He, Jia; Li, Jin J; Wen, Yang; Tai, Hong W; Yu, Yang; Qin, Wei C; Su, Li M; Zhao, Yuan H
2015-06-01
The modes of toxic action (MOAs) play an important role in the assessment of the ecotoxicity of organic pollutants. However, few studies have been reported on the MOAs in rat toxicity. In this paper, the toxic contributions of functional groups in 1255 aromatic compounds were calculated from regression and were then compared with the toxic contributions in aliphatic compounds. The results show that some functional groups have same toxic contributions both in aromatic and aliphatic compounds, but some have not. To investigate the MOAs in rat toxicity, the distribution of toxic ratio (TR) was examined for well-known baseline and less inert compounds and thresholds of log TR=0.3 and 0.5 were used to classify baseline, less inert and reactive compounds. The results showed that some compounds identified as baseline compounds in fish toxicity were also classified as baseline compounds in rat toxicity. Except for phenols and anilines which were identified as less inert compounds in fish toxicity, aromatic compounds with functional groups such as ether, nitrile, nitrophenol, isocyanatoe and chloro were identified as less inert chemicals in rat toxicity. Reactive compounds identified in fish toxicity exhibit greater toxicity to rats. These compounds can undergo nucleophilic substitution, acylation and Schiff base formation with biological macromolecules. The critical body residues (CBRs) calculated from absorption and bioconcentration show that log 1/CBRs in rat toxicity are not equal to that in fish for some compounds. It suggests that the exposure route can affect the identification of MOAs between these two species for these compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optimal choice of pH for toxicity and bioaccumulation studies of ionizing organic chemicals.
Rendal, Cecilie; Kusk, Kresten Ole; Trapp, Stefan
2011-11-01
It is recognized that the pH of exposure solutions can influence the toxicity and bioaccumulation of ionizing compounds. The present study investigates whether it can be considered a general rule that an ionizable compound is more toxic and more bioaccumulative when in the neutral state. Three processes were identified to explain the behavior of ionizing compounds with changing pH: the change in lipophilicity when a neutral compound becomes ionized, electrical attraction, and the ion trap. The literature was screened for bioaccumulation and toxicity tests of ionizing organic compounds performed at multiple pH levels. Toxicity and bioconcentration factors (BCFs) were higher for acids at lower pH values, whereas the opposite was true for bases. The effect of pH was most pronounced when pH - pK(a) was in the range of -1 to 3 for acids, and -3 to 1 for bases. The factor by which toxicity and BCF changed with pH was correlated with the lipophilicity of the compound (log K(OW) of the neutral compound). For both acids and bases, the correlation was positive, but it was significant only for acids. Because experimental data in the literature were limited, results were supplemented with model simulations using a dynamic flux model based on the Fick-Nernst-Planck diffusion equation known as the cell model. The cell model predicts that bases with delocalized charges may in some cases show declining bioaccumulation with increasing pH. Little information is available for amphoteric and zwitterionic compounds; however, based on simulations with the cell model, it is expected that the highest toxicity and bioaccumulation of these compounds will be found where the compounds are most neutral, at the isoelectric point. Copyright © 2011 SETAC.
Lienemann, Kai; Plötz, Thomas; Pestel, Sabine
2008-01-01
The aim of safety pharmacology is early detection of compound-induced side-effects. NMR-based urine analysis followed by multivariate data analysis (metabonomics) identifies efficiently differences between toxic and non-toxic compounds; but in most cases multiple administrations of the test compound are necessary. We tested the feasibility of detecting proximal tubule kidney toxicity and phospholipidosis with metabonomics techniques after single compound administration as an early safety pharmacology approach. Rats were treated orally, intravenously, inhalatively or intraperitoneally with different test compounds. Urine was collected at 0-8 h and 8-24 h after compound administration, and (1)H NMR-patterns were recorded from the samples. Variation of post-processing and feature extraction methods led to different views on the data. Support Vector Machines were trained on these different data sets and then aggregated as experts in an Ensemble. Finally, validity was monitored with a cross-validation study using a training, validation, and test data set. Proximal tubule kidney toxicity could be predicted with reasonable total classification accuracy (85%), specificity (88%) and sensitivity (78%). In comparison to alternative histological studies, results were obtained quicker, compound need was reduced, and very importantly fewer animals were needed. In contrast, the induction of phospholipidosis by the test compounds could not be predicted using NMR-based urine analysis or the previously published biomarker PAG. NMR-based urine analysis was shown to effectively predict proximal tubule kidney toxicity after single compound administration in rats. Thus, this experimental design allows early detection of toxicity risks with relatively low amounts of compound in a reasonably short period of time.
Li, Jin J; Tai, Hong W; Yu, Yang; Wen, Yang; Wang, Xiao H; Zhao, Yuan H
2015-07-01
Toxicity data to fish and algae were used to investigate excess toxicity between species. Results show that chemicals exhibiting excess toxicity to fish also show excess toxicity to algae for most of the compounds. This indicates that they share the same mode of action between species. Similar relationships between logKOW and toxicities to fish and algae for baseline and less inert compounds suggest that they have similar critical body residues in the two species. Differences in excess toxicity for some compounds suggest that there is a difference of physiological structure and metabolism between fish and algae. Some reactive compounds (e.g. polyamines) exhibit greater toxic effects for algae than those for fish because of relatively low bio-uptake potential of these hydrophilic compounds in fish as compared with that in algae. Esters exhibiting greater toxicity in fish than that in algae indicate that metabolism can affect the discrimination of excess toxicity from baseline level. Algae growth inhibition is a very good surrogate for fish lethality. This is not only because overall toxicity sensitivity to algae is greater than that to fish, but also the excess toxicity calculated from algal toxicity can better reflect reactivity of compounds with target molecules than fish toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.
Tandem screening of toxic compounds on GFP-labeled bacteria and cancer cells in microtiter plates.
Montoya, Jessica; Varela-Ramirez, Armando; Shanmugasundram, Muthian; Martinez, Luis E; Primm, Todd P; Aguilera, Renato J
2005-09-23
A 96-well fluorescence-based assay has been developed for the rapid screening of potential cytotoxic and bacteriocidal compounds. The assay is based on detection of green fluorescent protein (GFP) in HeLa human carcinoma cells as well as gram negative (Escherichia coli) and gram positive bacteria (Mycobacterium avium). Addition of a toxic compound to the GFP marked cells resulted in the loss of the GFP fluorescence which was readily detected by fluorometry. Thirty-nine distinct naphthoquinone derivatives were screened and several of these compounds were found to be toxic to all cell types. Apart from differences in overall toxicity, two general types of toxic compounds were detected, those that exhibited toxicity to two or all three of the cell types and those that were primarily toxic to the HeLa cells. Our results demonstrate that the parallel screening of both eukaryotic and prokaryotic cells is not only feasible and reproducible but also cost effective.
Discriminating modes of toxic action in mice using toxicity in BALB/c mouse fibroblast (3T3) cells.
Huang, Tao; Yan, Lichen; Zheng, Shanshan; Wang, Yue; Wang, Xiaohong; Fan, Lingyun; Li, Chao; Zhao, Yuanhui; Martyniuk, Christopher J
2017-12-01
The objective of this study was to determine whether toxicity in mouse fibroblast cells (3T3 cells) could predict toxicity in mice. Synthesized data on toxicity was subjected to regression analysis and it was observed that relationship of toxicities between mice and 3T3 cells was not strong (R 2 = 0.41). Inclusion of molecular descriptors (e.g. ionization, pKa) improved the regression to R 2 = 0.56, indicating that this relationship is influenced by kinetic processes of chemicals or specific toxic mechanisms associated to the compounds. However, to determine if we were able to discriminate modes of action (MOAs) in mice using the toxicities generated from 3T3 cells, compounds were first classified into "baseline" and "reactive" guided by the toxic ratio (TR) for each compound in mice. Sequence, binomial and recursive partitioning analyses provided strong predictions of MOAs in mice based upon toxicities in 3T3 cells. The correct classification of MOAs based on these methods was 86%. Nearly all the baseline compounds predicted from toxicities in 3T3 cells were identified as baseline compounds from the TR in mice. The incorrect assignment of MOAs for some compounds is hypothesized to be due to experimental uncertainty that exists in toxicity assays for both mice and 3T3 cells. Conversely, lack of assignment can also arise because some reactive compounds have MOAs that are different in mice compared to 3T3 cells. The methods developed here are novel and contribute to efforts to reduce animal numbers in toxicity tests that are used to evaluate risks associated with organic pollutants in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bilayer Effects of Antimalarial Compounds
Ramsey, Nicole B.; Andersen, Olaf S.
2015-01-01
Because of the perpetual development of resistance to current therapies for malaria, the Medicines for Malaria Venture developed the Malaria Box to facilitate the drug development process. We tested the 80 most potent compounds from the box for bilayer-mediated effects on membrane protein conformational changes (a measure of likely toxicity) in a gramicidin-based stopped flow fluorescence assay. Among the Malaria Box compounds tested, four compounds altered membrane properties (p< 0.05); MMV007384 stood out as a potent bilayer-perturbing compound that is toxic in many cell-based assays, suggesting that testing for membrane perturbation could help identify toxic compounds. In any case, MMV007384 should be approached with caution, if at all. PMID:26551613
Bilayer Effects of Antimalarial Compounds.
Ramsey, Nicole B; Andersen, Olaf S
2015-01-01
Because of the perpetual development of resistance to current therapies for malaria, the Medicines for Malaria Venture developed the Malaria Box to facilitate the drug development process. We tested the 80 most potent compounds from the box for bilayer-mediated effects on membrane protein conformational changes (a measure of likely toxicity) in a gramicidin-based stopped flow fluorescence assay. Among the Malaria Box compounds tested, four compounds altered membrane properties (p< 0.05); MMV007384 stood out as a potent bilayer-perturbing compound that is toxic in many cell-based assays, suggesting that testing for membrane perturbation could help identify toxic compounds. In any case, MMV007384 should be approached with caution, if at all.
Literature-based compound profiling: application to toxicogenomics.
Frijters, Raoul; Verhoeven, Stefan; Alkema, Wynand; van Schaik, René; Polman, Jan
2007-11-01
To reduce continuously increasing costs in drug development, adverse effects of drugs need to be detected as early as possible in the process. In recent years, compound-induced gene expression profiling methodologies have been developed to assess compound toxicity, including Gene Ontology term and pathway over-representation analyses. The objective of this study was to introduce an additional approach, in which literature information is used for compound profiling to evaluate compound toxicity and mode of toxicity. Gene annotations were built by text mining in Medline abstracts for retrieval of co-publications between genes, pathology terms, biological processes and pathways. This literature information was used to generate compound-specific keyword fingerprints, representing over-represented keywords calculated in a set of regulated genes after compound administration. To see whether keyword fingerprints can be used for assessment of compound toxicity, we analyzed microarray data sets of rat liver treated with 11 hepatotoxicants. Analysis of keyword fingerprints of two genotoxic carcinogens, two nongenotoxic carcinogens, two peroxisome proliferators and two randomly generated gene sets, showed that each compound produced a specific keyword fingerprint that correlated with the experimentally observed histopathological events induced by the individual compounds. By contrast, the random sets produced a flat aspecific keyword profile, indicating that the fingerprints induced by the compounds reflect biological events rather than random noise. A more detailed analysis of the keyword profiles of diethylhexylphthalate, dimethylnitrosamine and methapyrilene (MPy) showed that the differences in the keyword fingerprints of these three compounds are based upon known distinct modes of action. Visualization of MPy-linked keywords and MPy-induced genes in a literature network enabled us to construct a mode of toxicity proposal for MPy, which is in agreement with known effects of MPy in literature. Compound keyword fingerprinting based on information retrieved from literature is a powerful approach for compound profiling, allowing evaluation of compound toxicity and analysis of the mode of action.
Discrimination of excess toxicity from baseline level for ionizable compounds: Effect of pH.
Li, Jin J; Zhang, Xu J; Wang, Xiao H; Wang, Shuo; Yu, Yang; Qin, Wei C; Su, Li M; Zhao, Yuan H
2016-03-01
The toxic effect can be affected by pH in water through affecting the degree of ionization of ionizable compounds. Wrong classification of mode of action can be made from the apparent toxicities. In this paper, the toxicity data of 61 compounds to Daphnia magna determined at three pH values were used to investigate the effect of pH on the discrimination of excess toxicity. The results show that the apparent toxicities are significantly less than the baseline level. Analysis on the effect of pH on bioconcentration factor (BCF) shows that the log BCF values are significantly over-estimated for the strongly ionizable compounds, leading to the apparent toxicities greatly less than the baseline toxicities and the toxic ratios greatly less than zero. A theoretical equation between the apparent toxicities and pH has been developed basing on the critical body residue (CBR). The apparent toxicities are non-linearly related to pH, but linearly to fraction of unionized form. The determined apparent toxicities are well fitted with the toxicities predicted by the equation. The toxicities in the unionized form calculated from the equation are close to, or greater than the baseline level for almost all the strongly ionizable compounds, which are very different from the apparent toxicities. The studied ionizable compounds can be either classified as baseline, less inert or reactive compounds in D. magna toxicity. Some ionizable compounds do not exhibit excess toxicity at a certain pH, due not to their poor reactivity with target molecules, but because of the ionization in water. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Development of the next-generation biocatalyst is vital for fermentation-based industrial applications and a sustainable bio-based economy. Overcoming the major class of toxic compounds associated with lignocellulose-to-biofuels conversion is one of the significant challenges for new strain developm...
Multi-class Mode of Action Classification of Toxic Compounds Using Logic Based Kernel Methods.
Lodhi, Huma; Muggleton, Stephen; Sternberg, Mike J E
2010-09-17
Toxicity prediction is essential for drug design and development of effective therapeutics. In this paper we present an in silico strategy, to identify the mode of action of toxic compounds, that is based on the use of a novel logic based kernel method. The technique uses support vector machines in conjunction with the kernels constructed from first order rules induced by an Inductive Logic Programming system. It constructs multi-class models by using a divide and conquer reduction strategy that splits multi-classes into binary groups and solves each individual problem recursively hence generating an underlying decision list structure. In order to evaluate the effectiveness of the approach for chemoinformatics problems like predictive toxicology, we apply it to toxicity classification in aquatic systems. The method is used to identify and classify 442 compounds with respect to the mode of action. The experimental results show that the technique successfully classifies toxic compounds and can be useful in assessing environmental risks. Experimental comparison of the performance of the proposed multi-class scheme with the standard multi-class Inductive Logic Programming algorithm and multi-class Support Vector Machine yields statistically significant results and demonstrates the potential power and benefits of the approach in identifying compounds of various toxic mechanisms. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Topping, David; Decesari, Stefano; Bassan, Arianna; Pavan, Manuela; Ciacci, Andrea
2016-04-01
Exposure to atmospheric particulate matter is responsible for both short-term and long-term adverse health effects. So far, all efforts spent in achieving a systematic epidemiological evidence of specific aerosol compounds determining the overall aerosol toxicity were unsuccessful. The results of the epidemiological studies apparently conflict with the laboratory toxicological analyses which have highlighted very different chemical and toxicological potentials for speciated aerosol compounds. Speciation remains a problem, especially for organic compounds: it is impossible to conduct screening on all possible molecular species. At the same time, research on toxic compounds risks to be biased towards the already known compounds, such as PAHs and dioxins. In this study we present results from an initial assessment of the use of in silico methods (i.e. (Q)SAR, read-across) to predict toxicity of atmospheric organic compounds including evaluation of applicability of a variety of popular tools (e.g. OECD QSAR Toolbox) for selected endpoints (e.g. genotoxicity). Compounds are categorised based on the need of new experimental data for the development of in silico approaches for toxicity prediction covering this specific chemical space, namely the atmospheric aerosols. Whilst only an initial investigation, we present recommendations for continuation of this work.
Shukla, Rashmi; Singh, Ajeet P; Sonar, Pankaj K; Mishra, Mudita; Saraf, Shailendra K
2016-01-01
Schiff bases have a broad spectrum of biological activities like antiinflammatory, analgesic, antimicrobial, anticonvulsant, antitubercular, anticancer, antioxidant, anthelmintic and so forth. Thus, after a thorough perusal of literature, it was decided to conjugate benzothiazol-2-ylamine/thiazolo [5, 4-b] pyridin-2-ylamine with aromatic and heteroaromatic aldehydes to get a series of Schiff bases. Synthesis, characterization, in-silico toxicity profiling and anticonvulsant activity of the Schiff bases of Benzothiazol-2-ylamine and Thiazolo [5, 4-b] pyridin-2-ylamine. Aniline/4-aminopyridine was converted to the corresponding thiourea derivatives, which were cyclized to obtain benzothiazol-2-ylamine/thiazolo [5, 4-b] pyridin-2-ylamine. Finally, these were condensed with various aromatic and heteroaromatic aldehydes to obtain Schiff bases of benzothiazol-2-ylamine and thiazolo [5, 4-b] pyridin-2-ylamine. The synthesized compounds were characterized and screened for their anticonvulsant activity using maximal electroshock (MES) test and isoniazid (INH) induced convulsions test. In-silico toxicity profiling of all the synthesized compounds was done through "Lazar" and "Osiris" properties explorer. Majority of the compounds were more potent against MES induced convulsions than INH induced convulsions. Schiff bases of benzothiazol-2-ylamine were more effective than thiazolo [5, 4-b] pyridin-2-ylamine against MES induced convulsions. The compound benzothiazol-2-yl-(1H-indol-2-ylmethylene)-amine (VI) was the most potent member of the series against both types of convulsions. Compound VI exhibited the most significant activity profile in both the models. The compounds did not exhibit any carcinogenicity or acute toxicity in the in-silico studies. Thus, it may be concluded that the Schiff bases of benzothiazol-2-ylamine exhibit the potential to be promising and non-toxic anticonvulsant agents.
Kim, Kwang-Ho; Yi, Chang-Geun; Ahn, Young-Joon; Kim, Soon Il; Lee, Sang-Guei; Kim, Jun-Ran
2015-09-01
This study was aimed at assessing the fumigant toxicity to adult Thrips palmi (a serious insect pest) and Orius strigicollis (a beneficial predator insect) of basil (Ocimum basilicum) essential oil compounds and structurally related compounds using vapour-phase toxicity bioassays. Against adult T. palmi, linalool (LD50 0.0055 mg cm(-3) ) was the most toxic fumigant and was 15.2-fold more effective than dichlorvos (0.0837 mg cm(-3) ). Strong fumigant toxicity was also observed in pulegone (0.0095 mg cm(-3) ), (±)-camphor (0.0097 mg cm(-3) ) and 1,8-cineole (0.0167 mg cm(-3) ). Moderate toxicity was produced by camphene, 3-carene, (-)-menthone, (+)-α-pinene, (+)-β-pinene, α-terpineol and (-)-α-thujone (0.0215-0.0388 mg cm(-3) ). Against adult O. strigicollis, dichlorvos (LD50 9.0 × 10(-10) mg cm(-3) ) was the most toxic fumigant, whereas the LD50 values of these compounds ranged from 0.0127 to >0.23 mg cm(-3) . Based upon the selective toxicity ratio, the compounds described are more selective than dichlorvos. The basil oil compounds described merit further study as potential insecticides for control of T. palmi in greenhouses because of their generally lower toxicity to O. strigicollis and their greater activity as a fumigant than dichlorvos. © 2014 Society of Chemical Industry.
Predictive ecotoxicity of MoA 1 of organic chemicals using in silico approaches.
de Morais E Silva, Luana; Alves, Mateus Feitosa; Scotti, Luciana; Lopes, Wilton Silva; Scotti, Marcus Tullius
2018-05-30
Persistent organic products are compounds used for various purposes, such as personal care products, surfactants, colorants, industrial additives, food, pesticides and pharmaceuticals. These substances are constantly introduced into the environment and many of these pollutants are difficult to degrade. Toxic compounds classified as MoA 1 (Mode of Action 1) are low toxicity compounds that comprise nonreactive chemicals. In silico methods such as Quantitative Structure-Activity Relationships (QSARs) have been used to develop important models for prediction in several areas of science, as well as aquatic toxicity studies. The aim of the present study was to build a QSAR model-based set of theoretical Volsurf molecular descriptors using the fish acute toxicity values of compounds defined as MoA 1 to identify the molecular properties related to this mechanism. The selected Partial Least Squares (PLS) results based on the values of cross-validation coefficients of determination (Q cv 2 ) show the following values: Q cv 2 = 0.793, coefficient of determination (R 2 ) = 0.823, explained variance in external prediction (Q ext 2 ) = 0.87. From the selected descriptors, not only the hydrophobicity is related to the toxicity as already mentioned in previously published studies but other physicochemical properties combined contribute to the activity of these compounds. The symmetric distribution of the hydrophobic moieties in the structure of the compounds as well as the shape, as branched chains, are important features that are related to the toxicity. This information from the model can be useful in predicting so as to minimize the toxicity of organic compounds. Copyright © 2018. Published by Elsevier Inc.
Huang, Ruili; Southall, Noel; Xia, Menghang; Cho, Ming-Hsuang; Jadhav, Ajit; Nguyen, Dac-Trung; Inglese, James; Tice, Raymond R.; Austin, Christopher P.
2009-01-01
In support of the U.S. Tox21 program, we have developed a simple and chemically intuitive model we call weighted feature significance (WFS) to predict the toxicological activity of compounds, based on the statistical enrichment of structural features in toxic compounds. We trained and tested the model on the following: (1) data from quantitative high–throughput screening cytotoxicity and caspase activation assays conducted at the National Institutes of Health Chemical Genomics Center, (2) data from Salmonella typhimurium reverse mutagenicity assays conducted by the U.S. National Toxicology Program, and (3) hepatotoxicity data published in the Registry of Toxic Effects of Chemical Substances. Enrichments of structural features in toxic compounds are evaluated for their statistical significance and compiled into a simple additive model of toxicity and then used to score new compounds for potential toxicity. The predictive power of the model for cytotoxicity was validated using an independent set of compounds from the U.S. Environmental Protection Agency tested also at the National Institutes of Health Chemical Genomics Center. We compared the performance of our WFS approach with classical classification methods such as Naive Bayesian clustering and support vector machines. In most test cases, WFS showed similar or slightly better predictive power, especially in the prediction of hepatotoxic compounds, where WFS appeared to have the best performance among the three methods. The new algorithm has the important advantages of simplicity, power, interpretability, and ease of implementation. PMID:19805409
Wang, Xiao H.; Yu, Yang; Huang, Tao; Qin, Wei C.; Su, Li M.; Zhao, Yuan H.
2016-01-01
Investigations on the relationship of toxicities between species play an important role in the understanding of toxic mechanisms to environmental organisms. In this paper, the toxicity data of 949 chemicals to fish and 1470 chemicals to V. fischeri were used to investigate the modes of action (MOAs) between species. The results show that although there is a positive interspecies correlation, the relationship is poor. Analysis on the excess toxicity calculated from toxic ratios (TR) shows that many chemicals have close toxicities and share the same MOAs between the two species. Linear relationships between the toxicities and octanol/water partition coefficient (log KOW) for baseline and less inert compounds indicate that the internal critical concentrations (CBRs) approach a constant both to fish and V. fischeri for neutral hydrophobic compounds. These compounds share the same toxic mechanisms and bio-uptake processes between species. On the other hand, some hydrophilic compounds exhibit different toxic effects with greatly different log TR values between V. fischeri and fish species. These hydrophilic compounds were identified as reactive MOAs to V. fischeri, but not to fish. The interspecies correlation is improved by adding a hydrophobic descriptor into the correlation equation. This indicates that the differences in the toxic ratios between fish and V. fischeri for these hydrophilic compounds can be partly attributed to the differences of bioconcentration between the two species, rather than the differences of reactivity with the target macromolecules. These hydrophilic compounds may more easily pass through the cell membrane of V. fischeri than the gill and skin of fish, react with the target macromolecules and exhibit excess toxicity. The compounds with log KOW > 7 exhibiting very low toxicity (log TR < –1) to both species indicate that the bioconcentration potential of a chemical plays a very important role in the identification of excess toxicity and MOAs. PMID:26901437
ProTox: a web server for the in silico prediction of rodent oral toxicity
Drwal, Malgorzata N.; Banerjee, Priyanka; Dunkel, Mathias; Wettig, Martin R.; Preissner, Robert
2014-01-01
Animal trials are currently the major method for determining the possible toxic effects of drug candidates and cosmetics. In silico prediction methods represent an alternative approach and aim to rationalize the preclinical drug development, thus enabling the reduction of the associated time, costs and animal experiments. Here, we present ProTox, a web server for the prediction of rodent oral toxicity. The prediction method is based on the analysis of the similarity of compounds with known median lethal doses (LD50) and incorporates the identification of toxic fragments, therefore representing a novel approach in toxicity prediction. In addition, the web server includes an indication of possible toxicity targets which is based on an in-house collection of protein–ligand-based pharmacophore models (‘toxicophores’) for targets associated with adverse drug reactions. The ProTox web server is open to all users and can be accessed without registration at: http://tox.charite.de/tox. The only requirement for the prediction is the two-dimensional structure of the input compounds. All ProTox methods have been evaluated based on a diverse external validation set and displayed strong performance (sensitivity, specificity and precision of 76, 95 and 75%, respectively) and superiority over other toxicity prediction tools, indicating their possible applicability for other compound classes. PMID:24838562
2014-01-01
We investigated the severity of the inhibitory effects of 13 phenolic compounds usually found in spruce hydrolysates (4-hydroxy-3-methoxycinnamaldehyde, homovanilyl alcohol, vanillin, syringic acid, vanillic acid, gallic acid, dihydroferulic acid, p-coumaric acid, hydroquinone, ferulic acid, homovanillic acid, 4-hydroxybenzoic acid and vanillylidenacetone). The effects of the selected compounds on cell growth, biomass yield and ethanol yield were studied and the toxic concentration threshold was defined for each compound. Using Ethanol Red, the popular industrial strain of Saccharomyces cerevisiae, we found the most toxic compound to be 4-hydroxy-3-methoxycinnamaldehyde which inhibited growth at a concentration of 1.8 mM. We also observed that toxicity did not generally follow a trend based on the aldehyde, acid, ketone or alcohol classification of phenolic compounds, but rather that other structural properties such as additional functional groups attached to the compound may determine its toxicity. Three distinctive growth patterns that effectively clustered all the compounds involved in the screening into three categories. We suggest that the compounds have different cellular targets, and that. We suggest that the compounds have different cellular targets and inhibitory mechanisms in the cells, also compounds who share similar pattern on cell growth may have similar inhibitory effect and mechanisms of inhibition. PMID:24949277
Hydrogel tissue construct-based high-content compound screening.
Lam, Vy; Wakatsuki, Tetsuro
2011-01-01
Current pharmaceutical compound screening systems rely on cell-based assays to identify therapeutic candidates and potential toxicities. However, cells grown on 2D substrata or in suspension do not exhibit the mechanical or physiological properties of cells in vivo. To address this limitation, the authors developed an in vitro, high-throughput, 3D hydrogel tissue construct (HTC)-based assay system to quantify cell and tissue mechanical properties and multiple parameters of physiology. HTC mechanics was quantified using an automated device, and physiological status was assessed using spectroscopy-based indicators that were read on microplate readers. To demonstrate the application of this system, the authors screened 4 test compounds--rotenone (ROT), cytochalasin D (CD), 2,4-dinitrophenol (DNP), and Rho kinase inhibitor (H-1152)--for their ability to modulate HTC contractility without affecting actin integrity, mitochondrial membrane potential (MMP), or viability. All 4 compounds dose-dependently reduced HTC contractility. However, ROT was toxic, DNP dissipated MMP, and CD reduced both intracellular F-actin and viability. H-1152 was found to be the best candidate compound since it reduced HTC contractility with minimal side effects. The authors propose that their HTC-based assay system can be used to screen for compounds that modulate HTC contractility and assess the underlying physiological mechanism(s) of compound activity and toxicity.
Viira, Birgit; Selyutina, Anastasia; García-Sosa, Alfonso T; Karonen, Maarit; Sinkkonen, Jari; Merits, Andres; Maran, Uko
2016-06-01
A set of top-ranked compounds from a multi-objective in silico screen was experimentally tested for toxicity and the ability to inhibit the activity of HIV-1 reverse transcriptase (RT) in cell-free assay and in cell-based assay using HIV-1 based virus-like particles. Detailed analysis of a commercial sample that indicated specific inhibition of HIV-1 reverse transcription revealed that a minor component that was structurally similar to that of the main compound was responsible for the strongest inhibition. As a result, novel s-triazine derivatives were proposed, modelled, discovered, and synthesised, and their antiviral activity and cellular toxicity were tested. Compounds 18a and 18b were found to be efficient HIV-1 RT inhibitors, with an IC50 of 5.6±1.1μM and 0.16±0.05μM in a cell-based assay using infectious HIV-1, respectively. Compound 18b also had no detectable toxicity for different human cell lines. Their binding mode and interactions with the RT suggest that there was strong and adaptable binding in a tight (NNRTI) hydrophobic pocket. In summary, this iterative study produced structural clues and led to a group of non-toxic, novel compounds to inhibit HIV-RT with up to nanomolar potency. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparing rat and rabbit embryo-fetal developmental toxicity ...
A database of embryo-fetal developmental toxicity (EFDT) studies of 379 pharmaceutical compounds in rat and rabbit was analyzed for species differences based on toxicokinetic parameters of area under the curve (AUC) and maximum concentration (Cmax) at the developmental adverse effect level (dLOAEL). For the vast majority of cases (83% based on AUC of n=283), dLOAELs in rats and rabbits were within the same order of magnitude (less than 10-fold different) when compared based on available data on AUC and Cmax exposures. For 13.5% of the compounds the rabbit was more sensitive and for 3.5% of compounds the rat was more sensitive when compared based on AUC exposures. For 12% of the compounds the rabbit was more sensitive and for 1.3% of compounds the rat was more sensitive based on Cmax exposures. When evaluated based on human equivalent dose (HED) conversion using standard factors, the rat and rabbit were equally sensitive. The relative extent of embryo-fetal toxicity in the presence of maternal toxicity was not different between species. Overall effect severity incidences were distributed similarly in rat and rabbit studies. Individual rat and rabbit strains did not show a different general distribution of systemic exposure LOAELs as compared to all strains combined for each species. There were no apparent species differences in the occurrence of embryo-fetal variations. Based on power of detection and given differences in the nature of developmental effects betwe
Prediction of human population responses to toxic compounds by a collaborative competition.
Eduati, Federica; Mangravite, Lara M; Wang, Tao; Tang, Hao; Bare, J Christopher; Huang, Ruili; Norman, Thea; Kellen, Mike; Menden, Michael P; Yang, Jichen; Zhan, Xiaowei; Zhong, Rui; Xiao, Guanghua; Xia, Menghang; Abdo, Nour; Kosyk, Oksana; Friend, Stephen; Dearry, Allen; Simeonov, Anton; Tice, Raymond R; Rusyn, Ivan; Wright, Fred A; Stolovitzky, Gustavo; Xie, Yang; Saez-Rodriguez, Julio
2015-09-01
The ability to computationally predict the effects of toxic compounds on humans could help address the deficiencies of current chemical safety testing. Here, we report the results from a community-based DREAM challenge to predict toxicities of environmental compounds with potential adverse health effects for human populations. We measured the cytotoxicity of 156 compounds in 884 lymphoblastoid cell lines for which genotype and transcriptional data are available as part of the Tox21 1000 Genomes Project. The challenge participants developed algorithms to predict interindividual variability of toxic response from genomic profiles and population-level cytotoxicity data from structural attributes of the compounds. 179 submitted predictions were evaluated against an experimental data set to which participants were blinded. Individual cytotoxicity predictions were better than random, with modest correlations (Pearson's r < 0.28), consistent with complex trait genomic prediction. In contrast, predictions of population-level response to different compounds were higher (r < 0.66). The results highlight the possibility of predicting health risks associated with unknown compounds, although risk estimation accuracy remains suboptimal.
Bosch, Carme; Olivares, Alba; Faria, Melissa; Navas, Jose M; del Olmo, Iván; Grimalt, Joan O; Piña, Benjamín; Barata, Carlos
2009-08-13
A combination of cost effective sublethal Daphnia magna feeding tests, yeast- and cell culture-based bioassays and Toxicity Identification Evaluation (TIE) procedures was used to characterize toxic compounds within sediments collected in a river area under the influence of the effluents from a chlor-alkali industry (Ebro River, NE Spain). Tests were designed to measure and identify toxic compounds in the particulate and filtered water fractions of sediment elutriates. The combined use of bioassays responding to elutriates and dioxin-like compounds evidenced the existence of three major groups of hazardous contaminants in the most contaminated site: (A) metals such as cadmium and mercury bound to sediment fine particles that could be easily resuspended and moved downstream, (B) soluble compounds (presumably, lye) able to alkalinize water to toxic levels, and (C) organochlorine compounds with high dioxin-like activity. These results provided evidence that elutriate D. magna feeding responses can be used as surrogate assays for more tedious chronic whole sediment tests, and that the incorporation of such tests in sediment TIE procedures may improve the ability to identify the toxicity of particle-bound and water-soluble contaminants in sediments.
Mondal Roy, Sutapa; Roy, Debesh R; Sahoo, Suban K
2015-11-01
The applicability of Density Functional Theory (DFT) based descriptors for the development of quantitative structure-toxicity relationships (QSTR) is assessed for two different series of toxic aromatic compounds, viz., polyhalogenated dibenzo-p-dioxins (PHDDs) and phenols (PHs). A series of 20 compounds each for PHDDs and PHs with their experimental toxicities (IC50 and IGC50) is chosen in the present study to develop DFT based efficient quantum chemical parameters (QCPs) for explaining the toxin potential of the considered compounds. A systematic analysis to find out the electron donation/acceptance nature of these selected compounds with the considered model biosystems, viz., nucleic acid (NA) bases and DNA base pairs, is performed to identify potential QCPs. Accordingly, PHDDs is found to be electron acceptors whereas phenols as donors, during their interaction with biosystems. Two parameter regression model is carried out comprising global charge transfer (ΔN), and local Fukui Function's for nucleophilic attack (fk(+)) for PHDDs and the same for electrophilic attack (fk(-)) in case of PHs. It is heartening to note that our chosen descriptors, viz, charge transfer (ΔN) and Fukui Function (fk(±)) plays a crucial role by explaining more than 90% of the observed toxic behavior (in terms of correlation-coefficient, R) of PHDDs and PHs. The developed QCPs, viz., ΔN and fk(±) can be added as the new descriptors in the QSTR parlance. Copyright © 2015 Elsevier Inc. All rights reserved.
Reis, Beatriz Gasparini; Silveira, Amanda Lemes; Tostes Teixeira, Luiza Procópio; Okuma, Adriana Akemi; Lange, Liséte Celina; Amaral, Miriam Cristina Santos
2017-12-01
This study aimed to compare the performance of a commercial bakers' yeast (MBRy) and conventional bacteria (MBRb) based membrane bioreactor integrated with nanofiltration (NF) in the removal of landfill leachate toxicity. Performances were evaluated using physicochemical analyses, toxicity tests and identification of organic compounds. The MBR b and MBR y were operated with a hydraulic retention time (HRT) of 48h and solids retention time (SRT) of 60 d. The MBR y demonstrated better removal efficiencies for COD (69±7%), color (54±11%) and ammoniacal nitrogen (34±7%) compared to MBR b , which showed removal efficiencies of 27±5%, 33±4% and 27±7%, for COD, color and ammoniacal nitrogen. Although the MBR y seems to be the configuration that presented the highest efficiency; it generated toxic permeate whose toxicity cannot be explained by physicochemical results. The identification of compounds shows that there is a wide range of compounds in the landfill leachate in addition to others that are produced in the biological treatment steps. The NF plays a crucial role in the polishing of the final effluents by the either complete or partial retention of compounds, that attribute toxicity to the leachate, and inorganic contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Osin, Oluwatomiwa A.; Yu, Tianyu; Cai, Xiaoming; Jiang, Yue; Peng, Guotao; Cheng, Xiaomei; Li, Ruibin; Qin, Yao; Lin, Sijie
2018-06-01
The photocatalytic activity of TiO2 based photocatalysts can be improved by structural modification and elemental doping. In this study, through rational design, one type of carbon and nitrogen co-doped TiO2 (C, N-TiO2) photocatalyst with mesoporous structure was synthesized with improved photocatalytic activity in degrading 4-nitrophenol under simulated sunlight irradiation. The photocatalytic degradation efficiency of the C, N-TiO2 was much higher than the anatase TiO2 (A-TiO2) based on absorbance and HPLC analyses. Moreover, using zebrafish embryos, we showed that the intermediate degradation compounds generated by photocatalytic degradation of 4-nitrophenol had higher toxicity than the parent compound. A repeated degradation process was necessary to render complete degradation and non-toxicity to the zebrafish embryos. Our results demonstrated the importance of evaluating the photocatalytic degradation efficiency in conjunction with the toxicity assessment of the degradation compounds.
Osin, Oluwatomiwa A; Yu, Tianyu; Cai, Xiaoming; Jiang, Yue; Peng, Guotao; Cheng, Xiaomei; Li, Ruibin; Qin, Yao; Lin, Sijie
2018-01-01
The photocatalytic activity of TiO 2 based photocatalysts can be improved by structural modification and elemental doping. In this study, through rational design, one type of carbon and nitrogen co-doped TiO 2 (C, N-TiO 2 ) photocatalyst with mesoporous structure was synthesized with improved photocatalytic activity in degrading 4-nitrophenol under simulated sunlight irradiation. The photocatalytic degradation efficiency of the C, N-TiO 2 was much higher than the anatase TiO 2 (A-TiO 2 ) based on absorbance and HPLC analyses. Moreover, using zebrafish embryos, we showed that the intermediate degradation compounds generated by photocatalytic degradation of 4-nitrophenol had higher toxicity than the parent compound. A repeated degradation process was necessary to render complete degradation and non-toxicity to the zebrafish embryos. Our results demonstrated the importance of evaluating the photocatalytic degradation efficiency in conjunction with the toxicity assessment of the degradation compounds.
ProTox: a web server for the in silico prediction of rodent oral toxicity.
Drwal, Malgorzata N; Banerjee, Priyanka; Dunkel, Mathias; Wettig, Martin R; Preissner, Robert
2014-07-01
Animal trials are currently the major method for determining the possible toxic effects of drug candidates and cosmetics. In silico prediction methods represent an alternative approach and aim to rationalize the preclinical drug development, thus enabling the reduction of the associated time, costs and animal experiments. Here, we present ProTox, a web server for the prediction of rodent oral toxicity. The prediction method is based on the analysis of the similarity of compounds with known median lethal doses (LD50) and incorporates the identification of toxic fragments, therefore representing a novel approach in toxicity prediction. In addition, the web server includes an indication of possible toxicity targets which is based on an in-house collection of protein-ligand-based pharmacophore models ('toxicophores') for targets associated with adverse drug reactions. The ProTox web server is open to all users and can be accessed without registration at: http://tox.charite.de/tox. The only requirement for the prediction is the two-dimensional structure of the input compounds. All ProTox methods have been evaluated based on a diverse external validation set and displayed strong performance (sensitivity, specificity and precision of 76, 95 and 75%, respectively) and superiority over other toxicity prediction tools, indicating their possible applicability for other compound classes. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
SUMMARY: The major accomplishment of NTD’s air toxics program is the development of an exposure-dose- response model for acute exposure to volatile organic compounds (VOCs), based on momentary brain concentration as the dose metric associated with acute neurological impairments...
Prediction of internal dosimetry and toxicity of volatile chemicals in rats using physiologically based pharmacokinetic modeling: carbon tetrachloride as a model compound D.N. Williams1, J.E. Simmons2, J.V. Bruckner3, and M.V. Evans2 1ORISE, Oak Ridge, TN 37831-0117; 2US EPA/ORD/...
Malakyan, Margarita; Babayan, Nelly; Grigoryan, Ruzanna; Sarkisyan, Natalya; Tonoyan, Vahan; Tadevosyan, Davit; Matosyan, Vladimir; Aroutiounian, Rouben; Arakelyan, Arsen
2016-01-01
Schiff bases and their metal-complexes are versatile compounds exhibiting a broad range of biological activities and thus actively used in the drug development process. The aim of the present study was the synthesis and characterization of new Schiff bases and their copper (II) complexes, derived from L-tryptophan and isomeric (2-; 3-; 4-) pyridinecarboxaldehydes, as well as the assessment of their toxicity in vitro . The optimal conditions of the Schiff base synthesis resulting in up to 75-85% yield of target products were identified. The structure-activity relationship analysis indicated that the location of the carboxaldehyde group at 2-, 3- or 4-position with regard to nitrogen of the pyridine ring in aldehyde component of the L-tryptophan derivative Schiff bases and corresponding copper complexes essentially change the biological activity of the compounds. The carboxaldehyde group at 2- and 4-positions leads to the higher cytotoxic activity, than that of at 3-position, and the presence of the copper in the complexes increases the cytotoxicity. Based on toxicity classification data, the compounds with non-toxic profile were identified, which can be used as new entities in the drug development process using Schiff base scaffold.
Malakyan, Margarita; Babayan, Nelly; Grigoryan, Ruzanna; Sarkisyan, Natalya; Tonoyan, Vahan; Tadevosyan, Davit; Matosyan, Vladimir; Aroutiounian, Rouben; Arakelyan, Arsen
2016-01-01
Schiff bases and their metal-complexes are versatile compounds exhibiting a broad range of biological activities and thus actively used in the drug development process. The aim of the present study was the synthesis and characterization of new Schiff bases and their copper (II) complexes, derived from L-tryptophan and isomeric (2-; 3-; 4-) pyridinecarboxaldehydes, as well as the assessment of their toxicity in vitro. The optimal conditions of the Schiff base synthesis resulting in up to 75-85% yield of target products were identified. The structure-activity relationship analysis indicated that the location of the carboxaldehyde group at 2-, 3- or 4-position with regard to nitrogen of the pyridine ring in aldehyde component of the L-tryptophan derivative Schiff bases and corresponding copper complexes essentially change the biological activity of the compounds. The carboxaldehyde group at 2- and 4-positions leads to the higher cytotoxic activity, than that of at 3-position, and the presence of the copper in the complexes increases the cytotoxicity. Based on toxicity classification data, the compounds with non-toxic profile were identified, which can be used as new entities in the drug development process using Schiff base scaffold. PMID:28344771
A comparative assessment of the acute inhalation toxicity of vanadium compounds.
Rajendran, N; Seagrave, J C; Plunkett, L M; MacGregor, J A
2016-11-01
Vanadium compounds have become important in industrial processes, resulting in workplace exposure potential and are present in ambient air as a result of fossil fuel combustion. A series of acute nose-only inhalation toxicity studies was conducted in both rats and mice in order to obtain comparative data on the acute toxicity potential of compounds used commercially. V 2 O 3 , V 2 O 4 , and V 2 O 5 , which have different oxidation states (+3, +4, +5, respectively), were delivered as micronized powders; the highly water-soluble and hygroscopic VOSO 4 (+4) could not be micronized and was instead delivered as a liquid aerosol from an aqueous solution. V 2 O 5 was the most acutely toxic micronized powder in both species. Despite its lower overall percentage vanadium content, a liquid aerosol of VOSO 4 was more toxic than the V 2 O 5 particles in mice, but not in rats. These data suggest that an interaction of characteristics, i.e., bioavailability, solubility and oxidation state, as well as species sensitivity, likely affect the toxicity potential of vanadium compounds. Based on clinical observations and gross necropsy findings, the lung appeared to be the target organ for all compounds. The level of hazard posed will depend on the specific chemical form of the vanadium. Future work to define the inhalation toxicity potential of vanadium compounds of various oxidation states after repeated exposures will be important in understanding how the physico-chemical and biological characteristics of specific vanadium compounds interact to affect toxicity potential and the potential risks posed to human health.
Tao, J.; Ingersoll, C.G.; Kemble, N.E.; Dias, J.R.; Murowchick, J.B.; Welker, G.; Huggins, D.
2010-01-01
This is the second part of a study that evaluates the influence of nonpoint sources on the sediment quality of five adjacent streams within the metropolitan Kansas City area, central United States. Physical, chemical, and toxicity data (Hyalella azteca 28-day whole-sediment toxicity test) for 29 samples collected in 2003 were used for this evaluation, and the potential causes for the toxic effects were explored. The sediments exhibited a low to moderate toxicity, with five samples identified as toxic to H. azteca. Metals did not likely cause the toxicity based on low concentrations of metals in the pore water and elevated concentrations of acid volatile sulfide in the sediments. Although individual polycyclic aromatic hydrocarbons (PAHs) frequently exceeded effect-based sediment quality guidelines [probable effect concentrations (PECs)], only four of the samples had a PEC quotient (PEC-Q) for total PAHs over 1.0 and only one of these four samples was identified as toxic. For the mean PEC-Q for organochlorine compounds (chlordane, dieldrin, sum DDEs), 4 of the 12 samples with a mean PEC-Q above 1.0 were toxic and 4 of the 8 samples with a mean PEC-Q above 3.0 were toxic. Additionally, four of eight samples were toxic, with a mean PEC-Q above 1.0 based on metals, PAHs, polychlorinated biphenyls (PCBs), and organochlorine pesticides. The increase in the incidence of toxicity with the increase in the mean PEC-Q based on organochlorine pesticides or based on metals, PAHs, PCBs, and organochlorine pesticides suggests that organochlorine pesticides might have contributed to the observed toxicity and that the use of a mean PEC-Q, rather than PEC-Qs for individual compounds, might be more informative in predicting toxic effects. Our study shows that stream sediments subject to predominant nonpoint sources contamination can be toxic and that many factors, including analysis of a full suite of PAHs and pesticides of both past and present urban applications and the origins of these organic compounds, are important to identify the causes of toxicity. ?? 2010 Springer Science+Business Media, LLC.
Wills, Lauren P.; Beeson, Gyda C.; Hoover, Douglas B.; Schnellmann, Rick G.; Beeson, Craig C.
2015-01-01
Previous high-throughput screens to identify mitochondrial toxicants used immortalized cell lines and focused on changes in mitochondrial membrane potential, which may not be sufficient and do not identify different types of mitochondrial dysfunction. Primary cultures of renal proximal tubule cells (RPTC) were examined with the Seahorse Extracellular Flux Analyzer to screen 676 compounds (5 μM; 1 h) from the ToxCast Phase II library for mitochondrial toxicants. Of the 676 compounds, 19 were classified as cytotoxicants, 376 were electron transport chain (ETC) inhibitors, and 5 were uncouplers. The remaining 276 compounds were examined after a 5-h exposure to identify slower acting mitochondrial toxicants. This experiment identified 3 cytotoxicants, 110 ETC inhibitors, and 163 compounds with no effect. A subset of the ToxCast Phase II library was also examined in immortalized human renal cells (HK2) to determine differences in susceptibility to mitochondrial toxicity. Of the 131 RPTC ETC inhibitors tested, only 14 were ETC inhibitors in HK2 cells. Of the 5 RPTC uncouplers, 1 compound was an uncoupler in HK2 cells. These results demonstrate that 73% (491/676) of the compounds in the ToxCast Phase II library compounds exhibit RPTC mitochondrial toxicity, overwhelmingly ETC inhibition. In contrast, renal HK2 cells are markedly less sensitive and only identified 6% of the compounds as mitochondrial toxicants. We suggest caution is needed when studying mitochondrial toxicity in immortalized cell lines. This information will provide mechanisms and chemical-based criteria for assessing and predicting mitochondrial liabilities of new drugs, consumer products, and environmental agents. PMID:25926417
Ren, Y Y; Zhou, L C; Yang, L; Liu, P Y; Zhao, B W; Liu, H X
2016-09-01
The paper highlights the use of the logistic regression (LR) method in the construction of acceptable statistically significant, robust and predictive models for the classification of chemicals according to their aquatic toxic modes of action. Essentials accounting for a reliable model were all considered carefully. The model predictors were selected by stepwise forward discriminant analysis (LDA) from a combined pool of experimental data and chemical structure-based descriptors calculated by the CODESSA and DRAGON software packages. Model predictive ability was validated both internally and externally. The applicability domain was checked by the leverage approach to verify prediction reliability. The obtained models are simple and easy to interpret. In general, LR performs much better than LDA and seems to be more attractive for the prediction of the more toxic compounds, i.e. compounds that exhibit excess toxicity versus non-polar narcotic compounds and more reactive compounds versus less reactive compounds. In addition, model fit and regression diagnostics was done through the influence plot which reflects the hat-values, studentized residuals, and Cook's distance statistics of each sample. Overdispersion was also checked for the LR model. The relationships between the descriptors and the aquatic toxic behaviour of compounds are also discussed.
Huang, Wei Ying; Liu, Fei; Liu, Shu Shen; Ge, Hui Lin; Chen, Hong Han
2011-09-01
The predictions of mixture toxicity for chemicals are commonly based on two models: concentration addition (CA) and independent action (IA). Whether the CA and IA can predict mixture toxicity of phenolic compounds with similar and dissimilar action mechanisms was studied. The mixture toxicity was predicted on the basis of the concentration-response data of individual compounds. Test mixtures at different concentration ratios and concentration levels were designed using two methods. The results showed that the Weibull function fit well with the concentration-response data of all the components and their mixtures, with all relative coefficients (Rs) greater than 0.99 and root mean squared errors (RMSEs) less than 0.04. The predicted values from CA and IA models conformed to observed values of the mixtures. Therefore, it can be concluded that both CA and IA can predict reliable results for the mixture toxicity of the phenolic compounds with similar and dissimilar action mechanisms. Copyright © 2011 Elsevier Inc. All rights reserved.
Knöbel, Melanie; Busser, Frans J M; Rico-Rico, Angeles; Kramer, Nynke I; Hermens, Joop L M; Hafner, Christoph; Tanneberger, Katrin; Schirmer, Kristin; Scholz, Stefan
2012-09-04
The zebrafish embryo toxicity test has been proposed as an alternative for the acute fish toxicity test, which is required by various regulations for environmental risk assessment of chemicals. We investigated the reliability of the embryo test by probing organic industrial chemicals with a wide range of physicochemical properties, toxicities, and modes of toxic action. Moreover, the relevance of using measured versus nominal (intended) exposure concentrations, inclusion of sublethal endpoints, and different exposure durations for the comparability with reported fish acute toxicity was explored. Our results confirm a very strong correlation of zebrafish embryo to fish acute toxicity. When toxicity values were calculated based on measured exposure concentrations, the slope of the type II regression line was 1 and nearly passed through the origin (1 to 1 correlation). Measured concentrations also explained several apparent outliers. Neither prolonged exposure (up to 120 h) nor consideration of sublethal effects led to a reduced number of outliers. Yet, two types of compounds were less lethal to embryos than to adult fish: a neurotoxic compound acting via sodium channels (permethrin) and a compound requiring metabolic activation (allyl alcohol).
Compound toxicity screening and structure-activity relationship modeling in Escherichia coli.
Planson, Anne-Gaëlle; Carbonell, Pablo; Paillard, Elodie; Pollet, Nicolas; Faulon, Jean-Loup
2012-03-01
Synthetic biology and metabolic engineering are used to develop new strategies for producing valuable compounds ranging from therapeutics to biofuels in engineered microorganisms. When developing methods for high-titer production cells, toxicity is an important element to consider. Indeed the production rate can be limited due to toxic intermediates or accumulation of byproducts of the heterologous biosynthetic pathway of interest. Conversely, highly toxic molecules are desired when designing antimicrobials. Compound toxicity in bacteria plays a major role in metabolic engineering as well as in the development of new antibacterial agents. Here, we screened a diversified chemical library of 166 compounds for toxicity in Escherichia coli. The dataset was built using a clustering algorithm maximizing the chemical diversity in the library. The resulting assay data was used to develop a toxicity predictor that we used to assess the toxicity of metabolites throughout the metabolome. This new tool for predicting toxicity can thus be used for fine-tuning heterologous expression and can be integrated in a computational-framework for metabolic pathway design. Many structure-activity relationship tools have been developed for toxicology studies in eukaryotes [Valerio (2009), Toxicol Appl Pharmacol, 241(3): 356-370], however, to the best of our knowledge we present here the first E. coli toxicity prediction web server based on QSAR models (EcoliTox server: http://www.issb.genopole.fr/∼faulon/EcoliTox.php). Copyright © 2011 Wiley Periodicals, Inc.
Deryabina, D G; Efremova, L V; Karimov, I F; Manukhov, I V; Gnuchikh, E Yu; Miroshnikov, S A
2016-01-01
A comparative analysis of the four commercially available and laboratory luminescent sensor strains to the toxic effect of 10 carbon-based nanomatherials (CBNs) and 10 metal nanoparticles (MNPs) was carried out in this study. The bioluminescence inhibition assays with marine Photobacterium phosphoreum and recombinant Escherichia coli strains were varied in minimal toxic concentrations and EC50 values but led to well correlated biotoxicity evaluation for the most active compounds were ranked as Cu > (MgO, CuO) > (fullerenol, graphene oxide). The novel sensor strain Bacillus subtilis EG 168-1 exhibited the highest sensitivity to CBNs and MNPs that increased significantly number of toxic compounds causing the bacterial bioluminescence inhibition effect.
Phillips, Patrick J.; Nowell, Lisa H.; Gilliom, Robert J.; Nakagaki, Naomi; Murray, Karen; VanAlstyne, Carolyn
2010-01-01
Mixtures of organochlorine compounds have the potential for additive or interactive toxicity to organisms exposed in the stream. This study uses a variety of methods to identify mixtures and a modified concentration-addition approach to estimate their potential toxicity at 845 stream sites across the United States sampled between 1992 and 2001 for organochlorine pesticides and polychlorinated biphenyls (PCBs) in bed sediment. Principal-component (PC) analysis identified five PCs that account for 77% of the total variance in 14 organochlorine compounds in the original dataset. The five PCs represent: (1) chlordane-related compounds and dieldrin; (2) p,p′-DDT and its degradates; (3) o,p′-DDT and its degradates; (4) the pesticide degradates oxychlordane and heptachlor epoxide; and (5) PCBs. The PC analysis grouped compounds that have similar chemical structure (such as parent compound and degradate), common origin (in the same technical pesticide mixture), and(or) similar relation of concentrations to land use. For example, the highest concentrations of chlordane compounds and dieldrin occurred at urban sites, reflecting past use of parent pesticides for termite control. Two approaches to characterizing mixtures—PC-based mixtures and unique mixtures—were applied to all 299 samples with a detection of two or more organochlorine compounds. PC-based mixtures are defined by the presence (in the sample) of one or more compounds associated with that PC. Unique mixtures are defined as a specific combination of two or more compounds detected in a sample, regardless of how many other compounds were also detected in that sample. The simplest PC-based mixtures (containing compounds from 1 or 2 PCs) commonly occurred in a variety of land use settings. Complex mixtures (containing compounds from 3 or more PCs) were most common in samples from urban and mixed/urban sites, especially in the Northeast, reflecting high concentrations of multiple chlordane, dieldrin, DDT-related compounds, and(or) PCBs. The most commonly occurring unique mixture (p,p′-DDE, p,p′-DDD) occurred in both simple and complex PC-based mixtures, and at both urban and agricultural sites. Mean Probable Effect Concentration Quotients (PEC-Q) values, which estimate the potential toxicity of organochlorine contaminant mixtures, were highest for complex mixtures. Mean PEC-Q values were highest for urban sites in the Northeast, followed by mixed/urban sites in the Northeast and agricultural sites in cotton growing areas. These results demonstrate that the PEC-Q approach can be used in combination with PC-based and unique mixture analyses to relate potential aquatic toxicity of contaminant mixtures to mixture complexity, land use, and other surrogates for contaminant sources.
Golanski, Jacek; Lukasiak, Magdalena; Redzynia, Malgorzata; Dastych, Jaroslaw; Watala, Cezary
2017-01-01
The toxicity of in vitro tested compounds is usually evaluated based on AC50 values calculated from dose-response curves. However, there is a large group of compounds for which a standard four-parametric sigmoid curve fitting may be inappropriate for estimating AC50. In the present study, 22 polyphenol-rich compounds were prioritized from the least to the most toxic based on the total area under and over the dose-response curves (AUOC) in relation to baselines. The studied compounds were ranked across three key cell indicators (mitochondrial membrane potential, cell membrane integrity and nuclear size) in a panel of five cell lines (HepG2, Caco-2, A549, HMEC-1, and 3T3), using a high-content screening (HCS) assay. Regarding AUOC score values, naringin (negative control) was the least toxic phenolic compound. Aronox, spent hop extract and kale leaf extract had very low cytotoxicity with regard to mitochondrial membrane potential and cell membrane integrity, as well as nuclear morphology (nuclear area). Kaempferol (positive control) exerted strong cytotoxic effects on the mitochondrial and nuclear compartments. Extracts from buckthorn bark, walnut husk and hollyhock flower were highly cytotoxic with regard to the mitochondrion and cell membrane, but not the nucleus. We propose an alternative algorithm for the screening of a large number of agents and for identifying those with adverse cellular effects at an early stage of drug discovery, using high content screening analysis. This approach should be recommended for series of compounds producing a non-sigmoidal cell response, and for agents with unknown toxicity or mechanisms of action. PMID:28662177
MONITORING THE AIR FOR TOXIC AND GENOTOXIC COMPOUNDS
A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor p...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermsen, Sanne A.B., E-mail: Sanne.Hermsen@rivm.nl; Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht; Institute for Risk Assessment Sciences
2013-10-01
The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol andmore » saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.« less
NASA Astrophysics Data System (ADS)
Banerjee, Priyanka; Preissner, Robert
2018-04-01
Taste of a chemical compounds present in food stimulates us to take in nutrients and avoid poisons. However, the perception of taste greatly depends on the genetic as well as evolutionary perspectives. The aim of this work was the development and validation of a machine learning model based on molecular fingerprints to discriminate between sweet and bitter taste of molecules. BitterSweetForest is the first open access model based on KNIME workflow that provides platform for prediction of bitter and sweet taste of chemical compounds using molecular fingerprints and Random Forest based classifier. The constructed model yielded an accuracy of 95% and an AUC of 0.98 in cross-validation. In independent test set, BitterSweetForest achieved an accuracy of 96 % and an AUC of 0.98 for bitter and sweet taste prediction. The constructed model was further applied to predict the bitter and sweet taste of natural compounds, approved drugs as well as on an acute toxicity compound data set. BitterSweetForest suggests 70% of the natural product space, as bitter and 10 % of the natural product space as sweet with confidence score of 0.60 and above. 77 % of the approved drug set was predicted as bitter and 2% as sweet with a confidence scores of 0.75 and above. Similarly, 75% of the total compounds from acute oral toxicity class were predicted only as bitter with a minimum confidence score of 0.75, revealing toxic compounds are mostly bitter. Furthermore, we applied a Bayesian based feature analysis method to discriminate the most occurring chemical features between sweet and bitter compounds from the feature space of a circular fingerprint.
Banerjee, Priyanka; Preissner, Robert
2018-01-01
Taste of a chemical compound present in food stimulates us to take in nutrients and avoid poisons. However, the perception of taste greatly depends on the genetic as well as evolutionary perspectives. The aim of this work was the development and validation of a machine learning model based on molecular fingerprints to discriminate between sweet and bitter taste of molecules. BitterSweetForest is the first open access model based on KNIME workflow that provides platform for prediction of bitter and sweet taste of chemical compounds using molecular fingerprints and Random Forest based classifier. The constructed model yielded an accuracy of 95% and an AUC of 0.98 in cross-validation. In independent test set, BitterSweetForest achieved an accuracy of 96% and an AUC of 0.98 for bitter and sweet taste prediction. The constructed model was further applied to predict the bitter and sweet taste of natural compounds, approved drugs as well as on an acute toxicity compound data set. BitterSweetForest suggests 70% of the natural product space, as bitter and 10% of the natural product space as sweet with confidence score of 0.60 and above. 77% of the approved drug set was predicted as bitter and 2% as sweet with a confidence score of 0.75 and above. Similarly, 75% of the total compounds from acute oral toxicity class were predicted only as bitter with a minimum confidence score of 0.75, revealing toxic compounds are mostly bitter. Furthermore, we applied a Bayesian based feature analysis method to discriminate the most occurring chemical features between sweet and bitter compounds using the feature space of a circular fingerprint. PMID:29696137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theunissen, P.T., E-mail: Peter.Theunissen@rivm.nl; Department of Toxicogenomics, Maastricht University, Maastricht; Robinson, J.F.
Alternative assays for developmental toxicity testing are needed to reduce animal use in regulatory toxicology. The in vitro murine neural embryonic stem cell test (ESTn) was designed as an alternative for neurodevelopmental toxicity testing. The integration of toxicogenomic-based approaches may further increase predictivity as well as provide insight into underlying mechanisms of developmental toxicity. In the present study, we investigated concentration-dependent effects of six mechanistically diverse compounds, acetaldehyde (ACE), carbamazepine (CBZ), flusilazole (FLU), monoethylhexyl phthalate (MEHP), penicillin G (PENG) and phenytoin (PHE), on the transcriptome and neural differentiation in the ESTn. All compounds with the exception of PENG altered ESTnmore » morphology (cytotoxicity and neural differentiation) in a concentration-dependent manner. Compound induced gene expression changes and corresponding enriched gene ontology biological processes (GO–BP) were identified after 24 h exposure at equipotent differentiation-inhibiting concentrations of the compounds. Both compound-specific and common gene expression changes were observed between subsets of tested compounds, in terms of significance, magnitude of regulation and functionality. For example, ACE, CBZ and FLU induced robust changes in number of significantly altered genes (≥ 687 genes) as well as a variety of GO–BP, as compared to MEHP, PHE and PENG (≤ 55 genes with no significant changes in GO–BP observed). Genes associated with developmentally related processes (embryonic morphogenesis, neuron differentiation, and Wnt signaling) showed diverse regulation after exposure to ACE, CBZ and FLU. In addition, gene expression and GO–BP enrichment showed concentration dependence, allowing discrimination of non-toxic versus toxic concentrations on the basis of transcriptomics. This information may be used to define adaptive versus toxic responses at the transcriptome level.« less
Baldwin, Austin K.; Corsi, Steven R.; Richards, Kevin D.; Geis, Steven W.; Magruder, Christopher
2013-01-01
An assessment of organic chemicals and aquatic toxicity in streams located near Milwaukee, Wisconsin, indicated high potential for adverse impacts on aquatic organisms that could be related to organic waste compounds (OWCs). OWCs used in agriculture, industry, and households make their way into surface waters through runoff, leaking septic-conveyance systems, regulated and unregulated discharges, and combined sewage overflows, among other sources. Many of these compounds are toxic at elevated concentrations and (or) known to have endocrine-disrupting potential, and often they occur as complex mixtures. There is still much to be learned about the chronic exposure effects of these compounds on aquatic populations. During 2006–9, the U.S. Geological Survey, in cooperation with the Milwaukee Metropolitan Sewerage District (MMSD), conducted a study to determine the occurrence and potential toxicity of OWCs in different stream compartments and flow regimes for streams in the Milwaukee area. Samples were collected at 17 sites and analyzed for a suite of 69 OWCs. Three types of stream compartments were represented: water column, streambed pore water, and streambed sediment. Water-column samples were subdivided by flow regime into stormflow and base-flow samples. One or more compounds were detected in all 196 samples collected, and 64 of the 69 compounds were detected at least once. Base-flow samples had the lowest detection rates, with a median of 12 compounds detected per sample. Median detection rates for stormflow, pore-water, and sediment samples were more than double that of base-flow samples. Compounds with the highest detection rates include polycyclic aromatic hydrocarbons (PAHs), insecticides, herbicides, and dyes/pigments. Elevated occurrence and concentrations of some compounds were detected in samples from urban sites, as compared with more rural sites, especially during stormflow conditions. These include the PAHs and the domestic waste-water-indicator compounds, among others. Urban runoff and storm-related leaks of sanitary sewers and (or) septic systems may be important sources of these and other compounds to the streams. The Kinnickinnic River, a highly urbanized site, had the highest detection rates and concentrations of compounds of all the sampled sites. The Milwaukee River near Cedarburg—one of the least urban sites—and the Outer Milwaukee Harbor site had the lowest detection rates and concentrations. Aquatic-toxicity benchmarks were exceeded for 12 of the 25 compounds with known benchmarks. The compounds with the greatest benchmark exceedances were the PAHs, both in terms of exceedance frequency (up to 93 percent for some compounds in sediment samples) and magnitude (concentrations up to 1,024 times greater than the benchmark value). Other compounds with toxicity-benchmark exceedances include Bis(2-ethylhexyl) phthalate (a plasticizer), 2-Methylnapthalene (a component of fuel and oil), phenol (an antimicrobial disinfectant with diverse uses), and 4-Nonylphenol (sum of all isomers; a detergent metabolite, among other uses). Analyzed as a mixture, the suite of PAH compounds were found to be potentially toxic for most non-base-flow samples. Bioassay tests were conducted on samples from 14 streams: Ceriodaphnia dubia in base-flow samples, Ceriodaphnia dubia and Hyallela azteca in pore-water samples, and Hyallela azteca and Chironomus tentans in sediment samples. The greatest adverse effect was observed in tests with Chironomus tentans from sediment samples. The weight of Chironomus tentans after exposure to sediments decreased with increased OWC concentrations. This was most evident in the relation between PAH results and Chironomus tentans bioassay results for the majority of samples; however, solvents and flame retardants appeared to be important for one site each. These results for PAHs were consistent with assessment of PAH potency factors for sediment, indicating that PAHs were likely to have adverse effects on aquatic organisms in many of the streams studied.
Antizar-Ladislao, Blanca
2008-02-01
Tributyltin (TBT) is a toxic chemical used for various industrial purposes such as slime control in paper mills, disinfection of circulating industrial cooling waters, antifouling agents, and the preservation of wood. Due to its widespread use as an antifouling agent in boat paints, TBT is a common contaminant of marine and freshwater ecosystems exceeding acute and chronic toxicity levels. TBT is the most significant pesticide in marine and freshwaters in Europe and consequently its environmental level, fate, toxicity and human exposure are of current concern. Thus, the European Union has decided to specifically include TBT compounds in its list of priority compounds in water in order to control its fate in natural systems, due to their toxic, persistent, bioaccumulative and endocrine disruptive characteristics. Additionally, the International Maritime Organization has called for a global treaty that bans the application of TBT-based paints starting 1 of January 2003, and total prohibition by 1 of January 2008. This paper reviews the state of the science regarding TBT, with special attention paid to the environmental levels, toxicity, and human exposure. TBT compounds have been detected in a number of environmental samples. In humans, organotin compounds have been detected in blood and in the liver. As for other persistent organic pollutants, dietary intake is most probably the main route of exposure to TBT compounds for the general population. However, data concerning TBT levels in foodstuffs are scarce. It is concluded that investigations on experimental toxicity, dietary intake, potential human health effects and development of new sustainable technologies to remove TBT compounds are clearly necessary.
Effects-driven chemical fractionation of heavy fuel oil to isolate compounds toxic to trout embryos.
Bornstein, Jason M; Adams, Julie; Hollebone, Bruce; King, Thomas; Hodson, Peter V; Brown, R Stephen
2014-04-01
Heavy fuel oil (HFO) spills account for approximately 60% of ship-source oil spills and are up to 50 times more toxic than medium and light crude oils. Heavy fuel oils contain elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and alkyl-PAHs, known to be toxic to fish; however, little direct characterization of HFO toxicity has been reported. An effects-driven chemical fractionation was conducted on HFO 7102 to separate compounds with similar chemical and physical properties, including toxicity, to isolate the groups of compounds most toxic to trout embryos. After each separation, toxicity tests directed the next phase of fractionation, and gas chromatography-mass spectrometry analysis correlated composition with toxicity, with a focus on PAHs. Low-temperature vacuum distillation permitted the separation of HFO into 3 fractions based on boiling point ranges. The most toxic of these fractions underwent wax precipitation to remove long-chain n-alkanes. The remaining PAH-rich extract was further separated using open column chromatography, which provided distinct fractions that were grouped according to increasing aromatic ring count. The most toxic of these fractions was richest in PAHs and alkyl-PAHs. The results of the present study were consistent with previous crude oil studies that identified PAH-rich fractions as the most toxic. © 2013 SETAC.
Where does the toxicity come from in saponin extract?
Jiang, Xiaogang; Cao, Yi; Jørgensen, Louise von Gersdorff; Strobel, Bjarne W; Hansen, Hans Chr Bruun; Cedergreen, Nina
2018-08-01
Saponin-rich plant extracts contain bioactive natural compounds and have many applications, e.g. as biopesticides and biosurfactants. The composition of saponin-rich plant extracts is very diverse, making environmental monitoring difficult. In this study various ecotoxicity data as well as exposure data have been collected to explore which compounds in the plant extract are relevant as plant protection agents and furthermore to clarify which compounds may cause undesired side-effects due to their toxicity. Hence, we quantified the toxicity of different fractions (saponins/non-saponins) in the plant extracts on the aquatic crustacean Daphnia magna and zebrafish (Danio rerio) embryos. In addition, we tested the toxicity changes during saponin degradation as well. The results confirm that saponins are responsible for the majority of toxicity (85.1-93.6%) of Quillaja saponaria extract. We, therefore, suggest saponins to be the main target of saponin-rich plant extracts, for instance in the saponin-based biopesticide regulation. Furthermore, we suggest that an abundant saponin fraction, QS-18 from Q. saponaria, can be a key monitoring target to represent the environmental concentration of the saponins, as it contributes with 26% and 61% of the joint toxicity to D. magna and D. rerio, respectively out of the total saponins. The degradation products of saponins are 3-7 times less toxic than the parent compound; therefore the focus should be mainly on the parent compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ferreira, Martiña; Blanco, Lucía; Garrido, Alejandro; Vieites, Juan M; Cabado, Ana G
2013-05-01
The toxic effects of the organotin compounds (OTCs) monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT) were evaluated in vitro in a neuroblastoma human cell line. Mechanisms of cell death, apoptosis versus necrosis, were studied by using several markers: inhibition of cell viability and proliferation, F-actin, and mitochondrial membrane potential changes as well as reactive oxygen species (ROS) production and DNA fragmentation. The most toxic effects were detected with DBT and TBT even at very low concentrations (0.1-1 μM). In contrast, MBT induced lighter cytotoxic changes at the higher doses tested. None of the studied compounds stimulated propidium iodide uptake, although the most toxic chemical, TBT, caused lactate dehydrogenase release at the higher concentrations tested. These findings suggest that in neuroblastoma, OTC-induced cytotoxicity involves different pathways depending on the compound, concentration, and incubation time. A screening method for DBT and TBT quantification based on cell viability loss was developed, allowing a fast detection alternative to complex methodology.
Fluorescent Chemosensors for Toxic Organophosphorus Pesticides: A Review
Obare, Sherine O.; De, Chandrima; Guo, Wen; Haywood, Tajay L.; Samuels, Tova A.; Adams, Clara P.; Masika, Noah O.; Murray, Desmond H.; Anderson, Ginger A.; Campbell, Keith; Fletcher, Kenneth
2010-01-01
Many organophosphorus (OP) based compounds are highly toxic and powerful inhibitors of cholinesterases that generate serious environmental and human health concerns. Organothiophosphates with a thiophosphoryl (P=S) functional group constitute a broad class of these widely used pesticides. They are related to the more reactive phosphoryl (P=O) organophosphates, which include very lethal nerve agents and chemical warfare agents, such as, VX, Soman and Sarin. Unfortunately, widespread and frequent commercial use of OP-based compounds in agricultural lands has resulted in their presence as residues in crops, livestock, and poultry products and also led to their migration into aquifers. Thus, the design of new sensors with improved analyte selectivity and sensitivity is of paramount importance in this area. Herein, we review recent advances in the development of fluorescent chemosensors for toxic OP pesticides and related compounds. We also discuss challenges and progress towards the design of future chemosensors with dual modes for signal transduction. PMID:22163587
Fluorescent chemosensors for toxic organophosphorus pesticides: a review.
