Science.gov

Sample records for compound synthetic capacity

  1. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus pseudoalteromonas.

    PubMed

    Bowman, John P

    2007-12-18

    The genus Pseudoalteromonas is a marine group of bacteria belonging to the class Gammaproteobacteria that has come to attention in the natural product and microbial ecology science fields in the last decade. Pigmented species of the genus have been shown to produce an array of low and high molecular weight compounds with antimicrobial, anti-fouling, algicidal and various pharmaceutically-relevant activities. Compounds formed include toxic proteins, polyanionic exopolymers, substituted phenolic and pyrolle-containing alkaloids, cyclic peptides and a range of bromine-substituted compounds. Ecologically, Pseudoalteromonas appears significant and to date has been shown to influence biofilm formation in various marine econiches; involved in predator-like interactions within the microbial loop; influence settlement, germination and metamorphosis of various invertebrate and algal species; and may also be adopted by marine flora and fauna as defensive agents. Studies have been so far limited to a relatively small subset of strains compared to the known diversity of the genus suggesting that many more discoveries of novel natural products as well as ecological connections these may have in the marine ecosystem remain to be made.

  2. MONITORING SYNTHETIC MUSK COMPOUNDS IN ...

    EPA Pesticide Factsheets

    Synthetic musk compounds are manufactured as fragrance materials for consumer products and are consumed in very large quantities worldwide. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than parts per billion, ppb). IAG with USGS ends in FY05. APM 20 due in FY05.Subtask 2: Coordination of interagency research and public outreach activities for PPCPs. Participate on NSTC Health and Environment subcommittee working group on PPCPs. Web site maintenance and expansion, invited technical presentations, invited articles for peer-reviewed journals, interviews for media, responding to public inquiries. Subtask 3: To apply state-of-the-art envir

  3. Thermodynamic Analysis of Ionic Compounds: Synthetic Applications.

    ERIC Educational Resources Information Center

    Yoder, Claude H.

    1986-01-01

    Shows how thermodynamic cycles can be used to understand trends in heats of formation and aqueous solubilities and, most importantly, how they may be used to choose synthetic routes to new ionic compounds. (JN)

  4. USING ISOTHERMS TO PREDICT GAC'S CAPACITY FOR SYNTHETIC ORGANICS

    EPA Science Inventory

    This investigation involved operating a pilot granular activated carbon (GAC) plant to obtain capacity data under typical field conditions, determining isotherms for selected synthetic organic chemicals, and comparing the capacity predicted by the isotherm data with the pilot-pla...

  5. LEVELS OF SYNTHETIC MUSK COMPOUNDS IN ...

    EPA Pesticide Factsheets

    To test the ruggedness of a newly developed analytical method for synthetic musks, a 1-year monthly monitoring of synthetic musks in water and biota was conducted for LakeMead (near Las Vegas, Nevada) as well as for combined sewage-dedicated effluent streams feeding Lake Mead. Data obtained from analyses of combined effluent streams from three municipal sewage treatment plants, from the effluent-receiving lake water, and from whole carp (Cyprinus carpio) tissue, indicated bioconcentration of synthetic musks in carp (1400-4500 pg/g). That same data were evaluated for the prediction of levels of synthetic musk compounds in fish, using values from the source (sewage treatment plant effluent [STP]). This study confirmed the presence of polycyclic and nitro musks in STP effluent, Lake Mead water, and carp. The concentrations of the polycyclic and nitro musks found in Lake Mead carp were considerably lower than previous studies in Germany, other European countries, and Japan. The carp samples were found to have mostly the mono-amino-metabolites of the nitro musks and intact polycyclic musks, principally HHCB (Galaxolide®) and AHTN (Tonalide®). Finally, the determination of sufficiently high levels of Galaxolide® and 4-amino musk xylene in STP effluent may be used to infer the presence of trace levels of other classes of musk compounds in the lake water. To be presented is an overview of the chemistry, the monitoring methodology, andthe statistical evaluation of con

  6. LEVELS OF SYNTHETIC MUSKS COMPOUNDS IN AQUATIC ENVIRONMENT

    EPA Science Inventory

    Synthetic musk compounds are consumer chemicals manufactured as fragrance materials Due to their high worldwide usage and release, they frequently occur in the aquatic and marine environments. The U.S. EPA (ORD, Las Vegas) developed surface-water monitoring methodology and conduc...

  7. Aurones: interesting natural and synthetic compounds with emerging biological potential.

    PubMed

    Zwergel, Clemens; Gaascht, François; Valente, Sergio; Diederich, Marc; Bagrel, Denyse; Kirsch, Gilbert

    2012-03-01

    Aurones [2-benzylidenebenzofuran-3(2H)-ones] are either natural or synthetic compounds, belonging to the flavonoid family. They are isomeric to flavones and provide a bright yellow color to the plants in which they occur. Today, a literature survey indicates that the related flavonoids have been studied not only for their physiological properties and effects on Nature, but also for their therapeutic potential. Aurones are recently attracting the interest of an increasing number of research groups, and, since the last review, some interesting advances have been made in understanding the aurones. In this review, we report the recent advances made on the synthetic routes towards aurones. We also highlight their activity in different biological areas, as well as applied genetic plant modifications to produce these colored compounds. Their synthesis, structure-activity relationships and the importance of the substitution pattern will also be mentioned. Finally, some aspects regarding the possible development of aurones will be discussed briefly.

  8. Novel strategies against Candida biofilms: interest of synthetic compounds.

    PubMed

    Girardot, Marion; Imbert, Christine

    2016-01-01

    A biofilm is a consortium of microbial cells that are attached to a substratum or an interface. It should be considered a reservoir that may induce serious infections. Indeed, Candidaspp. biofilms may be involved in the persistence or worsening of some chronic inflammatory diseases as well as in systemic infections, which may lead to high morbidity and mortality rates. New strategies are currently being explored, utilizing several synthetic compounds to prevent or fight these Candida biofilms. This article focuses on active synthetic compounds classified with regards to their modes of action: inhibition of early adherence phase, inhibition or control of biofilm maturation and finally elimination of already formed biofilms. Some of them show promise in fighting biofilm.

  9. Antifungal and Antiaflatoxigenic Methylenedioxy-Containing Compounds and Piperine-Like Synthetic Compounds

    PubMed Central

    Moon, Young-Sun; Choi, Won-Sik; Park, Eun-Sil; Bae, In Kyung; Choi, Sung-Deuk; Paek, Ockjin; Kim, Sheen-Hee; Chun, Hyang Sook; Lee, Sung-Eun

    2016-01-01

    Twelve methylenedioxy-containing compounds including piperine and 10 piperine-like synthetic compounds were assessed to determine their antifungal and antiaflatoxigenic activities against Aspergillus flavus ATCC 22546 in terms of their structure–activity relationships. Piperonal and 1,3-benzodioxole had inhibitory effects against A. flavus mycelial growth and aflatoxin B1 production up to a concentration of 1000 μg/mL. Ten piperine-like synthetic compounds were synthesized that differed in terms of the carbon length in the hydrocarbon backbone and the presence of the methylenedioxy moiety. In particular, 1-(2-methylpiperidin-1-yl)-3-phenylprop-2-en-1-one had potent antifungal and antiaflatoxigenic effects against A. flavus up to a concentration of 1 μg/mL. This synthetic compound was remarkable because the positive control thiabendazole had no inhibitory effect at this concentration. Reverse transcription-PCR analysis showed that five genes involved in aflatoxin biosynthesis pathways were down-regulated in A. flavus, i.e., aflD, aflK, aflQ, aflR, and aflS; therefore, the synthetic compound inhibited aflatoxin production by down-regulating these genes. PMID:27537912

  10. Antifungal and Antiaflatoxigenic Methylenedioxy-Containing Compounds and Piperine-Like Synthetic Compounds.

    PubMed

    Moon, Young-Sun; Choi, Won-Sik; Park, Eun-Sil; Bae, In Kyung; Choi, Sung-Deuk; Paek, Ockjin; Kim, Sheen-Hee; Chun, Hyang Sook; Lee, Sung-Eun

    2016-08-16

    Twelve methylenedioxy-containing compounds including piperine and 10 piperine-like synthetic compounds were assessed to determine their antifungal and antiaflatoxigenic activities against Aspergillus flavus ATCC 22546 in terms of their structure-activity relationships. Piperonal and 1,3-benzodioxole had inhibitory effects against A. flavus mycelial growth and aflatoxin B₁ production up to a concentration of 1000 μg/mL. Ten piperine-like synthetic compounds were synthesized that differed in terms of the carbon length in the hydrocarbon backbone and the presence of the methylenedioxy moiety. In particular, 1-(2-methylpiperidin-1-yl)-3-phenylprop-2-en-1-one had potent antifungal and antiaflatoxigenic effects against A. flavus up to a concentration of 1 μg/mL. This synthetic compound was remarkable because the positive control thiabendazole had no inhibitory effect at this concentration. Reverse transcription-PCR analysis showed that five genes involved in aflatoxin biosynthesis pathways were down-regulated in A. flavus, i.e., aflD, aflK, aflQ, aflR, and aflS; therefore, the synthetic compound inhibited aflatoxin production by down-regulating these genes.

  11. TECHNICAL NOTE: ADSORPTION CAPACITY OF GAC FOR SYNTHETIC ORGANICS

    EPA Science Inventory

    Isotherms are presented for 58 compounds in distilled-deionized water, filtered river water, and filtered groundwater. The compounds, which ranged from volatile organics to insecticides, are either regulated or being considered for regulation by the US Environmental Protection Ag...

  12. Low-temperature heat capacity and localized vibrational modes in natural and synthetic tetrahedrites

    SciTech Connect

    Lara-Curzio, E. May, A. F.; Delaire, O.; McGuire, M. A.; Lu, X.; Liu, Cheng-Yun; Case, E. D.; Morelli, D. T.

    2014-05-21

    The heat capacity of natural (Cu{sub 12−x} (Fe, Zn, Ag){sub x}(Sb, As){sub 4}S{sub 13}) and synthetic (Cu{sub 12−x}Zn{sub x}Sb{sub 4}S{sub 13} with x = 0, 1, 2) tetrahedrite compounds was measured between 2 K and 380 K. It was found that the temperature dependence of the heat capacity can be described using a Debye term and three Einstein oscillators with characteristic temperatures that correspond to energies of ∼1.0 meV, ∼2.8 meV, and ∼8.4 meV. The existence of localized vibrational modes, which are assigned to the displacements of the trigonally coordinated Cu atoms in the structure, is discussed in the context of anharmonicity and its effect on the low lattice thermal conductivity exhibited by these compounds.

  13. Solvothermal and electrochemical synthetic method of HKUST-1 and its methane storage capacity

    NASA Astrophysics Data System (ADS)

    Wahyu Lestari, Witri; Adreane, Marisa; Purnawan, Candra; Fansuri, Hamzah; Widiastuti, Nurul; Budi Rahardjo, Sentot

    2016-02-01

    A comparison synthetic strategy of Metal-Organic Frameworks, namely, Hongkong University of Techhnology-1 {HKUST-1[Cu3(BTC)]2} (BTC = 1,3,5-benzene-tri-carboxylate) through solvothermal and electrochemical method in ethanol:water (1:1) has been conducted. The obtained material was analyzed using powder X-ray diffraction, Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Thermo-Gravimetric Analysis (TGA) and Surface Area Analysis (SAA). While the voltage in the electrochemical method are varied, ranging from 12 to 15 Volt. The results show that at 15 V the texture of the material has the best degree of crystallinity and comparable with solvothermal product. This indicated from XRD data and supported by the SEM image to view the morphology. The thermal stability of the synthesized compounds is up to 320 °C. The shape of the nitrogen sorption isotherm of the compound corresponds to type I of the IUPAC adsorption isotherm classification for microporous materials with BET surface area of 629.2 and 324.3 m2/g (for solvothermal and electrochemical product respectively) and promising for gas storage application. Herein, the methane storage capacities of these compounds are also tested.

  14. Novel synthetic organosulfur compounds induce apoptosis of human leukemic cells.

    PubMed

    Wong, W W; Macdonald, S; Langler, R F; Penn, L Z

    2000-01-01

    It has been well documented that natural organosulfur compounds (OSCs) derived from plants such as garlic, onions and mahogany trees possess antiproliferative properties; however, the essential chemical features of the active OSC compounds remain unclear. To investigate the association between OSC structure and growth inhibitory activity, we synthesized novel relatives of dysoxysulfone, a natural OSC derived from the Fijian medicinal plant, Dysoxylum richii. In this study, we have examined the antiproliferative effects of these novel OSCs on a model human leukemic cell system and show that the compounds segregate into three groups. Group I, consisting of compounds A, B, G and J, did not affect either cell proliferation or the cell cycle profile of the leukemic cell lines. Group II, consisting of compounds F and H, induced the cells to undergo apoptosis from the G2/M phase of the cell cycle. Group III, consisting of compounds C, D, E and I, decreased cell proliferation and induced apoptosis throughout the cell cycle. The apoptotic agonists of Group II and III shared a common disulfide moiety, essential for leukemic cell cytotoxicity. Interestingly, Group II compounds did not affect cell viability of normal human diploid cells, suggesting the regions flanking the disulfide group contributes to the specificity of cell killing. Thus, we provide evidence that structure-activity analysis of natural products can identify novel compounds for the development of new therapeutics that can trigger apoptosis in a tumor-specific manner.

  15. Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

    SciTech Connect

    Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

    2008-02-18

    The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ≥ 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ≥ 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space

  16. Green Synthetic Alternatives to Organic Compounds and Nanomaterials

    EPA Science Inventory

    A brief account of reactions involving microwave (MW) exposure of neat reactants or catalyzed by mineral support surfaces, such as alumina, silica, clay, or their ‘doped’ versions, for the rapid one-pot assembly of heterocyclic compounds from in situ generated reactive intermedia...

  17. FATE OF SYNTHETIC MUSK COMPOUNDS IN AN AQUATIC ENVIRONMENT

    EPA Science Inventory

    To be presented is an overview of the chemistry, the monitoring methodology, and the statistical evaluation of concentrations obtained from the analysis of a suite of these compounds (e.g., Galaxolide®, musk xylene, and amino musk xylene) in different environmenta...

  18. Equilibrium studies in natural waters: Speciation of phenolic compounds in synthetic seawater at different salinities

    SciTech Connect

    Demianov, P.; De Stefano, C.; Sammartano, S.; Gianguzza, A.

    1995-05-01

    Interactions between some phenolic compounds and macro-constituents of synthetic seawater (Na{sup +}, K{sup +}, Ca{sup 2+}, Mg{sup 2+}, Cl{sup {minus}}, and SO{sub 4}{sup 2{minus}}), at 20, 35, and 45 {per_thousand} salinity, have been investigated potentiometrically by using the [H]-glass electrode. The formation constants of phenol, o- and p-cresol, o-a dn p-nitrophenol complexes with sodium, potassium, calcium, and magnesium ions have been determined in the ionic strength range 0 {le} I {le} 1 mol/L. A comparison between the apparent protonation constants of phenols determined in synthetic seawater, and those simulated by a suitable complex formation model, is discussed. The possibility of calculating, by simulation, the apparent protonation constants of some chlorophenolic compounds in synthetic seawater is also reported.

  19. DETERMINATION OF SYNTHETIC MUSK COMPOUNDS IN MUNICIPAL WASTEWATER AND ESTIMATING BIOTA EXPOSURE IN THE RECEIVING WATERS

    EPA Science Inventory

    Synthetic musk compounds are consumer chemicals manufactured as fragrance materials and consumed in very large quantities worldwide. Due to their high usage and release, they have become ubiquitous in the environment. The U.S. EPA (Las Vegas) developed surface water monitoring me...

  20. LEVELS OF SYNTHETIC MUSKS COMPOUNDS IN MUNICIPAL WASTEWATER FOR ESTIMATING BIOTA EXPOSURE IN RECEIVING WATERS

    EPA Science Inventory

    Synthetic musk compounds are consumer chemicals manufactured as fragrance materials and consumed in very large quantities worldwide. Due to their high use and release, they have become ubiquitous in the environment. We analyzed water samples from the confluence of three municipal...

  1. Heat capacities of synthetic hedenbergite, ferrobustamite and CaFeSi2O6 glass

    USGS Publications Warehouse

    Haselton, H.T.; Robie, R.A.; Hemingway, B.S.

    1987-01-01

    Heat capacities have been measured for synthetic hedenbergite (9-647 K), ferrobustamite (5-746 K) and CaFeSi2O6 glass (6-380 K) by low-temperature adiabatic and differential scanning calorimetry. The heat capacity of each of these structural forms of CaFeSiO6 exhibits anomalous behavior at low temperatures. The X-peak in the hedenbergite heat-capacity curve at 34.5 K is due to antiferromagnetic ordering of the Fe2+ ions. Ferrobustamite has a bump in its heat-capacity curve at temperatures less than 20 K, which could be due to weak cooperative magnetic ordering or to a Schottky anomaly. Surprisingly, a broad peak with a maximum at 68 K is present in the heat-capacity curve of the glass. If this maximum, which occurs at a higher temperature than in hedenbergite is caused by magnetic ordering, it could indicate that the range of distortions of the iron sites in the glass is quite small and that coupling between iron atoms is stronger in the glass than in the edge-shared octahedral chains of hedenbergite. The standard entropy change, So298.15 - So0, is 174.2 ?? 0.3, 180.5 ?? 0.3 and 185.7 ?? 0.4 J/mol??K for hedenbergite, ferrobustamite and CaFeSi2O6 glass, respectively. Ferrobustamite is partially disordered in Ca-Fe distribution at high temperatures, but the dependence of the configuratonal entropy on temperature cannot be evaluated due to a lack of information. At high temperatures (298-1600 K), the heat capacity of hedenbergite may be represented by the equation Cop(J/mol??K) = 3l0.46 + 0.01257T-2039.93T -1 2 - 1.84604?? l06T-2 and the heat capacity of ferrobustamite may be represented by Cop(J/mol??K) = 403.83-0.04444T+ 1.597?? 10-5T2-3757.3T -1 2. ?? 1987.

  2. Mass Spectrometry in Pharmacokinetic Studies of a Synthetic Compound for Spinal Cord Injury Treatment

    PubMed Central

    Moreno-Lillo, Sandra

    2015-01-01

    The studies of drugs that could constitute a palliative to spinal cord injury (SCI) are a continuous and increasing demand in biomedicine field from developed societies. Recently we described the chemical synthesis and antiglioma activity of synthetic glycosides. A synthetic sulfated glycolipid (here IG20) has shown chemical stability, solubility in polar solvents, and high inhibitory capacity over glioma growth. We have used mass spectrometry (MS) to monitor IG20 (m/z = 550.3) in cells and tissues of the central nervous system (CNS) that are involved in SCI recovery. IG20 was detected by MS in serum and homogenates from CNS tissue of rats, though in the latter a previous deproteinization step was required. The pharmacokinetic parameters of serum clearance at 24 h and half-life at 4 h were determined for synthetic glycoside in the adult rat using MS. A local administration of the drug near of spinal lesion site is proposed. PMID:26090386

  3. Mosquitocidal Properties of Natural Product Compounds Isolated From Chinese Herbs and Synthetic Analogs of Curcumin

    PubMed Central

    ANSTROM, DAVID M.; ZHOU, XIA; KALK, CODY N.; SONG, BAOAN; LAN, QUE

    2012-01-01

    Because of resistance to current insecticides and to environmental, health, and regulatory concerns, naturally occurring compounds and their derivatives are of increasing interest for the development of new insecticidal compounds against vectors of disease-causing pathogens. Fifty-eight compounds, either extracted and purified from plants native to China or synthetic analogs of curcumin, were evaluated for both their larvicidal activity against Aedes aegypti (L.) and their ability to inhibit binding of cholesterol to Ae. aegypti sterol carrier protein-2 in vitro. Of the compounds tested, curcumin analogs seem especially promising in that of 24 compounds tested five were inhibitors of Ae. aegyptisterol carrier protein-2 with EC50 values ranging from 0.65 to 62.87 μM, and three curcumin analogs exhibited larvicidal activity against fourth instar Ae. aegypti larvae with LC50 values ranging from 17.29 to 27.90 μM. Adding to the attractiveness of synthetic curcumin analogs is the relative ease of synthesizing a large diversity of compounds; only a small fraction of such diversity has been sampled in this study. PMID:22493854

  4. Just-in-Time Compound Pooling Increases Primary Screening Capacity without Compromising Screening Quality.

    PubMed

    Elkin, L L; Harden, D G; Saldanha, S; Ferguson, H; Cheney, D L; Pieniazek, S N; Maloney, D P; Zewinski, J; O'Connell, J; Banks, M

    2015-06-01

    Compound pooling, or multiplexing more than one compound per well during primary high-throughput screening (HTS), is a controversial approach with a long history of limited success. Many issues with this approach likely arise from long-term storage of library plates containing complex mixtures of compounds at high concentrations. Due to the historical difficulties with using multiplexed library plates, primary HTS often uses a one-compound-one-well approach. However, as compound collections grow, innovative strategies are required to increase the capacity of primary screening campaigns. Toward this goal, we have developed a novel compound pooling method that increases screening capacity without compromising data quality. This method circumvents issues related to the long-term storage of complex compound mixtures by using acoustic dispensing to enable "just-in-time" compound pooling directly in the assay well immediately prior to assay. Using this method, we can pool two compounds per well, effectively doubling the capacity of a primary screen. Here, we present data from pilot studies using just-in-time pooling, as well as data from a large >2-million-compound screen using this approach. These data suggest that, for many targets, this method can be used to vastly increase screening capacity without significant reduction in the ability to detect screening hits.

  5. A New Synthetic Route for Mixed-Valence Compounds: Leaching Treatments of Hydrogen Molybdenum Bronze

    NASA Astrophysics Data System (ADS)

    Eda, Kazuo; Sukejima, Ai; Sotani, Noriyuki

    2001-06-01

    In order to explore the possibilities of a new synthetic route, based on selective extraction of the same atomic species with different valences, for mixed-valence compounds, leaching treatments of HxMoO3 with various x values with various kinds of solutions were investigated. Both oxidation-type (pseudooxidation) and reduction-type (pseudoreduction) products could be obtained by these simple treatments without oxidizing or reducing agents. Their formation mechanisms were elucidated from various investigations of solutions as well as solids. Moreover, novel hydrated hydrogen-alkali metal co-insertion compounds of layered molybdenum oxide with larger hydrogen contents were obtained by the treatments.

  6. Antibacterial Characterization of Novel Synthetic Thiazole Compounds against Methicillin-Resistant Staphylococcus pseudintermedius.

    PubMed

    Mohammad, Haroon; Reddy, P V Narasimha; Monteleone, Dennis; Mayhoub, Abdelrahman S; Cushman, Mark; Hammac, G Kenitra; Seleem, Mohamed N

    2015-01-01

    . Collectively the present study demonstrates these synthetic thiazole compounds possess potent antibacterial activity against both MSSP and MRSP and warrant further investigation into their use as novel antimicrobial agents.

  7. Antibacterial Characterization of Novel Synthetic Thiazole Compounds against Methicillin-Resistant Staphylococcus pseudintermedius

    PubMed Central

    Mohammad, Haroon; Reddy, P. V. Narasimha; Monteleone, Dennis; Mayhoub, Abdelrahman S.; Cushman, Mark; Hammac, G. Kenitra; Seleem, Mohamed N.

    2015-01-01

    . Collectively the present study demonstrates these synthetic thiazole compounds possess potent antibacterial activity against both MSSP and MRSP and warrant further investigation into their use as novel antimicrobial agents. PMID:26086336

  8. Synthetic Organotellurium Compounds Sensitize Drug-Resistant Candida albicans Clinical Isolates to Fluconazole.

    PubMed

    Reis de Sá, L F; Toledo, F T; Gonçalves, A C; Sousa, B A; Dos Santos, A A; Brasil, P F; Duarte da Silva, V A; Tessis, A C; Ramos, J A; Carvalho, M A; Lamping, E; Ferreira-Pereira, A

    2017-01-01

    Invasive Candida albicans infections are a serious health threat for immunocompromised individuals. Fluconazole is most commonly used to treat these infections, but resistance due to the overexpression of multidrug efflux pumps is of grave concern. This study evaluated the ability of five synthetic organotellurium compounds to reverse the fluconazole resistance of C. albicans clinical isolates. Compounds 1 to 4, at <10 μg/ml, ameliorated the fluconazole resistance of Saccharomyces cerevisiae strains overexpressing the major C. albicans multidrug efflux pumps Cdr1p and Mdr1p, whereas compound 5 only sensitized Mdr1p-overexpressing strains to fluconazole. Compounds 1 to 4 also inhibited efflux of the fluorescent substrate rhodamine 6G and the ATPase activity of Cdr1p, whereas all five of compounds 1 to 5 inhibited Nile red efflux by Mdr1p. Interestingly, all five compounds demonstrated synergy with fluconazole against efflux pump-overexpressing fluconazole-resistant C. albicans clinical isolates, isolate 95-142 overexpressing CDR1 and CDR2, isolate 96-25 overexpressing MDR1 and ERG11, and isolate 12-99 overexpressing CDR1, CDR2, MDR1, and ERG11 Overall, organotellurium compounds 1 and 2 were the most promising fluconazole chemosensitizers of fluconazole-resistant C. albicans isolates. Our data suggest that these novel organotellurium compounds inhibit pump efflux by two very important and distinct families of fungal multidrug efflux pumps: the ATP-binding cassette transporter Cdr1p and the major facilitator superfamily transporter Mdr1p.

  9. Synthetic organic compounds with potential for bacterial biofilm inhibition, a path for the identification of compounds interfering with quorum sensing.

    PubMed

    de Lima Pimenta, Andréa; Chiaradia-Delatorre, Louise Domeneghini; Mascarello, Alessandra; de Oliveira, Karen Andrinéia; Leal, Paulo César; Yunes, Rosendo Augusto; de Aguiar, Cláudia Beatriz Nedel Mendes; Tasca, Carla Inês; Nunes, Ricado José; Smânia, Artur

    2013-12-01

    New unconventional approaches to the development of antimicrobial drugs must target inhibition of infection stages leading to host colonisation or virulence itself, rather than bacterial viability. Amongst the most promising unconventional targets for the development of new antimicrobial drugs is bacterial adherence and biofilm formation as well as their control system, the quorum-sensing (QS) system, a mechanism of communication used to co-ordinate bacterial activities. Here we describe the evaluation of synthetic organic compounds as bacterial biofilm inhibitors against a panel of clinically relevant Gram-positive and Gram-negative bacterial strains. This approach has successfully allowed the identification of five compounds (GEt, GHex, GOctad, G19 and C33) active not only against bacterial biofilms but also displaying potential to be used as antagonists and/or inhibitors of bacterial QS.

  10. Tunisian table olive phenolic compounds and their antioxidant capacity.

    PubMed

    Ben Othman, N; Roblain, D; Thonart, P; Hamdi, M

    2008-05-01

    For the 1st time, 4 olive cultivars, the Meski, Chemlali, Besbessi, and Tounsi, from the Tunisian market were investigated to evaluate the phenolic compounds' contribution in nutritional value of table olives. From the Meski cultivar, we have chosen 4 different samples to evaluate differences within the same cultivar. Basic characteristics and total phenolic content were evaluated in flesh and kernel. The highest value of flesh phenolic content was observed in sample M4 of the Meski cultivar; however, the lowest value was observed in the Besbessi cultivar and they were 1801 and 339 mg GA/100 g dry weight, respectively. The main simple phenolic compounds identified in flesh extracts are hydroxytyrosol, tyrosol, and vanillic acid. Oleuropein was not detected in any samples. The antioxidant activity of Tunisian olive flesh varies between 212 and 462 muM TEAC/g of dry weight. Antioxidant activity of olives was related to their phenolic content but we found a low correlation between phenolic content and TEAC.

  11. Metal Based Synthetic Strategies and the Examination of Structure Determining Factors in Alkaline Earth Metal Compounds

    NASA Astrophysics Data System (ADS)

    Takahashi, Yuriko

    Last decades have witnessed a large expansion of the organometallic heavier alkaline earth metal species. However, continued growth of this promising area of chemistry has been slowed by severe restrictions and limitations in viable synthetic methodologies leading to difficulties in preparing and characterizing the target compounds. There is clearly a need for the further development of synthetic methodologies and detailed structure function analysis that will promote the further advancement of organoalkaline earth metal chemistry in applications as diverse as materials chemistry and catalysis. This thesis work greatly extends the synthetic options currently available towards organoalkaline earth metal species by introducing redox transmetallation protolysis (RTP), a reaction based on the readily available Ph3Bi as a non-toxic transmetallation agent. Based on a straightforward one-pot procedure and work-up, Ph3Bi based RTP presents a powerful synthetic alternative for the facile preparation of a large variety of heavy alkaline earth metal compounds. The second part of the thesis explores the effect of secondary non covalent interactions on the coordination chemistry as well as thermal properties of a series of novel alkali, alkaline earth, rare earth as well as heterobimetallic alkali/alkaline earth fluoroalkoxides. These compounds showcase the significance of non-covalent M···F-C and agostic interactions on metal stabilization and structural features, providing critical input on ligand design for the design of advanced metal organic vapor deposition (MOCVD) precursor materials. This work also showcases the impact of M···F-C interactions over M---co-ligand coordination, a critical precursor design element as well.

  12. Entanglement-assisted classical capacities of compound and arbitrarily varying quantum channels

    NASA Astrophysics Data System (ADS)

    Boche, Holger; Janßen, Gisbert; Kaltenstadler, Stephan

    2017-04-01

    We consider classical message transmission under entanglement assistance for compound memoryless and arbitrarily varying quantum channels. In both cases, we prove general coding theorems together with corresponding weak converse bounds. In this way, we obtain single-letter characterizations of the entanglement-assisted classical capacities for both channel models. Moreover, we show that the entanglement-assisted classical capacity does exhibit no strong converse property for some compound quantum channels for the average as well as the maximal error criterion. A strong converse to the entanglement-assisted classical capacities does hold for each arbitrarily varying quantum channel.

  13. Contribution of synthetic and naturally occurring organobromine compounds to bromine mass in marine organisms.

    PubMed

    Wan, Yi; Jones, Paul D; Wiseman, Steve; Chang, Hong; Chorney, Dave; Kannan, Kurunthachalam; Zhang, Kun; Hu, Jian-Ying; Khim, Jong Seong; Tanabe, Shinsuke; Lam, Michael H W; Giesy, John P

    2010-08-15

    An extraction, separation, and purification method was developed for the identification and quantification of total bromine (TBr), extractable organobromine (EOBr), and five classes of identified EOBrs. Instrumental neutron activation analysis (INAA) was utilized to quantify EOBr and TBr. The method was then applied to liver samples of tuna, albatross, and polar bear collected from remote marine locations. Polybrominated biphenyls (PBBs), polybrominated diphenyl ethers (PBDEs), bromophenols (BRPs), hydroxylated (OH-) and methoxylated (MeO-) PBDEs were analyzed as identified EOBr. The majority of the bromine in these marine organisms was nonextractable or inorganic, with EOBr accounting for 10-28% of the TBr. Of the identified EOBr, in tuna and albatross, naturally occurring compounds, including MeO-PBDEs, OH-PBDEs, and BPRs, were prevalent. However, the identifiable EOBr in polar bears consisted primarily of synthetic compounds, including PBDEs and PBBs. Overall, 0.08-0.11% and 0.008-0.012% of EOBr and TBr, respectively, were identified. The proportion of EOBr that was identified in marine organisms was relatively small compared to the proportions for organofluorine and organochlorine compounds. This could be related to the great diversity of naturally occurring organobromine compounds in the environment. Naturally occurring brominated fatty acids were estimated to be the predominant compounds in the EOBr fraction.

  14. Preparation and antioxidant capacity of element selenium nanoparticles sol-gel compounds.

    PubMed

    Bai, Yan; Qin, Biyin; Zhou, Yanhui; Wang, Yudong; Wang, Zi; Zheng, Wenjie

    2011-06-01

    This paper reported the preparation and antioxidant capacities of element selenium nanoparticles (nanoSe(0))-ascorbic acid (Vc) sol and nanSe(0)/Vc/selenocystine (SeCys) sol-gel compounds. NanoSe(0)-Vc sol was prepared by reduction of selenious dioxide (SeO2) with Vc. In the nanoSe(0)-Vc sol, highly concentrated Vc was also used as a modifier to modulate the diameter of Se(0) nanoparticles in the liquid phase. Then excellent nanoSe(0) sol-gel compounds were obtained by adding SeCys into the nanoSe(0)-Vc sol. The structure of the nanoSe(0)/Vc/SeCys sol-gel compounds was defined, which was constructed via C-Se, Se-H and O=C-Se valences and by interaction between SeCys and Vc via peptide bonds, esterification and dehydration. The antioxidant capacities of the nanoSe(0)-Vc sol and the nanoSe(0)Vc/SeCys sol-gel compounds were estimated by oxygen radical absorption capacity (ORAC) assay. The nanoSe(0)/Vc/SeCys sol-gel compounds possessed a strong antioxidant capacity due to forming the perfect three-dimensional (3D) frameworks structure. The results suggested that the nanoSe(0)-Vc sol and the nanoSe(0)Vc/SeCys sol-gel compounds might be potential medicine, especially antioxidant.

  15. Natural compounds of the strobilurin series and their synthetic analogues as cell respiration inhibitors

    NASA Astrophysics Data System (ADS)

    Zakharychev, Vladimir V.; Kovalenko, Leonid V.

    1998-06-01

    A group of fungicidal antibiotics, β-methoxyacrylic acid derivatives (strobilurins, oudemansins, and myxothiazols), their producers, and mechanisms of action are considered. The fungicidal activity of these compounds is based on the suppression of cell respiration of fungi in the bc1-complex of cytochromes. They also manifest other biological activities that are not always coupled with inhibition of respiration. Studies of the structure of the natural methoxyacrylates has made it possible to create a novel class of synthetic agricultural fungicides with enhanced stability, high activity, and a broad spectrum of action. The main regularities of the structure-activity relationship and methods of synthesis of these compounds are discussed. The bibliography includes 159 references.

  16. Unravelling the total antioxidant capacity of pinotage wines: contribution of phenolic compounds.

    PubMed

    de Beer, Dalene; Joubert, Elizabeth; Marais, Johann; Manley, Marena

    2006-04-19

    The total antioxidant capacity (TAC) and phenolic composition of 139 Pinotage wines (2002 and 2003 vintages) were determined using the 2,2'-azino-di(3-ethylbenzo-thialozine-sulfonic acid) scavenging assay and high-performance liquid chromatography, respectively. The contribution of individually quantified phenolic compounds to the wine TAC was calculated using their concentrations and Trolox equivalent antioxidant capacity (TEAC) values. The TEAC values of quercetin-3-galactoside, isorhamnetin, and peonidin-3-glucoside are reported for the first time. Between 11 and 24% of the measured TAC of Pinotage wines was explained by the sum of the calculated contributions of their quantified phenolic compounds comprising monomeric phenolic compounds and procyanidin B1. Ultrafiltration was carried out to attempt separation of monomeric and polymeric phenolic compounds. Analysis of ultrafiltration permeates and retentates enabled estimation of the TAC contribution of large molecular weight (MW) unknown compounds (46%) (>50 kDa), including oligomeric and polymeric phenolic compounds and small MW unknown compounds (34%) (<50 kDa). Three mixtures, containing 12 phenolic compounds in typical concentrations expected in Pinotage wines, exhibited 16-23% synergistic antioxidant activity. This suggests that synergy between phenolic compounds does play a role in the wine TAC but that it does not explain the large discrepancy between measured and calculated TAC values.

  17. Antioxidant capacities, phenolic compounds and polysaccharide contents of 49 edible macro-fungi.

    PubMed

    Guo, Ya-Jun; Deng, Gui-Fang; Xu, Xiang-Rong; Wu, Shan; Li, Sha; Xia, En-Qin; Li, Fang; Chen, Feng; Ling, Wen-Hua; Li, Hua-Bin

    2012-11-01

    Edible macro-fungi are widely consumed as food sources for their flavors and culinary features. In order to explore the potential of macro-fungi as a natural resource of bioactive compounds, the antioxidant properties and polysaccharide contents of 49 edible macro-fungi from China were evaluated systematically. A positive correlation between antioxidant capacity and total phenolic content indicated that phenolic compounds could be main contributors of antioxidant capacities of these macro-fungi. Furthermore, many bioactive compounds such as gallic, homogentisic, protocatechuic, and p-hydroxybenzoic acid were identified and quantified. The macro-fungi species Thelephora ganbajun Zang, Boletus edulis Bull., Volvariella volvacea Sing, Boletus regius Krombh, and Suillus bovinus Kuntze displayed the highest antioxidant capacities and total phenolic contents, indicating their potential as important dietary sources of natural antioxidants.

  18. "Word of mouse": indigenous harm reduction and online consumerism of the synthetic compound methoxphenidine.

    PubMed

    Van Hout, Marie Claire; Hearne, Evelyn

    2015-01-01

    Methoxphenidine (MXP) was one of several NMDA antagonists marketed in 2013 to replace the recently controlled compound Methoxetamine (MXE). A steep rise in user interest was recorded, despite vendor cautioning of limited user feedback. The study presented a phenomenological analysis of MXP experiences amongst recreational drug users as posted on public Internet fora. Internet searches were carried out using specific key words; "methoxphenidine," "MXP" and in combination with "experience," "report," "forum," and "trip." Seven self-reported experiences and 28 thread discussions relating sole use of MXP were analyzed using the Empirical Phenomenological Psychological method. Five themes and 61 categories emerged. MXP is marketed as a legal replacement for MXE, diphenidine, and ketamine, with a dissociative and stimulant wave outcome often lasting for days. Harm reduction tactics, awareness of prior tolerance to dissociative and optimal settings for use are discussed. Acute side-effects relate to hypertension and seizures. Chronic long-term memory loss and limb numbness is reported. Sense of empowerment occurs in the afterglow experience. Internet drug fora fuel information exchange and informed consumerism of synthetic compounds, and offer viable mechanisms for pre- and post-purchase decision making and indigenous harm reduction. Continued surveillance of synthetic market entries and user trends is warranted.

  19. Toward antituberculosis drugs: in silico screening of synthetic compounds against Mycobacterium tuberculosisl,d-transpeptidase 2.

    PubMed

    Billones, Junie B; Carrillo, Maria Constancia O; Organo, Voltaire G; Macalino, Stephani Joy Y; Sy, Jamie Bernadette A; Emnacen, Inno A; Clavio, Nina Abigail B; Concepcion, Gisela P

    2016-01-01

    Mycobacterium tuberculosis (Mtb) the main causative agent of tuberculosis, is the main reason why this disease continues to be a global public health threat. It is therefore imperative to find a novel antitubercular drug target that is unique to the structural machinery or is essential to the growth and survival of the bacterium. One such target is the enzyme l,d-transpeptidase 2, also known as LdtMt2, a protein primarily responsible for the catalysis of 3→3 cross-linkages that make up the mycolyl-arabinogalactan-peptidoglycan complex of Mtb. In this study, structure-based pharmacophore screening, molecular docking, and in silico toxicity evaluations were employed in screening compounds from a database of synthetic compounds. Out of the 4.5 million database compounds, 18 structures were identified as high-scoring, high-binding hits with very satisfactory absorption, distribution, metabolism, excretion, and toxicity properties. Two out of the 18 compounds were further subjected to in vitro bioactivity assays, with one exhibiting a good inhibitory activity against the Mtb H37Ra strain.

  20. CLOSED-LOOP STRIPPING ANALYSIS (CLSA) OF SYNTHETIC MUSK COMPOUNDS FROM FISH TISSUES WITH MEASUREMENT BY OC/MS/SIM

    EPA Science Inventory

    Synthetic musk compounds are used as inexpensive fragrance materials for the production
    of perfumes and as additives to soap, detergent, and shampoo. They have been found in surface water, fish tissues, and human breast milk. The ubiquity of this class of compounds in the env...

  1. Effects of pulsed electric fields on the bioactive compound content and antioxidant capacity of tomato fruit.

    PubMed

    Vallverdú-Queralt, Anna; Oms-Oliu, Gemma; Odriozola-Serrano, Isabel; Lamuela-Raventos, Rosa María; Martín-Belloso, Olga; Elez-Martínez, Pedro

    2012-03-28

    The effect of moderate intensity pulsed electric fields (MIPEF) on the bioactive compounds (total polyphenol, lycopene, and vitamin C content) as well as on the antioxidant capacity of tomato fruit was studied. The MIPEF treatment conditions were optimized to obtain tomato fruit with a high content of bioactive compounds. Tomato fruits were subjected to different electric field strengths (from 0.4 to 2.0 kV/cm) and number of pulses (from 5 to 30) and then immediately refrigerated at 4 °C for 24 h. A concentration of bioactive compounds higher than that of untreated tomatoes was obtained in MIPEF-treated tomatoes. A 44% increase in total polyphenol content was achieved under 30 pulses at 1.2 kV/cm. The hydrophilic antioxidant capacity was also enhanced by 44% applying 18 pulses at 1.2 kV/cm, and the lipophilic antioxidant capacity was increased by 37% under 5 pulses at 1.2 kV/cm. The maximum overall level of bioactive compounds and antioxidant capacity in the treated tomatoes was obtained under 16 pulses at 1 kV/cm. Therefore, MIPEF treatments could be considered an effective method to enhance the bioactive compound content and antioxidant potential of tomatoes.

  2. Phenolic compound profiles and their corresponding antioxidant Capacity of purple pitaya (Hylocereus sp.) genotypes.

    PubMed

    Esquivel, Patricia; Stintzing, Florian C; Carle, Reinhold

    2007-01-01

    Folin-Ciocalteu and TEAC (Trolox equivalent antioxidant capacity) assay together with the spectrophotometric determination of betalains were applied to investigate the correlation between phenolics and their contribution to the antioxidant capacity of five different Costa Rican genotypes of purple pitaya (Hylocereus sp.) and of H. polyrhizus fruits. Maximum antioxidant capacity, total phenolic and betalain contents were observed in the genotype 'Lisa'. While non-betalainic phenolic compounds contributed only to a minor extent, betalains were responsible for the major antioxidant capacity of purple pitaya juices evaluated. The phenolic pattern of each genotype was also thoroughly investigated using liquid chromatography coupled to positive electrospray ionization (ESI) tandem mass spectrometry. In addition to the well known betalains previously reported in Hylocereus fruits, several biosynthetic precursors were detected. Notably, decarboxylated and dehydrogenated betalains were identified as genuine compounds of the juices. Some of these compounds were previously described as artifacts upon heat exposure. Moreover, gallic acid was identified for the first time in pitaya fruits. While the phenolic profiles generally differed between genotypes, phenolic compound composition of 'Rosa' resembled that of H. polyrhizus with respect to total contents of betacyanins, betalainic precursors, phyllocactin and cyclo-Dopa malonyl-glucosides.

  3. Correlation and prediction of adsorption capacity and affinity of aromatic compounds on carbon nanotubes.

    PubMed

    Wu, Wenhao; Yang, Kun; Chen, Wei; Wang, Wendi; Zhang, Jie; Lin, Daohui; Xing, Baoshan

    2016-01-01

    Adsorption of 22 nonpolar and polar aromatic compounds on 10 carbon nanotubes (CNTs) with various diameters, lengths and surface oxygen-containing group contents was investigated to develop predictive correlations for adsorption, using the isotherm fitting of Polanyi theory-based Dubinin-Ashtakhov (DA) model. Adsorption capacity of aromatic compounds on CNTs is negatively correlated with melting points of aromatic compounds, and surface oxygen-containing group contents and surface area ratios of mesopores to total pores of CNTs, but positively correlated with total surface area of CNTs. Adsorption affinity is positively correlated with solvatochromic parameters of aromatic compounds, independent of tube lengths and surface oxygen-containing group contents of CNTs, but negatively correlated with surface area ratios of mesopores to total pores of CNTs. The correlations of adsorption capacity and adsorption affinity with properties of both aromatic compounds and CNTs clearly have physical significance, can be used successfully with DA model to predict adsorption of aromatic compounds on CNTs from the well-known physiochemical properties of aromatic compounds (i.e., solvatochromic parameters, melting points) and CNTs (i.e., surface area and total acidic group contents), and thus can facilitate the environmental application of CNTs as sorbents and environmental risk assessment of both aromatic contaminants and CNTs.

  4. Synthetic organotelluride compounds induce the reversal of Pdr5p mediated fluconazole resistance in Saccharomyces cerevisiae

    PubMed Central

    2014-01-01

    Background Resistance to fluconazole, a commonly used azole antifungal, is a challenge for the treatment of fungal infections. Resistance can be mediated by overexpression of ABC transporters, which promote drug efflux that requires ATP hydrolysis. The Pdr5p ABC transporter of Saccharomyces cerevisiae is a well-known model used to study this mechanism of antifungal resistance. The present study investigated the effects of 13 synthetic compounds on Pdr5p. Results Among the tested compounds, four contained a tellurium-butane group and shared structural similarities that were absent in the other tested compounds: a lateral hydrocarbon chain and an amide group. These four compounds were capable of inhibiting Pdr5p ATPase activity by more than 90%, they demonstrated IC50 values less than 2 μM and had an uncompetitive pattern of Pdr5p ATPase activity inhibition. These organotellurides did not demonstrate cytotoxicity against human erythrocytes or S. cerevisiae mutant strains (a strain that overexpress Pdr5p and a null mutant strain) even in concentrations above 100 μM. When tested at 100 μM, they could reverse the fluconazole resistance expressed by both the S. cerevisiae mutant strain that overexpress Pdr5p and a clinical isolate of Candida albicans. Conclusions We have identified four organotellurides that are promising candidates for the reversal of drug resistance mediated by drug efflux pumps. These molecules will act as scaffolds for the development of more efficient and effective efflux pump inhibitors that can be used in combination therapy with available antifungals. PMID:25062749

  5. Bioactive Compounds and Antioxidant Capacity of Camarosa and Selva Strawberries (Fragaria x ananassa Duch.)

    PubMed Central

    Van De Velde, Franco; Tarola, Anna M.; Güemes, Daniel; Pirovani, María E.

    2013-01-01

    Strawberries represent an important source of bioactive compounds due to their vitamin C and phenolic compound levels, which present high antioxidant effects, beneficial for the maintenance of consumer’s health. Argentina is the second largest strawberry producer in The Common Market of the Southern Cone (MERCOSUR), covering the main export destinations of Argentinian strawberries, i.e., Canada, United States, and European Union. Information about the bioactive compound occurrence and antioxidant capacity of these fruits is scarce or not available. Health related compounds of strawberry cultivars (Camarosa and Selva) from different zones of Argentina were investigated. Vitamin C content was in the same range for both studied cultivars. However, Camarosa strawberries, which are the most cultivated, consumed, and exported berries in Argentina, presented higher total phenolic and anthocyanins content, and consequently better in vitro antioxidant capacity. Moreover, there were differences in the occurrence and concentration in the phenolic compound profiles for both cultivars. Camarosa cultivar presented higher content of anthocyanidins, and Selva showed higher total ellagic acid content. The research shows that Argentina’s strawberries are an interesting source of bioactive compounds comparable to those in other parts of the world. PMID:28239102

  6. Bioactive Compounds and Antioxidant Capacity of Camarosa and Selva Strawberries (Fragaria x ananassa Duch.).

    PubMed

    Van De Velde, Franco; Tarola, Anna M; Güemes, Daniel; Pirovani, María E

    2013-03-25

    Strawberries represent an important source of bioactive compounds due to their vitamin C and phenolic compound levels, which present high antioxidant effects, beneficial for the maintenance of consumer's health. Argentina is the second largest strawberry producer in The Common Market of the Southern Cone (MERCOSUR), covering the main export destinations of Argentinian strawberries, i.e., Canada, United States, and European Union. Information about the bioactive compound occurrence and antioxidant capacity of these fruits is scarce or not available. Health related compounds of strawberry cultivars (Camarosa and Selva) from different zones of Argentina were investigated. Vitamin C content was in the same range for both studied cultivars. However, Camarosa strawberries, which are the most cultivated, consumed, and exported berries in Argentina, presented higher total phenolic and anthocyanins content, and consequently better in vitro antioxidant capacity. Moreover, there were differences in the occurrence and concentration in the phenolic compound profiles for both cultivars. Camarosa cultivar presented higher content of anthocyanidins, and Selva showed higher total ellagic acid content. The research shows that Argentina's strawberries are an interesting source of bioactive compounds comparable to those in other parts of the world.

  7. Antioxidant and nitrite-scavenging capacities of phenolic compounds from sugarcane (Saccharum officinarum L.) tops.

    PubMed

    Sun, Jian; He, Xue-Mei; Zhao, Mou-Ming; Li, Li; Li, Chang-Bao; Dong, Yi

    2014-08-26

    Sugarcane tops were extracted with 50% ethanol and fractionated by petroleum ether, ethyl acetate (EtOAc), and n-butyl alcohol successively. Eight phenolic compounds in EtOAc extracts were purified through silica gel and Sephadex LH-20 column chromatographies, and then identified by nuclear magnetic resonance and electrospray ionization mass spectra. The results showed that eight phenolic compounds from EtOAc extracts were identified as caffeic acid, cis-p-hydroxycinnamic acid, quercetin, apigenin, albanin A, australone A, moracin M, and 5'-geranyl-5,7,2',4'-tetrahydroxyflavone. The antioxidant and nitrite-scavenging capacities of different solvent extracts correlated positively with their total phenolic (TP) contents. Amongst various extracts, EtOAc extracts possessed the highest TP content and presented the strongest oxygen radical absorbance capacity (ORAC), 1,1'-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging capacity, 2,2'-azobis-3-ethylbenthiaazoline-6-sulfonic acid (ABTS) radical-scavenging capacity, ferric reducing antioxidant power (FRAP) and nitrite-scavenging capacity. Thus, sugarcane tops could be promoted as a source of natural antioxidant.

  8. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin.

    PubMed

    Nousiainen, Paula; Kontro, Jussi; Manner, Helmiina; Hatakka, Annele; Sipilä, Jussi

    2014-11-01

    Fungal oxidative enzymes, such as peroxidases and laccases, are the key catalysts in lignin biodegradation in vivo, and consequently provide an important source for industrial ligninolytic biocatalysts. Recently, it has been shown that some syringyl-type phenolics have potential as industrial co-oxidants or mediators, in laccase-catalyzed modification of lignocellulosic material. We have now studied the effect of such mediators with ligninolytic peroxidases on oxidation of the most recalcitrant lignin model compounds. We found that they are able to enhance the manganese peroxidase (MnP) catalyzed oxidation reactions of small non-phenolic compounds, veratryl alcohol and veratrylglycerol β-guaiacyl ether (adlerol), which are not usually oxidized by manganese peroxidases alone. In these experiments we compared two peroxidases from white-rot fungi, MnP from Phlebia sp. Nf b19 and versatile peroxidase (VP) from Bjerkandera adusta under two oxidation conditions: (i) the Mn(III) initiated mediated oxidation by syringyl compounds and (ii) the system involving MnP-dependent lipid peroxidation, both with production of (hydrogen) peroxides in situ to maintain the peroxidase catalytic cycle. It was found that both peroxidases produced α-carbonyl oxidation product of veratryl alcohol in clearly higher yields in reactions mediated by phenoxy radicals than in lipid-peroxyl radical system. The oxidation of adlerol, on the other hand, was more efficient in lipid-peroxidation-system. VP was more efficient than MnP in the oxidation of veratryl alcohol and showed its lignin peroxidase type activity in the reaction conditions indicated by some cleavage of Cα-Cβ-bond of adlerol. Finally, the mediator assisted oxidation conditions were applied in the oxidation of synthetic lignin (DHP) and the structural analysis of the oxidized polymers showed clear modifications in the polymer outcome, e.g. the oxidation resulted in reduced amount of aliphatic hydroxyls indicated by (31)P NMR.

  9. Bioactive compounds, myrosinase activity, and antioxidant capacity of white cabbages grown in different locations of Spain.

    PubMed

    Peñas, Elena; Frias, Juana; Martínez-Villaluenga, Cristina; Vidal-Valverde, Concepción

    2011-04-27

    The influence of two Spanish growing locations with well-differentiated climatic conditions (northern and eastern areas) on the main bioactive compounds, glucosinolates (GLS), total phenolic compounds (TPC), and vitamin C, as well as myrosinase activity and antioxidant capacity in five white cabbage ( Brassica oleracea L. var. capitata) cultivars was investigated. Cabbages with the highest concentration of total GLS presented the highest vitamin C level (r = 0.75, P ≤ 0.05) and the lowest antioxidant capacity (r = -0.76, P ≤ 0.05). The cultivars with the highest vitamin C content had the lowest myrosinase activity (r = -0.89, P ≤ 0.05) and antioxidant capacity (r = -0.86, P ≤ 0.05), whereas those with the largest TPC amount showed the highest antioxidant capacity (r = 0.71, P ≤ 0.05). Cabbage cultivars grown in the northern area of Spain with low temperatures and radiation led to higher mean values of myrosinase activity (29.25 U/g dm), TPC (10.0 GAE mg/g dm), and antioxidant capacity (81.6 μmol Trolox/g dm), whereas cultivars grown in the eastern area with high temperature and radiation led to larger mean values of GLS (14.3 μmol/g dm) and vitamin C (5.3 mg/g dm). The results of this investigation provide information regarding the most suitable Spanish growing location to produce white cabbage with an optimized content of health-promoting compounds.

  10. Bioactive compounds and the antioxidant capacity in new kiwi fruit cultivars.

    PubMed

    Park, Yong-Seo; Namiesnik, Jacek; Vearasilp, Kann; Leontowicz, Hanna; Leontowicz, Maria; Barasch, Dinorah; Nemirovski, Alina; Trakhtenberg, Simon; Gorinstein, Shela

    2014-12-15

    The aim of this investigation was to find the best among seven different kiwi fruit cultivars ('Hayward', 'Daheung', 'Haenam', 'Bidan', 'Hort16A', 'Hwamei' and 'SKK12') for human consumption and to classify them as groups. Therefore, the contents of bioactive compounds and the level of antioxidant capacities of these cultivars were determined in four different extracts and compared. It was found that the contents of the bioactive compounds and the level of antioxidant capacities in different extracts differ significantly (P<0.05). Bioactive compounds and the antioxidant capacities were significantly higher in 'Bidan' and 'SKK12' cultivars than in other studied samples. The ethanol and water extracts of these cultivars exhibited high binding properties with human serum albumin (HSA) in comparison with catechin. In conclusion, based on fluorescence profiles the seven new kiwi fruit cultivars can be classified for three groups: 'Hayward' (including 'Daheung', 'Haenam', Hwamei' and 'SKK12'), 'Bidan' and 'Hort 16A'. In MS - profiles some differences in the peaks were found between the cultivar groups. All studied fruits could be a valuable addition to known disease preventing diets.

  11. Antioxidant capacities of phenolic compounds and tocopherols from Tunisian pomegranate (Punica granatum) fruits.

    PubMed

    Elfalleh, Walid; Tlili, Nizar; Nasri, Nizar; Yahia, Yassine; Hannachi, Hédia; Chaira, Nizar; Ying, Ma; Ferchichi, Ali

    2011-01-01

    This article aims to determine the phenolic, tocopherol contents, and antioxidant capacities from fruits (juices, peels, and seed oils) of 6 Tunisian pomegranate ecotypes. Total anthocyanins were determined by a differential pH method. Hydrolyzable tannins were determined with potassium iodate. The tocopherol (α-tocopherol, γ-tocopherol, and δ-tocopherol) contents were, respectively, 165.77, 107.38, and 27.29 mg/100 g from dry seed. Four phenolic compounds were identified and quantified in pomegranate peel and pulp using the high-performance liquid chromatography/ultraviolet method: 2 hydroxybenzoic acids (gallic and ellagic acids) and 2 hydroxycinnamic acids (caffeic and p-coumaric acids). Juice, peel, and seed oil antioxidants were confirmed by ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) methods. The highest values were recorded in peels with 25.63 mmol trolox equivalent/100 g and 22.08 mmol TE/100 g for FRAP and ORAC assay, respectively. Results showed that the antioxidant potency of pomegranate extracts was correlated with their phenolic compound content. In particular, the highest correlation was reported in peels. High correlations were also found between peel hydroxybenzoic acids and FRAP ORAC antioxidant capacities. Identified tocopherols seem to contribute in major part to the antioxidant activity of seed oil. The results implied that bioactive compounds from the peel might be potential resources for the development of antioxidant function dietary food.

  12. Overview of Alzheimer's Disease and Some Therapeutic Approaches Targeting Aβ by Using Several Synthetic and Herbal Compounds

    PubMed Central

    Singh, Sandeep Kumar; Srivastav, Saurabh; Yadav, Amarish Kumar; Srikrishna, Saripella; Perry, George

    2016-01-01

    Alzheimer's disease (AD) is a complex age-related neurodegenerative disease. In this review, we carefully detail amyloid-β metabolism and its role in AD. We also consider the various genetic animal models used to evaluate therapeutics. Finally, we consider the role of synthetic and plant-based compounds in therapeutics. PMID:27034741

  13. Riboflavin Phototransformation on the Changes of Antioxidant Capacities in Phenolic Compounds.

    PubMed

    Song, Juhee; Seol, Nam Gyu; Kim, Mi-Ja; Lee, JaeHwan

    2016-08-01

    Eight phenolic compounds including: p-coumaric acid, vanillic acid, caffeic acid, chlorogenic acid, trolox, quercetin, curcumin, and resveratrol were treated with riboflavin (RF) photosensitization and in vitro antioxidant capacities of the mixtures were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2' azino bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays. Mixtures containing p-coumaric acid and vanillic acid under RF photosensitization showed increases in ferric ion reducing ability and radical scavenging activity of DPPH, whereas mixtures of other compounds had decreases in both radical scavenging ability and ferric reducing antioxidant power. Hydroxycoumaric acid and conjugated hydroxycoumaric and coumaric acids were tentatively identified from RF photosensitized p-coumaric acid, whereas dimmers of vanillic acid were tentatively identified from RF photosensitized vanillic acid. RF photosensitization may be a useful method to enhance antioxidant properties like ferric ion reducing abilities of some selected phenolic compounds.

  14. Removal of volatile organic compounds by heterogeneous ozonation on microporous synthetic alumina silicate.

    PubMed

    Brodu, Nicolas; Zaitan, Hicham; Manero, Marie-Hélène; Pic, Jean-Stéphane

    2012-01-01

    A hybrid process combining adsorption and ozonation was examined as an alternative treatment for odorous volatile organic compounds (VOCs). Methyl ethyl ketone (MEK) was chosen to study the influence of operating parameters. Two synthetic aluminosilicates (faujasite-Y and ZSM-5) were tested for adsorption and reactivity with ozone. The adsorption equilibrium measurement on both adsorbents showed that adsorption performance depends on temperature but is not sensitive to relative humidity, due to the hydrophobic properties of the materials. Adsorbed VOCs were oxidized at low temperature when ozonated flow was sent to the reactor. Regeneration of the fixed bed was achieved at the same time, releasing mainly CO(2) and H(2)O. Intermediates of oxidation, such as 2,3-butanedione and acetic acid, were identified, leading to incomplete mineralization. The influence of concentration and humidity are discussed. Four successive cycles were tested: after the first adsorption/ozonation cycle, the adsorption efficiency was not affected during subsequent cycles. These results show that the same sample of adsorbent can be used in the treatment process for a long time. Ozonation regeneration is a promising process for VOC removal.

  15. Phenolic compounds and antioxidant capacities of 10 common edible flowers from China.

    PubMed

    Xiong, Lina; Yang, Jiajia; Jiang, Yirong; Lu, Baiyi; Hu, Yinzhou; Zhou, Fei; Mao, Shuqin; Shen, Canxi

    2014-04-01

    The free and bound phenolic compounds in 10 common Chinese edible flowers were investigated using reversed phase high-performance liquid chromatography. Their antioxidant capacities were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical-scavenging activity, oxygen radical absorption capacity (ORAC), ferric reducing antioxidant power (FRAP), and cellular antioxidant activity (CAA). Free factions were more prominent in phenolic content and antioxidant capacity than bound fractions. Paeonia suffruticosa and Flos lonicerae showed the highest total phenolic content (TPC) 235.5 mg chlorogenic acid equivalents/g of dry weight and total flavonoid content 89.38 mg rutin equivalents/g of dry weight. The major phenolic compounds identified were gallic acid, chlorogenic acid, and rutin. P. suffruticosa had the highest antioxidant capacity in the DPPH, ABTS, and ORAC assays, which were 1028, 2065, 990 μmol Trolox equivalents/g of dry weight, respectively, whereas Rosa chinensis had the highest FRAP value (2645 μmol Fe(2+) equivalents /g of dry weight). The P. suffruticosa soluble phenolics had the highest CAA, with the median effective dose (EC50 ) 26.7 and 153 μmol quercetin equivalents/100 g of dry weight in the phosphate buffered saline (PBS) and no PBS wash protocol, respectively. TPC was strongly correlated with antioxidant capacity (R = 0.8443 to 0.9978, P < 0.01), which indicated that phenolics were the major contributors to the antioxidant activity of the selected edible flowers.

  16. Effect of drying method on volatile compounds, phenolic profile and antioxidant capacity of guava powders.

    PubMed

    Nunes, Juliana C; Lago, Mabel G; Castelo-Branco, Vanessa N; Oliveira, Felipe R; Torres, Alexandre Guedes; Perrone, Daniel; Monteiro, Mariana

    2016-04-15

    We studied the chemical composition of oven and freeze dried guava powders for future use as antioxidant-rich flavour enhancers. Among thirty-one volatiles in guava powders, terpenes were predominant, even after both drying processes. In contrast, esters and aldehydes, volatiles characteristic of fresh guava fruit, appeared to have been decreased by drying. Insoluble phenolics were predominant and among the sixteen compounds identified, quercetin-3-O-rutinoside and naringenin corresponded to 56% of total phenolics. Drying processes decreased total phenolics contents by up to 44%. Oven drying promoted the release of insoluble flavonoids, generating mainly quercetin. Antioxidant capacity also decreased due to both drying processes, but guava powders still presented similar antioxidant capacity in comparison to other tropical fruit powders. Our results suggest that oven drying is a viable option for the production of a functional ingredient that would improve the phenolic content of cereal foods while adding desirable guava flavour.

  17. [Polyphenolic compounds and antioxidant capacity of typically consumed species in Mexico].

    PubMed

    Mercado-Mercado, Gilberto; de la Rosa Carrillo, Laura; Wall-Medrano, Abraham; López Díaz, José Alberto; Alvarez-Parrilla, Emilio

    2013-01-01

    Spices are aromatic plants that have been widely used in Mexico to preserve or seasoning different foods, but have also been used as herbal remedies to cure some diseases. These culinary and medicinal properties of spices have been attributed to several food components, including phytochemicals. Among them, polyphenolic compounds have been extensively studied for their effect against several chronic and degenerative diseases, probably due to their antioxidant activity. The study of the antioxidant capacity of Mexican spices may lead to new research on the potential benefits of these spices on human health. This paper analyzes the main studies on the potential beneficial effects of traditional Mexican spices on human health.

  18. Activity stabilization of Aspergillus niger and Escherichia coli phytases immobilized on allophanic synthetic compounds and montmorillonite nanoclays.

