact means are provided. Also disclosed is a subcombination of substrate, intermediate recrystallized film and semiconductor material. Also, methods of formulating the solar cell and subcombination are disclosed.
Wibowo, Arief C.; Malliakas, Christos D.; Li, Hao; ...
2016-03-16
Here, we assess the mercury chalcohalide compound, β-Hg 3S 2Cl 2, as a potential semiconductor material for X-ray and γ-ray detection. It has a high density (6.80 g/cm 3) and wide band gap (2.56 eV) and crystallizes in the cubic Pm4more » $$\\bar{3}$$n space group with a three-dimensional structure comprised of [Hg 12S 8] cubes with Cl atoms located within and between the cubes, featuring a trigonal pyramidal SHg3 as the main building block. First-principle electronic structure calculations at the density functional theory level predict that the compound has closely lying indirect and direct band gaps. We have successfully grown transparent, single crystals of β-Hg 3S 2Cl 2 up to 7 mm diameter and 1 cm long using a new approach by the partial decomposition of the quaternary Hg 3Bi 2S 2Cl 8 compound followed by the formation of β-Hg 3S 2Cl 2 and an impermeable top layer, all happening in situ during vertical Bridgman growth. The decomposition process was optimized by varying peak temperatures and temperature gradients using a 2 mm/h translation rate of the Bridgman technique. Formation of the quaternary Hg 3Bi 2S 2Cl 8 followed by its partial decomposition into β-Hg 3S 2Cl 2 was confirmed by in situ temperature-dependent synchrotron powder diffraction studies. The single crystal samples obtained had resistivity of 10 10 Ω·cm and mobility-lifetime products of electron and hole carriers of 1.4(4) × 10 –4 cm 2/V and 7.5(3) × 10 –5 cm 2/V, respectively. Further, an appreciable Ag X-ray photoconductivity response was observed showing the potential of β-Hg 3S 2Cl 2 as a hard radiation detector material.« less
Laref, Amel; AlMudlej, Abeer; Laref, Slimane; Yang, Jun Tao; Xiong, Yong-Chen; Luo, Shi Jun
2017-07-07
Ab-initio calculations are performed to examine the electronic structures and magnetic properties of spin-polarized Ga 1- x Mn x P ( x = 0.03, 0.25, 0.5, and 0.75) ternary alloys. In order to perceive viable half-metallic (HM) states and unprecedented diluted magnetic semiconductors (DMSs) such as spintronic materials, the full potential linearized augmented plane wave method is utilized within the generalized gradient approximation (GGA). In order to tackle the correlation effects on 3d states of Mn atoms, we also employ the Hubbard U (GGA + U) technique to compute the magnetic properties of an Mn-doped GaP compound. We discuss the emerged global magnetic moments and the robustness of half-metallicity by varying the Mn composition in the GaP compound. Using GGA + U, the results of the density of states demonstrate that the incorporation of Mn develops a half-metallic state in the GaP compound with an engendered band gap at the Fermi level ( E F ) in the spin-down state. Accordingly, the half-metallic feature is produced through the hybridization of Mn-d and P-p orbitals. However, the half-metallic character is present at a low x composition with the GGA procedure. The produced magnetic state occurs in these materials, which is a consequence of the exchange interactions between the Mn-element and the host GaP system. For the considered alloys, we estimated the X-ray absorption spectra at the K edge of Mn. A thorough clarification of the pre-edge peaks is provided via the results of the theoretical absorption spectra. It is inferred that the valence state of Mn in Ga 1- x Mn x P alloys is +3. The predicted theoretical determinations surmise that the Mn-incorporated GaP semiconductor could inevitably be employed in spintronic devices.
Alpha voltaic batteries and methods thereof
NASA Technical Reports Server (NTRS)
Jenkins, Phillip (Inventor); Scheiman, David (Inventor); Castro, Stephanie (Inventor); Raffaelle, Ryne P. (Inventor); Wilt, David (Inventor); Chubb, Donald (Inventor)
2011-01-01
An alpha voltaic battery includes at least one layer of a semiconductor material comprising at least one p/n junction, at least one absorption and conversion layer on the at least one layer of semiconductor layer, and at least one alpha particle emitter. The absorption and conversion layer prevents at least a portion of alpha particles from the alpha particle emitter from damaging the p/n junction in the layer of semiconductor material. The absorption and conversion layer also converts at least a portion of energy from the alpha particles into electron-hole pairs for collection by the one p/n junction in the layer of semiconductor material.
Mechanochemical activation and gallium and indiaarsenides surface catalycity
NASA Astrophysics Data System (ADS)
Kirovskaya, I. A.; Mironova, E. V.; Umansky, I. V.; Brueva, O. Yu; Murashova, A. O.; Yureva, A. V.
2018-01-01
The present work has been carried out in terms of determining the possibilities for a clearer identification of the active sites nature, intermediate surface compounds nature, functional groups during adsorption and catalysis, activation of the diamond-like semiconductors surface (in particular, the AIIIBV type) based on mechanochemical studies of the “reaction medium (H2O, iso-C3H7OH) - dispersible semiconductor (GaAs, InAs)” systems. As a result, according to the read kinetic curves of dispersion in water, both acidification and alkalinization of the medium have been established and explained; increased activity of the newly formed surface has been noted; intermediate surface compounds, functional groups appearing on the real surface and under H2O adsorption conditions, adsorption and catalytic decomposition of iso-C3H7OH have been found (with explanation of the origin). The unconcealed role of coordinatively unsaturated atoms as active sites of these processes has been shown; the relative catalytic activity of the semiconductors studied has been evaluated. Practical recommendations on the preferred use of gallium arsenide in semiconductor gas analysis and semiconductor catalysis have been given in literature searches, great care should be taken in constructing both.
It was found that the esters of polystyrene and cinnamic acid , polyvinyl alcohol, and cinnamic acid have high dielectric characteristics that change...Photosensitive acid -resisting emulsions for use in photoengraving of semiconductor parts and semiconductor surfaces were synthesized and tested...organosilicon compounds, cinnamic aldehyde, emulsions based on azo and diazo compounds and polymeric polyesters--were tested. The photoengraving method
Vawter, G. Allen
2013-11-12
An optical XOR gate is formed as a photonic integrated circuit (PIC) from two sets of optical waveguide devices on a substrate, with each set of the optical waveguide devices including an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical XOR gate utilizes two digital optical inputs to generate an XOR function digital optical output. The optical XOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.
Skogen, Erik J [Albuquerque, NM; Tauke-Pedretti, Anna [Albuquerque, NM
2011-09-06
An optical NOR gate is formed from two pair of optical waveguide devices on a substrate, with each pair of the optical waveguide devices consisting of an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical NOR gate utilizes two digital optical inputs and a continuous light input to provide a NOR function digital optical output. The optical NOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.
Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
Regulacio, Michelle D; Han, Ming-Yong
2016-03-15
Semiconductor nanostructures that can effectively serve as light-responsive photocatalysts have been of considerable interest over the past decade. This is because their use in light-induced photocatalysis can potentially address some of the most serious environmental and energy-related concerns facing the world today. One important application is photocatalytic hydrogen production from water under solar radiation. It is regarded as a clean and sustainable approach to hydrogen fuel generation because it makes use of renewable resources (i.e., sunlight and water), does not involve fossil fuel consumption, and does not result in environmental pollution or greenhouse gas emission. Another notable application is the photocatalytic degradation of nonbiodegradable dyes, which offers an effective way of ridding industrial wastewater of toxic organic pollutants prior to its release into the environment. Metal oxide semiconductors (e.g., TiO2) are the most widely studied class of semiconductor photocatalysts. Their nanostructured forms have been reported to efficiently generate hydrogen from water and effectively degrade organic dyes under ultraviolet-light irradiation. However, the wide band gap characteristic of most metal oxides precludes absorption of light in the visible region, which makes up a considerable portion of the solar radiation spectrum. Meanwhile, nanostructures of cadmium chalcogenide semiconductors (e.g., CdS), with their relatively narrow band gap that can be easily adjusted through size control and alloying, have displayed immense potential as visible-light-responsive photocatalysts, but the intrinsic toxicity of cadmium poses potential risks to human health and the environment. In developing new nanostructured semiconductors for light-driven photocatalysis, it is important to choose a semiconducting material that has a high absorption coefficient over a wide spectral range and is safe for use in real-world settings. Among the most promising candidates are the multinary chalcogenide semiconductors (MCSs), which include the ternary I-III-VI2 semiconductors (e.g., AgGaS2, CuInS2, and CuInSe2) and the quaternary I2-II-IV-VI4 semiconductors (e.g., Cu2ZnGeS4, Cu2ZnSnS4, and Ag2ZnSnS4). These inorganic compounds consist of environmentally benign elemental components, exhibit excellent light-harvesting properties, and possess band gap energies that are well-suited for solar photon absorption. Moreover, the band structures of these materials can be conveniently modified through alloying to boost their ability to harvest visible photons. In this Account, we provide a summary of recent research on the use of ternary I-III-VI2 and quaternary I2-II-IV-VI4 semiconductor nanostructures for light-induced photocatalytic applications, with focus on hydrogen production and organic dye degradation. We include a review of the solution-based methods that have been employed to prepare multinary chalcogenide semiconductor nanostructures of varying compositions, sizes, shapes, and crystal structures, which are factors that are known to have significant influence on the photocatalytic activity of semiconductor photocatalysts. The enhancement of photocatalytic performance through creation of hybrid nanoscale architectures is also presented. Lastly, views on the current challenges and future directions are discussed in the concluding section.
Föll, Helmut; Leisner, Malte; Cojocaru, Ala; Carstensen, Jürgen
2010-01-01
Pores in single crystalline semiconductors come in many forms (e.g., pore sizes from 2 nm to > 10 µm; morphologies from perfect pore crystal to fractal) and exhibit many unique properties directly or as nanocompounds if the pores are filled. The various kinds of pores obtained in semiconductors like Ge, Si, III-V, and II-VI compound semiconductors are systematically reviewed, emphasizing macropores. Essentials of pore formation mechanisms will be discussed, focusing on differences and some open questions but in particular on common properties. Possible applications of porous semiconductors, including for example high explosives, high efficiency electrodes for Li ion batteries, drug delivery systems, solar cells, thermoelectric elements and many novel electronic, optical or sensor devices, will be introduced and discussed.