Obare, Sherine O; De, Chandrima; Guo, Wen; Haywood, Tajay L; Samuels, Tova A; Adams, Clara P; Masika, Noah O; Murray, Desmond H; Anderson, Ginger A; Campbell, Keith; Fletcher, Kenneth
2010-01-01
Many organophosphorus (OP) based compounds are highly toxic and powerful inhibitors of cholinesterases that generate serious environmental and human health concerns. Organothiophosphates with a thiophosphoryl (P=S) functional group constitute a broad class of these widely used pesticides. They are related to the more reactive phosphoryl (P=O) organophosphates, which include very lethal nerve agents and chemical warfare agents, such as, VX, Soman and Sarin. Unfortunately, widespread and frequent commercial use of OP-based compounds in agricultural lands has resulted in their presence as residues in crops, livestock, and poultry products and also led to their migration into aquifers. Thus, the design of new sensors with improved analyte selectivity and sensitivity is of paramount importance in this area. Herein, we review recent advances in the development of fluorescent chemosensors for toxic OP pesticides and related compounds. We also discuss challenges and progress towards the design of future chemosensors with dual modes for signal transduction.
Hebels, Dennie G A J; Rasche, Axel; Herwig, Ralf; van Westen, Gerard J P; Jennen, Danyel G J; Kleinjans, Jos C S
2016-01-01
When evaluating compound similarity, addressing multiple sources of information to reach conclusions about common pharmaceutical and/or toxicological mechanisms of action is a crucial strategy. In this chapter, we describe a systems biology approach that incorporates analyses of hepatotoxicant data for 33 compounds from three different sources: a chemical structure similarity analysis based on the 3D Tanimoto coefficient, a chemical structure-based protein target prediction analysis, and a cross-study/cross-platform meta-analysis of in vitro and in vivo human and rat transcriptomics data derived from public resources (i.e., the diXa data warehouse). Hierarchical clustering of the outcome scores of the separate analyses did not result in a satisfactory grouping of compounds considering their known toxic mechanism as described in literature. However, a combined analysis of multiple data types may hypothetically compensate for missing or unreliable information in any of the single data types. We therefore performed an integrated clustering analysis of all three data sets using the R-based tool iClusterPlus. This indeed improved the grouping results. The compound clusters that were formed by means of iClusterPlus represent groups that show similar gene expression while simultaneously integrating a similarity in structure and protein targets, which corresponds much better with the known mechanism of action of these toxicants. Using an integrative systems biology approach may thus overcome the limitations of the separate analyses when grouping liver toxicants sharing a similar mechanism of toxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noor, Fozia; Niklas, Jens; Mueller-Vieira, Ursula
2009-06-01
Efficient and accurate safety assessment of compounds is extremely important in the preclinical development of drugs especially when hepatotoxicty is in question. Multiparameter and time resolved assays are expected to greatly improve the prediction of toxicity by assessing complex mechanisms of toxicity. An integrated approach is presented in which Hep G2 cells and primary rat hepatocytes are compared in frequently used cytotoxicity assays for parent compound toxicity. The interassay variability was determined. The cytotoxicity assays were also compared with a reliable alternative time resolved respirometric assay. The set of training compounds consisted of well known hepatotoxins; amiodarone, carbamazepine, clozapine, diclofenac,more » tacrine, troglitazone and verapamil. The sensitivity of both cell systems in each tested assay was determined. Results show that careful selection of assay parameters and inclusion of a kinetic time resolved assay improves prediction for non-metabolism mediated toxicity using Hep G2 cells as indicated by a sensitivity ratio of 1. The drugs with EC{sub 50} values 100 {mu}M or lower were considered toxic. The difference in the sensitivity of the two cell systems to carbamazepine which causes toxicity via reactive metabolites emphasizes the importance of human cell based in-vitro assays. Using the described system, primary rat hepatocytes do not offer advantage over the Hep G2 cells in parent compound toxicity evaluation. Moreover, respiration method is non invasive, highly sensitive and allows following the time course of toxicity. Respiration assay could serve as early indicator of changes that subsequently lead to toxicity.« less
Identification of acute toxicants in New Bedford Harbor sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, K.T.; McKinney, R.A.; Kuhn, A.
1997-03-01
New Bedford Harbor (NBH) is a marine Superfund site contaminated with high concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and metals. Experiments were conducted to determine the causal toxic agent(s) in pore waters from New Bedford Harbor sediments to amphipods and mysid shrimp. Chemical manipulations to characterize toxicity revealed that pore-water toxicity was organic in nature. Fractionation and subsequent mass spectral identification of peaks in the toxic fraction indicated that PCBs. PAHs, and unknown compounds were present. Comparisons of PAH LC50s and PAH concentrations in this fraction indicated that the toxicity was not due to PAHs because themore » PAH concentrations were much lower than the reported PAH LC50s. One unknown peak was positively identified as bis(2-ethylhexyl) phthalate, and the other tentatively identified as pyrazole. Toxicity tests and comparison of toxicity in the blank and toxic fractions eliminated the two unknowns as toxic causal agents. The authors determined the range of PCB LC50s to fall between 10 and 110 ppb for Mysidopsis bahia and Ampelisca abdita. Concentrations of PCBs for the toxic fractions ranged from 12 to 27 ppb. This range falls within the observed PCB LC50s for M. bahia and A. abdita. Based upon these PCB concentrations, they concluded that PCBs were the acute toxic agents in NBH pore waters. Other compounds in the toxic fractions, or compounds that coeluted and were undistinguished from PCBs had minor contributions to the measured toxicity.« less
NASA Technical Reports Server (NTRS)
Major, Michael A.
2000-01-01
In an effort to modernize and minimize hazards posed by the toxic components of missile propellant, the USACHPPM has been tasked to provide a comparison of the toxicity of compounds currently in use as missile propellants and the suite of compounds proposed to replace them. This report deals with the portion of this work concerning the toxicity of the organometallic compounds used in these formulations. Toxicity assessments of the organic compounds used in these formulations are published elsewhere. In general, toxicity data were available for all the metal compounds of concern or for closely related compounds that can serve as surrogates for the assessment of toxicity. We have high confidence in the reliability of these comparisons. This report is organized by element to provide the reader with an in-depth assessment with a minimum of redundancy. The narrative will first describe general concepts about the toxicity of each metal and then provide a summary of the toxicological information available for the specific compound.
Klüver, Nils; König, Maria; Ortmann, Julia; Massei, Riccardo; Paschke, Albrecht; Kühne, Ralph; Scholz, Stefan
2015-06-02
The fish embryo toxicity test has been proposed as an alternative for the acute fish toxicity test, but concerns have been raised for its predictivity given that a few compounds have been shown to exhibit a weak acute toxicity in the fish embryo. In order to better define the applicability domain and improve the predictive capacity of the fish embryo test, we performed a systematic analysis of existing fish embryo and acute fish toxicity data. A correlation analysis of a total of 153 compounds identified 28 compounds with a weaker or no toxicity in the fish embryo test. Eleven of these compounds exhibited a neurotoxic mode of action. We selected a subset of eight compounds with weaker or no embryo toxicity (cyanazine, picloram, aldicarb, azinphos-methyl, dieldrin, diquat dibromide, endosulfan, and esfenvalerate) to study toxicokinetics and a neurotoxic mode of action as potential reasons for the deviating fish embryo toxicity. Published fish embryo LC50 values were confirmed by experimental analysis of zebrafish embryo LC50 according to OECD guideline 236. Except for diquat dibromide, internal concentration analysis did not indicate a potential relation of the low sensitivity of fish embryos to a limited uptake of the compounds. Analysis of locomotor activity of diquat dibromide and the neurotoxic compounds in 98 hpf embryos (exposed for 96 h) indicated a specific effect on behavior (embryonic movement) for the neurotoxic compounds. The EC50s of behavior for neurotoxic compounds were close to the acute fish toxicity LC50. Our data provided the first evidence that the applicability domain of the fish embryo test (LC50s determination) may exclude neurotoxic compounds. However, neurotoxic compounds could be identified by changes in embryonic locomotion. Although a quantitative prediction of acute fish toxicity LC50 using behavioral assays in fish embryos may not yet be possible, the identification of neurotoxicity could trigger the conduction of a conventional fish acute toxicity test or application of assessment factors while considering the very good fish embryo-acute fish toxicity correlation for other compounds.
Response of Bioluminescent Bacteria to Alkyltin Compounds.
1987-12-01
found in the butyltiri series of compounds; tributyltin was (’Stimes more toxic than dibutyltin and (- 50 times more toxic than (mono)butyltin. When...correlations between compounds, tributyltin was -35 tine more Kicrotxit and fish bLoessays for pure toxic than dibutyltin end -750 times More compounds and...the compounds as a decrease in toxicity (5) tributyltin compounds ea -150 tines more and a method to study synergistic andtoxic than trinethyltia
A Biologically-Based Computational Approach to Drug Repurposing for Anthrax Infection.
Bai, Jane P F; Sakellaropoulos, Theodore; Alexopoulos, Leonidas G
2017-03-10
Developing drugs to treat the toxic effects of lethal toxin (LT) and edema toxin (ET) produced by B. anthracis is of global interest . We utilized a computational approach to score 474 drugs/compounds for their ability to reverse the toxic effects of anthrax toxins. For each toxin or drug/compound, we constructed an activity network by using its differentially expressed genes, molecular targets, and protein interactions. Gene expression profiles of drugs were obtained from the Connectivity Map and those of anthrax toxins in human alveolar macrophages were obtained from the Gene Expression Omnibus. Drug rankings were based on the ability of a drug/compound's mode of action in the form of a signaling network to reverse the effects of anthrax toxins; literature reports were used to verify the top 10 and bottom 10 drugs/compounds identified. Simvastatin and bepridil with reported in vitro potency for protecting cells from LT and ET toxicities were computationally ranked fourth and eighth. The other top 10 drugs were fenofibrate, dihydroergotamine, cotinine, amantadine, mephenytoin, sotalol, ifosfamide, and mefloquine; literature mining revealed their potential protective effects from LT and ET toxicities. These drugs are worthy of investigation for their therapeutic benefits and might be used in combination with antibiotics for treating B. anthracis infection.
The taste of toxicity: A quantitative analysis of bitter and toxic molecules.
Nissim, Ido; Dagan-Wiener, Ayana; Niv, Masha Y
2017-12-01
The role of bitter taste-one of the few basic taste modalities-is commonly assumed to signal toxicity and alert animals against consuming harmful compounds. However, it is known that some toxic compounds are not bitter and that many bitter compounds have negligible toxicity while having important health benefits. Here we apply a quantitative analysis of the chemical space to shed light on the bitterness-toxicity relationship. Using the BitterDB dataset of bitter molecules, The BitterPredict prediction tool, and datasets of toxic compounds, we quantify the identity and similarity between bitter and toxic compounds. About 60% of the bitter compounds have documented toxicity and only 56% of the toxic compounds are known or predicted to be bitter. The LD 50 value distributions suggest that most of the bitter compounds are not very toxic, but there is a somewhat higher chance of toxicity for known bitter compounds compared to known nonbitter ones. Flavonoids and alpha acids are more common in the bitter dataset compared with the toxic dataset. In contrast, alkaloids are more common in the toxic datasets compared to the bitter dataset. Interestingly, no trend linking LD 50 values with the number of activated bitter taste receptors (TAS2Rs) subtypes is apparent in the currently available data. This is in accord with the newly discovered expression of TAS2Rs in several extra-oral tissues, in which they might be activated by yet unknown endogenous ligands and play non-gustatory physiological roles. These results suggest that bitter taste is not a very reliable marker for toxicity, and is likely to have other physiological roles. © 2017 IUBMB Life, 69(12):938-946, 2017. © 2017 International Union of Biochemistry and Molecular Biology.
Attene-Ramos, Matias S.; Huang, Ruili; Sakamuru, Srilatha; Witt, Kristine L.; Beeson, Gyda C.; Shou, Louie; Schnellmann, Rick G.; Beeson, Craig C.; Tice, Raymond R.; Austin, Christopher P.; Xia, Menghang
2014-01-01
A goal of the Tox21 program is to transit toxicity testing from traditional in vivo models to in vitro assays that assess how chemicals affect cellular responses and toxicity pathways. A critical contribution of the NIH Chemical Genomics center (NCGC) to the Tox21 program is the implementation of a quantitative high throughput screening (qHTS) approach, using cell- and biochemical-based assays to generate toxicological profiles for thousands of environmental compounds. Here, we evaluated the effect of chemical compounds on mitochondrial membrane potential in HepG2 cells by screening a library of 1,408 compounds provided by the National Toxicology Program (NTP) in a qHTS platform. Compounds were screened over 14 concentrations, and results showed that 91 and 88 compounds disrupted mitochondrial membrane potential after treatment for one or five h, respectively. Seventy-six compounds active at both time points were clustered by structural similarity, producing 11 clusters and 23 singletons. Thirty-eight compounds covering most of the active chemical space were more extensively evaluated. Thirty-six of the 38 compounds were confirmed to disrupt mitochondrial membrane potential using a fluorescence plate reader and 35 were confirmed using a high content imaging approach. Among the 38 compounds, 4 and 6 induced LDH release, a measure of cytotoxicity, at 1 or 5 h, respectively. Compounds were further assessed for mechanism of action (MOA) by measuring changes in oxygen consumption rate, which enabled identification of 20 compounds as uncouplers. This comprehensive approach allows for evaluation of thousands of environmental chemicals for mitochondrial toxicity and identification of possible MOAs. PMID:23895456
Oral LD50 toxicity modeling and prediction of per- and polyfluorinated chemicals on rat and mouse.
Bhhatarai, Barun; Gramatica, Paola
2011-05-01
Quantitative structure-activity relationship (QSAR) analyses were performed using the LD(50) oral toxicity data of per- and polyfluorinated chemicals (PFCs) on rodents: rat and mouse. PFCs are studied under the EU project CADASTER which uses the available experimental data for prediction and prioritization of toxic chemicals for risk assessment by using the in silico tools. The methodology presented here applies chemometrical analysis on the existing experimental data and predicts the toxicity of new compounds. QSAR analyses were performed on the available 58 mouse and 50 rat LD(50) oral data using multiple linear regression (MLR) based on theoretical molecular descriptors selected by genetic algorithm (GA). Training and prediction sets were prepared a priori from available experimental datasets in terms of structure and response. These sets were used to derive statistically robust and predictive (both internally and externally) models. The structural applicability domain (AD) of the models were verified on 376 per- and polyfluorinated chemicals including those in REACH preregistration list. The rat and mouse endpoints were predicted by each model for the studied compounds, and finally 30 compounds, all perfluorinated, were prioritized as most important for experimental toxicity analysis under the project. In addition, cumulative study on compounds within the AD of all four models, including two earlier published models on LC(50) rodent analysis was studied and the cumulative toxicity trend was observed using principal component analysis (PCA). The similarities and the differences observed in terms of descriptors and chemical/mechanistic meaning encoded by descriptors to prioritize the most toxic compounds are highlighted.
Dolan, David G; Naumann, Bruce D; Sargent, Edward V; Maier, Andrew; Dourson, Michael
2005-10-01
A scientific rationale is provided for estimating acceptable daily intake values (ADIs) for compounds with limited or no toxicity information to support pharmaceutical manufacturing operations. These ADIs are based on application of the "thresholds of toxicological concern" (TTC) principle, in which levels of human exposure are estimated that pose no appreciable risk to human health. The same concept has been used by the US Food and Drug Administration (FDA) to establish "thresholds of regulation" for indirect food additives and adopted by the Joint FAO/WHO Expert Committee on Food Additives for flavoring substances. In practice, these values are used as a statement of safety and indicate when no actions need to be taken in a given exposure situation. Pharmaceutical manufacturing relies on ADIs for cleaning validation of process equipment and atypical extraneous matter investigations. To provide practical guidance for handling situations where relatively unstudied compounds with limited or no toxicity data are encountered, recommendations are provided on ADI values that correspond to three categories of compounds: (1) compounds that are likely to be carcinogenic, (2) compounds that are likely to be potent or highly toxic, and (3) compounds that are not likely to be potent, highly toxic or carcinogenic. Corresponding ADIs for these categories of materials are 1, 10, and 100 microg/day, respectively.
FETAX assay for evaluation of developmental toxicity.
Mouche, Isabelle; Malesic, Laure; Gillardeaux, Olivier
2011-01-01
The Frog Embryo Teratogenesis Assay Xenopus (FETAX) test is a development toxicity screening test. Due to the small amount of compound needed and the capability to study organogenesis in a short period of time (96 h), FETAX test constitutes an efficient development toxicity alert test when performed early in drug safety development. The test is conducted on fertilized Xenopus laevis mid-blastula stage eggs over the organogenesis period. Compound teratogenic potential is determined after analysis of the mortality and malformation observations on larva. In parallel, FETAX test provides also information concerning embryotoxic effect based on larva length.
FETAX Assay for Evaluation of Developmental Toxicity.
Mouche, Isabelle; Malésic, Laure; Gillardeaux, Olivier
2017-01-01
The frog embryo teratogenesis assay Xenopus (FETAX) test is a development toxicity screening test. Due to the small amount of compound needed and the capability to study organogenesis in a short period of time (96 h), FETAX test constitutes an efficient development toxicity alert test when performed early in drug safety development. The test is conducted on fertilized Xenopus laevis mid-blastula-stage eggs over the organogenesis period. Compound teratogenic potential is determined after analysis of the mortality and malformation observations on larvae. In parallel, FETAX test provides also information concerning embryotoxic effect based on larva length.
In silico quantitative structure-toxicity relationship study of aromatic nitro compounds.
Pasha, Farhan Ahmad; Neaz, Mohammad Morshed; Cho, Seung Joo; Ansari, Mohiuddin; Mishra, Sunil Kumar; Tiwari, Sharvan
2009-05-01
Small molecules often have toxicities that are a function of molecular structural features. Minor variations in structural features can make large difference in such toxicity. Consequently, in silico techniques may be used to correlate such molecular toxicities with their structural features. Relative to nine different sets of aromatic nitro compounds having known observed toxicities against different targets, we developed ligand-based 2D quantitative structure-toxicity relationship models using 20 selected topological descriptors. The topological descriptors have several advantages such as conformational independency, facile and less time-consuming computation to yield good results. Multiple linear regression analysis was used to correlate variations of toxicity with molecular properties. The information index on molecular size, lopping centric index and Kier flexibility index were identified as fundamental descriptors for different kinds of toxicity, and further showed that molecular size, branching and molecular flexibility might be particularly important factors in quantitative structure-toxicity relationship analysis. This study revealed that topological descriptor-guided quantitative structure-toxicity relationship provided a very useful, cost and time-efficient, in silico tool for describing small-molecule toxicities.
Huang, Ruili; Xia, Menghang; Sakamuru, Srilatha; Zhao, Jinghua; Shahane, Sampada A.; Attene-Ramos, Matias; Zhao, Tongan; Austin, Christopher P.; Simeonov, Anton
2016-01-01
Target-specific, mechanism-oriented in vitro assays post a promising alternative to traditional animal toxicology studies. Here we report the first comprehensive analysis of the Tox21 effort, a large-scale in vitro toxicity screening of chemicals. We test ∼10,000 chemicals in triplicates at 15 concentrations against a panel of nuclear receptor and stress response pathway assays, producing more than 50 million data points. Compound clustering by structure similarity and activity profile similarity across the assays reveals structure–activity relationships that are useful for the generation of mechanistic hypotheses. We apply structural information and activity data to build predictive models for 72 in vivo toxicity end points using a cluster-based approach. Models based on in vitro assay data perform better in predicting human toxicity end points than animal toxicity, while a combination of structural and activity data results in better models than using structure or activity data alone. Our results suggest that in vitro activity profiles can be applied as signatures of compound mechanism of toxicity and used in prioritization for more in-depth toxicological testing. PMID:26811972
An analysis of candidates for addition to the Clean Air Act list of hazardous air pollutants.
Lunder, Sonya; Woodruff, Tracey J; Axelrad, Daniel A
2004-02-01
There are 188 air toxics listed as hazardous air pollutants (HAPs) in the Clean Air Act (CAA), based on their potential to adversely impact public health. This paper presents several analyses performed to screen potential candidates for addition to the HAPs list. We analyzed 1086 HAPs and potential HAPs, including chemicals regulated by the state of California or with emissions reported to the Toxics Release Inventory (TRI). HAPs and potential HAPs were ranked by their emissions to air, and by toxicity-weighted (tox-wtd) emissions for cancer and noncancer, using emissions information from the TRI and toxicity information from state and federal agencies. Separate consideration was given for persistent, bioaccumulative toxins (PBTs), reproductive or developmental toxins, and chemicals under evaluation for regulation as toxic air contaminants in California. Forty-four pollutants were identified as candidate HAPs based on three ranking analyses and whether they were a PBT or a reproductive or developmental toxin. Of these, nine qualified in two or three different rankings (ammonia [NH3], copper [Cu], Cu compounds, nitric acid [HNO3], N-methyl-2-pyrrolidone, sulfuric acid [H2SO4], vanadium [V] compounds, zinc [Zn], and Zn compounds). This analysis suggests further evaluation of several pollutants for possible addition to the CAA list of HAPs.
Modlitbová, Pavlína; Novotný, Karel; Pořízka, Pavel; Klus, Jakub; Lubal, Přemysl; Zlámalová-Gargošová, Helena; Kaiser, Jozef
2018-01-01
The purpose of this study was to determine the toxicity of two different sources of cadmium, i.e. CdCl 2 and Cd-based Quantum Dots (QDs), for freshwater model plant Lemna minor L. Cadmium telluride QDs were capped with two coating ligands: glutathione (GSH) or 3-mercaptopropionic acid (MPA). Growth rate inhibition and final biomass inhibition of L. minor after 168-h exposure were monitored as toxicity endpoints. Dose-response curves for Cd toxicity and EC50 168h values were statistically evaluated for all sources of Cd to uncover possible differences among the toxicities of tested compounds. Total Cd content and its bioaccumulation factors (BAFs) in L. minor after the exposure period were also determined to distinguish Cd bioaccumulation patterns with respect to different test compounds. Laser-Induced Breakdown Spectroscopy (LIBS) with lateral resolution of 200µm was employed in order to obtain two-dimensional maps of Cd spatial distribution in L. minor fronds. Our results show that GSH- and MPA-capped Cd-based QDs have similar toxicity for L. minor, but are significantly less toxic than CdCl 2 . However, both sources of Cd lead to similar patterns of Cd bioaccumulation and distribution in L. minor fronds. Our results are in line with previous reports that the main mediators of Cd toxicity and bioaccumulation in aquatic plants are Cd 2+ ions dissolved from Cd-based QDs. Copyright © 2017 Elsevier Inc. All rights reserved.
Synthetic antimicrobial peptides as agricultural pesticides for plant-disease control.
Montesinos, Emilio; Bardají, Eduard
2008-07-01
There is a need of antimicrobial compounds in agriculture for plant-disease control, with low toxicity and reduced negative environmental impact. Antimicrobial peptides are produced by living organisms and offer strong possibilities in agriculture because new compounds can be developed based on natural structures with improved properties of activity, specificity, biodegradability, and toxicity. Design of new molecules has been achieved using combinatorial-chemistry procedures coupled to high-throughput screening systems and data processing with design-of-experiments (DOE) methodology to obtain QSAR equation models and optimized compounds. Upon selection of best candidates with low cytotoxicity and moderate stability to protease digestion, anti-infective activity has been evaluated in plant-pathogen model systems. Suitable compounds have been submitted to acute toxicity testing in higher organisms and exhibited a low toxicity profile in a mouse model. Large-scale production can be achieved by solution organic or chemoenzymatic procedures in the case of very small peptides, but, in many cases, production can be performed by biotechnological methods using genetically modified microorganisms (fermentation) or transgenic crops (plant biofactories).
Microbial Fuels Cell-Based Biosensor for Toxicity Detection: A Review
Zhou, Tuoyu; Han, Huawen; Liu, Pu; Xiong, Jian; Tian, Fake; Li, Xiangkai
2017-01-01
With the unprecedented deterioration of environmental quality, rapid recognition of toxic compounds is paramount for performing in situ real-time monitoring. Although several analytical techniques based on electrochemistry or biosensors have been developed for the detection of toxic compounds, most of them are time-consuming, inaccurate, or cumbersome for practical applications. More recently, microbial fuel cell (MFC)-based biosensors have drawn increasing interest due to their sustainability and cost-effectiveness, with applications ranging from the monitoring of anaerobic digestion process parameters (VFA) to water quality detection (e.g., COD, BOD). When a MFC runs under correct conditions, the voltage generated is correlated with the amount of a given substrate. Based on this linear relationship, several studies have demonstrated that MFC-based biosensors could detect heavy metals such as copper, chromium, or zinc, as well as organic compounds, including p-nitrophenol (PNP), formaldehyde and levofloxacin. Both bacterial consortia and single strains can be used to develop MFC-based biosensors. Biosensors with single strains show several advantages over systems integrating bacterial consortia, such as selectivity and stability. One of the limitations of such sensors is that the detection range usually exceeds the actual pollution level. Therefore, improving their sensitivity is the most important for widespread application. Nonetheless, MFC-based biosensors represent a promising approach towards single pollutant detection. PMID:28956857
Microbial Fuels Cell-Based Biosensor for Toxicity Detection: A Review.
Zhou, Tuoyu; Han, Huawen; Liu, Pu; Xiong, Jian; Tian, Fake; Li, Xiangkai
2017-09-28
With the unprecedented deterioration of environmental quality, rapid recognition of toxic compounds is paramount for performing in situ real-time monitoring. Although several analytical techniques based on electrochemistry or biosensors have been developed for the detection of toxic compounds, most of them are time-consuming, inaccurate, or cumbersome for practical applications. More recently, microbial fuel cell (MFC)-based biosensors have drawn increasing interest due to their sustainability and cost-effectiveness, with applications ranging from the monitoring of anaerobic digestion process parameters (VFA) to water quality detection (e.g., COD, BOD). When a MFC runs under correct conditions, the voltage generated is correlated with the amount of a given substrate. Based on this linear relationship, several studies have demonstrated that MFC-based biosensors could detect heavy metals such as copper, chromium, or zinc, as well as organic compounds, including p -nitrophenol (PNP), formaldehyde and levofloxacin. Both bacterial consortia and single strains can be used to develop MFC-based biosensors. Biosensors with single strains show several advantages over systems integrating bacterial consortia, such as selectivity and stability. One of the limitations of such sensors is that the detection range usually exceeds the actual pollution level. Therefore, improving their sensitivity is the most important for widespread application. Nonetheless, MFC-based biosensors represent a promising approach towards single pollutant detection.
Liu, ZongLin Lewis
2018-07-01
Development of the next-generation biocatalyst is vital for fermentation-based industrial applications and a sustainable bio-based economy. Overcoming the major class of toxic compounds associated with lignocellulose-to-biofuels conversion is one of the significant challenges for new strain development. A significant number of investigations have been made to understand mechanisms of the tolerance for industrial yeast. It is humbling to learn how complicated the cell's response to the toxic chemicals is and how little we have known about yeast tolerance in the universe of the living cell. This study updates our current knowledge on the tolerance of industrial yeast against aldehyde inhibitory compounds at cellular, molecular and the genomic levels. It is comprehensive yet specific based on reproducible evidence and cross confirmed findings from different investigations using varied experimental approaches. This research approaches a rational foundation toward a more comprehensive understanding on the yeast tolerance. Discussions and perspectives are also proposed for continued exploring the puzzle of the yeast tolerance to aid the next-generation biocatalyst development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarró, Eduard, E-mail: eduard.sarro@vhir.org; Renal Physiopathology, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute; Jacobs-Cachá, Conxita, E-mail: conxita.jacobs@vhir.org
2012-01-15
Mechanisms of cyclosporine A (CsA)-induced nephrotoxicity were generally thought to be hemodynamic in origin; however, there is now accumulating evidence of a direct tubular effect. Although genomic and proteomic experiments by our group and others provided overall information on genes and proteins up- or down-regulated by CsA in proximal tubule cells (PTC), a comprehensive view of events occurring after CsA exposure remains to be described. For this purpose, we applied a pharmacologic approach based on the use of known activities of a large panel of potentially protective compounds and evaluated their efficacy in preventing CsA toxicity in cultured mouse PTC.more » Our results show that compounds that blocked protein synthesis and apoptosis, together with the CK2 inhibitor DMAT and the PI3K inhibitor apigenin, were the most efficient in preventing CsA toxicity. We also identified GSK3, MMPs and PKC pathways as potential targets to prevent CsA damage. Additionally, heparinase-I and MAPK inhibitors afforded partial but significant protection. Interestingly, antioxidants and calcium metabolism-related compounds were unable to ameliorate CsA-induced cytotoxicity. Subsequent experiments allowed us to clarify the hierarchical relationship of targeted pathways after CsA treatment, with ER stress identified as an early effector of CsA toxicity, which leads to ROS generation, phenotypical changes and cell death. In summary, this work presents a novel experimental approach to characterizing cellular responses to cytotoxics while pointing to new targets to prevent CsA-induced toxicity in proximal tubule cells. Highlights: ► We used a novel pharmacological approach to elucidate cyclosporine (CsA) toxicity. ► The ability of a broad range of compounds to prevent CsA toxicity was evaluated. ► CsA toxicity was monitored using LDH release assay and PARP cleavage. ► Protein synthesis, PI3K, GSK3, MMP, PKC and caspase inhibitors prevented CsA toxicity. ► We also identified ER stress as an early effector of CsA toxicity.« less
In vitro toxicity testing with microplate cell cultures: Impact of cell binding.
Gülden, Michael; Schreiner, Jeannine; Seibert, Hasso
2015-06-05
In vitro generated data on toxic potencies are generally based on nominal concentrations. However, cellular and extracellular binding and elimination processes may reduce the available free fraction of a compound. Then, nominal effective concentrations do not represent appropriate measures of toxic exposure in vitro and underestimate toxic potencies. In this study it was investigated whether cell binding can affect the availability of chemicals in microplate based toxicity assays. To this end the cytotoxicity of compounds like mercury chloride, digitonin and alcohol ethoxylates, accumulated by cells via different modes, was investigated in 96-well microplate cultures with varying concentrations of Balb/c 3T3 cells. The median effective nominal concentrations of all but one of the tested compounds depended linearly from the cell concentration. Applying a previously developed equilibrium distribution model cell concentration-independent median effective extracellular concentrations and cell burdens, respectively, could be calculated. The compounds were accumulated by the cells with bioconcentration factors, BCF, between 480 and ≥ 25,000. Cell binding of the alcohol ethoxylates was correlated with their lipophilicity. The results show that significant cell binding can occur even at the small cell volume fractions (∼ 1 × 10(-5) to 3 × 10(-3) L/L) encountered in microplate assays. To what extent cell binding affects the bioavailability depends on the BCF and the cell volume fraction. EC50 measurements in the presence of at least two different cell concentrations allow for excluding or detecting significant cell binding and for determining more appropriate measures of toxic exposure in vitro like median effective extracellular (free) concentrations or cell burdens. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Hossain, Mohammad Uzzal; Khan, Md. Arif; Rakib-Uz-Zaman, S. M.; Ali, Mohammad Tuhin; Islam, Md. Saidul; Keya, Chaman Ara; Salimullah, Md.
2016-01-01
Diabetes mellitus (DM) is one of the most prevalent metabolic disorders which can affect the quality of life severely. Injectable insulin is currently being used to treat DM which is mainly associated with patient inconvenience. Small molecules that can act as insulin receptor (IR) agonist would be better alternatives to insulin injection. Herein, ten bioactive small compounds derived from Gymnema sylvestre (G. sylvestre) were chosen to determine their IR binding affinity and ADMET properties using a combined approach of molecular docking study and computational pharmacokinetic elucidation. Designing structural analogues were also performed for the compounds associated with toxicity and less IR affinity. Among the ten parent compounds, six were found to have significant pharmacokinetic properties with considerable binding affinity towards IR while four compounds were associated with toxicity and less IR affinity. Among the forty structural analogues, four compounds demonstrated considerably increased binding affinity towards IR and less toxicity compared with parent compounds. Finally, molecular interaction analysis revealed that six parent compounds and four analogues interact with the active site amino acids of IR. So this study would be a way to identify new therapeutics and alternatives to insulin for diabetic patients. PMID:27034931
Hossain, Mohammad Uzzal; Khan, Md Arif; Rakib-Uz-Zaman, S M; Ali, Mohammad Tuhin; Islam, Md Saidul; Keya, Chaman Ara; Salimullah, Md
2016-01-01
Diabetes mellitus (DM) is one of the most prevalent metabolic disorders which can affect the quality of life severely. Injectable insulin is currently being used to treat DM which is mainly associated with patient inconvenience. Small molecules that can act as insulin receptor (IR) agonist would be better alternatives to insulin injection. Herein, ten bioactive small compounds derived from Gymnema sylvestre (G. sylvestre) were chosen to determine their IR binding affinity and ADMET properties using a combined approach of molecular docking study and computational pharmacokinetic elucidation. Designing structural analogues were also performed for the compounds associated with toxicity and less IR affinity. Among the ten parent compounds, six were found to have significant pharmacokinetic properties with considerable binding affinity towards IR while four compounds were associated with toxicity and less IR affinity. Among the forty structural analogues, four compounds demonstrated considerably increased binding affinity towards IR and less toxicity compared with parent compounds. Finally, molecular interaction analysis revealed that six parent compounds and four analogues interact with the active site amino acids of IR. So this study would be a way to identify new therapeutics and alternatives to insulin for diabetic patients.
Kakhandki, Srinivas; Yahya, Mohammed; Praveen, Mudalgi
2012-07-01
A case of unknown compound poisoning is presented. It was initially treated as organophosphate poisoning with lack of response. A timely diagnosis of acute methaemoglobinaemia and iatrogenic atropine toxicity was made based on clinical evaluation. Treatment of methaemoglobinaemia using oral methylene blue and of atropine toxicity with supportive measures could save the patient.
Human exposure limits to hypergolic fuels
NASA Technical Reports Server (NTRS)
Garcia, H. D.; James, J. T.; Limero, T. F.
1992-01-01
Over the past four decades, many studies have been conducted on the toxicities of the rocket propellants hydrazine (HZ) and monomethylhydrazine (MH). Numerous technical challenges have made it difficult to unambiguously interpret the results of these studies, and there is considerable divergence between results obtained by different investigators on the inhalation concentrations (MAC's) for each toxic effect inducible by exposure to hypergolic fuels in spacecraft atmospheres, NASA undertook a critical review of published and unpublished investigations on the toxicities of these compounds. The current state of the art practices for similar studies. While many questions remain unanswered, MAC's were determined using the best available data for a variety of toxic endpoints for potential continuous exposure durations ranging from 1 hour to 180 days. Spacecraft MAC's (SMAC's) were set for each compound based on the most sensitive toxic endpoint at each exposure duration.
In vitro transcriptomic prediction of hepatotoxicity for early drug discovery
Cheng, Feng; Theodorescu, Dan; Schulman, Ira G.; Lee, Jae K.
2012-01-01
Liver toxicity (hepatotoxicity) is a critical issue in drug discovery and development. Standard preclinical evaluation of drug hepatotoxicity is generally performed using in vivo animal systems. However, only a small number of preselected compounds can be examined in vivo due to high experimental costs. A more efficient yet accurate screening technique which can identify potentially hepatotoxic compounds in the early stages of drug development would thus be valuable. Here, we develop and apply a novel genomic prediction technique for screening hepatotoxic compounds based on in vitro human liver cell tests. Using a training set of in vivo rodent experiments for drug hepatotoxicity evaluation, we discovered common biomarkers of drug-induced liver toxicity among six heterogeneous compounds. This gene set was further triaged to a subset of 32 genes that can be used as a multi-gene expression signature to predict hepatotoxicity. This multi-gene predictor was independently validated and showed consistently high prediction performance on five test sets of in vitro human liver cell and in vivo animal toxicity experiments. The predictor also demonstrated utility in evaluating different degrees of toxicity in response to drug concentrations which may be useful not only for discerning a compound’s general hepatotoxicity but also for determining its toxic concentration. PMID:21884709
Thomaidi, Vasiliki S; Stasinakis, Athanasios S; Borova, Viola L; Thomaidis, Nikolaos S
2016-04-01
Greece was used as case study and the environmental risk associated with the existence of 99 emerging organic contaminants (EOCs) in sludge-amended soil was estimated using risk quotient (RQ) approach. Data on the concentration levels of EOCs in sewage sludge was collected after literature review. Chemical analyses were also conducted for 50 pharmaceuticals and illicit drugs in sludge samples from Athens Sewage Treatment Plant. Risk assessment was based on both terrestrial and aquatic acute toxicity data, using both the maximum and the average measured concentrations of the target compounds. EC50/LC50 values were collected through literature review or using the ECOSAR program in cases that experimental values were not available. Triclosan seems to pose an environmental risk on the soil environment, as its RQ values exceeded 1, both in terrestrial and aquatic toxicity data based risk assessment. Calculations based on aquatic toxicity data showed that another eleven compounds had RQs higher than 1, most of them belonging to the classes of synthetic phenolic compounds and siloxanes. Tetradecamethylhexasiloxane presented the highest RQ, while high RQs were also calculated for decamethylcyclopentasiloxane and caffeine. No environmental risk for the terrestrial environment is expected due to the individual action of illicit drugs, perfluorinated compounds and benzotriazoles. The sludge source and the day of sampling affected the estimated threat due to nonylphenolic compounds; however these factors did not affect the estimated risk for siloxanes, caffeine and ofloxacin. Calculation of RQ values for the mixture of EOCs, using either the maximum or the average concentrations, far exceeded 1 (253 and 209, respectively), indicating a presumable threat for the terrestrial environment due to the baseline toxicity of these compounds. Countries that reuse sludge for agricultural purposes should include specific EOCs in national monitoring campaigns and study more thoroughly on their effects to the terrestrial environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Acute lethal toxicity of environmental pollutants to aquatic organisms.
Yen, Jui-Hung; Lin, Kuo-Hsiung; Wang, Yei-Shung
2002-06-01
The acute lethal toxicity of environment pollutants including chlorophenol, haloalkane, quinone, and substituted nitrobenzene (i.e., nitrophenol, nitrobenzene, nitrotoluene, and aniline) compounds to aquatic organisms was determined. Determination of toxicity of chemicals was performed with chlorella, daphnia, carp, and tilapia. The toxicity of chlorophenols had no relation to the number of chlorine atoms on the benzene ring, but monochlorophenol had lower activity than more chlorine-substituted compounds. The tolerance levels of daphnia and carp to haloalkanes was found to be higher than that of chlorella; toxicity to chlorella was several hundred times higher than to daphnia. The toxicity of naphthoquinone compounds to chlorella and carp was higher than that of anthraquinone. A compound with a monochloride substitution on anthraquinone ring was less toxic to carp than those substituted with amine, hydroxyl, and dichlorine groups. Nitrobenzene compounds with an additional substitution group on the p position were extremely toxic to daphnia and carp. (c) 2002 Elsevier Science (USA).
Zhang, Jun; Hsieh, Jui-Hua; Zhu, Hao
2014-01-01
In vitro bioassays have been developed and are currently being evaluated as potential alternatives to traditional animal toxicity models. Already, the progress of high throughput screening techniques has resulted in an enormous amount of publicly available bioassay data having been generated for a large collection of compounds. When a compound is tested using a collection of various bioassays, all the testing results can be considered as providing a unique bio-profile for this compound, which records the responses induced when the compound interacts with different cellular systems or biological targets. Profiling compounds of environmental or pharmaceutical interest using useful toxicity bioassay data is a promising method to study complex animal toxicity. In this study, we developed an automatic virtual profiling tool to evaluate potential animal toxicants. First, we automatically acquired all PubChem bioassay data for a set of 4,841 compounds with publicly available rat acute toxicity results. Next, we developed a scoring system to evaluate the relevance between these extracted bioassays and animal acute toxicity. Finally, the top ranked bioassays were selected to profile the compounds of interest. The resulting response profiles proved to be useful to prioritize untested compounds for their animal toxicity potentials and form a potential in vitro toxicity testing panel. The protocol developed in this study could be combined with structure-activity approaches and used to explore additional publicly available bioassay datasets for modeling a broader range of animal toxicities. PMID:24950175
Zhang, Jun; Hsieh, Jui-Hua; Zhu, Hao
2014-01-01
In vitro bioassays have been developed and are currently being evaluated as potential alternatives to traditional animal toxicity models. Already, the progress of high throughput screening techniques has resulted in an enormous amount of publicly available bioassay data having been generated for a large collection of compounds. When a compound is tested using a collection of various bioassays, all the testing results can be considered as providing a unique bio-profile for this compound, which records the responses induced when the compound interacts with different cellular systems or biological targets. Profiling compounds of environmental or pharmaceutical interest using useful toxicity bioassay data is a promising method to study complex animal toxicity. In this study, we developed an automatic virtual profiling tool to evaluate potential animal toxicants. First, we automatically acquired all PubChem bioassay data for a set of 4,841 compounds with publicly available rat acute toxicity results. Next, we developed a scoring system to evaluate the relevance between these extracted bioassays and animal acute toxicity. Finally, the top ranked bioassays were selected to profile the compounds of interest. The resulting response profiles proved to be useful to prioritize untested compounds for their animal toxicity potentials and form a potential in vitro toxicity testing panel. The protocol developed in this study could be combined with structure-activity approaches and used to explore additional publicly available bioassay datasets for modeling a broader range of animal toxicities.
Manoharan, Prabu; Sridhar, J
2018-05-01
The organophosphorus hydrolase enzyme is involved in the catalyzing reaction that involve hydrolysis of organophosphate toxic compounds. An enzyme from Deinococcus radiodurans reported as homologous to phosphotriesterase and show activity against organophosphate. In the past activity of this enzyme is low and efforts made to improve the activity by experimental mutation study. However only very few organophosphates tested against very few catalytic site mutations. In order to improve the catalytic power of the organophosphorus hydrolase enzyme, we carried out systematic functional hotspot based protein engineering strategy. The mutants tested against 46 know organophosphate compounds using molecular docking study. Finally, we carried out an extensive molecular docking study to predict the binding of 46 organophosphate compounds to wild-type protein and mutant organophosphorus hydrolase enzyme. At the end we are able to improve the degrading potential of organophosphorus hydrolase enzyme against organophosphate toxic compounds. This preliminary study and the outcome would be useful guide for the experimental scientist involved in the bioremediation of toxic organophosphate compounds. Copyright © 2018 Elsevier Inc. All rights reserved.
Redman, Aaron D; Parkerton, Thomas F; Butler, Josh David; Letinski, Daniel J; Frank, Richard A; Hewitt, L Mark; Bartlett, Adrienne J; Gillis, Patricia Leigh; Marentette, Julie R; Parrott, Joanne L; Hughes, Sarah A; Guest, Rodney; Bekele, Asfaw; Zhang, Kun; Morandi, Garrett; Wiseman, Steve B; Giesy, John P
2018-06-14
Oil sand operations in Alberta, Canada will eventually include returning treated process-affected waters to the environment. Organic constituents in oil sand process-affected water (OSPW) represent complex mixtures of nonionic and ionic (e.g. naphthenic acids) compounds, and compositions can vary spatially and temporally, which has impeded development of water quality benchmarks. To address this challenge, it was hypothesized that solid phase microextraction fibers coated with polydimethylsiloxane (PDMS) could be used as a biomimetic extraction (BE) to measure bioavailable organics in OSPW. Organic constituents of OSPW were assumed to contribute additively to toxicity, and partitioning to PDMS was assumed to be predictive of accumulation in target lipids, which were the presumed site of action. This method was tested using toxicity data for individual model compounds, defined mixtures, and organic mixtures extracted from OSPW. Toxicity was correlated with BE data, which supports the use of this method in hazard assessments of acute lethality to aquatic organisms. A species sensitivity distribution (SSD), based on target lipid model and BE values, was similar to SSDs based on residues in tissues for both nonionic and ionic organics. BE was shown to be an analytical tool that accounts for bioaccumulation of organic compound mixtures from which toxicity can be predicted, with the potential to aid in the development of water quality guidelines.
Zaio, Yésica P; Gatti, Gerardo; Ponce, Andrés A; Saavedra Larralde, Natalia A; Martinez, María J; Zunino, María P; Zygadlo, Julio A
2018-05-13
Insecticidal activity and repellent effects on adults of Sitophilus zeamais of 12 cinnamaldehyde-related compounds was evaluated by contact toxicity bioassays and a two-choice olfactometer, respectively. To determine non-toxicity in mammals, additionally, body weight, serum biochemical profiles, liver weight, physiological parameters, sperm motility and histopathological data were obtained as complementary information in C57BL/6 mice, treated with the best natural compound. Based on 24h LC 95 and LC 50 values, alpha-methyl-cinnamaldehyde and cinnamaldehyde, respectively, exhibited better insecticidal activity than the other compounds. The best repellent effect was observed with alpha-bromo-cinnamaldehyde, which even repelled at the lowest concentration studied (0.28 μM). The evaluation of a quantitative structure-activity relationship showed a linear relationship between the LC 50 values for adult weevil toxicity and dipolo with Q (difference between orbital electronegativity carbon 1 and orbital electronegativity carbon 3 of the molecule) values in cinnamaldehyde-related compounds. In addition, the polar surface and Log P descriptors also revealed a linear relationship with the S. zeamais repellent effect for cinnamaldehyde analogues. Besides, cinnamaldehyde did not show toxicity in the parameters evaluated in mice. From the phenylpropanoid components studied, the natural compound which had the best insecticidal and repellent activity against S. zeamais was cinnamaldehyde and presented no mammalian toxicity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Ozaki, Noriatsu; Nakazato, Akihiro; Nakashima, Kazuki; Kindaichi, Tomonori; Ohashi, Akiyoshi
2017-12-15
Although the production of compost from sewage sludge is well established in developed countries, the use of sludge-based compost may represent a source of pollutants. The present study assessed the levels of potentially harmful compounds in compost as well as their rates of decrease during composting. The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs), three fragrance compounds (OTNE, HHCB and AHTN) and triclosan were determined in the initial sewage sludge and in compost over the span of 1year. Simultaneously, the toxicity to luminescent bacteria (Aliivibrio fischeri) and aryl hydrocarbon receptor reactivity of organic solvent extracts of sludge and compost samples were assessed. Higher PAH, fragrance compounds, and triclosan concentrations were found in sewage sludge from urban areas compared with rural regions, and the urban sludge was also more toxic than the rural sludge. The high pollutant concentrations in urban sludge raised the concentrations of these compounds in the raw materials for composting and in the resulting composts. The organic matter was decomposed by 65% during the composting process, and the measured toxic substances were decreased by a similar amount, with the exception of triclosan, which decreased by only 35%. The toxicity to A. fischeri decreased to a greater extent (90%) than did the organic matter, while the aryl hydrocarbon receptor reactivity decreased by only 35%. This lower decrease coincided with that of the aryl hydrocarbon receptor-reactive PAHs (37%). Copyright © 2017 Elsevier B.V. All rights reserved.
Imramovský, Aleš; Pejchal, Vladimír; Štěpánková, Šárka; Vorčáková, Katarína; Jampílek, Josef; Vančo, Ján; Šimůnek, Petr; Královec, Karel; Brůčková, Lenka; Mandíková, Jana; Trejtnar, František
2013-04-01
A series of novel cholinesterase inhibitors based on 2-substituted 6-fluorobenzo[d]thiazole were synthesised and characterised by IR, (1)H, (13)C and (19)F NMR spectroscopy and HRMS. Purity was checked by elemental analyses. The novel carbamates were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The toxicity of the most active compounds was investigated using a standard in vitro test with HepG2 cells, and the ratio between biological activity and toxicity was determined. In addition, the toxicity of the most active compounds was evaluated against MCF7 cells using the xCELLigence system. Structure-activity relationships reflecting the dependence of cholinesterase inhibitors on the lipophilicity of the compounds as well as on the Taft polar and steric substituent constants are discussed. The specific orientation of the inhibitors in the binding site of acetylcholinesterase was determined using molecular docking of the most active compound. Copyright © 2013 Elsevier Ltd. All rights reserved.
Toxicological relevance of pharmaceuticals in drinking water.
Bruce, Gretchen M; Pleus, Richard C; Snyder, Shane A
2010-07-15
Interest in the public health significance of trace levels of pharmaceuticals in potable water is increasing, particularly with regard to the effects of long-term, low-dose exposures. To assess health risks and establish target concentrations for water treatment, human health risk-based screening levels for 15 pharmaceutically active ingredients and four metabolites were compared to concentrations detected at 19 drinking water treatment plants across the United States. Compounds were selected based on rate of use, likelihood of occurrence, and potential for toxicity. Screening levels were established based on animal toxicity data and adverse effects at therapeutic doses, focusing largely on reproductive and developmental toxicity and carcinogenicity. Calculated drinking water equivalent levels (DWELs) ranged from 0.49 microg/L (risperidone) to 20,000 microg/L (naproxen). None of the 10 detected compounds exceeded their DWEL. Ratios of DWELs to maximum detected concentrations ranged from 110 (phenytoin) to 6,000,000 (sulfamethoxazole). Based on this evaluation, adverse health effects from targeted pharmaceuticals occurring in U.S. drinking water are not expected.
The effects of characteristics of substituents on toxicity of the nitroaromatics: HiT QSAR study
NASA Astrophysics Data System (ADS)
Kuz'min, Victor E.; Muratov, Eugene N.; Artemenko, Anatoly G.; Gorb, Leonid; Qasim, Mohammad; Leszczynski, Jerzy
2008-10-01
The present study applies the Hierarchical Technology for Quantitative Structure-Activity Relationships (HiT QSAR) for (i) evaluation of the influence of the characteristics of 28 nitroaromatic compounds (some of which belong to a widely known class of explosives) as to their toxicity; (ii) prediction of toxicity for new nitroaromatic derivatives; (iii) analysis of the effects of substituents in nitroaromatic compounds on their toxicity in vivo. The 50% lethal dose concentration for rats (LD50) was used to develop the QSAR models based on simplex representation of molecular structure. The preliminary 1D QSAR results show that even the information on the composition of molecules reveals the main tendencies of changes in toxicity. The statistic characteristics for partial least squares 2D QSAR models are quite satisfactory ( R 2 = 0.96-0.98; Q 2 = 0.91-0.93; R 2 test = 0.89-0.92), which allows us to carry out the prediction of activity for 41 novel compounds designed by the application of new combinations of substituents represented in the training set. The comprehensive analysis of toxicity changes as a function of substituent position and nature was carried out. Molecular fragments that promote and interfere with toxicity were defined on the basis of the obtained models. It was shown that the mutual influence of substituents in the benzene ring plays a crucial role regarding toxicity. The influence of different substituents on toxicity can be mediated via different C-H fragments of the aromatic ring.
APPLICATION OF JET REMPI AND LIBS TO AIR TOXIC MONITORING
The paper discusses three advanced, laser-based monitoring techniques that the EPA is assisting in developing for real time measurement of toxic aerosol compounds. One of the three techniques is jet resonance enhanced multiphoton ionization (Jet REMPI) coupled with a time-of-flig...
Li, Hequn; Flick, Burkhard; Rietjens, Ivonne M C M; Louisse, Jochem; Schneider, Steffen; van Ravenzwaay, Bennard
2016-05-01
The mouse embryonic stem D3 (ES-D3) cell differentiation assay is based on the morphometric measurement of cardiomyocyte differentiation and is a promising tool to detect developmental toxicity of compounds. The BeWo transport model, consisting of BeWo b30 cells grown on transwell inserts and mimicking the placental barrier, is useful to determine relative placental transport velocities of compounds. We have previously demonstrated the usefulness of the ES-D3 cell differentiation assay in combination with the in vitro BeWo transport model to predict the relative in vivo developmental toxicity potencies of a set of reference azole compounds. To further evaluate this combined in vitro toxicokinetic and toxicodynamic approach, we combined ES-D3 cell differentiation data of six novel triazoles with relative transport rates obtained from the BeWo model and compared the obtained ranking to the developmental toxicity ranking as derived from in vivo data. The data show that the combined in vitro approach provided a correct prediction for in vivo developmental toxicity, whereas the ES-D3 cell differentiation assay as stand-alone did not. In conclusion, we have validated the combined in vitro approach for developmental toxicity, which we have previously developed with a set of reference azoles, for a set of six novel triazoles. We suggest that this combined model, which takes both toxicodynamic and toxicokinetic aspects into account, should be further validated for other chemical classes of developmental toxicants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swartz, R.C.; Ferraro, S.P.; Lamberson, J.O.
1997-10-01
The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration series of either single compounds or as approximately equitoxic mixtures of all four compounds. Standard 10-d sediment toxicity tests were conducted under fluorescent lighting. After 10 d, survivors were exposed for 1 h to ultraviolet (UV) radiation in the absence of sediment and then tested for their ability to bury in uncontaminated sediment. The 10-d median lethal concentrations (LC50s) were 2.31 mg acenaphthene/g organic carbon (OC),more » 2.22 mg phenanthrene/g OC, 3.31 mg fluoranthene/g OC, and 2.81 mg pyrene/g OC. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the approximately equitoxic mixtures. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicologic interaction of a mixture of contaminants is additive, {Sigma}TU LC50 = 1.0. The observed LC50 (1.55 {Sigma}TU) was slightly, but significantly, greater than unity, indicating that the interaction of PAHs in the mixture was less than additive. Exposure to UV radiation enhanced the toxic effects of fluoranthene and pyrene, but did not affect the toxicity of acenaphthene and phenanthrene. Effects of UV radiation on the toxicity of the mixture of four PAHs could be explained by the photoactivation of fluoranthene and pyrene alone. These results are consistent with predictions based on photophysical properties of PAH compounds.« less
Carr, R.S.; Nipper, M.; Biedenbach, J.M.; Hooten, R.L.; Miller, K.; Saepoff, S.
2001-01-01
A sediment quality assessment survey and subsequent toxicity identification evaluation (TIE) study was conducted at several sites in Puget Sound, Washington. The sites were previously suspected of contamination with ordnance compounds. The initial survey employed sea urchin porewater toxicity tests to locate the most toxic stations. Sediments from the most toxic stations were selected for comprehensive chemical analyses. Based on the combined information from the toxicity and chemical data, three adjacent stations in Ostrich Bay were selected for the TIE study. The results of the phase I TIE suggested that organics and metals were primarily responsible for the observed toxicity in the sea urchin fertilization test. In addition to these contaminants, ammonia was also contributing to the toxicity for the sea urchin embryological development test. The phase II TIE study isolated the majority of the toxicity in the fraction containing nonpolar organics with high log Kow, but chemical analyses failed to identify a compound present at a concentration high enough to be responsible for the observed toxicity. The data suggest that some organic or organometallic contaminant(s) that were not included in the comprehensive suite of chemical analyses caused the observed toxicological responses.
Assessing deep and shallow learning methods for quantitative prediction of acute chemical toxicity.
Liu, Ruifeng; Madore, Michael; Glover, Kyle P; Feasel, Michael G; Wallqvist, Anders
2018-05-02
Animal-based methods for assessing chemical toxicity are struggling to meet testing demands. In silico approaches, including machine-learning methods, are promising alternatives. Recently, deep neural networks (DNNs) were evaluated and reported to outperform other machine-learning methods for quantitative structure-activity relationship modeling of molecular properties. However, most of the reported performance evaluations relied on global performance metrics, such as the root mean squared error (RMSE) between the predicted and experimental values of all samples, without considering the impact of sample distribution across the activity spectrum. Here, we carried out an in-depth analysis of DNN performance for quantitative prediction of acute chemical toxicity using several datasets. We found that the overall performance of DNN models on datasets of up to 30,000 compounds was similar to that of random forest (RF) models, as measured by the RMSE and correlation coefficients between the predicted and experimental results. However, our detailed analyses demonstrated that global performance metrics are inappropriate for datasets with a highly uneven sample distribution, because they show a strong bias for the most populous compounds along the toxicity spectrum. For highly toxic compounds, DNN and RF models trained on all samples performed much worse than the global performance metrics indicated. Surprisingly, our variable nearest neighbor method, which utilizes only structurally similar compounds to make predictions, performed reasonably well, suggesting that information of close near neighbors in the training sets is a key determinant of acute toxicity predictions.
Dichloromethane (DCM, methylene chloride) is a lipophilic volatile compound readily absorbed and then metabolized to several metabolites that may lead to chronic toxicity in different target organs. Physiologically based pharmacokinetic (PBPK) models are useful tools used for cal...
Recently, metabolomics, or the quantitative measurement of a broad spectrum of metabolic responses of living systems in response to disease onset or genetic modification, has been employed to enable rapid identification of the mechanisms of toxicity for compounds of environmental...
Probing the ToxCast Chemical Library for Predictive Signatures of Developmental Toxicity
EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesize that cell signaling pathways are primary targets for diverse environmental chemicals ...
Scholz, Stefan; Ortmann, Julia; Klüver, Nils; Léonard, Marc
2014-08-01
Distribution and marketing of chemicals require appropriate labelling of health, physical and environmental hazards according to the United Nations global harmonisation system (GHS). Labelling for (human) acute toxicity categories is based on experimental findings usually obtained by oral, dermal or inhalative exposure of rodents. There is a strong societal demand for replacing animal experiments conducted for safety assessment of chemicals. Fish embryos are considered as alternative to animal testing and are proposed as predictive model both for environmental and human health effects. Therefore, we tested whether LC50s of the fish embryo acute toxicity test would allow effectively predicting of acute mammalian toxicity categories. A database of published fish embryo LC50 containing 641 compounds was established. For these compounds corresponding rat oral LD50 were identified resulting in 364 compounds for which both fish embryo LC50 and rat LD50 was available. Only a weak correlation of fish embryo LC50 and rat oral LD50 was obtained. Fish embryos were also not able to effectively predict GHS oral acute toxicity categories. We concluded that due to fundamental exposure protocol differences (single oral dose versus water-borne exposure) a reverse dosimetry approach is needed to explore the predictive capacity of fish embryos. Copyright © 2014 Elsevier Inc. All rights reserved.
A Biologically-Based Computational Approach to Drug Repurposing for Anthrax Infection
Bai, Jane P. F.; Sakellaropoulos, Theodore; Alexopoulos, Leonidas G.
2017-01-01
Developing drugs to treat the toxic effects of lethal toxin (LT) and edema toxin (ET) produced by B. anthracis is of global interest. We utilized a computational approach to score 474 drugs/compounds for their ability to reverse the toxic effects of anthrax toxins. For each toxin or drug/compound, we constructed an activity network by using its differentially expressed genes, molecular targets, and protein interactions. Gene expression profiles of drugs were obtained from the Connectivity Map and those of anthrax toxins in human alveolar macrophages were obtained from the Gene Expression Omnibus. Drug rankings were based on the ability of a drug/compound’s mode of action in the form of a signaling network to reverse the effects of anthrax toxins; literature reports were used to verify the top 10 and bottom 10 drugs/compounds identified. Simvastatin and bepridil with reported in vitro potency for protecting cells from LT and ET toxicities were computationally ranked fourth and eighth. The other top 10 drugs were fenofibrate, dihydroergotamine, cotinine, amantadine, mephenytoin, sotalol, ifosfamide, and mefloquine; literature mining revealed their potential protective effects from LT and ET toxicities. These drugs are worthy of investigation for their therapeutic benefits and might be used in combination with antibiotics for treating B. anthracis infection. PMID:28287432
Influence of Selected Organic Micropollutants on Organisms
NASA Astrophysics Data System (ADS)
Włodarczyk-Makuła, Maria
2017-03-01
This article describes the toxicity of organic micropollutants on tested microorganisms. Itis a current issue because organic micropollutants are identified in all elements of environmental (surface water, ground water, soils) and in food products. The organic micropollutants include: polychlorinated dibenzodioxyns PCDD, polychlorinated dibenzofurans PCDF, polychlorinated biphenyls PCB, polycyclic aromatic hydrocarbons PAH, halogenated compounds and by-products of water treatment. Some organic compounds cause hazard for health and human life due to their estrogenic biological activity, carcinogenic, mutagenic or teratogenic activity. The influence on organisms indicators of these compounds based on literature data were presented. The level of TEQ (toxic equivalency) in response to organic chlorine derivatives (PCDDs, PCDF, PCBs) is usually determined by toxic equivalency factor (TEF). The International Agency for Research on Cancer classifies organic micropollutants as carcinogenic to humans (Group 1), possibly carcinogenic (Group 2A) or probably carcinogenic to humans (Group 2B).
Inhibition of biofouling by marine microorganisms and their metabolites.
Dobretsov, Sergey; Dahms, Hans-Uwe; Qian, Peri-Yuan
2006-01-01
Development of microbial biofilms and the recruitment of propagules on the surfaces of man-made structures in the marine environment cause serious problems for the navies and for marine industries around the world. Current antifouling technology is based on the application of toxic substances that can be harmful to the natural environment. For this reason and the global ban of tributyl tin (TBT), there is a need for the development of "environmentally-friendly" antifoulants. Marine microbes are promising potential sources of non-toxic or less-toxic antifouling compounds as they can produce substances that inhibit not only the attachment and/or growth of microorganisms but also the settlement of invertebrate larvae and macroalgal spores. However, so far only few antilarval settlement compounds have been isolated and identified from bacteria. In this review knowledge about antifouling compounds produced by marine bacteria and diatoms are summarised and evaluated and future research directions are highlighted.
In vitro toxicities of experimental jet fuel system ice-inhibiting agents.
Geiss, K T; Frazier, J M
2001-07-02
One research emphasis within the Department of Defense has been to seek the replacement of operational compounds with alternatives that pose less potential risk to human and ecological systems. Alternatives to glycol ethers, such as diethylene glycol monomethyl ether (M-DE), were investigated for use as jet fuel system ice-inhibiting agents (FSIIs). This group of chemicals includes three derivatives of 1,3-dioxolane-4-methanol (M-1, M-2, and M-3) and a 1,3-dioxane (M-27). In addition, M-DE was evaluated as a reference compound. Our approach was to implement an in vitro test battery based on primary rat hepatocyte cultures to perform initial toxicity evaluations. Hepatocytes were exposed to experimental chemicals (0, 0.001, 0.01, 0.1, 1, 10 mM dosages) for periods up to 24 h. Samples were assayed for lactate dehydrogenase (LDH) release, MTT dye reduction activity, glutathione level, and rate of protein synthesis as indicators of toxicity. Of the compounds tested, M-1, especially at the 10-mM dose, appeared to be more potent than the other chemicals, as measured by these toxicity assays. M-DE, the current FSII, elicited little response in the toxicity assays. Although some variations in toxicity were observed at the 10-mM dose, the in vitro toxicities of the chemicals tested (except for M-1) were not considerably greater than that of M-DE.
Zhang, Xiangming; Liu, Huijuan; Sun, Bo; Sun, Yan; Zhong, Weilong; Liu, Yanrong; Chen, Shuang; Ling, Honglei; Zhou, Lei; Jing, Xiangyan; Qin, Yuan; Xiao, Ting; Sun, Tao; Zhou, Honggang; Yang, Cheng
2016-11-17
Peroxisome proliferator-activated receptor γ (PPARγ) is recognized as a key regulator of insulin resistance. In this study, we searched for novel PPARγ agonists in a library of structurally diverse organic compounds and determined that podophyllotoxin exhibits partial agonist activity toward PPARγ. Eight novel podophyllotoxin-like derivatives were synthesized and assayed for toxicity and functional activity toward PPARγ to reduce the possible systemic toxic effects of podophyllotoxin and to maintain partial agonist activity toward PPARγ. Cell-based transactivation assays showed that compounds (E)-3-(hydroxy(3,4,5-trimethoxyphenyl)methyl)-4-(4(trifluoromethyl)styryl)dihydrofuran-2(3H)-one (3a) and (E)-4-(3-acetylstyryl)-3-(hydroxyl (3,4,5-trimethoxyphenyl)methyl)dihydrofuran-2(3H)-one (3f) exhibited partial agonist activity. An experiment using human hepatocarcinoma cells (HepG2) that were induced to become an insulin-resistant model showed that compounds 3a and 3f improved insulin sensitivity and glucose consumption. In addition, compounds 3a and 3f significantly improved hyperglycemia and insulin resistance in high-fat diet-fed streptozotocin (HFD-STZ)-induced type 2 diabetic rats at a dose of 15 mg/kg/day administered orally for 45 days, without significant weight gain. Cell toxicity testing also showed that compounds 3a and 3f exhibited weaker toxicity than pioglitazone. These findings suggested that compounds 3a and 3f improved insulin resistance in vivo and in vitro and that the compounds exhibited potential for the treatment of type 2 diabetes mellitus.
Carboplatin: the clinical spectrum to date.
Canetta, R; Rozencweig, M; Carter, S K
1985-09-01
The existing literature data base on carboplatin updated to June, 1985 has been reviewed. The compound seems to retain the same spectrum of activity as cisplatin, and a definite set of efficacy data is available for ovarian cancer of epithelial origin, small cell carcinoma of the lung and epidermoid carcinoma of the head and neck. A yet unpublished toxicity data base on carboplatin suggests that the compound has an improved therapeutic index over the parent compound, cisplatin, and that it does not seem inferior to another platinum coordination compound currently in clinical trials, iproplatin.
Probability Based hERG Blocker Classifiers.
Wang, Zhi; Mussa, Hamse Y; Lowe, Robert; Glen, Robert C; Yan, Aixia
2012-09-01
The US Food and Drug Administration (FDA) require in vitro human ether-a-go-go related (hERG) ion channel affinity tests for all drug candidates prior to clinical trials. In this study, probabilistic-based methods were employed to develop prediction models on hERG inhibition prediction, which are different from traditional QSAR models that are mainly based on supervised 'hard point' (HP) classification approaches giving 'yes/no' answers. The obtained models can 'ascertain' whether or not a given set of compounds can block hERG ion channels. The results presented indicate that the proposed probabilistic-based method can be a valuable tool for ranking compounds with respect to their potential cardio-toxicity and will be promising for other toxic property predictions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Acute bioassays and hazard evaluation of representative contaminants detected in Great Lakes fish
Passino, Dora R. May; Smith, Stephen B.
1987-01-01
We have provided a hazard ranking for 19 classes of compounds representing many of the nearly 500 organic compounds identified by gas chromatography-mass spectrometry in lake trout (Salvelinus namaycush) and walleye (Stizostedion vitreum vitreum) from the Great Lakes and Lake St. Clair. We initially made a provisional hazard ranking based on available published and unpublished information on aquatic toxicity, bioaccumulation, occurrence and sources. Acute toxicity tests with Daphnia pulex at 17A°C in reconstituted hard water were performed with 30 compounds representative of the 19 classes that were highest in the provisional ranking. The resulting toxicity data, along with information on the compounds' occurrence in Great Lakes fish and their sources, were ranked and weighted and then used in calculating the revised hazard ranking. The 10 most hazardous classes, in descending order, are as follows (values shown are mean 48-h EC50s, in μ/ml): arene halides (e.g., polychlorinated biphenyls, DDT), 0.0011; phthalate esters, 0.133; chlorinated camphenes (toxaphene), 0.0082; polyaromatic hydrocarbons (PAHs; e.g., dimethylnaphthalene) and reduced derivatives, 1.01; chlorinated fused polycyclics (e.g., trans-nonachlor), 0.022; nitrogen-containing compounds (e.g., O-methylhydroxyl-amine), 1.35; alkyl halides (e.g., (bromomethyl)cyclohexene), 10.1; cyclic alkanes (e.g., cyclododecane), 20.9; silicon-containing compounds (e.g., dimethyldiethoxy silane), 1.25; and heterocyclic nitrogen compounds (e.g., nicotine), 2.48. We recommend that chronic bioassays be conducted with fish and invertebrates to determine the sublethal effects of the following classes of compounds, for which few toxicity data are available: PAHs, heterocyclic nitrogen compounds, other nitrogen-containing compounds, alkyl halides, cyclic alkanes and silicon-containing compounds. Information from these types of studies will aid researchers in determining the possible causal role these contaminants play in the decline and reproductive impairment of Great Lakes fish.
DETECTION OF TOXICANT(S) ON BUILDING SURFACES FOLLOWING CHEMICAL ATTACK
A critical step prior to reoccupation of any facility following a chemical attack is monitoring for toxic compounds on surfaces within that facility. Low level detection of toxicant(s) is necessary to ensure that these compounds have been eliminated after building decontaminatio...
Kleandrova, Valeria V; Luan, Feng; Speck-Planche, Alejandro; Cordeiro, M Natália D S
2015-01-01
The assessment of acute toxicity is one of the most important stages to ensure the safety of chemicals with potential applications in pharmaceutical sciences, biomedical research, or any other industrial branch. A huge and indiscriminate number of toxicity assays have been carried out on laboratory animals. In this sense, computational approaches involving models based on quantitative-structure activity/toxicity relationships (QSAR/QSTR) can help to rationalize time and financial costs. Here, we discuss the most significant advances in the last 6 years focused on the use of QSAR/QSTR models to predict acute toxicity of drugs/chemicals in laboratory animals, employing large and heterogeneous datasets. The advantages and drawbacks of the different QSAR/QSTR models are analyzed. As a contribution to the field, we introduce the first multitasking (mtk) QSTR model for simultaneous prediction of acute toxicity of compounds by considering different routes of administration, diverse breeds of laboratory animals, and the reliability of the experimental conditions. The mtk-QSTR model was based on artificial neural networks (ANN), allowing the classification of compounds as toxic or non-toxic. This model correctly classified more than 94% of the 1646 cases present in the whole dataset, and its applicability was demonstrated by performing predictions of different chemicals such as drugs, dietary supplements, and molecules which could serve as nanocarriers for drug delivery. The predictions given by the mtk-QSTR model are in very good agreement with the experimental results.
EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesize that cell signaling pathways are primary targets for diverse environmental chemicals ...
Molecular and physiological mechanisms of plant tolerance to toxic metals
USDA-ARS?s Scientific Manuscript database
Plants have evolved a myriad of adaptive mechanisms based on a number of genes to deal with the different toxic metals they encounter in the soils worldwide. These genes encode a range of different metal and organic compound transporters and enzyme pathways for the synthesis of metal detoxifying lig...
SOLAR RADIATION DOSE AND PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS: A CASE STUDY
The toxicity of polycyclic aromatic hydrocarbons increases by as much as three orders of magnitude in the presence of solar radiation. The risk of this photoactive toxicity is thus based on both tissue concentrations of potentially photo activated compounds and the levels of subs...
Building predictive models of developmental toxicity from ToxRefDB and ToxCast
EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that are highly correlated with observed in vivo toxicity. We hypothesize that cell signaling pathways underlying development are primary targets f...
Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment
Megha, Pankajshan; Sreedev, Puthur
2016-01-01
Organochlorine (OC) pesticides are synthetic pesticides widely used all over the world. They belong to the group of chlorinated hydrocarbon derivatives, which have vast application in the chemical industry and in agriculture. These compounds are known for their high toxicity, slow degradation and bioaccumulation. Even though many of the compounds which belong to OC were banned in developed countries, the use of these agents has been rising. This concerns particularly abuse of these chemicals which is in practice across the continents. Though pesticides have been developed with the concept of target organism toxicity, often non-target species are affected badly by their application. The purpose of this review is to list the major classes of pesticides, to understand organochlorine pesticides based on their activity and persistence, and also to understand their biochemical toxicity. PMID:28652852
Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases
Zhou, Xiaoli; Yu, Shanshan; Su, Jing; Sun, Liankun
2016-01-01
Pyruvate dehydrogenase kinases (PDKs) are key enzymes in glucose metabolism, negatively regulating pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibiting PDKs could upregulate PDC activity and drive cells into more aerobic metabolism. Therefore, PDKs are potential targets for metabolism related diseases, such as cancers and diabetes. In this study, a series of computer-aided virtual screening techniques were utilized to discover potential inhibitors of PDKs. Structure-based screening using Libdock was carried out following by ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was used to analyze the binding mechanism between these compounds and PDKs. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. From the computational results, two novel natural coumarins compounds (ZINC12296427 and ZINC12389251) from the ZINC database were found binding to PDKs with favorable interaction energy and predicted to be non-toxic. Our study provide valuable information of PDK-coumarins binding mechanisms in PDK inhibitor-based drug discovery. PMID:26959013
Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases.
Zhou, Xiaoli; Yu, Shanshan; Su, Jing; Sun, Liankun
2016-03-04
Pyruvate dehydrogenase kinases (PDKs) are key enzymes in glucose metabolism, negatively regulating pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibiting PDKs could upregulate PDC activity and drive cells into more aerobic metabolism. Therefore, PDKs are potential targets for metabolism related diseases, such as cancers and diabetes. In this study, a series of computer-aided virtual screening techniques were utilized to discover potential inhibitors of PDKs. Structure-based screening using Libdock was carried out following by ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was used to analyze the binding mechanism between these compounds and PDKs. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. From the computational results, two novel natural coumarins compounds (ZINC12296427 and ZINC12389251) from the ZINC database were found binding to PDKs with favorable interaction energy and predicted to be non-toxic. Our study provide valuable information of PDK-coumarins binding mechanisms in PDK inhibitor-based drug discovery.