    PubMed

    Menezes-Blackburn, Daniel; Jorquera, Milko; Gianfreda, Liliana; Rao, Maria; Greiner, Ralf; Garrido, Elizabeth; de la Luz Mora, María

    2011-10-01

    The aim of this work was to study the stabilization of the activity of two commercial microbial phytases (Aspergillus niger and Escherichia coli) after immobilization on nanoclays and to establish optimal conditions for their immobilization. Synthetic allophane, synthetic iron-coated allophanes and natural montmorillonite were chosen as solid supports for phytase immobilization. Phytase immobilization patterns at different pH values were strongly dependent on both enzyme and support characteristics. After immobilization, the residual activity of both phytases was higher under acidic conditions. Immobilization of phytases increased their thermal stability and improved resistance to proteolysis, particularly on iron-coated allophane (6% iron oxide), which showed activation energy (E(a)) and activation enthalpy (ΔH(#)) similar to free enzymes. Montmorillonite as well as allophanic synthetic compounds resulted in a good support for immobilization of E. coli phytase, but caused a severe reduction of A. niger phytase activity.

  19. LEVELS OF SYNTHETIC MUSK COMPOUNDS IN MUNICIPAL WASTEWATER FOR ESTIMATING BIOTA EXPOSURE IN RECEIVING WATER

    EPA Science Inventory

    To test the ruggedness of a newly developed analytical method for synthetic musks, a 1-year monthly monitoring of synthetic musks in water and biota was conducted for Lake

    Mead (near Las Vegas, Nevada) as well as for combined sewage-dedicated effluent streams feeding Lake ...

  20. Evaluation of antimicrobial activity of extracts of Tibouchina candolleana (melastomataceae), isolated compounds and semi-synthetic derivatives against endodontic bacteria

    PubMed Central

    dos Santos, Fernanda M.; de Souza, Maria Gorete; Crotti, Antônio E. Miller; Martins, Carlos H. G.; Ambrósio, Sérgio R.; Veneziani, Rodrigo C. S.; e Silva, Márcio L. Andrade; Cunha, Wilson R.

    2012-01-01

    This work describes the phytochemical study of the extracts from aerial parts of Tibouchina candolleana as well as the evaluation of the antimicrobial activity of extracts, isolated compounds, and semi-synthetic derivatives of ursolic acid against endodontic bacteria. HRGC analysis of the n-hexane extract of T. candolleana allowed identification of β-amyrin, α-amyrin, and β-sitosterol as major constituents. The triterpenes ursolic acid and oleanolic acid were isolated from the methylene chloride extract and identified. In addition, the flavonoids luteolin and genistein were isolated from the ethanol extract and identified. The antimicrobial activity was investigated via determination of the minimum inhibitory concentration (MIC) using the broth microdilution method. Amongst the isolated compounds, ursolic acid was the most effective against the selected endodontic bacteria. As for the semi-synthetic ursolic acid derivatives, only the methyl ester derivative potentiated the activity against Bacteroides fragilis. PMID:24031892

  1. Effect of synthetic compound B 58 on natural killer and cytostatic cell activity in the mouse spleen

    SciTech Connect

    Malaitsev, V.V.; Bogdanova, I.M.; Spivak, N.Ya.; Bogdashin, I.V.; Zueva, V.S.

    1987-11-01

    The authors study the effect of compound B 58, a synthetic interferon inducer, on activity of natural killer cells (NKC) and cytostatic effectors in the mouse spleen. NKC activity in the spleen was determined in the 4-hour microtoxicity test against VAC-1 target cells labeled with /sup 51/Cr. /sup 3/H-thymidine was added to the effectors and targets. An increase in activity of the cellular mechanisms of natural antitumor resistance arising under the influence of compound B 58 is shown.

  2. Nutritional Composition and Antioxidant Capacity in Edible Flowers: Characterisation of Phenolic Compounds by HPLC-DAD-ESI/MSn

    PubMed Central

    Navarro-González, Inmaculada; González-Barrio, Rocío; García-Valverde, Verónica; Bautista-Ortín, Ana Belén; Periago, María Jesús

    2014-01-01

    Edible flowers are commonly used in human nutrition and their consumption has increased in recent years. The aim of this study was to ascertain the nutritional composition and the content and profile of phenolic compounds of three edible flowers, monks cress (Tropaeolum majus), marigold (Tagetes erecta) and paracress (Spilanthes oleracea), and to determine the relationship between the presence of phenolic compounds and the antioxidant capacity. Proximate composition, total dietary fibre (TDF) and minerals were analysed according to official methods: total phenolic compounds (TPC) were determined with Folin-Ciocalteu’s reagent, whereas antioxidant capacity was evaluated using Trolox Equivalent Antioxidant Capacity (TEAC) and Oxygen Radical Absorbance Capacity (ORAC) assays. In addition, phenolic compounds were characterised by HPLC-DAD-MSn. In relation to the nutritional value, the edible flowers had a composition similar to that of other plant foods, with a high water and TDF content, low protein content and very low proportion of total fat—showing significant differences among samples. The levels of TPC compounds and the antioxidant capacity were significantly higher in T. erecta, followed by S. oleracea and T. majus. Thirty-nine different phenolic compounds were tentatively identified, with flavonols being the major compounds detected in all samples, followed by anthocyanins and hydroxycynnamic acid derivatives. In T. erecta small proportions of gallotannin and ellagic acid were also identified. PMID:25561232

  3. Nutritional composition and antioxidant capacity in edible flowers: characterisation of phenolic compounds by HPLC-DAD-ESI/MSn.

    PubMed

    Navarro-González, Inmaculada; González-Barrio, Rocío; García-Valverde, Verónica; Bautista-Ortín, Ana Belén; Periago, María Jesús

    2014-12-31

    Edible flowers are commonly used in human nutrition and their consumption has increased in recent years. The aim of this study was to ascertain the nutritional composition and the content and profile of phenolic compounds of three edible flowers, monks cress (Tropaeolum majus), marigold (Tagetes erecta) and paracress (Spilanthes oleracea), and to determine the relationship between the presence of phenolic compounds and the antioxidant capacity. Proximate composition, total dietary fibre (TDF) and minerals were analysed according to official methods: total phenolic compounds (TPC) were determined with Folin-Ciocalteu's reagent, whereas antioxidant capacity was evaluated using Trolox Equivalent Antioxidant Capacity (TEAC) and Oxygen Radical Absorbance Capacity (ORAC) assays. In addition, phenolic compounds were characterised by HPLC-DAD-MSn. In relation to the nutritional value, the edible flowers had a composition similar to that of other plant foods, with a high water and TDF content, low protein content and very low proportion of total fat-showing significant differences among samples. The levels of TPC compounds and the antioxidant capacity were significantly higher in T. erecta, followed by S. oleracea and T. majus. Thirty-nine different phenolic compounds were tentatively identified, with flavonols being the major compounds detected in all samples, followed by anthocyanins and hydroxycynnamic acid derivatives. In T. erecta small proportions of gallotannin and ellagic acid were also identified.

  4. CLOSED-LOOP STRIPPING ANALYSIS (CLSA) OF SYNTHETIC MUSK COMPOUNDS FROM FISH TISSUES WITH MEASUREMENT BY GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH SELECTED-ION MONITORING

    EPA Science Inventory

    Synthetic musk compounds have been found in surface water, fish tissues, and human breast milk. Current techniques for separating these compounds from fish tissues require tedious sample clean-upprocedures A simple method for the deterrnination of these compounds in fish tissues ...

  5. Structure-based virtual screening and characterization of a novel IL-6 antagonistic compound from synthetic compound database

    PubMed Central

    Wang, Jing; Qiao, Chunxia; Xiao, He; Lin, Zhou; Li, Yan; Zhang, Jiyan; Shen, Beifen; Fu, Tinghuan; Feng, Jiannan

    2016-01-01

    According to the three-dimensional (3D) complex structure of (hIL-6⋅hIL-6R⋅gp 130)2 and the binding orientation of hIL-6, three compounds with high affinity to hIL-6R and bioactivity to block hIL-6 in vitro were screened theoretically from the chemical databases, including 3D-Available Chemicals Directory (ACD) and MDL Drug Data Report (MDDR), by means of the computer-guided virtual screening method. Using distance geometry, molecular modeling and molecular dynamics trajectory analysis methods, the binding mode and binding energy of the three compounds were evaluated theoretically. Enzyme-linked immunosorbent assay analysis demonstrated that all the three compounds could block IL-6 binding to IL-6R specifically. However, only compound 1 could effectively antagonize the function of hIL-6 and inhibit the proliferation of XG-7 cells in a dose-dependent manner, whereas it showed no cytotoxicity to SP2/0 or L929 cells. These data demonstrated that the compound 1 could be a promising candidate of hIL-6 antagonist. PMID:28008232

  6. Effect of steam explosion treatment on barley bran phenolic compounds and antioxidant capacity.

    PubMed

    Gong, Lingxiao; Huang, Luolian; Zhang, Ying

    2012-07-25

    A steam explosion pretreatment process followed by methanol extraction has been applied for releasing and extracting phenolic compounds, as well as other effective components, from barley bran. The steam explosion treatment was performed at different temperatures ranging from 210 to 250 °C, with a residence time of 30 s. The effect of residence time was also studied in the range 10 s to 120 s at 220 °C. The extracts were evaluated for their total soluble phenolic content (TSPC) including total free phenolic acids (TFPC) and total soluble conjugates (TSC), identified phenolic acids, total antioxidant capacity (TAC), water-soluble carbohydrates (WSC) and total methanol extracts (TME). High-performance liquid chromatography (HPLC) coupled with a photodiode array detector (PDA) was used in this study for the analysis of p-coumaric acid and ferulic acid in barley bran before and after steam explosion. Our results indicate that TSPC and TAC increased with residence time. They also increased dramatically with temperature up to 220 °C. After steam explosion at 220 °C for 120 s, the TSPC reached 1686.4 gallic acid equivalents mg/100 g dry weight, which was about 9-fold higher than that of the untreated sample. The TSPC and TAC obtained were highly positively correlated (r = 0.918-0.993), which meant that the increase of TAC for the steam explosion pretreated barley bran extracts was due, at least in part, to the increase of TSPC in the methanol soluble fraction. Also, under optimum conditions, the WSC in aqueous solution was 5 times as much as that of the untreated sample, which demonstrated that steam explosion also hydrolyzes carbohydrates into water-soluble sugars. It can be concluded that a proper and reasonable steam explosion pretreatment could be applied to release the bound phenolic compounds and enhance the antioxidant capacity of barley bran extracts.

  7. UV radiation, vitamin D, and cancer: how to measure the vitamin D synthetic capacity of UV sources?

    NASA Astrophysics Data System (ADS)

    Terenetskaya, Irina; Orlova, Tatiana

    2005-09-01

    UV irradiation is widely used in phototherapy. Regardless of the fact that UV overexposure is liable to cause adverse health effect, in appropriate doses UV radiation initiates synthesis of vitamin D in skin that is absolutely essential for human health. As it proved, most people in northern industrial countries have a level of vitamin D in their bodies that is insufficient for optimum health, especially in winter. These low levels of vitamin D are now known to be associated with a wide spectrum of serious disease much of which leads on to premature death. The diseases associated with D deficiency involve more than a dozen types of cancer including colon, breast and prostate, as well as the classic bone diseases: rickets, osteoporosis and osteomalacia. Irradiation with artificial UV sources can prevent the vitamin D deficiency. However, in view of different irradiation spectra of UV lamps, their ability to initiate vitamin D synthesis is different. The reliable method based on an in vitro model of vitamin D synthesis has been developed for direct measurement in situ of the vitamin D synthetic capacity of artificial UV sources during a phototherapeutic procedure

  8. Mathematical expression of discharge capacity of compound open channels using MARS technique

    NASA Astrophysics Data System (ADS)

    Parsaie, Abbas; Haghiabi, Amir Hamzeh

    2017-03-01

    In this paper, analytical methods, artificial neural network (ANN) and multivariate adaptive regression splines (MARS) techniques were utilised to estimate the discharge capacity of compound open channels (COC). To this end, related datasets were collected from literature. The results showed that the divided channel method with a coefficient of determination ( R 2) value of 0.76 and root mean square error (RMSE) value of 0.162 has the best performance, among the various analytical methods tested. The performance of applied soft computing models with R 2=0.97 and RMSE = 0.03 was found to be more accurate than analytical approaches. Comparison of MARS with the ANN model, in terms of developed discrepancy ratio (DDR) index, showed that the accuracy of MARS model was better than that of MLP model. Reviewing the structure of the derived MARS model showed that the longitudinal slope of the channel ( S), relative flow depth ( H r ) and relative area ( A r ) have a high impact on modelling and forecasting the discharge capacity of COCs.

  9. Quality parameters, bioactive compounds and their correlation with antioxidant capacity of commercial fruit-based baby foods.

    PubMed

    Carbonell-Capella, Juana M; Barba, Francisco J; Esteve, María J; Frígola, Ana

    2014-10-01

    Comprehensive research is required to achieve the optimization of the antioxidant protection through baby foods, in particular, the commercially available fruit-based baby foods. This study investigated the physicochemical properties, ascorbic acid (AA), total carotenoids (TC), total phenolic content (TPC), trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity (ORAC) of 23 different commercially available fruit-based baby foods. The main contribution to the total antioxidant capacity (trolox equivalent antioxidant capacity and oxygen radical absorbance capacity) was provided by ascorbic acid, followed by phenolic compounds, in accordance with a mathematical equation obtained from the data: TEAC = 245.906 + 7.727 × (AA) + 1.988 × (TPC) - 0.008 × (TC) and ORAC = 318.662 + 2.775 × (AA) - 0.531 × (TPC) - 0.073 × (TC). Moreover, a positive correlation (r = 0.346, p < 0.05) was found for oxygen radical absorbance capacity and trolox equivalent antioxidant capacity methods. Baby foods with different kind of fruits used as ingredients showed higher antioxidant capacity. Among the commercial baby foods analysed in this work, that treated by gentle steam cooking process had high levels of bioactive compounds and antioxidant capacity.

  10. A Rapid Synthetic Method for the Preparation of Two Tris-Cobalt(III) Compounds.

    ERIC Educational Resources Information Center

    Jackman, Donald C.; Rillema, D. Paul

    1989-01-01

    Reports a method of preparation for tris(ethylenediamine)cobalt(III) and tris(2,2'-bipyridine)cobalt(III) that will shorten the preparation time by approximately 3 hours. Notes the time for synthesis and isolation of compound one was 1 hour (yield 38 percent) while compound two took 50 minutes (yield 71%). (MVL)

  11. [Survey of synthetic disinfectants in grapefruit seed extract and its compounded products].

    PubMed

    Sugimoto, Naoki; Tada, Atsuko; Kuroyanagi, Masanori; Yoneda, Yuko; Yun, Young Sook; Kunugi, Akira; Sato, Kyoko; Yamazaki, Takeshi; Tanamoto, Ken-Ichi

    2008-02-01

    Grapefruit seed extract (GSE), derived from the seeds of grapefruit (Citrus paradisi MCAF.), is listed as a natural food additive in Japan. Products containing GSE are used as disinfectants made from only natural sources, especially after Japanese researchers found that GSE prevents the growth of norovirus. On the other hand, recent overseas studies indicated that synthetic disinfectants, such as benzalkonium and benzethonium chlorides, were present in some commercial GSE products. To confirm the quality of commercial GSE products available in Japanese markets, we carried out comprehensive research to identify the major constituents of commercial GSE products which are used as food additives (13 products from 6 manufacturers), dietary supplements (5 products from 4 manufacturers), cosmetic materials (16 products from 10 manufacturers) and disinfectant or deodorant sprays (7 products from 7 manufacturers). By means of NMR and LC/MS analysis, synthetic disinfectants such as benzethonium or benzalkonium salts were detected in most of the commercial GSE products.

  12. Recent progress in the development of synthetic hybrids of natural or unnatural bioactive compounds for medicinal chemistry.

    PubMed

    Tsogoeva, Svetlana B

    2010-08-01

    The present mini-review highlights the recent developments on different classes of synthetic hybrids of natural and/or unnatural bioactive compounds, the utilization of which is very promising, as distinct features of each component can be hybridized and their properties leveraged. Particular stress is put on the respective mode of action and the corresponding rationale behind covalent combinations of various bioactive agents to increase their therapeutic potential, facilitate their administration, to reduce harmful side effects and/or to overcome the problem of multi-drug resistance. This rather recent approach has already found applications in the development of new anti-cancer, anti-Alzheimer, anti-malaria, anti-microbial therapeutics and other novel compounds with unprecedented bioactivity.

  13. Synthetic process for preparation of high surface area electroactive compounds for battery applications

    DOEpatents

    Evenson, Carl; Mackay, Richard

    2013-07-23

    A process is disclosed for the preparation of electroactive cathode compounds useful in lithium-ion batteries, comprising exothermic mixing of low-cost precursors and calcination under appropriate conditions. The exothermic step may be a spontaneous flameless combustion reaction. The disclosed process can be used to prepare any lithium metal phosphate or lithium mixed metal phosphate as a high surface area single phase compound.

  14. Fluorescence spectroscopy as a specific tool for the interaction study of two surfactants with natural and synthetic organic compounds

    NASA Astrophysics Data System (ADS)

    Jung, Aude-Valérie; Frochot, Céline; Bersillon, Jean-Luc

    2016-04-01

    Four different techniques were used to study the binding of cationic cetyltrimethylammonium bromide (CTAB) and non-ionic nonylphenylethoxyl (NPE) surfactants to three synthetic organic components that mimic humic-like aggregates and to two natural aggregated humic substances (HS) extracted from aquatic suspended matter. The composition of synthetic organic components were chosen to be similar to high molecular weight highly processed terrigenous HS and low and high molecular weight less processed terrigenous (or aquatic terrigenous) HS. The natural HS were extracted under two different meteorological conditions (rainy and dry periods). No significant interaction between the non-ionic surfactant and any of the studied compounds was found. Concerning CTAB; pH, conductivity and turbidity measurements, along with fluorescence spectroscopy were combined to provide a better understanding of interactions between organic aggregates and the surfactant. The spectroscopic data show that a "highly processed terrigenous HS" fluorophore interacts in a different way with the cationic surfactant than an "aquatic terrigenous (or less processed terrigenous) HS" fluorophore does. Under similar conditions, some spectral changes in the fluorescence signal are correlated to changes in non-specific physical-chemical parameters (pH, turbidity, conductivity) for the organic compounds tested. The complexation mechanism is essentially governed by charge neutralization, which can be monitored specifically by the fluorescence of the organic moieties.

  15. Designing Second Generation Anti-Alzheimer Compounds as Inhibitors of Human Acetylcholinesterase: Computational Screening of Synthetic Molecules and Dietary Phytochemicals

    PubMed Central

    Amat-ur-Rasool, Hafsa; Ahmed, Mehboob

    2015-01-01

    Alzheimer's disease (AD), a big cause of memory loss, is a progressive neurodegenerative disorder. The disease leads to irreversible loss of neurons that result in reduced level of acetylcholine neurotransmitter (ACh). The reduction of ACh level impairs brain functioning. One aspect of AD therapy is to maintain ACh level up to a safe limit, by blocking acetylcholinesterase (AChE), an enzyme that is naturally responsible for its degradation. This research presents an in-silico screening and designing of hAChE inhibitors as potential anti-Alzheimer drugs. Molecular docking results of the database retrieved (synthetic chemicals and dietary phytochemicals) and self-drawn ligands were compared with Food and Drug Administration (FDA) approved drugs against AD as controls. Furthermore, computational ADME studies were performed on the hits to assess their safety. Human AChE was found to be most approptiate target site as compared to commonly used Torpedo AChE. Among the tested dietry phytochemicals, berberastine, berberine, yohimbine, sanguinarine, elemol and naringenin are the worth mentioning phytochemicals as potential anti-Alzheimer drugs The synthetic leads were mostly dual binding site inhibitors with two binding subunits linked by a carbon chain i.e. second generation AD drugs. Fifteen new heterodimers were designed that were computationally more efficient inhibitors than previously reported compounds. Using computational methods, compounds present in online chemical databases can be screened to design more efficient and safer drugs against cognitive symptoms of AD. PMID:26325402

  16. Designing Second Generation Anti-Alzheimer Compounds as Inhibitors of Human Acetylcholinesterase: Computational Screening of Synthetic Molecules and Dietary Phytochemicals.

    PubMed

    Amat-Ur-Rasool, Hafsa; Ahmed, Mehboob

    2015-01-01

    Alzheimer's disease (AD), a big cause of memory loss, is a progressive neurodegenerative disorder. The disease leads to irreversible loss of neurons that result in reduced level of acetylcholine neurotransmitter (ACh). The reduction of ACh level impairs brain functioning. One aspect of AD therapy is to maintain ACh level up to a safe limit, by blocking acetylcholinesterase (AChE), an enzyme that is naturally responsible for its degradation. This research presents an in-silico screening and designing of hAChE inhibitors as potential anti-Alzheimer drugs. Molecular docking results of the database retrieved (synthetic chemicals and dietary phytochemicals) and self-drawn ligands were compared with Food and Drug Administration (FDA) approved drugs against AD as controls. Furthermore, computational ADME studies were performed on the hits to assess their safety. Human AChE was found to be most approptiate target site as compared to commonly used Torpedo AChE. Among the tested dietry phytochemicals, berberastine, berberine, yohimbine, sanguinarine, elemol and naringenin are the worth mentioning phytochemicals as potential anti-Alzheimer drugs The synthetic leads were mostly dual binding site inhibitors with two binding subunits linked by a carbon chain i.e. second generation AD drugs. Fifteen new heterodimers were designed that were computationally more efficient inhibitors than previously reported compounds. Using computational methods, compounds present in online chemical databases can be screened to design more efficient and safer drugs against cognitive symptoms of AD.

  17. Identification of cetrimonium bromide and irinotecan as compounds with synthetic lethality against NDRG1 deficient prostate cancer cells.

    PubMed

    Wissing, Michel D; Mendonca, Janet; Kim, Eunice; Kim, Eugene; Shim, Joong S; Kaelber, Nadine S; Kant, Huub; Hammers, Hans; Commes, Therese; Van Diest, Paul J; Liu, Jun O; Kachhap, Sushant K

    2013-05-01

    The N-myc downstream regulated gene 1 (NDRG1) has been identified as a metastasis-suppressor gene in prostate cancer (PCa). Compounds targeting PCa cells deficient in NDRG1 could potentially decrease invasion/metastasis of PCa. A cell based screening strategy was employed to identify small molecules that selectively target NDRG1 deficient PCa cells. DU-145 PCa cells rendered deficient in NDRG1 expression by a lentiviral shRNA-mediated knockdown strategy were used in the primary screen. Compounds filtered from the primary screen were further validated through proliferation and clonogenic survival assays in parental and NDRG1 knockdown PCa cells. Screening of 3360 compounds revealed irinotecan and cetrimonium bromide (CTAB) as compounds that exhibited synthetic lethality against NDRG1 deficient PCa cells. A three-dimensional (3-D) invasion assay was utilized to test the ability of CTAB to inhibit invasion of DU-145 cells. CTAB was found to remarkably decrease invasion of DU-145 cells in collagen matrix. Our results suggest that CTAB and irinotecan could be further explored for their potential clinical benefit in patients with NDRG1 deficient PCa.

  18. Toward antituberculosis drugs: in silico screening of synthetic compounds against Mycobacterium tuberculosis l,d-transpeptidase 2

    PubMed Central

    Billones, Junie B; Carrillo, Maria Constancia O; Organo, Voltaire G; Macalino, Stephani Joy Y; Sy, Jamie Bernadette A; Emnacen, Inno A; Clavio, Nina Abigail B; Concepcion, Gisela P

    2016-01-01

    Mycobacterium tuberculosis (Mtb) the main causative agent of tuberculosis, is the main reason why this disease continues to be a global public health threat. It is therefore imperative to find a novel antitubercular drug target that is unique to the structural machinery or is essential to the growth and survival of the bacterium. One such target is the enzyme l,d-transpeptidase 2, also known as LdtMt2, a protein primarily responsible for the catalysis of 3→3 cross-linkages that make up the mycolyl–arabinogalactan–peptidoglycan complex of Mtb. In this study, structure-based pharmacophore screening, molecular docking, and in silico toxicity evaluations were employed in screening compounds from a database of synthetic compounds. Out of the 4.5 million database compounds, 18 structures were identified as high-scoring, high-binding hits with very satisfactory absorption, distribution, metabolism, excretion, and toxicity properties. Two out of the 18 compounds were further subjected to in vitro bioactivity assays, with one exhibiting a good inhibitory activity against the Mtb H37Ra strain. PMID:27042006

  19. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    SciTech Connect

    Arnold, John

    2015-01-21

    The uranyl cation (UO₂²⁺) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable of binding different lanthanides with variable affinities, and (2) developing practical synthetic methods for the attachment of these ligands to Dowex ion exchange resins.

  20. Determination of oxygen radical absorbance capacity of black cumin (Nigella sativa) seed quinone compounds.

    PubMed

    Tesarova, Hana; Svobodova, Blanka; Kokoska, Ladislav; Marsik, Petr; Pribylova, Marie; Landa, Premysl; Vadlejch, Jaroslav

    2011-02-01

    In this study, the antioxidant capacities of main quinone constituents of Nigella sativa seeds, namely dithymoquinone (1), thymohydroquinone (2) and thymoquinone (3), were compared using DPPH and ORAC methods. The best scavenging activity was produced by 2, which showed a remarkable activity of 2.60 Trolox equivalents (TE) in a concentration range between 1.6 and 6.4 microg/mL and IC50 value of 2.4 microg/mL in ORAC and DPPH assays, respectively. Contrastingly, 3 possessed only weak DPPH scavenging efficacy (IC50 = 170 microg/mL) but significant antioxidative action of 1.91 TE in ORAC assay. No effect has been observed for 1. Additionally, modified protocol for synthesis of 2 has been developed with aim to enhance its availability for further studies as well as for its future potential use. Based on the results of this study, we conclude that 2 could be considered as a compound with prospective antioxidative properties.

  1. Changes in phenolic compounds and their antioxidant capacities in jujube (Ziziphus jujuba Miller) during three edible maturity stages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the changes in total phenolic content (TPC), total flavonoid content (TFC), individual phenolic compound content, DPPH radical scavenging activity and antioxidant capacity measured by FRAP assay of four phenolic fractions (free, esterified, glycosided and insoluble-bound) fro...

  2. Green Synthetic Alternatives to Organic Compounds and Nanomaterials-May 2008

    EPA Science Inventory

    A brief account of reactions involving microwave (MW) exposure of neat reactants or catalyzed by mineral support surfaces, such as alumina, silica, clay, or their ‘doped’ versions, for the rapid one-pot assembly of heterocyclic compounds from in situ generated reactive intermedia...

  3. LEVELS OF SYNTHETIC MUSK COMPOUNDS IN MUNICIPAL WASTEWATER FOR ESTIMATION OF BIOTA EXPOSURE IN RECEIVING WATERS

    EPA Science Inventory

    To be presented is an overview of the chemistry, the monitoring methodology, and the statistical evaluation of concentrations obtained from the analysis of a suite of compounds (e.g., Galaxolide®, musk xylene, and amino musk xylene) in an aquatic ecological site.

  4. Synthetic compounds from an in house library as inhibitors of falcipain-2 from Plasmodium falciparum.

    PubMed

    Bertoldo, Jean Borges; Chiaradia-Delatorre, Louise Domeneghini; Mascarello, Alessandra; Leal, Paulo César; Cordeiro, Marlon Norberto Sechini; Nunes, Ricardo José; Sarduy, Emir Salas; Rosenthal, Philip Jon; Terenzi, Hernán

    2015-04-01

    Falcipain-2 (FP-2) is a key cysteine protease from the malaria parasite Plasmodium falciparum. Many previous studies have identified FP-2 inhibitors; however, none has yet met the criteria for an antimalarial drug candidate. In this work, we assayed an in-house library of non-peptidic organic compounds, including (E)-chalcones, (E)-N'-benzylidene-benzohydrazides and alkyl-esters of gallic acid, and assessed the activity toward FP-2 and their mechanisms of inhibition. The (E)-chalcones 48, 54 and 66 showed the lowest IC50 values (8.5 ± 0.8 µM, 9.5 ± 0.2 µM and 4.9 ± 1.3 µM, respectively). The best inhibitor (compound 66) demonstrated non-competitive inhibition, and using mass spectrometry and fluorescence spectroscopy assays, we suggest a potential allosteric site for the interaction of this compound, located between the catalytic site and the hemoglobin binding arm in FP-2. We combined structural biology tools and mass spectrometry to characterize the inhibition mechanisms of novel compounds targeting FP-2.

  5. Insights into the adsorption capacity and breakthrough properties of a synthetic zeolite against a mixture of various sulfur species at low ppb levels.

    PubMed

    Vellingiri, Kowsalya; Kim, Ki-Hyun; Kwon, Eilhann E; Deep, Akash; Jo, Sang-Hee; Szulejko, Jan E

    2016-01-15

    The sorptive removal properties of a synthetic A4 zeolite were evaluated against sulfur dioxide (SO2) and four reference reduced sulfur compounds (RSC: hydrogen sulfide (H2S), methanethiol (CH3SH), dimethyl sulfide (DMS, (CH3)2S), and dimethyl disulfide (DMDS, CH3SSCH3). To this end, a sorbent bed of untreated (as-received) A4 zeolite was loaded with gaseous standards at four concentration levels (10-100 part-per-billion (ppb (v/v)) at four different volumes (0.1, 0.2, 0.5, and 1 L increments) in both increasing (IO: 0.1-1.0 L) and decreasing volume order (DO: 1.0 to 0.1 L). Morphological properties were characterized by PXRD, FTIR, and BET analysis. The removal efficiency of SO2 decreased from 100% for all concentrations at 0.1 L (initial sample volume) to ∼82% (100 ppb) or ∼96% (10 ppb) at 3.6 L. In contrast, removal efficiency of RSC was near 100% at small loading volumes but then fell sharply, irrespective of concentration (10-100 ppb) (e.g., 32% (DMS) to 52% (H2S) at 100 ppb). The adsorption capacity of zeolite, if expressed in terms of solid-gas partition coefficient (e.g., similar to the Henry's law constant (mmol kg(-1) Pa(-1))), showed moderate variabilities with the standard concentration levels and S compound types such as the minimum of 2.03 for CH3SH (at 20 ppb) to the maximum of 13.9 for SO2 (at 10 ppb). It clearly demonstrated a notable distinction in the removal efficiency of A4 zeolite among the different S species in a mixture with enhanced removal efficiency of SO2 compared to the RSCs.

  6. Synthetic and Natural Monoamine Oxidase Inhibitors as Potential Lead Compounds for Effective Therapeutics.

    PubMed

    Pathak, Ashish; Srivastava, Amit K; Singour, Pradeep K; Gouda, Panchanan

    2016-01-01

    Monoamine oxidases A and B (MAO-A and B) play a critical role in the metabolism of intracellular neurotransmitters of the central nervous system. For decades, MAO inhibitors have proven their clinical efficacy as potential drug targets for several neurological and neurodegenerative diseases. Use of first generation non selective MAO inhibitors as neuropsychiatric drugs elicited several side effects like hypertensive crisis and cheese reaction. Therefore their use is now limited due to non-selectivity towards MAO isoforms and inhibition of metabolizing enzymes like cytochrome P450. Development of selective and specific MAO inhibitors like moclobemide, toloxatone improves their efficacy as disease-modifying effects in monotherapy as well as adjunctive therapy. Recently a lot of research has been done to elucidate the pharmacological potential of medicinal plants and their isolated bioactive constituents having MAO inhibitory activity. Herbs containing MAO inhibitors are extensively used for the development of potent synthetic drugs and as safe and effective alternatives to the available synthetic drugs in the treatment of neurodegenerative diseases such as depression, Parkinson and Alzheimer's. In several diseases like Parkinson natural MAO inhibitors prevented the neuron denaturalization by their dual action via enhancing neurotransmission of dopamine as well as lowering the generation of free radicals and toxins. Currently development of selective MAO inhibitors is still under study to achieve more effective therapies by using Computer Aided Drug Designing, Ligand-based models and structure-activity hypothesis. These approaches also facilitate understanding the interaction of newly designed molecule with MAO enzymes and the rationalization of probable mechanisms of action.

  7. Phytochemical Compounds and Antioxidant Capacity of Tucum-Do-Cerrado (Bactris setosa Mart), Brazil’s Native Fruit

    PubMed Central

    Rosa, Fernanda R.; Arruda, Andréa F.; Siqueira, Egle M. A.; Arruda, Sandra F.

    2016-01-01

    This study identified major phenolic compounds of the tucum-do-cerrado (Bactris setosa) peel, as well as antioxidant activity and total phytochemical compound concentration of different extracts of the peel and pulp of this fruit. Phenolic compounds of the different extracts of tucum-do-cerrado peel were identified and quantified using a high-performance liquid chromatography system coupled to a diode array detector (DAD). Total phytochemical compound content was determined by spectrophotometric assays and the antioxidant activity by ferric reducing antioxidant power and β-carotene/linoleic assays. Total phenolic, flavanols, total anthocyanins and yellow flavonoids concentration of tucum-do-cerrado were 122-, 14-, 264- and 61-fold higher in the peel than in the pulp, respectively. The aqueous, methanolic and ethanolic extracts of the tucum-do-cerrado peel exhibited higher antioxidant activity compared to its pulp. Flavanols, anthocyanins, flavones, phenolic acids and stilbenes were the main phenolic classes identified in the tucum-do-cerrado peel extracts. Results suggest that the antioxidant capacity and the phytochemical compound content of the tucum-do-cerrado are mainly associated with the peel. Although flavonoids are the main compounds identified in tucum-do-cerrado peel, other phenolics identified in minor amounts, such as phenolic acids and stilbenes, may be responsible for the high antioxidant capacity of the fruit. PMID:26907338

  8. Inhibition of Paracoccidioides lutzii Pb01 Isocitrate Lyase by the Natural Compound Argentilactone and Its Semi-Synthetic Derivatives

    PubMed Central

    do Prado, Renata Silva; Alves, Ricardo Justino; de Oliveira, Cecília Maria Alves; Kato, Lucília; da Silva, Roosevelt Alves; Quintino, Guilherme Oliveira; do Desterro Cunha, Silvio; de Almeida Soares, Célia Maria; Pereira, Maristela

    2014-01-01

    The dimorphic fungus Paracoccidioides spp. is responsible for paracoccidioidomycosis, the most prevalent systemic mycosis in Latin America, causing serious public health problems. Adequate treatment of mycotic infections is difficult, since fungi are eukaryotic organisms with a structure and metabolism similar to those of eukaryotic hosts. In this way, specific fungus targets have become important to search of new antifungal compound. The role of the glyoxylate cycle and its enzymes in microbial virulence has been reported in many fungal pathogens, including Paracoccidioides spp. Here, we show the action of argentilactone and its semi-synthetic derivative reduced argentilactone on recombinant and native isocitrate lyase from Paracoccidioides lutzii Pb01 (PbICL) in the presence of different carbon sources, acetate and glucose. Additionally, argentilactone and its semi-synthetic derivative reduced argentilactone exhibited relevant inhibitory activity against P. lutzii Pb01 yeast cells and dose-dependently influenced the transition from the mycelium to yeast phase. The other oxygenated derivatives tested, epoxy argentilactone and diol argentilactone-, did not show inhibitory action on the fungus. The results were supported by in silico experiments. PMID:24752170

  9. [Development of novel synthetic organic reactions: synthesis of antitumor natural products and leading compounds for new pharmaceuticals].

    PubMed

    Kita, Yasuyuki

    2002-12-01

    Biologically active natural products with unique, highly complex molecular skeletons have been used as leading compounds for raw materials of new drugs. Due to the limitations of natural supply, highly efficient, large-scale syntheses and molecular design have been sought in drug discovery. For this purpose, we have focused on a synthetic strategy effective in developing novel reactions and reagents and found several useful regio- and stereospecific reactions, contributing to the synthesis of otherwise unattainable target molecules. The application of these reactions for the total synthesis of three types of potent cytotoxic natural products for the first time is described in this paper. The basic concept is first described. Then the total synthesis of anthracyclines, fredericamycin A, and discorhabdins is reported. Novel reactions using hypervalent iodine reagents under environmentally benign conditions are also described. The future prospects for this method are discussed.

  10. Mutagenicity of nitrogen compounds from synthetic crude oils: collection, separation and biological testing

    SciTech Connect

    Rao, T K; Epler, J L; Guerin, M R; Clark, B R; Ho, C H

    1980-01-01

    In order to determine the long range health effects such as carcinogenicity/mutagenicity/teratogenicity/toxicity, associated with the newly emerging energy technologies, we have utilized the Ames Salmonella assay to evaluate mutagenic properties of synthetic fuels. Coupling with class fractionation was necessary. Organic extraction and liquid/liquid partitioning was used to separate acidic and basic fraction. The neutral material was separated using Sephadex LH-20 gel filtration into saturated and aromatic fractions of various ring sizes. The alkaline fraction was subfractionated eluting with benzene and ethanol on a basic alumina column and then with isopropanol and acetone using a Sephadex LH-20 gel column. The frameshift strain TA-98 was utilized along with Aroclor-induced rat liver homogenate (S-9 mix) for the mutagenicity assay. The natural crude oils were slightly mutagenic, the polynucleararomatics constituting the activity, while the coal-derived fuels indicated mutagenicity associated with alkaline constituents as well as polyaromatics. Hydrotreated coal (H-coal, HDT) or Shale (Paraho-Shale oil, HDT) derived fuels were not mutagenic. Ninety percent of the mutagenic activity in alkaline fraction was recovered in the acetone subfraction. High resolution spectroscopy of this fraction indicates polycyclic aromatic primary amines along with azaarenes as organic constituents responsible for the mutagenic activity associated with shale- and coal-derived fuels.

  11. Toll-like Receptor 4 (TLR4) modulation by synthetic and natural compounds: an update

    PubMed Central

    Peri, Francesco; Calabrese, Valentina

    2014-01-01

    Toll-like receptor 4 (TLR4), together with MD-2, binds bacterial endotoxins (E) with high affinity, triggering formation of the activated homodimer (E-MD-2-TLR4)2. Activated TLR4 induces intracellular signaling leading to activation of transcription factors that result in cytokine and chemokine production and initiation of inflammatory and immune responses. TLR4 also responds to endogenous ligands called danger associated molecular patterns (DAMPs). Increased sensitivity to infection and a variety of immune pathologies have been associated with either too little or too much TLR4 activation. We review here the molecular mechanisms of TLR4 activation (agonism) or inhibition (antagonism) by small organic molecules of both natural and synthetic origin. The role of co-receptors MD-2 and CD14 in the TLR4 modulation process is also discussed. Recent achievements in the field of chemical TLR4 modulation are reviewed, with special focus on non-classical TLR4 ligands with a chemical structure different from lipid A. PMID:24188011

  12. QSAR study on the relaxant agents from some Mexican medicinal plants and synthetic related organic compounds.

    PubMed

    Ramírez-Galicia, Guillermo; Garduño-Juarez, Ramón; Hemmateenejad, Bahram; Deeb, Omar; Estrada-Soto, Samuel

    2007-08-01

    Quantitative Structure-Activity Relationship studies were performed to describe and predict the antispasmodic activity of some molecules isolated from Mexican Medicinal Flora as well as for some synthetic ones based on stilbenoid bioisosteres. The relaxant activity of these molecules was taken from experiments on rat and guinea-pig ileum tissues. Given that there is some evidence of species-specific on the relaxant effects, two data sets were proposed, one for rat ileum and the other for guinea-pig ileum. These data were statistically treated in order to find a Quantitative Structure-Activity Relationship model that could describe the corresponding biological models. The goodness of prediction for the best models was measured in terms of the Leave-One-Out Cross-Validation R(2) (LOO q(2)) and the correlation coefficients of regressions through the origin (RTO R(2)0). Results show that papaverine activity could not be used as reference in rat ileum tests; however, this molecule can be used as a good reference molecule in guinea-pig ileum tests. Our study shows that MATS5p and R8m+ descriptors are the most important descriptors in predicting the rat ileum activity and that atomic polarizability is the main atomic property. On the other hand, the R3u GETAWAY descriptor turns out to be important in predicting the guinea-pig ileum activity where the influence/distance of substituents on these molecules could describe the observed activity.

  13. [Synthetic and mechanistic investigation of olefin polymerization catalyzed by early transition metal compounds

    SciTech Connect

    Bercaw, J.E.

    1993-01-01

    During the second year we continued to prepare and characterize organoyttrium and organoscandium compounds for use as catalysts for polymerizing simple olefins and diolefins. Simple, one-component systems are being pursued, suitable for chain initiation, propagation, and termination studies. This document is divided into: dicarbollide derivatives of scandium as potential catalysts; design, synthesis, and characterization of the first isospecific [alpha] olefin polymerization catalysts; polymerization of [alpha] olefins and 1,5- hexadiene using organoscandium catalysts; and attempted preparations of diastereomeric Nb and Ta olefin/hydride and olefin/alkyl derivatives.

  14. Caatinga plants: Natural and semi-synthetic compounds potentially active against Trichomonas vaginalis.

    PubMed

    Vieira, Patrícia de Brum; Silva, Nícolas Luiz Feijó; da Silva, Gloria Narjara Santos; Silva, Denise Brentan; Lopes, Norberto Peporine; Gnoatto, Simone Cristina Baggio; da Silva, Márcia Vanusa; Macedo, Alexandre José; Bastida, Jaume; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis causes trichomoniasis; the most common but overlooked non-viral sexually transmitted disease worldwide. The treatment is based at 5'-nitroimidazoles, however, failure are related to resistance of T. vaginalis to chemotherapy. Caatinga is a uniquely Brazilian region representing a biome with type desert vegetation and plants present diverse biological activity, however, with few studies. The aim of this study was to investigate the activity against T. vaginalis of different plants from Caatinga and identify the compounds responsible by the activity. A bioguided fractionation of Manilkara rufula was performed and four major compounds were identified: caproate of α-amyrin (1b), acetate of β-amyrin (2a), caproate of β-amyrin (2b), and acetate of lupeol (3a). In addition, six derivatives of α-amyrin (1), β-amyrin (2) and lupeol (3) were synthesized and tested against the parasite. Ursolic acid (5) reduced about 98% of parasite viability after 2h of incubation and drastic ultrastructural alterations were observed by scanning electron microscopy. Moreover, 5 presented high cytotoxicity to HMVII and HeLa cell line and low cytotoxicity against Vero line at 50 μM (MIC against the parasite). Metronidazole effect against T. vaginalis resistant isolate was improved when in association with 5.

  15. Synthetic and structural studies of monocyclopentadienyl cyclometalated aryl tantalum(V) compounds.

    PubMed

    Galajov, Miguel; Galindo, Agustín; García, Carlos; Gómez, Manuel; Gómez-Sal, Pilar; Parra, Andrés

    2011-09-07

    Cyclometalated aryl tetra- or trichlorido cyclopentadienyl tantalum complexes [TaXCl(3){C(6)H(4)(2-CH(2)NMe(2))-κ(2)C,N}] (X = Cl 1, η(5)-C(5)H(5)2, η(5)-C(5)H(4)(SiMe(3)) 3, η(5)-C(5)Me(5)4) containing a five-membered TaC(3)N chelate ring were synthesized by reaction of the TaXCl(4) (X = Cl, η(5)-C(5)H(5), η(5)-C(5)H(4)(SiMe(3)), η(5)-C(5)Me(5)) with the appropriate lithium aryl reagent [Li{C(6)H(4)(2-CH(2)NMe(2))}]. The reported complexes were studied by IR and NMR spectroscopy and the X-ray molecular structures of compounds 2, 3 and 4 were determined by diffraction methods. These compounds were theoretically analyzed by the DFT method and their structures were rationalized. The preferential coordination of the 2-{(dimethylamino)methyl}phenyl ligand was justified by an analysis of the molecular orbitals of the Ta(η(5)-C(5)H(5))Cl(3) and C(6)H(4)(2-CH(2)NMe(2)) fragments. In addition, the exchange pathways that account for the NMR equivalency of the Me(2)N- methyl groups and -CH(2)- hydrogen atoms of the coordinated C(6)H(4)(2-CH(2)NMe(2))-κ(2)C,N ligand were theoretically studied.

  16. Occurrence of UV-Absorbing, Mycosporine-Like Compounds among Cyanobacterial Isolates and an Estimate of Their Screening Capacity

    PubMed Central

    Garcia-Pichel, Ferran; Castenholz, Richard W.

    1993-01-01

    A survey of 20 strains of cyanobacteria (belonging to 13 genera) isolated from habitats exposed to strong insolation revealed that 13 strains contained one or more water-soluble, UV-absorbing, mycosporine amino acid (MAA)-like compounds. Some of the compounds were identical in several strains. In all, 13 distinct compounds were found. The UV absorption spectra of MAAs complemented well that of the extracellular sunscreen pigment scytonemin, which many of the strains also produced. Even though the specific MAA contents were variable among strains, they were invariably higher when the cultures were grown with UV radiation than when it was absent. In five strains tested, the MAA complement accumulated as a solute in the cytoplasmic cell fraction. The sunscreen capacities of MAA and scytonemin and their combined capacity were estimated for each strain and condition on the basis of the specific contents, cell size, and cellular location of the compounds. The estimates suggested that significant, albeit not complete, protection from UV photodamage could be gained from the possession of either MAA or scytonemin but especially from simultaneous screening by both types of compounds. PMID:16348839

  17. Effects of light quality on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts.

    PubMed

    Qian, Hongmei; Liu, Tianyu; Deng, Mingdan; Miao, Huiying; Cai, Congxi; Shen, Wangshu; Wang, Qiaomei

    2016-04-01

    The effects of different light qualities, including white, red and blue lights, on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts were investigated using light-emitting diodes (LEDs) as a light source. Our results showed that blue light treatment significantly decreased the content of gluconapin, the primary compound for bitter flavor in shoots, while increased the glucoraphanin content in roots. Moreover, the maximum content of vitamin C was detected in the white-light grown sprouts and the highest levels of total phenolic and anthocyanins, as well as the strongest antioxidant capacity were observed in blue-light grown sprouts. Taken together, the application of a colorful light source is a good practice for improvement of the consumers' acceptance and the nutritional phtyochemicals of Chinese kale sprouts.

  18. Synthetic and Mechanistic Investigations of Polymerization Catalyzed for Early Transition Metal Compounds

    SciTech Connect

    John E. Bercaw

    2001-03-18

    The objectives of the research program are (1) to discover new types of chemical transformations between hydrocarbons and transition-metal compounds, (2) to investigate their mechanisms; and (3) to explore the possibilities of coupling these transformations with others to catalyze chemical reactions for the preparation of fuels, commodity chemicals and polymeric materials. A current focus is the catalytic polymerization of alpha-olefins. New and superior polymers with different microstructures and potentially very useful kinetic resolutions of abundant, racemic alpha-olefins could be realized, if sufficient control over the polymerization process could be achieved. Well defined, yttrocene catalysts have been synthesized, some with known absolute configurations, and their reactions with an isotopically chiral 1-pentene monomer have been examined. These experiments have revealed the absolute olefin facial preferences for 1-pentene addition to Y-H and Y-pentyl bonds. A new class of zirconocene catalysts having doubly-linked cyclopentadienyl ligands has been developed, which allow the preparation of polypropylenes varying from isotactic to syndiotactic. These catalysts are highly reactive, permitting the polymerization of normally unreactive monomers such as 3-substituted alpha olefins. Chiral versions effect polymerization of such racemic monomers with useful kinetic resolutions.

  19. Effect of thermal processing on the profile of bioactive compounds and antioxidant capacity of fermented orange juice.

    PubMed

    Escudero-López, Blanca; Cerrillo, Isabel; Gil-Izquierdo, Ángel; Hornero-Méndez, Dámaso; Herrero-Martín, Griselda; Berná, Genoveva; Medina, Sonia; Ferreres, Federico; Martín, Franz; Fernández-Pachón, María-Soledad

    2016-11-01

    Previously, we reported that alcoholic fermentation enhanced flavanones and carotenoids content of orange juice. The aim of this work was to evaluate the influence of pasteurization on the qualitative and quantitative profile of bioactive compounds and the antioxidant capacity of fermented orange juice. Ascorbic acid (203 mg/L), total flavanones (647 mg/L), total carotenoids (7.07 mg/L) and provitamin A (90.06 RAEs/L) values of pasteurized orange beverage were lower than those of fermented juice. Total phenolic remained unchanged (585 mg/L) and was similar to that of original juice. The flavanones naringenin-7-O-glucoside, naringenin-7-O-rutinoside, hesperetin-7-O-rutinoside, hesperetin-7-O-glucoside and isosakuranetin-7-O-rutinoside, and the carotenoids karpoxanthin and isomer, neochrome, lutein, ζ-carotene, zeaxanthin, mutatoxanthin epimers, β-cryptoxanthin and auroxanthin epimers were the major compounds. Pasteurization produced a decrease in antioxidant capacity of fermented juice. However, TEAC (5.45 mM) and ORAC (6353 μM) values of orange beverage were similar to those of original orange juice. The novel orange beverage could be a valuable source of bioactive compounds with antioxidant capacity and exert potential beneficial effects.

  20. An aryl dioxygenase shows remarkable double dioxygenation capacity for diverse bis-aryl compounds, provided they are carbocyclic.

    PubMed

    Overwin, Heike; González, Myriam; Méndez, Valentina; Seeger, Michael; Wray, Victor; Hofer, Bernd

    2016-09-01

    The bacterial dioxygenation of mono- or polycyclic aromatic compounds is an intensely studied field. However, only in a few cases has the repeated dioxygenation of a substrate possessing more than a single aromatic ring been described. We previously characterized the aryl-hydroxylating dioxygenase BphA-B4h, an artificial hybrid of the dioxygenases of the biphenyl degraders Burkholderia xenovorans LB400 and Pseudomonas sp. strain B4-Magdeburg, which contains the active site of the latter enzyme, as an exceptionally powerful biocatalyst. We now show that this dioxygenase possesses a remarkable capacity for the double dioxygenation of various bicyclic aromatic compounds, provided that they are carbocyclic. Two groups of biphenyl analogues were examined: series A compounds containing one heterocyclic aromatic ring and series B compounds containing two homocyclic aromatic rings. Whereas all of the seven partially heterocyclic biphenyl analogues were solely dioxygenated in the homocyclic ring, four of the six carbocyclic bis-aryls were converted into ortho,meta-hydroxylated bis-dihydrodiols. Potential reasons for failure of heterocyclic dioxygenations are discussed. The obtained bis-dihydrodiols may, as we also show here, be enzymatically re-aromatized to yield the corresponding tetraphenols. This opens a way to a range of new polyphenolic products, a class of compounds known to exert multiple biological activities. Several of the obtained compounds are novel molecules.

  1. Linear solvation energy relationship for the adsorption of synthetic organic compounds on single-walled carbon nanotubes in water.

    PubMed

    Ding, H; Chen, C; Zhang, X

    2016-01-01

    The linear solvation energy relationship (LSER) was applied to predict the adsorption coefficient (K) of synthetic organic compounds (SOCs) on single-walled carbon nanotubes (SWCNTs). A total of 40 log K values were used to develop and validate the LSER model. The adsorption data for 34 SOCs were collected from 13 published articles and the other six were obtained in our experiment. The optimal model composed of four descriptors was developed by a stepwise multiple linear regression (MLR) method. The adjusted r(2) (r(2)adj) and root mean square error (RMSE) were 0.84 and 0.49, respectively, indicating good fitness. The leave-one-out cross-validation Q(2) ([Formula: see text]) was 0.79, suggesting the robustness of the model was satisfactory. The external Q(2) ([Formula: see text]) and RMSE (RMSEext) were 0.72 and 0.50, respectively, showing the model's strong predictive ability. Hydrogen bond donating interaction (bB) and cavity formation and dispersion interactions (vV) stood out as the two most influential factors controlling the adsorption of SOCs onto SWCNTs. The equilibrium concentration would affect the fitness and predictive ability of the model, while the coefficients varied slightly.

  2. Antioxidant capacities of seven flavonoid compounds isolated from pulp of acai fruit (Euterpe oleracea)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pulp of açai fruit (Euterpe oleracea Mart.) has been demonstrated to exhibit extremely high antioxidant capacity. Seven major flavonoids were isolated from freeze-dried acai pulp by various chromatographic methods. Their structures were elucidated as orientin (1), homoorientin (2), vitexin (3), ...

  3. Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano.

    PubMed

    Abderrahim, Fatima; Huanatico, Elizabeth; Segura, Roger; Arribas, Silvia; Gonzalez, M Carmen; Condezo-Hoyos, Luis

    2015-09-15

    Physical features, bioactive compounds and total antioxidant capacity (TAC) of coloured quinoa varieties (Chenopodium quinoa Willd.) from Peruvian Altiplano were studied. Quinoa seeds did not show a pure red colour, but a mixture which corresponded to different fractal colour values (51.0-71.8), and they varied from small to large size. Regarding bioactive compounds, total phenolic (1.23-3.24mg gallic acid equivalents/g) and flavonol contents (0.47-2.55mg quercetin equivalents/g) were highly correlated (r=0.910). Betalains content (0.15-6.10mg/100g) was correlated with L colour parameter (r=-0.569), total phenolics (r=0.703) and flavonols content (r=0.718). Ratio of betaxanthins to betacyanins (0.0-1.41) was negatively correlated with L value (r=-0.744). Whereas, high TAC values (119.8-335.9mmol Trolox equivalents/kg) were negatively correlated with L value (r=-0.779), but positively with betalains (r=0.730), as well as with free (r=0.639), bound (r=0.558) and total phenolic compounds (r=0.676). Unexploited coloured quinoa seeds are proposed as a valuable natural source of phenolics and betalains with high antioxidant capacity.

  4. Selected trace-element and synthetic-organic compound data for streambed sediment from the Clark Fork-Pend Oreille and Spokane River basins, Montana, Idaho, and Washington, 1998

    USGS Publications Warehouse

    Beckwith, Michael A.

    2002-01-01

    Most of the analytical results for synthetic organic compounds were reported as either estimated or non-detected values. Phthalates and polycyclic aro­matic hydrocarbons were the most frequently detected classes of synthetic organic compounds in streambed sediment. Organochlorine pesticide residues were detected at two sites. Polychlorinated biphenyls were detected at one site.

  5. Phenolic compounds of Brazilian beers from different types and styles and application of chemometrics for modeling antioxidant capacity.

    PubMed

    Moura-Nunes, Nathália; Brito, Thárcila Cazaroti; da Fonseca, Nívea Dias; de Aguiar, Paula Fernandes; Monteiro, Mariana; Perrone, Daniel; Torres, Alexandre Guedes

    2016-05-15

    In the present study we aimed at investigating, for the first time, phenolic compounds in Brazilian beers of different types and styles. We also aimed at applying chemometrics for modeling beer's antioxidant capacity as a function of their physicochemical attributes (density, refractive index, bitterness and ethanol content). Samples (n=29) were analyzed by PCA originating five groups, especially according to ethanol contents and bitterness. In general, Group V (alcoholic beers with very high bitterness) presented higher refractive index, bitterness, ethanol and phenolics contents than Groups I (non-alcoholic beers) and II (alcoholic beers with low bitterness). Brazilian beers phenolics profile was distinct from that of European beers, with high contents of gallic acid (0.5-14.7 mg/L) and low contents of ferulic acid (0.2-1.8 mg/L). Using PLS, beer's antioxidant capacity measured by FRAP assay could be predicted with acceptable precision by data of ethanol content and density, bitterness and refractive index values.

  6. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 1. Adsorption capacity and kinetics

    SciTech Connect

    Yu, Z.; Peldszus, S.; Huck, P.M.

    2009-03-01

    The adsorption of two representative PhACs (naproxen and carbamazepine) and one EDC (nonylphenol) were evaluated on two granular activated carbons (GAC) namely coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. The primary objective was to investigate preloading effects by natural organic matter (NOM) on adsorption capacity and kinetics under conditions and concentrations (i.e., ng/L) relevant for drinking water treatment. Isotherms demonstrated that all compounds were significantly negatively impacted by NOM fouling. Adsorption capacity reduction was most severe for the acidic naproxen, followed by the neutral carbamazepine and then the more hydrophobic nonylphenol. The GAC with the wider pore size distribution had considerably greater NOM loading, resulting in lower adsorption capacity. Different patterns for the change in Freundlich KF and 1/n with time revealed different competitive mechanisms for the different compounds. Mass transport coefficients determined by short fixed-bed (SFB) tests with virgin and preloaded GAC demonstrated that film diffusion primarily controls mass transfer on virgin and preloaded carbon. Naproxen suffered the greatest deteriorative effect on kinetic parameters due to preloading, followed by carbamazepine, and then nonylphenol. A type of surface NOM/biofilm, which appeared to add an additional mass transfer resistance layer and thus reduce film diffusion, was observed. In addition, electrostatic interactions between NOM/biofilm and the investigated compounds are proposed to contribute to the reduction of film diffusion. A companion paper building on this work describes treatability studies in pilot-scale GAC adsorbers and the effectiveness of a selected fixed-bed model. 32 refs., 3 figs., 2 tabs.

  7. Phenolic compound profiles and antioxidant capacity of Persea americana Mill. peels and seeds of two varieties.

    PubMed

    Kosińska, Agnieszka; Karamać, Magdalena; Estrella, Isabel; Hernández, Teresa; Bartolomé, Begoña; Dykes, Gary A

    2012-05-09

    Avocado processing by the food and cosmetic industries yields a considerable amount of phenolic-rich byproduct such as peels and seeds. Utilization of these byproducts would be favorable from an economic point of view. Methanolic (80%) extracts obtained from lyophilized ground peels and seeds of avocado (Persea americana Mill.) of the Hass and Shepard varieties were characterized for their phenolic compound profiles using the HPLC-PAD technique. The structures of the identified compounds were subsequently unambiguously confirmed by ESI-MS. Compositional analysis revealed that the extracts contained four polyphenolic classes: flavanol monomers, proanthocyanidins, hydroxycinnamic acids, and flavonol glycosides. The presence of 3-O-caffeoylquinic acid, 3-O-p-coumaroylquinic acid, and procyanidin A trimers was identified in seeds of both varieties. Intervarietal differences were apparent in the phenolic compound profiles of peels. Peels of the Shepard variety were devoid of (+)-catechin and procyanidin dimers, which were present in the peels of the Hass variety. Peels of both varieties contained 5-O-caffeoylquinic acid and quercetin derivatives. The differences in the phenolic profiles between varietals were also apparent in the different antioxidant activity of the extracts. The peel extracts had a higher total phenolic compound content and antioxidant activity when compared to the seed extracts. The highest TEAC and ORAC values were apparent in peels of the Haas variety in which they amounted to 0.16 and 0.47 mmol Trolox/g DW, respectively. No significant (p > 0.05) differences were apparent between the TEAC values of seeds of the two varieties but the ORAC values differed significantly (p < 0.05). Overall these findings indicate that both the seeds and peel of avocado can be utilized as a functional food ingredient or as an antioxidant additive.

  8. Isolation and identification of compounds responsible for antioxidant capacity of Euryale ferox seeds.

    PubMed

    Song, Chang-Wei; Wang, Shu-Mei; Zhou, Li-Li; Hou, Fan-Fan; Wang, Kai-Jin; Han, Quan-Bin; Li, Ning; Cheng, Yong-Xian

    2011-02-23

    Euryale ferox seed is consumed medicinally or for food in China. The present study revealed it to contain significant antioxidant activity, which may be associated with its medical applications as a proteinuria inhibitor of diabetic nephropathy. This study resulted in the identification of 3 new sesquineolignans, named euryalins A-C (1-3), and 16 known compounds, which were all first isolated from this plant apart from 5,7,4-trihydroxy-flavanone. The antioxidant potential of the partial isolates was evaluated using the DPPH radical scavenging assay and mesangial cellular assay. Compounds 2, rel-(2α,3β)-7-O-methylcedrusin (4), syringylglycerol-8-O-4-(sinapyl alcohol) ether (5), and (+)-syringaresinol (7) were found to be most active on DPPH assay, whereas compounds 2, 4, 7, (1R,2R,5R,6S)-2-(3,4-dimethoxyphenyl)-6-(3,4-dihydroxyphenyl)-3,7-dioxabicyclo[3.3.0]octane, and buddlenol E could significantly inhibit high glucose-stimulated reactive oxygen species production in mesangial cells. The results suggested that E. ferox seed could be considered as an excellent source of natural antioxidants and is useful in the prevention of diabetic nephropathy.

  9. Antioxidant capacity and phenolic compounds of Lonicerae macranthoides by HPLC-DAD-QTOF-MS/MS.

    PubMed

    Hu, Xin; Chen, Lin; Shi, Shuyun; Cai, Ping; Liang, Xuejuan; Zhang, Shuihan

    2016-05-30

    Lonicerae macranthoides with strong antioxidant activity is commonly used in traditional Chinese medicine and folk tea/beverage. However, detailed information about its antioxidant activity and bioactive compounds is limited. Then at first, we comparatively evaluated total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activities of water extract, petroleum ether, ethyl acetate and n-butanol fractions of L. macranthoides. Ethyl acetate fraction exhibited the highest level of TPC (207.38 mg GAE/g DW), TFC (53.06 mg RE/g DW) and the best DPPH scavenge activity and reducing power. n-Butanol fraction showed the best ABTS(+) and O2(-) scavenging activities. Interestingly, water extract, ethyl acetate and n-butanol fractions showed stronger antioxidant activities than positive control, butylated hydroxytoluene (BHT). After that, thirty-one antioxidant phenolic compounds, including twenty-two phenolic acids and nine flavonoids, were screened by DPPH-HPLC experiment and then identified using HPLC-DAD-QTOF-MS/MS. It is noted that twenty-one compounds (1, 3-4, 6-17, 19, 23, 26, 28-29, and 31), as far as was known, were discovered from L. macranthoide for the first time, and eleven of them (3-4, 10-17, and 23) were reported in Lonicera species for the first time. Results indicated that L. macranthoides could serve as promising source of rich antioxidants in foods, beverages and medicines for health promotion.

  10. Study of the Effect of Surfactants on Extraction and Determination of Polyphenolic Compounds and Antioxidant Capacity of Fruits Extracts

    PubMed Central

    Hosseinzadeh, Reza; Khorsandi, Khatereh; Hemmaty, Syavash

    2013-01-01

    Micelle/water mixed solutions of different surface active agents were studied for their effectiveness in the extraction of polyphenolic compounds from various varieties of apples from west Azerbaijan province in Iran. The total content of polyphenolic compound in fruit extracts were determined using ferrous tartrate and Folin–Ciocalteu assays methods and chromatographic methods and compared with theme. High performance liquid chromatography is one of the most common and important methods in biochemical compound identification. The effect of pH, ionic strength, surfactant type, surfactant concentration, extraction time and common organic solvent in the apple polyphenolics extractions was studied using HPLC-DAD. Mixtures of surfactants, water and methanol at various ratios were examined and micellar-water solutions of Brij surfactant showed the highest polyphenol extraction efficiency. Optimum conditions for the extraction of polyphenolic compounds from apple occurred at 7 mM Brij35, pH 3. Effect of ionic strength on extraction was determined and 2% (W/V) potassium Chloride was determined to be the optimum salt concentration. The procedure worked well with an ultrasound bath. Total antioxidant capacity also was determined in this study. The method can be safely scaled up for pharmaceutical applications. PMID:23472082

  11. Spectroscopic, structural characterizations and antioxidant capacity of the chromium (III) niacinamide compound as a diabetes mellitus drug model

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Megharbel, Samy M.; Hussien, M. A.; Hamza, Reham Z.; Al-Omar, Mohamed A.; Naglah, Ahmed M.; Afifi, Walid M.; Kobeasy, Mohamed I.

