Harakotr, Bhornchai; Suriharn, Bhalang; Tangwongchai, Ratchada; Scott, Marvin Paul; Lertrat, Kamol
2014-12-01
Antioxidant components, including anthocyanins and phenolic compounds, antioxidant activity, and their changes during traditional cooking of fresh purple waxy corn were investigated. As compared to the raw corn, thermal treatment caused significant (p⩽0.05) decreases in each antioxidant compound and antioxidant activity. Steam cooking preserved more antioxidant compounds than boiling. Boiling caused a significant loss of anthocyanin and phenolic compounds into the cooking water. This cooking water is a valuable co-product because it is a good source of purple pigment. By comparing levels of antioxidant compounds in raw and cooked corn, we determined that degradation results in greater loss than leaching or diffusion into cooking water. Additionally, separation of kernels from the cob prior to cooking caused increased loss of antioxidant compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hiromori, Youhei; Yui, Hiroki; Nishikawa, Jun-ichi; Nagase, Hisamitsu; Nakanishi, Tsuyoshi
2016-01-01
Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), are typical environmental contaminants and suspected endocrine-disrupting chemicals because they cause masculinization in female mollusks. In addition, previous studies have suggested that the endocrine disruption by organotin compounds leads to activation of peroxisome proliferator-activated receptor (PPAR)γ and retinoid X receptor (RXR). However, whether organotin compounds cause crucial toxicities in human development and reproduction is unclear. We here investigated the structure-dependent effect of 12 tin compounds on mRNA transcription of 3β-hydroxysteroid dehydrogenase type I (3β-HSD I) and progesterone production in human choriocarcinoma Jar cells. TBT, TPT, dibutyltin, monophenyltin, tripropyltin, and tricyclohexyltin enhanced progesterone production in a dose-dependent fashion. Although tetraalkyltin compounds such as tetrabutyltin increased progesterone production, the concentrations necessary for activation were 30-100 times greater than those for trialkyltins. All tested active organotins increased 3β-HSD I mRNA transcription. We further investigated the correlation between the agonistic activity of organotin compounds on PPARγ and their ability to promote progesterone production. Except for DBTCl2, the active organotins significantly induced the transactivation function of PPARγ. In addition, PPARγ knockdown significantly suppressed the induction of mRNA transcription of 3β-HSD I by all active organotins except DBTCl2. These results suggest that some organotin compounds promote progesterone biosynthesis in vitro by inducing 3β-HSD I mRNA transcription via the PPARγ signaling pathway. The placenta represents a potential target organ for these compounds, whose endocrine-disrupting effects might cause local changes in progesterone concentration in pregnant women. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of volatile compounds on excimer laser power delivery.
Van Horn, Stewart D; Hovanesian, John A; Maloney, Robert K
2002-01-01
To determine whether vapors from perfume, hairspray, oil-based paint, or water-based paint affect excimer laser beam power delivery at the corneal surface. We measured the power delivery of an Apex Plus laser before, during, and after exposure to vapors from the following volatile compounds: three types of perfume, hair spray, an oil-based paint, and a water-based paint. A digital calorimeter was used to measure the steady-state beam power of the laser during laser discharge at the corneal plane. Multiple trials were run with each compound, and the change in laser energy over time was examined to determine if any of the compounds caused degradation of the laser optics. The presence of a volatile compound in the room caused no change in mean laser energy in comparison to before and after the compound was present. However, perfumes caused a progressive decline in laser beam power throughout the trials. Controlling for this progressive decline, there was no significant difference from perfume to perfume. None of the compounds tested caused a decline in laser beam power while present in the room. However, the presence of any perfume caused a deterioration in beam power over time, suggesting a degradation of the laser optics for all perfumes. Laser centers should consider advising their patients and staff to not wear perfumes in the laser suite.
Olivares, Christopher I; Sierra-Alvarez, Reyes; Abrell, Leif; Chorover, Jon; Simonich, Michael; Tanguay, Robert L; Field, Jim A
2016-11-01
2,4-Dinitroanisole (DNAN) is an emerging insensitive munitions compound that readily undergoes anaerobic nitro-group reduction to 2-methoxy-5-nitroaniline (MENA) and 2,4-diaminoanisole (DAAN), followed by formation of unique azo dimers. Currently there is little knowledge on the ecotoxicity of DNAN (bio)transformation products. In the present study, mortality, development, and behavioral effects of DNAN (bio)transformation products were assessed using zebrafish (Danio rerio) embryos. The authors tested individual products, MENA and DAAN, as well as dimer and trimer surrogates. As pure compounds, 3-nitro-4-methoxyaniline and 2,2'-dimethoxy-4,4'-azodianiline caused statistically significant effects, with lowest-observable-adverse effect levels (LOAEL) at 6.4 μM on 1 or 2 developmental endpoints, respectively. The latter had 6 additional statistically significant developmental endpoints with LOAELs of 64 μM. Based on light-to-dark swimming behavioral tests, DAAN (640 μM) caused reduction in swimming, suggestive of neurotoxicity. No statistically significant mortality occurred (≤64 μM) for any of the individual compounds. However, metabolite mixtures formed during different stages of MENA (bio)transformation in soil were characterized using high-resolution mass spectrometry in parallel with zebrafish embryo toxicity assays, which demonstrated statistically significant mortality during the onset of azo-dimer formation. Overall the results indicate that several DNAN (bio)transformation products cause different types of toxicity to zebrafish embryos. Environ Toxicol Chem 2016;35:2774-2781. © 2016 SETAC. © 2016 SETAC.
Mast cell mediators in citric acid-induced airway constriction of guinea pigs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, C.-H.; Lai, Y.-L.
2005-08-15
We demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. In this study, we further investigated the underlying mediator(s) for this type of airway constriction. At first, to examine effects caused by blocking agents, 67 young Hartley guinea pigs were divided into 7 groups: saline + CA; methysergide (serotonin receptor antagonist) + CA; MK-886 (leukotriene synthesis inhibitor) + CA; mepyramine (histamine H{sub 1} receptor antagonist) + CA; indomethacin (cyclooxygenase inhibitor) + CA; cromolyn sodium (mast cell stabilizer) + CA; and compound 48/80 (mast cell degranulating agent) + CA. Then, we tested whether leukotriene C{submore » 4} (LTC{sub 4}) or histamine enhances CA-induced airway constriction in compound 48/80-pretreated guinea pigs. We measured dynamic respiratory compliance (Crs) and forced expiratory volume in 0.1 s (FEV{sub 0.1}) during either baseline or recovery period. In addition, we detected histamine level, an index of pulmonary mast cell degranulation, in bronchoalveolar lavage (BAL) samples. Citric acid aerosol inhalation caused decreases in Crs and FEV{sub 0.1}, indicating airway constriction in the control group. This airway constriction was significantly attenuated by MK-886, mepyramine, cromolyn sodium, and compound 48/80, but not by either methysergide or indomethacin. Both LTC{sub 4} and histamine infusion significantly increased the magnitude of CA-induced airway constriction in compound 48/80-pretreated guinea pigs. Citric acid inhalation caused significant increase in histamine level in the BAL sample, which was significantly suppressed by compound 48/80. These results suggest that leukotrienes and histamine originating from mast cells play an important role in CA inhalation-induced noncholinergic airway constriction.« less
A mortality study of workers exposed to insoluble forms of beryllium
Boffetta, Paolo; Fordyce, Tiffani
2014-01-01
This study investigated lung cancer and other diseases related to insoluble beryllium compounds. A cohort of 4950 workers from four US insoluble beryllium manufacturing facilities were followed through 2009. Expected deaths were calculated using local and national rates. On the basis of local rates, all-cause mortality was significantly reduced. Mortality from lung cancer (standardized mortality ratio 96.0; 95% confidence interval 80.0, 114.3) and from nonmalignant respiratory diseases was also reduced. There were no significant trends for either cause of death according to duration of employment or time since first employment. Uterine cancer among women was the only cause of death with a significantly increased standardized mortality ratio. Five of the seven women worked in office jobs. This study confirmed the lack of an increase in mortality from lung cancer and nonmalignant respiratory diseases related to insoluble beryllium compounds. PMID:24589746
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Shi-Wei; Wu, Chun-Ying; Wang, Yen-Ting
Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53more » status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.« less
Guseman, Alex J.; Miller, Kaliah; Kunkle, Grace; Dively, Galen P.; Pettis, Jeffrey S.; Evans, Jay D.; vanEngelsdorp, Dennis; Hawthorne, David J.
2016-01-01
Annual losses of honey bee colonies remain high and pesticide exposure is one possible cause. Dangerous combinations of pesticides, plant-produced compounds and antibiotics added to hives may cause or contribute to losses, but it is very difficult to test the many combinations of those compounds that bees encounter. We propose a mechanism-based strategy for simplifying the assessment of combinations of compounds, focusing here on compounds that interact with xenobiotic handling ABC transporters. We evaluate the use of ivermectin as a model substrate for these transporters. Compounds that increase sensitivity of bees to ivermectin may be inhibiting key transporters. We show that several compounds commonly encountered by honey bees (fumagillin, Pristine, quercetin) significantly increased honey bee mortality due to ivermectin and significantly reduced the LC50 of ivermectin suggesting that they may interfere with transporter function. These inhibitors also significantly increased honey bees sensitivity to the neonicotinoid insecticide acetamiprid. This mechanism-based strategy may dramatically reduce the number of tests needed to assess the possibility of adverse combinations among pesticides. We also demonstrate an in vivo transporter assay that provides physical evidence of transporter inhibition by tracking the dynamics of a fluorescent substrate of these transporters (Rhodamine B) in bee tissues. Significantly more Rhodamine B remains in the head and hemolymph of bees pretreated with higher concentrations of the transporter inhibitor verapamil. Mechanism-based strategies for simplifying the assessment of adverse chemical interactions such as described here could improve our ability to identify those combinations that pose significantly greater risk to bees and perhaps improve the risk assessment protocols for honey bees and similar sensitive species. PMID:26840460
Guseman, Alex J; Miller, Kaliah; Kunkle, Grace; Dively, Galen P; Pettis, Jeffrey S; Evans, Jay D; vanEngelsdorp, Dennis; Hawthorne, David J
2016-01-01
Annual losses of honey bee colonies remain high and pesticide exposure is one possible cause. Dangerous combinations of pesticides, plant-produced compounds and antibiotics added to hives may cause or contribute to losses, but it is very difficult to test the many combinations of those compounds that bees encounter. We propose a mechanism-based strategy for simplifying the assessment of combinations of compounds, focusing here on compounds that interact with xenobiotic handling ABC transporters. We evaluate the use of ivermectin as a model substrate for these transporters. Compounds that increase sensitivity of bees to ivermectin may be inhibiting key transporters. We show that several compounds commonly encountered by honey bees (fumagillin, Pristine, quercetin) significantly increased honey bee mortality due to ivermectin and significantly reduced the LC50 of ivermectin suggesting that they may interfere with transporter function. These inhibitors also significantly increased honey bees sensitivity to the neonicotinoid insecticide acetamiprid. This mechanism-based strategy may dramatically reduce the number of tests needed to assess the possibility of adverse combinations among pesticides. We also demonstrate an in vivo transporter assay that provides physical evidence of transporter inhibition by tracking the dynamics of a fluorescent substrate of these transporters (Rhodamine B) in bee tissues. Significantly more Rhodamine B remains in the head and hemolymph of bees pretreated with higher concentrations of the transporter inhibitor verapamil. Mechanism-based strategies for simplifying the assessment of adverse chemical interactions such as described here could improve our ability to identify those combinations that pose significantly greater risk to bees and perhaps improve the risk assessment protocols for honey bees and similar sensitive species.
USDA-ARS?s Scientific Manuscript database
Antioxidant components, including anthocyanins and phenolic compounds, antioxidant activity, and their changes during traditional cooking of fresh purple waxy corn were investigated. As compared to the raw corn, thermal treatment caused significant (p < 0.05) decreases in each antioxidant compound a...
Novel anticancer alkene lactone from Persea americana.
Falodun, Abiodun; Engel, Nadja; Kragl, Udo; Nebe, Barbara; Langer, Peter
2013-06-01
Persea americana Mill (Lauraceae) root bark is used in ethnomedicine for a variety of diseases including cancer. To isolate and characterize the chemical constituent in P. americana, and also to determine the anticancer property of a new alkene lactone from the root bark of P. americana. The MCF-7 cells were treated with different concentrations of the pure compound for 48 h. The percentage of cells in the various phases, online monitoring of metabolic changes and integrin receptor expression determined by flow cytometry. One novel alkene lactone (4-hydroxy-5-methylene-3-undecyclidenedihydrofuran-2 (3H)-one) (1) was isolated and characterized using 1D-NMR, 2D-NMR, infrared, UV and MS. At a concentration of 10 µg/mL, significant reduction of proliferation of MCF-7 was induced while MCF-12 A cell was significantly stimulated by 10 µg/mL. The IC50 value for MCF-7 cells is 20.48 µg/mL. Lower concentration of 1 harbor no significant effect on either MCF-7 or MCF-12A. The apoptotic rates of MCF-7 cells were increased significantly. At the final concentration 10 µg/mL, up to 80% of all breast cancer cells were dead. On the non-tumorigenic cell line MCF-12A, the same concentrations (1 and 10 µg/mL) of compound 1 caused significant enhanced apoptotic rates. A total of 1 µg/mL of 1 caused a decrease of α4-, α6-, β1- and β3-integrin expression. The compound caused a stimulatory effect on non-tumorigenic MCF-12A cells with respect to cell adhesion while tumorigenic MCF-7 cells detached continuously. This is the first report on the anticancer effects of this class of compound.
Comparative evaluation of cytotoxicity of a glucosamine-TBA conjugate and a chitosan-TBA conjugate.
Guggi, Davide; Langoth, Nina; Hoffer, Martin H; Wirth, Michael; Bernkop-Schnürch, Andreas
2004-07-08
D-glucosamine and chitosan were modified by the immobilization of thiol groups utilizing 2-iminothiolane. The toxicity profile of the resulting D-glucosamine-TBA (4-thiobutylamidine) conjugate, of chitosan-TBA conjugate and of the corresponding unmodified controls was evaluated in vitro. On the one hand, the cell membrane damaging effect of 0.025% solutions of the test compounds was investigated via red blood cell lysis test. On the other hand, the cytotoxity of 0.025, 0.25 and 0.5% solutions of the test compounds was evaluated on L-929 mouse fibroblast cells utilizing two different bioassays: the MTT assay (3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide), which assess the mitochondrial metabolic activity of the cells, and the BrdU-based enzyme-linked immunosorbent assay, which measures the incorporation in the DNA of 5-bromo-2'-deoxyuridine and consequently the cell proliferation. Results of the red blood cell lysis test showed that both thiolated compounds displayed a lower membrane damaging effect causing a significantly lower haemoglobine release than the unmodified compounds. Data obtained by the MTT assay and the BrdU assay revealed a concentration dependent relative cytotoxicity for all tested compounds. The covalent linkage of the TBA-substructure to D-glucosamine did not cause a significant increase in cytotoxicity, whereas at higher concentrations a slightly enhanced cytotoxic effect was caused by the derivatisation of chitosan. In conclusion, the -TBA derivatives show a comparable toxicity profile to the corresponding unmodified compounds, which should not compromise their future use as save pharmaceutical excipients.
Dan, Yinghui; Zhang, Song; Zhong, Heng; Yi, Hochul; Sainz, Manuel B
2015-02-01
Agrobacterium tumefaciens caused tissue browning leading to subsequent cell death in plant transformation and novel anti-oxidative compounds enhanced Agrobacterium -mediated plant transformation by mitigating oxidative stress. Browning and death of cells transformed with Agrobacterium tumefaciens is a long-standing and high impact problem in plant transformation and the agricultural biotechnology industry, severely limiting the production of transgenic plants. Using our tomato cv. MicroTom transformation system, we demonstrated that Agrobacterium caused tissue browning (TB) leading to subsequent cell death by our correlation study. Without an antioxidant (lipoic acid, LA) TB was severe and associated with high levels of GUS transient expression and low stable transformation frequency (STF). LA addition shifted the curve in that most TB was intermediate and associated with the highest levels of GUS transient expression and STF. We evaluated 18 novel anti-oxidative compounds for their potential to enhance Agrobacterium-mediated transformation, by screening for TB reduction and monitoring GUS transient expression. Promising compounds were further evaluated for their effect on MicroTom and soybean STF. Among twelve non-antioxidant compounds, seven and five significantly (P < 0.05) reduced TB and increased STF, respectively. Among six antioxidants four of them significantly reduced TB and five of them significantly increased STF. The most efficient compound found to increase STF was melatonin (MEL, an antioxidant). Optimal concentrations and stages to use MEL in transformation were determined, and Southern blot analysis showed that T-DNA integration was not affected by MEL. The ability of diverse compounds with different anti-oxidative mechanisms can reduce Agrobacterium-mediated TB and increase STF, strongly supporting that oxidative stress is an important limiting factor in Agrobacterium-mediated transformation and the limiting factor can be controlled by these compounds at different levels.
Modeling emissions of volatile organic compounds from silage
USDA-ARS?s Scientific Manuscript database
Photochemical smog is a major air pollution problem and a significant cause of premature death in the U.S. Smog forms in the presence of volatile organic compounds (VOCs), which are emitted primarily from industry and motor vehicles in the U.S. However, dairy farms may be an important source in so...
Wang, Lan-jun; Wang, Jin-hua; Zhu, Lu-sheng; Wang, Jun; Zhao, Xiang
2016-04-15
In order to determine the degree of biological genetic injury induced by PPCPs, the genotoxic effects of the doxycycline (DOX), ciprofloxacin (CIP), triclocarban (TCC) and carbamazepine (CBZ) in the concentration range of 12.5-100 mg · L⁻¹ were studied using micronucleus rate and micronucleus index of Vicia-fabe and garlic. The results showed that: (1) When the Vicia-faba root- tip cells were exposed to DOX, CIP, TCC and CBZ, micronucleus rates were higher than 1.67 ‰ (CK₁), it was significantly different from that of the control group (P < 0.05), and the micronucleus index was even greater than 3.5; With the increasing concentrations of the PPCPs, the micronucleus rates first increased and then decreased. (2) When the garlic root tip cells were exposed to DOX, CIP, TCC and CBZ respectively, the micronucleus rates were less than those of the Vicia-faba, while in most treatments significantly higher than that of the control group (0.67‰). The micronucleus index was higher than 3.5 in the groups exposed to CIP with concentrations of 25, 50, 100 mg · L⁻¹ and TCC and CBZ with concentrations of 25 mg · L⁻¹; With the increase of exposure concentrations, the micronucleus rate showed a trend of first increasing and then decreasing as well. (3) Under the same experimental conditions, the cells micronucleus rates of the garlic cells caused by the four tested compounds were significantly lower than those of Vicia-faba. (4) The micronucleus index of the root tip cells of Vicia-faba and garlic treated with the four kinds of compounds followed the order of CIP > CBZ > TCC > DOX. These results demonstrated that the four compounds caused biological genetic injury to root-tip cells of Vicia-faba and garlic, and the genetic damage caused to garlic was significantly lower than that to Vicia-faba. The damages caused by the four kinds of different compounds were also different.
Olgen, Süreyya; Kiliç, Zuhal; Ada, Ahmet O; Coban, Tulay
2007-08-01
We have previously reported on the synthesis of novel indole derivatives where some compounds showed significant antioxidant activity. Here, we report the synthesis of novel N-H and N-substituted indole-2- and 3-carboxamide derivatives and investigated their antioxidant role in order to identify structural characteristics responsible for activity. Although all compounds showed a strong inhibitory (95-100%) effect on superoxide anion (SOD) only compounds 4, 5 and 6 showed simliar potency for the inhibition of lipid peroxidation (81-94%) which revealed that compounds 4, 5 and 6 possessed highly potent antioxidant properties. Substitution in the 1-position of the indole ring caused the significant differences between the activity results regarding lipid peroxidation inhibition.
Shafi, Syed; Alam, Mohammad Mahboob; Mulakayala, Naveen; Mulakayala, Chaitanya; Vanaja, G; Kalle, Arunasree M; Pallu, Reddanna; Alam, M S
2012-03-01
A focused library of novel bis-heterocycles encompassing 2-mercapto benzothiazole and 1,2,3-triazoles were synthesized using click chemistry approach. The synthesized compounds have been tested for their anti-inflammatory activity by using biochemical cyclooxygenase (COX) activity assays and carrageenan-induced hind paw edema. Among the tested compounds, compound 4d demonstrated a potent selective COX-2 inhibition with COX-2/COX-1 ratio of 0.44. Results from carrageenan-induced hind paw edema showed that compounds 4a, 4d, 4e and 4f posses significant anti-inflammatory activity as compared to the standard drug Ibuprofen. The compounds showing significant activity were further subjected to anti-nociceptive activity by writhing test. These four compounds have shown comparable activity with the standard Ibuprofen. Further ulcerogenic studies shows that none of these compounds causing gastric ulceration. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Hilmarsson, H; Traustason, B S; Kristmundsdóttir, T; Thormar, H
2007-01-01
Recent studies have shown that some lipids and fatty alcohols have microbicidal activities against a broad variety of pathogens. In this study, virucidal activities of fatty acids, monoglycerides and fatty alcohols were tested against respiratory syncytial virus (RSV) and human parainfluenza virus type 2 (HPIV2) at different concentrations, times and pH levels. The most active compounds were mixed with milk products and fruit juices and the mixtures tested for virucidal effects. The aim was to determine which compounds are the most active against these respiratory viruses and could possibly be used in pharmaceutical formulations or as additives to milk products or juice. Several compounds caused a significant inactivation of virus, and there was generally a good agreement between the activities against RSV and parainfluenza virus. By changing the pH from 7 to 4.2, the virucidal activities of some of the compounds were greatly increased, i.e., they inactivated virus in a shorter time and at lower concentrations. The most active compound tested was 1-monoglyceride of capric acid, monocaprin, which also showed activity against influenza A virus and significant virucidal activities after addition to milk products and fruit juices, even at a concentration as low as 0.06-0.12%. The significant virucidal activities of fatty alcohols and lipids on RSV and parainfluenza virus demonstrated in this in vitro study raise the question of the feasibility of using such compounds as ingredients in pharmaceutical dosage forms against respiratory infections caused by these viruses, and possibly other paramyxo- and myxoviruses.
Nonaminoglycoside compounds induce readthrough of nonsense mutations
Damoiseaux, Robert; Nahas, Shareef; Gao, Kun; Hu, Hailiang; Pollard, Julianne M.; Goldstine, Jimena; Jung, Michael E.; Henning, Susanne M.; Bertoni, Carmen
2009-01-01
Large numbers of genetic disorders are caused by nonsense mutations for which compound-induced readthrough of premature termination codons (PTCs) might be exploited as a potential treatment strategy. We have successfully developed a sensitive and quantitative high-throughput screening (HTS) assay, protein transcription/translation (PTT)–enzyme-linked immunosorbent assay (ELISA), for identifying novel PTC-readthrough compounds using ataxia-telangiectasia (A-T) as a genetic disease model. This HTS PTT-ELISA assay is based on a coupled PTT that uses plasmid templates containing prototypic A-T mutated (ATM) mutations for HTS. The assay is luciferase independent. We screened ∼34,000 compounds and identified 12 low-molecular-mass nonaminoglycosides with potential PTC-readthrough activity. From these, two leading compounds consistently induced functional ATM protein in ATM-deficient cells containing disease-causing nonsense mutations, as demonstrated by direct measurement of ATM protein, restored ATM kinase activity, and colony survival assays for cellular radiosensitivity. The two compounds also demonstrated readthrough activity in mdx mouse myotube cells carrying a nonsense mutation and induced significant amounts of dystrophin protein. PMID:19770270
Analysis of food taints and off-flavours: a review.
Ridgway, K; Lalljie, S P D; Smith, R M
2010-02-01
Taints and off-flavours in foods are a major concern to the food industry. Identification of the compound(s) causing a taint or off-flavour in food and accurate quantification are critical in assessing the potential safety risks of a product or ingredient. Even when the tainting compound(s) are not at a level that would cause a safety concern, taints and off-flavours can have a significant impact on the quality and consumers' acceptability of products. The analysis of taints and off-flavour compounds presents an analytical challenge especially in an industrial laboratory environment because of the low levels, often complex matrices and potential for contamination from external laboratory sources. This review gives an outline of the origins of chemical taints and off-flavours and looks at the methods used for analysis and the merits and drawbacks of each technique. Extraction methods and instrumentation are covered along with possible future developments. Generic screening methods currently lack the sensitivity required to detect the low levels required for some tainting compounds and a more targeted approach is often required. This review highlights the need for a rapid but sensitive universal method of extraction for the unequivocal determination of tainting compounds in food.
Li, Ying; Ma, Han-lin; Han, Lei; Liu, Wei-yong; Zhao, Bao-xiang; Zhang, Shang-li; Miao, Jun-ying
2013-01-01
Aim: To investigate the effects of 7 novel 1-ferrocenyl-2-(5-phenyl-1H-1,2,4-triazol-3-ylthio) ethanone derivatives on human lung cancer cells in vitro and to determine the mechanisms of action. Methods: A549 human lung cancer cells were examined. Cell viability was analyzed with MTT assay. Cell apoptosis and senescence were examined using Hoechst 33258 and senescence-associated-β-galactosidase (SA-β-gal) staining, respectively. LDH release was measured using a detection kit. Cell cycle was analyzed using a flow cytometer. Intracellular ROS level was measured with the 2′,7′-dichlorodihydrofluorescein probe. Phosphorylation of p38 was determined using Western blot. Results: Compounds 5b, 5d, and 5e (40 and 80 μmol/L) caused significant decrease of A549 cell viability, while other 4 compounds had no effect on the cells. Compounds 5b, 5d, and 5e (80 μmol/L) induced G1-phase arrest (increased the G1 population by 22.6%, 24.23%, and 26.53%, respectively), and markedly increased SA-β-gal-positive cells. However, the compounds did not cause nuclear DNA fragmentation and chromatin condensation in A549 cells. Nor did they affect the release of LDH from the cells. The compounds significantly elevated the intracellular ROS level, decreased the mitochondrial membrane potential, and increased p38 phosphorylation in the cells. In the presence of the antioxidant and free radical scavenger N-acetyl-L-cysteine (10 mmol/L), above effects of compounds 5b, 5d, and 5e were abolished. Conclusion: The compounds 5b, 5d, and 5e cause neither apoptosis nor necrosis of A549 cells, but exert anti-cancer effect via inducing G1-phase arrest and senescence through ROS/p38 MAP-kinase pathway. PMID:23645009
Effects of different cooking methods on health-promoting compounds of broccoli*
Yuan, Gao-feng; Sun, Bo; Yuan, Jing; Wang, Qiao-mei
2009-01-01
The effects of five domestic cooking methods, including steaming, microwaving, boiling, stir-frying, and stir-frying followed by boiling (stir-frying/boiling), on the nutrients and health-promoting compounds of broccoli were investigated. The results show that all cooking treatments, except steaming, caused significant losses of chlorophyll and vitamin C and significant decreases of total soluble proteins and soluble sugars. Total aliphatic and indole glucosinolates were significantly modified by all cooking treatments but not by steaming. In general, the steaming led to the lowest loss of total glucosinolates, while stir-frying and stir-frying/boiling presented the highest loss. Stir-frying and stir-frying/boiling, the two most popular methods for most homemade dishes in China, cause great losses of chlorophyll, soluble protein, soluble sugar, vitamin C, and glucosinolates, but the steaming method appears the best in retention of the nutrients in cooking broccoli. PMID:19650196
Chadwick, D; Gorrod, J W; Jenner, P; Marsden, C D; Reynolds, E H
1978-01-01
1 Acute administration of clonazepam, diazepam, and diphenylhydantoin to mice elevated cerebral 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA); chronic administration had less effect. 2 Acute administration of clonazepam and diazepam but not diphenylhydantoin raised cerebral trytophan levels; chronic administration of clonazepam caused a smaller elevation of cerebral tryptophan but chronic administration of diazepam still caused a large rise in cerebral tryptophan. 3 Neither clonazepam nor diazepam caused induction of drug metabolizing enzymes on chronic administration but diphenylhydantoin had a marked effect. 4 These data suggest that the altered 5-HT metabolism caused by these compounds is unrelated to a common action on tryptophan levels, and that the reduced effect of clonazepam and diazepam on chronic administration cannot be attributed to increased metabolism of these compounds. 5 Clonazepam induced abnormal head movements in mice in a dose-dependent manner. Pretreatment of animals with tranylcypromine increased the intensity of movement, although pargyline was without effect. Similar effects were observed with diazepam and diphenylhydantoin, suggesting that the increase in cerebral 5-HT caused by these compounds is of functional significance in stimulating 5-HT receptors. PMID:620092
Kasim, Lateef Saka; Ferro, Valerie; Odukoya, Oluwakemi A; Ukpo, Grace Eigbibhalu; Seidel, Veronique; Gray, Alexander I; Waigh, Roger
2011-10-01
Chemical investigation of the leaves of Struchium sparganophora by the application of VLC, CL and PTLC resulted in isolation of three compounds. The cytotoxicity activity of these compounds on malignant human cultured cells was examined. Vernodalin showed a significant cytotoxic activity on the melanoma and ovarian cancer cell lines (P<0.05) while the conjugated 3 methyl, 2, 6 hexacosedienol and luteolin caused cell death after 48h reculture without them. These compounds portend an effective remedy if subjected to structural modification to enhance its' efficacy and the dietary importance of this plant as a culinary herb in west Africa countries is evidence by the presence of these antitumour compounds in this plant.
Synthesis and Evaluation of New 1,3,4-Thiadiazole Derivatives as Antinociceptive Agents.
Altıntop, Mehlika Dilek; Can, Özgür Devrim; Demir Özkay, Ümide; Kaplancıklı, Zafer Asım
2016-08-01
In the current work, new 1,3,4-thiadiazole derivatives were synthesized and investigated for their antinociceptive effects on nociceptive pathways of nervous system. The effects of these compounds against mechanical, thermal and chemical stimuli were evaluated by tail-clip, hot-plate and acetic acid-induced writhing tests, respectively. In addition, activity cage was performed to assess the locomotor activity of animals. The obtained data indicated that compounds 3b, 3c, 3d, 3e, 3g and 3h increased the reaction times of mice both in the hot-plate and tail-clip tests, indicating the centrally mediated antinociceptive activity of these compounds. Additionally, the number of writhing behavior was significantly decreased by the administration of compounds 3a, 3c, 3e and 3f, which pointed out the peripherally mediated antinociceptive activity induced by these four compounds. According to the activity cage tests, compounds 3a, 3c and 3f significantly decreased both horizontal and vertical locomotor activity of mice. Antinociceptive behavior of these three compounds may be non-specific and caused by possible sedative effect or motor impairments.
Auger, Cyril; Chaabi, Mehdi; Anselm, Eric; Lobstein, Annelise; Schini-Kerth, Valérie B
2010-07-01
Phenolic extracts from red wine (RWPs) have been shown to induce nitric oxide (NO)-mediated vasoprotective effects, mainly by causing the PI3-kinase/Akt-dependent activation of endothelial NO synthase (eNOS). RWPs contain several hundreds of phenolic compounds. The aim of the present study was to identify red wine phenolic compounds capable of activating eNOS in endothelial cells using multi-step fractionation. The red wine phenolic extract was fractionated using Sephadex LH-20 and preparative RP-HPLC approaches. The ability of a fraction to activate eNOS was assessed by determining the phosphorylation level of Akt and eNOS by Western blot analysis, and NO formation by electron spin resonance spectroscopy. Tentative identification of phenolic compounds in fractions was performed by MALDI-TOF and HPLC-MS techniques. Separation of RWPs by Sephadex LH-20 generated nine fractions (fractions A to I), of which fractions F, G, H and I caused significant eNOS activation. Fraction F was then subjected to semi-preparative RP-HPLC to generate ten subfractions (subfraction SF1 to SF10), all of which caused eNOS activation. The active fractions and subfractions contained mainly procyanidins and anthocyanins. Isolation of phenolic compounds from SF9 by semi-preparative RP-HLPC lead to the identification of petunidin-O-coumaroyl-glucoside as a potent activator of eNOS.
Mast cells in citric acid-induced cough of guinea pigs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Y.-L.; Lin, T.-Y.
2005-01-01
It was demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. To investigate the role of mast cells in CA-induced cough, three experiments were carried out in this study. In the first experiment, 59 guinea pigs were employed and we used compound 48/80 to deplete mast cells, cromolyn sodium to stabilize mast cells, MK-886 to inhibit leukotriene synthesis, pyrilamine to antagonize histamine H{sub 1} receptor, methysergide to antagonize serotonin receptor, and indomethacin to inhibit cyclooxygenase. In the second experiment, 56 compound 48/80-pretreated animals were divided into two parts; the first one was used tomore » test the role of exogenous leukotriene (LT) C{sub 4}, while the second one to test the role of exogenous histamine in CA-induced cough. Each animal with one of the above pretreatments was exposed sequentially to saline (baseline) and CA (0.6 M) aerosol, each for 3 min. Then, cough was recorded for 12 min using a barometric body plethysmograph. In the third experiment, the activation of mast cells upon CA inhalation was investigated by determining arterial plasma histamine concentration in 17 animals. Exposure to CA induced a marked increase in cough number. Compound 48/80, cromolyn sodium, MK-886 and pyrilamine, but not indomethacin or methysergide, significantly attenuated CA-induced cough. Injection of LTC{sub 4} or histamine caused a significant increase in CA-induced cough in compound 48/80-pretreated animals. In addition, CA inhalation caused significant increase in plasma histamine concentration, which was blocked by compound 48/80 pretreatment. These results suggest that mast cells play an important role in CA aerosol inhalation-induced cough via perhaps mediators LTs and histamine.« less
Differential genotoxicity of diphenyl diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2
Meinerz, Daiane Francine; Allebrandt, Josiane; Mariano, Douglas O.C.; Waczuk, Emily P.; Soares, Felix Antunes
2014-01-01
Organoselenium compounds have been pointed out as therapeutic agents. In contrast, the potential therapeutic aspects of tellurides have not yet been demonstrated. The present study evaluated the comparative toxicological effects of diphenyl diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2 in mice after in vivo administration. Genotoxicity (as determined by comet assay) and mutagenicicity were used as end-points of toxicity. Subcutaneous administration of high doses of (PhSe)2 or (PhTe)2 (500 µmol/kg) caused distinct genotoxicity in mice. (PhSe)2 significantly decreased the DNA damage index after 48 and 96 h of its injection (p < 0.05). In contrast, (PhTe) caused a significant increase in DNA damage (p < 0.05) after 48 and 96 h of intoxication. (PhSe)2 did not cause mutagenicity but (PhTe)2 increased the micronuclei frequency, indicating its mutagenic potential. The present study demonstrated that acute in vivo exposure to ditelluride caused genotoxicity in mice, which may be associated with pro-oxidant effects of diphenyl ditelluride. In addition, the use of this compound and possibly other related tellurides must be carefully controlled. PMID:24711962
Esteve Agelet, Lidia; Armstrong, Paul R; Tallada, Jasper G; Hurburgh, Charles R
2013-12-01
Previous studies showed that Near Infrared Spectroscopy (NIRS) could distinguish between Roundup Ready® (RR) and conventional soybeans at the bulk and single seed sample level, but it was not clear which compounds drove the classification. In this research the varieties used did not show significant differences in major compounds between RR and conventional beans, but moisture content had a big impact on classification accuracies. Four of the five RR samples had slightly higher moistures and had a higher water uptake than their conventional counterparts. This could be linked with differences in their hulls, being either compositional or morphological. Because water absorption occurs in the same region as main compounds in hulls (mainly carbohydrates) and water causes physical changes from swelling, variations in moisture cause a complex interaction resulting in a large impact on discrimination accuracies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tran, Tuan; Childs-Disney, Jessica L; Liu, Biao; Guan, Lirui; Rzuczek, Suzanne; Disney, Matthew D
2014-04-18
We designed small molecules that bind the structure of the RNA that causes fragile X-associated tremor ataxia syndrome (FXTAS), an incurable neuromuscular disease. FXTAS is caused by an expanded r(CGG) repeat (r(CGG)(exp)) that inactivates a protein regulator of alternative pre-mRNA splicing. Our designed compounds modulate r(CGG)(exp) toxicity in cellular models of FXTAS, and pull-down experiments confirm that they bind r(CGG)(exp) in vivo. Importantly, compound binding does not affect translation of the downstream open reading frame (ORF). We compared molecular recognition properties of our optimal compound to oligonucleotides. Studies show that r(CGG)(exp)'s self-structure is a significant energetic barrier for oligonucleotide binding. A fully modified 2'-OMethyl phosphorothioate is incapable of completely reversing an FXTAS-associated splicing defect and inhibits translation of the downstream ORF, which could have deleterious effects. Taken together, these studies suggest that a small molecule that recognizes structure may be more well suited for targeting highly structured RNAs that require strand invasion by a complementary oligonucleotide.
2015-01-01
We designed small molecules that bind the structure of the RNA that causes fragile X-associated tremor ataxia syndrome (FXTAS), an incurable neuromuscular disease. FXTAS is caused by an expanded r(CGG) repeat (r(CGG)exp) that inactivates a protein regulator of alternative pre-mRNA splicing. Our designed compounds modulate r(CGG)exp toxicity in cellular models of FXTAS, and pull-down experiments confirm that they bind r(CGG)expin vivo. Importantly, compound binding does not affect translation of the downstream open reading frame (ORF). We compared molecular recognition properties of our optimal compound to oligonucleotides. Studies show that r(CGG)exp’s self-structure is a significant energetic barrier for oligonucleotide binding. A fully modified 2′-OMethyl phosphorothioate is incapable of completely reversing an FXTAS-associated splicing defect and inhibits translation of the downstream ORF, which could have deleterious effects. Taken together, these studies suggest that a small molecule that recognizes structure may be more well suited for targeting highly structured RNAs that require strand invasion by a complementary oligonucleotide. PMID:24506227
Biomedical Applications Of Aromatic Azo Compounds: From Chromophore To Pharmacophore.
Ali, Yousaf; Hamid, Shafida Abd; Rashid, Umer
2018-05-23
Azo dyes are widely used in textile, fiber, cosmetic, leather, paint and printing industries. Besides their characteristic coloring function, biological properties of certain azo compounds including antibacterial, antiviral, antifungal and cytotoxic are also reported. Azo compounds can be used as drug carriers, either by acting as a 'cargo' that entrap therapeutic agents or by prodrug approach. The drug is released by internal or external stimuli in the region of interest, as observed in colon-targeted drug delivery. Besides drug-like and drug carrier properties, a number of azo dyes are used in cellular staining to visualize cellular components and metabolic processes. However, the biological significance of azo compounds, especially in cancer chemotherapy, is still in its infancy. This may be linked to early findings that declared azo compounds as one of the possible causes of cancer and mutagenesis. Currently, researchers are screening the aromatic azo compounds for their potential biomedical use, including cancer diagnosis and therapy. The medical applications of azo compounds, particularly in cancer research are discussed. The biomedical significance of cis-trans interchange and negative implications of azo compounds are also highlighted in brief. This review may provide the researchers a platform in the quest of more potent therapeutic agents of this class. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Identification and Characterization of Inhibitors of West Nile Virus
Puig-Basagoiti, Francesc; Qing, Min; Dong, Hongping; Zhang, Bo; Zou, Gang; Yuan, Zhiming
2011-01-01
Although flaviviruses cause significant human diseases, no antiviral therapy is currently available for clinical treatment of these pathogens. To identify flavivirus inhibitors, we performed a high-throughput screening of compound libraries using cells containing luciferase-reporting replicon of West Nile viruses (WNV). Five novel small molecular inhibitors of WNV were identified from libraries containing 96,958 compounds. The inhibitors suppress epidemic strain of WNV in cell culture, with EC50 (50% effective concentration) values of <10 µM and TI (therapeutic index) values of >10. Viral titer reduction assays, using various flaviviruses and nonflaviviruses, showed that the compounds have distinct antiviral spectra. Mode-of-action analysis showed that the inhibitors block distinct steps of WNV replication: four compounds inhibit viral RNA syntheses, while the other compound suppresses both viral translation and RNA syntheses. Biochemical enzyme assays showed that two compounds selectively inhibit viral RNA-dependent RNA polymerase (RdRp), while another compound specifically inhibits both RdRp and methyltransferase. The identified compounds could potentially be developed for treatment of flavivirus infections. PMID:19501258
Kranvogl, Roman; Knez, Jure; Miuc, Alen; Vončina, Ernest; Vončina, Darinka Brodnjak; Vlaisavljević, Veljko
2014-01-01
A GC-MS method was successfully applied to measure simultaneously the concentrations of endocrine disrupting compounds (5 dialkyl phthalates, 9 phthalate monoesters, 3 alkylphenols and bisphenol A) in 136 male urine samples. In the present study the method was validated and concentrations of EDCs were determined. The results were compared with results from other studies. Correlations between endocrine disrupting compounds and also correlations of endocrine disrupting compounds with two semen quality parameters are presented and evaluated. Significant positive correlations were found between almost all the endocrine disrupting compounds. The parameter sum of DEHP (SUM DEHP) was positively correlated to all the endocrine disrupting compounds but negatively to two semen quality parameters. Negative correlations between the endocrine disrupting compounds and the semen quality parameters could indicate that endocrine disrupting compounds could cause reproductive problems by decreasing the semen count and quality. This research will have helped to evaluate human exposure to endocrine disrupting compounds.
Xie, W.; Kania-Korwel, I.; Bummer, P. M.; Lehmler, H.-J.
2007-01-01
Summary Perfluorooctanesulfonic acid (PFOS) is a persistent environmental pollutant that may cause adverse effects by inhibiting pulmonary surfactant. To gain further insights in this potential mechanism of toxicity, we investigated the interaction of PFOS potassium salt with dipalmitoylphosphatidylcholine (DPPC) – the major component of pulmonary surfactant – using steady-state fluorescence anisotropy spectroscopy and DSC (differential scanning calorimetry). In addition, we investigated the interactions of two structurally related compounds, perfluorooctanoic acid (PFOA) and octanesulfonic acid (OS) potassium salt, with DPPC. In the fluorescence experiments a linear depression of the main phase transition temperature of DPPC (Tm) and an increased peak width was observed with increasing concentration of all three compounds, both using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate (TMA-DPH) as fluorescent probes. PFOS caused an effect on Tm and peak width at much lower concentrations because of its increased tendency to partition onto DPPC bilayers, i.e., the partition coefficients decrease in the K(PFOS) > K(PFOA) ≫ K(OS). Similar to the fluorescence anisotropy measurements, all three compounds caused a linear depression in the onset of the main phase transition temperature and a significant peak broadening in the DSC experiments, with PFOS having the most pronounced effect of the peak width. The effect of PFOS and other fluorinated surfactants on DPPC in both mono- and bilayers may be one mechanism by which these compounds causes adverse biological effects. PMID:17349969
Synthesis and Biological Evaluation of New Combined α/β-Adrenergic Blockers.
Némethy, Andrej; Vavrinec, Peter; Vavrincová-Yaghi, Diana; Čepcová, Diana; Mišúth, Svetozár; Král'ová, Eva; Čižmáriková, Ružena; Račanská, Eva
2017-06-01
The synthesis, characterization, and pharmacological evaluation of new aryloxyaminopropanol compounds based on substituted (4-hydroxyphenyl)ethanone with alterations in the alkoxymethyl side chain in position 2 and with 2-methoxyphenylpiperazine in the basic part of the molecule are reported. For the in vitro pharmacological evaluation, isolated aorta and atria from normotensive Wistar rats were used. Compared to naftopidil, compounds with ethoxymethyl, propoxymethyl, butoxymethyl, and methoxyethoxymethyl substituent displayed similar α 1 -adrenolytic potency. Compounds with methoxymethyl, ethoxymethyl, and propoxymethyl substituent caused a significant decrease in both spontaneous and isoproterenol-induced beating of isolated rat atria. Naftopidil and the tested substances containing a butoxymethyl and methoxyethoxymethyl substituent had no effect on the spontaneous or isoproterenol-induced beating. The tested substance that had the most pronounced effect was the compound with a propoxymethyl substituent. Its antihypertensive efficacy was investigated in vivo on spontaneously hypertensive rats (SHRs). The systolic blood pressure was found to be significantly lower in SHRs subjected to the treatment for 2 weeks than in untreated SHRs. Naftopidil had no significant effect. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Detailed Field Investigation of Vapor Intrusion Processes
2008-08-01
difluoroethane DQO data quality objective ESTCP Environmental Security Technology Certification Program HCl hydrochloric acid OU-5 Operable Unit...impacted by significant leakage of ambient air. Some leak tracer compounds such as difluoroethane (DFA) and isopropyl alcohol may cause elevated detection
Decision-making tools for distribution networks in disaster relief.
DOT National Transportation Integrated Search
2011-08-05
The devastation caused by the 2010 earthquake in Haiti was compounded by the significant logistical : challenges of distributing relief to those in need. Unfortunately this is the case with many disasters. : Rapid and efficient distribution of water,...
Influence of organophosphate poisoning on human dendritic cells.
Schäfer, Marina; Koppe, Franziska; Stenger, Bernhard; Brochhausen, Christoph; Schmidt, Annette; Steinritz, Dirk; Thiermann, Horst; Kirkpatrick, Charles James; Pohl, Christine
2013-12-05
Organophosphourus compounds (OPC, including nerve agents and pesticides) exhibit acute toxicity by inhibition of acetylcholinesterase. Lung affections are frequent complications and a risk factor for death. In addition, epidemiological studies reported immunological alterations after OPC exposure. In our experiments we investigated the effects of organophosphourus pesticides dimethoate and chlorpyrifos on dendritic cells (DC) that are essential for the initial immune response, especially in the pulmonary system. DC, differentiated from the monocyte cell line THP-1 by using various cytokines (IL-4, GM-CSF, TNF-α, Ionomycin), were exposed to organophosphourus compounds at different concentrations for a 24h time period. DC were characterized by flow cytometry and immunofluorescence using typical dendritic cell markers (e.g., CD11c, CD209 and CD83). After OPC exposure we investigated cell death, the secretion profile of inflammatory mediators, changes of DC morphology, and the effect on protein kinase signalling pathways. Our results revealed a successful differentiation of THP-1 into DC. OPC exposure caused a significant concentration-dependent influence on DC: Dendrites of the DC were shortened and damaged, DC-specific cell surface markers (i.e., CD83and CD209) decreased dramatically after chlorpyrifos exposure. Interestingly, the effects caused by dimethoate were in general less pronounced. The organophosphourus compounds affected the release of inflammatory cytokines, such as IL-1ß and IL-8. The anti-inflammatory cytokine IL-10 was significantly down regulated. Protein kinases like the Akt family or ERK, which are essential for cell survival and proliferation, were inhibited by both OPC. These findings indicate that the tested organophosphourus compounds induced significant changes in cell morphology, inhibited anti-inflammatory cytokines and influenced important protein signalling pathways which are involved in regulation of apoptosis. Thus our results highlight novel aspects -apparently independent of AChE inhibition- of OPC poisoning with regard to lung toxicity. Our findings contribute to the basic understanding of pulmonary complications caused by OPC poisoning. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Vasileiou, Alexandros A; Kontopoulou, Marianna; Gui, Hua; Docoslis, Aristides
2015-01-28
The objectives of this work are to quantify the degree of multiwalled carbon nanotube (MWCNT) length reduction upon melt compounding and to demonstrate unambiguously that the length reduction is mainly responsible for the increase in electrical percolation threshold of the resulting composites. Polyolefin matrices of varying viscosities and different functional groups are melt compounded with MWCNTs. A simple method is developed to solubilize the polymer matrix and isolate the MWCNTs, enabling detailed imaging analysis. In spite of the perceived strength of the MWCNTs, the results demonstrate that the shear forces developed during melt mixing are sufficient to cause significant nanotube breakage and length reduction. Breakage is promoted when higher MWCNT contents are used, due to increased probability of particle collisions. Furthermore, the higher shear forces transmitted to the nanotubes in the presence of higher matrix viscosities and functional groups that promote interfacial interactions, shift the nanotube distribution toward smaller sizes. The length reduction of the MWCNTs causes significant increases in the percolation threshold, due to the loss of interconnectivity, which results in fewer conductive pathways. These findings are validated by comparing the experimental percolation threshold values with those predicted by the improved interparticle distance theoretical model.
Rajivgandhi, Govindan; Vijayan, Ramachandran; Maruthupandy, Muthuchamy; Vaseeharan, Baskaralingam; Manoharan, Natesan
2018-05-01
Urinary tract infections (UTIs) are diverse public health complication and caused by range of pathogens, however mostly Gram negative bacteria cause significant life threatening risks to different populations. The prevalence rate and antimicrobial resistance among the Gram negative uropathogens alarmed significantly heighten the economic burden of these infections. In this study, we investigated the antibiofilm efficiency of Pyrrolo [1,2-a] pyrazine-1,4-dione,hexahydro-3-(2-methylpropyl) extracted from endophytic actinomycetes Nocardiopsis sp. GRG 1 (KT235640) against P. mirabilis and E. coli. The extracted compound was characterized through TLC, HPLC, GC-MS, LC-MS and confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM). The compound, Pyrrolo [1,2-a] pyrazine-1, 4-dione, hexahydro-3-(2-methylpropyl) inhibits both bacterial biofilm formation as well as reduces the viability of preformed biofilms. Furthermore, CLSM image shows cell shrinkage, disorganized cell membrane and loss of viability. The SEM result also confirms the cell wall degradation in treated cells of the bacteria. Hence, the Pyrrolo [1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) is active against P. mirabilis and E. coli. Copyright © 2018 Elsevier Ltd. All rights reserved.
Comerton, Anna M; Andrews, Robert C; Bagley, David M
2009-02-01
The impact of natural organic matter (NOM) and cations on the rejection of five endocrine disrupting compounds (EDCs) and pharmaceutically active compounds (PhACs) (acetaminophen, carbamazepine, estrone, gemfibrozil, oxybenzone) by nanofiltration (NF) was examined. The water matrices included membrane bioreactor (MBR) effluent, Lake Ontario water and laboratory-prepared waters modelled to represent the characteristics of the Lake Ontario water. The impact of cations in natural waters on compound rejection was also examined by doubling the natural cation concentration (calcium, magnesium, sodium) in both the Lake Ontario water and the MBR effluent. The presence of Suwannee River NOM spiked into laboratory-grade water was found to cause an increase in compound NF rejection. In addition, the presence of cations alone in laboratory-grade water did not have a significant impact on rejection with the exception of the polar compound gemfibrozil. However, when cation concentration in natural waters was increased, a significant decrease in the rejection of EDCs and PhACs was observed. This suggests that the presence of cations may result in a reduction in the association of EDCs and PhACs with NOM.
Johne, A Bettina; Weissbecker, Bernhard; Schütz, Stefan
2006-10-01
Larval stages of the horse chestnut leafminer Cameraria ohridella can completely destroy the surface of horse chestnut leaves, Aesculus hippocastanum. This study investigated the effect of the degree of leaf browning caused by the insect's larvae on olfactory detection, aggregation, and oviposition of C. ohridella adults. The influence of A. hippocastanum flower scent on oviposition of the first generation was also evaluated. Utilizing gas chromatography coupled with parallel detection by mass spectrometry and electroantennography (GC-MS/EAD), more than 30 compounds eliciting responses from antennae of C. ohridella were detected. Oviposition and mining by C. ohridella caused significant changes in the profile of leaf volatiles of A. hippocastanum. After oviposition and subsequent mining by early larval stages (L1-L3), substances such as benzaldehyde, 1,8-cineole, benzyl alcohol, 2-phenylethanol, methyl salicylate, (E)-beta-caryophyllene, and (E,E)-alpha-farnesene were emitted in addition to the compounds emitted by uninfested leaves. Insects were able to detect these compounds. The emitted amount of these substances increased with progressive larval development. During late larval stages (L4, L5) and severe loss of green leaf area, (E,E)-2,4-hexadienal, (E/Z)-linalool oxide (furanoid), nonanal, and decanal were also released by leaves. These alterations of the profile of volatiles caused modifications in aggregation of C. ohridella on leaves. In choice tests, leaves in early infestation stages showed no significant effect on aggregation, whereas insects avoided leaves in late infestation stages. Further choice tests with leaves treated with single compounds led to the identification of substances mediating an increase or decrease in oviposition.
Zhivin, Sergey; Guseva Canu, Irina; Samson, Eric; Laurent, Olivier; Grellier, James; Collomb, Philippe; Zablotska, Lydia B; Laurier, Dominique
2016-03-01
Until recently, enrichment of uranium for civil and military purposes in France was carried out by gaseous diffusion using rapidly soluble uranium compounds. We analysed the relationship between exposure to soluble uranium compounds and exposure to external γ-radiation and mortality in a cohort of 4688 French uranium enrichment workers who were employed between 1964 and 2006. Data on individual annual exposure to radiological and non-radiological hazards were collected for workers of the AREVA NC, CEA and Eurodif uranium enrichment plants from job-exposure matrixes and external dosimetry records, differentiating between natural, enriched and depleted uranium. Cause-specific mortality was compared with the French general population via standardised mortality ratios (SMR), and was analysed via Poisson regression using log-linear and linear excess relative risk models. Over the period of follow-up, 131 161 person-years at risk were accrued and 21% of the subjects had died. A strong healthy worker effect was observed: all causes SMR=0.69, 95% CI 0.65 to 0.74. SMR for pleural cancer was significantly increased (2.3, 95% CI 1.06 to 4.4), but was only based on nine cases. Internal uranium and external γ-radiation exposures were not significantly associated with any cause of mortality. This is the first study of French uranium enrichment workers. Although limited in statistical power, further follow-up of this cohort, estimation of internal uranium doses and pooling with similar cohorts should elucidate potential risks associated with exposure to soluble uranium compounds. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Mutlib, Abdul; Jiang, Ping; Atherton, Jim; Obert, Leslie; Kostrubsky, Seva; Madore, Steven; Nelson, Sidney
2006-10-01
The inability to predict if a metabolically bioactivated compound will cause toxicity in later stages of drug development or post-marketing is of serious concern. One approach for improving the predictive success of compound toxicity has been to compare the gene expression profile in preclinical models dosed with novel compounds to a gene expression database generated from compounds with known toxicity. While this guilt-by-association approach can be useful, it is often difficult to elucidate gene expression changes that may be related to the generation of reactive metabolites. In an effort to address this issue, we compared the gene expression profiles obtained from animals treated with a soft-electrophile-producing hepatotoxic compound against corresponding deuterium labeled analogues resistant to metabolic processing. Our aim was to identify a subset of potential biomarker genes for hepatotoxicity caused by soft-electrophile-producing compounds. The current study utilized a known hepatotoxic compound N-methylformamide (NMF) and its two analogues labeled with deuterium at different positions to block metabolic oxidation at the formyl (d(1)) and methyl (d(3)) moieties. Groups of mice were dosed with each compound, and their livers were harvested at different time intervals. RNA was prepared and analyzed on Affymetrix GeneChip arrays. RNA transcripts showing statistically significant changes were identified, and selected changes were confirmed using TaqMan RT-PCR. Serum clinical chemistry and histopathologic evaluations were performed on selected samples as well. The data set generated from the different groups of animals enabled us to determine which gene expression changes were attributed to the bioactivating pathway. We were able to selectively modulate the metabolism of NMF by labeling various positions of the molecule with a stable isotope, allowing us to monitor gene changes specifically due to a particular metabolic pathway. Two groups of genes were identified, which were associated with the metabolism of a certain part of the NMF molecule. The metabolic pathway leading to the production of reactive methyl isocyanate resulted in distinct expression patterns that correlated with histopathologic findings. There was a clear correlation between the expression of certain genes involved in the cell cycle/apoptosis and inflammatory pathways and the presence of reactive metabolite. These genes may serve as potential genomic biomarkers of hepatotoxicity induced by soft-electrophile-producing compounds. However, the robustness of these potential genomic biomarkers will need to be validated using other hepatotoxicants (both soft- and hard-electrophile-producing agents) and compounds known to cause idiosyncratic liver toxicity before being adopted into the drug discovery screening process.
NASA Astrophysics Data System (ADS)
Sangari, Samra; Anita, Hill; Dumitru, Pavel
2004-03-01
There have been significant attempts to devulcanize waste elastomers to facilitate reusing these valuable resources in applications requiring the unique properties of rubber. The difficulty in recycling of elastomers has traditionally been with devulcanizing the elastomer without comprising its properties due to degradation of main chains. This research aimed to devulcanize model styrene-butadiene rubber (SBR) compounds, which had various amounts of poly-, di- and monosulfidic crosslinks using a mechanochemical process. Three model compounds were prepared using SBR using a laboratory two-roll mill. They were then vulcanized in a compression molding press at 140r C. The prepared vulcanized compounds were then ground and devulcanized in an internal mixer using a chemical mixture at a constant rotor speed and temperature. The crosslink density of the compounds before and after the devulcanization was calculated using volume-swelling measurements. The obtained data was used to establish the correlation between crosslink density of the compounds and the degree of devulcanization. The results showed that mechanochemical devulcanization caused a significant decrease in the crosslink density of the compounds by breaking the sulfidic linkages. The break up of polysulfidic crosslinks was predominant, meaning that mechanochemical process selectively affected different types of crosslinks.
Mohareb, Rafat M; Elmegeed, Gamal A; Abdel-Salam, Omar M E; Doss, Senot H; William, Marian G
2011-01-01
The identification of compounds able to treat both pain and inflammation with limited side effects is one of the prominent goals in biomedical research. This study aimed at the synthesis of new modified steroids with structures justifying non-ulcerogenic, anti-inflammatory and anti-nociceptive activities. The steroid derivatives were synthesized via straightforward and efficient methods and their structures were established based on the analytical and spectral data. The in vivo anti-inflammatory, anti-nociceptive and anti-ulcerogenic activities of some of these compounds were studied. The newly synthesized compounds 8b, 19b, 24 and 31a showed anti-inflammatory, anti-nociceptive and anti-ulcerogenic activity with various intensities. Oedema was significantly reduced by either dose 25 or 50 mg/kg of all tested compounds at 3 and 4 h post-carrageenan. Compound 19b was the most effective in alleviating thermal pain. The analgesic activity of either dose of the compounds 8b, 24, 31a as well as the high dose 19b was significantly higher than that for indomethacin (IND). Gastric mucosal lesions caused in the rats by the administration of 96% EtOH and IND were inhibited by all tested compounds administered at (50 mg/kg) dose in the study. Copyright © 2011 Elsevier Inc. All rights reserved.
Amir, Mohammad; Ali, Israr; Hassan, Mohd Zaheen
2013-06-01
A series of novel imidazole incorporated semicarbazones was synthesized using an appropriate synthetic route and characterized by spectral analysis (IR, 1H NMR, 13C NMR and Mass). The anticonvulsant activity of the synthesized compounds was determined using doses of 30, 100, and 300 mg kg-1 against maximal electroshock seizure (MES), subcutaneous pentylenetetrazole (scPTZ) induced seizure and minimal neurotoxicity test. Six compounds exhibited protection in both models and 2-(1-(4-chlorophenyl)-2-(1H-imidazol-1-yl)ethylidene)-N-p-tolylsemicarbazone emerged as the most active compound of the series without any neurotoxicity and significant CNS depressant effect. Liver enzyme estimations (SGOT, SGPT, Alkaline phosphatase) of the compound also showed no significant change in the enzymes levels. Moreover, it caused 80% elevation of γ-amino butyric acid (GABA) levels in the whole mice brain, thus indicating that it could be a promising candidate in designing of a potent anticonvulsant drug.
Transformation of chlorpyrifos and chlorpyrifos-methyl in prairie pothole pore waters.
Adams, Rachel M; McAdams, Brandon C; Arnold, William A; Chin, Yu-Ping
2016-11-09
Non-point source pesticide pollution is a concern for wetlands in the prairie pothole region (PPR). Recent studies have demonstrated that reduced sulfur species (e.g., bisulfide and polysulfides) in PPR wetland pore waters directly undergo reactions with chloroacetanilide and dinitroaniline compounds. In this paper, the abiotic transformation of two organophosphate compounds, chlorpyrifos and chlorpyrifos-methyl, was studied in PPR wetland pore waters. Chlorpyrifos-methyl reacted significantly faster (up to 4 times) in pore water with reduced sulfur species relative to hydrolysis. No rate enhancement was observed in the transformation of chlorpyrifos in pore water with reduced sulfur species. The lack of reactivity was most likely caused by steric hindrance from the ethyl groups and partitioning to dissolved organic matter (DOM), thereby shielding chlorpyrifos from nucleophilic attack. Significant decreases in reaction rates were observed for chlorpyrifos in pore water with high concentrations of DOM. Rate enhancement due to other reactive species (e.g., organo-sulfur compounds) in pore water was minor for both compounds relative to the influence of bisulfide and DOM.