Kim, Marlene Thai; Huang, Ruili; Sedykh, Alexander; Wang, Wenyi; Xia, Menghang; Zhu, Hao
2016-05-01
Hepatotoxicity accounts for a substantial number of drugs being withdrawn from the market. Using traditional animal models to detect hepatotoxicity is expensive and time-consuming. Alternative in vitro methods, in particular cell-based high-throughput screening (HTS) studies, have provided the research community with a large amount of data from toxicity assays. Among the various assays used to screen potential toxicants is the antioxidant response element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 program. The ARE-bla computational model and HTS data from a big data source (PubChem) were used to profile environmental and pharmaceutical compounds with hepatotoxicity data. Quantitative structure-activity relationship (QSAR) models were developed based on ARE-bla data. The models predicted the potential oxidative stress response for known liver toxicants when no ARE-bla data were available. Liver toxicants were used as probe compounds to search PubChem Bioassay and generate a response profile, which contained thousands of bioassays (> 10 million data points). By ranking the in vitro-in vivo correlations (IVIVCs), the most relevant bioassay(s) related to hepatotoxicity were identified. The liver toxicants profile contained the ARE-bla and relevant PubChem assays. Potential toxicophores for well-known toxicants were created by identifying chemical features that existed only in compounds with high IVIVCs. Profiling chemical IVIVCs created an opportunity to fully explore the source-to-outcome continuum of modern experimental toxicology using cheminformatics approaches and big data sources. Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016. Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and big data. Environ Health Perspect 124:634-641; http://dx.doi.org/10.1289/ehp.1509763.
Kim, Marlene Thai; Huang, Ruili; Sedykh, Alexander; Wang, Wenyi; Xia, Menghang; Zhu, Hao
2015-01-01
Background: Hepatotoxicity accounts for a substantial number of drugs being withdrawn from the market. Using traditional animal models to detect hepatotoxicity is expensive and time-consuming. Alternative in vitro methods, in particular cell-based high-throughput screening (HTS) studies, have provided the research community with a large amount of data from toxicity assays. Among the various assays used to screen potential toxicants is the antioxidant response element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 program. Objective: The ARE-bla computational model and HTS data from a big data source (PubChem) were used to profile environmental and pharmaceutical compounds with hepatotoxicity data. Methods: Quantitative structure–activity relationship (QSAR) models were developed based on ARE-bla data. The models predicted the potential oxidative stress response for known liver toxicants when no ARE-bla data were available. Liver toxicants were used as probe compounds to search PubChem Bioassay and generate a response profile, which contained thousands of bioassays (> 10 million data points). By ranking the in vitro–in vivo correlations (IVIVCs), the most relevant bioassay(s) related to hepatotoxicity were identified. Results: The liver toxicants profile contained the ARE-bla and relevant PubChem assays. Potential toxicophores for well-known toxicants were created by identifying chemical features that existed only in compounds with high IVIVCs. Conclusion: Profiling chemical IVIVCs created an opportunity to fully explore the source-to-outcome continuum of modern experimental toxicology using cheminformatics approaches and big data sources. Citation: Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016. Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and big data. Environ Health Perspect 124:634–641; http://dx.doi.org/10.1289/ehp.1509763 PMID:26383846
The Response of Lemna minor to Mixtures of Pesticides That Are Commonly Used in Thailand.
Tagun, Rungnapa; Boxall, Alistair B A
2018-04-01
In the field, aquatic organisms are exposed to multiple contaminants rather than to single compounds. It is therefore important to understand the toxic interactions of co-occurring substances in the environment. The aim of the study was to assess the effects of individual herbicides (atrazine, 2,4-D, alachlor and paraquat) that are commonly used in Thailand and their mixtures on Lemna minor. Plants were exposed to individual and binary mixtures for 7 days and the effects on plant growth rate were assesed based on frond area measurements. Experimental observations of mixture toxicity were compared with predictions based on single herbicide exposure data using concentration addition and independent action models. The single compound studies showed that paraquat and alachlor were most toxic to L. minor, followed by atrazine and then 2,4-D. For the mixtures, atrazine with 2,4-D appeared to act antagonistically, whereas alachlor and paraquat showed synergism.
Liu, Hong; Cheng, Tie-Ming; Zhang, Hong-Mei; Li, Run-Tao
2003-11-01
Based on the structure characteristics of the lead compounds, 1, 1' octanedioyl-4, 4'-dimethyl-4, 4'-dibenzyl dipiperazinium dibromide (2) and 3, 8-disubstituted-3, 8-diazabicyclo [3.2.1]octanes (DBO), di-(3, 8-diazabicyclo [3.2.1]octane) diquaternary ammonium salts 3 a-c were designed and synthesized through a highly practical procedure. Target compounds 3 a-c and the hydrochloride salts of their precursors 10 a-c were evaluated for their in vivo analgesic and sedative activities. Interestingly, the introduction of an endoethylenic bridge in the piperazine of lead compound 2 causes loss of the analgesic activity and increases the toxicity dramatically. This result shows that the flexible conformation of piperazine in compound 2 is favorable for interaction with the receptor, and the quaternization of compounds 10 a-c is the main reason for the toxicity increase.
Salga, Muhammad Saleh; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen; Abdelwahab, Siddig Ibrahim
2012-01-01
The current study described the synthesis and the in vivo acute oral toxicity evaluations in Sprague Dawley rats. The compounds were characterized by elemental analyses, LC-MS, FTIR, 1H NMR, 13C NMR and UV-visible spectroscopy. In the acute toxicity study, a single administration of the compounds was performed orally to the rats at the single doses of 2000 mg/kg and they were then monitored for possible side effects, mortality or behavioral changes up to 14 days. The serum level of aspartate (AST), alanine aminotransferases (ALT), alkaline phosphate (ALP), triglyceride, high density lipoprotein (HDL), immunoglobulins (GAM) and the C-reactive proteins did not significantly change. The hematological indices white blood cells (WBC), haematocrit (HCT), red blood cells (RBC), mean corpuscular volume (MCV), mean corpuscular haemoglobin concentration (MCHC), and mean corpuscular hemoglobin (MCH) were within the normal range. The renal function indices examined were also within the reference range. Generally, the compounds exhibited low toxic effects as required for further in vivo therapeutic studies. PMID:22408397
Piotrowska, Aleksandra; Syguda, Anna; Wyrwas, Bogdan; Chrzanowski, Łukasz; Heipieper, Hermann J
2017-01-01
Combination of the hydrophilic herbicidal anion with hydrophobic, antimicrobial ammonium cation allows to obtain compounds in ionic liquid form with better properties then conventional herbicides. Both cation and anion can be modified by selection of herbicide and the length of alkyl chains in cation structure. However the knowledge of their potential toxic effects are still limited. Furthermore, the relation between hydrophobicity associated with the length of alkyl chains and toxicity for ionic liquids has not been thoroughly studied. Therefore we investigated toxic effects of herbicidal ionic liquid forms on growth inhibition, given as EC 50, of the common soil bacterium Pseudomonas putida. We thereby concentrated on quaternary ammonium salts. Analyzed compounds were composed of dicamba or MCPP moieties and cation with various alkyl chain lengths (n = 6,8,10) We compared them with commercial herbicides, and ammonium-based ionic liquids with neutral anion (Br - ). In addition, cis-trans isomerisation of unsaturated membrane fatty acids in Pseudomonas putida was applied as the proxy for toxicity and membrane activity. We showed that toxicity increased with the length of alkyl chains. However, this correlation is only valid for six and eight carbon atom in alkyl chains, where for n = 10 the EC 50 values rise by one order of magnitude. In our studies, the herbicidal ionic liquids [C 10 ,C 10 ,C 1 ,C 1 N][MCPP] and [C 10 ,C 10 ,C 1 ,C 1 N][dicamba] showed the lowest toxicity among analyzed quaternary ammonium salts and comparable toxicity with corresponding herbicides. No clear increase in toxicity could be followed by changing the anion moieties for ammonium-based ionic liquid forms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Polo, A M; Tobajas, M; Sanchis, S; Mohedano, A F; Rodríguez, J J
2011-07-01
Different methods for determining the toxicity and biodegradability of hazardous compounds evaluating their susceptibility to biological treatment were studied. Several compounds including chlorophenols and herbicides have been evaluated. Toxicity was analyzed in terms of EC50 and by a simple respirometric procedure based on the OECD Method 209 and by the Microtox® bioassay. The values of EC50 obtained from respirometry were in all the cases higher than those from the Microtox® test. The respirometric inhibition values of chlorophenols were related well with the number of chlorine atoms and their position in the aromatic ring. In general, herbicides showed lower inhibition, being alachlor the less toxic from this criterion. For determination of biodegradability an easier and faster alternative to the OECD Method 301, with a higher biomass to substrate ratio is proposed. When this test was negative, the Zahn-Wellens one was performed in order to evaluate the inherent biodegradability. In the fast test of biodegradability, 4-chlorocatechol and 4-chlorophenol showed a complete biodegradation by an unacclimated sludge upon 48 h. These results together with their low respirometric inhibition, allow concluding that these compounds could be conveniently removed in a WWTP. Alachlor, 2,4-dichlorophenol, 2,4,6-trichlorophenol and MCPA showed a partial biodegradation upon 28 days by the Zahn-Wellens inherent biodegradability test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabak, H.H.; Desai, S.; Govind, R.
1990-01-01
Electrolytic respirometry is attaining prominence in biodegradation studies and is becoming one of the more suitable experimental methods for measuring the biodegradability and the kinetics of biodegradation of toxic organic compounds by the sewage, sludge, and soil microbiota and for determining substrate inhibitory effects to microorganisms in wastewater treatment systems. The purpose of the study was to obtain information on biological treatability of the benzene, phenol, phthalate, ketone organics and of the Superfund CERCLA organics bearing wastes in wastewater treatment systems which will support the development of an EPA technical guidance document on the discharge of the above organics tomore » POTWs. The paper discusses the experimental design and procedural steps for the respirometric biodegradation and toxicity testing approach for individual organics or specific industrial wastes at different concentration levels in a mineral salts medium. A developed multi-level protocol is presented for determination of the biodegradability, microbial acclimation to toxic substrates and first order kinetic parameters of biodegradation for estimation of the Monod kinetic parameter of toxic organic compounds, in order to correlate the extent and rate of biodegradation with a predictive model based on chemical properties and molecular structure of these compounds. Respirometric biodegradation/inhibition and biokinetic data are provided for representative RCRA alkyl benzene and ketone organics.« less
Peeters, Elien; Hooyberghs, Geert; Robijns, Stijn; Waldrant, Kai; De Weerdt, Ami; Delattin, Nicolas; Liebens, Veerle; Kucharíková, Soňa; Tournu, Hélène; Verstraeten, Natalie; Dovgan, Barbara; Girandon, Lenart; Fröhlich, Mirjam; De Brucker, Katrijn; Michiels, Jan; Cammue, Bruno P. A.; Thevissen, Karin; Vanderleyden, Jozef; Van der Eycken, Erik
2016-01-01
We previously synthesized several series of compounds, based on the 5-aryl-2-aminoimidazole scaffold, that showed activity preventing the formation of Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa biofilms. Here, we further studied the activity spectrum of a number of the most active N1- and 2N-substituted 5-aryl-2-aminoimidazoles against a broad panel of biofilms formed by monospecies and mixed species of bacteria and fungi. An N1-substituted compound showed very strong activity against the biofilms formed by Gram-negative and Gram-positive bacteria and the fungus Candida albicans but was previously shown to be toxic against various eukaryotic cell lines. In contrast, 2N-substituted compounds were nontoxic and active against biofilms formed by Gram-negative bacteria and C. albicans but had reduced activity against biofilms formed by Gram-positive bacteria. In an attempt to develop nontoxic compounds with potent activity against biofilms formed by Gram-positive bacteria for application in antibiofilm coatings for medical implants, we synthesized novel compounds with substituents at both the N1 and 2N positions and tested these compounds for antibiofilm activity and toxicity. Interestingly, most of these N1-,2N-disubstituted 5-aryl-2-aminoimidazoles showed very strong activity against biofilms formed by Gram-positive bacteria and C. albicans in various setups with biofilms formed by monospecies and mixed species but lost activity against biofilms formed by Gram-negative bacteria. In light of application of these compounds as anti-infective coatings on orthopedic implants, toxicity against two bone cell lines and the functionality of these cells were tested. The N1-,2N-disubstituted 5-aryl-2-aminoimidazoles in general did not affect the viability of bone cells and even induced calcium deposition. This indicates that modulating the substitution pattern on positions N1 and 2N of the 5-aryl-2-aminoimidazole scaffold allows fine-tuning of both the antibiofilm activity spectrum and toxicity. PMID:27550355
Plant-Associated Bacterial Degradation of Toxic Organic Compounds in Soil
McGuinness, Martina; Dowling, David
2009-01-01
A number of toxic synthetic organic compounds can contaminate environmental soil through either local (e.g., industrial) or diffuse (e.g., agricultural) contamination. Increased levels of these toxic organic compounds in the environment have been associated with human health risks including cancer. Plant-associated bacteria, such as endophytic bacteria (non-pathogenic bacteria that occur naturally in plants) and rhizospheric bacteria (bacteria that live on and near the roots of plants), have been shown to contribute to biodegradation of toxic organic compounds in contaminated soil and could have potential for improving phytoremediation. Endophytic and rhizospheric bacterial degradation of toxic organic compounds (either naturally occurring or genetically enhanced) in contaminated soil in the environment could have positive implications for human health worldwide and is the subject of this review. PMID:19742157
Acute oral toxicity test of chemical compounds in silkworms.
Usui, Kimihito; Nishida, Satoshi; Sugita, Takuya; Ueki, Takuro; Matsumoto, Yasuhiko; Okumura, Hidenobu; Sekimizu, Kazuhisa
2016-02-01
This study performed an acute oral toxicity test of 59 compounds in silkworms. These compounds are listed in OECD guidelines as standard substances for a cytotoxicity test, and median lethal dose (LD(50)) werecalculated for each compound. Acute oral LD(50) values in mammals are listed in OECD guidelines and acute oral LD(50) values in silkworms were determined in this study. R(2) for the correlation between LD(50) values in mammals and LD(50) values in silkworms was 0.66. In addition, the acute oral toxicity test in silkworms was performed by two different facilities, and test results from the facilities were highly reproducible. These findings suggest that an acute oral toxicity test in silkworms is a useful way to evaluate the toxicity of compounds in mammals.
Järbe, Torbjörn U C; Raghav, Jimit Girish
2017-01-01
The phenomenon of consuming synthetic cannabinoids ("Spice") for recreational purposes is a fairly recent trend. However, consumption of cannabis dates back millennia, with numerous accounts written on the experience of its consumption, and thousands of scientific reports published on the effects of its constituents in laboratory animals and humans. Here, we focus on consolidating the scientific literature on the effects of "Spice" compounds in various behavioral assays, including assessing abuse liability, tolerance, dependence, withdrawal, and potential toxicity. In most cases, the behavioral effects of "Spice" compounds are compared with those of Δ 9 -tetrahydrocannabinol. Methodological aspects, such as modes of administration and other logistical issues, are also discussed. As the original "Spice" molecules never were intended for human consumption, scientifically based information about potential toxicity and short- and long-term behavioral effects are very limited. Consequently, preclinical behavioral studies with "Spice" compounds are still in a nascent stage. Research is needed to address the addiction potential and other effects, including propensity for producing tissue/organ toxicity, of these synthetic cannabimimetic "Spice" compounds.
NASA Astrophysics Data System (ADS)
Shanty, Angamaly Antony; Mohanan, Puzhavoorparambil Velayudhan
2018-03-01
Phenolic heterocyclic imine based Schiff bases from Thiophene-2-carboxaldehyde and Pyrrole-2-carboxaldehyde were synthesized and characterized as novel antioxidants. The solvent effects of these Schiff bases were determined and compared with standard antioxidants, BHA employing DPPH assay and ABTS assay. Fixed reaction time and Steady state measurement were used for study. IC50 and EC50 were calculated. Structure-activity relationship revealed that the electron donating group in the phenolic ring increases the activity where as the electron withdrawing moiety decreases the activity. The Schiff base derivatives showed antioxidant property by two different pathways namely SPLET and HAT mechanisms in DPPH assay. While in ABTS method, the reaction between ABTS radical and Schiff bases involves electron transfer followed by proton transfer (ET-PT) mechanism. The cytotoxicity of these compounds has been evaluated by MTT assay. The results showed that all these compounds are non toxic in nature.
Development of marine toxicity data for ordnance compounds
Nipper, M.; Carr, R.S.; Biedenbach, J.M.; Hooten, R.L.; Miller, K.; Saepoff, S.
2001-01-01
A toxicity database for ordnance compounds was generated using eight compounds of concern and marine toxicity tests with five species from different phyla. Toxicity tests and endpoints included fertilization success and embryological development with the sea urchin Arbacia punctulata; zoospore germination, germling length, and cell number with the green macroalga Ulva fasciata; survival and reproductive success of the polychaete Dinophilus gyrociliatus; larvae hatching and survival with the redfish Sciaenops ocellatus; and survival of juveniles of the opossum shrimp Americamysis bahia (formerly Mysidopsis bahia). The studied ordnance compounds were 2,4- and 2,6-dinitrotoluene, 2,4,6-trinitrotoluene, 1,3-dinitrobenzene, 1,3,5-trinitrobenzene, 2,4,6-trinitrophenylmethylnitramine (tetryl), 2,4,6-trinitrophenol (picric acid), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). The most sensitive toxicity test endpoints overall were the macroalga zoospore germination and the polychaete reproduction tests. The most toxic ordnance compounds overall were tetryl and 1,3,5-trinitrobenzene. These were also the most degradable compounds, often being reduced to very low or below-detection levels at the end of the test exposure. Among the dinitro- and trinitrotoluenes and benzenes, toxicity tended to increase with the level of nitrogenation. Picric acid and RDX were the least toxic chemicals tested overall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, B.D.; Toole, A.P.; Callahan, B.G.
1991-12-01
Alkylphenols are a class of environmentally pervasive compounds, found both in natural (e.g., crude oils) and in anthropogenic (e.g., wood tar, coal gasification waste) materials. Despite the frequent environmental occurrence of these chemicals, there is a limited toxicity database on alkylphenols. The authors have therefore developed a 'toxicity equivalence approach' for alkylphenols which is based on their ability to inhibit, in a specific manner, the enzyme cyclooxygenase. Enzyme-inhibiting ability for individual alkylphenols can be estimated based on the quantitative structure-activity relationship developed by Dewhirst (1980) and is a function of the free hydroxyl group, electron-donating ring substituents, and hydrophobic aromaticmore » ring substituents. The authors evaluated the toxicological significance of cyclooxygenase inhibition by comparison of the inhibitory capacity of alkylphenols with the inhibitory capacity of acetylsalicylic acid, or aspirin, a compound whose low-level effects are due to cyclooxygenase inhibition. Since nearly complete absorption for alkylphenols and aspirin is predicted, based on estimates of hydrophobicity and fraction of charged molecules at gastrointestinal pHs, risks from alkylphenols can be expressed directly in terms of 'milligram aspirin equivalence,' without correction for absorption differences. They recommend this method for assessing risks of mixtures of alkylphenols, especially for those compounds with no chronic toxicity data.38 references.« less
Gigrich, James; Sarkani, Shahryar; Holzer, Thomas
2017-03-01
There is an increasing backlog of potentially toxic compounds that cannot be evaluated with current animal-based approaches in a cost-effective and expeditious manner, thus putting human health at risk. Extrapolation of animal-based test results for human risk assessment often leads to different physiological outcomes. This article introduces the use of quantitative tools and methods from systems engineering to evaluate the risk of toxic compounds by the analysis of the amount of stress that human hepatocytes undergo in vitro when metabolizing GW7647 1 over extended times and concentrations. Hepatocytes are exceedingly connected systems that make it challenging to understand the highly varied dimensional genomics data to determine risk of exposure. Gene expression data of peroxisome proliferator-activated receptor-α (PPARα) 2 binding was measured over multiple concentrations and varied times of GW7647 exposure and leveraging mahalanombis distance to establish toxicity threshold risk levels. The application of these novel systems engineering tools provides new insight into the intricate workings of human hepatocytes to determine risk threshold levels from exposure. This approach is beneficial to decision makers and scientists, and it can help reduce the backlog of untested chemical compounds due to the high cost and inefficiency of animal-based models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiaodong Huang; Dixon, D.G.; Greenberg, B.M.
1993-06-01
The toxicity of polycyclic aromatic hydrocarbons (PAHs) can be enhanced by both biotic and abiotic processes. This is exemplified by light, which, by virtue of the extensive [pi]-orbital systems of PAHs, can be a major factor in PAH toxicity. Light activation of PAHs is known to occur via photosensitization reactions and potentially by photomodification of the chemicals to more toxic species. To examine the modes of PAH action in the light and determine if the photomodified compounds are hazardous, the authors investigated the photoinduced toxicity of anthracene, phenanthrene and benzo[a]pyrene to the aquatic higher plant Lemna gibba (a duckweed). Toxicitymore » end points were inhibition of growth and extent of chlorosis. Light did indeed activated the phytotoxicity of PAHs, with UV radiation more effective than visible light. Dose-response curves based on chemical concentration and light intensity revealed the order of phytotoxic strength to be anthracene > phenanthrene > benzo[a]pyrene. To explore whether photomodified PAHs were contributing to toxicity, the chemicals were irradiated before toxicity testing. The rates of photomodification of the three PAHs were rapid, and the relative velocities were coincident with the order of toxic strength. Furthermore, the photomodified PAHs were more hazardous to Lemna than the intact compounds. Because interpretations of the potential impacts of PAHs in the environment are based mostly on measurements of the structurally intact chemicals, the severity of PAH hazards is possibly underestimated.« less
EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesize that cell signaling pathways are primary targets for diverse environmental chemicals ...
Updated methane, non-methane organic gas, and volatile organic compound calculations based on speciation data. Updated speciation and toxic emission rates for new model year 2010 and later heavy-duty diesel engines. Updated particulate matter emission rates for 2004 and later mod...
A database of embryo-fetal developmental toxicity (EFDT) studies of 379 pharmaceutical compounds in rat and rabbit was analyzed for species differences based on toxicokinetic parameters of area under the curve (AUC) and maximum concentration (Cmax) at the developmental adverse ef...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z.T.; Wang, L.S.; Chen, S.P.
1996-12-31
The fundamental differentiation of toxicity is between reactive and nonreactive toxicity. Reactive toxicity is associated with a specific mechanism for the reaction with an enzyme or inhibition of a metabolic pathway, and nonreactive toxicity is related directly to the quantity of toxicant acting upon the cell. The quantitative structure-activity relationships (QSARs) have been successfully used in the nonreactive toxicity, such as prediction of the toxicity of nonreactive compounds based on their solubility in the lipids of organisms. The elements of molecular structure that are most closely related to nonreactive toxicity are those that describe the partitioning of the toxicant intomore » the organism, while QSARs for the reactive toxicity are less common in the environmental toxicology literature. With the recent increase in the use of synthetic substituted benzenes as industrial chemicals, the accurate analysis of the effect of reactive toxic chemicals has become recognized with QSAR. For this purpose, we selected the fish (Carassias auratus) as the test organism, measured the acute toxicity of 50% lethal concentration (LC{sub 50}) of the chemicals and the adenosine triphosphate (ATP) content of the liver cells for the organism. These determined the relationships of the acute toxicity of some substituted benzenes with their physicochemical structural parameters. The effects on the ATP content was also compared to predict biological reactivities of the chemicals, so as to find some clues to explain the mode of mechanism of the toxicity. 17 refs., 1 tab.« less
Analysis of Pfizer compounds in EPA's ToxCast chemicals-assay space.
Shah, Falgun; Greene, Nigel
2014-01-21
The U.S. Environmental Protection Agency (EPA) launched the ToxCast program in 2007 with the goal of evaluating high-throughput in vitro assays to prioritize chemicals that need toxicity testing. Their goal was to develop predictive bioactivity signatures for toxic compounds using a set of in vitro assays and/or in silico properties. In 2009, Pfizer joined the ToxCast initiative by contributing 52 compounds with preclinical and clinical data for profiling across the multiple assay platforms available. Here, we describe the initial analysis of the Pfizer subset of compounds within the ToxCast chemical (n = 1814) and in vitro assay (n = 486) space. An analysis of the hit rate of Pfizer compounds in the ToxCast assay panel allowed us to focus our mining of assays potentially most relevant to the attrition of our compounds. We compared the bioactivity profile of Pfizer compounds to other compounds in the ToxCast chemical space to gain insights into common toxicity pathways. Additionally, we explored the similarity in the chemical and biological spaces between drug-like compounds and environmental chemicals in ToxCast and compared the in vivo profiles of a subset of failed pharmaceuticals having high similarity in both spaces. We found differences in the chemical and biological spaces of pharmaceuticals compared to environmental chemicals, which may question the applicability of bioactivity signatures developed exclusively based on the latter to drug-like compounds if used without prior validation with the ToxCast Phase-II chemicals. Finally, our analysis has allowed us to identify novel interactions for our compounds in particular with multiple nuclear receptors that were previously not known. This insight may help us to identify potential liabilities with future novel compounds.
Kohonen, Pekka; Benfenati, Emilio; Bower, David; Ceder, Rebecca; Crump, Michael; Cross, Kevin; Grafström, Roland C; Healy, Lyn; Helma, Christoph; Jeliazkova, Nina; Jeliazkov, Vedrin; Maggioni, Silvia; Miller, Scott; Myatt, Glenn; Rautenberg, Michael; Stacey, Glyn; Willighagen, Egon; Wiseman, Jeff; Hardy, Barry
2013-01-01
The aim of the SEURAT-1 (Safety Evaluation Ultimately Replacing Animal Testing-1) research cluster, comprised of seven EU FP7 Health projects co-financed by Cosmetics Europe, is to generate a proof-of-concept to show how the latest technologies, systems toxicology and toxicogenomics can be combined to deliver a test replacement for repeated dose systemic toxicity testing on animals. The SEURAT-1 strategy is to adopt a mode-of-action framework to describe repeated dose toxicity, combining in vitro and in silico methods to derive predictions of in vivo toxicity responses. ToxBank is the cross-cluster infrastructure project whose activities include the development of a data warehouse to provide a web-accessible shared repository of research data and protocols, a physical compounds repository, reference or "gold compounds" for use across the cluster (available via wiki.toxbank.net), and a reference resource for biomaterials. Core technologies used in the data warehouse include the ISA-Tab universal data exchange format, REpresentational State Transfer (REST) web services, the W3C Resource Description Framework (RDF) and the OpenTox standards. We describe the design of the data warehouse based on cluster requirements, the implementation based on open standards, and finally the underlying concepts and initial results of a data analysis utilizing public data related to the gold compounds. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DETECTION OF TOXICANTS ON BUILDING SURFACES FOLLOWING CHEMICAL ATTACK
A critical step prior to reoccupation of any facility following a chemical attack will be the monitoring of toxic compounds on surfaces within that facility. Low level detection of toxicant(s) is necessary to ensure that these compounds have been eliminated after decontamination...
Furuhama, A; Hasunuma, K; Aoki, Y
2015-01-01
In addition to molecular structure profiles, descriptors based on physicochemical properties are useful for explaining the eco-toxicities of chemicals. In a previous study we reported that a criterion based on the difference between the partition coefficient (log POW) and distribution coefficient (log D) values of chemicals enabled us to identify aromatic amines and phenols for which interspecies relationships with strong correlations could be developed for fish-daphnid and algal-daphnid toxicities. The chemicals that met the log D-based criterion were expected to have similar toxicity mechanisms (related to membrane penetration). Here, we investigated the applicability of log D-based criteria to the eco-toxicity of other kinds of chemicals, including aliphatic compounds. At pH 10, use of a log POW - log D > 0 criterion and omission of outliers resulted in the selection of more than 100 chemicals whose acute fish toxicities or algal growth inhibition toxicities were almost equal to their acute daphnid toxicities. The advantage of log D-based criteria is that they allow for simple, rapid screening and prioritizing of chemicals. However, inorganic molecules and chemicals containing certain structural elements cannot be evaluated, because calculated log D values are unavailable.
Malik, Nasir; Efthymiou, Anastasia G; Mather, Karly; Chester, Nathaniel; Wang, Xiantao; Nath, Avindra; Rao, Mahendra S; Steiner, Joseph P
2014-12-01
Human primary neural tissue is a vital component for the quick and simple determination of chemical compound neurotoxicity in vitro. In particular, such tissue would be ideal for high-throughput screens that can be used to identify novel neurotoxic or neurotherapeutic compounds. We have previously established a high-throughput screening platform using human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) and neurons. In this study, we conducted a 2000 compound screen with human NSCs and rat cortical cells to identify compounds that are selectively toxic to each group. Approximately 100 of the tested compounds showed specific toxicity to human NSCs. A secondary screen of a small subset of compounds from the primary screen on human iPSCs, NSC-derived neurons, and fetal astrocytes validated the results from >80% of these compounds with some showing cell specific toxicity. Amongst those compounds were several cardiac glycosides, all of which were selectively toxic to the human cells. As the screen was able to reliably identify neurotoxicants, many with species and cell-type specificity, this study demonstrates the feasibility of this NSC-driven platform for higher-throughput neurotoxicity screens. Published by Elsevier B.V.
Rocheleau, Sylvie; Kuperman, Roman G; Martel, Majorie; Paquet, Louise; Bardai, Ghalib; Wong, Stephen; Sarrazin, Manon; Dodard, Sabine; Gong, Ping; Hawari, Jalal; Checkai, Ronald T; Sunahara, Geoffrey I
2006-01-01
The toxicities of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), 2,4-dinitrotoluene (2,4-DNT), and 2,6-dinitrotoluene (2,6-DNT) to terrestrial plants alfalfa (Medicago sativa L.), Japanese millet (Echinochloa crusgalli L.), and perennial ryegrass (Lolium perenne L.) were determined in Sassafras sandy loam soil using seedling emergence, fresh shoot, and dry mass measurement endpoints. A 13-week weathering and aging of energetic materials in soils, which included wetting and drying cycles, and exposure to sunlight of individual soil treatments, was incorporated into the study design to better reflect the soil exposure conditions in the field than toxicity determinations in freshly amended soils. Definitive toxicity tests showed that dinitrotoluenes were more phytotoxic for all plant species in freshly amended treatments based on EC20 values for dry shoot ranging from 3 to 24mgkg(-1) compared with values for TNB or TNT ranging from 43 to 62mgkg(-1). Weathering and aging of energetic materials (EMs) in soil significantly decreased the toxicity of TNT, TNB or 2,6-DNT to Japanese millet or ryegrass based on seedling emergence, but significantly increased the toxicity of all four EMs to all three plant species based on shoot growth. Exposure of the three plant species to relatively low concentrations of the four compounds initially stimulated plant growth before the onset of inhibition at greater concentrations (hormesis).
Plant seeds as sources of potential industrial chemicals, pharmaceuticals, and pest control agents.
Powell, Richard G
2009-03-27
Investigations of natural products isolated from seeds have resulted in a remarkable variety of compounds having unusual structures. Seeds of many plant species contain uncommon fatty acids and lipids, some of which have found uses in the cosmetic industry or as renewable (non-petroleum based) industrial raw materials. In addition to proteins and energy storage substances such as carbohydrates and lipids, seeds generally contain, or have the ability to produce, protective compounds that are active as plant growth regulators, fungicides, insecticides, and repellents of herbivores; seeds occasionally contain compounds that are toxic to most other organisms. These compounds may also be present in other plant parts, but often are found at higher concentrations in seeds. Other compounds of interest have been associated with plant-endophyte interactions that are of mutual benefit to both organisms. Tests of seed extracts for cytotoxic and antitumor activity, toxicity to insects, and relationships to several animal disease syndromes have been revealing. Examples of compounds isolated from plant seeds that have served as lead compounds for additional research, or that continue to be of interest to researchers in multiple areas, are reviewed.
Dioxin risk assessment: mechanisms of action and possible toxicity in human health.
Tavakoly Sany, Seyedeh Belin; Hashim, Rosli; Salleh, Aishah; Rezayi, Majid; Karlen, David J; Razavizadeh, Bi Bi Marzieh; Abouzari-Lotf, Ebrahim
2015-12-01
Dioxin-like compounds (DLCs) have been classified by the World Health Organization (WHO) as one of the most persistent toxic chemical substances in the environment, and they are associated with several occupational activities and industrial accidents around the world. Since the end of the 1970s, these toxic chemicals have been banned because of their human toxicity potential, long half-life, wide dispersion, and they bioaccumulate in the food web. This review serves as a primer for environmental health professionals to provide guidance on short-term risk assessment of dioxin and to identify key findings for health and exposure assessment based on policies of different agencies. It also presents possible health effects of dioxins, mechanisms of action, toxic equivalency factors (TEFs), and dose-response characterization. Key studies related to toxicity values of dioxin-like compounds and their possible human health risk were identified through PubMed and supplemented with relevant studies characterized by reviewing the reference lists in the review articles and primary literature. Existing data decreases the scope of analyses and models in relevant studies to a manageable size by focusing on the set of important studies related to the perspective of developing toxicity values of DLCs.
Organotin compounds and aquatic bacteria: A review
NASA Astrophysics Data System (ADS)
Cooney, J. J.
1995-03-01
Organotins are toxic to microorganisms. Trisubstituted organotins (R3SnX) are considered more toxic than disubstituted (R2SnX2) or monosubstituted (RSnX3) compounds, and tetrasubstituted compounds (R4Sn) are not considered toxic. In the R3Sn series propyl-, butyl-, pentyl-, phenyl- and cyclohexyltins are the most toxic to microorganisms. Toxicity towards aerobes in the R3Sn series is related to total molecular surface area and to the octanol: water partition coefficient, Kow, which is a measure of hydrophobicity. Care must be taken when testing the toxicity of tin compounds in the laboratory, for a number of biological, chemical and physical factors can influence the apparent toxicity. Although TBT is generally the most toxic of the butyltins, there are instances where monobutyltin (MBT) is as toxic, or more toxic, than TBT to microorganisms. Thus, debutylation in the sequence TBT→DBT→MBT→Sn does not detoxity TBT for all microorganisms. Some microorganisms can methylate inorganic or organic tins under aerobic or anaerobic conditions. Methylation can also occur by chemical means and the relative contributions of biotic and abiotic mechanisms are not clear. It is difficult to isolate a pure culture which can methylate tin compounds aerobically, and it is difficult to isolate a pure culture which degrades TBT, suggesting that microbial consortiums may be involved in transformations of organotins in the aquatic environment. Methylation and debutylation alter the adsorbtivity and solubility of tin compounds; thus microorganisms can influence the environmental mobility of tin. TBT-resistant microorganisms can be isolated, and in some of them resistance to TBT can be plasmid-mediated.
NASA Technical Reports Server (NTRS)
James, John T.
2011-01-01
Safe breathing air for space faring crews is essential whether they are inside an Extravehicular Mobility Suit (EMU), a small capsule such as Soyuz, or the expansive International Space Station (ISS). Sources of air pollution can include entry of propellants, excess offgassing from polymeric materials, leakage of systems compounds, escape of payload compounds, over-use of utility compounds, microbial metabolism, and human metabolism. The toxicological risk posed by a compound is comprised of the probability of escaping to cause air pollution and the magnitude of adverse effects on human health if escape occurs. The risk from highly toxic compounds is controlled by requiring multiple levels of containment to greatly reduce the probability of escape; whereas compounds that are virtually non-toxic may require little or no containment. The potential for toxicity is determined by the inherent toxicity of the compound and the amount that could potentially escape into the breathing air.
A Review of the Toxicity of Compounds Found in Herbal Dietary Supplements.
Hudson, Amy; Lopez, Elizabeth; Almalki, Ahmad J; Roe, Amy L; Calderón, Angela I
2018-07-01
Use of herbal dietary supplements by the public is common and has been happening for centuries. In the United States, the Food and Drug Administration has a limited scope of regulation over marketed herbal dietary supplements, which may contain toxic botanical compounds that pose a public health risk. While the Food and Drug Administration has made efforts to prohibit the sale of unsafe herbal dietary supplements, numerous reports have proliferated of adverse events due to these supplements. This literature review investigates bioactive plant compounds commonly used in herbal dietary supplements and their relative toxicities. Using primarily the National Library of Medicine journal database and SciFinder for current reports, 47 toxic compounds in 55 species from 46 plant families were found to demonstrate harmful effects due to hepatic, cardiovascular, central nervous system, and digestive system toxicity. This review further contributes a novel and comprehensive view of toxicity across the botanical dietary market, and investigates the toxicity of the top ten botanical dietary supplements purchased in the United States of America to gauge the exposure risk of toxicity to the public. The criteria of measuring toxicity in this review (plant compound, family, quantity, and toxicity effects) across the entire market in the United States, with special attention to those supplements whose exposure to the consumer is maximal, provides a unique contribution to the investigation of botanical supplements. Georg Thieme Verlag KG Stuttgart · New York.
Is the bitter rejection response always adaptive?
Glendinning, J I
1994-12-01
The bitter rejection response consists of a suite of withdrawal reflexes and negative affective responses. It is generally assumed to have evolved as a way to facilitate avoidance of foods that are poisonous because they usually taste bitter to humans. Using previously published studies, the present paper examines the relationship between bitterness and toxicity in mammals, and then assesses the ecological costs and benefits of the bitter rejection response in carnivorous, omnivorous, and herbivorous (grazing and browsing) mammals. If the bitter rejection response accurately predicts the potential toxicity of foods, then one would expect the threshold for the response to be lower for highly toxic compounds than for nontoxic compounds. The data revealed no such relationship. Bitter taste thresholds varied independently of toxicity thresholds, indicating that the bitter rejection response is just as likely to be elicited by a harmless bitter food as it is by a harmful one. Thus, it is not necessarily in an animal's best interest to have an extremely high or low bitter threshold. Based on this observation, it was hypothesized that the adaptiveness of the bitter rejection response depends upon the relative occurrence of bitter and potentially toxic compounds in an animal's diet. Animals with a relatively high occurrence of bitter and potentially toxic compounds in their diet (e.g., browsing herbivores) were predicted to have evolved a high bitter taste threshold and tolerance to dietary poisons. Such an adaptation would be necessary because a browser cannot "afford" to reject all foods that are bitter and potentially toxic without unduly restricting its dietary options. At the other extreme, animals that rarely encounter bitter and potentially toxic compounds in their diet (e.g., carnivores) were predicted to have evolved a low bitter threshold. Carnivores could "afford" to utilize such a stringent rejection mechanism because foods containing bitter and potentially toxic compounds constitute a small portion of their diet. Since the low bitter threshold would reduce substantially the risk of ingesting anything poisonous, carnivores were also expected to have a relatively low tolerance to dietary poisons. This hypothesis was supported by a comparison involving 30 mammal species, in which a suggestive relationship was found between quinine hydrochloride sensitivity and trophic group, with carnivores > omnivores > grazers > browsers. Further support for the hypothesis was provided by a comparison across browsers and grazers in terms of the production of tannin-binding salivary proteins, which probably represent an adaptation for reducing the bitterness and astringency of tannins.(ABSTRACT TRUNCATED AT 400 WORDS)
The laser based resonance, enhanced multi-photon ionization time-of-flight mass spectrometry (REMPI-TOFMS) technique has been applied to the exhaust gas stream of a diesel generator to measure, in real time, concentration levels of aromatic air toxics. Volatile organic compounds ...
Leite, Débora Inácio; Fontes, Fábio de Vasconcellos; Bastos, Monica Macedo; Hoelz, Lucas Villas Boas; Bianco, Maria da Conceição Avelino Dias; de Oliveira, Andressa Paula; da Silva, Patricia Bernardino; da Silva, Cristiane França; Batista, Denise da Gama Jean; da Gama, Aline Nefertiti Silva; Peres, Raiza Brandão; Villar, Jose Daniel Figueroa; Soeiro, Maria de Nazaré Correia; Boechat, Nubia
2018-05-09
Chagas disease has spread throughout the world mainly because of the migration of infected individuals. In Brazil, only benznidazole (Bnz) is used; however, it is toxic and not active in the chronic phase, and cases of resistance are described. This work aimed at the synthesis and the trypanocidal evaluation in vitro and in vivo of six new Bnz analogues (3-8). They were designed by exploring the bioisosteric substitution between the amide group contained in Bnz and the 1,2,3-triazole ring. All the compounds were synthesized in good yields. With the exception of compound 7, the in vitro biological evaluation shows that all Bnz analogues were active against the amastigote form, whereas only compounds 3, 4, 5, and 8 were active against trypomastigote. Compounds 4 and 5 showed the most promising activities in vitro against the form of trypomastigote, being more active than Bnz. In vivo evaluation of compounds, 3-8 showed lower potency and higher toxicity than Bnz. Although the 1,2,3-triazole ring has been described in the literature as an amide bioisostere, its substitution here has reduced the activity of the compounds and made them more toxic. Thus, further molecular optimization could provide novel therapeutic agents for Chagas' disease. © 2018 John Wiley & Sons A/S.
This RARE Project with EPA Region 6 was a spatial analysis study of select volatile organic compounds (VOC) collected using passive air monitors at outdoor residential locations in the Deer Park, Texas area near the Houston Ship Channel. Correlation analysis of VOC species confi...
Hsieh, Min-Tsang; Huang, Li-Jiau; Wu, Tian-Shung; Lin, Hui-Yi; Morris-Natschke, Susan L; Lee, Kuo-Hsiung; Kuo, Sheng-Chu
2018-06-08
The aim of this study was to develop a new drug substance with low toxicity and effective inhibitory activity against cisplatin-resistant oral cancer. The naturally produced pterostilbene was selected as the lead compound for design and synthesis of a series of bis(hydroxymethyl)propionate-based prodrugs. All derivatives were screened for antiproliferative effects against the cisplatin-resistant oral squamous (CAR) cell line and the results indicated that several compounds demonstrated superior inhibitory activity compared with pterostilbene and resveratrol. Among them, the most promising compound, 12, was evaluated for in vivo antitumor activity in a CAR xenograft nude mouse model. Obvious antitumor activity was observed at the lowest oral dose (25 mg/kg/day). Increasing the dose of 12 to 100 mg/kg/day reduced the tumor size to 22% of the control group. Based on these findings as well as the extremely low toxicity seen in the in vivo studies, we believe that compound 12 could serve as a new lead for further development. Copyright © 2018. Published by Elsevier Ltd.
Wik, Anna; Dave, Göran
2006-09-01
Large amounts of tire rubber are deposited along the roads due to tread wear. Several compounds may leach from the rubber and cause toxicity to aquatic organisms. To investigate the toxic effects of tire wear material from different tires, rubber was abraded from the treads of twenty-five tires. Leachates were prepared by allowing the rubber to equilibrate with dilution water at 44 degrees C for 72 h. Then the rubber was filtered from the leachates, and test organisms (Daphnia magna) were added. Forty-eight hour EC50s ranged from 0.5 to >10.0 g l(-1). The toxicity identification evaluation (TIE) indicated that non-polar organic compounds caused most of the toxicity. UV exposure of the filtered tire leachates caused no significant increase in toxicity. However, when tested as unfiltered leachates (the rubber was not filtered from the leachates before addition of D. magna) photo-enhanced toxicity was considerable for some tires, which means that test procedures are important when testing tire leachates for aquatic (photo) toxicity. The acute toxicity of tire wear for Daphnia magna was found to be <40 times a predicted environmental concentration based on reports on the concentration of a tire component found in environmental samples, which emphasizes the need for a more extensive risk assessment of tire wear for the environment.
Westlund, Paul; Nasuhoglu, Deniz; Isazadeh, Siavash; Yargeau, Viviane
2018-05-01
High-throughput acute and chronic toxicity tests using Vibrio fischeri were used to assess the toxicity of a variety of fungicides, herbicides, and neonicotinoids. The use of time points beyond the traditional 30 min of an acute test highlighted the sensitivity and applicability of the chronic toxicity test and indicated that for some compounds toxicity is underestimated using only the acute test. The comparison of EC 50 values obtained from acute and chronic tests provided insight regarding the toxicity mode of action, either being direct or indirect. Using a structure-activity relationship approach similar to the one used in hazard assessments, the relationship between toxicity and key physicochemical properties of pesticides was investigated and trends were identified. This study not only provides new information regarding acute toxicity of some pesticides but also is one of the first studies to investigate the chronic toxicity of pesticides using the test organism V. fischeri. The findings demonstrated that the initial bioluminescence has a large effect on the calculated effective concentrations for target compounds in both acute and chronic tests, providing a way to improve and standardize the test protocol. In addition, the findings emphasize the need for additional investigation regarding the relationship between a toxicant's physicochemical properties and mode of action in nontarget organisms.
NASA Astrophysics Data System (ADS)
Qu, Rui; Liu, Shu-Shen; Zheng, Qiao-Feng; Li, Tong
2017-03-01
Concentration addition (CA) was proposed as a reasonable default approach for the ecological risk assessment of chemical mixtures. However, CA cannot predict the toxicity of mixture at some effect zones if not all components have definite effective concentrations at the given effect, such as some compounds induce hormesis. In this paper, we developed a new method for the toxicity prediction of various types of binary mixtures, an interpolation method based on the Delaunay triangulation (DT) and Voronoi tessellation (VT) as well as the training set of direct equipartition ray design (EquRay) mixtures, simply IDVequ. At first, the EquRay was employed to design the basic concentration compositions of five binary mixture rays. The toxic effects of single components and mixture rays at different times and various concentrations were determined by the time-dependent microplate toxicity analysis. Secondly, the concentration-toxicity data of the pure components and various mixture rays were acted as a training set. The DT triangles and VT polygons were constructed by various vertices of concentrations in the training set. The toxicities of unknown mixtures were predicted by the linear interpolation and natural neighbor interpolation of vertices. The IDVequ successfully predicted the toxicities of various types of binary mixtures.
Qu, Rui; Liu, Shu-Shen; Zheng, Qiao-Feng; Li, Tong
2017-01-01
Concentration addition (CA) was proposed as a reasonable default approach for the ecological risk assessment of chemical mixtures. However, CA cannot predict the toxicity of mixture at some effect zones if not all components have definite effective concentrations at the given effect, such as some compounds induce hormesis. In this paper, we developed a new method for the toxicity prediction of various types of binary mixtures, an interpolation method based on the Delaunay triangulation (DT) and Voronoi tessellation (VT) as well as the training set of direct equipartition ray design (EquRay) mixtures, simply IDVequ. At first, the EquRay was employed to design the basic concentration compositions of five binary mixture rays. The toxic effects of single components and mixture rays at different times and various concentrations were determined by the time-dependent microplate toxicity analysis. Secondly, the concentration-toxicity data of the pure components and various mixture rays were acted as a training set. The DT triangles and VT polygons were constructed by various vertices of concentrations in the training set. The toxicities of unknown mixtures were predicted by the linear interpolation and natural neighbor interpolation of vertices. The IDVequ successfully predicted the toxicities of various types of binary mixtures. PMID:28287626
Simplício, Nathan de Castro Soares; Muniz, Daphne Heloísa de Freitas; Rocha, Fernanda Regina Moreira; Martins, Denis Cavalcanti; Dias, Zélia Malena Barreira; Farias, Bruno Pereira da Costa; Oliveira-Filho, Eduardo Cyrino
2016-01-01
This study aimed to analyze the ecotoxicity of nitrogen-, phosphorus-, and potassium-based compounds to organisms of two different trophic levels in order to compare the toxic effect between high-purity substances and these substances as components of fertilizers. Dilutions were made with the fertilizers’ potassium chloride, potassium nitrate, superphosphate, urea, and their equivalent reagents, to conduct assays to establish the acute lethal concentration for half of the population (LC50). Ten individuals of the benthic snail Biomphalaria glabrata and the fish Danio rerio were exposed to each concentration of tested compounds. As a result, the toxicity levels of potassium chloride, potassium nitrate, and urea were obtained for B. glabrata and D. rerio, with the fish being more susceptible to potassium chloride in the fertilizer and the snail to potassium nitrate and urea, in both commercial and reagent forms. Regarding superphosphate, no significant toxicity was found. This study concluded that among the tested substances, KNO3 and KCl were the most toxic substances and urea the least toxic. It was not possible to establish the most sensitive species since, for KCl, the fish were more susceptible to the fertilizer and the snail to the reagent, while for KNO3 the opposite was observed. PMID:29051434
Hepatocyte-based in vitro model for assessment of drug-induced cholestasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Sagnik, E-mail: Sagnik.Chatterjee@pharm.kuleuven.be; Richert, Lysiane, E-mail: l.richert@kaly-cell.com; Augustijns, Patrick, E-mail: Patrick.Augustijns@pharm.kuleuven.be
Early detection of drug-induced cholestasis remains a challenge during drug development. We have developed and validated a biorelevant sandwich-cultured hepatocytes- (SCH) based model that can identify compounds causing cholestasis by altering bile acid disposition. Human and rat SCH were exposed (24–48 h) to known cholestatic and/or hepatotoxic compounds, in the presence or in the absence of a concentrated mixture of bile acids (BAs). Urea assay was used to assess (compromised) hepatocyte functionality at the end of the incubations. The cholestatic potential of the compounds was expressed by calculating a drug-induced cholestasis index (DICI), reflecting the relative residual urea formation bymore » hepatocytes co-incubated with BAs and test compound as compared to hepatocytes treated with test compound alone. Compounds with clinical reports of cholestasis, including cyclosporin A, troglitazone, chlorpromazine, bosentan, ticlopidine, ritonavir, and midecamycin showed enhanced toxicity in the presence of BAs (DICI ≤ 0.8) for at least one of the tested concentrations. In contrast, the in vitro toxicity of compounds causing hepatotoxicity by other mechanisms (including diclofenac, valproic acid, amiodarone and acetaminophen), remained unchanged in the presence of BAs. A safety margin (SM) for drug-induced cholestasis was calculated as the ratio of lowest in vitro concentration for which was DICI ≤ 0.8, to the reported mean peak therapeutic plasma concentration. SM values obtained in human SCH correlated well with reported % incidence of clinical drug-induced cholestasis, while no correlation was observed in rat SCH. This in vitro model enables early identification of drug candidates causing cholestasis by disturbed BA handling. - Highlights: • Novel in vitro assay to detect drug-induced cholestasis • Rat and human sandwich-cultured hepatocytes (SCH) as in vitro models • Cholestatic compounds sensitize SCH to toxic effects of accumulating bile acids • Drug-induced cholestasis index (DICI) as measure of a drug's cholestatic signature • In vitro findings correlate well with clinical reports on cholestasis.« less
Willis, Alison M; Oris, James T
2014-09-01
The present study examined photo-induced toxicity and toxicokinetics for acute exposure to selected polycyclic aromatic hydrocarbons (PAHs) in zebrafish. Photo-enhanced toxicity from co-exposure to ultraviolet (UV) radiation and PAHs enhanced the toxicity and exhibited toxic effects at PAH concentrations orders of magnitude below effects observed in the absence of UV. Because environmental exposure to PAHs is usually in the form of complex mixtures, the present study examined the photo-induced toxicity of both single compounds and mixtures of PAHs. In a sensitive larval life stage of zebrafish, acute photo-induced median lethal concentrations (LC50s) were derived for 4 PAHs (anthracene, pyrene, carbazole, and phenanthrene) to examine the hypothesis that phototoxic (anthracene and pyrene) and nonphototoxic (carbazole and phenanthrene) pathways of mixtures could be predicted from single exposures. Anthracene and pyrene were phototoxic as predicted; however, carbazole exhibited moderate photo-induced toxicity and phenanthrene exhibited weak photo-induced toxicity. The toxicity of each chemical alone was used to compare the toxicity of mixtures in binary, tertiary, and quaternary combinations of these PAHs, and a predictive model for environmental mixtures was generated. The results indicated that the acute toxicity of PAH mixtures was additive in phototoxic scenarios, regardless of the magnitude of photo-enhancement. Based on PAH concentrations found in water and circumstances of high UV dose to aquatic systems, there exists potential risk of photo-induced toxicity to aquatic organisms. © 2014 SETAC.
A bioinspired peptide scaffold with high antibiotic activity and low in vivo toxicity.
Rabanal, Francesc; Grau-Campistany, Ariadna; Vila-Farrés, Xavier; Gonzalez-Linares, Javier; Borràs, Miquel; Vila, Jordi; Manresa, Angeles; Cajal, Yolanda
2015-05-29
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Contact toxicities of anuran skin alkaloids against the fire ant ( Solenopsis invicta)
NASA Astrophysics Data System (ADS)
Weldon, Paul J.; Cardoza, Yasmin J.; Vander Meer, Robert K.; Hoffmann, W. Clint; Daly, John W.; Spande, Thomas F.
2013-02-01
Nearly 500 alkaloids, representing over 20 structural classes, have been identified from the skin of neotropical poison frogs (Dendrobatidae). These cutaneous compounds, which are derived from arthropod prey of the frogs, generally are believed to deter predators. We tested the red imported fire ant ( Solenopsis invicta) for toxicosis following contact with 20 alkaloids (12 structural classes) identified from dendrobatids or other anurans. Individual ants forced to contact the dried residues of 13 compounds exhibited convulsions and/or reduced ambulation. We estimated the cutaneous concentrations of several compounds based on their reported recoveries from skin extracts of free-ranging frogs and our measurements of the skin surface areas of museum specimens. Pumiliotoxin 251D exhibited contact toxicity below its estimated cutaneous concentration in the Ecuadorian frog, Epipedobates anthonyi, an observation consistent with the hypothesized role of this compound in anuran chemical defense. Our results and those of a previous study of mosquitoes indicate that some anuran skin compounds function defensively as contact toxins against arthropods, permeating their exoskeleton.
"Artificial micro organs"--a microfluidic device for dielectrophoretic assembly of liver sinusoids.
Schütte, Julia; Hagmeyer, Britta; Holzner, Felix; Kubon, Massimo; Werner, Simon; Freudigmann, Christian; Benz, Karin; Böttger, Jan; Gebhardt, Rolf; Becker, Holger; Stelzle, Martin
2011-06-01
In order to study possible toxic side effects of potential drug compounds in vitro a reliable test system is needed. Predicting liver toxicity presents a major challenge of particular importance as liver cells grown in a cell culture suffer from a rapid loss of their liver specific functions. Therefore we are developing a new microfluidic test system for liver toxicity. This test system is based on an organ-like liver 3D co-culture of hepatocytes and endothelial cells. We devised a microfluidic chip featuring cell culture chambers with integrated electrodes for the assembly of liver sinusoids by dielectrophoresis. Fluid channels enable an organ-like perfusion with culture media and test compounds. Different chamber designs were studied and optimized with regard to dielectrophoretic force distribution, hydrodynamic flow profile, and cell trapping rate using numeric simulations. Based on simulation results a microchip was injection-moulded from COP. This chip allowed the assembly of viable hepatocytes and endothelial cells in a sinusoid-like fashion.
A hierarchical clustering methodology for the estimation of toxicity.
Martin, Todd M; Harten, Paul; Venkatapathy, Raghuraman; Das, Shashikala; Young, Douglas M
2008-01-01
ABSTRACT A quantitative structure-activity relationship (QSAR) methodology based on hierarchical clustering was developed to predict toxicological endpoints. This methodology utilizes Ward's method to divide a training set into a series of structurally similar clusters. The structural similarity is defined in terms of 2-D physicochemical descriptors (such as connectivity and E-state indices). A genetic algorithm-based technique is used to generate statistically valid QSAR models for each cluster (using the pool of descriptors described above). The toxicity for a given query compound is estimated using the weighted average of the predictions from the closest cluster from each step in the hierarchical clustering assuming that the compound is within the domain of applicability of the cluster. The hierarchical clustering methodology was tested using a Tetrahymena pyriformis acute toxicity data set containing 644 chemicals in the training set and with two prediction sets containing 339 and 110 chemicals. The results from the hierarchical clustering methodology were compared to the results from several different QSAR methodologies.
Classifying environmental pollutants: Part 3. External validation of the classification system.
Verhaar, H J; Solbé, J; Speksnijder, J; van Leeuwen, C J; Hermens, J L
2000-04-01
In order to validate a classification system for the prediction of the toxic effect concentrations of organic environmental pollutants to fish, all available fish acute toxicity data were retrieved from the ECETOC database, a database of quality-evaluated aquatic toxicity measurements created and maintained by the European Centre for the Ecotoxicology and Toxicology of Chemicals. The individual chemicals for which these data were available were classified according to the rulebase under consideration and predictions of effect concentrations or ranges of possible effect concentrations were generated. These predictions were compared to the actual toxicity data retrieved from the database. The results of this comparison show that generally, the classification system provides adequate predictions of either the aquatic toxicity (class 1) or the possible range of toxicity (other classes) of organic compounds. A slight underestimation of effect concentrations occurs for some highly water soluble, reactive chemicals with low log K(ow) values. On the other end of the scale, some compounds that are classified as belonging to a relatively toxic class appear to belong to the so-called baseline toxicity compounds. For some of these, additional classification rules are proposed. Furthermore, some groups of compounds cannot be classified, although they should be amenable to predictions. For these compounds additional research as to class membership and associated prediction rules is proposed.
Sulphate, more than a nutrient, protects the microalga Chlamydomonas moewusii from cadmium toxicity.
Mera, Roi; Torres, Enrique; Abalde, Julio
2014-03-01
Sulphur is an essential macroelement that plays important roles in living organisms. The thiol rich sulphur compounds, such as cysteine, γ-Glu-Cys, glutathione and phytochelatins participate in the tolerance mechanisms against cadmium toxicity. Plants, algae, yeasts and most prokaryotes cover their demand for reduced sulphur by reduction of inorganic sulphate. The aim of this study was to investigate, using a bifactorial experimental design, the effect of different sulphate concentrations in the nutrient solution on cadmium toxicity in the freshwater microalga Chlamydomonas moewusii. Cell growth, kinetic parameters of sulphate utilization and intracellular concentrations of low-molecular mass thiol compounds were determined. A mathematical model to describe the growth of this microalga based on the effects of sulphate and cadmium was obtained. An ANOVA revealed an interaction between them, 16% of the effect sizes was explained by this interaction. A higher amount of sulphate in the culture medium allowed a higher cadmium tolerance due to an increase in the thiol compound biosynthesis. The amount of low-molecular mass thiol compounds, mainly phytochelatins, synthesized by this microalga was significantly dependent on the sulphate and cadmium concentrations; the higher phytochelatin content was obtained in cultures with 4 mg Cd/L and 1mM sulphate. The maximum EC50 value (based on nominal cadmium concentration) reached for this microalga was 4.46 ± 0.42 mg Cd/L when the sulphate concentration added to the culture medium was also 1mM. An increase in the sulphate concentration, in deficient environments, could alleviate the toxic effect of this metal; however, a relative excess is also negative. The results obtained showed a substrate inhibition for this nutrient. An uncompetitive model for sulphate was chosen to establish the mathematical model that links both factors. Copyright © 2014 Elsevier B.V. All rights reserved.
Toxicities of emamectin benzoate homologues and photodegradates to Lepidoptera.
Argentine, Joseph A; Jansson, Richard K; Starner, Van R; Halliday, W Ross
2002-12-01
The toxicity of a number of emamectin benzoate homologues and photodegradates to five species of Lepidoptera was investigated using diet and foliar bioassays. The emamectin benzoate homologues B1a and B1b were equally toxic in the diet and foliar assays to Spodoptera exigua (Hübner), Heliothis virescens (F.), Tricoplusia ni (Hübner), and Spodoptera frugiperda (J. E. Smith), within each of these species. Plutella xylostella (L.) was the most sensitive species to emamectin benzoate. The AB1a photodegradate of emamectin benzoate was as toxic as the parent compound in the diet assay. However, in the foliage assay AB1a was 4.4-fold less toxic to S. exigua than the parent compound. The MFB1a photodegradate of emamectin benzoate was as toxic as the parent compound to P. xylostella, and 3.1 to 6.2 times as toxic as the parent compound to the other species in the diet assay. The order of toxicity of the photodegradates were AB1a > MFB1a > FAB1a > 8,9-Z-MAB1a > PAB1a.
Toxicity prediction of compounds from turmeric (Curcuma longa L).
Balaji, S; Chempakam, B
2010-10-01
Turmeric belongs to the ginger family Zingiberaceae. Currently, cheminformatics approaches are not employed in any of the spices to study the medicinal properties traditionally attributed to them. The aim of this study is to find the most efficacious molecule which does not have any toxic effects. In the present study, toxicity of 200 chemical compounds from turmeric were predicted (includes bacterial mutagenicity, rodent carcinogenicity and human hepatotoxicity). The study shows out of 200 compounds, 184 compounds were predicted as toxigenic, 136 compounds are mutagenic, 153 compounds are carcinogenic and 64 compounds are hepatotoxic. To cross validate our results, we have chosen the popular curcumin and found that curcumin and its derivatives may cause dose dependent hepatotoxicity. The results of these studies indicate that, in contrast to curcumin, few other compounds in turmeric which are non-mutagenic, non-carcinogenic, non-hepatotoxic, and do not have any side-effects. Hence, the cost-effective approach presented in this paper could be used to filter toxic compounds from the drug discovery lifecycle. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Moran, Patrick W.; Nowell, Lisa H.; Kemble, Nile E.; Mahler, Barbara J.; Waite, Ian R.; Van Metre, Peter C.
2017-01-01
Simultaneous assessment of sediment chemistry, sediment toxicity, and macroinvertebrate communities can provide multiple lines of evidence when investigating relations between sediment contaminants and ecological degradation. These three measures were evaluated at 99 wadable stream sites across 11 states in the Midwestern United States during the summer of 2013 to assess sediment pollution across a large agricultural landscape. This evaluation considers an extensive suite of sediment chemistry totaling 274 analytes (polycyclic aromatic hydrocarbons, organochlorine compounds, polychlorinated biphenyls, polybrominated diphenyl ethers, trace elements, and current-use pesticides) and a mixture assessment based on the ratios of detected compounds to available effects-based benchmarks. The sediments were tested for toxicity with the amphipod Hyalella azteca (28-d exposure), the midge Chironomus dilutus (10-d), and, at a few sites, with the freshwater mussel Lampsilis siliquoidea (28-d). Sediment concentrations, normalized to organic carbon content, infrequently exceeded benchmarks for aquatic health, which was generally consistent with low rates of observed toxicity. However, the benchmark-based mixture score and the pyrethroid insecticide bifenthrin were significantly related to observed sediment toxicity. The sediment mixture score and bifenthrin were also significant predictors of the upper limits of several univariate measures of the macroinvertebrate community (EPT percent, MMI (Macroinvertebrate Multimetric Index) Score, Ephemeroptera and Trichoptera richness) using quantile regression. Multivariate pattern matching (Mantel-like tests) of macroinvertebrate species per site to identified contaminant metrics and sediment toxicity also indicate that the sediment mixture score and bifenthrin have weak, albeit significant, influence on the observed invertebrate community composition. Together, these three lines of evidence (toxicity tests, univariate metrics, and multivariate community analysis) suggest that elevated contaminant concentrations in sediments, in particular bifenthrin, is limiting macroinvertebrate communities in several of these Midwest streams.
Smit, Mathijs G D; Jak, Robbert G; Rye, Henrik; Frost, Tone Karin; Singsaas, Ivar; Karman, Chris C
2008-04-01
In order to improve the ecological status of aquatic systems, both toxic (e.g., chemical) and nontoxic stressors (e.g., suspended particles) should be evaluated. This paper describes an approach to environmental risk assessment of drilling discharges to the sea. These discharges might lead to concentrations of toxic compounds and suspended clay particles in the water compartment and concentrations of toxic compounds, burial of biota, change in sediment structure, and oxygen depletion in marine sediments. The main challenges were to apply existing protocols for environmental risk assessment to nontoxic stressors and to combine risks arising from exposure to these stressors with risk from chemical exposure. The defined approach is based on species sensitivity distributions (SSDs). In addition, precautionary principles from the EU-Technical Guidance Document were incorporated to assure that the method is acceptable in a regulatory context. For all stressors a protocol was defined to construct an SSD for no observed effect concentrations (or levels; NOEC(L)-SSD) to allow for the calculation of the potentially affected fraction of species from predicted exposures. Depending on the availability of data, a NOEC-SSD for toxicants can either be directly based on available NOECs or constructed from the predicted no effect concentration and the variation in sensitivity among species. For nontoxic stressors a NOEL-SSD can be extrapolated from an SSD based on effect or field data. Potentially affected fractions of species at predicted exposures are combined into an overall risk estimate. The developed approach facilitates environmental management of drilling discharges and can be applied to define risk-mitigating measures for both toxic and nontoxic stress.
Toxicity of N-substituted aromatics to acetoclastic methanogenic activity in granular sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donlon, B.A.; Razo-Flores, E.; Field, J.A.
1995-11-01
N-substituted aromatics are important priority pollutants entering the environment primarily through anthropogenic activities associated associated with the industrial production of dyes, explosives, pestides, and pharmaceuticals. Anaerobic treatment of wastewaters discharged by these industries could potentially be problematical as a result of the high toxicity of N-substituted aromatics. The objective of this study was to examine the structure-toxicity relationship of N-substituted aromatic compounds to acetoclastic methanogenic bacteria. The toxicity was assayed to serum flasks by measuring methane production in granular sludge. Unacclimated cultures were used to minimize the biotransformation of the toxic organic chemicals during the test. The nature and themore » degree of the aromatic substitution were observed to have a profound effect on the toxicity of the test compound. Nitroaromatic compounds were, on the average, over 500-fold more toxic than their corresponding aromatic amines. Considering the facile reduction of nitro groups by anerobic microorganisms, a dramatic detoxification of nitroaromatics towards methanogens can be expected to occur during anaerobic wastewater treatment. While the toxicity exerted by the N-substituted aromatic compounds was closely correlated with compound apolarity (log P), it was observed that at any given log P, N-substituted phenols had a toxicity that was 2 orders of magnitude higher than that of chlorophenols and alkylphenols. This indicates that toxicity due to the chemical reactivity of nitroaromatics is much more important than partitioning effects in bacterial membranes. 41 refs., 3 figs., 1 tab.« less
Parson, Carl; Smith, Valerie; Krauss, Christopher; Banerjee, Hirendra N.; Reilly, Christopher; Krause, Jeanette A.; Wachira, James M.; Giri, Dipak; Winstead, Angela; Mandal, Santosh K.
2014-01-01
Despite the tremendous success of cisplatin and other platinum-based anticancer drugs, severe toxicity and resistance to tumors limit their applications. It is believed that the coordination (formation of covalent bond) of the metal (platinum) to the nitrogen bases of DNA cause the ruptures of the cancer as well as normal cells. A search for anticancer drugs with different modes of action resulted in the synthesis of variety of novel compounds. Many of them are in clinical trials now. Recently we synthesized a series of novel rhenium pentylcarbonato compounds (PC1–PC6). The rhenium atom in each compound is coordinated (bonded) to a planar polypyridyl aromatic ligand, thereby forcing each compound to intercalate between the DNA bases. We have investigated the DNA binding properties of one of the PC-series of compounds (PC6) using electronic spectroscopy. The UV absorption titration of PC6 with DNA shows hypochromic effect with concomitant bathochromic shift of the charge transfer band at 290 nm. These results suggest that the compound PC6 binds to DNA through intercalation. It is therefore likely that the other PC-series of compounds will behave in a similar manner. Thus it is expected that these compounds will exhibit negligible or no side effect. We have observed that the PC-series of compounds are strong cytotoxic agents against lymphosarcoma (average GI50 ≈ 2±2.6 µM), PC-3 prostate (average GI50 ≈ 3±2.8 µM) and myeloid leukemia (average GI50 ≈ 3±2.8 µM) cancer cell lines. The average GI50 values of the PC-series of compounds are 2–3 less than the corresponding GI50 values of cisplatin. Also each of the PC-series of compounds exhibits less toxicity than cisplatin in the glomerular mesangial cells. PMID:25221731
Kassebacher, Thomas; Sulzer, Philipp; Jürschik, Simone; Hartungen, Eugen; Jordan, Alfons; Edtbauer, Achim; Feil, Stefan; Hanel, Gernot; Jaksch, Stefan; Märk, Lukas; Mayhew, Chris A; Märk, Tilmann D
2013-01-30
Security and protection against terrorist attacks are major issues in modern society. One especially challenging task is the monitoring and protection of air conditioning and heating systems of buildings against terrorist attacks with toxic chemicals. As existing technologies have low selectivity, long response times or insufficient sensitivity, there is a need for a novel approach such as we present here. We have analyzed various chemical warfare agents (CWAs) and/or toxic industrial compounds (TICs) and related compounds, namely phosgene, diphosgene, chloroacetone, chloroacetophenone, diisopropylaminoethanol, and triethyl phosphate, utilizing a high-resolution proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) instrument with the objective of finding key product ions and their intensities, which will allow a low-resolution quadrupole mass spectrometry based PTR-MS system to be used with high confidence in the assignment of threat agents in the atmosphere. We obtained high accuracy PTR-TOFMS mass spectra of the six compounds under study at two different values for the reduced electric field in the drift tube (E/N). From these data we have compiled a table containing product ions, and isotopic and E/N ratios for highly selective threat compound detection with a compact and cost-effective quadrupole-based PTR-MS instrument. Furthermore, using chloroacetophenone (tear gas), we demonstrated that this instrument's response is highly linear in the concentration range of typical Acute Exposure Guideline Levels (AEGLs). On the basis of the presented results it is possible to develop a compact and cost-effective PTR-QMS instrument that monitors air supply systems and triggers an alarm as soon as the presence of a threat agent is detected. We hope that this real-time surveillance device will help to seriously improve safety and security in environments vulnerable to terrorist attacks with toxic chemicals. Copyright © 2012 John Wiley & Sons, Ltd.
Papaefthimiou, Chrisovalantis; Cabral, Maria de Guadalupe; Mixailidou, Christina; Viegas, Cristina A; Sá-Correia, Isabel; Theophilidis, George
2004-05-01
Two different test systems, one based on the isolated sciatic nerve of an amphibian and the other on a microbial eukaryote, were used for the assessment of herbicide toxicity. More specifically, we determined the deleterious effects of increasing concentrations of herbicides of different chemical classes (phenoxyacetic acids, triazines, and acetamides), and of 2,4-dichlorophenol (2,4-DCP), a degradation product of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), on electrophysiological parameters and the vitality of the axons of the isolated sciatic nerve of the frog (Rana ridibunda) and on the growth curve of the yeast Saccharomyces cerevisiae based on microtiter plate susceptibility assays. The no-observed-effect-concentration (NOEC), defined as the maximum concentration of the tested compound that has no effect on these biological parameters, was estimated. In spite of the different methodological approaches and biological systems compared, the NOEC values were identical and correlated with the lipophilicity of the tested compounds. The relative toxicity established here, 2,4-DCP > alachlor, metolachlor > metribuzin > 2,4-D, 2-methyl-4-chlorophenoxyacetic acid (MCPA), correlates with the toxicity indexes reported in the literature for freshwater organisms. Based on these results, we suggest that the relatively simple, rapid, and low-cost test systems examined here may be of interest as alternative or complementary tests for toxicological assessment of herbicides.
Design, Synthesis, and Antifouling Activity of Glucosamine-Based Isocyanides.
Umezawa, Taiki; Hasegawa, Yuki; Novita, Ira S; Suzuki, Junya; Morozumi, Tatsuya; Nogata, Yasuyuki; Yoshimura, Erina; Matsuda, Fuyuhiko
2017-06-29
Biofouling, an undesirable accumulation of organisms on sea-immersed structures such as ship hulls and fishing nets, is a serious economic issue whose effects include oil wastage and clogged nets. Organotin compounds were utilized since the 1960s as an antifouling material; however, the use of such compounds was later banned by the International Maritime Organization (IMO) due to their high toxicity toward marine organisms, resulting in masculinization and imposex. Since the ban, there have been extensive efforts to develop environmentally benign antifoulants. Natural antifouling products obtained from marine creatures have been the subject of considerable attention due to their potent antifouling activity and low toxicity. These antifouling compounds often contain isocyano groups, which are well known to have natural antifouling properties. On the basis of our previous total synthesis of natural isocyanoterpenoids, we envisaged the installation of an isocyano functional group onto glucosamine to produce an environmentally friendly antifouling material. This paper describes an effective synthetic method for various glucosamine-based isocyanides and evaluation of their antifouling activity and toxicity against cypris larvae of the barnacle Amphibalanus amphitrite . Glucosamine isocyanides with an ether functionality at the anomeric position exhibited potent antifouling activity, with EC 50 values below 1 μg/mL, without detectable toxicity even at a high concentration of 10 μg/mL. Two isocyanides had EC 50 values of 0.23 and 0.25 μg/mL, comparable to that of CuSO₄, which is used as a fouling inhibitor (EC 50 = 0.27 μg/mL).