    2017-02-01

    New binuclear chromium (III) niacinamide compound with chemical formula [Cr2(Nic)(Cl)6(H2O)4]·H2O was obtained upon the reaction of chromium (III) chloride with niacinamide (Nic) in methanol solvent at 60 °C. The proposed structure was discussed with the help of microanalytical analyses, conductivity, spectroscopic (FT-IR and UV-vis.), magnetic calculations, thermogravimetric analyses (TG/TGA), and morphological studies (X-ray of solid powder and scan electron microscopy. The infrared spectrum of free niacinamide in comparison with its chromium (III) compound indicated that the chelation mode occurs via both nitrogen atoms of pyridine ring and primary -NH2 group. The efficiency of chromium (III) niacinamide compound in decreasing of glucose level of blood and HbA1c in case of diabetic rats was checked. The ameliorating gluconeogenic enzymes, lipid profile and antioxidant defense capacities are considered as an indicator of the efficiency of new chromium (III) compound as antidiabetic drug model.

  12. Spectroscopic, structural characterizations and antioxidant capacity of the chromium (III) niacinamide compound as a diabetes mellitus drug model.

    PubMed

    Refat, Moamen S; El-Megharbel, Samy M; Hussien, M A; Hamza, Reham Z; Al-Omar, Mohamed A; Naglah, Ahmed M; Afifi, Walid M; Kobeasy, Mohamed I

    2017-02-15

    New binuclear chromium (III) niacinamide compound with chemical formula [Cr2(Nic)(Cl)6(H2O)4]·H2O was obtained upon the reaction of chromium (III) chloride with niacinamide (Nic) in methanol solvent at 60°C. The proposed structure was discussed with the help of microanalytical analyses, conductivity, spectroscopic (FT-IR and UV-vis.), magnetic calculations, thermogravimetric analyses (TG/TGA), and morphological studies (X-ray of solid powder and scan electron microscopy. The infrared spectrum of free niacinamide in comparison with its chromium (III) compound indicated that the chelation mode occurs via both nitrogen atoms of pyridine ring and primary -NH2 group. The efficiency of chromium (III) niacinamide compound in decreasing of glucose level of blood and HbA1c in case of diabetic rats was checked. The ameliorating gluconeogenic enzymes, lipid profile and antioxidant defense capacities are considered as an indicator of the efficiency of new chromium (III) compound as antidiabetic drug model.

  13. Comprehensive monitoring of synthetic musk compounds from freshwater to coastal environments in Korea: with consideration of ecological concerns and bioaccumulation.

    PubMed

    Lee, In-Seok; Kim, Un-Jung; Oh, Jeong-Eun; Choi, Minkyu; Hwang, Dong-Woon

    2014-02-01

    This study investigated the concentration levels of synthetic musk compounds (SMCs), including HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran), AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene), MK (Musk ketone), and MX (Musk xylene), in freshwater, freshwater and coastal sediments, and coastal bivalves from freshwater to coastal environments. The levels in freshwater close to sewage treatment plants (STPs) showed higher contamination and suggested a medium to high ecological risk, especially posed by MK making more than 65% contribution to the combined risk by the total SMCs. STP effluent discharge points showed higher SMC concentrations in freshwater and coastal sediments. Predominant HHCB contributions regardless of sample types such as abiota and biota were consistent with the greater usage of HHCB than AHTN and MK in Korea. However, the higher contributions of AHTN than those predicted from AHTN consumption in Korea indicate the need for further research on the characteristic properties of individual SMCs, including partitioning, biomagnification, degradation, and metabolism for a realistic risk characterization. With respect to the highest HHCB levels in coastal bivalves reported, we determined the biota-sediment accumulation factor (BSAF) to understand the bioaccumulation of SMCs between coastal sediment and bivalves. The calculated BSAF values suggested that SMCs in bivalves were not biomagnified via the food chain but mostly partitioned from sediment. To our knowledge, this is the first study to measure BSAF values of SMCs, especially HHCB, AHTN, and MK, in coastal bivalve samples.

  14. Bioactive compounds of four hot pepper varieties (Capsicum annuum L.), antioxidant capacity, and intestinal bioaccessibility.

    PubMed

    Hervert-Hernández, Deisy; Sáyago-Ayerdi, Sonia G; Goñi, Isabel

    2010-03-24

    Pepper fruits (Capsicum annuum) contain a wide array of phytochemicals with well-known antioxidant properties. Since bioactive compounds depend on their bioavailability to exert beneficial effects, it was crucial to estimate the extent of release from the food matrix and thus their bioaccessibility. Accordingly, we determined the individual carotenoid and phenolic content as well as the antioxidant properties of four red hot dried cultivars (Capsicum annuum L.) of high consumption in Mexico and estimated the extent of intestinal bioaccessibility of carotenoids with significance in human health, beta-carotene, beta-cryptoxanthin, and zeaxanthin, using an in vitro gastrointestinal model. Hot dried peppers at ripe stage had a high content of bioactive compounds that exhibited significant antioxidant properties (26-80 micromol trolox equivalents/g of dry matter), such as polyphenols (>2000 mg/100 g of dry matter) and carotenoids (95-437 mg/100 g of dry matter), which were partially bioaccessible. The amount released from the food matrix by the action of digestive enzymes was about 75% for total polyphenols, up to 49% for both beta-carotene and zeaxanthin, and up to 41% for beta-cryptoxanthin. The results suggest that from 50 to 80% of these carotenoids could reach the colon to be potentially fermented or could remain unavailable.

  15. Major Phenolic Compounds, Antioxidant Capacity and Antidiabetic Potential of Rice Bean (Vigna umbellata L.) in China

    PubMed Central

    Yao, Yang; Cheng, Xu-Zhen; Wang, Li-Xia; Wang, Su-Hua; Ren, Guixing

    2012-01-01

    Interest in edible beans as nutraceuticals is increasing. In the present study, the individual phenolic acids, the total phenolic content (TPC), the total flavonoid content (TFC), and the antioxidant and antidiabetic potential of 13 varieties of rice beans from China were investigated. Eight phenolic compounds (catechin, epicatechin, p-coumaric acid, ferulic acid, vitexin, isovitexin, sinapic acid, quercetin) were analyzed on an ultra-performance liquid chromatography (UPLC) mass spectrometry (MS) system. The rice bean varieties had significant differences in total phenolic compounds (ranging from 123.09 ± 10.35 to 843.75 ± 30.15 μg/g), in TPC (ranging from 3.27 ± 0.04 to 6.43 ± 0.25 mg gallic acid equivalents (GAE)/g), in TFC (ranging from 55.95 ± 11.16 to 320.39 ± 31.77 mg catechin (CE)/g), in antioxidant activity (ranging from 39.87 ± 1.37 to 46.40 ± 2.18 μM·TE/g), in α-glucosidase inhibition activity (ranging from 44.32 ± 2.12 to 68.71 ± 2.19) and in advanced glycation end products formation inhibition activity (ranging from 34.11 ± 0.59 to 75.75 ± 0.33). This study is the first report on phytochemistry and biological activities in rice beans. PMID:22489119

  16. Sacha inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity.

    PubMed

    Chirinos, Rosana; Zuloeta, Gledy; Pedreschi, Romina; Mignolet, Eric; Larondelle, Yvan; Campos, David

    2013-12-01

    Fatty acids (FA), phytosterols, tocopherols, phenolic compounds, total carotenoids and hydrophilic and lipophilic ORAC antioxidant capacities were evaluated in 16 cultivars of Sacha inchi (SI) seeds with the aim to valorise them and offer more information on the functional properties of SI seeds. A high α linolenic (α-Ln) fatty acid content was found in all cultivars (ω3, 12.8-16.0 g/100 g seed), followed by linoleic (L) fatty acid (ω6, 12.4-14.1g/100g seed). The ratio ω6/ω3 was within the 0.83-1.09 range. γ- and δ-tocopherols were the most important tocopherols, whereas the most representative phytosterols were β-sitosterol and stigmasterol. Contents of total phenolics, total carotenoids and hydrophilic and lipophilic antioxidant capacities ranged from 64.6 to 80 mg of gallic acid equivalent/100g seed; from 0.07 to 0.09 mg of β-carotene equivalent/100g of seed; from 4.3 to 7.3 and, from 1.0 to 2.8 μmol of Trolox equivalent/g of seed, respectively, among the evaluated SI cultivars. Results showed significant differences (p<0.05) among the evaluated SI cultivars in the contents of ω3, ω6, antioxidant capacities and other evaluated phytochemicals. SI seeds should be considered as an important dietary source of health promoting phytochemicals.

  17. Direct coupling of indoles with carbonyl compounds: short, enantioselective, gram-scale synthetic entry into the hapalindole and fischerindole alkaloid families.

    PubMed

    Baran, Phil S; Richter, Jeremy M

    2004-06-23

    The invention of a method for the direct union of indoles and carbonyl compounds (ketones, amides, esters) is described. Using this new method, a short, enantioselective, gram-scale and protecting group-free synthetic entry to the fischerindole and hapalindole indole alkaloid family has been achieved from carvone and indole. Total syntheses of (+)-hapalindole Q and (-)-12-epi-fischerindole U isothiocyanate are reported. The absolute stereochemistry of the latter natural product has also been determined.

  18. Disruption of hippocampal synaptic transmission and long-term potentiation by psychoactive synthetic cannabinoid 'Spice' compounds: comparison with Δ(9) -tetrahydrocannabinol.

    PubMed

    Hoffman, Alexander F; Lycas, Matthew D; Kaczmarzyk, Jakub R; Spivak, Charles E; Baumann, Michael H; Lupica, Carl R

    2017-03-01

    There has been a marked increase in the availability of synthetic drugs designed to mimic the effects of marijuana. These cannabimimetic drugs, sold illicitly as 'Spice' and related products, are associated with serious medical complications in some users. In vitro studies suggest that synthetic cannabinoids in these preparations are potent agonists at central cannabinoid CB1 receptors (CB1Rs), but few investigations have delineated their cellular effects, particularly in comparison with the psychoactive component of marijuana, Δ(9) -tetrahydrocannabinol (Δ(9) -THC). We compared the ability of three widely abused synthetic cannabinoids and Δ(9) -THC to alter glutamate release and long-term potentiation in the mouse hippocampus. JWH-018 was the most potent inhibitor of hippocampal synaptic transmission (EC50 ~15 nM), whereas its fluoropentyl derivative, AM2201, inhibited synaptic transmission with slightly lower potency (EC50 ~60 nM). The newer synthetic cannabinoid, XLR-11, displayed much lower potency (EC50 ~900 nM) that was similar to Δ(9) -THC (EC50 ~700 nM). The effects of all compounds occurred via activation of CB1Rs, as demonstrated by reversal with the selective antagonist/inverse agonist AM251 or the neutral CB1R antagonist PIMSR1. Moreover, AM2201 was without effect in the hippocampus of transgenic mice lacking the CB1R. Hippocampal slices exposed to either synthetic cannabinoids or Δ(9) -THC exhibited significantly impaired long-term potentiation (LTP). We find that, compared with Δ(9) -THC, the first-generation cannabinoids found in Spice preparations display higher potency, whereas a recent synthetic cannabinoid is roughly equipotent with Δ(9) -THC. The disruption of synaptic function by these synthetic cannabinoids is likely to lead to profound impairments in cognitive and behavioral function.

  19. Development of an Enhanced Phenotypic Screen of Cytotoxic T-Lymphocyte Lytic Granule Exocytosis Suitable for Use with Synthetic Compound and Natural Product Collections.

    PubMed

    Zhao, Ziyan; deMayo, James A; West, Ashley M; Balunas, Marcy J; Zweifach, Adam

    2016-07-01

    We previously developed an assay of cytotoxic T-lymphocyte lytic granule exocytosis based on externalization of LAMP-1/CD107A using nonphysiological stimuli to generate maximal levels of exocytosis. Here, we used polystyrene beads coated with anti-CD3 antibodies to stimulate cells. Light scatter let us distinguish cells that contacted beads from cells that had not, allowing comparison of signaling events and exocytosis from stimulated and unstimulated cells in one sample. Bead stimulation resulted in submaximal exocytosis, making it possible to detect compounds that either augment or inhibit lytic granule exocytosis. Coupled with the assay's ability to distinguish responses in cells that have and have not contacted a stimulatory bead, it is possible to detect three kinds of compounds: inhibitors, stimulators, which cause exocytosis, and augmenters, which enhance receptor-stimulated exocytosis. To validate the assay, we screened a set of synthetic compounds identified using our previous assay and a library of 320 extracts prepared from tunicate-associated bacteria. One of the extracts augmented exocytosis threefold. Activity-guided fractionation and structure elucidation revealed that this compound is the known PKC activator teleocidin A-1. We conclude that our modified assay is suitable for screening synthetic compound plates and natural product collections, and will be useful for identifying immunologically active small molecules.

  20. Evolution of minor polar compounds and antioxidant capacity during storage of bottled extra virgin olive oil.

    PubMed

    Romani, Annalisa; Lapucci, Chiara; Cantini, Claudio; Ieri, Francesca; Mulinacci, Nadia; Visioli, Francesco

    2007-02-21

    We characterized "Olivastra Seggianese" extra virgin olive oil (EVOO) and evaluated its chemical and sensory characteristics and antioxidant and antiradical activities during storage under novel conditions. Two oils (A and B) were analyzed for the commodity characteristics at blending (t0) and after 9, 12, and 18 months; panel tests were performed and minor polar compounds (MPC) content was assessed at blending (t0) and after 6, 9, 12, and 18 months. Antioxidant and antiradical activities in vitro were evaluated at t0 and after 12 months, by human low density lipoprotein (LDL) and 1,1-diphenyl-2-picrylhydrazil radical (DPPH*) tests. Oil A, which had an initially higher MPC content, possessed "harder" organoleptic characteristics than oil B, which had a lower MPC content and was endowed with a "smoother" taste profile. Statistical analyses showed that secoiridoids, particularly deacetoxy-oleuropein aglycone, should be quantified to evaluate EVOO stability during storage. The antioxidant activity toward human LDL was linked to MPC content and to storage time. The tests on the stable free radical DPPH* confirmed the results on human LDL. We propose this as an additional parameter to evaluate olive oil quality and stability over time.

  1. Mechanical hulling and thermal pre-treatment effects on rapeseed oil antioxidant capacity and related lipophilic and hydrophilic bioactive compounds.

    PubMed

    Rękas, Agnieszka; Wroniak, Małgorzata; Siger, Aleksander; Ścibisz, Iwona; Derewiaka, Dorota; Anders, Andrzej

    2017-02-20

    In this study, the effect of rapeseed mechanical hulling and thermal pre-treatment by microwaves (from 2 to 10 min with 2-min intervals, 800 W) and roasting (from 20 to 100 min with 20-min intervals, 165 °C) on the content of phytochemicals in the oil was investigated. Results showed that both pre-treatments applied differentiated the oils in terms of the content of bioactive compounds. In general, oils pressed from hulled and thermally pre-treated seeds contained higher content of tocopherols, PC-8 and phytosterols, while oils pressed from non-hulled and pre-processed seeds had significantly higher concentration of polyphenols. Both microwaving and roasting contributed to an increase of antioxidant capacity of studied oils. The increase of radical scavenging activity of oils was seen mainly in hydrophilic fraction of oil, which was highly positively correlated with the amount of canolol formed during seeds heating.

  2. EXPEDITIOUS SYNTHETIC TRANSFORMATIONS USING MICROWAVES

    EPA Science Inventory

    Microwave-expedited solvent-free synthetic processes will be described for the synthesis of a variety of industrially significant compounds and intermediates namely, enamines, nitroalkenes, enones, oxidized sulfur compounds and ionic liquids. This solvent-free synthetic methodolo...

  3. Evaluating the anti-neuroinflammatory capacity of raw and steamed garlic as well as five organosulfur compounds.

    PubMed

    Ho, Su-Chen; Su, Min-Sheng

    2014-10-31

    The anti-neuroinflammatory capacities of raw and steamed garlic extracts as well as five organosulfur compounds (OSCs) were examined in lipopolysaccharide (LPS)-stimulated BV2 microglia. According to those results, steaming pretreatment blocked the formation of alliinase-catalyzed OSCs such as allicin and diallyl trisulfide (DATS) in crushed garlic. Raw garlic, but not steamed garlic, dose-dependently attenuated the production of LPS-induced nitric oxide (NO), interleukin-1β (IL-1β), tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein-1 (MCP-1). DATS and diallyl disulfide at 200 and 400 μM, respectively, displayed significant anti-neuroinflammatory activity. Meanwhile, even at 1 mM, diallyl sulfide, S-allyl cysteine and alliin did not display such activity. Inhibition of nuclear factor-κB activation was the mechanism underlying this protective effect of raw garlic and DATS. Analysis results indicated that the anti-neuroinflammatory capacity of raw garlic is due to the alliin-derived OSCs. Importantly, DATS is a highly promising therapeutic candidate for treating inflammation-related neurodegenerative diseases.

  4. Metagenomic Analysis of the Pygmy Loris Fecal Microbiome Reveals Unique Functional Capacity Related to Metabolism of Aromatic Compounds

    PubMed Central

    Xu, Bo; Xu, Weijiang; Yang, Fuya; Li, Junjun; Yang, Yunjuan; Tang, Xianghua; Mu, Yuelin; Zhou, Junpei; Huang, Zunxi

    2013-01-01

    The animal gastrointestinal tract contains a complex community of microbes, whose composition ultimately reflects the co-evolution of microorganisms with their animal host. An analysis of 78,619 pyrosequencing reads generated from pygmy loris fecal DNA extracts was performed to help better understand the microbial diversity and functional capacity of the pygmy loris gut microbiome. The taxonomic analysis of the metagenomic reads indicated that pygmy loris fecal microbiomes were dominated by Bacteroidetes and Proteobacteria phyla. The hierarchical clustering of several gastrointestinal metagenomes demonstrated the similarities of the microbial community structures of pygmy loris and mouse gut systems despite their differences in functional capacity. The comparative analysis of function classification revealed that the metagenome of the pygmy loris was characterized by an overrepresentation of those sequences involved in aromatic compound metabolism compared with humans and other animals. The key enzymes related to the benzoate degradation pathway were identified based on the Kyoto Encyclopedia of Genes and Genomes pathway assignment. These results would contribute to the limited body of primate metagenome studies and provide a framework for comparative metagenomic analysis between human and non-human primates, as well as a comparative understanding of the evolution of humans and their microbiome. However, future studies on the metagenome sequencing of pygmy loris and other prosimians regarding the effects of age, genetics, and environment on the composition and activity of the metagenomes are required. PMID:23457582

  5. Heat capacity, entropy, and magnetic properties of jarosite-group compounds

    NASA Astrophysics Data System (ADS)

    Majzlan, Juraj; Glasnák, Peter; Fisher, Robert A.; White, Mary Anne; Johnson, Michel B.; Woodfield, Brian; Boerio-Goates, Juliana

    2010-10-01

    Jarosite phases are common minerals in acidic, sulfate-rich environments. Here, we report heat capacities ( C p) and standard entropies ( S°) for a number of jarosite samples. Most samples are close to the nominal composition AFe3(SO4)2(OH)6, where A = K, Na, Rb, and NH4. One of the samples has a significant number of defects on the Fe sites and is called the defect jarosite; others are referred to as A-jarosite. The samples, their compositions, and the entropies at T = 298.15 K are:

    Sample Chemical composition S o/(J mol-1 K-1) K-jarosite K0.92(H3O)0.08Fe2.97(SO4)2(OH)5.90(H2O)0.10 427.4 ± 0.7 Na-jarosite Na0.95(H3O)0.05Fe3.00(SO4)2(OH)6.00 436.4 ± 4.4 Rb-jarosite RbFe2.98(SO4)2(OH)5.95(H2O)0.05 411.9 ± 4.1 NH4-jarosite (NH4)0.87(H3O)0.13Fe3.00(SO4)2(OH)6.00
  6. Abscisic acid related compounds and lignans in prunes (Prunus domestica L.) and their oxygen radical absorbance capacity (ORAC).

    PubMed

    Kikuzaki, Hiroe; Kayano, Shin-ichi; Fukutsuka, Naoko; Aoki, Asuka; Kasamatsu, Kumi; Yamasaki, Yuka; Mitani, Takahiko; Nakatani, Nobuji

    2004-01-28

    Four new abscisic acid related compounds (1-4), together with (+)-abscisic acid (5), (+)-beta-D-glucopyranosyl abscisate (6), (6S,9R)-roseoside (7), and two lignan glucosides ((+)-pinoresinol mono-beta-D-glucopyranoside (8) and 3-(beta-D-glucopyranosyloxymethyl)-2- (4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-(2R,3S)-dihydrobenzofuran (9)) were isolated from the antioxidative ethanol extract of prunes (Prunus domestica L.). The structures of 1-4 were elucidated on the basis of NMR and MS spectrometric data to be rel-5-(3S,8S-dihydroxy-1R,5S-dimethyl-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (1), rel-5-(3S,8S-dihydroxy-1R,5S-dimethyl-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid 3'-O-beta-d-glucopyranoside (2), rel-5-(1R,5S-dimethyl-3R,4R,8S-trihydroxy-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (3), and rel-5-(1R,5S-dimethyl-3R,4R,8S-trihydroxy-7-oxabicyclo[3,2,1]- oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (4). The antioxidant activities of these isolated compounds were evaluated on the basis of oxygen radical absorbance capacity (ORAC). The ORAC values of abscisic acid related compounds (1-7) were very low. Two lignans (8 and 9) were more effective antioxidants whose ORAC values were 1.09 and 2.33 micromol of Trolox equiv/micromol, respectively.

  7. Photosynthetic capacity is negatively correlated with the concentration of leaf phenolic compounds across a range of different species

    PubMed Central

    Sumbele, Sally; Fotelli, Mariangela N.; Nikolopoulos, Dimosthenis; Tooulakou, Georgia; Liakoura, Vally; Liakopoulos, Georgios; Bresta, Panagiota; Dotsika, Elissavet; Adams, Mark A.; Karabourniotis, George

    2012-01-01

    Background and aims Phenolic compounds are the most commonly studied of all secondary metabolites because of their significant protective–defensive roles and their significant concentration in plant tissues. However, there has been little study on relationships between gas exchange parameters and the concentration of leaf phenolic compounds (total phenolics (TP) and condensed tannins (CT)) across a range of species. Therefore, we addressed the question: is there any correlation between photosynthetic capacity (Amax) and TP and CT across species from different ecosystems in different continents? Methodology A plethora of functional and structural parameters were measured in 49 plant species following different growth strategies from five sampling sites located in Greece and Australia. The relationships between several leaf traits were analysed by means of regression and principal component analysis. Principal results The results revealed a negative relationship between TP and CT and Amax among the different plant species, growth strategies and sampling sites, irrespective of expression (with respect to mass, area or nitrogen content). Principal component analysis showed that high concentrations of TP and CT are associated with thick, dense leaves with low nitrogen. This leaf type is characterized by low growth, Amax and transpiration rates, and is common in environments with low water and nutrient availability, high temperatures and high light intensities. Therefore, the high TP and CT in such leaves are compatible with the protective and defensive functions ascribed to them. Conclusions Our results indicate a functional integration between carbon gain and the concentration of leaf phenolic compounds that reflects the trade-off between growth and defence/protection demands, depending on the growth strategy adopted by each species. PMID:23050073

  8. A two-step synthetic strategy to obtain a water-soluble derivative of curcumin with improved antioxidant capacity and in vitro cytotoxicity in C6 glioma cells.

    PubMed

    Landeros, José M; Belmont-Bernal, Fernando; Pérez-González, Alma Teresa; Pérez-Padrón, Mario Israel; Guevara-Salazar, Patricia; González-Herrera, Irma Gabriela; Guadarrama, Patricia

    2017-02-01

    A novel water-soluble derivative of curcumin (Cur-[G-2]-OH) was designed and synthesized from accessible raw materials in only two steps with an overall yield of 80%. The modification of curcumin phenol groups with second-generation polyester dendrons (dendronization) as a strategy to achieve an optimal hydrophilic/hydrophobic balance allows the complete water solubilization of the new curcumin derivative (5mg/ml) at room temperature. The therapeutic potential of Cur-[G-2]-OH was investigated in terms of antioxidant capacity, intracellular uptake and cytotoxicity in both rat glioblastoma cells and normal human dermal fibroblasts. Although the phenolic groups of curcumin were locked by dendronization, Cur-[G-2]-OH exhibited antioxidant capacity in water that was even higher than curcumin in dimethylsulfoxide (DMSO). This compound showed a steady cellular uptake contrasted with curcumin, which has a saturation capture at high concentrations. Combined with improved stability, this property seems to allow the intracellular accumulation of Cur-[G-2]-OH. Furthermore, the new compound exhibited increased cytotoxicity in rat C6 glioma cells in a time- and concentration-dependent manner, whereas in normal human fibroblasts, its IC50 value was >600μM versus the IC50 of curcumin found between 100 and 200μM. Surprisingly, Cur-[G-2]-OH drives cell death of C6 cells by a different mechanism of apoptosis triggered by curcumin. Together, these results suggest that curcumin dendronization could promote molecular and cellular mechanisms that are different from those induced by curcumin, presumably due to structural factors and not only for improved water solubility.

  9. Use of a flux-based field capacity criterion to identify effective hydraulic parameters of layered soil profiles subjected to synthetic drainage experiments

    NASA Astrophysics Data System (ADS)

    Nasta, Paolo; Romano, Nunzio

    2016-01-01

    This study explores the feasibility of identifying the effective soil hydraulic parameterization of a layered soil profile by using a conventional unsteady drainage experiment leading to field capacity. The flux-based field capacity criterion is attained by subjecting the soil profile to a synthetic drainage process implemented numerically in the Soil-Water-Atmosphere-Plant (SWAP) model. The effective hydraulic parameterization is associated to either aggregated or equivalent parameters, the former being determined by the geometrical scaling theory while the latter is obtained through the inverse modeling approach. Outcomes from both these methods depend on information that is sometimes difficult to retrieve at local scale and rather challenging or virtually impossible at larger scales. The only knowledge of topsoil hydraulic properties, for example, as retrieved by a near-surface field campaign or a data assimilation technique, is often exploited as a proxy to determine effective soil hydraulic parameterization at the largest spatial scales. Comparisons of the effective soil hydraulic characterization provided by these three methods are conducted by discussing the implications for their use and accounting for the trade-offs between required input information and model output reliability. To better highlight the epistemic errors associated to the different effective soil hydraulic properties and to provide some more practical guidance, the layered soil profiles are then grouped by using the FAO textural classes. For the moderately heterogeneous soil profiles available, all three approaches guarantee a general good predictability of the actual field capacity values and provide adequate identification of the effective hydraulic parameters. Conversely, worse performances are encountered for the highly variable vertical heterogeneity, especially when resorting to the "topsoil-only" information. In general, the best performances are guaranteed by the equivalent

  10. Effect of stevia and citric acid on the stability of phenolic compounds and in vitro antioxidant and antidiabetic capacity of a roselle (Hibiscus sabdariffa L.) beverage.

    PubMed

    Pérez-Ramírez, Iza F; Castaño-Tostado, Eduardo; Ramírez-de León, José A; Rocha-Guzmán, Nuria E; Reynoso-Camacho, Rosalía

    2015-04-01

    Plant infusions are consumed due to their beneficial effects on health, which is attributed to their bioactive compounds content. However, these compounds are susceptible to degradation during processing and storage. The objective of this research was to evaluate the effect of stevia and citric acid on the stability of phenolic compounds, antioxidant capacity and carbohydrate-hydrolysing enzyme inhibitory activity of roselle beverages during storage. The optimum extraction conditions of roselle polyphenolic compounds was of 95 °C/60 min, which was obtained by a second order experimental design. The incorporation of stevia increased the stability of colour and some polyphenols, such as quercetin, gallic acid and rosmarinic acid, during storage. In addition, stevia decreased the loss of ABTS, DPPH scavenging activity and α-amylase inhibitory capacity, whereas the incorporation of citric acid showed no effect. These results may contribute to the improvement of technological processes for the elaboration of hypocaloric and functional beverages.

  11. Effect of different types of processing on the total phenolic compound content, antioxidant capacity, and saponin content of Chenopodium quinoa Willd grains.

    PubMed

    Nickel, Júlia; Spanier, Luciana Pio; Botelho, Fabiana Torma; Gularte, Márcia Arocha; Helbig, Elizabete

    2016-10-15

    The effects of five processing forms on the content of phenolic compounds, antioxidant capacity, and saponin content in quinoa grains were evaluated. The processes included washing, washing followed by hydration, cooking (with or without pressure), and toasting. The highest content of phenolic compounds was obtained after cooking under pressure; however, these compounds also increased with grain washing. The toasting process caused the greatest loss. The antioxidant capacity of the grains was similarly affected by the processing techniques. According to the amount of saponins, the grains were classified as bitter. Washing caused a reduction in these compounds, but the levels remained unchanged after cooking (with and without) pressure and toasting; however, they significantly increased after hydration. Cooking, especially with pressure, had greater effects than the other processes, and potentiated the functional properties of quinoa grains.

  12. Evaluation of the antioxidant capacity, furan compounds and cytoprotective/cytotoxic effects upon Caco-2 cells of commercial Colombian coffee.

    PubMed

    Bedoya-Ramírez, Daniel; Cilla, Antonio; Contreras-Calderón, José; Alegría-Torán, Amparo

    2017-03-15

    Antioxidant capacity (AC), total phenolics (TPs), furan compounds (HMF and furfural F) and cytoprotective/cytotoxic effects upon Caco-2 cells (MTT, cell cycle and reactive oxygen species (ROS)) were evaluated in Colombian coffee (2 ground and 4 soluble samples). The AC (ABTS and FRAP), TPs and HMF ranged between 124-722, 95-802μmoles Trolox/g, 21-100mg gallic acid/g and 69-2900mg/kg, respectively. Pretreatment of cells for 24h with lyophilized coffee infusions at the highest dose without cytotoxic effects (500μg/mL) significantly prevented the decrease in cell viability compared to control stress with H2O2 (5mM/2h), recovering viability to values between 34% and 45% and restoring the control values without stress induction in the G1 phase of cell cycle. After exposure to stress, four extracts decreased ROS values significantly to 22.5-24.9%. The coffee samples exerted a cytoprotective effect against oxidative stress, with improvement in cell viability and a reduction of intracellular ROS.

  13. Fatty Acids Profile, Phenolic Compounds and Antioxidant Capacity in Elicited Callus of Thevetia peruviana (Pers.) K. Schum.

    PubMed

    Rincón-Pérez, Jack; Rodríguez-Hernández, Ludwi; Ruíz-Valdiviezo, Víctor Manuel; Abud-Archila, Miguel; Luján-Hidalgo, María Celina; Ruiz-Lau, Nancy; González-Mendoza, Daniel; Gutiérrez-Miceli, Federico Antonio

    2016-01-01

    The aim of this study was analyze the effect of jasmonic acid (JA) and abscisic acid (ABA) as elicitors on fatty acids profile (FAP), phenolic compounds (PC) and antioxidant capacity (AC) in callus of Thevetia peruviana. Schenk & Hildebrandt (SH) medium, supplemented with 2 mg/L 2, 4-dichlorophenoxyacetic (2, 4-D) and 0.5 mg/L kinetin (KIN) was used for callus induction. The effect of JA (50, 75 and 100 μM) and ABA (10, 55 and 100 μM) on FAP, PC and AC were analyzed using a response surface design. A maximum of 2.8 mg/g of TPC was obtained with 100 plus 10 µM JA and ABA, respectively, whereas AC maximum (2.17 μg/mL) was obtained with 75 plus 100 µM JA and ABA, respectively. The FAP was affected for JA but not for ABA. JA increased cis-9, cis-12-octadecadienoic acid and decreased dodecanoic acid. Eight fatty acids were identified by GC-MS analysis and cis-9-octadecenoic acid (18:1) was the principal fatty acid reaching 76 % in treatment with 50 μM JA plus 55 μM ABA. In conclusion, JA may be used in T. peruviana callus culture for obtain oil with different fatty acids profile.

  14. Synthesis and antibacterial evaluation of a novel series of synthetic phenylthiazole compounds against methicillin-resistant Staphylococcus aureus (MRSA).

    PubMed

    Mohammad, Haroon; Reddy, P V Narasimha; Monteleone, Dennis; Mayhoub, Abdelrahman S; Cushman, Mark; Seleem, Mohamed N

    2015-04-13

    Methicillin-resistant Staphylococcus aureus infections are a significant global health challenge in part due to the emergence of strains exhibiting resistance to nearly all classes of antibiotics. This underscores the urgent need for the rapid development of novel antimicrobials to circumvent this burgeoning problem. Previously, whole-cell screening of a library of 2,5-disubstituted thiazole compounds revealed a lead compound exhibiting potent antimicrobial activity against MRSA. The present study, conducting a more rigorous analysis of the structure-activity relationship of this compound, reveals a nonpolar, hydrophobic functional group is favored at thiazole-C2 and an ethylidenehydrazine-1-carboximidamide moiety is necessary at C5 for the compound to possess activity against MRSA. Furthermore, the MTS assay confirmed analogs 5, 22d, and 25 exhibited an improved toxicity profile (not toxic up to 40 μg/mL to mammalian cells) over the lead 1. Analysis with human liver microsomes revealed compound 5 was more metabolically stable compared to the lead compound (greater than eight-fold improvement in the half-life in human liver microsomes). Collectively the results presented demonstrate the novel thiazole derivatives synthesized warrant further exploration for potential use as future antimicrobial agents for the treatment of multidrug-resistant S. aureus infections.

  15. Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) of low molecular weight organic compounds and synthetic polymers using zinc oxide (ZnO) nanoparticles.

    PubMed

    Watanabe, Takehiro; Kawasaki, Hideya; Yonezawa, Tetsu; Arakawa, Ryuichi

    2008-08-01

    We have developed surface-assisted laser desorption/ionization mass spectrometry using zinc oxide (ZnO) nanoparticles with anisotropic shapes (ZnO-SALDI-MS). The mass spectra showed low background noises in the low m/z, i.e. less than 500 u region. Thus, we succeeded in SALDI ionization on low molecular weight organic compounds, such as verapamil hydrochloride, testosterone, and polypropylene glycol (PPG) (average molecular weight 400) without using a liquid matrix or buffers such as citric acids. In addition, we found that ZnO-SALDI has advantages in post-source decay (PSD) analysis and produced a simple mass spectrum for phospholipids. The ZnO-SALDI spectra for synthetic polymers of polyethylene glycol (PEG), polystyrene (PS) and polymethylmethacrylate (PMMA) showed the sensitivity and molecular weight distribution to be comparable to matrix-assisted laser desorption/ionization (MALDI) spectra with a 2,5-dihydroxybenzoic acid (DHB) matrix. ZnO-SALDI shows good performance for synthetic polymers as well as low molecular weight organic compounds.

  16. Synthetic Medicinal Chemistry in Chagas’ Disease: Compounds at The Final Stage of “Hit-To-Lead” Phase

    PubMed Central

    Cerecetto, Hugo; González, Mercedes

    2010-01-01

    Chagas’ disease, or American trypanosomosiasis, has been the most relevant illness produced by protozoa in Latin America. Synthetic medicinal chemistry efforts have provided an extensive number of chemodiverse hits at the “active-to-hit” stage. However, only a more limited number of these have been studied in vivo in models of Chagas’ disease. Herein, we survey some of the cantidates able to surpass the “hit-to-lead” stage discussing their limitations or merit to enter in clinical trials in the short term. PMID:27713281

  17. The Ah regulatory gene product. Survey of nineteen polycyclic aromatic compounds' and fifteen benzo[a]pyrene metabolites' capacity to bind to the cytosolic receptor.

    PubMed

    Bigelow, S W; Nebert, D W

    1982-01-01

    The capacity of 19 polycyclic aromatic compounds and 15 benzo[a]pyrene metabolites to displace [1,6-3H]2,3,7,8-tetrachlorodibenzo-p-dioxine ([3H]TCDD) from the mouse liver cytosolic Ah receptor was examined. We compared our data with various parameters taken from previously published results: the capacity of seven polycyclic hydrocarbons to induce aryl hydrocarbon hydroxylase (AHH) activity in human cell cultures, the capacity of 10 polycyclic hydrocarbons to induce azo dye N-demethylase activity in rat liver, the capacity of 6 polycyclic hydrocarbons to shorten zoxazolamine paralysis times in the intact rat, and the capacity of 15 benzo[a]pyrene metabolites to induce AHH activity in rat hepatoma H-4-II-E cultures. An excellent correlation is seen between the capacity to displace the radioligand from the Ah receptor and the capacity to induce these monooxygenase activities. differences in the rate of cellular uptake and formation of alkali-extractable metabolites of dibenzo[a,h]anthracene, 3-methylcholanthrene, and benzo[a]anthracene in Hepa-1 mouse hepatoma cell cultures do not account for differences in the capacity of these three polycyclic hydrocarbons to displace [3H]TCDD from the Ah receptor.

  18. Estrogenic effects of natural and synthetic compounds including tibolone assessed in Saccharomyces cerevisiae expressing the human estrogen alpha and beta receptors.

    PubMed

    Hasenbrink, Guido; Sievernich, André; Wildt, Ludwig; Ludwig, Jost; Lichtenberg-Fraté, Hella

    2006-07-01

    The human estrogen receptors (hER)alpha and hERbeta, differentially expressed and localized in various tissues and cell types, mediate transcriptional activation of target genes. These encode a variety of physiological reproductive and nonreproductive functions involved in energy metabolism, salt balance, immune system, development, and differentiation. As a step toward developing a screening assay for the use in applications where significant numbers of compounds or complex matrices need to be tested for (anti) estrogenic bioactivity, hERalpha and hERbeta were expressed in a genetically modified Saccharomyces cerevisiae strain, devoid of three endogenous xenobiotic transporters (PDR5, SNQ2, and YOR1). By using receptor-mediated transcriptional activation of the green fluorescent protein optimized for expression in yeast (yEGFP) as reporter 17 natural, comprising estrogens and phytoestrogens or synthetic compounds among which tibolone with its metabolites, gestagens, and antiestrogens were investigated. The reporter assay deployed a simple and robust protocol for the rapid detection of estrogenic effects within a 96-well microplate format. Results were expressed as effective concentrations (EC50) and correlated to other yeast based and cell line assays. Tibolone and its metabolites exerted clear estrogenic effects, though considerably less potent than all other natural and synthetic compounds. For the blood serum of two volunteers, considerable higher total estrogenic bioactivity than single estradiol concentrations as determined by immunoassay was found. Visualization of a hERalpha/GFP fusion protein in yeast revealed a sub cellular cytosolic localization. This study demonstrates the versatility of (anti) estrogenic bioactivity determination using sensitized S. cerevisiae cells to assess estrogenic exposure and effects.

  19. Reconstitution of anti-allergic activities of PG102 derived from Actinidia arguta by combining synthetic chemical compounds.

    PubMed

    Kim, Donghyun; Choi, Jinyong; Kim, Mi-Jeong; Kim, Seon Hee; Cho, Sang Heon; Kim, Sunyoung

    2013-06-01

    PG102, a water-soluble extract from an edible fruit, Actinidia arguta, has previously been shown to control various factors involved in allergy pathogenesis. It was investigated whether the original activities of PG102 could be reconstituted by mixing chemical compounds present in PG102. Six compounds present in PG102 were, individually or in the form of mixtures, tested for their effects on the expression of various Th2 cytokines and inflammatory mediators in the cell-based assay. Each chemical inhibited IL-4 expression to varying degrees. The chemical compounds were combined at a ratio present in PG102, resulting in two formulations, CQMIIH and CQM, consisting of all or the first three of the following chemicals, citric, quinic, and malic acids, myo-inositol, isoquercitrin, and 5-hydroxymethyl-2-furaldehyde. The mixtures reconstituted original activities of PG102 to a significant level. In the murine asthma model, CQM ameliorated asthmatic symptoms and significantly decreased the level of IgE and IL-5. The decreased phosphorylation of ERK1/2 was observed in cells and mice treated with PG102 and the mixtures. Our data indicated that the substantial portion of PG102's anti-allergic activities could be reconstituted, in vitro and in vivo, by mixing six chemical compounds, suggesting the possibility of developing a new type of anti-allergic agent. This approach may be useful for developing chemically defined functional products from complex botanical extracts.

  20. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype.

    PubMed

    Kato, Satoshi; Sangadala, Sreedhara; Tomita, Katsuro; Titus, Louisa; Boden, Scott D

    2011-03-01

    There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1-/- knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored.

    1. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype

      PubMed Central

      Kato, Satoshi; Tomita, Katsuro; Titus, Louisa; Boden, Scott D.

      2011-01-01

      There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1−/− knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored. PMID:21110071

    2. The Formation of Biofilms by Pseudomonas aeruginosa: A Review of the Natural and Synthetic Compounds Interfering with Control Mechanisms

      PubMed Central

      2015-01-01

      P. aeruginosa is an opportunistic pathogenic bacterium responsible for both acute and chronic infections. Beyond its natural resistance to many drugs, its ability to form biofilm, a complex biological system, renders ineffective the clearance by immune defense systems and antibiotherapy. The objective of this report is to provide an overview (i) on P. aeruginosa biofilm lifestyle cycle, (ii) on the main key actors relevant in the regulation of biofilm formation by P. aeruginosa including QS systems, GacS/GacA and RetS/LadS two-component systems and C-di-GMP-dependent polysaccharides biosynthesis, and (iii) finally on reported natural and synthetic products that interfere with control mechanisms of biofilm formation by P. aeruginosa without affecting directly bacterial viability. Concluding remarks focus on perspectives to consider biofilm lifestyle as a target for eradication of resistant infections caused by P. aeruginosa. PMID:25866808

    3. Geometric and electronic structures of the synthetic Mn₄CaO₄ model compound mimicking the photosynthetic oxygen-evolving complex.

      PubMed

      Shoji, Mitsuo; Isobe, Hiroshi; Shen, Jian-Ren; Yamaguchi, Kizashi

      2016-04-28

      Water oxidation by photosystem II (PSII) converts light energy into chemical energy with the concomitant production of molecular oxygen, both of which are indispensable for sustaining life on Earth. This reaction is catalyzed by an oxygen-evolving complex (OEC) embedded in the huge PSII complex, and its mechanism remains elusive in spite of the extensive studies of the geometric and electronic structures. In order to elucidate the water-splitting mechanism, synthetic approaches have been extensively employed to mimic the native OEC. Very recently, a synthetic complex [Mn4CaO4(Bu(t)COO)8(py)(Bu(t)COOH)2] (1) closely mimicking the structure of the native OEC was obtained. In this study, we extensively examined the geometric, electronic and spin structures of 1 using the density functional theory method. Our results showed that the geometric structure of 1 can be accurately reproduced by theoretical calculations, and revealed many similarities in the ground valence and spin states between 1 and the native OEC. We also revealed two different valence states in the one-electron oxidized state of 1 (corresponding to the S2 state), which lie in the lower and higher ground spin states (S = 1/2 and S = 5/2), respectively. One remarkable difference between 1 and the native OEC is the presence of a non-negligible antiferromagnetic interaction between the Mn1 and Mn4 sites, which slightly influenced their ground spin structures (spin alignments). The major reason causing the difference can be attributed to the short Mn1-O5 and Mn1-Mn4 distances in 1. The introduction of the missing O4 atom and the reorientation of the Ca coordinating ligands improved the Mn1-O5 and Mn1-Mn4 distances comparable to the native OEC. These modifications will therefore be important for the synthesis of further advanced model complexes more closely mimicking the native OEC beyond 1.

    4. Antioxidant Capacity and the Correlation with Major Phenolic Compounds, Anthocyanin, and Tocopherol Content in Various Extracts from the Wild Edible Boletus edulis Mushroom

      PubMed Central

      Vamanu, Emanuel; Nita, Sultana

      2013-01-01

      Boletus edulis is a wild edible mushroom habitually consumed by rural populations. Ethanolic and methanolic extracts was obtained in cold and hot water from dried fruit bodies. The antioxidant activity of freeze-dried extracts from B. edulis were investigated using free radicals scavenging activity, reducing power, metal chelating effect, inhibition of lipid peroxidation, and the identification of antioxidant compounds. The levels of different compounds with antioxidant properties were higher in alcoholic extracts compared with aqueous extracts. Rosmarinic acid was the major phenolic compound, it being identified in a concentration between 7 ± 0.23 and 56 ± 0.15 mg/100 g extract. A positive correlation between the content of total phenols, flavonoids, anthocyanins, and tocopherols, and the antioxidant capacity of the extracts was determined. The results showed that the ethanolic extract of Romanian wild mushroom B. edulis represents a natural source of functional compounds. PMID:23509707

    5. [Synthetic study of biologically important nitrogen containing natural products: development of new methodology and design of leading compounds for new pharmaceuticals].

      PubMed

      Nakagawa, Masako

      2003-04-01

      Synthetic study of biologically important nitrogen-containing natural products and development of new methodologies and design of leading compounds for new pharmaceuticals are described. The first total synthesis of eudistomines, manzamine C, martefragin A, cerebroside B1b, and symbioramide was accomplished and the absolute configurations of the stereogenic centers were determined. A novel methodology useful for the synthesis of alkaloids that have perhydroisoquinoline ring system such as manzamine A and B, and related alkaloids, nakadomarin A and dynemicin A, is presented. Sphingolipids, 4-stereoisomers of 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol, were synthesized and antimalaria activity was investigated. Inhibition of DNA primase by sphingosine and its analogues is described. A new synthetic methodology for alkylation and reduction of imines has been developed, and the first example of a reagent-controlled enantioselective Pictet-Spengler reaction is described. Also novel and convenient methods using transition metal and rare earth metals including alkene metathesis, asymmetric Diels-Alder reaction, imino ene reaction, selective allylic halogenation, enantioselective Pictet-Spengler reaction, and enantioselective physostigmine synthesis are described.

    6. SCUBIDOO: A Large yet Screenable and Easily Searchable Database of Computationally Created Chemical Compounds Optimized toward High Likelihood of Synthetic Tractability.

      PubMed

      Chevillard, F; Kolb, P

      2015-09-28

      De novo drug design is widely assisted by computational approaches that enable the generation of a tremendous amount of new virtual molecules within a short time frame. While the novelty of the computationally generated compounds can easily be assessed, such approaches often neglect the synthetic feasibility of the molecules, thus creating a potential hurdle that can be a barrier to further investigation. Therefore, we have developed SCUBIDOO, a freely accessible database concept that currently holds 21 million virtual products originating from a small library of building blocks and a collection of robust organic reactions. This large data set was reduced to three representative and computationally tractable samples denoted as S, M, and L, containing 9994, 99,977, and 999,794 products, respectively. These small sets are useful as starting points for ligand identification and optimization projects. The generated products come with synthesis instructions and alerts of possible side reactions, and we show that they exhibit drug-like properties while still extending into unexplored quadrants of chemical space, thus suggesting novelty. We show multiple examples that demonstrate how SCUBIDOO can facilitate the search around initial hits. This database might be a useful idea generator for early ligand discovery projects since it allows a focus on those molecules that are likely to be synthetically feasible and can therefore be studied further. Together with its modular building block construction principle, this database is also suitable for structure-activity relationship studies or fragment-growing strategies.

    7. Occurrence and accumulation features of polycyclic aromatic hydrocarbons and synthetic musk compounds in finless porpoises (Neophocaena phocaenoides) from Korean coastal waters.

      PubMed

      Moon, Hyo-Bang; An, Yong-Rock; Park, Kyum Joon; Choi, Seok-Gwan; Moon, Dae-Yeon; Choi, Minkyu; Choi, Hee-Gu

      2011-09-01

      Reports of the occurrence and accumulation patterns of polycyclic aromatic hydrocarbons (PAHs) and synthetic musk compounds (SMCs) in marine mammals are scarce. In this study, the concentrations and accumulation profiles of PAHs and SMCs were determined in blubber from finless porpoises in Korean coastal waters. Total concentrations of PAHs and SMCs ranged from 6.0 to 432 (mean: 160) ng/g lipid weight and from 17 to 144 (mean: 52) ng/g lipid weight, respectively. Residue levels of PAHs were lower than those reported from other studies, while residue levels of SMCs were relatively higher than those reported in other studies. Naphthalene was the most abundant PAH and HHCB was the dominant SMC observed in finless porpoises. The concentrations of PAHs and SMCs were not correlated with each other, but were significantly correlated within the same chemical groups. No correlations were found between body size and residue levels of PAHs and SMCs.

    8. Bioactive compounds of Crocus sativus L. and their semi-synthetic derivatives as promising anti-Helicobacter pylori, anti-malarial and anti-leishmanial agents.

      PubMed

      De Monte, Celeste; Bizzarri, Bruna; Gidaro, Maria Concetta; Carradori, Simone; Mollica, Adriano; Luisi, Grazia; Granese, Arianna; Alcaro, Stefano; Costa, Giosuè; Basilico, Nicoletta; Parapini, Silvia; Scaltrito, Maria Maddalena; Masia, Carla; Sisto, Francesca

      2015-12-01

      Crocus sativus L. is known in herbal medicine for the various pharmacological effects of its components, but no data are found in literature about its biological properties toward Helicobacter pylori, Plasmodium spp. and Leishmania spp. In this work, the potential anti-bacterial and anti-parasitic effects of crocin and safranal, two important bioactive components in C. sativus, were explored, and also some semi-synthetic derivatives of safranal were tested in order to establish which modifications in the chemical structure could improve the biological activity. According to our promising results, we virtually screened our compounds by means of molecular modeling studies against the main H. pylori enzymes in order to unravel their putative mechanism of action.

    9. Synthetic wisdom.

      PubMed

      Kitcher, Philip

      2016-11-01

      Wisdom is a special kind of virtue. It is not to be identified with any outstanding cognitive ability-like having a prodigious memory or knowing a lot. Rather it consists in seeing what is most important and most valuable, either within a particular domain or in life as a whole. In the life of a wise person, that insight should be accompanied by traits of character, enabling the person to pursue what is seen as valuable. Viewing wisdom as a capacity for synthetic understanding, I argue for the need for philosophy, even at a time when all of us have much to learn from the sciences.

    10. Synthetic control to achieve lanthanide(III)/pyrimidine-4,6-dicarboxylate compounds by preventing oxalate formation: structural, magnetic, and luminescent properties.

      PubMed

      Cepeda, Javier; Balda, Rolindes; Beobide, Garikoitz; Castillo, Oscar; Fernández, Joaquín; Luque, Antonio; Pérez-Yáñez, Sonia; Román, Pascual

      2012-07-16

      Control over the synthetic conditions in many metal/diazinedicarboxylato systems is crucial to prevent oxalate formation, since dicarboxylato ligands easily undergo degradation in the presence of metal salts. We report here an efficient route to obtain oxalato-free compounds for the lanthanide/pyrimidine-4,6-dicarboxylato (pmdc) system on the basis of the reaction temperature and nonacidic pH or oxygen free atmosphere. Two different crystal architectures have been obtained: {[Ln(μ-pmdc)(1.5)(H(2)O)(3)]·xH(2)O}(n) (1-Ln) and {[Ln(2)(μ(4)-pmdc)(2)(μ-pmdc)(H(2)O)(2)]·H(2)O}(n) (2-Ln) with Ln(III) = La-Yb, except Pm. Both crystal structures are built from distorted two-dimensional honeycomb networks based on the recurrent double chelating mode established by the pmdc. In compounds 1-Ln, the tricapped trigonal prismatic coordination environment of the lanthanides is completed by three water molecules, precluding a further increase in the dimensionality. Crystallization water molecules are arranged in the interlamellar space, giving rise to highly flexible supramolecular clusters that are responsible for the modulation found in compound 1-Gd. Two of the coordinated water molecules are replaced by nonchelating carboxylate oxygen atoms of pmdc ligands in compounds 2-Ln, joining the metal-organic layers together and thus providing a compact three-dimensional network. The crystal structure of the compounds is governed by the competition between two opposing factors: the ionic size and the reaction temperature. The lanthanide contraction rejects the sterically hindered coordination geometries whereas high-temperature entropy driven desolvation pathway favors the release of solvent molecules leading to more compact frameworks. The characteristic luminescence of the Nd, Eu, and Tb centers is improved when moving from 1-Ln to 2-Ln compounds as a consequence of the decrease of the O-H oscillators. The magnetic properties of the compounds are dominated by the spin

    11. Production of superoxide radical in reductive metabolism of a synthetic food-coloring agent, indigocarmine, and related compounds.

      PubMed

      Kohno, Yoichi; Kitamura, Shigeyuki; Yamada, Tsuyoshi; Sugihara, Kazumi; Ohta, Shigeru

      2005-06-24

      Indigocarmine, which is widely used as a synthetic colouring agent for foods and cosmetics in many countries, was reduced to its leuco form and decolorized by rat liver microsomes with NADPH under anaerobic conditions. The reductase activity was enhanced in liver microsomes of phenobarbital-treated rats, and inhibited by diphenyliodonium chloride, a NADPH-cytochrome P450 reductase (P450 reductase) inhibitor, but was not inhibited by SKF 525-A or carbon monoxide. Indigocarmine reductase activity was exhibited by purified rat P450 reductase. In contrast, when indigocarmine was incubated with rat liver microsomes and NADPH under aerobic conditions, superoxide radical was produced and its production was inhibited by superoxide dismutase and diphenyliodonium chloride. When indigocarmine was incubated with purified rat P450 reductase in the presence of NADPH, superoxide radical production was enhanced 17.7-fold (similar to the enhancement of indigocarmine-reducing ability) as compared with that of rat liver microsomes. A decrease of one molecule of NADPH was accompanied with formation of about two molecules of superoxide radical. P450 reductase exhibited little reductase activity towards indigo and tetrabromoindigo, which also afforded little superoxide radical under aerobic conditions. These results indicate that indigocarmine is reduced by P450 reductase to its leuco form, and superoxide radical is produced by autoxidation of the leuco form, through a mechanism known as futile redox cycling.

    12. Evolutionary Expansion of the Amidohydrolase Superfamily in Bacteria in Response to the Synthetic Compounds Molinate and Diuron

      PubMed Central

      Sugrue, Elena; Fraser, Nicholas J.; Hopkins, Davis H.; Carr, Paul D.; Khurana, Jeevan L.; Oakeshott, John G.; Scott, Colin

      2015-01-01

      The amidohydrolase superfamily has remarkable functional diversity, with considerable structural and functional annotation of known sequences. In microbes, the recent evolution of several members of this family to catalyze the breakdown of environmental xenobiotics is not well understood. An evolutionary transition from binuclear to mononuclear metal ion coordination at the active sites of these enzymes could produce large functional changes such as those observed in nature, but there are few clear examples available to support this hypothesis. To investigate the role of binuclear-mononuclear active-site transitions in the evolution of new function in this superfamily, we have characterized two recently evolved enzymes that catalyze the hydrolysis of the synthetic herbicides molinate (MolA) and phenylurea (PuhB). In this work, the crystal structures, mutagenesis, metal ion analysis, and enzyme kinetics of both MolA and PuhB establish that these enzymes utilize a mononuclear active site. However, bioinformatics and structural comparisons reveal that the closest putative ancestor of these enzymes had a binuclear active site, indicating that a binuclear-mononuclear transition has occurred. These proteins may represent examples of evolution modifying the characteristics of existing catalysts to satisfy new requirements, specifically, metal ion rearrangement leading to large leaps in activity that would not otherwise be possible. PMID:25636851

    13. Concentrations of selected trace inorganic constituents and synthetic organic compounds in the water-table aquifers in the Memphis area, Tennessee

      USGS Publications Warehouse

      McMaster, B.W.; Parks, William Scott

      1988-01-01

      Water quality samples for analysis of selected trace inorganic constituents and synthetic organic compounds were collected from 29 private or observation wells in alluvium and fluvial deposits of Quaternary and Tertiary Age. The alluvium and fluvial deposits are the water table aquifers in the Memphis area. In addition, nine wells were installed in Memphis Light, Gas and Water Division well fields so that samples could be collected and analyzed to characterize the quality of water in the fluvial deposits at these well fields. Samples from seven of these wells (two were dry) were analyzed for major constituents and properties of water as well as for selected trace inorganic constituents and synthetic organic compounds. Analyses of the water from most of the 36 wells sampled indicated ranges in concentration values for the trace inorganic constituents that agreed with those previously known, although some new maximum values were established. The analysis of water from four wells indicated that the water is or may be contaminated. Concentrations of barium (1,400 micrograms/L -- ug/L), strontium (1,100 ug/L), and arsenic (15 ug/L), along with specific conductance (1,420 microsiemens/centimeter--us/cm) were in water from one well in the alluvium. Low concentrations (0.02 to 0.04 ug/L) of the pesticides aldrin, DDT, endosulfan, and perthane were present in water from two wells in the fluvial deposits. Water from one of these wells also contained 1,1,1 trichloroethane (4.4 ug/L). Analysis of water from another well in the fluvial deposits indicated values for specific conductance (1,100 uS/cm), alkalinity (508 milligrams per liter -- mg/L -- as CaCO3), hardness (550 mg/L as CaCO3), chloride (65 mg/L), and barium (240 ug/L) that are high for water from the fluvial deposits. (USGS)

    14. Characterization of soluble microbial products (SMPs) in a membrane bioreactor (MBR) treating synthetic wastewater containing pharmaceutical compounds.

      PubMed

      Zhang, Dongqing; Trzcinski, Antoine Prandota; Kunacheva, Chinagarn; Stuckey, David C; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern

      2016-10-01

      This study investigated the behaviour and characteristics of soluble microbial products (SMP) in two anoxic-aerobic membrane bioreactors (MBRs): MBRcontrol and MBRpharma, for treating municipal wastewater. Both protein and polysaccharides measured exhibited higher concentrations in the MBRpharma than the MBRcontrol. Molecular weight (MW) distribution analysis revealed that the presence of pharmaceuticals enhanced the accumulation of SMPs with macro- (13,091 kDa and 1587 kDa) and intermediate-MW (189 kDa) compounds in the anoxic MBRpharma, while a substantial decrease was observed in both MBR effluents. Excitation emission matrix (EEM) fluorescence contours indicated that the exposure to pharmaceuticals seemed to stimulate the production of aromatic proteins containing tyrosine (10.1-32.6%) and tryptophan (14.7-43.1%), compared to MBRcontrol (9.9-29.1% for tyrosine; 11.8-42.5% for tryptophan). Gas chromatography-mass spectrometry (GC-MS) analysis revealed aromatics, long-chain alkanes and esters were the predominant SMPs in the MBRs. More peaks were present in the aerobic MBRpharma (196) than anoxic MBRpharma (133). The SMPs identified exhibited both biodegradability and recalcitrance in the MBR treatment processes. Only 8 compounds in the MBRpharma were the same as in the MBRcontrol. Alkanes were the most dominant SMPs (51%) in the MBRcontrol, while aromatics were dominant (40%) in the MBRpharma. A significant decrease in aromatics (from 16 to 7) in the MBRpharma permeate was observed, compared to the aerobic MBRpharma. Approximately 21% of compounds in the aerobic MBRcontrol were rejected by membrane filtration, while this increased to 28% in the MBRpharma.

    15. Computational and experimental approaches assess the interactions between bovine beta-lactoglobulin and synthetic compounds of pharmacological interest.

      PubMed

      Eberini, Ivano; Rocco, Alessandro Guerini; Mantegazza, Mara; Gianazza, Elisabetta; Baroni, Andrea; Vilardo, Maria Caterina; Donghi, Daniela; Galliano, Monica; Beringhelli, Tiziana

      2008-02-01

      Extending a previous investigation, the ability of binding to the model calycin beta-lactoglobulin (BLG) was evaluated both in silico and in vitro for several fluorine-containing (semi-)synthetic molecules of pharmacological and pharmaceutical interest (antibiotics, vastatins, steroid drugs). Simulation procedures included molecular docking according to a Montecarlo-simulated annealing protocol and molecular dynamics; heteronuclear NMR and denaturant gradient gel electrophoresis were the selected experimental techniques. For the tested drugs, ranking of the binding affinity was consistently assessed by computation and by experiment. The affinity for BLG increased in the sequence: 5-fluorosalycilic acid

    16. Effect of UV-B light on soluble phenolic compounds and antioxidant capacity of various specialty crops and pomaces

      Technology Transfer Automated Retrieval System (TEKTRAN)

      UV-B treatment is the basis of a novel value-added processing method that enhances the nutrient content of specialty crops by increasing the synthesis of terpenes, polyphenolic compounds, and nitrogen-containing compounds. Whole fruits and vegetables and thin layers of peel and pomace by-products we...

    17. Accumulation of PAHs and synthetic musk compound in minke whales (Balanoptera acutorostrata) and long-beaked common dolphins (Delphinus capensis) from Korean coastal waters.

      PubMed

      Moon, Hyo-Bang; An, Yong-Rock; Choi, Seok-Gwan; Choi, Minkyu; Choi, Hee-Gu

      2012-03-01

      Information on the occurrence and accumulation profiles of polycyclic aromatic hydrocarbons (PAHs) and synthetic musk compounds (SMCs) in marine mammals is scarce. In the present study, we recorded the concentrations and profiles of PAHs and SMCs in liver tissue and blubber from minke whales and common dolphins from Korean coastal waters. The overall concentrations of PAHs and SMCs in blubber from both cetacean species were approximately three to five times higher than those in liver tissues. Residue levels of PAHs were lower, whereas levels of SMCs were relatively higher than those reported in other studies. Lack of species- and sex-dependent differences in the concentrations of PAHs and SMCs were found. Naphthalene and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-r-2-benzopyran (HHCB) were predominant compounds in all the samples for PAHs and SMCs, respectively. The concentrations of PAHs and SMCs were significantly correlated with each other, but were not correlated with body size of cetaceans. The present data provide valuable information on the exposure of Korean cetaceans to PAHs and SMCs.

    18. Compound

      NASA Astrophysics Data System (ADS)

      Suzumura, Akitoshi; Watanabe, Masaki; Nagasako, Naoyuki; Asahi, Ryoji

      2014-06-01

      Recently, Cu-based chalcogenides such as Cu3SbSe4, Cu2Se, and Cu2SnSe3 have attracted much attention because of their high thermoelectric performance and their common feature of very low thermal conductivity. However, for practical use, materials without toxic elements such as selenium are preferable. In this paper, we report Se-free Cu3SbS4 thermoelectric material and improvement of its figure of merit ( ZT) by chemical substitutions. Substitutions of 3 at.% Ag for Cu and 2 at.% Ge for Sb lead to significant reductions in the thermal conductivity by 37% and 22%, respectively. These substitutions do not sacrifice the power factor, thus resulting in enhancement of the ZT value. The sensitivity of the thermal conductivity to chemical substitutions in these compounds is discussed in terms of the calculated phonon dispersion and previously proposed models for Cu-based chalcogenides. To improve the power factor, we optimize the hole carrier concentration by substitution of Ge for Sb, achieving a power factor of 16 μW/cm K2 at 573 K, which is better than the best reported for Se-based Cu3SbSe4 compounds.