Kang, Geunho; Cho, Soohyun; Seong, Pilnam; Park, Beomyoung; Kim, Sangwoo; Kim, Donghun; Kim, Youngjun; Kang, Sunmun; Park, Kyoungmi
2013-08-01
This study investigated the effects of high pressure processing (HPP) on fatty acid composition and volatile compounds in Korean native black goat (KNBG) meat. Fatty acid content in KNBG meat was not significantly (p > 0.05) different among the control goats and those subjected HPP. The 9,12-octadecadienoic acid and octadecanoic acid, well-known causes of off-flavors, were detected from meat of some KNBG. A difference between the control and HPP treatment was observed in the discriminated function analysis using an electronic nose. The results suggest that the volatile compounds in KNBG meat were affected by HPP.
Effect of Steam Blanching and Drying on Phenolic Compounds of Litchi Pericarp.
Kessy, Honest N E; Hu, Zhuoyan; Zhao, Lei; Zhou, Molin
2016-06-03
The effects of different treatment methods on the stability and antioxidant capacity of the bioactive phenolic compounds of litchi pericarps were investigated. Fresh litchi pericarps were open air-dried, steam-blanched for 3 min in combination with hot air oven drying at 60 and 80 °C, and unblanched pericarps were dried in a hot air oven at 40, 60, 70 and 80 °C until equilibrium weight was reached. The total phenolic compounds, flavonoids, anthocyanins, proanthocyanidins and individual procyanidins, and antioxidant activity were analyzed. The combination of blanching and drying at 60 °C significantly (p < 0.05) improved the release of phenolic compounds, individual procyanidins, and the extracts' antioxidant capacity compared with the unblanched hot air oven-dried and open air-dried pericarps. Drying of fresh unblanched litchi pericarps in either open air or a hot air oven caused significant losses (p < 0.05) in phenolic compounds and individual procyanidins, leading to a reduction in the antioxidant activity. A similar increase, retention or reduction was reflected in flavonoids, proanthocyanidins and anthocyanins because they are sub-groups of phenolic compounds. Ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picryldydrazyl (DPPH) radical-scavenging capacity of the treated pericarps were significantly correlated (r ≥ 0.927, p < 0.01) with the total phenolic compounds. Thus, the combination of steam blanching and drying treatments of fresh litchi pericarps could produce a stable and dry litchi pericarp that maintains phenolic compounds and antioxidant capacity as a raw material for further recovery of the phytochemicals.
The potential of compounds isolated from Xylaria spp. as antifungal agents against anthracnose.
Elias, Luciana M; Fortkamp, Diana; Sartori, Sérgio B; Ferreira, Marília C; Gomes, Luiz H; Azevedo, João L; Montoya, Quimi V; Rodrigues, André; Ferreira, Antonio G; Lira, Simone P
2018-03-31
Anthracnose is a crop disease usually caused by fungi in the genus Colletotrichum or Gloeosporium. These are considered one of the main pathogens, causing significant economic losses, such as in peppers and guarana. The current forms of control include the use of resistant cultivars, sanitary pruning and fungicides. However, even with the use of some methods of controlling these cultures, the crops are not free of anthracnose. Additionally, excessive application of fungicides increases the resistance of pathogens to agrochemicals and cause harm to human health and the environment. In order to find natural antifungal agents against guarana anthracnose, endophytic fungi were isolated from Amazon guarana. The compounds piliformic acid and cytochalasin D were isolated by chromatographic techniques from two Xylaria spp., guided by assays with Colletotrichum gloeosporioides. The isolated compounds were identified by spectrometric techniques, as NMR and mass spectrometry. This is the first report that piliformic acid and cytochalasin D have antifungal activity against C. gloeosporioides with MIC 2.92 and 2.46μmolmL -1 respectively. Captan and difenoconazole were included as positive controls (MIC 16.63 and 0.02μmolmL -1 , respectively). Thus, Xylaria species presented a biotechnological potential and production of different active compounds which might be promising against anthracnose disease. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Tarver, Matthew R; Shade, Richard E; Shukle, Richard H; Moar, William J; Muir, William M; Murdock, Larry M; Pittendrigh, Barry R
2007-05-01
The cowpea bruchid (Callosobruchus maculatus F.) (Chrysomelidae: Bruchini) is a major pest of stored cowpea grain. With limited available technologies for controlling the bruchid, transgenic cowpeas with bruchid resistance genes engineered into them could become the next management tools. An investigation was made of two different sets of potential transgenic insecticidal compounds using an artificial seed system: (i) CIP-PH-BT-J and recombinant egg white avidin, and (ii) avidin and wheat alpha-amylase inhibitor. CIP-PH-BT-J (0.1%; 1000 mg kg(-1)) and recombinant egg white avidin (0.006%; 60 mg kg(-1)) incorporated separately into artificial seeds caused 98.2 and 99% larval mortality rates respectively. Combining CIP-PH-BT-J and avidin in the same artificial seed provided additional mortality compared with each factor incorporated singly; no insects survived in seeds with the combined toxins. Similarly, when avidin and wheat alpha-amylase inhibitor (alphaAI) (1%; 10 g kg(-1)) were incorporated separately into artificial seeds, this caused 99.8 and 98% mortality respectively. However, in combination, avidin and alphaAI did not increase mortality, but they did cause a significant increase in developmental time of the cowpea bruchids. These results emphasize that the joint action of potential insecticidal compounds cannot be predicted from results obtained separately for each compound, and they suggest potential transgenes for further consideration.
Comotto, Mattia; Casazza, Alessandro Alberto; Aliakbarian, Bahar; Caratto, Valentina; Ferretti, Maurizio; Perego, Patrizia
2014-01-01
The influence of titanium dioxide nanoparticles (pure anatase and 15% N doped anatase) on the growth of Chlorella vulgaris, Haematococcus pluvialis, and Arthrospira platensis was investigated. Results showed that pure anatase can lead to a significant growth inhibition of C. vulgaris and A. platensis (17.0 and 74.1%, resp.), while for H. pluvialis the nanoparticles do not cause a significant inhibition. Since in these stress conditions photosynthetic microorganisms can produce antioxidant compounds in order to prevent cell damages, we evaluated the polyphenols content either inside the cells or released in the medium. Although results did not show a significant difference in C. vulgaris, the phenolic concentrations of two other microorganisms were statistically affected by the presence of titanium dioxide. In particular, 15% N doped anatase resulted in a higher production of extracellular antioxidant compounds, reaching the concentration of 65.2 and 68.0 mg gDB −1 for H. pluvialis and A. platensis, respectively. PMID:25610914
Bioactive Compounds and Their Neuroprotective Effects in Diabetic Complications
Oh, Yoon Sin
2016-01-01
Hyperglycemia, hyperlipidemia and impaired insulin signaling during the development of diabetes can cause diabetic complications, such as diabetic neuropathy, resulting in significant morbidity and mortality. Although various therapeutics are available for the treatment of diabetic neuropathy, no absolute cure exists, and additional research is necessary to comprehensively understand the underlying pathophysiological pathways. A number of studies have demonstrated the potential health benefits of bioactive compounds, i.e., flavonoids and vitamins, which may be effective as supplementary treatments for diabetes and its complications. In this review, we highlight the most recent reports about the mechanisms of action of bioactive compounds (flavonoids and vitamins) possessing potential neuroprotective properties in diabetic conditions. Additional clinical studies are required to determine the appropriate dose and duration of bioactive compound supplementation for neuroprotection in diabetic patients. PMID:27483315
Kodela, Ravinder; Chattopadhyay, Mitali; Nath, Niharika; Cieciura, Lucyna Z; Pospishill, Liliya; Boring, Daniel; Crowell, James A; Kashfi, Khosrow
2011-12-01
Several acetyl-protected hydroxybenzyl diethyl phosphates (EHBPs) that are capable of forming quinone methide intermediates were synthesized and their cell growth inhibitory properties were evaluated in four different human cancer cell lines. Compounds 1, 1a, and 1b, corresponding to (4-acetyloxybenzyl diethylphosphate), (3-methyl-4-acetyloxybenzyl diethylphosphate), and (3-chloro-4-acetyloxybenzyl diethylphosphate), were significantly more potent than compounds 2 and 3, (2-acetyloxybenzyl diethylphosphate) and (3-acetyloxybenzyl diethylphosphate), respectively. Using HT-29 human colon cancer cells, compounds 1 and 3 increased apoptosis, inhibited proliferation, and caused a G(2)/M block in the cell cycle. Our data suggest that these compounds merit further investigation as potential anti-cancer agents. Copyright © 2011 Elsevier Ltd. All rights reserved.
Synthesis and Anticancer Mechanism Investigation of Dual Hsp27 and Tubulin Inhibitors
Zhong, Bo; Chennamaneni, Snigdha; Lama, Rati; Yi, Xin; Geldenhuys, Werner J.; Pink, John J.; Dowlati, Afshin; Xu, Yan; Zhou, Aimin; Su, Bin
2013-01-01
Heat shock protein 27 (Hsp27) is a chaperone protein, and its expression is increased in response to various stress stimuli including anticancer chemotherapy, which allows the cells to survive and causes drug resistance. We previously identified lead compounds that bound to Hsp27 and tubulin via proteomic approaches. Systematic ligand based optimization in the current study significantly increased the cell growth inhibition and apoptosis inducing activities of the compounds. Compared to the lead compounds, one of the new derivatives exhibited much better potency to inhibit tubulin polymerization but a decreased activity to inhibit Hsp27 chaperone function, suggesting that the structural modification dissected the dual targeting effects of the compound. The most potent compounds 20 and 22 exhibited strong cell proliferation inhibitory activities at subnanomolar concentration against 60 human cancer cell lines conducted by Developmental Therapeutic Program at the National Cancer Institute and represented promising candidates for anticancer drug development. PMID:23767669
Oxygen compounds in the Irati Shale oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfonso, J.C.; Schmal, M.; Cardoso, J.N.
1992-04-01
This paper reports the principal alkylphenols (4 wt %) and carboxylic acids (1.2 wt %) present in the Irati Shale oil S[tilde a]o Mateus do Sul, Paran acute (a) by means of a combination of gas chromatography-mass spectrometry (GC-MS) and retention time-data of standard compounds. it appears that the phenols are essentially monocyclic in nature with methyl groups as the main substituents. Carboxylic acids are principally linear and predominantly of the range C[sub 14]--C[sub 20]. After catalytic hydrotreatment (400 [degrees]C, 125 atm) high hydrodeoxygenation levels were obtained (87 wt %) for phenols and carboxylic acids, although the relative distribution ofmore » the various compounds was not significantly changed. Oxygen is present in the carbonaceous residue as several functionalities xanthenes, phenols, aryl ethers, carbonyl compounds, and furanic structures. The remaining acidic compounds may cause instability of the treated shale oil.« less
Malodorous volatile organic sulfur compounds: Sources, sinks and significance in inland waters.
Watson, Susan B; Jüttner, Friedrich
2017-03-01
Volatile Organic Sulfur Compounds (VOSCs) are instrumental in global S-cycling and greenhouse gas production. VOSCs occur across a diversity of inland waters, and with widespread eutrophication and climate change, are increasingly linked with malodours in organic-rich waterbodies and drinking-water supplies. Compared with marine systems, the role of VOSCs in biogeochemical processes is far less well characterized for inland waters, and often involves different physicochemical and biological processes. This review provides an updated synthesis of VOSCs in inland waters, focusing on compounds known to cause malodours. We examine the major limnological and biochemical processes involved in the formation and degradation of alkylthiols, dialkylsulfides, dialkylpolysulfides, and other organosulfur compounds under different oxygen, salinity and mixing regimes, and key phototropic and heterotrophic microbial producers and degraders (bacteria, cyanobacteria, and algae) in these environs. The data show VOSC levels which vary significantly, sometimes far exceeding human odor thresholds, generated by a diversity of biota, biochemical pathways, enzymes and precursors. We also draw attention to major issues in sampling and analytical artifacts which bias and preclude comparisons among studies, and highlight significant knowledge gaps that need addressing with careful, appropriate methods to provide a more robust understanding of the potential effects of continued global development.
Juhaimi, Fahad Al; Özcan, Mehmet Musa; Uslu, Nurhan; Doğu, Süleyman
2017-12-01
In this study, the effects of conventional and microwave roasting on phenolic compounds, free acidity, peroxide value, fatty acid composition and tocopherol content of pecan walnut kernel and oil was investigated. The oil content of pecan kernels was 73.78% for microwave oven roasted at 720 W and 73.56% for conventional oven roasted at 110 °C. The highest free fatty acid content (0.50%) and the lowest peroxide value (2.48 meq O 2 /kg) were observed during microwave roasting at 720 W. The fatty acid profiles and tocopherol contents of pecan kernel oils did not show significant differences compared to raw samples. Roasting process in microwave oven at 720 W caused the reduction of some phenolic compounds, while the content of gallic acid exhibited a significant increase.
Park, Juhee; Chang, Hansub; Kim, Dongho; Chung, Soohyun; Lee, Chan
2018-03-16
The Fusarium fungi produce toxic substances called mycotoxins, which can cause disease and harmful effects in grains, livestock, and humans. Deoxynivalenol (DON), also known as vomitoxin, is one of the Fusarium mycotoxins that is known to cause vomiting in livestock. This study shows the occurrence of deoxynivalenol in feedstuffs (compound feed and feed ingredients) between 2009 and 2016 in South Korea. A total of 653 domestic samples were collected at five time points, including 494 compound feed samples and 159 feed ingredient samples. DON contamination levels were analyzed using high-performance liquid chromatography (HPLC) with pretreatment using an immunoaffinity column (IAC). The limit of detection (LOD) and the limit of quantification (LOQ) were estimated at 1-10 µg/kg and 3-35 µg/kg, respectively. Two compound feeds (two gestating sow feed samples) out of 160 pig feed samples exceeded the European Commission (EC) guidance value, while no feed ingredient samples exceeded the EC or South Korean guidance values. There were statistically significant differences in the mean contamination levels of compound feed and feed ingredients that indicated a decreasing trend over time.
Park, Juhee; Chang, Hansub; Kim, Dongho; Chung, Soohyun
2018-01-01
The Fusarium fungi produce toxic substances called mycotoxins, which can cause disease and harmful effects in grains, livestock, and humans. Deoxynivalenol (DON), also known as vomitoxin, is one of the Fusarium mycotoxins that is known to cause vomiting in livestock. This study shows the occurrence of deoxynivalenol in feedstuffs (compound feed and feed ingredients) between 2009 and 2016 in South Korea. A total of 653 domestic samples were collected at five time points, including 494 compound feed samples and 159 feed ingredient samples. DON contamination levels were analyzed using high-performance liquid chromatography (HPLC) with pretreatment using an immunoaffinity column (IAC). The limit of detection (LOD) and the limit of quantification (LOQ) were estimated at 1–10 µg/kg and 3–35 µg/kg, respectively. Two compound feeds (two gestating sow feed samples) out of 160 pig feed samples exceeded the European Commission (EC) guidance value, while no feed ingredient samples exceeded the EC or South Korean guidance values. There were statistically significant differences in the mean contamination levels of compound feed and feed ingredients that indicated a decreasing trend over time. PMID:29547546
Microbial Degradation of Fuel Oxygenates under Aerobic Conditions
2007-03-01
for less hazardous oxygenate alternatives. One of the many factors that will contribute to selection of a new oxygenate will be its susceptibility to...tetra ethyl lead to gasoline as an octane booster was effective, but had significant drawbacks. The acute hazards of airborne lead were readily apparent...more of an inhalation hazard , causing irritation of the eyes, nose and throat. These compounds may also cause changes in the liver and kidneys
El-Mougy, Nehal S.; Abdel-Kader, Mokhtar M.
2013-01-01
Evaluation of the efficacy of blue-green algal compounds against the growth of either pathogenic or antagonistic microorganisms as well as their effect on the antagonistic ability of bioagents was studied under in vitro conditions. The present study was undertaken to explore the inhibitory effect of commercial algal compounds, Weed-Max and Oligo-Mix, against some soil-borne pathogens. In growth medium supplemented with these algal compounds, the linear growth of pathogenic fungi decreased by increasing tested concentrations of the two algal compounds. Complete reduction in pathogenic fungal growth was observed at 2% of both Weed-Max and Oligo-Mix. Gradual significant reduction in the pathogenic fungal growth was caused by the two bioagents and by increasing the concentrations of algal compounds Weed-Max and Oligo-Mix. The present work showed that commercial algal compounds, Weed-Max and Oligo-Mix, have potential for the suppression of soil-borne fungi and enhance the antagonistic ability of fungal, bacterial, and yeast bio-agents. PMID:24307948
NASA Astrophysics Data System (ADS)
Najafabadi, Najmeh Shams; Sahari, Mohammad Ali; Barzegar, Mohsen; Esfahani, Zohreh Hamidi
2017-01-01
Interest in the protection of bioactive compounds and a safe alternative method for preservation of processed fruits and fruit juices has recently increased significantly throughout the world. There is a distinct lack of information on the profile of bioactive compounds in jujube fruit (e.g. organic acids, anthocyanins, and water-soluble vitamins) and their changes during processing (e.g. gamma irradiation). Therefore, in this study, the effect of gamma irradiation at different doses (0.0, 0.5, 1.0, 2.5 and 5.0 kGy) on some physicochemical properties and the bioactive compounds of jujube fruit was investigated. The total soluble solids (TSSs) values remained unaffected at various doses, while the level of total acidity (TA) showed a slight increase at doses ≥ 2.5 kGy (p ≤ 0.05). Irradiation up to 2.5 kGy caused a significant increase in the total monomeric anthocyanin and the total phenolic content (about 12% and 6%, respectively), but a significant decrease was observed in both parameters immediately after irradiation at 5 kGy. Moreover, irradiation treatment caused a significant decrease in L* value and a significant increase in a* and b* values (P ≤ 0.05); however, changes of color were slight until the dose of 5 kGy. Gamma irradiation up to 2.5 kGy had no significant effect on the concentration of malic, citric and succinic acids, while the level of ascorbic acid decreased significantly at all irradiation doses (0-5 kGy). Cyanidin-3, 5-diglucoside was determined as the major anthocyanin in the jujube fruit studied (about 68%), which was reduced significantly when 5 kGy of irradiation was applied (degradation percentage: 27%). The results demonstrated that vitamins C, B2 and B1 are the most water-soluble vitamins in jujube fruit, respectively. Vitamins C and B1 content significantly decreased at all applied doses (0-5 kGy), whereas B2 content at doses ≤ 2.5 kGy was not significantly affected. The results of this study indicate that gamma irradiation at doses below 2.5 kGy can be successfully used for improving the quality the jujube fruit.
NASA Astrophysics Data System (ADS)
Premnath, D.; Mosae Selvakumar, P.; Ravichandiran, P.; Tamil Selvan, G.; Indiraleka, M.; Jannet Vennila, J.
2016-01-01
Two substituted aromatic carbonyl compounds (compounds 1 and 2) of 4-aminoantipyrine were synthesized by condensation of fluorine substituted benzoyl chlorides and 4-aminoantipyrine. The structures of synthesized derivatives were established on the basis of UV-Vis, IR, and Mass, 1H, 13C NMR and Fluorescence spectroscopy. Both compounds showed significant fluorescence emission and two broad emission bands were observed in the region at 340 nm and 450 nm on excitation at 280 nm. Theoretically to prove that the molecule has anticancer activity against cervical cancer cells, the compounds were analyzed for molecular docking interactions with HPV16-E7 target protein by Glide protocol. Furthermore, 4-aminoantipyrine derivatives were evaluated for their in vitro cytotoxic activity against human cervical cancer cells (SiHa) by MTT assay. Compound 1 showed two fold higher activity (IC50 = 0.912 μM) over compound 2, and its activity was similar to that of Pazopanib, suggesting that although the two compounds were chemically very similar the difference in substituent on the phenyl moiety caused changes in properties.
Identification and Development of Novel Inhibitors of Toxoplasma gondii Enoyl Reductase
Tipparaju, Suresh K.; Muench, Stephen P.; Mui, Ernest J.; Ruzheinikov, Sergey N.; Lu, Jeffrey Z.; Hutson, Samuel L.; Kirisits, Michael J.; Prigge, Sean T.; Roberts, Craig W.; Henriquez, Fiona L.; Kozikowski, Alan P.; Rice, David W.; McLeod, Rima L.
2010-01-01
Toxoplasmosis causes significant morbidity and mortality and yet available medicines are limited by toxicities and hypersensitivity. Since improved medicines are needed urgently, rational approaches were used to identify novel lead compounds effective against Toxoplasma gondii enoyl reductase (TgENR), a type II fatty acid synthase enzyme essential in parasites but not present in animals. Fifty-three compounds, including three classes that inhibit ENRs, were tested. Six compounds have anti-parasite MIC90s ≤6μM without toxicity to host cells, three compounds have IC90s <45nM against recombinant TgENR and two protect mice. To further understand the mode of inhibition, the co-crystal structure of one of the most promising candidate compounds in complex with TgENR has been determined to 2.7Å. The crystal structure reveals that the aliphatic side chain of compound 19 occupies, as predicted, space made available by replacement of a bulky hydrophobic residue in homologous bacterial ENRs by Ala in TgENR. This provides a paradigm, conceptual foundation, reagents, and lead compounds for future rational development and discovery of improved inhibitors of T. gondii. PMID:20698542
Saitoh, M; Yanase, T; Morinaga, H; Tanabe, M; Mu, Y M; Nishi, Y; Nomura, M; Okabe, T; Goto, K; Takayanagi, R; Nawata, H
2001-11-23
The superimposition of male sex organs (penis and vas deferens) in a female gastropod, called imposex, is widely attributed to the exposure to tributyltin (TBT) compounds, used world-wide in antifouling paints for ships. It has been hypothesized that the TBT-induced imposex is mediated by an increasing androgen level relative to the estrogen level, namely a decreased conversion of androgens to estrogens (i.e., aromatization). In the present study, we tested this hypothesis by examining the effects of TBT or triphenyltin (TPT) on the aromatase activity in a cultured human granulosa-like tumor cell line, KGN, which was recently established by our group. Treatment with more than 1000 ng/ml TBT compounds was very toxic to the cells and caused immediate cell death within 24 h, while 200 ng/ml was found to cause apoptosis of the cells. Treatment of the KGN cells for more than 48 h with 20 ng/ml TBT or TPT, which is a concentration level reported to cause imposex in marine species, did not affect cell proliferation but significantly suppressed the aromatase activity determined by a [(3)H]H(2)O release assay. Treatment with 20 ng/ml TBT compounds for 7 days also resulted in a reduction of the E2 production from Delta 4-androstenedione stimulated by db-cAMP. The changes in the aromatase activity by TBT compounds were associated with comparable changes in P450arom mRNA assessed by RT-PCR. The luciferase activity of the P450arom promoter II (1 kb) decreased after the addition of 20 ng/ml TBT compounds in transfected KGN cells either in a basic state or in states stimulated by db-cAMP. The Ad4BP-dependent increase in the luciferase activity of P450arom promoter II was also downregulated by such treatments. These results indicate that TBT compounds inhibited the aromatase activity and also decreased the P450arom mRNA level at the transcriptional level in KGN cells. The direct inhibitory effect of TBT compounds on the aromatase activity may therefore partly explain the induction of imposex by these compounds in female species. Copyright 2001 Academic Press.
Foladori, P; Tamburini, S; Bruni, L
2010-09-01
Technologies proposed in the last decades for the reduction of the sludge production in wastewater treatment plants and based on the mechanism of cell lysis-cryptic growth (physical, mechanical, thermal, chemical, oxidative treatments) have been widely investigated at lab-, pilot- and, in some cases, at full-scale but the effects on cellular lysis have not always been demonstrated in depth. The research presented in this paper aims to investigate how these sludge reduction technologies affect the integrity and permeabilization of bacterial cells in sludge using flow cytometry (FCM), which permits the rapid and statistically accurate quantification of intact, permeabilised or disrupted bacteria in the sludge using a double fluorescent DNA-staining instead of using conventional methods like plate counts and microscope. Physical/mechanical treatments (ultrasonication and high pressure homogenisation) caused moderate effects on cell integrity and caused significant cell disruption only at high specific energy levels. Conversely, thermal treatment caused significant damage of bacterial membranes even at moderate temperatures (45-55 °C). Ozonation significantly affected cell integrity, even at low ozone dosages, below 10 mgO(3)/gTSS, causing an increase of permeabilised and disrupted cells. At higher ozone dosages the compounds solubilised after cell lysis act as scavengers in the competition between soluble compounds and (particulate) bacterial cells. An original aspect of this paper, not yet reported in the literature, is the comparison of the effects of these sludge reduction technologies on bacterial cell integrity and permeabilization by converting pressure, temperature and ozone dosage to an equivalent value of specific energy. Among these technologies, comparison of the applied specific energy demonstrates that achieving the complete disruption of bacterial cells is not always economically advantageous because excessive energy levels may be required. Copyright © 2010 Elsevier Ltd. All rights reserved.
Anthelmintic Potential of Thymoquinone and Curcumin on Fasciola gigantica
Ullah, Rizwan; Rehman, Abdur; Zafeer, Mohd Faraz; Rehman, Lubna; Khan, Yasir A.; Khan, M. A. Hannan; Khan, Shahper N.; Khan, Asad U.; Abidi, S. M. A.
2017-01-01
Fasciolosis an economically important global disease of ruminants in the temperate and tropical regions, caused by Fasciola hepatica and F. gigantica, respectively, also poses a potential zoonotic threat. In India alone it causes huge losses to stakeholders. Anthelmintics including triclabendazole have been used to control this menace but the emerging resistance against the available compounds necessitates identification of novel and alternative therapeutic measures involving plant derived natural compounds for their anthelmintic potential. Thymoquinone (T) and curcumin (C), the active ingredients of Nigella sativa and Curcuma longa respectively have been used as antiparasitic agents but the information on their flukicidal effect is very limited. Adult flukes of F. gigantica were in vitro exposed to different concentrations of thymoquinone and curcumin separately for 3h at 37+ 1°C. A significant (p<0.05) reduction in the worm motility at 60 μM concentration of both T and C was observed though all the worms remained alive after 3h exposure, whereas the effect on egg shedding was statistically insignificant. Pronounced tegumental disruptions and erosion of spines in the posterior region and around the acetabulum was evident. A significant (p<0.05) decrease in glutathione-S-transferase and superoxide dismutase activity and reduced glutathione (GSH) level was observed, while protein carbonylation increased differentially. A significant inhibition of CathepsinL (CatL) gene expression in thymoquinone treated worms was also evident. Further, in silico molecular docking of T and C with CatL revealed a stronger interaction of curcumin with the involvement of higher number of amino acids as compared to thymoquinone that could be more effective in inhibiting the antioxidant enzymes of F. gigantica. It is concluded that both the compounds understudy will decrease the detoxification ability of F. gigantica, while inhibition of CatL will significantly affect their virulence potential. Thus, both thymoquinone and curcumin appeared to be promising anthelmintic compounds for further investigations. PMID:28152102
Anthelmintic Potential of Thymoquinone and Curcumin on Fasciola gigantica.
Ullah, Rizwan; Rehman, Abdur; Zafeer, Mohd Faraz; Rehman, Lubna; Khan, Yasir A; Khan, M A Hannan; Khan, Shahper N; Khan, Asad U; Abidi, S M A
2017-01-01
Fasciolosis an economically important global disease of ruminants in the temperate and tropical regions, caused by Fasciola hepatica and F. gigantica, respectively, also poses a potential zoonotic threat. In India alone it causes huge losses to stakeholders. Anthelmintics including triclabendazole have been used to control this menace but the emerging resistance against the available compounds necessitates identification of novel and alternative therapeutic measures involving plant derived natural compounds for their anthelmintic potential. Thymoquinone (T) and curcumin (C), the active ingredients of Nigella sativa and Curcuma longa respectively have been used as antiparasitic agents but the information on their flukicidal effect is very limited. Adult flukes of F. gigantica were in vitro exposed to different concentrations of thymoquinone and curcumin separately for 3h at 37+ 1°C. A significant (p<0.05) reduction in the worm motility at 60 μM concentration of both T and C was observed though all the worms remained alive after 3h exposure, whereas the effect on egg shedding was statistically insignificant. Pronounced tegumental disruptions and erosion of spines in the posterior region and around the acetabulum was evident. A significant (p<0.05) decrease in glutathione-S-transferase and superoxide dismutase activity and reduced glutathione (GSH) level was observed, while protein carbonylation increased differentially. A significant inhibition of CathepsinL (CatL) gene expression in thymoquinone treated worms was also evident. Further, in silico molecular docking of T and C with CatL revealed a stronger interaction of curcumin with the involvement of higher number of amino acids as compared to thymoquinone that could be more effective in inhibiting the antioxidant enzymes of F. gigantica. It is concluded that both the compounds understudy will decrease the detoxification ability of F. gigantica, while inhibition of CatL will significantly affect their virulence potential. Thus, both thymoquinone and curcumin appeared to be promising anthelmintic compounds for further investigations.
Dioxin-like compounds (DLCs) are potent teratogens that persist in the environment and pose significant risk to ecological health. Variability in risk of developmental cardiotoxicity caused by DLCs has been demonstrated within and among several vertebrate species. Beyond our know...
Retention Strategies for Reducing Voluntary Turnover in a Higher Education Institution
ERIC Educational Resources Information Center
Walker, Susan K.
2017-01-01
Employees who choose to leave employment cause significant challenges for organizations. Compounded challenges exist when employee retention strategies are not effective, affecting job satisfaction and personnel replacement costs as the organization continues to lose qualified and valuable staff. This single case study, built on a psychological…
Feng, Shaolong; Eucker, Tyson P.; Holly, Mayumi K.; Konkel, Michael E.
2014-01-01
We present the results of a study using high-throughput whole-transcriptome sequencing (RNA-seq) and vibrational spectroscopy to characterize and fingerprint pathogenic-bacterium injury under conditions of unfavorable stress. Two garlic-derived organosulfur compounds were found to be highly effective antimicrobial compounds against Cronobacter sakazakii, a leading pathogen associated with invasive infection of infants and causing meningitis, necrotizing entercolitis, and bacteremia. RNA-seq shows changes in gene expression patterns and transcriptomic response, while confocal micro-Raman spectroscopy characterizes macromolecular changes in the bacterial cell resulting from this chemical stress. RNA-seq analyses showed that the bacterial response to ajoene differed from the response to diallyl sulfide. Specifically, ajoene caused downregulation of motility-related genes, while diallyl sulfide treatment caused an increased expression of cell wall synthesis genes. Confocal micro-Raman spectroscopy revealed that the two compounds appear to have the same phase I antimicrobial mechanism of binding to thiol-containing proteins/enzymes in bacterial cells generating a disulfide stretching band but different phase II antimicrobial mechanisms, showing alterations in the secondary structures of proteins in two different ways. Diallyl sulfide primarily altered the α-helix and β-sheet, as reflected in changes in amide I, while ajoene altered the structures containing phenylalanine and tyrosine. Bayesian probability analysis validated the ability of principal component analysis to differentiate treated and control C. sakazakii cells. Scanning electron microscopy confirmed cell injury, showing significant morphological variations in cells following treatments by these two compounds. Findings from this study aid in the development of effective intervention strategies to reduce the risk of C. sakazakii contamination in the food production environment and on food contact surfaces, reducing the risks to susceptible consumers. PMID:24271174
Palmieri, Giancarlo; Contaldi, Paola; Fogliame, Giuseppe
2017-01-01
Sleep disturbances and related daytime activities impairment are common diseases nowadays. General practitioners are often the first health care professional asked to alleviate sleep disturbances and primary insomnia symptoms. Beyond a wide class of hypnotic drugs, botanicals can represent an alternative treatment for those kinds of symptoms. The scope of the present study is to evaluate safety and effectiveness of a herbal compound composed of valerian, hop, and jujube (Vagonotte ® ) on primary insomnia symptoms and sleep disturbances not related to medical or psychiatric causes. One hundred and twenty subjects with sleep disturbances symptoms were randomized in two branches of 60 persons each, receiving the herbal compound or placebo at dosage of two pills per day 30 minutes before their scheduled bedtime. All subjects were screened for precise items related to sleep quality and daytime activity at the beginning, after 10 days, and after 20 days of consecutive dietary supplement (or placebo) consumption. The participants remained blind to group assignment until all of them completed the trial. Sleep onset, numbers of nocturnal awakenings, and overall nocturnal slept time were assessed. A statistically significant difference between the two groups emerged. The group receiving the herbal compound showed a lower time of sleep onset compared to placebo group, the same result was obtained for total slept time and night awakenings frequency ( p <0.001). Daily symptom improvement in subjects receiving the herbal compound showed significant reduction in tension and irritability, difficulty in concentration, and fatigue intensity, if compared to placebo scores ( p <0.001). None of the 60 subjects in the verum group reported adverse reaction related to the herbal compound, and 98% of subjects judged the product as having from good to excellent safety and tolerability. Botanicals dietary supplement with relaxing and soothing properties can help practitioner to treat primary insomnia, especially when the risk/benefit profile of a patient does not sustain hypnotic drugs prescription. This clinical investigation on safety and effectiveness of a herbal compound made of valerian, hop, and jujube opens interesting perspectives on usage of herbal compound to manage primary insomnia. Further investigations could help in understanding herbal compounds' effectiveness on sleep disturbances.
Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter
Lindsey, M.E.; Tarr, M.A.
2000-01-01
Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compound molecules bound to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanism for the observed inhibition is that hydroxyl radical formation occurs in microenvironmental sites remote from the aromatic compounds. In addition to changes in kinetics, pyrene hydroxyl radical reaction also exhibited a mechanistic change in the presence of fulvic acid. The mechanism changed from a reaction that was apparently firstorder in pyrene to one that was apparently secondorder in pyrene, indicating that pyrene self-reaction may have become the dominant mechanism in the presence of fulvic acid. Dissolved NOM causes significant changes in the rate and mechanism of hydroxyl radical degradation of aromatic compounds. Consequently, literature rate constants measured in pure water will not be useful for predicting the degradation of pollutants in environmental systems. The kinetic and mechanistic information in this study will be useful for developing improved degradation methods involving Fenton chemistry.Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compounds molecules bounds to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanisms for the observed inhibition is that hydroxyl radical formation occurs in microenvironmental sites remote from the aromatic compounds. In addition to changes in kinetics, pyrene hydroxyl radical reaction also exhibited a mechanistic change in the presence of fulvic acid. The mechanism changed from a reaction that was apparently first-order in pyrene to one that was apparently second-order in pyrene, indicating that pyrene self-reaction may have become the dominant mechanism in the presence of fulvic acid. Dissolved NOM causes significant changes in the rate and mechanism of hydroxyl radical degradation of aromatic compounds. Consequently, literature rate constants measured in pure water will not be useful for predicting the degradation of pollutants in environmental systems. The kinetic and mechanistic information in this study will be useful for developing improved degradation methods involving Fenton chemistry.
Protection against endotoxin-induced foetal resorption in mice by desferrioxamine and ebselen.
Gower, J. D.; Baldock, R. J.; O'Sullivan, A. M.; Doré, C. J.; Coid, C. R.; Green, C. J.
1990-01-01
Endotoxin was administered to mice on their 13th day of pregnancy at doses which caused the resorption of approximately 50% of the implanted foetuses. The iron chelator desferrioxamine was found to significantly inhibit the percentage of resorptions induced by endotoxin in a dose-dependent manner. The highest dose of desferrioxamine (5 mg) given intravenously 30 min prior to, immediately after, and 4 and 24 h after endotoxin inoculation, reduced the percentage of resorptions from 56.9 to 17.9%. Administration of the novel selenium-containing compound ebselen, which is both an antioxidant and an inhibitor of leukotriene synthesis, was also found to significantly protect against endotoxin-induced foetal resorptions, reducing the percentage of resorbed foetuses from 52.9 to 26.0% when given at a dose of 50 mg/kg (s.c.) at the time of endotoxin inoculation and 24 and 48 h following. Both these compounds also significantly reduced the increase in spleen weights observed when the mice were given endotoxin. These results provide evidence that the iron-catalysed production of hydroxyl radicals from other oxygen-derived species and the formation of leukotrienes play an important role in the mechanism by which endotoxin causes foetal resorptions in the mouse. PMID:2205283
Effect of freeze-drying and oven-drying on volatiles and phenolics composition of grape skin.
de Torres, C; Díaz-Maroto, M C; Hermosín-Gutiérrez, I; Pérez-Coello, M S
2010-02-15
Grape skins are the part of the fruit with the highest amount of volatile and polyphenolic compounds. Volatile compounds give the fruit and other grape derivatives their flavour. Polyphenolic compounds are responsible for the colour of the fruit, juice and wine, and also act as very important natural antioxidant compounds. Dehydration is a method used to prevent the damage of these compounds over time. Nevertheless, in the case of volatile compounds, removing water can cause compound degradation or the evaporation of such compounds. This work studied two drying methods, freeze-drying and oven-drying, at 60 degrees C, as skin preservation methods. The skins from two grape varieties, Carménère and Cabernet Sauvignon, were dried. Many volatile compounds, which are of interest in the aroma profile, were identified in both varieties as terpenes (linalool, etc.), sesquiterpenes (farnesol), norisoprenoids (vitispirane, etc.), C(6) alcohols (1-hexanol, etc.), etc., and their amount decreased significantly with the oven-drying method, in contrast to the freeze-drying method. Both phenolic compounds, anthocyanins and flavonols, were identified in fresh and dehydrated samples, thus resulting in the freeze-drying method being less aggressive than oven-drying methods. Copyright 2009 Elsevier B.V. All rights reserved.
Future climate risk from compound events
NASA Astrophysics Data System (ADS)
Zscheischler, Jakob; Westra, Seth; van den Hurk, Bart J. J. M.; Seneviratne, Sonia I.; Ward, Philip J.; Pitman, Andy; AghaKouchak, Amir; Bresch, David N.; Leonard, Michael; Wahl, Thomas; Zhang, Xuebin
2018-06-01
Floods, wildfires, heatwaves and droughts often result from a combination of interacting physical processes across multiple spatial and temporal scales. The combination of processes (climate drivers and hazards) leading to a significant impact is referred to as a `compound event'. Traditional risk assessment methods typically only consider one driver and/or hazard at a time, potentially leading to underestimation of risk, as the processes that cause extreme events often interact and are spatially and/or temporally dependent. Here we show how a better understanding of compound events may improve projections of potential high-impact events, and can provide a bridge between climate scientists, engineers, social scientists, impact modellers and decision-makers, who need to work closely together to understand these complex events.
Wackerbarth, Hainer; Gundrum, Lars; Salb, Christian; Christou, Konstantin; Viöl, Wolfgang
2010-08-10
A challenge in the detection of explosives is the differentiation between explosives and contaminants. Synthetic musk-containing perfumes can cause false alarms, as these perfumes are nitroaromatic compounds, which can be mistaken for trinitro toluene (TNT) by some detectors. We present a detection principle based on surface-enhanced Raman scattering (SERS). A stream of the airborne compounds is focused and resublimated on a cooled nanostructured gold surface. We recorded high-resolution SERS spectra of TNT, musk xylene, and musk ketone. The nitroaromatic compounds can be identified unambiguously by their SERS spectra. Even the dominant bands containing nitro-group scissoring and symmetric stretching modes are significantly shifted by the difference in molecular structure.
Effect of a zinc L-carnosine compound on acid-induced injury in canine gastric mucosa ex vivo.
Hill, Tracy L; Blikslager, Anthony T
2012-05-01
To examine whether a zinc L-carnosine compound used for treatment of suspected gastric ulcers in dogs ameliorates acid-induced injury in canine gastric mucosa. Gastric mucosa from 6 healthy dogs. Mucosa from the gastric antrum was harvested from 6 unadoptable shelter dogs immediately after euthanasia and mounted on Ussing chambers. The tissues were equilibrated for 30 minutes in neutral Ringer's solution prior to incubation with acidic Ringer's solution (HCl plus Ringer's solution [final pH, 1.5 to 2.5]), acidic Ringer's solution plus zinc L-carnosine compound, or zinc L-carnosine compound alone. Tissues were maintained for 180 minutes in Ussing chambers, during which permeability was assessed by measurement of transepithelial electrical resistance. After the 180-minute treatment period, tissues were removed from Ussing chambers and labeled with immunofluorescent anti-active caspase-3 antibody as an indicator of apoptosis. Permeability of the gastric mucosa was significantly increased in a time-dependent manner by addition of HCl, whereas control tissues maintained viability for the study period. Change in permeability was detected within the first 15 minutes after acid application and progressed over the subsequent 150 minutes. The zinc L-carnosine compound had no significant effect on this increase in permeability. Apoptosis was evident in acid-treated tissues but not in control tissues. The zinc L-carnosine compound did not protect against development of apoptosis. Addition of HCl caused a dose-dependent increase in gastric permeability over time and apparent induction of apoptosis as determined on the basis of immunofluorescence. However, there was no significant protective effect of a zinc L-carnosine compound. Nonetheless, results suggested the utility of this method for further studies of canine gastric injury.
Computational toxicology: Its essential role in reducing drug attrition.
Naven, R T; Louise-May, S
2015-12-01
Predictive toxicology plays a critical role in reducing the failure rate of new drugs in pharmaceutical research and development. Despite recent gains in our understanding of drug-induced toxicity, however, it is urgent that the utility and limitations of our current predictive tools be determined in order to identify gaps in our understanding of mechanistic and chemical toxicology. Using recently published computational regression analyses of in vitro and in vivo toxicology data, it will be demonstrated that significant gaps remain in early safety screening paradigms. More strategic analyses of these data sets will allow for a better understanding of their domain of applicability and help identify those compounds that cause significant in vivo toxicity but which are currently mis-predicted by in silico and in vitro models. These 'outliers' and falsely predicted compounds are metaphorical lighthouses that shine light on existing toxicological knowledge gaps, and it is essential that these compounds are investigated if attrition is to be reduced significantly in the future. As such, the modern computational toxicologist is more productively engaged in understanding these gaps and driving investigative toxicology towards addressing them. © The Author(s) 2015.
Wunnoo, Suttiwan; Saising, Jongkon; Voravuthikunchai, Supayang Piyawan
2017-02-01
Virulence enzymes and biofilm a play crucial role in the pathogenesis of Propionibacterium acnes, a major causative agent of acne vulgaris. In the present study, the effects of rhodomyrtone, a pure compound identified from Rhodomyrtus tomentosa (Aiton) Hassk. leaves extract against enzyme production and biofilm formation production by 5 clinical isolates and a reference strain were evaluated. The degree of hydrolysis by both lipase and protease enzymes significantly decreased upon treatment with the compound at 0.125-0.25 μg/mL (p < 0.05). Lipolytic zones significantly reduced in all isolates while decrease in proteolytic activities was found only in 50% of the isolates. Rhodomyrtone at 1/16MIC and 1/8MIC caused significant reduction in biofilm formation of the clinical isolates (p < 0.05). Percentage viability of P. acnes within mature biofilm upon treated with the compound at 4MIC and 8MIC ranged between 40% and 85%. Pronounced properties of rhodomyrtone suggest a path towards developing a novel anti-acne agent. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zang, Bing; Li, Shuyan; Michel, Frederick; Li, Guoxue; Luo, Yuan; Zhang, Difang; Li, Yangyang
2016-10-01
Sulfur compounds in swine manure can cause odor emissions during composting if conditions are not conducive to their rapid oxidation and degradation. In this study, the effects of controllable composting process variables on sulfur odor emissions were investigated. These included pig manure to corn stalk mix ratio (0.7:1, 1.5:1 and 2.2:1dw basis), initial moisture content (60%, 65%, 70% and 75%) and aeration rate (1.0, 2.0, 3.0 and 4.0m(3)m(-3)h(-1)). The compounds measured were carbonyl sulfide, carbon disulfide, hydrogen sulfide, methyl mercaptan, ethyl mercaptan, diethyl sulfide, dimethyl sulfide (Me2S) and dimethyl disulfide (Me2SS). The results showed that total sulfur losses ranged from 3.9% to 18.3% after 26days of composting. Me2S and Me2SS were the primary (>59.61%) sulfur compounds released during this period. After turning, emission rates of both Me2S and Me2SS increased. Emissions of the other six sulfur compounds were low and inconsistent during composting. Within the compost, feedstock mix ratio significantly influenced the concentration of Me2SS, while aeration rate significantly affected Me2S concentration (p<0.05). Moisture content did not have a significant effect on the concentrations of either of these two compounds. Concentrations of sulfur odor compounds were the lowest at the highest aeration rate. Therefore, high aeration rates during the thermophilic phase, especially after turning, are recommended to minimize sulfur odors produced during swine manure composting. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xu, Yangyang; Cai, Hao; Cao, Gang; Duan, Yu; Pei, Ke; Tu, Sicong; Zhou, Jia; Xie, Li; Sun, Dongdong; Zhao, Jiayu; Liu, Jing; Wang, Xiaoqi; Shen, Lin
2018-04-15
Baizhu Shaoyao San (BSS) is a famous traditional Chinese medicinal formula widely used for the treatment of painful diarrhea, intestinal inflammation, and diarrhea-predominant irritable bowel syndrome. According to clinical medication, three medicinal herbs (Atractylodis Macrocephalae Rhizoma, Paeoniae Radix Alba, and Citri Reticulatae Pericarpium) included in BSS must be processed using some specific methods of stir-frying. On the basis of the classical theories of traditional Chinese medicine, the therapeutic effects of BSS would be significantly enhanced after processing. Generally, the changes of curative effects mainly result from the variations of inside chemical basis caused by the processing procedure. To find out the corresponding changes of chemical compositions in BSS after processing and to elucidate the material basis of the changed curative effects, an optimized ultra-high-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry in positive and negative ion modes coupled with multivariate statistical analyses were developed. As a result, a total of 186 compounds were ultimately identified in crude and processed BSS, in which 62 marker compounds with significant differences between crude and processed BSS were found by principal component analysis and t-test. Compared with crude BSS, the contents of 23 compounds were remarkably decreased and the contents of 39 compounds showed notable increase in processed BSS. The transformation mechanisms of some changed compounds were appropriately inferred from the results. Furthermore, compounds with extremely significant differences might strengthen the effects of the whole herbal formula. Copyright © 2018 Elsevier B.V. All rights reserved.
Scott, Philip D; Coleman, Heather M; Colville, Anne; Lim, Richard; Matthews, Benjamin; McDonald, James A; Miranda, Ana; Neale, Peta A; Nugegoda, Dayanthi; Tremblay, Louis A; Leusch, Frederic D L
2017-04-01
In Australia, trace organic contaminants (TrOCs) and endocrine active compounds (EACs) have been detected in rivers impacted by sewage effluent, urban stormwater, agricultural and industrial inputs. It is unclear whether these chemicals are at concentrations that can elicit endocrine disruption in Australian fish species. In this study, native rainbowfish (Melanotaenia fluviatilis) and introduced invasive (but prevalent) mosquitofish (Gambusia holbrooki) were exposed to the individual compounds atrazine, estrone, bisphenol A, propylparaben and pyrimethanil, and mixtures of compounds including hormones and personal care products, industrial compounds, and pesticides at environmentally relevant concentrations. Vitellogenin (Vtg) protein and liver Vtg mRNA induction were used to assess the estrogenic potential of these compounds. Vtg expression was significantly affected in both species exposed to estrone at concentrations that leave little margin for safety (p<0.001). Propylparaben caused a small but statistically significant 3× increase in Vtg protein levels (p=0.035) in rainbowfish but at a concentration 40× higher than that measured in the environment, therefore propylparaben poses a low risk of inducing endocrine disruption in fish. Mixtures of pesticides and a mixture of hormones, pharmaceuticals, industrial compounds and pesticides induced a small but statistically significant increase in plasma Vtg in rainbowfish, but did not affect mosquitofish Vtg protein or mRNA expression. These results suggest that estrogenic activity represents a low risk to fish in most Australian rivers monitored to-date except for some species of fish at the most polluted sites. Copyright © 2017 Elsevier B.V. All rights reserved.
Jia, Kuntong; Yuan, Yongming; Liu, Wei; Liu, Lan; Qin, Qiwei; Yi, Meisheng
2018-02-01
Singapore grouper iridovirus (SGIV) is one of the major causative agents of fish diseases and has caused significant economic losses in the aquaculture industry. There is currently no commercial vaccine or effective antiviral treatment against SGIV infection. Annually, an increasing number of small molecule compounds from various sources have been produced, and many are proved to be potential inhibitors against viruses. Here, a high-throughput in vitro cell viability-based screening assay was developed to identify antiviral compounds against SGIV using the luminescent-based CellTiter-Glo reagent in cultured grouper spleen cells by quantificational measurement of the cytopathic effects induced by SGIV infection. This assay was utilized to screen for potential SGIV inhibitors from five customized compounds which had been reported to be capable of inhibiting other viruses and 30 compounds isolated from various marine organisms, and three of them [ribavirin, harringtonine, and 2-hydroxytetradecanoic acid (2-HOM)] were identified to be effective on inhibiting SGIV infection, which was further confirmed with droplet digital PCR (ddPCR). In addition, the ddPCR results revealed that ribavirin and 2-HOM inhibited SGIV replication and entry in a dose-dependent manner, and harringtonine could reduce SGIV replication rather than entry at the working concentration without significant toxicity. These findings provided an easy and reliable cell viability-based screening assay to identify compounds with anti-SGIV effect and a way of studying the anti-SGIV mechanism of compounds.
Chaichi, Maryam; Ghasemzadeh-Mohammadi, Vahid; Hashemi, Maryam; Mohammadi, Abdorreza
2015-01-01
In this study, the levels of furan, 2-methylfuran, 2,5-dimethylfuran, vinyl furan, 2-methoxymethyl-furan and furfural in different coffee products were evaluated. Simultaneous determination of these six furanic compounds was performed by a head space liquid-phase micro-extraction (HS-LPME) method. A total of 67 coffee powder samples were analysed. The effects of boiling and espresso-making procedures on the levels of furanic compounds were investigated. The results showed that different types of coffee samples contained different concentrations of furanic compounds, due to the various processing conditions such as temperature, degree of roasting and fineness of grind. Among the different coffee samples, the highest level of furan (6320 µg kg⁻¹) was detected in ground coffee, while coffee-mix samples showed the lowest furan concentration (10 µg kg⁻¹). Levels in brewed coffees indicated that, except for furfural, brewing by an espresso machine caused significant loss of furanic compounds.
La Regina, Giuseppe; Edler, Michael C; Brancale, Andrea; Kandil, Sahar; Coluccia, Antonio; Piscitelli, Francesco; Hamel, Ernest; De Martino, Gabriella; Matesanz, Ruth; Díaz, José Fernando; Scovassi, Anna Ivana; Prosperi, Ennio; Lavecchia, Antonio; Novellino, Ettore; Artico, Marino; Silvestri, Romano
2007-06-14
The new arylthioindole (ATI) derivatives 10, 14-18, and 21-24, which bear a halogen atom or a small size ether group at position 5 of the indole moiety, were compared with the reference compounds colchicine and combretastatin A-4 for biological activity. Derivatives 10, 11, 16, and 21-24 inhibited MCF-7 cell growth with IC50 values <50 nM. A halogen atom (14-17) at position 5 caused a significant reduction in the free energy of binding of compound to tubulin, with a concomitant reduction in cytotoxicity. In contrast, methyl (21) and methoxy (22) substituents at position 5 caused an increase in cytotoxicity. Compound 16, the most potent antitubulin agent, led to a large increase (56%) in HeLa cells in the G2/M phase at 24 h, and at 48 h, 26% of the cells were hyperploid. Molecular modeling studies showed that, despite the absence of the ester moiety present in the previously examined analogues, most of the compounds bind in the colchicine site in the same orientation as the previously studied ATIs. Binding to beta-tubulin involved formation of a hydrogen bond between the indole and Thr179 and positioning of the trimethoxy phenyl group in a hydrophobic pocket near Cys241.
Minero, Claudio; Maurino, Valter; Bono, Francesca; Pelizzetti, Ezio; Marinoni, Angela; Mailhot, Gilles; Carlotti, Maria Eugenia; Vione, Davide
2007-08-01
The effect of selected organic and inorganic compounds, present in snow and cloudwater was studied. Photolysis of solutions of nitrate to nitrite was carried out in the laboratory using a UVB light source. The photolysis and other reactions were then modelled. It is shown that formate, formaldehyde, methanesulphonate, and chloride to a lesser extent, can increase the initial formation rate of nitrite. The effect, particularly significant for formate and formaldehyde, is unlikely to be caused by scavenging of hydroxyl radicals. The experimental data obtained in this work suggest that possible causes are the reduction of nitrogen dioxide and nitrate by radical species formed on photooxidation of the organic compounds. Hydroxyl scavenging by organic and inorganic compounds would not affect the initial formation rate of nitrite, but would protect it from oxidation, therefore, increasing the concentration values reached at long irradiation times. The described processes can be relevant to cloudwater and the quasi-liquid layer on the surface of ice and snow, considering that in the polar regions irradiated snow layers are important sources of nitrous acid to the atmosphere. Formate and (at a lesser extent) formaldehyde are the compounds that play the major role in the described processes of nitrite/nitrous acid photoformation by initial rate enhancement and hydroxyl scavenging.
NASA Astrophysics Data System (ADS)
Normile, H.; Papelis, C.; Kibbey, T. C. G.
2015-12-01
The focus of this work was on investigating how dynamic rates of evaporation affect the fate and transport of pharmaceutical compounds in unsaturated porous media. The environmental processes of saturation and evaporation control local concentrations of contaminants in pore water of porous media. Specifically, the rate of evaporation can affect the identity and extent of solid formation of a pharmaceutical compound. A range of experiments with different evaporation rates were conducted on sand columns saturated with a solution of ciprofloxacin, a fluoroquinolone antibiotic. Experiments were designed to simulate increased and decreased pore-water concentrations of a compound due to evaporation and resaturation, respectively. Results suggest that varied rates of evaporation cause differences in compound adsorption behavior. This result has significant implications for understanding fate and transport within the unsaturated zone. Preliminary models exploring the impact on contaminant mobility are discussed.
Ghosh, Sudipta; Indukuri, Kiran; Bondalapati, Somasekhar; Saikia, Anil K; Rangan, Latha
2013-08-01
The labdane diterpene, (E)-labda-8(17), 12-diene-15, 16-dial (compound A) and its epoxide analogue, (E)-8β, 17-Epoxylabd-12-ene-15, 16-dial (compound B) were isolated from the seeds of Alpinia nigra for the first time. The antibacterial activities of both compounds were evaluated against three Gram-positive and four Gram-negative bacteria, and flow cytometric analysis revealed that these compounds caused significant damage to the bacterial cell membranes. Further, field emission scanning electron microscope imaging and cell leakage analysis confirmed that the labdane diterpenes were responsible for bacterial cell membrane damage and disintegration. Our findings provide new insight into the broad-spectrum effects of two natural labdane diterpenes that may be useful in the future development of herbal antibiotic products. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Unified Phase Diagram for Iron-Based Superconductors.
Gu, Yanhong; Liu, Zhaoyu; Xie, Tao; Zhang, Wenliang; Gong, Dongliang; Hu, Ding; Ma, Xiaoyan; Li, Chunhong; Zhao, Lingxiao; Lin, Lifang; Xu, Zhuang; Tan, Guotai; Chen, Genfu; Meng, Zi Yang; Yang, Yi-Feng; Luo, Huiqian; Li, Shiliang
2017-10-13
High-temperature superconductivity is closely adjacent to a long-range antiferromagnet, which is called a parent compound. In cuprates, all parent compounds are alike and carrier doping leads to superconductivity, so a unified phase diagram can be drawn. However, the properties of parent compounds for iron-based superconductors show significant diversity and both carrier and isovalent dopings can cause superconductivity, which casts doubt on the idea that there exists a unified phase diagram for them. Here we show that the ordered moments in a variety of iron pnictides are inversely proportional to the effective Curie constants of their nematic susceptibility. This unexpected scaling behavior suggests that the magnetic ground states of iron pnictides can be achieved by tuning the strength of nematic fluctuations. Therefore, a unified phase diagram can be established where superconductivity emerges from a hypothetical parent compound with a large ordered moment but weak nematic fluctuations, which suggests that iron-based superconductors are strongly correlated electron systems.
Nwodo, Justina N; Ibezim, Akachukwu; Simoben, Conrad V; Ntie-Kang, Fidele
2016-01-01
Cancer stands as second most common cause of disease-related deaths in humans. Resistance of cancer to chemotherapy remains challenging to both scientists and physicians. Medicinal plants are known to contribute significantly to a large population of Africa, which is to a very large extent linked to folkloric claims which is part of their livelihood. In this review paper, the potential of naturally occurring anti-cancer agents from African flora has been explored, with suggested modes of action, where such data is available. Literature search revealed plant-derived compounds from African flora showing anti-cancer and/or cytotoxic activities, which have been tested in vitro and in vivo. This corresponds to 400 compounds (from mildly active to very active) covering various compound classes. However, in this part II, we only discussed the three major compound classes which are: flavonoids, alkaloids and terpenoids.
Domínguez, Rubén; Gómez, María; Fonseca, Sonia; Lorenzo, José M
2014-06-01
The influence of four different cooking methods (roasting, grilling, microwaving and frying) on cooking loss, lipid oxidation and volatile profile of foal meat was studied. Cooking loss were significantly (P<0.001) affected by thermal treatment, being higher (32.5%) after microwaving and lower after grilling (22.5%) and frying (23.8%). As expected, all the cooking methods increased TBARs content, since high temperature during cooking causes increased oxidation in foal steaks, this increase was significantly (P<0.001) higher when foal steaks were microwaved or roasted. The four different cooking methods led to increased total volatile compounds (between 366.7 and 633.1AU×10(6)/g dry matter) compared to raw steaks (216.4AU×10(6)/g dry matter). The roasted steaks showed the highest volatile content, indicating that increased cooking temperature increases the formation of volatile compounds. Aldehydes were the most abundant compounds in cooked samples, with amounts of 217.2, 364.5, 283.5 and 409.1AU×10(6)/g dry matter in grilled, microwaved, fried and roasted samples, respectively, whereas esters were the most abundant compounds in raw samples, with mean amounts of 98.8AU×10(6)/g dry matter. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bergström, Therese; Bergman, Jan; Möller, Lennart
2011-11-01
In accordance with the European Parliament and Council's directive, vitamin A and C supplements can include any of four (vitamin A) or five (vitamin C) specified compounds. This study focuses on these compounds and compares their abilities to affect the DNA and viability of cells in culture, but also their potencies to chemically oxidise the DNA nucleoside deoxyguanosine (dG). To study the vitamins' strict chemical oxidation potencies, dG was exposed to vitamin solution and the amount of the oxidation product 8'-hydroxydeoxyguanosine (8-oxodG) formed was estimated using a high-performance liquid chromatography system with electrochemical and ultraviolet detection. The vitamin's ability to cause DNA damage to promyelocytic leukaemia cells (HL-60), as detected by strand breaks, alkaline labile sites and formamido pyrimidine DNA glycosylase (FPG)-sensitive sites was, after vitamin exposure, measured using the comet assay and cytotoxicity was estimated using trypan blue staining. The results highlight that vitamin A and C compounds found in supplements do have different properties, chemically as well as in a cellular system. Among the vitamin C compounds, ascorbic acid, sodium ascorbate and calcium ascorbate stood out causing both oxidation to dG and cytotoxicity to cells. The vitamin A compounds retinol, retinyl acetate and retinal (a breakdown product found in vivo) caused oxidation of dG, while retinal was the only compound causing cytotoxicity, giving rise to an almost complete cell death. β-carotene caused, as the only vitamin compound, a small increase in FPG-sensitive sites. It is concluded that even though the compounds are found under the same name (vitamin A or C), they do have different properties linked to oxidation, cytotoxicity and DNA damage.
NASA Astrophysics Data System (ADS)
Skrętowicz, Maria; Wróbel, Radosław; Andrych-Zalewska, Monika
2017-11-01
Volatile organic compounds (VOCs) are the group of organic compounds which are one of the most important air pollutants. One of the main sources of VOCs are combustion processes including fuel combustion is internal combustion engines. Volatile organic compounds are very dangerous pollution, because even in very low concentrations they have significant harmful effect on human health. A lot of that compounds are mutagenic and carcinogenic, in addition they could cause asthma, intoxication or allergy. The measurements of VOCs are quite problematic, because it is required using the specialist analytical apparatus, ex. chromatograph. However, not always it is need to measure the content of that compounds in engine exhaust with high precision and sometimes it is enough only to estimate the level of the concentration. Emission of the VOCs mainly depends on the combustion process in the engine and this determines the temperature of the exhaust gases. In this paper authors tried to determine if the correlation between temperature of exhaust gases and VOCs' concentration exist and is able to determine.