NASA Astrophysics Data System (ADS)
Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav; Haranczyk, Maciej
2017-11-01
Structure-property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal closed packed-like environments. Here, we showcase the usefulness of local order parameters to identify these basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.
Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav; ...
2017-11-13
Structure–property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors, as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-like environments. Here, we showcase the usefulness of local order parameters to identify thesemore » basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO 2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav
Structure–property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors, as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-like environments. Here, we showcase the usefulness of local order parameters to identify thesemore » basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO 2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.« less
Chaffin, R.J.; Dawson, L.R.; Fritz, I.J.; Osbourn, G.C.; Zipperian, T.E.
1984-04-19
In a field-effect transistor comprising a semiconductor having therein a source, a drain, a channel and a gate in operational relationship, there is provided an improvement wherein said semiconductor is a superlattice comprising alternating quantum well and barrier layers, the quantum well layers comprising a first direct gap semiconductor material which in bulk form has a certain bandgap and a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, the barrier layers comprising a second semiconductor material having a bandgap wider than that of said first semiconductor material, wherein the layer thicknesses of said quantum well and barrier layers are sufficiently thin that the alternating layers constitute a superlattice having a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, and wherein the thicknesses of said quantum well layers are selected to provide a superlattice curve of electron velocity versus applied electric field whereby, at applied electric fields higher than that at which the maximum electron velocity occurs in said first material when in bulk form, the electron velocities are higher in said superlattice than they are in said first semiconductor material in bulk form.
Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang
2015-07-31
We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X = N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X = O,S,Se,Te. By correcting (1) the binary band gaps at high-symmetry points , L, X, (2) the separation of p-and d-orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles methodmore » can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.« less
NASA Astrophysics Data System (ADS)
Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang
2015-07-01
We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X =N ,P ,As ,Sb , and II-VI compounds, (Zn or Cd)X , with X =O ,S ,Se ,Te . By correcting (1) the binary band gaps at high-symmetry points Γ , L , X , (2) the separation of p -and d -orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles method can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.
Continued development of room temperature semiconductor nuclear detectors
NASA Astrophysics Data System (ADS)
Kim, Hadong; Cirignano, Leonard; Churilov, Alexei; Ciampi, Guido; Kargar, Alireza; Higgins, William; O'Dougherty, Patrick; Kim, Suyoung; Squillante, Michael R.; Shah, Kanai
2010-08-01
Thallium bromide (TlBr) and related ternary compounds, TlBrI and TlBrCl, have been under development for room temperature gamma ray spectroscopy due to several promising properties. Due to recent advances in material processing, electron mobility-lifetime product of TlBr is close to Cd(Zn)Te's value which allowed us to fabricate large working detectors. We were also able to fabricate and obtain spectroscopic results from TlBr Capacitive Frisch Grid detector and orthogonal strip detectors. In this paper we report on our recent TlBr and related ternary detector results and preliminary results from Cinnabar (HgS) detectors.
Sol-gel process for the manufacture of high power switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landingham, Richard L.; Satcher, Jr, Joe; Reibold, Robert
According to one embodiment, a photoconductive semiconductor switch includes a structure of nanopowder of a high band gap material, where the nanopowder is optically transparent, and where the nanopowder has a physical characteristic of formation from a sol-gel process. According to another embodiment, a method includes mixing a sol-gel precursor compound, a hydroxy benzene and an aldehyde in a solvent thereby creating a mixture, causing the mixture to gel thereby forming a wet gel, drying the wet gel to form a nanopowder, and applying a thermal treatment to form a SiC nanopowder.
High efficiency compound semiconductor concentrator photovoltaics
NASA Technical Reports Server (NTRS)
Borden, P.; Gregory, P.; Saxena, R.; Owen, R.; Moore, O.
1980-01-01
Special emphasis was given to the high yield pilot production of packaged AlGaAs/GaAs concentrator solar cells, using organometallic VPE for materials growth, the demonstration of a concentrator module using 12 of these cells which achieved 16.4 percent conversion efficiency at 50 C coolant inlet temperature, and the demonstration of a spectral splitting converter module that achieved in excess of 20 percent efficiency. This converter employed ten silicon and ten AlGaAs cells with a dichroic filter functioning as the beam splitter. A monolithic array of AlGaAs/GaAs solar cells is described.
The ``Missing Compounds'' affair in functionality-driven material discovery
NASA Astrophysics Data System (ADS)
Zunger, Alex
2014-03-01
In the paradigm of ``data-driven discovery,'' underlying one of the leading streams of the Material Genome Initiative (MGI), one attempts to compute high-throughput style as many of the properties of as many of the N (about 10**5- 10**6) compounds listed in databases of previously known compounds. One then inspects the ensuing Big Data, searching for useful trends. The alternative and complimentary paradigm of ``functionality-directed search and optimization'' used here, searches instead for the n much smaller than N configurations and compositions that have the desired value of the target functionality. Examples include the use of genetic and other search methods that optimize the structure or identity of atoms on lattice sites, using atomistic electronic structure (such as first-principles) approaches in search of a given electronic property. This addresses a few of the bottlenecks that have faced the alternative, data-driven/high throughput/Big Data philosophy: (i) When the configuration space is theoretically of infinite size, building a complete data base as in data-driven discovery is impossible, yet searching for the optimum functionality, is still a well-posed problem. (ii) The configuration space that we explore might include artificially grown, kinetically stabilized systems (such as 2D layer stacks; superlattices; colloidal nanostructures; Fullerenes) that are not listed in compound databases (used by data-driven approaches), (iii) a large fraction of chemically plausible compounds have not been experimentally synthesized, so in the data-driven approach these are often skipped. In our approach we search explicitly for such ``Missing Compounds''. It is likely that many interesting material properties will be found in cases (i)-(iii) that elude high throughput searches based on databases encapsulating existing knowledge. I will illustrate (a) Functionality-driven discovery of topological insulators and valley-split quantum-computer semiconductors, as well as (b) Use of ``first principles thermodynamics'' to discern which of the previously ``missing compounds'' should, in fact exist and in which structure. Synthesis efforts by Poeppelmeier group at NU realized 20 never-before-made half-Heusler compounds out of the 20 predicted ones, in our predicted space groups. This type of theory-led experimental search of designed materials with target functionalities may shorten the current process of discovery of interesting functional materials. Supported by DOE ,Office of Science, Energy Frontier Research Center for Inverse Design
Photovoltaic devices comprising cadmium stannate transparent conducting films and method for making
Wu, X.; Coutts, T.J.; Sheldon, P.; Rose, D.H.
1999-07-13
A photovoltaic device is disclosed having a substrate, a layer of Cd[sub 2]SnO[sub 4] disposed on said substrate as a front contact, a thin film comprising two or more layers of semiconductor materials disposed on said layer of Cd[sub 2]SnO[sub 4], and an electrically conductive film disposed on said thin film of semiconductor materials to form a rear electrical contact to said thin film. The device is formed by RF sputter coating a Cd[sub 2]SnO[sub 4] layer onto a substrate, depositing a thin film of semiconductor materials onto the layer of Cd[sub 2]SnO[sub 4], and depositing an electrically conductive film onto the thin film of semiconductor materials. 10 figs.
Synthesis of ZnO:As Films Using Off-Axis Sputtering Deposition
NASA Technical Reports Server (NTRS)
Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Rose, M. Franklin (Technical Monitor)
2001-01-01
As a novel oxide semiconductor material, ZnO is interesting for use in many applications. For fabricating electronic devices, it is important to have n- and p- type ZnO materials. Arsenic has been proven to be one of the p-type dopants for ZnO materials. However, information in studying the ZnAsO ternary compound films has been scarce. In order to investigate the morphology, structure and electrical properties of ZnAsO ternary compounds, ZnO:As films have been synthesized using off-axis sputtering deposition on various substrates including (100) Si and (0001) sapphire crystals. Films are grown under various growth conditions. ZnO:As targets with the atomic weight ratios of arsenic to zinc from 0.01 to 0.10 are used for film synthesis. The growth temperatures and pressures range from 350 to 550C and 5 to 150 mTorr, respectively. Argon to oxygen gas ratio for film growth is varied to examine the film quality as well. Film surface morphology, crystal structure, and compositions, are characterized using atomic force microscopy, x-ray diffraction, and energy dispersive spectroscopy, respectively. The compositions of target material and ZnO:As films grown under various conditions are then assessed. The electrical properties were also measured. The detail of these measurements will be discussed in the presentation.
Traditional Semiconductors in the Two-Dimensional Limit.
Lucking, Michael C; Xie, Weiyu; Choe, Duk-Hyun; West, Damien; Lu, Toh-Ming; Zhang, S B
2018-02-23
Interest in two-dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac fermion in graphene, but also as a new paradigm in which stacking layers of distinct two-dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two-dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultrathin limit the great majority of traditional binary semiconductors studied (a series of 28 semiconductors) are not only kinetically stable in a two-dimensional double layer honeycomb structure, but more energetically stable than the truncated wurtzite or zinc-blende structures associated with three dimensional bulk. These findings both greatly increase the landscape of two-dimensional materials and also demonstrate that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties.
Structural and thermoelectric properties of zintl-phase CaLiPn (Pn=As, Sb, Bi)
NASA Astrophysics Data System (ADS)
Chandran, Anoop K.; Gudelli, Vijay Kumar; Sreeparvathy, P. C.; Kanchana, V.
2016-11-01
First-principles calculations were carried out to study the structural, mechanical, dynamical and transport properties of zintl phase materials CaLiPn (Pn=As, Sb and Bi). We have used two different approaches to solve the system based on density functional theory. The plane wave pseudopotential approach has been used to study the structural and dynamical properties whereas, full potential linear augment plane wave method is used to examine the electronic structure, mechanical and thermoelectric properties. The calculated ground-state properties agree quite well with experimental values. The computed electronic structure shows the investigated compounds to be direct band gap semiconductors. Further, we have calculated the thermoelectric properties of all the investigated compounds for both the carriers at various temperatures. We found a high thermopower for both the carriers, especially n-type doping to be more favourable, which enabled us to predict that CaLiPn might have promising applications as a good thermoelectric material. Further, the phonon dispersion curves of the investigated compounds showed flat phonon modes and we also find lower optical and acoustic modes to cut each other at the lower frequency range, which further indicate the investigated compounds to possess reasonably low thermal conductivity. We have also analysed the low value of the thermal conductivity through the empirical relations and discussions are presented here.
Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge
Olson, Jerry M.; Kurtz, Sarah R.; Friedman, Daniel J.
2001-01-01
A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.
Method for producing a hybridization of detector array and integrated circuit for readout
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Grunthaner, Frank J. (Inventor)
1993-01-01
A process is explained for fabricating a detector array in a layer of semiconductor material on one substrate and an integrated readout circuit in a layer of semiconductor material on a separate substrate in order to select semiconductor material for optimum performance of each structure, such as GaAs for the detector array and Si for the integrated readout circuit. The detector array layer is lifted off its substrate, laminated on the metallized surface on the integrated surface, etched with reticulating channels to the surface of the integrated circuit, and provided with interconnections between the detector array pixels and the integrated readout circuit through the channels. The adhesive material for the lamination is selected to be chemically stable to provide electrical and thermal insulation and to provide stress release between the two structures fabricated in semiconductor materials that may have different coefficients of thermal expansion.
Hetero-junction photovoltaic device and method of fabricating the device
Aytug, Tolga; Christen, David K; Paranthaman, Mariappan Parans; Polat, Ozgur
2014-02-10
A hetero-junction device and fabrication method in which phase-separated n-type and p-type semiconductor pillars define vertically-oriented p-n junctions extending above a substrate. Semiconductor materials are selected for the p-type and n-type pillars that are thermodynamically stable and substantially insoluble in one another. An epitaxial deposition process is employed to form the pillars on a nucleation layer and the mutual insolubility drives phase separation of the materials. During the epitaxial deposition process, the orientation is such that the nucleation layer initiates propagation of vertical columns resulting in a substantially ordered, three-dimensional structure throughout the deposited material. An oxidation state of at least a portion of one of the p-type or the n-type semiconductor materials is altered relative to the other, such that the band-gap energy of the semiconductor materials differ with respect to stoichiometric compositions and the device preferentially absorbs particular selected bands of radiation.
2006-10-01
F. Bliss, Gerald W. Iseler and Piotr Becla, "Combining static and rotating magnetic fields during modified vertical Bridgman crystal growth ," AIAA...Wang and Nancy Ma, "Semiconductor crystal growth by the vertical Bridgman process with rotating magnetic fields," ASME Journal of Heat Transfer...2005. 15. Stephen J. LaPointe, Nancy Ma and Donald W. Mueller, Jr., " Growth of binary alloyed semiconductor crystals by the vertical Bridgman
Semiconductor millimeter wavelength electronics
NASA Astrophysics Data System (ADS)
Rosenbaum, F. J.
1985-12-01
This final report summarizes the results of research carried out on topics in millimeter wavelength semiconductor electronics under an ONR Selected Research Opportunity program. Study areas included III-V compound semiconductor growth and characterization, microwave and millimeter wave device modeling, fabrication and testing, and the development of new device concepts. A new millimeter wave mixer and detector, the Gap diode was invented. Topics reported on include ballistic transport, Zener oscillations, impurities in GaAs, electron velocity-electric field calculation and measurements, etc., calculations.
NASA Astrophysics Data System (ADS)
Jamer, Michelle E.; Sterbinsky, George E.; Stephen, Gregory M.; DeCapua, Matthew C.; Player, Gabriel; Heiman, Don
2016-10-01
Recently, theorists have predicted many materials with a low magnetic moment and large spin-polarization for spintronic applications. These compounds are predicted to form in the inverse Heusler structure; however, many of these compounds have been found to phase segregate. In this study, ordered Cr2CoGa thin films were synthesized without phase segregation using molecular beam epitaxy. The present as-grown films exhibit a low magnetic moment from antiferromagnetically coupled Cr and Co atoms as measured with superconducting quantum interface device magnetometry and soft X-ray magnetic circular dichroism. Electrical measurements demonstrated a thermally-activated semiconductor-like resistivity component with an activation energy of 87 meV. These results confirm spin gapless semiconducting behavior, which makes these thin films well positioned for future devices.
Jamer, Michelle E.; Sterbinsky, George E.; Stephen, Gregory M.; ...
2016-10-31
Recently, theorists have predicted many materials with a low magnetic moment and large spin-polarization for spintronic applications. These compounds are predicted to form in the inverse Heusler structure; however, many of these compounds have been found to phase segregate. In this study, ordered Cr 2CoGa thin films were synthesized without phase segregation using molecular beam epitaxy. The present as-grown films exhibit a low magnetic moment from antiferromagnetically coupled Cr and Co atoms as measured with superconducting quantum interface device magnetometry and soft X-ray magnetic circular dichroism. Electrical measurements demonstrated a thermally-activated semiconductor-like resistivity component with an activation energy of 87more » meV. Finally, these results confirm spin gapless semiconducting behavior, which makes these thin films well positioned for future devices.« less
Wu, Menghao; Dong, Shuai; Yao, Kailun; Liu, Junming; Zeng, Xiao Cheng
2016-11-09
Realization of ferroelectric semiconductors by conjoining ferroelectricity with semiconductors remains a challenging task because most present-day ferroelectric materials are unsuitable for such a combination due to their wide bandgaps. Herein, we show first-principles evidence toward the realization of a new class of two-dimensional (2D) ferroelectric semiconductors through covalent functionalization of many prevailing 2D materials. Members in this new class of 2D ferroelectric semiconductors include covalently functionalized germanene, and stanene (Nat. Commun. 2014, 5, 3389), as well as MoS 2 monolayer (Nat. Chem. 2015, 7, 45), covalent functionalization of the surface of bulk semiconductors such as silicon (111) (J. Phys. Chem. B 2006, 110 , 23898), and the substrates of oxides such as silica with self-assembly monolayers (Nano Lett. 2014, 14, 1354). The newly predicted 2D ferroelectric semiconductors possess high mobility, modest bandgaps, and distinct ferroelectricity that can be exploited for developing various heterostructural devices with desired functionalities. For example, we propose applications of the 2D materials as 2D ferroelectric field-effect transistors with ultrahigh on/off ratio, topological transistors with Dirac Fermions switchable between holes and electrons, ferroelectric junctions with ultrahigh electro-resistance, and multiferroic junctions for controlling spin by electric fields. All these heterostructural devices take advantage of the combination of high-mobility semiconductors with fast writing and nondestructive reading capability of nonvolatile memory, thereby holding great potential for the development of future multifunctional devices.
Ab initio calculations of the concentration dependent band gap reduction in dilute nitrides
NASA Astrophysics Data System (ADS)
Rosenow, Phil; Bannow, Lars C.; Fischer, Eric W.; Stolz, Wolfgang; Volz, Kerstin; Koch, Stephan W.; Tonner, Ralf
2018-02-01
While being of persistent interest for the integration of lattice-matched laser devices with silicon circuits, the electronic structure of dilute nitride III/V-semiconductors has presented a challenge to ab initio computational approaches. The origin of the computational problems is the strong distortion exerted by the N atoms on most host materials. Here, these issues are resolved by combining density functional theory calculations based on the meta-GGA functional presented by Tran and Blaha (TB09) with a supercell approach for the dilute nitride Ga(NAs). Exploring the requirements posed to supercells, it is shown that the distortion field of a single N atom must be allowed to decrease so far that it does not overlap with its periodic images. This also prevents spurious electronic interactions between translational symmetric atoms, allowing us to compute band gaps in very good agreement with experimentally derived reference values. In addition to existing approaches, these results offer a promising ab initio avenue to the electronic structure of dilute nitride semiconductor compounds.
Using the Semiconductors Materials of InSb-ZnTe System in Sensors for Gas Control
NASA Astrophysics Data System (ADS)
Shubenkova, E. G.
2017-04-01
The samples of thin film semiconductor compounds InSb, ZnTe and solid solutions based on them were obtained by vapor deposition of components on a dielectric substrate in a vacuum, followed by annealing and their surface properties in CO, O2 and NH3 gas atmospheres were investigated. Identification of the samples was carried out by X-ray diffraction techniques. In the temperature range 253 ÷ 403 K and a pressure range of 1÷12 Pa the gas adsorption was measured by piezoelectric microbalance technique. In order to establish the basic regularities of processes flowing on samples surface in addition to the electrophisical were used Infrared and Raman spectroscopic measurements. The resulting addiction “surface property - composition” is extreme and have allowed to determine solid solution InSb0,95-ZnTe0,05 as the most sensitive to the presence of ammonia, selective and this sample exhibits a negligible oxidation of surface.
NASA Astrophysics Data System (ADS)
Takeya, J.
2008-10-01
The environment of surface electrons at 'solid-to-liquid' interfaces is somewhat extreme, subjected to intense local electric fields or harsh chemical pressures that high-density ionic charge or polarization of mobile molecules create. In this proceedings, we argue functions of electronic carriers generated at the surface of organic semiconductor crystals in response to the local electric fields in the very vicinity of the interface to ionic liquid. The ionic liquids (ILs), or room temperature molten salts, are gaining considerable interest in the recent decade at the prospect of nonvolatile 'green solvents', with the development of chemically stable and nontoxic compounds. Moreover, such materials are also applied to electrolytes for lithium ion batteries and electric double-layer (EDL) capacitors. Our present solid-to-liquid interfaces of rubrene single crystals and ionic liquids work as fast-switching organic field-effect transistors (OFETs) with the highest transconductance, i.e. the most efficient response of the output current to the input voltage, among the OFETs ever built.
A microprocessor based on a two-dimensional semiconductor
Wachter, Stefan; Polyushkin, Dmitry K.; Bethge, Ole; Mueller, Thomas
2017-01-01
The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III–V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor—molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material. PMID:28398336
Synthesis and characterization of thermally evaporated Cu2SnSe3 ternary semiconductor
NASA Astrophysics Data System (ADS)
Hamdani, K.; Chaouche, M.; Benabdeslem, M.; Bechiri, L.; Benslim, N.; Amara, A.; Portier, X.; Bououdina, M.; Otmani, A.; Marie, P.