    19. Immunobiological activities of synthetic lipid A analogs and related compounds as compared with those of bacterial lipopolysaccharide, re-glycolipid, lipid A, and muramyl dipeptide.

      PubMed Central

      Kotani, S; Takada, H; Tsujimoto, M; Ogawa, T; Mori, Y; Sakuta, M; Kawasaki, A; Inage, M; Kusumoto, S; Shiba, T; Kasai, N

      1983-01-01

      Thirteen acylated and phosphorylated derivatives of beta-1,6-linked glucosamine disaccharide (lipid A analogs), which were synthesized after the structural model of Salmonella-type lipid A, and seven similar derivatives of glucosamine monosaccharide (lipid A-related compounds) were studied for their immunobiological activities. These included mitogenicity and polyclonal B cell activation enhancement of migration of monocytes and polymorphonuclear leukocytes derived from human peripheral blood, stimulation of guinea pig peritoneal macrophages, activation of human complement, and stimulation of serum antibody production and induction of delayed-type hypersensitivity against ovalbumin in guinea pigs. Comparisons were made with lipid A, RE-glycolipid, lipopolysaccharide of natural sources, and a well-known synthetic adjuvant, N-acetylmuramyl-L-alanyl-D-isoglutamine. Some of the lipid A analogs were found to manifest the mitogenic, polyclonal B cell-activating macrophage-stimulating, complement-activating, and immunostimulating activities, although the observed activities were generally far less than those of natural products in intensity and efficiency. Other immunobiological effects exhibited by most of the synthetic lipid A analogs were the enhancement of migration of monocytes and polymorphonuclear leukocytes. It is premature to draw definite conclusions on structure-activity relationships, since a few compounds which were active in some assay systems were scarcely active in other assays. However, an indisputable fact was that beta-1,6-glucosamine disaccharide 1 alpha,4'-diphosphate, which carries two amide-bound (R)-3-hydroxytetradecanoyl and three ester-bound tetradecanoyl residues, and thus has the structure most closely resembling natural lipid A among test compounds in this study, was definitely active in all of the present assay systems. However, its potency was generally much less than natural products. Some of glucosamine monosaccharide derivatives

    20. Synthetic cathinone abuse

      PubMed Central

      Capriola, Michael

      2013-01-01

      The abuse of synthetic cathinones, widely known as bath salts, has been increasing since the mid-2000s. These substances are derivatives of the naturally occurring compound cathinone, which is the primary psychoactive component of khat. The toxicity of synthetic cathinones includes significant sympathomimetic effects, as well as psychosis, agitation, aggression, and sometimes violent and bizarre behavior. Mephedrone and methylenedioxypyrovalerone are currently the predominantly abused synthetic cathinones. PMID:23869180

    1. Targeting COX-2 expression by natural compounds: a promising alternative strategy to synthetic COX-2 inhibitors for cancer chemoprevention and therapy.

      PubMed

      Cerella, Claudia; Sobolewski, Cyril; Dicato, Mario; Diederich, Marc

      2010-12-15

      Cyclooxygenase (COX)-2 is a pro-inflammatory immediate early response protein, chronically up-regulated in many pathological conditions. In autoimmune diseases, it is responsible for degenerative effects whereas in cancer, it correlates with poor prognosis. A constitutive expression of COX-2 is triggered since the earliest steps of carcinogenesis. Consequently, strategies aimed at inhibiting COX-2 enzymatic activity have been clinically applied for the treatment of autoimmune disorders; in addition, the same approaches are currently investigated for anti-cancer purposes. However, COX-2 protein inhibitors (i.e., NSAIDs and COXIBs) are not amenable to prolonged administration since they may cause severe side effects, and efforts are underway to identify alternative approaches for chemoprevention/therapy. COX-2 expression is a multi-step process, highly regulated at transcriptional and post-transcriptional levels. Defects in the modulation of one or both of these steps may be found in pathological conditions. Targeting COX-2 expression may therefore represent a promising strategy, by which the same preventive and therapeutic benefits may be gained while avoiding the severe side effects of COX-2 enzymatic inhibition. Naturally occurring compounds derived from plants/organisms represent a huge source of biologically active molecules, that remains largely unexplored. Derived from plants/organisms used in traditional forms of medicine or as dietary supplements, these compounds have been experimentally investigated for their anti-inflammatory and anti-cancer potential. In this review, we will analyze how natural compounds may modulate the multistep regulation of COX-2 gene expression and discuss their potential as a new generation of COX-2 targeting agents alternative to the synthetic COX-2 inhibitors.

    2. Characterization of total antioxidant capacity and (poly)phenolic compounds of differently pigmented rice varieties and their changes during domestic cooking.

      PubMed

      Zaupa, Maria; Calani, Luca; Del Rio, Daniele; Brighenti, Furio; Pellegrini, Nicoletta

      2015-11-15

      In the recent years, the pigmented rice varieties are becoming more popular due to their antioxidant properties and phenolic content. In this study, we characterized the antioxidant capacity (TAC) and the phenolic profile in white, red and black rice varieties, and evaluated the effect of two cooking methods (i.e. "risotto" and boiling) on these compounds. Before the cooking, all the varieties contained several phenolic acids, whereas anthocyanins and flavonols were peculiar of black rice and flavan-3-ols of red rice. Among the rice varieties, the black had the highest TAC value. The content of (poly)phenolic compounds and TAC decreased after cooking in all three varieties, but to a lesser extent after the risotto method. As a consequence, the risotto cooking, which allows a complete absorption of water, would be a good cooking method to retain (poly)phenolic compounds and TAC in pigmented and non-pigmented whole-meal rice.

    3. Studies of the effect of natural and synthetic polypeptide type ergot compounds on a peripheral vascular bed

      PubMed Central

      Aellig, W. H.; Berde, B.

      1969-01-01

      1. Six ergot alkaloids were tested for their effect on vascular resistance and for α-adrenergic blocking activity on the innervated perfused hind limb of the dog. The results were compared with those obtained earlier for three compounds of the ergotamine group. 2. Ergostine, dihydroergostine, 1-methylergostine and dihydroergocristine resembled ergotamine, dihydroergotamine and 1-methylergotamine in eliciting vasoconstriction at low vascular resistance and vasodilatation at high vascular resistance. The changeover occurred at the following “inversion points”: ergostine and dihydroergostine as with ergotamine and dihydroergotamine at about 4 R.U.; 1-methylergostine as with 1-methylergotamine at about 2·3 R.U.; dihydroergocristine at about 1·9 R.U. [1 R.U. = 1 resistance unit = 1 mm Hg/ml. per min.] 3. 1-methyldihydroergocristine consistently elicited vasodilatation (for initial vascular resistances down to 1·3 R.U.) and 5′-methylergoalanine always caused vasoconstriction (for initial values up to 5·8 R.U.). 4. Ergostine and 5′-methylergoalanine had the most powerful vasoconstrictor effect, which was of the same order of magnitude as that of ergotamine. Dihydroergostine, like dihydroergotamine, was considerably less active. Both 1-methylergostine and 1-methylergotamine elicited only weak vasoconstriction. Moreover, when the initial vascular resistance exceeded the critical inversion value, they elicited only weak vasodilatation. Dihydroergocristine and 1-methyldihydroergocristine had the least effect on vascular resistance. 5. The increase in vascular resistance by noradrenaline was inhibited in a dose-dependent manner by all the ergot alkaloids investigated. Ergostine, 5′-methylergoalanine and ergotamine had the greatest α-adrenergic blocking activity and 1-methylergostine, 1-methyldihydroergocristine and 1-methylergotamine the weakest. The activity of dihydroergostine, dihydroergocristine and dihydroergotamine fell between these two extremes. 6. No

    4. Antioxidant capacities and anti-inflammatory effects of flavonoid compounds isolated from acai pulp (Euterpe oleracea Mart.)

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Acai fruit (Euterpe oleracea Mart.) has been demonstrated to exhibit extremely high antioxidant capacity. Seven major flavonoids were isolated from freeze-dried acai pulp by various chromatographic methods. Their structures were elucidated as orientin (1), homoorientin (2), vitexin (3), luteolin (4)...

    5. Evaluation of the Availability and Antioxidant Capacity of Maillard Compounds Present in Bread Crust: Studies in Caco-2 Cells

      PubMed Central

      de la Cueva, Silvia Pastoriza; Seiquer, Isabel; Mesías, Marta; Rufián-Henares, José Ángel; Delgado-Andrade, Cristina

      2017-01-01

      Bread crust is one of the major contributors to the intake of Maillard reaction products (MRP). MRP improve the organoleptic properties of foods and can provide biological actions such as antioxidant properties. The transport and availability of Amadori compounds (measured as furosine) and hydroxymethylfurfural (HMF)—early and intermediary MRP—from enzymatically digested bread crust (BC) and from its soluble low-molecular weight (LMW) and high-molecular weight (HMW) fractions were investigated in the Caco-2 cell line. The absorption of the early and final MRP pool was tested by measuring the absorbance recovery (280 and 420 nm). The ability of soluble BC or its fractions to lessen the production of reactive oxygen species (ROS) was examined. Amadori compounds (furosine) were transported across Caco-2 cell monolayers from the soluble BC in percentages ranging between 40% and 56%; the lower amount of the compound supplied, the higher transport rate. However, HMF transport rate (35%) was unaffected by the initial amount of the compound. Amadori compounds and HMF contained in the LMW fraction were more efficiently transported than those present in the HMW fraction, suggesting improved absorption when supplied as free forms or linked to LMW compounds. Absorbance recovery at 280 nm was higher from the LMW fraction, whereas higher recovery was detected for the HMW fraction at 420 nm. The digested BC—but not its isolated fractions—was able to significantly reduce ROS production at basal conditions and after subjecting cells to an oxidant. A clear positive action of BC on the antioxidant defence is manifested, seemingly attributable to the combined presence of soluble LMW and HMW products. PMID:28231083

    6. The Extrusion Process as an Alternative for Improving the Biological Potential of Sorghum Bran: Phenolic Compounds and Antiradical and Anti-Inflammatory Capacity.

      PubMed

      Salazar Lopez, Norma Julieta; Loarca-Piña, Guadalupe; Campos-Vega, Rocío; Gaytán Martínez, Marcela; Morales Sánchez, Eduardo; Esquerra-Brauer, J Marina; Gonzalez-Aguilar, Gustavo A; Robles Sánchez, Maribel

      2016-01-01

      Approximately 80% of sorghum phenolic compounds are linked to arabinoxylans by ester bonds, which are capable of resisting the digestion process in the upper gastrointestinal tract, compromising their bioaccessibility and biological potential. The aim of this study was to evaluate the effect of the extrusion process on the content of phenolic compounds in sorghum bran and its impact on phenolic compounds and antiradical and anti-inflammatory capacity. Results revealed that the extrusion process increased total phenol content in sorghum bran compared to nonextruded sorghum, particularly for extrusion at 180°C with 20% moisture content (2.0222 ± 0.0157 versus 3.0729 ± 0.0187 mg GAE/g +52%), which positively affected antiradical capacity measured by the DPPH and TEAC assays. The percentage of inhibition of nitric oxide (NO) production by RAW cells due to the presence of extruded sorghum bran extract was significantly higher than that of nonextruded sorghum bran extract (90.2 ± 1.9% versus 76.2 ± 1.3%). The results suggest that extruded sorghum bran could be used as a functional ingredient and provide advantages to consumers by reducing diseases related to oxidative stress and inflammation.

    7. The Extrusion Process as an Alternative for Improving the Biological Potential of Sorghum Bran: Phenolic Compounds and Antiradical and Anti-Inflammatory Capacity

      PubMed Central

      Salazar Lopez, Norma Julieta; Loarca-Piña, Guadalupe; Campos-Vega, Rocío; Gaytán Martínez, Marcela; Morales Sánchez, Eduardo; Esquerra-Brauer, J. Marina; Gonzalez-Aguilar, Gustavo A.

      2016-01-01

      Approximately 80% of sorghum phenolic compounds are linked to arabinoxylans by ester bonds, which are capable of resisting the digestion process in the upper gastrointestinal tract, compromising their bioaccessibility and biological potential. The aim of this study was to evaluate the effect of the extrusion process on the content of phenolic compounds in sorghum bran and its impact on phenolic compounds and antiradical and anti-inflammatory capacity. Results revealed that the extrusion process increased total phenol content in sorghum bran compared to nonextruded sorghum, particularly for extrusion at 180°C with 20% moisture content (2.0222 ± 0.0157 versus 3.0729 ± 0.0187 mg GAE/g +52%), which positively affected antiradical capacity measured by the DPPH and TEAC assays. The percentage of inhibition of nitric oxide (NO) production by RAW cells due to the presence of extruded sorghum bran extract was significantly higher than that of nonextruded sorghum bran extract (90.2 ± 1.9% versus 76.2 ± 1.3%). The results suggest that extruded sorghum bran could be used as a functional ingredient and provide advantages to consumers by reducing diseases related to oxidative stress and inflammation. PMID:27738445

    8. Systematic Analyses of the Cytotoxic Effects of Compound 11a, a Putative Synthetic Agonist of Photoreceptor-Specific Nuclear Receptor (PNR), in Cancer Cell Lines

      PubMed Central

      Zhao, Zibo; Wang, Lu; Wen, Zhi; Ayaz-guner, Serife; Wang, Yidan; Ahlquist, Paul; Xu, Wei

      2013-01-01

      Photoreceptor cell-specific receptor (PNR/NR2E3) is an orphan nuclear receptor that plays a critical role in retinal development and photoreceptor maintenance. The disease-causing mutations in PNR have a pleiotropic effect resulting in varying retinal diseases. Recently, PNR has been implicated in control of cellular functions in cancer cells. PNR was reported to be a novel regulator of ERα expression in breast cancer cells, and high PNR expression correlates with favorable response to tamoxifen treatment. Moreover, PNR was shown to increase p53 stability in HeLa cells, implying that PNR may be a therapeutic target in this and other cancers that retain a wild type p53 gene. To facilitate further understanding of PNR functions in cancer, we characterized compound 11a, a synthetic, putative PNR agonist in several cell-based assays. Interestingly, we showed that 11a failed to activate PNR and its cytotoxicity was independent of PNR expression, excluding PNR as a mediator for 11a cytotoxicity. Systematic analyses of the cytotoxic effects of 11a in NCI-60 cell lines revealed a strong positive correlation of cytotoxicity with p53 status, i.e., p53 wild type cell lines were significantly more sensitive to 11a than p53 mutated or null cell lines. Furthermore, using HCT116 p53+/+ and p53-/- isogenic cell lines we revealed that the mechanism of 11a-induced cytotoxicity occurred through G1/S phase cell cycle arrest rather than apoptosis. In conclusion, we observed a correlation of 11a sensitivity with p53 status but not with PNR expression, suggesting that tumors expressing wild type p53 might be responsive to this compound. PMID:24066170

    9. Synthetic Botany.

      PubMed

      Boehm, Christian R; Pollak, Bernardo; Purswani, Nuri; Patron, Nicola; Haseloff, Jim

      2017-02-28

      Plants are attractive platforms for synthetic biology and metabolic engineering. Plants' modular and plastic body plans, capacity for photosynthesis, extensive secondary metabolism, and agronomic systems for large-scale production make them ideal targets for genetic reprogramming. However, efforts in this area have been constrained by slow growth, long life cycles, the requirement for specialized facilities, a paucity of efficient tools for genetic manipulation, and the complexity of multicellularity. There is a need for better experimental and theoretical frameworks to understand the way genetic networks, cellular populations, and tissue-wide physical processes interact at different scales. We highlight new approaches to the DNA-based manipulation of plants and the use of advanced quantitative imaging techniques in simple plant models such as Marchantia polymorpha. These offer the prospects of improved understanding of plant dynamics and new approaches to rational engineering of plant traits.

    10. Evaluation of the antioxidant capacity, phenolic compounds, and vitamin C content of different peach and nectarine [ Prunus persica (L.) Batsch] breeding progenies.

      PubMed

      Cantín, Celia M; Moreno, María A; Gogorcena, Yolanda

      2009-06-10

      Antioxidant capacity and contents of total phenolics, anthocyanins, flavonoids, and vitamin C were evaluated in 218 genotypes from 15 peach and nectarine breeding progenies. Significant differences were found among progenies on the fruit antioxidant profile, corroborated by the high contribution showed by cross to the phenotypic variance of each phytochemical trait analyzed (16-45%). Phytochemical profile varied depending on peach/nectarine and yellow/white flesh color qualitative traits. On the other hand, no significant effect of year was found on the bioactive profile of peaches and nectarines. Antioxidant capacity was linearly correlated to total phenolic content, but correlation varied depending on the progeny. No correlation was found for vitamin C versus any other phytochemical trait. The results suggest the importance of genetic background on the antioxidant profile of peaches and nectarines and stress its relevance for the ultimate objective of this work: selecting new peach and nectarine genotypes rich in bioactive compounds to benefit consumer's health.

    11. 55P0110, a Novel Synthetic Compound Developed from a Plant Derived Backbone Structure, Shows Promising Anti-Hyperglycaemic Activity in Mice.

      PubMed

      Brunmair, Barbara; Lehner, Zsuzsanna; Stadlbauer, Karin; Adorjan, Immanuel; Frobel, Klaus; Scherer, Thomas; Luger, Anton; Bauer, Leonhardt; Fürnsinn, Clemens

      2015-01-01

      Starting off with a structure derived from the natural compound multiflorine, a derivatisation program aimed at the discovery and initial characterisation of novel compounds with antidiabetic potential. Design and discovery of the structures was guided by oral bioactivities obtained in oral glucose tolerance tests in mice. 55P0110, one among several new compounds with distinct anti-hyperglycaemic activity, was further examined to characterise its pharmacology and mode of action. Whereas a single oral dose of 55P0110 did not affect basal glycaemia, it markedly improved the glucose tolerance of healthy and diabetic mice (peak blood glucose in glucose tolerance test, mmol/l: healthy mice with 90 mg/kg 55P0110, 17.0 ± 1.2 vs. 10.1 ± 1.1; diabetic mice with 180 mg/kg 55P0110, 23.1 ± 0.9 vs. 11.1 ± 1.4; p<0.001 each). Closer examination argued against retarded glucose resorption from the gut, increased glucose excretion in urine, acute insulin-like or insulin sensitising properties, and direct inhibition of dipeptidyl peptidase-4 as the cause of glucose lowering. Hence, 55P0110 seems to act via a target not exploited by any drug presently approved for the treatment of diabetes mellitus. Whereas the insulinotropic sulfonylurea gliclazide (16 mg/kg) distinctly increased the circulating insulin-per-glucose ratio under basal conditions, 55P0110 (90 mg/kg) lacked such an effect (30 min. after dosing, nmol/mol: vehicle, 2.49 ± 0.27; 55P0110, 2.99 ± 0.35; gliclazide, 8.97 ± 0.49; p<0.001 each vs. gliclazide). Under an exogenous glucose challenge, however, 55P0110 increased this ratio to the same extent as gliclazide (20 min. after glucose feeding: vehicle, 2.53 ± 0.41; 55P0110, 3.80 ± 0.46; gliclazide, 3.99 ± 0.26; p<0.05 each vs. vehicle). By augmenting the glucose stimulated increase in plasma insulin, 55P0110 thus shows distinct anti-hyperglycaemic action in combination with low risk for fasting hypoglycaemia in mice. In summary, we have discovered a novel class of

    12. Effects of PAR and UV-B radiation on herbal yield, bioactive compounds and their antioxidant capacity of some medicinal plants under controlled environmental conditions.

      PubMed

      Manukyan, Artur

      2013-01-01

      Photosynthetically active radiation (PAR) and Ultraviolet B (UV-B) radiation are among the main environmental factors acting on herbal yield and biosynthesis of bioactive compounds in medicinal plants. The objective of this study was to evaluate the influence of biologically effective UV-B light (280-315 nm) and PAR (400-700 nm) on herbal yield, content and composition, as well as antioxidant capacity of essential oils and polyphenols of lemon catmint (Nepeta cataria L. f. citriodora), lemon balm (Melissa officinalis L.) and sage (Salvia officinalis L.) under controlled greenhouse cultivation. Intensive UV-B radiation (2.5 kJ m(-2)  d(-1) ) influenced positively the herbal yield. The essential oil content and composition of studied herbs were mainly affected by PAR and UV-B radiation. In general, additional low-dose UV-B radiation (1 kJ m(-2) d(-1) ) was most effective for biosynthesis of polyphenols in herbs. Analysis of major polyphenolic compounds provided differences in sensitivity of main polyphenols to PAR and UV-B radiation. Essential oils and polyphenol-rich extracts of radiated herbs showed essential differences in antioxidant capacity by the ABTS system. Information from this study can be useful for herbal biomass and secondary metabolite production with superior quality under controlled environment conditions.

    13. Impact of UV-H2O2 Advanced Oxidation and Aging Processes on GAC Capacity for the Removal of Cyanobacterial Taste and Odor Compounds.

      PubMed

      Zamyadi, Arash; Sawade, Emma; Ho, Lionel; Newcombe, Gayle; Hofmann, Ron

      2015-01-01

      Cyanobacteria and their taste and odor (T&O) compounds are a growing concern in water sources globally. Geosmin and 2-methylisoborneol (MIB) are the most commonly detected T&O compounds associated with cyanobacterial presence in drinking water sources. The use of ultraviolet and hydrogen peroxide (H2O2) as an advanced oxidation treatment for T&O control is an emerging technology. However, residual H2O2 (>80% of the initial dose) has to be removed from water prior final disinfection. Recently, granular activated carbon (GAC) is used to remove H2O2 residual. The objective of this study is to assess the impact of H2O2 quenching and aging processes on GAC capacity for the removal of geosmin and MIB. Pilot columns with different types of GAC and presence/absence of H2O2 have been used for this study. H2O2 removal for the operational period of 6 months has no significant impact on GAC capacity to remove the geosmin and MIB from water.

    14. Impact of UV–H2O2 Advanced Oxidation and Aging Processes on GAC Capacity for the Removal of Cyanobacterial Taste and Odor Compounds

      PubMed Central

      Zamyadi, Arash; Sawade, Emma; Ho, Lionel; Newcombe, Gayle; Hofmann, Ron

      2015-01-01

      Cyanobacteria and their taste and odor (T&O) compounds are a growing concern in water sources globally. Geosmin and 2-methylisoborneol (MIB) are the most commonly detected T&O compounds associated with cyanobacterial presence in drinking water sources. The use of ultraviolet and hydrogen peroxide (H2O2) as an advanced oxidation treatment for T&O control is an emerging technology. However, residual H2O2 (>80% of the initial dose) has to be removed from water prior final disinfection. Recently, granular activated carbon (GAC) is used to remove H2O2 residual. The objective of this study is to assess the impact of H2O2 quenching and aging processes on GAC capacity for the removal of geosmin and MIB. Pilot columns with different types of GAC and presence/absence of H2O2 have been used for this study. H2O2 removal for the operational period of 6 months has no significant impact on GAC capacity to remove the geosmin and MIB from water. PMID:26462247

    15. Identification of the ZAK-MKK4-JNK-TGFβ signaling pathway as a molecular target for novel synthetic iminoquinone anticancer compound BA-TPQ.

      PubMed

      Chen, Deng; Wang, Wei; Qin, Jiang-Jiang; Wang, Ming-Hai; Murugesan, Srinivasan; Nadkarni, Dwayaja H; Velu, Sadanandan E; Wang, Hui; Zhang, Ruiwen

      2013-07-01

      Identification and validation of molecular targets are considered as key elements in new drug discovery and development. We have recently demonstrated that a novel synthetic iminoquinone analog, termed [7-(benzylamino)- 1,3,4,8-tetrahydropyrrolo [4,3, 2-de]quinolin-8(1H)-one] (BA-TPQ), has significant anti-breast cancer activity both in vitro and in vivo, but the underlying molecular mechanisms are not fully understood. Herein, we report the molecular studies for BA-TPQ's effects on JNK and its upstream and downstream signaling pathways. The compound up-regulates the JNK protein levels by increasing its phosphorylation and decreasing its polyubiquitination-mediated degradation. It activates ZAK at the MAPKKK level and MKK4 at the MAPKK level. It also up-regulates the TGFβ2 mRNA level, which can be abolished by the JNK-specific inhibitor SP600125, but not TGFβ pathway-specific inhibitor SD-208, indicating that both JNK and TGFβ signaling pathways are activated by BA-TPQ and that the JNK pathway activation precedes TGFβ activation. The pro-apoptotic and anti-growth effects of BA-TPQ are significantly blocked by both the JNK and TGFβ pathway inhibitors. In addition, BA-TPQ activates the ZAK-MKK4-JNK pathway in MCF7 cells, but not normal MCF10A cells, demonstrating its cancer-specific activities. In conclusion, our results demonstrate that BA-TPQ activates the ZAK-MKK4-JNK-TGFβ signaling cascade as a molecular target for its anticancer activity.

    16. Identification of bioactive compounds from jambolão (Syzygium cumini) and antioxidant capacity evaluation in different pH conditions.

      PubMed

      Faria, Adelia F; Marques, Marcella C; Mercadante, Adriana Z

      2011-06-15

      The composition of carotenoids and phenolic compounds from jambolão fruits (Syzygium cumini) was determined by HPLC-DAD-MS/MS. Two main carotenoids were found in the fruits, all-trans-lutein (43.7%) and all-trans-β-carotene (25.4%). The anthocyanin composition was characterised by the presence of 3,5-diglucosides of five out of six aglycones commonly found in foods. This pattern was also observed for the other flavonoids, since diglucosides of dihydromyricetin, methyl-dihydromyricetin and dimethyl-dihydromyricetin, along with myricetin glucoside and a galloyl-glucose ester were identified. Furthermore, the antioxidant capacity of a functional extract rich in anthocyanins was evaluated through the scavenging capacities of ABTS(+) and peroxyl radical (ORAC) and the protective effect against singlet oxygen ((1)O2). The TEAC values indicated that the hemiacetals/chalcones and quinonoidal bases species (pH⩾5) possess higher scavenging capacity as compared to the flavylium cation (pH<3). The functional extract also showed 60% of dimethylanthracene protection against (1)O2 and an ORAC value of 16.4μmolTrolox/gfruit.

    17. Heat capacity and entropy at the temperatures 5 K to 720 K and thermal expansion from the temperatures 298 K to 573 K of synthetic enargite (Cu3AsS4)

      USGS Publications Warehouse

      Seal, R.R.; Robie, R.A.; Hemingway, B.S.; Evans, H.T.

      1996-01-01

      The heat capacity of synthetic Cu3AsS4 (enargite) was measured by quasi-adiabatic calorimetry from the temperatures 5 K to 355 K and by differential scanning calorimetry from T = 339 K to T = 720 K. Heat-capacity anomalies were observed at T = (58.5 ?? 0.5) K (??trsHom = 1.4??R??K; ??trsSom = 0.02??R) and at T = (66.5 ?? 0.5) K (??trsHom = 4.6??R??K; ??trsSom = 0.08??R), where R = 8.31451 J??K-1??mol-1. The causes of the anomalies are unknown. At T = 298.15 K, Cop,m and Som(T) are (190.4 ?? 0.2) J??K-1??mol-1 and (257.6 ?? 0.6) J??K-1??mol-1, respectively. The superambient heat capacities are described from T = 298.15 K to T = 944 K by the least-squares regression equation: Cop,m/(J??K-1??mol-1) = (196.7 ?? 1.2) + (0.0499 ?? 0.0016)??(T/K) -(1918 000 ?? 84 000)??(T/K)-2. The thermal expansion of synthetic enargite was measured from T = 298.15 K to T = 573 K by powder X-ray diffraction. The thermal expansion of the unit-cell volume (Z = 2) is described from T = 298.15 K to T = 573 K by the least-squares equation: V/pm3 = 106??(288.2 ?? 0.2) + 104??(1.49 ?? 0.04)??(T/K). ?? 1996 Academic Press Limited.

    18. Preharvest application of oxalic acid increased fruit size, bioactive compounds, and antioxidant capacity in sweet cherry cultivars (Prunus avium L.).

      PubMed

      Martínez-Esplá, Alejandra; Zapata, Pedro Javier; Valero, Daniel; García-Viguera, Cristina; Castillo, Salvador; Serrano, María

      2014-04-16

      Trees of 'Sweet Heart' and 'Sweet Late' sweet cherry cultivars (Prunus avium L.) were treated with oxalic acid (OA) at 0.5, 1.0, and 2.0 mM at 98, 112, and 126 days after full blossom. Results showed that all treatments increased fruit size at harvest, manifested by higher fruit volume and weight in cherries from treated trees than from controls, the higher effect being found with 2.0 mM OA (18 and 30% higher weight for 'Sweet Heart' and 'Sweet Late', respectively). Other quality parameters, such as color and firmness, were also increased by OA treatments, although no significant differences were found in total soluble solids or total acidity, showing that OA treatments did not affect the on-tree ripening process of sweet cherry. However, the increases in total anthocyanins, total phenolics, and antioxidant activity associated with the ripening process were higher in treated than in control cherries, leading to fruit with high bioactive compounds and antioxidant potential at commercial harvest (≅45% more anthocyanins and ≅20% more total phenolics). In addition, individual anthocyanins, flavonols, and chlorogenic acid derivatives were also increased by OA treatment. Thus, OA preharvest treatments could be an efficient and natural way to increase the quality and functional properties of sweet cherries.

    19. Antioxidant Capacities and Analysis of Phenolic Compounds in Three Endemic Nolana Species by HPLC-PDA-ESI-MS.

      PubMed

      Simirgiotis, Mario J; Benites, Julio; Areche, Carlos; Sepúlveda, Beatriz

      2015-06-22

      The antioxidant features, polyphenolic composition and chromatographic fingerprints of the aerial parts from three Chilean endemic plants from the Paposo Valley located on the cost of the Atacama Desert were investigated for the first time using high pressure liquid chromatography coupled with photodiode array detector and electrospray ionization mass analysis (HPLC-PDA-ESI-MS) and spectroscopic methods. The phenolic fingerprints obtained for the plants were compared and correlated with the antioxidant capacities measured by the bleaching of the DPPH radical, the ferric reducing antioxidant power (FRAP) and quantification of the total content of phenolics and flavonoids measured by spectroscopic methods. Thirty phenolics were identified for the first time for these species, mostly phenolic acids, flavanones, flavonols and some of their glycoside derivatives, together with three saturated fatty acids (stearic, palmitic and arachidic acids). Nolana ramosissima showed the highest antioxidant activity (26.35 ± 1.02 μg/mL, 116.07 ± 3.42 μM Trolox equivalents/g dry weight and 81.23% ± 3.77% of inhibition in the DPPH, FRAP and scavenging activity (SA) assays, respectively), followed by  N. aplocaryoides (85.19 ± 1.64 μg/mL, 65.87 ± 2.33 μM TE/g DW and 53.27% ± 3.07%) and N. leptophylla (124.71 ± 3.01, 44.23 ± 5.18 μM TE/g DW and 38.63% ± 1.85%).

    20. Effect of in Vitro Gastrointestinal Digestion on Encapsulated and Nonencapsulated Phenolic Compounds of Carob (Ceratonia siliqua L.) Pulp Extracts and Their Antioxidant Capacity.

      PubMed

      Ydjedd, Siham; Bouriche, Sihem; López-Nicolás, Rubén; Sánchez-Moya, Teresa; Frontela-Saseta, Carmen; Ros-Berruezo, Gaspar; Rezgui, Farouk; Louaileche, Hayette; Kati, Djamel-Edine

      2017-02-01

      To determine the effect of in vitro gastrointestinal digestion on the release and antioxidant capacity of encapsulated and nonencapsulated phenolics carob pulp extracts, unripe and ripe carob pulp extracts were microencapsulated with polycaprolactone via double emulsion/solvent evaporation technique. Microcapsules' characterization was performed using scanning electron microscopy and Fourier transform infrared spectrometry analysis. Total phenolics and flavonoids content and antioxidant activities (ORAC, DPPH, and FRAP) were evaluated after each digestion step. The release of phenolic acids and flavonoids was measured along the digestion process by HPLC-MS/MS analysis. The most important phenolics and flavonoids content as well as antioxidant activities were observed after gastric and intestinal phases for nonencapsulated and encapsulated extracts, respectively. The microencapsulation of carob polyphenols showed a protective effect against pH changes and enzymatic activities along digestion, thereby promoting a controlled release and targeted delivery of the encapsulated compound, which contributed to an increase in its bioaccessibility in the gut.

    1. Heat capacity and heat content measurements on binary compounds in the Ru-Si, Ru-Ge, and Ru-Sn systems

      SciTech Connect

      Kuntz, J.J.; Gachon, J.C.; Feschotte, P.; Perring, L. |

      1997-11-01

      Molar heat capacities of Ru{sub 0.5}Si{sub 0.5} Ru{sub 0.4}Si{sub 0.6}, Ru{sub 0.5}Ge{sub 0.5}, Ru{sub 0.4}Ge{sub 0.6}, Ru{sub 0.4}Sn{sub 0.6}, and Ru{sub 0.3}Sn{sub 0.7} were determined every 10 K by differential scanning calorimetry in the temperature range from 310 to 1080 K. The present results have been fitted by a polynomial function of temperature: C{sub p} = a+bT-cT{sup -2}. Heat contents of the six phases have been verified by drop calorimetry. Standard enthalpies of formation are given for the studied compounds.

    2. Assessment of the intrinsic bioremediation capacity of an eutrophic river sediment polluted by discharging chlorinated aliphatic hydrocarbons: a compound-specific isotope approach.

      PubMed

      Kuhn, Thomas K; Hamonts, Kelly; Dijk, John A; Kalka, Harald; Stichler, Willibald; Springael, Dirk; Dejonghe, Winnie; Meckenstock, Rainer U

      2009-07-15

      At a field site in the industrial area of Vilvoorde, Belgium, we investigated the capacity of the indigenous microbial community of a eutrophic river sediment to biodegrade chlorinated aliphatic hydrocarbons (CAHs) originating from discharging, polluted groundwater using a compound-specific isotope approach. We specifically targeted the site's major pollutants cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC). Analysis of Rayleigh correlation plots enabled us to assess the extent to which microbial and abiotic natural attenuation processes contributed to the mitigation of a pollution of the surface water due to discharging CAH-contaminated groundwater. Our results provide evidence for (i) the occurrence of biodegradation of cis-DCE and VC by reductive dechlorination in parts of the aquifer and at several positions in the river sediment (ii) the presence of river sediment zones exhibiting attenuation of chloroethenes by a combination of biodegradation and dilution through unpolluted water, (iii) the existence of zones in the river sediment lacking significant biodegradation, and thus (iv) a pronounced spatial heterogeneity in the occurrence and extent of biodegradation in the aquifer and river sediment. We conclude that at many investigated positions in the river sediment the indigenous microbial community failed to facilitate complete biodegradation of the groundwater-sourced chloroethenes. The overall intrinsic bioremediation capacity of the river sediment was thus not high enough to completely prevent the release of these pollutants into the surface water. These findings and conclusions are thus in agreement with those of our companion paper (1), which investigated the river sediments at the Vilvoorde study site by a combination of stable hydrogen and oxygen isotope analysis of water and the detection of chlorinated aliphatic hydrocarbons (CAHs) and their dechlorination products.

    3. Forensic investigation of K2, Spice, and "bath salt" commercial preparations: a three-year study of new designer drug products containing synthetic cannabinoid, stimulant, and hallucinogenic compounds.

      PubMed

      Seely, Kathryn A; Patton, Amy L; Moran, Cindy L; Womack, Mary L; Prather, Paul L; Fantegrossi, William E; Radominska-Pandya, Anna; Endres, Gregory W; Channell, Kermit B; Smith, Nathaniel H; McCain, Keith R; James, Laura P; Moran, Jeffery H

      2013-12-10

      New designer drugs such as K2, Spice, and "bath salts" present a formidable challenge for law enforcement and public health officials. The following report summarizes a three-year study of 1320 law enforcement cases involving over 3000 products described as vegetable material, powders, capsules, tablets, blotter paper, or drug paraphernalia. All items were seized in Arkansas from January 2010 through December 2012 and submitted to the Arkansas State Crime Laboratory for analysis. The geographical distribution of these seizures co-localized in areas with higher population, colleges, and universities. Validated forensic testing procedures confirmed the presence of 26 synthetic cannabinoids, 12 designer stimulants, and 5 hallucinogenic-like drugs regulated by the Synthetic Drug Prevention Act of 2012 and other state statutes. Analysis of paraphernalia suggests that these drugs are commonly used concomitantly with other drugs of abuse including marijuana, MDMA, and methamphetamine. Exact designer drug compositions were unpredictable and often formulated with multiple agents, but overall, the synthetic cannabinoids were significantly more prevalent than all the other designer drugs detected. The synthetic cannabinoids JWH-018, AM2201, JWH-122, JWH-210, and XLR11 were most commonly detected in green vegetable material and powder products. The designer stimulants methylenedioxypyrovalerone (MDPV), 3,4-methylenedioxy-N-methylcathinone (methylone), and α-methylamino-valerophenone (pentedrone) were commonly detected in tablets, capsules, and powders. Hallucinogenic drugs were rarely detected, but generally found on blotter paper products. Emerging designer drug products remain a significant problem and continued surveillance is needed to protect public health.

    4. Antibacterial Evaluation of Synthetic Thiazole Compounds In Vitro and In Vivo in a Methicillin-Resistant Staphylococcus aureus (MRSA) Skin Infection Mouse Model

      PubMed Central

      Mohammad, Haroon; Cushman, Mark; Seleem, Mohamed N.

      2015-01-01

      The emergence of community-associated methicillin-resistant Staphylococcus aureus (MRSA), including strains resistant to current antibiotics, has contributed to an increase in the number of skin infections reported in humans in recent years. New therapeutic options are needed to counter this public health challenge. The aim of the present study was to examine the potential of thiazole compounds synthesized by our research group to be used topically to treat MRSA skin and wound infections. The broth microdilution method confirmed that the lead thiazole compound and four analogues are capable of inhibiting MRSA growth at concentrations as low as 1.3 μg/mL. Additionally, three compounds exhibited a synergistic relationship when combined with the topical antibiotic mupirocin against MRSA in vitro via the checkerboard assay. Thus the thiazole compounds have potential to be used alone or in combination with mupirocin against MRSA. When tested against human keratinocytes, four derivatives of the lead compound demonstrated an improved toxicity profile (were found to be non-toxic up to a concentration of 20 μg/mL). Utilizing a murine skin infection model, we confirmed that the lead compound and three analogues exhibited potent antimicrobial activity in vivo, with similar capability as the antibiotic mupirocin, as they reduced the burden of MRSA present in skin wounds by more than 90%. Taken altogether, the present study provides important evidence that these thiazole compounds warrant further investigation for development as novel topical antimicrobials to treat MRSA skin infections. PMID:26536129

    5. Antibacterial Evaluation of Synthetic Thiazole Compounds In Vitro and In Vivo in a Methicillin-Resistant Staphylococcus aureus (MRSA) Skin Infection Mouse Model.

      PubMed

      Mohammad, Haroon; Cushman, Mark; Seleem, Mohamed N

      2015-01-01

      The emergence of community-associated methicillin-resistant Staphylococcus aureus (MRSA), including strains resistant to current antibiotics, has contributed to an increase in the number of skin infections reported in humans in recent years. New therapeutic options are needed to counter this public health challenge. The aim of the present study was to examine the potential of thiazole compounds synthesized by our research group to be used topically to treat MRSA skin and wound infections. The broth microdilution method confirmed that the lead thiazole compound and four analogues are capable of inhibiting MRSA growth at concentrations as low as 1.3 μg/mL. Additionally, three compounds exhibited a synergistic relationship when combined with the topical antibiotic mupirocin against MRSA in vitro via the checkerboard assay. Thus the thiazole compounds have potential to be used alone or in combination with mupirocin against MRSA. When tested against human keratinocytes, four derivatives of the lead compound demonstrated an improved toxicity profile (were found to be non-toxic up to a concentration of 20 μg/mL). Utilizing a murine skin infection model, we confirmed that the lead compound and three analogues exhibited potent antimicrobial activity in vivo, with similar capability as the antibiotic mupirocin, as they reduced the burden of MRSA present in skin wounds by more than 90%. Taken altogether, the present study provides important evidence that these thiazole compounds warrant further investigation for development as novel topical antimicrobials to treat MRSA skin infections.

    6. SYNTHETIC OIL,

      DTIC Science & Technology

      The patent concerns a dicarboxylate-base synthetic oil with antiwear and antioxidation additives. The oil is prepared from the esterification of 2- or 3-methylcyclohexanol and 2-ethylhexanol with adipic acid. (Author)

    7. Synthetic oils

      NASA Technical Reports Server (NTRS)

      Hatton, R. E.

      1973-01-01

      Synthetic lubricants are discussed by chemical class and their general strengths and weaknesses in terms of lubrication properties are analyzed. Comparative ratings are given for 14 chemical classes and are used as a guide for lubricant selection. The effects of chemical structure on the properties of the lubricant are described with special emphasis on thermal stability. The diversity of synthetic lubricants which is provided by the wide range of properties permits many applications, some of which are reported.

    8. The nature of the nitrogen source added to nitrogen depleted vinifications conducted by a Saccharomyces cerevisiae strain in synthetic must affects gene expression and the levels of several volatile compounds.

      PubMed

      Jiménez-Martí, Elena; Aranda, Agustín; Mendes-Ferreira, Alexandra; Mendes-Faia, Arlete; del Olmo, Marcel Lí

      2007-07-01

      Nitrogen starvation may lead to stuck and sluggish fermentations. These undesirable situations result in wines with high residual sugar, longer vinification times, and risks of microbial contamination. The typical oenological method to prevent these problems is the early addition of ammonium salts to the grape juice, although excessive levels of these compounds may lead to negative consequences for the final product. This addition reduces the overall fermentation time, regardless of the time of addition, but the effect is more significant when nitrogen is added during the yeast exponential phase. In this work we analysed the effect of adding different nitrogen sources (ammonia, amino acids or a combination of both) under nitrogen depletion in order to understand yeast metabolic changes that lead to the adaptation to the new conditions. These studies were carried out in a synthetic must that mimics the composition of the natural must. Furthermore, we studied how this addition affects fermentative behaviour, the levels of several yeast volatile compounds in the final product, arginase activity, and the expression of several genes involved in stress response and nitrogen metabolism during vinification. We found that the nature of the nitrogen source added during yeast late exponential growth phase introduces changes to the volatile compounds profile and to the gene expression. On the other hand, arginase activity and the expression of the stress response gene ACA1 are useful to monitor nitrogen depletion/addition during growth of the wine yeast considered under our vinification conditions.

    9. Screening Hofmann Compounds as CO 2 Sorbents: Nontraditional Synthetic Route to Over 40 Different Pore-Functionalized and Flexible Pillared Cyanonickelates

      SciTech Connect

      Culp, Jeffrey T.; Madden, Catherine; Kauffman, Kristi; Shi, Fan; Matranga, Christopher

      2013-04-15

      A simple reaction scheme based on the heterogeneous intercalation of pillaring ligands (HIPLs) provides a convenient method for systematically tuning pore size, pore functionality, and network flexibility in an extended series of pillared cyanonickelates (PICNICs), commonly referred to as Hofmann compounds. The versatility of the approach is demonstrated through the preparation of over 40 different PICNICs containing pillar ligands ranging from ~4 to ~15 Å in length and modified with a wide range of functional groups, including fluoro, aldehyde, alkylamine, alkyl, aryl, trifluoromethyl, ester, nitro, ether, and nonmetalated 4,4'-bipyrimidine. The HIPL method involves reaction of a suspension of preformed polymeric sheets of powdered anhydrous nickel cyanide with an appropriate pillar ligand in refluxing organic solvent, resulting in the conversion of the planar [Ni{sub 2}(CN){sub 4}]{sub n} networks into polycrystalline three-dimensional porous frameworks containing the organic pillar ligand. Preliminary investigations indicate that the HIPL reaction is also amenable to forming Co(L)Ni(CN){sub 4}, Fe(L)Ni(CN){sub 4}, and Fe(L)Pd(CN){sub 4} networks. The materials show variable adsorption behavior for CO{sub 2} depending on the pillar length and pillar functionalization. Several compounds show structurally flexible behavior during the adsorption and desorption of CO{sub 2}. Interestingly, the newly discovered flexible compounds include two flexible Fe(L)Ni(CN){sub 4} derivatives that are structurally related to previously reported porous spin-crossover compounds. The preparations of 20 pillar ligands based on ring-functionalized 4,4'-dipyridyls, 1,4-bis(4- pyridyl)benzenes, and N-(4-pyridyl)isonicotinamides are also described.

    10. Screening Hofmann Compounds as CO 2 Sorbents: Nontraditional Synthetic Route to Over 40 Different Pore-Functionalized and Flexible Pillared Cyanonickelates

      SciTech Connect

      Culp, Jeffrey T.; Madden, Catherine; Kauffman, Kristi; Shi, Fan; Matranga, Christopher

      2013-04-15

      A simple reaction scheme based on the heterogeneous intercalation of pillaring ligands (HIPLs) provides a convenient method for systematically tuning pore size, pore functionality, and network flexibility in an extended series of pillared cyanonickelates (PICNICs), commonly referred to as Hofmann compounds. The versatility of the approach is demonstrated through the preparation of over 40 different PICNICs containing pillar ligands ranging from 4 to 15 Å in length and modified with a wide range of functional groups, including fluoro, aldehyde, alkylamine, alkyl, aryl, trifluoromethyl, ester, nitro, ether, and nonmetalated 4,4'-bipyrimidine. The HIPL method involves reaction of a suspension of preformed polymeric sheets of powdered anhydrous nickel cyanide with an appropriate pillar ligand in refluxing organic solvent, resulting in the conversion of the planar [Ni{sub 2}(CN){sub 4}]{sub n} networks into polycrystalline three-dimensional porous frameworks containing the organic pillar ligand. Preliminary investigations indicate that the HIPL reaction is also amenable to forming Co(L)Ni(CN){sub 4}, Fe(L)Ni(CN){sub 4}, and Fe(L)Pd(CN){sub 4} networks. The materials show variable adsorption behavior for CO{sub 2} depending on the pillar length and pillar functionalization. Several compounds show structurally flexible behavior during the adsorption and desorption of CO{sub 2}. Interestingly, the newly discovered flexible compounds include two flexible Fe(L)Ni(CN){sub 4} derivatives that are structurally related to previously reported porous spin-crossover compounds. The preparations of 20 pillar ligands based on ring-functionalized 4,4'-dipyridyls, 1,4-bis(4-pyridyl)benzenes, and N-(4-pyridyl)isonicotinamides are also described.

    11. Nutrient and plant secondary compound composition and iron-binding capacity in leaves and green stems of commonly used plant browse (Carolina willow; Salix caroliniana) fed to zoo-managed browsing herbivores.

      PubMed

      Lavin, S R; Sullivan, K E; Wooley, S C; Robinson, R; Singh, S; Stone, K; Russell, S; Valdes, E V

      2015-11-01

      Plant secondary compounds are diverse structurally, and associated biological effects can vary depending on multiple factors including chemical structure and reaction conditions. Phenolic compounds such as tannins can chelate dietary iron, and supplementation of animal species sensitive to iron overload with tannins may prevent/treat iron overload disorder. We assessed the nutrient and phenolic composition and iron-binding capacity of Carolina willow (Salix caroliniana), a plant fed to zoo-managed browsing herbivores. Based on studies in other plant species and the chemical structures of phenolic compounds, we hypothesized that the concentration of condensed tannins in willow would be inversely related to the concentration of phenolic glycosides and directly related to iron-binding capacity. Our results indicated that willow nutrient composition varied by year, season, and plant part, which could be taken into consideration when formulating animal diets. We also found that the predominant plant secondary compounds were condensed tannins with minimal phenolic glycosides. Instead of binding to iron, the willow leaf extracts reduced iron from the ferric to ferrous form, which may have prooxidative effects and increase the bioavailability of iron depending on animal species, gastrointestinal conditions, and whole animal processes. We recommend identifying alternative compounds that effectively chelate iron in vitro and conducting chelation therapy trials in vivo to assess potential effects on iron balance and overall animal health.

    12. Fermentation of liquid coproducts and liquid compound diets: Part 2. Effects on pH, acid-binding capacity, organic acids and ethanol during a 6-day storage period.

      PubMed

      Scholten, R H; Rijnen, M M; Schrama, J W; Boer, H; van der Peet-Schwering, C M; Den Hartog, L A; Vesseur, P C; Verstegen, M W

      2001-06-01

      The effects of a 6-day storage period on changes in pH, acid-binding capacity, level of organic acids and ethanol of three liquid coproducts [liquid wheat starch (LWS), mashed potato steam peel (PSP) and cheese whey (CW)] and two liquid compound diets [liquid grower diet (LGD) and liquid finisher diet (LFD)] were studied. All products, except LWS, showed a significant decrease in pH and acid-binding capacity during storage. At the end of the storage period, all products reached a pH of between 3.5 and 3.9. In general, it can be concluded that the lactic acid content, and to a lesser extent the acetic acid content, increased dramatically during storage. In contrast, the ethanol content increased significantly in the liquid compound diets only. The pattern of changes in pH and organic acids during the 6-day storage period was different between the liquid coproducts and the liquid compound diets. At the start of storage, liquid coproducts are already in the 'middle' of the fermentation process, while liquid compound diets need approximately 24-36 h before fermentation begins. Consequently, in practice a different approach to obtain fermented diets is needed for liquid coproducts and liquid compound diets.

    13. Induction and inhibition of aromatase (CYP19) activity by natural and synthetic flavonoid compounds in H295R human adrenocortical carcinoma cells.

      PubMed

      Sanderson, J Thomas; Hordijk, Joost; Denison, Michael S; Springsteel, Mark F; Nantz, Michael H; van den Berg, Martin

      2004-11-01

      Flavonoids and related structures (e.g., flavones, isoflavones, flavanones, catechins) exert various biological effects, including anticarcinogenic, antioxidant and (anti-)estrogenic effects, and modulation of sex hormone homeostasis. A key enzyme in the synthesis of estrogens from androgens is aromatase (cytochrome P450 19; CYP19). We investigated the effects of various natural and synthetic flavonoids on the catalytic activity and promoter-specific expression of aromatase in H295R human adrenocortical carcinoma cells. Natural flavones were consistently more potent inhibitors than flavanones. IC(50) values for 7-hydroxyflavone, chrysin, and apigenin were 4, 7, and 20 microM, respectively; for the flavanones 7-hydroxyflavanone and naringenin the IC(50) values were 65 and 85 microM, respectively. The steroidal aromatase inhibitor (positive control) 4-hydroxyandrostenedione had an IC(50) of 20 nM. The inhibition by apigenin and naringenin coincided with some degree of cytotoxicity at 100 microM. The natural flavonoid derivative rotenone (IC(50) 0.3 microM) was the most potent aromatase inhibitor tested. Several synthetic flavonoid and structurally related quinolin-4-one analogs inhibited aromatase activity. The most potent inhibitor was 4'-tert-butyl-quinolin-4-one (IC(50) 2 microM), followed by two 2-pyridinyl-substituted alpha-naphthoflavones (IC(50)s 5 and >30 microM). The two 2-pyridinyl-substituted gamma-naphthoflavones consistently produced biphasic concentration-response curves, causing about 1.5-fold aromatase induction at concentrations below 1 microM and inhibition above that level (IC(50)s 7 and >30 microM). The natural flavone quercetin and isoflavone genistein induced aromatase activity 4- and 2.5-fold induction, respectively, at 10 microM. This coincided with increased intracellular cAMP concentrations and increased levels of the cAMP-dependent pII and to a lesser extent 1.3 promoter-specific aromatase transcripts. These results shed light on the

    14. [Synthetic and mechanistic investigation of olefin polymerization catalyzed by early transition metal compounds]. Progress report, Second year, 1 April 1992--31 March 1992

      SciTech Connect

      Bercaw, J.E.

      1993-08-01

      During the second year we continued to prepare and characterize organoyttrium and organoscandium compounds for use as catalysts for polymerizing simple olefins and diolefins. Simple, one-component systems are being pursued, suitable for chain initiation, propagation, and termination studies. This document is divided into: dicarbollide derivatives of scandium as potential catalysts; design, synthesis, and characterization of the first isospecific {alpha} olefin polymerization catalysts; polymerization of {alpha} olefins and 1,5- hexadiene using organoscandium catalysts; and attempted preparations of diastereomeric Nb and Ta olefin/hydride and olefin/alkyl derivatives.

    15. Synthetic multicellularity.

      PubMed

      Maharbiz, Michel M

      2012-12-01

      The ability to synthesize biological constructs on the scale of the organisms we observe unaided is probably one of the more outlandish, yet recurring, dreams humans have had since they began to modify genes. This review brings together recent developments in synthetic biology, cell and developmental biology, computation, and technological development to provide context and direction for the engineering of rudimentary, autonomous multicellular ensembles.

    16. Synthetic DNA

      PubMed Central

      O’ Driscoll, Aisling; Sleator, Roy D.

      2013-01-01

      With world wide data predicted to exceed 40 trillion gigabytes by 2020, big data storage is a very real and escalating problem. Herein, we discuss the utility of synthetic DNA as a robust and eco-friendly archival data storage solution of the future. PMID:23514938

    17. Synthetic Astrobiology

      NASA Technical Reports Server (NTRS)

      Rothschild, Lynn J.

      2015-01-01

      Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

    18. Synthetic Astrobiology

      NASA Technical Reports Server (NTRS)

      Rothschild, Lynn J.

      2016-01-01

      Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

    19. Development and optimization of a cell-based assay for the selection of synthetic compounds that potentiate bone morphogenetic protein-2 activity.

      PubMed

      Okada, Motohiro; Sangadala, Sreedhara; Liu, Yunshan; Yoshida, Munehito; Reddy, Boojala Vijay B; Titus, Louisa; Boden, Scott D

      2009-12-01

      reliability of our cell-based assay. Direct delivery of synthesized protein can be limited by high cost, instability or inadequate post-translational modifications. Thus, there would be a clear benefit for a low cost, cell penetrable chemical compound. We successfully used our gene expression-based assay to choose an active compound from a select group of compounds that were identified by computational screenings as the most likely candidates for mimicking the function of LMP-1. Among them, we selected SVAK-3, a compound that showed a dose-dependent potentiation of BMP-2 activity in inducing osteoblastic differentiation of C2C12 cells. We show that either the full length LMP-1 protein or its potential mimetic compound consistently exhibit similar potentiation of BMP-2 activity even when multiple markers of the osteoblastic phenotype were parallely monitored.

    20. Development and optimization of a cell-based assay for the selection of synthetic compounds that potentiate bone morphogenetic protein-2 activity‡

      PubMed Central

      Okada, Motohiro; Sangadala, Sreedhara; Liu, Yunshan; Yoshida, Munehito; Reddy, Boojala Vijay B.; Titus, Louisa; Boden, Scott D.

      2010-01-01

      reliability of our cell-based assay. Direct delivery of synthesized protein can be limited by high cost, instability or inadequate post-translational modifications. Thus, there would be a clear benefit for a low cost, cell penetrable chemical compound. We successfully used our gene expression-based assay to choose an active compound from a select group of compounds that were identified by computational screenings as the most likely candidates for mimicking the function of LMP-1. Among them, we selected SVAK-3, a compound that showed a dose-dependent potentiation of BMP-2 activity in inducing osteoblastic differentiation of C2C12 cells. We show that either the full length LMP-1 protein or its potential mimetic compound consistently exhibit similar potentiation of BMP-2 activity even when multiple markers of the osteoblastic phenotype were parallely monitored. PMID:19862690

    1. Quantification of individual phenolic compounds' contribution to antioxidant capacity in apple: a novel analytical tool based on liquid chromatography with diode array, electrochemical, and charged aerosol detection.

      PubMed

      Plaza, Merichel; Kariuki, James; Turner, Charlotta

      2014-01-15

      Phenolics, particularly from apples, hold great interest because of their antioxidant properties. In the present study, the total antioxidant capacity of different apple extracts obtained by pressurized hot water extraction (PHWE) was determined by cyclic voltammetry (CV), which was compared with the conventional antioxidant assays. To measure the antioxidant capacity of individual antioxidants present in apple extracts, a novel method was developed based on high-performance liquid chromatography (HPLC) with photodiode array (DAD), electrochemical (ECD), and charged aerosol (CAD) detection. HPLC-DAD-ECD-CAD enabled rapid, qualitative, and quantitative determination of antioxidants in the apple extracts. The main advantage of using CAD was that this detector enabled quantification of a large number of phenolics using only a few standards. The results showed that phenolic acids and flavonols were mainly responsible for the total antioxidant capacity of apple extracts. In addition, protocatechuic acid, chlorogenic acid, hyperoside, an unidentified phenolic acid, and a quercetin derivative presented the highest antioxidant capacities.

    2. Spicing thing up: Synthetic cannabinoids

      PubMed Central

      Spaderna, Max; Addy, Peter H; D’Souza, Deepak Cyril

      2013-01-01

      Rationale Recently, products containing synthetic cannabinoids, collectively referred to as Spice, are increasingly being used recreationally. Objectives The availability, acute subjective effects—including self-reports posted on Erowid—laboratory detection, addictive potential, and regulatory challenges of the Spice phenomenon are reviewed. Results Spice is sold under the guise of potpourri or incense. Unlike THC, the synthetic cannabinoids present in Spice are high-potency, high-efficacy, cannabinoid-receptor full agonists. Since standard urine toxicology does not test for the synthetic cannabinoids in Spice, it is often used by those who want to avoid detection of drug use. These compounds have not yet been subjected to rigorous testing in humans. Acute psychoactive effects include changes in mood, anxiety, perception, thinking, memory, and attention. Adverse effects include anxiety, agitation, panic, dysphoria, psychosis, and bizarre behavior. Psychosis outcomes associated with Spice provide additional data linking cannabinoids and psychosis. Adverse events necessitating intervention by Poison Control Centers, law enforcement, emergency responders, and hospitals are increasing. Despite statutes prohibiting the manufacture, distribution, and sale of Spice products, manufacturers are replacing banned compounds with newer synthetic cannabinoids that are not banned. Conclusions There is an urgent need for better research on the effects of synthetic cannabinoids to help clinicians manage adverse events and to better understand cannabinoid pharmacology in humans. The reported psychosis outcomes associated with synthetic cannabinoids contribute to the ongoing debate on the association between cannabinoids and psychosis. Finally, drug-detection tests for synthetic cannabinoids need to become clinically available. PMID:23836028

    3. Selective introduction of organic groups to C60 and C70 using organoboron compounds and rhodium catalyst: a new synthetic approach to organo(hydro)fullerenes.

      PubMed

      Nambo, Masakazu; Segawa, Yasutomo; Wakamiya, Atsushi; Itami, Kenichiro

      2011-02-01

      A Rh-catalyzed reaction of C(60) and C(70) with organoboron compounds is described. This new catalytic method enables introduction of various organic groups onto C(60) and C(70). [Rh(cod)(MeCN)(2)]BF(4) proved to be the most effective catalyst in terms of productivity and selectivity. The reaction generally proceeds with a high regioselectivity and in a mono-addition selective manner. It was found that water is an essential additive to promote the reaction. By X-ray crystal structure analysis, we have confirmed the reaction site of organometallic-based hydroarylation of C(70) for the first time. Various functional fullerenes, such as fullerene-tagged amino acids and fullerene-capped π systems, can be synthesized. The X-ray crystal structure of biphenyl-attached C(60) revealed an interesting opportunity for the well-organized alignment of bucky balls by taking advantage of CH-π interactions.

    4. Synthetic chromosomes.

      PubMed

      Schindler, Daniel; Waldminghaus, Torsten

      2015-11-01

      What a living organism looks like and how it works and what are its components-all this is encoded on DNA, the genetic blueprint. Consequently, the way to change an organism is to change its genetic information. Since the first pieces of recombinant DNA have been used to transform cells in the 1970s, this approach has been enormously extended. Bigger and bigger parts of the genetic information have been exchanged or added over the years. Now we are at a point where the construction of entire chromosomes becomes a reachable goal and first examples appear. This development leads to fundamental new questions, for example, about what is possible and desirable to build or what construction rules one needs to follow when building synthetic chromosomes. Here we review the recent progress in the field, discuss current challenges and speculate on the appearance of future synthetic chromosomes.

    5. SYNTHETIC LUBRICANTS

      DTIC Science & Technology

      of synthetic lubricants for use at low and high temperatures. The diesters of straight-chain dibasic acids lead the field of esters mutable as...lubricants for use at both low and high temperatures, because of their desirable combinations of properties and potentially good availability. Adipic ...azelaic, and sebacic acids are the most readily available dibasic acids suitable for ester lubricant production, while the petroleum derived Oxo alcohols

    6. CPUY201112, a novel synthetic small-molecule compound and inhibitor of heat shock protein Hsp90, induces p53-mediated apoptosis in MCF-7 cells

      PubMed Central

      Xu, Xiao-Li; Bao, Qi-chao; Jia, Jian-Min; Liu, Fang; Guo, Xiao-Ke; Zhang, Ming-ye; Wei, Jin-lian; Lu, Meng-chen; Xu, Li-li; Zhang, Xiao-Jin; You, Qi-Dong; Sun, Hao-Peng

      2016-01-01

      Heat-shock protein 90 (Hsp90) is highly expressed in many tumor cells and is associated with the maintenance of malignant phenotypes. Targeting Hsp90 has had therapeutic success in both solid and hematological malignancies, which has inspired more studies to identify new Hsp90 inhibitors with improved clinical efficacy. Using a fragment-based approach and subsequent structural optimization guided by medicinal chemistry principles, we identified the novel compound CPUY201112 as a potent Hsp90 inhibitor. It binds to the ATP-binding pocket of Hsp90 with a kinetic dissociation (Kd) constant of 27 ± 2.3 nM. It also exhibits potent in vitro antiproliferative effects in a range of solid tumor cells. In MCF-7 cells with high Hsp90 expression, CPUY201112 induces the degradation of Hsp90 client proteins including HER-2, Akt, and c-RAF. We prove that treating MCF-7 cells with CPUY201112 results in cell cycle arrest and apoptosis through the wild-type (wt) p53 pathway. CPUY201112 also synergizes with Nutlin-3a to induce cancer cell apoptosis. CPUY201112 significantly inhibited the growth of MCF-7 xenografts in nude mice without apparent body weight loss. These results demonstrate that CPUY201112 is a novel Hsp90 inhibitor with potential use in treating wild-type p53 related cancers. PMID:26743233

    7. Antioxidant and pro-oxidant capacity of catecholamines and related compounds. Effects of hydrogen peroxide on glutathione and sphingomyelinase activity in pheochromocytoma PC12 cells: potential relevance to age-related diseases.