Effect of Germination and Fermentation Process on the Antioxidant Compounds of Quinoa Seeds.
Carciochi, Ramiro Ariel; Galván-D'Alessandro, Leandro; Vandendriessche, Pierre; Chollet, Sylvie
2016-12-01
Quinoa (Chenopodium quinoa) seed has gained a great interest in the last years, mainly due to its nutritional properties and its content of antioxidant substances with health-promoting properties in humans. In this work, the effect of germination time and fermentation on the levels of antioxidant compounds (ascorbic acid, tocopherol isomers and phenolic compounds) and antioxidant activity of quinoa seeds was evaluated. Fermentation was carried out naturally by the microorganisms present in the seeds or by inoculation with two Saccharomyces cerevisiae strains (used for baking and brewing). Ascorbic acid and total tocopherols were significantly increased (p ≤ 0.05) after 72 h of germination process in comparison with raw quinoa seeds, whilst fermentation caused a decrease in both types of compounds. Phenolic compounds and antioxidant capacity were improved using both bioprocesses, being this effect more noticeable for germination process (101 % of increase after three days of germination). Germination and fermentation proved to be desirable procedures for producing enriched ingredients with health-promoting antioxidant compounds in a natural way.
Nitrotriazole- and imidazole-based amides and sulfonamides as antitubercular agents.
Papadopoulou, Maria V; Bloomer, William D; Rosenzweig, Howard S; Arena, Alexander; Arrieta, Francisco; Rebolledo, Joseph C J; Smith, Diane K
2014-11-01
Twenty-three 3-nitrotriazole-based and 2-nitroimidazole-based amides and sulfonamides were screened for antitubercular (anti-TB) activity in aerobic Mycobacterium tuberculosis H37Rv by using the BacTiter-Glo (BTG) microbial cell viability assay. In general, 3-nitrotriazole-based sulfonamides demonstrated anti-TB activity, whereas 3-nitrotriazole-based amides and 2-nitroimidazole-based amides and sulfonamides were inactive. Three 3-nitrotriazole-based sulfonamides (compounds 4, 2, and 7) demonstrated 50% inhibitory concentration (IC50), IC90, and MIC values of 0.38, 0.43, and 1.56 μM (compound 4), 0.57, 0.98, and 3.13 μM (compound 2), and 0.79, 0.87, and 3.13 μM (compound 7), respectively. For 3-nitrotriazole-based sulfonamides, anti-TB activity increased with lipophilicity, whereas the one-electron reduction potential (E1/2) did not play a role. 2-Nitroimidazole-based analogs, which were inactive in the BTG assay, were significantly more active in the low-oxygen assay and more active than the 3-nitrotriazoles. All active nitrotriazoles in the BTG assay were similarly active or more potent (lower MIC values) against resistant strains, with the exception of compounds 2, 3, 4, and 8, which demonstrated greater MIC values against isoniazid-resistant strains. Five 3-nitrotriazole-based sulfonamides demonstrated activity in infected murine J774 macrophages, causing log reductions similar to those seen with rifampin. However, some compounds caused toxicity in uninfected macrophages. In conclusion, the classes of 3-nitrotriazole-based amides and sulfonamides merit further investigation as potential antitubercular agents. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Nitrotriazole- and Imidazole-Based Amides and Sulfonamides as Antitubercular Agents
Bloomer, William D.; Rosenzweig, Howard S.; Arena, Alexander; Arrieta, Francisco; Rebolledo, Joseph C. J.; Smith, Diane K.
2014-01-01
Twenty-three 3-nitrotriazole-based and 2-nitroimidazole-based amides and sulfonamides were screened for antitubercular (anti-TB) activity in aerobic Mycobacterium tuberculosis H37Rv by using the BacTiter-Glo (BTG) microbial cell viability assay. In general, 3-nitrotriazole-based sulfonamides demonstrated anti-TB activity, whereas 3-nitrotriazole-based amides and 2-nitroimidazole-based amides and sulfonamides were inactive. Three 3-nitrotriazole-based sulfonamides (compounds 4, 2, and 7) demonstrated 50% inhibitory concentration (IC50), IC90, and MIC values of 0.38, 0.43, and 1.56 μM (compound 4), 0.57, 0.98, and 3.13 μM (compound 2), and 0.79, 0.87, and 3.13 μM (compound 7), respectively. For 3-nitrotriazole-based sulfonamides, anti-TB activity increased with lipophilicity, whereas the one-electron reduction potential (E1/2) did not play a role. 2-Nitroimidazole-based analogs, which were inactive in the BTG assay, were significantly more active in the low-oxygen assay and more active than the 3-nitrotriazoles. All active nitrotriazoles in the BTG assay were similarly active or more potent (lower MIC values) against resistant strains, with the exception of compounds 2, 3, 4, and 8, which demonstrated greater MIC values against isoniazid-resistant strains. Five 3-nitrotriazole-based sulfonamides demonstrated activity in infected murine J774 macrophages, causing log reductions similar to those seen with rifampin. However, some compounds caused toxicity in uninfected macrophages. In conclusion, the classes of 3-nitrotriazole-based amides and sulfonamides merit further investigation as potential antitubercular agents. PMID:25182645
USDA-ARS?s Scientific Manuscript database
Pierce’s disease of grapevine (PD), caused by the bacterial pathogen Xylella fastidiosa (X.f.), remains a serious problem for grape production in California and elsewhere. This research examined induction of phenolic compounds in grapevines (cv. Thompson Seedless) infected with X.f. over a six month...
The Long-term Middle Atmospheric Influence of Very Large Solar Proton Events
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Marsh, Daniel R.; Vitt, Francis M.; Garcia, Rolando R.; Randall, Cora E.; Fleming, Eric L.; Frith, Stacey M.
2008-01-01
Long-term variations in ozone have been caused by both natural and humankind related processes. The humankind or anthropogenic influence on ozone originates from the chlorofluorocarbons and halons (chlorine and bromine) and has led to international regulations greatly limiting the release of these substances. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the long-term (> few months) influences of solar proton events from 1963 through 2004 on stratospheric ozone and temperature. There were extremely large solar proton events in 1972, 1989,2000,2001, and 2003. These events caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen-containing compounds, which led to the polar ozone destruction. The nitrogen-containing compounds, called odd nitrogen, lasted much longer than the hydrogen-containing compounds and led to long-lived stratospheric impacts. An extremely active period for these events occurred in the five-year period, 2000- 2004, and caused increases in odd nitrogen which lasted for several months after individual events. Associated stratospheric ozone decreases of >lo% were calculated to last for up to five months past the largest events. However, the computed total column ozone and stratospheric temperature changes connected with the solar events were not found to be statistically significant. Thus, solar proton events do not likely contribute significantly to measured total column ozone fluctuations and stratospheric temperature changes.
Yoo, Sang-Hun; Chang, Yoon Hyuk
2016-01-01
The present study investigated the volatile compound, physicochemical, and antioxidant properties of beany flavor-removed soy protein isolate (SPI) hydrolyzates produced by combined high temperature pre-treatment and enzymatic hydrolysis. Without remarkable changes in amino acid composition, reductions of residual lipoxygenase activity and beany flavor-causing volatile compounds such as hexanol, hexanal, and pentanol in SPI were observed after combined heating and enzymatic treatments. The degree of hydrolysis, emulsion capacity and stability, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, and superoxide radical scavenging activity of SPI were significantly increased, but the magnitudes of apparent viscosity, consistency index, and dynamic moduli (G′, G″) of SPI were significantly decreased after the combined heating and enzymatic treatments. Based on these results, it was suggested that the enzymatic hydrolysis in combination with high temperature pre-treatment may allow for the production of beany flavor-removed SPI hydrolyzates with superior emulsifying and antioxidant functionalities. PMID:28078256
Yoo, Sang-Hun; Chang, Yoon Hyuk
2016-12-01
The present study investigated the volatile compound, physicochemical, and antioxidant properties of beany flavor-removed soy protein isolate (SPI) hydrolyzates produced by combined high temperature pre-treatment and enzymatic hydrolysis. Without remarkable changes in amino acid composition, reductions of residual lipoxygenase activity and beany flavor-causing volatile compounds such as hexanol, hexanal, and pentanol in SPI were observed after combined heating and enzymatic treatments. The degree of hydrolysis, emulsion capacity and stability, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, and superoxide radical scavenging activity of SPI were significantly increased, but the magnitudes of apparent viscosity, consistency index, and dynamic moduli (G', G″) of SPI were significantly decreased after the combined heating and enzymatic treatments. Based on these results, it was suggested that the enzymatic hydrolysis in combination with high temperature pre-treatment may allow for the production of beany flavor-removed SPI hydrolyzates with superior emulsifying and antioxidant functionalities.
Short- and Medium-term Atmospheric Effects of Very Large Solar Proton Events
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Marsh, Daniel R.; Vitt, Francis M.; Garcia, Rolando R.; Fleming, Eric L.; Labow, Gordon J.; Randall, Cora E.; Lopez-Puertas, Manuel; Funke, Bernd
2007-01-01
Long-term variations in ozone have been caused by both natural and humankind related processes. In particular, the humankind or anthropogenic influence on ozone from chlorofluorocarbons and halons (chlorine and bromine) has led to international regulations greatly limiting the release of these substances. These anthropogenic effects on ozone are most important in polar regions and have been significant since the 1970s. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the short- and medium-term (days to a few months) influences of solar proton events between 1963 and 2005 on stratospheric ozone. The four largest events in the past 45 years (August 1972; October 1989; July 2000; and October-November 2003) caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen- containing compounds, which led to the polar ozone destruction. The hydrogen-containing compounds have very short lifetimes and lasted for only a few days (typically the duration of the solar proton event). On the other hand, the nitrogen-containing compounds lasted much longer, especially in the Winter. The nitrogen oxides were predicted to increase substantially due to these solar events and led to mid- to upper polar stratospheric ozone decreases of over 20%. These WACCM results generally agreed with satellite measurements. Both WACCM and measurements showed enhancements of nitric acid, dinitrogen pentoxide, and chlorine nitrate, which were indirectly caused by these solar events. Solar proton events were shown to cause a significant change in the polar stratosphere and need to be considered in understanding variations during years of strong solar activity.
Felício, Andréia Arantes; Freitas, Juliane Silberschmidt; Scarin, Jéssica Bolpeti; de Souza Ondei, Luciana; Teresa, Fabrício Barreto; Schlenk, Daniel; de Almeida, Eduardo Alves
2018-03-01
Diuron is one of the most used herbicide in the world, and its field application has been particularly increased in Brazil due to the expansion of sugarcane crops. Diuron has often been detected in freshwater ecosystems and it can be biodegraded into three main metabolites in the environment, the 3,4-dichloroaniline (DCA), 3,4-dichlorophenylurea (DCPU) and 3,4-dichlorophenyl-N-methylurea (DCPMU). Negative effects under aquatic biota are still not well established for diuron, especially when considering its presence in mixture with its different metabolites. In this study, we evaluated the effects of diuron alone or in combination with its metabolites, DCPMU, DCPU and 3,4-DCA on biochemical stress responses and biotransformation activity of the fish Oreochromis niloticus. Results showed that diuron and its metabolites caused significant but dispersed alterations in oxidative stress markers and biotransformation enzymes, except for ethoxyresorufin-O-deethylase (EROD) activity, that presented a dose-dependent increase after exposure to either diuron or its metabolites. Glutathione S-transferase (GST) activity was significant lower in gills after exposure to diuron metabolites, but not diuron. Diuron, DCPMU and DCA also decreased the multixenobiotic resistance (MXR) activity. Lipid peroxidation levels were increased in gill after exposure to all compounds, indicating that the original compound and diuron metabolites can induce oxidative stress in fish. The integration of all biochemical responses by the Integrated Biomarker Response (IBR) model indicated that all compounds caused significant alterations in O. niloticus, but DCPMU caused the higher alterations in both liver and gill. Our findings imply that diuron and its metabolites may impair the physiological response related to biotransformation and antioxidant activity in fish at field concentrations. Such alterations could interfere with the ability of aquatic animals to adapt to environments contaminated by agriculture. Copyright © 2017 Elsevier Inc. All rights reserved.
Palmieri, Giancarlo; Contaldi, Paola; Fogliame, Giuseppe
2017-01-01
Background and purpose Sleep disturbances and related daytime activities impairment are common diseases nowadays. General practitioners are often the first health care professional asked to alleviate sleep disturbances and primary insomnia symptoms. Beyond a wide class of hypnotic drugs, botanicals can represent an alternative treatment for those kinds of symptoms. The scope of the present study is to evaluate safety and effectiveness of a herbal compound composed of valerian, hop, and jujube (Vagonotte®) on primary insomnia symptoms and sleep disturbances not related to medical or psychiatric causes. Patients and methods One hundred and twenty subjects with sleep disturbances symptoms were randomized in two branches of 60 persons each, receiving the herbal compound or placebo at dosage of two pills per day 30 minutes before their scheduled bedtime. All subjects were screened for precise items related to sleep quality and daytime activity at the beginning, after 10 days, and after 20 days of consecutive dietary supplement (or placebo) consumption. The participants remained blind to group assignment until all of them completed the trial. Results Sleep onset, numbers of nocturnal awakenings, and overall nocturnal slept time were assessed. A statistically significant difference between the two groups emerged. The group receiving the herbal compound showed a lower time of sleep onset compared to placebo group, the same result was obtained for total slept time and night awakenings frequency (p<0.001). Daily symptom improvement in subjects receiving the herbal compound showed significant reduction in tension and irritability, difficulty in concentration, and fatigue intensity, if compared to placebo scores (p<0.001). None of the 60 subjects in the verum group reported adverse reaction related to the herbal compound, and 98% of subjects judged the product as having from good to excellent safety and tolerability. Conclusion Botanicals dietary supplement with relaxing and soothing properties can help practitioner to treat primary insomnia, especially when the risk/benefit profile of a patient does not sustain hypnotic drugs prescription. This clinical investigation on safety and effectiveness of a herbal compound made of valerian, hop, and jujube opens interesting perspectives on usage of herbal compound to manage primary insomnia. Further investigations could help in understanding herbal compounds’ effectiveness on sleep disturbances. PMID:28603433
Assessing the toxicity and teratogenicity of pond water in north-central Minnesota to amphibians.
Bridges, Christine; Little, Edward; Gardiner, David; Petty, James; Huckins, James
2004-01-01
Incidence of amphibian deformities have increased in recent years, especially in the northern region of the United States. While many factors have been proposed as being responsible for generating deformities (e.g., contaminants, ultraviolet radiation [UV], parasites), no single cause has been definitively established. To determine whether waterborne chemicals are responsible for amphibian deformities in ponds in north-central Minnesota, we deployed semipermeable membrane devices (SPMDs) in an impacted and a reference site to accumulate lipophilic contaminants. We then exposed native tadpoles (northern leopard frogs; Rana pipiens) to the SPMD extracts combined with two agricultural pesticides (atrazine, carbaryl) at two levels of UV radiation. UV radiation alone caused a slight increase in hatching success and tadpole growth rate. Deformity rate among hatchlings was high following exposure to SPMD extracts from the reference site in the absence of UV, suggesting that chemicals present at this site are broken down by UV to less harmful forms, or become less bioavailable. Conversely, impacted site SPMD extracts caused hatchling deformities only in the presence of UV, suggesting that UV potentiates the teratogenicity of the compounds present there. Impacted site SPMD extracts significantly increased the number of bony triangles among metamorphs, a common deformity observed at this site. The incidence of skin webbings increased significantly with SPMD extracts from both sites as well as with our pesticide control containing atrazine and carbaryl alone. Higher deformity rates among tadpoles reared in the presence of UV radiation and SPMD extracts from sites where deformities are common indicates a chemical compound (or compounds) in the water at this site may be causing the deformities. It is important to examine the effects of chemical stressors in the presence of other natural stressors (e.g., UV radiation) to gain a better understanding of how multiple stressors work to impact amphibians and amphibian populations.
Tan, Shuo; Hu, Xiaoli; Yin, Pinghe; Zhao, Ling
2016-05-01
Algicidal bacteria have been turned out to be available for inhibiting Phaeocystis globosa which frequently caused harmful algal blooms and threatened to economic development and ecological balance. A marine bacterium Bacillus sp. Ts-12 exhibited significant algicidal activity against P. globosa by indirect attack. In present study, an algicidal compound was isolated by silica gel column, Sephadex G-15 column and HPLC, further identified as hexahydropyrrolo[1,2-a]pyrazine-1,4-dione, cyclo-(Pro-Gly), by GC-MS and (1)H-NMR. Cyclo-(Pro-Gly) significantly increased the level of reactive oxygen species (ROS) within P. globosa cells, further activating the enzymatic and non-enzymatic antioxidant systems, including superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and ascorbic acid (AsA). The increase in methane dicarboxylic aldehyde (MDA) content showed that the surplus ROS induced lipid peroxidation on membrane system. Transmission electron microscope (TEM) and flow cytometry (FCM) analysis revealed that cyclo-(Pro-Gly) caused reduction of Chl-a content, destruction of cell membrane integrity, chloroplasts and nuclear structure. Real-time PCR assay showed that the transcriptions of photosynthesis related genes (psbA, psbD, rbcL) were significantly inhibited. This study indicated that cyclo-(Pro-Gly) from marine Bacillus sp. Ts-12 exerted photosynthetic inhibition and oxidative stress to P. globosa and eventually led to the algal cells lysis. This algicidal compound might be potential bio-agent for controlling P. globosa red tide.
Zortéa, Talyta; Segat, Julia C; Maccari, Ana Paula; Sousa, José Paulo; Da Silva, Aleksandro S; Baretta, Dilmar
2017-04-01
This study aimed to evaluate the effect of veterinary pharmaceuticals (VPs) used to control endo- and ectoparasites in ruminants, on the survival and reproduction of the collembolan species Folsomia candida. Standard ecotoxicological tests were conducted in Tropical Artificial Soil and the treatments consisted of increasing dosages of four commercial products with different active ingredients: ivermectin, fipronil, fluazuron and closantel. Ecotoxicological effects were related to the class and mode of action of the different compounds. Fipronil and ivermectin were the most toxic compounds causing a significant reduction in the number of juveniles at the lowest doses tested (LOEC reprod values of 0.3 and 0.2 mg kg -1 of dry soil, respectively) and similar low EC 50 values (fipronil: 0.19 mg kg -1 dry soil, CL 95% 0.16-0.22; ivermectin: 0.43 mg kg -1 dry soil, CL 95% 0.09-0.77), although the effects observed in the former compound were possibly related to a low adult survival (LC 50 of 0.62 mg kg -1 dry soil; CL 95% : 0.25-1.06). For the latter compound no significant lethal effects were observed. Fluazuron caused an intermediate toxicity (EC 50 of 3.07 mg kg -1 dry soil, CL 95% : 2.26-3.87), and also here a decrease in adult survival could explain the effects observed at reproduction. Closantel, despite showing a significant reduction on the number of juveniles produced, no dose-response relationship nor effects higher than 50% were observed. Overall, all tested compounds, especially ivermectin, when present in soil even at sub-lethal concentrations, can impair the reproduction of collembolans and possibly other arthropods. However, the actual risk to arthropod communities should be further investigated performing tests under a more realistic exposure (e.g., by testing the dung itself as the contaminated matrix) and by deriving ecotoxicologically relevant exposure concentration in soil derived from the presence of cattle dung. Copyright © 2017 Elsevier Ltd. All rights reserved.
Phenolic compounds in ectomycorrhizal interaction of lignin modified silver birch
Sutela, Suvi; Niemi, Karoliina; Edesi, Jaanika; Laakso, Tapio; Saranpää, Pekka; Vuosku, Jaana; Mäkelä, Riina; Tiimonen, Heidi; Chiang, Vincent L; Koskimäki, Janne; Suorsa, Marja; Julkunen-Tiitto, Riitta; Häggman, Hely
2009-01-01
Background The monolignol biosynthetic pathway interconnects with the biosynthesis of other secondary phenolic metabolites, such as cinnamic acid derivatives, flavonoids and condensed tannins. The objective of this study is to evaluate whether genetic modification of the monolignol pathway in silver birch (Betula pendula Roth.) would alter the metabolism of these phenolic compounds and how such alterations, if exist, would affect the ectomycorrhizal symbiosis. Results Silver birch lines expressing quaking aspen (Populus tremuloides L.) caffeate/5-hydroxyferulate O-methyltransferase (PtCOMT) under the 35S cauliflower mosaic virus (CaMV) promoter showed a reduction in the relative expression of a putative silver birch COMT (BpCOMT) gene and, consequently, a decrease in the lignin syringyl/guaiacyl composition ratio. Alterations were also detected in concentrations of certain phenolic compounds. All PtCOMT silver birch lines produced normal ectomycorrhizas with the ectomycorrhizal fungus Paxillus involutus (Batsch: Fr.), and the formation of symbiosis enhanced the growth of the transgenic plants. Conclusion The down-regulation of BpCOMT in the 35S-PtCOMT lines caused a reduction in the syringyl/guaiacyl ratio of lignin, but no significant effect was seen in the composition or quantity of phenolic compounds that would have been caused by the expression of PtCOMT under the 35S or UbB1 promoter. Moreover, the detected alterations in the composition of lignin and secondary phenolic compounds had no effect on the interaction between silver birch and P. involutus. PMID:19788757
Laskaris, Paris; Vicentefranqueira, Rocío; Helynck, Olivier; Jouvion, Grégory; Calera, José Antonio; du Merle, Laurence; Suzenet, Franck; Buron, Frédéric; de Sousa, Rodolphe Alves; Mansuy, Daniel; Cavaillon, Jean-Marc; Latgé, Jean-Paul; Munier-Lehmann, Hélène; Ibrahim-Granet, Oumaima
2018-06-01
Aspergillus fumigatus can cause pulmonary aspergillosis in immunocompromised patients and is associated with a high mortality rate due to a lack of reliable treatment options. This opportunistic pathogen requires zinc in order to grow and cause disease. Novel compounds that interfere with fungal zinc metabolism may therefore be of therapeutic interest. We screened chemical libraries containing 59,223 small molecules using a resazurin assay that compared their effects on an A. fumigatus wild-type strain grown under zinc-limiting conditions and on a zinc transporter knockout strain grown under zinc-replete conditions to identify compounds affecting zinc metabolism. After a first screen, 116 molecules were selected whose inhibitory effects on fungal growth were further tested by using luminescence assays and hyphal length measurements to confirm their activity, as well as by toxicity assays on HeLa cells and mice. Six compounds were selected following a rescreening, of which two were pyrazolones, two were porphyrins, and two were polyaminocarboxylates. All three groups showed good in vitro activity, but only one of the polyaminocarboxylates was able to significantly improve the survival of immunosuppressed mice suffering from pulmonary aspergillosis. This two-tier screening approach led us to the identification of a novel small molecule with in vivo fungicidal effects and low murine toxicity that may lead to the development of new treatment options for fungal infections by administration of this compound either as a monotherapy or as part of a combination therapy. Copyright © 2018 American Society for Microbiology.
Qualitative metabolomics profiling of serum and bile from dogs with gallbladder mucocele formation.
Gookin, Jody L; Mathews, Kyle G; Cullen, John; Seiler, Gabriela
2018-01-01
Mucocele formation is characterized by secretion of abnormally thick mucus by the gallbladder epithelium of dogs that may cause obstruction of the bile duct or rupture of the gallbladder. The disease is increasingly recognized and is associated with a high morbidity and mortality. The cause of gallbladder mucocele formation in dogs is unknown. There is a strong breed predisposition and affected dogs have a high incidence of concurrent endocrinopathy or hyperlipidemia. These observations suggest a significant influence of both genetic and metabolic factors on disease pathogenesis. In this study, we investigated a theory that mucocele formation is associated with a syndrome of metabolic disruption. We surmised that a global, untargeted metabolomics approach could provide unique insight into the systemic pathogenesis of gallbladder mucocele formation and identify specific compounds as candidate biomarkers or treatment targets. Moreover, concurrent examination of the serum and hepatic duct bile metabolome would enable the construction of mechanism-based theories or identification of specific compounds responsible for altered function of the gallbladder epithelium. Abnormalities observed in dogs with gallbladder mucocele formation, including a 33-fold decrease in serum adenosine 5'-monophosphate (AMP), lower quantities of precursors required for synthesis of energy transporting nucleotides, and increases in citric acid cycle intermediates, suggest excess metabolic energy and a carbon surplus. Altered quantities of compounds involved in protein translation and RNA turnover, together with accumulation of gamma-glutamylated and N-acetylated amino acids in serum suggest abnormal regulation of protein and amino acid metabolism. Increases in lathosterol and 7α-hydroxycholesterol suggest a primary increase in cholesterol synthesis and diversion to bile acid formation. A number of specific biomarker compounds were identified for their ability to distinguish between control dogs and those that formed a gallbladder mucocele. Particularly noteworthy was a significant decrease in quantity of biologically active compounds that stimulate biliary ductal fluid secretion including adenosine, cAMP, taurolithocholic acid, and taurocholic acid. These findings support the presence of significant metabolic disruption in dogs with mucocele formation. A targeted, quantitative analysis of the identified serum biomarkers is warranted to determine their utility for diagnosis of this disease. Finally, repletion of compounds whose biological activity normally promotes biliary ductal secretion should be examined for any therapeutic impact for resolution or prevention of mucocele formation.
Qualitative metabolomics profiling of serum and bile from dogs with gallbladder mucocele formation
Mathews, Kyle G.; Cullen, John; Seiler, Gabriela
2018-01-01
Mucocele formation is characterized by secretion of abnormally thick mucus by the gallbladder epithelium of dogs that may cause obstruction of the bile duct or rupture of the gallbladder. The disease is increasingly recognized and is associated with a high morbidity and mortality. The cause of gallbladder mucocele formation in dogs is unknown. There is a strong breed predisposition and affected dogs have a high incidence of concurrent endocrinopathy or hyperlipidemia. These observations suggest a significant influence of both genetic and metabolic factors on disease pathogenesis. In this study, we investigated a theory that mucocele formation is associated with a syndrome of metabolic disruption. We surmised that a global, untargeted metabolomics approach could provide unique insight into the systemic pathogenesis of gallbladder mucocele formation and identify specific compounds as candidate biomarkers or treatment targets. Moreover, concurrent examination of the serum and hepatic duct bile metabolome would enable the construction of mechanism-based theories or identification of specific compounds responsible for altered function of the gallbladder epithelium. Abnormalities observed in dogs with gallbladder mucocele formation, including a 33-fold decrease in serum adenosine 5’-monophosphate (AMP), lower quantities of precursors required for synthesis of energy transporting nucleotides, and increases in citric acid cycle intermediates, suggest excess metabolic energy and a carbon surplus. Altered quantities of compounds involved in protein translation and RNA turnover, together with accumulation of gamma-glutamylated and N-acetylated amino acids in serum suggest abnormal regulation of protein and amino acid metabolism. Increases in lathosterol and 7α-hydroxycholesterol suggest a primary increase in cholesterol synthesis and diversion to bile acid formation. A number of specific biomarker compounds were identified for their ability to distinguish between control dogs and those that formed a gallbladder mucocele. Particularly noteworthy was a significant decrease in quantity of biologically active compounds that stimulate biliary ductal fluid secretion including adenosine, cAMP, taurolithocholic acid, and taurocholic acid. These findings support the presence of significant metabolic disruption in dogs with mucocele formation. A targeted, quantitative analysis of the identified serum biomarkers is warranted to determine their utility for diagnosis of this disease. Finally, repletion of compounds whose biological activity normally promotes biliary ductal secretion should be examined for any therapeutic impact for resolution or prevention of mucocele formation. PMID:29324798
Xue, Zhaohui; Li, Jiaomei; Cheng, Aiqing; Yu, Wancong; Zhang, Zhijun; Kou, Xiaohong; Zhou, Fengjuan
2015-09-01
Breast cancer is the leading cause of death among women, with approximately 1 million diagnoses annually. Triterpenoids, which have cancer preventive or anti-tumour efficacy towards various tumour cells, may play a role in breast cancer prevention. In our previous study, an acetic ether (EtOAc) fraction from the sporocarp of the edible mushroom Pleurotus eryngii (P. eryngii) exhibited significant tumour cell growth inhibition both in vitro and in vivo. In this study, three pentacyclic triterpenoid compounds (1-3) were isolated from EtOAc extracts using chromatographic separation and were identified using nuclear magnetic resonance (NMR) and mass spectrometry (MS). The compounds were 2, 3, 6, 23-tetrahydroxy-urs-12-en-28 oic acid (1), 2,3,23-trihydroxy-urs-12-en-28 oic acid (2) and lupeol (3). All three purified triterpenes showed significant inhibitory activity against breast cancer MCF-7 cell lines in vitro, with the greatest activity exhibited by compound 1, followed by compound 2 and 3. The IC(50) values were 15.71, 48 and 66.89 μM, respectively. Our study may help elucidate the health benefits of P. eryngii mushroom consumption.
Factors and processes modulating phenotypes in neuronopathic lysosomal storage diseases.
Jakóbkiewicz-Banecka, Joanna; Gabig-Cimińska, Magdalena; Banecka-Majkutewicz, Zyta; Banecki, Bogdan; Węgrzyn, Alicja; Węgrzyn, Grzegorz
2014-03-01
Lysosomal storage diseases are inherited metabolic disorders caused by genetic defects causing deficiency of various lysosomal proteins, and resultant accumulation of non-degraded compounds. They are multisystemic diseases, and in most of them (>70%) severe brain dysfunctions are evident. However, expression of various phenotypes in particular diseases is extremely variable, from non-neuronopathic to severely neurodegenerative in the deficiency of the same enzyme. Although all lysosomal storage diseases are monogenic, clear genotype-phenotype correlations occur only in some cases. In this article, we present an overview on various factors and processes, both general and specific for certain disorders, that can significantly modulate expression of phenotypes in these diseases. On the basis of recent reports describing studies on both animal models and clinical data, we propose a hypothesis that efficiency of production of compounds that cannot be degraded due to enzyme deficiency might be especially important in modulation of phenotypes of patients suffering from lysosomal storage diseases.
Deshpande, P M; Dawande, S D
2013-04-01
The petroleum products have wide range of volatility and are required to be stored in bulk. The evaporation losses are significant and it is a economic as well as environmental concern, since evaporative losses of petroleum products cause increased VOC in ambient air. Control of these losses poses a major problem for the storage tank designers. Ever rising cost of petroleum products further adds to the gravity of the problem. Condensation is one of the technologies for reducing volatile organic compounds emissions. Condensation is effected by condenser, which is basically a heat exchanger and the heat exchanger configuration plays an important role. The horizontal spiral coil heat exchanger is a promising configuration that finds an application in VOC control. This paper attempts to understand underlying causes of emissions and analyse the option of horizontal spiral coil heat exchanger as vent condenser.
Effect of Sterilization Process and Storage on the Antioxidative Properties of Runner Bean.
Wołosiak, Rafał; Drużyńska, Beata; Piecyk, Małgorzata; Majewska, Ewa; Worobiej, Elwira
2018-06-11
In this study, we investigated the effect of standard preservation of bean seeds on changes in contents and activity of their selected components: dry matter, ash, different forms of nitrogen, composition of protein fractions; total phenolics and condensed tannins; ability to chelate iron(II) ions; antiradical activity against ABTS •+ and DPPH • ; and capability for inhibiting autoxidation and enzymatic oxidation of linoleic acid. The conducted technological process caused various changes in contents of nitrogen forms and partial loss of phenolic compounds. The antiradical and antioxidative activity of the extracts decreased significantly, while an increase was observed in their ability to chelate Fe(II). These changes were due to the migration of active compounds to the brine, and to their structural transformations and degradation. Longer storage of the sterilized product caused restoration of part of the antiradical activity of the seeds.
Heat stabilization of blood spot samples for determination of metabolically unstable drug compounds
Blessborn, Daniel; Sköld, Karl; Zeeberg, David; Kaewkhao, Karnrawee; Sköld, Olof; Ahnoff, Martin
2014-01-01
Background Sample stability is critical for accurate analysis of drug compounds in biosamples. The use of additives to eradicate the enzymatic activity causing loss of these analytes has its limitations. Results A novel technique for sample stabilization by rapid, high-temperature heating was used. The stability of six commercial drugs in blood and blood spots was investigated under various conditions with or without heat stabilization at 95°C. Oseltamivir, cefotaxime and ribavirin were successfully stabilized by heating whereas significant losses were seen in unheated samples. Amodiaquine was stable with and without heating. Artemether and dihydroartemisinin were found to be very heat sensitive and began to decompose even at 60°C. Conclusion Heat stabilization is a viable technique to maintain analytes in blood spot samples, without the use of chemical additives, by stopping the enzymatic activity that causes sample degradation. PMID:23256470
Improving mass transfer to soften tissues by pulsed electric fields: fundamentals and applications.
Puértolas, E; Luengo, E; Álvarez, I; Raso, J
2012-01-01
The mass transfer phenomenon occurs in many operations of the food industry with the purpose of obtaining a given substance of interest, removing water from foods, or introducing a given substance into the food matrix. Pretreatments that modify the permeability of the cell membranes, such as grinding, heating, or enzymatic treatment, enhance the mass transfer. However, these techniques may require a significant amount of energy and can cause losses of valuable food compounds. Pulsed electric field (PEF) technology is a nonthermal processing method that causes permeabilization of cell membranes using low energy requirements and minimizing quality deterioration of the food compounds. Many practical applications of PEF for enhancing mass transfer in the food industry have been investigated. The purpose of this chapter is to give an overview of the state of the art of application of PEF for improving mass transfer in the food industry.
NASA Astrophysics Data System (ADS)
Chang, Yufei; Hou, Hu; Li, Bafang
2016-06-01
Codfish is a kind of abyssal fish species with a great value in food industry. However, the flavor of codfish, especially the unpleasant odor, has caused serious problems in its processing. To accurately identify the volatile compounds in codfish, a combination of solid phase micro-extraction (SPME) method and simultaneous distillation extraction (SDE) method was used to extract the volatiles. Gas chromatography-mass spectrometry (GC-MS) along with Kovats indices (KI) and authentic standard compounds were used to identify the volatiles. The results showed that a total of 86 volatile compounds were identified in codfish, of them 24 were extracted by SDE, 69 compounds by SPME, and 10 compounds by both SDE and SPME. Seventy volatile compounds were found to have specific odors, of them 7 typical compounds contributed significantly to the flavor of codfish. Alcohols ( i.e., (E)-2-penten-1-ol and 2-octanol), esters ( i.e., ethyl butyrate and methyl geranate), aldehydes ( i.e., 2-dodecenal and pentadecanal) contributed the most to fresh flavor while nitrogen compounds, sulphur compounds, furans, as well as some ketones ( i.e., 2-hydroxy-3-pentanone) brought unpleasant odor, such as fishy and earthy odor. It was indicated that the combination of multiple extraction methods and GC-MS analysis can enhance the accuracy of identification, and provide a reference for the further study on flavor of aquatic products.
Barbour, Elie K; Dankar, Samar K; Shaib, Houssam A; Kumosani, Taha; Azhar, Esam; Masaudi, Saad; Iyer, Archana; Harakeh, Steve
2014-10-15
The role of Origanum ehrenberjii against bacteria that cause enteric diseases is well known. Salmonella and Enterococcus cause high rates of enteric infections around the world. The aim of this study was to extract essential oils from cultivated and naturally growing O. ehrenberjii, compare the chemical profiles of the extracts and estimate their antimicrobial efficacy against enteric pathogens. Sixteen compounds were recovered consistently from essential oils extracted from O. ehrenberjii of wild and cultivated origin. The chemical profiles were determined using GC-MS. Safety of the essential oils was determined by observing mortality of chicks after intramuscular administration of the oils. The antimicrobial efficacy of the oils against the enteric pathogens was determined by the Kirby-Bauer Single Disk Diffusion assay. The levels of thymol, carvacrol, para cymene and γ-terpinene were significantly different in the two oils. A significant difference in in vitro antimicrobial activity of the two oils against Salmonella enterica serovar Typhimurium was observed. Intramuscular administration of the two oils in one day-old chicks resulted in significant differences in mortality of 60% vs. 5% (p < 0.05) for wild and cultivated herbs respectively, reflecting the higher safety of the cultivated herb due to the differences in the levels of certain active ingredients. The chemical profile of essential oil of wild vs. cultivated O. ehrenberjii differ significantly at compound level, suggesting the reason for their significant difference in efficacy against Salmonella enterica serovar Typhimurium, and also significant differences in the toxicity of the two oils.
NASA Astrophysics Data System (ADS)
Wang, Gehui; Chen, Chunlei; Li, Jianjun; Zhou, Bianhong; Xie, Mingjie; Hu, Shuyuan; Kawamura, Kimitaka; Chen, Yan
2011-05-01
Molecular compositions and size distributions of water-soluble organic compounds (WSOC, i.e., sugars, sugar-alcohols and carboxylic acids) in particles from urban air of Nanjing, China during a severe haze event caused by field burning of wheat straw were characterized and compared with those in the summer and autumn non-haze periods. During the haze event levoglucosan (4030 ng m -3) was the most abundant compound among the measured WSOC, followed by succinic acid, malic acid, glycerol, arabitol and glucose, being different from those in the non-haze samples, in which sucrose or azelaic acid showed a second highest concentration, although levoglucosan was the highest. The measured WSOC in the haze event were 2-20 times more than those in the non-hazy days. Size distribution results showed that there was no significant change in the compound peaks in coarse mode (>2.1 μm) with respect to the haze and non-haze samples, but a large difference in the fine fraction (<2.1 μm) was found with a sharp increase during the hazy days mostly due to the increased emissions of wheat straw burning. Molecular compositions of organic compounds in the fresh smoke particles from wheat straw burning demonstrate that sharply increased concentrations of glycerol and succinic and malic acids in the fine particles during the haze event were mainly derived from the field burning of wheat straw, although the sources of glucose and related sugar-alcohols whose concentrations significantly increased in the fine haze samples are unclear. Compared to that in the fresh smoke particles of wheat straw burning an increase in relative abundance of succinic acid to levoglucosan during the haze event suggests a significant production of secondary organic aerosols during transport of the smoke plumes.
Antitumor activity of a novel and orally available inhibitor of serine palmitoyltransferase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaguchi, Masahiro; Shibata, Sachio; Satomi, Yoshinori
Metabolic reprogramming is an essential hallmark of neoplasia. Therefore, targeting cancer metabolism, including lipid synthesis, has attracted much interest in recent years. Serine palmitoyltransferase (SPT) plays a key role in the initial and rate-limiting step of de novo sphingolipid biosynthesis, and inhibiting SPT activity prevents the proliferation of certain cancer cells. Here, we identified a novel and orally available SPT inhibitor, compound-2. Compound-2 showed an anti-proliferative effect in several cancer cell models, reducing the levels of the sphingolipids ceramide and sphingomyelin. In the presence of compound-2, exogenously added S1P partially compensated the intracellular sphingolipid levels through the salvage pathway bymore » partially rescuing compound-2-induced cytotoxicity. This suggested that the mechanism underlying the anti-proliferative effect of compound-2 involved the reduction of sphingolipid levels. Indeed, compound-2 promoted multinuclear formation with reduced endogenous sphingomyelin levels specifically in a compound-2-sensitive cell line, indicating that the effect was induced by sphingolipid reduction. Furthermore, compound-2 showed potent antitumor activity without causing significant body weight loss in the PL-21 acute myeloid leukemia mouse xenograft model. Therefore, SPT may be an attractive therapeutic anti-cancer drug target for which compound-2 may be a promising new drug. - Highlights: • We discovered compound-2, a novel and orally available SPT inhibitor. • Compound-2 was cytotoxic against PL-21 acute myeloid leukemia cells. • Compound-2 showed antitumor activity in the PL-21 mouse xenograft model.« less
Degradation of landfill leachate compounds by persulfate for groundwater remediation
Zhong, Hua; Tian, Yaling; Yang, Qi; Brusseau, Mark L; Yang, Lei; Zeng, Guangming
2016-01-01
In this study, batch and column experiments were conducted to evaluate the feasibility of using persulfate oxidation to treat groundwater contaminated by landfill leachate (CGW). In batch experiments, persulfate was compared with H2O2, and permanganate for oxidation of organic compounds in CGW. It was also compared with the potential of biodegradation for contaminant removal from CGW. Persulfate was observed to be superior to H2O2 and permanganate for degradation of total organic carbon (TOC) in the CGW. Conversely, biodegradation caused only partial removal of TOC in CGW. In contrast, persulfate caused complete degradation of the TOC in the CGW or aged CGW, showing no selectivity limitation to the contaminants. Magnetite (Fe3O4) enhanced degradation of leachate compounds in both CGW and aged CGW with limited increase in persulfate consumption and sulfate production. Under dynamic flow condition in 1-D column experiments, both biodegradation and persulfate oxidation of TOC were enhanced by Fe3O4. The enhancement, however, was significantly greater for persulfate oxidation. In both batch and column experiments, Fe3O4 by itself caused minimal consumption of persulfate and production of sulfate, indicating that magnetite is a good persulfate activator for treating CGW in heterogeneous systems The results of the study show that the persulfate-based in-situ chemical oxidation (ISCO) method has great potential to treat the groundwater contaminated by landfill leachate. PMID:28584519
Ferguson, L R; Denny, W A
1995-06-01
A series of aniline mustards and half-mustards targeted to DNA by linkage (through a polymethylene chain) to the bisbenzimidazole chromophore of pibenzimol (Hoechst 33258) have been evaluated for their mutagenic properties, as estimated in three strains of Salmonella typhimurium, and for their mitotic crossing-over and petite mutagenesis activities in Saccharomyces cerevisiae strain D5. Agarose gel electrophoresis studies showed that only the derivative with the longest linker chain cross-linked DNA, with the remaining compounds being monoalkylators. The parent (non-alkylator) minor groove binding ligand (Hoechst 33258) was inactive in the bacterial strains TA98 or TA100 but weakly mutagenic in TA102, and caused neither mitotic crossing-over nor 'petite' mutagenesis in yeast. Aniline half-mustard itself (monoalkylator) was an effective base-pair substitution mutagen (events in S. typhimurium strain TA100) with some frameshift mutagenesis activity in TA98, but showed only weak effects in the yeast assays, whereas aniline mustard (cross-linker) was inactive in these bacterial systems but caused substantial amounts of mitotic crossing-over in yeast. The composite molecules studied here showed effects more characteristic of the minor groove binding chromophore than of alkylating moieties. All showed weak mutagenic activity in TA102 and none in TA98. The only compound to show significant mitotic crossing-over ability was the long-chain derivative which cross-linked DNA. For most of the compounds, the mutagenicity data provided no supportive evidence for DNA alkylation. Since other evidence suggests this does occur readily, it is likely to have a different target to that seen with untargeted aniline mustards. The significant antitumor activity and low mutagenic potential shown by these compounds make them worthy of further study.
Ledder, Ruth G; Sreenivasan, Prem K; DeVizio, William; McBain, Andrew J
2010-12-01
The microbiological effects of biocidal products used for the enhancement of oral hygiene relate to the active compound(s) as well as other formulation components. Here, we test the specificities of selected actives in the absence of multiple excipients. Salivary ecosystems were maintained in tissue culture plate-based hydroxyapatite disc models (HDMs) and modified drip-flow biofilm reactors (MDFRs). Test compounds stannous fluoride (SF), SDS, triclosan (TCS), zinc lactate (ZL) and ZL with SF in combination (ZLSF) were delivered to the HDMs once and four times daily for 6 days to MDFRs. Plaques were characterized by differential viable counting and PCR-denaturing gradient gel electrophoresis (DGGE). TCS and SDS were the most effective compounds against HDM plaques, significantly reducing total viable counts (P<0.05), whilst SF, ZL and ZLSF were comparatively ineffective. TCS exhibited specificity for streptococci (P<0.01) and Gram-negative anaerobes (P<0.01) following a single dosing and also on repeated dosing in MDFRs. In contrast to single exposures, multiple dosing with ZLSF also significantly reduced all bacterial groups, whilst SF and ZL caused significant but transient reductions. According to PCR-DGGE analyses, significant (P<0.05) reductions in eubacterial diversity occurred following 6 day dosing with both TCS and ZLSF. Concordance of MDFR eubacterial profiles with salivary inocula ranged between 58 and 97%. TCS and ZL(SF) exhibited similar specificities to those reported for formulations. TCS was the most potent antibacterial, after single and multiple dosage regimens.
Organic compounds in the particulate matter from burning organic soils
Charles K. McMahon; Jerry D. White; Skevos N. Tsoukalas
1985-01-01
This paper is directed to people interested in the environmental impact of natural emissions. Natural emissions are common and contribute significantly to tropospheric background levels. Several million hectares of the United States are covered by organic soils. During droughts, these soils can ignite and support slow combustion which often persists for weeks causing...
Deodorization of Garlic Breath by Foods, and the Role of Polyphenol Oxidase and Phenolic Compounds.
Mirondo, Rita; Barringer, Sheryl
2016-10-01
Garlic causes a strong garlic breath that may persist for almost a day. Therefore, it is important to study deodorization techniques for garlic breath. The volatiles responsible for garlic breath include diallyl disulfide, allyl mercaptan, allyl methyl disulfide, and allyl methyl sulfide. After eating garlic, water (control), raw, juiced or heated apple, raw or heated lettuce, raw or juiced mint leaves, or green tea were consumed immediately. The levels of the garlic volatiles on the breath were analyzed from 1 to 60 min by selected ion flow tube mass spectrometry (SIFT-MS). Garlic was also blended with water (control), polyphenol oxidase (PPO), rosemarinic acid, quercetin or catechin, and the volatiles in the headspace analyzed from 3 to 40 min by SIFT-MS. Raw apple, raw lettuce, and mint leaves significantly decreased all of the garlic breath volatiles in vivo. The proposed mechanism is enzymatic deodorization where volatiles react with phenolic compounds. Apple juice and mint juice also had a deodorizing effect on most of the garlic volatiles but were generally not as effective as the raw food, probably because the juice had enzymatic activity but the phenolic compounds had already polymerized. Both heated apple and heated lettuce produced a significant reduction of diallyl disulfide and allyl mercaptan. The presence of phenolic compounds that react with the volatile compounds even in the absence of enzymes is the most likely mechanism. Green tea had no deodorizing effect on the garlic volatile compounds. Rosmarinic acid, catechin, quercetin, and PPO significantly decreased all garlic breath volatiles in vitro. Rosmarinic acid was the most effective at deodorization. © 2016 Institute of Food Technologists®.
Hulse, Elspeth J.; Davies, James O. J.; Simpson, A. John; Sciuto, Alfred M.
2014-01-01
Organophosphorus (OP) compound poisoning is a major global public health problem. Acute OP insecticide self-poisoning kills over 200,000 people every year, the majority from self-harm in rural Asia. Highly toxic OP nerve agents (e.g., sarin) are a significant current terrorist threat, as shown by attacks in Damascus during 2013. These anticholinesterase compounds are classically considered to cause an acute cholinergic syndrome with decreased consciousness, respiratory failure, and, in the case of insecticides, a delayed intermediate syndrome that requires prolonged ventilation. Acute respiratory failure, by central and peripheral mechanisms, is the primary cause of death in most cases. However, preclinical and clinical research over the last two decades has indicated a more complex picture of respiratory complications after OP insecticide poisoning, including onset of delayed neuromuscular junction dysfunction during the cholinergic syndrome, aspiration causing pneumonia and acute respiratory distress syndrome, and the involvement of solvents in OP toxicity. The treatment of OP poisoning has not changed over the last 50 years. However, a better understanding of the multiple respiratory complications of OP poisoning offers additional therapeutic opportunities. PMID:25419614
Sampath, Chethan; Zhu, Yingdong; Sang, Shengmin; Ahmedna, Mohamed
2016-02-15
Methylglyoxal (MGO) is known to be a major precursor of advanced glycation end products (AGEs) which are linked to diabetes and its related complications. Naturally occurring bioactive compounds could play an important role in countering AGEs thereby minimizing the risk associated with their formation. In this study, eight specific bioactive compounds isolated from apple, tea and ginger were evaluated for their AGEs scavenging activity using Human Retinal Pigment Epithelial (H-RPE) cells treated with MGO. Among the eight specific compounds evaluated, (-)-epigallocatechin 3-gallate (EGCG) from tea, phloretin in apple, and [6]-shogaol and [6]-gingerol from ginger were found to be most effective in preventing MGO-induced cytotoxicity in the epithelial cells. Investigation of possible underlying mechanisms suggests that that these compounds could act by modulating key regulative detoxifying enzymes via modifying nuclear factor-erythroid 2-related factor 2 (Nrf2) function. MGO-induced cytotoxicity led to increased levels of AGEs causing increase in Nε-(Carboxymethyl) lysine (CML) and glutathione (GSH) levels and over expression of receptor for advanced glycation end products (RAGE). Data also showed that translocation of Nrf2 from cytosol to nucleus was inhibited, which decreased the expression of detoxifying enzyme like heme oxygenase-1 (HO-1). The most potent bioactive compounds scavenged dicarbonyl compounds, inhibited AGEs formation and significantly reduced carbonyl stress by Nrf2 related pathway and restoration of HO-1 expression. These findings demonstrated the protective effect of bioactive compounds derived from food sources against MGO-induced carbonyl stress through activation of the Nrf2 related defense pathway, which is of significant importance for therapeutic interventions in complementary treatment/management of diabetes-related complications. Copyright © 2016. Published by Elsevier GmbH.
NASA Technical Reports Server (NTRS)
Kudryashov, B. A.; Shapiro, F. B.; Lomovskaya, F. B.; Lyapina, L. A.
1979-01-01
Adrenocorticotropin (ACTH) was administered to rats at different times following adrenalectomy. Adrenocorticotropin caused a significant increase in the formation of heparin complexes even in the absence of stress factor. When ACTH secretion is blocked, immobilization stress is not accompanied by an increase in the process of complex formation. The effect of ACTH on the formation of heparin complexes was mediated through its stimulation of the adrenal cortex.
Cao, Zhen; Wu, Lin-Ping; Li, Yun-Xia; Guo, Yu-Bo; Chen, Yao-Wen; Wu, Ren-Hua
2008-06-28
To study liver cell apoptosis caused by the toxicity of selenium and observe the alteration of choline compounds using in vitro 9.4T high resolution magnetic resonance spectroscopy. Twenty male Wistar rats were randomly divided into two groups. The rats in the treatment group were intraperitoneally injected with sodium selenite and the control group with distilled water. All rats were sacrificed and the livers were dissected. (1)H-MRS data were collected using in vitro 9.4T high resolution magnetic resonance spectrometer. Spectra were processed using XWINNMR and MestRe-c 4.3. HE and TUNEL staining was employed to detect and confirm the change of liver cells. Good (1)H-MR spectra of perchloric acid extract from liver tissue of rats were obtained. The conventional metabolites were detected and assigned. Concentrations of different ingredient choline compounds in treatment group vs control group were as follows: total choline compounds, 5.08 +/- 0.97 mmol/L vs 3.81 +/- 1.16 mmol/L (P = 0.05); and free choline, 1.07 +/- 0.23 mmol/L vs 0.65 +/- 0.20 mmol/L (P = 0.00). However, there was no statistical significance between the two groups. The hepatic sinus and cellular structure of hepatic cells in treatment group were abnormal. Apoptosis of hepatic cells was confirmed by TUNEL assay. High dose selenium compounds can cause the rat liver lesion and induce cell apoptosis in vivo. High resolution (1)H-MRS in vitro can detect diversified metabolism. The changing trend for different ingredient of choline compounds is not completely the same at early period of apoptosis.
Bioactive Lignans from Zanthoxylum alatum Roxb. stem bark with cytotoxic potential.
Mukhija, Minky; Lal Dhar, Kanaya; Nath Kalia, Ajudhia
2014-02-27
Zanthoxylum alatum is used in traditional medicinal systems for number of disorders like cholera, diabetes, cough, diarrhea, fever, headache, microbial infections, toothache, inflammation and cancer. The aim of the present study was to evaluate Zanthoxylum alatum stem bark for its cytotoxic potential and to isolate the bioactive constituents. Cytotoxicity of the different extracts and isolated compounds was studied on lung carcinoma cell line (A549) and pancreatic carcinoma cell line (MIA-PaCa) using MTT assay. Isolation of compounds from most active extract (petroleum ether) was done on silica gel column. Structure elucidation was done by using various spectrophotometric techniques like UV, IR, (1)H NMR, (13)C NMR and mass spectroscopy. The type of cell death caused by most active compound C was explored by fluorescence microscopy using the acridine orange/ethidium bromide method. Petroleum ether extract of plant has shown significant cytotoxic potential. Three lignans sesamin (A), kobusin (B), and 4'O demethyl magnolin (C) has been isolated. All lignans showed cytotoxic activities in different ranges. Compound C was the novel bioactive compound from a plant source and found to be most active. In apoptosis study, treatment caused typical apoptotic morphological changes. It enhances the apoptosis at IC50 dose (21.72 µg/mL) however showing necrotic cell death at higher dose after 24h on MIA-PaCa cell lines. Petroleum ether extract (60-80 °C) of Zanthoxylum alatum has cytotoxic potential. The lignans isolated from the petroleum ether extract were responsible for the cytotoxic potential of the extract. 4'O demethyl magnolin was novel compound from Zanthoxylum alatum. Hence the Zanthoxylum alatum can be further explored for the development of anticancer drug. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Zothanpuia; Passari, Ajit Kumar; Leo, Vincent Vineeth; Chandra, Preeti; Kumar, Brijesh; Nayak, Chandra; Hashem, Abeer; Abd Allah, Elsayed Fathi; Alqarawi, Abdulaziz A; Singh, Bhim Pratap
2018-05-05
Actinobacteria from freshwater habitats have been explored less than from other habitats in the search for compounds of pharmaceutical value. This study highlighted the abundance of actinobacteria from freshwater sediments of two rivers and one lake, and the isolates were studied for their ability to produce antimicrobial bioactive compounds. 16S rRNA gene sequencing led to the identification of 84 actinobacterial isolates separated into a common genus (Streptomyces) and eight rare genera (Nocardiopsis, Saccharopolyspora, Rhodococcus, Prauserella, Amycolatopsis, Promicromonospora, Kocuria and Micrococcus). All strains that showed significant inhibition potentials were found against Gram-positive, Gram-negative and yeast pathogens. Further, three biosynthetic genes, polyketide synthases type II (PKS II), nonribosomal peptide synthetases (NRPS) and aminodeoxyisochorismate synthase (phzE), were detected in 38, 71 and 29% of the strains, respectively. Six isolates based on their antimicrobial potentials were selected for the detection and quantification of standard antibiotics using ultra performance liquid chromatography (UPLC-ESI-MS/MS) and volatile organic compounds (VOCs) using gas chromatography mass spectrometry (GC/MS). Four antibiotics (fluconazole, trimethoprim, ketoconazole and rifampicin) and 35 VOCs were quantified and determined from the methanolic crude extract of six selected Streptomyces strains. Infectious diseases still remain one of the leading causes of death globally and bacterial infections caused millions of deaths annually. Culturable actinobacteria associated with freshwater lake and river sediments has the prospects for the production of bioactive secondary metabolites.
Effects of Zinc Gluconate and 2 Other Divalent Cationic Compounds on Olfactory Function in Mice
Duncan-Lewis, Christopher A; Lukman, Roy L; Banks, Robert K
2011-01-01
Intranasal application of zinc gluconate has commonly been used to treat the common cold. The safety of this treatment, however, has come into question recently. In addition to a United States recall of a homeopathic product that contains zinc gluconate, abundant literature reports cytotoxic effects of zinc on the olfactory epithelium. Additional research suggests that divalent cations (such as zinc) can block ion channels that facilitate the transduction of odors into electrical signals on the olfactory epithelium. The purpose of the current study was 2-fold: to confirm whether zinc gluconate causes anosmia and to reveal whether any other divalent cationic compounds produce a similar effect. Groups of mice underwent a buried food-pellet test to gauge olfactory function and then were nasally irrigated with 1 of 3 divalent cationic compounds. When tested after treatment, mice irrigated with zinc gluconate and copper gluconate experienced a marked increase in food-finding time, indicating that they had lost their ability to smell a hidden food source. Control mice irrigated with saline had a significantly lower increase in times. These results confirm that zinc gluconate can cause anosmia and reveal that multiple divalent cations can negatively affect olfaction. PMID:22330252
Barlow, R. B.; Zoller, Anne
1964-01-01
A survey has been made of the effects on junctional transmission of the complete series of polymethylene bis-trimethylammonium (BTM) and bis-triethylammonium (BTE) salts from the decamethylene compounds (BTM 10 and BTE 10) to those with twenty-one methylene groups in the chain. These were tested for their ability to cause contracture of the isolated chick biventer cervicis preparation, and for their ability to block the twitch responses of this preparation, those of the rat isolated diaphragm preparation, and those of the cat tibialis anterior preparation. They were also tested for their ability to block transmission in the cat superior cervical ganglion, to block the actions of acetylcholine on the guinea-pig isolated ileum, and for ability to inhibit the hydrolysis of acetylcholine by acetylcholinesterase. Their electrical conductivity has been measured in aqueous solution. Ability to cause contracture of the chick biventer cervicis is confined to the compounds BTM 10 to 15; BTE 10, 11 and 12 have some weak activity but the other BTE compounds, and the BTM compounds with more than fifteen methylene groups, have virtually no activity. In the BTE series both neuromuscular blocking and ganglion-blocking activities increase with chain length up to a maximum in the region of BTE 15 to 17 and then decline. In the BTM series ganglion-blocking activity increases with chain length in much the same way as in the BTE series, though the maximum activity is at a slightly longer chain length. At the neuromuscular junction an increase in chain length beyond BTM 10 leads to a decline in activity but this returns to some extent at longer chain lengths, reaching a second maximum at BTM 18, above which it declines further. At the ganglion BTE 16 is only slightly more active than BTM 16 and about five-times as active as hexamethonium; at the neuromuscular junction in the cat BTE 16 is about five-times as active as BTM 16 and about eight-times as active as (+)-tubocurarine. The affinity of the BTE compounds for the postganglionic acetylcholine receptors of the guinea-pig ileum reaches a maximum at BTE 14 but does not decline significantly with further increase in chain length. Anticholinesterase activity, likewise, does not alter significantly between BTM 12 and BTM 21 and the activity of the compounds in the BTE series appears to be similar. This property could conceivably be modifying the actions of some of the intermediate compounds but is not likely to be affecting those of the more active ones. The conductivity experiments indicate that micelle formation could be limiting the actions of the compounds with 20 or 21 methylene groups, but is not likely to be affecting those of the other compounds. The results suggest that there is a regular increase with chain length of the affinity of these compounds for the receptors in the ganglia and at the neuromuscular junction but that efficacy in causing contracture is limited to compounds with three methyl groups in the cationic head and a chain of about ten methylene groups. The connexion between this ability to depolarize and the ability to block transmission by desensitization is discussed. PMID:14208190
Goc, A; Niedzwiecki, A; Rath, M
2015-12-01
Little is known about the effects of phytochemicals against Borrelia sp. causing Lyme disease. Current therapeutic approach to this disease is limited to antibiotics. This study examined the anti-borreliae efficacy of several plant-derived compounds and micronutrients. We tested the efficacy of 15 phytochemicals and micronutrients against three morphological forms of Borrelia burgdoferi and Borrelia garinii: spirochetes, latent rounded forms and biofilm. The results showed that the most potent substances against the spirochete and rounded forms of B. burgdorferi and B. garinii were cis-2-decenoic acid, baicalein, monolaurin and kelp (iodine); whereas, only baicalein and monolaurin revealed significant activity against the biofilm. Moreover, cis-2-decenoic acid, baicalein and monolaurin did not cause statistically significant cytotoxicity to human HepG2 cells up to 125 μg ml(-1) and kelp up to 20 μg ml(-1) . The most effective antimicrobial compounds against all morphological forms of the two tested Borrelia sp. were baicalein and monolaurin. This might indicate that the presence of fatty acid and phenyl groups is important for comprehensive antibacterial activity. This study reveals the potential of phytochemicals as an important tool in the fight against the species of Borrelia causing Lyme disease. © 2015 The Authors published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.
Improved photosensitizers for photodynamic therapy
NASA Astrophysics Data System (ADS)
Pandey, Ravindra K.; Shiau, Fuu-Yau; Meunier, Isabelle; Ramaprasad, Subbaraya; Sumlin, Adam B.; Dougherty, Thomas J.; Smith, Kevin M.