1983-08-01
Toxic Hazards Division Air Force Aerospace Medical Research Laboratory Wright-Patterson Air Force Base, Ohio Perfluorinated compounds have wide...to nine carbon perfluorinated fatty acid compounds are used to impart water and oil resistance to paper, fabrics, and leather (Rozner and Taves, 1980...contain commercial mixtures of derivatized perfluorinated fatty acids. The use of perfluorinated compounds for vascular fluid replace- ment has been
2010-08-01
Corrosion resistant coatings containing non-chromate inhibitors and no volatile organic compounds were developed and evaluated for DoD applications...Transmission Electron Microscopy TRI – Toxic Release Inventory UV – Ultraviolet UVAs – Ultraviolet Absorbers VOCs – Volatile Organic Compounds XPS – X...containing non-chromate inhibitors and no volatile organic compounds were developed and evaluated for DoD applications. The technical effort
Trushkov, V F; Perminov, K A; Sapozhnikova, V V; Ignatova, O L
2013-01-01
The connection of thermodynamic properties and parameters of toxicity of chemical substances was determined. Obtained data are used for the evaluation of toxicity and hygienic rate setting of chemical compounds. The relationship between enthalpy and toxicity of chemical compounds has been established. Orthogonal planning of the experiment was carried out in the course of the investigations. Equation of unified hygienic rate setting in combined, complex, conjunct influence on the organism is presented. Prospects of determination of toxicity and methodology of unified hygienic rate setting in combined, complex, conjunct influence on the organism are presented
Bolevenine, a toxic protein from the Japanese toadstool Boletus venenatus.
Matsuura, Masanori; Yamada, Mina; Saikawa, Yoko; Miyairi, Kazuo; Okuno, Toshikatsu; Konno, Katsuhiro; Uenishi, Jun'ichi; Hashimoto, Kimiko; Nakata, Masaya
2007-03-01
A toxic protein, called bolevenine, was isolated from the toxic mushroom Boletus venenatus based on its lethal effects on mice. On SDS-PAGE, in either the presence or absence of 2-mercaptoethanol, this protein showed a single band of approximately 12 kDa. In contrast, based on gel filtration and MALDI-TOFMS, its relative molecular mass was estimated to be approximately 30 kDa and approximately 33 kDa, respectively, indicating that the protein consists of three identical subunits. This toxin exhibited its lethal activity following injection at 10mg/kg into mice. The N-terminal amino acid sequence was determined up to 18, and found to be similar to the previously reported bolesatine, a toxic compound isolated from Boletus satanas.
Secrétan, Philippe-Henri; Karoui, Maher; Levi, Yves; Sadou-Yayé, Hassane; Tortolano, Lionel; Solgadi, Audrey; Yagoubi, Najet; Do, Bernard
2018-05-15
This study employed a UV-A/visible/TiO 2 system to investigate the degradation of pemetrexed, an antifolate agent used in chemotherapy. The laboratory-scale method employed a photostability chamber that could be used to study multiple samples. Reversed-phase HPLC coupled with high-resolution ESI-LTQ-Orbitrap mass spectrometry was used to determine the transformation products (TPs) of PEME. Based on the identified TPs and existing chemical knowledge, the mechanism of degradation of the target compound was proposed. Concentrations were monitored as a function of time, and the degradation kinetics were compared. The structures of seven TPs, four of which have not been described to date, were proposed. Most of the TPs stemmed from OH radical additions to the dihydropyrrole moiety and oxidative decarboxylation of the glutamate residue. Based on the elucidated structures, a computational toxicity assessment was performed, showing that the TPs with higher log D values than the parent compound are more toxic than the PEME itself. To support these findings, the toxicities of irradiated samples on Vibrio fischeri were monitored over time. The experimental results corresponded well with the results of previous computational studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Acaricidal Activity of Eugenol Based Compounds against Scabies Mites
Pasay, Cielo; Mounsey, Kate; Stevenson, Graeme; Davis, Rohan; Arlian, Larry; Morgan, Marjorie; Vyszenski-Moher, DiAnn; Andrews, Kathy; McCarthy, James
2010-01-01
Backgound Human scabies is a debilitating skin disease caused by the “itch mite” Sarcoptes scabiei. Ordinary scabies is commonly treated with topical creams such as permethrin, while crusted scabies is treated with topical creams in combination with oral ivermectin. Recent reports of acaricide tolerance in scabies endemic communities in Northern Australia have prompted efforts to better understand resistance mechanisms and to identify potential new acaricides. In this study, we screened three essential oils and four pure compounds based on eugenol for acaricidal properties. Methodology/Principal Findings Contact bioassays were performed using live permethrin-sensitive S. scabiei var suis mites harvested from pigs and permethrin-resistant S. scabiei var canis mites harvested from rabbits. Results of bioassays showed that clove oil was highly toxic against scabies mites. Nutmeg oil had moderate toxicity and ylang ylang oil was the least toxic. Eugenol, a major component of clove oil and its analogues –acetyleugenol and isoeugenol, demonstrated levels of toxicity comparable to benzyl benzoate, the positive control acaricide, killing mites within an hour of contact. Conclusions The acaricidal properties demonstrated by eugenol and its analogues show promise as leads for future development of alternative topical acaricides to treat scabies. PMID:20711455
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congiu, A.M.; Casu, S.; Ugazio, G.
1989-10-01
The toxicity of selenium (Na{sub 2}SeO{sub 3}) and mercury (HgCl{sub 2}) was determined by using a freshwater planarian which is particularly sensitive to pollution, and belongs to a fissiparous breed of Dugesia gonocephala. The mortality and fissiparity frequency of the subjects were studied. They were exposed to intense treatments (48 hours) or for medium to long periods of time (21 days) to either the single compounds or a combination of both, and were fed or fasting. The lethal effect of sodium selenite is correlated to the food intake, whereas the toxicity of mercurous chloride is probably the result of amore » fixative effect which does not depend on feeding. The 21-day treatment with the first compound has a non-negligible lethal effect which is probably due to an accumulation phenomenon. At doses where an antioxidant effect prevails, fissiparity is stimulated. On the other hand, the second compound reduces reproduction frequency to half the base values. Compared to the Paracentrotus lividus, the Dugesia gonocephala offers various advantages concerning toxicological experiments; besides being easier to handle in the laboratory, it is available all year round and is not subject to seasonal cycles. It is also more susceptible to the toxic effect of mercury, which is a common and highly toxic pollutant, than the sea urchin.« less
In vitro screening of organotin compounds and sediment extracts for cytotoxicity to fish cells.
Giltrap, Michelle; Macken, Ailbhe; McHugh, Brendan; McGovern, Evin; Foley, Barry; Davoren, Maria
2011-01-01
The present study reports an in vitro screening method for contaminants in sediment samples utilizing an RTG-2 cell line. This technique integrates cytotoxicity testing with analytical chemistry with the aim of achieving a toxicity evaluation of the sediment sample. The toxic effect of individual organotin (OT) compounds and their presence in the sediment sample is the focus of the present study; however, other contaminants are also discussed. The following OT compounds: tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPT), diphenyltin (DPT), and a sediment solvent extract are exposed to the RTG-2 fish cell line. Both the alamar blue (AB) and neutral red (NR) assays are used to assess cytotoxicity after 24-h and 96-h exposure. Methodology for preparation of a sediment solvent extract suitable for biological testing and analytical determination is also described. With the RTG-2 cells, the AB and NR assays had comparable sensitivity for each individual OT compound exposure after 24 h, with TPT being the most toxic compound tested. The individual OT compound concentrations required to induce a 50% toxic effect on the cells (369 ng ml⁻¹ TBT, 1,905 ng ml⁻¹ DBT) did not equate to the concentrations of these contaminants present in the sediment extract that induced a 50% effect on the cells (294 ng ml⁻¹ TBT, 109 ng ml⁻¹ DBT). The solvent extract therefore exhibited a greater toxicity, and this suggests that the toxic effects observed were not due to OT compounds alone. The presence of other contaminants in the solvent extract is confirmed with chemical analysis, warranting further toxicity testing of contaminant mixtures and exposure to the cell line to further elucidate a complete toxicity evaluation. © 2010 SETAC.
2013-01-01
Background Plants of the genus Maytenus belong to the family Celastraceae and are widely used in folk medicine as anti-tumour, anti-asthmatic, analgesic, anti-inflammatory, antimicrobial and anti-ulcer agents, and as a treatment for stomach problems. The aim of this study was to isolate and identify active compounds with antifungal activity from Maytenus undata after a preliminary study highlighted promising activity in crude extracts. Methods Sequential extracts of M. undata leaves prepared using hexane, dichloromethane (DCM), acetone and methanol (MeOH) were tested for activity against Cryptococcus neoformans, a fungal organism implicated in opportunistic infections. Bioassay-guided fractionation of the hexane extract using C. neoformans as test organism was carried out to isolate antifungal compounds. The cytotoxicity of compounds isolated in sufficient quantities was evaluated using a tetrazolium-based colorimetric cellular assay (MTT) and a haemagglutination assay (HA). Results The hexane extract was most active with an MIC of 20 μg/ml against C. neoformans. The triterpene compounds friedelin (1), epifriedelanol (2), taraxerol (3), 3-oxo-11α-methoxyolean-12-ene-30-oic acid (4), 3-oxo-11α-hydroxyolean-12-ene-30-oic acid (5) and 3,11-dihydroxyolean-12-ene-30-oic acid (6) were isolated. Compound 6 was isolated for the first time from a plant species. The antimicrobial activity of compounds 1, 3, 5 and 6 was determined against a range of bacteria and fungi implicated in opportunistic and nosocomial infections. Compounds 5 and 6 were the most active against all the tested microorganisms with MIC values ranging between 24 and 63 μg/ml, except against Staphylococcus aureus which was relatively resistant. Compounds 1 and 3 had a low toxicity with an LC50 > 200 μg/ml towards Vero cells in the MTT assay. Compounds 5 and 6 were toxic with LC50 values of 6.03±0.02 and 2.98±0.01 μg/ml, respectively. Compounds 1 and 3 similarly were not toxic to the red blood cells (RBCs) but compounds 5 and 6 were toxic, showing HA titer values of 1.33 and 0.67 respectively. Conclusions Compounds 5 and 6 were the most active but were also relatively cytotoxic to monkey kidney cells and red blood cells, while the other isolated compounds were less active and less cytotoxic. PMID:23688235
Mokoka, Tsholofelo Abednego; McGaw, Lyndy Joy; Mdee, Ladislaus Kakore; Bagla, Victor Patrick; Iwalewa, Ezekiel Olugbenga; Eloff, Jacobus Nicolaas
2013-05-20
Plants of the genus Maytenus belong to the family Celastraceae and are widely used in folk medicine as anti-tumour, anti-asthmatic, analgesic, anti-inflammatory, antimicrobial and anti-ulcer agents, and as a treatment for stomach problems. The aim of this study was to isolate and identify active compounds with antifungal activity from Maytenus undata after a preliminary study highlighted promising activity in crude extracts. Sequential extracts of M. undata leaves prepared using hexane, dichloromethane (DCM), acetone and methanol (MeOH) were tested for activity against Cryptococcus neoformans, a fungal organism implicated in opportunistic infections. Bioassay-guided fractionation of the hexane extract using C. neoformans as test organism was carried out to isolate antifungal compounds. The cytotoxicity of compounds isolated in sufficient quantities was evaluated using a tetrazolium-based colorimetric cellular assay (MTT) and a haemagglutination assay (HA). The hexane extract was most active with an MIC of 20 μg/ml against C. neoformans. The triterpene compounds friedelin (1), epifriedelanol (2), taraxerol (3), 3-oxo-11α-methoxyolean-12-ene-30-oic acid (4), 3-oxo-11α-hydroxyolean-12-ene-30-oic acid (5) and 3,11-dihydroxyolean-12-ene-30-oic acid (6) were isolated. Compound 6 was isolated for the first time from a plant species. The antimicrobial activity of compounds 1, 3, 5 and 6 was determined against a range of bacteria and fungi implicated in opportunistic and nosocomial infections. Compounds 5 and 6 were the most active against all the tested microorganisms with MIC values ranging between 24 and 63 μg/ml, except against Staphylococcus aureus which was relatively resistant. Compounds 1 and 3 had a low toxicity with an LC50 > 200 μg/ml towards Vero cells in the MTT assay. Compounds 5 and 6 were toxic with LC50 values of 6.03±0.02 and 2.98±0.01 μg/ml, respectively. Compounds 1 and 3 similarly were not toxic to the red blood cells (RBCs) but compounds 5 and 6 were toxic, showing HA titer values of 1.33 and 0.67 respectively. Compounds 5 and 6 were the most active but were also relatively cytotoxic to monkey kidney cells and red blood cells, while the other isolated compounds were less active and less cytotoxic.
Strelnik, Alexey D; Petukhov, Alexey S; Zueva, Irina V; Zobov, Vladimir V; Petrov, Konstantin A; Nikolsky, Evgeny E; Balakin, Konstantin V; Bachurin, Sergey O; Shtyrlin, Yurii G
2016-08-15
We report a novel class of carbamate-type ChE inhibitors, structural analogs of pyridostigmine. A small library of congeneric pyridoxine-based compounds was designed, synthesized and evaluated for AChE and BChE enzymes inhibition in vitro. The most active compounds have potent enzyme inhibiting activity with IC50 values in the range of 0.46-2.1μM (for AChE) and 0.59-8.1μM (for BChE), with moderate selectivity for AChE comparable with that of pyridostigmine and neostigmine. Acute toxicity studies using mice models demonstrated excellent safety profile of the obtained compounds with LD50 in the range of 22-326mg/kg, while pyridostigmine and neostigmine are much more toxic (LD50 3.3 and 0.51mg/kg, respectively). The obtained results pave the way to design of novel potent and safe cholinesterase inhibitors for symptomatic treatment of neuromuscular disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fu, J; Wang, Z; Mai, B; Kang, Y
2001-01-01
Field monitoring of the toxic organic compounds (PCBs, PAHs, organochlorine pesticides) in the top sediments of Pearl River Estuary and its up-streams were made. It was found that the highest concentrations of these toxic organic compounds occurred in the sediment sampled at Macau inner harbor (ZB013), which is a sink of suspended fine particles transported from the upstream waterways. Because of the affinity of the hydrophobic organic compounds (PAHs, PCBs) for the solid phase, these fine particle depositions led to accumulation of these compounds in the sediment of Macau. The atmospheric dry deposition may be another source of the toxic organic pollution in the sediment.
In vivo metabolism of fumonisin B1 to N-acylated ceramide-like compounds
USDA-ARS?s Scientific Manuscript database
Fumonisins are toxic and carcinogenic mycotoxins found in corn-based foods. Fumonisin B1 (FB1) metabolism to ceramide-like cytotoxic N-acylated FB1 (NAFB1) compounds has been shown in vitro, but in vivo metabolism has not been reported. Therefore, male Sprague-Dawley rats (2/group) were given 5 da...
A BIOGENIC ROLE IN EXPOSURE TO TWO TOXIC COMPOUNDS
Biogenic sources play an important role in ozone and particulate concentrations through emissions of volatile organic compounds. The same emissions also contribute to chronic toxic exposures from formaldehyde and acetaldehyde because each compound arises through primary and se...
Addressing the selectivity and toxicity of antiviral nucleosides.
Feng, Joy Y
2018-01-01
Nucleoside and nucleotide analogs have played significant roles in antiviral therapies and are valued for their impressive potency and high barrier to resistance. They have been approved for treatment of herpes simplex virus-1, HIV, HBV, HCV, and influenza, and new drugs are being developed for the treatment of RSV, Ebola, coronavirus MERS, and other emerging viruses. However, this class of compounds has also experienced a high attrition rate in clinical trials due to toxicity. In this review, we discuss the utility of different biochemical and cell-based assays and provide recommendations for assessing toxicity liability before entering animal toxicity studies.
Senior, Samir A; Madbouly, Magdy D; El massry, Abdel-Moneim
2011-09-01
Quantum chemical and topological descriptors of some organophosphorus compounds (OP) were correlated with their toxicity LD(50) as a dermal. The quantum chemical parameters were obtained using B3LYP/LANL2DZdp-ECP optimization. Using linear regression analysis, equations were derived to calculate the theoretical LD(50) of the studied compounds. The inclusion of quantum parameters, having both charge indices and topological indices, affects the toxicity of the studied compounds resulting in high correlation coefficient factors for the obtained equations. Two of the new four firstly supposed descriptors give higher correlation coefficients namely the Heteroatom Corrected Extended Connectivity Randic index ((1)X(HCEC)) and the Density Randic index ((1)X(Den)). The obtained linear equations were applied to predict the toxicity of some related structures. It was found that the sulfur atoms in these compounds must be replaced by oxygen atoms to achieve improved toxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effects of Organoboron Antifoulants on Oyster and Sea Urchin Embryo Development
Tsunemasa, Noritaka; Tsuboi, Ai; Okamura, Hideo
2013-01-01
Prohibition of Ot (organotin) compounds was introduced in Japan in 1997 and worldwide from September 2008. This meant that the production of paints containing TBT compounds was stopped and alternatives to the available Ot antifoulants had to be developed. It has been claimed that the degradation by-products of these alternative antifoulants were less toxic than those of Ot compounds. Since the introduction of the alternative antifoulants, the accumulation of these compounds has been reported in many countries. However, the toxicity of these compounds was still largely unreported. In this research, the toxicity of the alternative Ot antifoulants TPBP (triphenylborane pyridine) and TPBOA (triphenylborane octadecylamine) and their degradation products on Crassostea gigas and Hemicentrotus pulcherrimus were tested. The results showed that toxic effects in Crassostea gigas was higher for each antifouling biocide than that in Hemicentrotus pulcherrimus. Also, while the toxicity of the Organoboron antifoulants and the Ots were the same, the former’s degradation products were much less harmful. PMID:23263671
Identifying Developmental Vascular Disruptor Compounds Using a Predictive Signature and Alternative Toxicity Models Presenting Author: Tamara Tal Affiliation: U.S. EPA/ORD/ISTD, RTP, NC, USA Chemically induced vascular toxicity during embryonic development can result in a wide...
Predicted phototoxicities of carbon nano-material by quantum mechanical calculations.
Betowski, Don
2017-08-01
The purpose of this research was to develop a predictive model for the phototoxicity potential of carbon nanomaterials (fullerenols and single-walled carbon nanotubes). This model is based on the quantum mechanical (ab initio) calculations on these carbon-based materials and comparison of the triplet excited states of these materials to published work relating phototoxicity of polynuclear aromatic hydrocarbons (PAH) to their predictive triplet excited state energy. A successful outcome will add another tool to the arsenal of predictive methods for the U.S. EPA program offices as they assess the toxicity of compounds in use or coming into commerce. The basis of this research was obtaining the best quantum mechanical structure of the carbon nanomaterial and was fundamental in determining the triplet excited state energy. The triplet excited state, in turn, is associated with the phototoxicity of the material. This project relies heavily on the interaction of the predictive results (physical chemistry) and the experimental results obtained by biologists and toxicologists. The results of the experiments (toxicity testing) will help refine the predictive model, while the predictions will alert the scientists to red flag compounds. It is hoped that a guidance document for the U.S. EPA will be forthcoming to help determine the toxicity of compounds. This can be a screening tool that would rely on further testing for those compounds found by these predictions to be a phototoxic danger to health and the environment. Copyright © 2017. Published by Elsevier Inc.
Richards, Joseph M.; Johnson, Byron Thomas
2002-01-01
The chemistry and toxicity of base flow and urban stormwater were characterized to determine if urban stormwater was degrading the water quality of the Pearson Creek and Wilsons Creek Basins in and near the city of Springfield, Greene County, Missouri. Potentially toxic components of stormwater (nutrients, trace metals, and organic compounds) were identified to help resource managers identify and minimize the sources of toxicants. Nutrient loading to the James River from these two basins (especially the Wilsons Creek Basin) is of some concern because of the potential to degrade downstream water quality. Toxicity related to dissolved trace metal constituents in stormwater does not appear to be a great concern in these two basins. Increased heterotrophic activity, the result of large densities of fecal indicator bacteria introduced into the streams after storm events, could lead to associated dissolved oxygen stress of native biota. Analysis of stormwater samples detected a greater number of polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) than were present in base-flow samples. The number and concentrations of pesticides detected in both the base-flow and stormwater samples were similar.Genotoxicity tests were performed to determine the bioavilability of chemical contaminants and determine the potential harmful effects on aquatic biota of Pearson Creek and Wilsons Creek. Genotoxicity was determined from dialysates from both long-term (approximately 30 days) and storm-event (3 to 5 days) semipermeable membrane device (SPMD) samples that were collected in each basin. Toxicity tests of SPMD samples indicated evidence of genotoxins in all SPMD samples. Hepatic activity assessment of one long-term SPMD sample indicated evidence of contaminant uptake in fish. Chemical analyses of the SPMD samples found that relatively few pesticides and pesticide metabolites had been sequestered in the lipid material of the SPMD; however, numerous PAHs and VOCs were detected in both the long-term and the storm-event exposures. It is suspected, based on the compounds detected in the SPMDs and the water samples, that the observed genotoxicity is largely the result of PAHs and VOCs that were probably derived from petroleum inputs or combustion sources. Therefore the water quality and thus the aquatic environments in the Pearson Creek and Wilsons Creek Basins are being degraded by urban derived contaminants.
The use of high-throughput screening techniques to evaluate mitochondrial toxicity.
Wills, Lauren P
2017-11-01
Toxicologists and chemical regulators depend on accurate and effective methods to evaluate and predict the toxicity of thousands of current and future compounds. Robust high-throughput screening (HTS) experiments have the potential to efficiently test large numbers of chemical compounds for effects on biological pathways. HTS assays can be utilized to examine chemical toxicity across multiple mechanisms of action, experimental models, concentrations, and lengths of exposure. Many agricultural, industrial, and pharmaceutical chemicals classified as harmful to human and environmental health exert their effects through the mechanism of mitochondrial toxicity. Mitochondrial toxicants are compounds that cause a decrease in the number of mitochondria within a cell, and/or decrease the ability of mitochondria to perform normal functions including producing adenosine triphosphate (ATP) and maintaining cellular homeostasis. Mitochondrial dysfunction can lead to apoptosis, necrosis, altered metabolism, muscle weakness, neurodegeneration, decreased organ function, and eventually disease or death of the whole organism. The development of HTS techniques to identify mitochondrial toxicants will provide extensive databases with essential connections between mechanistic mitochondrial toxicity and chemical structure. Computational and bioinformatics approaches can be used to evaluate compound databases for specific chemical structures associated with toxicity, with the goal of developing quantitative structure-activity relationship (QSAR) models and mitochondrial toxicophores. Ultimately these predictive models will facilitate the identification of mitochondrial liabilities in consumer products, industrial compounds, pharmaceuticals and environmental hazards. Copyright © 2017 Elsevier B.V. All rights reserved.
Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification
Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad
2016-01-01
Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms. PMID:26837707
Non-toxic liquid scintillators with high light output based on phenyl-substituted siloxanes
NASA Astrophysics Data System (ADS)
Dalla Palma, M.; Carturan, S. M.; Degerlier, M.; Marchi, T.; Cinausero, M.; Gramegna, F.; Quaranta, A.
2015-04-01
The work describes the development of a new class of liquid scintillators based on polysiloxane liquid compounds. These materials are characterized by low toxicity, chemical inertness, very low volatility and low flammability, allowing their use without concerns even at high temperatures in vacuum. In this view different polysiloxane based liquids have been tested, with variable content and distribution of phenyl lateral substituents and added with suitable dyes, namely 2,5-diphenyloxazole (PPO) and Lumogen Violet (LV). Absorption and fluorescence spectroscopy have been used in order to study the emission feature of the various compounds and to investigate the spectral matching between siloxane solvents and dissolved primary dyes. Scintillation efficiency towards 60Co and 137Cs gamma rays, relative to commercial liquid scintillator (EJ-309), has been measured and the results have been related to the energy transfer and energy migration mechanism from monomer and excimer forming sites in liquid siloxanes.
Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification
NASA Astrophysics Data System (ADS)
Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad
2016-02-01
Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms.
New Ionic Liquids from Natural Products for Environmentally Benign Aircraft Deicing and Anti-Icing
2010-12-10
cation, the preparation of ILs from choline and two GRAS food ingredients (artificial sweeteners ), saccharine and acesulfamate was recently published...In comparison, the synthetic imidazolium-based ILs were quite toxic (EC50 ~14 mg/L) in the same bioassay. Both ILs are water soluble, however...RTIL. This is true to a certain extent, but again the compound has a level of toxicity to C. dubia. Also, the ‘ synthetic ’ imidazolium-based IL 13
In Vitro Methods To Measure Toxicity Of Chemicals
2004-12-01
industrial compounds for toxicity will require high-throughput in vitro assays with which to select candidate compounds for more intensive animal...for estimating the starting dose for the rat oral acute toxicity test, thus reducing and refining the use of animals in the toxicological
Comparison of the toxicity of fluoridation compounds in the nematode Caenorhabditis elegans.
Rice, Julie R; Boyd, Windy A; Chandra, Dave; Smith, Marjolein V; Den Besten, Pamela K; Freedman, Jonathan H
2014-01-01
Fluorides are commonly added to drinking water in the United States to decrease the incidence of dental caries. Silicofluorides, such as sodium hexafluorosilicate (Na2 SiF6 ) and fluorosilicic acid (H2 SiF6 ), are mainly used for fluoridation, although fluoride salts such as sodium fluoride (NaF) are also used. Interestingly, only the toxicity of NaF has been examined and not that of the more often used silicofluorides. In the present study, the toxicities of NaF, Na2 SiF6 , and H2 SiF6 were compared. The toxicity of these fluorides on the growth, feeding, and reproduction in the alternative toxicological testing organism Caenorhabditis elegans was examined. Exposure to these compounds produced classic concentration-response toxicity profiles. Although the effects of the fluoride compounds varied among the 3 biological endpoints, no differences were found between the 3 compounds, relative to the fluoride ion concentration, in any of the assays. This suggests that silicofluorides have similar toxicity to NaF. © 2013 SETAC.
Pesticide toxicity index for freshwater aquatic organisms, 2nd edition
Munn, Mark D.; Gilliom, Robert J.; Moran, Patrick W.; Nowell, Lisa H.
2006-01-01
The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program is designed to assess current water-quality conditions, changes in water quality over time, and the effects of natural and human factors on water quality for the Nation's streams and ground-water resources. For streams, one of the most difficult parts of the assessment is to link chemical conditions to effects on aquatic biota, particularly for pesticides, which tend to occur in streams as complex mixtures with strong seasonal patterns. A Pesticide Toxicity Index (PTI) was developed that combines pesticide exposure of aquatic biota (measured concentrations of pesticides in stream water) with acute toxicity estimates (standard endpoints from laboratory bioassays) to produce a single index value for a sample or site. The development of the PTI was limited to pesticide compounds routinely measured in NAWQA studies and to toxicity data readily available from existing databases. Qualifying toxicity data were found for one or more types of test organisms for 124 of the 185 pesticide compounds measured in NAWQA samples, but with a wide range of available bioassays per compound (1 to 232). In the databases examined, there were a total of 3,669 bioassays for the 124 compounds, including 398 48-hour EC50 values (concentration at which 50 percent of test organisms exhibit a sublethal response) for freshwater cladocerans, 699 96-hour LC50 values (concentration lethal to 50 percent of test organisms) for freshwater benthic invertebrates, and 2,572 96-hour LC50 values for freshwater fish. The PTI for a particular sample is the sum of toxicity quotients (measured concentration divided by the median toxicity concentration from bioassays) for each detected pesticide, and thus, is based on the concentration addition model of pesticide toxicity. The PTI can be calculated for specific groups of pesticides and for specific taxonomic groups. Although the PTI does not determine whether water in a sample is toxic to aquatic organisms, its values can be used to rank or compare the toxicity of samples or sites on a relative basis for use in further analysis or additional assessments. The PTI approach may be useful as a basis for comparing the potential significance of pesticides in different streams on a common basis, for evaluating relations between pesticide exposure and observed biological conditions, and for prioritizing where further studies are most needed.
Discovery of a novel general anesthetic chemotype using high-throughput screening.
McKinstry-Wu, Andrew R; Bu, Weiming; Rai, Ganesha; Lea, Wendy A; Weiser, Brian P; Liang, David F; Simeonov, Anton; Jadhav, Ajit; Maloney, David J; Eckenhoff, Roderic G
2015-02-01
The development of novel anesthetics has historically been a process of combined serendipity and empiricism, with most recent new anesthetics developed via modification of existing anesthetic structures. Using a novel high-throughput screen employing the fluorescent anesthetic 1-aminoanthracene and apoferritin as a surrogate for on-pathway anesthetic protein target(s), we screened a 350,000 compound library for competition with 1-aminoanthracene-apoferritin binding. Hit compounds meeting structural criteria had their binding affinities for apoferritin quantified with isothermal titration calorimetry and were tested for γ-aminobutyric acid type A receptor binding using a flunitrazepam binding assay. Chemotypes with a strong presence in the top 700 and exhibiting activity via isothermal titration calorimetry were selected for medicinal chemistry optimization including testing for anesthetic potency and toxicity in an in vivo Xenopus laevis tadpole assay. Compounds with low toxicity and high potency were tested for anesthetic potency in mice. From an initial chemical library of more than 350,000 compounds, we identified 2,600 compounds that potently inhibited 1-aminoanthracene binding to apoferritin. A subset of compounds chosen by structural criteria (700) was successfully reconfirmed using the initial assay. Based on a strong presence in both the initial and secondary screens the 6-phenylpyridazin-3(2H)-one chemotype was assessed for anesthetic activity in tadpoles. Medicinal chemistry efforts identified four compounds with high potency and low toxicity in tadpoles, two were found to be effective novel anesthetics in mice. The authors demonstrate the first use of a high-throughput screen to successfully identify a novel anesthetic chemotype and show mammalian anesthetic activity for members of that chemotype.
A32A-0126: A BIOGENIC ROLE IN EXPOSURE TO TWO TOXIC COMPOUNDS
Biogenic sources play an important role in ozone and particulate concentrations through emissions of volatile organic compounds. The same emissions also contribute to chronic toxic exposures from formaldehyde and acetaldehyde because each compound arises through primary and sec...
NASA Astrophysics Data System (ADS)
Kong, Xianyu; Han, Xiurong; Gao, Min; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei
2016-12-01
With the global ban on the application of organotin-based marine coatings by the International Maritime Organization, the development of environmentally friendly, low-toxic and nontoxic antifouling compounds for marine industries has become an urgent need. Marine microorganisms have been considered as a potential source of natural antifoulants. In this study, the antifouling potential of marine dinoflagellate Amphidinium carterae, the toxic and red-tide microalgae, was investigated. We performed a series of operations to extract the bioactive substances from Amphidinium carterae and tested their antialgal and antilarval activities. The crude extract of Amphidinium carterae showed significant antialgal activity and the EC50 value against Skeletonema costatum was 55.4 μg mL-1. After purification, the isolated bioactive substances (the organic extract C) exhibited much higher antialgal and antilarval activities with EC50 of 12.9 μg mL-1 against Skeletonema costatum and LC50 of 15.1 μg mL-1 against Amphibalanus amphitrite larvae. Subsequently, IR, Q-TOFMS, and GC-MS were utilized for the structural elucidation of the bioactive compounds, and a series of unsaturated and saturated 16- to 22-carbon fatty acids were detected. The data suggested the bioactive compounds isolated from Amphidinium carterae exhibited a significant inhibiting effect against the diatom Skeletonema costatum and Amphibalanus amphitrite larvae, and could be substitutes for persistent, toxic antifouling compounds.
Kamimura, Hidetaka; Ito, Satoshi
2016-01-01
1. Chimeric mice with humanized livers are expected to be a novel tool for new drug development. This review discusses four applications where these animals can be used efficiently to collect supportive data for selecting the best compound in the final stage of drug discovery. 2. The first application is selection of the final compound based on estimated pharmacokinetic parameters in humans. Since chimeric mouse livers are highly repopulated with human hepatocytes, hepatic clearance values in vivo could be used preferentially to estimate pharmacokinetic profiles for humans. 3. The second is prediction of human-specific or disproportionate metabolites. Chimeric mice reproduce human-specific metabolites of drugs under development to conform to ICH guidance M3(R2), except for compounds that were extensively eliminated by co-existing mouse hepatocytes. 4. The third is identifying metabolites with distinct pharmacokinetic profiles in humans. Slow metabolite elimination specifically in humans increases its exposure level, but if its elimination is faster in laboratory animals, the animal exposure level might not satisfy ICH guidance M3(R2). 5. Finally, two examples of reproducing acute liver toxicity in chimeric mice are introduced. Integrated pharmacokinetics, metabolism and toxicity information are expected to assist pharmaceutical scientists in selecting the best candidate compound in new drug development.
Strand, Malin; Hedström, Martin; Seth, Henrik; McEvoy, Eric G.; Jacobsson, Erik; Göransson, Ulf; Andersson, Håkan S.; Sundberg, Per
2016-01-01
We test previous claims that the bacteria Vibrio alginolyticus produces tetrodotoxin (TTX) when living in symbiosis with the nemertean Lineus longissimus by a setup with bacteria cultivation for TTX production. Toxicity experiments on the shore crab, Carcinus maenas, demonstrated the presence of a paralytic toxin, but evidence from LC-MS and electrophysiological measurements of voltage-gated sodium channel–dependent nerve conductance in male Wistar rat tissue showed conclusively that this effect did not originate from TTX. However, a compound of similar molecular weight was found, albeit apparently non-toxic, and with different LC retention time and MS/MS fragmentation pattern than those of TTX. We conclude that C. maenas paralysis and death likely emanate from a compound <5 kDa, and via a different mechanism of action than that of TTX. The similarity in mass between TTX and the Vibrio-produced low-molecular-weight, non-toxic compound invokes that thorough analysis is required when assessing TTX production. Based on our findings, we suggest that re-examination of some published claims of TTX production may be warranted. PMID:27023570
van den Berg, Martin
2013-01-01
In 2011, a joint World Health Organization (WHO) and United Nations Environment Programme (UNEP) expert consultation took place, during which the possible inclusion of brominated analogues of the dioxin-like compounds in the WHO Toxicity Equivalency Factor (TEF) scheme was evaluated. The expert panel concluded that polybrominated dibenzo-p-dioxins (PBDDs), dibenzofurans (PBDFs), and some dioxin-like biphenyls (dl-PBBs) may contribute significantly in daily human background exposure to the total dioxin toxic equivalencies (TEQs). These compounds are also commonly found in the aquatic environment. Available data for fish toxicity were evaluated for possible inclusion in the WHO-UNEP TEF scheme (van den Berg et al., 1998). Because of the limited database, it was decided not to derive specific WHO-UNEP TEFs for fish, but for ecotoxicological risk assessment, the use of specific relative effect potencies (REPs) from fish embryo assays is recommended. Based on the limited mammalian REP database for these brominated compounds, it was concluded that sufficient differentiation from the present TEF values of the chlorinated analogues (van den Berg et al., 2006) was not possible. However, the REPs for PBDDs, PBDFs, and non-ortho dl-PBBs in mammals closely follow those of the chlorinated analogues, at least within one order of magnitude. Therefore, the use of similar interim TEF values for brominated and chlorinated congeners for human risk assessment is recommended, pending more detailed information in the future. PMID:23492812
van den Berg, Martin; Denison, Michael S; Birnbaum, Linda S; Devito, Michael J; Fiedler, Heidelore; Falandysz, Jerzy; Rose, Martin; Schrenk, Dieter; Safe, Stephen; Tohyama, Chiharu; Tritscher, Angelika; Tysklind, Mats; Peterson, Richard E
2013-06-01
In 2011, a joint World Health Organization (WHO) and United Nations Environment Programme (UNEP) expert consultation took place, during which the possible inclusion of brominated analogues of the dioxin-like compounds in the WHO Toxicity Equivalency Factor (TEF) scheme was evaluated. The expert panel concluded that polybrominated dibenzo-p-dioxins (PBDDs), dibenzofurans (PBDFs), and some dioxin-like biphenyls (dl-PBBs) may contribute significantly in daily human background exposure to the total dioxin toxic equivalencies (TEQs). These compounds are also commonly found in the aquatic environment. Available data for fish toxicity were evaluated for possible inclusion in the WHO-UNEP TEF scheme (van den Berg et al., 1998). Because of the limited database, it was decided not to derive specific WHO-UNEP TEFs for fish, but for ecotoxicological risk assessment, the use of specific relative effect potencies (REPs) from fish embryo assays is recommended. Based on the limited mammalian REP database for these brominated compounds, it was concluded that sufficient differentiation from the present TEF values of the chlorinated analogues (van den Berg et al., 2006) was not possible. However, the REPs for PBDDs, PBDFs, and non-ortho dl-PBBs in mammals closely follow those of the chlorinated analogues, at least within one order of magnitude. Therefore, the use of similar interim TEF values for brominated and chlorinated congeners for human risk assessment is recommended, pending more detailed information in the future.
Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A. C.
2014-01-01
In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733
Essack, Magbubah; Alzubaidy, Hanin S; Bajic, Vladimir B; Archer, John A C
2014-10-29
In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.
Sato, Norihiro; Uchida, Keisuke; Nakajima, Mikio; Watanabe, Atsushi; Kohira, Terutomo
2009-01-01
The main focus of this study was to determine the optimal dosing period in a repeated dose toxicity study based on toxic effects as assessed by ovarian morphological changes. To assess morphological and functional changes induced in the ovary by a peroxisome proliferator-activated receptor (PPAR) alpha/gamma dual agonist, the compound was administered to female rats at dose levels of 0, 4, 20, and 100 mg/kg/day in a repeated dose toxicity study for 2 or 4 weeks, and from 2 weeks prior to mating to Day 7 of pregnancy in a female fertility study. In the repeated dose toxicity study, an increase in atresia of large follicles, a decrease in corpora lutea, and an increase in stromal cells were observed in the treated groups. In addition, the granulosa cell exfoliations into antrum of large follicles and corpora lutea with retained oocyte are morphological characteristics induced by this compound, and they might be related with abnormal condition of ovulation. In the female fertility study, the pregnancy rate tended to decrease in the 100 mg/kg/day group. At necropsy, decreases in the number of corpora lutea, implantations and live embryos were noted in the 20 and 100 mg/kg/day group. No changes were observed in animals given 4 mg/kg/day. These findings indicated that histopathological changes in the ovary are important endpoints for evaluation of drugs inducing ovarian damage. In conclusion, a 2-week administration period is sufficient to detect ovarian toxicity of this test compound in the repeated dose toxicity study.
2013-05-21
minimum inhibitory concentrations and mammalian cell cytotoxicities. The most promising compound had a low molecular weight, was non-toxic, and abolished... molecular weight, was non-toxic, and abolished bacterial growth at 13 mM, with putative activity against pantetheine-phosphate adenylyltransferase, an...time period. Metabolic genome-scale models of bacteria have provided a computational framework for in silico simulations to evaluate how metabolic
Masuda, Akane; Masuda, Miyabi; Kawano, Takuya; Kitsunai, Yoko; Nakayama, Haruka; Nakajima, Hiroyuki; Kojima, Hiroyuki; Kitamura, Shigeyuki; Uramaru, Naoto; Hosaka, Takuomi; Sasaki, Takamitsu; Yoshinari, Kouichi
2017-01-01
Liver and hepatocyte hypertrophy can be induced by exposure to chemical compounds, but the mechanisms and toxicological characteristics of these phenomena have not yet been investigated extensively. In particular, it remains unclear whether the hepatocyte hypertrophy induced by chemical compounds should be judged as an adaptive response or an adverse effect. Thus, understanding of the toxicological characteristics of hepatocyte hypertrophy is of great importance to the safety evaluation of pesticides and other chemical compounds. To this end, we have constructed a database of potentially toxic pesticides. Using risk assessment reports of pesticides that are publicly available from the Food Safety Commission of Japan, we extracted all observations/findings that were based on 90-day subacute toxicity tests and 2-year chronic toxicity and carcinogenicity tests in rats. Analysis of the database revealed that hepatocyte hypertrophy was observed for 37-47% of the pesticides investigated (varying depending on sex and testing period), and that centrilobular hepatocyte hypertrophy was the most frequent among the various types of hepatocyte hypertrophy in both the 90-day and 2-year studies. The database constructed in this study enables us to investigate the relationships between hepatocyte hypertrophy and other toxicological observations/findings, and thus will be useful for characterizing hepatocyte hypertrophy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Dolores, E-mail: diaz.dolores@gene.com; Ford, Kevin A.; Hartley, Dylan P.
Several toxicities are clearly driven by free drug concentrations in plasma, such as toxicities related to on-target exaggerated pharmacology or off-target pharmacological activity associated with receptors, enzymes or ion channels. However, there are examples in which organ toxicities appear to correlate better with total drug concentrations in the target tissues, rather than with free drug concentrations in plasma. Here we present a case study in which a small molecule Met inhibitor, GEN-203, with significant liver and bone marrow toxicity in preclinical species was modified with the intention of increasing the safety margin. GEN-203 is a lipophilic weak base as demonstratedmore » by its physicochemical and structural properties: high LogD (distribution coefficient) (4.3) and high measured pKa (7.45) due to the basic amine (N-ethyl-3-fluoro-4-aminopiperidine). The physicochemical properties of GEN-203 were hypothesized to drive the high distribution of this compound to tissues as evidenced by a moderately-high volume of distribution (Vd > 3 l/kg) in mouse and subsequent toxicities of the compound. Specifically, the basicity of GEN-203 was decreased through addition of a second fluorine in the 3-position of the aminopiperidine to yield GEN-890 (N-ethyl-3,3-difluoro-4-aminopiperidine), which decreased the volume of distribution of the compound in mouse (Vd = 1.0 l/kg), decreased its tissue drug concentrations and led to decreased toxicity in mice. This strategy suggests that when toxicity is driven by tissue drug concentrations, optimization of the physicochemical parameters that drive tissue distribution can result in decreased drug concentrations in tissues, resulting in lower toxicity and improved safety margins. -- Highlights: ► Lower pKa for a small molecule: reduced tissue drug levels and toxicity. ► New analysis tools to assess electrostatic effects and ionization are presented. ► Chemical and PK drivers of toxicity can be leveraged to improve safety.« less
Water-Based Pressure-Sensitive Paints
NASA Technical Reports Server (NTRS)
Jordan, Jeffrey D.; Watkins, A. Neal; Oglesby, Donald M.; Ingram, JoAnne L.
2006-01-01
Water-based pressure-sensitive paints (PSPs) have been invented as alternatives to conventional organic-solvent-based pressure-sensitive paints, which are used primarily for indicating distributions of air pressure on wind-tunnel models. Typically, PSPs are sprayed onto aerodynamic models after they have been mounted in wind tunnels. When conventional organic-solvent-based PSPs are used, this practice creates a problem of removing toxic fumes from inside the wind tunnels. The use of water-based PSPs eliminates this problem. The waterbased PSPs offer high performance as pressure indicators, plus all the advantages of common water-based paints (low toxicity, low concentrations of volatile organic compounds, and easy cleanup by use of water).
Hepatic 3D spheroid models for the detection and study of compounds with cholestatic liability
Hendriks, Delilah F. G.; Fredriksson Puigvert, Lisa; Messner, Simon; Mortiz, Wolfgang; Ingelman-Sundberg, Magnus
2016-01-01
Drug-induced cholestasis (DIC) is poorly understood and its preclinical prediction is mainly limited to assessing the compound’s potential to inhibit the bile salt export pump (BSEP). Here, we evaluated two 3D spheroid models, one from primary human hepatocytes (PHH) and one from HepaRG cells, for the detection of compounds with cholestatic liability. By repeatedly co-exposing both models to a set of compounds with different mechanisms of hepatotoxicity and a non-toxic concentrated bile acid (BA) mixture for 8 days we observed a selective synergistic toxicity of compounds known to cause cholestatic or mixed cholestatic/hepatocellular toxicity and the BA mixture compared to exposure to the compounds alone, a phenomenon that was more pronounced after extending the exposure time to 14 days. In contrast, no such synergism was observed after both 8 and 14 days of exposure to the BA mixture for compounds that cause non-cholestatic hepatotoxicity. Mechanisms behind the toxicity of the cholestatic compound chlorpromazine were accurately detected in both spheroid models, including intracellular BA accumulation, inhibition of ABCB11 expression and disruption of the F-actin cytoskeleton. Furthermore, the observed synergistic toxicity of chlorpromazine and BA was associated with increased oxidative stress and modulation of death receptor signalling. Combined, our results demonstrate that the hepatic spheroid models presented here can be used to detect and study compounds with cholestatic liability. PMID:27759057
Medicinal uses, phytochemistry and pharmacology of Pongamia pinnata (L.) Pierre: a review.
Al Muqarrabun, L M R; Ahmat, N; Ruzaina, S A S; Ismail, N H; Sahidin, I
2013-11-25
Pongamia pinnata (L.) Pierre is one of the many plants with diverse medicinal properties where all its parts have been used as traditional medicine in the treatment and prevention of several kinds of ailments in many countries such as for treatment of piles, skin diseases, and wounds. This review discusses the current knowledge of traditional uses, phytochemistry, biological activities, and toxicity of this species in order to reveal its therapeutic and gaps requiring future research opportunities. This review is based on literature study on scientific journals and books from library and electronic sources such as ScienceDirect, PubMed, ACS, etc. Several different classes of flavonoid derivatives, such as flavones, flavans, and chalcones, and several types of compounds including terpenes, steroid, and fatty acids have been isolated from all parts of this plant. The pharmacological studies revealed that various types of preparations, extracts, and single compounds of this species exhibited a broad spectrum of biological activities such as antioxidant, antimicrobial, anti-inflammatory, and anti-diabetic activities. The results of several toxicity studies indicated that extracts and single compounds isolated from this species did not show any significant toxicity and did not cause abnormality on some rats' organs. Thus, this plant has a potential to be used as an effective therapeutic remedy due to its low toxicity towards mammalian cells. However, further study on chemical constituents and their mechanisms in exhibiting certain biological activities are needed to understand the full phytochemical profile and the complex pharmacological effects of this plant. In addition, further study on the toxicity of the other compounds isolated from this plant required to be assessed to ensure their eligibility to be used as sources of drugs. © 2013 Elsevier Ireland Ltd. All rights reserved.
Finch, Bryson E; Marzooghi, Solmaz; Di Toro, Dominic M; Stubblefield, William A
2017-08-01
Crude oils are composed of an assortment of hydrocarbons, some of which are polycyclic aromatic hydrocarbons (PAHs). Polycyclic aromatic hydrocarbons are of particular interest due to their narcotic and potential phototoxic effects. Several studies have examined the phototoxicity of individual PAHs and fresh and weathered crude oils, and several models have been developed to predict PAH toxicity. Fingerprint analyses of oils have shown that PAHs in crude oils are predominantly alkylated. However, current models for estimating PAH phototoxicity assume toxic equivalence between unsubstituted (i.e., parent) and alkyl-substituted compounds. This approach may be incorrect if substantial differences in toxic potency exist between unsubstituted and substituted PAHs. The objective of the present study was to examine the narcotic and photo-enhanced toxicity of commercially available unsubstituted and alkylated PAHs to mysid shrimp (Americamysis bahia). Data were used to validate predictive models of phototoxicity based on the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap approach and to develop relative effect potencies. Results demonstrated that photo-enhanced toxicity increased with increasing methylation and that phototoxic PAH potencies vary significantly among unsubstituted compounds. Overall, predictive models based on the HOMO-LUMO gap were relatively accurate in predicting phototoxicity for unsubstituted PAHs but are limited to qualitative assessments. Environ Toxicol Chem 2017;36:2043-2049. © 2017 SETAC. © 2017 SETAC.
Safety evaluation of neem (Azadirachta indica) derived pesticides.
Boeke, Sara J; Boersma, Marelle G; Alink, Gerrit M; van Loon, Joop J A; van Huis, Arnold; Dicke, Marcel; Rietjens, Ivonne M C M
2004-09-01
The neem tree, Azadirachta indica, provides many useful compounds that are used as pesticides and could be applied to protect stored seeds against insects. However in addition to possible beneficial health effects, such as blood sugar lowering properties, anti-parasitic, anti-inflammatory, anti-ulcer and hepatoprotective effects, also toxic effects are described. In this study we present a review of the toxicological data from human and animal studies with oral administration of different neem-based preparations. The non-aqueous extracts appear to be the most toxic neem-based products, with an estimated safe dose (ESD) of 0.002 and 12.5 microg/kg bw/day. Less toxic are the unprocessed materials seed oil and the aqueous extracts (ESD 0.26 and 0.3 mg/kg bw/day, 2 microl/kg bw/day respectively). Most of the pure compounds show a relatively low toxicity (ESD azadirachtin 15 mg/kg bw/day). For all preparations, reversible effect on reproduction of both male and female mammals seem to be the most important toxic effects upon sub-acute or chronic exposure. From the available data, safety assessments for the various neem-derived preparations were made and the outcomes are compared to the ingestion of residues on food treated with neem preparations as insecticides. This leads to the conclusion that, if applied with care, use of neem derived pesticides as an insecticide should not be discouraged.
A History of Space Toxicology Mishaps: Lessons Learned and Risk Management
NASA Technical Reports Server (NTRS)
James, John T.
2009-01-01
After several decades of human spaceflight, the community of space-faring nations has accumulated a diverse and sometimes harrowing history of toxicological events that have plagued human space endeavors almost from the very beginning. Lessons have been learned in ground-based test beds and others were discovered the hard way - when human lives were at stake in space. From such lessons one can build a risk-management framework for toxicological events to minimize the probability of a harmful exposure, while recognizing that we cannot foresee all events. Space toxicologists have learned that relatively harmless compounds can be converted by air revitalization systems into compounds that cause serious harm to the crew. Our toxic risk management strategy now includes an assessment of the fate of any compound that might be released into the atmosphere. Propellants are highly toxic compounds, yet we have not always been able to thoroughly isolate the crew from exposure to these toxicants. Leakage of fluids from systems has resulted in hazardous conditions at times, and the behavior of such compounds inside a spacecraft has taught us how to manage potentially harmful escapes should they occur. Potential combustion events are an ever-present threat to the wellbeing of the crew. Such events have been sufficiently common that we have learned that one cannot judge the health threat of a given fire by the magnitude of the event. Management of such risks demands monitoring of combustion products. In the category of unpredictable toxic events, if one assumes that fires are predictable, we can place experience with toxic microbial metabolites, upsets during repair operations, and discharges from filters that have accumulated a substantial load of pollutants in their absorption beds. Management of such events requires a broad-spectrum, real-time analytical capability to discern the identity and concentrations of pollutants if they enter the atmosphere. Adverse events are an integral part of any human activity, and the spacefaring community must learn as much as possible from mistakes and near misses.
Analysis of mobile source air toxics (MSATs)–Near-Road VOC and carbonyl concentrations
Exposures to mobile source air toxics (MSATs) have been associated with numerous adverse health effects. While thousands of air toxic compounds are emitted from mobile sources, a subset of compounds are considered high priority due to their significant contribution to cancer and...
Cardiotoxicity screening: a review of rapid-throughput in vitro approaches.
Li, Xichun; Zhang, Rui; Zhao, Bin; Lossin, Christoph; Cao, Zhengyu
2016-08-01
Cardiac toxicity represents one of the leading causes of drug failure along different stages of drug development. Multiple very successful pharmaceuticals had to be pulled from the market or labeled with strict usage warnings due to adverse cardiac effects. In order to protect clinical trial participants and patients, the International Conference on Harmonization published guidelines to recommend that all new drugs to be tested preclinically for hERG (Kv11.1) channel sensitivity before submitting for regulatory reviews. However, extensive studies have demonstrated that measurement of hERG activity has limitations due to the multiple molecular targets of drug compound through which it may mitigate or abolish a potential arrhythmia, and therefore, a model measuring multiple ion channel effects is likely to be more predictive. Several phenotypic rapid-throughput methods have been developed to predict the potential cardiac toxic compounds in the early stages of drug development using embryonic stem cells- or human induced pluripotent stem cell-derived cardiomyocytes. These rapid-throughput methods include microelectrode array-based field potential assay, impedance-based or Ca(2+) dynamics-based cardiomyocytes contractility assays. This review aims to discuss advantages and limitations of these phenotypic assays for cardiac toxicity assessment.
A Market-Basket Approach to Predict the Acute Aquatic Toxicity of Munitions and Energetic Materials.
Burgoon, Lyle D
2016-06-01
An ongoing challenge in chemical production, including the production of insensitive munitions and energetics, is the ability to make predictions about potential environmental hazards early in the process. To address this challenge, a quantitative structure activity relationship model was developed to predict acute fathead minnow toxicity of insensitive munitions and energetic materials. Computational predictive toxicology models like this one may be used to identify and prioritize environmentally safer materials early in their development. The developed model is based on the Apriori market-basket/frequent itemset mining approach to identify probabilistic prediction rules using chemical atom-pairs and the lethality data for 57 compounds from a fathead minnow acute toxicity assay. Lethality data were discretized into four categories based on the Globally Harmonized System of Classification and Labelling of Chemicals. Apriori identified toxicophores for categories two and three. The model classified 32 of the 57 compounds correctly, with a fivefold cross-validation classification rate of 74 %. A structure-based surrogate approach classified the remaining 25 chemicals correctly at 48 %. This result is unsurprising as these 25 chemicals were fairly unique within the larger set.
Ferrera, René; Michel, Pierre; Ovize, Michel
2005-07-01
The aim of this study was to evaluate the effects of major components of cardioplegic solutions on myocardial tissue submitted to prolonged cold ischemia. Our methodology was based on the simultaneous testing in the same series of experiments of many compounds (19 in number), which were included in the composition of 20 established solutions. All the experiments were performed by a matricial-predefined protocol that allows the evaluation of the protective or toxic effects of each of these 19 compounds. Pig hearts were removed and left ventricular myocardiums were cut into 320 pieces. For each solution tested, 8 pieces of myocardial tissue were incubated at 4 degrees C for 24 hours and 8 other pieces were incubated for 72 hours. At the end of incubation period, tissue injury was assessed by measuring the leakage of myocardial enzymes(glutamic-oxaloacetic transaminase, lactate dehydrogenase, creatine phosphokinase) into the incubation medium. Initially, the effects of each solution were evaluated, and then a mathematical analysis was performed and the effects of each compound deduced. After the 24-hour incubation period, pyruvate (5 mmol/liter), polyethylene glycol (5 mmol/liter), Ala-Gln (20 mmol/liter), and reduced glutathione (3 mmol/liter) showed toxic effects, whereas ethanol (1%) and calcium chloride (2 mmol/liter) seemed to be protective. After 72 hours' incubation, similar data were obtained; dextran 70 (0.57 mmol/liter) was also found to be deleterious. The results revealed surprising myocardial toxicity (enzymatic release) from components included in cardioplegic solutions. Some components would induce metabolic activation during prolonged hypothermic ischemia, which may be inappropriated and which may perhaps exacerbate damages by increasing membrane ruptures. This concept confirms eventual discrepant effects of preservative compounds on cardiomyocyte membrane during deep hypothermia, according to the metabolic state of the cell.
Billones, Junie B; Carrillo, Maria Constancia O; Organo, Voltaire G; Macalino, Stephani Joy Y; Sy, Jamie Bernadette A; Emnacen, Inno A; Clavio, Nina Abigail B; Concepcion, Gisela P
2016-01-01
Mycobacterium tuberculosis (Mtb) the main causative agent of tuberculosis, is the main reason why this disease continues to be a global public health threat. It is therefore imperative to find a novel antitubercular drug target that is unique to the structural machinery or is essential to the growth and survival of the bacterium. One such target is the enzyme l,d-transpeptidase 2, also known as LdtMt2, a protein primarily responsible for the catalysis of 3→3 cross-linkages that make up the mycolyl-arabinogalactan-peptidoglycan complex of Mtb. In this study, structure-based pharmacophore screening, molecular docking, and in silico toxicity evaluations were employed in screening compounds from a database of synthetic compounds. Out of the 4.5 million database compounds, 18 structures were identified as high-scoring, high-binding hits with very satisfactory absorption, distribution, metabolism, excretion, and toxicity properties. Two out of the 18 compounds were further subjected to in vitro bioactivity assays, with one exhibiting a good inhibitory activity against the Mtb H37Ra strain.
The Aromatic Head Group of Spider Toxin Polyamines Influences Toxicity to Cancer Cells
Wilson, David; McIntyre, Lachlan; Smith, Jennifer J.; Tribolet, Leon; Loukas, Alex; Liddell, Michael J.; Daly, Norelle L.
2017-01-01
Spider venoms constitute incredibly diverse libraries of compounds, many of which are involved in prey capture and defence. Polyamines are often prevalent in the venom and target ionotropic glutamate receptors. Here we show that a novel spider polyamine, PA366, containing a hydroxyphenyl-based structure is present in the venom of several species of tarantula, and has selective toxicity against MCF-7 breast cancer cells. By contrast, a polyamine from an Australian funnel-web spider venom, which contains an identical polyamine tail to PA366 but an indole-based head-group, is only cytotoxic at high concentrations. Our results suggest that the ring structure plays a role in the cytotoxicity and that modification to the polyamine head group might lead to more potent and selective compounds with potential as novel cancer treatments. PMID:29077051
The Aromatic Head Group of Spider Toxin Polyamines Influences Toxicity to Cancer Cells.
Wilson, David; Boyle, Glen M; McIntyre, Lachlan; Nolan, Matthew J; Parsons, Peter G; Smith, Jennifer J; Tribolet, Leon; Loukas, Alex; Liddell, Michael J; Rash, Lachlan D; Daly, Norelle L
2017-10-27
Spider venoms constitute incredibly diverse libraries of compounds, many of which are involved in prey capture and defence. Polyamines are often prevalent in the venom and target ionotropic glutamate receptors. Here we show that a novel spider polyamine, PA 366 , containing a hydroxyphenyl-based structure is present in the venom of several species of tarantula, and has selective toxicity against MCF-7 breast cancer cells. By contrast, a polyamine from an Australian funnel-web spider venom, which contains an identical polyamine tail to PA 366 but an indole-based head-group, is only cytotoxic at high concentrations. Our results suggest that the ring structure plays a role in the cytotoxicity and that modification to the polyamine head group might lead to more potent and selective compounds with potential as novel cancer treatments.
The discovery of bioisoster compound for plumbagin using the knowledge-based rational method
NASA Astrophysics Data System (ADS)
Jeong, Seo Hee; Choi, Jung Sup; Ko, Young Kwan; Kang, Nam Sook
2015-04-01
Arabidopsis thaliana 7-Keto-8-AminoPelargonic Acid Synthase (AtKAPAS) is a crucial herbicide target, and AtKAPAS inhibitors are widely available in the agrochemical market. The herbicide plumbagin is known as a potent inhibitor for AtKAPAS but it is extremely toxic. In this study, we identified the metabolic site of plumbagin and also performed a similarity-based library analysis using 2D fingerprints and a docking study. Four compounds as virtual hits were derived from plumbagin. Treatment of Digitaria ciliaris with compound 2, one of four hit compounds, stunted the growth of leaves and the leaf tissue was desiccated or burned within three days. Thus, we expect that compound 2 will be developed as a new herbicide and additionally our strategy will provide helpful information for optimizing lead compounds.
Organs-on-a-chip: Current applications and consideration points for in vitro ADME-Tox studies.
Ishida, Seiichi
2018-02-01
Assay systems using in vitro cultured cells are increasingly applied for evaluation of the efficacy, safety, and toxicity of drug candidates. In vitro cell-based assays have two main applications in the drug discovery process: searching for a compound that is effective against the target disease (seed investigation) and confirmation of safety during use of the identified compounds (safety assessment). Currently available in vitro cell-based assays have been designed to evaluate the efficacy and toxicity in single organs, but the in vivo pharmacokinetics and pharmacodynamics of the administered drug candidates have not been considered. Thus, an evaluation system that interconnects cell culture units, one of which has appropriate drug metabolism activities and the other assesses the efficacy and toxicity of compounds, is needed. Accordingly, the in vitro ADME-Tox culture system known as organs-on-a-chip has been proposed. In this review, after introducing the organs-on-a-chip system, the evaluation of enterohepatic circulation and the gut-liver axis relationship will be presented as an example of the application of the organs-on-a-chip system for ADME studies based on inter-organ network. Additionally, the functions required for the organs-on-a-chip system and the necessity of standardization of cells mounted on the chip system will be discussed. Copyright © 2018 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
Na, Young Eun; Kim, Soon-Il; Bang, Hea-Son; Kim, Byung-Seok; Ahn, Young-Joon
2011-06-10
The toxicity of two cassia oils, four cinnamon oils and (E)-cinnamaldehyde and (E)-cinnamic acid and 34 structurally related compounds to adult Dermanyssus gallinae (De Geer) collected from a poultry house was examined using a vapour-phase mortality bioassay. Results were compared with those of dichlorvos, a conventional acaricide. The cassia and cinnamon oils (cinnamon technical, cinnamon #500, cassia especial, cassia true, cinnamon bark and cinnamon green leaf) exhibited good fumigant toxicity (LD(50), 11.79-26.40 μg cm(-3)). α-Methyl-(E)-cinnamaldehyde (LD(50), 0.45 μg cm(-3)) and (E)-cinnamaldehyde (0.54 μg cm(-3)) were the most toxic compounds and the toxicity of these compounds was comparable to that of dichlorvos (0.30 μg cm(-3)). Potent fumigant toxicity was also observed in allyl cinnamate, ethyl-α-cyanocinnamate, (E)-2-methoxylcinnamic acid and (Z)-2-methoxylcinnamic acid (LD(50), 0.81-0.92 μg cm(-3)). Structure-activity relationships indicate that structural characteristics, such as types of functional groups and carbon skeleton rather than vapour pressure parameter, appear to play a role in determining toxicity. The essential oils and compounds described merit further study as potential acaricides for the control of D. gallinae populations as fumigants with contact action due to global efforts to reduce the level of highly toxic synthetic acaricides in the agricultural environment. Copyright © 2011. Published by Elsevier B.V.
Alves, L; Paixão, S M
2011-10-01
The acute toxicity of some compounds used in fossil fuels biodesulphurisation studies, on the respiration activity, was evaluated by Gordonia alkanivorans and Rhodococcus erythropolis. Moreover, the effect of 2-hydroxybiphenyl on cell growth of both strains was also determined, using batch (chronic bioassays) and continuous cultures. The IC₅₀ values obtained showed the toxicity of all the compounds tested to both strains, specially the high toxicity of 2-HBP. These results were confirmed by the chronic toxicity data. The toxicity data sets highlight for a higher sensitivity to the toxicant by the strain presenting a lower growth rate, due to a lower cells number in contact with the toxicant. Thus, microorganisms exhibiting faster generation times could be more resistant to 2-HBP accumulation during a BDS process. The physiological response of both strains to 2-HBP pulse in a steady-state continuous culture shows their potential to be used in a future fossil fuel BDS process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dolui, A K; Debnath, Manabendra; De, B; Kumar, Atul
2012-05-01
A new compound E was isolated from the methanolic extract of the leaves of Heliotropium indicum by chromatographic fractionation. In the present study, the effect of the compound E on reproduction of Helopeltis theivora has been evaluated. The acute toxicity study (LD50) and sub-acute toxicity studies (haematological, biochemical and histopathological parameters) in albino Swiss mice were carried out to evaluate the safety aspect of the compound E. The compound showed significant inhibitory effect on the reproductive life of H. theivora. The oviposition period, fecundity and hatching percentage of H. theivora were found to be 15.67 days, 39.33 and 28.00% respectively after treatment with 2% compound E, whereas the control value were found to be 20.33 days, 77.67 and 77.33% respectively. The LD50 of the compound was found to be 780 mg kg(-1) in Swiss albino female mice. The compound did not show any toxicity in mice at sub-lethal dose treatment (78 mg kg(-1) b. wt., once daily) for 21 days as evident from different haematological, biochemical and histopathological parameters in compound E treated group when compared with control.
Tunable cytotoxicity of rhodamine 6G via anion variations.
Magut, Paul K S; Das, Susmita; Fernand, Vivian E; Losso, Jack; McDonough, Karen; Naylor, Brittni M; Aggarwal, Sita; Warner, Isiah M
2013-10-23
Chemotherapeutic agents with low toxicity to normal tissues are a major goal in cancer research. In this regard, the therapeutic activities of cationic dyes, such as rhodamine 6G, toward cancer cells have been studied for decades with observed toxicities toward normal and cancer cells. Herein, we report rhodamine 6G-based organic salts with varying counteranions that are stable under physiological conditions, display excellent fluorescence photostability, and more importantly have tunable chemotherapeutic properties. Our in vitro studies indicate that the hydrophobic compounds of this series allow production of nanoparticles which are nontoxic to normal cells and toxic to cancer cells. Furthermore, the anions, in combination with cations such as sodium, were observed to be nontoxic to both normal and cancer cells. To the best of our knowledge, this is the first demonstration that both the cation and anion play an extremely important and cooperative role in the antitumor properties of these compounds.
Detection of ruminal bacteria that degrade toxic dihydroxypyridine compounds produced from mimosine.
Allison, M J; Hammond, A C; Jones, R J
1990-01-01
Leucaena leucocephala, a tropical leguminous shrub, contains a toxic amino acid, mimosine. Successful utilization of leucaena as a ruminant forage depends on colonization of the rumen by bacteria that degrade dihydroxypyridines (DHP), which are toxic intermediates in the metabolism of mimosine. Populations in the rumina of animals in some parts of the world, however, do not include bacteria that are able to carry out this degradation. We thus describe tests for the presence of DHP degraders in ruminal populations that are based on degradation (loss) of DHP compounds from culture media. Results obtained with the tests indicate that DHP degraders were not part of microbial populations in the rumina of cattle, sheep, and goats in Iowa, while most rumen samples examined from animals from the Virgin Islands and Haiti contained DHP degraders. These results confirm and extend the findings of others about geographic limits to the distribution of these important ruminal bacteria. PMID:2317038
Mapping the Human Toxome by Systems Toxicology
Bouhifd, Mounir; Hogberg, Helena T.; Kleensang, Andre; Maertens, Alexandra; Zhao, Liang; Hartung, Thomas
2014-01-01
Toxicity testing typically involves studying adverse health outcomes in animals subjected to high doses of toxicants with subsequent extrapolation to expected human responses at lower doses. The low-throughput of current toxicity testing approaches (which are largely the same for industrial chemicals, pesticides and drugs) has led to a backlog of more than 80,000 chemicals to which human beings are potentially exposed whose potential toxicity remains largely unknown. Employing new testing strategies that employ the use of predictive, high-throughput cell-based assays (of human origin) to evaluate perturbations in key pathways, referred as pathways of toxicity, and to conduct targeted testing against those pathways, we can begin to greatly accelerate our ability to test the vast “storehouses” of chemical compounds using a rational, risk-based approach to chemical prioritization, and provide test results that are more predictive of human toxicity than current methods. The NIH Transformative Research Grant project Mapping the Human Toxome by Systems Toxicology aims at developing the tools for pathway mapping, annotation and validation as well as the respective knowledge base to share this information. PMID:24443875
Physiologically-based pharmacokinetic (PBPK) modeling of metabolic pathways of bromochloromethane
Bromochloromethane (BCM) is a volatile compound that if metabolized can lead to toxicity in different organs. Using a physiologically-based phannacokinetic model, we explore two hypotheses describing the metabolic pathways of BCM in rats: a two-pathway model exploiting both the e...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadanaciva, Sashi; Aleo, Michael D.; Strock, Christopher J.
To reduce costly late-stage compound attrition, there has been an increased focus on assessing compounds in in vitro assays that predict attributes of human safety liabilities, before preclinical in vivo studies are done. Relevant questions when choosing a panel of assays for predicting toxicity are (a) whether there is general concordance in the data among the assays, and (b) whether, in a retrospective analysis, the rank order of toxicity of compounds in the assays correlates with the known safety profile of the drugs in humans. The aim of our study was to answer these questions using nonsteroidal anti-inflammatory drugs (NSAIDs)more » as a test set since NSAIDs are generally associated with gastrointestinal injury, hepatotoxicity, and/or cardiovascular risk, with mitochondrial impairment and endoplasmic reticulum stress being possible contributing factors. Eleven NSAIDs, flufenamic acid, tolfenamic acid, mefenamic acid, diclofenac, meloxicam, sudoxicam, piroxicam, diflunisal, acetylsalicylic acid, nimesulide, and sulindac (and its two metabolites, sulindac sulfide and sulindac sulfone), were tested for their effects on (a) the respiration of rat liver mitochondria, (b) a panel of mechanistic endpoints in rat hepatocytes, and (c) the viability and organ morphology of zebrafish. We show good concordance for distinguishing among/between NSAID chemical classes in the observations among the three approaches. Furthermore, the assays were complementary and able to correctly identify “toxic” and “non-toxic” drugs in accordance with their human safety profile, with emphasis on hepatic and gastrointestinal safety. We recommend implementing our multi-assay approach in the drug discovery process to reduce compound attrition. - Highlights: • NSAIDS cause liver and GI toxicity. • Mitochondrial uncoupling contributes to NSAID liver toxicity. • ER stress is a mechanism that contributes to liver toxicity. • Zebrafish and cell based assays are complimentary.« less
Design, Synthesis, and Antifouling Activity of Glucosamine-Based Isocyanides
Hasegawa, Yuki; Novita, Ira S.; Suzuki, Junya; Morozumi, Tatsuya; Nogata, Yasuyuki; Yoshimura, Erina; Matsuda, Fuyuhiko
2017-01-01
Biofouling, an undesirable accumulation of organisms on sea-immersed structures such as ship hulls and fishing nets, is a serious economic issue whose effects include oil wastage and clogged nets. Organotin compounds were utilized since the 1960s as an antifouling material; however, the use of such compounds was later banned by the International Maritime Organization (IMO) due to their high toxicity toward marine organisms, resulting in masculinization and imposex. Since the ban, there have been extensive efforts to develop environmentally benign antifoulants. Natural antifouling products obtained from marine creatures have been the subject of considerable attention due to their potent antifouling activity and low toxicity. These antifouling compounds often contain isocyano groups, which are well known to have natural antifouling properties. On the basis of our previous total synthesis of natural isocyanoterpenoids, we envisaged the installation of an isocyano functional group onto glucosamine to produce an environmentally friendly antifouling material. This paper describes an effective synthetic method for various glucosamine-based isocyanides and evaluation of their antifouling activity and toxicity against cypris larvae of the barnacle Amphibalanus amphitrite. Glucosamine isocyanides with an ether functionality at the anomeric position exhibited potent antifouling activity, with EC50 values below 1 μg/mL, without detectable toxicity even at a high concentration of 10 μg/mL. Two isocyanides had EC50 values of 0.23 and 0.25 μg/mL, comparable to that of CuSO4, which is used as a fouling inhibitor (EC50 = 0.27 μg/mL). PMID:28661419
[Impact of microdose clinical trials in the preclinical stage].
Kim, Soonih
2014-01-01
A microdose clinical trial may be useful as a safe early-phase exploratory study using doses as low as 100 μg or less for determination of the disposition of a candidate compound in humans in a short period of time. This may increase confidence in candidate compounds, especially those for which it is difficult to predict disposition based on the results of in vitro or preclinical studies. In this study, we examined microdose trials performed in the preclinical stage for two first-in-class compounds with a new mechanism of action. These compounds showed species difference in first pass metabolism in the digestive tract and liver, causing uncertainty in prediction of disposition in humans. For this reason, first-in-human microdose clinical trials were performed. The results showed that the two compounds had effective blood concentrations after oral administration at a dose of 100 mg qd. Administration of an extremely small dose of one (14)C-labeled compound permitted identification of major metabolites. No toxic metabolites were detected. The preclinical toxic dose was determined based on prediction of blood exposure at the estimated maximum clinical dose. For the other candidate compound, the findings of the microdose trial indicated a high bioavailability after oral administration and low hepatic clearance after intravenous administration. These results suggested only a small risk of a change in disposition in patients with hepatic disorder. The data obtained for the two compounds suggest that microdose clinical trials can be useful for improving the process of candidate selection in the preclinical stage.