      PubMed

      Sofic, E; Denisova, N; Youdim, K; Vatrenjak-Velagic, V; De Filippo, C; Mehmedagic, A; Causevic, A; Cao, G; Joseph, J A; Prior, R L

      2001-01-01

      The antioxidant and pro-oxidant capacity of catecholamines (CA) and related compounds were analyzed using the oxygen radical absorbance capacity (ORAC) assay. In the assay 2,2'-azobis (2-amidino-propane) dihydrochloride (AAPH), a peroxyl radical generator, ROO*; H2O2-Cu2+, mainly a hydroxyl radical generator, *OH; and Cu2+ a transition metal were used. The antioxidant effect of CA and its related compounds were in the order: neurotransmitters: dopamine (DA), norepinephrine (NE) > metabolites > amino acid precursors as measured by using AAPH. The antioxidant effect of CA and related compounds as measured by using AAPH were linearly correlated with concentration, while the antioxidant effect of CA in scavenging *OH produced by H2O2-Cu2+ increased proportionally to concentration at low concentration, but after reaching a maximum declined with increasing concentration. In the presence of Cu2+, CA acted as pro-oxidant. Glutathione (GSH) acted as a pro-oxidant when H2O2-Cu2+ or when Cu2+ alone was used as an oxidant and showed much higher pro-oxidant effect than DA, which could have relevance in the vulnerability of dopaminergic neurons to oxidative stress in the aging and aging related diseases. The antioxidant capacity of CA and many related compounds seems to be correlated with the numbers of hydroxyl groups and their position on the benzoic ring. The O-methylation and sulfate conjugation of the hydroxyl substitution inactivates both the antioxidant and pro-oxidant activities of CA. Our results show that oxidative stress induced by low (5 microM) or high (300 microM) doses H2O2 in pheochromocytoma PC12 cells significantly up-regulate the activity of Mg-dependent neutral sphingomyelinase (Sase), and significantly decreased GSH.

    8. Surface-water-quality assessment of the upper Illinois River Basin in Illinois, Indiana, and Wisconsin; pesticides and other synthetic organic compounds in water, sediment, and biota, 1975-90

      USGS Publications Warehouse

      Sullivan, Daniel J.; Stinson, Troy W.; Crawford, J. Kent; Schmidt, Arthur R.; Colman, John A.

      1998-01-01

      The distribution of pesticides and other synthetic organic compounds in water, sediment, and biota in the upper Illinois River Basin in Illinois, Indiana, and Wisconsin was examined from 1987 through 1990 as part of the pilot National Water-Quality Assesssment Program conducted by the U.S. Geological Survey. Historical data for water and sediment collected from 1975 through 1986 were similar to data collected from 1987 through 1990. Some compounds were detected in concentrations that exceed U.S. Environmental Protection Agency water-quality criteria. Results from pesticide sampling at four stations in 1988 and 1989 identified several agricultural pesticides that were detected more frequently and at higher concentrations in urban areas than in agricultural areas. Results from herbicide sampling at 17 stations in the Kankakee and Iroquois River Basins in 1990 indicated that atrazine concentrations exceeded the U.S. Environmental Protection Agency's maximum contaminant level for drinking water during runoff periods. Results from sampling for volatile and semivolatile organic compounds in water indicate that, with one exception, all stations at which more than one compound was detected were within 2 miles downstream from the nearest point source. Detections at two stations in the Chicago urban area accounted for 37 percent of the total number of detections. Concentrations of tetrachloroethylene, trichloroethylene, and 1,2-dichlorethane from stations in the Des Plaines River Basin exceeded the U.S. Environmental Protection Agency's maximum contaminant level for drinking water in one and two samples from the two stations in the Chicago area. Phenols and pentachlorophenols were detected most frequently in the Des Plaines River Basin where point-source discharges were common. Phenol concentrations were significantly different among the Des Plaines, Kankakee, and Fox River Basins. Phenols and pentachlorophenols never exceeded the general use and secondary contact standards

    9. Volatile compounds and antioxidant capacity of the bio-oil obtained by pyrolysis of Japanese red pine (pinus densiflora siebold and zucc.).

      PubMed

      Patra, Jayanta Kumar; Kim, Sung Hong; Hwang, Hyewon; Choi, Joon Weon; Baek, Kwang-Hyun

      2015-03-02

      In the present study, sawdust bio-oil (SBO) manufactured by fast pyrolysis of Japanese red pine (Pinus densiflora Siebold and Zucc.) sawdust was analyzed for its volatile chemical compound composition and evaluated for its free radical scavenging potential, inhibition of lipid peroxidation and reducing power. Gas chromatography and mass spectroscopy revealed 29 volatile compounds, comprising 97.6% of the total volatile compounds in SBO. The antioxidant potential of SBO in terms of IC50 values was 48.44 µg/mL for hydroxyl radical scavenging, 89.52 µg/mL for 1,1-diphenyl-2-picrylhydraxyl radical scavenging, 94.23 µg/mL for 2,2'-azino-bis[3-ethylbenzothiazoline-6-sulphonic acid] radical scavenging, and 136.06 µg/mL for superoxide radical scavenging activity. The total phenol content in SBO was 5.7% gallic acid equivalent. Based on the composition of its volatile compounds, high free radical scavenging potential and antioxidant properties, SBO could be used as a source of antioxidant compounds, flavoring agents and nutraceuticals in the food, pharmaceutical, and cosmetic industries.

    10. Synthetic plant defense elicitors

      PubMed Central

      Bektas, Yasemin; Eulgem, Thomas

      2015-01-01

      To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection. PMID:25674095

    11. Synthetic plant defense elicitors.

      PubMed

      Bektas, Yasemin; Eulgem, Thomas

      2014-01-01

      To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection.

    12. Effect of light exposure on sensorial quality, concentrations of bioactive compounds and antioxidant capacity of radish microgreens during low temperature storage

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Daikon radish microgreens constitute a good source of bioactive compounds. However, the quality deteriorates rapidly during postharvest storage. In this study, we investigated the effects of light exposure and modified atmosphere packaging conditions on changes in sensorial quality and retention of ...

    13. Synthetic chloroplasts

      SciTech Connect

      Calvin, M.

      1980-06-01

      The principal function of the chloroplast is to capture solar quanta and to store them in some stable form. We are in the process of trying to construct a totally synthetic system that would simulate some of the reactions of the two photosystems which occur in natural chloroplasts. Toward this end, we have demonstrated a number of the reactions required in separated systems. We have shown that it is possible to transfer electrons across an insulating membrane barrier with a surfactant photosensitizer. Others have shown, and we have confirmed, that it is possible to collect the two electrons necessary for the generation of molecular hydrogen on a heterogeneous catalyst suspended in water and similarly to collect the four holes on another heterogeneous catalyst suspended in water for the generation of molecular oxygen. A synthesis of some of these molecular catalysts for both these purposes is underway, with some partial success. When these partial reactions are assembled in a system, the resulting synthetic chloroplasts will not resemble the natural entity in detailed construction as they will contain no protein.

    14. Analytical traceability of melon (Cucumis melo var reticulatus): proximate composition, bioactive compounds, and antioxidant capacity in relation to cultivar, plant physiology state, and seasonal variability.

      PubMed

      Maietti, Annalisa; Tedeschi, Paola; Stagno, Caterina; Bordiga, Matteo; Travaglia, Fabiano; Locatelli, Monica; Arlorio, Marco; Brandolini, Vincenzo

      2012-06-01

      Two morphologically different cultivars of Italian melons (Baggio and Giusto) were characterized considering samples harvested in different times, at the beginning (BPP) and at the end of the physiological plant production period (EPP). Proximate composition, protein, minerals, pH, phenolic content, antioxidant capacity, ascorbic acid, carotenoids, condensed tannins, and flavonoids were measured, showing a significant decrease in EPP samples (phenolics, antioxidant capacity, condensed tannins, and flavonoids); ascorbic acid decreased in Giusto cv, carotenoids in Baggio cv. Mineral content increased in either the cultivars (EPP samples). Year-to-year difference was significantly highlighted; the plant growing cycle significantly affected the chemotype. Despite these effects, the Principal Component Analysis (PCA) permitted the discrimination of Baggio from Giusto cv, and the discrimination of BPP from EPP samples as well.

    15. Docking studies and network analyses reveal capacity of compounds from Kandelia rheedii to strengthen cellular immunity by interacting with host proteins during tuberculosis infection

      PubMed Central

      Zaman, Aubhishek

      2012-01-01

      Kandelia rheedii (locally known as Guria or Rasunia), widely found and used in Indian subcontinent, is a well-known herbal cure to tuberculosis. However, neither the mechanism nor the active components of the plant extract responsible for mediating this action has yet been confirmed. Here in this study, molecular interactions of three compounds (emodin, fusaric acid and skyrin) from the plant extract with the host protein targets (casein kinase (CSNK), estrogen receptor (ERBB), dopamine β-hydroxylase (DBH) and glucagon receptor (Gcgr)) has been found. These protein targets are known to be responsible for strengthening cellular immunity against Mycobacteria tuberculosis. The specific interactions of these three compounds with the respective protein targets have been discussed here. The insights from study should further help us designing molecular medicines against tuberculosis. PMID:23275699

    16. Synthetic Brainbows

      PubMed Central

      Wan, Y.; Otsuna, H.; Hansen, C.

      2014-01-01

      Brainbow is a genetic engineering technique that randomly colorizes cells. Biological samples processed with this technique and imaged with confocal microscopy have distinctive colors for individual cells. Complex cellular structures can then be easily visualized. However, the complexity of the Brainbow technique limits its applications. In practice, most confocal microscopy scans use different florescence staining with typically at most three distinct cellular structures. These structures are often packed and obscure each other in rendered images making analysis difficult. In this paper, we leverage a process known as GPU framebuffer feedback loops to synthesize Brainbow-like images. In addition, we incorporate ID shuffing and Monte-Carlo sampling into our technique, so that it can be applied to single-channel confocal microscopy data. The synthesized Brainbow images are presented to domain experts with positive feedback. A user survey demonstrates that our synthetic Brainbow technique improves visualizations of volume data with complex structures for biologists. PMID:25018576

    17. A bioactive probe for glutathione-dependent antioxidant capacity in breast cancer patients: Implications in measuring biological effects of arsenic compounds

      PubMed Central

      Li, Jie; Zhang, Donglan; Jefferson, Pearl A.; Ward, Kathleen M.; Ayene, Iraimoudi S.

      2013-01-01

      Introduction Glutathione, a major cellular non-protein thiol (NPSH), serves a central role in repairing damage induced by cancer drugs, pollutants and radiation and in the detoxification of several cancer chemotherapeutic drugs and toxins. Current methods measure glutathione levels only, which require cellular extraction, rather than the glutathione recycling dependent antioxidant activity in intact cells. Here, we present a novel method using a bioactive probe of the oxidative pentose phosphate cycle, termed the OxPhos™ test, to quantify glutathione recycling dependent antioxidant activity in whole blood and intact human and rodent cells without the need for the isolation and cytoplasm extraction of cells. Methods OxPhos™ test kit (Rockland Immunochemicals, USA), which uses hydroxyethyldisulfide (HEDS) as a probe for the oxidative pentose phosphate cycle, was used in these studies. The results with OxPhos™ test kit in human blood and intact cells were compared with total thiol and high pressure liquid chromatography/electrochemical detection of HEDS metabolism. Results The OxPhos™ test measured glutathione-dependent antioxidant activity both in intact human and rodent cells and breast cancer patient’s blood with a better correlation coefficient and biological variability than the thiol assay. Additionally, human blood and mammalian cells treated with various arsenicals showed a concentration-dependent decrease in activity. Discussion The results demonstrate the application of this test for measuring the antioxidant capacity of blood and the effects of environmental pollutants/toxins. It opens up new avenues for an easy and reliable assessment of glutathione-dependent antioxidant capacity in various diseases such as stroke, blood borne diseases, infection, cardiovascular disease and other oxidative stress related diseases and as a prognostic indicator of chemotherapy response and toxicity. The use of this approach in pharmacology/toxicology including

    18. Effect of power ultrasound application on aqueous extraction of phenolic compounds and antioxidant capacity from grape pomace (Vitis vinifera L.): experimental kinetics and modeling.

      PubMed

      González-Centeno, M R; Comas-Serra, F; Femenia, A; Rosselló, C; Simal, S

      2015-01-01

      The kinetics of both conventional (mechanical stirring, 200rpm) and acoustic (55±5kHz, 435±5W/L) aqueous extraction of total phenolic content and antioxidant capacity from grape pomace by-products (Vitis vinifera L.) have been experimentally evaluated and modeled at different extraction temperatures (20, 35 and 50°C). A gradual and significant increase of total phenolic content and antioxidant capacity of the extracts was observed as the temperature increased, the highest values being obtained in the case of the extraction assisted acoustically. According to the results, the acoustic assistance of the extraction process led to aqueous extracts with phenolic and antioxidant characteristics similar to those obtained with mechanical stirring, working under lower temperature conditions and during less operating time. Specifically, the conventional extraction of total phenolics at 35 and 50°C did not differ significantly from extractions assisted with power ultrasound at 20 and 35°C, respectively; and the acoustic process required approximately 3, 4 and 8 times less time, at 20, 35 and 50°C, than the conventional extraction to obtain extracts with similar characteristics. The extraction curves obtained for total phenolic content and antioxidant capacity, measured by the ABTS and FRAP methods, were properly represented by a modified Weibull model for both conventional and acoustic extractions within the temperature range 20-50°C, presenting an average percentage of explained variance⩾97.9%, and an average mean relative error⩽7.0%. A high correlation (r(2)⩾0.992) was observed between the experimental and simulated values for all the quality attributes in study.

    19. Fungal endophyte-derived Fritillaria unibracteata var. wabuensis: diversity, antioxidant capacities in vitro and relations to phenolic, flavonoid or saponin compounds.

      PubMed

      Pan, Feng; Su, Tian-Jiao; Cai, Shi-Mei; Wu, Wei

      2017-02-06

      Diverse fungal endophytes are rich fungal resources for the production of an enormous quantity of natural products. In the present study, 53 fungal endophytes were isolated from the bulbs of Fritillaria unibracteata var. wabuensis (FUW). Of these, 49 strains were identified and grouped into 17 different taxa, and priority was conferred to the Fusarium genus. All fungal fermented filtrates displayed antioxidant activities. The DPPH activity, total antioxidant capacities (ABTS), reduction power (FRAP), total phenolic content (TPC), total flavonoid content (TFC) and total saponin content (TSC) were evaluated using petroleum ether, ethyl acetate, n-butyl alcohol and ethanol fractions extracted from five representative fungal cultures. The last three fractions showed more potent antioxidant activity than the first fraction. Significant positive correlations were found between the compositions (TPC, TFC and TSC) and antioxidant capacities (DPPH, ABTS and FRAP). In addition, multifarious natural antioxidant components were identified from the fungal extracts, including gallic acid, rutin, phlorizin, 2,4-di-tert-butylphenol and 2,6-di-tert-butyl hydroquinone; these were determined preliminarily by TLC-bioautography, HPLC and GC-MS analysis. This study showed abundant fungal resources in FUW. Phenolics, flavonoids and saponins are crucial bioactive constituents in these abundant fungal endophytes and can be viewed as new potential antioxidant resources.

    20. Fungal endophyte-derived Fritillaria unibracteata var. wabuensis: diversity, antioxidant capacities in vitro and relations to phenolic, flavonoid or saponin compounds

      PubMed Central

      Pan, Feng; Su, Tian-Jiao; Cai, Shi-Mei; Wu, Wei

      2017-01-01

      Diverse fungal endophytes are rich fungal resources for the production of an enormous quantity of natural products. In the present study, 53 fungal endophytes were isolated from the bulbs of Fritillaria unibracteata var. wabuensis (FUW). Of these, 49 strains were identified and grouped into 17 different taxa, and priority was conferred to the Fusarium genus. All fungal fermented filtrates displayed antioxidant activities. The DPPH activity, total antioxidant capacities (ABTS), reduction power (FRAP), total phenolic content (TPC), total flavonoid content (TFC) and total saponin content (TSC) were evaluated using petroleum ether, ethyl acetate, n-butyl alcohol and ethanol fractions extracted from five representative fungal cultures. The last three fractions showed more potent antioxidant activity than the first fraction. Significant positive correlations were found between the compositions (TPC, TFC and TSC) and antioxidant capacities (DPPH, ABTS and FRAP). In addition, multifarious natural antioxidant components were identified from the fungal extracts, including gallic acid, rutin, phlorizin, 2,4-di-tert-butylphenol and 2,6-di-tert-butyl hydroquinone; these were determined preliminarily by TLC-bioautography, HPLC and GC-MS analysis. This study showed abundant fungal resources in FUW. Phenolics, flavonoids and saponins are crucial bioactive constituents in these abundant fungal endophytes and can be viewed as new potential antioxidant resources. PMID:28165019

    1. Synthetic cannabinoids: analysis and metabolites.

      PubMed

      Elsohly, Mahmoud A; Gul, Waseem; Wanas, Amira S; Radwan, Mohamed M

      2014-02-27

      Cannabimimetics (commonly referred to as synthetic cannabinoids), a group of compounds encompassing a wide range of chemical structures, have been developed by scientists with the hope of achieving selectivity toward one or the other of the cannabinoid receptors CB1 and CB2. The goal was to have compounds that could possess high therapeutic activity without many side effects. However, underground laboratories have used the information generated by the scientific community to develop these compounds for illicit use as marijuana substitutes. This chapter reviews the different classes of these "synthetic cannabinoids" with particular emphasis on the methods used for their identification in the herbal products with which they are mixed and identification of their metabolites in biological specimens.

    2. Synthetic Astrobiology

      NASA Technical Reports Server (NTRS)

      Rothschild, Lynn J.

      2017-01-01

      "Are we alone?" is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - as an enabling technology. One theme, the "Hell Cell" project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches. In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids.

    3. Synthetic Astrobiology

      NASA Technical Reports Server (NTRS)

      Rothschild, Lynn J.

      2015-01-01

      'Are we alone?' is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - as an enabling technology. One theme, the "Hell Cell" project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches. In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids.

    4. Leaching behaviour of synthetic aggregates.

      PubMed

      van der Sloot, H A; Hoede, D; Cresswell, D J; Barton, J R

      2001-01-01

      In the framework of EU project "Utilising innovative kiln technology to recycle waste into synthetic aggregate" (BRST-CT98-5234), the leaching behaviour of synthetic aggregates has been studied to assess its environmental compatibility in the various stages of its use. Since the conditions are very different for the different uses, the assessment calls for a variety of different leaching conditions. The pH dependence test is used to cover important differences in pH environment to which the materials are exposed to as well as for an assessment of the buffering capacity of the material. Synthetic aggregate features a low buffer capacity, which makes it sensitive to externally imposed pH conditions. Utilisation and storage exposed to acidic conditions needs to be avoided. The results of the pH dependence test and column leaching test are mutually consistent. The CEN TC 154 method appears to provide systematically low values due to the arbitrary selection of test conditions. Synthetic aggregate studied to date will not adversely affect the concrete in its service life. The main issue for aggregate use is the recycling and the "end of life" condition, when the material becomes construction debris. Not metals, but oxyanions, such as Cr VI and Mo are most relevant under these conditions. A concise test has been applied to assess crucial aspects of leaching for different production mixes.

    5. Magnesium compounds

      USGS Publications Warehouse

      Kramer, D.A.

      2006-01-01

      In 2005, seawater and natural brines accounted for 51% of US magnesium compounds production. World magnesia production was estimated to be 14.5 Mt. Most of the production came from China, North Korea, Russia and Turkey. Although no specific production figures are available, Japan and the United States are estimated to account for almost one-half of the world's capacity from seawater and brines.

    6. Microbial synthetic biology for human therapeutics.

      PubMed

      Jain, Aastha; Bhatia, Pooja; Chugh, Archana

      2012-06-01

      The emerging field of synthetic biology holds tremendous potential for developing novel drugs to treat various human conditions. The current study discusses the scope of synthetic biology for human therapeutics via microbial approach. In this context, synthetic biology aims at designing, engineering and building new microbial synthetic cells that do not pre-exist in nature as well as re-engineer existing microbes for synthesis of therapeutic products. It is expected that the construction of novel microbial genetic circuitry for human therapeutics will greatly benefit from the data generated by 'omics' approaches and multidisciplinary nature of synthetic biology. Development of novel antimicrobial drugs and vaccines by engineering microbial systems are a promising area of research in the field of synthetic biology for human theragnostics. Expression of plant based medicinal compounds in the microbial system using synthetic biology tools is another avenue dealt in the present study. Additionally, the study suggest that the traditional medicinal knowledge can do value addition for developing novel drugs in the microbial systems using synthetic biology tools. The presented work envisions the success of synthetic biology for human therapeutics via microbial approach in a holistic manner. Keeping this in view, various legal and socio-ethical concerns emerging from the use of synthetic biology via microbial approach such as patenting, biosafety and biosecurity issues have been touched upon in the later sections.

    7. Clinical presentation of intoxication due to synthetic cannabinoids.

      PubMed

      Cohen, Joanna; Morrison, Sephora; Greenberg, Jeffrey; Saidinejad, Mohsen

      2012-04-01

      Synthetic cannabinoids are relatively novel substances of abuse. The use of these compounds among adolescents and young adults has been increasing, making it important for pediatric providers to be familiar with the presenting signs and symptoms of intoxication. We describe three case presentations of reported synthetic cannabinoid intoxication and provide a brief discussion of these compounds.

    8. Identification of phenolic compounds in petals of nasturtium flowers (Tropaeolum majus) by high-performance liquid chromatography coupled to mass spectrometry and determination of oxygen radical absorbance capacity (ORAC).

      PubMed

      Garzón, G Astrid; Manns, David C; Riedl, Ken; Schwartz, Steven J; Padilla-Zakour, Olga

      2015-02-18

      The contents and profile of polyphenols were analyzed in edible petals of nasturtium flowers (Tropaeolum majus) of three colors, and their oxygen radical absorbance capacities (ORAC) were compared. Three primary anthocyanins (ACNs) and 15 non-ACN phenolic compounds including hydroxycinammic acids (HCAs) and flavonoids (myricetin, quercetin, and kaempferol derivatives) were detected. Anthocyanin concentration was within 31.9 ± 21.7 and 114.5 ± 2.3 mg cyanidin-3-glucoside (cy-3-glu)/100 g fresh weight (FW) in yellow and red petals, respectively. The concentration of HCAs varied between 33.3 ± 7.1 and 235.6 ± 8.1 mg chlorogenic acid equivalents/100 g FW for red and yellow flowers, respectively. Red flowers had the highest level of flavonoids (315.1 ± 2.4 mg myricetin equivalents/100 g FW) and the highest ORAC radical-scavenging activity. These results show the diversity and abundance of polyphenolic compounds in nasturtium flowers, which could be the basis for applications in functional foods, cosmetics, and pharmaceuticals.

    9. Dinitroso and polynitroso compounds

      PubMed Central

      Gowenlock, Brian G.; Richter-Addo, George B.

      2005-01-01

      The growing interest in the chemistry of C-nitroso compounds (RN=O; R = alkyl or aryl group) is due in part to the recognition of their participation in various metabolic processes of nitrogen-containing compounds. C-Nitroso compounds have a rich organic chemistry in their own right, displaying interesting intra- and intermolecular dimerization processes and addition reactions with unsaturated compounds. In addition, they have a fascinating coordination chemistry. While most of the attention has been directed towards C-nitroso compounds containing a single –NO moiety, there is an emerging area of research dealing with dinitroso and polynitroso compounds. In this critical review, we present and discuss the synthetic routes and properties of these relatively unexplored dinitroso and polynitroso compounds, and suggest areas of further development involving these compounds. (126 references.) PMID:16100619

    10. Trivalent Gd-DOTA reagents for modification of proteins† †Electronic supplementary information (ESI) available: Synthetic details for known compounds; materials and methods for bioconjugation reactions; copies of spectra of new compounds and compounds prepared according to new procedures. See DOI: 10.1039/c5ra20359g Click here for additional data file.

      PubMed Central

      Fisher, Martin J.; Williamson, Daniel J.; Burslem, George M.; Plante, Jeffrey P.; Manfield, Iain W.; Tiede, Christian; Ault, James R.; Stockley, Peter G.; Plein, Sven; Maqbool, Azhar; Tomlinson, Darren C.; Foster, Richard; Warriner, Stuart L.

      2015-01-01

      The development of novel protein-targeted MRI contrast agents crucially depends on the ability to derivatise suitable targeting moieties with a high payload of relaxation enhancer (e.g., gadolinium(iii) complexes such as Gd-DOTA), without losing affinity for the target proteins. Here, we report robust synthetic procedures for the preparation of trivalent Gd-DOTA reagents with various chemical handles for site-specific modification of biomolecules. The reagents were shown to successfully label proteins through isothiocyanate ligation or through site-specific thiol–maleimide ligation and strain-promoted azide–alkyne cycloaddition. PMID:27019702

    11. Synthetic CO.sub.2 acceptor

      DOEpatents

      Lancet, Michael S.; Curran, George P.

      1981-08-18

      A synthetic CO.sub.2 acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca.sub.5 (SiO.sub.4).sub.2 CO.sub.3. A method for producing the synthetic CO.sub.2 acceptor is also disclosed.

    12. Synthetic biology, inspired by synthetic chemistry.

      PubMed

      Malinova, V; Nallani, M; Meier, W P; Sinner, E K

      2012-07-16

      The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell.

    13. Synthetic cathinones: chemical phylogeny, physiology, and neuropharmacology.

      PubMed

      De Felice, Louis J; Glennon, Richard A; Negus, Sidney S

      2014-02-27

      This mini-review summarizes the history of cathinone and its synthesized derivatives from early records to the present day, including the appearance of synthetic cathinones in the drug combination known as bath salts. Bath salts may consist of one compound (MDPV) or combinations of MDPV and one or more other synthetic cathinones, which may also appear alone without MDPV. We briefly review recent in vitro studies of bath salts components alone or in combination, focusing on pharmacological and biophysical studies. Finally we summarize new data from in vivo procedures that characterize the abuse-related neurochemical and behavioral effects of synthetic cathinones in rats.

    14. Enabling plant synthetic biology through genome engineering.

      PubMed

      Baltes, Nicholas J; Voytas, Daniel F

      2015-02-01

      Synthetic biology seeks to create new biological systems, including user-designed plants and plant cells. These systems can be employed for a variety of purposes, ranging from producing compounds of industrial or therapeutic value, to reducing crop losses by altering cellular responses to pathogens or climate change. To realize the full potential of plant synthetic biology, techniques are required that provide control over the genetic code - enabling targeted modifications to DNA sequences within living plant cells. Such control is now within reach owing to recent advances in the use of sequence-specific nucleases to precisely engineer genomes. We discuss here the enormous potential provided by genome engineering for plant synthetic biology.

    15. Synthetic Cathinones: Chemical Phylogeny, Physiology, and Neuropharmacology

      PubMed Central

      De Felice, Louis J; Glennon, Richard A; Negus, Sidney S

      2014-01-01

      This mini-review summarizes the history of cathinone and its synthesized derivatives from early records to the present day, including the appearance of synthetic cathinones in the drug combination known as bath salts. Bath salts may consist of one compound (MDPV) or combinations of MDPV and one or more other synthetic cathinones, which may also appear alone without MDPV. We briefly review recent in vitro studies of bath salts components alone or in combination, focusing on pharmacological and biophysical studies. Finally we summarize new data from in vivo procedures that characterize the abuse-related neurochemical and behavioral effects of synthetic cathinones in rats. PMID:24231923

    16. Fourth symposium on macrocyclic compounds

      SciTech Connect

      Christensen, J. J.; Izatt, R. M.

      1980-01-01

      Both theoretical and experimental aspects of the properties and behavior of synthetic and naturally occurring macrocyclic compounds are covered in this symposium. This document contains abstracts of the papers. (DLC)

    17. Plant synthetic biology.

      PubMed

      Liu, Wusheng; Stewart, C Neal

      2015-05-01

      Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants.

    18. [SYNTHETIC PEPTIDE VACCINES].

      PubMed

      Sergeyev, O V; Barinsky, I F

      2016-01-01

      An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested.

    19. Synthetic carriers of oxygen.

      PubMed

      Dellacherie, E; Labrude, P; Vigneron, C; Riess, J G

      1987-01-01

      During the last decade, construction of artificial carriers of oxygen for transfusion purposes has evolved in three main directions, which can be reviewed as follows. The first approach consists of modifying hemoglobin (Hb), the natural oxygen carrier, in order to lower its oxygen affinity and increase its intravascular persistence. To achieve this aim, two basic procedures have been used: molecular and environmental modification. In the first case, Hb is modified with chemical reagents; the second requires encapsulation of Hb to obtain artificial erythrocytes. The second approach is based on the use of synthetic oxygen-carrying chelates that mimic the oxygenation function of Hb. The main products in this class are metalloporphyrins, whose chemical environment is designed to render them efficient as reversible carriers of oxygen in vivo. Finally, the third approach deals with the perfluorochemicals used in emulsified form. Perfluorochemical liquids are excellent gas solvents, but some problems remain unsolved with regard to their development as oxygen carriers in vivo: low O2 dissolving capacity, toxicity, and excretion.

    20. [From synthetic biology to synthetic humankind].

      PubMed

      Nouvel, Pascal

      2015-01-01

      In this paper, we propose an historical survey of the expression "synthetic biology" in order to identify its main philosophical components. The result of the analysis is then used to investigate the meaning of the notion of "synthetic man". It is shown that both notions share a common philosophical background that can be summed up by the short but meaningful assertion: "biology is technology". The analysis allows us to distinguish two notions that are often confused in transhumanist literature: the notion of synthetic man and the notion of renewed man. The consequences of this crucial distinction are discussed.

    1. Synthetic biology era: Improving antibiotic's world.

      PubMed

      Guzmán-Trampe, Silvia; Ceapa, Corina D; Manzo-Ruiz, Monserrat; Sánchez, Sergio

      2017-01-31

      The emergence of antibiotic-resistant pathogen microorganisms is problematic in the context of the current spectrum of available medication. The poor specificity and the high toxicity of some available molecules have made imperative the search for new strategies to improve the specificity and to pursue the discovery of novel compounds with increased bioactivity. Using living cells as platforms, synthetic biology has counteracted this problem by offering novel pathways to create synthetic systems with improved and desired functions. Among many other biotechnological approaches, the advances in synthetic biology have made it possible to design and construct novel biological systems in order to look for new drugs with increased bioactivity. Advancements have also been made in the redesigning of RNA and DNA molecules in order to engineer antibiotic clusters for antibiotic overexpression. As for the production of these antibacterial compounds, yeasts and filamentous fungi as well as gene therapy are utilized to enhance protein solubility. Specific delivery is achieved by creating chimeras using plant genes into bacterial hosts. Some of these synthetic systems are currently in clinical trials, proving the proficiency of synthetic biology in terms of both pharmacological activities as well as an increase in the biosafety of treatments. It is possible that we may just be seeing the tip of the iceberg, and synthetic biology applications will overpass expectations beyond our present knowledge.

    2. Application of the Organic Synthetic Designs to Astrobiology

      NASA Astrophysics Data System (ADS)

      Kolb, V. M.

      2009-12-01

      In this paper we propose a synthesis of the heterocyclic compounds and the insoluble materials on the meteorites. Our synthetic scheme involves the reaction of sugars and amino acids, the so-called Maillard reaction. We have developed this scheme based on the combined analysis of the regular and retrosynthetic organic synthetic principles. The merits of these synthetic methods for the prebiotic design are addressed.

    3. A new synthetic Cu(II) compound, [Cu3(p-3-bmb)2Cl4·(CH3OH)2]n, inhibits tumor growth in vivo and in vitro.

      PubMed

      Li, Ruili; Cui, Binglin; Li, Yuwen; Zhao, Chao; Jia, Na; Wang, Chao; Wu, Yin; Wen, Aidong

      2014-02-05

      Copper(II) mixed-ligand complex, [Cu3(p-3-bmb)2Cl4 (CH3OH)2]n (Cu(II) compound), where p-3-bmb=1((2-(pyridine-3-yl)-1H-benzoimidazol-1-yl) methyl)-1Hbenzotriazole, has been recently found to possess potent anti-tumor activities both in vivo and in vitro. In this study, we demonstrated that Cu(II) compound significantly inhibited tumor growth in mice that inoculated with S180 cells. Meanwhile, the viabilities of HeLa and SGC-7901 cells were inhibited by Cu(II) compound with IC50 values in the range of 5-30 μM. Further mechanistic studies revealed that Cu(II) compound treatment induced cell cycle arrested at G1 phase through p53, p21, cyclinD1, cdk4, pRb and E2F1. Cu(II) compound treatment also induced apoptosis of HeLa and SGC-7901 cells which were accompanied with decrease in mitochondrial membrane potential, increase in reactive oxygen species production, release of cytochrome C, cleavage of caspase-9, caspase-3 and poly ADP-ribose polymerase (PARP) as well as activations of bcl-2 and bax. These results indicate that Cu(II) compound has a promising potential to become a novel anti-cancer agent.

    4. Mental capacity.

      PubMed

      Williams, Ruth

      2010-02-03

      Three short videos exploring some of the different principles in the Mental Capacity Act 2009 are available on Social Care TV, an online channel intended mainly for the social care sector, although the films are relevant to any professionals whose work is affected by the act. The dramas, which are set in a residential home, a person's own home and a residential school for young people with learning difficulties, concern thedecision-making process and can be viewed at www.scie.org.uk/socialcaretv/topic.asp?guid=377dbe1b-de0c-4d66-bb87-22a243542db2.

    5. Evolvable synthetic neural system

      NASA Technical Reports Server (NTRS)

      Curtis, Steven A. (Inventor)

      2009-01-01

      An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

    6. Free Energy and Heat Capacity

      SciTech Connect

      Kurata, Masaki; Devanathan, Ramaswami

      2015-10-13

      Free energy and heat capacity of actinide elements and compounds are important properties for the evaluation of the safety and reliable performance of nuclear fuel. They are essential inputs for models that describe complex phenomena that govern the behaviour of actinide compounds during nuclear fuel fabrication and irradiation. This chapter introduces various experimental methods to measure free energy and heat capacity to serve as inputs for models and to validate computer simulations. This is followed by a discussion of computer simulation of these properties, and recent simulations of thermophysical properties of nuclear fuel are briefly reviewed.

    7. Experience with synthetic fluorinated fluid lubricants

      NASA Technical Reports Server (NTRS)

      Conley, Peter L.; Bohner, John J.

      1990-01-01

      Since the late 1970's, the wet lubricant of choice for space mechanisms has been one of the family of synthetic perfluoro polyalkylether (PFPE) compounds, namely Fomblin Z-25 (Bray-815Z) or DuPont's Krytox 143xx series. While offering the advantages of extremely low vapor pressures and wide temperature ranges, these oils and derived greases have a complex chemistry compared to the more familiar natural and synthetic hydrocarbons. Many aerospace companies have conducted test programs to characterize the behavior of these compounds in a space environment, resulting in a large body of hard knowledge as well as considerable space lore concerning the suitability of the lubricants for particular applications and techniques for successful application. The facts are summarized and a few myths about the compounds are dispelled, and some performance guidelines for the mechanism design engineer are provided.

    8. Word Syntax of Nominal Compounds: Internal and Aphasiological Evidence from Turkish

      ERIC Educational Resources Information Center

      Tat, Deniz

      2013-01-01

      This dissertation is an analysis of two types of nominal compounds in Turkish, primary compounds and synthetic compounds within the framework of Distributed Morphology. A nominal primary compound is formed by two nouns, and its meaning is largely determined by world knowledge. A synthetic compound, on the other hand, is formed by a noun and a…

    9. Designing synthetic biology.

      PubMed

      Agapakis, Christina M

      2014-03-21

      Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

    10. Synthetic biological networks

      NASA Astrophysics Data System (ADS)

      Archer, Eric; Süel, Gürol M.

      2013-09-01

      Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics.

    11. Bismuth compounds in medicinal chemistry.

      PubMed

      Salvador, Jorge A R; Figueiredo, Sandra A C; Pinto, Rui M A; Silvestre, Samuel M

      2012-07-01

      In recent years, the chemical potential of bismuth and bismuth compounds has been actively exploited. Bismuth salts are known for their low toxicity, making them potential valuable reagents for large-scale synthesis, which becomes more obvious when dealing with products such as active pharmaceutical ingredients or synthetic intermediates. Conversely, bismuth compounds have been widely used in medicine. After extensive use in the treatments of syphilis and other bacterial infections before the advent of modern antibiotics, bismuth compounds remain important for the treatment of several gastrointestinal disorders and also exhibit antimicrobial properties and cytotoxic activity, among others. This review updates relevant advances in the past few years, concerning the application of bismuth reagents and catalysts in innovative synthetic processes for the preparation of compounds of medicinal interest, as well as the preparation, biological evaluation and potential medicinal uses of bismuth compounds.

    12. What Are Synthetic Cannabinoids?

      MedlinePlus

      ... Alerts Alcohol Club Drugs Cocaine Hallucinogens Heroin Inhalants Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Prescription Drugs & Cold ... they are related to chemicals found in the marijuana plant. Because of this similarity, synthetic cannabinoids are ...

    13. MMHD [(S,E)-2-methyl-1-(2-methylthiazol-4-yl) hexa-1,5-dien-ol], a novel synthetic compound derived from epothilone, suppresses nuclear factor-kappaB-mediated cytokine expression in lipopolysaccharide-stimulated BV-2 microglia.

      PubMed

      Jeon, Na-Ra; Koppula, Sushruta; Kim, Byung-Wook; Park, Su-Ho; Lee, Hyo-Won; Choi, Dong-Kug

      2010-01-01

      The effects of MMHD [(S,E)-2-methyl-1-(2-methylthiazol-4-yl) hexa-1,5-dien-ol], a novel synthetic compound derived from epothilone, was investigated for its effects on the expression of proinflammatory mediators in lipopolysaccharide-stimulated BV-2 microglia. MMHD attenuated the expressions of inducible nitric oxide synthase and cyclooxygenase-2 mRNA and protein without affecting cell viability. Moreover, MMHD suppressed nuclear factor-kappaB (NF-kappaB) activation via the translocation of p65 into the nucleus. These results indicate that MMHD exerts anti-inflammatory properties by suppressing the transcription of proinflammatory cytokine genes through the NF-kappaB signaling pathway.

    14. Synthetic Vision Systems

      NASA Technical Reports Server (NTRS)

      Prinzel, L.J.; Kramer, L.J.

      2009-01-01

      A synthetic vision system is an aircraft cockpit display technology that presents the visual environment external to the aircraft using computer-generated imagery in a manner analogous to how it would appear to the pilot if forward visibility were not restricted. The purpose of this chapter is to review the state of synthetic vision systems, and discuss selected human factors issues that should be considered when designing such displays.

    15. Active synthetic soil

      NASA Technical Reports Server (NTRS)

      Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Allen, Earl R. (Inventor); Golden, Dadigamuwage C. (Inventor)

      1995-01-01

      A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

    16. Active synthetic soil

      NASA Technical Reports Server (NTRS)

      Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Allen, Earl R. (Inventor); Golden, Dadigamuwage C. (Inventor)

      1995-01-01

      A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium, and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

    17. Synthetic cathinones: a new public health problem.

      PubMed

      Karila, Laurent; Megarbane, Bruno; Cottencin, Olivier; Lejoyeux, Michel

      2015-01-01

      New psychoactive substances (NPS) have completely modified the drug scene and the current landscape of addiction. Synthetic substances, such as substituted or synthetic cathinones, also known as « legal highs », are often produced and used to mimic the effects of controlled drugs such as cocaine, methylenedioxymethamphetamine (MDMA, ecstasy), and methamphetamine. The overwhelming majority of synthetic cathinones are produced in China and South East Asian countries. The Internet has emerged as the new marketplace for NPS, playing a major role in providing information on acquisition, synthesis, extraction, identification, and substance use. All these compounds are intentionally mislabeled and sold on-line under slang terms such as bath salts, plant food, plant feeders and research chemicals. They are sometimes labeled « not for human use » or « not tested for hazards or toxicity ». The rapid spread of NPS forces member countries of the European Union to adapt their response to the potential new dangers that may cause. To date, not only health actors but also the general public need to be clearly informed and aware of dangers resulting from NPS spread and use. Here, we review the major clinical effects of synthetic cathinones to highlight their impact on public health. A literature search was conducted from 2009 to 2014 based on PubMed, Google Scholar, Erowid, and governmental websites, using the following keywords alone or in combination: "new psychoactive substances", "synthetic cathinones", "substituted cathinones", "mephedrone", "methylone", "MDPV", "4-MEC", "addiction", and "substance use disorder".

    18. The Synthetic Cannabinoids Phenomenon.

      PubMed

      Karila, Laurent; Benyamina, Amine; Blecha, Lisa; Cottencin, Olivier; Billieux, Joël

      2016-01-01

      « Spice » is generally used to describe the diverse types of herbal blends that encompass synthetic cannabinoids on the market. The emergence of smokable herbal products containing synthetic cannabinoids, which mimic the effects of cannabis, appears to become increasingly popular, in the new psychoactive substances landscape. In 2014, the existence of 134 different types of synthetic cannabinoids were reported by the European Union Early Warning System. These drugs are mainly sold online as an alternative to controlled and regulated psychoactive substances. They appear to have a life cycle of about 1-2 years before being replaced by a next wave of products. Legislation controlling these designer drugs has been introduced in many countries with the objective to limit the spread of existing drugs and control potential new analogs. The majority of the synthetic cannabinoids are full agonists at the CB1 receptor and do not contain tobacco or cannabis. They are becoming increasingly popular in adolescents, students and clubbers as an abused substance. Relatively high incidence of adverse effects associated with synthetic cannabinoids use has been documented in the literature. Numerous fatalities linked with their use and abuse have been reported. In this paper, we will review the available data regarding the use and effects of synthetic cannabinoids in humans in order to highlight their impact on public health. To reach this objective, a literature search was performed on two representative databases (Pubmed, Google Scholar), the Erowid Center website (a US non-profit educational organization that provides information about psychoactive plants and chemicals), and various governmental websites. The terms used for the database search were: "synthetic cannabinoids", "spice", "new psychoactive substances", and/or "substance use disorder", and/or "adverse effects", and/or "fatalities". The search was limited to years 2005 to 2016 due to emerging scientific literature at

    19. Differential Synthetic Aperture Ladar

      SciTech Connect

      Stappaerts, E A; Scharlemann, E

      2005-02-07

      We report a differential synthetic aperture ladar (DSAL) concept that relaxes platform and laser requirements compared to conventional SAL. Line-of-sight translation/vibration constraints are reduced by several orders of magnitude, while laser frequency stability is typically relaxed by an order of magnitude. The technique is most advantageous for shorter laser wavelengths, ultraviolet to mid-infrared. Analytical and modeling results, including the effect of speckle and atmospheric turbulence, are presented. Synthetic aperture ladars are of growing interest, and several theoretical and experimental papers have been published on the subject. Compared to RF synthetic aperture radar (SAR), platform/ladar motion and transmitter bandwidth constraints are especially demanding at optical wavelengths. For mid-IR and shorter wavelengths, deviations from a linear trajectory along the synthetic aperture length have to be submicron, or their magnitude must be measured to that precision for compensation. The laser coherence time has to be the synthetic aperture transit time, or transmitter phase has to be recorded and a correction applied on detection.

    20. Synthetic carbon precursor materials

      SciTech Connect

      Frame, B.J.

      1986-03-01

      Synthetic carbon precursor systems offer advantages over natural petroleum and coal-tar pitch precursors in that they can reproducibly provide a material with a known and uniform composition. They also permit controlled modifications of the derived carbon's properties through variations in the precursor's properties and processing conditions. Extensive research efforts at Oak Ridge have been directed toward the production and characterization of synthetic carbon precursors and the correlations that exist between carbon precursor properties and the properties of the ultimate carbon. This report describes how synthetic carbon precursors can be used to tailor and develop reproducible carbon structures for advanced materials applications. The potential and capability for performing carbon material development at Oak Ridge is also described.

    1. Gamma synthetic hydrographs

      NASA Astrophysics Data System (ADS)

      Croley, Thomas E.

      1980-05-01

      The two-parameter Gamma distribution is presented as a basis for synthetic hydrographs with a review of existing applications and non-feasible applications are identified. Several approaches for fitting this function to practical boundary condition parameters are identified and presented in a unified treatment. They are especially designed for use on small programmable calculators since the synthetic hydrograph is extremely sensitive to the Gamma distribution parameters. Nomographs would give large errors in the fit for small errors in the boundary condition parameters. Although non-dimensionalization of the synthetic hydrograph is possible with the Gamma distribution, it is shown to be unnecessary. Current uses of "standard" non-dimensional hydrographs are shown to be in error.

    2. Synthetic Aziridines in Medicinal Chemistry: A Mini-Review.

      PubMed

      Singh, Girija S

      2016-01-01

      Azaheterocyclic compounds are well-known to have diverse types of biological activity. Among them, azacyclopropanes, commonly referred as aziridines, occupy a prominent place in synthetic organic and medicinal chemistry due to its occurrence in natural resources, complexity involved in synthesis due to ring-strain, building blocks in organic synthesis, and its biological properties. Several novel compounds containing aziridine ring have been designed and synthesized recently by medicinal chemists for evaluating their biological profile. A number of compounds are reported as cysteine protease inhibitors, antibacterial, antifungal, anticancer, antileishmanial, and antimalarial agents. This review article summarizes the biological activity of such compounds. The preparation of such compounds is also described.

    3. Synthetic guide star generation

      DOEpatents

      Payne, Stephen A [Castro Valley, CA; Page, Ralph H [Castro Valley, CA; Ebbers, Christopher A [Livermore, CA; Beach, Raymond J [Livermore, CA

      2008-06-10

      A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

    4. Synthetic guide star generation

      DOEpatents

      Payne, Stephen A.; Page, Ralph H.; Ebbers, Christopher A.; Beach, Raymond J.

      2004-03-09

      A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

    5. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals.

      PubMed

      Kim, Dae-Ok; Lee, Ki Won; Lee, Hyong Joo; Lee, Chang Yong

      2002-06-19

      To express the antioxidant capacity of plant foods in a more familiar and easily understood manner (equivalent to vitamin C mg/100 g), two stable radical species, ABTS(*)(-) and DPPH(*), commonly used for antioxidant activity measurements, were employed independently to evaluate their efficacies using apple polyphenolic extracts and seven polyphenolic standards including synthetic Trolox. Their antioxidant activities were expressed as vitamin C equivalent antioxidant capacity (VCEAC) in mg/100 g apple or mg/100 mL of the reference chemical compounds in 10 and 30 min using the ABTS(*)(-) and DPPH(*) scavenging assays, respectively. The antioxidant capacity of Gala apples and seven phenolic standards, determined by both ABTS(*)(-) and DPPH(*) scavenging assays, showed a dose-response of the first-order. Fresh Gala apples had a VCEAC of 205.4 +/- 5.6 mg/100 g using the ABTS assay, and the relative VCEACs of phenolic standards were as follows: gallic acid > quercetin > epicatechin > catechin > vitamin C > rutin > chlorogenic acid > Trolox. With the DPPH radical assay, the VCEAC of fresh Gala apples was 136.0 +/- 6.6 mg/100 g, and the relative VCEACs of seven phenolic standards were, in decreasing order, as follows: gallic acid > quercetin > epicatechin > catechin > or = vitamin C > Trolox > rutin > chlorogenic acid. Because the ABTS assay can be used in both organic and aqueous solvent systems, employs a specific absorbance at a wavelength remote from the visible region, and requires a short reaction time, it is a more desirable method than the DPPH assay. Therefore, it is recommended that antioxidant capacity be expressed as vitamin C mg/100 g equivalent (VCEAC) using the ABTS assay.

    6. Detection of multiple steroidal compounds in synthetic urine using comprehensive gas chromatography-mass spectrometry (GC×GC-MS) combined with a molecularly imprinted polymer clean-up protocol.

      PubMed

      Zulfiqar, Adnan; Morgan, Geraint; Turner, Nicholas W

      2014-10-07

      A method capable of screening for multiple steroids in urine has been developed, using a series of twelve structurally similar, and commercially relevant compounds as target analytes. A molecularly imprinted solid phase extraction clean-up step was used to make the sample suitable for injection onto a GC×GC-MS setup. Significant improvements compared to a commercially available C-18 material were observed. Each individual steroid was able to be separated and identified, using both the retention profile and diagnostic fragmentation ion monitoring abilities of the comprehensive chromatographic-mass spectrometry method. Effective LODs of between 11.7 and 27.0 pg were calculated for individual steroids, effectively equivalent to concentration levels of between 0.234 and 0.540 ng mL(-1) in urine, while the application of multiple screen was demonstrated using a 10 ng mL(-1) mixed sample. The nature of this study also removes the need for sample derivitisation which speeds up the screening process.

    7. Synthetic mucin fragments: synthesis of O-sulfo and O-methyl derivatives of allyl O-(beta-D-galactopyranosyl)-(1-->3)-2-acetamido-2-deoxy-alpha-D- galactopyranoside as potential compounds for sulfotransferases.

      PubMed

      Jain, R K; Piskorz, C F; Matta, K L

      1995-10-02

      Allyl 2-acetamido-4,6-O-(4-methoxybenzylidene)-2-deoxy-alpha-D-galact opy ranoside (1) was condensed with either 2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl bromide (2) or 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-alpha-D-galactopyranosyl bromide (14) in the presence of mercuric cyanide. Selective substitution with methyl, sulfo or both at desired positions, followed by the removal of protecting groups, afforded allyl O-(beta-D-galactopyranosyl)-(1-->3)-2-acetamido-2-deoxy-6-O-methyl-alpha -D- galactopyranoside (5), allyl O-(6-O-sulfo-beta-D-galactopyranosyl sodium salt)-(1-->3)-2-acetamido-2-deoxy-6- O-methyl-alpha-D-galactopyranoside (10), allyl O-(beta-D-galactopyranosyl)-(1-->3)-2-acetamido-2-deoxy-6-O-sulfo-alpha- D- galactopyranoside sodium salt (13), allyl O-(6-O-sulfo-beta-D-galactopyranosyl sodium salt)-(1-->3)-2-acetamido-2-deoxy- alpha-D-galactopyranoside (17) and allyl O-(3-O-sulfo-beta-D-galactopyranosyl sodium salt)-(1-->3)-2-acetamido-2-deoxy- alpha-D-galactopyranoside (22). The structures of compounds 5, 10, 13, 17 and 22 were established by 13C NMR and FAB mass spectroscopy.

    8. Exploratory comparative study on the diffusion of synthetic cannabinoids and synthetic cathinones.

      PubMed

      Arfken, Cynthia L; Owens, Darlene; Madeja, Cheryl; DeAngelis, Christina

      2014-01-01

      The use of synthetic cannabinoids and cathinones in southeastern Michigan was explored using Roger's Diffusion of Innovation theory. A mixed methods approach after specific synthetic cannabinoids and cathinone compounds were scheduled was used that included analysis of treatment admissions for two years, surveys of 15 substance abuse treatment providers, and qualitative interviews with a purposive sample of 24 participants. The participant system norm supported trying new drugs, and both drugs were confirmed to have been easier to access than traditional drugs. The participants had negative views of synthetic cathinones due to one sensational news story without counterbalancing positive experiences in their social environment. Although synthetic cannabinoids were also linked to a sensational news story, it was counterbalanced by positive personal experiences. These differences contributed to greater use of synthetic cannabinoids compared to synthetic cathinones as evidenced by admissions, providers' reports, and participants' reports. All participants expressed a preference for traditional drugs, indicating that novel drugs had no relative advantage over other drugs of abuse. Diffusion of Innovation theory can provide a framework for understanding the differential use of novel drugs.

    9. Caffeine in your drink: natural or synthetic?

      PubMed

      Zhang, Lijun; Kujawinski, Dorothea M; Federherr, Eugen; Schmidt, Torsten C; Jochmann, Maik A

      2012-03-20

      Owing to possible adulteration and health concerns, it is important to discriminate between natural and synthetic food ingredients. A new method for compound-specific isotope analysis (CSIA) by coupling high-temperature reversed-phase liquid chromatography to isotope ratio mass spectrometry (HT-RPLC/IRMS) was developed for discrimination of natural and synthetic caffeine contained in all types of drinks. The analytical parameters such as stationary phase, column inner diameter, and column temperature were optimized for the separation of caffeine directly from drinks (without extraction). On the basis of the carbon isotope analysis of 42 natural caffeine samples including coffee beans, tea leaves, guaraná powder, and maté leaves, and 20 synthetic caffeine samples from different sources by high-temperature reversed-phase liquid chromatography coupled to isotope ratio mass spectrometry, it is concluded that there are two distinguishable groups of caffeine δ(13)C-values: one between -25 and -32‰ for natural caffeine, and the other between -33 and -38‰ for synthetic caffeine. Isotope analysis by HT-RPLC/IRMS has been applied to identify the caffeine source in 38 drinks. Four mislabeled products were detected due to added but nonlabeled synthetic caffeine with δ(13)C-values lower than -33‰. This work is the first application of HT-RPLC/IRMS to real-world food samples, which showed several advantages: simple sample preparation (only dilution), high throughput, long-term column stability, and high precision of δ(13)C-value. Thus, HT-RPLC/IRMS can be a very promising tool in stable isotope analysis of nonvolatile compounds.

    10. Biodegradable synthetic bone composites

      SciTech Connect

      Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.

      2013-01-01

      The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.

    11. Synthetic Bursae for Robots

      NASA Technical Reports Server (NTRS)

      Lovchik, Christopher S.

      2005-01-01

      Synthetic bursae are under development for incorporation into robot joints that are actuated by motor-driven cables in a manner similar to that of arthropod joints actuated by muscle-driven tendons. Like natural bursae, the synthetic bursae would serve as cushions and friction reducers. A natural bursa is a thin bladder filled with synovial fluid, which serves to reduce friction and provide a cushion between a bone and a muscle or a tendon. A synthetic bursa would be similar in form and function: It would be, essentially, a compact, soft roller consisting of a bladder filled with a non-Newtonian fluid. The bladder would be constrained to approximately constant volume. The synthetic bursa would cushion an actuator cable against one of the members of a robot joint and would reduce the friction between the cable and the member. Under load, the pressure in the bladder would hold the opposite walls of the bladder apart, making it possible for them to move freely past each other without rubbing.

    12. Synthetic Aperture Radar Interferometry

      NASA Technical Reports Server (NTRS)

      Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

      1998-01-01

      Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

    13. Synthetic Cathinones ("Bath Salts")

      MedlinePlus

      ... Adolescent Brain Comorbidity College-Age & Young Adults Criminal Justice Drugged Driving Drug Testing Drugs and the Brain ... europa.eu/publications/drug-profiles/synthetic-cathinones www.justice.gov/archive/ndic/pubs44/44571/44571p.pdf For ...

    14. Synthetic Confrontation Therapy.

      ERIC Educational Resources Information Center

      Gilliam, Larry

      After initially dispelling predictable fears that his paper might suggest that computers can be equated with man, the author states the problem: what part, if any, might computers play in counseling. Specifically, the possibilities for therapeutic synthetic (artificial) counseling encounters are discussed. Two propositions are significant: (1) the…

    15. Adaptive synthetic vision

      NASA Astrophysics Data System (ADS)

      Julier, Simon J.; Brown, Dennis; Livingston, Mark A.; Thomas, Justin

      2006-05-01

      Through their ability to safely collect video and imagery from remote and potentially dangerous locations, UAVs have already transformed the battlespace. The effectiveness of this information can be greatly enhanced through synthetic vision. Given knowledge of the extrinsic and intrinsic parameters of the camera, synthetic vision superimposes spatially-registered computer graphics over the video feed from the UAV. This technique can be used to show many types of data such as landmarks, air corridors, and the locations of friendly and enemy forces. However, the effectiveness of a synthetic vision system strongly depends on the accuracy of the registration - if the graphics are poorly aligned with the real world they can be confusing, annoying, and even misleading. In this paper, we describe an adaptive approach to synthetic vision that modifies the way in which information is displayed depending upon the registration error. We describe an integrated software architecture that has two main components. The first component automatically calculates registration error based on information about the uncertainty in the camera parameters. The second component uses this information to modify, aggregate, and label annotations to make their interpretation as clear as possible. We demonstrate the use of this approach on some sample datasets.

    16. Synthetic hydrophilic polymers

      NASA Astrophysics Data System (ADS)

      Rajasekharan Pillai, V. N.; Mutter, Manfred

      1981-11-01

      Synthetic hydrophilic polymers find promising applications in pharmacology, biotechnology and chemistry. The biocompatibility, biodegradability and pharmacological activity of these polymers depend much on their hydrophilic nature. This article summarizes the recent developments in the utilization of the different classes of these hydrophilic polymers as pharmacologically active agents, for enzyme modification and as catalysts and supports for chemical reactions.

    17. Synthetic Vision Workshop 2

      NASA Technical Reports Server (NTRS)

      Kramer, Lynda J. (Compiler)

      1999-01-01

      The second NASA sponsored Workshop on Synthetic/Enhanced Vision (S/EV) Display Systems was conducted January 27-29, 1998 at the NASA Langley Research Center. The purpose of this workshop was to provide a forum for interested parties to discuss topics in the Synthetic Vision (SV) element of the NASA Aviation Safety Program and to encourage those interested parties to participate in the development, prototyping, and implementation of S/EV systems that enhance aviation safety. The SV element addresses the potential safety benefits of synthetic/enhanced vision display systems for low-end general aviation aircraft, high-end general aviation aircraft (business jets), and commercial transports. Attendance at this workshop consisted of about 112 persons including representatives from industry, the FAA, and other government organizations (NOAA, NIMA, etc.). The workshop provided opportunities for interested individuals to give presentations on the state of the art in potentially applicable systems, as well as to discuss areas of research that might be considered for inclusion within the Synthetic Vision Element program to contribute to the reduction of the fatal aircraft accident rate. Panel discussions on topical areas such as databases, displays, certification issues, and sensors were conducted, with time allowed for audience participation.

    18. Acclimation to Chronic O3 in Field-grown Soybean is Characterized by Increased Levels of TCA Cycle Transcripts and ROS Scavenging Compounds in Addition to Decreased Photosynthetic Capacity

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Tropospheric ozone (O3) is a pollutant that is generated by volatile organic compounds, nitrogen oxides and sunlight. When plants take in O3 through stomata, harmful reactive oxygen species (ROS) are produced that induce the production of ROS scavenging antioxidants. Climate change predictions indic...

    19. Synthetic River Valleys

      NASA Astrophysics Data System (ADS)

      Brown, R.; Pasternack, G. B.

      2011-12-01

      The description of fluvial form has evolved from anecdotal descriptions to artistic renderings to 2D plots of cross section or longitudinal profiles and more recently 3D digital models. Synthetic river valleys, artificial 3D topographic models of river topography, have a plethora of potential applications in fluvial geomorphology, and the earth sciences in general, as well as in computer science and ecology. Synthetic river channels have existed implicitly since approximately the 1970s and can be simulated from a variety of approaches spanning the artistic and numerical. An objective method of synthesizing 3D stream topography based on reach scale attributes would be valuable for sizing 3D flumes in the physical and numerical realms, as initial input topography for morphodynamic models, stream restoration design, historical reconstruction, and mechanistic testing of interactions of channel geometric elements. Quite simply - simulation of synthetic channel geometry of prescribed conditions can allow systematic evaluation of the dominant relationships between river flow and geometry. A new model, the control curve method, is presented that uses hierarchically scaled parametric curves in over-lapping 2D planes to create synthetic river valleys. The approach is able to simulate 3D stream geometry from paired 2D descriptions and can allow experimental insight into form-process relationships in addition to visualizing past measurements of channel form that are limited to two dimension descriptions. Results are presented that illustrate the models ability to simulate fluvial topography representative of real world rivers as well as how channel geometric elements can be adjusted. The testing of synthetic river valleys would open up a wealth of knowledge as to why some 3D attributes of river channels are more prevalent than others as well as bridging the gap between the 2D descriptions that have dominated fluvial geomorphology the past century and modern, more complete, 3D

    20. Synthetic Biology - The Synthesis of Biology.

      PubMed

      Ausländer, Simon; Ausländer, David; Fussenegger, Martin

      2016-12-11

      Synthetic biology envisages the engineering of man-made living biomachines from standardized components that can perform pre-defined functions in a (self-)controlled manner. Different research strategies and interdisciplinary efforts are pursued to implement engineering principles to biology. The "top-down" strategy exploits nature's incredible diversity of existing, natural parts to construct synthetic compositions of genetic, metabolic or signalling networks with predictable and controllable properties. This mainly application-driven approach results in living factories that produce drugs, biofuels, biomaterials and fine chemicals and results in living pills that are based on engineered cells with the capacity to autonomously detect and treat disease states in vivo. In contrast, the "bottom-up" strategy seeks to be independent of existing living systems by designing biological systems from scratch and synthesizing artificial biological entities not found in nature. This more knowledge-driven approach investigates the reconstruction of minimal biological systems that are capable of performing basic biological phenomena, such as self-organization, self-replication and self-sustainability. Moreover, the syntheses of artificial biological units, such as synthetic nucleotides or amino acids, and their implementation into polymers inside living cells currently set the boundaries between natural and artificial biological systems. In particular, the in vitro design, synthesis and transfer of complete genomes into host cells and the application of efficient genome-wide intervention techniques point to the future of synthetic biology: the creation of living designer cells with tailored desirable properties for biomedicine and biotechnology.

    1. Synthesis of a naphthalene-hydroxynaphthalene polymer model compound

      SciTech Connect

      Not Available

      1991-10-02

      The objective of this project was the synthesis of one pound of a new naphthalene-hydroxynaphthalene polymer model compound for use in coal combustion studies. Since this compound was an unreported compound, this effort also required the development of a synthetic route to this compound (including routes to the unique and unreported intermediates leading to its synthesis).

    2. Novel sulfamides and sulfamates derived from amino esters: Synthetic studies and anticonvulsant activity.

      PubMed

      Villalba, Maria L; Enrique, Andrea V; Higgs, Josefina; Castaño, Rocío A; Goicoechea, Sofía; Taborda, Facundo D; Gavernet, Luciana; Lick, Ileana D; Marder, Mariel; Bruno Blanch, Luis E

      2016-03-05

      We report herein the design and optimization of a novel series of sulfamides and sulfamates derived from amino esters with anticonvulsant properties. The structures were designed based on the pharmacophoric pattern previously proposed, with the aim of improving the anticonvulsant action. The compounds were obtained by a new synthetic procedure with microwave assisted heating and the use of adsorbents in the isolation process. All the derivatives showed protection against the maximal electroshock seizure test (MES test) in mice at the lowest dose tested (30 mg/kg) but they did not show significant protection against the chemical induced convulsion by pentylenetetrazole. These results verify the ability of the computational model for designing new anticonvulsants structures with anti-MES activity. Additionally, we evaluated the capacity of the synthesized structures to bind to the benzodiazepine binding site (BDZ-bs) of the γ-aminobutiric acid receptor (GABAA receptor). Some of them showed medium to low affinity for the BDZ-bs.