1992-06-01
In order to evaluate the effect of substituents in photosensitizing activity, a series of long wavelength absorbing photosensitizers related to pyropheophorbides, bacteriopheophorbides, and benzoporphyrin derivatives were synthesized. Pheophorbide dimers, covalently joining two molecules of pyropheophorbide-a and bacteriopheophorbide-a with lysine as a cross-link were also prepared. The syntheses and spectroscopic properties of these compounds are discussed. Some of these compounds were tested for in vivo photosensitizing activity vis-a-vis Photofrin IITM, using the standard screening system of DBA/2 mice bearing transplanted SMT/F tumors. The preliminary in vivo results suggest that replacement of substituents at peripheral positions of the macrocycles causes a significant difference in photosensitizing efficacy.
The Effect of Various Species of Macroalgae on the Growth, Survival, and Toxicity of Karenia brevis
NASA Astrophysics Data System (ADS)
Gardner, K. G.; Lovko, V. J.; Henry, M. S.
2016-02-01
Harmful algal blooms (HABs) caused by the dinoflagellate Karenia brevis produce toxins that result in negative impacts to both humans and the environment. Little is known about the termination stages of these blooms, and few viable control mechanisms have been suggested. Natural, algae derived compounds have been proposed as a way to limit bloom growth and reduce brevetoxins in the water column. The work presented here examines the ability of macroalgae to inhibit the growth or survival of K. brevis, similar to what has been demonstrated with other red tide species. Additionally, we attempted to determine if macroalgae decreases water column brevetoxins which, to our knowledge, has not been tested with macroalgae but has been demonstrated in other studies with microalgal species. The macroalgae species Dictyota sp. and Gracilaria sp. caused 100% mortality of K. brevis in under 24 hours. Compared to the control, 7 other species significantly decreased the growth rate of K. brevis. The Dictyota treatments showed significant toxin reduction and increase of the antitoxin brevanol. These results indicate that some combination of compounds produced by macroalgae inhibit growth and survival of K. brevis and possibly limit their toxin production. Future studies will attempt to isolate and identify these compounds and test their effects on other marine organisms such as diatoms. Determining the interactions between HAB species K. brevis and macroalgal species will provide insights on the mechanism of bloom termination and a potential control method.
Comparison of carbonyl compounds emissions from diesel engine fueled with biodiesel and diesel
NASA Astrophysics Data System (ADS)
He, Chao; Ge, Yunshan; Tan, Jianwei; You, Kewei; Han, Xunkun; Wang, Junfang; You, Qiuwen; Shah, Asad Naeem
The characteristics of carbonyl compounds emissions were investigated on a direct injection, turbocharged diesel engine fueled with pure biodiesel derived from soybean oil. The gas-phase carbonyls were collected by 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges from diluted exhaust and analyzed by HPLC with UV detector. A commercial standard mixture including 14 carbonyl compounds was used for quantitative analysis. The experimental results indicate that biodiesel-fueled engine almost has triple carbonyls emissions of diesel-fueled engine. The weighted carbonyls emission of 8-mode test cycle of biodiesel is 90.8 mg (kW h) -1 and that of diesel is 30.7 mg (kW h) -1. The formaldehyde is the most abundant compound of carbonyls for both biodiesel and diesel, taking part for 46.2% and 62.7% respectively. The next most significant compounds are acetaldehyde, acrolein and acetone for both fuels. The engine fueled with biodiesel emits a comparatively high content of propionaldehyde and methacrolein. Biodiesel, as an alternative fuel, has lower specific reactivity (SR) caused by carbonyls compared with diesel. When fueled with biodiesel, carbonyl compounds make more contribution to total hydrocarbon emission.
Improving rubber concrete by waste organic sulfur compounds.
Chou, Liang-Hisng; Lin, Chun-Nan; Lu, Chun-Ku; Lee, Cheng-Haw; Lee, Maw-Tien
2010-01-01
In this study, the use of crumb tyres as additives to concrete was investigated. For some time, researchers have been studying the physical properties of concrete to determine why the inclusion of rubber particles causes the concrete to degrade. Several methods have been developed to improve the bonding between rubber particles and cement hydration products (C-S-H) with the hope of creating a product with an improvement in mechanical strength. In this study, the crumb tyres were treated with waste organic sulfur compounds from a petroleum refining factory in order to modify their surface properties. Organic sulfur compounds with amphiphilic properties can enhance the hydrophilic properties of the rubber and increase the intermolecular interaction forces between rubber and C-S-H. In the present study, a colloid probe of C-S-H was prepared to measure these intermolecular interaction forces by utilizing an atomic force microscope. Experimental results showed that rubber particles treated with waste organic sulfur compounds became more hydrophilic. In addition, the intermolecular interaction forces increased with the adsorption of waste organic sulfur compounds on the surface of the rubber particles. The compressive, tensile and flexural strengths of concrete samples that included rubber particles treated with organic sulfur compound also increased significantly.
Tokala, Ramya; Bale, Swarna; Janrao, Ingle Pavan; Vennela, Aluri; Kumar, Niggula Praveen; Senwar, Kishna Ram; Godugu, Chandraiah; Shankaraiah, Nagula
2018-06-01
A new series of 1,2,4-triazole-linked urea and thiourea conjugates have been synthesized and evaluated for their in vitro cytotoxicity against selected human cancer cell lines namely, breast (MCF-7, MDA-MB-231), lung (A549) prostate (DU145) and one mouse melanoma (B16-F10) cell line and compared with reference drug. The compound 5t showed significant cytotoxicity on MCF-7 breast cancer cell line with a IC 50 value of 7.22 ± 0.47 µM among all the tested compounds. Notably, induction of apoptosis by compound 5t on MCF-7 cells was evaluated using different staining techniques such as acridine orange/ethidium bromide (AO/EB), annexin V-FITC/PI, and DAPI. Further, clonogenic assay indicates the inhibition of colony formation on MCF-7 cells by compound 5t. Moreover, the flow-cytometric analysis also revealed that compound 5t caused the arrest of cells at G0/G1 phase of cell cycle. In addition, the compounds when tested on normal human cells (L-132) were found to be safer with low cytotoxicity profile. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Negative Effects of Volatile Sulphur Compounds.
Milella, Lisa
2015-01-01
Oral malodor has been studied extensively in humans but not necessarily to the same degree in our veterinary patients where malodor constitutes a significant problem. Breath malodor may originate from the mouth, or from an extra oral source, originating from other organ systems such as gastrointestinal, respiratory, or even systemic disease. Oral malodor is a result of microbial metabolism of exogenous and endogenous proteinaceous substrates leading to the production of compounds such as indole, skatole, tyramine, cadaverine, puterescine, mercaptans, and sulphides. Volatile sulphur compounds have been shown to be the main cause of oral malodor. Although most clients perceive oral malodor to be primarily a cosmetic problem, there is an increasing volume of evidence in human dental literature demonstrating that volatile sulphur compounds produced by bacteria, even at low concentrations, are toxic to tissues and play a role in the pathogenesis of periodontitis. This article reviews the current available literature in human dentistry looking at these negative effects. No veterinary studies have been conducted looking at the negative effects of volatile sulphur compounds specifically, but as this article highlights, we should be aware of the potential negative effects of volatile sulphur compounds and consider this an area of future research.
Kim, P.; Lee, D.-S.; Kahng, B.
2015-01-01
The maintenance of stability during perturbations is essential for living organisms, and cellular networks organize multiple pathways to enable elements to remain connected and communicate, even when some pathways are broken. Here, we evaluated the biconnectivity of the metabolic networks of 506 species in terms of the clustering coefficients and the largest biconnected components (LBCs), wherein a biconnected component (BC) indicates a set of nodes in which every pair is connected by more than one path. Via comparison with the rewired networks, we illustrated how biconnectivity in cellular metabolism is achieved on small and large scales. Defining the biconnectivity of individual metabolic compounds by counting the number of species in which the compound belonged to the LBC, we demonstrated that biconnectivity is significantly correlated with the evolutionary age and functional importance of a compound. The prevalence of diseases associated with each metabolic compound quantifies the compounds vulnerability, i.e., the likelihood that it will cause a metabolic disorder. Moreover, the vulnerability depends on both the biconnectivity and the lethality of the compound. This fact can be used in drug discovery and medical treatments. PMID:26490723
The analgesic, anti-inflammatory and calcium antagonist potential of Tanacetum artemisioides.
Bukhari, Ishfaq Ali; Khan, Rafeeq Alam; Gilani, Anwar-ul Hassan; Shah, Abdul Jabbar; Hussain, Javid; Ahmad, Viqar Uddin
2007-03-01
Several species of the genus Tanacetum are traditionally used in a variety of health conditions including pain, inflammation, respiratory and gastrointestinal disorders. In the current investigation, we evaluated the plant extract of T. artemisioides and some of its pure compounds (flavonoids) for analgesic, anti-inflammatory and calcium antagonist effects in various in-vivo and in vitro studies. Using the actetic acid induced writhing test, intraperitoneal (i.p) administration of the plant extract (25-50 mg/kg) and its flavonoid compounds TA-1 and TA-2 (1-5 mg/kg ) exhibited significant analgesic actvity. The maximum analgesic effect observed with the crude extract of the plant was 71% at 50 mg/kg, while that of compounds TA-1 and TA-2 (5 mg/kg i.p) was 75 and 47%, respectively. The plant extract and its pure compounds caused inhbition of formalin induced paw licking in mice predominatly in the second phase of the test. Diclofenac sodium, a standard reference compound, showed a simlar effect in these chemical induced pain models. In the carrgeenan induced rat paw edema assay, the plant extract (50-200 mg/kg i.p) demonstrated significant (P< 0.01) anti-inflammatory activity which was comparable to that obtained with diclofenac sodium and indomethacin. In isolated rabbit jejunum preprations the plant extract showed an atropine sensitive dose-dependent (0.10-1.0 mg/mL) spasmogenic activity followed by a spasmolytic effect at the next higher doses (3-5 mg/mL). The crude extract of the plant also inhibited the high K+-induced contractions, indicating a calcium channel blocking (CCB) activity, which was further confirmed when the plant extract caused a rightward shift in the Ca++ concentration response curves in the isolated rabbit jejunum preparations, similar to that seen with verapamil. The flavonoid compounds isolated from the plant were devoid of any activity in the isolated tissue preparations. These results indicate that the plant extract of T. artemisioides possesses analgesic, anti-inflammatory and CCB activities. The flavonoid compounds of the plant may have a role in its observed analgesic and antiinflammatory activities, while the CCB activity of the plant may be attributed to some other chemical constituents present. Moreover the findings support the traditional reputation of the genus Tanacetum for its therapeutic benefits in pain and inflammatory conditions.
[EFFECT OF PYRETHROIDS ON TAIGA TICKS (IXODES PERSULCATUS IXODIDAE)].
Germant, O M; Shashina, N I
2016-01-01
Nonspecific prevention of infections, the agents of which are transmitted by Ixodes ticks, is aimed at stopping the suction of the ticks to humans and is substantially based one the use of acaricides. The most interesting group of compounds to be used to individually protect humans is pyrethroids that cause different nerve conduction disturbances in the ticks, which result in their paralysis and death more significantly rapidly than the compounds from other chemical groups. The effect of 8 pyrethroids was investigated when the taiga ticks were in contact with the tissue treated with the compounds. The relationship of the chemical structure of pyrethroids with their acaricidal activity was analyzed from motor activity values and knockdown time. The test pyreithroids, in order of decreasing acaricidal activity, are imiprothrin cyphenothrin, cyfluthrin, alpha-cyperamethrin, zeta-cyperimethrin fenothrin, flumethrin.
Lutterbeck, Carlos Alexandre; Kern, Deivid Ismael; Machado, Ênio Leandro; Kümmerer, Klaus
2015-09-01
Anti-cancer drugs are compounds that are of high environmental relevance because of their lack of specific mode of action. They can be extremely harmful to living organisms even at low concentrations. The present study evaluated the toxic effects of four frequently used anti-cancer drugs against plant seedlings, namely Cyclophosphamide (CP), Methotrexate (MTX), 5-Fluorouracil (5-FU) and Imatinib (IM). The phytotoxicity experiments were performed with Lactuca sativa seedlings whereas cytotoxicity, genotoxicity and mutagenicity investigations were performed with the well-established Allium cepa assays. MTX was the most phytotoxic compound, followed by 5-FU, CP and IM. Significant differences in the Mitotic Indexes (MI) were observed in three of the studied compounds (MTX, 5-FU and CP), indicating potential cytotoxic activity of these substances. Chromosome aberrations were registered in cells that were exposed to 5-FU, CP and IM. All the four compounds caused the formation of micronucleated cells indicating mutagenic potential. Besides, the assays performed with MTX samples presented a high number of cell apoptosis (cell death). Although it is unlikely that the pharmaceuticals concentrations measured in the environment could cause lethal effects in plants, the obtained results indicate that these compounds may affect the growth and normal development of these plants. So, both tests can constitute important tools for a fast screening of environmental contamination e.g. in the context of the reuse of treated wastewater and biosolids of agricultural purpose. Copyright © 2015 Elsevier Ltd. All rights reserved.
Haider, Saqlain; Alam, M Sarwar; Hamid, Hinna; Shafi, Syed; Nargotra, Amit; Mahajan, Priya; Nazreen, Syed; Kalle, Arunasree M; Kharbanda, Chetna; Ali, Yakub; Alam, Aftab; Panda, Amulya K
2013-01-01
A library of novel bis-heterocycles containing benzoxazolinone based 1,2,3-triazoles has been synthesized using click chemistry approach. The compound 3f exhibited potent selective COX-2 inhibition of 59.48% in comparison to standard drug celecoxib (66.36% inhibition). The compound 3i showed significant (p < 0.001, 50.95%), TNF-α inhibitory activity as compared to indomethacin (p < 0.001, 64.01%). The results of the carrageenan induced hind paw oedema showed that compounds 3a, 3f, 3i, 3o, and 3e exhibited potent anti-inflammatory activity in comparison to Indomethacin. The molecular docking studies revealed that 3i exhibits strong inhibitory effect due to the extra stability of the complex because of an extra π-π bond. The histopathology report showed that none of the compounds caused gastric ulceration. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Kubo, Ryohei; Harano, Ken-ichi; Ono, Masato
2017-10-01
To explore the role of the volatiles emitted from male labial gland (LG) of the bumblebee Bombus ardens ardens, we investigated the responses of virgin queens and males to volatiles using a gas chromatography-electroantennographic detector (GC-EAD) system and Y-tube olfactometer. GC-EAD analysis revealed that citronellol, the main compound detected in the male LG, caused clear electrophysiological responses in the antennae of B. a. ardens virgin queens and males although two minor compounds elicited antennal responses when applied in a high concentration. Behavioral tests using a Y-tube olfactometer showed that queens and males were significantly attracted to both LG extracts and citronellol more than to the solvent alone. This is the first study to demonstrate that citronellol as a major compound of male scent-marking pheromone in B. a. ardens functions as a sex attractant for queens. The results also suggest that this compound has another function as a trail marker used by males.
Elzahhar, Perihan A; Elkazaz, Salwa; Soliman, Raafat; El-Tombary, Alaa A; Shaltout, Hossam A; El-Ashmawy, Ibrahim M; Abdel Wahab, Abeer E; El-Hawash, Soad A
2017-08-01
Inflammation may cause accumulation of fluid in the injured area, which may promote bacterial growth. Other reports disclosed that non-steroidal anti-inflammatory drugs may enhance progression of bacterial infection. This work describes synthesis of new series of 2,3'-bipyridine-5-carbonitriles as structural analogs of etoricoxib, linked at position-6 to variously substituted thio or oxo moieties. Biological screening results revealed that compounds 2b, 4b, 7e and 8 showed significant acute and chronic AI activities and broad spectrum of antimicrobial activity. In addition, similarity ensemble approach was applied to predict potential biological targets of the tested compounds. Then, pharmacophore modeling study was employed to determine the most important structural parameters controlling bioactivity. Moreover, title compounds showed physicochemical properties within those considered adequate for drug candidates. This study explored the potential of such series of compounds as structural leads for further modification to develop a new class of dual AI-antimicrobial agents.
Banerjee, Tuhin Suvro; Paul, Sibasish; Sinha, Surajit; Das, Sumantra
2014-11-01
Some novel iboga-analogues consisting of benzofuran moiety and dehydroisoquinuclidine ring connected by -CH2-, (CH2)2 and (CH2)3 linkers have been synthesized with the view to develop potential antinociceptive drugs. The compounds 14 and 21 showed binding at the μ-opioid receptor (MOR), while the compound 11a exhibited dual affinities at both MOR and κ-opioid receptor (KOR). MAP kinase activation indicated all three compounds have opioid agonistic properties. The presence of a double bond and endo-methylcarboxylate group in the dehydroisoquinuclidine ring and the benzofuran and methylene spacer appeared to be essential for opioid receptor binding. Further studies demonstrated 11a caused significant antinociception in mice in the hot-plate test which was comparable to that produced by morphine. The compound 11a was also found to be nontremorigenic unlike various iboga congeners. This study identifies a new pharmacophore which may lead to the development of suitable substitute of morphine in the treatment of pain. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sediments indicate the continued use of banned antifouling compounds.
Egardt, Jenny; Nilsson, Per; Dahllöf, Ingela
2017-12-15
Antifouling paints are widely used to avoid organisms settling on boat hulls. The active ingredients in the paints have differed over the years where lead, TBT, irgarol and diuron have been deemed too harmful to non-target organisms and subsequently been banned within the EU. Most of these compounds however are persistent in the environment and can cause problems long after they are deposited. We have examined if present-day and banned substances used in antifouling paints can be found in sediments in a national park on the Swedish west coast. Sampled locations include waterways, natural harbours and small marinas for leisure crafts to investigate if number of visiting boats affect the concentration of antifouling compounds in sediments. Few significant differences were found when comparing the different locations types, suggesting that overall boat presence is more important than specific mooring sites, however, several banned antifouling compounds were found in the surface sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yu, Pan; Xia, Chao-Jie; Li, Dong-Dong; Ni, Jun-Jun; Zhao, Lin-Guo; Ding, Gang; Wang, Zhen-Zhong; Xiao, Wei
2018-05-28
Chlorogenic acid (CGA) has been reported to exhibit potent anti-inflammatory activity. However, the development of anti-inflammatory agent based on CGA has not been investigated. In this paper, a series of caffeoyl salicylate compounds derived from CGA were designed, synthesized, and evaluated by LPS-induced nitric oxide synthase inhibition and QRT-PCR technique. Most compounds showed modest activity to inhibit production of nitric oxide (NO) in RAW 264.7 cells induced by lipopolysaccharides (LPS). Among these compounds, QRT-PCR and western blotting results indicated that compounds 6b, 6c, 6f, 6g and D104 that possess 5-member ring or 6-member ring caused a significant inhibition against expression of the iNOS2 in LPS-induced macrophages. In addition, cytotoxic assay displayed most derivatives have good safety in vitro. This new promising scaffold could be further exploited for the development of anti-inflammatory agent in the future. Copyright © 2017. Published by Elsevier B.V.
Mesoionic compounds with antifungal activity against Fusarium verticillioides.
Paiva, Rojane de Oliveira; Kneipp, Lucimar Ferreira; dos Reis, Camilla Moretto; Echevarria, Aurea
2015-02-04
Fungi contaminate the food of humans and animals, are a risk to health, and can cause financial losses. In this work, the antifungal activities of 16 mesoionic compounds (MI 1-16) were evaluated against mycotoxigenic fungi, including Aspergillus spp., Fusarium verticillioides and Penicillium citrinum. Furthermore, the decreased ergosterol in the total lipid content of Fusarium verticillioides was investigated. F. verticillioides was the most sensitive fungus to the mesoionic compounds. Among the evaluated compounds, MI-11 and MI-16 presented higher antifungal effects against F. verticillioides, with MIC values of 7.8 μg/ml, and MI-2 and MI-3 followed, with MICs of 15.6 μg/ml. The most active compounds were those with heterocyclic ring phenyl groups substituted by electron donor moieties (MI-11 and MI-16). Among some compounds with higher activity (MI-2, MI-11 and MI-16), decreased ergosterol content in the total lipid fraction of F. verticillioides was demonstrated. MI-2 reduced the ergosterol content approximately 40% and 80% at concentrations of 7.8 μg/ml and 15.6 μg/ml, respectively, and MI-11 and MI-16 decreased the content by 30% and 50%, respectively, when at a concentration of 7.8 μg/ml. These findings indicate that mesoionic compounds have significant antifungal activity against F. verticillioides.
Mini-Review: Antifouling Natural Products from Marine Microorganisms and Their Synthetic Analogs
Wu, Ze-Hong; Wang, Yu; Wang, Chang-Yun; Xu, Ying
2017-01-01
Biofouling causes huge economic loss and generates serious ecological issues worldwide. Marine coatings incorporated with antifouling (AF) compounds are the most common practices to prevent biofouling. With a ban of organotins and an increase in the restrictions regarding the use of other AF alternatives, exploring effective and environmentally friendly AF compounds has become an urgent demand for marine coating industries. Marine microorganisms, which have the largest biodiversity, represent a rich and important source of bioactive compounds and have many medical and industrial applications. This review summarizes 89 natural products from marine microorganisms and 13 of their synthetic analogs with AF EC50 values ≤ 25 μg/mL from 1995 (the first report about marine microorganism-derived AF compounds) to April 2017. Some compounds with the EC50 values < 5 μg/mL and LC50/EC50 ratios > 50 are highlighted as potential AF compounds, and the preliminary analysis of structure-relationship (SAR) of these compounds is also discussed briefly. In the last part, current challenges and future research perspectives are proposed based on opinions from many previous reviews. To provide clear guidance for the readers, the AF compounds from microorganisms and their synthetic analogs in this review are categorized into ten types, including fatty acids, lactones, terpenes, steroids, benzenoids, phenyl ethers, polyketides, alkaloids, nucleosides and peptides. In addition to the major AF compounds which targets macro-foulers, this review also includes compounds with antibiofilm activity since micro-foulers also contribute significantly to the biofouling communities. PMID:28846626
Mini-Review: Antifouling Natural Products from Marine Microorganisms and Their Synthetic Analogs.
Wang, Kai-Ling; Wu, Ze-Hong; Wang, Yu; Wang, Chang-Yun; Xu, Ying
2017-08-28
Biofouling causes huge economic loss and generates serious ecological issues worldwide. Marine coatings incorporated with antifouling (AF) compounds are the most common practices to prevent biofouling. With a ban of organotins and an increase in the restrictions regarding the use of other AF alternatives, exploring effective and environmentally friendly AF compounds has become an urgent demand for marine coating industries. Marine microorganisms, which have the largest biodiversity, represent a rich and important source of bioactive compounds and have many medical and industrial applications. This review summarizes 89 natural products from marine microorganisms and 13 of their synthetic analogs with AF EC 50 values ≤ 25 μg/mL from 1995 (the first report about marine microorganism-derived AF compounds) to April 2017. Some compounds with the EC 50 values < 5 μg/mL and LC 50 /EC 50 ratios > 50 are highlighted as potential AF compounds, and the preliminary analysis of structure-relationship (SAR) of these compounds is also discussed briefly. In the last part, current challenges and future research perspectives are proposed based on opinions from many previous reviews. To provide clear guidance for the readers, the AF compounds from microorganisms and their synthetic analogs in this review are categorized into ten types, including fatty acids, lactones, terpenes, steroids, benzenoids, phenyl ethers, polyketides, alkaloids, nucleosides and peptides. In addition to the major AF compounds which targets macro-foulers, this review also includes compounds with antibiofilm activity since micro-foulers also contribute significantly to the biofouling communities.
Anti-tumor activities of decursinol angelate and decursin from Angelica gigas.
Lee, Sanghyun; Lee, Yeon Sil; Jung, Sang Hoon; Shin, Kuk Hyun; Kim, Bak-Kwang; Kang, Sam Sik
2003-09-01
The in vivo anti-tumor activities of decursinol angelate (1) and decursin (2) isolated from the roots of Angelica gigas were investigated. These two compounds, when administered consecutively for 9 days at 50 and 100 mg/kg i.p. in mice, caused a significant increase in the life span and a significant decrease in the tumor weight and volume of mice inoculated with Sarcoma-180 tumor cells. These results suggest that decursinol angelate (1) and decursin (2) from A. gigas have anti-tumor activities.
The carcinogenicity of chromium
Norseth, Tor
1981-01-01
The carcinogenicity of chromium compounds is reviewed with specific attention to the gaps in knowledge for risk estimation and research needs. The most important problems at present are whether trivalent chromium compounds cause cancer, and whether there is a difference in cancer causing effects between the soluble and the slightly soluble hexavalent compounds in the practical exposure situation. Dose estimates for risk estimation based on epidemiological investigations are also lacking. Present evidence indicates that the trivalent chromium compounds do not cause cancer although high concentrations in some in vitro systems have shown genetic toxicity. Hexavalent chromium compounds cause cancer in humans, in experimental animals and exert genetic toxicity in bacteria and in mammalian cells in vitro. Epidemiological evidence and animal experiments indicate that the slightly soluble hexavalent salts are the most potent carcinogens, but proper identification and characterization of exposure patterns in epidemiological work are lacking. Workers also tend to have mixed exposures. Soluble and slightly soluble salts are equally potent genotoxic agents in vitro. Further work for establishing dose estimates for risk evaluation in epidemiological work is important. In vitro systems should be applied for further identification of the mechanism of the carcinogenic effects, and animal experiments are urgent for comparison of the carcinogenic potency of the different hexavalent salts. Hexavalent chromium salts must be regarded as established carcinogens, and proper action should be taken in all industries with regard to such exposure. At present the carcinogenic risk to the general population caused by chromium compounds seems to be negligible, chromium in cigarettes, however, is an uncertainty in this respect. The amount of chromium and the type of chromium compounds inhaled from cigarettes is not known. PMID:7023928
Secondary metabolites from three Florida sponges with antidepressant activity.
Kochanowska, Anna J; Rao, Karumanchi V; Childress, Suzanne; El-Alfy, Abir; Matsumoto, Rae R; Kelly, Michelle; Stewart, Gina S; Sufka, Kenneth J; Hamann, Mark T
2008-02-01
Brominated indole alkaloids are a common class of metabolites reported from sponges of the order Verongida. Herein we report the isolation, structure determination, and activity of metabolites from three Florida sponges, namely, Verongula rigida (order Verongida, family Aplysinidae), Smenospongia aurea, and S. cerebriformis (order Dictyoceratida, family Thorectidae). All three species were investigated chemically, revealing similarities in secondary metabolites. Brominated compounds, as well as sesquiterpene quinones and hydroquinones, were identified from both V. rigida and S. aurea despite their apparent taxonomic differences at the ordinal level. Similar metabolites found in these distinct sponge species of two different genera provide evidence for a microbial origin of the metabolites. Isolated compounds were evaluated in the Porsolt forced swim test (FST) and the chick anxiety-depression continuum model. Among the isolated compounds, 5,6-dibromo- N,N-dimethyltryptamine ( 1) exhibited significant antidepressant-like action in the rodent FST model, while 5-bromo- N,N-dimethyltryptamine ( 2) caused significant reduction of locomotor activity indicative of a potential sedative action. The current study provides ample evidence that marine natural products with the diversity of brominated marine alkaloids will provide potential leads for antidepressant and anxiolytic drugs.
Nicholson, K M; Phillips, R M; Shnyder, S D; Bibby, M C
2002-01-01
LS 4477 and LS 4559, two of a series of N-acyl-aminoalkyl phenyl ethers, are rationally designed compounds based on the tubulin binder estramustine. This study investigated their mechanism of action and compared their effectiveness in relation to estramustine in vitro against a panel of human and murine cell lines and in vivo against two murine colon tumour models (MAC). At biologically relevant concentrations, LS 4477 and LS 4559 caused a 59.9 and 56% reduction in tubulin assembly, respectively, compared with a 28.4% reduction in tubulin assembly by estramustine. The analogues were approximately 100 times more potent in chemosensitivity tests in vitro than the parent compound. Both analogues were orally active against the MAC 15A murine tumour model, to a greater extent than estramustine, producing significant growth delays (P<0.01). Significant activity was also shown against the slower growing MAC 26 tumour for LS 4577 (the soluble pro-drug of LS 4559). The results presented in this study suggest these compounds warrant further development with a view to assessing their clinical activity.
NASA Astrophysics Data System (ADS)
Hilty, Florentine M.; Arnold, Myrtha; Hilbe, Monika; Teleki, Alexandra; Knijnenburg, Jesper T. N.; Ehrensperger, Felix; Hurrell, Richard F.; Pratsinis, Sotiris E.; Langhans, Wolfgang; Zimmermann, Michael B.
2010-05-01
Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO4), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area ~190 m2 g-1) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO4 and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO4 and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.
Hilty, Florentine M; Arnold, Myrtha; Hilbe, Monika; Teleki, Alexandra; Knijnenburg, Jesper T N; Ehrensperger, Felix; Hurrell, Richard F; Pratsinis, Sotiris E; Langhans, Wolfgang; Zimmermann, Michael B
2010-05-01
Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO(4)), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area approximately 190 m(2) g(-1)) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO(4) and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO(4) and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.
Huang, Xing-Feng; Chaparro, Jacqueline M; Reardon, Kenneth F; Judd, Timothy M; Vivanco, Jorge M
2016-10-01
Although it is well known that diet is one of the major modulators of the gut microbiome, how the major components of diet shape the gut microbial community is not well understood. Here, we developed a simple system that allows the investigation of the impact of given compounds as supplements of the diet on the termite gut microbiome. The 16S rRNA pyrosequencing analysis revealed that feeding termites different blends of sugars and amino acids did not majorly impact gut community composition; however, ingestion of blends of secondary metabolites caused shifts in gut bacterial community composition. The supplementation of sugars and amino acids reduced the richness significantly, and sugars alone increased the evenness of the gut bacterial community significantly. Secondary metabolites created the most dramatic effects on the microbial community, potentially overriding the effect of other types of compounds. Furthermore, some microbial groups were stimulated specifically by particular groups of compounds. For instance, termites fed with secondary metabolites contained more Firmicutes and Spirochaetes compared to the other treatments. In conclusion, our results suggest that the termite (Reticulitermes flavipes) can be used as a simple and effective system to test the effects of particular chemical compounds in modulating the gut microbiome.
Özcan, Mehmet Musa; Juhaimi, Fahad Al; Uslu, Nurhan
2018-01-01
Brazilian peanut oil content increased with oven heating (65.08%) and decreased with microwave heating process (61.00%). While the phenolic content of untreated Brazilian nut was the highest of 68.97 mg GAE/100 g. Hazelnut (Sivri) contained the highest antioxidant activity (86.52%, untreated). Results reflected significantly differences between the antioxidant effect and total phenol contents of Brazilian nut and hazelnut (Sivri) kernels heated in the oven and microwave. Microwave heating caused a decrease in antioxidant activity of hazelnut. Gallic acid, 3,4-dihydroxybenzoic acid and (+)- and catechin were the main phenolic compounds of raw Brazilian nut with the value of 5.33, 4.33 and 4.88 mg/100 g, respectively, while the dominant phenolics of raw hazelnut (Sivri) kernels were gallic acid (4.81 mg/100 g), 3,4-dihydroxybenzoic acid (4.61 mg/100 g), (+)-catechin (6.96 mg/100 g) and 1,2-dihydroxybenzene (4.14 mg/100 g). Both conventional and microwave heating caused minor reduction in phenolic compounds. The main fatty acids of Brazilian nut oil were linoleic (44.39-48.18%), oleic (27.74-31.74%), palmitic (13.09-13.70%) and stearic (8.20-8.91%) acids, while the dominant fatty acids of hazelnut (Sivri) oil were oleic acid (80.84%), respectively. The heating process caused noticeable change in fatty acid compositions of both nut oils.
Danylovych, H V; Danylovych, Iu V; Kolomiiets', O V; Kosterin, S O; Rodik, R V; Cherenok, S O; Kal'chenko, V I; Chunikhin, O Iu; Horchev, V F; Karakhim, S O
2012-01-01
The influence of supramolecular macrocyclic compounds--calix[4]arenes C-97, C-99, C-107, which are ouabainomymetic high affinity inhibitors of Na+, K(+)-ATPase, on the polarization level of plasmic and mitochondrial membranes of rat uterine smooth muscle cells was investigated. The influence of these compounds on the myocytes characteristic size was studied. By using a confocal microscopy and specific for mitochondrial MitoTracker Orange CM-H2TMRos dye it was proved that the potential-sensitive fluorescent probe DiOC6(3) interacts with mitochondria. Artificial potential collapse of plasmic membrane in this case was modeled by myocytes preincubation with ouabain (1 mM). Further experiments performed using the method of flow cytometry with DiOC6(3) have shown that the compounds C-97, C-99 and C-107 at concentration 50-100 nM caused depolarization of the plasma membrane (at the level of 30% relative to control values) in conditions of artificial collapse of mitochondrial potential by myocytes preincubation in the presence of 5 mM of sodium azide. Under artificial sarcolemma depolarization by ouabain, calixarenes C-97, C-99 and C-107 at 100 nM concentrations caused a transient increase of mitochondrial membrane potential, that is 40% of the control level and lasted about 5 minutes. Calixarenes C-99 and C-107 caused a significant increase in fluorescence of myocytes in these conditions, which was confirmed by confocal microscopy too. It was proved by photon correlation spectroscopy method that the C-99 and C-107 caused an increase of characteristic size of myocytes.
Jonas, Adam; Scholz, Stefan; Fetter, Eva; Sychrova, Eliska; Novakova, Katerina; Ortmann, Julia; Benisek, Martin; Adamovsky, Ondrej; Giesy, John P; Hilscherova, Klara
2015-02-01
Cyanobacteria contain various types of bioactive compounds, which could cause adverse effects on organisms. They are released into surface waters during cyanobacterial blooms, but there is little information on their potential relevance for effects in vivo. In this study presence of bioactive compounds was characterized in cyanobacteria Microcystis aeruginosa (Chroococcales), Planktothrix agardhii (Oscillatoriales) and Aphanizomenon gracile (Nostocales) with selected in vitro assays. The in vivo relevance of detected bioactivities was analysed using transgenic zebrafish embryos tg(cyp19a1b-GFP). Teratogenic potency was assessed by analysis of developmental disorders and effects on functions of the neuromuscular system by video tracking of locomotion. Estrogenicity in vitro corresponded to 0.95-54.6 ng estradiol equivalent(g dry weight (dw))(-1). In zebrafish embryos, estrogenic effects could not be detected potentially because they were masked by high toxicity. There was no detectable (anti)androgenic/glucocorticoid activity in any sample. Retinoid-like activity was determined at 1-1.3 μg all-trans-retinoic acid equivalent(g dw)(-1). Corresponding to the retinoid-like activity A. gracile extract also caused teratogenic effects in zebrafish embryos. Furthermore, exposure to biomass extracts at 0.3 gd wL(-1) caused increase of body length in embryos. There were minor effects on locomotion caused by 0.3 gd wL(-1)M. aeruginosa and P. agardhii extracts. The traditionally measured cyanotoxins microcystins did not seem to play significant role in observed effects. This indicates importance of other cyanobacterial compounds at least towards some species or their developmental phases. More attention should be paid to activity of retinoids, estrogens and other bioactive substances in phytoplankton using in vitro and in vivo bioassays. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, Jie; Sun, Jin; Cui, Shengmiao; He, Zhonggui
2006-11-03
Linear solvation energy relationships (LSERs) amended by the introduction of a molecular electronic factor were employed to establish quantitative structure-retention relationships using immobilized artificial membrane (IAM) chromatography, in particular ionizable solutes. The chromatographic indices, log k(IAM), were determined by HPLC on an IAM.PC.DD2 column for 53 structurally diverse compounds, including neutral, acidic and basic compounds. Unlike neutral compounds, the IAM chromatographic retention of ionizable compounds was affected by their molecular charge state. When the mean net charge per molecule (delta) was introduced into the amended LSER as the sixth variable, the LSER regression coefficient was significantly improved for the test set including ionizable solutes. The delta coefficients of acidic and basic compounds were quite different indicating that the molecular electronic factor had a markedly different impact on the retention of acidic and basic compounds on IAM column. Ionization of acidic compounds containing a carboxylic group tended to impair their retention on IAM, while the ionization of basic compounds did not have such a marked effect. In addition, the extra-interaction with the polar head of phospholipids might cause a certain change in the retention of basic compounds. A comparison of calculated and experimental retention indices suggested that the semi-empirical LSER amended by the addition of a molecular electronic factor was able to reproduce adequately the experimental retention factors of the structurally diverse solutes investigated.
Morales, P; Berrios, J De J; Varela, A; Burbano, C; Cuadrado, C; Muzquiz, M; Pedrosa, M M
2015-09-01
Novel snack-type functional foods based on extruded lentil flours could convey the related health benefit of their bioactive compounds, provide a gluten-free alternative to consumers, and potentially increase the consumption of pulses. Extrusion treatment promoted an increase in galactopinitol, ciceritol, raffinose, stachyose and total α-galactoside content, in most lentil flours. As α-galactosides may act as prebiotics, they could convey beneficial effects to human and monogastric animals. Conversely, extrusion significantly (p < 0.05) reduced the inositol hexaphosphate content to less phosphorylated phytates (inositol pentaphosphate and inositol tetraphosphate), which provide health effects. The gluten-free formulation (control formulation #3) presented the highest significant (p < 0.05) drop in the inositol hexaphosphate of 14.7-fold decrease, but had a large increase in inositol pentaphosphate, due to extrusion processing. These two results are desirable in the finished product. Extrusion also caused a significant (p < 0.05) reduction in the trypsin content and completely inactivated lectin, in all processed samples.
Pro-Apoptotic Activity of New Honokiol/Triphenylmethane Analogues in B-Cell Lymphoid Malignancies.
Mędra, Aleksandra; Witkowska, Magdalena; Majchrzak, Agata; Cebula-Obrzut, Barbara; Bonner, Michael Y; Robak, Tadeusz; Arbiser, Jack L; Smolewski, Piotr
2016-07-30
Honokiol and triphenylmethanes are small molecules with anti-tumor properties. Recently, we synthesized new honokiol analogues (HAs) that possess common features of both groups. We assessed the anti-tumor effectiveness of HAs in B-cell leukemia/lymphoma cells, namely in chronic lymphocytic leukemia (CLL) cells ex vivo and in pre-B-cell acute lymphoblastic leukemia (Nalm-6), Burkitt lymphoma (BL; Raji), diffuse large B-cell lymphoma (DLBCL; Toledo) and multiple myeloma (MM; RPMI 8226) cell lines. Four of these compounds appeared to be significantly active against the majority of cells examined, with no significant impact on healthy lymphocytes. These active HAs induced caspase-dependent apoptosis, causing significant deregulation of several apoptosis-regulating proteins. Overall, these compounds downregulated Bcl-2 and XIAP and upregulated Bax, Bak and survivin proteins. In conclusion, some of the HAs are potent tumor-selective inducers of apoptosis in ex vivo CLL and in BL, DLBCL and MM cells in vitro. Further preclinical studies of these agents are recommended.
NASA Technical Reports Server (NTRS)
Baedecker, M. J.; Ikan, R.; Ishiwatari, R.; Kaplan, I. R.
1977-01-01
The fate of naturally occurring lipids and pigments in a marine sediment exposed to elevated temperatures was studied. Samples of a young marine sediment from Tanner Basin, California, were heated to a series of temperatures (65-200 C) for varying periods of time (7-64 days). The sediment was analyzed prior to and after heating for pigments, isoprenoid compounds, alcohols, fatty acids, and hydrocarbons. Structural changes caused by heating unextractable organic material (kerogen) were also studied, and the significance of the results for understanding petroleum genesis is considered. Among other results, fatty acids and hydrocarbons increased in abundance although there appeared to be no obvious precursor-to-product relationship via simple decarboxylation reactions. Chlorins were partially converted into porphyrins. The phytyl side chain of pheophytin was initially preserved intact by reduction of the phytyl double bond, but later converted to a variety of isoprenoid compounds including alkanes. Thermal grafting of components onto kerogen occurred as well as structural changes caused by heat.
Hu, Bo; Kong, Fanpeng; Gao, Xiaonan; Jiang, Lulu; Li, Xiaofeng; Gao, Wen; Xu, Kehua; Tang, Bo
2018-05-04
Gold nanoparticles (Au NPs) assembled through Au-S covalent bonds have been widely used in biomolecule-sensing technologies. However, during the process, detection distortions caused by high levels of thiol compounds can still significantly influence the result and this problem has not really been solved. Based on the higher stability of Au-Se bonds compared to Au-S bonds, we prepared selenol-modified Au NPs as an Au-Se nanoplatform (NPF). Compared with the Au-S NPF, the Au-Se NPF exhibits excellent anti-interference properties in the presence of millimolar levels of glutathione (GSH). Such an Au-Se NPF that can effectively avoid detection distortions caused by high levels of thiols thus offers a new perspective in future nanomaterial design, as well as a novel platform with higher stability and selectivity for the in vivo application of chemical sensing and clinical therapies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The photolytic degradation and oxidation of organic compounds under simulated Martian conditions.
Oró, J; Holzer, G
1979-12-01
Cosmochemical considerations suggest various potential sources for the accumulation of organic matter on Mars. However the Viking Molecular Analysis did not indicate any indigenous organic compounds on the surface of Mars. Their disappearance from the top layer is most likely caused by the combined action of the high solar radiation flux and various oxidizing species in the substances and a sample of the Murchison meteorite was tested under simulated Martian conditions. After adsorption on powdered quartz, samples of adenine, glycine and naphthalene were irradiated with UV light at various oxygen concentrations and exposure times. In the absence of oxygen, adenine and glycine appeared stable over the given irradiation period, whereas a definite loss was observed in the case of naphthalene, as well as in the volatilizable and pyrozable content of the Murchison meteroite. The presence of oxygen during UV exposure caused a significant increase in the degradation rate of all samples. It is likely that similar processes have led to the destruction of organic materials on the surface of Mars.
Targeting channels and transporters in protozoan parasite infections
NASA Astrophysics Data System (ADS)
Meier, Anna; Erler, Holger; Beitz, Eric
2018-03-01
Infectious diseases caused by pathogenic protozoa are among the most significant causes of death in humans. Therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains. Many of the current anti-parasite drugs target soluble enzymes, generate unspecific oxidative stress, or act by an unresolved mechanism within the parasite. In recent years, collections of drug-like compounds derived from large-scale phenotypic screenings, such as the malaria or pathogen box, have been made available to researchers free of charge boosting the identification of novel promising targets. Remarkably, several of the compound hits have been found to inhibit membrane proteins at the periphery of the parasites, i.e. channels and transporters for ions and metabolites. In this review, we will focus on the progress made on targeting channels and transporters at different levels and the potential for use against infections with apicomplexan parasites mainly Plasmodium spp. (malaria) and Toxoplasma gondii (toxoplasmosis), with kinetoplastids Trypanosoma brucei (sleeping sickness), Trypanosoma cruzi (Chagas disease) and Leishmania ssp. (leishmaniasis), and the amoeba Entamoeba histolytica (amoebiasis).
Al-Asmari, Abdulrahman K; Khan, Haseeb A; Manthiri, Rajamohamed A; Al-Khlaiwi, Ahmad A; Al-Asmari, Bayan A; Ibrahim, Khalid E
2018-05-08
Echis pyramidum is a highly poisonous viper snake. Previous studies have shown acute phase hepatic and renal toxicities of Echis pyramidum venom (EPV) in rats. This study reports the protective effects of a natural herbal compound quercetin (QRC) on EPV-induced hepatic and renal toxicities in rats. A singly injection of EPV (4.76 mg/kg) caused significant increase in serum biomarkers of liver and kidney function. Pre-treatment of QRC (10 mg/kg) significantly reduced the toxic effects of EPV on functional impairment in liver and kidneys of rats. Administration of QRC also reversed EPV-induced increase in lipid peroxidation and decrease in total thiols. The histopathology of liver showed fat accumulation, focal degeneration and cytoplasmic vacuolation of hepatocytes in EPV treated rats. EPV also caused renal tubular dilation and focal atrophy of glomerular tufts in rat kidneys. Administration of QRC prevented EPV-induced structural tissue damage in liver and kidneys of rats. In conclusion, QRC significantly inhibited the acute phase toxic effects of EPV on liver and kidneys of rats by preventing the oxidative stress in these organs. QRC is also known for its anti-inflammatory, anti-edema, anti-hemorrhagic and PLA2-inhibitory properties and therefore may be regarded as a multi-action antidote against snake venom toxicity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kadri, Yamina; Nciri, Riadh; Brahmi, Noura; Saidi, Saber; Harrath, Abdel Halim; Alwasel, Saleh; Aldahmash, Waleed; El Feki, Abdelfatteh; Allagui, Mohamed Salah
2018-05-07
Cerium chloride (CeCl 3 ) is considered an environmental pollutant and a potent neurotoxic agent. Medicinal plants have many bioactive compounds that provide protection against damage caused by such pollutants. Curcuma longa is a bioactive compound-rich plant with very important antioxidant properties. To study the preventive and healing effects of Curcuma longa on cerium-damaged mouse brains, we intraperitoneally injected cerium chloride (CeCl 3 , 20 mg/kg BW) along with Curcuma longa extract, administrated by gavage (100 mg/kg BW), into mice for 60 days. We then examined mouse behavior, brain tissue damage, and brain oxidative stress parameters. Our results revealed a significant modification in the behavior of the CeCl 3 -treated mice. In addition, CeCl 3 induced a significant increment in lipid peroxidation, carbonyl protein (PCO), and advanced oxidation protein product levels, as well as a significant reduction in superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Acetylcholinesterase (AChE) activity remarkably increased in the brain of CeCl 3 -treated mice. Histopathological observations confirmed these results. Curcuma longa attenuated CeCl 3 -induced oxidative stress and increased the activities of antioxidant enzymes. It also decreased AChE activity in the CeCl 3 -damaged mouse brain that was confirmed by histopathology. In conclusion, this study suggests that Curcuma longa has a neuroprotective effect against CeCl 3 -induced damage in the brain.
Simoben, Conrad V; Ibezim, Akachukwu; Ntie-Kang, Fidele; Nwodo, Justina N; Lifongo, Lydia L
2015-01-01
Cancer is known to be the second most common disease-related cause of death among humans. In drug discovery programs anti-cancer chemotherapy remains quite challenging due to issues related to resistance. Plants used in traditional medicine are known to contribute significantly within a large proportion of the African population. A survey of the literature has led to the identification of ~400 compounds from African medicinal plants, which have shown anti-cancer, anti-proliferation, anti-tumor and/or cytotoxic activities, tested by in vitro and in vivo assays (from mildly active to very active), mainly alkaloids, terpenoids, flavonoids, coumarins, phenolics, polyacetylates, xanthones, quinones, steroids and lignans. The first part of this review series focuses on xanthones, quinones, steroids, coumarins, phenolics and other compound classes, while part II is focused on alkaloids, terpenoids, flavonoids.
Electronegative Guests in CoSb 3
Duan, Bo; Yang, Jiong; Salvador, James R.; ...
2016-04-19
Introducing guests into a host framework to form a so called inclusion compound can be used to design materials with new and fascinating functionalities. The vast majority of inclusion compounds have electropositive guests with neutral or negatively charged frameworks. Here, we show a series of electronegative guest filled skutterudites with inverse polarity. The strong covalent guest-host interactions observed for the electronegative group VIA guests, i.e., S and Se, feature a unique localized cluster vibration which significantly influences the lattice dynamics, together with the point-defect scattering caused by element substitutions, resulting in very low lattice thermal conductivity values. The findings ofmore » electronegative guests provide a new perspective for guest-filling in skutterudites, and the covalent filler/lattice interactions lead to an unusual lattice dynamics phenomenon which can be used for designing high-efficiency thermoelectric materials and novel functional inclusion compounds with open structures.« less
Volatile organic compounds in exhaled breath in a healthy population: effect of tobacco smoking.
Jareño-Esteban, José Javier; Muñoz-Lucas, M Ángeles; Carrillo-Aranda, Belén; Maldonado-Sanz, José Ángel; de Granda-Orive, Ignacio; Aguilar-Ros, Antonio; Civera-Tejuca, Concepción; Gutiérrez-Ortega, Carlos; Callol-Sánchez, Luis Miguel
2013-11-01
Tobacco smoke is a source of free radicals and reactive oxygen and nitrogen species, which are the main causes of oxidative stress. The analysis of volatile organic compounds (VOC) in exhaled breath is an indirect method of measuring the level of oxidative stress that occurs in the airways caused by tobacco consumption. The aim of this study was to determine whether smoking influences the production of VOC, in a clinically healthy population. Exhaled breath from 89 healthy volunteers, divided into three groups (non-smokers, ex-smokers and smokers) was analysed. Samples were collected using Bio-VOC® devices and transferred to universal desorption tubes. Chemical compounds were analysed by thermal desorption, gas chromatography and mass spectrometry. We analysed hexanal, heptanal, octanal, nonanal, nonanoic acid and propanoic acid, all identified by retention time and mass spectra referenced in the NIST 08 mass spectral library; confirmation was carried out using reference standards of the pure chemical compound. These VOC were found in very low concentrations. Only nonanal showed significant quantitative and qualitative statistical differences among the study groups. Nonanal concentration is dependent on smoking, but is independent of the amount of tobacco consumed, age and gender. Nonanal in exhaled breath is associated with tobacco consumption, current or previous. Nonanal is a sub-product of the destruction of the cell membrane, and its finding may be indicative of cell damage in smokers. This result appears in many farmers who smoke. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.
Potential for reduction of odorous compounds in swine manure through diet modification.
Sutton, A L; Kephart, K B; Verstegen, M W; Canh, T T; Hobbs, P J
1999-02-01
Recent public concern about air pollution from pork production units has prompted more research to develop methods to reduce and control odors. Masking agents, enzymes and bacterial preparations, feed additives, chemicals, oxidation processes, air scrubbers, biofilters, and new ventilation systems have been studied. Research relating the effects of the swine diet on manure odors has been scarce. Introducing feed additives to bind ammonia, change digesta pH, affect specific enzyme activity, and mask odors has been either costly or not consistently successful. Recent research emphasis has focused on manipulating the diet 1) to increase the nutrient utilization of the diet to reduce excretion products, 2) to enhance microbial metabolism in the lower digestive tract to reduce excretion of odor-causing compounds, and 3) to change the physical characteristics of urine and feces to reduce odor emissions. Primary odor-causing compounds evolve from excess degradable proteins and lack of specific fermentable carbohydrates during microbial fermentation. Reductions in ammonia emissions by 28 to 79% through diet modifications have been reported. Limited research on reduction of other odorous volatile organic compounds through diet modifications is promising. Use of synthetic amino acids with reduced intact protein levels in diets significantly reduces nitrogen excretions and odor production. Addition of nonstarch polysaccharides and specific oligosaccharides further alters the pathway of nitrogen excretion and reduces odor emission. Continued nutritional and microbial research to incorporate protein degradation products, especially sulfur-containing organics, with fermentable carbohydrates in the lower gastrointestinal tract of pigs will further control odors from manure.
Kwiatkowska, Marta; Jarosiewicz, Paweł; Michałowicz, Jaromir; Koter-Michalak, Maria; Huras, Bogumiła; Bukowska, Bożena
2016-01-01
The toxicity of herbicides to animals and human is an issue of worldwide concern. The present study has been undertaken to assess toxic effect of widely used pesticide—glyphosate, its metabolites: aminomethylphosphonic acid (AMPA) and methylphosphonic acid and its impurities: N-(phosphonomethyl)iminodiacetic acid (PMIDA), N-methylglyphosate, hydroxymethylphosphonic acid and bis-(phosphonomethyl)amine on human peripheral blood mononuclear cells (PBMCs). We have evaluated the effect of those compounds on viability, ATP level, size (FSC-A parameter) and granulation (SSC-A parameter) of the cells studied. Human peripheral blood mononuclear cells were exposed to different concentrations of glyphosate, its metabolites and impurities (0.01–10 mM) for 4 and 24 h. It was found that investigated compounds caused statistically significant decrease in viability and ATP level of PBMCs. The strongest changes in cell viability and ATP level were observed after 24 h incubation of PBMCs with bis-(phosphonomethyl)amine, and particularly PMIDA. Moreover, all studied compounds changed cell granularity, while PMIDA and bis-(phosphonomethyl)amine altered PBMCs size. It may be concluded that bis-(phosphonomethyl)amine, and PMIDA caused a slightly stronger damage to PBMCs than did glyphosate. Changes in the parameters studied in PBMCs were observed only at high concentrations of the compounds examined, which clearly shows that they may occur in this cell type only as a result of acute poisoning of human organism with these substances. PMID:27280764
Wang, Shao-Yang; Li, Yi-Qing; Li, Teng; Yang, Hang-Yu; Ren, Jie; Zhang, Bo-Lin; Zhu, Bao-Qing
2016-12-29
A nitrogen deficiency always causes bog bilberry syrup wine to have a poor sensory feature. This study investigated the effect of nitrogen source addition on volatile compounds during bog bilberry syrup wine fermentation. The syrup was supplemented with 60, 90, 120 or 150 mg/L dibasic ammonium phosphate (DAP) before fermentation. Results showed that an increase of DAP amounts accelerated fermentation rate, increased alcohol content, and decreased sugar level. Total phenol and total flavonoid content were also enhanced with the increase of DAP amounts. A total of 91 volatile compounds were detected in the wine and their concentrations were significantly enhanced with the increase of DAP. Ethyl acetate, isoamyl acetate, phenethyl acetate, ethyl butanoate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, isobutanol, isoamyl alcohol, levo -2,3-butanediol, 2-phenylethanol, meso -2,3-butanediol, isobutyric acid, hexanoic acid, and octanoic acid exhibited a significant increase of their odor activity value (OAV) with the increase of DAP amounts. Bog bilberry syrup wine possessed fruity, fatty, and caramel flavors as its major aroma, whereas a balsamic note was the least present. The increase of DAP amounts significantly improved the global aroma attributes, thereby indicating that DAP supplementation could promote wine fermentation performance and enhance the sensory quality of bog bilberry syrup wine.
Rimac, Hrvoje; Debeljak, Željko; Bojić, Mirza; Miller, Larisa
2017-01-01
Human serum albumin (HSA) is the most abundant protein in human serum. It has numerous functions, one of which is transport of small hydrophobic molecules, including drugs, toxins, nutrients, hormones and metabolites. HSA has the ability to interact with a wide variety of structurally different compounds. This promiscuous, nonspecific affinity can lead to sudden changes in concentrations caused by displacement, when two or more compounds compete for binding to the same molecular site. It is important to consider drug combinations and their binding to HSA when defining dosing regimens, as this can directly influence drug's free, active concentration in blood. In present paper we review drug interactions with potential for displacement from HSA, situations in which they are likely to occur and their clinical significance. We also offer guidelines in designing drugs with decreased binding to HSA. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Herrera, L A; Ostrosky-Wegman, P; Schiffmann, D; Chen, Q Y; Ziegler-Skylakakis, K; Andrae, U
1993-11-01
The insecticide buprofezin was examined for its genotoxicity in cultured Syrian hamster embryo cells in order to better understand the mechanisms underlying the genotoxicity of the compound in mammalian cells. Exposure to buprofezin concentrations of 12.5-100 microM did not significantly affect the colony-forming ability of the cells, but did result in increased frequencies of morphologically transformed colonies. Treatment with buprofezin did not cause a detectable induction of DNA repair synthesis, an indicator of DNA damage, but significantly increased the frequency of micronuclei. Immunostaining of the cells with antikinetochore antibody (CREST antibody) showed that essentially all of the buprofezin-induced micronuclei were kinetochore-positive. The results suggest that morphological transformation of Syrian hamster embryo cells by buprofezin results from an interaction of the compound or a metabolite of it with the mitotic apparatus rather than from DNA damage.
Lutfi, Esmail; Riera-Heredia, Natàlia; Córdoba, Marlon; Porte, Cinta; Gutiérrez, Joaquim; Capilla, Encarnación; Navarro, Isabel
2017-07-01
Numerous environmental pollutants have been identified as potential obesogenic compounds affecting endocrine signaling and lipid homeostasis. Among them, well-known organotins such as tributyltin (TBT) and triphenyltin (TPT), can be found in significant concentrations in aquatic environments. The aim of the present study was to investigate in vitro the effects of TBT and TPT on the development and lipid metabolism of rainbow trout (Onchorynchus mykiss) primary cultured adipocytes. Results showed that TBT and TPT induced lipid accumulation and slightly enhanced peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT enhancer binding protein alpha (C/EBPα) protein expression when compared to a control, both in the presence or absence of lipid mixture. However, the effects were higher when combined with lipid, and in the absence of it, the organotins did not cause complete mature adipocyte morphology. Regarding gene expression analyses, exposure to TBT and TPT caused an increase in fatty acid synthase (fasn) mRNA levels confirming the pro-adipogenic properties of these compounds. In addition, when added together with lipid, TBT and TPT significantly increased cebpa, tumor necrosis factor alpha (tnfa) and ATP-binding cassette transporter 1 (abca1) mRNA levels suggesting a synergistic effect. Overall, our data highlighted that TBT and TPT activate adipocyte differentiation in rainbow trout supporting an obesogenic role for these compounds, although by themselves they are not able to induce complete adipocyte development and maturation suggesting that these adipocytes might not be properly functional. Copyright © 2017 Elsevier B.V. All rights reserved.
Jun, Yi; Chunju, Yuan; Qi, Ai; Liuxia, Deng; Guolong, Yu
2014-04-01
The low frequency of survival of stem cells implanted in the myocardium after acute myocardial infarction may be caused by inflammation and oxidative stress in the myocardial microenvironment. We evaluated the effects of a traditional Chinese medicine, Compound Danshen Dripping Pills, on the cardiac microenvironment and cardiac function when used alone or in combination with human umbilical cord blood mononuclear cell transplant after acute myocardial infarction. After surgically induced acute myocardial infarction, rabbits were treated with Compound Danshen Dripping Pills alone or in combination with human umbilical cord blood mononuclear cell transplant. Evaluation included histology, measurement of left ventricular ejection fraction and fractional shortening, leukocyte count, count of green fluorescent protein positive cells, superoxide dismutase activity, and malondialdehyde content. Combination treatment with Compound Danshen Dripping Pills and human umbilical cord blood mononuclear cell transplant significantly increased the survival of implanted cells, inhibited cardiac cell apoptosis, decreased oxidative stress, decreased the inflammatory response, and improved cardiac function. Rabbits treated with either Compound Danshen Dripping Pills or human umbilical cord blood mononuclear cells alone had improvement in these effects compared with untreated control rabbits. Combination therapy with Compound Danshen Dripping Pills and human umbilical cord blood mononuclear cells may improve cardiac function and morphology after acute myocardial infarction.
Antifungal Compounds against Candida Infections from Traditional Chinese Medicine
2017-01-01
Infections caused by Candida albicans, often refractory and with high morbidity and mortality, cause a heavy burden on the public health while the current antifungal drugs are limited and are associated with toxicity and resistance. Many plant-derived molecules including compounds isolated from traditional Chinese medicine (TCM) are reported to have antifungal activity through different targets such as cell membrane, cell wall, mitochondria, and virulence factors. Here, we review the recent progress in the anti-Candida compounds from TCM, as well as their antifungal mechanisms. Considering the diverse targets and structures, compounds from TCM might be a potential library for antifungal drug development. PMID:29445739
Evaluation on the Photosensitivity of 2,2'-Azobis(2,4-Dimethyl)Valeronitrile with UV.
Yang, Yi; Tsai, Yun-Ting
2017-12-14
Azo compounds have high exothermic characteristics and low thermal stability, which have caused many serious thermal accidents around the world. In general, different locations (e.g., equatorial or polar regions) have different UV intensities. If the azo compound exists in an inappropriately stored or transported condition, the decrease in thermal stability may cause a thermal hazard or ageing. 2,2'-Azobis(2,4-dimethyl)valeronitrile (ADVN) is investigated with respect to the thermal stability affected by UV exposure at 0, 6, 12, and 24 h. When ADVN is exposed to 24 h of UV (100 mW/m² and 254 nm), T ₀ is not only advanced, but the mass loss is also increased during the main decomposition stage. In addition, the apparent activation energy and integral procedural decomposition temperature ( IPDT ) of ADVN exposed to 24 h of UV is calculated by kinetic models. Therefore, the prevention mechanism, thermal characteristics, and kinetic parameters are established in our study. We should isolate UV contacting ADVN under any situations, avoiding ADVN being aged or leading to thermal runaway. This study provided significant information for a safer process under changing UV exposure times for ADVN. Furthermore, the research method may serve as an important benchmark for handling potentially hazardous chemicals, such as azo compounds described herein.