(Q)SARs to predict environmental toxicities: current status and future needs.
Cronin, Mark T D
2017-03-22
The current state of the art of (Quantitative) Structure-Activity Relationships ((Q)SARs) to predict environmental toxicity is assessed along with recommendations to develop these models further. The acute toxicity of compounds acting by the non-polar narcotic mechanism of action can be well predicted, however other approaches, including read-across, may be required for compounds acting by specific mechanisms of action. The chronic toxicity of compounds to environmental species is more difficult to predict from (Q)SARs, with robust data sets and more mechanistic information required. In addition, the toxicity of mixtures is little addressed by (Q)SAR approaches. Developments in environmental toxicology including Adverse Outcome Pathways (AOPs) and omics responses should be utilised to develop better, more mechanistically relevant, (Q)SAR models.
Building a Better Quaternary Ammonium Compound (QAC): Branched Tetracationic Antiseptic Amphiphiles.
Forman, Megan E; Jennings, Megan C; Wuest, William M; Minbiole, Kevin P C
2016-07-05
Bacteria contaminate surfaces in a wide variety of environments, causing severe problems across a number of industries. In a continuation of our campaign to develop novel antibacterial quaternary ammonium compounds (QACs) as useful antiseptics, we have identified a starting material bearing four tertiary amines, enabling the rapid synthesis of several tris- and tetracationic QACs. Herein we report the synthesis and biological activity of a series of 24 multiQACs deemed the "superT" family, and an investigation of the role of cationic charge in antimicrobial and anti-biofilm activity, as well as toxicity. This class represents the most potent series of QACs reported to date against methicillin-resistant Staphylococcus aureus (MRSA), with minimum inhibitory concentrations (MICs) and minimum biofilm eradication concentrations (MBECs) as low as 0.25 and 25 μm, respectively. Based on the significant cell-surface-charge differences between bacterial and eukaryotic cells, in certain cases we observed excellent efficacy-to-toxicity profiles, exceeding a 100-fold differential. This work further elucidates the chemical underpinnings of disinfectant efficacy versus toxicity based on cationic charge. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brun, Elodie; Safer, Abdelmounaim; Carreaux, François; Bourahla, Khadidja; L'helgoua'ch, Jean-Martial; Bazureau, Jean-Pierre; Villalgordo, Jose Manuel
2015-06-23
We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups.
Rodriguez Castillo, Alfredo Santiago; Guihéneuf, Solène; Le Guével, Rémy; Biard, Pierre-François; Paquin, Ludovic; Amrane, Abdeltif; Couvert, Annabelle
2016-04-15
Synthesis of several hydrophobic ionic liquids (ILs), which might be selected as good candidates for degradation of hydrophobic volatile organic compounds in a two-phase partitioning bioreactor (TPPB), were carried out. Several bioassays were also realized, such as toxicity evaluation on activated sludge and zebrafish, cytotoxicity, fluoride release in aqueous phase and biodegradability in order to verify their possible effects in case of discharge in the aquatic environment and/or human contact during industrial manipulation. The synthesized compounds consist of alkylimidazoliums, functionalized imidazoliums, isoqinoliniums, triazoliums, sulfoniums, pyrrolidiniums and morpholiniums and various counter-ions such as: PF6(-), NTf2(-) and NfO(-). Toxicity evaluation on activated sludge of each compound (5% v/v of IL) was assessed by using a glucose uptake inhibition test. Toxicity against zebrafish and cytotoxicity were evaluated by the ImPACCell platform of Rennes (France). Fluoride release in water was estimated by regular measurements using ion chromatography equipment. IL biodegradability was determined by measuring BOD28 of aqueous samples (compound concentration,1mM). All ILs tested were not biodegradable; while some of them were toxic toward activated sludge. Isoquinolinium ILs were toxic to human cancerous cell lines. Nevertheless no toxicity was found against zebrafish Danio rerio. Only one IL released fluoride after long-time agitation. Copyright © 2016 Elsevier B.V. All rights reserved.
Organic waste compounds as contaminants in Milwaukee-area streams
Baldwin, Austin K.; Corsi, Steven R.; Magruder, Christopher; Magruder, Matthew; Bruce, Jennifer L.
2015-09-22
Organic waste compounds (OWCs) are ingredients and by-products of common agricultural, industrial, and household substances that can contaminate our streams through sources like urban runoff, sewage overflows, and leaking septic systems. To better understand how OWCs are affecting Milwaukee-area streams, the U.S. Geological Survey, in cooperation with the Milwaukee Metropolitan Sewerage District, conducted a three-year study to investigate the presence and potential toxicity of 69 OWCs in base flow, stormflow, pore water, and sediment at 14 stream sites and 3 Milwaukee harbor locations. This fact sheet summarizes the major findings of this study, including detection frequencies and concentrations, potential toxicity, the prevalence of polycyclic aromatic hydrocarbons (PAHs), and the influence of urbanization.
Human exposure, biomarkers, and fate of organotins in the environment.
Okoro, Hussein K; Fatoki, Olalekan S; Adekola, Folahan A; Ximba, Bhekumusa J; Snyman, Reinette G; Opeolu, Beatrice
2011-01-01
Organotin compounds result from the addition of organic moieties to inorganic tin.Thus, one or more tin-carbon bonds exist in each organotin molecule. The organo-tin compounds are ubiquitous in the environment. Organotin compounds have many uses, including those as fungicides and stabilizers in plastics, among others in industry. The widespread use of organotins as antifouling agents in boat paints has resulted in pollution of freshwater and marine ecosystems. The presence of organotin compounds in freshwater and marine ecosystems is now understood to be a threat, because of the amounts found in water and the toxicity of some organotin compounds to aquatic organisms, and perhaps to humans as well. Organotin com-pounds are regarded by many to be global pollutants of a stature similar to biphenyl,mercury, and the polychlorinated dibenzodioxins. This stature results from the high toxicity, persistence, bioaccumulation, and endocrine disruptive features of even very low levels of selected organotin compounds.Efforts by selected governmental agencies and others have been undertaken to find a global solution to organotin pollution. France was the first country to ban the use of the organotins in 1980. This occurred before the international maritime organization (IMO) called for a global treaty to ban the application of tributyltin (TBT)-based paints. In this chapter, we review the organotin compounds with emphasis on the human exposure, fate, and distribution of them in the environment. The widespread use of the organotins and their high stability have led to contamination of some aquatic ecosystems. As a result, residues of the organotins may reach humans via food consumption. Notwithstanding the risk of human exposure, only limited data are available on the levels at which the organotins exist in foodstuffs consumed by humans. Moreover, the response of marine species to the organotins, such as TBT, has not been thoroughly investigated. Therefore, more data on the organotins and the consequences of exposure to them are needed. In particular, we believe the following areas need attention: expanded toxicity testing in aquatic species, human exposure, human body burdens, and the research to identify biomarkers for testing the toxicity of the organotins to marine invertebrates.
1997-11-01
TCL Target Compound List TCLP toxicity characteristic leachate procedure TPH Total Petroleum Hydrocarbon TRV toxicity reference value TSCA...controlled environment where temperature, nutrients, and oxygen can be controlled. Gaseous emissions and leachate can also be collected and treated...wood chip mixture was then spread over a gravel base enclosed in HDPE. The treatment beds were aerated with blowers and leachate was collected in a
Nipper, Marion; Carr, R Scott; Biedenbach, James M; Hooten, Russell L; Miller, Karen
2005-11-01
The toxicity of transformation products of 2,6-dinitrotoluene (2,6-DNT) and 2,4,6-trinitrophenol (picric acid) were assessed in spiked sandy and fine-grained marine sediments and in seawater. Toxicity of pore water from sediments spiked with 2,6-DNT decreased for the macro-alga, Ulva fasciata, zoospores as biotransformation proceeded, but increased for the copepod, Schizopera knabeni, nauplii. The primary biotransformation product of 2,6-DNT, 2-amino-6-nitrotoluene, was also more toxic than the parent compound to copepod nauplii, but not to alga zoospores, in spiked seawater tests. Two biotransformation products of picric acid, picramic acid and 2,4-DNP, were more toxic than their parent compound. Porewater toxicity from picric acid-spiked sediments decreased significantly at the end of six-months incubation. Fine-grained sediment spiked with either ordnance compound had lower toxicity than its sandy counterpart after six months, suggesting faster microbial transformation in the former and production of less toxic products. Photo-transformation of 2,6-DNT in seawater resulted in a reduction in toxicity.
Catalytic Destruction Of Toxic Organic Compounds
NASA Technical Reports Server (NTRS)
Voecks, Gerald E.
1990-01-01
Proposed process disposes of toxic organic compounds in contaminated soil or carbon beds safely and efficiently. Oxidizes toxic materials without producing such other contaminants as nitrogen oxides. Using air, fuel, catalysts, and steam, system consumes less fuel and energy than decontamination processes currently in use. Similar process regenerates carbon beds used in water-treatment plants.
Mercury toxicity reduced by selenium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1973-01-01
A methylmercury compound added to a tuna-corn-soya ration fed to Japanese quail was less toxic than an equivalent amount of the compound added to the basal corn-soya ration. Selenium present in the tuna is apparently the factor that reduces mercury toxicity, since it was also reduced or prevented by addition of selenium to the diets.
Predictive models in hazard assessment of Great Lakes contaminants for fish
Passino, Dora R. May
1986-01-01
A hazard assessment scheme was developed and applied to predict potential harm to aquatic biota of nearly 500 organic compounds detected by gas chromatography/mass spectrometry (GC/MS) in Great Lakes fish. The frequency of occurrence and estimated concentrations of compounds found in lake trout (Salvelinus namaycush) and walleyes (Stizostedion vitreum vitreum) were compared with available manufacturing and discharge information. Bioconcentration potential of the compounds was estimated from available data or from calculations of quantitative structure-activity relationships (QSAR). Investigators at the National Fisheries Research Center-Great Lakes also measured the acute toxicity (48-h EC50's) of 35 representative compounds to Daphnia pulex and compared the results with acute toxicity values generated by QSAR. The QSAR-derived toxicities for several chemicals underestimated the actual acute toxicity by one or more orders of magnitude. A multiple regression of log EC50 on log water solubility and molecular volume proved to be a useful predictive model. Additional models providing insight into toxicity incorporate solvatochromic parameters that measure dipolarity/polarizability, hydrogen bond acceptor basicity, and hydrogen bond donor acidity of the solute (toxicant).
Growth of Pure Cultures of Marine Phytoplankton in the Presence of Toxicants
Ukeles, Ravenna
1962-01-01
The effects of 17 toxicants on the growth of five species of algae in pure culture were studied. The two species displaying the greatest sensitivity to the action of each of the compounds tested were Monochrysis lutheri and Phaeodactylum tricornutum, and the most resistant species was Protococcus. Of eight different classes of toxicants tested, substituted urea compounds and a mercuric compound were most effective in inhibiting growth of all algal species at the lowest concentrations. PMID:13995259
Toxic effects of two essential oils and their constituents on the mealworm beetle, Tenebrio molitor.
Martínez, L C; Plata-Rueda, A; Colares, H C; Campos, J M; Dos Santos, M H; Fernandes, F L; Serrão, J E; Zanuncio, J C
2017-12-14
The study identified insecticidal effects from the cinnamon and clove essential oils in Tenebrio molitor L. (Coleoptera: Tenebrionidae). The lethal concentrations (LC50 and LC90), lethal time, and repellent effect on larvae, pupae, and adults of T. molitor after exposure to six concentrations of each essential oil and toxic compounds were evaluated. The chemical composition of the cinnamon oil was also determined and primary compounds were eugenol (10.19%), trans-3-caren-2-ol (9.92%), benzyl benzoate (9.68%), caryophyllene (9.05%), eugenyl acetate (7.47%), α-phellandrene (7.18%), and α-pinene (6.92%). In clove essential oil, the primary compounds were eugenol (26.64%), caryophyllene (23.73%), caryophyllene oxide (17.74%), 2-propenoic acid (11.84%), α-humulene (10.48%), γ-cadinene (4.85%), and humulene oxide (4.69%). Cinnamon and clove essential oils were toxic to T. molitor. In toxic chemical compounds, eugenol have stronger contact toxicity in larvae, pupae, and adult than caryophyllene oxide, followed by α-pinene, α-phellandrene, and α-humulene. In general, the two essential oils were toxic and repellent to adult T. molitor. Cinnamon and clove essential oils and their compounds caused higher mortality and repellency on T. molitor and, therefore, have the potential for integrated management programs of this insect.
A Chemical Containment Model for the General Purpose Work Station
NASA Technical Reports Server (NTRS)
Flippen, Alexis A.; Schmidt, Gregory K.
1994-01-01
Contamination control is a critical safety requirement imposed on experiments flying on board the Spacelab. The General Purpose Work Station, a Spacelab support facility used for life sciences space flight experiments, is designed to remove volatile compounds from its internal airpath and thereby minimize contamination of the Spacelab. This is accomplished through the use of a large, multi-stage filter known as the Trace Contaminant Control System. Many experiments planned for the Spacelab require the use of toxic, volatile fixatives in order to preserve specimens prior to postflight analysis. The NASA-Ames Research Center SLS-2 payload, in particular, necessitated the use of several toxic, volatile compounds in order to accomplish the many inflight experiment objectives of this mission. A model was developed based on earlier theories and calculations which provides conservative predictions of the resultant concentrations of these compounds given various spill scenarios. This paper describes the development and application of this model.
Bryant, W.L.; Goodbred, S.L.
2009-01-01
Semipermeable membrane devices (SPMDs) were deployed in streams along a gradient of urban land-use intensity in and around six metropolitan areas: Atlanta, Georgia; Raleigh - Durham, North Carolina; and Denver - Fort Collins, Colorado, in 2003; and Dallas - Fort Worth, Texas; Milwaukee - Green Bay, Wisconsin; and Portland, Oregon, in 2004 to examine relations between percent urban land cover in watersheds and the occurrence, concentrations, and potential toxicity of hydrophobic compounds. Of the 142 endpoints measured in SPMD dialysates, 30 were significantly (alpha = 0.05) related to the percent of urban land cover in the watersheds in at least one metropolitan area. These 30 endpoints included the aggregated measures of the total number of compounds detected and relative toxicity (Microtox?? and P450RGS assays), in addition to the concentrations of 27 individual hydrophobic compounds. The number of compounds detected, P450RGS assay values, and the concentrations of pyrogenic polycyclic aromatic hydrocarbons (PAHs) were significantly related to percent urban land cover in all six metropolitan areas. Pentachloroanisole, the most frequently detected compound, was significantly related to urban land cover in all metropolitan areas except Dallas - Fort Worth. Petrogenic PAHs and dibenzofurans were positively related to percent urban land cover in Atlanta, Raleigh - Durham, Denver, and Milwaukee - Green Bay. Results for other endpoints were much more variable. The number of endpoints significantly related to urban land cover ranged from 6 in Portland to 21 Raleigh-Durham. Based on differences in the number and suite of endpoints related to urban intensity, these results provide evidence of differences in factors governing source strength, transport, and/or fate of hydrophobic compounds in the six metropolitan areas studied. The most consistent and significant results were that bioavailable, aryl hydrocarbon receptor agonists increase in streams as basins become urbanized. Potential toxicity mediated by this metabolic pathway is indicated as an important factor in the response of aquatic biota to urbanization. ?? Springer Science+Business Media B.V. 2008.
Lin, Xiaodong; Yokokawa, Fumiaki; Sweeney, Zachary; Saunders, Oliver; Xie, Lili; Lim, Siew Pheng; Uteng, Marianne; Uehara, Kyoko; Warne, Robert; Gang, Wang; Jones, Christopher; Yendluri, Satya; Gu, Helen; Mansfield, Keith; Boisclair, Julie; Heimbach, Tycho; Catoire, Alexandre; Bracken, Kathryn; Weaver, Margaret; Moser, Heinz; Zhong, Weidong
2016-01-01
Nucleoside or nucleotide inhibitors are a highly successful class of antivirals due to selectivity, potency, broad coverage, and high barrier to resistance. Nucleosides are the backbone of combination treatments for HIV, hepatitis B virus, and, since the FDA approval of sofosbuvir in 2013, also for hepatitis C virus (HCV). However, many promising nucleotide inhibitors have advanced to clinical trials only to be terminated due to unexpected toxicity. Here we describe the in vitro pharmacology of compound 1, a monophosphate prodrug of a 2′-ethynyluridine developed for the treatment of HCV. Compound 1 inhibits multiple HCV genotypes in vitro (50% effective concentration [EC50], 0.05 to 0.1 μM) with a selectivity index of >300 (50% cytotoxic concentration [CC50], 30 μM in MT-4 cells). The active triphosphate metabolite of compound 1, compound 2, does not inhibit human α, β, or γ DNA polymerases but was a substrate for incorporation by the human mitochondrial RNA polymerase (POLRMT). In dog, the oral administration of compound 1 resulted in elevated serum liver enzymes and microscopic changes in the liver. Transmission electron microscopy showed significant mitochondrial swelling and lipid accumulation in hepatocytes. Gene expression analysis revealed dose-proportional gene signature changes linked to loss of hepatic function and increased mitochondrial dysfunction. The potential of in vivo toxicity through mitochondrial polymerase incorporation by nucleoside analogs has been previously shown. This study shows that even moderate levels of nucleotide analog incorporation by POLRMT increase the risk of in vivo mitochondrial dysfunction. Based on these results, further development of compound 1 as an anti-HCV compound was terminated. PMID:27645237
Discovery of a Novel General Anesthetic Chemotype Using High-throughput Screening
McKinstry-Wu, Andrew R.; Bu, Weiming; Rai, Ganesha; Lea, Wendy A.; Weiser, Brian P.; Liang, David F.; Simeonov, Anton; Jadhav, Ajit; Maloney, David J.; Eckenhoff, Roderic G.
2014-01-01
Background The development of novel anesthetics has historically been a process of combined serendipity and empiricism, with most recent new anesthetics developed via modification of existing anesthetic structures. Methods Using a novel high-throughput screen employing the fluorescent anesthetic 1-aminoanthracene (1-AMA) and apoferritin as a surrogate for on-pathway anesthetic protein target(s), we screened a 350,000 compound library for competition with 1-AMA-apoferritin binding. Hit compounds meeting structural criteria had their binding affinities for apoferritin quantified with isothermal titration calorimetry and were tested for γ-aminobutyric acid type A-receptor binding using a flunitrazepam binding assay. Chemotypes with a strong presence in the top 700 and exhibiting activity via isothermal titration calorimetry were selected for medicinal chemistry optimization including testing for anesthetic potency and toxicity in an in vivo Xenopus laevis tadpole assay. Compounds with low toxicity and high potency were tested for anesthetic potency in mice. Results From an initial chemical library of over 350,000 compounds, we identified 2,600 compounds that potently inhibited 1-AMA binding to apoferritin. A subset of compounds chosen by structural criteria (700) was successfully reconfirmed using the initial assay. Based upon a strong presence in both the initial and secondary screens the 6-phenylpyridazin-3(2H)-one chemotype was assessed for anesthetic activity in tadpoles. Medicinal chemistry efforts identified four compounds with high potency and low toxicity in tadpoles, two were found to be effective novel anesthetics in mice. Conclusions We demonstrate the first use of a high-throughput screen to successfully identify a novel anesthetic chemotype and show mammalian anesthetic activity for members of that chemotype. PMID:25603205
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renwick, A.G.
Health-based guidance values, such as the ADI, use chemical-specific data to determine the highest intake that would be without significant adverse health effects. A threshold of toxicological concern (TTC) is a level of intake predicted to be without adverse effects based on the toxicity of structurally related compounds. The main advantage of the use of TTCs is that the risk of low exposures can be evaluated without the need for chemical-specific animal toxicity data. TTCs have been used for many years for screening the safety of packaging migrants by the FDA in the USA, and of flavoring substances, by themore » JECFA. A recent reassessment of the use of TTCs, organized by ILSI Europe, has developed a decision tree which allows a systematic approach to the evaluation of low levels of diverse chemicals in food. The decision tree incorporates a series of increasing TTC values into a step-wise approach. Potentially genotoxic carcinogens are considered first, based on the presence of known structural alerts. Aflatoxin-like, azoxy- and nitroso-compounds are removed from consideration because they are the most potent, and a practical TTC could not be established. Other compounds with structural alerts for genotoxicity are allocated a TTC of 0.15 {mu}g/person per day. Compounds without structural alerts for genotoxicity are evaluated based on chemical structure and intake using a series of TTC values derived by the application of a 100-fold uncertainty factor to the 5th percentile of the distribution of NOAELs from chronic studies on compounds sharing similar structural characteristics.« less
Flavoring Compounds Dominate Toxic Aldehyde Production during E-Cigarette Vaping.
Khlystov, Andrey; Samburova, Vera
2016-12-06
The growing popularity of electronic cigarettes (e-cigarettes) raises concerns about the possibility of adverse health effects to primary users and people exposed to e-cigarette vapors. E-Cigarettes offer a very wide variety of flavors, which is one of the main factors that attract new, especially young, users. How flavoring compounds in e-cigarette liquids affect the chemical composition and toxicity of e-cigarette vapors is practically unknown. Although e-cigarettes are marketed as safer alternatives to traditional cigarettes, several studies have demonstrated formation of toxic aldehydes in e-cigarette vapors during vaping. So far, aldehyde formation has been attributed to thermal decomposition of the main components of e-cigarette e-liquids (propylene glycol and glycerol), while the role of flavoring compounds has been ignored. In this study, we have measured several toxic aldehydes produced by three popular brands of e-cigarettes with flavored and unflavored e-liquids. We show that, within the tested e-cigarette brands, thermal decomposition of flavoring compounds dominates formation of aldehydes during vaping, producing levels that exceed occupational safety standards. Production of aldehydes was found to be exponentially dependent on concentration of flavoring compounds. These findings stress the need for a further, thorough investigation of the effect of flavoring compounds on the toxicity of e-cigarettes.
Harlow, Philippa H; Perry, Simon J; Widdison, Stephanie; Daniels, Shannon; Bondo, Eddie; Lamberth, Clemens; Currie, Richard A; Flemming, Anthony J
2016-03-18
To determine whether a C. elegans bioassay could predict mammalian developmental activity, we selected diverse compounds known and known not to elicit such activity and measured their effect on C. elegans egg viability. 89% of compounds that reduced C. elegans egg viability also had mammalian developmental activity. Conversely only 25% of compounds found not to reduce egg viability in C. elegans were also inactive in mammals. We conclude that the C. elegans egg viability assay is an accurate positive predictor, but an inaccurate negative predictor, of mammalian developmental activity. We then evaluated C. elegans as a tool to identify mechanisms affecting toxicological outcomes among related compounds. The difference in developmental activity of structurally related fungicides in C. elegans correlated with their rate of metabolism. Knockdown of the cytochrome P450s cyp-35A3 and cyp-35A4 increased the toxicity to C. elegans of the least developmentally active compounds to the level of the most developmentally active. This indicated that these P450s were involved in the greater rate of metabolism of the less toxic of these compounds. We conclude that C. elegans based approaches can predict mammalian developmental activity and can yield plausible hypotheses for factors affecting the biological potency of compounds in mammals.
Discriminating toxicant classes by mode of action. 1. (Eco)toxicity profiles.
Nendza, Monika; Wenzel, Andrea
2006-05-01
Predictive toxicology, particularly quantitative structure-activity relationships (QSARs), require classification of chemicals by mode of action (MOA). MOA is, however, not a constant property of a compound but it varies between species and may change with concentration and duration of exposure. A battery of MOA-specific in-vitro and low-complexity assays, featuring biomolecular targets for major classes of environmental pollutants, provides characteristic responses for (1.) classification of chemicals by MOA, (2.) identification of (eco)toxicity profiles of chemicals, (3.) identification of chemicals with specific MOAs, (4.) indication of most sensitive species, (5.) identification of chemicals that are outliers in QSARs and (6.) selection of appropriate QSARs for predictions. Chemicals covering nine distinct modes of toxic action (non-polar non-specific toxicants (n=14), polar non-specific toxicants (n=18), uncouplers of oxidative phosphorylation (n=25), inhibitors of photosynthesis (n=15), inhibitors of acetylcholinesterase (n=14), inhibitors of respiration (n=3), thiol-alkylating agents (n=9), reactives (irritants) (n=8), estrogen receptor agonists (n=9)) were tested for cytotoxicity in the neutralred assay, oxygen consumption in isolated mitochondria, oxygen production in algae, inhibition of AChE, reaction with GSH and activity in the yeast estrogen receptor assay. Data on in-vivo aquatic toxicity (LC50, EC50) towards fish, daphnids, algae and bacteria were collected from the literature for reasons of comparison and reference scaling. In the MOA-specific in-vitro test battery, most test chemicals are specifically active at low concentrations, though multiple effects do occur. Graphical and statistical evaluation of the individual classes versus MOA 1 (non-polar non-specific toxicants) identifies interactions related to predominant MOA. Discriminant analyses (DA) on subsets of the data revealed correct classifications between 70% (in-vivo data) and >90% (in-vitro data). Functional similarity of chemical substances is defined in terms of their (eco)toxicity profiles. Within each MOA class, the compounds share some properties related to the rate-limiting interactions, e.g., steric fit to the target site and/or reactivity with target biomolecules, revealing a specific pattern (fingerprint) of characteristic effects. The successful discrimination of toxicant classes by MOA is based on comprehensive characterization of test chemicals' properties related to interactions with target sites. The suite of aquatic in-vivo tests using fish, daphnids, algae and bacteria covers most acute effects, whilst long-term (latent) impacts are generally neglected. With the MOA-specific in-vitro test battery such distinctions are futile, because it focuses on isolated targets, i.e. it indicates the possible targets of a chemical regardless of the timescale of effects. The data analysis indicates that the in-vitro battery covers most effects in vivo and moreover provides additional aspects of the compounds' MOA. Translating in-vitro effects to in-vivo toxicity requires combining physiological and chemical knowledge about underlying processes. Comparison of the specific in-vitro effects of a compound with the respective sensitivities of aquatic organisms indicates particularly sensitive species. Classifications of toxicants by MOA based on physicochemical descriptors provides insight to interactions and directs to mechanistic QSARs.
Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Guan, Chengwei; Chen, Zhangran; Zheng, Wei; Xu, Hong; Tian, Yun; Yu, Zhiming; Zheng, Tianling
2015-06-15
Harmful algal blooms (HABs) could be deemed hazardous materials in aquatic environment. Alexandrium tamarense is a toxic HAB causing alga, which causes serious economic losses and health problems. In this study, the bacterium Deinococcus xianganensis Y35 produced a new algicide, showing a high algicidal effect on A. tamarense. The algicidal compound was identified as deinoxanthin, a red pigment, based on high resolution mass spectrometry and NMR after the active compound was isolated and purified. Deinoxanthin exhibited an obvious inhibitory effect on algal growth, and showed algicidal activity against A. tamarense with an EC50 of 5.636 μg/mL with 12h treatment time. Based on the unique structure and characteristics of deinoxanthin, the content of reactive oxygen species (ROS) increased after 0.5h exposure, the structure of organelles including chloroplasts and mitochondria were seriously damaged. All these results firstly confirmed that deinoxanthin as the efficient and eco-environmental algicidal compound has potential to be used for controlling harmful algal blooms through overproduction of ROS. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stohs, S.J.
1992-09-15
Ricin is prototypical of many protein toxins, and is one of the most toxic compounds known to man. At the present time, no specific treatment is available for protein toxin exposure. Recent studies have shown that ricin exhibits a glycosidase activity which specifically removes an adenine base from rRNA, resulting in an inhibition of protein elongation and death of exposed animals. We have synthesized eight potential irreversible glycosidase inhibitors. The eight compounds were synthesized according to published methods, and the purities of the products were determined by melting point determination, elemental analysis, IR spectra, NMR spectra, and mass spectroscopy. Sufficientmore » quantities of each of the eight compounds were synthesized to test their chemoprotectant activity against ricin in two cell lines, namely, a macrophage J744A.1 cell line and a Chinese hamster ovary cell line. The release of lactate dehydrogenase (LDH), and aspartate aminotransferase (AST) were assessed as parameters of cytotoxicity after treatment with ricin or potential chemoprotectants. Alamine aminotransferase (ALT) was shown not to be a useful assay of cytotoxicity.« less
Nara, Hiroshi; Sato, Kenjiro; Naito, Takako; Mototani, Hideyuki; Oki, Hideyuki; Yamamoto, Yoshio; Kuno, Haruhiko; Santou, Takashi; Kanzaki, Naoyuki; Terauchi, Jun; Uchikawa, Osamu; Kori, Masakuni
2014-11-13
Matrix metalloproteinase-13 (MMP-13) has been implicated to play a key role in the pathology of osteoarthritis. On the basis of X-ray crystallography, we designed a series of potent MMP-13 selective inhibitors optimized to occupy the distinct deep S1' pocket including an adjacent branch. Among them, carboxylic acid inhibitor 21k exhibited excellent potency and selectivity for MMP-13 over other MMPs. An effort to convert compound 21k to the mono sodium salt 38 was promising in all animal species studied. Moreover, no overt toxicity was observed in a preliminary repeat dose oral toxicity study of compound 21k in rats. A single oral dose of compound 38 significantly reduced degradation products (CTX-II) released from articular cartilage into the joint cavity in a rat MIA model in vivo. In this article, we report the discovery of highly potent, selective, and orally bioavailable MMP-13 inhibitors as well as their detailed structure-activity data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiemers, K.D.; Daling, P.; Meier, K.
1999-01-04
Regulated pesticides, herbicides, miticides, and fungicides were evaluated for their potential past and current use at the Hanford Site. The starting list of these compounds is based on regulatory analyte input lists discussed in the Regulatory DQO. Twelve pesticide, herbicide, miticide, and fungicide compounds are identified for analysis in the Hanford SST and DST waste in support of the Regulatory DQO. The compounds considered for additional analyses are non-detected, considered stable in the tank waste matrix, and of higher toxicity/carcinogenicity.
Screening of Compounds Toxicity against Human Monocytic cell line-THP-1 by Flow Cytometry
Pick, Neora; Cameron, Scott; Arad, Dorit
2004-01-01
The worldwide rapid increase in bacterial resistance to numerous antibiotics requires on-going development of new drugs to enter the market. As the development of new antibiotics is lengthy and costly, early monitoring of compound's toxicity is essential in the development of novel agents. Our interest is in a rapid, simple, high throughput screening method to assess cytotoxicity induced by potential agents. Some intracellular pathogens, such as Mycobacterium tuberculosis primary site of infection is human alveolar macrophages. Thus, evaluation of candidate drugs for macrophage toxicity is crucial. Protocols for high throughput drug toxicity screening of macrophages using flow cytometry are lacking in the literature. For this application we modified a preexisting technique, propidium iodide (PI) exclusion staining and utilized it for rapid toxicity tests. Samples were prepared in 96 well plates and analyzed by flow cytometry, which allowed for rapid, inexpensive and precise assessment of compound's toxicity associated with cell death. PMID:15472722
Photo-oxidation method using MoS2 nanocluster materials
Wilcoxon, Jess P.
2001-01-01
A method of photo-oxidizing a hydrocarbon compound is provided by dispersing MoS.sub.2 nanoclusters in a solvent containing a hydrocarbon compound contaminant to form a stable solution mixture and irradiating the mixture to photo-oxide the hydrocarbon compound. Hydrocarbon compounds of interest include aromatic hydrocarbon and chlorinated hydrocarbons. MoS.sub.2 nanoclusters with an average diameter less than approximately 10 nanometers are shown to be effective in decomposing potentially toxic aromatic and chlorinated hydrocarbons, such as phenol, pentachlorophenol, chlorinated biphenols, and chloroform, into relatively non-toxic compounds. The irradiation can occur by exposing the MoS.sub.2 nanoclusters and hydrocarbon compound mixture with visible light. The MoS.sub.2 nanoclusters can be introduced to the toxic hydrocarbons as either a MoS.sub.2 solution or deposited on a support material.
Medicinal Uses, Phytochemistry, and Pharmacology of Origanum onites (L.): A Review.
Tepe, Bektas; Cakir, Ahmet; Sihoglu Tepe, Arzuhan
2016-05-01
Origanum onites L., known as Turkish oregano, has great traditional, medicinal, preservative, and commercial importance. It is used for the treatment of several kinds of ailments, such as gastrointestinal disorders, diabetes, high cholesterol, leukemia, bronchitis, etc. In this review, traditional use, phytochemistry, and pharmacology of O. onites reported between 1988 and 2014 were discussed. This review was prepared based on literature survey on scientific journals and books from libraries and electronic sources, such as Web of Science, PubMed, Scopus, Google Scholar, etc. All databases were searched up to June 2014. Several different classes of terpenoids, triterpene acids, phenolic acids, hydroquinones, flavonoids, hydrocarbons, sterols, pigments, fatty acids, tocopherols, and inorganic compounds were detected mainly in the aerial parts of this plant. Pharmacological studies revealed that extracts obtained from several solvents and individual compounds exhibited antimicrobial, antiviral, antioxidant, insecticidal, anticancer, hepatoprotective, genotoxic, antidiabetic, cholinesterase inhibitory, anti-inflammatory, analgesic activities, etc. O. onites, in general, exhibited remarkable activity potential in almost all test systems. The results of toxicity studies indicated that O. onites did not show any significant toxicity and mutagenicity on Drosophila and Salmonella. Toxicity of the extracts/essential oils and also individual compounds should be evaluated on mammalian cells to ensure their safety. The bioactivity of individual compounds aside from terpenoids should also be assessed in detail. Additionally, mode of action for the bioactive compounds should be evaluated to understand the complex pharmacological effects of these phytochemicals. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.
Identification of chalcone-based antileishmanial agents targeting trypanothione reductase.
Ortalli, Margherita; Ilari, Andrea; Colotti, Gianni; De Ionna, Ilenia; Battista, Theo; Bisi, Alessandra; Gobbi, Silvia; Rampa, Angela; Di Martino, Rita M C; Gentilomi, Giovanna A; Varani, Stefania; Belluti, Federica
2018-05-02
All currently used first-line and second-line drugs for the treatment of leishmaniasis exhibit several drawbacks including toxicity, high costs and route of administration. Furthermore, some drugs are associated with the emergence of drug resistance. Thus, the development of new treatments for leishmaniasis is a priority in the field of neglected tropical diseases. The present work highlights the use of natural derived products, i.e. chalcones, as potential source of antileishmanial agents. Thirty-one novel chalcone compounds have been synthesized and their activity has been evaluated against promastigotes of Leishmania donovani; 16 compounds resulted active against L. donovani in a range from 3.0 to 21.5 μM, showing low toxicity against mammalian cells. Among these molecules, 6 and 16 showed good inhibitory activity on both promastigotes and intracellular amastigotes, coupled with an high selectivity index. Furthermore, compounds 6 and 16 inhibited the promastigote growth of other leishmanial species, including L. tropica, L. major and L. infantum. Finally, 6 and 16 interacted with high affinity with trypanothione reductase (TR), an essential enzyme for the leishmanial parasite and compound 6 inhibited TR with sub-micromolar potency. Thus, the effective inhibitory activity against Leishmania, the lack of toxicity on mammalian cells and the ability to block a crucial parasite's enzyme, highlight the potential for compound 6 to be optimized as novel drug candidate against leishmaniasis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Cheminformatics Analysis of EPA ToxCast Chemical Libraries ...
An important goal of toxicology research is the development of robust methods that use in vitro and chemical structure information to predict in vivo toxicity endpoints. The US EPA ToxCast program is addressing this goal using ~600 in vitro assays to create bioactivity profiles on a set of 320 compounds, mostly pesticide actives, that have well characterized in vivo toxicity. These 320 compounds (EPA-320 set evaluated in Phase I of ToxCast) are a subset of a much larger set of ~10,000 candidates that are of interest to the EPA (called here EPA-10K). Predictive models of in vivo toxicity are being constructed from the in vitro assay data on the EPA-320 chemical set. These models require validation on additional chemicals prior to wide acceptance, and this will be carried out by evaluating compounds from EPA-10K in Phase II of ToxCast. We have used cheminformatics approaches including clustering, data visualization, and QSAR to develop models for EPA-320 that could help prioritizing EPA-10K validation chemicals. Both chemical descriptors, as well as calculated physicochemical properties have been used. Compounds from EPA-10K are prioritized based on their similarity to EPA-320 using different similarity metrics, with similarity thresholds defining the domain of applicability for the predictive models built for EPA-320 set. In addition, prioritized lists of compounds of increasing dissimilarity from the EPA-320 have been produced, to test the ability of the EPA-320
High-Density Real-Time PCR-Based in Vivo Toxicogenomic Screen to Predict Organ-Specific Toxicity
Fabian, Gabriella; Farago, Nora; Feher, Liliana Z.; Nagy, Lajos I.; Kulin, Sandor; Kitajka, Klara; Bito, Tamas; Tubak, Vilmos; Katona, Robert L.; Tiszlavicz, Laszlo; Puskas, Laszlo G.
2011-01-01
Toxicogenomics, based on the temporal effects of drugs on gene expression, is able to predict toxic effects earlier than traditional technologies by analyzing changes in genomic biomarkers that could precede subsequent protein translation and initiation of histological organ damage. In the present study our objective was to extend in vivo toxicogenomic screening from analyzing one or a few tissues to multiple organs, including heart, kidney, brain, liver and spleen. Nanocapillary quantitative real-time PCR (QRT-PCR) was used in the study, due to its higher throughput, sensitivity and reproducibility, and larger dynamic range compared to DNA microarray technologies. Based on previous data, 56 gene markers were selected coding for proteins with different functions, such as proteins for acute phase response, inflammation, oxidative stress, metabolic processes, heat-shock response, cell cycle/apoptosis regulation and enzymes which are involved in detoxification. Some of the marker genes are specific to certain organs, and some of them are general indicators of toxicity in multiple organs. Utility of the nanocapillary QRT-PCR platform was demonstrated by screening different references, as well as discovery of drug-like compounds for their gene expression profiles in different organs of treated mice in an acute experiment. For each compound, 896 QRT-PCR were done: four organs were used from each of the treated four animals to monitor the relative expression of 56 genes. Based on expression data of the discovery gene set of toxicology biomarkers the cardio- and nephrotoxicity of doxorubicin and sulfasalazin, the hepato- and nephrotoxicity of rotenone, dihydrocoumarin and aniline, and the liver toxicity of 2,4-diaminotoluene could be confirmed. The acute heart and kidney toxicity of the active metabolite SN-38 from its less toxic prodrug, irinotecan could be differentiated, and two novel gene markers for hormone replacement therapy were identified, namely fabp4 and pparg, which were down-regulated by estradiol treatment. PMID:22016648
NASA Astrophysics Data System (ADS)
Lewis, Scott Romak
Membrane-based separation processes have been used extensively for drinking water purification, wastewater treatment, and numerous other applications. Reactive membranes synthesized through functionalization of the membrane pores offer enhanced reactivity due to increased surface area at the polymer-solution interface and low diffusion limitations. Oxidative techniques utilizing free radicals have proven effective for both the destruction of toxic organics and non-environmental applications. Most previous work focuses on reactions in the homogeneous phase; however, the immobilization of reactants in membrane pores offers several advantages. The use of polyanions immobilized in a membrane or chelates in solution prevents ferric hydroxide precipitation at near-neutral pH, a common limitation of iron(Fe(II/III))-catalyzed hydrogen peroxide (H 2O2) decomposition. The objectives of this research are to develop a membrane-based platform for the generation of free radicals, degrade toxic organic compounds using this and similar solution-based reactions, degrade toxic organic compounds in droplet form, quantify hydroxyl radical production in these reactions, and develop kinetic models for both processes. In this study, a functionalized membrane containing poly(acrylic acid) (PAA) was used to immobilize iron ions and conduct free radical reactions by permeating H2O2 through the membrane. The membrane's responsive behavior to pH and divalent cations was investigated and modeled. The conversion of Fe(II) to Fe(III) in the membrane and its effect on the decomposition of hydrogen peroxide were monitored and used to develop kinetic models for predicting H2O2 decomposition in these systems. The rate of hydroxyl radical production, and hence contaminant degradation can be varied by changing the residence time, H2O2 concentration, and/or iron loading. Using these membrane-immobilized systems, successful removal of toxic organic compounds, such as pentachlorophenol (PCP), from water was demonstrated. Another toxic organic compound of interest for water treatment applications is trichloroethylene (TCE). Due to its limited solubility in water, a majority of the TCE is often present in the form of droplets. In this study, effective TCE droplet degradation using chelate-modified, iron-catalyzed free radical reactions at near-neutral pH was demonstrated. In order to predict the degradation of aqueous and non-aqueous phase TCE for these reactions, a mathematical model was constructed through the use of droplet mass transfer correlations and free radical reaction kinetics. KEYWORDS: Functionalized membrane, free radical, hydrogen peroxide, chelate-modified, membrane reactor
Cristale, Joyce; García Vázquez, Alejandro; Barata, Carlos; Lacorte, Silvia
2013-09-01
The occurrence, partitioning and risk of eight polybrominated diphenyl ethers (PBDEs), nine new brominated (NBFRs) and ten organophosphorus flame retardants (OPFRs) were evaluated in three Spanish rivers suffering different anthropogenic pressures (Nalón, Arga and Besòs). OPFRs were ubiquitous contaminants in water (ΣOPFRs ranging from 0.0076 to 7.2μgL(-1)) and sediments (ΣOPFRs ranging 3.8 to 824μgkg(-1)). Brominated flame retardants were not detected in waters, whereas ΣPBDEs ranged from 88 to 812μgkg(-1) and decabromodiphenyl ethane (DBDPE) reached 435μgkg(-1) in sediments from the River Besòs, the most impacted river. The occurrence of flame retardants in river water and sediment was clearly associated with human activities, since the highest levels occurred near urban and industrial zones and after wastewater treatment plants discharge. Daphnia magna toxicity was carried out for OPFRs, the most ubiquitous flame retardants, considering individual compounds and mixtures. Toxicity of nine tested OPFRs differed largely among compounds, with EC50 values ranging over three magnitude orders (0.31-381mgL(-1)). Results evidenced that these compounds act by non-polar narcosis, since their toxicity was proportional to their lipophilicity (Kow). Furthermore, their joint toxicity was additive, which means that single and joint toxicity can be predicted knowing their concentration levels in water using quantitative structure activity relationships (QSARs) and predictive mixture models. Based on these results, a risk assessment considering joint effect was performed calculating and summing risk quotients (RQs) for the water and sediment samples. No significant risk to D. magna (ΣRQs <1) was observed for any of the monitored rivers. © 2013.
Stevens, An-Sofie; Pirotte, Nicky; Plusquin, Michelle; Willems, Maxime; Neyens, Thomas; Artois, Tom; Smeets, Karen
2015-03-01
To investigate hydrophobic test compounds in toxicological studies, solvents like dimethylsulfoxide (DMSO) are inevitable. However, using these solvents, the interpretation of test compound-induced responses can be biased. DMSO concentration guidelines are available, but are mostly based on acute exposures involving one specific toxicity endpoint. Hence, to avoid solvent-toxicant interference, we use multiple chronic test endpoints for additional interpretation of DMSO concentrations and propose a statistical model to assess possible synergistic, antagonistic or additive effects of test compounds and their solvents. In this study, the effects of both short- (1 day) and long-term (2 weeks) exposures to low DMSO concentrations (up to 1000 µl l(-1) ) were studied in the planarian Schmidtea mediterranea. We measured different biological levels in both fully developed and developing animals. In a long-term exposure set-up, a concentration of 500 µl l(-1) DMSO interfered with processes on different biological levels, e.g. behaviour, stem cell proliferation and gene expression profiles. After short exposure times, 500 µl l(-1) DMSO only affected motility, whereas the most significant changes on different parameters were observed at a concentration of 1000 µl l(-1) DMSO. As small sensitivity differences exist between biological levels and developmental stages, we advise the use of this solvent in concentrations below 500 µl l(-1) in this organism. In the second part of our study, we propose a statistical approach to account for solvent-toxicant interactions and discuss full-scale solvent toxicity studies. In conclusion, we reassessed DMSO concentration limits for different experimental endpoints in the planarian S. mediterranea. Copyright © 2014 John Wiley & Sons, Ltd.
Target Fishing for Chemical Compounds using Target-Ligand Activity data and Ranking based Methods
Wale, Nikil; Karypis, George
2009-01-01
In recent years the development of computational techniques that identify all the likely targets for a given chemical compound, also termed as the problem of Target Fishing, has been an active area of research. Identification of likely targets of a chemical compound helps to understand problems such as toxicity, lack of efficacy in humans, and poor physical properties associated with that compound in the early stages of drug discovery. In this paper we present a set of techniques whose goal is to rank or prioritize targets in the context of a given chemical compound such that most targets that this compound may show activity against appear higher in the ranked list. These methods are based on our extensions to the SVM and Ranking Perceptron algorithms for this problem. Our extensive experimental study shows that the methods developed in this work outperform previous approaches by 2% to 60% under different evaluation criterions. PMID:19764745
Water-Based Pressure Sensitive Paint
NASA Technical Reports Server (NTRS)
Oglesby, Donald M.; Ingram, JoAnne L.; Jordan, Jeffrey D.; Watkins, A. Neal; Leighty, Bradley D.
2004-01-01
Preparation and performance of a water-based pressure sensitive paint (PSP) is described. A water emulsion of an oxygen permeable polymer and a platinum porphyrin type luminescent compound were dispersed in a water matrix to produce a PSP that performs well without the use of volatile, toxic solvents. The primary advantages of this PSP are reduced contamination of wind tunnels in which it is used, lower health risk to its users, and easier cleanup and disposal. This also represents a cost reduction by eliminating the need for elaborate ventilation and user protection during application. The water-based PSP described has all the characteristics associated with water-based paints (low toxicity, very low volatile organic chemicals, and easy water cleanup) but also has high performance as a global pressure sensor for PSP measurements in wind tunnels. The use of a water-based PSP virtually eliminates the toxic fumes associated with the application of PSPs to a model in wind tunnels.
Neuwoehner, Judith; Reineke, Anne-Kirsten; Hollender, Juliane; Eisentraeger, Adolf
2009-03-01
In the groundwater of a timber impregnation site higher concentrations of hydroxylated quinolines compared to their parent compounds quinoline and isoquinoline were found. Studying the toxicity of parent compounds and metabolites, genotoxicity was found with metabolic activation in the SOS-Chromotest and Ames fluctuation test only for quinoline. An adverse effect on algae was observed only for the parent compounds quinoline and isoquinoline, while in the Daphnia magna immobilization assay most hydroxylated quinoline derivatives showed toxicity. The highest ecotoxic potential was observed in the Vibrio fischeri luminescence-inhibition assay. Comparing experimental EC50-values with QSAR predicted ones, for all compounds apart from isoquinoline and 2(1H)-quinolinone in the V. fischeri test baseline toxicity or polar nacrosis is indicated. In conclusion, the hydroxylation of quinoline leads to a detoxification of the genotoxic potential, while taken additive mixture toxicity and a safety factor into account parent compounds and metabolites are found of ecotoxicological relevance in the groundwater.
Accounting for dissociation and photolysis: a review of the algal toxicity of triclosan.
Roberts, Jayne; Price, Oliver R; Bettles, Nicola; Rendal, Cecilie; van Egmond, Roger
2014-11-01
Triclosan, an antimicrobial agent commonly used in down-the-drain consumer products, is toxic to freshwater microalgae. However, the rapid photolysis and pH-dependent dissociation of this compound may give rise to uncertainty in growth inhibition tests with freshwater microalgae, if these are not well characterized. Methods are presented to minimize these uncertainties by stabilizing pH with an organic buffering agent (Bis-Tris) and by the application of ultraviolet (UV) covers to remove UV wavelengths. Toxicity tests with these methods were in compliance with the validity criteria of the Organisation for Economic Co-operation and Development test 201, and no negative effects were seen in controls relative to the unmodified method. The methods were used for toxicity tests with triclosan at pH levels of 7.0, 8.0, and 8.5, yielding effective concentration, 10% values of 0.5 µg/L, 0.6 µg/L, and 12.1 µg/L, respectively. The observed change in toxicity with pH was proportional to the change in bioconcentration factor (BCF) as calculated using the cell model (a dynamic flux model based on the Fick-Nernst-Planck equations, in this case parameterized for an algal cell). Effect concentrations produced with the methods presented in the present study offer robust data on which to base risk assessment, and it is suggested that similar approaches be used to minimize uncertainty when other compounds that dissociate and photolyse are tested. © 2014 SETAC.
Synthesis and biological evaluation of febrifugine analogues as potential antimalarial agents.
Zhu, Shuren; Zhang, Quan; Gudise, Chandrashekar; Wei, Lai; Smith, Erika; Zeng, Yuling
2009-07-01
Febrifugine is an alkaloid isolated from Dichroa febrifuga Lour as the active component against Plasmodium falciparum. Adverse side effects have precluded febrifugine as a potential clinical drug. In this study novel febrifugine analogues were designed and synthesized. Lower toxicity was achieved by reducing or eliminating the tendency of forming chemically reactive and toxic intermediates and metabolites. Synthesized compounds were evaluated for acute toxicity and in vitro and in vivo antimalarial efficacy. Some compounds are much less toxic than the natural product febrifugine and existing antimalarial drug chloroquine and are expected to possess wide therapeutic windows. These compounds, as well as the underlying design rationale, may find usefulness in the discovery and development of new antimalarial drugs.
Experimental Treatment of Prostate Cancer Models with Rh2, an Isolated Ginsenoside Compound
2003-03-01
ppendices ......................................................................................... 8 3 Annual Summary of Research Project...20%/- 0% 0 5 10 15 20 25 30 35 Days Figure 2. Body weight changes of nude mice in toxicology study Based on the findings of the acute toxicity study...test, pɘ.01 **). Key Research Accomplishments 1) Acute toxicity study showed that 4 weeks’ treatment with Rh2 (50 mg/kg p.o. 5 days/week) + Taxol (6
Biofouling and Design of a Biomimetic Hull-Grooming Tool
2007-09-14
have barred the use of organotin compounds such as tributyltin ( TBT ) and copper-based paints, which are currently used by the Navy and have become...copper into the water, killing the fouling organisms. There is new research in biomimetic polymers that deter fouling, but are non- toxic . These polymers...is new research in biomimetic polymers that deter fouling, but are non- toxic . These polymers are rigidly attached to the hull surface extending
Makarova, Katerina; Siudem, Pawel; Zawada, Katarzyna; Kurkowiak, Justyna
2016-10-01
Bisphenol A (BPA) acts as an endocrine-disrupting compound even at a low concentration. Degradation of BPA could lead to the formation of toxic products. In this study, we compare the toxicity of BPA and seven intermediate products of its degradation. The accuracy of three molecular docking programs (Surflex, Autodock, and Autodock Vina) in predicting the binding affinities of selected compounds to human (ERα, ERβ, and ERRγ) and zebrafish (ERα, ERRγA, and ERRγB) estrogen and estrogen-related receptors was evaluated. The docking experiments showed that 4-isopropylphenol could have similar toxicity to that of BPA due to its high affinity to ERRγ and ERRγB and high octanol-water partitioning coefficient. The least toxic compounds were hydroquinone and phenol. Those compounds as well as BPA were screened in the zebrafish (Danio rerio) embryo test. 4-isopropylphenol had the strongest toxic effect on zebrafish embryos and caused 100% lethality shortly after exposure. BPA caused the delay in development, multiple deformations, and low heartbeats (30 bps), whereas hydroquinone had no impact on the development of the zebrafish embryo. Thus, the results of zebrafish screening are in good agreement with our docking experiment. The molecular docking could be used to screen the toxicity of other xenoestrogens and their products of degradation.
Toxicity of certain new compounds to insecticide-resistant houseflies*
Georghiou, G. P.; Metcalf, R. L.; von Zboray, E. P.
1965-01-01
Houseflies in poultry ranches in certain areas of California are now resistant to most insecticides licensed for use in these establishments, and this resistance problem appears likely to spread to other areas in the future. The authors have therefore studied the contact and oral toxicity of 19 new compounds that have shown interesting properties against resistant flies. These compounds were selected from among several hundred submitted by various laboratories for evaluation under a co-operative programme sponsored by the World Health Organization. Five compounds were found to be as toxic to three insecticide-resistant strains as to a susceptible strain, and showed strikingly steep log-dosage/probit mortality lines against the resistant strains. The authors suggest that these compounds be further studied for fly control in field trials. PMID:5294994
Chemical Characterization of Compounds Released by Marine Mammals.
1983-08-01
Glucose . . . 30 Lactose . . . 30 Mannose . . . 31 Xylose . . . 31 TOXICITY AND DISCUSSION OF COMPOUNDS WHICH ARE INSOLUBLE IN WATER AND/OR UNSAFE...glycine; urea; mannose; glycerol; inositol; arabitol; erythritol; mannitol; sorbitol; xylitol; . erythrose; galactose; glucose ; lactose; xylose...of marine mam- mals . 26 15. Summary of physical properties and toxicity information for compounds insoluble in water and/or considered unsafe . . . 27
Scholz, Stefan; Schreiber, Rene; Armitage, James; Mayer, Philipp; Escher, Beate I; Lidzba, Annegret; Léonard, Marc; Altenburger, Rolf
2018-04-01
Fish early life stage (ELS) tests (Organisation for Economic Co-operation and Development test guideline 210) are widely conducted to estimate chronic fish toxicity. In these tests, fish are exposed from the embryonic to the juvenile life stages. To analyze whether certain modes of action are related to high toxic ratios (i.e., ratios between baseline toxicity and experimental effect) and/or acute-to-chronic ratios (ACRs) in the fish ELS test, effect concentrations (ECs) for 183 compounds were extracted from the US Environmental Protection Agency's ecotoxicity database. Analysis of ECs of narcotic compounds indicated that baseline toxicity could be observed in the fish ELS test at similar concentrations as in the acute fish toxicity test. All nonnarcotic modes of action were associated with higher toxic ratios, with median values ranging from 4 to 9.3 × 10 4 (uncoupling < reactivity < neuromuscular toxicity < methemoglobin formation < endocrine disruption < extracellular matrix formation inhibition). Four modes of action were also found to be associated with high ACRs: 1) lysyl oxidase inhibition leading to notochord distortion, 2) putative methemoglobin formation or hemolytic anemia, 3) endocrine disruption, and 4) compounds with neuromuscular toxicity. For the prediction of ECs in the fish ELS test with alternative test systems, endpoints targeted to the modes of action of compounds with enhanced toxic ratios or ACRs could be used to trigger fish ELS tests or even replace these tests. Environ Toxicol Chem 2018;37:955-969. © 2018 SETAC. © 2018 SETAC.
Korabecny, Jan; Musilek, Kamil; Zemek, Filip; Horova, Anna; Holas, Ondrej; Nepovimova, Eugenie; Opletalova, Veronika; Hroudova, Jana; Fisar, Zdenek; Jung, Young-Sik; Kuca, Kamil
2011-11-01
Cholinesterase inhibitors are, so far, the only successful strategy for the symptomatic treatment of Alzheimer's disease. Tacrine (THA) is a potent acetylcholinesterase inhibitor that was used in the treatment of Alzheimer's disease for a long time. However, the clinical use of THA was hampered by its low therapeutic index, short half-life and liver toxicity. 7-Methoxytacrine (7-MEOTA) is equally pharmacological active compound with lower toxicity compared to THA. In this Letter, the synthesis, biological activity and molecular modelling of elimination by-product isolated during synthesis of 7-MEOTA based bis-alkylene linked compound is described. Copyright © 2011 Elsevier Ltd. All rights reserved.
Relative oral efficacy and acute toxicity of hydroxypyridin-4-one iron chelators in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, J.B.; Morgan, J.; Hoyes, K.P.
1990-12-01
The relationship between the oral efficacy and the acute toxicity of hydroxypyridin-4-one iron chelators has been investigated to clarify structure-function relationships of these compounds in vivo and to identify compounds with the maximum therapeutic safety margin. By comparing 59Fe excretion following oral or intraperitoneal administration of increasing doses of each chelator to iron-overloaded mice, the most effective compounds have been identified. These have partition coefficients (Kpart) above 0.3 in the iron-free form with a trend of increasing oral efficacy with increasing Kpart values (r = .6). However, this is achieved at a cost of increasing acute toxicity, as shown bymore » a linear correlation between 59Fe excretion increase per unit dose and 1/LD50 (r = .83). A sharp increase in the LD50 values is observed for compounds with Kpart values above 1.0, suggesting that such compounds are unlikely to possess a sufficient therapeutic safety margin. Below a Kpart of 1.0, acute toxicity is relatively independent of lipid solubility. All the compounds are less toxic by the oral route than by the intraperitoneal route, although iron excretion is not significantly different by these two routes. At least five compounds (CP51, CP94, CP93, CP96, and CP21) are more effective orally than the same dose of intraperitoneal desferrioxamine (DFO) (P less than or equal to .02) or orally administered L1(CP20) (P less than or equal to .02).« less
Buss, Wolfram; Mašek, Ondřej
2014-05-01
Biochar can be contaminated during pyrolysis by re-condensation of pyrolysis vapours. In this study two biochar samples contaminated by pyrolysis liquids and gases to a high degree, resulting in high volatile organic compound (high-VOC) content, were investigated and compared to a biochar with low volatile organic compound (low-VOC) content. All biochar samples were produced from the same feedstock (softwood pellets) under the same conditions (550 °C, 20 min mean residence time). In experiments where only gaseous compounds could access germinating cress seeds (Lepidium sativum), application amounts ranging from 1 to 30 g of high-VOC biochar led to total inhibition of cress seed germination, while exposure to less than 1 g resulted in only partial reduction. Furthermore, leachates from biochar/sand mixtures (1, 2, 5 wt.% of biochar) induced heavy toxicity to germination and showed that percolating water could dissolve toxic compounds easily. Low-VOC biochar didn't exhibit any toxic effects in either germination test. Toxicity mitigation via blending of a high-VOC biochar with a low-VOC biochar increased germination rate significantly. These results indicate re-condensation of VOCs during pyrolysis can result in biochar containing highly mobile, phytotoxic compounds. However, it remains unclear, which specific compounds are responsible for this toxicity and how significant re-condensation in different pyrolysis units might be. Copyright © 2014 Elsevier Ltd. All rights reserved.
Toxicity of clove essential oil and its ester eugenyl acetate against Artemia salina.
Cansian, R L; Vanin, A B; Orlando, T; Piazza, S P; Puton, B M S; Cardoso, R I; Gonçalves, I L; Honaiser, T C; Paroul, N; Oliveira, D
2017-03-01
The production of compounds via enzymatic esterification has great scientific and technological interest due to the several inconveniences related to acid catalysis, mainly by these systems do not fit to the concept of "green chemistry". Besides, natural products as clove oil present compounds with excellent biological potential. Bioactives compounds are often toxic at high doses. The evaluation of lethality in a less complex animal organism can be used to a monitoring simple and rapid, helping the identification of compounds with potential insecticide activity against larvae of insect vector of diseases. In this sense, the toxicity against Artemia salina of clove essential oil and its derivative eugenyl acetate obtained by enzymatic esterification using Novozym 435 as biocatalyst was evaluated. The conversion of eugenyl acetate synthesis was 95.6%. The results about the evaluation of toxicity against the microcrustacean Artemia salina demonstrated that both oil (LC50= 0.5993 µg.mL-1) and ester (LC50= 0.1178 µg.mL-1) presented high toxic potential, being the eugenyl acetate almost 5 times more toxic than clove essential oil. The results reported here shows the potential of employing clove oil and eugenyl acetate in insecticide formulations.
A perspective on the toxicology of marine toxins.
Botana, Luis M
2012-09-17
Although there has been much progress with regard to marine toxins from dinoflagellates, much remains to be done. Because these compounds are a seafood consumer risk, the demands cover from legislative to scientific aspects. Legislation is required for all new toxins that appear in the coasts. On the other hand, it is important to understand the toxicity of the different analogues, in terms of both the relative toxicity to reference compounds and the mechanism of toxicity itself, both acute and long-term. For this, a uniform approach to do toxic studies is necessary, especially acute toxicity. The need for pure standards in sufficient supply and the understanding of the mode of action of some of the compounds (such as yessotoxin or azaspiracids) will help the development of another important field, the use of marine toxins as drug leads, and the chemistry around them.
Dannat, K; Tillner, J; Winckler, T; Weiss, M; Eger, K; Dingermann, T
2003-03-01
Dictyostelium discoideum is a single-cell, eukaryotic microorganism that can undergo multicellular development in order to produce dormant spores. We investigated the capacity of D. discoideum to be used as a rapid screening system for potential developmental toxicity of compounds under development as pharmaceuticals. We used a set of four transgenic D. discoideum strains that expressed a reporter gene under the control of promoters that are active at certain time periods and in distinct cell types during D. discoideum development. We found that teratogens such as valproic acid, tretinoin, or thalidomide interfered to various extents with D. discoideum development, and had different effects on prestalk and prespore cell-specific reporter gene expression. Phenytoin was inactive in this assay, which may point to limitations in metabolization of the compound in Dictyostelium required to exert developmental toxicity. D. discoideum cell culture is cheap and easy to handle compared to mammalian cell cultures or animal teratogenicity models. Although the Dictyostelium-based assay described in this report may not securely predict the teratogenic potential of these drugs in humans, this organism may be qualified for rapid large-scale screenings of synthetic compounds under development as new pharmaceuticals for their potential to interfere with developmental processes and thus help to reduce the amount of teratogenicity tests in animal models.
Skovlund, Gitte; Damgaard, Christian; Bayley, Mark; Holmstrup, Martin
2006-12-01
The ability of Collembola to survive drought stress is crucial for their distribution in the terrestrial environment. Previous studies have suggested that several toxic compounds affect the drought tolerance of Folsomia candida in a synergistic manner and that these compounds have the feature in common that they elicit their toxicity by causing membrane damage. We hypothesised that the detrimental effect of toxic chemicals on drought tolerance in F. candida depends on the lipophilicity (log K(ow)) of the compound because a higher log K(ow) would mean a closer interaction with membranes. In this study the three chemicals 4-nonylphenol, pyrene and p,p'-DDE were tested. Surprisingly, 4-nonylphenol, with the lowest log K(ow), was the most potent with respect to reducing drought tolerance followed by pyrene, suggesting that interactions between drought tolerance and chemical stress do not depend on lipophilicity alone.
Passino-Reader, D.R.; Hickey, J.P.; Ogilvie, L.M.
1997-01-01
The objectives of this study were (1) to determine the toxicity of several types of polycyclic hydrocarbons characteristic of Great Lakes samples to Daphnia pulex, a Great Lakes zooplankter, (2) to investigate the influence of different structural characteristics on toxicity, and (3) to determine the linear solvation energy relationship (LSER) parameters and model that describe these compounds. These results will be related to comparative toxicity of other Great Lakes environmental compounds and to their application in site specific risk assessment.
Acute Oral Toxicity of Trimethylolethane Trinitrate (TMETN) in Sprague- Dawley Rats
1989-07-01
classification scheme of Hodge and Steiner, these results indicate that TMETN is a slightly toxic compound.1 20. ON-RIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT...the classification scheme of Hodge and Sterner, these results indcate that TMETN is a slightly toxic compound. KEY WORDS: Acute Oral Toxicit-y...Dawley rats and 1027.4 63.7 mg/kg in female Sprague-Dawley rats. These MLD values place TMETN in the "slightly toxic" range by the system of Hodge and
Identification of Chemical Toxicity Using Ontology Information of Chemicals.
Jiang, Zhanpeng; Xu, Rui; Dong, Changchun
2015-01-01
With the advance of the combinatorial chemistry, a large number of synthetic compounds have surged. However, we have limited knowledge about them. On the other hand, the speed of designing new drugs is very slow. One of the key causes is the unacceptable toxicities of chemicals. If one can correctly identify the toxicity of chemicals, the unsuitable chemicals can be discarded in early stage, thereby accelerating the study of new drugs and reducing the R&D costs. In this study, a new prediction method was built for identification of chemical toxicities, which was based on ontology information of chemicals. By comparing to a previous method, our method is quite effective. We hope that the proposed method may give new insights to study chemical toxicity and other attributes of chemicals.
Ting, Yuwen; Chiou, Yi-Shiou; Jiang, Yike; Pan, Min-Hsiung; Lin, Zhengyu; Huang, Qingrong
2015-08-01
Polymethoxyflavones, found widely in the peel of citrus fruits, is an emerging group of bioactive compounds with wide arrays of disease prevention functionalities. To understand the potential oral toxicity, tangeretin, being one of the most abundant polymethoxyflavones from natural sources, was used as model compound for the safety evaluation. Acute oral toxicity study was conducted using both male and female mice giving 1000, 2000, or 3000mg/kgbody weight (bw) of tangeretin in oil suspension from single gavage administration. No evidence of death was observed during 14-day post-administration period. Alterations of the hepatic cell and clinical chemistry profile increased dose dependently and exhibited distinct injury recovery pattern among different sexes. To determine the potential safety concern related to emulsification, the sub-acute toxicity of tangeretin in emulsion was evaluated and compared with un-processed oil suspension when conducting the sub-acute toxicity study over 28days. In the sub-acute study, emulsion system did not induce a significant increase of toxicity response. However, the daily low-dose application of tangeretin showed U-shaped dose-response pattern in regard to hepatic alteration. The result from this study can serve as a good safety reference for future application of polymethoxyflavone as a functional ingredient in food. Copyright © 2015 Elsevier Ltd. All rights reserved.
Acute Neurobehavorial Toxicity of Flame Retardant Replacement Compounds in Zebrafish Larvae
As polybrominated diphenyl ethers (PBDEs) are phased out, numerous compounds areemerging as potential replacement flame retardants for use in consumer and electronicproducts. Little is known, however, about the neurobehavioral toxicity of thesereplacements. This study evaluated t...
De Rycker, Manu; Thomas, John; Riley, Jennifer; Brough, Stephen J; Miles, Tim J; Gray, David W
2016-04-01
Chagas disease is a significant health problem in Latin America and the available treatments have significant issues in terms of toxicity and efficacy. There is thus an urgent need to develop new treatments either via a repurposing strategy or through the development of new chemical entities. A key first step is the identification of compounds with anti-Trypanosoma cruzi activity from compound libraries. Here we describe a hit discovery screening cascade designed to specifically identify hits that have the appropriate anti-parasitic properties to warrant further development. The cascade consists of a primary imaging-based assay followed by newly developed and appropriately scaled secondary assays to predict the cidality and rate-of-kill of the compounds. Finally, we incorporated a cytochrome P450 CYP51 biochemical assay to remove compounds that owe their phenotypic response to inhibition of this enzyme. We report the use of the cascade in profiling two small libraries containing clinically tested compounds and identify Clemastine, Azelastine, Ifenprodil, Ziprasidone and Clofibrate as molecules having appropriate profiles. Analysis of clinical derived pharmacokinetic and toxicity data indicates that none of these are appropriate for repurposing but they may represent suitable start points for further optimisation for the treatment of Chagas disease.
Structure-based discovery of fiber-binding compounds that reduce the cytotoxicity of amyloid beta
Jiang, Lin; Liu, Cong; Leibly, David; ...
2013-07-16
Amyloid protein aggregates are associated with dozens of devastating diseases including Alzheimer’s, Parkinson’s, ALS, and diabetes type 2. While structure-based discovery of compounds has been effective in combating numerous infectious and metabolic diseases, ignorance of amyloid structure has hindered similar approaches to amyloid disease. Here we show that knowledge of the atomic structure of one of the adhesive, steric-zipper segments of the amyloid-beta (Aβ) protein of Alzheimer’s disease, when coupled with computational methods, identifies eight diverse but mainly flat compounds and three compound derivatives that reduce Aβ cytotoxicity against mammalian cells by up to 90%. Although these compounds bind tomore » Aβ fibers, they do not reduce fiber formation of Aβ. Structure-activity relationship studies of the fiber-binding compounds and their derivatives suggest that compound binding increases fiber stability and decreases fiber toxicity, perhaps by shifting the equilibrium of Aβ from oligomers to fibers.« less
Leslie, Heather A; Hermens, Joop L M; Kraak, Michiel H S
2004-08-01
Body residues of compounds with a narcotic mode of action that exceed critical levels result in baseline toxicity in organisms. Previous studies have shown that internal concentrations in organisms also can be estimated by way of passive sampling. In this experiment, solid-phase microextraction (SPME) fibers were used as a tool to estimate the body residues, which were then compared to measured levels. Past application of SPME fibers in the assessment of toxicity risk of samples has focused on separate exposure of fibers and organisms, often necessitated by the amount of agitation needed in order to achieve steady state in the fibers within a convenient time period. Uptake kinetic studies have shown that in SPME fibers with thin coatings, equilibrium concentrations can be reached without agitation within the time frame of a toxicity test. In contrast to toxicity experiments to date, the SPME fibers in the current study were exposed concomitantly to the test water with the organisms, ensuring an exposure under the exact same conditions. Fibers and two aquatic invertebrate species were exposed to a mixture of four chlorobenzenes with a narcotic mode of action. The total body residue of these compounds in the organisms was determined, as was the acute toxicity resulting from the accumulation. The total body residues of both species were correlated to the total concentrations in SPME fibers. It was concluded that toxicity could be predicted based on total body residue (TBR) estimates from fiber concentrations.
SEURAT-1 liver gold reference compounds: a mechanism-based review.
Jennings, Paul; Schwarz, Michael; Landesmann, Brigitte; Maggioni, Silvia; Goumenou, Marina; Bower, David; Leonard, Martin O; Wiseman, Jeffrey S
2014-12-01
There is an urgent need for the development of alternative methods to replace animal testing for the prediction of repeat dose chemical toxicity. To address this need, the European Commission and Cosmetics Europe have jointly funded a research program for 'Safety Evaluation Ultimately Replacing Animal Testing.' The goal of this program was the development of in vitro cellular systems and associated computational capabilities for the prediction of hepatic, cardiac, renal, neuronal, muscle, and skin toxicities. An essential component of this effort is the choice of appropriate reference compounds that can be used in the development and validation of assays. In this review, we focus on the selection of reference compounds for liver pathologies in the broad categories of cytotoxicity and lipid disorders. Mitochondrial impairment, oxidative stress, and apoptosis are considered under the category of cytotoxicity, while steatosis, cholestasis, and phospholipidosis are considered under the category of lipid dysregulation. We focused on four compound classes capable of initiating such events, i.e., chemically reactive compounds, compounds with specific cellular targets, compounds that modulate lipid regulatory networks, and compounds that disrupt the plasma membrane. We describe the molecular mechanisms of these compounds and the cellular response networks which they elicit. This information will be helpful to both improve our understanding of mode of action and help in the selection of appropriate mechanistic biomarkers, allowing us to progress the development of animal-free models with improved predictivity to the human situation.
Lee, Mi-Sun; LeBouf, Ryan F; Son, Youn-Suk; Koutrakis, Petros; Christiani, David C
2017-04-27
We aimed to assess the content of electronic cigarette (EC) emissions for five groups of potentially toxic compounds that are known to be present in tobacco smoke: nicotine, particles, carbonyls, volatile organic compounds (VOCs), and trace elements by flavor and puffing time. We used ECs containing a common nicotine strength (1.8%) and the most popular flavors, tobacco and menthol. An automatic multiple smoking machine was used to generate EC aerosols under controlled conditions. Using a dilution chamber, we targeted nicotine concentrations similar to that of exposure in a general indoor environment. The selected toxic compounds were extracted from EC aerosols into a solid or liquid phase and analyzed with chromatographic and spectroscopic methods. We found that EC aerosols contained toxic compounds including nicotine, fine and nanoparticles, carbonyls, and some toxic VOCs such as benzene and toluene. Higher mass and number concentrations of aerosol particles were generated from tobacco-flavored ECs than from menthol-flavored ECs. We found that diluted machine-generated EC aerosols contain some pollutants. These findings are limited by the small number of ECs tested and the conditions of testing. More comprehensive research on EC exposure extending to more brands and flavor compounds is warranted.