    3. Thermolytic Degradation of Synthetic Cannabinoids: Chemical Exposures and Pharmacological Consequences.

      PubMed

      Thomas, Brian F; Lefever, Timothy W; Cortes, Ricardo A; Grabenauer, Megan; Kovach, Alexander L; Cox, Anderson O; Patel, Purvi R; Pollard, Gerald T; Marusich, Julie A; Kevin, Richard C; Gamage, Thomas F; Wiley, Jenny L

      2017-04-01

      Synthetic cannabinoids are manufactured clandestinely with little quality control and are distributed as herbal "spice" for smoking or as bulk compound for mixing with a solvent and inhalation via electronic vaporizers. Intoxication with synthetic cannabinoids has been associated with seizure, excited delirium, coma, kidney damage, and other disorders. The chemical alterations produced by heating these structurally novel compounds for consumption are largely unknown. Here, we show that heating synthetic cannabinoids containing tetramethylcyclopropyl-ring substituents produced thermal degradants with pharmacological activity that varied considerably from their parent compounds. Moreover, these degradants were formed under conditions simulating smoking. Some products of combustion retained high affinity at the cannabinoid 1 (CB1) and CB2 receptors, were more efficacious than (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP55,940) in stimulating CB1 receptor-mediated guanosine 5'-O-(3-thiotriphosphate) (GTPγS) binding, and were potent in producing Δ(9)-tetrahydrocannabinol-like effects in laboratory animals, whereas other compounds had low affinity and efficacy and were devoid of cannabimimetic activity. Degradants that retained affinity and efficacy also substituted in drug discrimination tests for the prototypical synthetic cannabinoid 1-pentyl-3-(1-naphthoyl)indole (JWH-018), and are likely to produce psychotropic effects in humans. Hence, it is important to take into consideration the actual chemical exposures that occur during use of synthetic cannabinoid formulations to better comprehend the relationships between dose and effect.

    4. Synthetic Origin of Tramadol in the Environment.

      PubMed

      Kusari, Souvik; Tatsimo, Simplice Joel N; Zühlke, Sebastian; Spiteller, Michael

      2016-01-04

      The presence of tramadol in roots of Sarcocephalus latifolius trees in Northern Cameroon was recently attributed to point contamination with the synthetic compound. The synthetic origin of tramadol in the environment has now been unambiguously confirmed. Tramadol samples isolated from tramadol pills bought at a street market in downtown Maroua and highly contaminated soil at Houdouvou were analyzed by high-precision (14)C measurements by accelerator mass spectrometry ((14)C AMS): Tramadol from the pills did not contain any radiocarbon, thus indicating that it had been synthesized from (14)C-free petroleum-derived precursors. Crucially, tramadol isolated from the soil was also radiocarbon-free. As all biosynthetic plant compounds must contain radiocarbon levels close to that of the contemporary environment, these results thus confirm that tramadol isolated from the soil cannot be plant-derived. Analyses of S. latifolius seeds, in vitro grown plants, plants from different origins, and stable-isotope labeling experiments further confirmed that synthetic tramadol contaminates the environment.

    5. Synthetic biology approaches to fluorinated polyketides

      PubMed Central

      Thuronyi, Benjamin W.; Chang, Michelle C. Y.

      2016-01-01

      Conspectus The catalytic diversity of living systems offers a broad range of opportunities for developing new methods to produce small molecule targets such as fuels, materials, and pharmaceuticals. In addition to providing cost-effective and renewable methods for large-scale commercial processes, the exploration of the unusual chemical phenotypes found in living organisms can also enable the expansion of chemical space for discovery of novel function by combining orthogonal attributes from both synthetic and biological chemistry. In this context, we have focused on the development of new fluorine chemistry using synthetic biology approaches. While fluorine has become an important feature in compounds of synthetic origin, the scope of biological fluorine chemistry in living systems is limited, with fewer than 20 organofluorine natural products identified to date. In order to expand the diversity of biosynthetically accessible organofluorines, we have begun to develop methods for the site-selective introduction of fluorine into complex natural products by engineering biosynthetic machinery to incorporate fluorinated building blocks. To gain insight into how both enzyme active sites and metabolic pathways can be evolved to manage and select for fluorinated compounds, we have studied one of the only characterized natural hosts for organofluorine biosynthesis, the soil microbe Streptomyces cattleya. This information provides a template for designing engineered organofluorine enzymes, pathways, and hosts and has allowed us to initiate construction of enzymatic and cellular pathways for the production of fluorinated polyketides. PMID:25719427

    6. Improving the biodegradative capacity of subsurface bacteria

      SciTech Connect

      Romine, M.F.; Brockman, F.J.

      1993-04-01

      The continual release of large volumes of synthetic materials into the environment by agricultural and industrial sources over the last few decades has resulted in pollution of the subsurface environment. Cleanup has been difficult because of the relative inaccessibility of the contaminants caused by their wide dispersal in the deep subsurface, often at low concentrations and in large volumes. As a possible solution for these problems, interest in the introduction of biodegradative bacteria for in situ remediation of these sites has increased greatly in recent years (Timmis et al. 1988). Selection of biodegradative microbes to apply in such cleanup is limited to those strains that can survive among the native bacterial and predator community members at the particular pH, temperature, and moisture status of the site (Alexander, 1984). The use of microorganisms isolated from subsurface environments would be advantageous because the organisms are already adapted to the subsurface conditions. The options are further narrowed to strains that are able to degrade the contaminant rapidly, even in the presence of highly recalcitrant anthropogenic waste mixtures, and in conditions that do not require addition of further toxic compounds for the expression of the biodegradative capacity (Sayler et al. 1990). These obstacles can be overcome by placing the genes of well-characterized biodegradative enzymes under the control of promoters that can be regulated by inexpensive and nontoxic external factors and then moving the new genetic constructs into diverse groups of subsurface microbes. ne objective of this research is to test this hypothesis by comparing expression of two different toluene biodegradative enzymatic pathways from two different regulatable promoters in a variety of subsurface isolates.

    7. Bioremediation of synthetic fatliquors under microaerobic condition.

      PubMed

      Umamaheswari, B; Priya, K; Rajaram, Rama

      2017-03-01

      Synthetic fatliquors are useful as a fatliquoring agent, flotation agent and emulsifying agent in a wide range of industrial applications such as leather, pharmacy and farm chemicals. These fatliquors remain recalcitrant to natural biota in existing treatment plants. In the present study, the isolated microaerophilic Serratia sp. HA1 strain CSMB3 is capable of utilizing structurally different fatliquors as the sole substrate for their growth under microaerobic conditions. Degradation of vegetable fatliquors was observed from 95 to 97% in terms of lipids, with the production of lipase at 72 h. Degradation of synthetic fatliquors was observed in terms of chemical oxygen demand from 85% to a minimum of 25%. It is in the order of sulfited/sulfated fatliquors > sulfochlorinated fatliquors > chlorinated fatliquors. A thin layer chromatography chromatogram confirmed the degradation of non polar fatliquor to polar compounds. Production of the red pigment prodigiosin in synthetic fatliquors enhanced the growth of the isolate. Fourier transform infrared spectroscopy (FTIR) confirmed the bioremediation of sulfochlorinated fatliquor into lipids and fatty acids and gas chromatography-mass spectrometry (GC-MS) results confirmed that alcohols and esters are the final end products. Thus the isolated strain CSMB3 may be used in the treatment of wastewaters containing vegetable and synthetic fatliquors.

    8. Synthetic biology--putting engineering into biology.

      PubMed

      Heinemann, Matthias; Panke, Sven

      2006-11-15

      Synthetic biology is interpreted as the engineering-driven building of increasingly complex biological entities for novel applications. Encouraged by progress in the design of artificial gene networks, de novo DNA synthesis and protein engineering, we review the case for this emerging discipline. Key aspects of an engineering approach are purpose-orientation, deep insight into the underlying scientific principles, a hierarchy of abstraction including suitable interfaces between and within the levels of the hierarchy, standardization and the separation of design and fabrication. Synthetic biology investigates possibilities to implement these requirements into the process of engineering biological systems. This is illustrated on the DNA level by the implementation of engineering-inspired artificial operations such as toggle switching, oscillating or production of spatial patterns. On the protein level, the functionally self-contained domain structure of a number of proteins suggests possibilities for essentially Lego-like recombination which can be exploited for reprogramming DNA binding domain specificities or signaling pathways. Alternatively, computational design emerges to rationally reprogram enzyme function. Finally, the increasing facility of de novo DNA synthesis-synthetic biology's system fabrication process-supplies the possibility to implement novel designs for ever more complex systems. Some of these elements have merged to realize the first tangible synthetic biology applications in the area of manufacturing of pharmaceutical compounds.

    9. Synthetic Foveal Imaging Technology

      NASA Technical Reports Server (NTRS)

      Monacos, Steve P. (Inventor); Hoenk, Michael E. (Inventor); Nikzad, Shouleh (Inventor)

      2013-01-01

      Apparatuses and methods are disclosed that create a synthetic fovea in order to identify and highlight interesting portions of an image for further processing and rapid response. Synthetic foveal imaging implements a parallel processing architecture that uses reprogrammable logic to implement embedded, distributed, real-time foveal image processing from different sensor types while simultaneously allowing for lossless storage and retrieval of raw image data. Real-time, distributed, adaptive processing of multi-tap image sensors with coordinated processing hardware used for each output tap is enabled. In mosaic focal planes, a parallel-processing network can be implemented that treats the mosaic focal plane as a single ensemble rather than a set of isolated sensors. Various applications are enabled for imaging and robotic vision where processing and responding to enormous amounts of data quickly and efficiently is important.

    10. Synthetic Porphyrins and Metalloporphyrins

      DTIC Science & Technology

      1976-12-10

      last type of complexes to be considered are the sterically hindered macrocycles . Examples of this class of complexes exe the capped" or "crow henhe...group IV metalloporphyrins, phthalocyanines and correspond- log Ru"l and Reol complexes induce smaller shifts than the lanthanides (about 8 ppm vs 25...ROLE W1r ROLE wTr ROLE Wt * ~Synthe tic Porphyrins Synthetic lMetalloporphyrinsj tetrapyrrole macrocycles "Inatural" porphyrins * j meso

    11. Synthetic Biological Engineering of Photosynthesis

      DTIC Science & Technology

      2015-11-16

      SECURITY CLASSIFICATION OF: The overall goal of the grant is to create a synthetic biology platform based on solar energy that can be used on a local...Research Triangle Park, NC 27709-2211 Synthetic biology , photosynthesis, solar energy, biofuels REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S...Synthetic Biological Engineering of Photosynthesis Report Title The overall goal of the grant is to create a synthetic biology platform based on solar

    12. Synthetic biology in plastids.

      PubMed

      Scharff, Lars B; Bock, Ralph

      2014-06-01

      Plastids (chloroplasts) harbor a small gene-dense genome that is amenable to genetic manipulation by transformation. During 1 billion years of evolution from the cyanobacterial endosymbiont to present-day chloroplasts, the plastid genome has undergone a dramatic size reduction, mainly as a result of gene losses and the large-scale transfer of genes to the nuclear genome. Thus the plastid genome can be regarded as a naturally evolved miniature genome, the gradual size reduction and compaction of which has provided a blueprint for the design of minimum genomes. Furthermore, because of the largely prokaryotic genome structure and gene expression machinery, the high transgene expression levels attainable in transgenic chloroplasts and the very low production costs in plant systems, the chloroplast lends itself to synthetic biology applications that are directed towards the efficient synthesis of green chemicals, biopharmaceuticals and other metabolites of commercial interest. This review describes recent progress with the engineering of plastid genomes with large constructs of foreign or synthetic DNA, and highlights the potential of the chloroplast as a model system in bottom-up and top-down synthetic biology approaches.

    13. Information capacity of specific interactions

      PubMed Central

      Huntley, Miriam H.; Murugan, Arvind; Brenner, Michael P.

      2016-01-01

      Specific interactions are a hallmark feature of self-assembly and signal-processing systems in both synthetic and biological settings. Specificity between components may arise from a wide variety of physical and chemical mechanisms in diverse contexts, from DNA hybridization to shape-sensitive depletion interactions. Despite this diversity, all systems that rely on interaction specificity operate under the constraint that increasing the number of distinct components inevitably increases off-target binding. Here we introduce “capacity,” the maximal information encodable using specific interactions, to compare specificity across diverse experimental systems and to compute how specificity changes with physical parameters. Using this framework, we find that “shape” coding of interactions has higher capacity than chemical (“color”) coding because the strength of off-target binding is strongly sublinear in binding-site size for shapes while being linear for colors. We also find that different specificity mechanisms, such as shape and color, can be combined in a synergistic manner, giving a capacity greater than the sum of the parts. PMID:27155013

    14. Porphycenes and Related Isomers: Synthetic Aspects.

      PubMed

      Anguera, Gonzalo; Sánchez-García, David

      2017-02-22

      Porphyrins, called the pigments of life, have been studied for decades. However, the first constitutional isomer of porphyrin, porphycene, was not synthesized until 1986. This milestone marked the beginning of a new era in the field of porphyrinoids and presented opportunities for the creation of an abundance of new pigments. The unique structural and electronic features of these compounds give rise to interesting physical and optical properties with applications in biomedicine and materials science. This review focuses on the synthetic methodologies available for the preparation of porphycenes (functionalized porphycenes, extended porphycenes, benzoporphycenes, naphthoporphycenes, and heteroanalogues) and the other known isomers, namely, corrphycene, hemiporphycene, and isoporphycene. Although the classical synthetic approaches are discussed, particular emphasis is placed on improvements to the known methodologies and recent advances in the field.

    15. Method for producing and regenerating a synthetic CO[sub 2] acceptor

      DOEpatents

      Lancet, M. S.; Curran, G. P.; Gorin, E.

      1982-05-18

      A method is described for producing a synthetic CO[sub 2] acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO[sub 2] acceptor and recovering the pellets of synthetic CO[sub 2] acceptor from the fluidized bed. Optionally, spent synthetic CO[sub 2] acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO[sub 2] acceptor. 1 fig.

    16. Method for producing and regenerating a synthetic CO.sub.2 acceptor

      DOEpatents

      Lancet, Michael S [Pittsburgh, PA; Curran, George P [Pittsburgh, PA; Gorin, Everett [San Rafael, CA

      1982-01-01

      A method for producing a synthetic CO.sub.2 acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO.sub.2 acceptor and recovering the pellets of synthetic CO.sub.2 acceptor from the fluidized bed. Optionally, spent synthetic CO.sub.2 acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO.sub.2 acceptor.

    17. Opportunities in plant synthetic biology.

      PubMed

      Cook, Charis; Martin, Lisa; Bastow, Ruth

      2014-05-01

      Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

    18. A minimalist fragment approach for the design of natural-product-like synthetic scaffolds.

      PubMed

      Genis, Dmitry; Kirpichenok, Mikhail; Kombarov, Roman

      2012-11-01

      Chemistry groups involved in drug discovery continue to devote their efforts to improving compound design with the aim of identifying new drug candidates. Many crucial factors must be considered, including: chemical stability, synthetic difficulty, chemical complexity and diversity, ADMET properties, cost, chemical novelty and intellectual property issues, and 'biological appropriateness'. With regard to the latter point, natural products offer an outstanding source of biologically active molecules that provide many useful features that enable us to design innovative, biologically biased, synthetic compounds. This article outlines the recent approaches in this area and suggests a simple metric to assess synthetic compounds for natural product likeness.

    19. Synthetic Cathinones: A New Public Health Problem

      PubMed Central

      Karila, Laurent; Megarbane, Bruno; Cottencin, Olivier; Lejoyeux, Michel

      2015-01-01

      New psychoactive substances (NPS) have completely modified the drug scene and the current landscape of addiction. Synthetic substances, such as substituted or synthetic cathinones, also known as « legal highs », are often produced and used to mimic the effects of controlled drugs such as cocaine, methylenedioxymethamphetamine (MDMA, ecstasy), and methamphetamine. The overwhelming majority of synthetic cathinones are produced in China and South East Asian countries. The Internet has emerged as the new marketplace for NPS, playing a major role in providing information on acquisition, synthesis, extraction, identification, and substance use. All these compounds are intentionally mislabeled and sold on-line under slang terms such as bath salts, plant food, plant feeders and research chemicals. They are sometimes labeled « not for human use » or « not tested for hazards or toxicity ». The rapid spread of NPS forces member countries of the European Union to adapt their response to the potential new dangers that may cause. To date, not only health actors but also the general public need to be clearly informed and aware of dangers resulting from NPS spread and use. Here, we review the major clinical effects of synthetic cathinones to highlight their impact on public health. A literature search was conducted from 2009 to 2014 based on PubMed, Google Scholar, Erowid, and governmental websites, using the following keywords alone or in combination: “new psychoactive substances”, “synthetic cathinones”, “substituted cathinones”, “mephedrone”, “methylone”, “MDPV”, “4-MEC”, “addiction”, and “substance use disorder”. PMID:26074740

    20. Microbial Production of Isoprenoids Enabled by Synthetic Biology

      PubMed Central

      Immethun, Cheryl M.; Hoynes-O’Connor, Allison G.; Balassy, Andrea; Moon, Tae Seok

      2013-01-01

      Microorganisms transform inexpensive carbon sources into highly functionalized compounds without toxic by-product generation or significant energy consumption. By redesigning the natural biosynthetic pathways in an industrially suited host, microbial cell factories can produce complex compounds for a variety of industries. Isoprenoids include many medically important compounds such as antioxidants and anticancer and antimalarial drugs, all of which have been produced microbially. While a biosynthetic pathway could be simply transferred to the production host, the titers would become economically feasible when it is rationally designed, built, and optimized through synthetic biology tools. These tools have been implemented by a number of research groups, with new tools pledging further improvements in yields and expansion to new medically relevant compounds. This review focuses on the microbial production of isoprenoids for the health industry and the advancements though synthetic biology. PMID:23577007

    1. TRIFLUOROMETHYL COMPOUNDS OF GERMANIUM

      DTIC Science & Technology

      FLUORIDES, *GERMANIUM COMPOUNDS, *HALIDES, *ORGANOMETALLIC COMPOUNDS, ALKYL RADICALS, ARSENIC COMPOUNDS, CHEMICAL BONDS, CHEMICAL REACTIONS ...CHLORIDES, CHLORINE COMPOUNDS, HYDROLYSIS, IODIDES, METHYL RADICALS, POTASSIUM COMPOUNDS, PYROLYSIS, STABILITY, SYNTHESIS, TIN COMPOUNDS.

    2. Adsorption and detection of some phenolic compounds by rice husk ash of Kenyan origin.

      PubMed

      Mbui, Damaris N; Shiundu, Paul M; Ndonye, Rachel M; Kamau, Geoffrey N

      2002-12-01

      Rice husk ash (RHA) obtained from a rice mill in Kenya has been used as an inexpensive and effective adsorbent (and reagent) for the removal (and detection) of some phenolic compounds in water. The abundantly available rice mill waste was used in dual laboratory-scale batch experiments to evaluate its potential in: (i) the removal of phenol, 1,3-dihydroxybenzene (resorcinol) and 2-chlorophenol from water; and (ii) the detection of 1,2-dihydroxybenzene (pyrocatechol) and 1,2,3-trihydroxybenzene (pyrogallol) present in an aqueous medium. The studies were conducted using synthetic water with different initial concentrations of the phenolic compounds. The effects of different operating conditions (such as contact time, concentration of the phenolic compounds, adsorbent quantity, temperature, and pH) were assessed by evaluating the phenolic compound removal efficiency as well as the extent of their color formation reactions (where applicable). RHA exhibits reasonable adsorption capacity for the phenolic compounds and follows both Langmuir and Freundlich isotherm models. Adsorption capacities of 1.53 x 10(-4), 8.07 x 10(-5), and 1.63 x 10(-6) mol g(-1) were determined for phenol, resorcinol and 2-chlorophenol, respectively. Nearly 100% adsorption of the phenolic compounds was possible and this depended on the weight of RHA employed. For the detection experiments, pyrocatechol and pyrogallol present in water formed coloured complexes with RHA, with the rate of colour formation increasing with temperature, weight of RHA, concentration of the phenolic compounds and sonication. This study has proven that RHA is a useful agricultural waste product for the removal and detection of some phenolic compounds.

    3. Emergent Biosynthetic Capacity in Simple Microbial Communities

      PubMed Central

      Chiu, Hsuan-Chao; Levy, Roie; Borenstein, Elhanan

      2014-01-01

      Microbes have an astonishing capacity to transform their environments. Yet, the metabolic capacity of a single species is limited and the vast majority of microorganisms form complex communities and join forces to exhibit capabilities far exceeding those achieved by any single species. Such enhanced metabolic capacities represent a promising route to many medical, environmental, and industrial applications and call for the development of a predictive, systems-level understanding of synergistic microbial capacity. Here we present a comprehensive computational framework, integrating high-quality metabolic models of multiple species, temporal dynamics, and flux variability analysis, to study the metabolic capacity and dynamics of simple two-species microbial ecosystems. We specifically focus on detecting emergent biosynthetic capacity – instances in which a community growing on some medium produces and secretes metabolites that are not secreted by any member species when growing in isolation on that same medium. Using this framework to model a large collection of two-species communities on multiple media, we demonstrate that emergent biosynthetic capacity is highly prevalent. We identify commonly observed emergent metabolites and metabolic reprogramming patterns, characterizing typical mechanisms of emergent capacity. We further find that emergent secretion tends to occur in two waves, the first as soon as the two organisms are introduced, and the second when the medium is depleted and nutrients become limited. Finally, aiming to identify global community determinants of emergent capacity, we find a marked association between the level of emergent biosynthetic capacity and the functional/phylogenetic distance between community members. Specifically, we demonstrate a “Goldilocks” principle, where high levels of emergent capacity are observed when the species comprising the community are functionally neither too close, nor too distant. Taken together, our results

    4. Emergent biosynthetic capacity in simple microbial communities.

      PubMed

      Chiu, Hsuan-Chao; Levy, Roie; Borenstein, Elhanan

      2014-07-01

      Microbes have an astonishing capacity to transform their environments. Yet, the metabolic capacity of a single species is limited and the vast majority of microorganisms form complex communities and join forces to exhibit capabilities far exceeding those achieved by any single species. Such enhanced metabolic capacities represent a promising route to many medical, environmental, and industrial applications and call for the development of a predictive, systems-level understanding of synergistic microbial capacity. Here we present a comprehensive computational framework, integrating high-quality metabolic models of multiple species, temporal dynamics, and flux variability analysis, to study the metabolic capacity and dynamics of simple two-species microbial ecosystems. We specifically focus on detecting emergent biosynthetic capacity--instances in which a community growing on some medium produces and secretes metabolites that are not secreted by any member species when growing in isolation on that same medium. Using this framework to model a large collection of two-species communities on multiple media, we demonstrate that emergent biosynthetic capacity is highly prevalent. We identify commonly observed emergent metabolites and metabolic reprogramming patterns, characterizing typical mechanisms of emergent capacity. We further find that emergent secretion tends to occur in two waves, the first as soon as the two organisms are introduced, and the second when the medium is depleted and nutrients become limited. Finally, aiming to identify global community determinants of emergent capacity, we find a marked association between the level of emergent biosynthetic capacity and the functional/phylogenetic distance between community members. Specifically, we demonstrate a "Goldilocks" principle, where high levels of emergent capacity are observed when the species comprising the community are functionally neither too close, nor too distant. Taken together, our results

    5. Synthetic passive margin stratigraphy

      SciTech Connect

      Turcotte, D.L.; Kenyon, P.M.

      1984-06-01

      Synthetic stratigraphic cross sections are derived mathematically for a variety of simple conditions. The variables considered in the mathematical model include variations in sea level, rate of tectonic subsidence, rate of sedimentation, and rate of erosion. Derived stratigraphic relationships include unconformities, correlative conformities and disconformities, coastal onlap, coastal toplap, erosional truncation, pinch-out, and sigmoidal progradational clinoforms. An important conclusion is that the rate of erosion is a dominant variable in determining the type of stratigraphic section observed. The proposed approach may provide the basis for either a forward or inverse modeling of seismic stratigraphic sections.

    6. Removal of nitrogen from a synthetic hydrocarbon oil

      SciTech Connect

      Kuk, M.S.; Albaugh, E.W.; Montagna, J.C.

      1984-11-20

      Nitrogenous compounds are eliminated from a synthetic hydrocarbon oil such as shale oil by partial hydrogenation followed by solvent extraction using a three-component solvent comprising an organic polar solvent, an acid and water. For example, a furfuryl alcohol, hydrochloric acid and water solution will remove the major quantity of the nitrogen compounds from shale oil which remain following the partial hydrogenation of the shale oil.

    7. Highly sweet compounds of plant origin.

      PubMed

      Kim, Nam-Cheol; Kinghorn, A Douglas

      2002-12-01

      The demand for new alternative "low calorie" sweeteners for dietetic and diabetic purposes has increased worldwide. Although the currently developed and commercially used highly sweet sucrose substitutes are mostly synthetic compounds, the search for such compounds from natural sources is continuing. As of mid-2002, over 100 plant-derived sweet compounds of 20 major structural types had been reported, and were isolated from more than 25 different families of green plants. Several of these highly sweet natural products are marketed as sweeteners or flavoring agents in some countries as pure compounds, compound mixtures, or refined extracts. These highly sweet natural substances are reviewed herein.

    8. Synthetic Fence Jets

      NASA Astrophysics Data System (ADS)

      Sigurdson, Lorenz; Apps, Christopher

      2000-11-01

      "Synthetic Jets" have previously been produced where an oscillating flow with zero net mass flux acts on the edges of an orifice. The resulting flow is similar to a normal jet. We have proposed and verified that another type of jet called a "Synthetic Fence Jet" (SFJ or "fe-je") can also be created. We introduced a fence perpendicular to both a wall and an oscillating velocity field. Under certain conditions a jet was formed by vortices of alternating sign. The vortices were shed from the fence and they induced each other away from it. This phenomenon could be used as a method of flow control. The objective of this project was to use flow visualization to prove the existence of and characterize this jet. A test rig was used which incorporates smoke-wire flow visualization; independent oscillation level and frequency control; and computer- controlled data acquisition. It has been discovered that the jet direction can be vectored by altering the forcing waveform shape. To explain this a theory was developed that is based on the Biot-Savart law of vortex dynamics.

    9. Analog synthetic biology.

      PubMed

      Sarpeshkar, R

      2014-03-28

      We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog-digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA-protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations.

    10. Synthetic collective intelligence.

      PubMed

      Solé, Ricard; Amor, Daniel R; Duran-Nebreda, Salva; Conde-Pueyo, Núria; Carbonell-Ballestero, Max; Montañez, Raúl

      2016-10-01

      Intelligent systems have emerged in our biosphere in different contexts and achieving different levels of complexity. The requirement of communication in a social context has been in all cases a determinant. The human brain, probably co-evolving with language, is an exceedingly successful example. Similarly, social insects complex collective decisions emerge from information exchanges between many agents. The difference is that such processing is obtained out of a limited individual cognitive power. Computational models and embodied versions using non-living systems, particularly involving robot swarms, have been used to explore the potentiality of collective intelligence. Here we suggest a novel approach to the problem grounded in the genetic engineering of unicellular systems, which can be modified in order to interact, store memories or adapt to external stimuli in collective ways. What we label as Synthetic Swarm Intelligence defines a parallel approach to the evolution of computation and swarm intelligence and allows to explore potential embodied scenarios for decision making at the microscale. Here, we consider several relevant examples of collective intelligence and their synthetic organism counterparts.

    11. Synthetic virology: engineering viruses for gene delivery.

      PubMed

      Guenther, Caitlin M; Kuypers, Brianna E; Lam, Michael T; Robinson, Tawana M; Zhao, Julia; Suh, Junghae

      2014-01-01

      The success of gene therapy relies heavily on the performance of vectors that can effectively deliver transgenes to desired cell populations. As viruses have evolved to deliver genetic material into cells, a prolific area of research has emerged over the last several decades to leverage the innate properties of viruses as well as to engineer new features into them. Specifically, the field of synthetic virology aims to capitalize on knowledge accrued from fundamental virology research in order to design functionally enhanced gene delivery vectors. The enhanced viral vectors, or 'bionic' viruses, feature engineered components, or 'parts', that are natural (intrinsic to viruses or from other organisms) and synthetic (such as man-made polymers or inorganic nanoparticles). Various design strategies--rational, combinatorial, and pseudo-rational--have been pursued to create the hybrid viruses. The gene delivery vectors of the future will likely criss-cross the boundaries between natural and synthetic domains to harness the unique strengths afforded by the various functional parts that can be grafted onto virus capsids. Such research endeavors will further expand and enable enhanced control over the functional capacity of these nanoscale devices for biomedicine.

    12. Microbial transformation of bioactive compounds and production of ortho-dihydroxyisoflavones and glycitein from natural fermented soybean paste.

      PubMed

      Roh, Changhyun

      2014-12-12

      Recently, there has been a great deal of remarkable interest in finding bioactive compounds from nutritional foods to replace synthetic compounds. In particular, ortho-dihydroxyisoflavones and glycitein are of growing scientific interest owing to their attractive biological properties. In this study, 7,8-ortho-dihydroxyisoflavone, 6,7-ortho-dihydroxyisoflavone, 3',4'-ortho-dihydroxyisoflavone and 7,4'-dihydroxy-6-methoxyisoflavone were characterized using microorganism screened from soybean Doenjang. Three ortho-dihydroxyisoflavones and glycitein were structurally elucidated by 1H-NMR and GC-MS analysis. Furthermore, bacterial strains from soybean Doenjang with the capacity of biotransformation were screened. The bacterial strain, identified as Bacillus subtilis Roh-1, was shown to convert daidzein into ortho-dihydroxyisoflavones and glycitein. Thus, this study has, for the first time, demonstrated that a bacterial strain had a substrate specificity for multiple modifications of the bioactive compounds.

    13. Immunobiological activities of synthetic lipid A analogs with low endotoxicity.

      PubMed Central

      Kotani, S; Takada, H; Takahashi, I; Ogawa, T; Tsujimoto, M; Shimauchi, H; Ikeda, T; Okamura, H; Tamura, T; Harada, K

      1986-01-01

      Synthetic lipid A analogs, beta(1-6)glucosamine disaccharide 1,4'-bisphosphates, which possesses four tetradecanoyl groups at the 2- and 2'-amino, and 3- and 3'-hydroxyl groups (LA-17-PP), and each two of the (R)-3-hydroxytetradecanoyl and tetradecanoyl groups at the 2- and 2'-amino and 3- and 3'-hydroxyl groups, respectively (LA-18-PP), were far less endotoxic than synthetic (506, LA-15-PP) and bacterial Escherichia coli type lipid A's; neither compound showed any detectable lethal toxicity in chicken embryos or preparatory activity for the local Shwartzman reaction in rabbits. Also both compounds were only weakly pyrogenic and comparably less lethally toxic in galactosamine-loaded mice than the reference synthetic and bacterial lipid A's and a synthetic counterpart to biosynthetic lipid A precursor Ia (406, LA-14-PP). Nevertheless, LA-17-PP and LA-18-PP exhibited definite in vivo immunoadjuvant activity in mice, and the ability to induce a possible tumor necrosis factor and alpha/beta interferon in Mycobacterium bovis BCG and Propionibacterium acnes-primed mice, respectively, although these activities were weaker than those of the reference lipid A's. 4'-Monophosphate analogs of the above two test compounds exhibited neither endotoxic nor beneficial activities, but they showed remarkable in vitro bioactivities comparable to those of the corresponding bisphosphate compounds; the ability to activate the human complement system and the clotting enzyme cascade of horseshoe crab amoebocyte lysate, stimulatory effects on guinea pig and murine peritoneal macrophages, and murine splenocytes. PMID:3781622

    14. Biodegradation of nitroaromatic compounds.

      PubMed

      Spain, J C

      1995-01-01

      Nitroaromatic compounds are released into the biosphere almost exclusively from anthropogenic sources. Some compounds are produced by incomplete combustion of fossil fuels; others are used as synthetic intermediates, dyes, pesticides, and explosives. Recent research revealed a number of microbial systems capable of transforming or biodegrading nitroaromatic compounds. Anaerobic bacteria can reduce the nitro group via nitroso and hydroxylamino intermediates to the corresponding amines. Isolates of Desulfovibrio spp. can use nitroaromatic compounds as their source of nitrogen. They can also reduce 2,4,6-trinitrotoluene to 2,4,6-triaminotoluene. Several strains of Clostridium can catalyze a similar reduction and also seem to be able to degrade the molecule to small aliphatic acids. Anaerobic systems have been demonstrated to destroy munitions and pesticides in soil. Fungi can extensively degrade or mineralize a variety of nitroaromatic compounds. For example, Phanerochaete chrysosporium mineralizes 2,4-dinitrotoluene and 2,4,6-trinitrotoluene and shows promise as the basis for bioremediation strategies. The anaerobic bacteria and the fungi mentioned above mostly transform nitroaromatic compounds via fortuitous reactions. In contrast, a number of nitroaromatic compounds can serve as growth substrates for aerobic bacteria. Removal or productive metabolism of nitro groups can be accomplished by four different strategies. (a) Some bacteria can reduce the aromatic ring of dinitro and trinitro compounds by the addition of a hydride ion to form a hydride-Meisenheimer complex, which subsequently rearomatizes with the elimination of nitrite. (b) Monooxygenase enzymes can add a single oxygen atom and eliminate the nitro group from nitrophenols. (c) Dioxygenase enzymes can insert two hydroxyl groups into the aromatic ring and precipitate the spontaneous elimination of the nitro group from a variety of nitroaromatic compounds. (d) Reduction of the nitro group to the corresponding

    15. Grape and grape seed extract capacities at protecting LDL against oxidation generated by Cu2+, AAPH or SIN-1 and at decreasing superoxide THP-1 cell production. A comparison to other extracts or compounds.

      PubMed

      Shafiee, Manijeh; Carbonneau, Marie-Annette; Urban, Nelly; Descomps, Bernard; Leger, Claude L

      2003-05-01

      A large body of evidence supports the key role of oxidized low-density lipoprotein in atherosclerosis. The aim of this study was to compare the capacity of natural polyphenols (PP) from Vitis vinifera and Olea europea at protecting LDL against oxidation brought about by Cu2+, oxygen-centered radical-generating AAPH, or peroxynitrite-generating SIN-1 in vitro systems, or at impairing superoxide production in promonocyte cells (THP-1) conveniently differentiated into adherent macrophages. PP were either from the whole grape (fraction A) containing mainly procyanidins, (epi)-catechin and anthocyanins, or from grape seed extracts (fractions B and C) consisting of tannins and procyanidin oligomers with a higher content in B than in C, or from a grape skin extract (fraction D) consisting mainly of anthocyanins, or from a hydrosoluble olive mill wastewater PP extract (fraction E) containing hydroxytyrosol and oleuropein. Chlorogenic acid (F) and catechin (G) were taken as archetypes of PP preventing oxidation partly as copper scavenger and as radical scavenger only, respectively. All grape fractions were efficient towards Cu2+ system (equally or more efficient than F), whereas they were rather poorly efficient towards AAPH and SIN-1 (less efficient than G but as efficient as F). Among the PP fractions, B was the most effective at protecting LDL in the SIN-1 system and at impairing THP-1 superoxide production. Taken together, these data suggest that the PP fraction from grape seed rich in procyanidins achieves the best compromise between the direct and indirect (i.e. cell-mediated) types of action in protecting LDL against oxidation, strengthening the need for improving the knowledge of its bioavailability in humans.

    16. Synthetic biology and genetic causation.

      PubMed

      Oftedal, Gry; Parkkinen, Veli-Pekka

      2013-06-01

      Synthetic biology research is often described in terms of programming cells through the introduction of synthetic genes. Genetic material is seemingly attributed with a high level of causal responsibility. We discuss genetic causation in synthetic biology and distinguish three gene concepts differing in their assumptions of genetic control. We argue that synthetic biology generally employs a difference-making approach to establishing genetic causes, and that this approach does not commit to a specific notion of genetic program or genetic control. Still, we suggest that a strong program concept of genetic material can be used as a successful heuristic in certain areas of synthetic biology. Its application requires control of causal context, and may stand in need of a modular decomposition of the target system. We relate different modularity concepts to the discussion of genetic causation and point to possible advantages of and important limitations to seeking modularity in synthetic biology systems.

    17. Chemically Modified Graphene: The Influence of Structural Properties on the Assessment of Antioxidant Capacity.

      PubMed

      Hui, Kai Hwee; Pumera, Martin; Bonanni, Alessandra

      2015-08-10

      Graphene materials obtained by different synthetic routes possess dissimilar amount of defects and surface functionalities, which can influence their electrochemical performance towards the detection of electroactive probes. Oxygen-containing groups can be either detrimental to the heterogeneous charge transfer or promote favorable interactions between the graphene surface and the analyte of interest, depending on the structure of the latter. Here, we compared three chemically modified graphenes, obtained by various procedures and carrying different amounts of oxygen functionalities, for the detection of standard gallic acid, a compound commonly used as an index of the antioxidant capacity of food and beverages. We found that electrochemically reduced graphene provided the best electrochemical performance in terms of calibration sensitivity, selectivity, and linearity of response. Our findings are important in order to understand the suitability of graphene platforms for the assessment of food quality.

    18. 1,4-Dihydropyridine Derivatives: Dihydronicotinamide Analogues—Model Compounds Targeting Oxidative Stress

      PubMed Central

      Velena, Astrida; Zarkovic, Neven; Gall Troselj, Koraljka; Bisenieks, Egils; Krauze, Aivars; Poikans, Janis; Duburs, Gunars

      2016-01-01

      Many 1,4-dihydropyridines (DHPs) possess redox properties. In this review DHPs are surveyed as protectors against oxidative stress (OS) and related disorders, considering the DHPs as specific group of potential antioxidants with bioprotective capacities. They have several peculiarities related to antioxidant activity (AOA). Several commercially available calcium antagonist, 1,4-DHP drugs, their metabolites, and calcium agonists were shown to express AOA. Synthesis, hydrogen donor properties, AOA, and methods and approaches used to reveal biological activities of various groups of 1,4-DHPs are presented. Examples of DHPs antioxidant activities and protective effects of DHPs against OS induced damage in low density lipoproteins (LDL), mitochondria, microsomes, isolated cells, and cell cultures are highlighted. Comparison of the AOA of different DHPs and other antioxidants is also given. According to the data presented, the DHPs might be considered as bellwether among synthetic compounds targeting OS and potential pharmacological model compounds targeting oxidative stress important for medicinal chemistry. PMID:26881016

    19. 1,4-Dihydropyridine Derivatives: Dihydronicotinamide Analogues-Model Compounds Targeting Oxidative Stress.

      PubMed

      Velena, Astrida; Zarkovic, Neven; Gall Troselj, Koraljka; Bisenieks, Egils; Krauze, Aivars; Poikans, Janis; Duburs, Gunars

      2016-01-01

      Many 1,4-dihydropyridines (DHPs) possess redox properties. In this review DHPs are surveyed as protectors against oxidative stress (OS) and related disorders, considering the DHPs as specific group of potential antioxidants with bioprotective capacities. They have several peculiarities related to antioxidant activity (AOA). Several commercially available calcium antagonist, 1,4-DHP drugs, their metabolites, and calcium agonists were shown to express AOA. Synthesis, hydrogen donor properties, AOA, and methods and approaches used to reveal biological activities of various groups of 1,4-DHPs are presented. Examples of DHPs antioxidant activities and protective effects of DHPs against OS induced damage in low density lipoproteins (LDL), mitochondria, microsomes, isolated cells, and cell cultures are highlighted. Comparison of the AOA of different DHPs and other antioxidants is also given. According to the data presented, the DHPs might be considered as bellwether among synthetic compounds targeting OS and potential pharmacological model compounds targeting oxidative stress important for medicinal chemistry.

    20. Synthetic and Alternate Fuels Characterization

      DTIC Science & Technology

      1988-02-01

      e-e AD-A197 531 AD_ m iI ORNL/TM-10706 OAK RIDGE NATIONAL Synthetic and Alternate LABORATORY Fuels Characterization •_ _ __ _ _Final Report February...21701-5012 62787A 2787A878 CA 294 11 TITLE (Include Security Classification) Synthetic and Alternate Fuels Characterization 12 PERSONAL AUTHOR(S) W. H...results suggest that highly refined and finished mobility fuels from synthetic or alternate sources will not pose a significantly greater toxicological

    1. Synthetic metabolism: metabolic engineering meets enzyme design.

      PubMed

      Erb, Tobias J; Jones, Patrik R; Bar-Even, Arren

      2017-01-30

      Metabolic engineering aims at modifying the endogenous metabolic network of an organism to harness it for a useful biotechnological task, for example, production of a value-added compound. Several levels of metabolic engineering can be defined and are the topic of this review. Basic 'copy, paste and fine-tuning' approaches are limited to the structure of naturally existing pathways. 'Mix and match' approaches freely recombine the repertoire of existing enzymes to create synthetic metabolic networks that are able to outcompete naturally evolved pathways or redirect flux toward non-natural products. The space of possible metabolic solution can be further increased through approaches including 'new enzyme reactions', which are engineered on the basis of known enzyme mechanisms. Finally, by considering completely 'novel enzyme chemistries' with de novo enzyme design, the limits of nature can be breached to derive the most advanced form of synthetic pathways. We discuss the challenges and promises associated with these different metabolic engineering approaches and illuminate how enzyme engineering is expected to take a prime role in synthetic metabolic engineering for biotechnology, chemical industry and agriculture of the future.

    2. Synthetic organic chemicals in earthworms from agriculture soil amended with municipal biosolids

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Introduction: Biosolids resulting from municipal wastewater treatment are known to contain residues of pharmaceuticals, personal care products (PPCPs) and other synthetic organic compounds. Many of these are contaminants of emerging concern for their potential endocrine disruption of fish and wildli...

    3. Scaling Reversible Adhesion in Synthetic and Biological Systems

      NASA Astrophysics Data System (ADS)

      Bartlett, Michael; Irschick, Duncan; Crosby, Alfred

      2013-03-01

      High capacity, easy release polymer adhesives, as demonstrated by a gecko's toe, present unique opportunities for synthetic design. However, without a framework that connects biological and synthetic adhesives from basic nanoscopic features to macroscopic systems, synthetic mimics have failed to perform favorably at large length scales. Starting from an energy balance, we develop a scaling approach to understand unstable interfacial fracture over multiple length scales. The simple theory reveals that reversibly adhesive polymers do not rely upon fibrillar features but require contradicting attributes: maximum compliance normal to the substrate and minimum compliance in the loading direction. We use this counterintuitive criterion to create reversible, easy release adhesives at macroscopic sizes (100 cm2) with unprecedented force capacities on the order of 3000 N. Importantly, we achieve this without fibrillar features, supporting our predictions and emphasizing the importance of subsurface anatomy in biological adhesive systems. Our theory describes adhesive force capacity as a function of material properties and geometry and is supported by over 1000 experiments, spanning both synthetic and biological adhesives, with agreement over 14 orders of magnitude in adhesive force.

    4. Entraining synthetic genetic oscillators

      NASA Astrophysics Data System (ADS)

      Wagemakers, Alexandre; Buldú, Javier M.; Sanjuán, Miguel A. F.; de Luis, Oscar; Izquierdo, Adriana; Coloma, Antonio

      2009-09-01

      We propose a new approach for synchronizing a population of synthetic genetic oscillators, which consists in the entrainment of a colony of repressilators by external modulation. We present a model where the repressilator dynamics is affected by periodic changes in temperature. We introduce an additional plasmid in the bacteria in order to correlate the temperature variations with the enhancement of the transcription rate of a certain gene. This can be done by introducing a promoter that is related to the heat shock response. This way, the expression of that gene results in a protein that enhances the overall oscillations. Numerical results show coherent oscillations of the population for a certain range of the external frequency, which is in turn related to the natural oscillation frequency of the modified repressilator. Finally we study the transient times related with the loss of synchronization and we discuss possible applications in biotechnology of large-scale production coupled to synchronization events induced by heat shock.

    5. Synthetic quantum systems

      NASA Astrophysics Data System (ADS)

      Cahill, Reginald T.

      2002-10-01

      So far proposed quantum computers use fragile and environmentally sensitive natural quantum systems. Here we explore the new notion that synthetic quantum systems suitable for quantum computation may be fabricated from smart nanostructures using topological excitations of a stochastic neural-type network that can mimic natural quantum systems. These developments are a technological application of process physics which is an information theory of reality in which space and quantum phenomena are emergent, and so indicates the deep origins of quantum phenomena. Analogous complex stochastic dynamical systems have recently been proposed within neurobiology to deal with the emergent complexity of biosystems, particularly the biodynamics of higher brain function. The reasons for analogous discoveries in fundamental physics and neurobiology are discussed.

    6. Evolutionary synthetic biology.

      PubMed

      Peisajovich, Sergio G

      2012-06-15

      Signaling networks process vast amounts of environmental information to generate specific cellular responses. As cellular environments change, signaling networks adapt accordingly. Here, I will discuss how the integration of synthetic biology and directed evolution approaches is shedding light on the molecular mechanisms that guide the evolution of signaling networks. In particular, I will review studies that demonstrate how different types of mutations, from the replacement of individual amino acids to the shuffling of modular domains, lead to markedly different evolutionary trajectories and consequently to diverse network rewiring. Moreover, I will argue that intrinsic evolutionary properties of signaling proteins, such as the robustness of wild type functions, the promiscuous nature of evolutionary intermediates, and the modular decoupling between binding and catalysis, play important roles in the evolution of signaling networks. Finally, I will argue that rapid advances in our ability to synthesize DNA will radically alter how we study signaling network evolution at the genome-wide level.

    7. Synthetic biology and occupational risk.

      PubMed

      Howard, John; Murashov, Vladimir; Schulte, Paul

      2017-03-01

      Synthetic biology is an emerging interdisciplinary field of biotechnology that involves applying the principles of engineering and chemical design to biological systems. Biosafety professionals have done an excellent job in addressing research laboratory safety as synthetic biology and gene editing have emerged from the larger field of biotechnology. Despite these efforts, risks posed by synthetic biology are of increasing concern as research procedures scale up to industrial processes in the larger bioeconomy. A greater number and variety of workers will be exposed to commercial synthetic biology risks in the future, including risks to a variety of workers from the use of lentiviral vectors as gene transfer devices. There is a need to review and enhance current protection measures in the field of synthetic biology, whether in experimental laboratories where new advances are being researched, in health care settings where treatments using viral vectors as gene delivery systems are increasingly being used, or in the industrial bioeconomy. Enhanced worker protection measures should include increased injury and illness surveillance of the synthetic biology workforce; proactive risk assessment and management of synthetic biology products; research on the relative effectiveness of extrinsic and intrinsic biocontainment methods; specific safety guidance for synthetic biology industrial processes; determination of appropriate medical mitigation measures for lentiviral vector exposure incidents; and greater awareness and involvement in synthetic biology safety by the general occupational safety and health community as well as by government occupational safety and health research and regulatory agencies.

    8. Synthetic Genomics and Synthetic Biology Applications Between Hopes and Concerns

      PubMed Central

      König, Harald; Frank, Daniel; Heil, Reinhard; Coenen, Christopher

      2013-01-01

      New organisms and biological systems designed to satisfy human needs are among the aims of synthetic genomics and synthetic biology. Synthetic biology seeks to model and construct biological components, functions and organisms that do not exist in nature or to redesign existing biological systems to perform new functions. Synthetic genomics, on the other hand, encompasses technologies for the generation of chemically-synthesized whole genomes or larger parts of genomes, allowing to simultaneously engineer a myriad of changes to the genetic material of organisms. Engineering complex functions or new organisms in synthetic biology are thus progressively becoming dependent on and converging with synthetic genomics. While applications from both areas have been predicted to offer great benefits by making possible new drugs, renewable chemicals or clean energy, they have also given rise to concerns about new safety, environmental and socio-economic risks – stirring an increasingly polarizing debate. Here we intend to provide an overview on recent progress in biomedical and biotechnological applications of synthetic genomics and synthetic biology as well as on arguments and evidence related to their possible benefits, risks and governance implications. PMID:23997647

    9. Synthetic genomics and synthetic biology applications between hopes and concerns.

      PubMed

      König, Harald; Frank, Daniel; Heil, Reinhard; Coenen, Christopher

      2013-03-01

      New organisms and biological systems designed to satisfy human needs are among the aims of synthetic genomics and synthetic biology. Synthetic biology seeks to model and construct biological components, functions and organisms that do not exist in nature or to redesign existing biological systems to perform new functions. Synthetic genomics, on the other hand, encompasses technologies for the generation of chemically-synthesized whole genomes or larger parts of genomes, allowing to simultaneously engineer a myriad of changes to the genetic material of organisms. Engineering complex functions or new organisms in synthetic biology are thus progressively becoming dependent on and converging with synthetic genomics. While applications from both areas have been predicted to offer great benefits by making possible new drugs, renewable chemicals or clean energy, they have also given rise to concerns about new safety, environmental and socio-economic risks - stirring an increasingly polarizing debate. Here we intend to provide an overview on recent progress in biomedical and biotechnological applications of synthetic genomics and synthetic biology as well as on arguments and evidence related to their possible benefits, risks and governance implications.

    10. Synthetic musk fragrances in Lake Michigan.

      PubMed

      Peck, Aaron M; Hornbuckle, Keri C

      2004-01-15

      Synthetic musk fragrances are added to a wide variety of personal care and household products and are present in treated wastewater effluent. Here we report for the first time ambient air and water measurements of six polycyclic musks (AHTN, HHCB, ATII, ADBI, AHMI, and DPMI) and two nitro musks (musk xylene and musk ketone) in North America. The compounds were measured in the air and water of Lake Michigan and in the air of urban Milwaukee, WI. All of the compounds except DPMI were detected. HHCB and AHTN were found in the highest concentrations in all samples. Airborne concentrations of HHCB and AHTN average 4.6 and 2.9 ng/m3, respectively, in Milwaukee and 1.1 and 0.49 ng/m3 over the lake. The average water concentration of HHCB and AHTN in Lake Michigan was 4.7 and 1.0 ng/L, respectively. A lake-wide annual mass budget shows that wastewater treatment plant discharge is the major source (3470 kg/yr) of the synthetic musks while atmospheric deposition contributes less than 1%. Volatilization and outflow through the Straits of Mackinac are major loss mechanisms (2085 and 516 kg/yr for volatilization and outflow, respectively). Concentrations of HHCB are about one-half the predicted steady-state water concentrations in Lake Michigan.

    11. SYNTHETIC STUDIES ON PEPTIDES.

      DTIC Science & Technology

      In an effort to devise a new protecting group (amidino group) for the thiol group of cysteine the reaction of N-benzyloxycarbonyl-L- cysteine with...cyanamide was explored. A crystalline product obtained from the reaction between N-benzyloxycarbonyl-L- cysteine and cyanamide was shown to possess the...elemental composition C12H13O3N3S. A cyclic sturcture (Formula VI) appears to represent the correct formulation for this compound. L- Cysteine

    12. Synthetic biology: An emerging research field in China

      PubMed Central

      Pei, Lei; Schmidt, Markus; Wei, Wei

      2011-01-01

      Synthetic biology is considered as an emerging research field that will bring new opportunities to biotechnology. There is an expectation that synthetic biology will not only enhance knowledge in basic science, but will also have great potential for practical applications. Synthetic biology is still in an early developmental stage in China. We provide here a review of current Chinese research activities in synthetic biology and its different subfields, such as research on genetic circuits, minimal genomes, chemical synthetic biology, protocells and DNA synthesis, using literature reviews and personal communications with Chinese researchers. To meet the increasing demand for a sustainable development, research on genetic circuits to harness biomass is the most pursed research within Chinese researchers. The environmental concerns are driven force of research on the genetic circuits for bioremediation. The research on minimal genomes is carried on identifying the smallest number of genomes needed for engineering minimal cell factories and research on chemical synthetic biology is focused on artificial proteins and expanded genetic code. The research on protocells is more in combination with the research on molecular-scale motors. The research on DNA synthesis and its commercialisation are also reviewed. As for the perspective on potential future Chinese R&D activities, it will be discussed based on the research capacity and governmental policy. PMID:21729747

    13. Holographically Correcting Synthetic Aperture Aberrations.

      DTIC Science & Technology

      1987-12-01

      Malacara (20:105-148). The synthetic aperture was aligned in accordance with the synthetic-aperture alignment technique of Gill (8:61-64). The...1987. 20. Malacara , Daniel, ed. Optical Shop Testing. New York: John Wiley & Sons, 1978. 21. Marciniak, Capt Michael. Tutorial Presentation of mV

    14. Synthetic biology and metabolic engineering.

      PubMed

      Stephanopoulos, Gregory

      2012-11-16

      Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

    15. Synthetic Foveal Imaging Technology

      NASA Technical Reports Server (NTRS)

      Hoenk, Michael; Monacos, Steve; Nikzad, Shouleh

      2009-01-01

      Synthetic Foveal imaging Technology (SyFT) is an emerging discipline of image capture and image-data processing that offers the prospect of greatly increased capabilities for real-time processing of large, high-resolution images (including mosaic images) for such purposes as automated recognition and tracking of moving objects of interest. SyFT offers a solution to the image-data processing problem arising from the proposed development of gigapixel mosaic focal-plane image-detector assemblies for very wide field-of-view imaging with high resolution for detecting and tracking sparse objects or events within narrow subfields of view. In order to identify and track the objects or events without the means of dynamic adaptation to be afforded by SyFT, it would be necessary to post-process data from an image-data space consisting of terabytes of data. Such post-processing would be time-consuming and, as a consequence, could result in missing significant events that could not be observed at all due to the time evolution of such events or could not be observed at required levels of fidelity without such real-time adaptations as adjusting focal-plane operating conditions or aiming of the focal plane in different directions to track such events. The basic concept of foveal imaging is straightforward: In imitation of a natural eye, a foveal-vision image sensor is designed to offer higher resolution in a small region of interest (ROI) within its field of view. Foveal vision reduces the amount of unwanted information that must be transferred from the image sensor to external image-data-processing circuitry. The aforementioned basic concept is not new in itself: indeed, image sensors based on these concepts have been described in several previous NASA Tech Briefs articles. Active-pixel integrated-circuit image sensors that can be programmed in real time to effect foveal artificial vision on demand are one such example. What is new in SyFT is a synergistic combination of recent

    16. Recent advances in synthetic biosafety

      PubMed Central

      Simon, Anna J.; Ellington, Andrew D.

      2016-01-01

      Synthetically engineered organisms hold promise for a broad range of medical, environmental, and industrial applications. Organisms can potentially be designed, for example, for the inexpensive and environmentally benign synthesis of pharmaceuticals and industrial chemicals, for the cleanup of environmental pollutants, and potentially even for biomedical applications such as the targeting of specific diseases or tissues. However, the use of synthetically engineered organisms comes with several reasonable safety concerns, one of which is that the organisms or their genes could escape their intended habitats and cause environmental disruption. Here we review key recent developments in this emerging field of synthetic biocontainment and discuss further developments that might be necessary for the widespread use of synthetic organisms. Specifically, we discuss the history and modern development of three strategies for the containment of synthetic microbes: addiction to an exogenously supplied ligand; self-killing outside of a designated environment; and self-destroying encoded DNA circuitry outside of a designated environment. PMID:27635235

    17. Polybenzimidazole compounds

      DOEpatents

      Klaehn, John R [Idaho Falls, ID; Peterson, Eric S [Idaho Falls, ID; Orme, Christopher J [Shelley, ID; Jones, Michael G [Chubbuck, ID; Wertsching, Alan K [Idaho Falls, ID; Luther, Thomas A [Idaho Falls, ID; Trowbridge, Tammy L [Idaho Falls, ID

      2011-11-22

      A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO--, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.

    18. Polybenzimidazole compounds

      DOEpatents

      Klaehn, John R.; Peterson, Eric S.; Wertsching, Alan K.; Orme, Christopher J.; Luther, Thomas A.; Jones, Michael G.

      2010-08-10

      A PBI compound that includes imidazole nitrogens, at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2--, where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least five equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about fifteen equivalents.

    19. Synthetic cannabinoids 2015: An update for pediatricians in clinical practice

      PubMed Central

      Castellanos, Daniel; Gralnik, Leonard M

      2016-01-01

      Synthetic cannabinoids are a group of substances in the world of designer drugs that have become increasingly popular over the past few years. Synthetic cannabinoids are a chemically diverse group of compounds functionally similar to THC. Since first appearing on the world market a few years ago these compounds have evolved rapidly. Newer more potent analogues have been developed. Identifying youth who abuse these substances can be difficult. Newer forms of consumption have also evolved. These products are now manufactured in products that look like natural cannabis resin and in liquid cartridges used in electronic cigarettes. Synthetic cannabinoids appear to be associated with potentially dangerous health effects that are more severe than that of marijuana. Some synthetic cannabinoid compounds have been associated with serious physical consequences, such as, seizures, myocardial infarction and renal damage. In addition, psychoactive effects, such as aggression, confusion, anxiety and psychosis have also been reported. The diagnosis remains primarily clinical with toxicological confirmation difficult due to manufacturers constantly developing new analogues to avoid detection. Pediatricians are urged to familiarize themselves with these drugs and the typical presentations of patients who use them. PMID:26862498

    20. Synthetic cannabinoids 2015: An update for pediatricians in clinical practice.

      PubMed

      Castellanos, Daniel; Gralnik, Leonard M

      2016-02-08

      Synthetic cannabinoids are a group of substances in the world of designer drugs that have become increasingly popular over the past few years. Synthetic cannabinoids are a chemically diverse group of compounds functionally similar to THC. Since first appearing on the world market a few years ago these compounds have evolved rapidly. Newer more potent analogues have been developed. Identifying youth who abuse these substances can be difficult. Newer forms of consumption have also evolved. These products are now manufactured in products that look like natural cannabis resin and in liquid cartridges used in electronic cigarettes. Synthetic cannabinoids appear to be associated with potentially dangerous health effects that are more severe than that of marijuana. Some synthetic cannabinoid compounds have been associated with serious physical consequences, such as, seizures, myocardial infarction and renal damage. In addition, psychoactive effects, such as aggression, confusion, anxiety and psychosis have also been reported. The diagnosis remains primarily clinical with toxicological confirmation difficult due to manufacturers constantly developing new analogues to avoid detection. Pediatricians are urged to familiarize themselves with these drugs and the typical presentations of patients who use them.

    1. Synthetic retinoids in dermatology

      PubMed Central

      Heller, Elizabeth H.; Shiffman, Norman J.

      1985-01-01

      The potential of vitamin A, or retinol, in the treatment of a variety of skin diseases has long been recognized, but because of serious toxic effects this substance generally could not be used. The recent development and marketing of two relatively nontoxic synthetic analogues, which are known as retinoids, has made it possible to treat some of the diseases that are resistant to standard forms of therapy. Isotretinoin is very effective in cystic and conglobate acne, while etretinate is especially useful in the more severe forms of psoriasis. Good results have also been obtained in other disorders of keratinization. Vitamin A and its derivatives apparently have an antineoplastic effect as well and may come to be used in both the prevention and the treatment of epithelial cancer. In many of these diseases the retinoids act by enhancing the normal differentiation and proliferation of epidermal tissues, but the exact mechanisms are not well understood. Their influence on the intracellular polyamines that control the synthesis of nucleic acids and proteins may be an important factor. Although the retinoids have few serious systemic effects, they are teratogenic, and because they persist in the body their use in women of childbearing potential is limited. ImagesFig. 3 PMID:3158386

    2. Synthetic aperture hitchhiker imaging.

      PubMed

      Yarman, Can Evren; Yazici, Birsen

      2008-11-01

      We introduce a novel synthetic-aperture imaging method for radar systems that rely on sources of opportunity. We consider receivers that fly along arbitrary, but known, flight trajectories and develop a spatio-temporal correlation-based filtered-backprojection-type image reconstruction method. The method involves first correlating the measurements from two different receiver locations. This leads to a forward model where the radiance of the target scene is projected onto the intersection of certain hyperboloids with the surface topography. We next use microlocal techniques to develop a filtered-backprojection-type inversion method to recover the scene radiance. The method is applicable to both stationary and mobile, and cooperative and noncooperative sources of opportunity. Additionally, it is applicable to nonideal imaging scenarios such as those involving arbitrary flight trajectories, and has the desirable property of preserving the visible edges of the scene radiance. We present an analysis of the computational complexity of the image reconstruction method and demonstrate its performance in numerical simulations for single and multiple transmitters of opportunity.

    3. Computing with synthetic protocells.

      PubMed

      Courbet, Alexis; Molina, Franck; Amar, Patrick

      2015-09-01

      In this article we present a new kind of computing device that uses biochemical reactions networks as building blocks to implement logic gates. The architecture of a computing machine relies on these generic and composable building blocks, computation units, that can be used in multiple instances to perform complex boolean functions. Standard logical operations are implemented by biochemical networks, encapsulated and insulated within synthetic vesicles called protocells. These protocells are capable of exchanging energy and information with each other through transmembrane electron transfer. In the paradigm of computation we propose, protoputing, a machine can solve only one problem and therefore has to be built specifically. Thus, the programming phase in the standard computing paradigm is represented in our approach by the set of assembly instructions (specific attachments) that directs the wiring of the protocells that constitute the machine itself. To demonstrate the computing power of protocellular machines, we apply it to solve a NP-complete problem, known to be very demanding in computing power, the 3-SAT problem. We show how to program the assembly of a machine that can verify the satisfiability of a given boolean formula. Then we show how to use the massive parallelism of these machines to verify in less than 20 min all the valuations of the input variables and output a fluorescent signal when the formula is satisfiable or no signal at all otherwise.

    4. Phase transitions and unusual behavior of heat capacity in metal organic framework compound Zn{sub 2}(C{sub 8}H{sub 4}O{sub 4}){sub 2}·N{sub 2}(CH{sub 2}){sub 6}

      SciTech Connect

      Paukov, I.E.; Samsonenko, D.G.; Pischur, D.P.; Kozlova, S.G.; Gabuda, S.P.

      2014-12-15

      Thermodynamic properties of high-porous metal-organic framework (MOF) compound Zn{sub 2}(C{sub 8}H{sub 4}O{sub 4}){sub 2}·N{sub 2}(CH{sub 2}){sub 6} were studied in the temperature range 8.9–300 K using low-temperature adiabatic calorymetry and DSC methods. Phase transitions were observed at ∼15, ∼60, and ∼135 K. It is shown that specific heat of the compound obeys the classical Debye law C{sub p}∼T{sup 3} only below 15 K, whereas above 15 K it is proportional to the first degree of temperature, C{sub p}∼T, to indicate a strong anisotropy of crystal vibrations corresponding to 1D continuum. It is shown that the strong anisotropy can be related to coordination interaction of Zn{sup 2+} and N{sub 2}(CH{sub 2}){sub 6} ligands in the specific structure of compound Zn{sub 2}(C{sub 8}H{sub 4}O{sub 4}){sub 2}·N{sub 2}(CH{sub 2}){sub 6}. - Graphical abstract: Specific heat C{sub p} is proportional to the first degree of temperature showing a strong anisotropy of crystal vibrations corresponding to 1D continuum in Zn{sub 2}(C{sub 8}H{sub 4}O{sub 4}){sub 2}·N{sub 2}(CH{sub 2}){sub 6.} - Highlights: • Specific heat capacity of Zn{sub 2}(C{sub 8}H{sub 4}O{sub 4}){sub 2}·N{sub 2}(CH{sub 2}){sub 6} was first studied at 8.9–300 K. • Phase transitions were observed at ∼15, ∼60, and ∼135 K. • The heat capacity is proportional to the first degree of temperature above 15 K. • The discovered dependency corresponds to a one-dimensional vibration continuum.