History of antibiotics. From salvarsan to cephalosporins.
Zaffiri, Lorenzo; Gardner, Jared; Toledo-Pereyra, Luis H
2012-04-01
Infections have represented for a long time the leading cause of death in humans. During the 19th century, pneumonia, tuberculosis, diarrhea and diphtheria were considered the main causes of death in children and adults. Only in the late 19th century did it become possible to correlate the existence of microscopic pathogens with the development of various diseases. Within a few years the introduction of antiseptic procedures had begun to reduce mortality due to postsurgical infections. Sanitation and hygiene played a significant role in the reduction of the mortality due to several infectious diseases. The introduction of the first compounds with antimicrobial activity succeeded in conquering many diseases. In this review we analyzed, from a historical perspective, the development of antibiotics and the circumstances that led to their discovery. The first compound with antimicrobial activity was introduced in 1911 by Erlich. He focused his research activity on the discovery of a "magic bullet" to treat syphilis. Afterwards, Foley and colleagues brought penicillin to the forefront. Streptomycin represents the first drug discovered for the treatment of tuberculosis, and its development included the first use of clinical trials. Finally, with the development of cephalosporins, the introduction of new antimicrobial compounds with broad activity against gram-positive and also some gram-negative bacteria began.
Optoelectronic devices incorporating fluoropolymer compositions for protection
Chen, Xuming; Chum, Pak-Wing S.; Howard, Kevin E.; Lopez, Leonardo C.; Sumner, William C.; Wu, Shaofu
2015-12-22
The fluoropolymer compositions of the present invention generally incorporate ingredients comprising one or more fluoropolymers, an ultraviolet light protection component (hereinafter UV protection component), and optionally one or more additional ingredients if desired. The UV protection component includes a combination of at least one hindered tertiary amine (HTA) compound having a certain structure and a weight average molecular weight of at least 1000. This tertiary amine is used in combination with at least one organic, UV light absorbing compound (UVLA compound) having a weight average molecular weight greater than 500. When the HTA compound and the UVLA compound are selected according to principles of the present invention, the UV protection component provides fluoropolymer compositions with significantly improved weatherability characteristics for protecting underlying materials, features, structures, components, and/or the like. In particular, fluoropolymer compositions incorporating the UV protection component of the present invention have unexpectedly improved ability to resist blackening, coloration, or other de gradation that may be caused by UV exposure. As a consequence, devices protected by these compositions would be expected to have dramatically improved service life. The compositions have a wide range of uses but are particularly useful for forming protective layers in optoelectronic devices.
Mellon, J E; Dowd, M K; Beltz, S B
2013-07-01
To investigate the effects of temperature and medium composition on growth/aflatoxin inhibitory activities of terpenoids gossypol, gossypolone and apogossypolone against Aspergillus flavus and A. parasiticus. The compounds were tested at a concentration of 100 μg ml(-1) in a Czapek Dox (Czapek) agar medium at 25, 31 and 37°C. Increased incubation temperature marginally increased growth inhibition caused by these compounds, but reduced the aflatoxin inhibition effected by gossypol. Gossypolone and apogossypolone retained good aflatoxin inhibitory activity against A. flavus and A. parasiticus at higher incubation temperatures. However, increased temperature also significantly reduced aflatoxin production in control cultures. The effects of the terpenoids on fungal growth and aflatoxin production against the same fungi were also determined in Czapek, Czapek with a protein/amino acid addendum and yeast extract sucrose (YES) media. Growth of these fungi in the protein-supplemented Czapek medium or in the YES medium greatly reduced the growth inhibition effects of the terpenoids. Apogossypolone displayed strong anti-aflatoxigenic activity in the Czapek medium, but this activity was significantly reduced in the protein-amended Czapek and YES media. Gossypol, which displayed little to no aflatoxin inhibitory activity in the Czapek medium, did yield significant anti-aflatoxigenic activity in the YES medium. Incubation temperature and media composition are important parameters involved in the regulation of aflatoxin production in A. flavus and A. parasiticus. These parameters also affect the potency of growth and aflatoxin inhibitory activities of these gossypol-related compounds against aflatoxigenic fungi. Studies utilizing gossypol-related compounds as inhibitory agents of biological activities should be interpreted with caution due to compound interaction with multiple components of the test system, especially serum proteins. Published [2013]. This article is a U.S. Government work and is in the public domain in the USA.
Targeting Innate Immunity for Antiviral Therapy through Small Molecule Agonists of the RLR Pathway
Pattabhi, Sowmya; Wilkins, Courtney R.; Dong, Ran; Knoll, Megan L.; Posakony, Jeffrey; Kaiser, Shari; Mire, Chad E.; Wang, Myra L.; Ireton, Renee C.; Geisbert, Thomas W.; Bedard, Kristin M.; Iadonato, Shawn P.
2015-01-01
ABSTRACT The cellular response to virus infection is initiated when pathogen recognition receptors (PRR) engage viral pathogen-associated molecular patterns (PAMPs). This process results in induction of downstream signaling pathways that activate the transcription factor interferon regulatory factor 3 (IRF3). IRF3 plays a critical role in antiviral immunity to drive the expression of innate immune response genes, including those encoding antiviral factors, type 1 interferon, and immune modulatory cytokines, that act in concert to restrict virus replication. Thus, small molecule agonists that can promote IRF3 activation and induce innate immune gene expression could serve as antivirals to induce tissue-wide innate immunity for effective control of virus infection. We identified small molecule compounds that activate IRF3 to differentially induce discrete subsets of antiviral genes. We tested a lead compound and derivatives for the ability to suppress infections caused by a broad range of RNA viruses. Compound administration significantly decreased the viral RNA load in cultured cells that were infected with viruses of the family Flaviviridae, including West Nile virus, dengue virus, and hepatitis C virus, as well as viruses of the families Filoviridae (Ebola virus), Orthomyxoviridae (influenza A virus), Arenaviridae (Lassa virus), and Paramyxoviridae (respiratory syncytial virus, Nipah virus) to suppress infectious virus production. Knockdown studies mapped this response to the RIG-I-like receptor pathway. This work identifies a novel class of host-directed immune modulatory molecules that activate IRF3 to promote host antiviral responses to broadly suppress infections caused by RNA viruses of distinct genera. IMPORTANCE Incidences of emerging and reemerging RNA viruses highlight a desperate need for broad-spectrum antiviral agents that can effectively control infections caused by viruses of distinct genera. We identified small molecule compounds that can selectively activate IRF3 for the purpose of identifying drug-like molecules that can be developed for the treatment of viral infections. Here, we report the discovery of a hydroxyquinoline family of small molecules that can activate IRF3 to promote cellular antiviral responses. These molecules can prophylactically or therapeutically control infection in cell culture by pathogenic RNA viruses, including West Nile virus, dengue virus, hepatitis C virus, influenza A virus, respiratory syncytial virus, Nipah virus, Lassa virus, and Ebola virus. Our study thus identifies a class of small molecules with a novel mechanism to enhance host immune responses for antiviral activity against a variety of RNA viruses that pose a significant health care burden and/or that are known to cause infections with high case fatality rates. PMID:26676770
Evranos-Aksoz, Begum; Ucar, Gulberk; Tas, Sadik Taskin; Aksoz, Erkan; Yelekci, Kemal; Erikci, Acelya; Sara, Yildirim; Iskit, Alper Bektas
2017-01-01
Depression is a momentous disease that can greatly reduce the quality of life and cause death. In depression, neurotransmitter levels such as serotonine, dopamine and noradrenaline are impaired. Monoamine oxidases (MAO) are responsible for oxidative catalysis of these monoamine neurotransmitters. Because of this relation, MAO-A inhibitors show antidepressant activity by regulating neurotransmitter levels. This study was carried out to investigate the design, synthesis and activity of new antidepressant compounds in pyrazoline and hydrazone structure. Chalcones and hydrazides were heated under reflux to give new pyrazoline and hydrazone derivatives. Docking simulations were performed using AutoDock4.2. hMAO activities were determined by a fluorimetric method. To determine cell viability, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used. Behavioral activities of the three compounds were determined by using Forced Swim Test, Step-Through Passive Avoidance Test, Elevated Plus Maze and Open Field Arena Tests. According to in vitro tests, all of the synthesized compounds were found more potent than moclobemide and six of the synthesized compounds were found more selective than moclobemide. Three of the synthesized compounds were investigated for their behavioral activities comparing with moclobemide after 7 days of i.p. treatment at 30 mg/kg. One of the three compounds elicited significant antidepressant properties. All of the synthesized compounds were found potent hMAO-A inhibitors in in vitro screening tests. Only one of the in vivo tested three compounds, (3-(2-hydroxy-5-methylphenyl)-5- p-tolyl-4,5-dihydropyrazol-1-yl)(pyridin-4-yl) methanone indicated significant antidepressant activity. This article opens a window for further development of new pyrazoline and hydrazone derivatives as antidepressant agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Discovery and Optimization of 5-Amino-1,2,3-triazole-4-carboxamide Series against Trypanosoma cruzi.
Brand, Stephen; Ko, Eun Jung; Viayna, Elisabet; Thompson, Stephen; Spinks, Daniel; Thomas, Michael; Sandberg, Lars; Francisco, Amanda F; Jayawardhana, Shiromani; Smith, Victoria C; Jansen, Chimed; De Rycker, Manu; Thomas, John; MacLean, Lorna; Osuna-Cabello, Maria; Riley, Jennifer; Scullion, Paul; Stojanovski, Laste; Simeons, Frederick R C; Epemolu, Ola; Shishikura, Yoko; Crouch, Sabrinia D; Bakshi, Tania S; Nixon, Christopher J; Reid, Iain H; Hill, Alan P; Underwood, Tim Z; Hindley, Sean J; Robinson, Sharon A; Kelly, John M; Fiandor, Jose M; Wyatt, Paul G; Marco, Maria; Miles, Timothy J; Read, Kevin D; Gilbert, Ian H
2017-09-14
Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi, is the most common cause of cardiac-related deaths in endemic regions of Latin America. There is an urgent need for new safer treatments because current standard therapeutic options, benznidazole and nifurtimox, have significant side effects and are only effective in the acute phase of the infection with limited efficacy in the chronic phase. Phenotypic high content screening against the intracellular parasite in infected VERO cells was used to identify a novel hit series of 5-amino-1,2,3-triazole-4-carboxamides (ATC). Optimization of the ATC series gave improvements in potency, aqueous solubility, and metabolic stability, which combined to give significant improvements in oral exposure. Mitigation of a potential Ames and hERG liability ultimately led to two promising compounds, one of which demonstrated significant suppression of parasite burden in a mouse model of Chagas' disease.
Direct anthelmintic effects of condensed tannins from diverse plant sources against Ascaris suum.
Williams, Andrew R; Fryganas, Christos; Ramsay, Aina; Mueller-Harvey, Irene; Thamsborg, Stig M
2014-01-01
Ascaris suum is one of the most prevalent nematode parasites in pigs and causes significant economic losses, and also serves as a good model for A. lumbricoides, the large roundworm of humans that is ubiquitous in developing countries and causes malnutrition, stunted growth and compromises immunity to other pathogens. New treatment options for Ascaris infections are urgently needed, to reduce reliance on the limited number of synthetic anthelmintic drugs. In areas where Ascaris infections are common, ethno-pharmacological practices such as treatment with natural plant extracts are still widely employed. However, scientific validation of these practices and identification of the active compounds are lacking, although observed effects are often ascribed to plant secondary metabolites such as tannins. Here, we extracted, purified and characterised a wide range of condensed tannins from diverse plant sources and investigated anthelmintic effects against A. suum in vitro. We show that condensed tannins can have potent, direct anthelmintic effects against A. suum, as evidenced by reduced migratory ability of newly hatched third-stage larvae and reduced motility and survival of fourth-stage larvae recovered from pigs. Transmission electron microscopy showed that CT caused significant damage to the cuticle and digestive tissues of the larvae. Furthermore, we provide evidence that the strength of the anthelmintic effect is related to the polymer size of the tannin molecule. Moreover, the identity of the monomeric structural units of tannin polymers may also have an influence as gallocatechin and epigallocatechin monomers exerted significant anthelmintic activity whereas catechin and epicatechin monomers did not. Therefore, our results clearly document direct anthelmintic effects of condensed tannins against Ascaris and encourage further in vivo investigation to determine optimal strategies for the use of these plant compounds for the prevention and/or treatment of ascariosis.
Direct Anthelmintic Effects of Condensed Tannins from Diverse Plant Sources against Ascaris suum
Williams, Andrew R.; Fryganas, Christos; Ramsay, Aina; Mueller-Harvey, Irene; Thamsborg, Stig M.
2014-01-01
Ascaris suum is one of the most prevalent nematode parasites in pigs and causes significant economic losses, and also serves as a good model for A. lumbricoides, the large roundworm of humans that is ubiquitous in developing countries and causes malnutrition, stunted growth and compromises immunity to other pathogens. New treatment options for Ascaris infections are urgently needed, to reduce reliance on the limited number of synthetic anthelmintic drugs. In areas where Ascaris infections are common, ethno-pharmacological practices such as treatment with natural plant extracts are still widely employed. However, scientific validation of these practices and identification of the active compounds are lacking, although observed effects are often ascribed to plant secondary metabolites such as tannins. Here, we extracted, purified and characterised a wide range of condensed tannins from diverse plant sources and investigated anthelmintic effects against A. suum in vitro. We show that condensed tannins can have potent, direct anthelmintic effects against A. suum, as evidenced by reduced migratory ability of newly hatched third-stage larvae and reduced motility and survival of fourth-stage larvae recovered from pigs. Transmission electron microscopy showed that CT caused significant damage to the cuticle and digestive tissues of the larvae. Furthermore, we provide evidence that the strength of the anthelmintic effect is related to the polymer size of the tannin molecule. Moreover, the identity of the monomeric structural units of tannin polymers may also have an influence as gallocatechin and epigallocatechin monomers exerted significant anthelmintic activity whereas catechin and epicatechin monomers did not. Therefore, our results clearly document direct anthelmintic effects of condensed tannins against Ascaris and encourage further in vivo investigation to determine optimal strategies for the use of these plant compounds for the prevention and/or treatment of ascariosis. PMID:24810761
Seoane, Marta; Esperanza, Marta; Rioboo, Carmen; Herrero, Concepción; Cid, Ángeles
2017-03-01
Large quantities of personal care products (PCPs) are used daily and many of their chemical ingredients are subsequently released into marine environments. Cultures of the marine microalga Tetraselmis suecica were exposed for 24 h to three emerging compounds included in the main classes of PCPs: the UV filter benzophenone-3 (BP-3), the disinfectant triclosan (TCS) and the fragrance tonalide (AHTN). Concentrations tested, expressed as cellular quota (pg cell -1 ), ranged from 5 to 40 for BP-3, from 2 to 16 for TCS and from 1.2 to 2.4 for AHTN. A small cytometric panel was carried out to evaluate key cytotoxicity biomarkers including inherent cell properties, growth and metabolic activity and cytoplasmic membrane properties. BP-3 caused a significant increase in growth rate, metabolic activity and chlorophyll a fluorescence from 10 pg cell -1 . However, growth and esterase activity decreased in cells exposed to all TCS and AHTN concentrations, except the lowest ones. Also these two compounds provoked a significant swelling of cells, more pronounced in the case of TCS-exposed cells. Although all treated cells remained viable, changes in membrane potential were observed. BP-3 and AHTN caused a significant depolarization of cells from 10 to 1.6 pg cell -1 , respectively; however all TCS concentrations assayed caused a noticeable hyperpolarization of cells. Metabolic activity and cytoplasmic membrane potential were the most sensitive parameters. It can be concluded that the toxicological model used and the toxicological parameters evaluated are suitable to assess the toxicity of these emerging contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Baker, Nicola; Bennett, James M.; Berry, Joanne; Collins, Ian; Czaplewski, Lloyd G.; Logan, Alastair; Macdonald, Rebecca; MacLeod, Leanne; Peasley, Hilary; Mitchell, Jeffrey P.; Nayal, Narendra; Yadav, Anju; Srivastava, Anil; Haydon, David J.
2013-01-01
The bacterial cell division protein FtsZ is an attractive target for small-molecule antibacterial drug discovery. Derivatives of 3-methoxybenzamide, including compound PC190723, have been reported to be potent and selective antistaphylococcal agents which exert their effects through the disruption of intracellular FtsZ function. Here, we report the further optimization of 3-methoxybenzamide derivatives towards a drug candidate. The in vitro and in vivo characterization of a more advanced lead compound, designated compound 1, is described. Compound 1 was potently antibacterial, with an average MIC of 0.12 μg/ml against all staphylococcal species, including methicillin- and multidrug-resistant Staphylococcus aureus and Staphylococcus epidermidis. Compound 1 inhibited an S. aureus strain carrying the G196A mutation in FtsZ, which confers resistance to PC190723. Like PC190723, compound 1 acted on whole bacterial cells by blocking cytokinesis. No interactions between compound 1 and a diverse panel of antibiotics were measured in checkerboard experiments. Compound 1 displayed suitable in vitro pharmaceutical properties and a favorable in vivo pharmacokinetic profile following intravenous and oral administration, with a calculated bioavailability of 82.0% in mice. Compound 1 demonstrated efficacy in a murine model of systemic S. aureus infection and caused a significant decrease in the bacterial load in the thigh infection model. A greater reduction in the number of S. aureus cells recovered from infected thighs, equivalent to 3.68 log units, than in those recovered from controls was achieved using a succinate prodrug of compound 1, which was designated compound 2. In summary, optimized derivatives of 3-methoxybenzamide may yield a first-in-class FtsZ inhibitor for the treatment of antibiotic-resistant staphylococcal infections. PMID:23114779
Rosas-Ramírez, Daniel G; Fragoso-Serrano, Mabel; Escandón-Rivera, Sonia; Vargas-Ramírez, Alba L; Reyes-Grajeda, Juan P; Soriano-García, Manuel
2017-06-01
The multidrug resistance (MDR) phenotype is considered as a major cause of the failure in cancer chemotherapy. The acquisition of MDR is usually mediated by the overexpression of drug efflux pumps of a P-glycoprotein. The development of compounds that mitigate the MDR phenotype by modulating the activity of these transport proteins is an important yet elusive target. Here, we screened the saponification and enzymatic degradation products from Salvia hispanica seed's mucilage to discover modulating compounds of the acquired resistance to chemotherapeutic in breast cancer cells. Preparative-scale recycling HPLC was used to purify the hydrolysis degradation products. All compounds were tested in eight different cancer cell lines and Vero cells. All compounds were noncytotoxic at the concentration tested against the drug-sensitive and multidrug-resistant cells (IC 50 > 29.2 μM). For the all products, a moderate vinblastine-enhancing activity from 4.55-fold to 6.82-fold was observed. That could be significant from a therapeutic perspective. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Yang, Eun-Ju; Lim, Sun Ha; Song, Kyung-Sik; Han, Hyung Soo; Lee, Jongwon
2013-05-01
Ischemic stroke is caused by brain injury due to prolonged ischemia by occlusion of cerebral arteries. In this study, we isolated active compounds from an ethanol extract of Aurantii Immatri Pericarpium (HY5356). We first showed by DNA fragmentation assay that HY5356 improved human hepatocellular carcinoma cells (HepG2) under hypoxic conditions by inhibiting apoptosis. When HY5356 was fractionated with dichloromethane (MC), ethyl acetate (EA) and n-butanol (BU), the MC fraction improved cell viability at the lowest concentration (100 μg/ml). Intraperitoneal injection of HY5356 (200 mg/kg) or the MC fraction (200 mg/kg) to rats prior to occlusion attenuated brain injury significantly in a rat model of ischemia-reperfusion. Adopting cell viability under hypoxic conditions as an activity screening system, we isolated nobiletin and tangeretin as active compounds. The results suggest that intake of Aurantii Immatri Pericarpium containing nobiletin and tangeretin as active compounds might be beneficial for preventing ischemic stroke. Copyright © 2012 Elsevier Ltd. All rights reserved.
Discovery of antitumor ursolic acid long-chain diamine derivatives as potent inhibitors of NF-κB.
Jiang, Wei; Huang, Ri-Zhen; Zhang, Jing; Guo, Tong; Zhang, Meng-Ting; Huang, Xiao-Chao; Zhang, Bin; Liao, Zhi-Xin; Sun, Jing; Wang, Heng-Shan
2018-05-08
A series of inhibitors of NF-κB based on ursolic acid (UA) derivatives containing long-chain diamine moieties were designed and synthesized as well as evaluated the antitumor effects. These compounds exhibited significant inhibitory activity to the NF-κB with IC 50 values at micromolar concentrations in A549 lung cancer cell line. Among them, compound 8c exerted potent activity against the test tumor cell lines including multidrug resistant human cancer lines, with the IC 50 values ranged from 5.22 to 8.95 μM. Moreover, compound 8c successfully suppressed the migration of A549 cells. Related mechanism study indicated compound 8c caused cell cycle arrest at G1 phase and triggered apoptosis in A549 cells through blockage of NF-κB signalling pathway. Molecular docking study revealed that key interactions between 8c and the active site of NF-κB in which the bulky and strongly electrophilic group of long-chain diamine moieties were important for improving activity. Copyright © 2018 Elsevier Inc. All rights reserved.
Tengler, Jan; Kapustíková, Iva; Peško, Matúš; Keltošová, Stanislava; Mokrý, Petr; Kollár, Peter; O'Mahony, Jim; Král'ová, Katarína; Jampílek, Josef
2013-01-01
A series of twenty substituted 2-hydroxy-3-[(2-aryloxyethyl)amino]propyl 4-[(alkoxycarbonyl)amino]benzoates were prepared and characterized. As similar compounds have been described as potential antimycobacterials, primary in vitro screening of the synthesized carbamates was also performed against two mycobacterial species. 2-Hydroxy-3-[2-(2,6-dimethoxyphenoxy)ethylamino]-propyl 4-(butoxycarbonylamino)benzoate hydrochloride, 2-hydroxy-3-[2-(4-methoxyphenoxy)ethylamino]-propyl 4-(butoxycarbonylamino)benzoate hydrochloride, and 2-hydroxy-3-[2-(2-methoxyphenoxy)ethylamino]-propyl 4-(butoxycarbonylamino)benzoate hydrochloride showed higher activity against M. avium subsp. paratuberculosis and M. intracellulare than the standards ciprofloxacin, isoniazid, or pyrazinamide. Cytotoxicity assay of effective compounds was performed using the human monocytic leukaemia THP-1 cell line. Compounds with predicted amphiphilic properties were also tested for their effects on the rate of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. All butyl derivatives significantly stimulated the rate of PET, indicating that the compounds can induce conformational changes in thylakoid membranes resulting in an increase of their permeability and so causing uncoupling of phosphorylation from electron transport. PMID:24288475
NASA Astrophysics Data System (ADS)
Akhtar, Muhammad Nadeem; Sakeh, Nurshafika M.; Zareen, Seema; Gul, Sana; Lo, Kong Mun; Ul-Haq, Zaheer; Shah, Syed Adnan Ali; Ahmad, Syahida
2015-04-01
Browning of fruits and vegetables is a serious issue in the food industry, as it damages the organoleptic properties of the final products. Overproduction of melanin causes aesthetic problems such as melisma, freckles and lentigo. In this study, a series of chalcones (1-10) have been synthesized and examined for their tryrosinase inhibitory activity. The results showed that flavokawain B (1), flavokawain A (2) and compound 3 were found to be potential tyrosinase inhibitors, indicating IC50 14.20-14.38 μM values. This demonstrates that 4-substituted phenolic compound especially at ring A exhibited significant tyrosinase inhibition. Additionally, molecular docking results showed a strong binding affinity for compounds 1-3 through chelation between copper metal and ligands. The detailed molecular docking and SARs studies correlate well with the tyrosinase inhibition studies in vitro. The structures of these compounds were elucidated by the 1D and 2D NMR spectroscopy, mass spectrometry and single X-ray crystallographic techniques. These findings could lead to design and discover of new tyrosinase inhibitors to control the melanine overproduction and overcome the economic loss of food industry.
Schaffer, Mario; Boxberger, Norman; Börnick, Hilmar; Licha, Tobias; Worch, Eckhard
2012-04-01
The pH-dependent transport of eight selected ionizable pharmaceuticals was investigated by using saturated column experiments. Seventy-eight different breakthrough curves on a natural sandy aquifer material were produced and compared for three different pH levels at otherwise constant conditions. The experimentally obtained K(OC) data were compared with calculated K(OC) values derived from two different logK(OW)-logK(OC) correlation approaches. A significant pH-dependence on sorption was observed for all compounds with pK(a) in the considered pH range. Strong retardation was measured for several compounds despite their hydrophilic character. Besides an overall underestimation of K(OC), the comparison between calculated and measured values only yields meaningful results for the acidic and neutral compounds. Basic compounds retarded much stronger than expected, particularly at low pH when their cationic species dominated. This is caused by additional ionic interactions, such as cation exchange processes, which are insufficiently considered in the applied K(OC) correlations. Copyright © 2011 Elsevier Ltd. All rights reserved.
Militello, Giuseppe; James, William
2005-03-01
Fragrances are a common cause of contact dermatitis and account for a large percentage of reactions to cosmetic products. Novel fragrance compounds that may not be detected by the common fragrance screening agents (including balsam of Peru and fragrance mix) are continually being produced. Lyral is one of those allergens found in many cosmetic and household products. This review will discuss the recent literature and the significance of this allergen to allergic contact dermatitis.
Potent antioxidant and radical-scavenging activities of traditional Japanese cereal grains.
Higashi-Okai, Kiyoka; Ishida, Emi; Nakamura, Yumiko; Fujiwara, Satomi; Okai, Yasuji
2008-12-01
To estimate the preventive potential of Japanese traditional cereals against oxygen radical-related chronic diseases such as cardiovascular diseases and diabetes, antioxidant and radical-scavenging activities in the extracts of five Japanese traditional cereal grains were analyzed by using an assay system of lipid peroxidation and a radical compound, 1,1-diphenyl-2-picrylhydrazyl (DPPH). DPPH radical-scavenging activities in the extracts of Japanese cereal grains were divided into two groups. One group including Japanese sorghum, black rice and red rice showed strong radical-scavenging activities, but the other group including Japanese barnyard millet and foxtail millet did not exhibit significant radical-scavenging activities. The DPPH radical-scavenging activities of these extracts were closely correlated to the contents of phenolic compound in the extracts, but not to the sugar or protein content in the extracts. In contrast, all the methanol and water extracts of the cereal grains caused significant antioxidant activities against hydroperoxide generation in the peroxidation of linoleic acid, in which the water extracts of these cereal grains caused much higher antioxidant activities than the methanol extracts of the same cereals. These results suggest that Japanese traditional cereals contain qualitatively different principles associated with antioxidant and radical-scavenging activities, and possible principles responsible for the antioxidant and radical-scavenging activities in the cereal grains are discussed.
Rådholm, Karin; Wu, Jason Hy; Wong, Muh Geot; Foote, Celine; Fulcher, Gregory; Mahaffey, Kenneth W; Perkovic, Vlado; Neal, Bruce
2018-06-01
Sodium glucose co-transporter 2 (SGLT2) inhibitors appear to protect against increased risks of cardiovascular and kidney disease in patients with type 2 diabetes but also cause some harms. Whether effects are comparable across drug class or specific to individual compounds is unclear. This meta-analysis assessed the class and individual compound effects of SGLT2 inhibition versus control on cardiovascular events, death, kidney disease and safety outcomes in patients with type 2 diabetes. MEDLINE, EMBASE, the Cochrane Library and regulatory databases were systematically searched for data from randomized clinical trials that included reporting of cardiovascular events, deaths or safety outcomes. We used fixed effects models and inverse variance weighting to calculate relative risks with the 95% confidence intervals. The analyses included data from 82 trials, four overviews and six regulatory reports and there were 1,968 major cardiovascular events identified for analysis. Patients randomly assigned to SGLT2 had lower risks of major cardiovascular events (RR 0.85, 95%CI 0.77-0.93), heart failure (RR 0.67, 95%CI 0.55-0.80), all-cause death (RR 0.79, 95%CI 0.70-0.88) and serious decline in kidney function (RR 0.59, 0.49-0.71). Significant adverse effects were observed for genital infections (RR 3.06, 95%CI 2.73-4.43), volume depletion events (RR 1.24, 95%CI 1.07-1.43) and amputation (RR 1.44 95%CI 1.13-1.83). There was a high likelihood of differences in the associations of the individual compounds with cardiovascular death, hypoglycaemia and amputation (all I 2 > 80%) and a moderate likelihood of differences in the associations with non-fatal stroke, all-cause death, urinary tract infection and fracture (all I 2 > 30%). There are strong overall associations of SGLT2 inhibition with protection against major cardiovascular events, heart failure, serious decline in kidney function and all-cause death. SGLT2 inhibitors were also associated with infections, volume depletion effects and amputation. Some associations appear to differ between compounds. Copyright © 2018 Elsevier B.V. All rights reserved.
Toxic Hazards Evaluation of Five Atmospheric Pollutants from Army Ammunition Plants
1977-06-01
administration of the compound led to severe pulmonary irritation similar to that caused by nitrogen dioxide (NO 2 ) Section II Simultaneous, 2-week... caused by the compound. Skin absorption toxicity was determined using female New Zealand albino rabbits. All’rabbits were clipped as closely as possible...those caused by nitrite intoxication under the premise that all NO 2 groups in TNM are converted to nitrite.’ Animals acutely exposed to TNM by the
Disney, Matthew D.; Liu, Biao; Yang, Wang-Yong; Sellier, Chantal; Tran, Tuan; Charlet-Berguerand, Nicolas; Childs-Disney, Jessica L.
2012-01-01
The development of small molecule chemical probes or therapeutics that target RNA remains a significant challenge despite the great interest in such compounds. The most significant barrier to compound development is a lack of knowledge of the chemical and RNA motif spaces that interact specifically. Herein, we describe a bioactive small molecule probe that targets expanded r(CGG) repeats, or r(CGG)exp , that causes Fragile X-associated Tremor Ataxia Syndrome (FXTAS). The compound was identified by using information on the chemotypes and RNA motifs that interact. Specifically, 9-hydroxy-5,11-dimethyl-2-(2-(piperidin-1-yl)ethyl)-6H-pyrido[4,3-b]carbazol-2-ium, binds the 5’CGG/3’GGC motifs in r(CGG)exp and disrupts a toxic r(CGG)exp -protein complex in vitro. Structure-activity relationships (SAR) studies determined that the alkylated pyridyl and phenolic side chains are important chemotypes that drive molecular recognition to r(CGG)exp . Importantly, the compound is efficacious in FXTAS model cellular systems as evidenced by its ability to improve FXTAS-associated pre-mRNA splicing defects and to reduce the size and number of r(CGG)exp -protein aggregates. This approach may establish a general strategy to identify lead ligands that target RNA while also providing a chemical probe to dissect the varied mechanisms by which r(CGG)exp promotes toxicity. PMID:22948243
Disney, Matthew D; Liu, Biao; Yang, Wang-Yong; Sellier, Chantal; Tran, Tuan; Charlet-Berguerand, Nicolas; Childs-Disney, Jessica L
2012-10-19
The development of small molecule chemical probes or therapeutics that target RNA remains a significant challenge despite the great interest in such compounds. The most significant barrier to compound development is defining which chemical and RNA motif spaces interact specifically. Herein, we describe a bioactive small molecule probe that targets expanded r(CGG) repeats, or r(CGG)(exp), that causes Fragile X-associated Tremor Ataxia Syndrome (FXTAS). The compound was identified by using information on the chemotypes and RNA motifs that interact. Specifically, 9-hydroxy-5,11-dimethyl-2-(2-(piperidin-1-yl)ethyl)-6H-pyrido[4,3-b]carbazol-2-ium binds the 5'CGG/3'GGC motifs in r(CGG)(exp) and disrupts a toxic r(CGG)(exp)-protein complex in vitro. Structure-activity relationship studies determined that the alkylated pyridyl and phenolic side chains are important chemotypes that drive molecular recognition of r(CGG)(exp). Importantly, the compound is efficacious in FXTAS model cellular systems as evidenced by its ability to improve FXTAS-associated pre-mRNA splicing defects and to reduce the size and number of r(CGG)(exp)-containing nuclear foci. This approach may establish a general strategy to identify lead ligands that target RNA while also providing a chemical probe to dissect the varied mechanisms by which r(CGG)(exp) promotes toxicity.
Kumar, Niggula Praveen; Sharma, Pankaj; Reddy, T Srinivasa; Shankaraiah, Nagula; Bhargava, Suresh K; Kamal, Ahmed
2018-05-10
An expeditious microwave-assisted one-pot synthesis of new cytotoxic phenanthrene fused-tetrahydrodibenzo-acridinones has been successfully accomplished. This protocol offers wide substrate scope, catalyst-free synthesis, atom-economy, simple recrystallization, high yields, and ethanol was used as green solvent. These new compounds were tested for their in vitro cytotoxicity against cervical (HeLa), prostate (PC-3), fibrosarcoma (HT-1080), ovarian (SKOV-3) cancer cells, and were safer to normal (Hek-293T) kidney cell line. All the compounds have displayed significant cytotoxicity profile, among them 8m being the most potent compound with an IC 50 0.24 ± 0.05 μM against SKOV-3 ovarian cancer cells. Flow cytometry analysis revealed that cells were blocked at the G2/M phase of the cell cycle. The effect of 8m on F-actin polymerisation was also studied. Hoechst staining clearly showed the decreased number of viable cells and indicated apoptosis progression. Compound 8m caused the collapse of mitochondrial membrane potential as observed via JC-1 staining and also enhanced the generation of reactive oxygen species. The increase of caspase-3 activation by 3.7 folds supported the strong apoptosis induction. In addition, an in vitro 3D-spheroid progression assay was performed with 8m that significantly suppressed the tumor cells. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Lobbens, Eva S; Foderà, Vito; Nyberg, Nils T; Andersen, Kirsten; Jäger, Anna K; Jorgensen, Lene; van de Weert, Marco
2016-01-01
Protein fibrillation is the pathological hallmark of several neurodegenerative diseases and also complicates the manufacturing and use of protein drugs. As a case study, the inhibitory activity of the natural compound aloin against insulin fibrillation was investigated. Based on Thioflavin T assays, high-performance liquid chromatography and transmission electron microscopy it was found that a degradation product of aloin, formed over weeks of storage, was able to significantly inhibit insulin fibrillation. The activity of the stored aloin was significantly reduced in the presence of small amounts of sodium azide or ascorbic acid, suggesting the active compound to be an oxidation product. A high-performance liquid chromatography method and a liquid chromatography-mass spectrometry method were developed to investigate the degradation products in the aged aloin solution. We found that the major compounds in the solution were aloin A and aloin B. In addition, 10-hydroxy aloin and elgonica dimers were detected in smaller amounts. The identified compounds were isolated and tested for activity by means of Thioflavin T assays, but no activity was observed. Thus, the actual fibrillation inhibitor is an as yet unidentified and potentially metastable degradation product of aloin. These results suggest that degradation products, and in particular oxidation products, are to be considered thoroughly when natural products are investigated for activity against protein fibrillation.
Sarcophytolide: a new neuroprotective compound from the soft coral Sarcophyton glaucum.
Badria, F A; Guirguis, A N; Perovic, S; Steffen, R; Müller, W E; Schröder, H C
1998-11-16
Bioactivity-guided fractionation of an alcohol extract of the soft coral Sarcophyton glaucum collected from the intertidal areas and the fringing coral reefs near Hurghada, Red Sea, Egypt resulted in the isolation of a new lactone cembrane diterpene, sarcophytolide. The structure of this compound was deduced from its spectroscopic data and by comparison of the spectral data with those of known closely related cembrane-type compounds. In antimicrobial assays, the isolated compound exhibited a good activity towards Staphylococcus aureus, Pseudomonas aeruginosa, and Saccharomyces cerevisiae. Sarcophytolide was found to display a strong cytoprotective effect against glutamate-induced neurotoxicity in primary cortical cells from rat embryos. Preincubation of the neurons with 1 or 10 microg/ml of sarcophytolide resulted in a significant increase of the percentage of viable cells from 33 +/- 4% (treatment of the cells with glutamate only) to 44 +/- 4 and 92 +/- 6%, respectively. Administration of sarcophytolide during the post-incubation period following glutamate treatment did not prevent neuronal cell death. Pretreatment of the cells with sarcophytolide for 30 min significantly suppressed the glutamate-caused increase in the intracellular Ca2+ level ([Ca2+]i). Evidence is presented that the neuroprotective effect of sarcophytolide against glutamate may be partially due to an increased expression of the proto-oncogene bcl-2. The coral secondary metabolite, sarcophytolide, might be of interest as a potential drug for treatment of neurodegenerative disorders.
A Review of Bioinsecticidal Activity of Solanaceae Alkaloids
Chowański, Szymon; Adamski, Zbigniew; Marciniak, Paweł; Rosiński, Grzegorz; Büyükgüzel, Ender; Büyükgüzel, Kemal; Falabella, Patrizia; Scrano, Laura; Ventrella, Emanuela; Lelario, Filomena; Bufo, Sabino A.
2016-01-01
Only a small percentage of insect species are pests. However, pest species cause significant losses in agricultural and forest crops, and many are vectors of diseases. Currently, many scientists are focused on developing new tools to control insect populations, including secondary plant metabolites, e.g., alkaloids, glycoalkaloids, terpenoids, organic acids and alcohols, which show promise for use in plant protection. These compounds can affect insects at all levels of biological organization, but their action generally disturbs cellular and physiological processes, e.g., by altering redox balance, hormonal regulation, neuronal signalization or reproduction in exposed individuals. Secondary plant metabolites cause toxic effects that can be observed at both lethal and sublethal levels, but the most important effect is repellence. Plants from the Solanaceae family, which contains numerous economically and ecologically important species, produce various substances that affect insects belonging to most orders, particularly herbivorous insects and other pests. Many compounds possess insecticidal properties, but they are also classified as molluscides, acaricides, nematocides, fungicides and bactericides. In this paper, we present data on the sublethal and lethal toxicity caused by pure metabolites and crude extracts obtained from Solanaceae plants. Pure substances as well as water and/or alcohol extracts cause lethal and sublethal effects in insects, which is important from the economical point of view. We discuss the results of our study and their relevance to plant protection and management. PMID:26938561
Secondary Metabolites from Three Florida Sponges with Antidepressant Activity
Kochanowska, Anna J.; Rao, Karumanchi V.; Childress, Suzanne; El-Alfy, Abir; Matsumoto, Rae R.; Kelly, Michelle; Stewart, Gina S.; Sufka, Kenneth J.; Hamann, Mark T.
2016-01-01
Brominated indole alkaloids are a common class of metabolites reported from sponges of the order Verongida. Herein we report the isolation, structure determination, and activity of metabolites from three Florida sponges, namely, Verongula rigida (order Verongida, family Aplysinidae), Smenospongia aurea, and S. cerebriformis (order Dictyoceratida, family Thorectidae). All three species were investigated chemically, revealing similarities in secondary metabolites. Brominated compounds, as well as sesquiterpene quinones and hydroquinones, were identified from both V. rigida and S. aurea despite their apparent taxonomic differences at the ordinal level. Similar metabolites found in these distinct sponge species of two different genera provide evidence for a microbial origin of the metabolites. Isolated compounds were evaluated in the Porsolt forced swim test (FST) and the chick anxiety–depression continuum model. Among the isolated compounds, 5,6-dibromo-N,N-dimethyltryptamine (1) exhibited significant antidepressant-like action in the rodent FST model, while 5-bromo-N,N-dimethyltryptamine (2) caused significant reduction of locomotor activity indicative of a potential sedative action. The current study provides ample evidence that marine natural products with the diversity of brominated marine alkaloids will provide potential leads for antidepressant and anxiolytic drugs. PMID:18217716
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drummond, R.A.; Olson, G.F.; Battermna, A.R.
1974-01-01
The lowest concentration of methylmercuric chloride (MMC) and mercuric chloride added to Lake Superior water that caused a significant increase in cough frequency in Brook trout was 3 micrograms Hg/liter. Cough frequency is a good short-term indicator of the long-term effects of MMC. The response can be used to predict the safe concentration of mercuric chloride since the long-term effects of the compound are not known. Increases in cough frequency were proportional to the concentration (from 3 to 12 micrograms Hg/liter) of both compounds at pH 7.5. The fish were more responsive to MMC when the pH of the testmore » water was lowered to 6.0; response to mercuric chloride was not changed by lowered pH. Fish exposed to MMC at pH 6.0 contained more total mercury in their gills and red blood cells than fish tested at pH 9.0. The uptake of mercury by brook trout exposed to mercuric chloride did not differ significantly at pH 6.0 and 9.0.« less
Chakraborty, Pramita; Roy, Somnath Singha; Bhattacharya, Sudin
2015-01-01
Various preclinical, clinical and epidemiological studies have already well established the cancer chemopreventive and chemoprotective potential of selenium compounds. In addition to its protective efficacy, recent studies have also proved the abilities of selenium compounds to induce cell death specifically in malignant cells. Therefore, our intention is to improve the therapeutic efficacy of an alkylating agent, cisplatin, by the adjuvant use of an organoselenium compound, diphenylmethyl selenocyanate (DMSE). It was observed that combined treatment decreased the tumor burden significantly through reactive oxygen species generation and modulation of antioxidant and detoxifying enzyme system in tumor cells. These activities ultimately led to significant DNA damage and apoptosis in tumor cells. Study of the molecular pathway disclosed that the adjuvant treatment caused induction of p53, Bax and suppressed Bcl-2 followed by the activation of caspase cascade. Furthermore, a concomitant decrease in cisplatin-induced nephrotoxicity and hematopoietic toxicity by DMSE might also have enhanced the efficacy of cisplatin and provided survival advantage to the host. Results suggested that the combination treatment with DMSE and cisplatin may offer potential therapeutic benefit, and utilization of cisplatin in cancer chemotherapy exempt of its limitations.
Bouwer, Marc Clement; Slippers, Bernard; Degefu, Dawit; Wingfield, Michael John; Lawson, Simon; Rohwer, Egmont Richard
2015-01-01
The cossid moth (Coryphodema tristis) has a broad range of native tree hosts in South Africa. The moth recently moved into non-native Eucalyptus plantations in South Africa, on which it now causes significant damage. Here we investigate the chemicals involved in pheromone communication between the sexes of this moth in order to better understand its ecology, and with a view to potentially develop management tools for it. In particular, we characterize female gland extracts and headspace samples through coupled gas chromatography electro-antennographic detection (GC-EAD) and two dimensional gas chromatography mass spectrometry (GCxGC-MS). Tentative identities of the potential pheromone compounds were confirmed by comparing both retention time and mass spectra with authentic standards. Two electrophysiologically active pheromone compounds, tetradecyl acetate (14:OAc) and Z9-tetradecenyl acetate (Z9-14:OAc) were identified from pheromone gland extracts, and an additional compound (Z9-14:OH) from headspace samples. We further determined dose response curves for the identified compounds and six other structurally similar compounds that are common to the order Cossidae. Male antennae showed superior sensitivity toward Z9-14:OAc, Z7-tetradecenyl acetate (Z7-14:OAc), E9-tetradecenyl acetate (E9-14:OAc), Z9-tetradecenol (Z9-14:OH) and Z9-tetradecenal (Z9-14:Ald) when compared to female antennae. While we could show electrophysiological responses to single pheromone compounds, behavioral attraction of males was dependent on the synergistic effect of at least two of these compounds. Signal specificity is shown to be gained through pheromone blends. A field trial showed that a significant number of males were caught only in traps baited with a combination of Z9-14:OAc (circa 95% of the ratio) and Z9-14:OH. Addition of 14:OAc to this mixture also improved the number of males caught, although not significantly. This study represents a major step towards developing a useful attractant to be used in management tools for C. tristis and contributes to the understanding of chemical communication and biology of this group of insects.
Bouwer, Marc Clement; Slippers, Bernard; Degefu, Dawit; Wingfield, Michael John; Lawson, Simon; Rohwer, Egmont Richard
2015-01-01
The cossid moth (Coryphodema tristis) has a broad range of native tree hosts in South Africa. The moth recently moved into non-native Eucalyptus plantations in South Africa, on which it now causes significant damage. Here we investigate the chemicals involved in pheromone communication between the sexes of this moth in order to better understand its ecology, and with a view to potentially develop management tools for it. In particular, we characterize female gland extracts and headspace samples through coupled gas chromatography electro-antennographic detection (GC-EAD) and two dimensional gas chromatography mass spectrometry (GCxGC-MS). Tentative identities of the potential pheromone compounds were confirmed by comparing both retention time and mass spectra with authentic standards. Two electrophysiologically active pheromone compounds, tetradecyl acetate (14:OAc) and Z9-tetradecenyl acetate (Z9-14:OAc) were identified from pheromone gland extracts, and an additional compound (Z9-14:OH) from headspace samples. We further determined dose response curves for the identified compounds and six other structurally similar compounds that are common to the order Cossidae. Male antennae showed superior sensitivity toward Z9-14:OAc, Z7-tetradecenyl acetate (Z7-14:OAc), E9-tetradecenyl acetate (E9-14:OAc), Z9-tetradecenol (Z9-14:OH) and Z9-tetradecenal (Z9-14:Ald) when compared to female antennae. While we could show electrophysiological responses to single pheromone compounds, behavioral attraction of males was dependent on the synergistic effect of at least two of these compounds. Signal specificity is shown to be gained through pheromone blends. A field trial showed that a significant number of males were caught only in traps baited with a combination of Z9-14:OAc (circa 95% of the ratio) and Z9-14:OH. Addition of 14:OAc to this mixture also improved the number of males caught, although not significantly. This study represents a major step towards developing a useful attractant to be used in management tools for C. tristis and contributes to the understanding of chemical communication and biology of this group of insects. PMID:25826254
2014-01-01
Background Immunoassays are widely used in clinical laboratories for measurement of plasma/serum concentrations of steroid hormones such as cortisol and testosterone. Immunoassays can be performed on a variety of standard clinical chemistry analyzers, thus allowing even small clinical laboratories to do analysis on-site. One limitation of steroid hormone immunoassays is interference caused by compounds with structural similarity to the target steroid of the assay. Interfering molecules include structurally related endogenous compounds and their metabolites as well as drugs such as anabolic steroids and synthetic glucocorticoids. Methods Cross-reactivity of a structurally diverse set of compounds were determined for the Roche Diagnostics Elecsys assays for cortisol, dehydroepiandrosterone (DHEA) sulfate, estradiol, progesterone, and testosterone. These data were compared and contrasted to package insert data and published cross-reactivity studies for other marketed steroid hormone immunoassays. Cross-reactivity was computationally predicted using the technique of two-dimensional molecular similarity. Results The Roche Elecsys Cortisol and Testosterone II assays showed a wider range of cross-reactivity than the DHEA sulfate, Estradiol II, and Progesterone II assays. 6-Methylprednisolone and prednisolone showed high cross-reactivity for the cortisol assay, with high likelihood of clinically significant effect for patients administered these drugs. In addition, 21-deoxycortisol likely produces clinically relevant cross-reactivity for cortisol in patients with 21-hydroxylase deficiency, while 11-deoxycortisol may produce clinically relevant cross-reactivity in 11β-hydroxylase deficiency or following metyrapone challenge. Several anabolic steroids may produce clinically significant false positives on the testosterone assay, although interpretation is limited by sparse pharmacokinetic data for some of these drugs. Norethindrone therapy may impact immunoassay measurement of testosterone in women. Using two-dimensional similarity calculations, all compounds with high cross-reactivity also showed a high degree of similarity to the target molecule of the immunoassay. Conclusions Compounds producing cross-reactivity in steroid hormone immunoassays generally have a high degree of structural similarity to the target hormone. Clinically significant interactions can occur with structurally similar drugs (e.g., prednisolone and cortisol immunoassays; methyltestosterone and testosterone immunoassays) or with endogenous compounds such as 21-deoxycortisol that can accumulate to very high concentrations in certain disease conditions. Simple similarity calculations can help triage compounds for future testing of assay cross-reactivity. PMID:25071417
USDA-ARS?s Scientific Manuscript database
Annual losses of honey bee colonies remain high and pesticide exposure is one possible cause. Dangerous combinations of pesticides, plant-produced compounds and antibiotics added to hives may cause or contribute to losses, but it is very difficult to test the many combinations of those compounds tha...
Ross, B M; Dadgostar, N; Bloom, M; McKeown, L
2009-05-01
Oral malodour is a common disorder predominantly caused by bacterial metabolism of food stuffs in the mouth. It is routinely diagnosed and monitored by either the subjective rating or the measurement of oral volatile sulphur compound (VSC) levels. Non-sulphur compounds are also believed to contribute significantly to the condition although there is currently no direct means to assess their levels. In this study, we utilized selective flow tube mass spectrometry (SIFT-MS) to measure, in real time, a range of sulphur and non-sulphur containing compounds in oral air to determine whether the technique can be used to objectively monitor oral malodour. Oral malodour was assessed using organoleptic scores in subjects with and without a history of oral malodour (n = 18) by a trained rater, while the chemical composition of oral air was analysed by both VSC sensor and SIFT-MS. Total VSC levels were significantly correlated with levels of hydrogen sulphide and methylmercaptan measured by SIFT-MS, but not with organoleptic scores. In subjects with elevated organoleptic score, only levels of methylmercaptan were significantly elevated. In three subjects with elevated tongue organoleptic scores but normal total VSC levels, SIFT-MS suggested that one subject possessed high levels of oral acetone while another had high oral levels of acetic acid. Our data suggest that SIFT-MS can be used to assess a wide range of compounds in oral air in addition to VSC to provide a clearer picture of the chemical nature of malodour. This may assist in the diagnosis and monitoring of the condition.
Synthesis of natural acylphloroglucinol-based antifungal compounds against Cryptococcus species
USDA-ARS?s Scientific Manuscript database
Thirty-five analogs of naturally occurring acylphloroglucinols were designed and synthesized to identify antifungal compounds against Cryptococcus spp. that causes the life-threatening disseminated cryptococcosis. In vitro antifungal testing showed that 17 compounds were active against C. neoformans...
2013-01-01
Background Previous studies of Gynura procumbens (G. procumbens) have shown that partially purified fractions of the leaves are capable of lowering the blood pressure of rats by inhibiting angiotensin-converting enzymic activity and causing vasodilatation. The objectives of this study were therefore to further purify the active compounds that exhibited selective effects on blood vessels, determine the mechanism of actions, and to qualitatively analyse the putative compounds present. Methods The butanolic fraction (BU) of the crude ethanolic extract was purified using column chromatography to obtain several sub-fractions of different polarities. The in vitro effects of BU and the sub-fractions on vascular tension were subsequently determined using isolated rat thoracic aortic rings. The most potent sub-fraction (F1) alone was then investigated for its mechanisms of the vasorelaxant activity. In another experiment, thin-layer chromatography was used to qualitatively analyse the active compounds found in F1. Results The BU and the sub-fractions ranging from 10-7 to 10-2 g/ml significantly (p < 0.05) inhibited the sustained tonic contractions induced by phenylephrine and potassium chloride in a concentration-dependent manner with various degree of potency. The most potent sub-fraction (F1) antagonised the calcium-induced vasocontractions (1 x 10-4 – 1 x 10-2 M) in calcium-free with high concentration of potassium as well as in calcium- and potassium-free Krebs-Henseleit solutions. Contractions induced by noradrenaline and caffeine were not affected by F1. The vasorelaxing effect caused by F1 was significantly attenuated with preincubation of potassium channel blockers (glibenclamide and 4-aminopyridine) and prostacyclin inhibitor (indomethacin) while it was not affected by preincubation with tetraethylammonium, l-nitro-arginine methyl esther, propanolol, atropine, oxadiazolo quinoxalin one and methylene blue. The qualitative phytochemical analysis of F1 indicated the presence of flavonoids. Conclusion These results confirm previous findings that G. procumbens causes vasodilatory effects by blocking calcium channels. In addition, the present study further demonstrates that the vasodilatory effect of G. procumbens may also be due to the opening of potassium channels and the stimulation of prostacyclin production. The putative compounds are probably flavonoids in nature. PMID:23879679
Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport
NASA Technical Reports Server (NTRS)
2003-01-01
The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows. ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, were grown by vapor transport technique with real time in situ non-invasive monitoring techniques. The grown crystals were characterized extensively to correlate the grown crystal properties with the growth conditions. Significant effects of gravity vector orientation on the growth crystal morphology and point defect distribution were observed.
Deryabina, D G; Efremova, L V; Karimov, I F; Manukhov, I V; Gnuchikh, E Yu; Miroshnikov, S A
2016-01-01
A comparative analysis of the four commercially available and laboratory luminescent sensor strains to the toxic effect of 10 carbon-based nanomatherials (CBNs) and 10 metal nanoparticles (MNPs) was carried out in this study. The bioluminescence inhibition assays with marine Photobacterium phosphoreum and recombinant Escherichia coli strains were varied in minimal toxic concentrations and EC50 values but led to well correlated biotoxicity evaluation for the most active compounds were ranked as Cu > (MgO, CuO) > (fullerenol, graphene oxide). The novel sensor strain Bacillus subtilis EG 168-1 exhibited the highest sensitivity to CBNs and MNPs that increased significantly number of toxic compounds causing the bacterial bioluminescence inhibition effect.
Synthetic routes to 3(5)-phosphonylated pyrazoles
NASA Astrophysics Data System (ADS)
Goulioukina, N. S.; Makukhin, N. N.; Beletskaya, I. P.
2016-07-01
This review comprehensively covers the currently available synthetic routes to 3(5)-phosphonylated pyrazoles. There are demonstrated significant advances in this field over the last 10-15 years caused by the use of the Bestmann-Ohira reagent [as well as (diazomethyl)phosphonates and phosphonylated hydrazonoyl halides] in reactions with diverse dipolarophiles. 1,3-Dipolar cycloaddition of diazo compounds to α,β-unsaturated phosphonates as well as intramolecular heterocyclization of (1-diazoallyl)phosphonates and (3--diazo-1-propenyl)phosphonates are discussed. Synthetic potential of cyclocondensation of organophosphorus 1,3-dielectrophilic compounds with hydrazines is shown. Ways to introduce a phosphonate group into the pyrazole ring are considered. Examples of chemical transformations of 3(5)-phosphonylated pyrazoles are reported. The bibliography includes 88 references.
Pharmacodynamics of selective androgen receptor modulators.
Yin, Donghua; Gao, Wenqing; Kearbey, Jeffrey D; Xu, Huiping; Chung, Kiwon; He, Yali; Marhefka, Craig A; Veverka, Karen A; Miller, Duane D; Dalton, James T
2003-03-01
The present study aimed to identify selective androgen receptor modulators (SARMs) with in vivo pharmacological activity. We examined the in vitro and in vivo pharmacological activity of four chiral, nonsteroidal SARMs synthesized in our laboratories. In the in vitro assays, these compounds demonstrated moderate to high androgen receptor (AR) binding affinity, with K(i) values ranging from 4 to 37 nM, and three of the compounds efficaciously stimulated AR-mediated reporter gene expression. The compounds were then administered subcutaneously to castrated rats to appraise their in vivo pharmacological activity. Androgenic activity was evaluated by the ability of these compounds to maintain the weights of prostate and seminal vesicle, whereas levator ani muscle weight was used as a measure of anabolic activity. The maximal response (E(max)) and dose for half-maximal effect (ED(50)) were determined for each compound and compared with that observed for testosterone propionate (TP). Compounds S-1 and S-4 demonstrated in vivo androgenic and anabolic activity, whereas compounds S-2 and S-3 did not. The activities of S-1 and S-4 were tissue-selective in that both compounds stimulated the anabolic organs more than the androgenic organs. These two compounds were less potent and efficacious than TP in androgenic activity, but their anabolic activity was similar to or greater than that of TP. Neither S-1 nor S-4 caused significant luteinizing hormone or follicle stimulating hormone suppression at doses near the ED(50) value. Thus, compounds S-1 and S-4 were identified as SARMs with potent and tissue-selective in vivo pharmacological activity, and represent the first members of a new class of SARMs with selective anabolic effects.
Cell death induced by flavonoid glycosides with and without copper.
Hsu, Hsue-Yin; Tsang, Shih-Fang; Lin, Kai-Wei; Yang, Shyh-Chyun; Lin, Chun-Nan
2008-07-01
The ability of flavonoid glycosides isolated from several plants to induce DNA breakage was examined using supercoiled plasmid pBR322 DNA by agarose gel electrophoresis in the presence of Cu(II). Among all the compounds, 1, 4, and 6 could cause significant breakages of supercoiled plasmid pBR322 DNA in the presence of Cu(II). Cu(I) was not shown to be an essential intermediate in the process of pBR322 DNA breakage by using the Cu(I)-specific sequestering reagent neocuproine. A decreased cell viability was enhanced in gastric carcinoma SCM-1 cells treating with lower concentrations of 1 and 6 when cotreated with increased concentrations of Cu(II), respectively. Treatments of SCM-1 cells with 500 microM of 1 in the presence of 300 or 500 microM of Cu(II) inhibited the Cu(II)-induced apoptosis. Compound 1 (500 microM) could prevent cell death by inhibiting the 500 microM Cu(II)-induced apoptosis and necrosis, but did not have any effect on the mitochondrial membrane potential changed by 500 microM Cu(II). Both compounds 1 and 6 could inhibit the DNA breakages caused by O2- while 1 also revealed inhibitory effect on xanthine oxidase with an IC50 value of 22.7+/-6.9 microM. These results indicated that compound 1 with a higher concentration may probably mediate through the suppression of xanthine oxidase activity and reduce reactive oxygen species (ROS) induced by high concentration of Cu(II) (500 microM) and prevent the following cell death.
Pazo, Daniel Y; Moliere, Fallon; Sampson, Maureen M; Reese, Christopher M; Agnew-Heard, Kimberly A; Walters, Matthew J; Holman, Matthew R; Blount, Benjamin C; Watson, Clifford H; Chambers, David M
2016-09-01
A significant portion of the increased risk of cancer and respiratory disease from exposure to cigarette smoke is attributed to volatile organic compounds (VOCs). In this study, 21 VOCs were quantified in mainstream cigarette smoke from 50U.S. domestic brand varieties that included high market share brands and 2 Kentucky research cigarettes (3R4F and 1R5F). Mainstream smoke was generated under ISO 3308 and Canadian Intense (CI) smoking protocols with linear smoking machines with a gas sampling bag collection followed by solid phase microextraction/gas chromatography/mass spectrometry (SPME/GC/MS) analysis. For both protocols, mainstream smoke VOC amounts among the different brand varieties were strongly correlated between the majority of the analytes. Overall, Pearson correlation (r) ranged from 0.68 to 0.99 for ISO and 0.36 to 0.95 for CI. However, monoaromatic compounds were found to increase disproportionately compared to unsaturated, nitro, and carbonyl compounds under the CI smoking protocol where filter ventilation is blocked. Overall, machine generated "vapor phase" amounts (µg/cigarette) are primarily attributed to smoking protocol (e.g., blocking of vent holes, puff volume, and puff duration) and filter ventilation. A possible cause for the disproportionate increase in monoaromatic compounds could be increased pyrolysis under low oxygen conditions associated with the CI protocol. This is the most comprehensive assessment of volatile organic compounds (VOCs) in cigarette smoke to date, encompassing 21 toxic VOCs, 50 different cigarette brand varieties, and 2 different machine smoking protocols (ISO and CI). For most analytes relative proportions remain consistent among U.S. cigarette brand varieties regardless of smoking protocol, however the CI smoking protocol did cause up to a factor of 6 increase in the proportion of monoaromatic compounds. This study serves as a basis to assess VOC exposure as cigarette smoke is a principle source of overall population-level VOC exposure in the United States. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Burns, Anne Marie; Lawlor, Peadar G; Gardiner, Gillian E; McCabe, Evonne M; Walsh, Des; Mohammed, Manal; Grant, Jim; Duffy, Geraldine
2015-10-01
The purpose of this study was to assess the occurrence of non-typhoidal Salmonellae and Enterobacteriaceae counts in raw ingredients and compound feeds sampled from feed mills manufacturing pig diets. Between November 2012 and September 2013, feed ingredients (n=340) and compound pig feed (n=313) samples were collected from five commercial feed mills and one home compounder at various locations throughout Ireland. Feed ingredients included cereals, vegetable protein sources and by-products of oil extraction and ethanol production. The compound feeds included meal and pelleted feed for all stages of pig production. Samples were analysed for Salmonella using standard enrichment procedures. Recovered isolates were serotyped, characterised for antibiotic resistance and subtyped by multi locus variance analysis (MLVA). Total Enterobacteriaceae counts were also performed. Salmonella was recovered from 2/338 (0.6%) ingredients (wheat and soybean meal), at two of the six mills. Salmonella was also detected in 3/317 (0.95%) compound feeds including pelleted feed which undergoes heat treatment. All isolates recovered from feed ingredient and compound feed samples were verified as Salmonella enterica subsp. enterica serotype (4,[5],12:i:-) that lack the expression of flagellar Phase 2 antigens representing monophasic variants of Salmonella Typhimurium (4,[5],12:i:-). Isolates exhibited resistance to between two and seven antimicrobials. Two distinct MLVA profiles were observed, with the same profile recovered from both feed and ingredients, although these did not originate at the same mill. There was no relationship between the occurrence of Salmonella and a high Enterobacteriaceae counts but it was shown that Enterobacteriaceae counts were significantly lower in pelleted feed (heat treated) than in meal (no heat treatment) and that Enterobacteriaceae counts would be very useful indicator in HACPP programme. Overall, although the prevalence of Salmonella in pig feed and feed ingredients in the present study was low, even minor Salmonella contamination in feed has the potential to affect many herds and may subsequently cause human infection. Furthermore, the recovery of a recently emerged serovar with multi-antibiotic resistance is a potential cause for concern. Copyright © 2015 Elsevier B.V. All rights reserved.