2014-11-01
Copper Tin Selenide (CuSnSe) powder was mechanically alloyed by high energy planetary ball milling, starting from elemental powders. Synthesis time and velocity have been optimized to produce Cu2SnSe3 materials. Thin films were prepared by thermal evaporation on Corning glass substrate at Ts = 300 °C. The structural, compositional, morphological and optical properties of the synthesized semiconductor have been analyzed by X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and transmission electron microscopy. The analyzed powder exhibited a cubic crystal structure, with the presence of Cu2Se as a secondary phase. On the other hand, the deposited films showed a cubic Cu2SnSe3 ternary phase and extra peaks belonging to some binary compounds. Furthermore, optical measurements showed that the deposited layers have a relatively high absorption coefficient of 105 cm-1 and present a band gap of 0.94 eV.
Atomic-Resolution Spectrum Imaging of Semiconductor Nanowires.
Zamani, Reza R; Hage, Fredrik S; Lehmann, Sebastian; Ramasse, Quentin M; Dick, Kimberly A
2018-03-14
Over the past decade, III-V heterostructure nanowires have attracted a surge of attention for their application in novel semiconductor devices such as tunneling field-effect transistors (TFETs). The functionality of such devices critically depends on the specific atomic arrangement at the semiconductor heterointerfaces. However, most of the currently available characterization techniques lack sufficient spatial resolution to provide local information on the atomic structure and composition of these interfaces. Atomic-resolution spectrum imaging by means of electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) is a powerful technique with the potential to resolve structure and chemical composition with sub-angstrom spatial resolution and to provide localized information about the physical properties of the material at the atomic scale. Here, we demonstrate the use of atomic-resolution EELS to understand the interface atomic arrangement in three-dimensional heterostructures in semiconductor nanowires. We observed that the radial interfaces of GaSb-InAs heterostructure nanowires are atomically abrupt, while the axial interface in contrast consists of an interfacial region where intermixing of the two compounds occurs over an extended spatial region. The local atomic configuration affects the band alignment at the interface and, hence, the charge transport properties of devices such as GaSb-InAs nanowire TFETs. STEM-EELS thus represents a very promising technique for understanding nanowire physical properties, such as differing electrical behavior across the radial and axial heterointerfaces of GaSb-InAs nanowires for TFET applications.
II-VI Narrow-Bandgap Semiconductors for Optoelectronics
NASA Astrophysics Data System (ADS)
Baker, Ian
The field of narrow-gap II-VI materials is dominated by the compound semiconductor mercury cadmium telluride, (Hg1-x Cd x Te or MCT), which supports a large industry in infrared detectors, cameras and infrared systems. It is probably true to say that HgCdTe is the third most studied semiconductor after silicon and gallium arsenide. Hg1-x Cd x Te is the material most widely used in high-performance infrared detectors at present. By changing the composition x the spectral response of the detector can be made to cover the range from 1 μm to beyond 17 μm. The advantages of this system arise from a number of features, notably: close lattice matching, high optical absorption coefficient, low carrier generation rate, high electron mobility and readily available doping techniques. These advantages mean that very sensitive infrared detectors can be produced at relatively high operating temperatures. Hg1-x Cd x Te multilayers can be readily grown in vapor-phase epitaxial processes. This provides the device engineer with complex doping and composition profiles that can be used to further enhance the electro-optic performance, leading to low-cost, large-area detectors in the future. The main purpose of this chapter is to describe the applications, device physics and technology of II-VI narrow-bandgap devices, focusing on HgCdTe but also including Hg1-x Mn x Te and Hg1-x Zn x Te. It concludes with a review of the research and development programs into third-generation infrared detector technology (so-called GEN III detectors) being performed in centers around the world.
Twenty years of molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Cho, A. Y.
1995-05-01
The term "molecular beam epitaxy" (MBE) was first used in one of our crystal growth papers in 1970, after having conducted extensive surface physics studies in the late 1960's of the interaction of atomic and molecular beams with solid surfaces. The unique feature of MBE is the ability to prepare single crystal layers with atomic dimensional precision. MBE sets the standard for epitaxial growth and has made possible semiconductor structures that could not be fabricated with either naturally existing materials or by other crystal growth techniques. MBE led the crystal growth technologies when it prepared the first semiconductor quantum well and superlattice structures that gave unexpected and exciting electrical and optical properties. For example, the discovery of the fractional quantized Hall effect. It brought experimental quantum physics to the classroom, and practically all major universities throughout the world are now equipped with MBE systems. The fundamental principles demonstrated by the MBE growth of III-V compound semiconductors have also been applied to the growth of group IV, II-VI, metal, and insulating materials. For manufacturing, the most important criteria are uniformity, precise control of the device structure, and reproducibility. MBE has produced more lasers (3 to 5 million per month for compact disc application) than any other crystal growth technique in the world. New directions for MBE are to incorporate in-situ, real-time monitoring capabilities so that complex structures can be precisely "engineered". In the future, as environmental concerns increase, the use of toxic arsine and phosphine may be limited. Successful use of valved cracker cells for solid arsenic and phosphorus has already produced InP based injection lasers.
Findikoglu, Alp T [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Arendt, Paul N [Los Alamos, NM; Matias, Vladimir [Santa Fe, NM; Choi, Woong [Los Alamos, NM
2009-10-27
A template article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material; is provided, together with a semiconductor article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material, and, a top-layer of semiconductor material upon the buffer material layer.
NASA Astrophysics Data System (ADS)
Bheemireddy, Sambasiva Reddy
The utility of conjugated small molecules and polymers as organic semiconductors have seen a tremendous growth in research and development in academia as well as industry because of their processability and flexibility advantages in comparison to inorganic semiconductors. The extensive research over the years has produced a large number of p-type (hole conducting) and n-type (electron conducting) semiconductors that can be used to construct organic electronic devices. Of these materials, p-type semiconductors are more established and extensively studied because of the ease of preparation as well as their better general stability in comparison to n-type materials. Despite recent research into the development of n-type materials, fullerene (C60 and C 70) and its derivatives are still the predominant materials used as electron acceptors for OPV applications. By taking advantage of the electron accepting behavior of cyclopenta[hi]aceanthrylene fragment of C70, we have designed and synthesized new materials based on cyclopenta-fused polycyclic aromatic hydrocarbons (CP-PAHs). By using a newly developed palladium catalyzed cyclopentannulation methodology, 1,2,6,7- tetraarylcyclopenta[hi]aceanthrylenes were prepared by treating diarylethynylenes with 9,10-dibromoanthracene. Scholl cyclodehydrogenation was used to close the externally fused aryl groups to provide access to contorted 2,7,13,18- tetraalkoxytetrabenzo[f,h,r,t]rubicenes. The contortion provides access to more soluble materials than their planar counterparts but still ii allows significant pi-pi stacking between molecules. Using a modified palladium catalyzed cyclopentannulation polymerization followed by a cyclodehydrogenation reaction, a nonconventional synthesis of CP-PAH embedded ladder polymers was also achieved. These ladder polymers possess broad UV-Vis absorptions and narrow optical gaps of 1.17-1.29 eV. The synthesis of new donor-acceptor copolymers incorporating electron accepting 1,2,6,7- tetra(4-dodecylphenyl)dicyclopenta[cd,jk]pyrene was also achieved. The donor unit was varied between thiophene, bithiophene, and 1,4-diethynyl-2,5-bis((2-octyldodecyl)oxy)-benzene producing polymers with high molecular weights and considerably low band gaps. This newly developed cyclopentannulation method was also used to synthesize a new class of stabilized pentacene derivatives with externally fused five-membered rings. The target compounds were synthesized via chemical manipulation of a partially saturated 6,13-dibromopentacene precursor that can be fully aromatized in a final step via a DDQ mediated dehydrogenation reaction. Photodegradation studies reveal the new 1,2,8,9-tetraphenyldicyclopenta[fg,qr]pentacene derivatives are more photostable than TIPS-pentacene, and possess narrow optical gaps of 1.2 eV. Because anthradithophene (ADT) is more stable than pentacene while maintaining good electronic properties, the synthesis of cyclopentannulated anthradithiophenes (CP-ADTs) was also explored. Synthesis of a highly contorted ADT analogue was achieved by treating 5,11-dibromo-anthradithiophene with 3,3'-dimethoxy,1,1'-diphenyl acetylene under palladium catalyzed cyclopentannulation conditions followed by Scholl cyclodehydrogenation.
Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions
NASA Astrophysics Data System (ADS)
Ning, Cun-Zheng; Dou, Letian; Yang, Peidong
2017-12-01
Over the past decade, tremendous progress has been achieved in the development of nanoscale semiconductor materials with a wide range of bandgaps by alloying different individual semiconductors. These materials include traditional II-VI and III-V semiconductors and their alloys, inorganic and hybrid perovskites, and the newly emerging 2D materials. One important common feature of these materials is that their nanoscale dimensions result in a large tolerance to lattice mismatches within a monolithic structure of varying composition or between the substrate and target material, which enables us to achieve almost arbitrary control of the variation of the alloy composition. As a result, the bandgaps of these alloys can be widely tuned without the detrimental defects that are often unavoidable in bulk materials, which have a much more limited tolerance to lattice mismatches. This class of nanomaterials could have a far-reaching impact on a wide range of photonic applications, including tunable lasers, solid-state lighting, artificial photosynthesis and new solar cells.
Semiconductor photoelectrochemistry
NASA Technical Reports Server (NTRS)
Buoncristiani, A. M.; Byvik, C. E.
1983-01-01
Semiconductor photoelectrochemical reactions are investigated. A model of the charge transport processes in the semiconductor, based on semiconductor device theory, is presented. It incorporates the nonlinear processes characterizing the diffusion and reaction of charge carriers in the semiconductor. The model is used to study conditions limiting useful energy conversion, specifically the saturation of current flow due to high light intensity. Numerical results describing charge distributions in the semiconductor and its effects on the electrolyte are obtained. Experimental results include: an estimate rate at which a semiconductor photoelectrode is capable of converting electromagnetic energy into chemical energy; the effect of cell temperature on the efficiency; a method for determining the point of zero zeta potential for macroscopic semiconductor samples; a technique using platinized titanium dioxide powders and ultraviolet radiation to produce chlorine, bromine, and iodine from solutions containing their respective ions; the photoelectrochemical properties of a class of layered compounds called transition metal thiophosphates; and a technique used to produce high conversion efficiency from laser radiation to chemical energy.
Digital Alloy Absorber for Photodetectors
NASA Technical Reports Server (NTRS)
Hill, Cory J. (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)
2016-01-01
In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.