    5. Synthetic biology: Understanding biological design from synthetic circuits

      PubMed Central

      Mukherji, Shankar; van Oudenaarden, Alexander

      2011-01-01

      An important aim of synthetic biology is to uncover the design principles of natural biological systems through the rational design of gene and protein circuits. Here we highlight how the process of engineering biological systems — from synthetic promoters to the control of cell–cell interactions — has contributed to our understanding of how endogenous systems are put together and function. Synthetic biological devices allow us to intuitively grasp the ranges of behavior generated by simple biological circuits, such as linear cascades and interlocking feedback loops, as well as to exert control over natural processes such as gene expression and population dynamics. PMID:19898500

    6. Biomedically relevant circuit-design strategies in mammalian synthetic biology

      PubMed Central

      Bacchus, William; Aubel, Dominique; Fussenegger, Martin

      2013-01-01

      The development and progress in synthetic biology has been remarkable. Although still in its infancy, synthetic biology has achieved much during the past decade. Improvements in genetic circuit design have increased the potential for clinical applicability of synthetic biology research. What began as simple transcriptional gene switches has rapidly developed into a variety of complex regulatory circuits based on the transcriptional, translational and post-translational regulation. Instead of compounds with potential pharmacologic side effects, the inducer molecules now used are metabolites of the human body and even members of native cell signaling pathways. In this review, we address recent progress in mammalian synthetic biology circuit design and focus on how novel designs push synthetic biology toward clinical implementation. Groundbreaking research on the implementation of optogenetics and intercellular communications is addressed, as particularly optogenetics provides unprecedented opportunities for clinical application. Along with an increase in synthetic network complexity, multicellular systems are now being used to provide a platform for next-generation circuit design. PMID:24061539

    7. Synthetic clay-supported catalysts for coal liquefaction

      SciTech Connect

      Olson, E.S.; Sharma, R.K.

      1994-12-31

      Synthetic clays with nickel substitution in the lattice structure are highly active catalysts for hydrogenation and hydroisomerization and, consequently, have considerable promise for the catalytic upgrading of coal liquids. Nickel-substituted synthetic mica montmorillonite (NiSMM) was prepared and subsequently impregnated with molybdenum and sulfided. The reaction of model compounds with these catalysts in the presence of hydrogen has been investigated to provide mechanistic models for coal liquefaction. The results indicate that NiSMM has active Bronsted acid sites for hydrocracking and hydroisomerization. The hydrogen-activating ability of the molybdenum and nickel sulfide sites proximate to the acid sites results in effective depolymerization catalysis.

    8. Factors influencing the antifolate activity of synthetic tea-derived catechins.

      PubMed

      Sáez-Ayala, Magalí; Fernández-Pérez, María Piedad; Chazarra, Soledad; Mchedlishvili, Nani; Tárraga-Tomás, Alberto; Rodríguez-López, José Neptuno

      2013-07-16

      Novel tea catechin derivatives have been synthesized, and a structure-activity study, related to the capacity of these and other polyphenols to bind dihydrofolate reductase (DHFR), has been performed. The data showed an effective binding between all molecules and the free enzyme, and the dissociation constants of the synthetic compounds and of the natural analogues were on the same order. Polyphenols with a catechin configuration were better DHFR inhibitors than those with an epicatechin configuration. Antiproliferative activity was also studied in cultured tumour cells, and the data showed that the activity of the novel derivatives was higher in catechin isomers. Derivatives with a hydroxyl group para on the ester-bonded gallate moiety presented a high in vitro binding to DHFR, but exhibited transport problems in cell culture due to ionization at physiologic pHs. The impact of the binding of catechins to serum albumin on their biological activity was also evaluated. The information provided in this study could be important for the design of novel medicinal active compounds derived from tea catechins. The data suggest that changes in their structure to avoid serum albumin interactions and to facilitate plasmatic membrane transport are essential for the intracellular functions of catechins.

    9. On Gaussian feedback capacity

      NASA Technical Reports Server (NTRS)

      Dembo, Amir

      1989-01-01

      Pinsker and Ebert (1970) proved that in channels with additive Gaussian noise, feedback at most doubles the capacity. Cover and Pombra (1989) proved that feedback at most adds half a bit per transmission. Following their approach, the author proves that in the limit as signal power approaches either zero (very low SNR) or infinity (very high SNR), feedback does not increase the finite block-length capacity (which for nonstationary Gaussian channels replaces the standard notion of capacity that may not exist). Tighter upper bounds on the capacity are obtained in the process. Specializing these results to stationary channels, the author recovers some of the bounds recently obtained by Ozarow.

    10. Synthetic biology and personalized medicine.

      PubMed

      Jain, K K

      2013-01-01

      Synthetic biology, application of synthetic chemistry to biology, is a broad term that covers the engineering of biological systems with structures and functions not found in nature to process information, manipulate chemicals, produce energy, maintain cell environment and enhance human health. Synthetic biology devices contribute not only to improve our understanding of disease mechanisms, but also provide novel diagnostic tools. Methods based on synthetic biology enable the design of novel strategies for the treatment of cancer, immune diseases metabolic disorders and infectious diseases as well as the production of cheap drugs. The potential of synthetic genome, using an expanded genetic code that is designed for specific drug synthesis as well as delivery and activation of the drug in vivo by a pathological signal, was already pointed out during a lecture delivered at Kuwait University in 2005. Of two approaches to synthetic biology, top-down and bottom-up, the latter is more relevant to the development of personalized medicines as it provides more flexibility in constructing a partially synthetic cell from basic building blocks for a desired task.

    11. Distributed and collaborative synthetic environments

      NASA Technical Reports Server (NTRS)

      Bajaj, Chandrajit L.; Bernardini, Fausto

      1995-01-01

      Fast graphics workstations and increased computing power, together with improved interface technologies, have created new and diverse possibilities for developing and interacting with synthetic environments. A synthetic environment system is generally characterized by input/output devices that constitute the interface between the human senses and the synthetic environment generated by the computer; and a computation system running a real-time simulation of the environment. A basic need of a synthetic environment system is that of giving the user a plausible reproduction of the visual aspect of the objects with which he is interacting. The goal of our Shastra research project is to provide a substrate of geometric data structures and algorithms which allow the distributed construction and modification of the environment, efficient querying of objects attributes, collaborative interaction with the environment, fast computation of collision detection and visibility information for efficient dynamic simulation and real-time scene display. In particular, we address the following issues: (1) A geometric framework for modeling and visualizing synthetic environments and interacting with them. We highlight the functions required for the geometric engine of a synthetic environment system. (2) A distribution and collaboration substrate that supports construction, modification, and interaction with synthetic environments on networked desktop machines.

    12. Bistatic synthetic aperture radar

      NASA Astrophysics Data System (ADS)

      Yates, Gillian

      Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

    13. Heat Capacity Analysis Report

      SciTech Connect

      A. Findikakis

      2004-11-01

      The purpose of this report is to provide heat capacity values for the host and surrounding rock layers for the waste repository at Yucca Mountain. The heat capacity representations provided by this analysis are used in unsaturated zone (UZ) flow, transport, and coupled processes numerical modeling activities, and in thermal analyses as part of the design of the repository to support the license application. Among the reports that use the heat capacity values estimated in this report are the ''Multiscale Thermohydrologic Model'' report, the ''Drift Degradation Analysis'' report, the ''Ventilation Model and Analysis Report, the Igneous Intrusion Impacts on Waste Packages and Waste Forms'' report, the ''Dike/Drift Interactions report, the Drift-Scale Coupled Processes (DST and TH Seepage) Models'' report, and the ''In-Drift Natural Convection and Condensation'' report. The specific objective of this study is to determine the rock-grain and rock-mass heat capacities for the geologic stratigraphy identified in the ''Mineralogic Model (MM3.0) Report'' (BSC 2004 [DIRS 170031], Table 1-1). This report provides estimates of the heat capacity for all stratigraphic layers except the Paleozoic, for which the mineralogic abundance data required to estimate the heat capacity are not available. The temperature range of interest in this analysis is 25 C to 325 C. This interval is broken into three separate temperature sub-intervals: 25 C to 95 C, 95 C to 114 C, and 114 C to 325 C, which correspond to the preboiling, trans-boiling, and postboiling regimes. Heat capacity is defined as the amount of energy required to raise the temperature of a unit mass of material by one degree (Nimick and Connolly 1991 [DIRS 100690], p. 5). The rock-grain heat capacity is defined as the heat capacity of the rock solids (minerals), and does not include the effect of water that exists in the rock pores. By comparison, the rock-mass heat capacity considers the heat capacity of both solids and pore

    14. Synthetic biology for therapeutic applications.

      PubMed

      Abil, Zhanar; Xiong, Xiong; Zhao, Huimin

      2015-02-02

      Synthetic biology is a relatively new field with the key aim of designing and constructing biological systems with novel functionalities. Today, synthetic biology devices are making their first steps in contributing new solutions to a number of biomedical challenges, such as emerging bacterial antibiotic resistance and cancer therapy. This review discusses some synthetic biology approaches and applications that were recently used in disease mechanism investigation and disease modeling, drug discovery and production, as well as vaccine development and treatment of infectious diseases, cancer, and metabolic disorders.

    15. Synthetic Biology for Therapeutic Applications

      PubMed Central

      2015-01-01

      Synthetic biology is a relatively new field with the key aim of designing and constructing biological systems with novel functionalities. Today, synthetic biology devices are making their first steps in contributing new solutions to a number of biomedical challenges, such as emerging bacterial antibiotic resistance and cancer therapy. This review discusses some synthetic biology approaches and applications that were recently used in disease mechanism investigation and disease modeling, drug discovery and production, as well as vaccine development and treatment of infectious diseases, cancer, and metabolic disorders. PMID:25098838

    16. Problems of Excess Capacity

      NASA Technical Reports Server (NTRS)

      Douglas, G.

      1972-01-01

      The problems of excess capacity in the airline industry are discussed with focus on the following topics: load factors; fair rate of return on investment; service-quality rivalry among airlines; pricing (fare) policies; aircraft production; and the impacts of excess capacity on operating costs. Also included is a discussion of the interrelationships among these topics.

    17. Liquid heat capacity lasers

      DOEpatents

      Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

      2007-05-01

      The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

    18. Multipurpose Compound

      NASA Technical Reports Server (NTRS)

      1983-01-01

      Specially formulated derivatives of an unusual basic compound known as Alcide may be the answer to effective treatment and prevention of the disease bovine mastitis, a bacterial inflammation of a cow's mammary gland that results in loss of milk production and in extreme cases, death. Manufactured by Alcide Corporation the Alcide compound has killed all tested bacteria, virus and fungi, shortly after contact, with minimal toxic effects on humans or animals. Alcide Corporation credits the existence of the mastitis treatment/prevention products to assistance provided the company by NERAC, Inc.

    19. Nanofluid heat capacities

      NASA Astrophysics Data System (ADS)

      Starace, Anne K.; Gomez, Judith C.; Wang, Jun; Pradhan, Sulolit; Glatzmaier, Greg C.

      2011-12-01

      Significant increases in the heat capacity of heat transfer fluids are needed not only to reduce the costs of liquid heating and cooling processes, but also to bring clean energy producing technologies like concentrating solar power (CSP) to price parity with conventional energy generation. It has been postulated that nanofluids could have higher heat capacities than conventional fluids. In this work, nano- and micron-sized particles were added to five base fluids (poly-α olefin, mineral oil, ethylene glycol, a mixture of water and ethylene glycol, and calcium nitrate tetrahydrate), and the resulting heat capacities were measured and compared with those of the neat base fluids and the weighted average of the heat capacities of the components. The particles used were inert metals and metal oxides that did not undergo any phase transitions over the temperature range studied. In the nanofluids studied here, we found no increase in heat capacity upon the addition of the particles larger than the experimental error.

    20. Who needs capacity?

      PubMed

      Buchanan, Alec

      2015-01-01

      The UK Law Commission's Discussion Paper, Criminal Liability: Insanity and Automatism, recommends introducing the concept of capacity to the insanity defence. The concept of capacity has an established role in those parts of the law that concern the validity of the decisions that people make, for instance in composing a will or entering into a contract. Making mental capacity a criterion for criminal responsibility in a mentally disordered defendant, however, is potentially problematic. First, the term capacity already has several different meanings in the literature on the jurisprudence of mental abnormality. Second, using the concept of capacity in the way that the Law Commission proposes poses difficulties that relate to the provision of testimony by expert witnesses.

    1. Mapping the Emergence of Synthetic Biology

      PubMed Central

      2016-01-01

      In this paper, we apply an original scientometric analyses to a corpus comprising synthetic biology (SynBio) publications in Thomson Reuters Web of Science to characterize the emergence of this new scientific field. Three results were drawn from this empirical investigation. First, despite the exponential growth of publications, the study of population level statistics (newcomers proportion, collaboration network structure) shows that SynBio has entered a stabilization process since 2010. Second, the mapping of textual and citational networks shows that SynBio is characterized by high heterogeneity and four different approaches: the central approach, where biobrick engineering is the most widespread; genome engineering; protocell creation; and metabolic engineering. We suggest that synthetic biology acts as an umbrella term allowing for the mobilization of resources, and also serves to relate scientific content and promises of applications. Third, we observed a strong intertwinement between epistemic and socio-economic dynamics. Measuring scientific production and impact and using structural analysis data, we identified a core set of mostly American scientists. Biographical analysis shows that these central and influential scientists act as “boundary spanners,” meaning that their importance to the field lies not only in their academic contributions, but also in their capacity to interact with other social spaces that are outside the academic sphere. PMID:27611324

    2. Mapping the Emergence of Synthetic Biology.

      PubMed

      Raimbault, Benjamin; Cointet, Jean-Philippe; Joly, Pierre-Benoît

      2016-01-01

      In this paper, we apply an original scientometric analyses to a corpus comprising synthetic biology (SynBio) publications in Thomson Reuters Web of Science to characterize the emergence of this new scientific field. Three results were drawn from this empirical investigation. First, despite the exponential growth of publications, the study of population level statistics (newcomers proportion, collaboration network structure) shows that SynBio has entered a stabilization process since 2010. Second, the mapping of textual and citational networks shows that SynBio is characterized by high heterogeneity and four different approaches: the central approach, where biobrick engineering is the most widespread; genome engineering; protocell creation; and metabolic engineering. We suggest that synthetic biology acts as an umbrella term allowing for the mobilization of resources, and also serves to relate scientific content and promises of applications. Third, we observed a strong intertwinement between epistemic and socio-economic dynamics. Measuring scientific production and impact and using structural analysis data, we identified a core set of mostly American scientists. Biographical analysis shows that these central and influential scientists act as "boundary spanners," meaning that their importance to the field lies not only in their academic contributions, but also in their capacity to interact with other social spaces that are outside the academic sphere.

    3. Metal immobilization in soils using synthetic zeolites.

      PubMed

      Oste, Leonard A; Lexmond, Theo M; Van Riemsdijk, Willem H

      2002-01-01

      In situ immobilization of heavy metals in contaminated soils is a technique to improve soil quality. Synthetic zeolites are potentially useful additives to bind heavy metals. This study selected the most effective zeolite in cadmium and zinc binding out of six synthetic zeolites (mordenite-type, faujasite-type, zeolite X, zeolite P, and two zeolites A) and one natural zeolite (clinoptilolite). Zeolite A appeared to have the highest binding capacity between pH 5 and 6.5 and was stable above pH 5.5. The second objective of this study was to investigate the effects of zeolite addition on the dissolved organic matter (DOM) concentration. Since zeolites increase soil pH and bind Ca, their application might lead to dispersion of organic matter. In a batch experiment, the DOM concentration increased by a factor of 5 when the pH increased from 6 to 8 as a result of zeolite A addition. A strong increase in DOM was also found in the leachate of soil columns, particularly in the beginning of the experiment. This resulted in higher metal leaching caused by metal-DOM complexes. In contrast, the free ionic concentration of Cd and Zn strongly decreased after the addition of zeolites, which might explain the reduction in metal uptake observed in plant growth experiments. Pretreatment of zeolites with acid (to prevent a pH increase) or Ca (to coagulate organic matter) suppressed the dispersion of organic matter, but also decreased the metal binding capacity of the zeolites due to competition of protons or Ca.

    4. Synthetic Turf Multiplies Stadium Use.

      ERIC Educational Resources Information Center

      Leach, Richard

      1979-01-01

      The high school stadium in Flint, Michigan, once was used only for varsity football games. After the installation of synthetic turf, an average of 332 events have been staged there each year. (Author/MLF)

    5. A Course on Synthetic Fuels.

      ERIC Educational Resources Information Center

      Kimmel, Howard S.; Tomkins, Reginald P. T.

      1985-01-01

      A senior-level, elective course on synthetic fuels was developed for chemistry and chemical engineering majors. The topics covered in this course, instructional strategies used, and independent student projects are described. (JN)

    6. Is synthetic biology mechanical biology?

      PubMed

      Holm, Sune

      2015-12-01

      A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

    7. Toward Engineering Synthetic Microbial Metabolism

      PubMed Central

      McArthur, George H.; Fong, Stephen S.

      2010-01-01

      The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements in de novo DNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of analytical and computer-aided design tools should accelerate the forward engineering of precisely regulated synthetic pathways by providing a standard framework for the predictable design of biological systems from well-characterized parts. In this review we discuss the current state of synthetic biology within a four-stage framework (design, modeling, synthesis, analysis) and highlight areas requiring further advancement to facilitate true engineering of synthetic microbial metabolism. PMID:20037734

    8. Synthetic Biology for Specialty Chemicals.

      PubMed

      Markham, Kelly A; Alper, Hal S

      2015-01-01

      In this review, we address recent advances in the field of synthetic biology and describe how those tools have been applied to produce a wide variety of chemicals in microorganisms. Here we classify the expansion of the synthetic biology toolbox into three different categories based on their primary function in strain engineering-for design, for construction, and for optimization. Next, focusing on recent years, we look at how chemicals have been produced using these new synthetic biology tools. Advances in producing fuels are briefly described, followed by a more thorough treatment of commodity chemicals, specialty chemicals, pharmaceuticals, and nutraceuticals. Throughout this review, an emphasis is placed on how synthetic biology tools are applied to strain engineering. Finally, we discuss organism and host strain diversity and provide a future outlook in the field.

    9. Approaches to chemical synthetic biology.

      PubMed

      Chiarabelli, Cristiano; Stano, Pasquale; Anella, Fabrizio; Carrara, Paolo; Luisi, Pier Luigi

      2012-07-16

      Synthetic biology is first represented in terms of two complementary aspects, the bio-engineering one, based on the genetic manipulation of extant microbial forms in order to obtain forms of life which do not exist in nature; and the chemical synthetic biology, an approach mostly based on chemical manipulation for the laboratory synthesis of biological structures that do not exist in nature. The paper is mostly devoted to shortly review chemical synthetic biology projects currently carried out in our laboratory. In particular, we describe: the minimal cell project, then the "Never Born Proteins" and lastly the Never Born RNAs. We describe and critically analyze the main results, emphasizing the possible relevance of chemical synthetic biology for the progress in basic science and biotechnology.

    10. Programming languages for synthetic biology.

      PubMed

      Umesh, P; Naveen, F; Rao, Chanchala Uma Maheswara; Nair, Achuthsankar S

      2010-12-01

      In the backdrop of accelerated efforts for creating synthetic organisms, the nature and scope of an ideal programming language for scripting synthetic organism in-silico has been receiving increasing attention. A few programming languages for synthetic biology capable of defining, constructing, networking, editing and delivering genome scale models of cellular processes have been recently attempted. All these represent important points in a spectrum of possibilities. This paper introduces Kera, a state of the art programming language for synthetic biology which is arguably ahead of similar languages or tools such as GEC, Antimony and GenoCAD. Kera is a full-fledged object oriented programming language which is tempered by biopart rule library named Samhita which captures the knowledge regarding the interaction of genome components and catalytic molecules. Prominent feature of the language are demonstrated through a toy example and the road map for the future development of Kera is also presented.

    11. Perfluorinated Compounds

      EPA Science Inventory

      Perfluorinated compounds such as the perfluoroalkyl acids (PFAAs) and their derivatives are important man-made chemicals that have wide consumer and industrial applications. They are relatively contemporary chemicals, being in use only since the 1950s, and until recently, have be...

    12. The Wide and Unpredictable Scope of Synthetic Cannabinoids Toxicity

      PubMed Central

      Blaak, Christa; Tam, Eric; Rajayer, Salil; Morante, Joaquin; Yeh, Angela; Butala, Ashvin

      2015-01-01

      Drug use and abuse continue to be a large public health concern worldwide. Over the past decade, novel or atypical drugs have emerged and become increasingly popular. In the recent past, compounds similar to tetrahydrocannabinoid (THC), the active ingredient of marijuana, have been synthetically produced and offered commercially as legal substances. Since the initial communications of their abuse in 2008, few case reports have been published illustrating the misuse of these substances with signs and symptoms of intoxication. Even though synthetic cannabinoids have been restricted, they are still readily available across USA and their use has been dramatically increasing, with a concomitant increment in reports to poison control centers and emergency department (ED) visits. We describe a case of acute hypoxemic/hypercapnic respiratory failure as a consequence of acute congestive heart failure (CHF) developed from myocardial stunning resulting from a non-ST-segment elevation myocardial infarction (MI) following the consumption of synthetic cannabinoids. PMID:26788376

    13. Cancer chemoprevention using natural vitamin D and synthetic analogs.

      PubMed

      Guyton, K Z; Kensler, T W; Posner, G H

      2001-01-01

      Substantial epidemiologic data support a role for vitamin D in cancer prevention. However, dose-limiting hypercalcemic effects have proved a major obstacle to the development of natural vitamin D as a cancer chemopreventive. Structure-activity studies have sought to disassociate the toxicities and chemopreventive activities of vitamin D, and a number of synthetic deltanoids (vitamin D analogs) have shown considerable promise in this regard. Several such compounds have chemopreventive efficacy in preclinical studies, as does natural vitamin D. Data supporting further development of agents of this class include in vitro and in vivo evidence of antiproliferative, proapoptotic, prodifferentiating and antiangiogenic activities. Ongoing studies are aimed at further defining the molecular mechanisms through which vitamin D and synthetic deltanoids affect gene expression and cellular fate. Additional efforts are focused on establishing the chemopreventive index (efficacy vs toxicity) of each synthetic deltanoid.

    14. Capacity loss on storage and possible capacity recovery for HST nickel-hydrogen cells

      NASA Technical Reports Server (NTRS)

      Lowery, John E.

      1992-01-01

      Negatively precharged nickel hydrogen cells will experience a useable capacity loss during extended open circuit storage periods. Some of the lost capacity can be recovered through cycling. Capacity recovery through cycling can be enhanced by cycling at high depths of discharge (DOD). The most timely procedure for recovering the faded capacity is to charge the cell fully and allow the cell to sit open-circuit at room temperature. This procedure seems to be effective in part because of the enlarged structure of the active materials. The compounds that formed during storage at the low electrode potentials can more easily dissolve and redistribute. All of the original capacity cannot be recovered because the lattice structure of the active material is irreversibly altered during storage. The recommendation is to use positively precharged cells activated with 26 percent KOH if possible. In aerospace applications, the benefits of negative precharge are offset by the possibility of delays and storage periods.

    15. Synthetic biology as red herring.

      PubMed

      Preston, Beth

      2013-12-01

      It has become commonplace to say that with the advent of technologies like synthetic biology the line between artifacts and living organisms, policed by metaphysicians since antiquity, is beginning to blur. But that line began to blur 10,000 years ago when plants and animals were first domesticated; and has been thoroughly blurred at least since agriculture became the dominant human subsistence pattern many millennia ago. Synthetic biology is ultimately only a late and unexceptional offshoot of this prehistoric development. From this perspective, then, synthetic biology is a red herring, distracting us from more thorough philosophical consideration of the most truly revolutionary human practice-agriculture. In the first section of this paper I will make this case with regard to ontology, arguing that synthetic biology crosses no ontological lines that were not crossed already in the Neolithic. In the second section I will construct a parallel case with regard to cognition, arguing that synthetic biology as biological engineering represents no cognitive advance over what was required for domestication and the new agricultural subsistence pattern it grounds. In the final section I will make the case with regard to human existence, arguing that synthetic biology, even if wildly successful, is not in a position to cause significant existential change in what it is to be human over and above the massive existential change caused by the transition to agriculture. I conclude that a longer historical perspective casts new light on some important issues in philosophy of technology and environmental philosophy.

    16. Anomalous low-temperature heat capacity in antiperovskite compounds

      NASA Astrophysics Data System (ADS)

      Guo, Xin-Ge; Lin, Jian-Chao; Tong, Peng; Lin, Shuai; Yang, Cheng; Lu, Wen-Jian; Song, Wen-Hai; Sun, Yu-Ping

      2017-02-01

      Not Available Project supported by the National Key Basic Research Program of China (Grant Nos. 2011CBA00111) and the National Natural Science Foundation of China (Grant Nos. 51322105, U1632158, 51301165, and 51301167).

    17. Biodegradation of halogenated organic compounds.

      PubMed Central

      Chaudhry, G R; Chapalamadugu, S

      1991-01-01

      In this review we discuss the degradation of chlorinated hydrocarbons by microorganisms, emphasizing the physiological, biochemical, and genetic basis of the biodegradation of aliphatic, aromatic, and polycyclic compounds. Many environmentally important xenobiotics are halogenated, especially chlorinated. These compounds are manufactured and used as pesticides, plasticizers, paint and printing-ink components, adhesives, flame retardants, hydraulic and heat transfer fluids, refrigerants, solvents, additives for cutting oils, and textile auxiliaries. The hazardous chemicals enter the environment through production, commercial application, and waste. As a result of bioaccumulation in the food chain and groundwater contamination, they pose public health problems because many of them are toxic, mutagenic, or carcinogenic. Although synthetic chemicals are usually recalcitrant to biodegradation, microorganisms have evolved an extensive range of enzymes, pathways, and control mechanisms that are responsible for catabolism of a wide variety of such compounds. Thus, such biological degradation can be exploited to alleviate environmental pollution problems. The pathways by which a given compound is degraded are determined by the physical, chemical, and microbiological aspects of a particular environment. By understanding the genetic basis of catabolism of xenobiotics, it is possible to improve the efficacy of naturally occurring microorganisms or construct new microorganisms capable of degrading pollutants in soil and aquatic environments more efficiently. Recently a number of genes whose enzyme products have a broader substrate specificity for the degradation of aromatic compounds have been cloned and attempts have been made to construct gene cassettes or synthetic operons comprising these degradative genes. Such gene cassettes or operons can be transferred into suitable microbial hosts for extending and custom designing the pathways for rapid degradation of recalcitrant

    18. Synthetic biology for CO2 fixation.

      PubMed

      Gong, Fuyu; Cai, Zhen; Li, Yin

      2016-11-01

      Recycling of carbon dioxide (CO2) into fuels and chemicals is a potential approach to reduce CO2 emission and fossil-fuel consumption. Autotrophic microbes can utilize energy from light, hydrogen, or sulfur to assimilate atmospheric CO2 into organic compounds at ambient temperature and pressure. This provides a feasible way for biological production of fuels and chemicals from CO2 under normal conditions. Recently great progress has been made in this research area, and dozens of CO2-derived fuels and chemicals have been reported to be synthesized by autotrophic microbes. This is accompanied by investigations into natural CO2-fixation pathways and the rapid development of new technologies in synthetic biology. This review first summarizes the six natural CO2-fixation pathways reported to date, followed by an overview of recent progress in the design and engineering of CO2-fixation pathways as well as energy supply patterns using the concept and tools of synthetic biology. Finally, we will discuss future prospects in biological fixation of CO2.

    19. Synthetic Pot: Not Your Grandfather's Marijuana.

      PubMed

      Ford, Benjamin M; Tai, Sherrica; Fantegrossi, William E; Prather, Paul L

      2017-03-01

      In the early 2000s in Europe and shortly thereafter in the USA, it was reported that 'legal' forms of marijuana were being sold under the name K2 and/or Spice. Active ingredients in K2/Spice products were determined to be synthetic cannabinoids (SCBs), producing psychotropic actions via CB1 cannabinoid receptors, similar to those of Δ(9)-tetrahydrocannabinol (Δ(9)-THC), the primary active constituent in marijuana. Often abused by adolescents and military personnel to elude detection in drug tests due to their lack of structural similarity to Δ(9)-THC, SCBs are falsely marketed as safe marijuana substitutes. Instead, SCBs are a highly structural diverse group of compounds, easily synthesized, which produce very dangerous adverse effects occurring by, as of yet, unknown mechanisms. Therefore, available evidence indicates that K2/Spice products are clearly not safe marijuana alternatives.

    20. Physical Properties of Synthetic Resin Materials

      NASA Technical Reports Server (NTRS)

      Fishbein, Meyer

      1939-01-01

      A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

    1. THE BACTERICIDAL ACTION OF SYNTHETIC DETERGENTS.

      PubMed

      Baker, Z; Harrison, R W; Miller, B F

      1941-11-30

      1. The bactericidal action of a number of anionic and cationic synthetic detergents on four Gram-positive and three Gram-negative bacteria has been investigated. 2. Cationic detergents, as a group, were found to exhibit marked bactericidal effects on Gram-positive microorganisms and somewhat less pronounced action on Gram-negative organisms. 3. The anionic detergents were germicidal only against the Gram-positive organisms, and they were considerably less effective than the cationic compounds. Of the anionic detergents, the most active one was an alkyl sulfate derived from a branched-chain, secondary alcohol. 4. Correlations between bactericidal action and inhibition of bacterial metabolism, and also between bactericidal action and chemical structure of the detergents are discussed.

    2. Synthetic Eelgrass Oil Barrier

      NASA Astrophysics Data System (ADS)

      Curtis, T. G.

      2013-05-01

      Although surviving in situ micro-organisms eventually consume spilled oil, extensive inundation of shore biota by oil requires cleanup to enable ecological recovery within normal time scales. Although effective in calm seas and quiet waters, oil is advected over and under conventional curtain oil booms by wave actions and currents when seas are running. Most sorbent booms are not reusable, and are usually disposed of in landfills, creating excessive waste. A new concept is proposed for a floating oil barrier, to be positioned off vulnerable coasts, to interdict, contain, and sequester spilled oil, which can then be recovered and the barrier reused. While conventional oil boom designs rely principally on the immiscibility of oil in water and its relative buoyancy, the new concept barrier avoids the pitfalls of the former by taking advantage of the synergistic benefits of numerous fluid and material properties, including: density, buoyancy, elasticity, polarity, and surface area to volume ratio. Modeled after Zostera marina, commonly called eelgrass, the new barrier, referred to as synthetic eelgrass (SE), behaves analogously. Eelgrass has very long narrow, ribbon-like, leaves which support periphyton, a complex matrix of algae and heterotrophic microbes, which position themselves there to extract nutrients from the seawater flowing past them. In an analogous fashion, oil on, or in, seawater, which comes in contact with SE, is adsorbed on the surface and sequestered there. Secured to the bottom, in shoal waters, SE rises to the surface, and, if the tide is low enough, floats on the sea surface down wind, or down current to snare floating oil. The leaves of SE, called filaments, consist of intrinsically buoyant strips of ethylene methyl acrylate, aka EMA. EMA, made of long chain, saturated, hydrocarbon molecules with nearly homogeneous electron charge distributions, is a non-polar material which is oleophilic and hydrophobic. Oil must be in close proximity to the

    3. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project

      PubMed Central

      Sliva, Anna; Yang, Huanming; Boeke, Jef D.; Mathews, Debra J. H.

      2015-01-01

      First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) Project is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 Project: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. PMID:26272997

    4. Synthetic metabolism: engineering biology at the protein and pathway scales.

      PubMed

      Martin, Collin H; Nielsen, David R; Solomon, Kevin V; Prather, Kristala L Jones

      2009-03-27

      Biocatalysis has become a powerful tool for the synthesis of high-value compounds, particularly so in the case of highly functionalized and/or stereoactive products. Nature has supplied thousands of enzymes and assembled them into numerous metabolic pathways. Although these native pathways can be use to produce natural bioproducts, there are many valuable and useful compounds that have no known natural biochemical route. Consequently, there is a need for both unnatural metabolic pathways and novel enzymatic activities upon which these pathways can be built. Here, we review the theoretical and experimental strategies for engineering synthetic metabolic pathways at the protein and pathway scales, and highlight the challenges that this subfield of synthetic biology currently faces.

    5. Synthetic routes to 3(5)-phosphonylated pyrazoles

      NASA Astrophysics Data System (ADS)

      Goulioukina, N. S.; Makukhin, N. N.; Beletskaya, I. P.

      2016-07-01

      This review comprehensively covers the currently available synthetic routes to 3(5)-phosphonylated pyrazoles. There are demonstrated significant advances in this field over the last 10-15 years caused by the use of the Bestmann-Ohira reagent [as well as (diazomethyl)phosphonates and phosphonylated hydrazonoyl halides] in reactions with diverse dipolarophiles. 1,3-Dipolar cycloaddition of diazo compounds to α,β-unsaturated phosphonates as well as intramolecular heterocyclization of (1-diazoallyl)phosphonates and (3--diazo-1-propenyl)phosphonates are discussed. Synthetic potential of cyclocondensation of organophosphorus 1,3-dielectrophilic compounds with hydrazines is shown. Ways to introduce a phosphonate group into the pyrazole ring are considered. Examples of chemical transformations of 3(5)-phosphonylated pyrazoles are reported. The bibliography includes 88 references.

    6. Refinery Capacity Report

      EIA Publications

      2016-01-01

      Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 states, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions. The Refinery Capacity Report does not contain working and shell storage capacity data. This data is now being collected twice a year as of March 31 and September 30 on the Form EIA-810, "Monthly Refinery Report", and is now released as a separate report Working and Net Available Shell Storage Capacity.

    7. Panama Canal capacity analysis

      SciTech Connect

      Bronzini, M.S.

      1995-04-27

      Predicting the transit capacities of the various Panama Canal alternatives required analyzing data on present Canal operations, adapting and extending an existing computer simulation model, performing simulation runs for each of the alternatives, and using the simulation model outputs to develop capacity estimates. These activities are summarized in this paper. A more complete account may be found in the project final report (TAMS 1993). Some of the material in this paper also appeared in a previously published paper (Rosselli, Bronzini, and Weekly 1994).

    8. Magnesium compounds

      USGS Publications Warehouse

      Kramer, D.A.

      2003-01-01

      Seawater and natural brines accounted for about 60 percent of U.S. magnesium compounds production during 2002. Dead-burned and caustic-calcined magnesias were recovered from seawater by Premier Chemicals in Florida. They were also recovered from well brines in Michigan by Dow Chemical, Martin Marietta Magnesia Specialties and Rohm & Haas. And they were recovered from magnesite in Nevada by Premier Chemicals.

    9. Synthetic genomics and the construction of a synthetic bacterial cell.

      PubMed

      Glass, John I

      2012-01-01

      The first synthetic cellular organism was created in 2010 and based on a very small, very simple bacterium called Mycoplasma mycoides. The bacterium was called synthetic because its DNA genome was chemically synthesized rather than replicated from an existing template DNA, as occurs in all other known cellular life on Earth. The experiment was undertaken in order to develop a system that would allow creation of a minimal bacterial cell that could lead to a better understand of the first principles of cellular life. The effort resulted in new synthetic genomics techniques called genome assembly and genome transplantation. The ability of scientists to design and build bacteria opens new possibilities for creating microbes to solve human problems.

    10. Opportunities for yeast metabolic engineering: Lessons from synthetic biology.

      PubMed

      Krivoruchko, Anastasia; Siewers, Verena; Nielsen, Jens

      2011-03-01

      Constant progress in genetic engineering has given rise to a number of promising areas of research that facilitated the expansion of industrial biotechnology. The field of metabolic engineering, which utilizes genetic tools to manipulate microbial metabolism to enhance the production of compounds of interest, has had a particularly strong impact by providing new platforms for chemical production. Recent developments in synthetic biology promise to expand the metabolic engineering toolbox further by creating novel biological components for pathway design. The present review addresses some of the recent advances in synthetic biology and how these have the potential to affect metabolic engineering in the yeast Saccharomyces cerevisiae. While S. cerevisiae for years has been a robust industrial organism and the target of multiple metabolic engineering trials, its potential for synthetic biology has remained relatively unexplored and further research in this field could strongly contribute to industrial biotechnology. This review also addresses are general considerations for pathway design, ranging from individual components to regulatory systems, overall pathway considerations and whole-organism engineering, with an emphasis on potential contributions of synthetic biology to these areas. Some examples of applications for yeast synthetic biology and metabolic engineering are also discussed.

    11. Exploring the potential of metallic nanoparticles within synthetic biology.

      PubMed

      Edmundson, Matthew C; Capeness, Michael; Horsfall, Louise

      2014-12-25

      The fields of metallic nanoparticle study and synthetic biology have a great deal to offer one another. Metallic nanoparticles as a class of material have many useful properties. Their small size allows for more points of contact than would be the case with a similar bulk compound, making nanoparticles excellent candidates for catalysts or for when increased levels of binding are required. Some nanoparticles have unique optical qualities, making them well suited as sensors, while others display para-magnetism, useful in medical imaging, especially by magnetic resonance imaging (MRI). Many of these metallic nanoparticles could be used in creating tools for synthetic biology, and conversely the use of synthetic biology could itself be utilised to create nanoparticle tools. Examples given here include the potential use of quantum dots (QDs) and gold nanoparticles as sensing mechanisms in synthetic biology, and the use of synthetic biology to create nanoparticle-sensing devices based on current methods of detecting metals and metalloids such as arsenate. There are a number of organisms which are able to produce a range of metallic nanoparticles naturally, such as species of the fungus Phoma which produces anti-microbial silver nanoparticles. The biological synthesis of nanoparticles may have many advantages over their more traditional industrial synthesis. If the proteins involved in biological nanoparticle synthesis can be put into a suitable bacterial chassis then they might be manipulated and the pathways engineered in order to produce more valuable nanoparticles.

    12. Transmembrane anion transport and cytotoxicity of synthetic tambjamine analogs.

      PubMed

      Hernando, Elsa; Soto-Cerrato, Vanessa; Cortés-Arroyo, Susana; Pérez-Tomás, Ricardo; Quesada, Roberto

      2014-03-21

      Ten synthetic analogs of the marine alkaloids tambjamines, bearing aromatic enamine moieties, have been synthesized. These compounds proved to be highly efficient transmembrane anion transporters in model liposomes. Changes in the electronic nature of the substituents of the aromatic enamine or the alkoxy group of the central pyrrole group did not affect this anionophore activity. The in vitro activity of these compounds has also been studied. They trigger apoptosis in several cancer cell lines with IC50 values in the low micromolar range as well as modify the intracellular pH, inducing the basification of acidic organelles.

    13. Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels

      SciTech Connect

      Gormley, Robert J.; Link, Dirk D.; Baltrus, John P.; Zandhuis, Paul H.

      2009-01-01

      A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber a-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile a-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fully synthetic jet fuel in the place of petroleum-derived fuel.

    14. Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels

      SciTech Connect

      Gormley, R.J.; Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

      2008-01-01

      A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber o-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile o-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fuIly synthetic jet fuel in the place of petroleum-derived fueL

    15. Meeting Report: Synthetic Biology Jamboree for Undergraduates

      ERIC Educational Resources Information Center

      Campbell, A. Malcolm

      2005-01-01

      The field of synthetic biology (the name is derived from an analogy to synthetic chemistry) has recognized itself as a "field" only since about 2002. Synthetic biology has gotten some high-profile attention recently, but most people are not aware the field even exists. Synthetic biologists apply engineering principles to genomic circuits to…

    16. Control theory meets synthetic biology.

      PubMed

      Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

      2016-07-01

      The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology.

    17. Control theory meets synthetic biology

      PubMed Central

      2016-01-01

      The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. PMID:27440256

    18. A Combinatorial Algorithm for Microbial Consortia Synthetic Design

      PubMed Central

      Julien-Laferrière, Alice; Bulteau, Laurent; Parrot, Delphine; Marchetti-Spaccamela, Alberto; Stougie, Leen; Vinga, Susana; Mary, Arnaud; Sagot, Marie-France

      2016-01-01

      Synthetic biology has boomed since the early 2000s when it started being shown that it was possible to efficiently synthetize compounds of interest in a much more rapid and effective way by using other organisms than those naturally producing them. However, to thus engineer a single organism, often a microbe, to optimise one or a collection of metabolic tasks may lead to difficulties when attempting to obtain a production system that is efficient, or to avoid toxic effects for the recruited microorganism. The idea of using instead a microbial consortium has thus started being developed in the last decade. This was motivated by the fact that such consortia may perform more complicated functions than could single populations and be more robust to environmental fluctuations. Success is however not always guaranteed. In particular, establishing which consortium is best for the production of a given compound or set thereof remains a great challenge. This is the problem we address in this paper. We thus introduce an initial model and a method that enable to propose a consortium to synthetically produce compounds that are either exogenous to it, or are endogenous but where interaction among the species in the consortium could improve the production line. PMID:27373593

    19. Identification of Phenolic Compounds and Evaluation of Antioxidant and Antimicrobial Properties of Euphorbia Tirucalli L.

      PubMed Central

      de Araújo, Keline Medeiros; de Lima, Alessandro; Silva, Jurandy do N.; Rodrigues, Larissa L.; Amorim, Adriany G. N.; Quelemes, Patrick V.; dos Santos, Raimunda C.; Rocha, Jefferson A.; de Andrades, Éryka O.; Leite, José Roberto S. A.; Mancini-Filho, Jorge; da Trindade, Reginaldo Almeida

      2014-01-01

      Bioactive compounds extracted from natural sources can benefit human health. The aim of this work was to determine total phenolic content and antioxidant activity in extracts of Euphorbia tirucalli L. followed by identification and quantification of the phenolic compounds, as well as their antibacterial activities. Antioxidant activities were determined by DPPH and ABTS•+ assay. Identification of phenolic compounds was performed using high-performance liquid chromatography (HPLC), and antimicrobial activities were verified by agar dilution methods and MIC values. Total phenolic content ranged from 7.73 to 30.54 mg/100 g gallic acid equivalent. Extracts from dry plants showed higher antioxidant activities than those from fresh ones. The DPPH EC50 values were approximately 12.15 μg/mL and 16.59 μg/mL, respectively. Antioxidant activity measured by the ABTS method yielded values higher than 718.99 μM trolox/g for dry plants, while by the Rancimat® system yielded protection factors exceeding 1 for all extracts, comparable to synthetic BHT. Ferulic acid was the principal phenolic compound identified and quantified through HPLC-UV in all extracts. The extracts proved effective inhibitory potential for Staphylococcus epidermidis and Staphylococcus aureus. These results showed that extracts of Euphorbia tirucalli L. have excellent antioxidant capacity and moderate antimicrobial activity. These can be attributed to the high concentration of ferulic acid. PMID:26784670

    20. Application of bicyclic and cage compounds

      NASA Technical Reports Server (NTRS)

      Clark, R. D.; Archuleta, B. S.

      1976-01-01

      The results of a literature survey of the field of bicyclic and cage compounds were presented, with the objective of identifying those types of compounds with unusual physical and chemical stability, and determining what practical applications have been found for these compounds. Major applications have been as polymers, polymer additives, medicinals, and pesticides. Lesser applications have included fuels, fuel additives, lubricants, lubricant additives, and perfumes. Several areas where further work might be useful were also outlined; these are primarily in the areas of polymers, polymer additives, medicinals, and synthetic lubricants.

    1. Synthetic Peptides as Protein Mimics

      PubMed Central

      Groß, Andrea; Hashimoto, Chie; Sticht, Heinrich; Eichler, Jutta

      2016-01-01

      The design and generation of molecules capable of mimicking the binding and/or functional sites of proteins represents a promising strategy for the exploration and modulation of protein function through controlled interference with the underlying molecular interactions. Synthetic peptides have proven an excellent type of molecule for the mimicry of protein sites because such peptides can be generated as exact copies of protein fragments, as well as in diverse chemical modifications, which includes the incorporation of a large range of non-proteinogenic amino acids as well as the modification of the peptide backbone. Apart from extending the chemical and structural diversity presented by peptides, such modifications also increase the proteolytic stability of the molecules, enhancing their utility for biological applications. This article reviews recent advances by this and other laboratories in the use of synthetic protein mimics to modulate protein function, as well as to provide building blocks for synthetic biology. PMID:26835447

    2. Designer Drugs: A Synthetic Catastrophe.

      PubMed

      Fratantonio, James; Andrade, Lawrence; Febo, Marcelo

      Synthetic stimulants can cause hallucinations, aggressive behaviors, death and are sometimes legal. These substances are sold as plant food and bath salts that are "Not for Human Consumption", therefore skirting the 1986 Federal Analogue Act and giving a false pretense of safety. Studies have proved that these substances are toxic, have a high abuse potential, and are becoming extremely prevalent in the United States. This creates a dilemma for law enforcement agents, hospitals, and substance use disorder treatment centers. Urine Drug Testing is utilized as a clinical diagnostic tool in substance use disorder treatment centers, and the furious pace at which new synthetic stimulants are introduced to the black market are making the detection via urine increasingly difficult. This article will discuss the prevalence, pharmacology and difficulty developing laboratory assays to detect synthetic stimulants.

    3. Synthetic neurosteroids on brain protection

      PubMed Central

      Rey, Mariana; Coirini, Héctor

      2015-01-01

      Neurosteroids, like allopregnanolone and pregnanolone, are endogenous regulators of neuronal excitability. Inside the brain, they are highly selective and potent modulators of GABAA receptor activity. Their anticonvulsant, anesthetics and anxiolytic properties are useful for the treatments of several neurological and psychiatric disorders via reducing the risks of side effects obtained with the commercial drugs. The principal disadvantages of endogenous neurosteroids administration are their rapid metabolism and their low oral bioavailability. Synthetic steroids analogues with major stability or endogenous neurosteroids stimulation synthesis might constitute promising novel strategies for the treatment of several disorders. Numerous studies indicate that the 3α-hydroxyl configuration is the key for binding and activity, but modifications in the steroid nucleus may emphasize different pharmacophores. So far, several synthetic steroids have been developed with successful neurosteroid-like effects. In this work, we summarize the properties of various synthetic steroids probed in trials throughout the analysis of several neurosteroids-like actions. PMID:25788907

    4. Differential Optical Synthetic Aperture Radar

      DOEpatents

      Stappaerts, Eddy A.

      2005-04-12

      A new differential technique for forming optical images using a synthetic aperture is introduced. This differential technique utilizes a single aperture to obtain unique (N) phases that can be processed to produce a synthetic aperture image at points along a trajectory. This is accomplished by dividing the aperture into two equal "subapertures", each having a width that is less than the actual aperture, along the direction of flight. As the platform flies along a given trajectory, a source illuminates objects and the two subapertures are configured to collect return signals. The techniques of the invention is designed to cancel common-mode errors, trajectory deviations from a straight line, and laser phase noise to provide the set of resultant (N) phases that can produce an image having a spatial resolution corresponding to a synthetic aperture.

    5. Designer Drugs: A Synthetic Catastrophe

      PubMed Central

      Fratantonio, James; Andrade, Lawrence; Febo, Marcelo

      2016-01-01

      Synthetic stimulants can cause hallucinations, aggressive behaviors, death and are sometimes legal. These substances are sold as plant food and bath salts that are “Not for Human Consumption”, therefore skirting the 1986 Federal Analogue Act and giving a false pretense of safety. Studies have proved that these substances are toxic, have a high abuse potential, and are becoming extremely prevalent in the United States. This creates a dilemma for law enforcement agents, hospitals, and substance use disorder treatment centers. Urine Drug Testing is utilized as a clinical diagnostic tool in substance use disorder treatment centers, and the furious pace at which new synthetic stimulants are introduced to the black market are making the detection via urine increasingly difficult. This article will discuss the prevalence, pharmacology and difficulty developing laboratory assays to detect synthetic stimulants. PMID:27617301

    6. US Competitiveness in Synthetic Biology.

      PubMed

      Gronvall, Gigi Kwik

      2015-01-01

      Synthetic biology is an emerging technical field that aims to make biology easier to engineer; the field has applications in strategically important sectors for the US economy. While the United States currently leads in synthetic biology R&D, other nations are heavily investing in order to boost their economies, which will inevitably diminish the US leadership position. This outcome is not entirely negative--additional investments will expand markets--but it is critical that the US government take steps to remain competitive: There are applications from which the US population and economy may benefit; there are specific applications with importance for national defense; and US technical leadership will ensure that US experts have a leading role in synthetic biology governance, regulation, and oversight. Measures to increase competitiveness in S&T generally are broadly applicable for synthetic biology and should be pursued. However, the US government will also need to take action on fundamental issues that will affect the field's development, such as countering anti-GMO (genetically modified organism) sentiments and anti-GMO legislation. The United States should maintain its regulatory approach so that it is the product that is regulated, not the method used to create a product. At the same time, the United States needs to ensure that the regulatory framework is updated so that synthetic biology products do not fall into regulatory gaps. Finally, the United States needs to pay close attention to how synthetic biology applications may be governed internationally, such as through the Nagoya Protocol of the Convention on Biological Diversity, so that beneficial applications may be realized.

    7. US Competitiveness in Synthetic Biology

      PubMed Central

      2015-01-01

      Synthetic biology is an emerging technical field that aims to make biology easier to engineer; the field has applications in strategically important sectors for the US economy. While the United States currently leads in synthetic biology R&D, other nations are heavily investing in order to boost their economies, which will inevitably diminish the US leadership position. This outcome is not entirely negative—additional investments will expand markets—but it is critical that the US government take steps to remain competitive: There are applications from which the US population and economy may benefit; there are specific applications with importance for national defense; and US technical leadership will ensure that US experts have a leading role in synthetic biology governance, regulation, and oversight. Measures to increase competitiveness in S&T generally are broadly applicable for synthetic biology and should be pursued. However, the US government will also need to take action on fundamental issues that will affect the field's development, such as countering anti-GMO (genetically modified organism) sentiments and anti-GMO legislation. The United States should maintain its regulatory approach so that it is the product that is regulated, not the method used to create a product. At the same time, the United States needs to ensure that the regulatory framework is updated so that synthetic biology products do not fall into regulatory gaps. Finally, the United States needs to pay close attention to how synthetic biology applications may be governed internationally, such as through the Nagoya Protocol of the Convention on Biological Diversity, so that beneficial applications may be realized. PMID:26690379

    8. 40 CFR 60.602 - Standard for volatile organic compounds.

      Code of Federal Regulations, 2010 CFR

      2010-07-01

      ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

    9. 40 CFR 60.602 - Standard for volatile organic compounds.

      Code of Federal Regulations, 2013 CFR

      2013-07-01

      ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

    10. 40 CFR 60.602 - Standard for volatile organic compounds.

      Code of Federal Regulations, 2014 CFR

      2014-07-01

      ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

    11. 40 CFR 60.602 - Standard for volatile organic compounds.

      Code of Federal Regulations, 2011 CFR

      2011-07-01

      ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

    12. 40 CFR 60.602 - Standard for volatile organic compounds.

      Code of Federal Regulations, 2012 CFR

      2012-07-01

      ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

    13. Magnesium compounds

      USGS Publications Warehouse

      Kramer, D.A.

      2002-01-01

      Seawater and natural brines accounted for about 60% of US magnesium compounds production in 2001. Dead-burned and caustic-calcined magnesias were recovered from seawater in Florida by Premier Chemicals. They were also recovered from Michigan well brines by Dow Chemical, Martin Marietta Magnesia Specialties and Rohm & Haas. And Premier Chemicals recovered dead-burned and caustic-calcined magnesias from magnesite in Nevada. Reilly Industries and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah.

    14. Magnesium compounds

      USGS Publications Warehouse

      Kramer, D.A.

      2011-01-01

      Seawater and natural brines accounted for about 54 percent of U.S. magnesium compounds production in 2010. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash-Wendover and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its operation mentioned above.

    15. Magnesium compounds

      USGS Publications Warehouse

      Kramer, D.A.

      2010-01-01

      Seawater and natural brines accounted for about 40 percent of U.S. magnesium compounds production in 2009. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Chemicals in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover, and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta from its operation mentioned above.

    16. Uncertainty in adaptive capacity

      NASA Astrophysics Data System (ADS)

      Adger, W. Neil; Vincent, Katharine

      2005-03-01

      The capacity to adapt is a critical element of the process of adaptation: it is the vector of resources that represent the asset base from which adaptation actions can be made. Adaptive capacity can in theory be identified and measured at various scales, from the individual to the nation. The assessment of uncertainty within such measures comes from the contested knowledge domain and theories surrounding the nature of the determinants of adaptive capacity and the human action of adaptation. While generic adaptive capacity at the national level, for example, is often postulated as being dependent on health, governance and political rights, and literacy, and economic well-being, the determinants of these variables at national levels are not widely understood. We outline the nature of this uncertainty for the major elements of adaptive capacity and illustrate these issues with the example of a social vulnerability index for countries in Africa. To cite this article: W.N. Adger, K. Vincent, C. R. Geoscience 337 (2005).

    17. Design Automation in Synthetic Biology.

      PubMed

      Appleton, Evan; Madsen, Curtis; Roehner, Nicholas; Densmore, Douglas

      2017-04-03

      Design automation refers to a category of software tools for designing systems that work together in a workflow for designing, building, testing, and analyzing systems with a target behavior. In synthetic biology, these tools are called bio-design automation (BDA) tools. In this review, we discuss the BDA tools areas-specify, design, build, test, and learn-and introduce the existing software tools designed to solve problems in these areas. We then detail the functionality of some of these tools and show how they can be used together to create the desired behavior of two types of modern synthetic genetic regulatory networks.

    18. Synthetic Aperture Radar Oceanographic Investigations.

      DTIC Science & Technology

      1987-03-01

      Shuchman, P.G. Teleki, S.V. Hsiao, O.H. Shemdin , and W.E. Brown, Synthetic Aperture Radar Imaging of Ocean Waves : Comparison with Wave Measurements, J... Shemdin , Synthetic Aperture Radar Imaging of Ocean Waves during the Marineland Experiment, IEEE J. Oceanic Eg., OE-8, pp. 83-90, 1983. 12. R.A...If the surface reflectivity is assumed to be spatially un- section. are computed from the wave height spectrum as correlated, i.e. follows . (x. Y. t

    19. Synthetic biology in cellular immunotherapy

      PubMed Central

      Chakravarti, Deboki; Wong, Wilson W.

      2015-01-01

      The adoptive transfer of genetically engineered T cells with cancer-targeting receptors has shown tremendous promise for eradicating tumors in clinical trials. This form of cellular immunotherapy presents a unique opportunity to incorporate advanced systems and synthetic biology approaches to create cancer therapeutics with novel functions. Here, we first review the development of synthetic receptors, switches, and circuits to control the location, duration, and strength of T cell activity against tumors. In addition, we discuss the cellular engineering and genome editing of host cells (or the chassis) to improve the efficacy of cell-based cancer therapeutics, and to reduce the time and cost of manufacturing. PMID:26088008

    20. Magnesium compounds

      USGS Publications Warehouse

      Kramer, D.A.

      2007-01-01

      Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

    1. Intermetallic Compounds

      NASA Astrophysics Data System (ADS)

      Takagiwa, Y.; Matsuura, Y.; Kimura, K.

      2014-06-01

      We have focused on the binary narrow-bandgap intermetallic compounds FeGa3 and RuGa3 as thermoelectric materials. Their crystal structure is FeGa3-type (tetragonal, P42/ mnm) with 16 atoms per unit cell. Despite their simple crystal structure, their room temperature thermal conductivity is in the range 4-5-W-m-1-K-1. Both compounds have narrow-bandgaps of approximately 0.3-eV near the Fermi level. Because their Seebeck coefficients are quite large negative values in the range 350-<-| S 373K|-<-550- μV-K-1 for undoped samples, it should be possible to obtain highly efficient thermoelectric materials both by adjusting the carrier concentration and by reducing the thermal conductivity. Here, we report the effects of doping on the thermoelectric properties of FeGa3 and RuGa3 as n and p-type materials. The dimensionless figure of merit, ZT, was significantly improved by substitution of Sn for Ga in FeGa3 (electron-doping) and by substitution of Zn for Ga in RuGa3 (hole-doping), mainly as a result of optimization of the electronic part, S 2 σ.

    2. Panel on Capacity Building

      NASA Astrophysics Data System (ADS)

      Elhadani, D.

      The demonstration was made that space technologies are an important tool for developing countries. But the fundamental question is how those countries could integrate such technologies, in an effective an operational way, in the process of resources management and administration. Capacity building is a cornerstone in any strategy to set up a national programme or infrastructure for the use of space technologies. The proposed presentation attempts to bring the first elements on the actual uses of space technology in developing countries compared to their needs, the role of training activities and programs in the capacity building process as well as the role of international cooperation and what are the required conditions to ensure sustainability of the established capacities.

    3. Dual capacity reciprocating compressor

      DOEpatents

      Wolfe, R.W.

      1984-10-30

      A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

    4. Dual capacity reciprocating compressor

      DOEpatents

      Wolfe, Robert W.

      1984-01-01

      A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

    5. Capacity Maximizing Constellations

      NASA Technical Reports Server (NTRS)

      Barsoum, Maged; Jones, Christopher

      2010-01-01

      Some non-traditional signal constellations have been proposed for transmission of data over the Additive White Gaussian Noise (AWGN) channel using such channel-capacity-approaching codes as low-density parity-check (LDPC) or turbo codes. Computational simulations have shown performance gains of more than 1 dB over traditional constellations. These gains could be translated to bandwidth- efficient communications, variously, over longer distances, using less power, or using smaller antennas. The proposed constellations have been used in a bit-interleaved coded modulation system employing state-ofthe-art LDPC codes. In computational simulations, these constellations were shown to afford performance gains over traditional constellations as predicted by the gap between the parallel decoding capacity of the constellations and the Gaussian capacity

    6. Geothermal Plant Capacity Factors

      SciTech Connect

      Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

      2015-01-01

      The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

    7. Quantification of acylfulvene- and illudin S-DNA adducts in cells with variable bioactivation capacities

      PubMed Central

      Pietsch, Kathryn E.; van Midwoud, Paul M.; Villalta, Peter W.; Sturla, Shana J.

      2013-01-01

      Illudin S and its semi-synthetic analogue acylfulvene are structurally similar but elicit different biological responses. AF is a bioreductive alkylating anti-cancer agent with a favorable therapeutic index, while illudin S is in general highly toxic. AF toxicity is dependent on the reductase enzyme prostaglandin reductase 1 (PTGR1) for activation to a cytotoxic reactive intermediate. While illudin S can be metabolized by PTGR1, available data suggest that its toxicity does not correspond with PTGR1 function. The goal of this study was to understand how drug cytotoxicity relates to cellular bioactivation capacity, and the identity and quantity of AF- or illudin S-DNA adducts. The strategy involved identification of novel illudin S-DNA adducts and their quantitation in a newly engineered SW-480 colon cancer cell line that stably overexpresses PTGR1 (PTGR1-480). These data were compared with cytotoxicity data for both compounds in PTGR1-480 vs. normal SW-480 cells, demonstrating that AF forms more DNA adducts and is more cytotoxic in cells with higher levels of PTGR1, whereas illudin S cytotoxicity and adduct formation is not influenced by PTGR1 levels. Results are discussed in the context of an overall model for how changes in relative propensities of these compounds to undergo cellular processes, such as bioactivation, contribute to DNA damage and cytotoxicity. PMID:23227857

    8. The art of trans-boundary governance: the case of synthetic biology.

      PubMed

      Zhang, Joy Y

      2013-09-01

      Synthetic biology raises few, if any, social concerns that are distinctively new. Similar to many other convergent technologies, synthetic biology's interface across various scientific communities and interests groups presents an incessant challenge to political and conceptual boundaries. However, the scale and intensity of these interfaces seem to necessitate a reflection over how corresponding governance capacities can be developed. This paper argues that, in addition to existing regulatory approaches, such capacities may be gained through the art of trans-boundary governance, which is not only attentive to the crossing and erosion of particular boundaries but also adept in keeping up with the dynamics among evolving networks of actors.

    9. Synthetic substrates for enzyme analysis

      DOEpatents

      Bissell, Eugene R.; Mitchell, Alexander R.; Pearson, Karen W.; Smith, Robert E.

      1983-01-01

      Synthetic substrates are provided which may be represented as A-D. The A moiety thereof includes an amino acid, polypeptide, or derivative thereof. The D moiety thereof includes 7-amino coumarin derivatives having an electron withdrawing substituent group at the 3 position carbon or fused between the 3 and 4 position carbons.

    10. Synthetic stellar libraries for Gaia

      NASA Astrophysics Data System (ADS)

      Sordo, R.

      A large database of synthetic stellar libraries has been collected for the Gaia mission. I will present the libraries in the context of their usage in APSIS, the system of algorithms developed to deal with the automated classification and parameter determination of the observed sources.

    11. Synthetic biology meets tissue engineering

      PubMed Central

      Davies, Jamie A.; Cachat, Elise

      2016-01-01

      Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the ‘embryological cycle’ of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. PMID:27284030

    12. Modeling Transport Through Synthetic Nanopores

      PubMed Central

      Aksimentiev, Aleksei; Brunner, Robert K.; Cruz-Chú, Eduardo; Comer, Jeffrey; Schulten, Klaus

      2011-01-01

      Nanopores in thin synthetic membranes have emerged as convenient tools for high-throughput single-molecule manipulation and analysis. Because of their small sizes and their ability to selectively transport solutes through otherwise impermeable membranes, nanopores have numerous potential applications in nanobiotechnology. For most applications, properties of the nanopore systems have to be characterize at the atomic level, which is currently beyond the limit of experimental methods. Molecular dynamics (MD) simulations can provide the desired information, however several technical challenges have to be met before this method can be applied to synthetic nanopore systems. Here, we highlight our recent work on modeling synthetic nanopores of the most common types. First, we describe a novel graphical tool for setting up all-atom systems incorporating inorganic materials and biomolecules. Next, we illustrate the application of the MD method for silica, silicon nitride, and polyethylene terephthalate nanopores. Following that, we describe a method for modeling synthetic surfaces using a bias potential. Future directions for tool development and nanopore modeling are briefly discussed at the end of this article. PMID:21909347

    13. Where Synthetic Biology Meets ET

      NASA Technical Reports Server (NTRS)

      Rothschild, Lynn J.

      2016-01-01

      Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

    14. SEASAT Synthetic Aperture Radar Data

      NASA Technical Reports Server (NTRS)

      Henderson, F. M.

      1981-01-01

      The potential of radar imagery from space altitudes is discussed and the advantages of radar over passive sensor systems are outlined. Specific reference is made to the SEASAT synthetic aperture radar. Possible applications include oil spill monitoring, snow and ice reconnaissance, mineral exploration, and monitoring phenomena in the urban environment.

    15. Synthetic substrates for enzyme analysis

      DOEpatents

      Bissell, E.R.; Mitchell, A.R.; Pearson, K.W.; Smith, R.E.

      1983-06-14

      Synthetic substrates are provided which may be represented as A-D. The A moiety includes an amino acid, polypeptide, or derivative. The D moiety includes 7-amino coumarin derivatives having an electron withdrawing substituent group at the 3 position carbon or fused between the 3 and 4 position carbons. No Drawings

    16. Future of synthetic aperture radar

      NASA Technical Reports Server (NTRS)

      Barath, F. T.

      1978-01-01

      The present status of the applications of Synthetic Aperture Radars (SARs) is reviewed, and the technology state-of-the art as represented by the Seasat-A and SIR-A SARs examined. The potential of SAR applications, and the near- and longer-term technology trends are assessed.