Lenis-Rojas, Oscar A; Roma-Rodrigues, Catarina; Fernandes, Alexandra R; Marques, Fernanda; Pérez-Fernández, David; Guerra-Varela, Jorge; Sánchez, Laura; Vázquez-García, Digna; López-Torres, Margarita; Fernández, Alberto; Fernández, Jesús J
2017-06-19
Ruthenium-based drugs exhibit interesting properties as potential anticancer pharmaceuticals. We herein present the synthesis and characterization of a new family of ruthenium complexes with formulas [{Ru(bipy) 2 } 2 (μ-L)][CF 3 SO 3 ] 4 (L = bptz, 1a) and [{Ru(bipy) 2 } 2 (μ-L)][CF 3 SO 3 ] 2 (L = arphos, 2a; dppb, 3a; dppf, 4a), which were synthesized from the Ru(II) precursor compound cis-Ru(bipy) 2 Cl 2 . The complexes were characterized by elemental analysis, mass spectrometry, 1 H and 31 P{ 1 H} NMR, IR spectroscopy, and conductivity measurements. The molecular structures for three Ru(II) compounds were determined by single-crystal X-ray diffraction. The newly developed compounds interact with CT-DNA by intercalation, in particular, 2a, 3a, and 4a, which also seemed to induce some extent of DNA degradation. This effect seemed to be related with the formation of reactive oxygen species. The cytotoxic activity was evaluated against A2780, MCF7, and MDAMB231 human tumor cells. Compounds 2a and 4a were the most cytotoxic with activity compared to cisplatin (∼2 μM, 72 h) in the A2780 cisplatin sensitive cells. All the compounds induced A2780 cell death by apoptosis, however, to a lesser extent for compounds 4a and 2a. For these compounds, the mechanism of cell death in addition to apoptosis seemed to involve autophagy. In vivo toxicity was evaluated using the zebrafish embryo model. LC 50 estimates varied from 5.397 (3a) to 39.404 (1a) mg/L. Considering the in vivo toxicity in zebrafish embryos and the in vitro cytotoxicity in cancer cells, compound 1a seems to be the safest having no effect on dechirionation and presenting a good antiproliferative activity against ovarian carcinoma cells.
Rapid toxicity assessment using an in vivo enzyme test for Brachionus plicatilis (Rotifera).
Moffat, B D; Snell, T W
1995-02-01
A 1-hr in vivo enzyme inhibition assay based on esterase activity has good potential for marine toxicity assessment. A test was developed for the rotifer Brachionus plicatilis based on the nonfluorescent substrate fluorescein diacetate (FDA), which is metabolized by esterases to a fluorescent product. Enzyme inhibition, as determined by reduced fluorescence, can be scored visually or quantified using a fluorometer. Quantification of fluorescence permits the calculation of NOEC, LOEC, chronic value, and IC20. The 1-hr esterase inhibition test has sensitivity comparable to that of 24-hr rotifer acute tests for several compounds. The toxicity of six compounds was examined using the quantified assay. The resulting IC20s were within a factor of 3 of the 24-hour LC50s. IC20 values ranged from 0.017 mg/l for tributyltin to 3.1 mg/l for zinc, with an average coefficient of variation of 17.8%. Electrophoretic analysis of rotifer homogenates suggested that a single C esterase (acetylesterase) was responsible for FDA metabolism in B. plicatilis. Several other aquatic species are capable of metabolizing FDA, including Brachionus calyciflorus, Mysidopsis bahia, Menidia beryllina, Pimephales promelas, Ceriodaphnia dubia, Daphnia pulex, Artemia salina, and Ophryotrocha sp. The esterase inhibition test is an attractive tool for assessing aquatic toxicity because of its speed, simplicity, sensitivity, and applicability to a broad range of aquatic species.
Lai, YenJung Sean; Ontiveros-Valencia, Aura; Ilhan, Zehra Esra; Zhou, Yun; Miranda, Evelyn; Maldonado, Juan; Krajmalnik-Brown, Rosa; Rittmann, Bruce E
2017-10-15
Quaternary ammonium compounds (QACs) (e.g., hexadecyltrimethyl-ammonium bromide, CTAB) are emerging contaminants with widespread use as surfactants and disinfectants. Because the initial step of QAC biodegradation is mono-oxygenation, QAC degraders require O 2 , but normal aeration leads to serious foaming. Here, we developed and tested an oxygen-based membrane biofilm reactor (O 2 -MBfR) that delivers O 2 by diffusion through the walls of hollow-membranes to a biofilm accumulating on the outer surface of membranes. The O 2 -MBfR sustained QAC biodegradation even with high and toxic QAC input concentrations, up to 400 mg/L CTAB. Bubbleless O 2 transfer completely eliminated foaming, and biofilm accumulation helped the QAC biodegraders resist toxicity. Pseudomonas, Achromobacter, Stenotrophomonas, and members of the Xanthomonadaceae family were dominant in the biofilm communities degrading CTAB, and their proportions depended on the O 2 -delivery capacity of the membranes. Bacteria capable of biodegrading QACs often harbor antibiotic resistance genes (ARGs) that help them avoid QAC toxicity. Gene copies of ARGs were detected in biofilms and liquid, but the levels of ARGs were 5- to 35-fold lower in the liquid than in the biofilm. In summary, the O 2 -MBfR achieved aerobic biodegradation of CTAB with neither foaming nor toxicity, and it also minimized the spread of ARGs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Combinatorial QSAR Modeling of Rat Acute Toxicity by Oral Exposure
Quantitative Structure-Activity Relationship (QSAR) toxicity models have become popular tools for identifying potential toxic compounds and prioritizing candidates for animal toxicity tests. However, few QSAR studies have successfully modeled large, diverse mammalian toxicity end...
Okhuarobo, Agbonlahor; Falodun, Joyce Ehizogie; Erharuyi, Osayemwenre; Imieje, Vincent; Falodun, Abiodun; Langer, Peter
2014-01-01
Andrographis paniculata Wall (family Acanthaceae) is one of the most popular medicinal plants used traditionally for the treatment of array of diseases such as cancer, diabetes, high blood pressure, ulcer, leprosy, bronchitis, skin diseases, flatulence, colic, influenza, dysentery, dyspepsia and malaria for centuries in Asia, America and Africa continents. It possesses several photochemical constituents with unique and interesting biological properties. This review describes the past and present state of research on Andrographis paniculata with respect to the medicinal usage, phytochemistry, pharmacological activities, toxicity profile and therapeutic usage, in order to bridge the gap requiring future research opportunities. This review is based on literature study on scientific journals and books from library and electronic sources. Diterpenes, flavonoids, xanthones, noriridoides and other miscellaneous compounds have been isolated from the plant. Extract and pure compounds of the plant have been reported for their anti-microbial, cytotoxicity, anti-protozoan, anti-inflammatory, anti-oxidant, immunostimulant, anti-diabetic, anti-infective, anti-angiogenic, hepato-renal protective, sex hormone/sexual function modulation, liver enzymes modulation insecticidal and toxicity activities. The results of numerous toxicity evaluations of extracts and metabolites isolated from this plant did not show any significant acute toxicity in experimental animals. Detailed and more comprehensive toxicity profile on mammalian tissues and organs is needed in future studies.
Basnet, Ram Manohar; Guarienti, Michela; Memo, Maurizio
2017-03-09
Zebrafish embryo is emerging as an important tool for behavior analysis as well as toxicity testing. In this study, we compared the effect of nine different methylxanthine drugs using zebrafish embryo as a model. We performed behavioral analysis, biochemical assay and Fish Embryo Toxicity (FET) test in zebrafish embryos after treatment with methylxanthines. Each drug appeared to behave in different ways and showed a distinct pattern of results. Embryos treated with seven out of nine methylxanthines exhibited epileptic-like pattern of movements, the severity of which varied with drugs and doses used. Cyclic AMP measurement showed that, despite of a significant increase in cAMP with some compounds, it was unrelated to the observed movement behavior changes. FET test showed a different pattern of toxicity with different methylxanthines. Each drug could be distinguished from the other based on its effect on mortality, morphological defects and teratogenic effects. In addition, there was a strong positive correlation between the toxic doses (TC 50 ) calculated in zebrafish embryos and lethal doses (LD 50 ) in rodents obtained from TOXNET database. Taken together, all these findings elucidate the potentiality of zebrafish embryos as an in vivo model for behavioral and toxicity testing of methylxanthines and other related compounds.
Nguyen, Nghi; Wilson, Danny W; Nagalingam, Gayathri; Triccas, James A; Schneider, Elena K; Li, Jian; Velkov, Tony; Baell, Jonathan
2018-03-25
In this study, a structure-activity relationship (SAR) compound series based on the NDH-2 inhibitor diphenyleneiodonium (DPI) was synthesised. Compounds were evaluated primarily for in vitro efficacy against Gram-positive and Gram-negative bacteria, commonly responsible for nosocomial and community acquired infections. In addition, we also assessed the activity of these compounds against Mycobacterium tuberculosis (Tuberculosis) and Plasmodium spp. (Malaria). This led to the discovery of highly potent compounds active against bacterial pathogens and malaria parasites in the low nanomolar range, several of which were significantly less toxic to mammalian cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Stolte, Stefan; Steudte, Stephanie; Areitioaurtena, Olatz; Pagano, Francesco; Thöming, Jorg; Stepnowski, Piotr; Igartua, Amaya
2012-11-01
This paper reports on the (eco)toxicity and biodegradability of ionic liquids considered for application as lubricants or lubrication additives. Ammonium- and pyrrolidinium-based cations combined with methylsulphate, methylsulphonate and/or (CF(3)SO(2))(2)N(-) anions were investigated in tests to determine their aquatic toxicity using water fleas Daphnia magna, green algae Selenastrum capricornutum and marine bacteria (Vibrio fischeri). Additional test systems with an isolated enzyme (acetylcholinesterase) and isolated leukaemia cells from rats (IPC-81) were used to assess the biological activity of the ionic liquids. These compounds generally exhibit low acute toxicity and biological activity. Their biodegradability was screened according to OECD test procedures 301 B and 301 F. For choline and methoxy-choline ionic liquids ready biodegradability was observed within 5 or 10 d, respectively. Some of the compounds selected have a considerable potential to contribute to the development of more sustainable products and processes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity.
Elferink, M G L; Olinga, P; Draaisma, A L; Merema, M T; Bauerschmidt, S; Polman, J; Schoonen, W G; Groothuis, G M M
2008-06-15
The microarray technology, developed for the simultaneous analysis of a large number of genes, may be useful for the detection of toxicity in an early stage of the development of new drugs. The effect of different hepatotoxins was analyzed at the gene expression level in the rat liver both in vivo and in vitro. As in vitro model system the precision-cut liver slice model was used, in which all liver cell types are present in their natural architecture. This is important since drug-induced toxicity often is a multi-cellular process involving not only hepatocytes but also other cell types such as Kupffer and stellate cells. As model toxic compounds lipopolysaccharide (LPS, inducing inflammation), paracetamol (necrosis), carbon tetrachloride (CCl(4), fibrosis and necrosis) and gliotoxin (apoptosis) were used. The aim of this study was to validate the rat liver slice system as in vitro model system for drug-induced toxicity studies. The results of the microarray studies show that the in vitro profiles of gene expression cluster per compound and incubation time, and when analyzed in a commercial gene expression database, can predict the toxicity and pathology observed in vivo. Each toxic compound induces a specific pattern of gene expression changes. In addition, some common genes were up- or down-regulated with all toxic compounds. These data show that the rat liver slice system can be an appropriate tool for the prediction of multi-cellular liver toxicity. The same experiments and analyses are currently performed for the prediction of human specific toxicity using human liver slices.
Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elferink, M.G.L.; Olinga, P.; Draaisma, A.L.
2008-06-15
The microarray technology, developed for the simultaneous analysis of a large number of genes, may be useful for the detection of toxicity in an early stage of the development of new drugs. The effect of different hepatotoxins was analyzed at the gene expression level in the rat liver both in vivo and in vitro. As in vitro model system the precision-cut liver slice model was used, in which all liver cell types are present in their natural architecture. This is important since drug-induced toxicity often is a multi-cellular process involving not only hepatocytes but also other cell types such asmore » Kupffer and stellate cells. As model toxic compounds lipopolysaccharide (LPS, inducing inflammation), paracetamol (necrosis), carbon tetrachloride (CCl{sub 4}, fibrosis and necrosis) and gliotoxin (apoptosis) were used. The aim of this study was to validate the rat liver slice system as in vitro model system for drug-induced toxicity studies. The results of the microarray studies show that the in vitro profiles of gene expression cluster per compound and incubation time, and when analyzed in a commercial gene expression database, can predict the toxicity and pathology observed in vivo. Each toxic compound induces a specific pattern of gene expression changes. In addition, some common genes were up- or down-regulated with all toxic compounds. These data show that the rat liver slice system can be an appropriate tool for the prediction of multi-cellular liver toxicity. The same experiments and analyses are currently performed for the prediction of human specific toxicity using human liver slices.« less
IMPROVEMENT IN AIR TOXICS METHODS FOR VOLATILE ORGANIC COMPOUNDS
Innovative and customized monitoring methods for air toxic volatile organic compounds (VOCs) are being developed for applications in exposure and trends monitoring. This task addresses the following applications of specific interest:
o Contributions to EPA Regional Monit...
Sensitivity assessment of freshwater macroinvertebrates to pesticides using biological traits.
Ippolito, A; Todeschini, R; Vighi, M
2012-03-01
Assessing the sensitivity of different species to chemicals is one of the key points in predicting the effects of toxic compounds in the environment. Trait-based predicting methods have proved to be extremely efficient for assessing the sensitivity of macroinvertebrates toward compounds with non specific toxicity (narcotics). Nevertheless, predicting the sensitivity of organisms toward compounds with specific toxicity is much more complex, since it depends on the mode of action of the chemical. The aim of this work was to predict the sensitivity of several freshwater macroinvertebrates toward three classes of plant protection products: organophosphates, carbamates and pyrethroids. Two databases were built: one with sensitivity data (retrieved, evaluated and selected from the U.S. Environmental Protection Agency ECOTOX database) and the other with biological traits. Aside from the "traditional" traits usually considered in ecological analysis (i.e. body size, respiration technique, feeding habits, etc.), multivariate analysis was used to relate the sensitivity of organisms to some other characteristics which may be involved in the process of intoxication. Results confirmed that, besides traditional biological traits, related to uptake capability (e.g. body size and body shape) some traits more related to particular metabolic characteristics or patterns have a good predictive capacity on the sensitivity to these kinds of toxic substances. For example, behavioral complexity, assumed as an indicator of nervous system complexity, proved to be an important predictor of sensitivity towards these compounds. These results confirm the need for more complex traits to predict effects of highly specific substances. One key point for achieving a complete mechanistic understanding of the process is the choice of traits, whose role in the discrimination of sensitivity should be clearly interpretable, and not only statistically significant.
Feitosa-Alcantara, Rosana B; Bacci, Leandro; Blank, Arie F; Alves, Péricles B; Silva, Indira Morgana de A; Soares, Caroline A; Sampaio, Taís S; Nogueira, Paulo Cesar de L; Arrigoni-Blank, Maria de Fátima
2017-04-12
Leaf-cutting ants are pests of great economic importance due to the damage they cause to agricultural and forest crops. The use of organosynthetic insecticides is the main form of control of these insects. In order to develop safer technology, the objective of this work was to evaluate the formicidal activity of the essential oils of two Hyptis pectinata genotypes (chemotypes) and their major compounds on the leaf-cutting ants Acromyrmex balzani Emery and Atta sexdens rubropilosa Forel. Bioassays of exposure pathways (contact and fumigation) and binary mixtures of the major compounds were performed. The major compounds identified in the essential oils of H. pectinata were β-caryophyllene, caryophyllene oxide and calamusenone. The essential oils of H. pectinata were toxic to the ants in both exposure pathways. Essential oils were more toxic than their major compounds alone. The chemotype calamusenone was more toxic to A. balzani in both exposure pathways. A. sexdens rubropilosa was more susceptible to the essential oil of the chemotype β-caryophyllene in both exposure pathways. In general, the binary mixtures of the major compounds resulted in additive effect of toxicity. The essential oils of H. pectinata is a raw material of great potential for the development of new insecticides.
Furuhama, A; Aoki, Y; Shiraishi, H
2012-01-01
To understand the key factor for fish toxicity of 11 α,β-unsaturated carbonyl aldehydes and ketones, we used quantum chemical calculations to investigate their Michael reactions with methanethiol or glutathione. We used two reaction schemes, with and without an explicit water molecule (Scheme-1wat and Scheme-0wat, respectively), to account for the effects of a catalytic water molecule on the reaction pathway. We determined the energies of the reactants, transition states (TS), and products, as well as the activation energies of the reactions. The acute fish toxicities of nine of the carbonyl compounds were evaluated to correlate with their hydrophobicities; no correlation was observed for acrolein and crotonaldehyde. The most toxic compound, acrolein, had the lowest activation energy. The activation energy of the reaction could be estimated with Scheme-1wat but not with Scheme-0wat. The complexity of the reaction pathways of the compounds was reflected in the difficulty of the TS structure searches when Scheme-1wat was used with the polarizable continuum model. The theoretical estimations of activation energies of α,β-unsaturated carbonyl compounds with catalytic molecules or groups including hydrogen-bond networks may complement traditional tools for predicting the acute aquatic toxicities of compounds that cannot be easily obtained experimentally.
Air toxics evaluation of ABB Combustion Engineering Low-Emission Boiler Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wesnor, J.D.
1993-10-26
The specific goals of the program are to identify air toxic compounds that might be emmitted from the new boiler with its various Air Pollution Control device for APCD alternatives in levels of regulatory concern. For the compounds thought to be of concern, potential air toxic control methodologies will be suggested and a Test Protocol will be written to be used in the Proof of Concept and full scale tests. The following task was defined: Define Replations and Standards; Identify Air Toxic Pollutants of Interest to Interest to Utility Boilers; Assesment of Air Toxic By-Products; State of the Art Assessmentmore » of Toxic By-Product Control Technologies; and Test Protocol Definition.« less
Hughes, Sarah A; Mahaffey, Ashley; Shore, Bryon; Baker, Josh; Kilgour, Bruce; Brown, Christine; Peru, Kerry M; Headley, John V; Bailey, Howard C
2017-11-01
Previous assessments of oil sands process-affected water (OSPW) toxicity were hampered by lack of high-resolution analytical analysis, use of nonstandard toxicity methods, and variability between OSPW samples. We integrated ultrahigh-resolution mass spectrometry with a toxicity identification evaluation (TIE) approach to quantitatively identify the primary cause of acute toxicity of OSPW to rainbow trout (Oncorhynchus mykiss). The initial characterization of OSPW toxicity indicated that toxicity was associated with nonpolar organic compounds, and toxicant(s) were further isolated within a range of discrete methanol fractions that were then subjected to Orbitrap mass spectrometry to evaluate the contribution of naphthenic acid fraction compounds to toxicity. The results showed that toxicity was attributable to classical naphthenic acids, with the potency of individual compounds increasing as a function of carbon number. Notably, the mass of classical naphthenic acids present in OSPW was dominated by carbon numbers ≤16; however, toxicity was largely a function of classical naphthenic acids with ≥17 carbons. Additional experiments found that acute toxicity of the organic fraction was similar when tested at conductivities of 400 and 1800 μmhos/cm and that rainbow trout fry were more sensitive to the organic fraction than larval fathead minnows (Pimephales promelas). Collectively, the results will aid in developing treatment goals and targets for removal of OSPW toxicity in water return scenarios both during operations and on mine closure. Environ Toxicol Chem 2017;36:3148-3157. © 2017 SETAC. © 2017 SETAC.
Martin, Heather L.; Adams, Matthew; Higgins, Julie; Bond, Jacquelyn; Morrison, Ewan E.; Bell, Sandra M.; Warriner, Stuart; Nelson, Adam; Tomlinson, Darren C.
2014-01-01
Toxicity is a major cause of failure in drug discovery and development, and whilst robust toxicological testing occurs, efficiency could be improved if compounds with cytotoxic characteristics were identified during primary compound screening. The use of high-content imaging in primary screening is becoming more widespread, and by utilising phenotypic approaches it should be possible to incorporate cytotoxicity counter-screens into primary screens. Here we present a novel phenotypic assay that can be used as a counter-screen to identify compounds with adverse cellular effects. This assay has been developed using U2OS cells, the PerkinElmer Operetta high-content/high-throughput imaging system and Columbus image analysis software. In Columbus, algorithms were devised to identify changes in nuclear morphology, cell shape and proliferation using DAPI, TOTO-3 and phosphohistone H3 staining, respectively. The algorithms were developed and tested on cells treated with doxorubicin, taxol and nocodazole. The assay was then used to screen a novel, chemical library, rich in natural product-like molecules of over 300 compounds, 13.6% of which were identified as having adverse cellular effects. This assay provides a relatively cheap and rapid approach for identifying compounds with adverse cellular effects during screening assays, potentially reducing compound rejection due to toxicity in subsequent in vitro and in vivo assays. PMID:24505478
Space- and time-resolved raman and breakdown spectroscopy: advanced lidar techniques
NASA Astrophysics Data System (ADS)
Silviu, Gurlui; Marius Mihai, Cazacu; Adrian, Timofte; Oana, Rusu; Georgiana, Bulai; Dimitriu, Dan
2018-04-01
DARLIOES - the advanced LIDAR is based on space- and time-resolved RAMAN and breakdown spectroscopy, to investigate chemical and toxic compounds, their kinetics and physical properties at high temporal (2 ns) and spatial (1 cm) resolution. The high spatial and temporal resolution are needed to resolve a large variety of chemical troposphere compounds, emissions from aircraft, the self-organization space charges induced light phenomena, temperature and humidity profiles, ice nucleation, etc.
Feng, Chun-Chi; Chen, Guo-Dong; Zhao, Yan-Qiu; Xin, Sheng-Chang; Li, Song; Tang, Jin-Shan; Li, Xiao-Xia; Hu, Dan; Liu, Xing-Zhong; Gao, Hao
2014-07-01
Three new isocoumarin derivatives, mucorisocoumarins A-C (1-3, resp.), together with seven known compounds, 4-10, were isolated from the cold-adapted fungal strain Mucor sp. (No. XJ07027-5). The structures of the new compounds were identified by detailed IR, MS, and 1D- and 2D-NMR analyses. It was noteworthy that compounds 1, 2, 4, and 5 were successfully resolved by chiral HPLC, indicating that 1-7 should exist as enantiomers. In an embryonic developmental toxicity assay using a zebrafish model, compound 3 produced developmental abnormalities in the zebrafish embryos. This is the first report of isocoumarins with developmental toxicity to zebrafish embryos. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.
Cañada, Andres; Rabal, Obdulia; Oyarzabal, Julen; Valencia, Alfonso
2017-01-01
Abstract A considerable effort has been devoted to retrieve systematically information for genes and proteins as well as relationships between them. Despite the importance of chemical compounds and drugs as a central bio-entity in pharmacological and biological research, only a limited number of freely available chemical text-mining/search engine technologies are currently accessible. Here we present LimTox (Literature Mining for Toxicology), a web-based online biomedical search tool with special focus on adverse hepatobiliary reactions. It integrates a range of text mining, named entity recognition and information extraction components. LimTox relies on machine-learning, rule-based, pattern-based and term lookup strategies. This system processes scientific abstracts, a set of full text articles and medical agency assessment reports. Although the main focus of LimTox is on adverse liver events, it enables also basic searches for other organ level toxicity associations (nephrotoxicity, cardiotoxicity, thyrotoxicity and phospholipidosis). This tool supports specialized search queries for: chemical compounds/drugs, genes (with additional emphasis on key enzymes in drug metabolism, namely P450 cytochromes—CYPs) and biochemical liver markers. The LimTox website is free and open to all users and there is no login requirement. LimTox can be accessed at: http://limtox.bioinfo.cnio.es PMID:28531339
Synthesis and anti-HBV activity of α-stereoisomer of aristeromycin based analogs.
Kasula, Mohan; Toyama, Masaaki; Samunuri, Ramakrishnamraju; Rozy, Farhana; Yadav, Monika; Bal, Chandralata; Jha, Ashok Kumar; Baba, Masanori; Sharon, Ashoke
2016-08-15
The potential antiviral activity of aristeromycin type of derivatives (I) is limited by associated toxicity due to its possible 5'-O-phosphorylation and S-adenosyl-l-homocysteine hydrolase (SAHase) inhibitory activity. Aristeromycin structure has major pharmacophoric motif as 5'-OH and adenosine base, which may have significant role in enzyme binding followed by activity and or toxicity. Thus, the structural optimization to alter this major motif by replacing with its bioisostere and changing the 5'-O conformation through stereochemistry reversal was of interest. Thus, the inverted stereochemistry at 4'-position coupled with bioisostere of adenosine base in the target compounds (6-7) to access antiviral potential. The stereoselective formation of a key stereoisomer (2a) was achieved exclusively from neplanocin sugar (1a) by reduction in a single step. The novel target molecules (6-7) were synthesized in 4 steps with 55-62% yield. Compound 6 was analyzed by single crystal X-ray diffraction, which confirms the stereoselective formation of α-analogs with highly puckered cyclopentane ring and 2'-endo conformation. The compound 6 shown significant anti-hepatitis B virus activity of 6.5μM with CC50>100μM and yielded a promising lead with novel structural feature. Copyright © 2016 Elsevier Ltd. All rights reserved.
Safe, S
1993-01-01
Polychlorinated biphenyls (PCBs) are industrial compounds that have been detected as contaminants in almost every component of the global ecosystem including the air, water, sediments, fish, and wildlife and human adipose tissue, milk, and serum. PCBs in commercial products and environmental extracts are complex mixtures of isomers and congeners that can now be analyzed on a congener-specific basis using high-resolution gas chromatographic analysis. PCBs are metabolized primarily via mixed-function oxidases into a broad spectrum of metabolites. The results indicate that metabolic activation is not required for PCB toxicity, and the parent hydrocarbons are responsible for most of the biochemical and toxic responses elicited by these compounds. Some of these responses include developmental and reproductive toxicity, dermal toxicity, endocrine effects, hepatotoxicity, carcinogenesis, and the induction of diverse phase I and phase II drug-metabolizing enzymes. Many of the effects observed for the commercial PCBs are similar to those reported for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Structure-function relationships for PCB congeners have identified two major structural classes of PCBs that elicit "TCDD-like" responses, namely, the coplanar PCBs (e.g., 3,3',4,4'-tetraCB, 3,3'4,4',5-pentaCB and 3,3',4,4',5,5'-hexaCB) and their mono-ortho coplanar derivatives. These compounds competitively bind to the TCDD or aryl hydrocarbon (Ah) receptor and exhibit Ah receptor agonist activity. In addition, other structural classes of PCBs elicit biochemical and toxic responses that are not mediated through the Ah receptor. The shor-term effects of PCBs on occupationally exposed humans appear to be reversible, and no consistent changes in overall mortality and cancer mortality have been reported. Recent studies have demonstrated that some developmental deficits in infants and children correlated with in utero exposure to PCBs; however, the etiologic agent(s) or structural class of PCBs responsible for these effects have not been delineated. In contrast, based on a toxic equivalency factor approach, the reproductive and developmental problems in certain wildlife populations appear to be related to the TCDD-like PCB congeners. PMID:8354174
Dilger, Ryan N; Kobler, Christoph; Weckbecker, Christoph; Hoehler, Dirk; Baker, David H
2007-08-01
Relative bioefficacy and toxicity of Met precursor compounds were investigated in young chicks. The effectiveness of DL-Met and 2-keto-4-(methylthio)butyric acid (Keto-Met) to serve as L-Met precursors was quantified using Met-deficient diets of differing composition. Efficacy was based on slope-ratio and standard-curve methodology. Using L-Met as a standard Met source added to a purified diet, DL-Met and Keto-Met were assigned relative bioefficacy values of 98.5 and 92.5%, respectively, based on weight gain. Relative bioefficacy values of 98.5 and 89.3% were assigned to DL-Met and Keto-Met, respectively, when chicks were fed a Met-deficient, corn-soybean meal-peanut meal diet. Thus, both DL-Met and Keto-Met are effective Met precursor compounds in chicks. Additionally, growth-depressing effects of L-Met, DL-Met, and Keto-Met were compared using a nutritionally adequate corn-soybean meal diet supplemented with 15 or 30 g/kg of each compound. Similar reductions in weight gain, food intake, and gain:food ratio were observed for each compound. Subjective spleen color scores, indicative of splenic hemosiderosis, increased linearly (P < 0.01) with increasing intakes of each compound, suggesting a similarity in overall toxicity among these compounds. Because conversion of Keto-Met to L-Met in vivo merely requires transamination, Keto-Met may prove to be a useful supplement not only in food animal production, but also as a component of enteral and parenteral formulas for humans suffering from renal insufficiency.
2012-01-01
Background In the absence of current cumulative dietary exposure assessments, this analysis was conducted to estimate exposure to multiple dietary contaminants for children, who are more vulnerable to toxic exposure than adults. Methods We estimated exposure to multiple food contaminants based on dietary data from preschool-age children (2–4 years, n=207), school-age children (5–7 years, n=157), parents of young children (n=446), and older adults (n=149). We compared exposure estimates for eleven toxic compounds (acrylamide, arsenic, lead, mercury, chlorpyrifos, permethrin, endosulfan, dieldrin, chlordane, DDE, and dioxin) based on self-reported food frequency data by age group. To determine if cancer and non-cancer benchmark levels were exceeded, chemical levels in food were derived from publicly available databases including the Total Diet Study. Results Cancer benchmark levels were exceeded by all children (100%) for arsenic, dieldrin, DDE, and dioxins. Non-cancer benchmarks were exceeded by >95% of preschool-age children for acrylamide and by 10% of preschool-age children for mercury. Preschool-age children had significantly higher estimated intakes of 6 of 11 compounds compared to school-age children (p<0.0001 to p=0.02). Based on self-reported dietary data, the greatest exposure to pesticides from foods included in this analysis were tomatoes, peaches, apples, peppers, grapes, lettuce, broccoli, strawberries, spinach, dairy, pears, green beans, and celery. Conclusions Dietary strategies to reduce exposure to toxic compounds for which cancer and non-cancer benchmarks are exceeded by children vary by compound. These strategies include consuming organically produced dairy and selected fruits and vegetables to reduce pesticide intake, consuming less animal foods (meat, dairy, and fish) to reduce intake of persistent organic pollutants and metals, and consuming lower quantities of chips, cereal, crackers, and other processed carbohydrate foods to reduce acrylamide intake. PMID:23140444
Koksal, Meric; Ozkan-Dagliyan, Irem; Ozyazici, Tugce; Kadioglu, Beril; Sipahi, Hande; Bozkurt, Ayhan; Bilge, Suleyman S
2017-09-01
Non-steroidal anti-inflammatory drugs (NSAIDs), which are widely used for the treatment of rheumatic arthritis, pain, and many different types of inflammatory disorders, cause serious gastrointestinal (GI) side effects. The free carboxylic acid group existing on their chemical structure is correlated with GI toxicity related with all routine NSAIDs. Replacing this functional group with the 1,3,4-oxadiazole bioisostere is a generally used strategy to obtain an anti-inflammatory agent devoid of GI side effects. In the present work, a novel group of 5-(3,4-dichlorophenyl)-1,3,4-oxadiazole-2(3H)-one Mannich bases were synthesized and characterized on the basis of IR, 1 H NMR, and elemental analysis results. The target compounds were first tested for cytotoxicity to determine a non-toxic concentration for anti-inflammatory screening. Anti-inflammatory effects of the compounds were evaluated by in vitro lipopolysaccharide (LPS)-induced NO production and in vivo carrageenan footpad edema with ulcerogenic profile. In LPS-induced RAW 264.7 macrophages, most of the compounds showed inhibitory activity on nitrite production while compounds 5a, 5h, and 5j exhibited the best profiles by suppressing the NO production. To evaluate the in vivo anti-inflammatory potency of the compounds, the inflammatory response was quantified by increment in paw size in the carrageenan footpad edema assay. The anti-inflammatory data scoring showed that compounds 5a-d, 5g, and 5j, at the dose of 100 mg/kg, exhibited anti-inflammatory activity, which for compound 5g was comparable to that of the reference drug indomethacin with 53.9% and 55.5% inhibition in 60 and 120 min, respectively. © 2017 Deutsche Pharmazeutische Gesellschaft.
Lipid reducing activity and toxicity profiles of a library of polyphenol derivatives.
Urbatzka, Ralph; Freitas, Sara; Palmeira, Andreia; Almeida, Tiago; Moreira, João; Azevedo, Carlos; Afonso, Carlos; Correia-da-Silva, Marta; Sousa, Emilia; Pinto, Madalena; Vasconcelos, Vitor
2018-05-10
Obesity is an increasing epidemic worldwide and novel treatments are urgently needed. Polyphenols are natural compounds derived from plants, which are known in particular for their antioxidant properties. However, some polyphenols were described to possess anti-obesity activities in vitro and in vivo. In this study, we aimed to screen a library of 85 polyphenol derivatives for their lipid reducing activity and toxicity. Compounds were analyzed at 5 μM with the zebrafish Nile red fluorescence fat metabolism assay and for general toxicity in vivo. To improve the safety profile, compounds were screened at 50 μM in murine preadipocytes in vitro for cytotoxicity. Obtained activity data were used to create a 2D-QSAR (quantitative structure activity relationship) model. 38 polyphenols showed strong lipid reducing activity. Toxicity analysis revealed that 18 of them did not show any toxicity in vitro or in vivo. QSAR analysis revealed the importance of the number of rings, fractional partial positively charged surface area, relative positive charge, relative number of oxygen atoms, and partial negative surface area for lipid-reducing activity. The five most potent compounds with EC 50 values in the nanomolar range for lipid reducing activity and without any toxic effects are strong candidates for future research and development into anti-obesity drugs. Molecular profiling for fasn, sirt1, mtp and ppary revealed one compound that reduced significantly fasn mRNA expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
[Optimization of solid-phase extraction for enrichment of toxic organic compounds in water samples].
Zhang, Ming-quan; Li, Feng-min; Wu, Qian-yuan; Hu, Hong-ying
2013-05-01
A concentration method for enrichment of toxic organic compounds in water samples has been developed based on combined solid-phase extraction (SPE) to reduce impurities and improve recoveries of target compounds. This SPE method was evaluated in every stage to identify the source of impurities. Based on the analysis of Waters Oasis HLB without water samples, the eluent of SPE sorbent after dichloromethane and acetone contributed 85% of impurities during SPE process. In order to reduce the impurities from SPE sorbent, soxhlet extraction of dichloromethane followed by acetone and lastly methanol was applied to the sorbents for 24 hours and the results had proven that impurities were reduced significantly. In addition to soxhlet extraction, six types of prevalent SPE sorbents were used to absorb 40 target compounds, the lgK(ow) values of which were within the range of 1.46 and 8.1, and recovery rates were compared. It was noticed and confirmed that Waters Oasis HLB had shown the best recovery results for most of the common testing samples among all three styrenedivinylbenzene (SDB) polymer sorbents, which were 77% on average. Furthermore, Waters SepPak AC-2 provided good recovery results for pesticides among three types of activated carbon sorbents and the average recovery rates reached 74%. Therefore, Waters Oasis HLB and Waters SepPak AC-2 were combined to obtain a better recovery and the average recovery rate for the tested 40 compounds of this new SPE method was 87%.
Chen, Liping; Li, Qian; Weng, Bixia; Wang, Jiabing; Zhou, Yangyang; Cheng, Dezhi; Sirirak, Thanchanok; Qiu, Peihong; Wu, Jianzhang
2018-05-10
EF24 and F35 both were effective monocarbonyl curcumin analogues (MCACs) with excellent anti-tumor activity, however, drug defect such as toxicity may limit their further development. To get anti-lung cancer drugs with high efficiency, low toxicity and chemosensitization, a series of analogues based on EF24 and F35 were designed and synthesized. A number of compounds were found to exhibit cytotoxic activities selectively towards lung cancer cells compared to normal cells. Among these compounds, 5B was considered as an optimal anti-tumor agent for lung cancer cells with IC 50 values ranging from 1.0 to 1.7 μM, selectivity index (SI, as a logarithm of a ratio of IC 50 value for normal and cancer cells) were all above 1.1, while the SI of EF24 and F35 were less than 0.8. Consistent with selectivity in vitro, 5B was observed to show lower toxicity in acute toxicity experiment than EF24 and F35 respectively. Further, 5B was found to exert anti-tumor effects through ROS-mediated activation of JNK pathway and inhibition of NF-κB pathway. 5B could significantly enhance the sensitivity of A549 cells to cisplatin or 5-Fu. These findings suggested that 5B was an effective and less toxic MCAC and provided a promising candidate for anti-tumor drugs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Enhanced formulations for neutralization of chemical, biological and industrial toxants
Tucker, Mark D [Albuqueque, NM
2008-06-24
An enhanced formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The enhanced formulation according to the present invention is non-toxic and non-corrosive and can be delivered by a variety of means and in different phases. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator and water.
Emission factors of air toxics from semiconductor manufacturing in Korea.
Eom, Yun-Sung; Hong, Ji-Hyung; Lee, Suk-Jo; Lee, Eun-Jung; Cha, Jun-Seok; Lee, Dae-Gyun; Bang, Sun-Ae
2006-11-01
The development of local, accurate emission factors is very important for the estimation of reliable national emissions and air quality management. For that, this study is performed for pollutants released to the atmosphere with source-specific emission tests from the semiconductor manufacturing industry. The semiconductor manufacturing industry is one of the major sources of air toxics or hazardous air pollutants (HAPs); thus, understanding the emission characteristics of the emission source is a very important factor in the development of a control strategy. However, in Korea, there is a general lack of information available on air emissions from the semiconductor industry. The major emission sources of air toxics examined from the semiconductor manufacturing industry were wet chemical stations, coating applications, gaseous operations, photolithography, and miscellaneous devices in the wafer fabrication and semiconductor packaging processes. In this study, analyses of emission characteristics, and the estimations of emission data and factors for air toxics, such as acids, bases, heavy metals, and volatile organic compounds from the semiconductor manufacturing process have been performed. The concentration of hydrogen chloride from the packaging process was the highest among all of the processes. In addition, the emission factor of total volatile organic compounds (TVOCs) for the packaging process was higher than that of the wafer fabrication process. Emission factors estimated in this study were compared with those of Taiwan for evaluation, and they were found to be of similar level in the case of TVOCs and fluorine compounds.
Comparison of in silico models for prediction of mutagenicity.
Bakhtyari, Nazanin G; Raitano, Giuseppa; Benfenati, Emilio; Martin, Todd; Young, Douglas
2013-01-01
Using a dataset with more than 6000 compounds, the performance of eight quantitative structure activity relationships (QSAR) models was evaluated: ACD/Tox Suite, Absorption, Distribution, Metabolism, Elimination, and Toxicity of chemical substances (ADMET) predictor, Derek, Toxicity Estimation Software Tool (T.E.S.T.), TOxicity Prediction by Komputer Assisted Technology (TOPKAT), Toxtree, CEASAR, and SARpy (SAR in python). In general, the results showed a high level of performance. To have a realistic estimate of the predictive ability, the results for chemicals inside and outside the training set for each model were considered. The effect of applicability domain tools (when available) on the prediction accuracy was also evaluated. The predictive tools included QSAR models, knowledge-based systems, and a combination of both methods. Models based on statistical QSAR methods gave better results.
Fedorova, Elena V.; Buryakina, Anna V.; Zakharov, Alexey V.; Filimonov, Dmitry A.; Lagunin, Alexey A.; Poroikov, Vladimir V.
2014-01-01
Based on the data about structure and antidiabetic activity of twenty seven vanadium and zinc coordination complexes collected from literature we developed QSAR models using the GUSAR program. These QSAR models were applied to 10 novel vanadium coordination complexes designed in silico in order to predict their hypoglycemic action. The five most promising substances with predicted potent hypoglycemic action were selected for chemical synthesis and pharmacological evaluation. The selected coordination vanadium complexes were synthesized and tested in vitro and in vivo for their hypoglycemic activities and acute rat toxicity. Estimation of acute rat toxicity of these five vanadium complexes was performed using a freely available web-resource (http://way2drug.com/GUSAR/acutoxpredict.html). It has shown that the selected compounds belong to the class of moderate toxic pharmaceutical agents, according to the scale of Hodge and Sterner. Comparison with the predicted data has demonstrated a reasonable correspondence between the experimental and predicted values of hypoglycemic activity and toxicity. Bis{tert-butyl[amino(imino)methyl]carbamato}oxovanadium (IV) and sodium(2,2′-Bipyridyl)oxo-diperoxovanadate(V) octahydrate were identified as the most potent hypoglycemic agents among the synthesized compounds. PMID:25057899
Giesen, Daniel; van Gestel, Cornelis A M
2013-03-01
Quantitative structure-activity relationships (QSARs) are an established tool in environmental risk assessment and a valuable alternative to the exhaustive use of test animals under REACH. In this study a QSAR was developed for the toxicity of a series of six chloroanilines to the soil-dwelling collembolan Folsomia candida in standardized natural LUFA2.2 soil. Toxicity endpoints incorporated in the QSAR were the concentrations causing 10% (EC10) and 50% (EC50) reduction in reproduction of F. candida. Toxicity was based on concentrations in interstitial water estimated from nominal concentrations in the soil and published soil-water partition coefficients. Estimated effect concentrations were negatively correlated with the lipophilicity of the compounds. Interstitial water concentrations for both the EC10 and EC50 for four compounds were determined by using solid-phase microextraction (SPME). Measured and estimated concentrations were comparable only for tetra- and pentachloroaniline. With decreasing chlorination the disparity between modelled and actual concentrations increased. Optimisation of the QSAR therefore could not be accomplished, showing the necessity to move from total soil to (bio)available concentration measurements. Copyright © 2012 Elsevier Ltd. All rights reserved.
Antifungal activity of ionic liquids based on (-)-menthol: a mechanism study.
Suchodolski, Jakub; Feder-Kubis, Joanna; Krasowska, Anna
2017-04-01
The mechanism of toxicity of chiral ionic liquids with (1R,2S,5R)-(-)-menthol [C n -Am-Men][Cl] (n=10, 11 or 12) in the fungus Candida albicans is reported here. Ionic liquids were more toxic towards Candida strain lacking all identified multidrug resistance efflux pumps. Moreover, the compounds tested inhibited C. albicans filamentation at the concentration at which detached fungal cells also adhered to the plastic surface. Our results showed the high activity of all the tested chiral ionic liquids in the permeabilization of C. albicans' membranes and in the digestion and interruption of the cell wall. The investigated ionic liquids thus have potential as disinfectants because besides their antifungal and antiadhesive action these compounds do not cause hemolysis. Copyright © 2017 Elsevier GmbH. All rights reserved.
Exploring anaerobic environments for cyanide and cyano-derivatives microbial degradation.
Luque-Almagro, Víctor M; Cabello, Purificación; Sáez, Lara P; Olaya-Abril, Alfonso; Moreno-Vivián, Conrado; Roldán, María Dolores
2018-02-01
Cyanide is one of the most toxic chemicals for living organisms described so far. Its toxicity is mainly based on the high affinity that cyanide presents toward metals, provoking inhibition of essential metalloenzymes. Cyanide and its cyano-derivatives are produced in a large scale by many industrial activities related to recovering of precious metals in mining and jewelry, coke production, steel hardening, synthesis of organic chemicals, and food processing industries. As consequence, cyanide-containing wastes are accumulated in the environment becoming a risk to human health and ecosystems. Cyanide and related compounds, like nitriles and thiocyanate, are degraded aerobically by numerous bacteria, and therefore, biodegradation has been offered as a clean and cheap strategy to deal with these industrial wastes. Anaerobic biological treatments are often preferred options for wastewater biodegradation. However, at present very little is known about anaerobic degradation of these hazardous compounds. This review is focused on microbial degradation of cyanide and related compounds under anaerobiosis, exploring their potential application in bioremediation of industrial cyanide-containing wastes.
Perfluorocarboxylic acids (PFCAs), namely perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA), have been identified as persistent, bioaccurnulative and potentially toxic compounds. The structural analog, 8-2 fluorotelomer alcohol (8-2 FTOH) is considered the probable ...
Nucleic Acid-Based Biosensors for the Detection of DNA Damage
Monitoring the environment for the presence of toxic compounds is not only required for cleanup of previously contaminated land and water, but is important for preventing future contamination and managing risks to human health and the environment. Identification and measurement o...
CRADLE-TO-GRAVE ENVIRONMENTALLY COMPLIANT, NO-VOC FURNITURE COATING - PHASE I
The cost to worker safety, the environment and industry of applying millions of gallons of solvent-based furniture coatings per year is staggering and potentially irreversible. Removal of furniture coatings via chemical stripping also introduces toxic, volatile organic compounds ...
RAMAN SPECTROSCOPY-BASED METABOLOMICS FOR DIFFERENTIATING TOXICITIES OF TRIAZOLE FUNGICIDES
Conazole fungicides are widely used both agriculturally for the protection of crops, and pharmaceutically in the treatment of topical and systemic infections. Heavy usage has created concern over the impact these compounds may have through environmental exposure to humans and ot...
RAMAN SPECTROSCOPY-BASED METABOLOMICS FOR DIFFERENTIATING TOXICITIES OF CONAZOLE FUNGICIDES
Conazole fungicides are widely used both agriculturally for the protection of crops, and pharmaceutically in the treatment of topical and systemic infections. Heavy usage has created concern over the impact these compounds may have through environmental exposure to humans and ot...
Deriving allowable daily intakes for systemic toxicants lacking chronic toxicity data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Layton, D.W.; Mallon, B.J.; Rosenblatt, D.H.
1987-03-01
The lack of human toxicological data for most chemical compounds makes it difficult to quickly assess health risks associated with exposure to contaminants at hazardous waste sites. It would therefore be advantageous to have a technique for estimating acceptable daily intakes (ADIs) of potentially toxic substances based on more widely available animal toxicity data. This article focuses on the use of LD50 data to derive provisional ADIs, and it suggests multiplying oral LD50 values (expressed in mg/kg of body wt) by a factor in the range of 5 X 10(-6) to 1 X 10(-5) day-1 to convert them to suchmore » ADIs. It is emphasized that these interim ADI values are no substitute for toxicity testing, but that such testing would most likely result in higher ADI estimates.« less
Garcia, M Teresa; Kaczerewska, Olga; Ribosa, Isabel; Brycki, Bogumił; Materna, Paulina; Drgas, Małgorzata
2016-07-01
Aerobic biodegradability and aquatic toxicity of five types of quaternary ammonium-based gemini surfactants have been examined. The effect of the spacer structure and the head group polarity on the ecological properties of a series of dimeric dodecyl ammonium surfactants has been investigated. Standard tests for ready biodegradability assessment (OECD 310) were conducted for C12 alkyl chain gemini surfactants containing oxygen, nitrogen or a benzene ring in the spacer linkage and/or a hydroxyethyl group attached to the nitrogen atom of the head groups. According to the results obtained, the gemini surfactants examined cannot be considered as readily biodegradable compounds. The negligible biotransformation of the gemini surfactants under the standard biodegradation test conditions was found to be due to their toxic effects on the microbial population responsible for aerobic biodegradation. Aquatic toxicity of gemini surfactants was evaluated against Daphnia magna. The acute toxicity values to Daphnia magna, IC50 at 48 h exposure, ranged from 0.6 to 1 mg/L. On the basis of these values, the gemini surfactants tested should be classified as toxic or very toxic to the aquatic environment. However, the dimeric quaternary ammonium-based surfactants examined result to be less toxic than their corresponding monomeric analogs. Nevertheless the aquatic toxicity of these gemini surfactants can be reduced by increasing the molecule hydrophilicity by adding a heteroatom to the spacer or a hydroxyethyl group to the polar head groups. Copyright © 2016 Elsevier Ltd. All rights reserved.
Industrial toxicants and Parkinson’s disease
Caudle, W. Michael; Guillot, Thomas S.; Lazo, Carlos R.; Miller, Gary W.
2012-01-01
The exposure of the human population to environmental contaminants is recognized as a significant contributing factor for the development of Parkinson’s disease (PD) and other forms of parkinsonism. While pesticides have repeatedly been identified as risk factors for PD, these compounds represent only a subset of environmental toxicants that we are exposed to on a regular basis. Thus, non-pesticide contaminants, such as metals, solvents, and other organohalogen compounds have also been implicated in the clinical and pathological manifestations of these movement disorders and it is these non-pesticide compounds that are the subject of this review. As toxic exposures to these classes of compounds can result in a spectrum of PD or PD-related disorders, it is imperative to appreciate shared clinico-pathological characteristics or mechanisms of action of these compounds in order to further delineate the resultant disorders as well as identify improved preventive strategies or therapeutic interventions. PMID:22309908
Li, Xu-Zhao; Zhang, Shuai-Nan; Yang, Xu-Yan
2017-12-01
This study was aimed to explore the chemical basis of the rhizomes and aerial parts of Dioscorea nipponica Makino (DN). The pharmacokinetic profiles of the compounds from DN were calculated via ACD/I-Lab and PreADMET program. Their potential therapeutic and toxicity targets were screened through the DrugBank's or T3DB's ChemQuery structure search. Eleven of 48 compounds in the rhizomes and over half of the compounds in the aerial parts had moderate or good human oral bioavailability. Twenty-three of 48 compounds in the rhizomes and 40/43 compounds from the aerial parts had moderate or good permeability to intestinal cells. Forty-three of 48 compounds from the rhizomes and 18/43 compounds in the aerial parts bound weakly to the plasma proteins. Eleven of 48 compounds in the rhizomes and 36/43 compounds of the aerial parts might pass across the blood-brain barrier. Forty-three 48 compounds in the rhizomes and 18/43 compounds from the aerial parts showed low renal excretion ability. The compounds in the rhizomes possessed 391 potential therapeutic targets and 216 potential toxicity targets. Additionally, the compounds from the aerial parts possessed 101 potential therapeutic targets and 183 potential toxicity targets. These findings indicated that combination of cheminformatics and bioinformatics may facilitate achieving the objectives of this study. © 2017 Royal Pharmaceutical Society.
Jardim, A C G; Igloi, Z; Shimizu, J F; Santos, V A F F M; Felippe, L G; Mazzeu, B F; Amako, Y; Furlan, M; Harris, M; Rahal, P
2015-03-01
Compounds extracted from plants can provide an alternative approach to new therapies. They present characteristics such as high chemical diversity, lower cost of production and milder or inexistent side effects compared with conventional treatment. The Brazilian flora represents a vast, largely untapped, resource of potential antiviral compounds. In this study, we investigate the antiviral effects of a panel of natural compounds isolated from Brazilian plants species on hepatitis C virus (HCV) genome replication. To do this we used firefly luciferase-based HCV sub-genomic replicons of genotypes 2a (JFH-1), 1b and 3a and the compounds were assessed for their effects on both HCV replication and cellular toxicity. Initial screening of compounds was performed using the maximum non-toxic concentration and 4 compounds that exhibited a useful therapeutic index (favourable ratio of cytotoxicity to antiviral potency) were selected for extra analysis. The compounds APS (EC50=2.3μM), a natural alkaloid isolated from Maytrenus ilicifolia, and the lignans 3(∗)43 (EC50=4.0μM), 3(∗)20 (EC50=8.2μM) and 5(∗)362 (EC50=38.9μM) from Peperomia blanda dramatically inhibited HCV replication as judged by reductions in luciferase activity and HCV protein expression in both the subgenomic and infectious systems. We further show that these compounds are active against a daclatasvir resistance mutant subgenomic replicon. Consistent with inhibition of genome replication, production of infectious JFH-1 virus was significantly reduced by all 4 compounds. These data are the first description of Brazilian natural compounds possessing anti-HCV activity and further analyses are being performed in order to investigate the mode of action of those compounds. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
2016-03-07
and rapid response to a broad spectrum of inorganic and organic chemicals at concentrations that are relevant to human health concerns, as well as the...broad spectrum of toxic industrial compounds rapidly (within an hour) at concentrations relevant to human health , that the device be field-portable...laboratory setting and was able to detect potential water contaminants at concentrations that are relevant to human health . The portability and
Yamali, Cem; Gul, Halise Inci; Sakagami, Hiroshi; Supuran, Claudiu T
2016-01-01
Phenolic bis Mannich bases having the chemical structure of 1-[3,5-bis-aminomethyl-4-hydroxyphenyl]-3-(4-halogenophenyl)-2-propen-1-ones (1a-c, 2a-c, 3a-c) were synthesized (Numbers 1, 2, and 3 represent fluorine, chlorine, and bromine bearing compounds, respectively, while a, b, and c letters represent the compounds having piperidine, morpholine, and N-methyl piperazine) and their cytotoxic and carbonic anhydrase (CA, EC 4.2.1.1) enzyme inhibitory effects were evaluated. Lead compounds should possess both marked cytotoxic potencies and selective toxicity for tumors. To reflect this potency, PSE values of the compounds were calculated. According to PSE values, the compounds 2b and 3b may serve as lead molecules for further anticancer drug candidate developments. Although the compounds showed a low inhibition potency toward hCA I (25-43%) and hCA II (6-25%) isoforms at 10 μM concentration of inhibitor, the compounds were more selective (1.5-5.2 times) toward hCA I isoenzyme. It seems that the compounds need molecular modifications for the development of better CA inhibitors.
Kungolos, A; Emmanouil, C; Tsiridis, V; Tsiropoulos, N
2009-08-01
Three commonly used test organisms of different trophic levels (Vibrio fischeri, Pseudokirchneriella subcapitata and Daphnia magna) were exposed to selected agrochemicals (fosthiazate, metalaxyl-M, imidacloprid) and copper, in single doses or in binary mixtures. The toxicity of each single compound varied up to two orders of magnitude, depending on the test species examined. V. fischeri was the most sensitive test organism regarding fosthiazate and metalaxyl-M, indicating an IC(50) value of 0.20 mg/L (0.17-0.25 mg/L) and 0.88 mg/L (0.35-1.57 mg/L), respectively. Imidacloprid was the least toxic compound, indicating an EC(50) value on D. magna of 64.6 mg/L (43.3-122.5 mg/L) and an IC(50) value on V. fischeri of 226 mg/L (159-322 mg/L), while for imidacloprid at a concentration of 1000 mg/L the effect on P. subcapitata was lower than 50%. Copper was the most toxic compound towards all test organisms exhibiting the highest toxic effect on P. subcapitata, with an IC(50) value of 0.05 mg/L (0.003-0.008 mg/L). The toxic effects of the binary mixtures have been compared to the theoretically expected effect, resulting from a simple mathematical model based on the theory of probabilities. The independent action model was used in order to predict the theoretically expected effect. The interactive effects were mostly antagonistic or additive, while in few cases (interactive effects of metalaxyl-M and copper on V. fischeri) a synergistic mode of action was observed for some concentration combinations. Experiments showed that interactive effects of chemicals may vary depending on the test species used as well as on the chemicals and their respective concentrations. Although most of the concentrations of chemicals tested in this study are higher than the ones usually found in natural environment, the evaluation of their interactive toxic effects using a battery of bioassays may comprise a useful tool for the estimation of the environmental hazard of chemicals.
Aschner, Michael; Ceccatelli, Sandra; Daneshian, Mardas; Fritsche, Ellen; Hasiwa, Nina; Hartung, Thomas; Hogberg, Helena T; Leist, Marcel; Li, Abby; Mundi, William R; Padilla, Stephanie; Piersma, Aldert H; Bal-Price, Anna; Seiler, Andrea; Westerink, Remco H; Zimmer, Bastian; Lein, Pamela J
2017-01-01
There is a paucity of information concerning the developmental neurotoxicity (DNT) hazard posed by industrial and environmental chemicals. New testing approaches will most likely be based on batteries of alternative and complementary (non-animal) tests. As DNT is assumed to result from the modulation of fundamental neurodevelopmental processes (such as neuronal differentiation, precursor cell migration or neuronal network formation) by chemicals, the first generation of alternative DNT tests target these processes. The advantage of such types of assays is that they capture toxicants with multiple targets and modes-of-action. Moreover, the processes modelled by the assays can be linked to toxicity endophenotypes, i.e., alterations in neural connectivity that form the basis for neurofunctional deficits in man. The authors of this review convened in a workshop to define criteria for the selection of positive/negative controls, to prepare recommendations on their use, and to initiate the setup of a directory of reference chemicals. For initial technical optimization of tests, a set of > 50 endpoint-specific control compounds was identified. For further test development, an additional "test" set of 33 chemicals considered to act directly as bona fide DNT toxicants is proposed, and each chemical is annotated to the extent it fulfills these criteria. A tabular compilation of the original literature used to select the test set chemicals provides information on statistical procedures, and toxic/non-toxic doses (both for pups and dams). Suggestions are provided on how to use the > 100 compounds (including negative controls) compiled here to address specificity, adversity and use of alternative test systems.
Bacterial metabolism of aromatic compounds and a complex hazardous waste under anaerobic conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Connor, O.A.
1992-01-01
The biological fate of organic chemicals in the environment depends upon a variety of physical/chemical factors. In the absence of molecular oxygen, the importance of terminal electron acceptors has been often overlooked. Since anaerobic microbial consortia are dependent upon the availability of particular electron acceptors, these conditions can play an important role in influencing the fate of environmental pollutants. In this research, different electron acceptors were evaluated for their effects on the biodegradation of environmental toxicants. Two anaerobic bioassays, the Biochemical Methane Potential (BMP) and the Anaerobic Toxicity Assay (ATA), were used to evaluate a series of phthalic acid estersmore » (PAEs), substituted phenols and a landfill leachate, for their methanogenic biodegradability and toxicity. Many of the PAEs and phenols could be stoichiometrically mineralized. In addition, the landfill leachate was found to be inhibitory at concentrations greater than 10%, and partially mineralized in approximately 50 weeks. Based upon these assays, 6 different functional groups and their isomers were evaluated for their effect on the biodegradability and toxicity of phenol under methanogenic and denitrifying conditions. These results indicated that nitro- and chloro-substituted phenols were persistent under denitrifying conditions. Under methanogenic conditions, these compounds were metabolized to a more reduced intermediate with less toxicity. Conversely, amino-substituted phenols were not readily mineralized under methanogenic conditions, but were metabolized after minimal lag under denitrifying conditions. From active denitrifying phenol degrading cultures, a pure culture was obtained which could grow on phenol and on a variety of other alkyl-substituted aromatic compounds. Additional studies have tentatively identified several alicyclic metabolites including cyclohexanol, 2-cyclohexene-1-ol, cyclohexanone and 2-cyclohexene-1-one from phenol catabolism.« less
Aschner, Michael; Ceccatelli, Sandra; Daneshian, Mardas; Fritsche, Ellen; Hasiwa, Nina; Hartung, Thomas; Hogberg, Helena T.; Leist, Marcel; Li, Abby; Mundy, William R.; Padilla, Stephanie; Piersma, Aldert H.; Bal-Price, Anna; Seiler, Andrea; Westerink, Remco H.; Zimmer, Bastian; Lein, Pamela J.
2016-01-01
Summary There is a paucity of information concerning the developmental neurotoxicity (DNT) hazard posed by industrial and environmental chemicals. New testing approaches will most likely be based on batteries of alternative and complementary (non-animal) tests. As DNT is assumed to result from the modulation of fundamental neurodevelopmental processes (such as neuronal differentiation, precursor cell migration or neuronal network formation) by chemicals, the first generation of alternative DNT tests target these processes. The advantage of such types of assays is that they capture toxicants with multiple targets and modes-of-action. Moreover, the processes modelled by the assays can be linked to toxicity endophenotypes, i.e. alterations in neural connectivity that form the basis for neurofunctional deficits in man. The authors of this review convened in a workshop to define criteria for the selection of positive/negative controls, to prepare recommendations on their use, and to initiate the setup of a directory of reference chemicals. For initial technical optimization of tests, a set of >50 endpoint-specific control compounds was identified. For further test development, an additional “test” set of 33 chemicals considered to act directly as bona fide DNT toxicants is proposed, and each chemical is annotated to the extent it fulfills these criteria. A tabular compilation of the original literature used to select the test set chemicals provides information on statistical procedures, and toxic/non-toxic doses (both for pups and dams). Suggestions are provided on how to use the >100 compounds (including negative controls) compiled here to address specificity, adversity and use of alternative test systems. PMID:27452664
Qosa, Hisham; Mohamed, Loqman A; Al Rihani, Sweilem B; Batarseh, Yazan S; Duong, Quoc-Viet; Keller, Jeffrey N; Kaddoumi, Amal
2016-07-06
The blood-brain barrier (BBB) is a dynamic interface that maintains brain homeostasis and protects it from free entry of chemicals, toxins, and drugs. The barrier function of the BBB is maintained mainly by capillary endothelial cells that physically separate brain from blood. Several neurological diseases, such as Alzheimer's disease (AD), are known to disrupt BBB integrity. In this study, a high-throughput screening (HTS) was developed to identify drugs that rectify/protect BBB integrity from vascular amyloid toxicity associated with AD progression. Assessing Lucifer Yellow permeation across in-vitro BBB model composed from mouse brain endothelial cells (bEnd3) grown on 96-well plate inserts was used to screen 1280 compounds of Sigma LOPAC®1280 library for modulators of bEnd3 monolayer integrity. HTS identified 62 compounds as disruptors, and 50 compounds as enhancers of the endothelial barrier integrity. From these 50 enhancers, 7 FDA approved drugs were identified with EC50 values ranging from 0.76-4.56 μM. Of these 7 drugs, 5 were able to protect bEnd3-based BBB model integrity against amyloid toxicity. Furthermore, to test the translational potential to humans, the 7 drugs were tested for their ability to rectify the disruptive effect of Aβ in the human endothelial cell line hCMEC/D3. Only 3 (etodolac, granisetron, and beclomethasone) out of the 5 effective drugs in the bEnd3-based BBB model demonstrated a promising effect to protect the hCMEC/D3-based BBB model integrity. These drugs are compelling candidates for repurposing as therapeutic agents that could rectify dysfunctional BBB associated with AD.
Qosa, Hisham; Mohamed, Loqman A.; Al Rihani, Sweilem B.; Batarseh, Yazan S.; Duong, Quoc-Viet; Keller, Jeffrey N.; Kaddoumi, Amal
2016-01-01
The blood-brain barrier (BBB) is a dynamic interface that maintains brain homeostasis and protects it from free entry of chemicals, toxins and drugs. The barrier function of the BBB is maintained mainly by capillary endothelial cells that physically separate brain from blood. Several neurological diseases, such as Alzheimer’s disease (AD), are known to disrupt BBB integrity. In this study, a high-throughput screening (HTS) was developed to identify drugs that rectify/protect BBB integrity from vascular amyloid toxicity associated with AD progression. Assessing Lucifer Yellow permeation across in-vitro BBB model composed from mouse brain endothelial cells (bEnd3) grown on 96-well plate inserts was used to screen 1280 compounds of Sigma LOPAC®1280 library for modulators of bEnd3 monolayer integrity. HTS identified 62 compounds as disruptors, and 50 compounds as enhancers of the endothelial barrier integrity. From these 50 enhancers, 7 FDA approved drugs were identified with EC50 values ranging from 0.76–4.56 μM. Of these 7 drugs, five were able to protect bEnd3-based BBB model integrity against amyloid toxicity. Furthermore, to test the translational potential to humans, the 7 drugs were tested for their ability to rectify the disruptive effect of Aβ in the human endothelial cell line hCMEC/D3. Only 3 (etodolac, granisetron and beclomethasone) out of the 5 effective drugs in the bEnd3-based BBB model demonstrated a promising effect to protect the hCMEC/D3-based BBB model integrity. These drugs are compelling candidates for repurposing as therapeutic agents that could rectify dysfunctional BBB associated with AD. PMID:27392852
Woutersen, Marjolijn; Belkin, Shimshon; Brouwer, Bram; van Wezel, Annemarie P; Heringa, Minne B
2011-05-01
Biosensors based on luminescent bacteria may be valuable tools to monitor the chemical quality and safety of surface and drinking water. In this review, an overview is presented of the recombinant strains available that harbour the bacterial luciferase genes luxCDABE, and which may be used in an online biosensor for water quality monitoring. Many bacterial strains have been described for the detection of a broad range of toxicity parameters, including DNA damage, protein damage, membrane damage, oxidative stress, organic pollutants, and heavy metals. Most lux strains have sensitivities with detection limits ranging from milligrams per litre to micrograms per litre, usually with higher sensitivities in compound-specific strains. Although the sensitivity of lux strains can be enhanced by various molecular manipulations, most reported detection thresholds are still too high to detect levels of individual contaminants as they occur nowadays in European drinking waters. However, lux strains sensing specific toxic effects have the advantage of being able to respond to mixtures of contaminants inducing the same effect, and thus could be used as a sensor for the sum effect, including the effect of compounds that are as yet not identified by chemical analysis. An evaluation of the suitability of lux strains for monitoring surface and drinking water is therefore provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, P.G.; Abernethy, S.; Mackay, D.
1982-01-01
The toxicity of seawater dispersions of a chemical dispersant to two marine crustaceans was investigated in the presence and absence of various quantities of a non-toxic mineral oil. From the results and a physical-chemical partitioning analysis, a limiting value of the oil-water partition coefficient of the toxic compounds is deduced suggesting that essentially all of the toxic compounds in the dispersant will partition into solution in water following dispersant application to an oil spill. This conclusion simplifies interpretation and prediction of the toxic effects of a dispersed oil spill. The combined bioassay-partitioning procedure may have applications to the study ofmore » the toxicity of other complex mixtures such as industrial effluents.« less
Olivares, Christopher I; Sierra-Alvarez, Reyes; Abrell, Leif; Chorover, Jon; Simonich, Michael; Tanguay, Robert L; Field, Jim A
2016-11-01
2,4-Dinitroanisole (DNAN) is an emerging insensitive munitions compound that readily undergoes anaerobic nitro-group reduction to 2-methoxy-5-nitroaniline (MENA) and 2,4-diaminoanisole (DAAN), followed by formation of unique azo dimers. Currently there is little knowledge on the ecotoxicity of DNAN (bio)transformation products. In the present study, mortality, development, and behavioral effects of DNAN (bio)transformation products were assessed using zebrafish (Danio rerio) embryos. The authors tested individual products, MENA and DAAN, as well as dimer and trimer surrogates. As pure compounds, 3-nitro-4-methoxyaniline and 2,2'-dimethoxy-4,4'-azodianiline caused statistically significant effects, with lowest-observable-adverse effect levels (LOAEL) at 6.4 μM on 1 or 2 developmental endpoints, respectively. The latter had 6 additional statistically significant developmental endpoints with LOAELs of 64 μM. Based on light-to-dark swimming behavioral tests, DAAN (640 μM) caused reduction in swimming, suggestive of neurotoxicity. No statistically significant mortality occurred (≤64 μM) for any of the individual compounds. However, metabolite mixtures formed during different stages of MENA (bio)transformation in soil were characterized using high-resolution mass spectrometry in parallel with zebrafish embryo toxicity assays, which demonstrated statistically significant mortality during the onset of azo-dimer formation. Overall the results indicate that several DNAN (bio)transformation products cause different types of toxicity to zebrafish embryos. Environ Toxicol Chem 2016;35:2774-2781. © 2016 SETAC. © 2016 SETAC.
Naish-Byfield, S; Cooksey, C J; Latter, A M; Johnson, C I; Riley, P A
1991-01-01
The rate of oxidation by purified mushroom tyrosinase of 30 compounds was measured by oximetry, and the tyrosinase-dependent cytotoxicity of each estimated in an in vitro assay using exposure of non-melanogenic cells to the agents in the presence and absence of tyrosinase. Cytotoxicity was estimated by immediate inhibition of DNA synthesis; 4-hydroxyanisole was used as the reference material. Compounds that were not oxidized by tyrosinase were found to be non-toxic but there was no direct relationship between the rate of oxidation and the relative cytotoxicity of those materials that acted as substrates for the enzyme. Thioethers were found to be more cytotoxic than the corresponding phenoxyethers. This was partly due to their greater rate of oxidation by tyrosinase and, in the case of propylthiophenol, the consequence of higher effective toxicity of the lipophilic species. The optimum chain length for the side chain of the oxyethers was three saturated carbon atoms and the toxicity appeared to be influenced by the lipophilicity of the compounds, possibly reflecting the relative lipid solubility of the putative toxic ortho-quinones generated from them. The maximum tyrosinase-dependent toxicity observed was in the range 5-6 times the relative toxicity of 4-hydroxyanisole. Sulphinyl and sulphonyl derivatives were inactive. In addition to oxyethers and thioethers, esters and glycosides of oxyethers were also examined and were found to be toxic in the presence of tyrosinase when hydrolysed. The succinates were found to be oxidized and toxic in our test system, suggesting that they rapidly underwent spontaneous hydrolysis. Oximetry data suggest that slight spontaneous hydrolysis of the other compounds occurs but they were not toxic in our assay. Ring-methylated phenoxyethers were oxidized relatively slowly and were non-toxic. Fluorine-substituted phenoxyethers were oxidized slightly more rapidly and exhibited clear toxicity in our system. Sesamol was oxidized to a black pigment but was non-toxic in our assay. A water-soluble vitamin E derivative was not oxidized and was non-toxic. Allyl hydroquinone was not oxidized but exhibited significant direct toxicity.
Comparative Toxicity of Selected Aviation Fuels as Measured by Insect Bioassay
1982-07-01
structure in termites , ants, and bees can be used to contrast the toxicity of a compound. A comparative study of toxicity can also be made using a...and also serve as sex pheromones , kairomones, and defensive compounds. Cuticular hydrocarbons vary significantly in structure and amount by species...in flour beetles. Flour beetles contain hydrocarbons which function as sex pheromones and also contain a significant amount of 1-pentadecene which
Evaluation of effects of long term exposure on lethal toxicity with mammals.
Verma, Vibha; Yu, Qiming J; Connell, Des W
2014-02-01
The relationship between exposure time (LT50) and lethal exposure concentration (LC50) has been evaluated over relatively long exposure times using a novel parameter, Normal Life Expectancy (NLT), as a long term toxicity point. The model equation, ln(LT50) = aLC50(ν) + b, where a, b and ν are constants, was evaluated by plotting lnLT50 against LC50 using available toxicity data based on inhalation exposure from 7 species of mammals. With each specific toxicant a single consistent relationship was observed for all mammals with ν always <1. Use of NLT as a long term toxicity point provided a valuable limiting point for long exposure times. With organic compounds, the Kow can be used to calculate the model constants a and v where these are unknown. The model can be used to characterise toxicity to specific mammals and then be extended to estimate toxicity at any exposure time with other mammals. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Specific detection of membrane-toxic substances with a conductivity assay.
Eich, J; Dürholt, H; Steger-Hartmann, T; Wagner, E
2000-03-01
A conductivity assay that represents a new biotest able to detect the effects of membrane-toxic compounds, e.g., detergents, organic solvents, and radical formers, on various organisms was previously described and developed. The conductivity assay measures ion leakage from cells, tissues, or whole plant and animal organisms whose membrane systems have been damaged by membrane-toxic compounds. In this study the specificity of the conductivity assay for membrane-toxic compounds was tested by comparing the electrolyte efflux from Elodea canadensis leaves during incubation with a well-known detergent (benzalkonium chloride) using different plant physiological and biochemical techniques (photochemical efficiency, plasmolysis capacity, NBT reduction, and electron microscopy of membranes of E. canadensis leaves). The comparison of the different methods proved that the electrolyte loss during benzalkonium chloride incubation determined in the conductivity assay is due to membrane impairment. The observed electrolyte loss correlated with a reduction of photochemical efficiency and a decrease in both plasmolysis and NBT reduction capacity. Furthermore, a disintegration of the plasmalemma could be seen in the electron micrographs. These results indicate that the measured electrolyte loss in the conductivity assay is a specific effect of membrane-toxic compounds. Copyright 2000 Academic Press.
Can Dietary Polyphenols Prevent the Formation of Toxic Compounds from Maillard Reaction?