Solid state potentiometric gaseous oxide sensor
NASA Technical Reports Server (NTRS)
Wachsman, Eric D. (Inventor); Azad, Abdul Majeed (Inventor)
2003-01-01
A solid state electrochemical cell (10a) for measuring the concentration of a component of a gas mixture (12) includes first semiconductor electrode (14) and second semiconductor electrode (16) formed from first and second semiconductor materials, respectively. The materials are selected so as to undergo a change in resistivity upon contacting a gas component, such as CO or NO. An electrolyte (18) is provided in contact with the first and second semiconductor electrodes. A reference cell can be included in contact with the electrolyte. Preferably, a voltage response of the first semiconductor electrode is opposite in slope direction to that of the second semiconductor electrode to produce a voltage response equal to the sum of the absolute values of the control system uses measured pollutant concentrations to direct adjustment of engine combustion conditions.
Hybrid organic semiconductor lasers for bio-molecular sensing.
Haughey, Anne-Marie; Foucher, Caroline; Guilhabert, Benoit; Kanibolotsky, Alexander L; Skabara, Peter J; Burley, Glenn; Dawson, Martin D; Laurand, Nicolas
2014-01-01
Bio-functionalised luminescent organic semiconductors are attractive for biophotonics because they can act as efficient laser materials while simultaneously interacting with molecules. In this paper, we present and discuss a laser biosensor platform that utilises a gain layer made of such an organic semiconductor material. The simple structure of the sensor and its operation principle are described. Nanolayer detection is shown experimentally and analysed theoretically in order to assess the potential and the limits of the biosensor. The advantage conferred by the organic semiconductor is explained, and comparisons to laser sensors using alternative dye-doped materials are made. Specific biomolecular sensing is demonstrated, and routes to functionalisation with nucleic acid probes, and future developments opened up by this achievement, are highlighted. Finally, attractive formats for sensing applications are mentioned, as well as colloidal quantum dots, which in the future could be used in conjunction with organic semiconductors.
High photoresponse of individual WS2 nanowire-nanoflake hybrid materials
NASA Astrophysics Data System (ADS)
Asres, Georgies Alene; Järvinen, Topias; Lorite, Gabriela S.; Mohl, Melinda; Pitkänen, Olli; Dombovari, Aron; Tóth, Geza; Spetz, Anita Lloyd; Vajtai, Robert; Ajayan, Pulickel M.; Lei, Sidong; Talapatra, Saikat; Kordas, Krisztian
2018-06-01
van der Waals solids have been recognized as highly photosensitive materials that compete conventional Si and compound semiconductor based devices. While 2-dimensional nanosheets of single and multiple layers and 1-dimensional nanowires of molybdenum and tungsten chalcogenides have been studied, their nanostructured derivatives with complex morphologies are not explored yet. Here, we report on the electrical and photosensitive properties of WS2 nanowire-nanoflake hybrid materials we developed lately. We probe individual hybrid nanostructured particles along the structure using focused ion beam deposited Pt contacts. Further, we use conductive atomic force microscopy to analyze electrical behavior across the nanostructure in the transverse direction. The electrical measurements are complemented by in situ laser beam illumination to explore the photoresponse of the nanohybrids in the visible optical spectrum. Photodetectors with responsivity up to ˜0.4 AW-1 are demonstrated outperforming graphene as well as most of the other transition metal dichalcogenide based devices.
Controlled nanopatterning & modifications of materials by energetic ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, O. P.
Compound semiconductors (InP, InAs and GaSb) has been exposed to energetic 3 keV Ar{sup +} ions for a varying fluence range of 10{sup 13} ions/cm{sup 2} to 10{sup 18} ions/cm{sup 2} at room temperature. Morphological modifications of the irradiated surfaces have been investigated by Scanning Tunneling Microscopy (STM) in UHV conditions. It is observed that InP and GaSb have fluence dependent nanopattering e.g. nanoneedle, aligned nanodots, superimposed nanodots ripple like structures while InAs has little fluence dependent behaviour indicating materials dependent growth of features on irradiated surfaces. Moreover, surface roughness and wavelength of the features are also depending on themore » materials and fluences. The RMS surface roughness has been found to be increased rapidly in the early stage of irradiation followed by slower escalate rate and later tends to saturate indicating influence of the nonlinear processes.« less
Perovskite- and Heusler based materials for thermoelectric converters
NASA Astrophysics Data System (ADS)
Weidenkaff, Anke
2015-03-01
The broad application of thermoelectric converters in future energy technologies requires the development of active, stable, low cost and sustainable materials. Semiconductors based on perovskite and heusler structures show substantial potential for thermoelectric energy conversion processes. Their good performance can be explained based on their suitable band structure, adjusted charge carrier density, mass and mobility, limited phonon transport, electron filtering possibilities, strongly correlated electronic systems, etc. These properties are widely tuneable by following theoretical concepts and a deep composition-structure-property understanding to change the composition, structure and size of the crystallites in innovative scalable synthesis procedures. Improved thermoelectric materials are developed, synthesised and tested in diverse high temperature applications to improve the efficiency and energy density of the thermoelectric conversion process. The lecture will provide a summary on the field of advanced perovskite-type ceramics and Heusler compounds gaining importance for a large number of future energy technologies.
Thin film photovoltaic device with multilayer substrate
Catalano, Anthony W.; Bhushan, Manjul
1984-01-01
A thin film photovoltaic device which utilizes at least one compound semiconductor layer chosen from Groups IIB and VA of the Periodic Table is formed on a multilayer substrate The substrate includes a lowermost support layer on which all of the other layers of the device are formed. Additionally, an uppermost carbide or silicon layer is adjacent to the semiconductor layer. Below the carbide or silicon layer is a metal layer of high conductivity and expansion coefficient equal to or slightly greater than that of the semiconductor layer.
Isotope engineering of van der Waals interactions in hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Vuong, T. Q. P.; Liu, S.; van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B.
2018-02-01
Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.
Isotope engineering of van der Waals interactions in hexagonal boron nitride.
Vuong, T Q P; Liu, S; Van der Lee, A; Cuscó, R; Artús, L; Michel, T; Valvin, P; Edgar, J H; Cassabois, G; Gil, B
2018-02-01
Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes ( 10 B and 11 B) compared to those with the natural distribution of boron (20 at% 10 B and 80 at% 11 B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10 BN than in 11 BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.
InP/ZnSe/ZnS core-multishell quantum dots for improved luminescence efficiency
NASA Astrophysics Data System (ADS)
Greco, Tonino; Ippen, Christian; Wedel, Armin
2012-04-01
Semiconductor quantum dots (QDs) exhibit unique optical properties like size-tunable emission color, narrow emission peak, and high luminescence efficiency. QDs are therefore investigated towards their application in light-emitting devices (QLEDs), solar cells, and for bio-imaging purposes. In most cases QDs made from cadmium compounds like CdS, CdSe or CdTe are studied because of their facile and reliable synthesis. However, due to the toxicity of Cd compounds and the corresponding regulation (e.g. RoHS directive in Europe) these materials are not feasible for customer applications. Indium phosphide is considered to be the most promising alternative because of the similar band gap (InP 1.35 eV, CdSe 1.73 eV). InP QDs do not yet reach the quality of CdSe QDs, especially in terms of photoluminescence quantum yield and peak width. Typically, QDs are coated with another semiconductor material of wider band gap, often ZnS, to passivate surface defects and thus improve luminescence efficiency. Concerning CdSe QDs, multishell coatings like CdSe/CdS/ZnS or CdSe/ZnSe/ZnS have been shown to be advantageous due to the improved compatibility of lattice constants. Here we present a method to improve the luminescence efficiency of InP QDs by coating a ZnSe/ZnS multishell instead of a ZnS single shell. ZnSe exhibits an intermediate lattice constant of 5.67 Å between those of InP (5.87 Å) and ZnS (5.41 Å) and thus acts as a wetting layer. As a result, InP/ZnSe/ZnS is introduced as a new core-shell quantum dot material which shows improved photoluminescence quantum yield (up to 75 %) compared to the conventional InP/ZnS system.
Semiconductor Materials for High Frequency Solid State Sources.
1985-01-18
saturation on near and submicron-scale device performance. The motivation for this is as follows: Presently, individual semiconductors are accepted or...basis of all FET scaling procedures; and is a major motivating factor for going to submicron structures. This scaling was tested with the 4 following...performance. The motivation for this is as follows: Presently, individual semiconductors are accepted or rejected as candidate device materials based, in
Mechanical scriber for semiconductor devices
Lin, Peter T.
1985-01-01
A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer.
NASA Astrophysics Data System (ADS)
Ma, Zhinan; Zhuang, Jibin; Zhang, Xu; Zhou, Zhen
2018-06-01
Because of graphene and phosphorene, two-dimensional (2D) layered materials of group IV and group V elements arouse great interest. However, group IV-V monolayers have not received due attention. In this work, three types of SiP monolayers were computationally designed to explore their electronic structure and optical properties. Computations confirm the stability of these monolayers, which are all indirect-bandgap semiconductors with bandgaps in the range 1.38-2.21 eV. The bandgaps straddle the redox potentials of water at pH = 0, indicating the potential of the monolayers for use as watersplitting photocatalysts. The computed optical properties demonstrate that certain monolayers of SiP 2D materials are absorbers of visible light and would serve as good candidates for optoelectronic devices.
Synthesis and thermal conductivity of type II silicon clathrates
NASA Astrophysics Data System (ADS)
Beekman, M.; Nolas, G. S.
2006-08-01
We have synthesized and characterized polycrystalline Na 1Si 136 and Na 8Si 136, compounds possessing the type II clathrate hydrate crystal structure. Resistivity measurements from 10 to 300 K indicate very large resistivities in this temperature range, with activated temperature dependences indicative of relatively large band gap semiconductors. The thermal conductivity is very low; two orders-of-magnitude lower than that of diamond-structure silicon at room temperature. The thermal conductivity of Na 8Si 136 displays a temperature dependence that is atypical of crystalline solids and more indicative of amorphous materials. This work is part of a continuing effort to explore the many different compositions and structure types of clathrates, a class of materials that continues to be of interest for scientific and technological applications.