Swedberg, Michael D B
2016-01-01
Drug discrimination studies for assessment of psychoactive properties of drugs in safety pharmacology and drug abuse and drug dependence potential evaluation have traditionally been focused on testing novel compounds against standard drugs for which drug abuse has been documented, e.g. opioids, CNS stimulants, cannabinoids etc. (e.g. Swedberg & Giarola, 2015), and results are interpreted such that the extent to which the test drug causes discriminative effects similar to those of the standard training drug, the test drug would be further characterized as a potential drug of abuse. Regulatory guidance for preclinical assessment of abuse liability by the European Medicines Agency (EMA, 2006), the U.S. Food and Drug Administration (FDA, 2010), the International Conference of Harmonization (ICH, 2009), and the Japanese Ministry of Health Education and Welfare (MHLW, 1994) detail that compounds with central nervous system (CNS) activity, whether by design or not, need abuse and dependence liability assessment. Therefore, drugs with peripheral targets and a potential to enter the CNS, as parent or metabolite, are also within scope (see Swedberg, 2013, for a recent review and strategy). Compounds with novel mechanisms of action present a special challenge due to unknown abuse potential, and should be carefully assessed against defined risk criteria. Apart from compounds sharing mechanisms of action with known drugs of abuse, compounds intended for indications currently treated with drugs with potential for abuse and or dependence are also within scope, regardless of mechanism of action. Examples of such compounds are analgesics, anxiolytics, cognition enhancers, appetite control drugs, sleep control drugs and drugs for psychiatric indications. Recent results (Swedberg et al., 2014; Swedberg & Raboisson, 2014; Swedberg, 2015) on the metabotropic glutamate receptor type 5 (mGluR5) antagonists demonstrate that compounds causing hallucinatory effects in humans did not exhibit clear discriminative effects when tested against classical drugs of abuse in drug discrimination studies, and were not self-administered by rats. However, these compounds did cause salient discriminative effects of their own in animals trained to discriminate them from no drug. Therefore, from a safety pharmacology perspective, novel compounds that do not cause discriminative effects similar to classical drugs of abuse, may still cause psychoactive effects in humans and carry the potential to maintain drug abuse, suggesting that proactive investigation of drug abuse potential is warranted (Swedberg, 2013). These and other findings will be discussed, and the application of drug discrimination procedures beyond the typical standard application of testing novel compounds against known and well characterized reference drugs will be addressed. Copyright © 2016 Elsevier Inc. All rights reserved.
Berkas, Wayne R.
2000-01-01
Water samples from 27 wells completed in and near the Shell Valley aquifer were analyzed for benzene, toluene, ethylbenzene, and xylene (BTEX), polynuclear aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), and pentachlorophenol (PCP) using the enzyme-linked immunoassay method. The analyses indicated the presence of PAH, PCB, and PCP in the study area. However, an individual compound at a high concentration or many compounds at low concentrations could cause the detections. Therefore, selected samples were analyzed using the gas chromatography (GC) method, which can detect individual compounds and determine the concentrations of those compounds. Concentrations for all compounds detected using the GC method were less than the minimum reporting levels (MRLs) for each constituent, indicating numerous compounds at low concentrations probably caused the immunoassay detections. The GC method also can detect compounds other than BTEX, PAH, PCB, and PCP. Concentrations for 81 of the additional compounds were determined and were less than the MRLs.Four compounds that could not be quantified accurately using the requested analytical methods also were detected. Acetone was detected in 4 of the 27 wells, 2-butanone was detected in 3 of the 27 wells, prometon was detected in 1 of the 27 wells, and tetrahydrofuran was detected in 9 of the 27 wells. Acetone, 2-butanone, and tetrahydrofuran probably leached from the polyvinyl chloride (PVC) pipe and joint glue and probably are not contaminants from the aquifer. Prometon is a herbicide that controls most annual and many perennial broadleaf weeds and primarily is used on roads and railroad tracks. The one occurrence of prometon could be caused by overspraying for weeds.
Wen, Dingsheng; Liu, Aiming; Chen, Feng; Yang, Julin; Dai, Renke
2012-10-01
Drug-induced QT prolongation usually leads to torsade de pointes (TdP), thus for drugs in the early phase of development this risk should be evaluated. In the present study, we demonstrated a visualized transgenic zebrafish as an in vivo high-throughput model to assay the risk of drug-induced QT prolongation. Zebrafish larvae 48 h post-fertilization expressing green fluorescent protein in myocardium were incubated with compounds reported to induce QT prolongation or block the human ether-a-go-go-related gene (hERG) K⁺ current. The compounds sotalol, indapaminde, erythromycin, ofoxacin, levofloxacin, sparfloxacin and roxithromycin were additionally administrated by microinjection into the larvae yolk sac. The ventricle heart rate was recorded using the automatic monitoring system after incubation or microinjection. As a result, 14 out of 16 compounds inducing dog QT prolongation caused bradycardia in zebrafish. A similar result was observed with 21 out of 26 compounds which block hERG current. Among the 30 compounds which induced human QT prolongation, 25 caused bradycardia in this model. Thus, the risk of compounds causing bradycardia in this transgenic zebrafish correlated with that causing QT prolongation and hERG K⁺ current blockage in established models. The tendency that high logP values lead to high risk of QT prolongation in this model was indicated, and non-sensitivity of this model to antibacterial agents was revealed. These data suggest application of this transgenic zebrafish as a high-throughput model to screen QT prolongation-related cardio toxicity of the drug candidates. Copyright © 2012 John Wiley & Sons, Ltd.
Worakan, Phapawee; Karaket, Netiya; Maneejantra, Nuchada; Supaibulwatana, Kanyaratt
2017-02-01
Cytokinins are phytohormones that play multiple roles to control plant growth and development. In this study, leaf biomass and the production of andrographolide compounds in a medicinal plant Andrographis paniculata were significantly increased after exogenously treating with the synthetic cytokinin cytokinin-1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU) at 0 (water), 5, or 10 mg L -1 and observed the results for 24 h, 48 h, and 7 days of treatment. It was found that CPPU could significantly enhance new axillary bud formation and further promote branching 4.6-5.6-fold higher, resulting in higher fresh weight (FW) and dry weight (DW) than the control. Application of CPPU at 5 mg L -1 significantly promoted the highest contents of total reducing sugar at 2.5-fold in leaves and at 1.5-fold in roots. Although treatments of CPPU significantly affected the increasing contents of chlorophyll and carotenoid (1.2-1.6-fold), CPPU at 10 mg L -1 slightly caused leaf stress and chlorophyll reduction. Interestingly, 5 mg L -1 CPPU could enhance andrographolide content, an active anti-infectious compound in Andrographis paniculata (2.2-fold higher than the control) that reached the highest content at 24 h after treatment. This study suggested that CPPU should be suitable for field application to promote leaf yields and induce the production of useful pharmaceutical compounds in Andrographis paniculata.
Matouke, Moise M; Elewa, Dorcas T; Abdullahi, Karimatu
2018-05-01
The wide application of titanium dioxide nanoparticles and phosphorus in the manufacturing of many industrial products mainly used in agricultural sector has resulted in the release of considerable amounts of these compounds into freshwater aquatic ecosystem. These compounds may cause some unexpected effects to aquatic organisms. This study assessed the binary effects of Titanium nanoparticles (nTiO 2 ) and Phosphorus on Chlorella ellipsoides. Toxicological assay test of the compounds nTiO 2 (1.25 μM) alone and the combination of Titanium dioxide (1.25 μM) and Phosphorus (16, 32, 80, 160, 240 μM) was assessed, after 96 h exposures, for optical density (OD 680 ), specific growth rate, chlorophyll levels and lipid peroxidation via Malondialdehyde (MDA) activity. Superoxide dismutase (SOD), peroxidase (POD) and glutathione-s-transferase (GST) activities were also measured. Two-way ANOVA showed a significant interaction (P < 0.05) between binary mixture. Co-exposure showed a decreased phosphorus bioconcentration in the microalgae with significant increase (P < 0.05) in chlorophyll a/b and total chlorophyll contents. A significant decrease (P < 0.05) in specific growth rate and optical density were recorded whereas, antioxidant enzymes (MDA, SOD, POD, GST) activities were significantly (P < 0.05) increased. These results showed that the addition of nTiO 2 to Phosphorus affected the physiology of microalgae and should be of great concern for freshwater biodiversity. Copyright © 2018. Published by Elsevier B.V.
Anxiolytic-like effect of Shigyakusan extract with low side effects in mice.
Tanaka, Machiko; Satou, Tadaaki; Koike, Kazuo
2013-10-01
Shigyakusan is a traditional Japanese herbal (Kampo) medicine used to treat inflammatory conditions such as cholecystitis and gastritis as well as psychiatric disorders. This study examined the anxiolytic-like effect of Shigyakusan extract (SS), and evaluated the activity of the main compound. Three behavioral tests in mice were used to evaluate the activity of SS. Samples were administered orally over a 10-day period. A light and dark box (LDB) test was performed on the 8th day, while an open field (OF) test was done on the 9th day, and an elevated plus maze (EPM) test was performed on the 10th day. Diazepam (DZ), a typical anxiolytic drug, was used as the positive control. Administration of 10 mg/kg DZ resulted in a significant anxiolytic-like effect in the LDB and EPM tests, while administration of 0.3 g/kg SS resulted in a weak anxiolytic-like effect. In the OF test, while DZ caused a significant reduction of locomotor activity, SS did not cause any changes compared to the water controls. This suggests that locomotor activity may be a side effect of DZ, and thus SS, which lacks this response, may be a more useful treatment. Quantitative analysis performed to clarify the activity of the main compound also determined that SS contained 51.4 mg/g naringin, which also has been reported to have anxiolytic-like activity. Since these results suggested that this compound might be responsible for the activity of SS, we subsequently examined the oral administration of a similar dose of naringin. Although we observed a tendency for a weak anxiolytic-like effect, this effect was not greater than that seen for SS.
Yilmaz, Y; Keles, S; Mete, A
2013-06-01
To compare changes in pulpal chamber temperature during the visible-light curing of direct pulp capping compounds and various modes of diode laser irradiation without prior placement of a pulp capping compound and the resultant seals. Pulp exposure holes were made in 100 extracted human primary first molars, which were randomly assigned to ten equal groups. The holes were sealed by (a= Group 1, 2, 3, 4, 5, 6 and 7) different pulp capping compounds which were cured using various types of visible-light curing units or (b=Group 8, 9 and 10) diode laser irradiation without prior application of a pulp capping compound. Pulpal chamber temperatures were recorded during the procedure, and the resultant seals were examined under a scanning electron microscope. Visible-light curing of the pulp capping compounds and diode laser irradiation at a 0.7 W output power can cause non-injurious temperature rises in the pulpal chamber. At higher output powers of the diode laser, the temperature rises are sufficient to cause thermal injury. The seals were complete when pulp capping compounds were used for direct pulp capping, but were incomplete when laser irradiation without prior placement of a pulp capping compound was used for the identical purpose. The visible-light curing of pulp capping compounds is not harmful to vital pulp, and provides an effective seal of the pulp exposure hole. Laser irradiation is not an effective sealant, and can cause thermal injury to vital pulp at high output powers.
Santos Bubniak, Lorena Dos; Gaspar, Pâmela Cristina; de Moraes, Ana Carolina Rabello; Bigolin, Alisson; de Souza, Rubia Karine; Buzzi, Fátima Campos; Corrêa, Rogério; Filho, Valdir Cechinel; Bretanha, Lizandra Czermainski; Micke, Gustavo Amadeu; Nunes, Ricardo José; Santos-Silva, Maria Cláudia
2017-05-01
Pyrazoline is an important 5-membered nitrogen heterocycle that has been extensively researched. Ten derivatives were synthesized and tested for antileukemic effects on 2 human acute leukemia cell lines, K562 and Jurkat. The most cytotoxic of these derivatives, compound 21, was chosen for investigation of cytotoxicity mechanisms. The results obtained with selectivity calculations revealed that compound 21 is more selective for acute leukemia (K562 and Jurkat cell lines) than for other tumor cell lines. Moreover, compound 21 was not cytotoxic to normal cell lines, indicating a potential use in clinical tests. Compound 21 caused a significant cell cycle arrest in the S-phase in Jurkat cells and increased the proportion of cells in the sub G0/G1 phase in both cell lines. Cells treated with compound 21 demonstrated morphological changes characteristic of apoptosis in the EB/AO assay, confirmed by externalization of phosphatidylserine by the annexin V - fluorescein isothiocyanate method and by DNA fragmentation. An investigation of cytotoxicity mechanisms suggests the involvement of an intrinsic apoptosis pathway due to mitochondrial damage and an increase in the ratio of mitochondrial Bax/Bcl2. Pyrazoline 21 obeyed Lipinski's "rule of five" for drug-likeness. Based on these preliminary results, the antileukemic activity of compound 21 makes it a potential anticancer agent.
Duan, Yong-Tao; Man, Ruo-Jun; Tang, Dan-Jie; Yao, Yong-Fang; Tao, Xiang-Xiang; Yu, Chen; Liang, Xin-Yi; Makawana, Jigar A.; Zou, Mei-Juan; Wang, Zhong-Chang; Zhu, Hai-Liang
2016-01-01
A series of 12 novel acylhydrazone, chalcone and amide–bridged analogues of combretastatin A-4 were designed and synthesized toward tubulin. All these compounds were determined by elemental analysis, 1H NMR, and MS. Among them, compound 7 with acylhydrazone-bridge, bearing a benzyl at the indole-N position, was identified as a potent antiproliferative agent against a panel of cancer cell lines with IC50 values ranging from 0.08 to 35.6 μM. In contrast, its cytotoxic effects on three normal human cells were minimal. Cellular studies have revealed that the induction of apoptosis by compound 7 was associated with a collapse of mitochondrial membrane potential, accumulation of reactive oxygen species, alterations in the expression of some cell cycle-related proteins (Cyclin B1, Cdc25c, Cdc2, P21) and some apoptosis-related proteins (Bax, PARP, Bcl-2, Caspase3). The docking mode showed the binding posture of CA-4 and compound 7 are similar in the colchicine-binding pocket of tubulin, as confirmed by colchicine-tubulin competitive binding assay, tubulin polymerization inhibitory activity, extracellular protein expression determination assay and confocal immunofluorescence microscopy. In vivo study, compound 7 effectively inhibited A549 xenograft tumor growth without causing significant loss of body weight suggesting that compound 7 is a promising new antimitotic agent with clinical potential. PMID:27138035
Kaiser, Marcel; Chatelain, Eric; Moawad, Sarah R.; Ganame, Danny; Ioset, Jean-Robert; Avery, Vicky M.
2012-01-01
Human African Trypanosomiasis (HAT) is caused by two trypanosome sub-species, Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Drugs available for the treatment of HAT have significant issues related to difficult administration regimes and limited efficacy across species and disease stages. Hence, there is considerable need to find new alternative and less toxic drugs. An approach to identify starting points for new drug candidates is high throughput screening (HTS) of large compound library collections. We describe the application of an Alamar Blue based, 384-well HTS assay to screen a library of 87,296 compounds against the related trypanosome subspecies, Trypanosoma brucei brucei bloodstream form lister 427. Primary hits identified against T.b. brucei were retested and the IC50 value compounds were estimated for T.b. brucei and a mammalian cell line HEK293, to determine a selectivity index for each compound. The screening campaign identified 205 compounds with greater than 10 times selectivity against T.b. brucei. Cluster analysis of these compounds, taking into account chemical and structural properties required for drug-like compounds, afforded a panel of eight compounds for further biological analysis. These compounds had IC50 values ranging from 0.22 µM to 4 µM with associated selectivity indices ranging from 19 to greater than 345. Further testing against T.b. rhodesiense led to the selection of 6 compounds from 5 new chemical classes with activity against the causative species of HAT, which can be considered potential candidates for HAT early drug discovery. Structure activity relationship (SAR) mining revealed components of those hit compound structures that may be important for biological activity. Four of these compounds have undergone further testing to 1) determine whether they are cidal or static in vitro at the minimum inhibitory concentration (MIC), and 2) estimate the time to kill. PMID:23209849
Ezzat, Shahira Mohammed; Abdel Motaal, Amira; El Awdan, Sally Abdel Wanees
2017-12-01
Balanites aegyptiaca Del. (Zygophyllaceae) fruits are well-known antidiabetic drug in Egyptian folk medicine. Nevertheless, its mechanism of action is still unclear. Searching for the possible mechanisms of action of the plant and identification of its bioactive compounds. A bio-guided protocol based on the evaluation of α-glucosidase (AG) and aldose reductase (AR) inhibitory activities was adopted to isolate the biologically active compounds from the methanol extract (MeEx). An in vivo antidiabetic study was conducted for the active extract, fraction and compound using streptozotocin-induced diabetic male albino Wistar rats at two dose levels (100 and 200 mg/kg.b/wt) for 2 weeks. Three compounds were isolated and identified: a sterol, (1) stigmasterol-3-O-β-d-glucopyranoside; a pregnane glucoside, (2) pregn-5-ene-3β,16β,20(R)-trio1-3-O-β-d-glucopyranoside; a furostanol saponin, (3) 26-(O-β-d-glucopyranosyl)-22-O-methylfurost-5-ene-3β,26-diol-3-O-β-d-glucopyranosyl-(1 → 4)-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranoside. Only compound 3 possessed significant AG and AR inhibitory activities (IC 50 = 3.12 ± 0.17 and 1.04 ± 0.02 μg/mL, respectively), while compounds 1 and 2 were inactive. The in vivo antidiabetic study revealed that MeEx and furostanol saponin 3 possessed significant activities at a dose of 200 mg/kg through reducing the fasting plasma glucose level by 46.14% and 51.39%, respectively, as well as reducing the total cholesterol by 24.44% and 31.90%, respectively. Compound 3 also caused increment in insulin and C-peptide levels by 63.56% and 65%, respectively. We presented a scientific base for using Balanites aegyptiaca, and shed the light on one of its saponins, as an antidiabetic agent in fasting and postprandial hyperglycaemia along with the improvement of diabetic complications.
Does Compound I Vary Significantly between Isoforms of Cytochrome P450?
2011-01-01
The cytochrome P450 (CYP) enzymes are important in many areas, including pharmaceutical development. Subtle changes in the electronic structure of the active species, Compound I, have been postulated previously to account partly for the experimentally observed differences in reactivity between isoforms. Current predictive models of CYP metabolism typically assume an identical Compound I in all isoforms. Here we present a method to calculate the electronic structure and to estimate the Fe–O bond enthalpy of Compound I, and apply it to several human and bacterial CYP isoforms. Conformational flexibility is accounted for by sampling large numbers of structures from molecular dynamics simulations, which are subsequently optimized with density functional theory (B3LYP) based quantum mechanics/molecular mechanics. The observed differences in Compound I between human isoforms are small: They are generally smaller than the spread of values obtained for the same isoform starting from different initial structures. Hence, it is unlikely that the variation in activity between human isoforms is due to differences in the electronic structure of Compound I. A larger difference in electronic structure is observed between the human isoforms and P450cam and may be explained by the slightly different hydrogen-bonding environment surrounding the cysteinyl sulfur. The presence of substrate in the active site of all isoforms studied appears to cause a slight decrease in the Fe–O bond enthalpy, apparently due to displacement of water out of the active site, suggesting that Compound I is less stable in the presence of substrate. PMID:21863858
Chloride channel blockade relaxes airway smooth muscle and potentiates relaxation by β-agonists
Yim, Peter; Rinderspacher, Alison; Fu, Xiao Wen; Zhang, Yi; Landry, Donald W.; Emala, Charles W.
2014-01-01
Severe bronchospasm refractory to β-agonists continues to cause significant morbidity and mortality in asthmatic patients. We questioned whether chloride channels/transporters are novel targets for the relaxation of airway smooth muscle (ASM). We have screened a library of compounds, derivatives of anthranilic and indanyloxyacetic acid, that were originally developed to antagonize chloride channels in the kidney. We hypothesized that members of this library would be novel calcium-activated chloride channel blockers for the airway. The initial screen of this compound library identified 4 of 20 compounds that relaxed a tetraethylammonium chloride-induced contraction in guinea pig tracheal rings. The two most effective compounds, compounds 1 and 13, were further studied for their potential to either prevent the initiation of or relax the maintenance phase of an acetylcholine (ACh)-induced contraction or to potentiate β-agonist-mediated relaxation. Both relaxed an established ACh-induced contraction in human and guinea pig ex vivo ASM. In contrast, the prevention of an ACh-induced contraction required copretreatment with the sodium-potassium-chloride cotransporter blocker bumetanide. The combination of compound 13 and bumetanide also potentiated relaxation by the β-agonist isoproterenol in guinea pig tracheal rings. Compounds 1 and 13 hyperpolarized the plasma cell membrane of human ASM cells and blocked spontaneous transient inward currents, a measure of chloride currents in these cells. These functional and electrophysiological data suggest that modulating ASM chloride flux is a novel therapeutic target in asthma and other bronchoconstrictive diseases. PMID:24879056
Multiple external hazards compound level 3 PSA methods research of nuclear power plant
NASA Astrophysics Data System (ADS)
Wang, Handing; Liang, Xiaoyu; Zhang, Xiaoming; Yang, Jianfeng; Liu, Weidong; Lei, Dina
2017-01-01
2011 Fukushima nuclear power plant severe accident was caused by both earthquake and tsunami, which results in large amount of radioactive nuclides release. That accident has caused the radioactive contamination on the surrounding environment. Although this accident probability is extremely small, once such an accident happens that is likely to release a lot of radioactive materials into the environment, and cause radiation contamination. Therefore, studying accidents consequences is important and essential to improve nuclear power plant design and management. Level 3 PSA methods of nuclear power plant can be used to analyze radiological consequences, and quantify risk to the public health effects around nuclear power plants. Based on multiple external hazards compound level 3 PSA methods studies of nuclear power plant, and the description of the multiple external hazards compound level 3 PSA technology roadmap and important technical elements, as well as taking a coastal nuclear power plant as the reference site, we analyzed the impact of off-site consequences of nuclear power plant severe accidents caused by multiple external hazards. At last we discussed the impact of off-site consequences probabilistic risk studies and its applications under multiple external hazards compound conditions, and explained feasibility and reasonableness of emergency plans implementation.
Recent changes in anthropogenic reactive nitrogen compounds
NASA Astrophysics Data System (ADS)
Andronache, Constantin
2014-05-01
Significant anthropogenic perturbations of the nitrogen cycle are the result of rapid population growth, with mounting need for food and energy production. The increase of reactive nitrogen compounds (such as NOx, HNO3, NH3, and N2O) has a significant impact on human health, environment, and climate. NOx emissions contribute to O3 chemistry, aerosol formation and acidic precipitation. Ammonia is a notable atmospheric pollutant that may deteriorate ecosystems and contribute to respiratory problems. It reacts with acidic gases to form aerosols or is deposited back to ecosystems. The application of fertilizers accounts for most of the N2O production, adding to greenhouse gas emissions. We analyze the change of some reactive nitrogen compounds based on observations, in eastern United States. Results show that the control of NOx and SO2 emissions over the last decades caused a significant decrease of acidic deposition. The nitrate deposition is highest in eastern US, while the ammonium ion concentration is highest in central US regions. Overall, the inorganic nitrogen wet deposition from nitrate and ammonium is enhanced in central, and eastern US. Research shows that sensitive ecosystems in northeastern regions exhibit a slow recovery from the accumulated effects of acidic deposition. Given the growing demand for nitrogen in agriculture and industry, we discuss possible pathways to reduce the impact of excess reactive nitrogen on the environment.
Slegers, Amélie; Angers, Paul; Ouellet, Étienne; Truchon, Tamara; Pedneault, Karine
2015-06-15
Developed from crosses between Vitis vinifera and North American Vitis species, interspecific hybrid grape varieties are becoming economically significant in northern areas, where they are now extensively grown for wine production. However, the varietal differences between interspecific hybrids are not well defined, nor are the relationships between hybrid grape and wine composition, which causes significant drawbacks in the development of viticulture and winemaking of northern wines. In an effort to increase our understanding of interspecific hybrids, we have characterized the free volatile compounds profiles of berries (juice and skin) and wines of five red hybrid varieties (Frontenac, Marquette, Maréchal Foch, Sabrevois and St. Croix) grown in Québec (Canada), using GC-MS(TOF)-SPME. In grapes and wines, significantly higher levels of C6 and other fatty acid degradation products (FADP) were found in Frontenac, Maréchal Foch and Marquette. Terpenes were primarily located in the skin, with Marquette showing the highest level for these compounds. Both the level of terpenes and the level of FADP in grape were strongly correlated with their respective levels in wine, as demonstrated by the redundancy analyses. Nonanal, (E,Z)-2,6-nonadienal, β-damascenone, ethyl octanoate and isoamyl acetate showed the highest OAVs in the wines of the studied varieties.
Hrubec, Terry C.; Melin, Vanessa E.; Shea, Caroline S.; Ferguson, Elizabeth E.; Garofola, Craig; Repine, Claire M.; Chapman, Tyler W.; Patel, Hiral R.; Razvi, Reza M.; Sugrue, Jesse E.; Potineni, Haritha; Magnin-Bissel, Geraldine; Hunt, Patricia A.
2018-01-01
Background Quaternary ammonium compounds are a large class of chemicals used for their antimicrobial and antistatic properties. Two common quaternary ammonium compounds, alkyldimethylbenzyl ammonium chloride (ADBAC) and didecyldimethyl ammonium chloride (DDAC), are combined in common cleaners and disinfectants. Introduction of a cleaner containing ADBAC+DDAC in the vivarium caused neural tube defects (NTDs) in mice and rats. Methods To further evaluate this finding, male and female mice were dosed in the feed at 60 or 120 mg/kg/day, or by oral gavage at 7.5, 15, or 30 mg/kg ADBAC+DDAC. Mice also received ambient exposure to ADBAC+DDAC from the disinfectant used in the mouse room. Embryos were evaluated on gestational day 10 for NTDs, and fetuses were evaluated on gestational day 18 for gross and skeletal malformations. Results We found increased NTDs with exposure to ADBAC+DDAC in both rats and mice. The NTDs persisted for two generations after cessation of exposure. Notably, male exposure alone was sufficient to cause NTDs. Equally significant, ambient exposure from disinfectant use in the vivarium, influenced the levels of NTDs to a greater extent than oral dosing. No gross or significant axial skeletal malformations were observed in late gestation fetuses. Placental abnormalities and late gestation fetal deaths were increased at 120 mg/kg/day, which might explain the lack of malformations observed in late gestation fetuses. Conclusion These results demonstrate that ADBAC+DDAC in combination are teratogenic to rodents. Given the increased use of these disinfectants, further evaluation of their safety in humans and their contribution to health and disease is essential. PMID:28618200
Detection of diisocyanates in nesting material associated with mortality in pigeon chicks.
Mukai, Motoko; Woods, Leslie W; Stump, Samuel; Ebel, Joseph G; Levitt, Ariana S; Frey, Margaret W; Smith, Jeanne; Uzal, Francisco A; Poppenga, Robert H; Puschner, Birgit
2014-03-01
Diisocyanates, commonly used in the production of polyurethane foams, paints, elastomers, varnishes, and coatings, are considered among the most hazardous inhalation toxicants. The present report describes 2 unusual cases of mortality in pigeon chicks associated with nesting material contaminated by diisocyanates. Case 1 was submitted by a racing pigeon breeder who had lost all the hatchlings (n = 125) following replacement of the nesting material with a different lot. All adult birds appeared healthy, and hatchability was not significantly affected, but hatchlings became lethargic and dyspneic after a day of hatch. At necropsy, dark wet lungs were found in the hatchlings. Case 2 was submitted by a show-roller pigeon breeder. In this case, the owner reported lower hatchability, and all hatchlings (approximately 100) died within 2 days of hatching with clinical signs similar to the first case. Necropsy did not reveal any significant findings. For both cases, nesting materials were screened for toxic compounds using gas chromatography-mass spectrometry. Toluene-2,4-diisocyanate (approximately 190-290 ppm) and 4,4'-methylene diphenyl diisocyanate (unquantified) were detected in the nesting pads. While there is very limited information on toxicosis in birds, there are reports of inhalant exposure of diisocyanates causing pulmonary edema and death in various mammalian species. Although cause-effect relationship of mortality and the nesting material was not established in the present cases, the presence of toxic compounds in the nesting materials is a cause for concern. Further investigation is needed to determine the prevalence and toxicity of diisocyanates-contaminated nesting material in avian species.
Discrimination Enhancement with Transient Feature Analysis of a Graphene Chemical Sensor.
Nallon, Eric C; Schnee, Vincent P; Bright, Collin J; Polcha, Michael P; Li, Qiliang
2016-01-19
A graphene chemical sensor is subjected to a set of structurally and chemically similar hydrocarbon compounds consisting of toluene, o-xylene, p-xylene, and mesitylene. The fractional change in resistance of the sensor upon exposure to these compounds exhibits a similar response magnitude among compounds, whereas large variation is observed within repetitions for each compound, causing a response overlap. Therefore, traditional features depending on maximum response change will cause confusion during further discrimination and classification analysis. More robust features that are less sensitive to concentration, sampling, and drift variability would provide higher quality information. In this work, we have explored the advantage of using transient-based exponential fitting coefficients to enhance the discrimination of similar compounds. The advantages of such feature analysis to discriminate each compound is evaluated using principle component analysis (PCA). In addition, machine learning-based classification algorithms were used to compare the prediction accuracies when using fitting coefficients as features. The additional features greatly enhanced the discrimination between compounds while performing PCA and also improved the prediction accuracy by 34% when using linear discrimination analysis.
Kobayashi, Michiko; Nagahisa, Keisuke; Shimizu, Hiroshi; Shioya, Suteaki
2006-12-01
Volatile compounds cause undesirable flavor when their concentrations exceed threshold values in beer fermentation. The objective of this study is to develop a system for controlling apparent extract concentration, which indicates the fermentation degree and which should be decreased below a targeted value at a fixed time under a constraint of tolerable amounts of volatile compounds. In beer fermentation, even though the production of volatile compounds is suppressed by maintaining a low fermentation temperature, a low temperature causes a delay in the control of apparent extract concentration. Volatile compound concentration was estimated on-line, and the simulation of apparent extract consumption and volatile compound production was performed. To formulate various beer tastes and conserve energy for attemperation, optimal temperature profiles were determined using a genetic algorithm (GA). The developed feedback control of the brewing temperature profile was successfully applied, and apparent extract and volatile compound concentrations at a fixed time reached their target concentrations. Additionally, the control technique developed in this study enables us to brew a wide variety of beers with different tastes.
Chemical hazard information profile of triphenyl phosphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faust, R.A.; Wiedow, M.A.; Daugherty, M.W.
1986-12-01
The only human study located showed that triphenyl phosphite applied to the skin in a 1:3 dilution with cold cream for 48 h caused slight irritation, and challenge with the compound 14 days later produced a moderate sensitization reaction. The most significant health effects described in experimental animals are those affecting the nervous system. In adult rats, subacute exposure to the chemical produced gross ataxia and spinal cord neuropathy which predominantly affected the lateral and ventral columns of the lumber and sacral regions. Other symptoms included hyperexcitability and agitation after several days, muscle wasting, asymmetric gait, and hind-limb paralysis. Allmore » animals developed tail rigidity with a kinky appearance, and some animals displayed a circling behavior. The compound appeared to only weakly inhibit acetylcholinesterase activity. Single oral doses of triphenyl phosphite Gallus domesticus produced ataxia, and spinal cord and peripheral nerve histopathology. Neurotoxicity in rats, cats, and chickens indicated that triphenyl phosphite caused two distinct stages of action. Rats given s.c. injections of the chemical exhibit rapidly-developing stage or fine or coarse tremors which disappeared after a few hours. The later stage, occurring several days after treatment, caused hyperexcitability, spasticity and incoordination, followed by partial flaccid paralysis of the extremities. 135 refs., 2 tabs.« less
Texas Native Plants Yield Compounds with Cytotoxic Activities against Prostate Cancer Cells.
Shaffer, Corena V; Cai, Shengxin; Peng, Jiangnan; Robles, Andrew J; Hartley, Rachel M; Powell, Douglas R; Du, Lin; Cichewicz, Robert H; Mooberry, Susan L
2016-03-25
There remains a critical need for more effective therapies for the treatment of late-stage and metastatic prostate cancers. Three Texas native plants yielded three new and three known compounds with antiproliferative and cytotoxic activities against prostate cancer cells with IC50 values in the range of 1.7-35.0 μM. A new sesquiterpene named espadalide (1), isolated from Gochnatia hypoleuca, had low micromolar potency and was highly effective in clonogenic assays. Two known bioactive germacranolides (2 and 3) were additionally isolated from G. hypoleuca. Dalea frutescens yielded two new isoprenylated chalcones, named sanjuanolide (4) and sanjoseolide (5), and the known sesquiterpenediol verbesindiol (6) was isolated from Verbesina virginica. Mechanistic studies showed that 1-4 caused G2/M accumulation and the formation of abnormal mitotic spindles. Tubulin polymerization assays revealed that 4 increased the initial rate of tubulin polymerization, but did not change total tubulin polymer levels, and 1-3 had no effects on tubulin polymerization. Despite its cytotoxic activity, compound 6 did not initiate changes in cell cycle distribution and has a mechanism of action different from the other compounds. This study demonstrates that new compounds with significant biological activities germane to unmet oncological needs can be isolated from Texas native plants.
Efficacy of 2'-C-methylcytidine against yellow fever virus in cell culture and in a hamster model.
Julander, Justin G; Jha, Ashok K; Choi, Jung-Ae; Jung, Kie-Hoon; Smee, Donald F; Morrey, John D; Chu, Chung K
2010-06-01
Yellow fever virus (YFV) continues to cause outbreaks of disease in endemic areas where vaccine is underutilized. Due to the effectiveness of the vaccine, antiviral development solely for the treatment of YFV is not feasible, but antivirals that are effective in the treatment of related viral diseases may be characterized for potential use against YFV as a secondary indication disease. 2'-C-methylcytidine (2'-C-MeC), a compound active against hepatitis C virus, was found to have activity against the 17D vaccine strain of YFV in cell culture (EC(90)=0.32 microg/ml, SI=141). This compound was effective when added as late as 16 h after virus challenge of Vero cells. When administered to YFV-infected hamsters 4 h prior to virus challenge at a dose as low as 80 mg/kg/d, 2'-C-MeC was effective in significantly improving survival and other disease parameters (weight change, serum ALT, and liver virus titers). Disease was improved when compound was administered beginning as late as 3 d post-virus infection. Broadly active antiviral compounds, such as 2'-C-MeC, represent potential for the development of compounds active against related viruses for the treatment of YFV. Copyright 2010 Elsevier B.V. All rights reserved.
[Contamination, endocrine disruptors and cancer].
Arvelo, Francisco; Sojo, Felipe; Cotte, Carlos
2016-03-01
Since the mid-twentieth century, many species, very different from each other and located in all areas and comers of the planet, began presenting various alterations, many of which suggested to be related to endocrine disorders. Research has shown that such alterations were caused by exposure to various chemical contaminants that could affect the health and cause serious illnesses. Among them stands a diverse and large group of compounds, with very different chemical structures, capable of altering the hormonal balance, act at very low doses and with different mechanisms of action, that are called "endocrine disrupting chemicals". When released into the environment or as part of objects, food or medicines, constitute a major risk to animals and humans, which produces not only endocrine dysfunctions but also different cancers, which include the most common types. Despite the importance and significance of the impact of these compounds, they are not sufficiently known or understood, so the aim of this review is to show their origin and impact in the field of human health, highlighting their role as inducers of cancer, which has led to multiple clinical and biological investigations.
Assessment of Mitigation Systems on Vapor Intrusion ...
Vapor intrusion is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), in soil gas from the subsurface to indoor air. Vapor intrusion happens because there are pressure and concentration differentials between indoor air and soil gas. Indoor environments are often negatively pressurized with respect to outdoor air and soil gas (for example, from exhaust fans or the stack effect), and this pressure difference allows soil gas containing subsurface vapors to flow into indoor air through advection. In addition, concentration differentials cause VOCs and radon to migrate from areas of higher to lower concentrations through diffusion, which is another cause of vapor intrusion. Current practice for evaluating the vapor intrusion pathway involves a multiple line of evidence approach based on direct measurements in groundwater, external soil gas, subslab soil gas, and/or indoor air. No single line of evidence is considered definitive, and direct measurements of vapor intrusion can be costly, especially where significant spatial and temporal variability require repeated measurements at multiple locations to accurately assess the chronic risks of long-term exposure to volatile organic compounds (VOCs) like chloroform, perchloroethylene (PCE), and trichloroethylene (TCE).
HU-331, a novel cannabinoid-based anticancer topoisomerase II inhibitor.
Kogan, Natalya M; Schlesinger, Michael; Priel, Esther; Rabinowitz, Ruth; Berenshtein, Eduard; Chevion, Mordechai; Mechoulam, Raphael
2007-01-01
Anthracyclines, a large group of quinonoid compounds, are used to treat some forms of cancer. Although highly effective in cancer therapy, the mechanism of action of these compounds is not specific; they act on cancer and other cells by numerous mechanisms. A new anticancer quinone (HU-331) was synthesized from cannabidiol. It shows significant high efficacy against human cancer cell lines in vitro and against in vivo tumor grafts in nude mice. In this study, we investigated its mode of action and present evidence on its unique mechanism. HU-331 does not cause cancer cell cycle arrest, cell apoptosis, or caspase activation. HU-331-caused cell death of human cancer cell lines is not mediated by reactive oxygen intermediates/species, as exposure to HU-331 failed to elicit the generation of reactive oxygen species. HU-331 inhibits DNA topoisomerase II even at nanomolar concentrations but has only a slight nonsignificant effect on DNA topoisomerase I action. The cannabinoid quinone HU-331 is a highly specific inhibitor of topoisomerase II, compared with most known anticancer quinones. It might represent a new potent anticancer drug.
Schrank, Bertold; Schoser, Benedikt; Klopstock, Thomas; Schneiderat, Peter; Horvath, Rita; Abicht, Angela; Holinski-Feder, Elke; Augustis, Sarunas
2017-05-01
We report a 36-year-old female having lifetime exercise intolerance and lactic acidosis with nausea associated with novel compound heterozygous Acyl-CoA dehydrogenase 9 gene (ACAD9) mutations (p.Ala390Thr and p.Arg518Cys). ACAD9 is an assembly factor for the mitochondrial respiratory chain complex I. ACAD9 mutations are recognized as frequent causes of complex I deficiency. Our patient presented with exercise intolerance, rapid fatigue, and nausea since early childhood. Mild physical workload provoked the occurrence of nausea and vomiting repeatedly. Her neurological examination, laboratory findings and muscle biopsy demonstrated no abnormalities. A bicycle spiroergometry provoked significant lactic acidosis during and following exercise pointing towards a mitochondrial disorder. Subsequently, the analysis of respiratory chain enzyme activities in muscle revealed severe isolated complex I deficiency. Candidate gene sequencing revealed two novel heterozygous ACAD9 mutations. This patient report expands the mutational and phenotypic spectrum of diseases associated with mutations in ACAD9. Copyright © 2017 Elsevier B.V. All rights reserved.
The photolytic degradation and oxidation of organic compounds under simulated Martian conditions
NASA Technical Reports Server (NTRS)
Oro, J.; Holzer, G.
1979-01-01
Cosmochemical considerations suggest various potential sources for the accumulation of organic matter on Mars. However the Viking Molecular Analysis did not indicate any indigenous organic compounds on the surface of Mars. Their disappearance from the top layer is most likely caused by the combined action of the high solar radiation flux and various oxidizing species in the Martian atmosphere and regolith. In this study the stability of several organic substances and a sample of the Murchison meteorite was tested under simulated Martian conditions. After adsorption on powdered quartz, samples of adenine, glycine and naphthalene were irradiated with UV light at various oxygen concentrations and exposure times. In the absence of oxygen, adenine and glycine appeared stable over the given irradiation period, whereas a definite loss was observed in the case of naphthalene, as well as in the volatilizable and pyrolizable content of the Murchison meteorite. The presence of oxygen during UV exposure caused a significant increase in the degradation rate of all samples. It is likely that similar processes have led to the destruction of organic materials on the surface of Mars.
Liu, Yiqing; Wisniewski, Michael; Kennedy, John F; Jiang, Yusong; Tang, Jianmin; Liu, Jia
2016-10-20
The ability of chitosan and oligochitosan to enhance ginger (Zingiber officinale) resistance to rhizome rot caused by Fusarium oxysporum in storage was investigated. Both chitosan and oligochitosan at 1 and 5g/L significantly inhibited rhizome rot, with the best control at 5g/L. Chitosan and oligochitosan applied at 5g/L also reduced weight loss, measured as a decrease in fresh weight, but did not affect soluble solids content or titratable acidity of rhizomes. The two compounds applied at 5g/L induced β-1,3-glucanase and phenylalanine ammonia-lyase enzyme activity and the transcript levels of their coding genes, as well as the total phenolic compounds in rhizome tissues. Therefore, the ability of chitosan and oligochitosan to reduce rot in stored rhizomes may be associated with their ability to induce defense responses in ginger. These results have practical implications for the application of chitosan and oligochitosan to harvested ginger rhizomes to reduce postharvest losses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Feathers as a biomonitoring tool of polyhalogenated compounds: a review.
García-Fernández, Antonio J; Espín, Silvia; Martínez-López, Emma
2013-04-02
Feathers have many advantages that make them an excellent nondestructive tool for monitoring polyhalogenated compounds (PHCs). This paper proposes a review on the PHCs in feathers and factors influencing the pollutant load. Special attention has given to external contamination and the main analytical methods used to detect these compounds in feathers. Some authors have found strong and significant correlations between the concentrations of PHCs in feathers and internal tissues, providing positive expectations for their future use in the field of ecotoxicology. However, changes in diet, time elapsed between the previous molt period and sampling, sample size, and/or external contamination have been suggested as possible causes to explain the lack of correlations reported in some studies. Further studies with newly grown feathers and blood samples would be required in order to clarify this issue. Although atmospheric deposition has been reported as cause of external contamination, preening oil seems to be the most relevant factor contributing to this process. Unfortunately, washing techniques tested to date are not able to effectively remove the surface contamination from barbs and shafts, and therefore, it is necessary to develop methods able to discriminate between internal and external contamination. Finally, in this review, deposition rate is proposed as a measurement unit, as this allows comparisons between different parts of the same feather, as well as between different feathers.
Shekhova, Elena
2017-01-01
ABSTRACT Drug resistance in fungal pathogens is of incredible importance to global health, yet the mechanisms of drug action remain only loosely defined. Antifungal compounds have been shown to trigger the intracellular accumulation of reactive oxygen species (ROS) in human-pathogenic yeasts, but the source of those ROS remained unknown. In the present study, we examined the role of endogenous ROS for the antifungal activity of the three different antifungal substances itraconazole, terbinafine, and amphotericin B, which all target the fungal cell membrane. All three antifungals had an impact on fungal redox homeostasis by causing increased intracellular ROS production. Interestingly, the elevated ROS levels induced by antifungals were abolished by inhibition of the mitochondrial respiratory complex I with rotenone. Further, evaluation of lipid peroxidation using the thiobarbituric acid assay revealed that rotenone pretreatment decreased ROS-induced lipid peroxidation during incubation of Aspergillus fumigatus with itraconazole and terbinafine. By applying the mitochondrion-specific lipid peroxidation probe MitoPerOx, we also confirmed that ROS are induced in mitochondria and subsequently cause significant oxidation of mitochondrial membrane in the presence of terbinafine and amphotericin B. To summarize, our study suggests that the induction of ROS production contributes to the ability of antifungal compounds to inhibit fungal growth. Moreover, mitochondrial complex I is the main source of deleterious ROS production in A. fumigatus challenged with antifungal compounds. PMID:28848005
Zhang, Yongli; Cui, Yuqiang; Zhu, Jiayong; Li, Hongzhi; Mao, Jianwen; Jin, Xiaobao; Wang, Xiangsheng; Du, Yifan; Lu, Jiazheng
2013-01-01
Juglans mandshurica Maxim is a traditional herbal medicines in China, and its anti-tumor bioactivities are of research interest. Bioassay-guided fractionation method was employed to isolate anti-tumor compounds from the stem barks of the Juglans mandshurica Maxim. The anti-tumor effect and biological activities of the extracted compound JMM6 were studied in BEL-7402 cells by MTT, Cell cycle analysis, Hoechst 33342 staining, Annexin V-FITC/PI assay and Detection of mitochondrial membrane potential (ΔΨm). After treatment with the JMM6, the growth of BEL-7402 cells was inhibited and cells displayed typical morphological apoptotic characteristics. Further investigations revealed that treatment with JMM6 mainly caused G2/M cell cycle arrest and induced apoptosis in BEL-7402 cells. To evaluate the alteration of mitochondria in JMM6 induced apoptosis. The data showed that JMM6 decreased significantly the ΔΨm, causing the depolarization of the mitochondrial membrane. Our results show that the JMM6 will have a potential advantage of anti-tumor, less harmful to normal cells. This paper not only summarized the JMM6 pick-up technology from Juglans mandshurica Maxim and biological characteristic, but also may provide further evidence to exploit the potential medicine compounds from the stem-barks of the Chinese Juglans mandshurica Maxim.
Neural stem cells for disease modeling of Wolman disease and evaluation of therapeutics.
Aguisanda, Francis; Yeh, Charles D; Chen, Catherine Z; Li, Rong; Beers, Jeanette; Zou, Jizhong; Thorne, Natasha; Zheng, Wei
2017-06-28
Wolman disease (WD) is a rare lysosomal storage disorder that is caused by mutations in the LIPA gene encoding lysosomal acid lipase (LAL). Deficiency in LAL function causes accumulation of cholesteryl esters and triglycerides in lysosomes. Fatality usually occurs within the first year of life. While an enzyme replacement therapy has recently become available, there is currently no small-molecule drug treatment for WD. We have generated induced pluripotent stem cells (iPSCs) from two WD patient dermal fibroblast lines and subsequently differentiated them into neural stem cells (NSCs). The WD NSCs exhibited the hallmark disease phenotypes of neutral lipid accumulation, severely deficient LAL activity, and increased LysoTracker dye staining. Enzyme replacement treatment dramatically reduced the WD phenotype in these cells. In addition, δ-tocopherol (DT) and hydroxypropyl-beta-cyclodextrin (HPBCD) significantly reduced lysosomal size in WD NSCs, and an enhanced effect was observed in DT/HPBCD combination therapy. The results demonstrate that these WD NSCs are valid cell-based disease models with characteristic disease phenotypes that can be used to evaluate drug efficacy and screen compounds. DT and HPBCD both reduce LysoTracker dye staining in WD cells. The cells may be used to further dissect the pathology of WD, evaluate compound efficacy, and serve as a platform for high-throughput drug screening to identify new compounds for therapeutic development.
Ion-Exclusion Chromatography for Analyzing Organics in Water
NASA Technical Reports Server (NTRS)
Sauer, Richard; Rutz, Jeffrey A.; Schultz, John R.
2006-01-01
A liquid-chromatography technique has been developed for use in the quantitative analysis of urea (and of other nonvolatile organic compounds typically found with urea) dissolved in water. The technique involves the use of a column that contains an ion-exclusion resin; heretofore, this column has been sold for use in analyzing monosaccharides and food softeners, but not for analyzing water supplies. The prior technique commonly used to analyze water for urea content has been one of high-performance liquid chromatography (HPLC), with reliance on hydrophobic interactions between analytes in a water sample and long-chain alkyl groups bonded to an HPLC column. The prior technique has proven inadequate because of a strong tendency toward co-elution of urea with other compounds. Co-elution often causes the urea and other compounds to be crowded into a narrow region of the chromatogram (see left part of figure), thereby giving rise to low chromatographic resolution and misidentification of compounds. It is possible to quantitate urea or another analyte via ultraviolet- and visible-light absorbance measurements, but in order to perform such measurements, it is necessary to dilute the sample, causing a significant loss of sensitivity. The ion-exclusion resin used in the improved technique is sulfonated polystyrene in the calcium form. Whereas the alkyl-chain column used in the prior technique separates compounds on the basis of polarity only, the ion-exclusion-resin column used in the improved technique separates compounds on the basis of both molecular size and electric charge. As a result, the degree of separation is increased: instead of being crowded together into a single chromatographic peak only about 1 to 2 minutes wide as in the prior technique, the chromatographic peaks of different compounds are now separated from each other and spread out over a range about 33 minutes wide (see right part of figure), and the urea peak can readily be distinguished from the other peaks. Although the analysis takes more time in the improved technique, this disadvantage is offset by two important advantages: Sensitivity is increased. The minimum concentration of urea that can be measured is reduced (to between 1/5 and 1/3 of that of the prior technique) because it is not necessary to dilute the sample. The separation of peaks facilitates the identification and quantitation of the various compounds. The resolution of the compounds other than urea makes it possible to identify those compounds by use of mass spectrometry.
Morrison, Barclay; Pringle, Ashley K; McManus, Terence; Ellard, John; Bradley, Mark; Signorelli, Francesco; Iannotti, Fausto; Sundstrom, Lars E
2002-01-01
Stroke is the third most common cause of death in the world, and there is a clear need to develop new therapeutics for the stroke victim. To address this need, we generated a combinatorial library of polyamine compounds based on sFTX-3.3 toxin from which L-Arginyl-3,4-Spermidine (L-Arg-3,4) emerged as a lead neuroprotective compound. In the present study, we have extended earlier results to examine the compound's neuroprotective actions in greater detail. In an in vitro ischaemia model, L-Arg-3,4 significantly reduced CA1 cell death when administered prior to induction of 60 min of ischaemia as well as when administered immediately after ischaemia. Surprisingly, L-Arg-3,4 continued to prevent cell death significantly when administration was delayed for as long as 60 min after ischaemia. L-Arg-3,4 significantly reduced cell death in excitotoxicity models mediated by glutamate, NMDA, AMPA, or kainate. Unlike glutamate receptor antagonists, 300 μM L-Arg-3,4 did not suppress synaptic transmission as measured by evoked responses in acute hippocampal slices. L-Arg-3,4 provided significant protection, in vitro, in a superoxide mediated injury model and prevented an increase of superoxide production after AMPA or NMDA stimulation. It also decreased nitric oxide production after in vitro ischaemia and NMDA stimulation, but did so without inhibiting nitric oxide synthase directly. Furthermore, L-Arg-3,4 was significantly neuroprotective in an in vivo model of global forebrain ischaemia, without any apparent neurological side-effects. Taken together, these results demonstrate that L-Arg-3,4 is protective in several models of neurodegeneration and may have potential as a new therapeutic compound for the treatment of stroke, trauma, and other neurodegenerative diseases. PMID:12466235
Lee, Won Jun; Kim, Sang Cheol; Lee, Seul Ji; Lee, Jeongmi; Park, Jeong Hill; Yu, Kyung-Sang; Lim, Johan; Kwon, Sung Won
2014-01-01
Based on the process of carcinogenesis, carcinogens are classified as either genotoxic or non-genotoxic. In contrast to non-genotoxic carcinogens, many genotoxic carcinogens have been reported to cause tumor in carcinogenic bioassays in animals. Thus evaluating the genotoxicity potential of chemicals is important to discriminate genotoxic from non-genotoxic carcinogens for health care and pharmaceutical industry safety. Additionally, investigating the difference between the mechanisms of genotoxic and non-genotoxic carcinogens could provide the foundation for a mechanism-based classification for unknown compounds. In this study, we investigated the gene expression of HepG2 cells treated with genotoxic or non-genotoxic carcinogens and compared their mechanisms of action. To enhance our understanding of the differences in the mechanisms of genotoxic and non-genotoxic carcinogens, we implemented a gene set analysis using 12 compounds for the training set (12, 24, 48 h) and validated significant gene sets using 22 compounds for the test set (24, 48 h). For a direct biological translation, we conducted a gene set analysis using Globaltest and selected significant gene sets. To validate the results, training and test compounds were predicted by the significant gene sets using a prediction analysis for microarrays (PAM). Finally, we obtained 6 gene sets, including sets enriched for genes involved in the adherens junction, bladder cancer, p53 signaling pathway, pathways in cancer, peroxisome and RNA degradation. Among the 6 gene sets, the bladder cancer and p53 signaling pathway sets were significant at 12, 24 and 48 h. We also found that the DDB2, RRM2B and GADD45A, genes related to the repair and damage prevention of DNA, were consistently up-regulated for genotoxic carcinogens. Our results suggest that a gene set analysis could provide a robust tool in the investigation of the different mechanisms of genotoxic and non-genotoxic carcinogens and construct a more detailed understanding of the perturbation of significant pathways.
Lee, Won Jun; Kim, Sang Cheol; Lee, Seul Ji; Lee, Jeongmi; Park, Jeong Hill; Yu, Kyung-Sang; Lim, Johan; Kwon, Sung Won
2014-01-01
Based on the process of carcinogenesis, carcinogens are classified as either genotoxic or non-genotoxic. In contrast to non-genotoxic carcinogens, many genotoxic carcinogens have been reported to cause tumor in carcinogenic bioassays in animals. Thus evaluating the genotoxicity potential of chemicals is important to discriminate genotoxic from non-genotoxic carcinogens for health care and pharmaceutical industry safety. Additionally, investigating the difference between the mechanisms of genotoxic and non-genotoxic carcinogens could provide the foundation for a mechanism-based classification for unknown compounds. In this study, we investigated the gene expression of HepG2 cells treated with genotoxic or non-genotoxic carcinogens and compared their mechanisms of action. To enhance our understanding of the differences in the mechanisms of genotoxic and non-genotoxic carcinogens, we implemented a gene set analysis using 12 compounds for the training set (12, 24, 48 h) and validated significant gene sets using 22 compounds for the test set (24, 48 h). For a direct biological translation, we conducted a gene set analysis using Globaltest and selected significant gene sets. To validate the results, training and test compounds were predicted by the significant gene sets using a prediction analysis for microarrays (PAM). Finally, we obtained 6 gene sets, including sets enriched for genes involved in the adherens junction, bladder cancer, p53 signaling pathway, pathways in cancer, peroxisome and RNA degradation. Among the 6 gene sets, the bladder cancer and p53 signaling pathway sets were significant at 12, 24 and 48 h. We also found that the DDB2, RRM2B and GADD45A, genes related to the repair and damage prevention of DNA, were consistently up-regulated for genotoxic carcinogens. Our results suggest that a gene set analysis could provide a robust tool in the investigation of the different mechanisms of genotoxic and non-genotoxic carcinogens and construct a more detailed understanding of the perturbation of significant pathways. PMID:24497971
Andriani, Grasiella; Amata, Emanuele; Beatty, Joel; Clements, Zeke; Coffey, Brian J.; Courtemanche, Gilles; Devine, William; Erath, Jessey; Juda, Cristin E.; Wawrzak, Zdzislaw; Wood, JodiAnne T.; Lepesheva, Galina I.; Rodriguez, Ana; Pollastri, Michael P.
2013-01-01
Chagas disease is caused by the intracellular protozoan parasite Trypanosomal cruzi, and current drugs are lacking in terms of desired safety and efficacy profiles. Following on a recently reported high-throughput screening campaign, we have explored initial structure-activity relationships around a class of imidazole-based compounds. This profiling has uncovered compounds 4c (NEU321) and 4j (NEU704), which are potent against in vitro cultures of T. cruzi and are greater than 160-fold selective over host cells. We report in vitro drug metabolism and properties profiling of 4c and show that this chemotype inhibits the T cruzi CYP51 enzyme, an observation confirmed by X-ray crystallographic analysis. We compare the binding orientation of 4c to that of other, previously reported inhibitors. We show that 4c displays a significantly better ligand efficiency and a shorter synthetic route over previously disclosed CYP51 inhibitors, and should therefore be considered a promising lead compound for further optimization. PMID:23448316
Rimkus, Stacey A; Wassarman, David A
2018-01-01
Ataxia-telangiectasia (A-T) is a neurodegenerative disease caused by mutation of the A-T mutated (ATM) gene. ATM encodes a protein kinase that is activated by DNA damage and phosphorylates many proteins, including those involved in DNA repair, cell cycle control, and apoptosis. Characteristic biological and molecular functions of ATM observed in mammals are conserved in Drosophila melanogaster. As an example, conditional loss-of-function ATM alleles in flies cause progressive neurodegeneration through activation of the innate immune response. However, unlike in mammals, null alleles of ATM in flies cause lethality during development. With the goals of understanding biological and molecular roles of ATM in a whole animal and identifying candidate therapeutics for A-T, we performed a screen of 2400 compounds, including FDA-approved drugs, natural products, and bioactive compounds, for modifiers of the developmental lethality caused by a temperature-sensitive ATM allele (ATM8) that has reduced kinase activity at non-permissive temperatures. Ten compounds reproducibly suppressed the developmental lethality of ATM8 flies, including Ronnel, which is an organophosphate. Ronnel and other suppressor compounds are known to cause mitochondrial dysfunction or to inhibit the enzyme acetylcholinesterase, which controls the levels of the neurotransmitter acetylcholine, suggesting that detrimental consequences of reduced ATM kinase activity can be rescued by inhibiting the function of mitochondria or increasing acetylcholine levels. We carried out further studies of Ronnel because, unlike the other compounds that suppressed the developmental lethality of homozygous ATM8 flies, Ronnel was toxic to the development of heterozygous ATM8 flies. Ronnel did not affect the innate immune response of ATM8 flies, and it further increased the already high levels of DNA damage in brains of ATM8 flies, but its effects were not harmful to the lifespan of rescued ATM8 flies. These results provide new leads for understanding the biological and molecular roles of ATM and for the treatment of A-T.
Montioli, Riccardo; Roncador, Alessandro; Oppici, Elisa; Mandrile, Giorgia; Giachino, Daniela Francesca; Cellini, Barbara; Borri Voltattorni, Carla
2014-01-01
Primary Hyperoxaluria type I (PH1) is a rare disease due to the deficit of peroxisomal alanine:glyoxylate aminotransferase (AGT), a homodimeric pyridoxal-5′-phosphate (PLP) enzyme present in humans as major (Ma) and minor (Mi) allele. PH1-causing mutations are mostly missense identified in both homozygous and compound heterozygous patients. Until now, the pathogenesis of PH1 has been only studied by approaches mimicking homozygous patients, whereas the molecular aspects of the genotype-enzymatic-clinical phenotype relationship in compound heterozygous patients are completely unknown. Here, for the first time, we elucidate the enzymatic phenotype linked to the S81L mutation on AGT-Ma, relative to a PLP-binding residue, and how it changes when the most common mutation G170R on AGT-Mi, known to cause AGT mistargeting without affecting the enzyme functionality, is present in the second allele. By using a bicistronic eukaryotic expression vector, we demonstrate that (i) S81L-Ma is mainly in its apo-form and has a significant peroxisomal localization and (ii) S81L and G170R monomers interact giving rise to the G170R-Mi/S81L-Ma holo-form, which is imported into peroxisomes and exhibits an enhanced functionality with respect to the parental enzymes. These data, integrated with the biochemical features of the heterodimer and the homodimeric counterparts in their purified recombinant form, (i) highlight the molecular basis of the pathogenicity of S81L-Ma and (ii) provide evidence for a positive interallelic complementation between the S81L and G170R monomers. Our study represents a valid approach to investigate the molecular pathogenesis of PH1 in compound heterozygous patients. PMID:24990153
Gul, Zulfiye; Demircan, Celaleddin; Bagdas, Deniz; Buyukuysal, Rifat Levent
2016-08-01
The effectiveness of chlorogenic acid and its main metabolites, caffeic and quinic acids, against oxidative stress was investigated. Resveratrol, another natural phenolic compound, was also tested for comparison. Rat cortical slices were incubated with 200 μM H2O2 for 1 h, and alterations in oxidative stress parameters, such as 2, 3, 5-triphenyltetrazolium chloride (TTC) staining and the production of both malondialdehyde (MDA) and reactive oxygen species (ROS), were assayed in the absence or presence of phenolic compounds. Additionally, the effectiveness of chlorogenic acid and other compounds on H2O2-induced increases in fluorescence intensities were also compared in slice-free incubation medium. Although quinic acid failed, chlorogenic and caffeic acids significantly ameliorated the H2O2-induced decline in TTC staining intensities. Although resveratrol also caused an increase in staining intensity, its effect was not dose-dependent; the high concentrations of resveratrol tested in the present study (10 and 100 μM) further lessened the staining of the slices. Additionally, all phenolic compounds significantly attenuated the H2O2-induced increases in MDA and ROS levels in cortical slices. When the IC50 values were compared to H2O2-induced alterations, chlorogenic acid was more potent than either its metabolites or resveratrol for all parameters studied under these experimental conditions. In slice-free experimental conditions, on the other hand, chlorogenic and caffeic acids significantly attenuated the fluorescence emission enhanced by H2O2 with a similar order of potency to that obtained in slice-containing physiological medium. These results indicate that chlorogenic acid is a more potent phenolic compound than resveratrol and its main metabolites caffeic and quinic acids against H2O2-induced alterations in oxidative stress parameters in rat cortical slices.