Del Turco, Serena; Basta, Giuseppina
2016-01-01
Polyphenols are functional compounds in edible vegetable and food such as tea, coffee and red wine and increasing evidence demonstrates a positive link between consumption of polyphenol-rich foods and disease prevention. In this review we have focused on the current knowledge of the potential anti-glycation effects of polyphenols, particularly in regard to their influence on Maillard reaction, a non-enzymatic reaction between amino acids and reducing sugars that contributes to the production of toxic compounds, mainly reactive carbonyl species, advanced glycation end-products (AGEs) and other toxicants. The Maillard reaction occurs in the human body during hyperglycemic condition, but it is well known as browning reaction in thermally processed foods and it is responsible for flavor and toxicant formation. Dietary polyphenols can have anti-glycation effects and actively participate in Maillard reaction, mitigating the AGE formation and the heat-induced production of toxic compounds. In a time in which the role of a healthy diet in the prevention of chronic diseases is welcome and the borderline between food and medicine is becoming very thin, an improved mechanistic knowledge of how polyphenols can function to reduce harmful and unhealthy substances is mandatory.
Carles, Louis; Joly, Muriel; Bonnemoy, Frédérique; Leremboure, Martin; Donnadieu, Florence; Batisson, Isabelle; Besse-Hoggan, Pascale
2018-04-21
The prediction of chemical mixture toxicity is a major concern regarding unintentional mixture of pesticides from agricultural lands treated with various such compounds. We focused our work on a mixture of three herbicides commonly applied on maize crops within a fortnight, namely mesotrione (β-triketone), nicosulfuron (sulfonylurea) and S-metolachlor (chloroacetanilide). The metabolic pathways of mesotrione and nicosulfuron were qualitatively and quantitatively determined with a bacterial strain (Bacillus megaterium Mes11). This strain was isolated from an agricultural soil and able to biotransform both these herbicides. Although these pathways were unaffected in the case of binary or ternary herbicide mixtures, kinetics of nicosulfuron disappearance and also of mesotrione and nicosulfuron metabolite formation was strongly modulated. The toxicity of the parent compounds and metabolites was evaluated for individual compounds and mixtures with the standardized Microtox® test. Synergistic interactions were evidenced for all the parent compound mixtures. Synergistic, antagonistic or additive toxicity was obtained depending on the metabolite mixture. Overall, these results emphasize the need to take into account the active ingredient and metabolites all together for the determination of environmental fate and toxicity of pesticide mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.
EFFECT OF IRRADIANCE SPECTRA ON THE PHOTOINDUCED TOXICITY OF THREE POLYCYCLIC AROMATIC HYDROCARBONS
Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light received. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events un...
Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light recieved. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events un...
Toxicity and biodegradability of selected N-substituted phenols under anaerobic conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donlon, B.; Razo-Flores, E.; Hwu, C.S.
1995-12-31
The anaerobic toxicity and biodegradability of N-substituted aromatics were evaluated in order to obtain information on their ultimate biotreatment. The toxicity of selected N-substituted aromatic compounds toward acetoclastic methanogens in granular sludge was measured in batch assays. This toxicity was highly correlated with compound hydrophobicity, indicating that partitioning into the bacterial membranes was an important factor in the toxicity. However, other factors, such as chemical interactions with key cell components, were suggested to be playing an important role. Nitroaromatic compounds were, on the average, over 300-fold more toxic than their amino-substituted counterparts. This finding suggests that the facile reduction ofmore » nitro-groups known to occur in anaerobic environments would result in a high level of detoxification. To test this hypothesis, continuous lab-scale upward-flow anaerobic sludge bed reactors treating 2-nitrophenol and 4-nitrophenol were established. The 4-nitrophenol was readily converted to the corresponding 4-aminophenol, whereas complete mineralization of 2-nitrophenol via intermediate formation of 2-aminophenol was obtained. These conversions led to a dramatic detoxification of the nitrophenols, because it was feasible to treat the highly toxic nitrophenolics at high organic loading rates.« less
Toxicity of new generation flame retardants to Daphnia magna.
Waaijers, Susanne L; Hartmann, Julia; Soeter, A Marieke; Helmus, Rick; Kools, Stefan A E; de Voogt, Pim; Admiraal, Wim; Parsons, John R; Kraak, Michiel H S
2013-10-01
There is a tendency to substitute frequently used, but relatively hazardous brominated flame retardants (BFRs) with halogen-free flame retardants (HFFRs). Consequently, information on the persistence, bioaccumulation and toxicity (PBT) of these HFFRs is urgently needed, but large data gaps and inconsistencies exist. Therefore, in the present study the toxicity of a wide range of HFFRs to the water flea Daphnia magna was investigated. Our results revealed that four HFFRs were showing no effect at their Sw (saturated water concentration) and three had a low toxicity (EC50>10 mg L(-1)), suggesting that these compounds are not hazardous. Antimony trioxide had a moderate toxicity (EC50=3.01 mg L(-1), 95% CL: 2.76-3.25) and triphenyl phosphate and the brominated reference compound tetra bromobisphenol A were highly toxic to D. magna (EC50=0.55 mg L(-1), 95% CL: 0.53-0.55 and EC50=0.60 mg L(-1), 95% CL: 0.24-0.97 respectively). Aluminum trihydroxide and bisphenol A bis(diphenyl phosphate) caused limited mortality at Sw (26 and 25% respectively) and have a low solubility (<10 mg L(-1)). Hence, increased toxicity of these compounds may be observed when for instance decreasing pH could increase solubility. By testing all compounds under identical conditions we provided missing insights in the environmental hazards of new generation flame retardants and propose as best candidates for BFR replacements: APP, ALPI, DOPO, MHO, MPP, ZHS and ZS. © 2013 Elsevier B.V. All rights reserved.
Kovrižnych, Jevgenij A.; Zeljenková, Dagmar; Rollerová, Eva; Szabová, Elena; Wimmerová, Soňa
2013-01-01
At present, nanoparticles are beginning to influence our lives in many ways and understanding the environmental health and safety aspect of nanomaterials has become a crucial issue. The aim of the work was to assess and compare the acute toxicity of 31 different nanomaterials to fish mature individuals Danio rerio with that to fish early life stages on using evaluation of the 48- and 96- hour LC50 values. A further aim was to evaluate teratogenicity of the nanoparticles tested to fish eggs. The nanoparticles tested were: 8 pure metals, 10 metal oxides, 5 other metal compounds and their mixtures, 2 silicon compounds, 3 calcium compounds, and 3 carbon compounds. Using 48-h and 96-h tests of acute toxicity (according to OECD 203), we evaluated mortality data, LC50 values, occurrence of malformations, as well as hatching time. In our study, 6 kinds of nanoparticles – calcium oxide, copper, copper in the form of oxide and CuZnFe4O4, magnesium oxide, and nickel – caused cumulative mortality. Two kinds of nanoparticles – copper and silver – were toxic for fish with LC50 values of approximately 3 mg/L. We did not observe marked differences between the 48-hour and 96-hour acute toxicity LC50 values, yet the possibility to evaluate hatching time in the 96-h acute fish toxicity test seems to be an advantage against that of the 48-hour toxicity. PMID:24179431
LABORATORY TOXICITY TESTS FOR EVALUATING POTENTIAL EFFECTS OF ENDOCRINE-DISRUPTING COMPOUNDS
The scope of the Laboratory Testing Work Group was to evaluate methods for testing aquatic and terrestrial invertebrates in the laboratory. Specifically, discussions focused on the following objectives: 1) assess the extent to which consensus-based standard methods and other pub...
Uptake and metabolism of cisplatin by rat kidney.
Safirstein, R; Miller, P; Guttenplan, J B
1984-05-01
Cisplatin, an effective antineoplastic agent, is toxic to the kidney. Since the kidney's vulnerability to cisplatin may originate in its ability to accumulate and retain platinum to a greater degree than other organs, we studied the characteristics of the renal accumulation of platinum and investigated the nature of intracellular platinum. Cisplatin and ethylenediamminedichloroplatinum, nephrotoxic and antineoplastic liganded platinum compounds, were concentrated in rat renal cortical slices fivefold above medium concentration. Platinum uptake was energy- and temperature-dependent and could be inhibited by drugs which inhibit base transport. The organic anions para-aminohippurate and pyrazinoate did not reduce renal slice platinum uptake. Unbound platinum in the blood and urine was predominantly cisplatin but unbound platinum in kidney cytosol was not. This latter compound, in contrast to cisplatin, was not active as a mutagen. These studies suggest that the kidney accumulates platinum in part by transport or specific binding to the base transport system in the kidney and biotransforms it intracellularly. Unbound platinum in the cell is not cisplatin and may no longer be toxic.
Toxicity, uptake, and mutagenicity of particulate and soluble nickel compounds.
Fletcher, G G; Rossetto, F E; Turnbull, J D; Nieboer, E
1994-01-01
Toxicity testing in AS52 cells (24-hr exposures) gave LC50 values of 2 to 130 micrograms Ni/ml for particulate nickel compounds and 45 to 60 micrograms Ni/ml for water-soluble salts (NiCl2, NiSO4, Ni(CH3COO)2). The Ni(OH)2, NiCO3, and sulfides (Ni3S2, Ni7S6, "amorphous NiS") exhibited similar toxicities (LC50's of 2 to 8 micrograms Ni/ml), while three nickel oxides were more variable and less toxic (LC50's of 18 to 130 micrograms Ni/ml). Most compounds displayed nuclear to cytoplasmic nickel ratios of approximately 1:1.5 to 1:5 (except approximately 1:20 for nickel salts). At the LC50's, a 75-fold range in exposure levels occurred compared to a 10-fold range in cytoplasmic and nuclear nickel concentrations, [Ni]. Cellular nickel distribution indicated three groupings: inert compounds (green NiO, lithium nickel oxide, relatively low nuclear and cytosolic [Ni]); water-soluble salts (very low nuclear [Ni]; high cytosolic [Ni]), and slightly soluble compounds (relatively high cytosolic and nuclear [Ni]). Nickel compounds are considered to be only weak or equivocal mutagens. In this study, a low but significant increase in mutation rate at the gpt locus was shown. Although the results would not be sufficient to deem nickel compounds mutagenic by traditional criteria, characterization by PCR analysis indicated that the spontaneous and nickel-induced mutants exhibited different and compound-specific mutational spectra (thus confirming nickel compound involvement). The results reported illustrate some of the methodologic problems involved in testing "weak" mutagens and indicate that alternative approaches may be necessary in classifying the mutagenicity of nickel and other compounds. PMID:7843140
Acute toxicity of some nerve agents and pesticides in rats.
Misik, Jan; Pavlikova, Ruzena; Cabal, Jiri; Kuca, Kamil
2015-01-01
Highly toxic organophosphorus compounds (V- and G-nerve agents) were originally synthesized for warfare or as agricultural pesticides. Data on their acute toxicity are rare and patchy. Therefore, there is a need for integrated summary comparing acute toxicity of organophosphates using different administration routes in the same animal model with the same methodology. Based on original data, a summary of in vivo acute toxicity of selected V- and G-nerve agents (tabun, sarin, soman, VX, Russian VX) and organophosphates paraoxon (POX) and diisopropyl fluorophosphate (DFP) in rats has been investigated. Male Wistar rats were exposed to organophosphates in several administration routes (i.m., i.p., p.o, s.c., p.c.). The acute toxicity was evaluated by the assessment of median lethal dose (LD50, mg kg(-1)) 2, 4, and 24 hours post exposure. V-agents were the most toxic presented with LD50 ranged from 0.0082 mg kg(-1) (VX, i.m.) to 1.402 mg kg(-1) (Russian VX, p.o.), followed by G-agents (LD50 = 0.069 mg kg(-1)/soman, i.m./ - 117.9 mg kg(-1)/sarin, p.c./), organophosphate POX and DFP (LD50 = 0.321 mg kg(-1)/POX, i.m./ - 420 mg kg(-1)/DFP, p.c./). Generally, i.m. administration was the most toxic throughout all tested agents and ways of administration (LD50 = 0.0082 mg kg(-1)/VX/ - 1.399 mg kg(-1)/DFP/) whereas p.c. way was responsible for lowest acute toxicity (LD50 = 0.085 mg kg(-1)/VX/ - 420 mg kg(-1)/DFP/). The acute toxicity of selected organophosphorus compounds is summarized throughout this study. Although the data assessed in rats are rather illustrative prediction for human, it presents a valuable contribution, indicating the toxic potential and harmfulness of organophosphates.
Khan, Hafiz Azhar Ali; Akram, Waseem; Shad, Sarfraz Ali; Lee, Jong-Jin
2013-01-01
House flies, Musca domestica L., are important pests of dairy operations worldwide, with the ability to adapt wide range of environmental conditions. There are a number of insecticides used for their management, but development of resistance is a serious problem. Insecticide mixtures could enhance the toxicity of insecticides in resistant insect pests, thus resulting as a potential resistance management tool. The toxicity of bifenthrin, cypermethrin, deltamethrin, chlorpyrifos, profenofos, emamectin benzoate and fipronil were assessed separately, and in mixtures against house flies. A field-collected population was significantly resistant to all the insecticides under investigation when compared with a laboratory susceptible strain. Most of the insecticide mixtures like one pyrethroid with other compounds evaluated under two conditions (1∶1-“A” and LC50: LC50-“B”) significantly increased the toxicity of pyrethroids in the field population. Under both conditions, the combination indices of pyrethroids with other compounds, in most of the cases, were significantly below 1, suggesting synergism. The enzyme inhibitors, PBO and DEF, when used in combination with insecticides against the resistant population, toxicities of bifenthrin, cypermethrin, deltamethrin and emamectin were significantly increased, suggesting esterase and monooxygenase based resistance mechanism. The toxicities of bifenthrin, cypermethrin and deltamethrin in the resistant population of house flies could be enhanced by the combination with chlorpyrifos, profenofos, emamectin and fipronil. The findings of the present study might have practical significance for resistance management in house flies. PMID:23613758
A Call for Nominations of Quantitative High-Throughput ...
The National Research Council of the United States National Academies of Science has recently released a document outlining a long-range vision and strategy for transforming toxicity testing from largely whole animal-based testing to one based on in vitro assays. “Toxicity Testing in the 21st Century: A Vision and a Strategy” advises a focus on relevant human toxicity pathway assays. Toxicity pathways are defined in the document as “Cellular response pathways that, when sufficiently perturbed, are expected to result in adverse health effects”. Results of such pathway screens would serve as a filter to drive selection of more specific, targeted testing that will complement and validate the pathway assays. In response to this report, the US EPA has partnered with two NIH organizations, the National Toxicology Program and the NIH Chemical Genomics Center (NCGC), in a program named Tox21. A major goal of this collaboration is to screen chemical libraries consisting of known toxicants, chemicals of environmental and occupational exposure concern, and human pharmaceuticals in cell-based pathway assays. Currently, approximately 3000 compounds (increasing to 9000 by the end of 2009) are being validated and screened in quantitative high-throughput (qHTS) format at the NCGC producing extensive concentration-response data for a diverse set of potential toxicity pathways. The Tox21 collaboration is extremely interested in accessing additional toxicity pathway assa
Bioenergetic strategy of microalgae for the biodegradation of tyrosol and hydroxytyrosol.
Papazi, Aikaterini; Ioannou, Andreas; Symeonidi, Myrto; Doulis, Andreas G; Kotzabasis, Kiriakos
2017-05-01
Olive mill wastewater has significant polluting properties due to its high phenolic content [mainly tyrosol (trs) and hydroxytyrosol (htrs)]. Growth kinetics and a series of fluorescence induction measurements for Scenedesmus obliquus cultures showed that microalgae can be tolerant of these phenolic compounds. Changes in the cellular energy reserves and concentration of the phenolic compounds adjust the "toxicity" of these compounds to the microalgae and are, therefore, the main parameters that affect biodegradation. Autotrophic growth conditions of microalgae and high concentrations of trs or htrs induce higher biodegradation compared with mixotrophic conditions and lower phenolic concentrations. When microalgae face trs and htrs simultaneously, biodegradation begins from htrs, the more energetically demanding compound. All these lead to the conviction that microalgae have a "rational" management of cellular energy balance. Low toxicity levels lead to higher growth and lower biodegradation, whereas higher toxicity levels lead to lower growth and higher biodegradation. The selection of appropriate conditions (compatible to the bioenergetic strategies of microalgae) seems to be the key for a successful biodegradation of a series of toxic compounds, thus paving the way for future biotechnological applications for solving complicated pollution problems, like the detoxification of olive mill wastewater.
Liao, Quan; Yao, Jianhua; Yuan, Shengang
2007-05-01
The study of prediction of toxicity is very important and necessary because measurement of toxicity is typically time-consuming and expensive. In this paper, Recursive Partitioning (RP) method was used to select descriptors. RP and Support Vector Machines (SVM) were used to construct structure-toxicity relationship models, RP model and SVM model, respectively. The performances of the two models are different. The prediction accuracies of the RP model are 80.2% for mutagenic compounds in MDL's toxicity database, 83.4% for compounds in CMC and 84.9% for agrochemicals in in-house database respectively. Those of SVM model are 81.4%, 87.0% and 87.3% respectively.
Triazole containing compounds have been used for decades as agricultural and medicinal fungicides. Recently, emphasis has been placed on the potential adverse effects of these compounds within mammalian systems and an effort has been made to understand their toxic mode of action...
Consensus Modeling of Oral Rat Acute Toxicity
An acute toxicity dataset (oral rat LD50) with about 7400 compounds was compiled from the ChemIDplus database. This dataset was divided into a modeling set and a prediction set. The compounds in the prediction set were selected so that they were present in the modeling set used...
TOXIC EQUIVALENCY APPROACH FOR DIOXINS: AN EXAMPLE OF DOSE ADDITIVITY
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD; dioxin) is often called the most toxic man-made compound. However, it is but the prototype for a family of structurally related compounds which have a common mechanism of action, induce a common spectrum of biological responses, and are...
THE DEVELOPMENT AND APPLICATION OF AN IC-ICP-MS METHOD FOR THE SPECIATION OF METHYLTINS.
The determination of organotin compounds in environmental samples is of concern as the species have varying degrees of toxicity. Generally, the most toxic organotin compounds belong to the tri alkyl substituted variety followed by the di- and mono-substituted organotins. The low...
The report describes the use of a pilot-scale catalytic incineration unit/solvent generation system to investigate the effectiveness of catalytic incineration as a way to destroy volatile organic compounds (VOCs) and hazardous/toxic air pollutants (HAPs). Objectives of the study ...
Ates, Gamze; Steinmetz, Fabian P; Doktorova, Tatyana Yordanova; Madden, Judith C; Rogiers, Vera
2016-04-01
To characterize the risk of cosmetic ingredients when threshold toxicity is assumed, often the "margin of safety" (MoS) is calculated. This uncertainty factor is based on the systemic no observable (adverse) effect level (NO(A)EL) which can be derived from in vivo repeated dose toxicity studies. As in vivo studies for the purpose of the cosmetic legislation are no longer allowed in Europe and a validated in vitro alternative is not yet available, it is no longer possible to derive a NO(A)EL value for a new cosmetic ingredient. Alternatively, cosmetic ingredients with a low dermal bioavailability might not need repeated dose data, as internal exposure will be minimal and systemic toxicity might not be an issue. This study shows the possibility of identifying compounds suspected to have a low dermal bioavailability based on their physicochemical properties (molecular weight, melting point, topological polar surface area and log P) and their in vitro dermal absorption data. Although performed on a limited number of compounds, the study suggests a strategic opportunity to support the safety assessor's reasoning to omit a MoS calculation and to focus more on local toxicity and mutagenicity/genotoxicity for ingredients for which limited systemic exposure is to be expected. Copyright © 2016 Elsevier Inc. All rights reserved.
Heo, Hye Seon; An, MinJi; Lee, Ji Sun; Kim, Hee Kyong; Park, Yeong-Chul
2018-06-01
G-7% NANA is N-acetylneuraminic acid(NANA) containing 7% sialic acid isolated from glycomacropeptide (GMP), a compound of milk. Since NANA is likely to have immunotoxicity, the need to ensure safety for long-term administration has been raised. In this study, a 90-day repeated oral dose toxicity test was performed in rats using G-7% NANA in the dosages of 0, 1250, 2500 and 5000 mg/kg/day.A toxicity determination criterion based on the significant change caused by the administration of the substancewas developed for estimating NOEL, NOAEL and LOAELapplied to this study. When analyzing the immunological markers, no significant changes were observed, even if other significant changes were observed in the high dose group. In accordance with the toxicity determination criterion developed, the NOEL in male and female has been determined as 2500 mg/kg/day, and the NOAEL in females has been determined as 5000 mg/kg/day. The toxicity determination criterion, applied for the first time in the repeated dose toxicity tests, could provide a basis for distinguishing NOEL and NOAEL more clearly; nevertheless, the toxicity determination criterion needs to be supplemented by adding differentiating adverse effects and non-adverse effects based on more experiences of the repeated dose toxicity tests. Copyright © 2018 Elsevier Inc. All rights reserved.
Palmer, Jessica A; Smith, Alan M; Egnash, Laura A; Colwell, Michael R; Donley, Elizabeth L R; Kirchner, Fred R; Burrier, Robert E
2017-10-01
The relative developmental toxicity potency of a series of retinoid analogues was evaluated using a human induced pluripotent stem (iPS) cell assay that measures changes in the biomarkers ornithine and cystine. Analogue potency was predicted, based on the assay endpoint of the ornithine/cystine (o/c) ratio, to be all-trans-retinoic acid>TTNPB>13-cis-retinoic acid≈9-cis-retinoic acid>acitretin>etretinate>retinol. These rankings correlate with in vivo data and demonstrate successful application of the assay to rank a series of related toxic and non-toxic compounds. The retinoic acid receptor α (RARα)-selective antagonist Ro 41-5253 inhibited the cystine perturbation caused by all-trans-retinoic acid, TTNPB, 13-cis-retinoic acid, 9-cis-retinoic acid, and acitretin. Ornithine was altered independent of RARα in all retinoids except acitretin. These results suggest a role for an RARα-mediated mechanism in retinoid-induced developmental toxicity through altered cystine metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Najer, Adrian; Wu, Dalin; Nussbaumer, Martin G.; Schwertz, Geoffrey; Schwab, Anatol; Witschel, Matthias C.; Schäfer, Anja; Diederich, François; Rottmann, Matthias; Palivan, Cornelia G.; Beck, Hans-Peter; Meier, Wolfgang
2016-08-01
Medical applications of anticancer and antimalarial drugs often suffer from low aqueous solubility, high systemic toxicity, and metabolic instability. Smart nanocarrier-based drug delivery systems provide means of solving these problems at once. Herein, we present such a smart nanoparticle platform based on self-assembled, reduction-responsive amphiphilic graft copolymers, which were successfully synthesized through thiol-disulfide exchange reaction between thiolated hydrophilic block and pyridyl disulfide functionalized hydrophobic block. These amphiphilic graft copolymers self-assembled into nanoparticles with mean diameters of about 30-50 nm and readily incorporated hydrophobic guest molecules. Fluorescence correlation spectroscopy (FCS) was used to study nanoparticle stability and triggered release of a model compound in detail. Long-term colloidal stability and model compound retention within the nanoparticles was found when analyzed in cell media at body temperature. In contrast, rapid, complete reduction-triggered disassembly and model compound release was achieved within a physiological reducing environment. The synthesized copolymers revealed no intrinsic cellular toxicity up to 1 mg mL-1. Drug-loaded reduction-sensitive nanoparticles delivered a hydrophobic model anticancer drug (doxorubicin, DOX) to cancer cells (HeLa cells) and an experimental, metabolically unstable antimalarial drug (the serine hydroxymethyltransferase (SHMT) inhibitor (+/-)-1) to Plasmodium falciparum-infected red blood cells (iRBCs), with higher efficacy compared to similar, non-sensitive drug-loaded nanoparticles. These responsive copolymer-based nanoparticles represent a promising candidate as smart nanocarrier platform for various drugs to be applied to different diseases, due to the biocompatibility and biodegradability of the hydrophobic block, and the protein-repellent hydrophilic block.Medical applications of anticancer and antimalarial drugs often suffer from low aqueous solubility, high systemic toxicity, and metabolic instability. Smart nanocarrier-based drug delivery systems provide means of solving these problems at once. Herein, we present such a smart nanoparticle platform based on self-assembled, reduction-responsive amphiphilic graft copolymers, which were successfully synthesized through thiol-disulfide exchange reaction between thiolated hydrophilic block and pyridyl disulfide functionalized hydrophobic block. These amphiphilic graft copolymers self-assembled into nanoparticles with mean diameters of about 30-50 nm and readily incorporated hydrophobic guest molecules. Fluorescence correlation spectroscopy (FCS) was used to study nanoparticle stability and triggered release of a model compound in detail. Long-term colloidal stability and model compound retention within the nanoparticles was found when analyzed in cell media at body temperature. In contrast, rapid, complete reduction-triggered disassembly and model compound release was achieved within a physiological reducing environment. The synthesized copolymers revealed no intrinsic cellular toxicity up to 1 mg mL-1. Drug-loaded reduction-sensitive nanoparticles delivered a hydrophobic model anticancer drug (doxorubicin, DOX) to cancer cells (HeLa cells) and an experimental, metabolically unstable antimalarial drug (the serine hydroxymethyltransferase (SHMT) inhibitor (+/-)-1) to Plasmodium falciparum-infected red blood cells (iRBCs), with higher efficacy compared to similar, non-sensitive drug-loaded nanoparticles. These responsive copolymer-based nanoparticles represent a promising candidate as smart nanocarrier platform for various drugs to be applied to different diseases, due to the biocompatibility and biodegradability of the hydrophobic block, and the protein-repellent hydrophilic block. Electronic supplementary information (ESI) available: Detailed experimental procedures, additional schemes and supplementary data including NMR, FTIR, TEM, DLS, UV-Vis, FCS, and fluorescence microscopy images. See DOI: 10.1039/c6nr04290b
Kassa, Jiří; Korábečný, Jan; Nepovimová, Eugenie
The ability of four newly prepared reversible inhibitors of acetylcholinesterase (6-chlorotacrine, 7-phenoxytacrine, compounds 1 and 2) and currently used carbamate pyridostigmine to increase the resistance of mice against soman and the efficacy of antidotal treatment of soman-poisoned mice was evaluated. The evaluation of the effect of pharmacological pretreatment is based on the identification of changes of soman-induced toxicity that was evaluated by the assessment of its LD50 value and its 95% confidence limit using probitlogarithmical analysis of death occurring within 24 h after administration of soman. 6-chlorotacrine was only able to markedly protect mice against acute toxicity of soman. In addition, the pharmacological pretreatment with 6-chlorotacrine or compound 2 was able to increase the efficacy of antidotal treatment (the oxime HI-6 in combination with atropine) of soman-poisoned mice. The other newly prepared reversible inhibitors of acetylcholinesterase (7-phenoxytacrine, compound 1) as well as commonly used pyridostigmine did not influence the efficacy of antidotal treatment. These findings demonstrate that pharmacological pretreatment of somanpoisoned mice can be promising and useful in the case of administration of 6-chlorotacrine and partly compound 2.
Synthesis of cyclic 1,9-acetal derivatives of forskolin and their bioactivity evaluation.
Ponnam, Devendar; Shilpi, Singh; Srinivas, K V N S; Suiab, Luqman; Alam, Sarfaraz; Amtul, Zehra; Arigari, Niranjan Kumar; Jonnala, Kotesh Kumar; Siddiqui, Lubna; Dubey, Vijaya; Tiwari, Ashok Kumar; Balasubramanian, Sridhar; Khan, Feroz
2014-11-24
A new series of 1,9-acetals of forskolin were synthesized by treating with aromatic and aliphatic aldehydes using Ceric ammonium nitrate as catalyst and evaluated for anticancer and α-glucosidase inhibition activities. Among the synthesized compounds 2a, 2b and 3a showed potential cytotoxic activity towards human cancer cell lines MCF-7 (Human Breast Adenocarcinoma), MDA-MB (Human Breast Carcinoma), HeLa (Human Cervix Adenocarcinoma), A498 (Human Kidney Carcinoma), K562 (Human Erythromyeloblastoid leukemia), SH-SY5Y (Human Neuroblastoma), Hek293 (Human Embryonic Kidney) and WRL68 (Human Hepatic) with IC50 values ranging between 0.95 and 47.96 μg/ml. Osmotic fragility test revealed compound 3a as non-toxic to human erythrocytes at the tested concentrations of 50 and 100 μg/ml. Compounds 1g (IC50 value 0.76 μg/ml) and 1p (IC50 value 0.74 μg/ml) significantly inhibited α-glucosidase in in vitro system. In silico based docking, ADME and toxicity risk assessment studies also showed discernible α-glucosidase activity for compounds 1g, 1p compared to standard acarbose. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Jeon, Ju-Hyun; Lee, Sang-Guei; Lee, Hoi-Seon
2015-08-01
Isolates from essential oil extracted from the flowers and leaves of Ruta graveolens and commercial phenolic analogs were evaluated using fumigant and contact toxicity bioassays against adults of the stored-food pests Sitophilus zeamais, Sitophilus oryzae, and Lasioderma serricorne. The insecticidal activity of these compounds was then compared with that of the synthetic insecticide dichlorvos. To investigate the structure-activity relationships, the activity of 2-isopropyl-5-methylphenol and its analogs was examined against these stored-food pests. Based on the 50% lethal dose, the most toxic compound against S. zeamais was 3-isopropylephenol, followed by 2-isopropylphenol, 4-isopropylphenol, 5-isopropyl-2-methylphenol, 2-isopropyl-5-methylphenol, 3-methylphenol, and 2-methylphenol. Similar results were observed with phenolic compounds against S. oryzae. However, when 2-isopropyl-5-methylphenol isolated from R. graveolens oil and its structurally related analogs were used against L. serricorne, little or no insecticidal activity was found regardless of bioassay. These results indicate that introducing and changing the positions of functional groups in the phenol skeleton have an important effect on insecticidal activity of these compounds against stored-food pests.
Dehua, Ma; Cong, Liu; Xiaobiao, Zhu; Rui, Liu; Lujun, Chen
2016-09-01
This study investigated the changes of toxic compounds in coking wastewater with biological treatment (anaerobic reactor, anoxic reactor and aerobic-membrane bioreactor, A1/A2/O-MBR) and advanced physicochemical treatment (Fenton oxidation and activated carbon adsorption) stages. As the biological treatment stages preceding, the inhibition effect of coking wastewater on the luminescence of Vibrio qinghaiensis sp. Nov. Q67 decreased. Toxic units (TU) of coking wastewater were removed by A1/A2/O-MBR treatment process, however approximately 30 % TU remained in the biologically treated effluent. There is a tendency that fewer and fewer residual organic compounds could exert equal acute toxicity during the biological treatment stages. Activated carbon adsorption further removed toxic pollutants of biologically treated effluent but the Fenton effluent increased acute toxicity. The composition of coking wastewater during the treatment was evaluated using the three-dimensional fluorescence spectra, gas chromatography-mass spectrometry (GC-MS). The organic compounds with high polarity were the main cause of acute toxicity in the coking wastewater. Aromatic protein-like matters in the coking wastewater with low biodegradability and high toxicity contributed mostly to the remaining acute toxicity of the biologically treated effluents. Chlorine generated from the oxidation process was responsible for the acute toxicity increase after Fenton oxidation. Therefore, the incorporation of appropriate advanced physicochemical treatment process, e.g., activated carbon adsorption, should be implemented following biological treatment processes to meet the stricter discharge standards and be safer to the environment.
Alarms about structural alerts.
Alves, Vinicius; Muratov, Eugene; Capuzzi, Stephen; Politi, Regina; Low, Yen; Braga, Rodolpho; Zakharov, Alexey V; Sedykh, Alexander; Mokshyna, Elena; Farag, Sherif; Andrade, Carolina; Kuz'min, Victor; Fourches, Denis; Tropsha, Alexander
2016-08-21
Structural alerts are widely accepted in chemical toxicology and regulatory decision support as a simple and transparent means to flag potential chemical hazards or group compounds into categories for read-across. However, there has been a growing concern that alerts disproportionally flag too many chemicals as toxic, which questions their reliability as toxicity markers. Conversely, the rigorously developed and properly validated statistical QSAR models can accurately and reliably predict the toxicity of a chemical; however, their use in regulatory toxicology has been hampered by the lack of transparency and interpretability. We demonstrate that contrary to the common perception of QSAR models as "black boxes" they can be used to identify statistically significant chemical substructures (QSAR-based alerts) that influence toxicity. We show through several case studies, however, that the mere presence of structural alerts in a chemical, irrespective of the derivation method (expert-based or QSAR-based), should be perceived only as hypotheses of possible toxicological effect. We propose a new approach that synergistically integrates structural alerts and rigorously validated QSAR models for a more transparent and accurate safety assessment of new chemicals.
Defarge, Nicolas; Takács, Eszter; Lozano, Verónica Laura; Mesnage, Robin; Spiroux de Vendômois, Joël; Séralini, Gilles-Eric; Székács, András
2016-01-01
Pesticide formulations contain declared active ingredients and co-formulants presented as inert and confidential compounds. We tested the endocrine disruption of co-formulants in six glyphosate-based herbicides (GBH), the most used pesticides worldwide. All co-formulants and formulations were comparably cytotoxic well below the agricultural dilution of 1% (18–2000 times for co-formulants, 8–141 times for formulations), and not the declared active ingredient glyphosate (G) alone. The endocrine-disrupting effects of all these compounds were measured on aromatase activity, a key enzyme in the balance of sex hormones, below the toxicity threshold. Aromatase activity was decreased both by the co-formulants alone (polyethoxylated tallow amine—POEA and alkyl polyglucoside—APG) and by the formulations, from concentrations 800 times lower than the agricultural dilutions; while G exerted an effect only at 1/3 of the agricultural dilution. It was demonstrated for the first time that endocrine disruption by GBH could not only be due to the declared active ingredient but also to co-formulants. These results could explain numerous in vivo results with GBHs not seen with G alone; moreover, they challenge the relevance of the acceptable daily intake (ADI) value for GBHs exposures, currently calculated from toxicity tests of the declared active ingredient alone. PMID:26927151
Sauer, J M; Hooser, S B; Badger, D A; Baines, A; Sipes, I G
1995-01-01
Retinol (vitamin A) is an essential nutrient which has many physiological effects throughout the body. Our studies have demonstrated that retinol modulation of immune response, through alteration of macrophage and neutrophil function, can have dramatic effects on the toxicity of some compounds. Based on these studies, our current hypothesis for retinol potentiation of chemical-induced liver injury is that retinol administered to rats prior to the hepatotoxicant (CCl4 and AA in rats; and AA, APAP, and GalN in mice) primes the Kupffer cells to a more active state. This may occur in part as a result of increases in chemical mediators such as TNF from these Kupffer cells. Following hepatocyte damage by a toxicant, Kupffer cells are activated to release reactive oxygen species, immune mediators, and chemotactic factors which all serve to enhance the inflammatory response. This increased inflammatory response then results in increased injury to the already toxicant-damaged hepatocytes. In addition, retinol modulation of toxicant activation and detoxification may also make important contributions to the potentiation of some toxicants such as AA. Retinol protection of CCl4 hepatotoxicity in mice is more difficult to explain at this time but is possibly related to alterations in CCl4 metabolism in this species. Differences in response between pulmonary and liver macrophages (Kupffer cells) may explain the retinol protection from 1-NN pulmonary toxicity. Retinol may decrease the inflammatory response through downregulation of pulmonary macrophage function, thus resulting in decreased pulmonary injury. Finally, since retinol protection of cadmium toxicity in the liver and testis requires 7 days of retinol pretreatment, we suspect that retinol is inducing protective protein(s) in these organs. Aside from its normal biological role in rhe body, clinical medicine has found new uses for retinol in the treatment and prevention of some cancers, and in the treatment of certain dermatologic conditions. Since these patients are frequently administered or exposed to other potentially toxic compounds, it is obviously prudent and necessary to continue research into the effects of retinol on immune modulation and interaction with other compounds. More importantly, these studies demonstrate the modulation of immune function is one mechanism by which one chemical can influence the toxicity of another.
Nanoengineered Carbon-Based Materials For Reactive Adsorption of Toxic Industrial Compounds
2015-01-13
in phenolic, sulfonic, thioethers and pyrrolic groups. 29. Addition of small amount of sulfanilic acid (grafting with acid) to silica-carbons...thioethers and pyrrolic groups. 29. Addition of small amount of sulfanilic acid (grafting with acid) to silica-carbons composites increases NO2
USDA-ARS?s Scientific Manuscript database
Numerous toxic chemical compounds liberated from lignocellulosic biomass pretreatment inhibit subsequent microbial fermentation that pose a significant challenge to a sustainable and renewable bio-based fermentation industry. Toxin removal procedures by physical or chemical means are essentially imp...
DEVELOPMENT OF REAL-TIME FLARE COMBUSTION EFFICIENCY MONITOR - PHASE I
There are approximately 7,000 flares in operation at industrial facilities across the United States. Flares are one of the largest Volatile Organic Compounds (VOCs) and air toxics emissions sources. Based on a special emission inventory required by the Texas Commission on E...
Bastos, Maria Lysete A; Lima, Maria Raquel F; Conserva, Lucia M; Andrade, Vânia S; Rocha, Eliana MM; Lemos, Rosangela PL
2009-01-01
Background Due to the indiscriminate use of antimicrobial drugs, the emergence of human pathogenic microorganisms resistant to major classes of antibiotics has been increased and has caused many clinical problems in the treatment of infectious diseases. Thus, the aim of this study was to evaluate for the first time the in vitro antimicrobial activity and brine shrimp lethality of extracts and isolated compounds from Zeyheria tuberculosa (Vell.) Bur., a species used in Brazilian folk medicine for treatment of cancer and skin diseases. Methods Using the disc diffusion method, bioautography assay and brine shrimp toxicity test (Artemia salina Leach), we studied the antimicrobial activity and lethality of extracts and isolated compounds against three microorganisms strains, including Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria and yeasts (Candida albicans). Results In this study, the extracts inhibited S. aureus (8.0 ± 0.0 to 14.0 ± 0.0 mm) and C. albicans (15.3 ± 0.68 to 25.6 ± 0.4 mm) growth. In the brine shrimp test, only two of them showed toxic effects (LC50 29.55 to 398.05 μg/mL) and some extracts were non-toxic or showed weak lethality (LC50 705.02 to > 1000 μg/mL). From these extracts, four flavones [5,6,7,8-tetramethoxyflavone (1), 5,6,7-trimethoxyflavone (2), 4'-hydroxy-5,6,7,8-tetramethoxyflavone (3), and 4'-hydroxy-5,6,7-trimethoxyflavone (4)] were isolated through bioassay-guided fractionation and identified based on the 1D and 2D NMR spectral data. By bioautography assays, compounds 1 [S. aureus (16.0 ± 0.0 mm) and C. albicans (20.0 ± 0.0 mm)] and 3 [S. aureus (10.3 ± 0.6 mm) and C. albicans (19.7 ± 0.6 mm)] inhibited both microorganisms while 2 inhibited only S. aureus (11.7 ± 0.6 mm). Compound 4 did not restrain the growth of any tested microorganism. Conclusion Our results showed that extracts and isolated flavones from Z. tuberculosa may be particularly useful against two pathogenic microorganisms, S. aureus and C. albicans. These results may justify the popular use this species since some fractions tested had antimicrobial activity and others showed significant toxic effects on brine shrimps. However, in order to evaluate possible clinical application in therapy of infectious diseases, further studies about the safety and toxicity of isolated compounds are needed. PMID:19450272
Polyoxometalate-based Catalysts for Toxic Compound Decontamination and Solar Energy Conversion
NASA Astrophysics Data System (ADS)
Guo, Weiwei
Polyoxometalates (POMs) have been attracting interest from researchers in the fields of Inorganic Chemistry, Physical Chemistry, Biomolecular Chemistry, etc. Their unique structures and properties render them versatile and facilitate applications in medicine, magnetism, electrochemistry, photochemistry and catalysis. In particular, toxic compound (chemical warfare agents (CWAs) and toxic industrial compounds (TICs)) decontamination and solar energy conversion by POM-based materials have becoming promising and important research areas that deserve much attention. The focus of this thesis is to explore the structural features of POMs, to develop POM-based materials and to investigate their applications in toxic compound decontamination and solar energy conversion. The first part of this thesis gives a general introduction on the history, structures, properties and applications of POMs. The second part reports the synthesis, structures, and reactivity of different types of POMs in the destruction of TICs and CWAs. Three tetra-n-butylammonium (TBA) salts of polyvanadotungstates, [n-Bu4N]6[ PW9V3], [n-Bu4N] 5H2PW8V4O40 (PW 8V4), [n-Bu4N]4H 5PW6V6O40· 20H2O (PW6V6) are discussed in detail. These vanadium-substituted Keggin type POMs show effective activity for the aerobic oxidation of formaldehyde (a major TIC and human-environment carcingen) to formic acid under ambient conditions. Moreover, two types of POMs have also been developed for the removal of CWAs and/or their simulants. Specifically, a layered manganese(IV)-containing heteropolyvanadate with a 1:14 Stoichiometry, K4Li2[MnV14O40]˙21H2 O has been prepared. Its catalytic activity for oxidative removal of 2-chloroethyl ethyl sulfide (a mustard simulant) is discussed. The second type of POM developed for decontamination of CWAs and their simulants is the new one-dimensional polymeric polyniobate (P-PONb), K12[Ti 2O2][GeNb12O40]˙19H2O (KGeNb). The complex has been applied to the decontamination of a wide range of CWAs and their simulants under mild conditions and in the dark. The third part of this dissertation addresses the use of POM-based materials in photocatalytic hydrogen evolution reactions. The structures, characterizations and catalytic hydrogen generation activities of a new tri-nickel-containing Wells-Dawson POM, [Ni3(OH)3(H2O)3P 2W16O59]9- and a new hybrid material that combines POMs, Pt nanoparticles (NPs) and MOFs are investigated.
Detoxification of cancerogenic compounds by lactic acid bacteria strains.
Lili, Zhao; Junyan, Wei; Hongfei, Zhao; Baoqing, Zhu; Bolin, Zhang
2017-10-20
Carcinogens in food are an important issue that threat people's health right now. Lactic acid bacteria (LAB) strains as well-known probiotics have shown numerous perspectives in being used as a good food additive to confront cancerogenic compounds in recent years. Some LAB strains can remove cancerogenic compounds from medium environment via direct physical binding and avoid re-pollution of poisonous secondary metabolites which are generated from degradation of cancerogenic compounds. This article presents a whole overview of the physical-binding of LAB strains to such common cancerogenic compounds existed in food and feed environments as mycotoxins, polycyclic aromatic hydrocarbons (PAHs), heterocyclic amines (HAs) and pthalic acid esters (PAEs).In most cases, summaries of these published researches show that the binding of LAB strains to cancerogenic compounds is a physical process. Binding sites generally take place in cell wall, and peptidoglycan from LAB cells is the chief binding site. The adsorption of lactic acid bacteria to cancerogenic compounds is strain-specific. Specially, the strains from the two genera Lactobacillus and Bifidobacterium show a better potential in binding cancerogenic compounds. Moreover, we firstly used molecular dynamic computer model as a highly potential tool to simulate the binding behavior of peptidoglycan from Lactobacillus acidophilus to DBP, one of pthalic acid esters with genetic toxicity. It was seen that the theoretical data were quite consistent with the experimental results in terms of the ability of this bacterium to bind DBP. Also, the toxicity reduction of cancerogenic compounds by LAB strains could be achieved either in gastrointestinal model or animal tests and clinical researches as well. In conclusion, carefully selected LAB strains should be a good solution as one of safety strategies to reduce potential risk of cancerogenic compounds from food-based products.
Photoenhanced Toxicity of Oil to Larval Fish
Photoenhanced toxicity is the increase in the toxicity of a chemical in the presence of ultraviolet light (UV), compared to toxicity elicited under conditions of minimal UV. Oil products, weathered oils, combusted oil products, and specific polycyclic aromatic compounds in oil ha...
Nogueira, Daniele Rubert; del Carmen Morán, Maria; Mitjans, Montserrat; Pérez, Lourdes; Ramos, David; de Lapuente, Joaquín; Pilar Vinardell, Maria
2014-06-01
Understanding nanomaterial interactions within cells is of increasing importance for assessing their toxicity and cellular transport. Here, the authors developed nanovesicles containing bioactive cationic lysine-based amphiphiles and assessed whether these cationic compounds increase the likelihood of intracellular delivery and modulate toxicity. Different cytotoxic responses were found among the formulations, depending on surfactant, cell line and endpoint assayed. The induction of mitochondrial dysfunction, oxidative stress and apoptosis were the general mechanisms underlying cytotoxicity. Fluorescence microscopy analysis demonstrated that nanovesicles were internalised by HeLa cells and evidenced that their ability to release endocytosed materials into cell cytoplasm depends on the structural parameters of amphiphiles. The cationic charge position and hydrophobicity of surfactants determine the nanovesicle interactions within the cell and, thus, the resulting toxicity and intracellular behaviour after cell uptake of the nanomaterial. The insights into some toxicity mechanisms of these new nanomaterials contribute in reducing the uncertainty surrounding their potential health hazards.
Natal-da-Luz, T; Ojeda, G; Pratas, J; Van Gestel, C A M; Sousa, J P
2011-09-01
Regulatory limits for chemicals and ecological risk assessment are usually based on the effects of single compounds, not taking into account mixture effects. The ecotoxicity of metal-contaminated sludge may, however, not only be due to its metal content. Both the sludge matrix and the presence of other toxicants may mitigate or promote metal toxicity. To test this assumption, the toxicity of soils recently amended with an industrial sludge predominantly contaminated with chromium, copper, nickel, and zinc and soils freshly spiked with the same mixture of metals was evaluated through earthworm (Eisenia andrei) and collembolan (Folsomia candida) reproduction tests. The sludge was less toxic than the spiked metal mixture for E. andrei but more toxic for F. candida. Results obtained for the earthworms suggest a decrease in metal bioavailability promoted by the high organic matter content of the sludge. The higher toxicity of the sludge for F. candida was probably due to the additive toxic effect of other pollutants. Copyright © 2011 Elsevier Inc. All rights reserved.
Magalhaes, Luma G.; Marques, Fernando B.; da Fonseca, Marina B.; Rogério, Kamilla R.; Graebin, Cedric S.; Andricopulo, Adriano D.
2016-01-01
Microtubules play critical roles in vital cell processes, including cell growth, division, and migration. Microtubule-targeting small molecules are chemotherapeutic agents that are widely used in the treatment of cancer. Many of these compounds are structurally complex natural products (e.g., paclitaxel, vinblastine, and vincristine) with multiple stereogenic centers. Because of the scarcity of their natural sources and the difficulty of their partial or total synthesis, as well as problems related to their bioavailability, toxicity, and resistance, there is an urgent need for novel microtubule binding agents that are effective for treating cancer but do not have these disadvantages. In the present work, our lead discovery effort toward less structurally complex synthetic compounds led to the discovery of a series of acridinones inspired by the structure of podophyllotoxin, a natural product with important microtubule assembly inhibitory activity, as novel mechanism-based tubulin assembly inhibitors with potent anticancer properties and low toxicity. The compounds were evaluated in vitro by wound healing assays employing the metastatic and triple negative breast cancer cell line MDA-MB-231. Four compounds with IC50 values between 0.294 and 1.7 μM were identified. These compounds showed selective cytotoxicity against MDA-MB-231 and DU-145 cancer cell lines and promoted cell cycle arrest in G2/M phase and apoptosis. Consistent with molecular modeling results, the acridinones inhibited tubulin assembly in in vitro polymerization assays with IC50 values between 0.9 and 13 μM. Their binding to the colchicine-binding site of tubulin was confirmed through competitive assays. PMID:27508497
Singh, Jagbir; Yang, Peng; Michel, Deborah; Verrall, Ronald E; Foldvari, Marianna; Badea, Ildiko
2011-05-01
Gene based therapy represents an important advance in the treatment of diseases that heretofore have had either no treatment or cure. To capitalize on the true potential of gene therapy, there is a need to develop better delivery systems that can protect these therapeutic biomolecules and deliver them safely to the target sites. Recently, we have designed and developed a series of novel amino acid-substituted gemini surfactants with the general chemical formula C(12)H(25) (CH(3))(2)N(+)-(CH(2))(3)-N(AA)-(CH(2))(3)-N(+) (CH(3))(2)-C(12)H(25) (AA= glycine, lysine, glycyl-lysine and, lysyl-lysine). These compounds were synthesized and tested in rabbit epithelial cells using a model plasmid and a helper lipid. Plasmid/gemini/lipid (P/G/L) nanoparticles formulated using these novel compounds achieved higher gene expression than the nanoparticles containing the parent unsubstituted compound. In this study, we evaluated the cytotoxicity of P/G/L nanoparticles and explored the relationship between transfection efficiency/toxicity and their physicochemical characteristics (such as size, binding properties, etc.). An overall low toxicity is observed for all complexes with no significant difference among substituted and unsubstituted compounds. An interesting result revealed by the dye exclusion assay suggests a more balanced protection of the DNA by the glycine and glycyl-lysine substituted compounds. Thus, the higher transfection efficiency is attributed to the greater biocompatibility and flexibility of the amino acid/peptide-substituted gemini surfactants and demonstrates the feasibility of using amino acid-substituted gemini surfactants as gene carriers for the treatment of diseases affecting epithelial tissue.
Hazardous properties of paint residues from the furniture industry.
Vaajasaari, Kati; Kulovaara, Maaret; Joutti, Anneli; Schultz, Eija; Soljamo, Kari
2004-01-30
The objective of this study was to screen nine excess paint residues for environmental hazard and to evaluate their disposability in a non-hazardous or hazardous-waste landfill. These residues were produced in the process of spray-painting furniture. Residues were classified according to their leaching and ecotoxicological properties. Leaching properties were determined with the European standard SFS-EN 12457-2 leaching-test. The toxicity of the leaching-test eluates was measured with plant-, bacteria- and enzyme-inhibition bioassays. Total organic carbon, formaldehyde and solvent concentrations in the solid wastes and in the leaching-test eluates were analysed. It seemed likely that leached formaldehyde caused very high acute toxicity in leaching-test eluates of the dry-booth residues. This hypothesis was based on the fact that the formaldehyde concentrations in the leaching-test eluates of the dry-booth residues were 62-75 times higher than the EC50 value reported in the literature for formaldehyde. The results of the water-curtain booth residues showed that the samples with the highest TOC and aromatic solvent concentrations were also the most toxic. The studied excess paint residues were complex organic mixtures and contained large amounts of compounds not identifiable from chemical data. Therefore, the evaluation of the hazard based solely on available chemical data is unlikely to be sufficient, as evidenced by our study. Our results show that harmful compounds remain in the solid waste and the toxicity results of their leaching-test eluates show that toxicity may leach from residues in contact with water at landfill sites. They also confirm the benefit of combining chemical and ecotoxicological assays in assessing the potential environmental hazard of complex organic mixtures found in wastes. Copyright 2003 Elsevier B.V.
Cañada, Andres; Capella-Gutierrez, Salvador; Rabal, Obdulia; Oyarzabal, Julen; Valencia, Alfonso; Krallinger, Martin
2017-07-03
A considerable effort has been devoted to retrieve systematically information for genes and proteins as well as relationships between them. Despite the importance of chemical compounds and drugs as a central bio-entity in pharmacological and biological research, only a limited number of freely available chemical text-mining/search engine technologies are currently accessible. Here we present LimTox (Literature Mining for Toxicology), a web-based online biomedical search tool with special focus on adverse hepatobiliary reactions. It integrates a range of text mining, named entity recognition and information extraction components. LimTox relies on machine-learning, rule-based, pattern-based and term lookup strategies. This system processes scientific abstracts, a set of full text articles and medical agency assessment reports. Although the main focus of LimTox is on adverse liver events, it enables also basic searches for other organ level toxicity associations (nephrotoxicity, cardiotoxicity, thyrotoxicity and phospholipidosis). This tool supports specialized search queries for: chemical compounds/drugs, genes (with additional emphasis on key enzymes in drug metabolism, namely P450 cytochromes-CYPs) and biochemical liver markers. The LimTox website is free and open to all users and there is no login requirement. LimTox can be accessed at: http://limtox.bioinfo.cnio.es. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Jiang, Pingzhe; Ni, Zaizhong; Wang, Bin; Ma, Baicheng; Duan, Huikun; Li, Xiaodan; Ma, Xiaofeng; Wei, Qian; Ji, Xiangzhen; Liu, Qiqi; Xing, Shuguang; Li, Minggang
2017-04-01
A new trend has been developed using vanadium and organic ligands to form novel compounds in order to improve the beneficial actions and reduce the toxicity of vanadium compounds. In present study, vanadyl trehalose was explored the oral acute toxicity, 28 days repeated dose toxicity and genotoxicity in Kunming mice. The Median Lethal Dose (LD 50 ) of vanadyl trehalose was revealed to be 1000 mg/kg body weight in fasted Kunming mice. Stomach and intestine were demonstrated to be the main target organs of vanadyl trehalose through 28 days repeated dose toxicity study. And vanadyl trehalose also showed particular genotoxicity through mouse bone marrow micronucleus and mouse sperm malformation assay. In brief, vanadyl trehalose presented certain, but finite toxicity, which may provide experimental basis for the clinical application. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, Adan; Imasaka, Totaro
2016-10-28
To decrease health-risks to humans, non-toxic compounds were evaluated for use as internal standards for calibrating data obtained by gas chromatography/multiphoton ionization mass spectrometry (GC-MPI-MS) using an ultraviolet femtosecond laser as the ionization source. The retention time in the mass chromatogram was calibrated using a retention index, in which a series of n-alkanes was employed as internal standards for evaluating the retention times for polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs). To compensate for changes in signal intensity in MPI-MS, the dependence of signal intensity on the laser pulse energy was investigated for the dioxin-like compounds, in addition to five non-toxic aromatic hydrocarbons, that were used as internal standards. Based on their similar behavior,the non-toxic PCDD/PCDF, its 13 C-isotope, and pentachlorobenzene behave similarly, we conclude that they can be used for calibrating the signal intensities in MPI-MS. Copyright © 2016 Elsevier B.V. All rights reserved.
Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.
The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages overmore » some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.« less
40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.
Code of Federal Regulations, 2014 CFR
2014-07-01
... interact with ocean water to form insoluble matter or new toxic compounds, or materials which may release toxic compounds upon deposition, the Administrator, Regional Administrator, or the District Engineer, as... the material be performed upon a mixture of the waste with ocean water rather than on the material...
40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.
Code of Federal Regulations, 2012 CFR
2012-07-01
... interact with ocean water to form insoluble matter or new toxic compounds, or materials which may release toxic compounds upon deposition, the Administrator, Regional Administrator, or the District Engineer, as... the material be performed upon a mixture of the waste with ocean water rather than on the material...
40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.
Code of Federal Regulations, 2013 CFR
2013-07-01
... interact with ocean water to form insoluble matter or new toxic compounds, or materials which may release toxic compounds upon deposition, the Administrator, Regional Administrator, or the District Engineer, as... the material be performed upon a mixture of the waste with ocean water rather than on the material...
In June 2005 a WHO-IPCS expert meeting was held in Geneva during which the toxic equivalency factors (TEFs) for dioxin like compounds, including some polychlorinated biphenyls (PCBs), were re-evaluated. For this re-evaluation process the refined TEF database recently published by...
Supercritical fluid chromatography-tandem mass spectrometry for the analysis of lipid A
USDA-ARS?s Scientific Manuscript database
Food safety and defense applications require the availability of methods of detection for a variety of toxic compounds in foods. One compound of concern is lipid A, an endotoxin from Gram-negative bacteria, which can cause human illness if it is present at acutely toxic levels in food. The chosen ...
DEVELOPMENTAL TOXICITY OF TCDD AND RELATED COMPOUNDS: SENSITIVITIES AND DIFFERENCES
The issue of the developmental toxicity of 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) and related compounds has been the subject of two recent reviews (Morrissey and Schwetz, 1989; Couture et al., 1990a). here is little doubt that TCDD is one of the most potent developmental tox...
Toxicity of insecticides to tsetse flies
Hadaway, A. B.
1972-01-01
New insecticides have been evaluated for toxicity to tsetse flies and compared with organochlorine compounds currently in use. The most toxic compounds and their estimated median lethal doses in nanograms per fly by topical application in solution to teneral Glossina austeni were: resmethrin 4, fenthion 8, dieldrin 10, propoxur 12, chlorfenvinphos 12, tetrachlorvinphos 20, and dichlorvos 20. There was little variation in the susceptibility of teneral male and female flies, young fed flies, and fed stud males with all the compounds tested (dieldrin, resmethrin, tetrachlorvinphos, bromophos, and propoxur) and increased tolerance in old fed pregnant flies occurred only with dieldrin and resmethrin. There was also little variation in the susceptibility of teneral flies of the two species G. austeni and G. morsitans. In contact toxicity tests with water dispersible powder deposits on plywood, propoxur was highly active initially but lost its effectiveness after only a few weeks, whereas tetrachlorvinphos was less active initially but more persistent. PMID:4537853
Photoenhanced Toxicity of Petroleum to Aquatic Invertebrates and Fish
Photoenhanced toxicity is a distinct mechanism of petroleum toxicity that is mediated by the interaction of solar radiation with specific polycyclic aromatic compounds in oil. Phototoxicity is observed as a twofold to greater than 1000-fold increase in chemical toxicity to aquati...
Ma, Weiwei; Han, Yuxing; Xu, Chunyan; Han, Hongjun; Zhu, Hao; Li, Kun; Zheng, Mengqi
2018-05-04
Even though coal gasification wastewater (CGW) treated by various biochemical treatment processes generally met the national discharge standard, its potential biotoxicity was still unknown. Therefore, in this study, bioassay with Tetrahymena thermophila (T. thermophila) was conducted to comprehensively evaluate the variation of biotoxicity in raw CGW and the treated effluent from lab-scale micro-electrolysis integrated with biological reactor (MEBR), single iron-carbon micro-electrolysis (ICME) and conventional activated sludge (CAS) processes. The results illustrated that raw CGW presented intensive acute toxicity with 24 h EC 50 value of 8.401% and toxic unit (TU) value of 11.90. Moreover, it performed significant cell membrane destruction and DNA damage even at 10% dilution concentration. The toxicant identification results revealed that multiple toxic polar compounds such as phenolic, heterocyclic and polycyclic aromatic compounds were the main contributors for biotoxicity. Furthermore, these compounds could accelerate oxidative stress, thereby inducing oxidative damage of cell membrane and DNA. As for treated effluent, TU value was decreased by 90.58% in MEBR process. An effective biotoxicity reduction was achieved in MEBR process owing to high removal efficiency in polar organic toxicants. In contrast, effluent from ICME and CAS processes presented relatively high acute toxicity and genotoxicity, because various heterocyclic and polycyclic aromatic compounds were difficult to be degraded in these processes. Therefore, it was suggested that MEBR was a potential and feasible process for improving CGW treatment and minimizing ecological risk. Copyright © 2018. Published by Elsevier B.V.
Alafeefy, Ahmed M; Bakht, Mohammed A; Ganaie, Majid A; Ansarie, Mohd N; El-Sayed, Nahed N; Awaad, Amani S
2015-01-15
A series of certain novel Schiff bases as fenamate isosteres (VI:a-k) were synthesized to locate analgesic, anti-inflammatory agent with minimal ulcerogenic potential. The structures of the newly synthesized compounds were elucidated on the basis of their elemental analysis as well as IR, and NMR and mass spectroscopic data. All the compounds were evaluated for their anti-inflammatory activity by carrageenan induced paw oedema method. The compounds possessing good anti-inflammatory activity were further tested for analgesic, ulcerogenic, lipid peroxidation potentials and liver toxicity. Compounds (VI-c), (VI-f), (VI-h) and (VI-i) showed the best anti-inflammatory and significant analgesic activities at doses comparable to that of the standard drug Indomethacin. However, compounds (VI-c) and (VI-f) could be considered the most potent anti-inflammatory and analgesic molecules with maximum reduction in gastro-intestinal ulceration with no hepatocyte necrosis or liver degeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Acute toxicity of selected herbicides and surfactants to larvae of the midge Chironomus riparius
Buhl, Kevin J.; Faerber, Neil L.
1989-01-01
The acute toxicities of eight commercial herbicides and two surfactants to early fourth instar larvae of the midgeChironomus riparius were determined under static conditions. The formulated herbicides tested were Eradicane® (EPTC), Fargo® (triallate), Lasso® (alachlor), ME4 Brominal® (bromoxynil), Ramrod® (propachlor), Rodeo® (glyphosate), Sencor®(metribuzin), and Sutan (+)® (butylate); the two surfactants were Activator N.F.® and Ortho X-77®. In addition, technical grade alachlor, metribuzin, propachlor, and triallate were tested for comparison with the formulated herbicides. The relative toxicity of the commercial formulations, based on percent active ingredient, varied considerably. The EC50 values ranged from 1.23 mg/L for Fargo® to 5,600 mg/L for Rodeo®. Fargo®, ME4 Brominal®, and Ramrod®were moderately toxic to midge larvae; Lasso®, Sutan (+)®, and Eradicane® were slightly toxic; and Sencor® and Rodeo® were practically non-toxic. The 48-hr EC50 values of the two surfactants were nearly identical and were considered moderately toxic to midges. For two of the herbicides in which the technical grade material was tested, the inert ingredients in the formulations had a significant effect on the toxicity of the active ingredients. Fargo® was twice as toxic as technical grade triallate, whereas Sencor® was considerably less toxic than technical grade metribuzin. A comparison of the slope function values indicated that the toxic action of all the compounds occurred within a relatively narrow range. Published acute toxicity data on these compounds for other freshwater biota were tabulated and compared with our results. In general, the relative order of toxicity toC. riparius was similar to those for other freshwater invertebrates and fish. Maximum concentrations of each herbicide in bulk runoff during a projected “critical” runoff event were calculated as a percentage of the application rate lost in a given volume of runoff. A comparison between estimated maximum herbicide concentrations in runoff and results of acute tests indicated that Ramrod®, ME4 Brominal®, and Lasso® pose the greatest direct risk to midge larvae during a storm event.
Franden, Mary Ann; Pienkos, Philip T; Zhang, Min
2009-12-01
Overcoming the effects of hydrolysate toxicity towards ethanologens is a key technical barrier in the biochemical conversion process for biomass feedstocks to ethanol. Despite its importance, the complexity of the hydrolysate toxicity phenomena and the lack of systematic studies, analysis and tools surrounding this issue have blocked a full understanding of relationships involving toxic compounds in hydrolysates and their effects on ethanologen growth and fermentation. In this study, we developed a quantitative, high-throughput biological growth assay using an automated turbidometer to obtain detailed inhibitory kinetics for individual compounds present in lignocellulosic biomass hydrolysate. Information about prolonged lag time and final cell densities can also be obtained. The effects of furfural, hydroxymethylfurfural (HMF), acetate and ethanol on growth rate and final cell densities of Zymomonas mobilis 8b on glucose are presented. This method was also shown to be of value in toxicity studies of hydrolysate itself, despite the highly colored nature of this material. Using this approach, we can generate comprehensive inhibitory profiles with many individual compounds and develop models that predict and examine toxic effects in the complex mixture of hydrolysates, leading to the development of improved pretreatment and conditioning processes as well as fermentation organisms.
Rodriguez, Jocelyn; Maibach, Howard I
2016-01-01
Increased awareness of skin cancer and mosquito-transmitted diseases has increased use of insect repellents and sunscreens. The challenge in setting recommendations for use and reapplication, especially when used concomitantly, lies in finding the balance between applying a durable product effective in withstanding natural and physical factors such as water, sweat, temperature and abrasion, while limiting percutaneous absorption and decreasing risk of potential dermal and systemic toxicity. Inorganic sunscreens show no or little percutaneous absorption or toxic effects in comparison to organic sunscreens, which show varying levels of dermal penetration and cutaneous adverse effects. An alternative to N,N-diethyl-m-toluamide (DEET), the traditional gold standard compound in insect repellents, picaridin appears as efficacious, has lower risk of toxicity, and when used simultaneously with sunscreen may decrease percutaneous absorption of both compounds. Conversely, combined use of DEET and sunscreen results in significantly higher absorption of both compounds. It is important to increase consumer awareness of "washing in" of various compounds leading to increased risk of toxicity, as well as differences in reapplication need due to "washing off" caused by water, sweat and abrasion. Although much remains to be studied, to maximize efficacy and decrease toxicity, contemporary research tools, including dermatopharmokinetics, should aid these prospective advances.
Physicochemical characterization and toxicity of decursin and their derivatives from Angelica gigas.
Mahat, Bimit; Chae, Jung-Woo; Baek, In-Hwan; Song, Gyu-Yong; Song, Jin-Sook; Cho, Seong-Kwon; Kwon, Kwang-Il
2012-01-01
Angelica gigas NAKAI is used to treat dysmenorrhea, amenorrhea, menopause, abdominal pain, injuries, migraine, and arthritis. The present study provided a physicochemical and toxicological characterization of compounds in A. gigas NAKAI (decursin, decursinol angelate, diketone decursin, ether decursin, epoxide decursin and oxim decursin). Diketone decursin (173.16 μg/mL) and epoxide decursin (122.12 μg/mL) exhibited >100 μg/mL kinetic solubility after applying nephelometry, suggesting a highly soluble compound. The Student’s t-test revealed significant differences in the pKa ranges of the compounds by automatic titration from capillary electrophoresis (p<0.05). Diketone decursin, epoxide decursin and oxim decursin might be formulated into an oral dosage form (log P: 0-3) by an automatic titration analysis. A parallel artificial membrane permeability assay demonstrated permeability coefficients of <10 x 10⁻⁶ cm/s for all of the compounds, suggesting poor permeability. Ether decursin exhibited a toxic effect after being applied to mouse (NIH 3T3, EC₅₀: 57.9 μM) and human (HT-29, EC₅₀: 36.1 μM; Hep-G2, EC₅₀: 4.92 μM) cells. Additionally, epoxide and oxim decursin were toxic through acute oral toxicity (four and three deaths of Institute of Cancer Research (ICR) mice) and mutation toxicity testing by applying Salmonella typhimurium cells with and without S9. Although diketone decursin exhibited less permeability, it is potentially valuable pharmacological compound that should be investigated.
Levels of selected carcinogens and toxicants in vapour from electronic cigarettes.
Goniewicz, Maciej Lukasz; Knysak, Jakub; Gawron, Michal; Kosmider, Leon; Sobczak, Andrzej; Kurek, Jolanta; Prokopowicz, Adam; Jablonska-Czapla, Magdalena; Rosik-Dulewska, Czeslawa; Havel, Christopher; Jacob, Peyton; Benowitz, Neal
2014-03-01
Electronic cigarettes, also known as e-cigarettes, are devices designed to imitate regular cigarettes and deliver nicotine via inhalation without combusting tobacco. They are purported to deliver nicotine without other toxicants and to be a safer alternative to regular cigarettes. However, little toxicity testing has been performed to evaluate the chemical nature of vapour generated from e-cigarettes. The aim of this study was to screen e-cigarette vapours for content of four groups of potentially toxic and carcinogenic compounds: carbonyls, volatile organic compounds, nitrosamines and heavy metals. Vapours were generated from 12 brands of e-cigarettes and the reference product, the medicinal nicotine inhaler, in controlled conditions using a modified smoking machine. The selected toxic compounds were extracted from vapours into a solid or liquid phase and analysed with chromatographic and spectroscopy methods. We found that the e-cigarette vapours contained some toxic substances. The levels of the toxicants were 9-450 times lower than in cigarette smoke and were, in many cases, comparable with trace amounts found in the reference product. Our findings are consistent with the idea that substituting tobacco cigarettes with e-cigarettes may substantially reduce exposure to selected tobacco-specific toxicants. E-cigarettes as a harm reduction strategy among smokers unwilling to quit, warrants further study. (To view this abstract in Polish and German, please see the supplementary files online.).
Magalhaes, Jurandir V.
2010-01-01
Background Aluminium (Al) toxicity is a major agricultural constraint for crop cultivation on acid soils, which comprise a large portion of the world's arable land. One of the most widely accepted mechanisms of Al tolerance in plants is based on Al-activated organic acid release into the rhizosphere, with organic acids forming stable, non-toxic complexes with Al. This mechanism has recently been validated by the isolation of bona-fide Al-tolerance genes in crop species, which encode membrane transporters that mediate Al-activated organic acid release leading to Al exclusion from root apices. In crop species such as sorghum and barley, members in the multidrug and toxic compound extrusion (MATE) family underlie Al tolerance by a mechanism based on Al-activated citrate release. Scope and Conclusions The study of Al tolerance in plants as conferred by MATE family members is in its infancy. Therefore, much is yet to be discovered about the functional diversity and evolutionary dynamics that led MATE proteins to acquire transport properties conducive to Al tolerance in plants. In this paper we review the major characteristics of transporters in the MATE family and will relate this knowledge to Al tolerance in plants. The MATE family is clearly extremely flexible with respect to substrate specificity, which raises the possibility that Al tolerance as encoded by MATE proteins may not be restricted to Al-activated citrate release in plant species. There are also indications that regulatory loci may be of pivotal importance to fully explore the potential for Al-tolerance improvement based on MATE genes. PMID:20511585
Gomes, Antony; Bhattacharya, Shamik; Mukherjee, Sanghamitra; Inn-ho-Tsai; Gomes, Aparna
2012-01-01
Background & objectives: Phospholipase A2 (PLA2) is one of the major constituents of krait venom associated with several pathophysiological actions like myotoxicity, cardiotoxicity, neurotoxicity, etc. As there was no specific antiserum available against Bungarus fasciatus venom, this study was done with synthetic herbal compounds, anti PLA2 rabbit antiserum and commercial polyvalent snake venom antiserum to neutralize the PLA2 induced toxicities in experimental models. Methods: B. fasciatus venom phospholipase A2 fraction 38 (BF-38) was isolated by ion exchange chromatography, molecular weight was determined by mass spectrometry and its N terminal amino acid sequence was identified. Monospecific rabbit antiserum was raised against the PLA2 in presence of Freund complete adjuvant. The neutralization of PLA2 induced toxicities was done in in vitro and in in vivo models using synthetic herbal compounds, anti PLA2 rabbit antiserum and commercial polyvalent snake venom antiserum. Results: A toxic PLA2 (BF-38) was purified from the B. fasciatus venom by CM-cellulose and HPLC, of 13.17 kDa and a minor band of 7.3 kDa using ESI-MS. The 13.17 kDa PLA2 sequence was NLYQFKNMIQC. The 7.3 kDa toxin sequence was RKCLTKYSQDNES and was found to be <10 per cent w/w. Anti PLA2 rabbit antiserum produced faint precipitant band in immunogel diffusion and showed low titre value. The commercial polyvalent snake venom antiserum, anti PLA2 rabbit antiserum and the synthetic herbal compounds neutralized the PLA 2 induced toxicities at different intensities. Interpretation & conclusions: Our results suggested that synthetic herbal compound (BA) along with antiserum might provide effective protection against PLA2 induced toxicities of B. fasciatus venom. PMID:22885262
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jong, Esther de, E-mail: Esther.de.Jong@rivm.nl; Laboratory for Health Protection Research, National Institute for Public Health and the Environment; Barenys, Marta
2011-06-01
The relatively high experimental animal use in developmental toxicity testing has stimulated the search for alternatives that are less animal intensive. Three widely studied alternative assays are the mouse Embryonic Stem cell Test (EST), the Zebrafish Embryotoxicity Test (ZET) and the rat postimplantation Whole Embryo Culture (WEC). The goal of this study was to determine their efficacy in assessing the relative developmental toxicity of six 1,2,4-triazole compounds, flusilazole, hexaconazole, cyproconazole, triadimefon, myclobutanil and triticonazole. For this purpose, we analyzed effects and relative potencies of the compounds in and among the alternative assays and compared the findings to their known inmore » vivo developmental toxicity. Triazoles are antifungal agents used in agriculture and medicine, some of which are known to induce craniofacial and limb abnormalities in rodents. The WEC showed a general pattern of teratogenic effects, typical of exposure to triazoles, mainly consisting of reduction and fusion of the first and second branchial arches, which are in accordance with the craniofacial malformations reported after in vivo exposure. In the EST all triazole compounds inhibited cardiomyocyte differentiation concentration-dependently. Overall, the ZET gave the best correlation with the relative in vivo developmental toxicities of the tested compounds, closely followed by the EST. The relative potencies observed in the WEC showed the lowest correlation with the in vivo developmental toxicity data. These differences in the efficacy between the test systems might be due to differences in compound kinetics, in developmental stages represented and in the relative complexity of the alternative assays.« less
de Jong, Esther; Barenys, Marta; Hermsen, Sanne A B; Verhoef, Aart; Ossendorp, Bernadette C; Bessems, Jos G M; Piersma, Aldert H
2011-06-01
The relatively high experimental animal use in developmental toxicity testing has stimulated the search for alternatives that are less animal intensive. Three widely studied alternative assays are the mouse Embryonic Stem cell Test (EST), the Zebrafish Embryotoxicity Test (ZET) and the rat postimplantation Whole Embryo Culture (WEC). The goal of this study was to determine their efficacy in assessing the relative developmental toxicity of six 1,2,4-triazole compounds,(1) flusilazole, hexaconazole, cyproconazole, triadimefon, myclobutanil and triticonazole. For this purpose, we analyzed effects and relative potencies of the compounds in and among the alternative assays and compared the findings to their known in vivo developmental toxicity. Triazoles are antifungal agents used in agriculture and medicine, some of which are known to induce craniofacial and limb abnormalities in rodents. The WEC showed a general pattern of teratogenic effects, typical of exposure to triazoles, mainly consisting of reduction and fusion of the first and second branchial arches, which are in accordance with the craniofacial malformations reported after in vivo exposure. In the EST all triazole compounds inhibited cardiomyocyte differentiation concentration-dependently. Overall, the ZET gave the best correlation with the relative in vivo developmental toxicities of the tested compounds, closely followed by the EST. The relative potencies observed in the WEC showed the lowest correlation with the in vivo developmental toxicity data. These differences in the efficacy between the test systems might be due to differences in compound kinetics, in developmental stages represented and in the relative complexity of the alternative assays. Copyright © 2011 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Pyrrolizidine alkaloids (PAs) are potent liver toxins that have been identified in over 6,000 plants throughout the world. Alkaloids are nitrogen-based compounds with potent biological activity. About half of the identified PAs are toxic and several cause cancer (carcinogenic). PA-containing plants...