Ferromagnetism in Fe-doped transition metal nitrides
NASA Astrophysics Data System (ADS)
Sharma, Ramesh; Sharma, Yamini
2018-04-01
Early transition metal mononitrides ScN and YN are refractory compounds with high hardness and melting points as well semiconducting properties. The presence of nitrogen vacancies in ScN/YN introduces asymmetric peaks in the density of states close to Fermi level, the same effects can be achieved by doping by Mn or Fe-atoms. Due to the substitution of TM atoms at Sc/Y sites, it was found that the p-d hybridization induces small magnetic moments at both Sc/Y and N sites giving rise to magnetic semiconductors (MS). From the calculated temperature dependent transport properties, the power factor and ZT is found to be lowered for doped ScN whereas it increases for doped YN. It is proposed that these materials have promising applications as spintronics and thermoelectric materials.
NASA Astrophysics Data System (ADS)
Singh, Yadunath
2018-05-01
Organic semiconductors have so far found extensive practical applications similar to inorganic semiconductors. Interest in these compounds has been stimulated by the synthesis of several powerful electron acceptors, such as tetracynoethylene (TCNE), 7, 7, 8, 8, tetracynoquinodimethane (TCNQ) and cyno-p-benzoquinone. In this connection TCNQ is of particular interest, due to presence of four powerful electron accepting groups in its molecule. Nucleophillic addition reactions, which are rarely encountered among unsaturated compounds, as well as addition reactions proceeding via a one electron transfer stage are characteristic of this substance.
Byproduct-free mass production of compound semiconductor nanowires: zinc phosphide
NASA Astrophysics Data System (ADS)
Chen, Yixi; Polinnaya, Rakesh; Vaddiraju, Sreeram
2018-05-01
A method for the mass production of compound semiconductor nanowires that involves the direct reaction of component elements in a chemical vapor deposition chamber (CVD) is presented. This method results in nanowires, without the associated production of any other byproducts such as nanoparticles or three-dimensional (3D) bulk crystals. Furthermore, no unreacted reactants remain mixed with the nanowire product in this method. This byproduct-free nanowire production thus circumvents the need to tediously purify and collect nanowires from a mixture of products/reactants after their synthesis. Demonstration made using zinc phosphide (Zn3P2) material system as an example indicated that the direct reaction of zinc microparticles with phosphorus supplied via the vapor phase results in the production of gram quantities of nanowires. To enhance thermal transport and achieve the complete reaction of zinc microparticles, while simultaneously ensuring that the microparticles do not agglomerate into macroscale zinc particles and partly remain unreacted (owing to diffusion limitations), pellets composed of mixtures of zinc and a sacrificial salt, NH4Cl, were employed as the starting material. The sublimation by decomposition of NH4Cl in the early stages of the reaction leaves a highly porous pellet of zinc composed of only zinc microparticles, which allows for inward diffusion of phosphorus/outward diffusion of zinc and the complete conversion of zinc into Zn3P2 nanowires. NH4Cl also aids in removal of any native oxide layer present on the zinc microparticles that may prevent their reaction with phosphorus. This method may be used to mass produce many other nanowires in a byproduct-free manner, besides Zn3P2.
Processing of insulators and semiconductors
Quick, Nathaniel R.; Joshi, Pooran C.; Duty, Chad Edward; Jellison, Jr., Gerald Earle; Angelini, Joseph Attilio
2015-06-16
A method is disclosed for processing an insulator material or a semiconductor material. The method includes pulsing a plasma lamp onto the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a large area region of the material. The method may further include pulsing a laser onto a selected region of the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a selected region of the material.
High resolution and sensitivity infrared tomography
NASA Astrophysics Data System (ADS)
Fillard, J. P.; Montgomery, P. C.; Gall, P.; Castagné, M.; Bonnafé, J.
1990-06-01
Laser scanning tomography was proposed some years ago by Ogawa and coworkers as a qualification test for semiconductor materials. From that time on, this technique has been used profitably to obtain images of internal defect distributions in III-V compounds as well as in II-VI compounds or even in silicon. These images especially reveal micro precipitates (e.g. decorated dislocations) distributed in the volume of the bulk material. Previously images sale were adapted to wafer examination (centimeter scale) but it appeared later that a major interest was to improve the resolution down to the microscopical range in order to investigate smaller zones and, above all, thinner sections. Nevertheless there is a limitation in the range of 10 μm for the minimum thickness of LST planes and this drawback prevents the using of this technique in the analysis of thin epilayers or structures. In this paper the emphasis is put on the fundamental and practical limits of the resolution, contrast and detectivity. Special optical arrangements will be suggested to reach the best specifications. Other possible dark field scattering tomographical microscopy methods have been evaluated and will be comparatively discussed in the light of preliminary results. Typical results relative to III-V compounds as well as silicon will be presented and quantitative specifications of the methods will be compared.
Printable semiconductor structures and related methods of making and assembling
Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang; , Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn
2013-03-12
The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.
Printable semiconductor structures and related methods of making and assembling
Nuzzo, Ralph G [Champaign, IL; Rogers, John A [Champaign, IL; Menard, Etienne [Durham, NC; Lee, Keon Jae [Tokyo, JP; Khang, Dahl-Young [Urbana, IL; Sun, Yugang [Westmont, IL; Meitl, Matthew [Raleigh, NC; Zhu, Zhengtao [Rapid City, SD; Ko, Heung Cho [Urbana, IL; Mack, Shawn [Goleta, CA
2011-10-18
The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.
Printable semiconductor structures and related methods of making and assembling
Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn
2010-09-21
The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.
Method of preparing nitrogen containing semiconductor material
Barber, Greg D.; Kurtz, Sarah R.
2004-09-07
A method of combining group III elements with group V elements that incorporates at least nitrogen from a nitrogen halide for use in semiconductors and in particular semiconductors in photovoltaic cells.
Semiconductor Devices and Applications. Electronics Module 5. Instructor's Guide.
ERIC Educational Resources Information Center
Chappell, John; And Others
This module is the fifth of 10 modules in the competency-based electronics series. Introductory materials include a listing of competencies addressed in the module, a parts/equipment list, and a cross-reference table of instructional materials. Sixteen instructional units cover: semiconductor materials; diodes; diode applications and…
Semiconductor materials for high frequency solid state sources
NASA Astrophysics Data System (ADS)
Grubin, H. L.
1983-03-01
The broad goal of the subject contract is to suggest candidate materials for high frequency device operation. During the initial phase of the study, attention has been focused on defining the general role of the band structure and associated scattering processes in determining the response of semiconductors to transient high-speed electrical signals. Moments of the Boltzmann transport equation form the basis of the study, and the scattering rates define the semiconductor under study. The selection of semiconductor materials proceeds from a set of simple, yet significant, set of scaling principles. During the first quarter scaling was associated with what can formally be identified as velocity invariants, but which in more practical terms identifies the relative speed advantages of e.g., InP over GaAs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliev, Ziya S., E-mail: ziyasaliev@gmail.com; Institute of Physics, ANAS, H.Javid ave. 131, AZ1143 Baku; Donostia International Physics Center
Single crystals of the ternary copper compounds CuTlS and CuTlSe have been successfully grown from stoichiometric melt by using vertical Bridgman-Stockbarger method. The crystal structure of the both compounds has been determined by powder and single crystal X-Ray diffraction. They crystallize in the PbFCl structure type with two formula units in the tetragonal system, space group P4/nmm, a=3.922(2); c=8.123(6); Z=2 and a=4.087(6); c=8.195(19) Å; Z=2, respectively. The band structure of the reported compounds has been analyzed by means of full-potential linearized augmented plane-wave (FLAPW) method based on the density functional theory (DFT). Both compounds have similar band structures and aremore » narrow-gap semiconductors with indirect band gap. The resistivity measurements agree with a semiconductor behavior although anomalies are observed at low temperature. - Graphical abstract: The crystal structures of CuTl and CuTlSe are isostructural with the PbFCl-type and the superconductor LiFeAs-type tetragonal structure. The band structure calculations confirmed that they are narrow-gap semiconductors with indirect band gaps of 0.326 and 0.083 eV. The resistivity measurements, although confirming the semiconducting behavior of both compounds exhibit unusual anomalies at low temperatures. - Highlights: • Single crystals of CuTlS and CuTlSe have been successfully grown by Bridgman-Stockbarger method. • The crystal structure of the both compounds has been determined by single crystal XRD. • The band structure of the both compounds has been analyzed based on the density functional theory (DFT). • The resistivity measurements have been carried out from room temperature down to 10 K.« less
Feng, Wenchun; Kim, Ji-Young; Wang, Xinzhi; Calcaterra, Heather A; Qu, Zhibei; Meshi, Louisa; Kotov, Nicholas A
2017-03-01
Semiconductors with chiral geometries at the nanoscale and mesoscale provide a rich materials platform for polarization optics, photocatalysis, and biomimetics. Unlike metallic and organic optical materials, the relationship between the geometry of chiral semiconductors and their chiroptical properties remains, however, vague. Homochiral ensembles of semiconductor helices with defined geometries open the road to understanding complex relationships between geometrical parameters and chiroptical properties of semiconductor materials. We show that semiconductor helices can be prepared with an absolute yield of ca 0.1% and an enantiomeric excess (e.e.) of 98% or above from cysteine-stabilized cadmium telluride nanoparticles (CdTe NPs) dispersed in methanol. This high e.e. for a spontaneously occurring chemical process is attributed to chiral self-sorting based on the thermodynamic preference of NPs to assemble with those of the same handedness. The dispersions of homochiral self-assembled helices display broadband visible and near-infrared (Vis-NIR) polarization rotation with anisotropy ( g ) factors approaching 0.01. Calculated circular dichroism (CD) spectra accurately reproduced experimental CD spectra and gave experimentally validated spectral predictions for different geometrical parameters enabling de novo design of chiroptical semiconductor materials. Unlike metallic, ceramic, and polymeric helices that serve predominantly as scatterers, chiroptical properties of semiconductor helices have nearly equal contribution of light absorption and scattering, which is essential for device-oriented, field-driven light modulation. Deconstruction of a helix into a series of nanorods provides a simple model for the light-matter interaction and chiroptical activity of helices. This study creates a framework for further development of polarization-based optics toward biomedical applications, telecommunications, and hyperspectral imaging.