Schwendinger, Katja; Kreiseder, Birgit; Wiederstein, Martina; Pretsch, Dagmar; Genov, Miroslav; Hollaus, Ralph; Zinssmeister, Daniela; Debbab, Abdesamad; Hundsberger, Harald; Eger, Andreas; Proksch, Peter; Wiesner, Christoph
2014-01-01
Acne vulgaris is the most common skin disease, causing significant psychosocial problems such as anxiety and depression similar to a chronic illness for those afflicted. Currently, obtainable agents for acne treatment have limited use. Thus, development of novel agents to treat this disease is a high medical need. The anaerobic bacterium Propionibacterium acnes has been implicated in the inflammatory phase of acne vulgaris by activating pro-inflammatory mediators such as the interleukin-8 (IL-8) via the NF-κB and MAPK pathways. Talaromyces wortmannii is an endophytic fungus, which is known to produce high bioactive natural compounds. We hypothesize that compound C but also the crude extract from T. wortmannii may possess both antibacterial activity especially against P. acnes and also anti-inflammatory properties by inhibiting TNF-α-induced ICAM-1 expression and P. acnes-induced IL-8 release. Treatment of keratinocytes (HaCaT) with P. acnes significantly increased NF-κB and activator protein-1 (AP-1) activation, as well as IL-8 release. Compound C inhibited P. acnes-mediated activation of NF-κB and AP-1 by inhibiting IκB degradation and the phosphorylation of ERK and JNK MAP kinases, and IL-8 release in a dose-dependent manner. Based on these results, compound C has effective antimicrobial activity against P. acnes and anti-inflammatory activity, and we suggest that this substance or the crude extract are alternative treatments for antibiotic/anti-inflammatory therapy for acne vulgaris. PMID:24887557
NASA Astrophysics Data System (ADS)
Zhuang, Yuwei; Ren, Zhiyong; Jiang, Lei; Zhang, Jiaxiang; Wang, Huafen; Zhang, Guobao
2018-06-01
Tung oil (TO) was used as a model compound to study two hydroxylated tung oils (HTO), prepared from TO by either aminolysis (HTO-am) or alcoholysis (HTO-al). Main bands in Raman and FTIR spectra were initially assigned based on the detailed analysis of the compound spectra before and after exposure to elevated temperature (200 °C). The effect of heat treatment in air on spectral bands, and especially on the changes associated with double bonds, were then investigated. In the present work, changes in spectral bands due to heat treatment were compared with those revealed in the previous work of others. The results show that the conjugated triene structure of TO has been retained during alcoholysis and aminolysis, to yield the HTOs studied; yet the change of the triene structure caused by heating is different among the three samples; the H-bonding strength between OH and Cdbnd O in HTO-am is higher than that in HTO-al; the changes in HTO vOH and vCdbnd O bands in FTIR caused by the present heat treatment were significant; for TO, there is a big difference between changes in spectra as caused by thermal exposure, compared to those caused by ageing under UV light or exposure to a catalyst. The present work has laid additional groundwork for further study of the reactions of such triply conjugated double bond structures under different ageing conditions.
Targeting RSV with Vaccines and Small Molecule Drugs
Costello, Heather M.; Ray, William C.; Chaiwatpongsakorn, Supranee; Peeples, Mark E.
2012-01-01
Respiratory syncytial virus (RSV) is the most significant cause of pediatric respiratory infections. Palivizumab (Synagis®), a humanized monoclonal antibody, has been used successfully for a number of years to prevent severe RSV disease in at-risk infants. However, despite intense efforts, there is no approved vaccine or small molecule drug for RSV. As an enveloped virus, RSV must fuse its envelope with the host cell membrane, which is accomplished through the actions of the fusion (F) glycoprotein, with attachment help from the G glycoprotein. Because of their integral role in initiation of infection and their accessibility outside the lipid bilayer, these proteins have been popular targets in the discovery and development of antiviral compounds and vaccines against RSV. This review examines advances in the development of antiviral compounds and vaccine candidates. PMID:22335496
Naz, Sadia; Farooq, Umar; Khan, Ajmal; Khan, Haroon; Karim, Nasiara; Sarwar, Rizwana; Hussain, Javid; Rauf, Abdur
2017-01-01
Two new benzyl derivatives were isolated from ethyl acetate fraction of wild strawberry, Fragaria vesca var. nubicola Lindl. ex Hook.f. The structures of these compounds were elucidated to be 5-(4-hydroxy-3-methoxyphenethyl)-7-methoxy-2H-chromen-3-ol ( 1 ) and 5-(4-hydroxy-3-methoxyphenethyl)-4,7-dimethoxy-2H-chromen-3-ol ( 2 ) based on spectroscopic data through IR, UV, 1 H-NMR, 13 C-NMR along with two dimensional (2D) techniques HMBC, HMQC, and COSY. Both compounds 1 and 2 were studied in tail suspension and forced swim tests for antidepressant like effects. A significant dose dependent antidepressant like effect was observed by causing spontaneous anti-immobility at various test doses upon intraperitoneal administration.
Alió, Jorge L; Plaza-Puche, Ana B; Martinez, Lorena M; Torky, Magda; Brenner, Luis F
2013-01-01
To evaluate the visual outcomes after laser in situ keratomileusis (LASIK) surgery to correct primary compound myopic astigmatism with high cylinder performed using a fast-repetition-rate excimer laser platform with optimized aspheric profiles and cyclotorsion control. Vissum Corporation and Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain. Retrospective consecutive observational nonrandomized noncomparative case series. Eyes with primary compound myopic astigmatism and a cylinder power over 3.00 diopters (D) had uneventful LASIK with femtosecond flap creation and fast-repetition-rate excimer laser ablation with aspheric profiles and cyclotorsion control. Visual, refractive, and aberrometric outcomes were evaluated at the 6-month follow-up. The astigmatic correction was evaluated using the Alpins method and Assort software. The study enrolled 37 eyes (29 patients; age range 19 to 55 years). The significant reduction in refractive sphere and cylinder 3 months and 6 months postoperatively (P<.01) was associated with improved uncorrected distance visual acuity (P<.01). Eighty-seven percent of eyes had a spherical equivalent within ±0.50 D; 7.5% of eyes were retreated. There was no significant induction of higher-order aberrations (HOAs). The targeted and surgically induced astigmatism magnitudes were 3.23 D and 2.96 D, respectively, and the correction index was 0.91. The safety and efficacy indices were 1.05 and 0.95, respectively. Laser in situ keratomileusis for primary compound myopic astigmatism with high cylinder (>3.00 D) performed using a fast-repetition-rate excimer laser with optimized aspheric profiles and cyclotorsion control was safe, effective, and predictable and did not cause significant induction of HOAs. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Hansen, Hendrik H G; de Borst, Gert Jan; Bots, Michiel L; Moll, Frans L; Pasterkamp, Gerard; de Korte, Chris L
2016-11-01
Carotid plaque rupture is a major cause of stroke. Key issue for risk stratification is early identification of rupture-prone plaques. A noninvasive technique, compound ultrasound strain imaging, was developed providing high-resolution radial deformation/strain images of atherosclerotic plaques. This study aims at in vivo validation of compound ultrasound strain imaging in patients by relating the measured strains to typical features of vulnerable plaques derived from histology after carotid endarterectomy. Strains were measured in 34 severely stenotic (>70%) carotid arteries at the culprit lesion site within 48 hours before carotid endarterectomy. In all cases, the lumen-wall boundary was identifiable on B-mode ultrasound, and the imaged cross-section did not move out of the imaging plane from systole to diastole. After endarterectomy, the plaques were processed using a validated histology analysis technique. Locally elevated strain values were observed in regions containing predominantly components related to plaque vulnerability, whereas lower values were observed in fibrous, collagen-rich plaques. The median strain of the inner plaque layer (1 mm thickness) was significantly higher (P<0.01) for (fibro)atheromatous (n=20, strain=0.27%) than that for fibrous plaques (n=14, strain=-0.75%). Also, a significantly larger area percentage of the inner layer revealed strains above 0.5% for (fibro)atheromatous (45.30%) compared with fibrous plaques (31.59%). (Fibro)atheromatous plaques were detected with a sensitivity, specificity, positive predictive value, and negative predictive value of 75%, 86%, 88%, and 71%, respectively. Strain did not significantly correlate with fibrous cap thickness, smooth muscle cell, or macrophage concentration. Compound ultrasound strain imaging allows differentiating (fibro)atheromatous from fibrous carotid artery plaques. © 2016 American Heart Association, Inc.
Potential of Penicillium Species in the Bioremediation Field
Leitão, Ana Lúcia
2009-01-01
The effects on the environment of pollution, particularly that caused by various industrial activities, have been responsible for the accelerated fluxes of organic and inorganic matter in the ecosphere. Xenobiotics such as phenol, phenolic compounds, polycyclic aromatic hydrocarbons (PAHs), and heavy metals, even at low concentrations, can be toxic to humans and other forms of life. Many of the remediation technologies currently being used for contaminated soil and water involve not only physical and chemical treatment, but also biological processes, where microbial activity is the responsible for pollutant removal and/or recovery. Fungi are present in aquatic sediments, terrestrial habitats and water surfaces and play a significant part in natural remediation of metal and aromatic compounds. Fungi also have advantages over bacteria since fungal hyphae can penetrate contaminated soil, reaching not only heavy metals but also xenobiotic compounds. Despite of the abundance of such fungi in wastes, penicillia in particular have received little attention in bioremediation and biodegradation studies. Additionally, several studies conducted with different strains of imperfecti fungi, Penicillium spp. have demonstrated their ability to degrade different xenobiotic compounds with low co-substrate requirements, and could be potentially interesting for the development of economically feasible processes for pollutant transformation. PMID:19440525
NASA Astrophysics Data System (ADS)
Overton, E. B.; Meyer, B.; Miles, S.; Olson, G.; Adhikari, P. L.
2016-02-01
It has been well established that the composition of oil, when spilled into the marine environment, undergoes substantial changes caused by weathering. The general sequence of this compositional change begins with straight chain alkanes (the fastest to degrade), followed by low molecular weight branched and cyclic alkanes and, finally the aromatics. Most resistant to weathering are the higher molecular weight cyclic and branched alkanes (i.e., the "forensic biomarker compounds" such as the hopanes and steranes) and tri-aromatic ringed steroids. The composition of these biomarker compounds is particularly resistant to change because they are not affected by evaporative weathering, are not water soluble, and are not readily degraded by microbial and/or photo-oxidation. However, after extensive time in the environment, being subjected to numerous weathering factors, biomarker compositional patterns are beginning to exhibit significant changes. This presentation will describe the general weathering patterns of petroleum residues in sediment samples collected from marsh areas of coastal Louisiana over a five year period. Particular attention will focus on compositional changes that have been observed in the steranes and diasteranes compounds that traditionally have been considered the most resistant to compositional changes due to weathering.
Thomas, Richard J; Brooks, Tim J
2004-02-01
Legionnaire's disease is caused by the intracellular pathogen Legionella pneumophila, presenting as an acute pneumonia. Attachment is the key step during infection, often relying on an interaction between host cell oligosaccharides and bacterial adhesins. Inhibition of this interaction by receptor mimics offers possible novel therapeutic treatments. L. pneumophila attachment to the A549 cell line was significantly reduced by treatment with tunicamycin (73.6%) and sodium metaperiodate (63.7%). This indicates the importance of cell surface oligosaccharide chains in adhesion. A number of putative anti-adhesion compounds inhibited attachment to the A549 and U937 cell lines. The most inhibitory compounds were polymeric saccharides, GalNAcbeta1-4Gal, Galbeta1-4GlcNAc and para-nitrophenol. These compounds inhibited adhesion to a range of human respiratory cell lines, including nasal epithelial, bronchial epithelial and alveolar epithelial cell lines and the human monocytic cell line, U937. Some eukaryotic receptors for L. pneumophila were determined to be the glycolipids, asialo-GM1 and asialo-GM2 that contain the inhibitory saccharide moiety, GalNAcbeta1-4Gal. The identified compounds have the potential to be used as novel treatments for Legionnaire's disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umezu, Toyoshi, E-mail: umechan2@nies.go.jp; Shibata, Yasuyuki, E-mail: yshibata@nies.go.jp
2014-09-01
The present study aimed to clarify whether dose–response profiles of acute behavioral effects of 1,2-dichloroethane (DCE), 1,1,1-trichloroethane (TCE), trichloroethylene (TRIC), and tetrachloroethylene (PERC) differ. A test battery involving 6 behavioral endpoints was applied to evaluate the effects of DCE, TCE, TRIC, and PERC in male ICR strain mice under the same experimental conditions. The behavioral effect dose–response profiles of these compounds differed. Regression analysis was used to evaluate the relationship between the dose–response profiles and structural and physical properties of the compounds. Dose–response profile differences correlated significantly with differences in specific structural and physical properties. These results suggest that differencesmore » in specific structural and physical properties of DCE, TCE, TRIC, and PERC are responsible for differences in behavioral effects that lead to a variety of dose–response profiles. - Highlights: • We examine effects of 4 chlorinated hydrocarbons on 6 behavioral endpoints in mice. • The behavioral effect dose–response profiles for the 4 compounds are different. • We utilize regression analysis to clarify probable causes of the different profiles. • The compound's physicochemical properties probably produce the different profiles.« less
NASA Astrophysics Data System (ADS)
Kong, Qiulian; Yan, Weiqiang; Yue, Ling; Chen, Zhijun; Wang, Haihong; Qi, Wenyuan; He, Xiaohua
2017-01-01
Prosciutto crudo samples were irradiated at 0, 3 and 6 kGy by gamma rays (GR) and electron beam (EB), respectively. The odor scores and volatile compounds were examined after 7 days storage at 4 °C. Volatile compounds from samples without and with irradiation at 6 kGy were analyzed by GC-MS. Fifty-nine compounds were identified, including terpenes, aldehydes, alcohols, ketones, alkanes, esters, aromatic hydrocarbons and acids. Both GR and EB irradiation resulted in formation of (Z)-7-Hexadecenal, cis-9-hexadecenal, tetradecane, E-9-tetradecen-1-ol formate, and losing of hexadecamethyl-heptasiloxane and decanoic acid-ethyl ester in hams. However, GR irradiation caused additional changes, such as formation of undecane and phthalic acid-2-cyclohexylethyl butyl ester, significantly higher level of 1-pentadecene, and losing of (E, E)-2,4-decadienal and octadecane. EB was shown to be better in maintaining ham's original odor than GR. Our results suggest that EB irradiation is a promising method for treatment of ready to eat hams as it exerts much less negative effect on the flavor of hams compared to GR irradiation.
A Benzothiazole Derivative (5g) Induces DNA Damage And Potent G2/M Arrest In Cancer Cells.
Hegde, Mahesh; Vartak, Supriya V; Kavitha, Chandagirikoppal V; Ananda, Hanumappa; Prasanna, Doddakunche S; Gopalakrishnan, Vidya; Choudhary, Bibha; Rangappa, Kanchugarakoppal S; Raghavan, Sathees C
2017-05-31
Chemically synthesized small molecules play important role in anticancer therapy. Several chemical compounds have been reported to damage the DNA, either directly or indirectly slowing down the cancer cell progression by causing a cell cycle arrest. Direct or indirect reactive oxygen species formation causes DNA damage leading to cell cycle arrest and subsequent cell death. Therefore, identification of chemically synthesized compounds with anticancer potential is important. Here we investigate the effect of benzothiazole derivative (5g) for its ability to inhibit cell proliferation in different cancer models. Interestingly, 5g interfered with cell proliferation in both, cell lines and tumor cells leading to significant G2/M arrest. 5g treatment resulted in elevated levels of ROS and subsequently, DNA double-strand breaks (DSBs) explaining observed G2/M arrest. Consistently, we observed deregulation of many cell cycle associated proteins such as CDK1, BCL2 and their phosphorylated form, CyclinB1, CDC25c etc. Besides, 5g treatment led to decreased levels of mitochondrial membrane potential and activation of apoptosis. Interestingly, 5g administration inhibited tumor growth in mice without significant side effects. Thus, our study identifies 5g as a potent biochemical inhibitor to induce G2/M phase arrest of the cell cycle, and demonstrates its anticancer properties both ex vivo and in vivo.
Pyrrolidin-2-one derivatives may reduce body weight in rats with diet-induced obesity.
Dudek, Magdalena; Knutelska, Joanna; Bednarski, Marek; Nowiński, Leszek; Zygmunt, Małgorzata; Kazek, Grzegorz; Mordyl, Barbara; Głuch-Lutwin, Monika; Zaręba, Paula; Kulig, Katarzyna; Sapa, Jacek
2016-04-05
Obesity affects an increasing number of individuals in the human population and significant importance is attached to research leading to the discovery of drug which would effectively reduce weight. The search for new drugs with anorectic activity and acting within the adrenergic system has attracted the interest of researchers. This study concerns the experimental effects on body weight of α2-adrenoceptor antagonists from the group of pyrrolidin-2-one derivatives in rats with diet-induced obesity. The intrinsic activity of the test compounds at the α-adrenoreceptors was tested. Obesity in rats was obtained by the use of fatty diet and then the influence of the test compounds on body weight, food and water intakes, lipid and glucose profiles and glycerol and cortisol levels were determinated. The effects of the compounds on locomotor activity, body temperature, blood pressure and heart rate were tested. One of the test compounds (1-(3-(4-phenylpiperazin-1-yl)propyl)pyrrolidin-2-one) reduces the animal's body weight and the amount of peritoneal adipose tissue during chronic administration, at the same time it does not cause significant adverse effects on the cardiovascular system. This compound decreases temperature and elevates glycerol levels and does not change the locomotor activity and cortisol level at anti-obese dose. Some derivatives of pyrrolidin-2-one that act as antagonists of the α2-adrenoreceptor may reduce body weight. Reducing body weight for 1-(3-(4-phenylpiperazin-1-yl)propyl)pyrrolidin-2-one can be associated with decrease in food intake, body fat reduction, reduction of blood glucose, and increased thermogenesis and lipolysis. This effect cannot be the result of changes in spontaneous activity or stress. Copyright © 2016 Elsevier B.V. All rights reserved.
Krol, Ewelina; Wandzik, Ilona; Szewczyk, Boguslaw
2017-01-01
Influenza virus infection is a major cause of morbidity and mortality worldwide. Due to the limited ability of currently available treatments, there is an urgent need for new anti-influenza drugs with broad spectrum protection. We have previously shown that two 2-deoxy sugar derivatives of uridine (designated IW3 and IW7) targeting the glycan processing steps during maturation of viral glycoproteins show good anti-influenza virus activity and may be a promising alternative approach for the development of new anti-influenza therapy. In this study, a number of IW3 and IW7 analogues with different structural modifications in 2-deoxy sugar or uridine parts were synthesized and evaluated for their ability to inhibit influenza A virus infection in vitro. Using the cytopathic effect (CPE) inhibition assay and viral plaque reduction assay in vitro, we showed that compounds 2, 3, and 4 exerted the most inhibitory effect on influenza virus A/ostrich/Denmark/725/96 (H5N2) infection in Madin-Darby canine kidney (MDCK) cells, with 50% inhibitory concentrations (IC50) for virus growth ranging from 82 to 100 (μM) without significant toxicity for the cells. The most active compound (2) showed activity of 82 μM with a selectivity index value of 5.27 against type A (H5N2) virus. Additionally, compound 2 reduced the formation of HA glycoprotein in a dose-dependent manner. Moreover, an analysis of physicochemical properties of studied compounds demonstrated a significant linear correlation between lipophilicity and antiviral activity. Therefore, inhibition of influenza A virus infection by conjugates of uridine and 2-deoxy sugars is a new promising approach for the development of new derivatives with anti-influenza activities. PMID:28777309
Tselepi, M R; Demopoulos, N A; Catsoulacos, P
1989-09-01
3 beta-Hydroxy-13 alpha-amino-13,17-seco-5 alpha-androstan-17-oic-13,17-lactam-p-bis(2-chloroethyl) aminophenoxyacetate (NSC 294859) is a new modified steroidal alkylating agent. This compound was given by i.p. administration to mice bearing different types of tumour. It was found to exhibit good activity in L1210 and P388 leukaemias with maintenance of activity against advanced tumours. The treatment of colon 26 tumour and B16 melanoma resulted in positive antineoplastic activity. The drug was not shown to be active in a melphalan-resistant P388 line. In this study, NSC 294859 was found to be effective in causing statistically significant increases in sister-chromatid exchange (SCE) rates and cell division delays. The alkylating agent component, p-bis-(2-chloroethyl)aminophenoxy acetic acid, was shown to be less effective than the parent compound, while the modified steroid component, 3 beta-hydroxy-13 alpha-amino-13,17-seco-5 alpha-androstan-17-oic-13,17-lactam, showed no effect. There were no statistically significant differences among donors regarding the induction of SCEs and replication indices (RIs) for the compounds tested.
Koe, Xue Fen; Tengku Muhammad, Tengku Sifzizul; Chong, Alexander Shu-Chien; Wahab, Habibah Abdul; Tan, Mei Lan
2014-01-01
A multiplex RT-qPCR was developed to examine CYP1A2, CYP2D6, and CYP3A4 induction properties of compounds from food and herbal sources. The induction of drug metabolizing enzymes is an important pharmacokinetic interaction with unique features in comparison with inhibition of metabolizing enzymes. Cytochrome induction can lead to serious drug–drug or drug–food interactions, especially if the coadministered drug plasma level is critical as it can reduce therapeutic effects and cause complications. Using this optimized multiplex RT-qPCR, cytochrome induction properties of andrographolide, curcumin, lycopene, bergamottin, and resveratrol were determined. Andrographolide, curcumin, and lycopene produced no significant induction effects on CYP1A2, CYP2D6, and CYP3A4. However, bergamottin appeared to be a significant in vitro CYP1A2 inducer starting from 5 to 50 μmol/L with induction ranging from 60 to 100-fold changes. On the other hand, resveratrol is a weak in vitro CYP1A2 inducer. Examining the cytochrome induction properties of food and herbal compounds help complement CYP inhibition studies and provide labeling and safety caution for such products. PMID:25473508
Antioxidant activity of Caesalpinia digyna root.
Srinivasan, R; Chandrasekar, M J N; Nanjan, M J; Suresh, B
2007-09-05
The antioxidant properties of three successive extracts of Caesalpinia digyna Rottler root and the isolated compound, bergenin, were tested using standard in vitro and in vivo models. The amount of the total phenolic compounds present was also determined. The successive methanol extract of Caesalpinia digyna root (CDM) exhibited strong scavenging effect on 2,2-diphenyl-2-picryl hydrazyl (DPPH) free radical, 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulphonic acid) diammonium salt (ABTS) radical cation, hydrogen peroxide, nitric oxide, hydroxyl radical and inhibition of lipid peroxidation. The free radical scavenging effect of CDM was comparable with that of reference antioxidants. The CDM having the highest content of phenolic compounds and strong free radical scavenging effect when administered orally to male albino rats at 100, 200 and 400mg/kg body weight for 7 days, prior to carbontetrachloride (CCl(4)) treatment, caused a significant increase in the levels of catalase (CAT) and superoxide dismutase (SOD) and significant decrease in the levels of lipidperoxidation (LPO) in serum, liver and kidney in a dose dependent manner, when compared to CCl(4) treated control. These results clearly indicate the strong antioxidant property of Caesalpinia digyna root. The study provides a proof for the ethnomedical claims and reported biological activities. The plant has, therefore, very good therapeutic potential.
Anderson, H.L.; Kinnison, W.W.; Lillberg, J.W.
1985-04-30
An apparatus and method for electronically reading planar two-dimensional ..beta..-ray emitter-labeled gel electrophoretograms. A single, flat rectangular multiwire proportional chamber is placed in close proximity to the gel and the assembly placed in an intense uniform magnetic field disposed in a perpendicular manner to the rectangular face of the proportional chamber. Beta rays emitted in the direction of the proportional chamber are caused to execute helical motions which substantially preserve knowledge the coordinates of their origin in the gel. Perpendicularly oriented, parallel wire, parallel plane cathodes electronically sense the location of the ..beta..-rays from ionization generated thereby in a detection gas coupled with an electron avalanche effect resulting from the action of a parallel wire anode located therebetween. A scintillator permits the present apparatus to be rendered insensitive when signals are generated from cosmic rays incident on the proportional chamber. Resolution for concentrations of radioactive compounds in the gel exceeds 700-..mu..m. The apparatus and method of the present invention represent a significant improvement over conventional autoradiographic techniques in dynamic range, linearity and sensitivity of data collection. A concentration and position map for gel electrophoretograms having significant concentrations of labeled compounds and/or highly radioactive labeling nuclides can generally be obtained in less than one hour.
Anderson, Herbert L.; Kinnison, W. Wayne; Lillberg, John W.
1987-01-01
Apparatus and method for electronically reading planar two dimensional .beta.-ray emitter-labeled gel electrophoretograms. A single, flat rectangular multiwire proportional chamber is placed in close proximity to the gel and the assembly placed in an intense uniform magnetic field disposed in a perpendicular manner to the rectangular face of the proportional chamber. Beta rays emitted in the direction of the proportional chamber are caused to execute helical motions which substantially preserve knowledge of the coordinates of their origin in the gel. Perpendicularly oriented, parallel wire, parallel plane cathodes electronically sense the location of the .beta.-rays from ionization generated thereby in a detection gas coupled with an electron avalanche effect resulting from the action of a parallel wire anode located therebetween. A scintillator permits the present apparatus to be rendered insensitive when signals are generated from cosmic rays incident on the proportional chamber. Resolution for concentrations of radioactive compounds in the gel exceeds 700 .mu.m. The apparatus and method of the present invention represent a significant improvement over conventional autoradiographic techniques in dynamic range, linearity and sensitivity of data collection. A concentration and position map for gel electrophoretograms having significant concentrations of labeled compounds and/or highly radioactive labeling nuclides can generally be obtained in less than one hour.
Modeling Compound Flood Hazards in Coastal Embayments
NASA Astrophysics Data System (ADS)
Moftakhari, H.; Schubert, J. E.; AghaKouchak, A.; Luke, A.; Matthew, R.; Sanders, B. F.
2017-12-01
Coastal cities around the world are built on lowland topography adjacent to coastal embayments and river estuaries, where multiple factors threaten increasing flood hazards (e.g. sea level rise and river flooding). Quantitative risk assessment is required for administration of flood insurance programs and the design of cost-effective flood risk reduction measures. This demands a characterization of extreme water levels such as 100 and 500 year return period events. Furthermore, hydrodynamic flood models are routinely used to characterize localized flood level intensities (i.e., local depth and velocity) based on boundary forcing sampled from extreme value distributions. For example, extreme flood discharges in the U.S. are estimated from measured flood peaks using the Log-Pearson Type III distribution. However, configuring hydrodynamic models for coastal embayments is challenging because of compound extreme flood events: events caused by a combination of extreme sea levels, extreme river discharges, and possibly other factors such as extreme waves and precipitation causing pluvial flooding in urban developments. Here, we present an approach for flood risk assessment that coordinates multivariate extreme analysis with hydrodynamic modeling of coastal embayments. First, we evaluate the significance of correlation structure between terrestrial freshwater inflow and oceanic variables; second, this correlation structure is described using copula functions in unit joint probability domain; and third, we choose a series of compound design scenarios for hydrodynamic modeling based on their occurrence likelihood. The design scenarios include the most likely compound event (with the highest joint probability density), preferred marginal scenario and reproduced time series of ensembles based on Monte Carlo sampling of bivariate hazard domain. The comparison between resulting extreme water dynamics under the compound hazard scenarios explained above provides an insight to the strengths/weaknesses of each approach and helps modelers choose the appropriate scenario that best fit to the needs of their project. The proposed risk assessment approach can help flood hazard modeling practitioners achieve a more reliable estimate of risk, by cautiously reducing the dimensionality of the hazard analysis.
Egert, M; Höhne, H-M; Weber, T; Simmering, R; Banowski, B; Breves, R
2013-12-01
The C-S lyase activity of bacteria in the human armpit releases highly malodorous, volatile sulfur compounds from nonvolatile precursor molecules. Such compounds significantly contribute to human body odour. Hence, C-S lyase represents an attractive target for anti-body-odour cosmetic products. Here, aiming at a final use in an ethanol-based deodorant formulation, 267 compounds and compound mixtures were screened for their ability to inhibit the C-S lyase activity of a Stapyhlococcus sp. crude extract. Staphylococcus sp. Isolate 128, closely related to Staphylococcus hominis, was chosen as the test bacterium, as it showed a reproducibly high specific C-S lyase activity on three different culturing media. Using a photometric assay and benzylcysteine as substrate, six rather complex, plant-derived compound mixtures and five well defined chemical compounds or compound mixtures were identified as inhibitors, leading to an inhibition of ≥70% at concentrations of ≤0·5% in the assay. The inhibition data have demonstrated that compounds with two vicinal hydroxyl groups or one hydroxyl and one keto group bound to an aryl residue are characteristic for the inhibition. The substances identified as C-S lyase inhibitors have the potential to improve the performance of anti-body-odour cosmetic products, for example, ethanol-based deodorants. Bacterial C-S lyase represents one of the key enzymes involved in human body odour formation. The aim of this study was to identify compounds inhibiting the C-S lyase activity of a Staphylococcus sp. isolate from the human skin. The compounds identified as the best inhibitors are characterized by the following features: two vicinal hydroxyl groups or one hydroxyl and one keto group bound to an aryl residue. They might be used to improve the performance of cosmetic products aiming to prevent the formation of microbially caused human body odour, for example, ethanol-based deodorants. © 2013 The Society for Applied Microbiology.
Xifró, Xavier; Vidal-Sancho, Laura; Boadas-Vaello, Pere; Turrado, Carlos; Alberch, Jordi; Puig, Teresa; Verdú, Enrique
2015-01-01
Neuropathic pain is common in peripheral nerve injury and often fails to respond to ordinary medication. Here, we investigated whether the two novel epigallocatechin-3-gallate (EGCG) polyphenolic derivatives, compound 23 and 30, reduce the neuropathic pain in mice chronic constriction nerve injury (CCI). First, we performed a dose-response study to evaluate nociceptive sensation after administration of EGCG and its derivatives 23 and 30, using the Hargreaves test at 7 and 21 days after injury (dpi). We daily administered EGCG, 23 and 30 (10 to 100 mg/Kg; i.p.) during the first week post-CCI. None of the doses of compound 23 caused significant pain diminution, whereas 50mg/kg was optimal for both EGCG and 30 to delay the latency of paw withdrawal. With 50 mg/Kg, we showed that EGCC prevented the thermal hyperalgesia from 7 to 21 dpi and compound 30 from 14 to 56 dpi. To evaluate the molecular mechanisms underpinning why EGCG and compound 30 differentially prevented the thermal hyperalgesia, we studied several biochemical parameters in the dorsal horn of the spinal cord at 14 and 56 dpi. We showed that the effect observed with EGCG and compound 30 was related to the inhibition of fatty acid synthase (FASN), a known target of these polyphenolic compounds. Additionally, we observed that EGCG and compound 30 reduced the expression of CCI-mediated inflammatory proteins and the nuclear localization of nuclear factor-kappa B at 14 dpi, but not at 56 dpi. We also strongly detected a decrease of synaptic plasma membrane levels of N-methyl-D-asparte receptor 2B in CCI-mice treated with compound 30 at 56 dpi. Altogether, compound 30 reduced the chronic thermal hyperalgesia induced by CCI better than the natural compound EGCG. Thus, our findings provide a rationale for the preclinical development of compound 30 as an agent to treat neuropathic pain.
Protecting Emergency Responders: Lessons Learned from Terrorist Attacks
2002-03-05
Contact lenses tended to dry out when worn with respirators for long periods. Wet shoes and socks caused blisters.1 Trades panel members believed...the confusion and compounds the safety and rescue responsibilities of firefighters and other responders who are in the command structure. In the...enter eyes and to irritate them. Heavy labor in hot weather, which caused de- hydration and dry eyes, apparently compounded this problem at the sites
Experimental study on ignition mechanisms of wet granulation sulfur caused by friction.
Dai, Haoyuan; Fan, Jianchun; Wu, Shengnan; Yu, Yanqiu; Liu, Di; Hu, Zhibin
2018-02-15
It is common to see fire accidents caused by friction during the storage and transportation of wet granulation sulfur. To study the sulfur ignition mechanism under friction conditions, a new rotating test apparatus is developed to reproduce friction scenes at lab scale. A series of experiments are performed under different normal loads. The SEM-EDS and the XRD were utilized to examine the morphologies and compositions of the tested specimens and the friction products. Experimental results show that these two methods are mostly in agreement with each other. The iron-sulfide compounds are produced and the proportion of iron-sulfide compounds is reduced with normal loads increasing, compared to the total number of the friction products. The facts implied by the integration analysis of friction products with the temperature changes of the near friction surface unveil an underlying mechanism that may explain sulfur ignition by friction in real scenarios. The sulfur ignition may be mainly caused by the spontaneous combustion of iron sulfide compounds produced by friction under low normal load with 200N. With the increase of normal loads, the resulting iron-sulfide compounds are decreasing and the high temperature from friction heat begins to play a major role in causing fire. Copyright © 2017 Elsevier B.V. All rights reserved.
Modak, Brenda; Sandino, Ana María; Arata, Loredana; Cárdenas-Jirón, Gloria; Torres, René
2010-02-24
Infectious pancreatic necrosis is a disease caused by a birnavirus affecting several wild and commercial aquatic organisms. This infectious disease results in significant losses in the farming industry and therefore effective therapeutic agents are needed to control outbreaks caused by this pathogen. Our goal was to evaluate in vitro antiviral effect of a group of natural compounds (geranyl aromatic derivatives) isolated from the resinous exudate of the plant Heliotropium filifolium (Heliotropiaceae), semi-synthetics compounds obtained from them, and the resinous exudate, on CHSE-214 cell line infected with infectious pancreatic necrosis virus (IPNV) using a virus plaque inhibition assay at various concentrations. The compound ester filifolinyl senecionate was the best antiviral with EC(50) 160 microg/mL and a cytotoxic concentration required to reduce cell viability by 50% up to 400 microg/mL. In order to obtain information about the mechanism of the antiviral action, was evaluated the influence of ester filifolinyl senecionate on the viral RNA synthesis. This compound produced inhibition of the synthesis of viral genomic RNA, suggesting that the ester could be interacting with the viral RNA during the viral cycle. Additionally, a preliminary study of the interaction between ester and a sample of single-stranded RNA was studied at the level of theory Restricted Hartree Fock PM3 method. The results showed that the ester formed hydrogen bonds mainly with nitrogenous bases but not with ribose and phosphate. These results allow propose that the ester filifolinyl senecionate is a good candidate for used as antiviral therapy for IPN virus in salmon fry. Copyright 2009 Elsevier B.V. All rights reserved.
Wilhelm, D; Himmelmann, A; Krause, C; Wilhelm, K-P
2013-01-01
This study evaluated the short term efficacy of tongue cleaning with meridol HALITOSIS tooth & tongue gel in comparison to mechanical tongue cleaning alone and untreated after five and 60 minutes in patients with an oral cause of bad breath. Fifty-four male and female subjects with an intra-oral cause of halitosis (organoleptic ratings > or = 2 and volatile sulphur compounds > or = 50 ppb) participated in this crossover study and were assigned to six different treatment sequences (ABC, ACB, BAC, BCA, CAB, CBA) with no treatment (A), mechanical tongue cleaning alone (B), and tongue cleaning with tooth & tongue gel applied to the tongue cleaner (C). Efficacy was assessed by organoleptic ratings and volatile sulphur compound measurements five and 60 minutes after treatment Cleaning the tongue with tooth & tongue gel applied onto the tongue cleaner resulted in significantly reduced organoleptic ratings (p < 0.001 for the five-minute assessment; p = 0.001 for the 60-minute assessment) and volatile sulphur compounds (H2S + CH3SH: p = 0.005 for the five-minute assessment; p = 0.003 for the 60-minute assessment) compared to no treatment at the five- and 60-minute assessment time points, while mechanical tongue cleaning alone was less effective in reducing organoleptic ratings (p = 0.008 for the five-minute assessment; p = 0.144 for the 60-minute assessment) and volatile sulphur compounds (H2S + CH3SH: p = 0.261 for the five-minute assessment; p = 0.365 for the 60-minute assessment). Single tongue cleaning with meridol HALITOSIS tooth & tongue gel had a positive effect on halitosis five and 60 minutes after treatment. Tongue cleaning with tooth & tongue gel in combination with other oral hygiene procedures is a promising approach to control halitosis.
Lieu, Christopher A.; Venkiteswaran, Kala; Gilmour, Timothy P.; Rao, Anand N.; Petticoffer, Andrew C.; Gilbert, Erin V.; Deogaonkar, Milind; Manyam, Bala V.; Subramanian, Thyagarajan
2012-01-01
Chronic treatment with levodopa (LD) in Parkinson's disease (PD) can cause drug induced dyskinesias. Mucuna pruriens endocarp powder (MPEP) contains several compounds including natural LD and has been reported to not cause drug-induced dyskinesias. We evaluated the effects of Mucuna pruriens to determine if its underlying mechanistic actions are exclusively due to LD. We first compared MPEP with and without carbidopa (CD), and LD+CD in hemiparkinsonian (HP) monkeys. Each treatment ameliorated parkinsonism. We then compared the neuronal firing properties of the substantia nigra reticulata (SNR) and subthalamic nucleus (STN) in HP monkeys with MPEP+CD and LD+CD to evaluate basal ganglia circuitry alterations. Both treatments decreased SNR firing rate compared to HP state. However, LD+CD treatments significantly increased SNR bursting firing patterns that were not seen with MPEP+CD treatments. No significant changes were seen in STN firing properties. We then evaluated the effects of a water extract of MPEP. Oral MPWE ameliorated parkinsonism without causing drug-induced dyskinesias. The distinctive neurophysiological findings in the basal ganglia and the ability to ameliorate parkinsonism without causing dyskinesias strongly suggest that Mucuna pruriens acts through a novel mechanism that is different from that of LD. PMID:22997535
Lieu, Christopher A; Venkiteswaran, Kala; Gilmour, Timothy P; Rao, Anand N; Petticoffer, Andrew C; Gilbert, Erin V; Deogaonkar, Milind; Manyam, Bala V; Subramanian, Thyagarajan
2012-01-01
Chronic treatment with levodopa (LD) in Parkinson's disease (PD) can cause drug induced dyskinesias. Mucuna pruriens endocarp powder (MPEP) contains several compounds including natural LD and has been reported to not cause drug-induced dyskinesias. We evaluated the effects of Mucuna pruriens to determine if its underlying mechanistic actions are exclusively due to LD. We first compared MPEP with and without carbidopa (CD), and LD+CD in hemiparkinsonian (HP) monkeys. Each treatment ameliorated parkinsonism. We then compared the neuronal firing properties of the substantia nigra reticulata (SNR) and subthalamic nucleus (STN) in HP monkeys with MPEP+CD and LD+CD to evaluate basal ganglia circuitry alterations. Both treatments decreased SNR firing rate compared to HP state. However, LD+CD treatments significantly increased SNR bursting firing patterns that were not seen with MPEP+CD treatments. No significant changes were seen in STN firing properties. We then evaluated the effects of a water extract of MPEP. Oral MPWE ameliorated parkinsonism without causing drug-induced dyskinesias. The distinctive neurophysiological findings in the basal ganglia and the ability to ameliorate parkinsonism without causing dyskinesias strongly suggest that Mucuna pruriens acts through a novel mechanism that is different from that of LD.
Synthesis, characterization and biological evaluation of novel α, β unsaturated amides.
Esmailzadeh, K; Housaindokht, M R; Moradi, A; Esmaeili, A A; Sharifi, Z
2016-05-15
Three derivatives of α,β unsaturated amides have been successfully synthesized via Ugi-four component (U-4CR) reaction. The interactions of the amides with calf thymus deoxyribonucleic acid (ct-DNA) have been investigated in the Tris-HCl buffer (pH=7.4) using viscometric, spectroscopic, thermal denaturation studies, and also molecular docking. By UV-Vis absorption spectroscopy studies, adding CT-DNA to the compound solution caused the hypochromism indicates that there are interactions between the compounds and DNA base pairs. In competitive fluorescence with methylene blue as an intercalator probe, adding compounds to DNA-MB solution caused an increase in emission spectra of the complex. This could be because of compound replacing, with similar binding mode of MB, between the DNA base pairs due to release of bonded MB molecules from DNA-MB complex. Thermal denaturation studies and viscometric experiments also indicated that all three investigated compounds bind to CT-DNA by non-classical intercalation mode. Additionally, molecular docking technique predicted partial intercalation binding mode for the compounds. Also, the highest binding energy was obtained for compound 5a. These results are in agreement with results obtained by empirical methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Ellis, K O; Schwan, T J; Wessels, F L; Miles, N J
1980-10-01
A series of 1-(substituted benzyl)-3,4,5,6-tetrahydro-2(1H)-pyrimidones was synthesized primarily by catalytic hydrogenation of the corresponding 1-(substituted benzyl)-2(1H)-pyrimidone. The pharmacological evaluation of these compounds in mice revealed a unique profile that included evidence of CNS stimulation and depression within the series and in the same compounds. Some members of this series induced signs of only CNS stimulation, some compounds caused signs of only CNS depression and skeletal muscle relaxation, and some caused signs of both stimulation and depression in the same animal. This apparent dual activity was assessed further in mice with antidepressant tests based on tetrabenazine antagonism and with antianxiety/anticonvulsant tests on the antagonism of a number of convulsants. The 4-chloro-, 4-fluoro-, 4-bromo-, and 3,4-dichlorobenzyl compounds exhibited antidepressant and antianxiety activities in the same dose range. Among these four compounds, the 3,4-dichlorobenzyl compound possessed the lowest antitetrabenazine (17 mg/kg po) and antipentylenetetrazol (23 mg/kg po) ED50 values. The 4-fluoro compound antagonized tetrabenazine-, pentylenetetrazol-, and isoniazid-induced tonic convulsions in the same dose range (congruent to 50 mg/kg po).
IMS software developments for the detection of chemical warfare agent
NASA Technical Reports Server (NTRS)
Klepel, ST.; Graefenhain, U.; Lippe, R.; Stach, J.; Starrock, V.
1995-01-01
Interference compounds like gasoline, diesel, burning wood or fuel, etc. are presented in common battlefield situations. These compounds can cause detectors to respond as a false positive or interfere with the detector's ability to respond to target compounds such as chemical warfare agents. To ensure proper response of the ion mobility spectrometer to chemical warfare agents, two special software packages were developed and incorporated into the Bruker RAID-1. The programs suppress interferring signals caused by car exhaust or smoke gases resulting from burning materials and correct the influence of variable sample gas humidity which is important for detection and quantification of blister agents like mustard gas or lewisite.
Suwannoppadol, Suwat; Ho, Goen; Cord-Ruwisch, Ralf
2012-12-01
Sodium toxicity is a common problem causing inhibition of anaerobic digestion, and digesters treating highly concentrated wastes, such as food and municipal solid waste, and concentrated animal manure, are likely to suffer from partial or complete inhibition of methane-producing consortia, including methanogens. When grass clippings were added at the onset of anaerobic digestion of acetate containing a sodium concentration of 7.8 gNa(+)/L, a total methane production about 8L/L was obtained, whereas no methane was produced in the absence of grass leaves. In an attempt to narrow down which components of grass leaves caused decrease of sodium toxicity, different hypotheses were tested. Results revealed that betaine could be a significant compound in grass leaves causing reduction to sodium inhibition. Copyright © 2012 Elsevier Ltd. All rights reserved.
2000-01-01
compound when illuminated with light. This causes the refractive index to increase from n - 1.5 to n f- 1.6. The photopolymerizable solution was...obtained using an ordinary phase-contrast microscope. The photopolymer memory medium we used was monomer mixture composed of a methacryl compound and...an allyl compound with benzil as an initiator and michler’s ketone as a dye sensitizer.9 The metacryl compound polymerizes faster than the allyl
Savi, Geovana D; Vitorino, Vinícius; Bortoluzzi, Adailton J; Scussel, Vildes M
2013-10-01
Several strategies are used to eliminate toxigenic fungi that produce fumonisins in grains. Fusarium verticillioides can be controlled by the application of synthetic fungicides in the field or during storage. However, there may also be residuals, which may remain in the foods. Inorganic compounds such as zinc are cheap, stable and could present strong antifungal activity. Some Zn compounds can be utilized as dietary supplements and are authorized for the fortification of foods. Knowing the advantages and that low concentrations of Zn can have antimicrobial activity, our objective was to evaluate the effects of Zn compounds on the growth of F. verticillioides and the production of fumonisin and conidia. In addition, we aimed to verify that Zn compounds cause morphological alterations of the hyphae, mortality and production of reactive oxygen species. Zn compounds efficiently reduced fungal growth and fumonisin production. Treatment using zinc perchlorate gave the best results. All treatments inhibited conidia production and caused morphological alterations of the hyphae. It was possible to observe cell death and production of reactive oxygen species. Zn compounds have advantages compared to other antifungal compounds. In particular, they are non-toxic for the organism in appropriate amounts. They could be studied further as potential fungicides in agriculture. © 2013 Society of Chemical Industry.
Polyether precursors of molecular recognition systems based on the 9,10-anthraquinone moiety
NASA Astrophysics Data System (ADS)
Wcisło, Anna; Cirocka, Anna; Zarzeczańska, Dorota; Niedziałkowski, Paweł; Nakonieczna, Sandra; Ossowski, Tadeusz
2015-02-01
A series of novel polyether derivatives of 9,10-anthraquinone (AQ) was synthesized and characterized by means of UV-Vis spectroscopy, acid-base titration and complexometric titration. The results were compared with 1-NEt2AQ and 1-NHEtAQ - model compounds of alkylaminoanthraquinones. Acetonitrile and methanol were used as solvents for determination of spectroscopic and acid-base properties. Complexometric titrations were carried out exclusively in acetonitrile. Spectral characteristic of these compounds strongly depends on pH. Addition of acid causes the decrease of absorption intensity and in some cases also a shift of the visible range band. The weakest base is the compound (2), and the strongest - compound (1), both in methanol and acetonitrile solution. The introduction of an additional substituent in the position 8 of the anthraquinone compound increases its basicity. The presence of metal ions causes changes in intensity of absorption (decrease for compounds (2) and (3) and increase with bathochromic shift for (1) and (4)). For the determination of the coordination properties aluminum (III) ions were chosen. The highest complex stability constant with Al (III) ions is observed for compound (1), and the weakest for compound (3). The elongation of the polyether chain decreases the stability of the complex formed.
Polyether precursors of molecular recognition systems based on the 9,10-anthraquinone moiety.
Wcisło, Anna; Cirocka, Anna; Zarzeczańska, Dorota; Niedziałkowski, Paweł; Nakonieczna, Sandra; Ossowski, Tadeusz
2015-02-25
A series of novel polyether derivatives of 9,10-anthraquinone (AQ) was synthesized and characterized by means of UV-Vis spectroscopy, acid-base titration and complexometric titration. The results were compared with 1-NEt2AQ and 1-NHEtAQ--model compounds of alkylaminoanthraquinones. Acetonitrile and methanol were used as solvents for determination of spectroscopic and acid-base properties. Complexometric titrations were carried out exclusively in acetonitrile. Spectral characteristic of these compounds strongly depends on pH. Addition of acid causes the decrease of absorption intensity and in some cases also a shift of the visible range band. The weakest base is the compound (2), and the strongest--compound (1), both in methanol and acetonitrile solution. The introduction of an additional substituent in the position 8 of the anthraquinone compound increases its basicity. The presence of metal ions causes changes in intensity of absorption (decrease for compounds (2) and (3) and increase with bathochromic shift for (1) and (4)). For the determination of the coordination properties aluminum (III) ions were chosen. The highest complex stability constant with Al (III) ions is observed for compound (1), and the weakest for compound (3). The elongation of the polyether chain decreases the stability of the complex formed. Copyright © 2014 Elsevier B.V. All rights reserved.
DEVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bill W. Bogan; Brigid M. Lamb; John J. Kilbane II
2004-10-30
The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Previous testing indicated that the growth, and the metal corrosion caused by pure cultures of sulfate reducing bacteria were inhibited by hexane extracts of some pepper plants. This quarter tests were performed to determine ifmore » chemical compounds other than pepper extracts could inhibit the growth of corrosion-associated microbes and to determine if pepper extracts and other compounds can inhibit corrosion when mature biofilms are present. Several chemical compounds were shown to be capable of inhibiting the growth of corrosion-associated microorganisms, and all of these compounds limited the amount of corrosion caused by mature biofilms to a similar extent. It is difficult to control corrosion caused by mature biofilms, but any compound that disrupts the metabolism of any of the major microbial groups present in corrosion-associated biofilms shows promise in limiting the amount/rate of corrosion.« less
Kamal, Ahmed; Reddy, Vangala Santhosh; Karnewar, Santosh; Chourasiya, Sumit S; Shaik, Anver Basha; Kumar, G Bharath; Kishor, Chandan; Reddy, M Kashi; Narasimha Rao, M P; Nagabhushana, Ananthamurthy; Ramakrishna, Kallaganti V S; Addlagatta, Anthony; Kotamraju, Srigiridhar
2013-12-01
A library of imidazopyridine-oxindole conjugates was synthesised and investigated for anticancer activity against various human cancer cell lines. Some of the tested compounds, such as 10 a, 10 e, 10 f, and 10 k, exhibited promising antiproliferative activity with GI50 values ranging from 0.17 to 9.31 μM. Flow cytometric analysis showed that MCF-7 cells treated by these compounds arrested in the G2 /M phase of the cell cycle in a concentration-dependent manner. More particularly, compound 10 f displayed a remarkable inhibitory effect on tubulin polymerisation. All the compounds depolarised mitochondrial membrane potential and caused apoptosis. These results are further supported by the decreased phosphorylation of Akt at Ser473. Studies on embryonic development revealed that the lead compounds 10 f and 10 k caused delay in the development of zebra fish embryos. Docking of compound 10 f with tubulin protein suggested that the imidazo[1,2-a]pyridine moiety occupies the colchicine binding site of tubulin. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Asthma related to cleaning agents: a clinical insight
Vandenplas, Olivier; D'Alpaos, Vinciane; Evrard, Geneviève; Jamart, Jacques; Thimpont, Joel; Huaux, François; Renauld, Jean-Christophe
2013-01-01
Objective To determine the agents causing asthmatic reactions during specific inhalation challenges (SICs) in workers with cleaning-related asthma symptoms and to assess the pattern of bronchial responses in order to identify the mechanisms involved in cleaning-related asthma. Design A retrospective case series analysis. Setting The study included all participants who completed an SIC procedure with the cleaning/disinfection products suspected of causing work-related asthma over the period 1992–2011 in a tertiary centre, which is the single specialised centre of the French-speaking part of Belgium where all participants with work-related asthma are referred to for SIC. Results The review identified 44 participants who completed an SIC with cleaning/disinfection agents. Challenge exposure to the suspected cleaning agents elicited a ≥20% fall in forced expiratory volume in 1 s (FEV1) in 17 (39%) participants. The cleaning products that induced a positive SIC contained quaternary ammonium compounds (n=10), glutaraldehyde (n=3), both of these agents (n=1) and ethanolamines (n=2). Positive SICs were associated with a significant decrease in the median (IQR) value of the provocative concentration of histamine causing a 20% fall in FEV1 (PC20) from 1.4 (0.2–4.2) mg/mL at baseline to 0.5 (0.4–3.0) mg/mL after the challenge and a significant increase in sputum eosinophils from 1.8 (0.8–7.2)% at baseline to 10.0 (4.1–15.9)% 7 h after the challenge exposure while these parameters did not significantly change in participants with a negative SIC. Overall, 11 of 17 participants with positive SICs showed greater than threefold decrease in postchallenge histamine PC20 value, a >2% increase in sputum eosinophils, or both of these outcomes. Conclusions These data indicate that a substantial proportion of workers who experience asthma symptoms related to cleaning materials show a pattern of bronchial reaction consistent with sensitiser-induced occupational asthma. The results also suggest that quaternary ammonium compounds are the principal cause of sensitiser-induced occupational asthma among cleaners. PMID:24056489
Tellurium tetrachloride and diphenyl ditelluride cause cytotoxicity in rat hippocampal astrocytes.
Roy, Shalini; Hardej, Diane
2011-10-01
Tellurium tetrachloride (TeCl(4)) and diphenyl ditelluride (DPDT) cytotoxicity, was investigated in rat astrocytes. Concentrations of 0.24-250μM (24h) were tested for viability using MTT(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) and trypan blue exclusion. MTT showed significant decreases at all concentrations tested for both compounds. Significant decreases in viability were seen in 1.95-250μM of DPDT and 0.97-250μM of TeCl(4) with trypan blue exclusion. The LC(50) for both compounds was 62.5μM. Light and scanning microscopy confirm toxicity observed at higher concentrations. Thiobarbituric acid reactive substances (TBARs) assay, TUNEL, cytochrome c and caspase release were carried out. No significant increase in TBARS with either agent was observed (15.625-62.5μM). TUNEL and cytochrome c assays demonstrated apoptosis in TeCl(4) treated cells (31.25-125μM). Non-apoptotic cells were observed in DPDT treated cells. Studies of caspase 3/7 and caspase 9 indicated increased activity in TeCl(4) but not in DPDT treated cells. Optical Emission Spectroscopy of DPDT and TeCl(4) treated cells demonstrated significant accumulation of elemental tellurium in all treatment groups (31.25-125μM). We conclude that DPDT and TeCl(4) are cytotoxic to astrocytes. TeCl(4) treated cells die via the intrinsic apoptotic pathway. Accumulation of tellurium occurs with both compounds, but results in different mechanisms of cell death. Copyright © 2011 Elsevier Ltd. All rights reserved.
Halitosis associated volatile sulphur compound levels in patients with laryngopharyngeal reflux.
Avincsal, Mehmet Ozgur; Altundag, Aytug; Ulusoy, Seckin; Dinc, Mehmet Emre; Dalgic, Abdullah; Topak, Murat
2016-06-01
Previous reports have suggested that laryngopharyngeal reflux (LPR) may cause halitosis. However, it remains unclear if LPR is a risk factor for halitosis. The aim of this study was to investigate if patients diagnosed with LPR have an increased probability of halitosis compared to a normal population. Fifty-eight patients complaining of LPR symptoms and 35 healthy subjects were included in the study. A LPR diagnosis was made using an ambulatory 24-h double pH-probe monitor, which is the gold standard diagnostic tool for LPR. Additionally, halitosis was evaluated by measuring the levels of volatile sulphur compounds using OralChroma™ and an organoleptic test score. The result of the final diagnosis of the 58 patients after the 24 h ambulatory pH monitoring was that 42 patients had LPR. Significant correlations were observed between the organoleptic test score and hydrogen sulfide (H2S) and methyl mercaptan (CH3SH) levels. These were also significantly correlated with LPR. We found a strong positive association between LPR and volatile sulphur compound levels. The H2S and CH3SH levels differed significantly between the LPR and control groups (p < 0.0001 and p < 0.0001, respectively). Halitosis was significantly associated with the occurrence and severity of LPR. The present study provides clear evidence for an association between halitosis and LPR. Halitosis has a high frequency in patients with LPR and reflux characteristics are directly related to their severity and therefore could be considered as a manifestation of LPR.
Acetamide Derivatives of Chromen-2-ones as Potent Cholinesterase Inhibitors.
Prasad, Suchita; Kumar, Bipul; Kumar, Shiv; Chand, Karam; Kamble, Shashank S; Gautam, Hemant K; Sharma, Sunil K
2017-08-01
Alzheimer's disease (AD), a neurodegenerative disorder, is a serious medical issue worldwide with drastic social consequences. Inhibition of cholinesterase is one of the rational and effective approaches to retard the symptoms of AD and, hence, consistent efforts are being made to develop efficient anti-cholinesterase agents. In pursuit of this, a series of 19 acetamide derivatives of chromen-2-ones were synthesized and evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potential. All the synthesized compounds exhibited significant anti-AChE and anti-BChE activity, with IC 50 values in the range of 0.24-10.19 μM and 0.64-30.08 μM, respectively, using donepezil hydrochloride as the standard. Out of 19 compounds screened, 3 compounds, viz. 22, 40, and 43, caused 50% inhibition of AChE at 0.24, 0.25, and 0.25 μM, respectively. A kinetic study revealed them to be mixed-type inhibitors, binding with both the CAS and PAS sites of AChE. The above-selected compounds were found to be effective inhibitors of AChE-induced and self-mediated Aβ 1-42 aggregation. ADMET predictions demonstrated that these compounds may possess suitable blood-brain barrier (BBB) permeability. Hemolytic assay results revealed that these compounds did not lyse human RBCs up to a thousand times of their IC 50 value. MTT assays performed for the shortlisted compounds showed them to be negligibly toxic after 24 h of treatment with the SH-SY5Y neuroblastoma cells. These results provide insights for further optimization of the scaffolds for designing the next generation of compounds as lead cholinesterase inhibitors. © 2017 Deutsche Pharmazeutische Gesellschaft.
Żbikowska, Beata; Franiczek, Roman; Sowa, Alina; Połukord, Grażyna; Krzyżanowska, Barbara; Sroka, Zbigniew
2017-09-01
An important focus of modern medicine is the search for new substances and strategies to combat infectious diseases, which present an increasing threat due to the growth of bacterial resistance to antibiotics. Another problem concerns free radicals, which in excess can cause several serious diseases. An alternative to chemical synthesis of antimicrobial and antiradical compounds is to find active substances in plant raw materials. We prepared extracts from leaves of five species of the genus Bergenia: B. purpurascens, B. cordifolia, B. ligulata, B. crassifolia, and B. ciliata. Antimicrobial and antiradical features of extracts and raw materials were assessed, and the quantities of phenolic compounds were determined. We also evaluated, using high-performance liquid chromatography, the amounts of arbutin and hydroquinone, compounds related to antimicrobial activity of these raw materials. The strongest antiradical properties were shown by leaves of B. crassifolia and B. cordifolia, the lowest by leaves of B. ciliata. The antiradical activity of extracts showed a strong positive correlation with the amount of phenols. All raw materials have significant antimicrobial properties. Among them, the ethyl acetate extracts were the most active. Antimicrobial activity very weakly correlated with the amount of arbutin, but correlated very strongly with the contents of both hydroquinone and phenolic compounds. Additional experiments using artificially prepared mixtures of phenolic compounds and hydroquinone allowed us to conclude that the most active antimicrobial substance is hydroquinone.