    17. The synthetic biology open language.

      PubMed

      Myers, Chris; Clancy, Kevin; Misirli, Goksel; Oberortner, Ernst; Pocock, Matthew; Quinn, Jacqueline; Roehner, Nicholas; Sauro, Herbert M

      2015-01-01

      The design and construction of engineered organisms is an emerging new discipline called synthetic biology and holds considerable promise as a new technological platform. The design of biologically engineered systems is however nontrivial, requiring contributions from a wide array of disciplines. One particular issue that confronts synthetic biologists is the ability to unambiguously describe novel designs such that they can be reengineered by a third-party. For this reason, the synthetic biology open language (SBOL) was developed as a community wide standard for formally representing biological designs. A design created by one engineering team can be transmitted electronically to another who can then use this design to reproduce the experimental results. The development and the community of the SBOL standard started in 2008 and has since grown in use with now over 80 participants, including international, academic, and industrial interests. SBOL has stimulated the development of repositories and software tools to help synthetic biologists in their design efforts. This chapter summarizes the latest developments and future of the SBOL standard and its supporting infrastructure.

    18. Stereoscopy in cinematographic synthetic imagery

      NASA Astrophysics Data System (ADS)

      Eisenmann, Jonathan; Parent, Rick

      2009-02-01

      In this paper we present experiments and results pertaining to the perception of depth in stereoscopic viewing of synthetic imagery. In computer animation, typical synthetic imagery is highly textured and uses stylized illumination of abstracted material models by abstracted light source models. While there have been numerous studies concerning stereoscopic capabilities, conventions for staging and cinematography in stereoscopic movies have not yet been well-established. Our long-term goal is to measure the effectiveness of various cinematography techniques on the human visual system in a theatrical viewing environment. We would like to identify the elements of stereoscopic cinema that are important in terms of enhancing the viewer's understanding of a scene as well as providing guidelines for the cinematographer relating to storytelling. In these experiments we isolated stereoscopic effects by eliminating as many other visual cues as is reasonable. In particular, we aim to empirically determine what types of movement in synthetic imagery affect the perceptual depth sensing capabilities of our viewers. Using synthetic imagery, we created several viewing scenarios in which the viewer is asked to locate a target object's depth in a simple environment. The scenarios were specifically designed to compare the effectiveness of stereo viewing, camera movement, and object motion in aiding depth perception. Data were collected showing the error between the choice of the user and the actual depth value, and patterns were identified that relate the test variables to the viewer's perceptual depth accuracy in our theatrical viewing environment.

    19. XAFS of Synthetic Iron(III)-Arsenate Co-Precipitates and Uranium Mill Neutralized Raffinate

      NASA Astrophysics Data System (ADS)

      Chen, N.; Jiang, D. T.; Cutler, J.; Demopoulos, G. P.; Rowson, J. W.

      2007-02-01

      XAFS studies were carried out for chemical speciation of arsenic species in uranium mill neutralized raffinate solids. To aid the structural characterization, synthetic iron(III)-arsenate co-precipitates were prepared to mimic the actual uranium mill tailings neutralization products. The principle components analysis method was used to validate the synthetic amorphous scorodite as a primary model compound for arsenate species in the raffinate samples under the specific precipitation conditions.

    20. XAFS of Synthetic Iron(III)-Arsenate Co-Precipitates and Uranium Mill Neutralized Raffinate

      SciTech Connect

      Chen, N.; Jiang, D. T.; Cutler, J.; Demopoulos, G. P.; Rowson, J. W.

      2007-02-02

      XAFS studies were carried out for chemical speciation of arsenic species in uranium mill neutralized raffinate solids. To aid the structural characterization, synthetic iron(III)-arsenate co-precipitates were prepared to mimic the actual uranium mill tailings neutralization products. The principle components analysis method was used to validate the synthetic amorphous scorodite as a primary model compound for arsenate species in the raffinate samples under the specific precipitation conditions.

    1. Process for gasification using a synthetic CO/sub 2/ acceptor

      SciTech Connect

      Curran, G.P.; Lancet, M.S.

      1980-11-04

      A gasification process is disclosed using a synthetic CO/sub 2/ acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca/sub 5/(SiO/sub 4/)/sub 2/CO/sub 3/. A method for producing the synthetic CO/sub 2/ acceptor is also disclosed.

    2. A study of various synthetic routes to produce a halogen-labeled traction fluid

      NASA Technical Reports Server (NTRS)

      Jones, W. R., Jr.; Zimmer, H.

      1978-01-01

      Several synthetic routes were studied for the synthesis of the compound 1, 1, 3-trimethyl-1, 3-dicyclohexyl-2 chloropropane. This halogen-labeled fluid would be of use in the study of high traction lubricants under elastohydrodynamic lubrication conditions using infrared emission spectroscopy. The synthetic routes included: dimerization of alpha-methylstyrene, methanol addition to alpha-methylstyrene, a Wittig reaction, and an organometallic approach. Because of steric hindrance and competing reactions, none of these routes were successful.

    3. Process for gasification using a synthetic CO.sub.2 acceptor

      DOEpatents

      Lancet, Michael S.; Curran, George P.

      1980-01-01

      A gasification process is disclosed using a synthetic CO.sub.2 acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca.sub.5 (SiO.sub.4).sub.2 CO.sub.3. A method for producing the synthetic CO.sub.2 acceptor is also disclosed.

    4. Synthetic musk fragrances in human milk from the United States.

      PubMed

      Reiner, Jessica L; Wong, Chung M; Arcaro, Kathleen F; Kannan, Kurunthachalam

      2007-06-01

      Synthetic musk compounds are used as additives in many consumer products, including perfumes, deodorants, and detergents. Earlier studies have reported the occurrence of synthetic musks in environmental and wildlife samples collected in the United States. In this study, human breast milk samples collected from Massachusetts, were analyzed for the determination of concentrations of synthetic musks such as musk xylene (1-tert-butyl-3,5-dimethyl-2,4,6-trinitrobenzene), musk ketone (4-tert-butyl-2,6-dimethyl-3,5-dinitroacetophenone), HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[gamma]-2-benzopyran), AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene), and HHCB-lactone, the oxidation product of HHCB. In addition, we estimated the daily intake of synthetic musks by infants based on the ingestion rate of breast milk. Synthetic musks were found in most of the samples analyzed, and the concentrations ranged from < 2 to 150 ng musk xylene/g, < 2 to 238 ng musk ketone/ g, < 5 to 917 ng HHCB/g, < 5 to 144 ng AHTN/g, and < 10 to 88.0 ng HHCB-lactone/g, on a lipid weight basis. The concentrations of HHCB were higher than the concentrations of other synthetic musks in breast milk samples. The mean concentration of HHCB (220 ng/g, lipid weight) was 5 times greater than the concentrations reported 10 years ago for breast milk samples collected in Germany and Denmark. Maternal age was not correlated with the concentrations of musk xylene, musk ketone, HHCB, or AHTN. There was a trend of decreasing concentrations of musk xylene, musk ketone, HHCB, and AHTN, with the number of children previously breast-fed, although the correlation was not significant. Based on average daily ingestion rate of breast milk, an infant is estimated to ingest 297 +/- 229 ng musk xylene, 780 +/- 805 ng musk ketone, 1830 +/- 1170 ng HHCB, 565 +/- 614 ng AHTN, and 649 +/- 598 ng HHCB-lactone per day. The ingestion rate of synthetic musks by infants in the United States is

    5. Magnesium compounds

      USGS Publications Warehouse

      Kramer, D.A.

      2012-01-01

      Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

    6. Bismaleimide compounds

      DOEpatents

      Adams, Johnnie E.; Jamieson, Donald R.

      1986-01-14

      Bismaleimides of the formula ##STR1## wherein R.sub.1 and R.sub.2 each independently is H, C.sub.1-4 -alkyl, C.sub.1-4 -alkoxy, C1 or Br, or R.sub.1 and R.sub.2 together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R.sub.1 and R.sub.2 are not t-butyl or t-butoxy; X is O, S or Se; n is 1-3; and the alkylene bridging group, optionally, is substituted by 1-3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

    7. Bismaleimide compounds

      DOEpatents

      Adams, J.E.; Jamieson, D.R.

      1986-01-14

      Bismaleimides of the formula shown in the diagram wherein R[sub 1] and R[sub 2] each independently is H, C[sub 1-4]-alkyl, C[sub 1-4]-alkoxy, Cl or Br, or R[sub 1] and R[sub 2] together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R[sub 1] and R[sub 2] are not t-butyl or t-butoxy; X is O, S or Se; n is 1--3; and the alkylene bridging group, optionally, is substituted by 1--3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

    8. Organic silicon compounds anf hydrogen sulfide removal from biogas by mineral and adsorbent

      NASA Astrophysics Data System (ADS)

      Choi, J.

      2015-12-01

      Biogas utilized for energy production needs to be free from organic silicon compounds and hydrogen sulfide , as their burning has damaging effects on utilities and humans; organic silicon compounds and hydrogen sulfide can be found in biogas produced from biomass wastes, due to their massive industrial use in synthetic product,such as cosmetics, detergents and paints.Siloxanes and hydrogen sulfide removal from biogas can be carried out by various methods (Ajhar et al., 2010); aim of the present work is to find a single practical andeconomic way to drastically and simultaneously reduce both hydrogen sulfide and the siloxanes concentration to less than 1 ppm. Some commercial activated carbons previously selected (Monteleoneet al., 2011) as being effective in hydrogen sulfide up taking have been tested in an adsorption measurement apparatus, by flowing both hydrogen sulphide and volatile siloxane (Decamethycyclopentasiloxane or D5) in a nitrogen stream,typically 25-300 ppm D5 over N2, through an clay minerals, Fe oxides and Silica; the adsorption process was analyzed by varying some experimental parameters (concentration, grain size, bed height). The best silica shows an adsorption capacity of 0.2 g D5 per gram of silica. The next thermo gravimetric analysis (TGA) confirms the capacity data obtained experimentally by the breakthrough curve tests.The capacity results depend on D5 and hydrogen sulphide concentrations. A regenerative silica process is then carried out byheating the silica bed up to 200 ° C and flushing out the adsorbed D5 and hydrogen sulphide samples in a nitrogen stream in athree step heating procedure up to 200 ° C. The adsorption capacity is observed to degrade after cyclingthe samples through several adsorption-desorption cycles.

    9. Validation of an ELISA Synthetic Cannabinoids Urine Assay

      PubMed Central

      Barnes, Allan J.; Spinelli, Eliani; Young, Sheena; Martin, Thomas M.; Klette, Kevin L.; Huestis, Marilyn A.

      2015-01-01

      Background Synthetic cannabinoids are touted as legal alternatives to cannabis, at least when first released, and routine urine cannabinoid screening methods do not detect these novel psychoactive substances. Synthetic cannabinoids are widely available, are a major public health and safety problem, and a difficult challenge for drug testing laboratories. We evaluated performance of the NMS JWH-018 direct ELISA kit to sensitively, selectively, and rapidly screen urinary synthetic cannabinoids. Materials/ Methods The NMS ELISA kit targeting the JWH-018 N-(5-hydroxypentyl) metabolite was utilized to screen 2492 urine samples with 5 and 10µg/L cutoffs. A fully validated LC-MS/MS method for 29 synthetic cannabinoids markers confirmed all presumptive positive and negative results. Performance challenges at ±25 and ±50% of cutoffs determined intra- and inter-plate imprecision around proposed cutoffs. Result The immunoassay was linear from 1–500µg/L with intra- and inter-plate imprecision of ≤8.2% and <14.0%, respectively. No interferences were present from 93 common drugs of abuse, metabolites, co-administered drugs, over-the-counter medications or structurally similar compounds, and 19 of 73 individual, synthetic cannabinoids (26%) exhibited moderate to high cross-reactivity to JWH-018 N-(5-hydroxypentyl) metabolite. Sensitivity, specificity, and efficiency results were 83.7%, 99.4% and 97.6% and 71.6%, 99.7% and 96.4%, with the 5 and 10µg/L urine cutoffs, respectively. Conclusion This high throughput immunoassay exhibited good diagnostic efficiency and documented that the NMS JWH-018 direct ELISA is a viable method for screening synthetic cannabinoids in urine targeting the JWH-018 N-(5-hydroxypentyl) and related analytes. Optimal performance was achieved with a matrix-matched 5µg/L urine cutoff. PMID:25706046

    10. C-Glycopyranosyl Arenes and Hetarenes: Synthetic Methods and Bioactivity Focused on Antidiabetic Potential.

      PubMed

      Bokor, Éva; Kun, Sándor; Goyard, David; Tóth, Marietta; Praly, Jean-Pierre; Vidal, Sébastien; Somsák, László

      2017-02-08

      This Review summarizes close to 500 primary publications and surveys published since 2000 about the syntheses and diverse bioactivities of C-glycopyranosyl (het)arenes. A classification of the preparative routes to these synthetic targets according to methodologies and compound categories is provided. Several of these compounds, regardless of their natural or synthetic origin, display antidiabetic properties due to enzyme inhibition (glycogen phosphorylase, protein tyrosine phosphatase 1B) or by inhibiting renal sodium-dependent glucose cotransporter 2 (SGLT2). The latter class of synthetic inhibitors, very recently approved as antihyperglycemic drugs, opens new perspectives in the pharmacological treatment of type 2 diabetes. Various compounds with the C-glycopyranosyl (het)arene motif were subjected to biological studies displaying among others antioxidant, antiviral, antibiotic, antiadhesive, cytotoxic, and glycoenzyme inhibitory effects.

    11. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles

      PubMed Central

      2013-01-01

      Summary This review which is the second in this series summarises the most common synthetic routes as applied to the preparation of many modern pharmaceutical compounds categorised as containing a six-membered heterocyclic ring. The reported examples are based on the top retailing drug molecules combining synthetic information from both scientific journals and the wider patent literature. It is hoped that this compilation, in combination with the previously published review on five-membered rings, will form a comprehensive foundation and reference source for individuals interested in medicinal, synthetic and preparative chemistry. PMID:24204439

    12. Programmable flow system for automation of oxygen radical absorbance capacity assay using pyrogallol red for estimation of antioxidant reactivity.

      PubMed

      Ramos, Inês I; Gregório, Bruno J R; Barreiros, Luísa; Magalhães, Luís M; Tóth, Ildikó V; Reis, Salette; Lima, José L F C; Segundo, Marcela A

      2016-04-01

      An automated oxygen radical absorbance capacity (ORAC) method based on programmable flow injection analysis was developed for the assessment of antioxidant reactivity. The method relies on real time spectrophotometric monitoring (540 nm) of pyrogallol red (PGR) bleaching mediated by peroxyl radicals in the presence of antioxidant compounds within the first minute of reaction, providing information about their initial reactivity against this type of radicals. The ORAC-PGR assay under programmable flow format affords a strict control of reaction conditions namely reagent mixing, temperature and reaction timing, which are critical parameters for in situ generation of peroxyl radical from 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). The influence of reagent concentrations and programmable flow conditions on reaction development was studied, with application of 37.5 µM of PGR and 125 mM of AAPH in the flow cell, guaranteeing first order kinetics towards peroxyl radicals and pseudo-zero order towards PGR. Peroxyl-scavenging reactivity of antioxidants, bioactive compounds and phenolic-rich beverages was estimated employing the proposed methodology. Recovery assays using synthetic saliva provided values of 90 ± 5% for reduced glutathione. Detection limit calculated using the standard antioxidant compound Trolox was 8 μM. RSD values were <3.4 and <4.9%, for intra and inter-assay precision, respectively. Compared to previous batch automated ORAC assays, the developed system also accounted for high sampling frequency (29 h(-1)), low operating costs and low generation of waste.

    13. Synthetic zeolites and other microporous oxide molecular sieves.

      PubMed

      Sherman, J D

      1999-03-30

      Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.

    14. Naturally derived and synthetic scaffolds for skeletal muscle reconstruction.

      PubMed

      Wolf, Matthew T; Dearth, Christopher L; Sonnenberg, Sonya B; Loboa, Elizabeth G; Badylak, Stephen F

      2015-04-01

      Skeletal muscle tissue has an inherent capacity for regeneration following injury. However, severe trauma, such as volumetric muscle loss, overwhelms these natural muscle repair mechanisms prompting the search for a tissue engineering/regenerative medicine approach to promote functional skeletal muscle restoration. A desirable approach involves a bioscaffold that simultaneously acts as an inductive microenvironment and as a cell/drug delivery vehicle to encourage muscle ingrowth. Both biologically active, naturally derived materials (such as extracellular matrix) and carefully engineered synthetic polymers have been developed to provide such a muscle regenerative environment. Next generation naturally derived/synthetic "hybrid materials" would combine the advantageous properties of these materials to create an optimal platform for cell/drug delivery and possess inherent bioactive properties. Advances in scaffolds using muscle tissue engineering are reviewed herein.

    15. Synthetic Zeolites and Other Microporous Oxide Molecular Sieves

      NASA Astrophysics Data System (ADS)

      Sherman, John D.

      1999-03-01

      Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.

    16. Synthetic anabolic agents: steroids and nonsteroidal selective androgen receptor modulators.

      PubMed

      Thevis, Mario; Schänzer, Wilhelm

      2010-01-01

      The central role of testosterone in the development of male characteristics, as well as its beneficial effects on physical performance and muscle growth, has led to the search for synthetic alternatives with improved pharmacological profiles. Hundreds of steroidal analogs have been prepared with a superior oral bioavailability, which should also possess reduced undesirable effects. However, only a few entered the pharmaceutical market due to severe toxicological incidences that were mainly attributed to the lack of tissue selectivity. Prominent representatives of anabolic-androgenic steroids (AAS) are for instance methyltestosterone, metandienone and stanozolol, which are discussed as model compounds with regard to general pharmacological aspects of synthetic AAS. Recently, nonsteroidal alternatives to AAS have been developed that selectively activate the androgen receptor in either muscle tissue or bones. These so-called selective androgen receptor modulators (SARMs) are currently undergoing late clinical trials (IIb) and will be prohibited by the World Anti-Doping Agency from January 2008. Their entirely synthetic structures are barely related to steroids, but particular functional groups allow for the tissue-selective activation or inhibition of androgen receptors and, thus, the stimulation of muscle growth without the risk of severe undesirable effects commonly observed in steroid replacement therapies. Hence, these compounds possess a high potential for misuse in sports and will be the subject of future doping control assays.

    17. Steps towards the synthetic biology of polyketide biosynthesis

      PubMed Central

      Cummings, Matthew; Breitling, Rainer; Takano, Eriko

      2014-01-01

      Nature is providing a bountiful pool of valuable secondary metabolites, many of which possess therapeutic properties. However, the discovery of new bioactive secondary metabolites is slowing down, at a time when the rise of multidrug-resistant pathogens and the realization of acute and long-term side effects of widely used drugs lead to an urgent need for new therapeutic agents. Approaches such as synthetic biology are promising to deliver a much-needed boost to secondary metabolite drug development through plug-and-play optimized hosts and refactoring novel or cryptic bacterial gene clusters. Here, we discuss this prospect focusing on one comprehensively studied class of clinically relevant bioactive molecules, the polyketides. Extensive efforts towards optimization and derivatization of compounds via combinatorial biosynthesis and classical engineering have elucidated the modularity, flexibility and promiscuity of polyketide biosynthetic enzymes. Hence, a synthetic biology approach can build upon a solid basis of guidelines and principles, while providing a new perspective towards the discovery and generation of novel and new-to-nature compounds. We discuss the lessons learned from the classical engineering of polyketide synthases and indicate their importance when attempting to engineer biosynthetic pathways using synthetic biology approaches for the introduction of novelty and overexpression of products in a controllable manner. PMID:24372666

    18. Molten gallium flux synthesis of known thermoelectric and novel magnetic inorganic clathrate compounds: Improving thermoelectric performance

      NASA Astrophysics Data System (ADS)

      Bryan, John Daniel

      Molten gallium metal has been used as a solvent to grow large single crystals of known inorganic thermoelectric clathrates Sr8Ga 16Ge30, Ba8Ga16Ge30, and Ba8Ga16Si30. X-ray diffraction, thermal analysis, electron microprobe, Glow Discharge Mass Spectrometry, temperature dependent electrical conductivity and Seebeck coefficient measurements characterized the single crystals. The Thermoelectric performance was shown to be heavily dependent on the synthetic conditions including container choice, thermal history and impurity concentration. Inorganic Clathrates have attracted intense interest in last several years as potential new materials for thermoelectric devices. If a small to moderate increase in thermoelectric performance over the currently used materials is realized, substantial environmental and technological gains could be achieved. Since thermoelectric refrigeration modules require no moving parts or heat exchange gas (freon) they offer significant advantages over conventional refrigeration technology that tends to fail due to the finite lifetime of the pumping equipment. High temperature devices are also extremely useful for power generation in harsh unforgiving environments where excess heat is available. The thermoelectric performance, primarily at room temperature, of these compounds was found to be heavily dependent on the synthetic procedures used to obtain them. A flux growth procedure was developed to overcome the problems of the traditional melt-quench-anneal solid-state chemical approach. This procedure yielded large single crystals of the Sr8Ga16Ge 30, Ba8Ga16Ge30 and Ba8Ga 16Si30 compounds which ready facilitated their chemical and electronic study. Finally, an outlook on the application of these compounds as thermoelectric devices is given. Application of the flux method to other systems was also successful in the discovery of two new inorganic clathrate compounds: type IV Eu4Ga 8Ge16 and type V Yb8Ga16Ge14. The Eu4Ga8Ge16 compound was found to

    19. Synthetic cathinones and their rewarding and reinforcing effects in rodents

      PubMed Central

      Watterson, Lucas R.; Olive, M. Foster

      2014-01-01

      Synthetic cathinones, colloquially referred to as “bath salts”, are derivatives of the psychoactive alkaloid cathinone found in Catha edulis (Khat). Since the mid-to-late 2000’s, these amphetamine-like psychostimulants have gained popularity amongst drug users due to their potency, low cost, ease of procurement, and constantly evolving chemical structures. Concomitant with their increased use is the emergence of a growing collection of case reports of bizarre and dangerous behaviors, toxicity to numerous organ systems, and death. However, scientific information regarding the abuse liability of these drugs has been relatively slower to materialize. Recently we have published several studies demonstrating that laboratory rodents will readily self-administer the “first generation” synthetic cathinones methylenedioxypyrovalerone (MDPV) and methylone via the intravenous route, in patterns similar to those of methamphetamine. Under progressive ratio schedules of reinforcement, the rank order of reinforcing efficacy of these compounds are MDPV ≥ methamphetamine > methylone. MDPV and methylone, as well as the “second generation” synthetic cathinones α-pyrrolidinovalerophenone (α-PVP) and 4-methylethcathinone (4-MEC), also dose-dependently increase brain reward function. Collectively, these findings indicate that synthetic cathinones have a high abuse and addiction potential and underscore the need for future assessment of the extent and duration of neurotoxicity induced by these emerging drugs of abuse. PMID:25328910

    20. Heat Capacity Mapping Mission

      NASA Technical Reports Server (NTRS)

      Nilsson, C. S.; Andrews, J. C.; Scully-Power, P.; Ball, S.; Speechley, G.; Latham, A. R. (Principal Investigator)

      1980-01-01

      The Tasman Front was delineated by airborne expendable bathythermograph survey; and an Heat Capacity Mapping Mission (HCMM) IR image on the same day shows the same principal features as determined from ground-truth. It is clear that digital enhancement of HCMM images is necessary to map ocean surface temperatures and when done, the Tasman Front and other oceanographic features can be mapped by this method, even through considerable scattered cloud cover.

    1. Community Capacity Building

      PubMed Central

      Goytia, Crispin N.; Todaro-Rivera, Lea; Brenner, Barbara; Shepard, Peggy; Piedras, Veronica; Horowitz, Carol

      2013-01-01

      Background: Successful community–academic research partnerships require building the capacity of both community-based organizations (CBOs) and academics to conduct collaborative research of mutual interest and benefit. Yet, information about the needs and goals of research-interested CBOs is lacking. Our partnership aimed to conduct a community research needs assessment and to use results to develop future capacity-building programs for CBOs. Methods: Based on our review of the literature, informal interviews with research-interested CBOs and community-engaged research groups locally and nationally, we developed a needs assessment survey. Key domains of this survey included history and experience with research collaboration, interest in specific research topics, and preference for learning format and structure. We trained community health workers (CHWs) to recruit senior leaders from CBOs in New York City (NYC) and encourage them to complete an on-line survey. Results: Fully 54% (33/61) of CBOs completed the needs assessment. Most (69%) reported involvement with research or evaluation in the last 2 years and 33% had some funding for research. Although 75% had collaborated with academic institutions in the past, 58% did not rate this experience well. The four areas respondents prioritized for skills building were program evaluation, developing needs assessments, building surveys, and understanding statistical analyses. They were less interested in learning to build collaborations with academics. Conclusions: A formal needs assessment of research training and educational needs of CBOs revealed that most had experience, albeit negative, with academic collaborations. CBO leaders wanted to build skills to conduct and analyze assessments and program evaluations. Our community–academic partnership is using these findings to develop a research capacity-building course. Other partnerships should consider conducting such assessments to transform the capacity of CBOs to

    2. Enhancing capacity management.

      PubMed

      Rees, Susan; Houlahan, Beth; Lavrenz, Dennise

      2014-03-01

      It is essential for organizations to be able to accept patients requiring care. Capacity planning and management are necessary to ensure an organization has an accepting physician/service, an available bed, and staff to care for the patient and family. This organization implemented strategies including communication plans, staffing guidelines, morning rounds, proactive planning, and an escalation process to reverse the trend of not being able to accept all patients.

    3. Enabling Partner Capacity Building

      DTIC Science & Technology

      2013-03-01

      Market Street, Philadelphia, PA 19104, (215) 662-5606. The Commission on Higher Education is an institutional accrediting agency recognized by the U.S...valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) xx-03-2013 2. REPORT TYPE STRATEGY ...National Security Strategy emphasizes building the capacity of our allies and partner countries to share the burden of global leadership. The Army is

    4. Designing synthetic vaccines for HIV

      PubMed Central

      2015-01-01

      Summary Despite three decades of intensive research efforts, the development of an effective prophylactic vaccine against HIV remains an unrealized goal in the global campaign to contain the HIV/AIDS pandemic. Recent characterization of novel epitopes for inducing broadly neutralizing antibodies (BnAbs) has fueled research in the design and synthesis of new, well-defined antigenic constructs for the development of HIV envelope-directed vaccines. The present review will cover previous and recent efforts toward the design of synthetic vaccines based on the HIV viral envelope (Env) glycoproteins, with special emphasis on examples from our own laboratories. The biological evaluation of some of the most representative vaccine candidates, in terms of their antigenicity and immunogenicity, will also be discussed to illustrate the current state-of-the-art toward the development of fully synthetic HIV vaccines. PMID:25824661

    5. Synthetic microbial ecosystems for biotechnology.

      PubMed

      Pandhal, Jagroop; Noirel, Josselin

      2014-06-01

      Most highly controlled and specific applications of microorganisms in biotechnology involve pure cultures. Maintaining single strain cultures is important for industry as contaminants can reduce productivity and lead to longer "down-times" during sterilisation. However, microbes working together provide distinct advantages over pure cultures. They can undertake more metabolically complex tasks, improve efficiency and even expand applications to open systems. By combining rapidly advancing technologies with ecological theory, the use of microbial ecosystems in biotechnology will inevitably increase. This review provides insight into the use of synthetic microbial communities in biotechnology by applying the engineering paradigm of measure, model, manipulate and manufacture, and illustrate the emerging wider potential of the synthetic ecology field. Systems to improve biofuel production using microalgae are also discussed.

    6. Developing technologies for synthetic fuels

      NASA Astrophysics Data System (ADS)

      Sprow, F. B.

      1981-05-01

      After consideration of a likely timetable for the development of a synthetic fuels industry and its necessary supporting technology, the large variety of such fuels and their potential roles is assessed along with their commercialization outlook. Among the fuel production methods considered are: (1) above-ground retorting of oil shale; (2) in-situ shale retorting; (3) open pit mining of tar sands; (4) in-situ steam stimulation of tar sands; (5) coal gasification; (6) methanol synthesis from carbon monoxide and hydrogen; and (7) direct coal liquefaction by the hydrogenation of coal. It is shown that while the U.S. has very limited resource bases for tar sands and heavy crudes, the abundance of shale in the western states and the abundance and greater geographical dispersion of coal will make these the two most important resources of a future synthetic fuels industry.

    7. Designing synthetic vaccines for HIV.

      PubMed

      Fernández-Tejada, Alberto; Haynes, Barton F; Danishefsky, Samuel J

      2015-06-01

      Despite three decades of intensive research efforts, the development of an effective prophylactic vaccine against HIV remains an unrealized goal in the global campaign to contain the HIV/AIDS pandemic. Recent characterization of novel epitopes for inducing broadly neutralizing antibodies has fueled research in the design and synthesis of new, well-defined antigenic constructs for the development of HIV envelope-directed vaccines. The present review will cover previous and recent efforts toward the design of synthetic vaccines based on the HIV viral envelope glycoproteins, with special emphasis on examples from our own laboratories. The biological evaluation of some of the most representative vaccine candidates, in terms of their antigenicity and immunogenicity, will also be discussed to illustrate the current state-of-the-art toward the development of fully synthetic HIV vaccines.

    8. Synthetic approaches to multifunctional indenes

      PubMed Central

      López-Pérez, Sara; Dinarès, Immaculada

      2011-01-01

      Summary The synthesis of multifunctional indenes with at least two different functional groups has not yet been extensively explored. Among the plausible synthetic routes to 3,5-disubstituted indenes bearing two different functional groups, such as the [3-(aminoethyl)inden-5-yl)]amines, a reasonable pathway involves the (5-nitro-3-indenyl)acetamides as key intermediates. Although several multistep synthetic approaches can be applied to obtain these advanced intermediates, we describe herein their preparation by an aldol-type reaction between 5-nitroindan-1-ones and the lithium salt of N,N-disubstituted acetamides, followed immediately by dehydration with acid. This classical condensation process, which is neither simple nor trivial despite its apparent directness, permits an efficient entry to a variety of indene-based molecular modules, which could be adapted to a range of functionalized indanones. PMID:22238553

    9. Engineering Ecosystems and Synthetic Ecologies#

      PubMed Central

      Mee, Michael T; Wang, Harris H

      2012-01-01

      Microbial ecosystems play an important role in nature. Engineering these systems for industrial, medical, or biotechnological purposes are important pursuits for synthetic biologists and biological engineers moving forward. Here, we provide a review of recent progress in engineering natural and synthetic microbial ecosystems. We highlight important forward engineering design principles, theoretical and quantitative models, new experimental and manipulation tools, and possible applications of microbial ecosystem engineering. We argue that simply engineering individual microbes will lead to fragile homogenous populations that are difficult to sustain, especially in highly heterogeneous and unpredictable environments. Instead, engineered microbial ecosystems are likely to be more robust and able to achieve complex tasks at the spatial and temporal resolution needed for truly programmable biology. PMID:22722235

    10. CSTI high capacity power

      SciTech Connect

      Winter, J.M.

      1994-09-01

      The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY88, the Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

    11. CSTI High Capacity Power

      NASA Technical Reports Server (NTRS)

      Winter, Jerry M.

      1989-01-01

      The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY-86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY-88, the Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

    12. Process for gasification using a synthetic CO/sub 2/ acceptor

      SciTech Connect

      Lancet, M.S.; Curran, G.P.

      1980-11-04

      Conoco's gasification process uses a synthetic CO/sub 2/ acceptor consisting essentially of at least one calcium compound (either calcium oxide or calcium carbonate) supported in a refractory carrier matrix having the general formula Ca/sub 5/(SiO/sub 4/)/sub 2/CO/sub 3/. The synthetic acceptor is more effective than a natural calcium oxide acceptor during the gasification process because the thermally stable matrix causes the calcium compounds to remain in discrete particles that tend to reactivate with each passage through the process. This eliminates the need for large quantities of fresh makeup acceptor materials.

    13. Synthetic Aperture Radar Simulation Study

      DTIC Science & Technology

      1984-03-01

      multilook are discussed. A chapter is devoted to elevation and planimetric data bases. In addition, six- teen pictures of SAR images from Hughes Aircraft, as...scans. Figure 5.4-1 is a photograph ot two SAR displays. The tirst display is made up ot six subscans and has a multilook ot one. Note that tading is...dentfi by block number) * Synthetic Aperture Radar ( SAR ) Simulation Study Radar Simulation Data Bases 5/~t. 4th.- Computer Image Generation Display 20

    14. Synthetic LDL as targeted drug delivery vehicle

      SciTech Connect

      Forte, Trudy M; Nikanjam, Mina

      2012-08-28

      The present invention provides a synthetic LDL nanoparticle comprising a lipid moiety and a synthetic chimeric peptide so as to be capable of binding the LDL receptor. The synthetic LDL nanoparticle of the present invention is capable of incorporating and targeting therapeutics to cells expressing the LDL receptor for diseases associated with the expression of the LDL receptor such as central nervous system diseases. The invention further provides methods of using such synthetic LDL nanoparticles.

    15. Cell microencapsulation with synthetic polymers

      PubMed Central

      Olabisi, Ronke M

      2015-01-01

      The encapsulation of cells into polymeric microspheres or microcapsules has permitted the transplantation of cells into human and animal subjects without the need for immunosuppressants. Cell-based therapies use donor cells to provide sustained release of a therapeutic product, such as insulin, and have shown promise in treating a variety of diseases. Immunoisolation of these cells via microencapsulation is a hotly investigated field, and the preferred material of choice has been alginate, a natural polymer derived from seaweed due to its gelling conditions. Although many natural polymers tend to gel in conditions favorable to mammalian cell encapsulation, there remain challenges such as batch to batch variability and residual components from the original source that can lead to an immune response when implanted into a recipient. Synthetic materials have the potential to avoid these issues; however, historically they have required harsh polymerization conditions that are not favorable to mammalian cells. As research into microencapsulation grows, more investigators are exploring methods to microencapsulate cells into synthetic polymers. This review describes a variety of synthetic polymers used to microencapsulate cells. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 846–859, 2015. PMID:24771675

    16. Hydrogen speciation in synthetic quartz

      USGS Publications Warehouse

      Aines, R.D.; Kirby, S.H.; Rossman, G.R.

      1984-01-01

      The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH- concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH- is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si ??? 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. ?? 1984 Springer-Verlag.

    17. Strategies for protein synthetic biology

      PubMed Central

      Grünberg, Raik; Serrano, Luis

      2010-01-01

      Proteins are the most versatile among the various biological building blocks and a mature field of protein engineering has lead to many industrial and biomedical applications. But the strength of proteins—their versatility, dynamics and interactions—also complicates and hinders systems engineering. Therefore, the design of more sophisticated, multi-component protein systems appears to lag behind, in particular, when compared to the engineering of gene regulatory networks. Yet, synthetic biologists have started to tinker with the information flow through natural signaling networks or integrated protein switches. A successful strategy common to most of these experiments is their focus on modular interactions between protein domains or domains and peptide motifs. Such modular interaction swapping has rewired signaling in yeast, put mammalian cell morphology under the control of light, or increased the flux through a synthetic metabolic pathway. Based on this experience, we outline an engineering framework for the connection of reusable protein interaction devices into self-sufficient circuits. Such a framework should help to ‘refacture’ protein complexity into well-defined exchangeable devices for predictive engineering. We review the foundations and initial success stories of protein synthetic biology and discuss the challenges and promises on the way from protein- to protein systems design. PMID:20385577

    18. Phenotype-driven chemical screening in zebrafish for compounds that inhibit collective cell migration identifies multiple pathways potentially involved in metastatic invasion.

      PubMed

      Gallardo, Viviana E; Varshney, Gaurav K; Lee, Minnkyong; Bupp, Sujata; Xu, Lisha; Shinn, Paul; Crawford, Nigel P; Inglese, James; Burgess, Shawn M

      2015-06-01

      In the last decade, high-throughput chemical screening has become the dominant approach for discovering novel compounds with therapeutic properties. Automated screening using in vitro or cultured cell assays have yielded thousands of candidate drugs for a variety of biological targets, but these approaches have not resulted in an increase in drug discovery despite major increases in expenditures. In contrast, phenotype-driven screens have shown a much stronger success rate, which is why we developed an in vivo assay using transgenic zebrafish with a GFP-marked migrating posterior lateral line primordium (PLLp) to identify compounds that influence collective cell migration. We then conducted a high-throughput screen using a compound library of 2160 annotated bioactive synthetic compounds and 800 natural products to identify molecules that block normal PLLp migration. We identified 165 compounds that interfere with primordium migration without overt toxicity in vivo. Selected compounds were confirmed in their migration-blocking activity by using additional assays for cell migration. We then proved the screen to be successful in identifying anti-metastatic compounds active in vivo by performing orthotopic tumor implantation assays in mice. We demonstrated that the Src inhibitor SU6656, identified in our screen, can be used to suppress the metastatic capacity of a highly aggressive mammary tumor cell line. Finally, we used CRISPR/Cas9-targeted mutagenesis in zebrafish to genetically validate predicted targets of compounds. This approach demonstrates that the migrating PLLp in zebrafish can be used for large-scale, high-throughput screening for compounds that inhibit collective cell migration and, potentially, anti-metastatic compounds.

    19. Synthetic-aperture chirp confocal imaging.

      PubMed

      Chien, Wei-Chen; Dilworth, D S; Liu, Elson; Leith, E N

      2006-01-20

      An imaging system that combines synthetic-aperture imaging, holography, and an optical chirp with confocal imaging is described and analyzed. Comparisons are made with synthetic-aperture radar systems. Adaptation of several synthetic-aperture radar techniques to the optical counterparts is suggested.

    20. Synthetic Cannabinoids and Cathinones: Prevalence and Markets.

      PubMed

      Bretteville-Jensen, A L; Tuv, S S; Bilgrei, O R; Fjeld, B; Bachs, L

      2013-03-01

      Over the past few years, the phenomenon of new designer drugs has attracted much attention. Synthetic cannabinoids and cathinones are the two main classes of these drugs. Both are potent drugs of abuse, and several cases of severe toxicity and deaths are reported. The present work is based on a systematic review of studies that have assessed the market and prevalence of synthetic cannabinoids and cathinones, and integrates pharmacological, sociological, and epidemiological aspects of these two groups of emerging synthetic drugs. The review reflects that the Internet has made synthetic cannabinoids and cathinones widely available. Furthermore, aggressive and widespread marketing, as well as the low price level of these drugs, their juridical status and their lack of detection on standard drug tests may serve as major motivations for drug use. The number of prevalence studies is small and derived from a limited number of countries. In spite of the many methodological shortcomings, some conclusions may be cautiously drawn. Taken together, the results point toward higher prevalence of use for synthetic cathinones than for synthetic cannabinoids. In the general population, the prevalence of use of synthetic cathinones is reported to be around 4% compared to figures lower than 1% for synthetic cannabinoids. Among students, the prevalence varies from 1-20% for synthetic cathinones and 2-10% for synthetic cannabinoids. Among groups with high rates of drug use, the prevalence varies between 4% to more than 60% for synthetic cathinones and around 10% for synthetic cannabinoids.

    1. 63 FR 41290 - Synthetic Methionine From Japan

      Federal Register 2010, 2011, 2012, 2013, 2014

      1998-08-03

      ... COMMISSION Synthetic Methionine From Japan AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on synthetic methionine from Japan... antidumping duty order on synthetic methionine from Japan would be likely to lead to continuation...

    2. Synthetic thermoelectric materials comprising phononic crystals

      DOEpatents

      El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

      2013-08-13

      Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

    3. Conjugation of Synthetic Cannabinoids JWH-018 and JWH-073, Metabolites by Human UDP-Glucuronosyltransferases

      PubMed Central

      Chimalakonda, Krishna C.; Bratton, Stacie M.; Le, Vi-Huyen; Yiew, Kan Hui; Dineva, Anna; Moran, Cindy L.; James, Laura P.; Moran, Jeffery H.

      2011-01-01

      K2, a synthetic cannabinoid (SC), is an emerging drug of abuse touted as “legal marijuana” and marketed to young teens and first-time drug users. Symptoms associated with K2 use include extreme agitation, syncope, tachycardia, and visual and auditory hallucinations. One major challenge to clinicians is the lack of clinical, pharmacological, and metabolic information for the detection and characterization of K2 and its metabolites in human samples. Information on the metabolic pathway of SCs is very limited. However, previous reports have shown the metabolites of these compounds are excreted primarily as glucuronic acid conjugates. Based on this information, this study evaluates nine human recombinant uridine diphosphate-glucuronosyltransferase (UGT) isoforms and human liver and intestinal microsomes for their ability to glucuronidate hydroxylated metabolites of 1-naphthalenyl-1(1-pentyl-1H-indol-3-yl)-methanone (JWH-018) and (1-butyl-1H-indol-3-yl)-1-naphthalenyl-methanone (JWH-073), the two most common SCs found in K2 products. Conjugates were identified and characterized using liquid chromatography/tandem mass spectrometry, whereas kinetic parameters were quantified using high-performance liquid chromatography-UV-visible methods. UGT1A1, UGT1A3, UGT1A9, UGT1A10, and UGT2B7 were shown to be the major enzymes involved, showing relatively high affinity with Km ranging from 12 to 18 μM for some hydroxylated K2s. These UGTs also exhibited a high metabolic capacity for these compounds, which indicates that K2 metabolites may be rapidly glucuronidated and eliminated from the body. Studies of K2 metabolites will help future development and validation of a specific assay for K2 and its metabolites and will allow researchers to fully explore their pharmacological actions. PMID:21746969

    4. Occurrence of synthetic musk fragrances in marine mammals and sharks from Japanese coastal waters.

      PubMed

      Nakata, Haruhiko

      2005-05-15

      In this study, the occurrence of the polycyclic musk fragrances HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[g]-2-benzopyran) and AHTN (7-acetyl-1,1,3,4,4,6-hexamethyltetrahydeonaphthalene) in marine mammals and sharks collected from Japanese coastal waters is reported. HHCB was present in the blubbers of all finless porpoises (Neophocaena phocaenoides) analyzed (n = 8), at levels ranging from 13 to 149 ng/g on a wet weight basis. A fetus sample of finless porpoise contained a notable concentration of HHCB (26 ng/g wet wt), suggesting transplacental transfer of this compound. Among 12 tissues and organs of a finless porpoise analyzed, the highest HHCB concentration was found in blubber, followed by kidney. This indicates that HHCB accumulates in lipid-rich tissues in marine mammals, which is similar to the accumulation profiles of persistent organochlorines, such as PCBs and DDTs. In general, the residue levels of AHTN and nitro musks were low or below the detection limits in finless porpoises, implying either less usage in Japan or high metabolic capacity of these compounds in this animal. HHCB was also found in the livers of five hammerhead sharks (Sphrna lewini) from Japanese coastal waters, at concentrations ranging from 16 to 48 ng/g wet wt. Occurrence of HHCB in higher trophic organisms strongly suggests that it is less degradable in the environment and accumulates in the top predators of marine food chains. This is the first report on the accumulation of synthetic musk fragrances in marine mammals and sharks.

    5. Synthetic Methods, Chemistry, and the Anticonvulsant Activity of Thiadiazoles

      PubMed Central

      Sharma, Bhawna; Verma, Amita; Prajapati, Sunil; Sharma, Upendra Kumar

      2013-01-01

      The chemistry of heterocyclic compounds has been an interesting field of study for a long time. Heterocyclic nucleus 1,3,4-thiadiazole constitutes an important class of compounds for new drug development. The synthesis of novel thiadiazole derivatives and investigation of their chemical and biological behavior have gained more importance in recent decades. The search for antiepileptic compounds with more selective activity and lower toxicity continues to be an active area of intensive investigation in medicinal chemistry. During the recent years, there has been intense investigation of different classes of thiadiazole compounds, many of which possess extensive pharmacological activities, namely, antimicrobial activity, anticonvulsant, antifungal antidiabetic, anti-inflammatory, antioxidant, and antituberculosis activities, and so forth. The resistance towards available drugs is rapidly becoming a major worldwide problem. The need to design new compounds to deal with this resistance has become one of the most important areas of research today. Thiadiazole is a versatile moiety that exhibits a wide variety of biological activities. Thiadiazole moiety acts as “hydrogen binding domain” and “two-electron donor system.” It also acts as a constrained pharmacophore. On the basis of the reported literature, we study here thiadiazole compounds and their synthetic methods chemistry and anticonvulsant activity. PMID:25405032

    6. Quantitative urine confirmatory testing for synthetic cannabinoids in randomly collected urine specimens

      PubMed Central

      Castaneto, Marisol S.; Scheidweiler, Karl B.; Gandhi, Adarsh; Wohlfarth, Ariane; Klette, Kevin L.; Martin, Thomas M.; Huestis, Marilyn A.

      2014-01-01

      Synthetic cannabinoid intake is an ongoing health issue worldwide, with new compounds continually emerging, making drug testing complex. Parent synthetic cannabinoids are rarely detected in urine, the most common matrix employed in workplace drug testing. Optimal identification of synthetic cannabinoid markers in authentic urine specimens and correlation of metabolite concentrations and toxicities would improve synthetic cannabinoid result interpretation. We screened 20,017 randomly collected US military urine specimens between July 2011 and June 2012 with a synthetic cannabinoid immunoassay yielding 1,432 presumptive positive specimens. We analyzed all presumptive positive and 1,069 negative specimens with our qualitative synthetic cannabinoid LC-MS/MS method, which confirmed 290 positive specimens. All 290 positive and 487 randomly-selected negative specimens were quantified with the most comprehensive urine quantitative LC-MS/MS method published to date. 290 specimens confirmed positive for 22 metabolites from 11 parent synthetic cannabinoids. The five most predominant metabolites were JWH-018 pentanoic acid (93%), JWH-018 N-hydroxypentyl (84%), AM2201 N-hydroxypentyl (69%), JWH-073 butanoic acid (69%), and JWH-122 N-hydroxypentyl (45%) with 11.1 (0.1–2434), 5.1 (0.1–1239), 2.0 (0.1–321), 1.1 (0.1–48.6), and 1.1 (0.1–250) μg/L median (range) concentrations, respectively. Alkyl hydroxy and carboxy metabolites provided suitable biomarkers for 11 parent synthetic cannabinoids; although, hydroxyindoles also were observed. This is by far the largest data set of synthetic cannabinoid metabolites urine concentrations from randomly collected workplace drug testing specimens rather than acute intoxications or driving under the influence of drugs. These data improve the interpretation of synthetic cannabinoid urine test results and suggest suitable urine markers of synthetic cannabinoid intake. PMID:25231213

    7. Stimulation of chemiluminescence by synthetic muramyl dipeptide and analogs.

      PubMed

      Masihi, K N; Azuma, I; Brehmer, W; Lange, W

      1983-04-01

      The effect on respiratory burst of murine splenic cells after in vitro exposure to synthetic muramyl dipeptide (MDP) and 6-O-acyl and quinonyl derivatives was studied at an early phase of interaction by luminol-dependent chemiluminescence (CL) in response to stimulation by zymosan. The MDP molecule enhanced CL, but the degree of CL response varied with the kinds of fatty acids introduced in the chemical structure of synthetic glycopeptide analogs. A 6-O-acyl derivative possessing an alpha-branched fatty acid chain, B30-MDP, stimulated maximum levels of CL activity. High CL responses were obtained with L8-MDP having a short chain of linear fatty acids and with QS-10-MDP-66 containing a ubiquinone compound. CL was also stimulated by MDP and its analogs in the spleen cells of nude mice lacking mature T lymphocytes, but the extent of stimulation was decreased compared with that of normal spleen cells.

    8. Synthesis of a naphthalene-hydroxynaphthalene polymer model compound. Final report, June 13, 1990--September 12, 1991

      SciTech Connect

      Not Available

      1991-10-02

      The objective of this project was the synthesis of one pound of a new naphthalene-hydroxynaphthalene polymer model compound for use in coal combustion studies. Since this compound was an unreported compound, this effort also required the development of a synthetic route to this compound (including routes to the unique and unreported intermediates leading to its synthesis).

    9. Synthetic turf field investigation in Connecticut.

      PubMed

      Simcox, Nancy J; Bracker, Anne; Ginsberg, Gary; Toal, Brian; Golembiewski, Brian; Kurland, Tara; Hedman, Curtis

      2011-01-01

      The primary purpose of this study was to characterize the concentrations of volatile organic compounds (VOC), semivolatile organic compounds (SVOC), rubber-related chemicals such as benzothiazole (BZT) and nitrosamine, and particulate matter (PM(10)) in air at synthetic turf crumb rubber fields. Both new and older fields were evaluated under conditions of active use. Three types of fields were targeted: four outdoor crumb rubber fields, one indoor facility with crumb rubber turf, and an outdoor natural grass field. Background samples were collected at each field on grass. Personal air sampling was conducted for VOC, BZT, nitrosamines, and other chemicals. Stationary air samples were collected at different heights to assess the vertical profile of release. Air monitoring for PM(10) was conducted at one height. Bulk samples of turf grass and crumb rubber were analyzed, and meteorological data were recorded. Results showed that personal concentrations were higher than stationary concentrations and were higher on turf than in background samples for certain VOC. In some cases, personal VOC concentrations from natural grass fields were as high as those on turf. Naphthalene, BZT, and butylated hydroxytoluene (BHT) were detected in greater concentration at the indoor field compared to the outdoor fields. Nitrosamine air levels were below reporting levels. PM(10) air concentrations were not different between on-field and upwind locations. All bulk lead (Pb) samples were below the public health target of 400 ppm. More research is needed to better understand air quality at indoor facilities. These field investigation data were incorporated into a separate human health risk assessment.

    10. Synthetic Cannabinoids: Epidemiology, Pharmacodynamics, and Clinical Implications*

      PubMed Central

      Castaneto, Marisol S.; Gorelick, David A.; Desrosiers, Nathalie A.; Hartman, Rebecca L.; Pirard, Sandrine; Huestis, Marilyn A.

      2014-01-01

      Background Synthetic cannabinoids (SC) are a heterogeneous group of compounds developed to probe the endogenous cannabinoid system or as potential therapeutics. Clandestine laboratories subsequently utilized published data to develop SC variations marketed as abuseable “designer drugs.” In the early 2000’s, SC became popular as “legal highs” under brand names such as “Spice” and “K2,” in part due to their ability to escape detection by standard cannabinoid screening tests. The majority of SC detected in herbal products have greater binding affinity to the cannabinoid CB1 receptor than does Δ9-tetrahydrocannabinol (THC), the primary psychoactive compound in the cannabis plant, and greater affinity at the CB1 than the CB2 receptor. In-vitro and animal in-vivo studies show SC pharmacological effects 2-100 times more potent than THC, including analgesic, anti-seizure, weight-loss, anti-inflammatory, and anti-cancer growth effects. SC produce physiological and psychoactive effects similar to THC, but with greater intensity, resulting in medical and psychiatric emergencies. Human adverse effects include nausea and vomiting, shortness of breath or depressed breathing, hypertension, tachycardia, chest pain, muscle twitches, acute renal failure, anxiety, agitation, psychosis, suicidal ideation, and cognitive impairment. Long-term or residual effects are unknown. Due to these public health consequences, many SC are classified as controlled substances. However, frequent structural modification by clandestine laboratories results in a stream of novel SC that may not be legally controlled or detectable by routine laboratory tests. Methods We present here a comprehensive review, based on a systematic electronic literature search, of SC epidemiology and pharmacology and their clinical implications. PMID:25220897

    11. Synthetic and natural coumarins as cytotoxic agents.

      PubMed

      Kostova, Irena

      2005-01-01

      Coumarins, an old class of compounds, are naturally occurring benzopyrene derivatives. A lot of coumarins have been identified from natural sources, especially green plants. The pharmacological and biochemical properties and therapeutic applications of simple coumarins depend upon the pattern of substitution. Coumarins have attracted intense interest in recent years because of their diverse pharmacological properties. Among these properties, their cytotoxic effects were most extensively examined. In this review, their broad range of effects on the tumors as shown by various in vitro and in vivo experiments and clinical studies are discussed. Hence, these cytotoxic coumarins represent an exploitable source of new anticancer agents, which might also help addressing side-toxicity and resistance phenomena. These natural compounds have served as valuable leads for further design and synthesis of more active analogues. In this review, plant derived coumarins and their synthetic analogues were systematically evaluated based on their plant origin, structure-activity relationship and anticancer efficacy. Owing the their diverse effects and inconclusive results from different in vitro studies, the mechanism of their action is not yet fully understood and correlation of effects with chemical structures is not conclusive at the moment. It is the objective of this review to summarize experimental data for different coumarins, used as cytotoxic agents, because promising data have been reported for a series of these agents. Yet, the results from different coumarins with various tumor lines are contradictory in part. We therefore conclude that there is still a long way to go until we know which cytotoxic agent will clinically be suitable for what tumor entity for treatment. Their ability to bind metal ions represents an additional means of modulating their pharmacological responses.

    12. Quantum reading capacity

      NASA Astrophysics Data System (ADS)

      Pirandola, Stefano; Lupo, Cosmo; Giovannetti, Vittorio; Mancini, Stefano; Braunstein, Samuel L.

      2011-11-01

      The readout of a classical memory can be modelled as a problem of quantum channel discrimination, where a decoder retrieves information by distinguishing the different quantum channels encoded in each cell of the memory (Pirandola 2011 Phys. Rev. Lett. 106 090504). In the case of optical memories, such as CDs and DVDs, this discrimination involves lossy bosonic channels and can be remarkably boosted by the use of nonclassical light (quantum reading). Here we generalize these concepts by extending the model of memory from single-cell to multi-cell encoding. In general, information is stored in a block of cells by using a channel-codeword, i.e. a sequence of channels chosen according to a classical code. Correspondingly, the readout of data is realized by a process of ‘parallel’ channel discrimination, where the entire block of cells is probed simultaneously and decoded via an optimal collective measurement. In the limit of a large block we define the quantum reading capacity of the memory, quantifying the maximum number of readable bits per cell. This notion of capacity is nontrivial when we suitably constrain the physical resources of the decoder. For optical memories (encoding bosonic channels), such a constraint is energetic and corresponds to fixing the mean total number of photons per cell. In this case, we are able to prove a separation between the quantum reading capacity and the maximum information rate achievable by classical transmitters, i.e. arbitrary classical mixtures of coherent states. In fact, we can easily construct nonclassical transmitters that are able to outperform any classical transmitter, thus showing that the advantages of quantum reading persist in the optimal multi-cell scenario.

    13. Airfield and Airspace Capacity/Delay Policy Analysis,

      DTIC Science & Technology

      1981-12-01

      19 major airports by 1991. Remedies to such congestion are described for 12 airports, but presently knw resources are expected to be insufficient to... environmental restrictions on airport use, thereby reducing capacity. Compounding the threat of potentially inadequate capacity is an increasing unit cost of...expenditures, and research and development expenditures were $3.3, $2.2, and $0.7 billion, respectively. During the 1970’s, these resources provided

    14. Antimicrobial activity of synthetic bornyl benzoates against Trypanosoma cruzi

      PubMed Central

      Corrêa, P R C; Miranda, R R S; Duarte, L P; Silva, G D F; Filho, S A Vieira; Okuma, A A; Carazza, F; Morgado-Díaz, J A; Pinge-Filho, P; Yamauchi, L M; Nakamura, C V; Yamada-Ogatta, S F

      2012-01-01

      We report here for the first time the in vitro effects of (1S,2R,4S)-1,7,7-trimethyl-bicyclo[2.2.1]heptan-2-yl-3′,4′,5′-trimethoxy benzoate (1) and (1S,2R,4S)-1,7,7-trimethyl-bicyclo[2.2.1]heptan-2-yl benzoate (2) on the growth and ultrastructure of Trypanosoma cruzi. These two synthetic compounds exerted an antiproliferative effect on the epimastigote forms of the parasite. The ICs50/72h of two synthetic L-bornyl benzoates, 1 and 2, was 10.1 and 12.8 μg/ml, respectively. Both compounds were more selective against epimastigotes than HEp-2 cells. Ultrastructural analysis revealed intense cytoplasmic vacuolization and the appearance of cytoplasmic materials surrounded by membranes. The treatment of peritoneal macrophages with compounds 1 and 2 caused a significant decrease in the number of T. cruzi-infected cells. L-Bornyl benzoate derivatives may serve as a potential source for the development of more effective and safer chemotherapeutic agents against T. cruzi infections. PMID:22943546

    15. Dietary derived compounds in cancer chemoprevention

      PubMed Central

      Rzeski, Wojciech

      2012-01-01

      Cancer chemoprevention is defined as the application of natural or synthetic agents to suppress or reverse cancer development and progression. In this field especially diet derived compounds have recently attracted researchers’ attention as potential therapeutics generally exerting low toxicity compared with regular drugs. This review presents a survey of recent findings concerning the most promising dietary chemopreventive agents such as green tea polyphenols (i.e. catechins), long-chain polyunsaturated fatty acids, carotenoids, glucosinolates/isothiocyanates, vitamins (i.e. vitamin D and folate) and minerals (i.e. calcium and selenium). Molecular targets involved in intrinsic pathways affected by these natural compounds are also shortly discussed. PMID:23788916

    16. Synthetic Biological Approaches to Natural Product Biosynthesis

      PubMed Central

      Winter, Jaclyn M; Tang, Yi

      2012-01-01

      Small molecules produced in Nature continue to be an inspiration for the development of new therapeutic agents. These natural products possess exquisite chemical diversity, which gives rise to their wide range of biological activities. In their host organism, natural products are assembled and modified by dedicated biosynthetic pathways that Nature has meticulously developed. Often times, the complex structures or chemical modifications instated by these pathways are difficult to replicate using traditional synthetic methods. An alternative approach for creating or enhancing the structural variation of natural products is through combinatorial biosynthesis. By rationally reprogramming and manipulating the biosynthetic machinery responsible for their production, unnatural metabolites that were otherwise inaccessible can be obtained. Additionally, new chemical structures can be synthesized or derivatized by developing the enzymes that carry out these complicated chemical reactions into biocatalysts. In this review, we will discuss a variety of combinatorial biosynthetic strategies, their technical challenges, and highlight some recent (since 2007) examples of rationally designed unnatural metabolites, as well as platforms that have been established for the production and modification of clinically important pharmaceutical compounds. PMID:22221832

    17. Synthetic mimetics of the endogenous gastrointestinal nanomineral: Silent constructs that trap macromolecules for intracellular delivery.

      PubMed

      Pele, Laetitia C; Haas, Carolin T; Hewitt, Rachel E; Robertson, Jack; Skepper, Jeremy; Brown, Andy; Hernandez-Garrido, Juan Carlos; Midgley, Paul A; Faria, Nuno; Chappell, Helen; Powell, Jonathan J

      2017-02-01

      Amorphous magnesium-substituted calcium phosphate (AMCP) nanoparticles (75-150nm) form constitutively in large numbers in the mammalian gut. Collective evidence indicates that they trap and deliver luminal macromolecules to mucosal antigen presenting cells (APCs) and facilitate gut immune homeostasis. Here, we report on a synthetic mimetic of the endogenous AMCP and show that it has marked capacity to trap macromolecules during formation. Macromolecular capture into AMCP involved incorporation as shown by STEM tomography of the synthetic AMCP particle with 5nm ultra-fine iron (III) oxohydroxide. In vitro, organic cargo-loaded synthetic AMCP was taken up by APCs and tracked to lysosomal compartments. The AMCP itself did not regulate any gene, or modify any gene regulation by its cargo, based upon whole genome transcriptomic analyses. We conclude that synthetic AMCP can efficiently trap macromolecules and deliver them to APCs in a silent fashion, and may thus represent a new platform for antigen delivery.

    18. Heat Capacity in Proteins

      NASA Astrophysics Data System (ADS)

      Prabhu, Ninad V.; Sharp, Kim A.

      2005-05-01

      Heat capacity (Cp) is one of several major thermodynamic quantities commonly measured in proteins. With more than half a dozen definitions, it is the hardest of these quantities to understand in physical terms, but the richest in insight. There are many ramifications of observed Cp changes: The sign distinguishes apolar from polar solvation. It imparts a temperature (T) dependence to entropy and enthalpy that may change their signs and which of them dominate. Protein unfolding usually has a positive ΔCp, producing a maximum in stability and sometimes cold denaturation. There are two heat capacity contributions, from hydration and protein-protein interactions; which dominates in folding and binding is an open question. Theoretical work to date has dealt mostly with the hydration term and can account, at least semiquantitatively, for the major Cp-related features: the positive and negative Cp of hydration for apolar and polar groups, respectively; the convergence of apolar group hydration entropy at T ≈ 112°C; the decrease in apolar hydration Cp with increasing T; and the T-maximum in protein stability and cold denaturation.

    19. Early hominin auditory capacities

      PubMed Central

      Quam, Rolf; Martínez, Ignacio; Rosa, Manuel; Bonmatí, Alejandro; Lorenzo, Carlos; de Ruiter, Darryl J.; Moggi-Cecchi, Jacopo; Conde Valverde, Mercedes; Jarabo, Pilar; Menter, Colin G.; Thackeray, J. Francis; Arsuaga, Juan Luis

      2015-01-01

      Studies of sensory capacities in past life forms have offered new insights into their adaptations and lifeways. Audition is particularly amenable to study in fossils because it is strongly related to physical properties that can be approached through their skeletal structures. We have studied the anatomy of the outer and middle ear in the early hominin taxa Australopithecus africanus and Paranthropus robustus and estimated their auditory capacities. Compared with chimpanzees, the early hominin taxa are derived toward modern humans in their slightly shorter and wider external auditory canal, smaller tympanic membrane, and lower malleus/incus lever ratio, but they remain primitive in the small size of their stapes footplate. Compared with chimpanzees, both early hominin taxa show a heightened sensitivity to frequencies between 1.5 and 3.5 kHz and an occupied band of maximum sensitivity that is shifted toward slightly higher frequencies. The results have implications for sensory ecology and communication, and suggest that the early hominin auditory pattern may have facilitated an increased emphasis on short-range vocal communication in open habitats. PMID:26601261

    20. Early hominin auditory capacities.

      PubMed

      Quam, Rolf; Martínez, Ignacio; Rosa, Manuel; Bonmatí, Alejandro; Lorenzo, Carlos; de Ruiter, Darryl J; Moggi-Cecchi, Jacopo; Conde Valverde, Mercedes; Jarabo, Pilar; Menter, Colin G; Thackeray, J Francis; Arsuaga, Juan Luis

      2015-09-01

      Studies of sensory capacities in past life forms have offered new insights into their adaptations and lifeways. Audition is particularly amenable to study in fossils because it is strongly related to physical properties that can be approached through their skeletal structures. We have studied the anatomy of the outer and middle ear in the early hominin taxa Australopithecus africanus and Paranthropus robustus and estimated their auditory capacities. Compared with chimpanzees, the early hominin taxa are derived toward modern humans in their slightly shorter and wider external auditory canal, smaller tympanic membrane, and lower malleus/incus lever ratio, but they remain primitive in the small size of their stapes footplate. Compared with chimpanzees, both early hominin taxa show a heightened sensitivity to frequencies between 1.5 and 3.5 kHz and an occupied band of maximum sensitivity that is shifted toward slightly higher frequencies. The results have implications for sensory ecology and communication, and suggest that the early hominin auditory pattern may have facilitated an increased emphasis on short-range vocal communication in open habitats.