NASA Astrophysics Data System (ADS)
Yoon, Myung-Han
Two novel classes of organic semiconductors based on perfluoroarene/arene-modified oligothiophenes and perfluoroacyl/acyl-derivatized quaterthiophens are developed. The frontier molecular orbital energies of these compounds are studied by optical spectroscopy and electrochemistry while solid-state/film properties are investigated by thermal analysis, x-ray diffraction, and scanning electron microscopy. Organic thin film transistors (OTFTs) performance parameters are discussed in terms of the interplay between semiconductor molecular energetics and film morphologies/microstructures. For perfluoroarene-thiophene oligomer systems, majority charge carrier type and mobility exhibit a strong correlation with the regiochemistry of perfluoroarene incorporation. In quaterthiophene-based semiconductors, carbonyl-functionalization allows tuning of the majority carrier type from p-type to ambipolar and to n-type. In situ conversion of a p-type semiconducting film to n-type film is also demonstrated. Very thin self-assembled or spin-on organic dielectric films have been integrated into OTFTs to achieve 1 - 2 V operating voltages. These new dielectrics are deposited either by layer-by-layer solution phase deposition of molecular precursors or by spin-coating a mixture of polymer and crosslinker, resulting in smooth and virtually pinhole-free thin films having exceptionally large capacitances (300--700 nF/cm2) and low leakage currents (10 -9 - 10-7 A/cm2). These organic dielectrics are compatible with various vapor- or solution-deposited p- and n-channel organic semiconductors. Furthermore, it is demonstrated that spin-on crosslinked-polymer-blend dielectrics can be employed for large-area/patterned electronics, and complementary inverters. A general approach for probing semiconductor-dielectric interface effects on OTFT performance parameters using bilayer gate dielectrics is presented. Organic semiconductors having p-, n-type, or ambipolar majority charge carriers are grown on six different bilayer dielectrics consisting of various spin-coated polymers/HMDS on 300 nm SiO2/p+-Si, followed by transistor fabrication. In case of air-sensitive n-type semiconductors, dielectric surface modifications induce large variations in the corresponding OTFT performance parameters while film morphologies and microstructures remain unchanged. In contrast, the device performance of air-stable n-type and p-type semiconductors is not significantly affected by dielectric surface modifications. The origin of the mobility sensitivity to the various surface chemistries in the case of air sensitive n-type semiconductors is found to be due to electron trapping by silanol and carbonyl functionalities at the semiconductor-dielectric interface.
Radiation hardening of metal-oxide semi-conductor (MOS) devices by boron
NASA Technical Reports Server (NTRS)
Danchenko, V.
1974-01-01
Technique using boron effectively protects metal-oxide semiconductor devices from ionizing radiation without using shielding materials. Boron is introduced into insulating gate oxide layer at semiconductor-insulator interface.
Progress in piezo-phototronic effect modulated photovoltaics.
Que, Miaoling; Zhou, Ranran; Wang, Xiandi; Yuan, Zuqing; Hu, Guofeng; Pan, Caofeng
2016-11-02
Wurtzite structured materials, like ZnO, GaN, CdS, and InN, simultaneously possess semiconductor and piezoelectric properties. The inner-crystal piezopotential induced by external strain can effectively tune/control the carrier generation, transport and separation/combination processes at the metal-semiconductor contact or p-n junction, which is called the piezo-phototronic effect. This effect can efficiently enhance the performance of photovoltaic devices based on piezoelectric semiconductor materials by utilizing the piezo-polarization charges at the junction induced by straining, which can modulate the energy band of the piezoelectric material and then accelerate or prevent the separation process of the photon-generated electrons and vacancies. This paper introduces the fundamental physics principles of the piezo-phototronic effect, and reviews recent progress in piezo-phototronic effect enhanced solar cells, including solar cells based on semiconductor nanowire, organic/inorganic materials, quantum dots, and perovskite. The piezo-phototronic effect is suggested as a suitable basis for the development of an innovative method to enhance the performance of solar cells based on piezoelectric semiconductors by applied extrinsic strains, which might be appropriate for fundamental research and potential applications in various areas of optoelectronics.
Optoelectronic properties analysis of Ti-substituted GaP.
Tablero, C
2005-11-08
A study using first principles of the electronic and optical properties of materials derived from a GaP host semiconductor where one Ti atom is substituted for one of the eight P atoms is presented. This material has a metallic intermediate band sandwiched between the valence and conduction bands of the host semiconductor for 0 < or = U < or = 8 eV where U is the Hubbard parameter. The potential of these materials is that when they are used as an absorber of photons in solar cells, the efficiency is increased significantly with respect to that of the host semiconductor. The results show that the main contribution to the intermediate band is the Ti atom and that this material can absorb photons of lower energy than that of the host semiconductor. The efficiency is increased with respect to that of the host semiconductor mainly because of the absorption from the intermediate to conduction band. As U increases, the contribution of the Ti-d orbitals to the intermediate band varies, increasing the d(z2) character at the bottom of the intermediate band.
Progress in piezo-phototronic effect modulated photovoltaics
NASA Astrophysics Data System (ADS)
Que, Miaoling; Zhou, Ranran; Wang, Xiandi; Yuan, Zuqing; Hu, Guofeng; Pan, Caofeng
2016-11-01
Wurtzite structured materials, like ZnO, GaN, CdS, and InN, simultaneously possess semiconductor and piezoelectric properties. The inner-crystal piezopotential induced by external strain can effectively tune/control the carrier generation, transport and separation/combination processes at the metal-semiconductor contact or p-n junction, which is called the piezo-phototronic effect. This effect can efficiently enhance the performance of photovoltaic devices based on piezoelectric semiconductor materials by utilizing the piezo-polarization charges at the junction induced by straining, which can modulate the energy band of the piezoelectric material and then accelerate or prevent the separation process of the photon-generated electrons and vacancies. This paper introduces the fundamental physics principles of the piezo-phototronic effect, and reviews recent progress in piezo-phototronic effect enhanced solar cells, including solar cells based on semiconductor nanowire, organic/inorganic materials, quantum dots, and perovskite. The piezo-phototronic effect is suggested as a suitable basis for the development of an innovative method to enhance the performance of solar cells based on piezoelectric semiconductors by applied extrinsic strains, which might be appropriate for fundamental research and potential applications in various areas of optoelectronics.
Methods for forming particles from single source precursors
Fox, Robert V [Idaho Falls, ID; Rodriguez, Rene G [Pocatello, ID; Pak, Joshua [Pocatello, ID
2011-08-23
Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.
Structural Fluctuations and Thermophysical Properties of Molten II-VI Compounds
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Zhu, Shen; Li, Chao; Scripa, R.; Lehoczky, Sandra L.; Kim, Y. W.; Baird, J. K.; Lin, B.; Ban, Heng; Benmore, Chris
2003-01-01
The objectives of the project are to conduct ground-based experimental and theoretical research on the structural fluctuations and thermophysical properties of molten II-VI compounds to enhance the basic understanding of the existing flight experiments in microgravity materials science programs as well as to study the fundamental heterophase fluctuation phenomena in these melts by: 1) conducting neutron scattering analysis and measuring quantitatively the relevant thermophysical properties of the II-VI melts (such as viscosity, electrical conductivity, thermal diffusivity and density) as well as the relaxation characteristics of these properties to advance the understanding of the structural properties and the relaxation phenomena in these melts and 2) performing theoretical analyses on the melt systems to interpret the experimental results. All the facilities required for the experimental measurements have been procured, installed and tested. It has long been recognized that liquid Te presents a unique case having properties between those of metals and semiconductors. The electrical conductivity for Te melt increases rapidly at melting point, indicating a semiconductor-metal transition. Te melts comprise two features, which are usually considered to be incompatible with each other: covalently bound atoms and metallic-like behavior. Why do Te liquids show metallic behavior? is one of the long-standing issues in liquid metal physics. Since thermophysical properties are very sensitive to the structural variations of a melt, we have conducted extensive thermophysical measurements on Te melt.
Optical temperature indicator using thermochromic semiconductors
Kronberg, J.W.
1995-01-01
A reversible optical temperature indicator utilizes thermochromic semiconductors which vary in color in response to various temperature levels. The thermochromic material is enclosed in an enamel which provides protection and prevents breakdown at higher temperatures. Cadmium sulfide is the preferred semiconductor material. The indicator may be utilized as a sign or in a striped arrangement to clearly provide a warning to a user. The various color responses provide multiple levels of alarm.
Optical temperature indicator using thermochromic semiconductors
Kronberg, James W.
1996-01-01
A reversible optical temperature indicator utilizes thermochromic semiconductors which vary in color in response to various temperature levels. The thermochromic material is enclosed in an enamel which provides protection and prevents breakdown at higher temperatures. Cadmium sulfide is the preferred semiconductor material. The indicator may be utilized as a sign or in a striped arrangement to clearly provide a warning to a user. The various color responses provide multiple levels of alarm.
Optical temperature sensor using thermochromic semiconductors
Kronberg, James W.
1996-01-01
An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit.
Optical temperature sensor using thermochromic semiconductors
Kronberg, James W.
1998-01-01
An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card.
Optical temperature sensor using thermochromic semiconductors
Kronberg, J.W.
1998-06-30
An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card. 8 figs.
Plasma Processing of Metallic and Semiconductor Thin Films in the Fisk Plasma Source
NASA Technical Reports Server (NTRS)
Lampkin, Gregory; Thomas, Edward, Jr.; Watson, Michael; Wallace, Kent; Chen, Henry; Burger, Arnold
1998-01-01
The use of plasmas to process materials has become widespread throughout the semiconductor industry. Plasmas are used to modify the morphology and chemistry of surfaces. We report on initial plasma processing experiments using the Fisk Plasma Source. Metallic and semiconductor thin films deposited on a silicon substrate have been exposed to argon plasmas. Results of microscopy and chemical analyses of processed materials are presented.
Kharel, P.; Herran, J.; Lukashev, P.; ...
2016-12-19
Recent discovery of a new class of materials, spin-gapless semiconductors (SGS), has attracted considerable attention in the last few years, primarily due to potential applications in the emerging field of spin-based electronics (spintronics). Here, we investigate structural, electronic, and magnetic properties of one potential SGS compound, MnCrVAl, using various experimental and theoretical techniques. Our calculations show that this material exhibits ≈ 0.5 eV band gap for the majority-spin states, while for the minority-spin it is nearly gapless. The calculated magnetic moment for the completely ordered structure is 2.9 μB/f.u., which is different from our experimentally measured value of almost zero.more » Here, this discrepancy is explained by the structural disorder. In particular, A2 type disorder, where Mn or Cr atoms exchange their positions with Al atoms, results in induced antiferromagnetic exchange coupling, which, at a certain level of disorder, effectively reduces the total magnetic moment to zero. This is consistent with our x-ray diffraction measurements which indicate the presence of A2 disorder in all of our samples. In addition, we also show that B2 disorder does not result in antiferromagnetic exchange coupling and therefore does not significantly reduce the total magnetic moment.« less
Manipulating semiconductor colloidal stability through doping.
Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N
2014-10-10
The interface between a doped semiconductor material and electrolyte solution is of considerable fundamental interest, and is relevant to systems of practical importance. Both adjacent domains contain mobile charges, which respond to potential variations. This is exploited to design electronic and optoelectronic sensors, and other enabling semiconductor colloidal materials. We show that the charge mobility in both phases leads to a new type of interaction between semiconductor colloids suspended in aqueous electrolyte solutions. This interaction is due to the electrostatic response of the semiconductor interior to disturbances in the external field upon the approach of two particles. The electrostatic repulsion between two charged colloids is reduced from the one governed by the charged groups present at the particles surfaces. This type of interaction is unique to semiconductor particles and may have a substantial effect on the suspension dynamics and stability.
ZnSe based semiconductor core-shell structures: From preparation to application
NASA Astrophysics Data System (ADS)
Sun, Chengcheng; Gu, Yarong; Wen, Weijia; Zhao, Lijuan
2018-07-01
Inorganic core-shell semiconductor materials have attracted increasing interest in recent years because of the unique structure, stable chemical properties and high performance in devices. With special properties such as a direct band-gap and excellent photoelectrical characteristics, ZnSe based semiconductor core-shell structures are promising materials for applications in such fields as photocatalysts, light-emitting diodes, solar cells, photodetectors, biomedical science and so on. However, few reviews on ZnSe based semiconductor core-shell structures have been reported so far. Therefore this manuscript mainly focuses on the research activities on ZnSe based semiconductor core-shell composites including various preparation methods and the applications of these core-shell structures, especially in photocatalysts, light emitting, solar cells and photodetectors. The possibilities and limitations of studies on ZnSe based semiconductor core-shell composites are also highlighted.
Kübel, Christian; Voigt, Andreas; Schoenmakers, Remco; Otten, Max; Su, David; Lee, Tan-Chen; Carlsson, Anna; Bradley, John
2005-10-01
Electron tomography is a well-established technique for three-dimensional structure determination of (almost) amorphous specimens in life sciences applications. With the recent advances in nanotechnology and the semiconductor industry, there is also an increasing need for high-resolution three-dimensional (3D) structural information in physical sciences. In this article, we evaluate the capabilities and limitations of transmission electron microscopy (TEM) and high-angle-annular-dark-field scanning transmission electron microscopy (HAADF-STEM) tomography for the 3D structural characterization of partially crystalline to highly crystalline materials. Our analysis of catalysts, a hydrogen storage material, and different semiconductor devices shows that features with a diameter as small as 1-2 nm can be resolved in three dimensions by electron tomography. For partially crystalline materials with small single crystalline domains, bright-field TEM tomography provides reliable 3D structural information. HAADF-STEM tomography is more versatile and can also be used for high-resolution 3D imaging of highly crystalline materials such as semiconductor devices.
Crystal growth of ZnSe and related ternary compound semiconductors by physical vapor transport
NASA Technical Reports Server (NTRS)
Su, Ching-Hua
1993-01-01
The materials to be investigated are ZnSe and related ternary semiconducting alloys (e.g., ZnS(x)Se(1-x), ZnTe(x)Se(1-x), and Zn(1-x)Cd(x)Se). These materials are useful for opto-electronic applications such as high efficient light emitting diodes and low power threshold and high temperature lasers in the blue-green region of the visible spectrum. The recent demonstration of its optical bistable properties also makes ZnSe a possible candidate material for digital optical computers. The investigation consists of an extensive ground-based study followed by flight experimentation, and involves both experimental and theoretical work. The objectives of the ground-based work are to establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low gravity environment and to obtain the experimental data and perform the analyses required to define the optimum parameters for the flight experiments. During the six months of the Preliminary Definition Phase, the research efforts were concentrated on the binary compound ZnSe - the purification of starting materials of Se by zone refining, the synthesis of ZnSe starting materials, the heat treatments of the starting materials, the vapor transport rate measurements, the vapor partial pressure measurements of ZnSe, the crystal growth of ZnSe by physical vapor transport, and various characterization on the grown ZnSe crystals.
Fabrication of eco-friendly PNP transistor using RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Kumar, B. Santhosh; Harinee, N.; Purvaja, K.; Shanker, N. Praveen; Manikandan, M.; Aparnadevi, N.; Mukilraj, T.; Venkateswaran, C.
2018-05-01
An effort has been made to fabricate a thin film transistor using eco-friendly oxide semiconductor materials. Oxide semiconductor materials are cost - effective, thermally and chemically stable with high electron/hole mobility. Copper (II) oxide is a p-type semiconductor and zinc oxide is an n-type semiconductor. A pnp thin film transistor was fabricated using RF magnetron sputtering. The films deposited have been subjected to structural characterization using AFM. I-V characterization of the fabricated device, Ag/CuO/ZnO/CuO/Ag, confirms transistor behaviour. The mechanism of electron/hole transport of the device is discussed below.
Waveguide embedded plasmon laser with multiplexing and electrical modulation
Ma, Ren-min; Zhang, Xiang
2017-08-29
This disclosure provides systems, methods, and apparatus related to nanometer scale lasers. In one aspect, a device includes a substrate, a line of metal disposed on the substrate, an insulating material disposed on the line of metal, and a line of semiconductor material disposed on the substrate and the insulating material. The line of semiconductor material overlaying the line of metal, disposed on the insulating material, forms a plasmonic cavity.
Stoichiometry control in quantum dots: a viable analog to impurity doping of bulk materials.
Luther, Joseph M; Pietryga, Jeffrey M
2013-03-26
A growing body of research indicates that the stoichiometry of compound semiconductor quantum dots (QDs) may offer control over the materials' optoelectronic properties in ways that could be invaluable in electronic devices. Quantum dots have been characterized as having a stoichiometric bulk-like core with a highly reconstructed surface of a more flexible composition, consisting essentially of ligated, weakly bound ions. As such, many efforts toward stoichiometry-based control over material properties have focused on ligand manipulation. In this issue of ACS Nano, Murray and Kagan's groups instead demonstrate control of the conductive properties of QD arrays by altering the stoichiometry via atomic infusion using a thermal evaporation technique. In this work, PbSe and PbS QD films are made to show controlled n- or p-type behavior, which is key to developing optimized QD-based electronics. In this Perspective, we discuss recent developments and the future outlook in using stoichiometry as a tool to further manipulate QD material properties in this context.
A review of recent theoretical studies in nonlinear crystals: towards the design of new materials
NASA Astrophysics Data System (ADS)
Luppi, Eleonora; Véniard, Valérie
2016-12-01
Nonlinear optics is an important and exciting field of fundamental and applied research, with applications in many different disciplines such as physics chemistry, material science and biology. In the recent years, nonlinear optical phenomena started to be also widely used in technological applications for optoelectronics and photovoltaics. This coincided with an important experimental and theoretical search for new materials with an efficient and exploitable nonlinear optical response. Here, starting from the discovery of nonlinear optics, we review the most important theoretical formalisms developed to understand, interpret and predict the nonlinear optical phenomena. We show the different level of approximation of the many-electrons interactions that these formalisms can describe which are fundamental in the interpretation of the experiments. The impact of the theory is then analyzed on different classes of new materials particularly studied in these years: silicon bulk to nano, compound semiconductors, graphene, transition metal dichalcogenide, hexagonal boron nitride and borate crystals.
Optical temperature sensor using thermochromic semiconductors
Kronberg, J.W.
1994-01-01
Optical thermometry is a growing technological field which exploits the ability of certain materials to change their optical properties with temperature. A subclass of such materials are those which change their color as a reversible and reproducible function of temperature. These materials are thermochromic. This invention is a composition to measure temperature utilizing thermochromic semiconductors.
EDITORIAL The 23rd Nordic Semiconductor Meeting The 23rd Nordic Semiconductor Meeting
NASA Astrophysics Data System (ADS)
Ólafsson, Sveinn; Sveinbjörnsson, Einar
2010-12-01
A Nordic Semiconductor Meeting is held every other year with the venue rotating amongst the Nordic countries of Denmark, Finland, Iceland, Norway and Sweden. The focus of these meetings remains 'original research and science being carried out on semiconductor materials, devices and systems'. Reports on industrial activity have usually featured. The topics have ranged from fundamental research on point defects in a semiconductor to system architecture of semiconductor electronic devices. Proceedings from these events are regularly published as a topical issue of Physica Scripta. All of the papers in this topical issue have undergone critical peer review and we wish to thank the reviewers and the authors for their cooperation, which has been instrumental in meeting the high scientific standards and quality of the series. This meeting of the 23rd Nordic Semiconductor community, NSM 2009, was held at Háskólatorg at the campus of the University of Iceland, Reykjavik, Iceland, 14-17 June 2009. Support was provided by the University of Iceland. Almost 50 participants presented a broad range of topics covering semiconductor materials and devices as well as related material science interests. The conference provided a forum for Nordic and international scientists to present and discuss new results and ideas concerning the fundamentals and applications of semiconductor materials. The meeting aim was to advance the progress of Nordic science and thus aid in future worldwide technological advances concerning technology, education, energy and the environment. Topics Theory and fundamental physics of semiconductors Emerging semiconductor technologies (for example III-V integration on Si, novel Si devices, graphene) Energy and semiconductors Optical phenomena and optical devices MEMS and sensors Program 14 June Registration 13:00-17:00 15 June Meeting program 09:30-17:00 and Poster Session I 16 June Meeting program 09:30-17:00 and Poster Session II 17 June Excursion and dinner on Icelandic National Day In connection with the conference, a summer school for 40 research students was organized by the Nordic LENS network. The summer school took place in Reykjavik on 11-14 June. For more information on the school please visit the website. The next Nordic Semiconductor meeting, NSM 2011, is scheduled to take place in Aarhus, Denmark, 19-22 June 2011. A full participant list is available in the PDF of this article.