USDA-ARS?s Scientific Manuscript database
Background/Objectives. Hexazinone is a broad-spectrum triazine herbicide that inhibits electron transport in photosynthetic organisms. The presence of hexazinone in surface and groundwater is a concern because it is toxic to primary producers that serve as the base of the food chain. Long term la...
The USEPA's National Risk Management Research Laboratory is investigating new separations materials and processes for removal and recovery of volatile organic compounds (VOCs) and toxic metals from wastestreams and industrial process streams. Research applying membrane-based perv...
Determining the impact(s) on fish and other aquatic organisms of exposure to endocrine disrupting compounds (EDCs) is critical for determining the risks that these chemicals pose. However, to accurately evaluate these risks, beyond simply measuring a “before and after exposure” ...
Development of a Computational (in silico) Model of Ocular Teratogenesis
EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that are highly correlated with observed in vivo toxicity. In silico models provide a framework for interpreting the in vitro results and for simul...
Toxic Hazards Research Unit Annual Technical Report: 1985
1985-09-01
varnish makers’ and painters’ naphtha, Toxicol. Appl. Pharmacol., 32:263-281. Carpenter, C. P.. E. R. Kinkead, D. L. Geary, L. J. Sullivan, Jr., and J...and Pharmacology of Inorganic and Fluorine Contairnin Compounds, AMRL-TR-67-224, Aerospace Medical Research Laboiatory, Wright-Patterson Air Force Base
Disinfection byproducts (DBPs) are formed by reactions between chemicals used to disinfect water and organic compounds present in source water. The composition of DBP mixtures varies based on a number of factors, including treatment scenario, with different DBP mixtures contain...
Chandra, Ram; Kumar, Vineet
2017-01-01
Sugarcane-molasses-based post-methanated distillery waste is well known for its toxicity, causing adverse effects on aquatic flora and fauna. Here, it has been demonstrated that there is an abundant mixture of androgenic and mutagenic compounds both in distillery sludge and leachate. Gas chromatography-mass spectrometry (GC-MS) analysis showed dodecanoic acid, octadecanoic acid, n-pentadecanoic acid, hexadecanoic acid, β-sitosterol, stigmasterol, β-sitosterol trimethyl ether, heptacosane, dotriacontane, lanosta-8, 24-dien-3-one, 1-methylene-3-methyl butanol, 1-phenyl-1-propanol, 5-methyl-2-(1-methylethyl) cyclohexanol, and 2-ethylthio-10-hydroxy-9-methoxy-1,4 anthraquinone as major organic pollutants along with heavy metals (all mg kg-1): Fe (2403), Zn (210.15), Mn (126.30, Cu (73.62), Cr (21.825), Pb (16.33) and Ni (13.425). In a simultaneous analysis of bacterial communities using the restriction fragment length polymorphism (RFLP) method the dominance of Bacillus sp. followed by Enterococcus sp. as autochthonous bacterial communities growing in this extremely toxic environment was shown, indicating a primary community for bioremediation. A toxicity evaluation showed a reduction of toxicity in degraded samples of sludge and leachate, confirming the role of autochthonous bacterial communities in the bioremediation of distillery waste in situ. PMID:28567033
Contact toxicity of twenty insecticides applied to Symmerista canicosta
Jacqueline L. Robertson; Robert L. Lyon; Fay L. Shon; Nancy L. Gillette
1972-01-01
Twenty insecticides were tested by topical application on mixed groups of 4th- and 5th -stage larvae of Symmerista canicosta Franclemont. Four exceeded DDT in toxicity at LD50 but only resmethrin was significantly mor toxic. Most of the compounds showed unusually high toxicities. Twelve, listed in decreasing order of toxicity...
Lin, Shih-Hung; Huang, Kao-Jean; Weng, Ching-Feng; Shiuan, David
2015-01-01
Cholesterol plays an important role in living cells. However, a very high level of cholesterol may lead to atherosclerosis. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase is the key enzyme in the cholesterol biosynthesis pathway, and the statin-like drugs are inhibitors of human HMG-CoA reductase (hHMGR). The present study aimed to virtually screen for potential hHMGR inhibitors from natural product to discover hypolipidemic drug candidates with fewer side effects and lesser toxicities. We used the 3D structure 1HWK from the PDB (Protein Data Bank) database of hHMGR as the target to screen for the strongly bound compounds from the traditional Chinese medicine database. Many interesting molecules including polyphenolic compounds, polisubstituted heterocyclics, and linear lipophilic alcohols were identified and their ADMET (absorption, disrtibution, metabolism, excretion, toxicity) properties were predicted. Finally, four compounds were obtained for the in vitro validation experiments. The results indicated that curcumin and salvianolic acid C can effectively inhibit hHMGR, with IC50 (half maximal inhibitory concentration) values of 4.3 µM and 8 µM, respectively. The present study also demonstrated the feasibility of discovering new drug candidates through structure-based virtual screening.
The Use of Modified Bentonite for Removal of Aromatic Organics from Contaminated Soil.
Gitipour; Bowers; Bodocsi
1997-12-15
This study investigates the clay-aromatic interactions with a view to the use of bentonite clay for binding benzene, toluene, ethylbenzene, and o-xylene (BTEX compounds) in contaminated soils. BTEX compounds are the most toxic aromatic constituents of gasoline present in many underground storage tanks. Modified (organophilic) and ordinary bentonites are used to remove these organics. The organophilic bentonites are prepared by replacing the exchangeable inorganic cations present in bentonite particles with a quaternary ammonium salt. Various clay-to-soil ratios were applied to determine the efficiency of the modified bentonite in enhancing the cement-based solidification/stabilization (S/S) of BTEX contaminated soils. Toxicity characteristics leaching procedure (TCLP) tests were performed on soil samples to evaluate the leaching of the organics. In addition, X-ray diffraction analyses were conducted to assess the changes in the basal spacing of the clays as a result of their interaction with BTEX compounds. The findings of this study reveal that organophilic bentonite can act as a successful adsorbent for removing the aromatic organics from contaminated soil. Thus, this material is viable for enhancing the performance of cement-based S/S processes, as an adsorbent for petroleum spills, and for landfill liners and slurry walls. Copyright 1997 Academic Press.
Acute Human Lethal Toxicity of Agricultural Pesticides: A Prospective Cohort Study
Senarathna, Lalith; Mohamed, Fahim; Gawarammana, Indika; Bowe, Steven J.; Manuweera, Gamini; Buckley, Nicholas A.
2010-01-01
Background Agricultural pesticide poisoning is a major public health problem in the developing world, killing at least 250,000–370,000 people each year. Targeted pesticide restrictions in Sri Lanka over the last 20 years have reduced pesticide deaths by 50% without decreasing agricultural output. However, regulatory decisions have thus far not been based on the human toxicity of formulated agricultural pesticides but on the surrogate of rat toxicity using pure unformulated pesticides. We aimed to determine the relative human toxicity of formulated agricultural pesticides to improve the effectiveness of regulatory policy. Methods and Findings We examined the case fatality of different agricultural pesticides in a prospective cohort of patients presenting with pesticide self-poisoning to two clinical trial centers from April 2002 to November 2008. Identification of the pesticide ingested was based on history or positive identification of the container. A single pesticide was ingested by 9,302 patients. A specific pesticide was identified in 7,461 patients; 1,841 ingested an unknown pesticide. In a subset of 808 patients, the history of ingestion was confirmed by laboratory analysis in 95% of patients. There was a large variation in case fatality between pesticides—from 0% to 42%. This marked variation in lethality was observed for compounds within the same chemical and/or WHO toxicity classification of pesticides and for those used for similar agricultural indications. Conclusion The human data provided toxicity rankings for some pesticides that contrasted strongly with the WHO toxicity classification based on rat toxicity. Basing regulation on human toxicity will make pesticide poisoning less hazardous, preventing hundreds of thousands of deaths globally without compromising agricultural needs. Ongoing monitoring of patterns of use and clinical toxicity for new pesticides is needed to identify highly toxic pesticides in a timely manner. Please see later in the article for the Editors' Summary PMID:21048990
Paseiro-Cerrato, R; Rodríguez-Bernaldo de Quirós, A; Sendón, R; Bustos, J; Sánchez, J J; López-Hernández, J; Paseiro-Losada, P
2015-01-01
It is a well-known fact that amines are not stable in food of a fatty nature. In this study the synthesis and characterisation of the products obtained as a result of the reaction of amines in a fatty medium are reported. Based on the well-known reactions among amines and acid and esters groups, two novel compounds were synthesised using m-xylylenediamine (mXDA), a primary diamine widely used as monomer in the manufacture of food contact materials and two fatty acids, oleic acid and palmitic acid, which occur in most fats. The resulting compounds were two molecules belonging to the family of fatty acid amides, dioleamide and dipalmitamide. A complete characterisation of both products was carried out employing several techniques such as infrared spectroscopy, (1)H- and (13)C-NMR spectroscopy, electron ionisation mass spectrometry, LC-MS/MS and UV spectrometry. The results obtained by the different techniques were well correlated. In the second part of the work, the formation of these compounds in real samples was evaluated. For this purpose a certain volume of olive oil was spiked with a known amount of mXDA. Olive oil was selected as a fatty medium since it is a widely consumed food and additionally is used as a fatty food simulant in migration studies of food contact materials. A method was developed to extract the fatty acid amides from the fatty matrix, which were then identified by LC-MS/MS. The toxicity of the synthesised compounds was predicted using a toxicity estimation software tool.
Doucette, Kaitlin A; Hassell, Kelly N; Crans, Debbie C
2016-12-01
Improving efficacy and lowering resistance to metal-based drugs can be addressed by consideration of the coordination complex speciation and key reactions important to vanadium antidiabetic drugs or platinum anticancer drugs under biological conditions. The methods of analyses vary depending on the specific metal ion chemistry. The vanadium compounds interconvert readily, whereas the reactions of the platinum compounds are much slower and thus much easier to study. However, the vanadium species are readily differentiated due to vanadium complexes differing in color. For both vanadium and platinum systems, understanding the processes as the compounds, Lipoplatin and Satraplatin, enter cells is needed to better combat the disease; there are many cellular metabolites, which may affect processing and thus the efficacy of the drugs. Examples of two formulations of platinum compounds illustrate how changing the chemistry of the platinum will result in less toxic and better tolerated drugs. The consequence of the much lower toxicity of the drug, can be readily realized because cisplatin administration requires hospital stay whereas Lipoplatin can be done in an outpatient manner. Similarly, the properties of Satraplatin allow for development of an oral drug. These forms of platinum demonstrate that the direct consequence of more selective speciation is lower side effects and cheaper administration of the anticancer agent. Therefore we urge that as the community goes forward in development of new drugs, control of speciation chemistry will be considered as one of the key strategies in the future development of anticancer drugs. Copyright © 2016 Elsevier Inc. All rights reserved.
Favier, Maxime; Dewil, Raf; Van Eyck, Kwinten; Van Schepdael, Ann; Cabooter, Deirdre
2015-10-01
Phenazone-type pharmaceuticals, such as aminopyrine, metamizole, phenazone and propyphenazone, are widely used analgesics that have been detected in wastewater treatment plant effluents in μg L(-1) concentrations. Acetamido antipyrine (AAA) and formyl aminoantipyrine (FAA) - the main metabolites of aminopyrine and metamizole - have also been detected in sub μg L(-1) concentrations in environmental water bodies and in resources used to produce drinking water, suggesting their highly persistent character. In this study phenazone, propyphenazone, AAA and FAA were treated with ozone under laboratory conditions and 17 degradation products were identified by an elucidation approach based on high-resolution mass spectrometry (LTQ Orbitrap). Typical oxidation of carbon-carbon double bonds by ozone was observed among other mechanisms of ring opening. It was demonstrated that reactivity of these compounds with ozone is high (rate constants kO3 ranging from 6.5×10(4) to 2.4×10(6) M(-1) s(-1)). The toxicity of the degradation products from ozonation was estimated by quantitative structure-activity relationships (QSAR). It was shown that, when the carbon-carbon double bond is partially oxidized to an epoxy, the toxicity towards fish and daphnids is higher than that of the parent compound. By further oxidizing the molecules, a common degradation product - 1-acetyl-1-methyl-2-phenylhydrazide (AMPH) - was also found to be more toxic than its parent compounds, which is of concern since this compound has previously been reported in environmental waters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Synthesis and evaluation of phosphorus containing, specific CDK9/CycT1 inhibitors.
Németh, Gábor; Greff, Zoltán; Sipos, Anna; Varga, Zoltán; Székely, Rita; Sebestyén, Mónika; Jászay, Zsuzsa; Béni, Szabolcs; Nemes, Zoltán; Pirat, Jean-Luc; Volle, Jean-Noël; Virieux, David; Gyuris, Ágnes; Kelemenics, Katalin; Ay, Eva; Minarovits, Janos; Szathmary, Susan; Kéri, György; Orfi, László
2014-05-22
Although there is a significant effort in the design of a selective CDK9/CycT1 inhibitor, no compound has been proven to be a specific inhibitor of this kinase so far. The aim of this research was to develop novel and selective phosphorus containing CDK9/CycT1 inhibitors. Molecules bearing phosphonamidate, phosphonate, and phosphinate moieties were synthesized. Prepared compounds were evaluated in an enzymatic CDK9/CycT1 assay. The most potent molecules were tested in cell-based toxicity and HIV proliferation assays. Selectivity of shortlisted compounds against CDKs and other kinases was tested. The best compound was shown to be a highly specific, ATP-competitive inhibitor of CDK9/CycT1 with antiviral activity.
[Glyphosate--a non-toxic pesticide?].
Pieniazek, Danuta; Bukowska, Bozena; Duda, Wirgiliusz
2003-01-01
Glyphosate is currently the most commonly applied herbicide and its use is still growing. Nowadays, over 50 commercial preparations containing this compound are used, and these formulations are much more toxic than their active compound, glyphosate, owing to the presence of many surfactants and carrier compounds. Toxicological investigations provide evidence that glyphosate is an extremely "safe" herbicide for animals. This is why its use in agriculture is universal. In June 1991, the Environmental Protection Agency (EPA) categorized this compound into class E (according to EPA there are five categories of carcinogenicity), which means that it is probably not carcinogenic to humans. Unfortunately, the study carried out by Swedish oncologists in 2001 showed that glyphosate may induce cancer of the lymphatic system. The results of the Swedish study have changed our opinion about "safety" of this herbicide. Investigations concerning both its accumulation and toxic effect in animals and plants are now under way in many laboratories.
Perumalsamy, Haribalan; Kim, Jae Yeon; Kim, Jun-Ran; Hwang, Kum Na Ra; Ahn, Young-Joon
2014-05-01
Pyroglyphid house dust mites are the most common cause of allergic symptoms in humans. An assessment was made of the toxicity of basil, Ocimum basilicum L, essential oil, 11 basil oil constituents, seven structurally related compounds, and another 22 previously known basil oil constituents to adult American house dust mites, Dermatophagoides farinae Hughes. The efficacy of four experimental spray formulations containing basil oil (1, 2, 3, and 4% sprays) was also assessed. Results were compared with those of two conventional acaricides benzyl benzoate and N,N-diethyl-3-methylbenzamide. The active principles of basil oil were determined to be citral, alpha-terpineol, and linalool. Citral (24 h LC50, 1.13 microg/cm2) and menthol (1.69 microg/cm2) were the most toxic compounds, followed by methyl eugenol (5.78 microg/cm2). These compounds exhibited toxicity greater than benzyl benzoate (LC50, 8.41 microg/cm2) and N,N-diethyl-3-methylbenzamide (37.67 microg/cm2). Potent toxicity was also observed with eugenol, menthone, spathulenol, alpha-terpineol, nerolidol, zerumbone, and nerol (LC50, 12.52-21.44 microg/cm2). Interestingly, the sesquiterpenoid alpha-humulene, lacking only the carbonyl group present in zerumbone, was significantly less effective than zerumbone, indicating that the alpha,beta-unsaturated carbonyl group of zerumbone is a prerequisite component for toxicity. These compounds were consistently more toxic in closed versus open containers, indicating that their mode of delivery was largely a result of vapor action. Basil oil applied as 3 and 4% sprays provided 97 and 100% mortality against the mites, respectively, whereas permethrin (cis:trans, 25:75) 2.5 g/liter spray treatment resulted in 17% mortality. Our results indicate that practical dust mite control in indoor environments can be achieved by basil oil spray formulations (3 and 4% sprays) as potential contact-action fumigants.
SNRB{trademark} air toxics monitoring. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-01
Babcock & Wilcox (B&W) is currently conducting a project under the DOE`s Clean Coal Technology (CCT II) Program to demonstrate its SO{sub x}NO{sub x}-Rox Box{trademark} (SNRB{trademark}) process in a 5 MWe Field Demonstration Unit at Ohio Edison`s R. E. Burger Plant near Shadyside, Ohio. The objective of the SNRB{trademark} Air Toxics Monitoring Project was to provide data on SNRB{trademark} air toxics emissions control performance to B&W and to add to the DOE/EPRI/EPA data base by quantifying the flow rates of selected hazardous substances (or air toxics) in all of the major input and output streams of the SNRB{trademark} process asmore » well as the power plant. Work under the project included the collection and analysis of representative samples of all major input and output streams of the SNRB{trademark} demonstration unit and the power plant, and the subsequent laboratory analysis of these samples to determine the partitioning of the hazardous substances between the various process streams. Material balances for selected air toxics were subsequently calculated around the SNRB{trademark} and host boiler systems, including the removal efficiencies across each of the major air pollution control devices. This report presents results of the SNRB{trademark} Air Toxics Monitoring Project. In addition to the Introduction, a brief description of the test site, including the Boiler No. 8 and the SNRB{trademark} process, is included in Section H. The concentrations of air toxic emissions are presented in Section II according to compound class. Material balances are included in Section IV for three major systems: boiler, electrostatic precipitator, and SNRB{trademark}. Emission factors and removal efficiencies are also presented according to compound class in Sections V and VI, respectively. A data evaluation is provided in Section VII.« less
Kim, Jungkon; Park, Jeongim; Kim, Pan-Gyi; Lee, Chulwoo; Choi, Kyunghee; Choi, Kyungho
2010-04-01
Global environmental change poses emerging environmental health challenges throughout the world. One of such threats could be found in chemical safety in aquatic ecosystem. In the present study, we evaluated the effect of several environmental factors, such as water pH, temperature and ultraviolet light on the toxicity of pharmaceutical compounds in water, using freshwater invertebrate Daphnia magna. Seven pharmaceuticals including ibuprofen, acetaminophen, lincomycin, ciprofloxacin, enrofloxacin, chlortetracycline and sulfathiazole were chosen as test compounds based on their frequent detection in water. The experimental conditions of environmental parameters were selected within the ranges that could be encountered in temperate environment, i.e., water temperature (15, 21, and 25 degrees C), pH (7.4, 8.3, and 9.2), and UV-B light intensity (continuous irradiation of 15.0 microW/cm(2)). For acetaminophen, enrofloxacin and sulfathiazole, decrease in water pH generally led to increase of acute lethal toxicity, which could be explained by the unionized fraction of pharmaceuticals. Increase of water temperature enhanced the acute toxicity of the acetaminophen, enrofloxacin and chlortetracycline, potentially due to alteration in toxicokinetics of chemicals as well as impact on physiological mechanisms of the test organism. The presence of UV-B light significantly increased the toxicity of sulfathiazole, which could be explained by photo-modification of this chemical that lead to oxidative stress. Under the UV light, however, acute toxicity of enrofloxacin decreased, which might be due to photo-degradation. Since changing environmental conditions could affect exposure and concentration-response profile of environmental contaminants, such conditions should be identified and evaluated in order to better manage ecosystem health under changing global environment.
Shu, Zengquan; Li, Chao; Belosevic, Miodrag; Bolton, James R; El-Din, Mohamed Gamal
2014-08-19
The solar UV/chlorine process has emerged as a novel advanced oxidation process for industrial and municipal wastewaters. Currently, its practical application to oil sands process-affected water (OSPW) remediation has been studied to treat fresh OSPW retained in large tailings ponds, which can cause significant adverse environmental impacts on ground and surface waters in Northern Alberta, Canada. Degradation of naphthenic acids (NAs) and fluorophore organic compounds in OSPW was investigated. In a laboratory-scale UV/chlorine treatment, the NAs degradation was clearly structure-dependent and hydroxyl radical-based. In terms of the NAs degradation rate, the raw OSPW (pH ∼ 8.3) rates were higher than those at an alkaline condition (pH = 10). Under actual sunlight, direct solar photolysis partially degraded fluorophore organic compounds, as indicated by the qualitative synchronous fluorescence spectra (SFS) of the OSPW, but did not impact NAs degradation. The solar/chlorine process effectively removed NAs (75-84% removal) and fluorophore organic compounds in OSPW in the presence of 200 or 300 mg L(-1) OCl(-). The acute toxicity of OSPW toward Vibrio fischeri was reduced after the solar/chlorine treatment. However, the OSPW toxicity toward goldfish primary kidney macrophages after solar/chlorine treatment showed no obvious toxicity reduction versus that of untreated OSPW, which warrants further study for process optimization.
Seo, Seon-Mi; Kim, Junheon; Kang, Jaesoon; Koh, Sang-Hyun; Ahn, Young-Joon; Kang, Kyu-Suk; Park, Il-Kwon
2014-07-01
This study investigated the fumigant toxicity of 4 Asteraceae plant essential oils and their constituents against the Japanese termite Reticulitermes speratus Kolbe. Fumigant toxicity varied with plant essential oils or constituents, exposure time, and concentration. Among the tested essential oils, those from Chamaemelum nobile exhibited the strongest fumigant toxicity, followed by those from Santolina chamaecyparissus, Ormenis multicaulis, and Eriocephalus punctulatus at 2 days after treatment. In all, 15, 24, 19, and 9 compounds were identified in the essential oils from C. nobile, E. punctulatus, O. multicaulis, and S. chamaecyparissus, respectively, by using gas chromatography, gas chromatography-mass spectrometry, or open-column chromatography. The identified compounds were tested individually for their fumigant toxicity against Japanese termites. Among the test compounds, trans-pinocarveol, caryophyllene oxide, sabinene hydrate, and santolina alcohol showed strong fumigant toxicity against Japanese termites. Acetylcholinesterase (AChE) inhibition activity of the identified compounds from C. nobile, E. punctulatus, O. multicaulis, and S. chamaecyparissus essential oils were tested to determine the mode of their action. The IC50 values of (+)-α-pinene, (-)-limonene, (-)-α-pinene, β-pinene, and β-phellandrene against Japanese termite AChE were 0.03, 0.13, 0.41, 0.42, and 0.67mg/mL, respectively. Further studies are warranted to determine the potential of these essential oils and their constituents as fumigants for termite control. Copyright © 2014 Elsevier Inc. All rights reserved.
Humic Acids as Therapeutic Compounds in Lead Intoxication.
Krempaská, Klára; Vaško, Ladislav; Vašková, Janka
2016-01-01
The toxicity of lead and its compounds is well known, causing anemia by inhibiting the synthesis of porphyrins. The neurotoxic effects, particularly in the young, alter the structure of cell membranes and DNA. Chronic exposure to lead has adverse effects on the body by disrupting the mechanisms of energy production and tissue damage, in particular in its links with thiol groups and competition for binding sites with zinc. This review is therefore a description of the mechanism of lead toxicity as well as of possible interventions for the detoxification of the body. Part of the clinical intervention is the provision of chelates that form insoluble complexes with lead and eliminate the load in tissues. Most of these chelating agents have a number of side effects. It is therefore not surprising that active compounds with distinctive antioxidant and chelating properties are being sought after. The possibility of administering lower amounts, and the corresponding decrease in side effects, would be important for clinical practice. Both prospective studies and our initial studies on humic acids have highlighted positive effects based on their antioxidant and chelating properties.
Using Pareto points for model identification in predictive toxicology
2013-01-01
Predictive toxicology is concerned with the development of models that are able to predict the toxicity of chemicals. A reliable prediction of toxic effects of chemicals in living systems is highly desirable in cosmetics, drug design or food protection to speed up the process of chemical compound discovery while reducing the need for lab tests. There is an extensive literature associated with the best practice of model generation and data integration but management and automated identification of relevant models from available collections of models is still an open problem. Currently, the decision on which model should be used for a new chemical compound is left to users. This paper intends to initiate the discussion on automated model identification. We present an algorithm, based on Pareto optimality, which mines model collections and identifies a model that offers a reliable prediction for a new chemical compound. The performance of this new approach is verified for two endpoints: IGC50 and LogP. The results show a great potential for automated model identification methods in predictive toxicology. PMID:23517649
Predicting drug-induced liver injury using ensemble learning methods and molecular fingerprints.
Ai, Haixin; Chen, Wen; Zhang, Li; Huang, Liangchao; Yin, Zimo; Hu, Huan; Zhao, Qi; Zhao, Jian; Liu, Hongsheng
2018-05-21
Drug-induced liver injury (DILI) is a major safety concern in the drug-development process, and various methods have been proposed to predict the hepatotoxicity of compounds during the early stages of drug trials. In this study, we developed an ensemble model using three machine learning algorithms and 12 molecular fingerprints from a dataset containing 1,241 diverse compounds. The ensemble model achieved an average accuracy of 71.1±2.6%, sensitivity of 79.9±3.6%, specificity of 60.3±4.8%, and area under the receiver operating characteristic curve (AUC) of 0.764±0.026 in five-fold cross-validation and an accuracy of 84.3%, sensitivity of 86.9%, specificity of 75.4%, and AUC of 0.904 in an external validation dataset of 286 compounds collected from the Liver Toxicity Knowledge Base (LTKB). Compared with previous methods, the ensemble model achieved relatively high accuracy and sensitivity. We also identified several substructures related to DILI. In addition, we provide a web server offering access to our models (http://ccsipb.lnu.edu.cn/toxicity/HepatoPred-EL/).
Thermochemical Wastewater Valorization via Enhanced Microbial Toxicity Tolerance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckham, Gregg T; Thelhawadigedara, Lahiru Niroshan Jayakody; Johnson, Christopher W
Thermochemical (TC) biomass conversion processes such as pyrolysis and liquefaction generate considerable amounts of wastewater, which often contains highly toxic compounds that are incredibly challenging to convert via standard wastewater treatment approaches such as anaerobic digestion. These streams represent a cost for TC biorefineries, and a potential valorization opportunity, if effective conversion methods are developed. The primary challenge hindering microbial conversion of TC wastewater is toxicity. In this study, we employ a robust bacterium, Pseudomonas putida, with TC wastewater streams to demonstrate that aldehydes are the most inhibitory compounds in these streams. Proteomics, transcriptomics, and fluorescence-based immunoassays of P. putidamore » grown in a representative wastewater stream indicate that stress results from protein damage, which we hypothesize is a primary toxicity mechanism. Constitutive overexpression of the chaperone genes, groEL, groES, and clpB, in a genome-reduced P. putida strain improves the tolerance towards multiple TC wastewater samples up to 200-fold. Moreover, the concentration ranges of TC wastewater are industrially relevant for further bioprocess development for all wastewater streams examined here, representing different TC process configurations. Furthermore, we demonstrate proof-of-concept polyhydroxyalkanoate production from the usable carbon in an exemplary TC wastewater stream. Overall, this study demonstrates that protein quality control machinery and repair mechanisms can enable substantial gains in microbial tolerance to highly toxic substrates, including heterogeneous waste streams. When coupled to other metabolic engineering advances such as expanded substrate utilization and enhanced product accumulation, this study generally enables new strategies for biological conversion of highly-toxic, organic-rich wastewater via engineered aerobic monocultures or designer consortia.« less
Gramicidin D enhances the antibacterial activity of fluoride.
Nelson, James W; Zhou, Zhiyuan; Breaker, Ronald R
2014-07-01
Fluoride is a toxic anion found in many natural environments. One of the major bacterial defenses against fluoride is the cell envelope, which limits passage of the membrane-impermeant fluoride anion. Accordingly, compounds that enhance the permeability of bacterial membranes to fluoride should also enhance fluoride toxicity. In this study, we demonstrate that the pore-forming antibiotic gramicidin D increases fluoride uptake in Bacillus subtilis and that the antibacterial activity of this compound is potentiated by fluoride. Polymyxin B, another membrane-targeting antibiotic with a different mechanism of action, shows no such improvement. These results, along with previous findings, indicate that certain compounds that destabilize bacterial cell envelopes can enhance the toxicity of fluoride. Copyright © 2014 Elsevier Ltd. All rights reserved.
Small Molecule Fluoride Toxicity Agonists
Nelson1, James W.; Plummer, Mark S.; Blount, Kenneth F.; Ames, Tyler D.; Breaker, Ronald R.
2015-01-01
SUMMARY Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch-reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride. PMID:25910244
40 CFR 401.15 - Toxic pollutants.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Mercury and compounds 46. Naphthalene 47. Nickel and compounds 48. Nitrobenzene 49. Nitrophenols.... Tetrachloroethylene 60. Thallium and compounds 61. Toluene 62. Toxaphene 1 63. Trichloroethylene 64. Vinyl chloride 65...
40 CFR 401.15 - Toxic pollutants.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Mercury and compounds 46. Naphthalene 47. Nickel and compounds 48. Nitrobenzene 49. Nitrophenols.... Tetrachloroethylene 60. Thallium and compounds 61. Toluene 62. Toxaphene 1 63. Trichloroethylene 64. Vinyl chloride 65...
40 CFR 401.15 - Toxic pollutants.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Mercury and compounds 46. Naphthalene 47. Nickel and compounds 48. Nitrobenzene 49. Nitrophenols.... Tetrachloroethylene 60. Thallium and compounds 61. Toluene 62. Toxaphene 1 63. Trichloroethylene 64. Vinyl chloride 65...
Bacterial bio-resources for remediation of hexachlorocyclohexane.
Alvarez, Analía; Benimeli, Claudia S; Saez, Juliana M; Fuentes, María S; Cuozzo, Sergio A; Polti, Marta A; Amoroso, María J
2012-11-15
In the last few decades, highly toxic organic compounds like the organochlorine pesticide (OP) hexachlorocyclohexane (HCH) have been released into the environment. All HCH isomers are acutely toxic to mammals. Although nowadays its use is restricted or completely banned in most countries, it continues posing serious environmental and health concerns. Since HCH toxicity is well known, it is imperative to develop methods to remove it from the environment. Bioremediation technologies, which use microorganisms and/or plants to degrade toxic contaminants, have become the focus of interest. Microorganisms play a significant role in the transformation and degradation of xenobiotic compounds. Many Gram-negative bacteria have been reported to have metabolic abilities to attack HCH. For instance, several Sphingomonas strains have been reported to degrade the pesticide. On the other hand, among Gram-positive microorganisms, actinobacteria have a great potential for biodegradation of organic and inorganic toxic compounds. This review compiles and updates the information available on bacterial removal of HCH, particularly by Streptomyces strains, a prolific genus of actinobacteria. A brief account on the persistence and deleterious effects of these pollutant chemical is also given.
Bacterial Bio-Resources for Remediation of Hexachlorocyclohexane
Alvarez, Analía; Benimeli, Claudia S.; Saez, Juliana M.; Fuentes, María S.; Cuozzo, Sergio A.; Polti, Marta A.; Amoroso, María J.
2012-01-01
In the last few decades, highly toxic organic compounds like the organochlorine pesticide (OP) hexachlorocyclohexane (HCH) have been released into the environment. All HCH isomers are acutely toxic to mammals. Although nowadays its use is restricted or completely banned in most countries, it continues posing serious environmental and health concerns. Since HCH toxicity is well known, it is imperative to develop methods to remove it from the environment. Bioremediation technologies, which use microorganisms and/or plants to degrade toxic contaminants, have become the focus of interest. Microorganisms play a significant role in the transformation and degradation of xenobiotic compounds. Many Gram-negative bacteria have been reported to have metabolic abilities to attack HCH. For instance, several Sphingomonas strains have been reported to degrade the pesticide. On the other hand, among Gram-positive microorganisms, actinobacteria have a great potential for biodegradation of organic and inorganic toxic compounds. This review compiles and updates the information available on bacterial removal of HCH, particularly by Streptomyces strains, a prolific genus of actinobacteria. A brief account on the persistence and deleterious effects of these pollutant chemical is also given. PMID:23203113
2013-01-01
Background In mammals, ABCB1 constitutes a cellular “first line of defense” against a wide array of chemicals and drugs conferring cellular multidrug or multixenobiotic resistance (MDR/MXR). We tested the hypothesis that an ABCB1 ortholog serves as protection for the sensitive developmental processes in zebrafish embryos against adverse compounds dissolved in the water. Results Indication for ABCB1-type efflux counteracting the accumulation of chemicals in zebrafish embryos comes from experiments with fluorescent and toxic transporter substrates and inhibitors. With inhibitors present, levels of fluorescent dyes in embryo tissue and sensitivity of embryos to toxic substrates were generally elevated. We verified two predicted sequences from zebrafish, previously annotated as abcb1, by cloning; our synteny analyses, however, identified them as abcb4 and abcb5, respectively. The abcb1 gene is absent in the zebrafish genome and we explored whether instead Abcb4 and/or Abcb5 show toxicant defense properties. Quantitative real-time polymerase chain reaction (qPCR) analyses showed the presence of transcripts of both genes throughout the first 48 hours of zebrafish development. Similar to transporter inhibitors, morpholino knock-down of Abcb4 increased accumulation of fluorescent substrates in embryo tissue and sensitivity of embryos toward toxic compounds. In contrast, morpholino knock-down of Abcb5 did not exert this effect. ATPase assays with recombinant protein obtained with the baculovirus expression system confirmed that dye and toxic compounds act as substrates of zebrafish Abcb4 and inhibitors block its function. The compounds tested comprised model substrates of human ABCB1, namely the fluorescent dyes rhodamine B and calcein-am and the toxic compounds vinblastine, vincristine and doxorubicin; cyclosporin A, PSC833, MK571 and verapamil were applied as inhibitors. Additionally, tests were performed with ecotoxicologically relevant compounds: phenanthrene (a polycyclic aromatic hydrocarbon) and galaxolide and tonalide (two polycyclic musks). Conclusions We show that zebrafish Abcb4 is a cellular toxicant transporter and provides protection of embryos against toxic chemicals dissolved in the water. Zebrafish Abcb4 thus is functionally similar to mammalian ABCB1, but differs from mammalian ABCB4, which is not involved in cellular resistance to chemicals but specifically transports phospholipids in the liver. Our data have important implications: Abcb4 could affect bioavailability - and thus toxicologic and pharmacologic potency - of chemicals to zebrafish embryos and inhibition of Abcb4 therefore causes chemosensitization, that is, enhanced sensitivity of embryos to toxicants. These aspects should be considered in (eco)toxicologic and pharmacologic chemical screens with the zebrafish embryo, a major vertebrate model. PMID:23773777
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Lin; Liu, Cong; Leibly, David
Amyloid protein aggregates are associated with dozens of devastating diseases including Alzheimer’s, Parkinson’s, ALS, and diabetes type 2. While structure-based discovery of compounds has been effective in combating numerous infectious and metabolic diseases, ignorance of amyloid structure has hindered similar approaches to amyloid disease. Here we show that knowledge of the atomic structure of one of the adhesive, steric-zipper segments of the amyloid-beta (Aβ) protein of Alzheimer’s disease, when coupled with computational methods, identifies eight diverse but mainly flat compounds and three compound derivatives that reduce Aβ cytotoxicity against mammalian cells by up to 90%. Although these compounds bind tomore » Aβ fibers, they do not reduce fiber formation of Aβ. Structure-activity relationship studies of the fiber-binding compounds and their derivatives suggest that compound binding increases fiber stability and decreases fiber toxicity, perhaps by shifting the equilibrium of Aβ from oligomers to fibers.« less
NASA Astrophysics Data System (ADS)
Guziałowska-Tic, Joanna; Jan Tic, Wilhelm
2017-10-01
The demand for exploitation of new plasticizers and coalescents to be used for production of water dispersion adhesives based on poli(vinyl acetate), turned to be recently of particular significance because the use of all kind of toxic phthalates was banned and certain restrictions were made to use glycol derivatives classified as volatile organic compounds. An alternative for toxic plasticizers used for production of adhesives is hydroxyester (HE-1) obtained from isobutanal during the process of aldol condensation under subsequent Cannizaro and Tischenko reactions. The paper presents selected results of ecotoxicological tests on the environmental impact of hydroxyester HE-1. It was found that the substance is biodegradable and has no negative impact on algae growth rate, however it may inhibit algae biomass growth. The results of Daphnia immobilization test shows that the substance is safe for the aquatic environment. Whereas, at higher concentrations, hydroxyester HE-1 may exhibit acute toxicity to rainbow trout.
From QSAR to QSIIR: Searching for Enhanced Computational Toxicology Models
Zhu, Hao
2017-01-01
Quantitative Structure Activity Relationship (QSAR) is the most frequently used modeling approach to explore the dependency of biological, toxicological, or other types of activities/properties of chemicals on their molecular features. In the past two decades, QSAR modeling has been used extensively in drug discovery process. However, the predictive models resulted from QSAR studies have limited use for chemical risk assessment, especially for animal and human toxicity evaluations, due to the low predictivity of new compounds. To develop enhanced toxicity models with independently validated external prediction power, novel modeling protocols were pursued by computational toxicologists based on rapidly increasing toxicity testing data in recent years. This chapter reviews the recent effort in our laboratory to incorporate the biological testing results as descriptors in the toxicity modeling process. This effort extended the concept of QSAR to Quantitative Structure In vitro-In vivo Relationship (QSIIR). The QSIIR study examples provided in this chapter indicate that the QSIIR models that based on the hybrid (biological and chemical) descriptors are indeed superior to the conventional QSAR models that only based on chemical descriptors for several animal toxicity endpoints. We believe that the applications introduced in this review will be of interest and value to researchers working in the field of computational drug discovery and environmental chemical risk assessment. PMID:23086837
Han, Xiao-Feng; He, Xing; Wang, Miao; Xu, Di; Hao, Li-Ping; Liang, Ai-Hua; Zhang, Jun; Zhou, Zhi-Ming
2015-10-20
Novel angiotensin II receptor type 1 (AT1) blockers bearing 6-substituted carbamoyl benzimidazoles with a chiral center were designed and synthesized as the first step to develop new antihypertensive agents and understand their pharmacodynamic and pharmacokinetic properties. The newly synthesized compounds were tested for their potential ability to displace [(125)I] Sar(1) Ile(8)-Ang II, which was specifically bound to human AT1 receptor. Radioligand binding assays revealed nanomolar affinity in several compounds under study. The IC50 values of nine ligands were higher than those of Losartan. The screening of decreased blood pressure in spontaneous hypertensive rats displayed that compound 8S (IC₅₀ = 5.0 nM) was equipotent with Losartan, whereas compounds 13R (IC₅₀ = 7.3 nM), 14R (IC₅₀ = 6.3 nM), and 14S (IC₅₀ = 3.5 nM) were slightly ahead of Losartan, and the most significant activity was demonstrated by compound 8R (IC₅₀ = 1.1 nM). Candidate 8R was identified for its excellent efficacy in antihypertension and fairly low toxicity based on plasma analyses, toxicology studies, and chronic oral tests. Finally, compound 8R exhibited strong and multiple interactions with target active sites of the theoretical AT1 receptor model in docking study. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Lariosa-Willingham, Karen D; Rosler, Elen S; Tung, Jay S; Dugas, Jason C; Collins, Tassie L; Leonoudakis, Dmitri
2016-09-05
Multiple sclerosis is caused by an autoimmune response resulting in demyelination and neural degeneration. The adult central nervous system has the capacity to remyelinate axons in part through the generation of new oligodendrocytes (OLs). To identify clinical candidate compounds that may promote remyelination, we have developed a high throughput screening (HTS) assay to identify compounds that promote the differentiation of oligodendrocyte precursor cells (OPCs) into OLs. Using acutely dissociated and purified rat OPCs coupled with immunofluorescent image quantification, we have developed an OL differentiation assay. We have validated this assay with a known promoter of differentiation, thyroid hormone, and subsequently used the assay to screen the NIH clinical collection library. We have identified twenty-seven hit compounds which were validated by dose response analysis and the generation of half maximal effective concentration (EC50) values allowed for the ranking of efficacy. The assay identified novel promoters of OL differentiation which we attribute to (1) the incorporation of an OL toxicity pre-screen to allow lowering the concentrations of toxic compounds and (2) the utilization of freshly purified, non-passaged OPCs. These features set our assay apart from other OL differentiation assays used for drug discovery efforts. This acute primary OL-based differentiation assay should be of use to those interested in screening large compound libraries for the identification of drugs for the treatment of MS and other demyelinating diseases.
Toxicology of tetramethyltin and other organometals used in photovoltaic cell manufacture
NASA Astrophysics Data System (ADS)
Hamilton, L. D.; Medeiros, W. H.; Moskowitz, P. D.; Rybicka, K.
1988-07-01
In photovoltaic cell fabrication, organometals (alkyl metals) may be used in such processes as metalorganic chemical vapor deposition, transparent contact oxide deposition, doping, and ion implantation. Although these compounds offer potential performance advantages over earth metals and possibly greater safety in handling than metal hydrides, they are not without risk to health and property. Most organometals can ignite spontaneously in air. Some also react violently with water. Oxidation by-products from these reactions are hazardous to health. Of the organometals used in photovoltaic cell fabrication, only the toxicology of organotins (triethyl-, trimethyl- and tetramethyltin) was studied extensively. In mammalian systems, tetramethyltin is rapidly dealkylated to trimethyltin. Although tin was classified by some investigators as an essential trace element, the effects of organotin compounds on humans are poorly known. Animal studies show that the most prominent effects of trimethyltin are on the central nervous system. Several observations of poisoning were reported; effects ranged from reversible neurologic disorders to death. Limited available data suggest that humans respond to single acute doses and more alarmingly to repeated sub-toxic doses, suggesting a cumulative effect. Toxicologic properties of diethyltelluride also were evaluated in animal experiments. The compound had toxic effects on the blood, liver, kidney, heart, and skin. Based on these studies and others of related compounds (e.g., methylmercury, tributyltin) extreme caution should be exercised in using organometal compounds in photovoltaic cell manufacturing.
Giordani, Federica; Buschini, Annamaria; Baliani, Alessandro; Kaiser, Marcel; Brun, Reto; Barrett, Michael P.; Pellacani, Claudia; Poli, Paola
2014-01-01
This paper reports an evaluation of a melamino nitroheterocycle, a potential lead for further development as an agent against human African trypanosomiasis (HAT). Studies on its efficacy, physicochemical and biopharmaceutical properties, and potential for toxicity are described. The compound previously had been shown to possess exceptional activity against Trypanosoma brucei in in vitro assays comparable to that of melarsoprol. Here, we demonstrate that the compound also was curative in the stringent acute mouse model T. brucei rhodesiense STIB 900 when given intraperitoneally at 40 mg/kg of body weight. Nevertheless, activity was only moderate when the oral route was used, and no cure was obtained when the compound was tested in a stage 2 rodent model of infection. Genotoxic profiling revealed that the compound induces DNA damage by a mechanism apparently independent from nitroreduction and involving the introduction of base pair substitutions (Ames test), possibly caused by oxidative damage of the DNA (comet test). No significant genotoxicity was observed at the chromosome level (micronucleus assay). The lack of suitable properties for oral and central nervous system uptake and the genotoxic liabilities prevent the progression of this melamine nitroheterocycle as a drug candidate for HAT. Further modification of the compound is required to improve the pharmacokinetic properties of the molecule and to separate the trypanocidal activity from the toxic potential. PMID:25022590
Ekuase, E.J.; van ’t Erve, T.J.; Rahaman, A.; Robertson, L.W.; Duffel, M.W.; Luthe, G.
2015-01-01
Determining the relationships between the structures of substrates and inhibitors and their interactions with drug-metabolizing enzymes is of prime importance in predicting the toxic potential of new and legacy xenobiotics. Traditionally, quantitative structure activity relationship (QSAR) studies are performed with many distinct compounds. Based on the chemical properties of the tested compounds, complex relationships can be established so that models can be developed to predict toxicity of novel compounds. In this study, the use of fluorinated analogues as supplemental QSAR compounds was investigated. Substituting fluorine induces changes in electronic and steric properties of the substrate without substantially changing the chemical backbone of the substrate. In vitro assays were performed using purified human cytosolic sulfotransferase hSULT2A1 as a model enzyme. A mono-hydroxylated polychlorinated biphenyl (4-OH PCB 14) and its four possible mono-fluoro analogues were used as test compounds. Remarkable similarities were found between this approach and previously published QSAR studies for hSULT2A1. Both studies implicate the importance of dipole moment and dihedral angle as being important to PCB structure in respect to being substrates for hSULT2A1. We conclude that mono-fluorinated analogues of a target substrate can be a useful tool to study the structure activity relationships for enzyme specificity. PMID:26165989
Turning the Tide on Toxics in the Home.
ERIC Educational Resources Information Center
Washington State Dept. of Ecology, Olympia.
This booklet provides a guide for the safe use and disposal of toxic chemicals found around the home. Toxicity ratings given to compounds are explained along with the amount needed for a probable fatal dose for a 150-pound person. Each category of hazardous waste is provided with typical examples of the toxicants, a toxicity rating, several…
Chemical Protection Against Radiation Damage
ERIC Educational Resources Information Center
Campaigne, Ernest
1969-01-01
Discusses potential war time and medical uses for chemical compounds giving protection against radiation damage. Describes compounds known to protect, research aimed at discovering such compounds, and problems of toxicity. (EB)
Dantzger, Darlene D; Jonsson, Claudio M; Aoyama, Hiroshi
2018-02-01
The insecticide Diflubenzuron (DFB), used by many fish farming, when metabolized or degraded produces the extremely toxic compound p-chloroaniline (PCA). Once in the aquatic environment, these compounds can form mixtures and their bioavailability depends on factors such as the presence of soil. The toxic effects of the isolated compounds and their mixtures in the proportions: 75%, 50%, and 25% of PCA were analyzed in tilapia (Oreochromis niloticus) in the presence and absence of soil after 96h. The enzymes catalase (CAT), acid (AcP) and alkaline (AlP) phosphatases and alanine (ALT) and aspartate (AST) aminotransferases of the liver of the tilapia (Oreochromis niloticus) were used as biomarkers. DFB and the mixture containing 75% of this compound did not present high toxicity to fish; however, 25mg/L of PCA alone and 15mg/L of the mixture with 75% of this compound promoted 50% mortality of tilapia (Oreochromis niloticus). In the presence of soil, these toxicity values decreased to 37 and 25mg/L, respectively. Independent of the presence of soil, a synergistic effect was observed when the proportion of PCA was 75% and to the mixture, with 25% PCA was observed the antagonistic effect. Different concentrations of the compounds and their mixtures induced CAT activity independently of the presence of soil. Additionally, increases in phosphatases and transaminases activities were observed. In some cases, the enzymes also had their activities decreased and the dose-dependence effects were not observed. This research showed that the presence of soil influenced the toxicity of the compounds but not altered interaction type among them. Diflubenzuron, p-chloroaniline, and mixtures thereof caused disorders in enzymes important for the health of tilapia (Oreochromis niloticus). Copyright © 2017 Elsevier Inc. All rights reserved.
Cytotoxicity assessment of antibiofouling compounds and by-products in marine bivalve cell cultures.
Domart-Coulon, I; Auzoux-Bordenave, S; Doumenc, D; Khalanski, M
2000-06-01
Short-term primary cell cultures were derived from adult marine bivalve tissues: the heart of oyster Crassostrea gigas and the gill of clam Ruditapes decussatus. These cultures were used as experimental in vitro models to assess the acute cytotoxicity of an organic molluscicide, Mexel-432, used in antibiofouling treatments in industrial cooling water systems. A microplate cell viability assay, based on the enzymatic reduction of tetrazolium dye (MTT) in living bivalve cells, was adapted to test the cytotoxicity of this compound: in both in vitro models, toxicity thresholds of Mexel-432 were compared to those determined in vivo with classic acute toxicity tests. The clam gill cell model was also used to assess the cytotoxicity of by-products of chlorination, a major strategy of biofouling control in the marine environment. The applications and limits of these new in vitro models for monitoring aquatic pollutants were discussed, in reference with the standardized Microtox test.
Chen, Feng; Liu, Liping; Bai, Zengguo; Zhang, Tianhua; Zhao, Keke
2017-01-01
ABSTRACT Here, 3 fluorinated intermediates of drug were synthesized: (M1), (M2), (M3). Three new anticoagulant rodenticides were designed which were based on 4-hydroxycoumarin or 1,3-indandione, added acute toxicity groups containing fluorine. The structures of synthesized compounds were analyzed and proved by FT-IR spectroscopy and 1H nuclear magnetic resonance (1H-NMR). The compounds were also evaluated for their anticoagulant and acute biologic activity. In addition, both the acute orally toxicity and the feeding indexes of R1 and R2 were tested. The result of the experiment proved that the new synthesis of 1, 3 - indan diketone for maternal new anticoagulant rodenticide can replace the current 4 - hydroxyl coumarin as the mother of the second generation anticoagulant rodenticide and 1, 3 - indan diketone for maternal new anticoagulant rodenticides will have a good development prospect. PMID:27759485
Chen, Feng; Liu, Liping; Bai, Zengguo; Zhang, Tianhua; Zhao, Keke
2017-01-02
Here, 3 fluorinated intermediates of drug were synthesized: (M1), (M2), (M3). Three new anticoagulant rodenticides were designed which were based on 4-hydroxycoumarin or 1,3-indandione, added acute toxicity groups containing fluorine. The structures of synthesized compounds were analyzed and proved by FT-IR spectroscopy and 1 H nuclear magnetic resonance ( 1 H-NMR). The compounds were also evaluated for their anticoagulant and acute biologic activity. In addition, both the acute orally toxicity and the feeding indexes of R 1 and R 2 were tested. The result of the experiment proved that the new synthesis of 1, 3 - indan diketone for maternal new anticoagulant rodenticide can replace the current 4 - hydroxyl coumarin as the mother of the second generation anticoagulant rodenticide and 1, 3 - indan diketone for maternal new anticoagulant rodenticides will have a good development prospect.
Jin, Yoonhee; Nair, Asha; van Veen, Hendrik W.
2014-01-01
Membrane transporters belonging to the multidrug and toxic compound extrusion family mediate the efflux of unrelated pharmaceuticals from the interior of the cell in organisms ranging from bacteria to human. These proteins are thought to fall into two classes that couple substrate efflux to the influx of either Na+ or H+. We studied the energetics of drug extrusion by NorM from Vibrio cholerae in proteoliposomes in which purified NorM protein was functionally reconstituted in an inside-out orientation. We establish that NorM simultaneously couples to the sodium-motive force and proton-motive force, and biochemically identify protein regions and residues that play important roles in Na+ or H+ binding. As the positions of protons are not available in current medium and high-resolution crystal structures of multidrug and toxic compound extrusion transporters, our findings add a previously unrecognized parameter to mechanistic models based of these structures. PMID:24711447
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teeguarden, Justin G.; Deisinger, P. J.; Poet, Torka S.
2005-05-01
The metabolic series (family) approach for risk assessment uses a dosimetry-based analysis to develop toxicity information for a group of metabolically linked compounds using pharmacokinetic (PK) data for each compound and toxicity data for the parent compound. An initial physiologically-based pharmacokinetic (PBPK) model was developed to support the implementation of the metabolic series approach for n-butyl acetate and its subsequent metabolites, n-butanol, and n-butyric acid (the butyl series) (Barton et al. 2000). In conjunction with pilot pharmacokinetic studies, the model was used to design the definitive intravenous (i.v.) PK studies. Rats were implanted with dual indwelling cannulae and administered testmore » compounds by i.v. bolus dose, i.v. infusion, or by inhalation in a recirculating closed chamber. Hepatic, vascular and extravascular metabolic constants for metabolism were estimated by fitting the model to the blood time course data from these experiments. The respiratory bioavailability of n-butyl acetate and n-butanol was estimated from closed chamber inhalation studies and measured ventilation rates. The resulting butyl series PBPK model successfully reproduces the blood time course of these compounds following i.v. administration, and inhalation exposure to n-butyl acetate and n-butanol. A fully scaled human version of the model successfully reproduces arterial blood n-butanol kinetics following inhalation exposure to n-butanol. These validated i.v (rat) and inhalation route models (rat, butyl acetate, n-butanol; human, butanol only) can be used to support species and dose-route extrapolations required for risk assessment of butyl series family of compounds. Further, this work demonstrates the usefulness of i.v. kinetic data for parameterization of systemic metabolism and the value of collaboration between experimentalists and kineticists in the development of PBPK models. The product of this effort, validated rat and human PBPK models for the butyl series compounds, illustrates the effectiveness of broad multi-institutional public/private collaborations in the pursuit of developing state of the art tools for risk assessment.« less
Barenys, Marta; Masjosthusmann, Stefan; Fritsche, Ellen
2017-01-01
Due to potential health benefits and the general assumption that natural products are safe, there is an increasing trend in the general population - including pregnant women - to supplement their diet with flavonoid-based food supplements. In addition, preclinical studies aim to prevent developmental adverse effects induced by toxic substances, infections, maternal or genetic diseases of the unborn child by administration of flavonoids at doses far above those reached by normal diets. Because these substances do not undergo classical risk assessment processes, our aim was to review the available literature on the potential adverse effects of maternal diet supplementation with flavonoid-based products for the developing child. A systematic literature search was performed in three databases and screened following four exclusion criteria. Selected studies were classified into two groups: 1. Studies on the developmental toxicity of single flavonoids in vitro or in animals in vivo, and 2. Studies on the developmental toxicity of single flavonoids or on flavonoid-mixtures in humans. The data collected indicate that there is a concern for the safety of some flavonoids within realistic human exposure scenarios. This concern is accompanied by a tremendous lack of studies on safety of these compounds during development making definite safety decisions impossible. Besides studies of survival, especially the more specific developmental processes like nervous system development need to be addressed experimentally. Before new high-dose, flavonoid-based therapeutic strategies are developed for pregnant women further research on the safety of these compounds is clearly needed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Acute toxic effects of endosulfan sulfate on three life stages of grass shrimp, Palaemonetes pugio.
Key, Peter B; Chung, Katy W; Venturella, John J; Shaddrick, Brian; Fulton, Michael H
2010-01-01
In this study, the toxicity of endosulfan sulfate, the primary degradation product of the insecticide endosulfan, was determined in three life stages of the grass shrimp (Palaemonetes pugio). After 96 h exposure to endosulfan sulfate, the grass shrimp adult LC50 was 0.86 microg/L (95% CI 0.56-1.31), the grass shrimp larvae LC50 was 1.64 microg/L (95% CI 1.09-2.47) and the grass shrimp embryo LC50 was 45.85 microg/L (95% CI 23.72-88.61 microg/L). This was compared to the previously published grass shrimp 96-h LC50s for endosulfan. The toxicity of the two compounds was similar for the grass shrimp life stages with adults more sensitive than larvae and embryos. The presence of sediment in 24h endosulfan sulfate-exposures raised LC50s for both adult and larval grass shrimp but not significantly. The USEPA expected environmental concentrations (EEC) for total endosulfan and endosulfan sulfate and the calculations of risk quotients (RQ) based on the more sensitive adult grass shrimp 96-h LC50 clearly show that environmental concentrations equal to acute EECs would prove detrimental to grass shrimp or other similarly sensitive aquatic organisms. These results indicate that given the persistence and toxicity of endosulfan sulfate, future risk assessments should consider the toxicity potential of the parent compound as well as this degradation product.
Photoenhanced toxicity is a distinct mechanism of petroleum toxicity that is mediated by the interaction of solar radiation with specific polycyclic aromatic compounds (PACs) in oil. Phototoxicity is observed as a 2 to greater than 1000 fold increase in chemical toxicity to aqua...
Toxicity of selected insecticides applied to western spruce budworm
Jacqueline L. Robertson; Nancy L. Gillette; Melvin Look; Barbara A. Lucas; Robert L. Lyon
1975-01-01
The contact toxicity of 100 insecticides to last stage larvae of Choristoneura occidentalis Freeman was tested by topical application in a 10-yr series of screening experiments. Pyrethroids were generally the most toxic group of chemicals tested. Compounds more toxic than the standard, mexacarbate, at Ld50 were:...
Duysen, Ellen G.; Cashman, John R.; Schopfer, Lawrence M.; Nachon, Florian; Masson, Patrick; Lockridge, Oksana
2012-01-01
Mouse blood contains four esterases that detoxify organophosphorus compounds: carboxylesterase, butyrylcholinesterase, acetylcholinesterase, and paraoxonase-1. In contrast human blood contains the latter three enzymes but not carboxylesterase. Organophosphorus compound toxicity is due to inhibition of acetylcholinesterase. Symptoms of intoxication appear after approximately 50% of the acetylcholinesterase is inhibited. However, complete inhibition of carboxylesterase and butyrylcholinesterase has no known effect on an animal’s well being. Paraoxonase hydrolyzes organophosphorus compounds and is not inhibited by them. Our goal was to determine the effect of plasma carboxylesterase deficiency on response to sublethal doses of 10 organophosphorus toxicants and one carbamate pesticide. Homozygous plasma carboxylesterase deficient ES1−/− mice and wild-type littermates were observed for toxic signs and changes in body temperature after treatment with a single sublethal dose of toxicant. Inhibition of plasma acetylcholinesterase, butyrylcholinesterase, and plasma carboxylesterase was measured. It was found that wild-type mice were protected from the toxicity of 12.5 mg/kg parathion applied subcutaneously. However, both genotypes responded similarly to paraoxon, cresyl saligenin phosphate, diisopropylfluorophosphate, diazinon, dichlorvos, cyclosarin thiocholine, tabun thiocholine, and carbofuran. An unexpected result was the finding that transdermal application of chlorpyrifos at 100 mg/kg and chlorpyrifos oxon at 14 mg/kg was lethal to wild-type but not to ES1−/− mice, showing that with this organochlorine, the presence of carboxylesterase was harmful rather than protective. It was concluded that carboxylesterase in mouse plasma protects from high toxicity agents, but the amount of carboxylesterase in plasma is too low to protect from low toxicity compounds that require high doses to inhibit acetylcholinesterase. PMID:22209767
Passoni, Flávia Donaire; Oliveira, Rejane Barbosa; Chagas-Paula, Daniela Aparecida; Gobbo-Neto, Leonardo; Da Costa, Fernando Batista
2013-05-20
Tithonia diversifolia (Hemsl.) A. Gray has been commonly used in folk medicine to treat abscesses, microbiological infections, snake bites, malaria and diabetes. Both anti-inflammatory and anti-malarial properties have been identified using appropriate assays, but the effective doses have demonstrated toxic effects for the experimental animals. Most of the pharmacological activities have been attributed to sesquiterpene lactones (STLs) and some chlorogenic acid derivatives (CAs) in the leaves of this species. This work aimed to evaluate the repeated-dose toxicity of an aqueous extract (AE) from Tithonia diversifolia leaves and to compare the results with an extract rich in STLs (LRE) and a polar extract (PE) without STLs but rich in CAs. The purpose of this work was to provide insights into the identity of the compounds responsible for the toxic effects of Tithonia diversifolia. The major classes of compounds were confirmed in each extract by IR spectra and HPLC-UV-DAD profiling using previously isolated or standard compounds. The toxicity of each extract was evaluated in a repeated-dose toxicity study in Wistar rats for 90 days. The AE is composed of both STLs and CAs, the LRE is rich in STLs, and the PE is rich in CAs. The AE caused alterations in haematological parameters but few alterations in biochemical parameters and was relatively safe at doses lower than 100mg/kg. However, the PE and LRE demonstrated several adverse effects by damaging the liver and kidneys, respectively. STLs and CAs can be toxic in prolonged use at higher doses in extracts prepared from Tithonia diversifolia by affecting the kidneys and liver. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Novel 3-Nitro-1H-1,2,4-triazole-based Amides and Sulfonamides as Potential anti-Trypanosomal Agents
Papadopoulou, Maria V.; Bloomer, William D.; Rosenzweig, Howard S.; Chatelain, Eric; Kaiser, Marcel; Wilkinson, Shane R.; McKenzie, Caroline; Ioset, Jean-Robert
2012-01-01
A series of novel 3-nitro-1H-1,2,4-triazole-(and in some cases 2-nitro-1H-imidazole)-based amides and sulfonamides were characterized for their in vitro anti-trypanosomal and antileishmanial activities as well as mammalian toxicity. Out of 36 compounds tested, 29 (mostly 3-nitro-1H-1,2,4-triazoles) displayed significant activity against T. cruzi intracellular amastigotes (IC50 ranging from 28 nM to 3.72 μM) without concomitant toxicity to L6 host cells (selectivity 66 to 2782). Twenty three of these active compounds were more potent (up to 58 fold) than the reference drug benznidazole, tested in parallel. In addition, 9 nitrotriazoles which were moderately active (0.5 μM ≤ IC50 < 6.0 μM) against T. b. rhodesiense trypomastigotes, were 5 to 31 fold more active against bloodstream-form T. b. brucei trypomastigotes engineered to overexpress NADH-dependent nitroreductase (TbNTR). Finally, 3 nitrotriazoles displayed a moderate activity against the axenic form of Leishmania donovani. Therefore, 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides are potent anti-trypanosomal agents. PMID:22550999
Nitrotriazole- and imidazole-based amides and sulfonamides as antitubercular agents.
Papadopoulou, Maria V; Bloomer, William D; Rosenzweig, Howard S; Arena, Alexander; Arrieta, Francisco; Rebolledo, Joseph C J; Smith, Diane K
2014-11-01
Twenty-three 3-nitrotriazole-based and 2-nitroimidazole-based amides and sulfonamides were screened for antitubercular (anti-TB) activity in aerobic Mycobacterium tuberculosis H37Rv by using the BacTiter-Glo (BTG) microbial cell viability assay. In general, 3-nitrotriazole-based sulfonamides demonstrated anti-TB activity, whereas 3-nitrotriazole-based amides and 2-nitroimidazole-based amides and sulfonamides were inactive. Three 3-nitrotriazole-based sulfonamides (compounds 4, 2, and 7) demonstrated 50% inhibitory concentration (IC50), IC90, and MIC values of 0.38, 0.43, and 1.56 μM (compound 4), 0.57, 0.98, and 3.13 μM (compound 2), and 0.79, 0.87, and 3.13 μM (compound 7), respectively. For 3-nitrotriazole-based sulfonamides, anti-TB activity increased with lipophilicity, whereas the one-electron reduction potential (E1/2) did not play a role. 2-Nitroimidazole-based analogs, which were inactive in the BTG assay, were significantly more active in the low-oxygen assay and more active than the 3-nitrotriazoles. All active nitrotriazoles in the BTG assay were similarly active or more potent (lower MIC values) against resistant strains, with the exception of compounds 2, 3, 4, and 8, which demonstrated greater MIC values against isoniazid-resistant strains. Five 3-nitrotriazole-based sulfonamides demonstrated activity in infected murine J774 macrophages, causing log reductions similar to those seen with rifampin. However, some compounds caused toxicity in uninfected macrophages. In conclusion, the classes of 3-nitrotriazole-based amides and sulfonamides merit further investigation as potential antitubercular agents. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Nitrotriazole- and Imidazole-Based Amides and Sulfonamides as Antitubercular Agents
Bloomer, William D.; Rosenzweig, Howard S.; Arena, Alexander; Arrieta, Francisco; Rebolledo, Joseph C. J.; Smith, Diane K.
2014-01-01
Twenty-three 3-nitrotriazole-based and 2-nitroimidazole-based amides and sulfonamides were screened for antitubercular (anti-TB) activity in aerobic Mycobacterium tuberculosis H37Rv by using the BacTiter-Glo (BTG) microbial cell viability assay. In general, 3-nitrotriazole-based sulfonamides demonstrated anti-TB activity, whereas 3-nitrotriazole-based amides and 2-nitroimidazole-based amides and sulfonamides were inactive. Three 3-nitrotriazole-based sulfonamides (compounds 4, 2, and 7) demonstrated 50% inhibitory concentration (IC50), IC90, and MIC values of 0.38, 0.43, and 1.56 μM (compound 4), 0.57, 0.98, and 3.13 μM (compound 2), and 0.79, 0.87, and 3.13 μM (compound 7), respectively. For 3-nitrotriazole-based sulfonamides, anti-TB activity increased with lipophilicity, whereas the one-electron reduction potential (E1/2) did not play a role. 2-Nitroimidazole-based analogs, which were inactive in the BTG assay, were significantly more active in the low-oxygen assay and more active than the 3-nitrotriazoles. All active nitrotriazoles in the BTG assay were similarly active or more potent (lower MIC values) against resistant strains, with the exception of compounds 2, 3, 4, and 8, which demonstrated greater MIC values against isoniazid-resistant strains. Five 3-nitrotriazole-based sulfonamides demonstrated activity in infected murine J774 macrophages, causing log reductions similar to those seen with rifampin. However, some compounds caused toxicity in uninfected macrophages. In conclusion, the classes of 3-nitrotriazole-based amides and sulfonamides merit further investigation as potential antitubercular agents. PMID:25182645
McNamara, Peter J.; Syverson, Rae Ellen; Milligan-Myhre, Kathy; Frolova, Olga; Schroeder, Sarah; Kidder, Joshua; Hoang, Thanh; Proctor, Richard A.
2009-01-01
Menstrual toxic shock syndrome is a rare but potentially life-threatening illness manifest through the actions of Staphylococcus aureus toxic shock syndrome toxin 1 (TSST-1). Previous studies have shown that tampon additives can influence staphylococcal TSST-1 production. We report here on the TSST-1-suppressing activity of 34 compounds that are commonly used additives in the pharmaceutical, food, and perfume industries. Many of the tested chemicals had a minimal impact on the growth of S. aureus and yet were potent inhibitors of TSST-1 production. The TSST-1-reducing compounds included surfactants with an ether, amide, or amine linkage to their fatty acid moiety (e.g., myreth-3-myristate, Laureth-3, disodium lauroamphodiacetate, disodium lauramido monoethanolamido, sodium lauriminodipropionic acid, and triethanolamine laureth sulfate); aromatic compounds (e.g. phenylethyl and benzyl alcohols); and several isoprenoids and related compounds (e.g., terpineol and menthol). The membrane-targeting and -altering effects of the TSST-1-suppressing compounds led us to assess the activity of molecules that are known to inhibit fatty acid biosynthesis (e.g., cerulenin, triclosan, and hexachlorophene). These compounds also reduced S. aureus TSST-1 production. This study suggests that more additives than previously recognized inhibit the production of TSST-1. PMID:19223628
Large amounts of dispersants have been used on the oil from the Deepwater Horizon spill and concern has arisen about the toxicity of the dispersants. Some of the dispersants reportedly contain nonylphenol ethoxylates which can degrade to estrogenic compounds, thus the potential...
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD; dioxin) and related polyhalogenated aromatic hydrocarbons (PHAHs) alter the reproductive development of laboratory animals. Therefore, we exposed animals to a mixture of dioxin and dioxin-like compounds including TCDD, 1,2,3,7,8-pentachl...
Catechol-O-methyltransferase as a target for melanoma destruction?
Smit, N P; Latter, A J; Naish-Byfield, S; Westerhof, W; Pavel, S; Riley, P A
1994-08-17
Catechols may interfere in melanogenesis by causing increased levels of toxic quinones. Several catechols and known inhibitors of the enzyme catechol-O-methyltransferase (COMT) were therefore tested for their toxicity towards a pigmented melanoma cell line, UCLA-SO-(M14). The inhibition of thymidine incorporation as a result of exposure to the compounds was measured. All agents were compared to 4-hydroxyanisole (4HA), a depigmenting agent extensively studied as an antimelanoma drug. The compounds were also tested on the epithelial cell line, CNCM-I-(221) in the presence and absence of tyrosinase. All the compounds were more effective than 4HA towards the M14-cells at either 10(-4) M or 10(-5) M. The toxicity of 4HA towards the 221-cells was shown to be completely dependent on the presence of tyrosinase. Effects of the test agents on the 221-cells were also observed in the absence of tyrosinase. Although some of them were shown to be good substrates for tyrosinase only small changes in toxicity were observed as a result of the presence of the enzyme in comparison with 4HA. No direct correlation of the toxicity of the agents and COMT inhibition was observed. The possible mode of action of the compounds through inhibition of COMT and interference in melanogenesis is discussed together with other possibilities and factors involved.
Biological Mimics: A New Paradigm in the Detection of Toxic Compounds
ERIC Educational Resources Information Center
Monty, Chelsea Nicole
2009-01-01
The purpose of this thesis is to introduce a new idea: using biological mimics in the detection of toxic compounds. Biological mimics imitate the active site of a given enzyme or have catalytic chemistry similar to enzymes and can be used in place of biological molecules to provide longer stability and simpler operation. In the following text the…
Toxicity of six heterocyclic nitrogen compounds to Daphnia pulex
Perry, Cynthia M.; Smith, Stephen B.
1988-01-01
We determined the relative toxicities to the aquatic crustacean Daphniz pulex of six heterocyclic nitrogen compunds. These compounds were selected because they were detected in lake trout or walleyes and were commercially available. Stress to the daphnid populations may affect forage fish populations that depend either directly or indirectly on zooplankton as a food source in the Great Lakes.
Smith, Alec S.T.; Macadangdang, Jesse; Leung, Winnie; Laflamme, Michael A.; Kim, Deok-Ho
2016-01-01
Improved methodologies for modeling cardiac disease phenotypes and accurately screening the efficacy and toxicity of potential therapeutic compounds are actively being sought to advance drug development and improve disease modeling capabilities. To that end, much recent effort has been devoted to the development of novel engineered biomimetic cardiac tissue platforms that accurately recapitulate the structure and function of the human myocardium. Within the field of cardiac engineering, induced pluripotent stem cells (iPSCs) are an exciting tool that offer the potential to advance the current state of the art, as they are derived from somatic cells, enabling the development of personalized medical strategies and patient specific disease models. Here we review different aspects of iPSC-based cardiac engineering technologies. We highlight methods for producing iPSC-derived cardiomyocytes (iPSC-CMs) and discuss their application to compound efficacy/toxicity screening and in vitro modeling of prevalent cardiac diseases. Special attention is paid to the application of micro- and nano-engineering techniques for the development of novel iPSC-CM based platforms and their potential to advance current preclinical screening modalities. PMID:28007615