Aquatic Pseudomonads Inhibit Oomycete Plant Pathogens of Glycine max
Wagner, Andrew; Norris, Stephen; Chatterjee, Payel; Morris, Paul F.; Wildschutte, Hans
2018-01-01
Seedling root rot of soybeans caused by the host-specific pathogen Phytophthora sojae, and a large number of Pythium species, is an economically important disease across the Midwest United States that negatively impacts soybean yields. Research on biocontrol strategies for crop pathogens has focused on compounds produced by microbes from soil, however, recent studies suggest that aquatic bacteria express distinct compounds that efficiently inhibit a wide range of pathogens. Based on these observations, we hypothesized that freshwater strains of pseudomonads might be producing novel antagonistic compounds that inhibit the growth of oomycetes. To test this prediction, we utilized a collection of 330 Pseudomonas strains isolated from soil and freshwater habitats, and determined their activity against a panel of five oomycetes: Phytophthora sojae, Pythium heterothalicum, Pythium irregulare, Pythium sylvaticum, and Pythium ultimum, all of which are pathogenic on soybeans. Among the bacterial strains, 118 exhibited antagonistic activity against at least one oomycete species, and 16 strains were inhibitory to all pathogens. Antagonistic activity toward oomycetes was significantly more common for aquatic isolates than for soil isolates. One water-derived strain, 06C 126, was predicted to express a siderophore and exhibited diverse antagonistic profiles when tested on nutrient rich and iron depleted media suggesting that more than one compound was produced that effectively inhibited oomycetes. These results support the concept that aquatic strains are an efficient source of compounds that inhibit pathogens. We outline a strategy to identify other strains that express unique compounds that may be useful biocontrol agents. PMID:29896163
Ishihara, Tomoe; Kaidzu, Sachiko; Kimura, Hideto; Koyama, Yasurou; Matsuoka, Yotaro
2018-01-01
Retinal tissue is exposed to oxidative stress caused by visible light. Light-damaged rat used in age-related macular degeneration (AMD) studies clarified that antioxidants decrease retinal light damage. Albino rats were exposed to 5000 Lux light for 12 h with oral administration of the polyphenolic compounds fraction (PF) from the seed shells of Japanese horse chestnut (30 mg/kg, 100 mg/kg, and 300 mg/kg body weight: BW). To evaluate the protective effects against light damage, electroretinograms (ERGs), the outer nuclear layer (ONL) thickness, the antioxidant activity of plasma, oxidized retinal lipids, and the detection of apoptosis were examined. To reveal their active compounds, PF were separated into an A-type proanthocyanidin (PAF) and a flavonol O-glycosides fraction. The protective effects of these fractions against light damage were compared by measuring the thickness of the ERGs and ONL. Compared with the negative control, the PF group (100 mg/kg and 300 mg/kg BW) significantly suppressed the decrease of the ERG amplitudes and ONL thickness. PF (300 mg/kg BW) induced the elevation of in vivo antioxidant activity, and the suppression of retinal lipid oxidation. PF administration also suppressed apoptotic cell death. The protective effects against light damage were attributable to the antioxidant activity of PAF. The light-induced damage of retinas was protected by oral administration of PF and PAF. Taken together, these compounds are potentially useful for the prevention of the disease caused by light exposure. Highlights: The protective effects of retinal damage by light exposure were evaluated using polyphenolic compounds from the seed shells of Japanese horse chestnut (Aesculus turbinata BLUME) as an antioxidant. Decreases in the electroretinographic amplitude and outer nuclear layer thickness were suppressed by the polyphenolic compounds of the seed shells. Polyphenolic compounds from the seed shells of Japanese horse chestnut inhibited the oxidation of retinal lipids. Highly polymeric A-type proanthocyanidin from the seed shells protected the rat retina from light exposure damage by inhibiting oxidative stress and apoptotic mechanisms. PMID:29748512
Ishihara, Tomoe; Kaidzu, Sachiko; Kimura, Hideto; Koyama, Yasurou; Matsuoka, Yotaro; Ohira, Akihiro
2018-05-10
Retinal tissue is exposed to oxidative stress caused by visible light. Light-damaged rat used in age-related macular degeneration (AMD) studies clarified that antioxidants decrease retinal light damage. Albino rats were exposed to 5000 Lux light for 12 h with oral administration of the polyphenolic compounds fraction (PF) from the seed shells of Japanese horse chestnut (30 mg/kg, 100 mg/kg, and 300 mg/kg body weight: BW). To evaluate the protective effects against light damage, electroretinograms (ERGs), the outer nuclear layer (ONL) thickness, the antioxidant activity of plasma, oxidized retinal lipids, and the detection of apoptosis were examined. To reveal their active compounds, PF were separated into an A-type proanthocyanidin (PAF) and a flavonol O -glycosides fraction. The protective effects of these fractions against light damage were compared by measuring the thickness of the ERGs and ONL. Compared with the negative control, the PF group (100 mg/kg and 300 mg/kg BW) significantly suppressed the decrease of the ERG amplitudes and ONL thickness. PF (300 mg/kg BW) induced the elevation of in vivo antioxidant activity, and the suppression of retinal lipid oxidation. PF administration also suppressed apoptotic cell death. The protective effects against light damage were attributable to the antioxidant activity of PAF. The light-induced damage of retinas was protected by oral administration of PF and PAF. Taken together, these compounds are potentially useful for the prevention of the disease caused by light exposure. The protective effects of retinal damage by light exposure were evaluated using polyphenolic compounds from the seed shells of Japanese horse chestnut ( Aesculus turbinata BLUME) as an antioxidant. Decreases in the electroretinographic amplitude and outer nuclear layer thickness were suppressed by the polyphenolic compounds of the seed shells. Polyphenolic compounds from the seed shells of Japanese horse chestnut inhibited the oxidation of retinal lipids. Highly polymeric A-type proanthocyanidin from the seed shells protected the rat retina from light exposure damage by inhibiting oxidative stress and apoptotic mechanisms.
Dauer, Andreas; Hensel, Andreas; Lhoste, Evelyne; Knasmüller, Siegfried; Mersch-Sundermann, Volker
2003-05-01
The genotoxic and antigenotoxic activities of catechin, hamamelitannin and two proanthocyanidin fractions prepared from the bark of Hamamelis virginiana L. were investigated in a human derived, metabolically competent hepatoma cell line (Hep G2) using single cell gel electrophoresis (SCGE) for the detection of DNA-damage. DNA-migration was calculated as Olive tail moment (OTM). Catechin and a low-molecular weight proanthocyandin fraction (W(M)) caused only slight increases of OTM up to concentrations of 166 microg/ml whereas hamamelitannin and the proanthocyandin fraction with higher molecular weight (W(A)) led to a two-fold enhancement of OTM at the same concentrations. These effects were dose-independent. Treatment of the cells with the test compounds in a dose-range of 2-166 microg/ml prior to the exposure to benzo(a)pyrene (B(a)P, 10 microM, 2.5 microg/ml) led to a significant reduction of induced DNA damage which was dose-dependent for all test compounds, except for hamamelitannin. The inhibitory effects of proanthocyanidins were stronger than those of catechin and hamamelitannin; the lowest effective concentrations were about 2 microg/ml. In order to clarify the mechanisms of protection, possible effects of the test compounds on enzymes involved in toxification and detoxification of B(a)P were investigated. While B(a)P toxification by cytochrome P450 was not inhibited by the test compounds, detoxification by glutathion-S-transferase (GST) was induced by catechin and W(M). Combination experiments with the ultimate metabolite of B(a)P, (+/-)-anti-benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE; 5 microM, 1.5 microg/ml), revealed strong inhibitory effects, indicating that the observed protective effects were caused by scavenging of the ultimate mutagen by the test compounds. Exposure of Hep G2 cells to the test compounds after B(a)P treatment did not influence B(a)P induced DNA damage, demonstrating that repair mechanisms were not affected.
Rempel, Mary Ann; Hester, Brian; Deharo, Hector; Hong, Haizheng; Wang, Yinsheng; Schlenk, Daniel
2009-03-15
Oxidative compounds have been demonstrated to decrease the fertilization capability and viability of offspring of treated spermatozoa. As estrogen and its hydroxylated metabolites readily undergo redox cycling, this study was undertaken to determine if estrogens and other oxidants could damage DNA and impair sperm function. Sperm was preexposed to either 17beta-estradiol (E2), 4-hydroxyestradiol (4OHE2) or the oxidant t-butyl hydroperoxide (t-BOOH), and allowed to fertilize untreated eggs. The fertilization rates and development of the larvae were assessed, as well as the amount of 8-oxodeoxyguanosine (8-oxodG) as an indication of oxidative DNA damage. All compounds caused significant decreases in fertilization and increases in pathological abnormalities in offspring, with 4OHE2 being the most toxic. Treatment with 4OHE2 caused a significant increase of 8-oxodG, but E2 failed to show any effect. Pathological abnormalities were significantly correlated (r(2)=0.44, p< or =0.05) with 8-oxodG levels in sperm treated with t-BOOH and 4OHE2, but not E2. 8-OxodG levels also were somewhat weakly correlated with impaired fertilization in 4OHE2-treated sperm (r(2)=0.33, p< or =0.05). The results indicate that biotransformation of E2 to 4OHE2 enhances oxidative damage of DNA in sperm, which can reduce fertilization and impair embryonic development, but other mechanisms of action may also contribute to these effects.
Rempel, Mary Ann; Hester, Brian; DeHaro, Hector; Hong, Haizheng; Wang, Yinsheng; Schlenk, Daniel
2011-01-01
Oxidative compounds have been demonstrated to decrease the fertilization capability and viability of offspring of treated spermatozoa. As estrogen and its hydroxylated metabolites readily undergo redox cycling, this study was undertaken to determine if estrogens and other oxidants could damage DNA and impair sperm function. Sperm was preexposed to either 17β-estradiol (E2), 4-hydroxyestradiol (4OHE2) or the oxidant t-butyl hydroperoxide (t-BOOH), and allowed to fertilize untreated eggs. The fertilization rates and development of the larvae were assessed, as well as the amount of 8-oxodeoxyguanosine (8-oxodG) as an indication of oxidative DNA damage. All compounds caused significant decreases in fertilization and increases in pathological abnormalities in offspring, with 4OHE2 being the most toxic. Treatment with 4OHE2 caused a significant increase of 8-oxodG, but E2 failed to show any effect. Pathological abnormalities were significantly correlated (r2 = 0.44, p ≤ 0.05) with 8-oxodG levels in sperm treated with t-BOOH and 4OHE2, but not E2. 8-OxodG levels also were somewhat weakly correlated with impaired fertilization in 4OHE2-treated sperm (r2 = 0.33, p ≤ 0.05). The results indicate that biotransformation of E2 to 4OHE2 enhances oxidative damage of DNA in sperm, which can reduce fertilization and impair embryonic development, but other mechanisms of action may also contribute to these effects. PMID:19171371
Turtola, S; Manninen, A M; Holopainen, J K; Levula, T; Raitio, H; Kainulainen, P
2002-01-01
Secondary compounds are known to be associated with the resistance of conifer xylem against insects and fungi. The effects of long-term forest fertilization with nitrogen (N) or with N, calcium (Ca), and phosphorus (P) on secondary compounds in the xylem of 50-yr-old Scots pine (Pinus sylvestris L.) trees were examined. Xylem samples were collected from trees growing in three locations in southern Finland: Vilppula, Padasjoki, and Punkaharju. Forests were fertilized every fifth (Vilppula and Padasjoki) or tenth (Punkaharju) year since the 1950s. We compared concentrations of individual and total monoterpenes and resin acids in the heartwood and sapwood of Scots pine. Terpene emissions were analyzed from the sapwood and total phenolics from the heartwood. Fertilization did not have any significant effect on the concentrations and emissions of xylem monoterpenes. Concentrations of several individual terpenes in sapwood were positively correlated with the corresponding terpene emission. The concentrations of individual resin acids (i.e., abietic and dehydroabietic) decreased significantly in Punkaharju, but increased in the sapwood of N-fertilized trees compared with control ones at Padasjoki and Vilppula. The concentrations of resin acids in the heartwood were not significantly affected by fertilization. Both fertilization treatments decreased the total phenolic concentrations in the heartwood of trees growing in Padasjoki. There was a significant positive correlation between the total phenolics and total resin acid concentration. Overall, resin acids and phenolics seemed be more responsive than monoterpenes to N treatment. These results suggest that forest fertilization might cause slight changes in secondary compound concentrations of xylem, and thus might have significance in the decay resistance of wood.
Al Harun, Md Abdullah Yousuf; Johnson, Joshua; Uddin, Md Nazim; Robinson, Randall W
2015-01-01
Chrysanthemoides monilifera subsp. monilifera (boneseed), a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly) through a standard germination bioassay on native Isotoma axillaris. The impact of boneseed litter on native Xerochrysum bracteatum was evaluated using field soil in a greenhouse. Collectively, we found the highest quantity of phenolic compounds in boneseed litter followed by leaf, root and stem. Quantity varied with extraction media. The rank of phenolics concentration in boneseed was in the order of ferulic acid > phloridzin > catechin > p-coumaric acid and they inhibited germination of I. axillaris with the rank of ferulic acid > catechin > phloridzin > p-coumaric acid. Synergistic effects were more severe compared to individual phenolics. The litter-mediated soil leachate (collected after15 days) exhibited strong phytotoxicity to I. axillaris despite the level of phenolic compounds in the decomposed leachate being decreased significantly compared with their initial level. This suggests the presence of other unidentified allelochemicals that individually or synergistically contributed to the phytotoxicity. Further, the dose response phytotoxic impacts exhibited by the boneseed litter-mediated soil to native X. bracteatum in a more naturalistic greenhouse experiment might ensure the potential allelopathy of other chemical compounds in the boneseed invasion. The reduction of leaf relative water content and chlorophyll level in X. bracteatum suggest possible mechanisms underpinning plant growth inhibition caused by boneseed litter allelopathy. The presence of a substantial quantity of free proline in the target species also suggests that the plant was in a stressed condition due to litter allelopathy. These findings are important for better understanding the invasive potential of boneseed and in devising control strategies.
Al Harun, Md Abdullah Yousuf; Johnson, Joshua; Uddin, Md Nazim; Robinson, Randall W.
2015-01-01
Chrysanthemoides monilifera subsp. monilifera (boneseed), a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly) through a standard germination bioassay on native Isotoma axillaris. The impact of boneseed litter on native Xerochrysum bracteatum was evaluated using field soil in a greenhouse. Collectively, we found the highest quantity of phenolic compounds in boneseed litter followed by leaf, root and stem. Quantity varied with extraction media. The rank of phenolics concentration in boneseed was in the order of ferulic acid > phloridzin > catechin > p-coumaric acid and they inhibited germination of I. axillaris with the rank of ferulic acid > catechin > phloridzin > p-coumaric acid. Synergistic effects were more severe compared to individual phenolics. The litter-mediated soil leachate (collected after15 days) exhibited strong phytotoxicity to I. axillaris despite the level of phenolic compounds in the decomposed leachate being decreased significantly compared with their initial level. This suggests the presence of other unidentified allelochemicals that individually or synergistically contributed to the phytotoxicity. Further, the dose response phytotoxic impacts exhibited by the boneseed litter-mediated soil to native X. bracteatum in a more naturalistic greenhouse experiment might ensure the potential allelopathy of other chemical compounds in the boneseed invasion. The reduction of leaf relative water content and chlorophyll level in X. bracteatum suggest possible mechanisms underpinning plant growth inhibition caused by boneseed litter allelopathy. The presence of a substantial quantity of free proline in the target species also suggests that the plant was in a stressed condition due to litter allelopathy. These findings are important for better understanding the invasive potential of boneseed and in devising control strategies. PMID:26465595
Exploring environmental causes of altered ras effects: fragmentation plus integration?
Porta, Miquel; Ayude, Daniel; Alguacil, Juan; Jariod, Manuel
2003-02-01
Mutations in ras genes are the most common abnormality of oncogenes in human cancer and a major example of activation by point mutation. Experimental and epidemiological studies support the notion that Ki-ras activation and expression may be chemically related. We discuss the potential role of several environmental compounds in the induction or promotion of ras mutations in humans, with a focus on exocrine pancreatic cancer, the human tumor with the highest prevalence at diagnosis of Ki-ras mutations. Organochlorine compounds, organic solvents, and coffee compounds may play an indirect role in causing Ki-ras mutations, rather than as direct inducers of the mutations. Although for some organochlorine compounds the induction of point mutations in ras oncogenes cannot be excluded, it seems more likely that the effects of these compounds are mediated through nongenomic or indirectly genotoxic mechanisms of action. Organic solvents also may act via enzymatic induction of ras mutagens or by providing a proliferation advantage to ras-mutated cell clones. In exocrine pancreatic cancer, caffeine, other coffee compounds, or other factors with which coffee drinking is associated could modulate Ki-ras activation by interfering with DNA repair, cell-cycle checkpoints, and apoptosis. Asbestos, cigarette smoking, and some dietary factors also may be involved in the initiation or the promotion of Ki-ras mutations in lung and colon cancers. Further development of the mechanistic scenarios proposed here could contribute to a meaningful integration of biological, clinical, and environmental knowledge on the causes of altered ras effects. Copyright 2003 Wiley-Liss, Inc.
Vascular response of ruthenium tetraamines in aortic ring from normotensive rats.
Conceição-Vertamatti, Ana Gabriela; Ramos, Luiz Alberto Ferreira; Calandreli, Ivy; Chiba, Aline Nunes; Franco, Douglas Wagner; Tfouni, Elia; Grassi-Kassisse, Dora Maria
2015-03-01
Ruthenium (Ru) tetraamines are being increasingly used as nitric oxide (NO) carriers. In this context, pharmacological studies have become highly relevant to better understand the mechanism of action involved. To evaluate the vascular response of the tetraamines trans-[Ru(II)(NH3)4(Py)(NO)](3+), trans-[Ru(II)(Cl)(NO) (cyclan)](PF6)2, and trans-[Ru(II)(NH3)4(4-acPy)(NO)](3+). Aortic rings were contracted with noradrenaline (10(-6) M). After voltage stabilization, a single concentration (10(-6) M) of the compounds was added to the assay medium. The responses were recorded during 120 min. Vascular integrity was assessed functionally using acetylcholine at 10(-6) M and sodium nitroprusside at 10(-6) M as well as by histological examination. Histological analysis confirmed the presence or absence of endothelial cells in those tissues. All tetraamine complexes altered the contractile response induced by norepinephrine, resulting in increased tone followed by relaxation. In rings with endothelium, the inhibition of endothelial NO caused a reduction of the contractile effect caused by pyridine NO. No significant responses were observed in rings with endothelium after treatment with cyclan NO. In contrast, in rings without endothelium, the inhibition of guanylate cyclase significantly reduced the contractile response caused by the pyridine NO and cyclan NO complexes, and both complexes caused a relaxing effect. The results indicate that the vascular effect of the evaluated complexes involved a decrease in the vascular tone induced by norepinephrine (10(-6) M) at the end of the incubation period in aortic rings with and without endothelium, indicating the slow release of NO from these complexes and suggesting that the ligands promoted chemical stability to the molecule. Moreover, we demonstrated that the association of Ru with NO is more stable when the ligands pyridine and cyclan are used in the formulation of the compound.
The Molecular Structure of the Han-Based Liquid Propellants
1990-08-01
Temperature. pressur. and the presence of impurities or Wffixninanrs cause changes in the microcopic otganizAion of the mLixures. The size and stnrcture ok’ thm...unique and anomalous fluid. WVIr a small quantity of an iomc compound is introduced, it causes water molecules to marmrage fnxn their original custer...ehmnolamire. ethyldiethanolamine, and trziehanolamine. The boiling point of the pure, anhydrous, compounds are 89, 161, 246. and 340’ C, respectively
Multivariate relationships between groundwater chemistry and toxicity in an urban aquifer.
Dewhurst, Rachel E; Wells, N Claire; Crane, Mark; Callaghan, Amanda; Connon, Richard; Mather, John D
2003-11-01
Multivariate statistical methods were used to investigate the causes of toxicity and controls on groundwater chemistry from 274 boreholes in an urban area (London) of the United Kingdom. The groundwater was alkaline to neutral, and chemistry was dominated by calcium, sodium, and sulfate. Contaminants included fuels, solvents, and organic compounds derived from landfill material. The presence of organic material in the aquifer caused decreases in dissolved oxygen, sulfate and nitrate concentrations, and increases in ferrous iron and ammoniacal nitrogen concentrations. Pearson correlations between toxicity results and the concentration of individual analytes indicated that concentrations of ammoniacal nitrogen, dissolved oxygen, ferrous iron, and hydrocarbons were important where present. However, principal component and regression analysis suggested no significant correlation between toxicity and chemistry over the whole area. Multidimensional scaling was used to investigate differences in sites caused by historical use, landfill gas status, or position within the sample area. Significant differences were observed between sites with different historical land use and those with different gas status. Examination of the principal component matrix revealed that these differences are related to changes in the importance of reduced chemical species.
Alin, Jonas; Hakkarainen, Minna
2011-05-25
Microwave heating of commercial microwavable polypropylene packaging in contact with fatty food simulants caused significant antioxidant degradation and increased specific migration as shown by electrospray ionization-mass spectrometry (ESI-MS) and gas chromatography-mass spectrometry (GC-MS). Degradation of the antioxidants Irgafos 168 and Irganox 1010 was not detected during conventional heating of polypropylene packaging at the same temperature. The migration into aqueous food simulants was primarily restricted by the water solubility of the migrants. Using isooctane as fatty food simulant caused significant swelling and greatly enhanced overall migration values compared to the other fatty food simulant, 99.9% ethanol, or the aqueous food simulants 10% ethanol, 3% acetic acid, or water. ESI-MS spectra clearly reflected the overall migration values, and the number and amount of compounds detected decreased as the hydrophilicity of the food simulant increased. ESI-MS was shown to be an excellent tool for the analysis of semivolatile migrants and a good complement to GC-MS analysis of volatile migrants.
Is the primary mechanism underlying COPD: inflammation or ischaemia?
Pearson, Michael
2013-08-01
The mechanisms underlying the majority of COPD cases have remained ill-defined. Cigarette smoke contains many toxic chemicals that certainly cause some inflammatory responses, but this article advances a hypothesis that the nicotine and similar compounds within the smoke acting as vasoconstrictors of bronchiolar arterioles may be more important via multiple small infarcts that eventually destroy lung tissue. The hypothesis can explain many of the known features of COPD and if accepted would significantly alter the approach to this condition.
Nam, Seung-Woo; Choi, Dae-Jin; Kim, Seung-Kyu; Her, Namguk; Zoh, Kyung-Duk
2014-04-15
In this study, we investigated adsorption characteristics of nine selected micropollutants (six pharmaceuticals, two pesticides, and one endocrine disruptor) in water using an activated carbon. The effects of carbon dosage, contact time, pH, DOM (dissolved organic matter), and temperature on the adsorption removal of micropollutants were examined. Increasing carbon dosage and contact time enhanced the removal of micropollutants. Sorption coefficients of hydrophilic compounds (caffeine, acetaminophen, sulfamethoxazole, and sulfamethazine) fit a linear isotherm and hydrophobic compounds (naproxen, diclofenac, 2, 4-D, triclocarban, and atrazine) fit a Freundlich isotherm. The removal of hydrophobic pollutants and caffeine were independent of pH changes, but acetaminophen, sulfamethazine, and sulfamethoxazole were adsorbed by mainly electrostatic interaction with activated carbon and so were affected by pH. The decrease in adsorption removal in surface water samples was observed and this decrease was more significant for hydrophobic than hydrophilic compounds. The decline in the adsorption capacity in surface water samples is caused by the competitive inhibition of DOM with micropollutants onto activated carbon. Low temperature (5°C) also decreased the adsorption removal of micropollutants, and affected hydrophobic compounds more than hydrophilic compounds. The results obtained in this study can be applied to optimize the adsorption capacities of micropollutants using activated carbon in water treatment process. Copyright © 2014 Elsevier B.V. All rights reserved.
Kumar, Amit; Pintus, Francesca; Di Petrillo, Amalia; Medda, Rosaria; Caria, Paola; Matos, Maria João; Viña, Dolores; Pieroni, Enrico; Delogu, Francesco; Era, Benedetta; Delogu, Giovanna L; Fais, Antonella
2018-03-13
Alzheimer's disease (AD) is a neurodegenerative disorder representing the leading cause of dementia and is affecting nearly 44 million people worldwide. AD is characterized by a progressive decline in acetylcholine levels in the cholinergic systems, which results in severe memory loss and cognitive impairments. Expression levels and activity of butyrylcholinesterase (BChE) enzyme has been noted to increase significantly in the late stages of AD, thus making it a viable drug target. A series of hydroxylated 2-phenylbenzofurans compounds were designed, synthesized and their inhibitory activities toward acetylcholinesterase (AChE) and BChE enzymes were evaluated. Two compounds (15 and 17) displayed higher inhibitory activity towards BChE with IC 50 values of 6.23 μM and 3.57 μM, and a good antioxidant activity with EC 50 values 14.9 μM and 16.7 μM, respectively. The same compounds further exhibited selective inhibitory activity against BChE over AChE. Computational studies were used to compare protein-binding pockets and evaluate the interaction fingerprints of the compound. Molecular simulations showed a conserved protein residue interaction network between the compounds, resulting in similar interaction energy values. Thus, combination of biochemical and computational approaches could represent rational guidelines for further structural modification of these hydroxy-benzofuran derivatives as future drugs for treatment of AD.
Salvador, Izabela; Massarioli, Adna P; Silva, Anna Paula S; Malaguetta, Heloísa; Melo, Priscilla S; Alencar, Severino M
2018-05-23
Cocoa exhibits high content of phenolic compounds, among which trans-resveratrol stands out, associated with several bioactive activities such as antioxidant properties. Chocolate contains reduced amounts of these bioactive compounds due to losses during the production process. Therefore, this study aimed to assess changes in total phenolic content and specifically trans-resveratrol, as well as in the antioxidant activity of cocoa and its products during industrial production of chocolate. A total of ten different cocoa products were analyzed. The processes of fermentation and roasting caused significant loss of total phenolic compounds and antioxidant activity. However, due to high temperature, roasting had a major influence on this loss (71% for total phenolic compounds and 53% to 77% for antioxidant activity), except for trans-resveratrol. The content of trans-resveratrol formed after fermentation (9.8 μg kg -1 ) showed little variation during the processes, and it was detected in higher concentrations both in natural (11.4 μg kg -1 ) and in alkalized cocoa powder (13.5 μg kg -1 ). Alkalization of cocoa products led to loss of capacity of deactivating superoxide radical. These findings contribute to the optimization of the production process of chocolate and other food products containing cocoa and its derivatives aiming to better preserve their bioactive compounds. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Liu, Ze-Hua; Yin, Hua; Dang, Zhi
2017-01-01
With the widespread application of plastic pipes in drinking water distribution system, the effects of various leachable organic chemicals have been investigated and their occurrence in drinking water supplies is monitored. Most studies focus on the odor problems these substances may cause. This study investigates the potential endocrine disrupting effects of the migrating compound 2,4-di-tert-butylphenol (2,4-d-t-BP). The summarized results show that the migration of 2,4-d-t-BP from plastic pipes could result in chronic exposure and the migration levels varied greatly among different plastic pipe materials and manufacturing brands. Based on estrogen equivalent (EEQ), the migrating levels of the leachable compound 2,4-d-t-BP in most plastic pipes were relative low. However, the EEQ levels in drinking water migrating from four out of 15 pipes may pose significant adverse effects. With the increasingly strict requirements on regulation of drinking water quality, these results indicate that some drinking water transported with plastic pipes may not be safe for human consumption due to the occurrence of 2,4-d-t-BP. Moreover, 2,4-d-t-BP is not the only plastic pipe-migrating estrogenic compound, other compounds such as 2-tert-butylphenol (2-t-BP), 4-tert-butylphenol (4-t-BP), and others may also be leachable from plastic pipes.
Jarosiewicz, Monika; Duchnowicz, Piotr; Włuka, Anna; Bukowska, Bożena
2017-11-01
Brominated flame retardants (BFRs) are widely used in many everyday products. Numerous studies have shown that BFRs can be released into the environment. Environmental pollution with these compounds raises concerns about their potentially adverse health effects. The aim of this study was to evaluate the effect of tetrabromobisphenol A (TBBPA), tetrabromobisphenol S (TBBPS), 2,4-dibromophenol (2,4-DBP), 2,4,6- tribromophenol (2,4,6-TBP) and pentabromophenol (PBP) on hemolysis induction and hemoglobin oxidation in human erythrocytes. The erythrocytes were incubated with selected BFRs in a wide concentrations ranging from 0.01 to 100 μg/ml for 24 h, 48 h and 72 h. All compounds studied, exhibited hemolytic potential and induced methemoglobin formation. Hemolytic and oxidative potential of BFRs increased along with the increasing concentrations of the compounds studied and elongation of the incubation time. Our study showed that both the number of aromatic rings and the number of bromine atoms in the molecule of the compounds examined influence hemoglobin oxidation and damage to the cellular membrane. Furthermore, we may conclude that 2,4-DBP is potentially most toxic compound because it causes statistically significant changes at the lowest concentration, while the highest toxicity at the highest concentrations was noted for TBBPA. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wasko, Brian M.; Smits, Jacqueline P.; Shull, Larry W.; Wiemer, David F.; Hohl, Raymond J.
2011-01-01
Statins and nitrogenous bisphosphonates (NBP) inhibit 3-hydroxy-3-methylglutaryl-coenzyme-A reductase (HMGCR) and farnesyl diphosphate synthase (FDPS), respectively, leading to depletion of farnesyl diphosphate (FPP) and disruption of protein prenylation. Squalene synthase (SQS) utilizes FPP in the first committed step from the mevalonate pathway toward cholesterol biosynthesis. Herein, we have identified novel bisphosphonates as potent and specific inhibitors of SQS, including the tetrasodium salt of 9-biphenyl-4,8-dimethyl-nona-3,7-dienyl-1,1-bisphosphonic acid (compound 5). Compound 5 reduced cholesterol biosynthesis and lead to a substantial intracellular accumulation of FPP without reducing cell viability in HepG2 cells. At high concentrations, lovastatin and zoledronate impaired protein prenylation and decreased cell viability, which limits their potential use for cholesterol depletion. When combined with lovastatin, compound 5 prevented lovastatin-induced FPP depletion and impairment of protein farnesylation. Compound 5 in combination with the NBP zoledronate completely prevented zoledronate-induced impairment of both protein farnesylation and geranylgeranylation. Cotreatment of cells with compound 5 and either lovastatin or zoledronate was able to significantly prevent the reduction of cell viability caused by lovastatin or zoledronate alone. The combination of an SQS inhibitor with an HMGCR or FDPS inhibitor provides a rational approach for reducing cholesterol synthesis while preventing nonsterol isoprenoid depletion. PMID:21903868
T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections.
Furuta, Yousuke; Takahashi, Kazumi; Shiraki, Kimiyasu; Sakamoto, Kenichi; Smee, Donald F; Barnard, Dale L; Gowen, Brian B; Julander, Justin G; Morrey, John D
2009-06-01
A series of pyrazinecarboxamide derivatives T-705 (favipiravir), T-1105 and T-1106 were discovered to be candidate antiviral drugs. These compounds have demonstrated good activity in treating viral infections in laboratory animals caused by various RNA viruses, including influenza virus, arenaviruses, bunyaviruses, West Nile virus (WNV), yellow fever virus (YFV), and foot-and-mouth disease virus (FMDV). Treatment has in some cases been effective when initiated up to 5-7 days after virus infection, when the animals already showed signs of illness. Studies on the mechanism of action of T-705 have shown that this compound is converted to the ribofuranosyltriphosphate derivative by host enzymes, and this metabolite selectively inhibits the influenza viral RNA-dependent RNA polymerase without cytotoxicity to mammalian cells. Interestingly, these compounds do not inhibit host DNA and RNA synthesis and inosine 5'-monophosphate dehydrogenase (IMPDH) activity. From in vivo studies using several animal models, the pyrazinecarboxamide derivatives were found to be effective in protecting animals from death, reducing viral burden, and limiting disease manifestations, even when treatment was initiated after virus inoculation. Importantly, T-705 imparts its beneficial antiviral effects without significant toxicity to the host. Prompt development of these compounds is expected to provide effective countermeasures against pandemic influenza virus and several bioweapon threats, all of which are of great global public health concern given the current paucity of highly effective broad-spectrum drugs.
Giordani, Federica; Buschini, Annamaria; Baliani, Alessandro; Kaiser, Marcel; Brun, Reto; Barrett, Michael P.; Pellacani, Claudia; Poli, Paola
2014-01-01
This paper reports an evaluation of a melamino nitroheterocycle, a potential lead for further development as an agent against human African trypanosomiasis (HAT). Studies on its efficacy, physicochemical and biopharmaceutical properties, and potential for toxicity are described. The compound previously had been shown to possess exceptional activity against Trypanosoma brucei in in vitro assays comparable to that of melarsoprol. Here, we demonstrate that the compound also was curative in the stringent acute mouse model T. brucei rhodesiense STIB 900 when given intraperitoneally at 40 mg/kg of body weight. Nevertheless, activity was only moderate when the oral route was used, and no cure was obtained when the compound was tested in a stage 2 rodent model of infection. Genotoxic profiling revealed that the compound induces DNA damage by a mechanism apparently independent from nitroreduction and involving the introduction of base pair substitutions (Ames test), possibly caused by oxidative damage of the DNA (comet test). No significant genotoxicity was observed at the chromosome level (micronucleus assay). The lack of suitable properties for oral and central nervous system uptake and the genotoxic liabilities prevent the progression of this melamine nitroheterocycle as a drug candidate for HAT. Further modification of the compound is required to improve the pharmacokinetic properties of the molecule and to separate the trypanocidal activity from the toxic potential. PMID:25022590
Organophosphate ester flame retardant-induced acute intoxications in dogs.
Lehner, Andreas F; Samsing, Francisca; Rumbeiha, Wilson K
2010-12-01
Flame retardants have wide industrial applications and are incorporated into articles found in automobiles and home environments, including seat cushions. These compounds differ widely chemically and in their toxic potential. We report here two cases involving dogs following ingestion of car seat cushions impregnated with organophosphate ester fire retardants. Two case reports are presented. Two adult American Pit Bull dogs were presented at an emergency clinic with acute signs of central nervous system excitation including seizures. The most severely affected dog died 15 min after presentation, while the less affected dog fully recovered following treatment. In the second case, both a German Shepherd and a Rottweiler were found dead in the morning after they were left in a car overnight. A comprehensive toxicological analysis of samples from both cases revealed the presence of significant amounts (>2 ppm) of tris(2-chloroethyl)phosphate (TCEP) in stomach contents. This compound is a known inducer of epileptic seizures. Some other structurally related organophosphate ester compounds were found, and their role in the acute intoxications reported here is not known and remains to be determined. This is the first report linking acute deaths in dogs to the ingestion of car seat cushions found to contain large amounts of TCEP, an organophosphate ester compound. It is highly likely that this compound caused death through its known seizure-inducing activity.
Pazo, Daniel Y.; Moliere, Fallon; Sampson, Maureen M.; Reese, Christopher M.; Agnew-Heard, Kimberly A.; Walters, Matthew J.; Holman, Matthew R.; Blount, Benjamin C.; Watson, Clifford; Chambers, David M.
2017-01-01
Introduction A significant portion of the increased risk of cancer and respiratory disease from exposure to cigarette smoke is attributed to volatile organic compounds (VOCs). In this study, 21 VOCs were quantified in mainstream cigarette smoke from 50 U.S. domestic brand varieties that included high market share brands and two Kentucky research cigarettes (3R4F and 1R5F). Methods Mainstream smoke was generated under ISO 3308 and Canadian Intense (CI) smoking protocols with linear smoking machines with a gas sampling bag collection followed by SPME/GC/MS analysis. Results For both protocols, mainstream smoke VOC amounts among the different brand varieties were strongly correlated between the majority of the analytes. Overall, Pearson correlation (r) ranged from 0.68 to 0.99 for ISO and 0.36 to 0.95 for CI. However, monoaromatic compounds were found to increase disproportionately compared to unsaturated, nitro, and carbonyl compounds under the CI smoking protocol where filter ventilation is blocked. Conclusions Overall, machine generated “vapor phase” amounts (μg/cigarette) are primarily attributed to smoking protocol (e.g., blocking of vent holes, puff volume, and puff duration) and filter ventilation. A possible cause for the disproportionate increase in monoaromatic compounds could be increased pyrolysis under low oxygen conditions associated with the CI protocol. PMID:27113015
Wik, Anna; Dave, Göran
2006-09-01
Large amounts of tire rubber are deposited along the roads due to tread wear. Several compounds may leach from the rubber and cause toxicity to aquatic organisms. To investigate the toxic effects of tire wear material from different tires, rubber was abraded from the treads of twenty-five tires. Leachates were prepared by allowing the rubber to equilibrate with dilution water at 44 degrees C for 72 h. Then the rubber was filtered from the leachates, and test organisms (Daphnia magna) were added. Forty-eight hour EC50s ranged from 0.5 to >10.0 g l(-1). The toxicity identification evaluation (TIE) indicated that non-polar organic compounds caused most of the toxicity. UV exposure of the filtered tire leachates caused no significant increase in toxicity. However, when tested as unfiltered leachates (the rubber was not filtered from the leachates before addition of D. magna) photo-enhanced toxicity was considerable for some tires, which means that test procedures are important when testing tire leachates for aquatic (photo) toxicity. The acute toxicity of tire wear for Daphnia magna was found to be <40 times a predicted environmental concentration based on reports on the concentration of a tire component found in environmental samples, which emphasizes the need for a more extensive risk assessment of tire wear for the environment.
Esteban, S; Gorga, M; Petrovic, M; González-Alonso, S; Barceló, D; Valcárcel, Y
2014-01-01
Endocrine-disrupting compounds (EDCs) are chemical compounds with the ability to alter the hormonal systems of organisms. Such compounds are used in several industrial and domestic activities and reach the aquatic environment via wastewater discharge. The aim of this study is to assess the occurrence of 30 EDCs and related compounds in the surface waters of central Spain and to determine the overall estrogenic activity of environmental samples. This study analyzed a large number of EDCs and other emergent or suspected compounds with endocrine-disrupting activity. The results have shown the presence of 19 EDCs at concentrations ranging from 2 to 5928 ng L(-1). Organophosphorus-based flame retardants, alkylphenolic compounds and anticorrosives were found at the highest concentrations. Furthermore, although insufficient data are available to calculate an average over time, these preliminary results show the need to monitor the waters in both rivers studied. Alkylphenolic compounds, particularly nonylphenol, were the main contributors to overall estrogenicity. A higher concentration of the compounds studied was detected in the river Jarama, although the estrogenicity expressed as estradiol equivalents (EEQs) was higher in the river Manzanares due to a higher concentration of nonylphenol. However, the total estrogenicity did not exceed 1 ng L(-1) (EEQ), which is the level that may cause estrogenic effects in aquatic organisms, in any of the samples. In conclusion, the potential estrogenic risk in both rivers is low, although organophosphorus-based flame retardants may increase this risk as they were found at high levels in all samples. Unfortunately, these compounds could not be taken into account when calculating the estrogenic activity due to the lack of activity data for them. For future investigations, it will be important to assess the estrogenicity provided by these flame retardants. Due to the significant concentrations of EDCs detected in both rivers, further studies in this region are required. © 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahiout, Selma, E-mail: selma.mahiout@helsinki.fi
The aryl hydrocarbon receptor (AHR) mediates the toxicity of dioxins, but also plays important physiological roles. Selective AHR modulators, which elicit some effects imparted by this receptor without causing the marked toxicity of dioxins, are presently under intense scrutiny. Two novel such compounds are IMA-08401 (N-acetyl-N-phenyl-4-acetoxy-5-chloro-1, 2-dihydro-1-methyl-2-oxo-quinoline-3-carboxamide) and IMA-07101 (N-acetyl-N-(4-trifluoromethylphenyl)-4-acetoxy-1, 2-dihydro-5-methoxy-1-methyl-2-oxo-quinoline-3-carboxamide). They represent, as diacetyl prodrugs, AHR-active metabolites of the drug compounds laquinimod and tasquinimod, respectively, which are intended for the treatment of autoimmune diseases and cancer. Here, we toxicologically assessed the novel compounds in Sprague-Dawley rats, after a single dose (8.75–92.5 mg/kg) and 5-day repeated dosing at the highestmore » doses achievable (IMA-08401: 100 mg/kg/day; and IMA-07101: 75 mg/kg/day). There were no overt clinical signs of toxicity, but body weight gain was marginally retarded, and the treatments induced minimal hepatic extramedullary haematopoiesis. Further, both the absolute and relative weights of the thymus were significantly decreased. Cyp1a1 gene expression was substantially increased in all tissues examined. The hepatic induction profile of other AHR battery genes was distinct from that caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The only marked alterations in serum clinical chemistry variables were a reduction in triglycerides and an increase in 3-hydroxybutyrate. Liver and kidney retinol and retinyl palmitate concentrations were affected largely in the same manner as reported for TCDD. In vitro, the novel compounds activated CYP1A1 effectively in H4IIE cells. Altogether, these novel compounds appear to act as potent activators of the AHR, but lack some major characteristic toxicities of dioxins. They therefore represent promising new selective AHR modulators. - Highlights: • IMA-08401 and IMA-07101 are novel, effective activators of the AHR. • In rats, they lacked the wasting syndrome and thyroid imbalance typical of TCDD. • They also affected the AHR-battery genes in a distinct manner. • Therefore, the compounds appear to represent promising new selective AHR modulators. • They may have potential as drug compound candidates and research tools.« less
Effect of torrefaction on biomass structure and hydrocarbon production from fast pyrolysis
Neupane, Sneha; Adhikari, Sushil; Wang, Zhouhong; ...
2015-01-27
Torrefaction has been shown to improve the chemical composition of bio-oils produced from fast pyrolysis by lowering its oxygen content and enhancing the aromatic yield. A Py-GC/MS study was employed to investigate the effect of torrefaction temperatures (225, 250 and 275 °C) and residence times (15, 30 and 45 min) on product distribution from non-catalytic and H +ZSM-5 catalyzed pyrolysis of pinewood. During torrefaction, structural transformations in biomass constitutive polymers: hemicellulose, cellulose and lignin took place, which were evaluated using component analysis, solid state CP/MAS 13C NMR and XRD techniques. Torrefaction caused deacetylation and decomposition of hemicellulose, cleavage of arylmore » ether linkages and demethoxylation of lignin, degradation of cellulose and an overall increase in aromaticity of biomass, all of which affected the product yield from pyrolysis of torrefied biomass. For non-catalytic pyrolysis, selectivity of phenolic compounds increased with an increase in torrefaction severity while that of furan compounds decreased. In the case of catalytic pyrolysis, the sample torrefied at 225 °C-30 min and 250 °C-15 min resulted in a significant increase in aromatic hydrocarbon (HC) and also total carbon yield (approx. 1.6 times higher) as compared to catalytic pyrolysis of non-torrefied pine. Cleavage of aryl ether linkages and demethoxylation in lignin due to torrefaction caused increased yield of phenolic compounds, which in the presence of a catalyst were dehydrated to form aromatic HC.« less
A Reprofiled Drug, Auranofin, Is Effective against Metronidazole-Resistant Giardia lamblia
Tejman-Yarden, Noa; Miyamoto, Yukiko; Leitsch, David; Santini, Jennifer; Debnath, Anjan; Gut, Jiri; McKerrow, James H.; Reed, Sharon L.
2013-01-01
Giardiasis is one of the most common causes of diarrheal disease worldwide. Treatment is primarily with 5-nitro antimicrobials, particularly metronidazole. Resistance to metronidazole has been described, and treatment failures can occur in up to 20% of cases, making development of alternative antigiardials an important goal. To this end, we have screened a chemical library of 746 approved human drugs and 164 additional bioactive compounds for activity against Giardia lamblia. We identified 56 compounds that caused significant inhibition of G. lamblia growth and attachment. Of these, 15 were previously reported to have antigiardial activity, 20 were bioactive but not approved for human use, and 21 were drugs approved for human use for other indications. One notable compound of the last group was the antirheumatic drug auranofin. Further testing revealed that auranofin was active in the low (4 to 6)-micromolar range against a range of divergent G. lamblia isolates representing both human-pathogenic assemblages A and B. Most importantly, auranofin was active against multiple metronidazole-resistant strains. Mechanistically, auranofin blocked the activity of giardial thioredoxin oxidoreductase, a critical enzyme involved in maintaining normal protein function and combating oxidative damage, suggesting that this inhibition contributes to the antigiardial activity. Furthermore, auranofin was efficacious in vivo, as it eradicated infection with different G. lamblia isolates in different rodent models. These results indicate that the approved human drug auranofin could be developed as a novel agent in the armamentarium of antigiardial drugs, particularly against metronidazole-resistant strains. PMID:23403423
Hox11 genes regulate postnatal longitudinal bone growth and growth plate proliferation.
Pineault, Kyriel M; Swinehart, Ilea T; Garthus, Kayla N; Ho, Edward; Yao, Qing; Schipani, Ernestina; Kozloff, Kenneth M; Wellik, Deneen M
2015-10-23
Hox genes are critical regulators of skeletal development and Hox9-13 paralogs, specifically, are necessary for appendicular development along the proximal to distal axis. Loss of function of both Hoxa11 and Hoxd11 results in severe malformation of the forelimb zeugopod. In the radius and ulna of these mutants, chondrocyte development is perturbed, growth plates are not established, and skeletal growth and maturation fails. In compound mutants in which one of the four Hox11 alleles remains wild-type, establishment of a growth plate is preserved and embryos develop normally through newborn stages, however, skeletal phenotypes become evident postnatally. During postnatal development, the radial and ulnar growth rate slows compared to wild-type controls and terminal bone length is reduced. Growth plate height is decreased in mutants and premature growth plate senescence occurs along with abnormally high levels of chondrocyte proliferation in the reserve and proliferative zones. Compound mutants additionally develop an abnormal curvature of the radius, which causes significant distortion of the carpal elements. The progressive bowing of the radius appears to result from physical constraint caused by the disproportionately slower growth of the ulna than the radius. Collectively, these data are consistent with premature depletion of forelimb zeugopod progenitor cells in the growth plate of Hox11 compound mutants, and demonstrate a continued function for Hox genes in postnatal bone growth and patterning. © 2015. Published by The Company of Biologists Ltd.
Shekhova, Elena; Kniemeyer, Olaf; Brakhage, Axel A
2017-11-01
Drug resistance in fungal pathogens is of incredible importance to global health, yet the mechanisms of drug action remain only loosely defined. Antifungal compounds have been shown to trigger the intracellular accumulation of reactive oxygen species (ROS) in human-pathogenic yeasts, but the source of those ROS remained unknown. In the present study, we examined the role of endogenous ROS for the antifungal activity of the three different antifungal substances itraconazole, terbinafine, and amphotericin B, which all target the fungal cell membrane. All three antifungals had an impact on fungal redox homeostasis by causing increased intracellular ROS production. Interestingly, the elevated ROS levels induced by antifungals were abolished by inhibition of the mitochondrial respiratory complex I with rotenone. Further, evaluation of lipid peroxidation using the thiobarbituric acid assay revealed that rotenone pretreatment decreased ROS-induced lipid peroxidation during incubation of Aspergillus fumigatus with itraconazole and terbinafine. By applying the mitochondrion-specific lipid peroxidation probe MitoPerOx, we also confirmed that ROS are induced in mitochondria and subsequently cause significant oxidation of mitochondrial membrane in the presence of terbinafine and amphotericin B. To summarize, our study suggests that the induction of ROS production contributes to the ability of antifungal compounds to inhibit fungal growth. Moreover, mitochondrial complex I is the main source of deleterious ROS production in A. fumigatus challenged with antifungal compounds. Copyright © 2017 American Society for Microbiology.
Uliassi, Elisa; Piazzi, Lorna; Belluti, Federica; Mazzanti, Andrea; Kaiser, Marcel; Brun, Reto; Moraes, Carolina B; Freitas-Junior, Lucio H; Gul, Sheraz; Kuzikov, Maria; Ellinger, Bernhard; Borsari, Chiara; Costi, Maria Paola; Bolognesi, Maria Laura
2018-04-06
Protozoan infections caused by Plasmodium, Leishmania, and Trypanosoma spp. contribute significantly to the burden of infectious diseases worldwide, causing severe morbidity and mortality. The inadequacy of available treatments calls for cost- and time-effective drug discovery endeavors. To this end, we envisaged the triazole linkage of privileged structures as an effective drug design strategy to generate a focused library of high-quality compounds. The versatility of this approach was combined with the feasibility of a phenotypic assay, integrated with early ADME-tox profiling. Thus, an 18-membered library was efficiently assembled via Huisgen cycloaddition of phenothiazine, biphenyl, and phenylpiperazine scaffolds. The resulting 18 compounds were then tested against seven parasite strains, and counter-screened for selectivity against two mammalian cell lines. In parallel, hERG and cytochrome P450 (CYP) inhibition, and mitochondrial toxicity were assessed. Remarkably, 10-((1-(3-([1,1'-biphenyl]-3-yloxy)propyl)-1H-1,2,3-triazol-5-yl)methyl)-10H-phenothiazine (7) and 10-(3-(1-(3-([1,1'-biphenyl]-3-yloxy)propyl)-1H-1,2,3-triazol-4-yl)propyl)-10H-phenothiazine (12) showed respective IC 50 values of 1.8 and 1.9 μg mL -1 against T. cruzi, together with optimal selectivity. In particular, compound 7 showed a promising ADME-tox profile. Thus, hit 7 might be progressed as an antichagasic lead. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Yan; Zhang, Li-Ping; Dai, Fang; Yan, Wen-Jing; Wang, Hai-Bo; Tu, Zhi-Shan; Zhou, Bo
2015-09-09
Curcumin, derived from the dietary spice turmeric, holds promise for cancer prevention. This prompts much interest in investigating the action mechanisms of curcumin and its analogues. Two symmetrical hexamethoxy-diarylpentadienones (1 and 2) as cucumin analogues were reported to possess significantly enhanced cytotoxicity compared with the parent molecule. However, the detailed mechanisms remain unclear. In this study, compounds 1 and 2 were identified as the G2/M cell cycle arrest agents to mediate the cytotoxicity toward NCI-H460 cells via Michael acceptor-dependent redox intervention. Compared with curcumin, they could more easily induce a burst of reactive oxygen species (ROS) and collapse of the redox buffering system. One possible reason is that they could more effectively target intracellular TrxR to convert this antioxidant enzyme into a ROS promoter. Additionally, they caused up-regulation of p53 and p21 and down-regulation of redox-sensitive Cdc25C along with cyclin B1/Cdk1 in a Michael acceptor- and ROS-dependent fashion. Interestingly, in comparison with compound 2, compound 1 displayed a relatively weak ability to generate ROS but increased cell cycle arrest activity and cytotoxicity probably due to its Michael acceptor-dependent microtubule-destabilizing effect and greater GST-inhibitory activity, as well as its enhanced cellular uptake. This work provides useful information for understanding Michael acceptor-dependent and redox-mediated cytotoxic mechanisms of curcumin and its active analogues.
Benzeneboronic acid selectively inhibits sporulation of Bacillis subtilis.
Davis-Mancini, K; Lopez, I P; Hageman, J H
1978-01-01
m-Aminobenzeneboronic acid at levels of 0.2 mM in nutrient broth medium selectively inhibited sporulation without appreciably altering vegetative growth. Significant inhibitory effects were seen even when it was added as late as 6 h after the end of logarithmic growth. The pH changes associated with growth and sporulation of Bacillus subtilis in nutrient broth were not significantly altered by the inhibitor. When it was present in cultures of actively growing cells, its inhibitory effect could not be reversed by simple dilution. The compound caused extensive clumping, of cells, which appeared not to be related to the ability of boronates to esterify to diols. Images PMID:30755
6-Methyluracil derivatives as acetylcholinesterase inhibitors for treatment of Alzheimer's disease.
Zueva, I V; Semenov, V E; Mukhamedyarov, M A; Lushchekina, S V; Kharlamova, A D; Petukhova, E O; Mikhailov, A S; Podyachev, S N; Saifina, L F; Petrov, K A; Minnekhanova, O A; Zobov, V V; Nikolsky, E E; Masson, P; Reznik, V S
2015-01-01
Alzheimer's disease (AD) is the major age-related progressive neurodegenerative disorder. The brain of AD patients suffers from loss of cholinergic neurons and decreased number of synapses [1]. AD is caused by an imbalance between Aβ production and clearance, resulting in increased amount of Aβ in various forms [2]. Reduction of Aβ production and increasing clearance of Aβ pathogenic forms are key targets in the development of potential therapeutic agents for AD treatment. Unfortunately, only nosotropic approaches for treatment of AD are currently effective in humans. These approaches mainly focus on the inhibition of brain acetyl-cholinesterase (AChE) to increase lifetime of cerebral acetylcholine [3]. It is important to emphasize that AChE itself promotes the formation of Aβ fibrils in vitro and Aβ plaques in the cerebral cortex of transgenic mouse models of AD [4]. This property of AChE results from interaction between Aβ and the peripheral anionic site of the enzyme (PAS) [5]. Dual binding site inhibitors of both catalytic active site (CAS) and PAS can simultaneously improve cognition and slow down the rate of Aβ-induced neural degeneration. Unfortunately, the assortment of AChE PAS ligands is still extremely limited. To study putative advantages of AChE non-charged PAS inhibitors based on 6-methyluracil derivatives for the treatment of Alzheimer's disease. In vitro studies. Concentration of drug producing 50% of AChE/BuChE activity inhibition (IC50) was measured using the method of Ellman et al. [6]. Toxicological experiments were performed using IP injection of the different compounds in mice. LD50, dose (in mg/kg) causing lethal effects in 50% of animals was taken as a criterion of toxicity [7]. The ability of compound to block in vitro AChE-induced Aβ1-40 aggregation was studied using a thioflavin T (ThT) fluorescent probe [8].In vivo biological assays. For in vivo blood-brain barrier permeation assay brains were removed 30 min after IP injection of LD50 dose of tested compound injection. The inhibitory potency was measured using the method of Ellman.Scopolamine and transgenic models of AD were used to evaluate the influence of compound 35 on spatial memory performance.Water solution of scopolamine was injected to mice (ip) 20 minutes before starting memory test during 14 days [9]. Mice were assigned to 7 groups, including 4 groups receiving injection (ip) of compound in different dosages, donepezil-treated mice (donepezil is conventionally used to treat Alzheimer's disease), positive and negative control groups. Double transgenic (APP/PS1) mice expressing a chimeric mouse/human amyloid precursor protein and a mutant of human presenilin-1 [10] were assigned to 4 groups, including transgenic animals injected (ip) with compound 35 or donepezil solution, positive (transgenes injected with water) and negative (wild-type mice) controls.To evaluate spatial memory performance, mice were trained on a reward alternation task using a conventional T-maze [11]. The criterion for a mouse having learned the rewarded alternation task was 3 consecutive days of at least 5 correct responses out of the 6 free trials.For β-amyloid peptide load was evaluated quantitatively as a number and summary area of Thioflavine S fluorescent spots in cerebral cortex and hippocampal images using Image J program. Statistical analyses were performed using the Mann-Whitney test. We evaluated the acute toxicity of the most active compounds. The most potent AChE inhibitor compound 35 (IC50 (AChE) = 5 ± 0.5 nM) exhibited the lowest LD50 values (51 mg/kg) and inhibited brain AChE by more than 71 ± 1%. Compound 35 at 10 nM, exhibited a significant (35 ± 9%) inhibitory activity toward human AChE-induced Aβ aggregation.Scopolamine injection induced significant decrease in correct choice percentage in T-maze, as well as decrease in percentage of mice reaching criterion for learning the task by day 14. This memory deficit was relieved to some extent either by compound 35 (5 mg/kg) or donepezil (reference compound) treatment (0.75 mg/kg). Interestingly, higher doses of compound 35 (10 and 15 mg/kg) produced less therapeutic effect on spatial memory deficit.Group of APP/PS1 mice showed 3 times lower percentage of reaching behavioral criterion and lower percentage of correct choice in T-maze alternation task comparing to WT mice, whereas compound 35 (5 mg/kg) or Donepezil treatment effectively improved these parameters in APP/PS1 mice.Compound 35 treatment (5 mg/kg) during 14 days significantly reduced percentage of summary area and number of β-amyloid peptide (βAP) deposits visualized in sections of cerebral cortex, dentate gyrus, and hippocampal CA3 area in APP/PS1 mice. The most prominent reduction of βAP load by compound 35 treatment was found in CA3 area and cerebral cortex. Meanwhile, Donepezil treatment (1 mg/kg) during 14 days significantly reduced βAP load in cerebral cortex but not in dentate gyrus and CA3 area. Experiments showed that the most potent AChE inhibitor compound 35 (6-methyluracil derivative) permeated the blood-brain barrier, improved working memory in the APP/PS1 transgenic mice and significantly reduced the number and area of Aβ plaques in the brain. Thus, compound 35 is a promising candidate as a bi-functional inhibitor of AChE for treatment of AD.
Code of Federal Regulations, 2014 CFR
2014-01-01
... PATCHING COMPOUNDS CONTAINING RESPIRABLE FREE-FORM ASBESTOS § 1304.2 Purpose. The purpose of this rule is to ban consumer patching compounds containing intentionally added respirable, free-form asbestos... demonstrated to be caused by exposure to asbestos fibers. ...
Compound Words: A Problem in Post-Coordinate Retrieval Systems
ERIC Educational Resources Information Center
Jones, Kevin P.
1971-01-01
Compound words cause some difficulty in post-coordinate indexing systems: if too many are fractured, or the wrong categories are selected for fracturing noise will be produced at unacceptable levels on retrieval. (Author/MM)
NASA Astrophysics Data System (ADS)
Bak, Ebbe N.; Zafirov, Kaloyan; Merrison, Jonathan P.; Jensen, Svend J. Knak; Nørnberg, Per; Gunnlaugsson, Haraldur P.; Finster, Kai
2017-09-01
The results of the Labeled Release and the Gas Exchange experiments conducted on Mars by the Viking Landers show that compounds in the Martian soil can cause oxidation of organics and a release of oxygen in the presence of water. Several sources have been proposed for the oxidizing compounds, but none has been validated in situ and the cause of the observed oxidation has not been resolved. In this study, laboratory simulations of saltation were conducted to examine if and under which conditions wind abrasion of silicates, a process that is common on the Martian surface, can give rise to oxidants in the form of hydrogen peroxide (H2O2) and hydroxyl radicals (ṡOH). We found that silicate samples abraded in simulated Martian atmospheres gave rise to a significant production of H2O2 and ṡOH upon contact with water. Our experiments demonstrated that abraded silicates could lead to a production of H2O2 facilitated by atmospheric O2 and inhibited by carbon dioxide. Furthermore, during simulated saltation the silicate particles became triboelectrically charged and at pressures similar to the Martian surface pressure we observed glow discharges. Electrical discharges can cause dissociation of CO2 and through subsequent reactions lead to a production of H2O2. These results indicate that the reactions linked to electrical discharges are the dominant source of H2O2 during saltation of silicates in a simulated Martian atmosphere, given the low pressure and the relatively high concentration of CO2. Our experiments provide evidence that wind driven abrasion could enhance the reactivity of the Martian soil and thereby could have contributed to the oxidation of organic compounds and the O2 release observed in the Labeled Release and the Gas Exchange experiments. Furthermore, the release of H2O2 and ṡOH from abraded silicates could have a negative effect on the persistence of organic compounds in the Martian soil and the habitability of the Martian surface.
Tyrosinase inhibitor activity of coumarin-resveratrol hybrids.
Fais, Antonella; Corda, Marcella; Era, Benedetta; Fadda, M Benedetta; Matos, Maria Joao; Quezada, Elias; Santana, Lourdes; Picciau, Carmen; Podda, Gianni; Delogu, Giovanna
2009-07-13
In the present work we report on the contribution of the coumarin moiety to tyrosinase inhibition. Coumarin-resveratrol hybrids 1-8 have been resynthesized to investigate the structure-activity relationships and the IC(50) values of these compounds were measured. The results showed that these compounds exhibited tyrosinase inhibitory activity. Compound 3-(3',4',5'-trihydroxyphenyl)-6,8-dihydroxycoumarin (8)is the most potentcompound (0.27 mM), more so than umbelliferone (0.42 mM), used as reference compound. The kinetic studies revealed that compound 8 caused non-competitive tyrosinase inhibition.
Anti-inflammatory and neuroprotective effect of a phytoestrogen compound on rat microglia.
Marotta, F; Mao, G S; Liu, T; Chui, D H; Lorenzetti, A; Xiao, Y; Marandola, P
2006-11-01
Ovariectomized Wistar rats received orally 15 mg/kg of a phytoestrogen compound (genistein, daidzein, glycitein, black cohosh, angelica sin., licorice, vitex agnus) for 2 weeks to test its ability to modulate inflammatory microglia response. Microglial proliferation was tested by trypan blue and by absorbance. Serial supernatant sampling was performed for 24 h to check TNF-alpha, IL-beta, IL-6, and TGF-beta. LPS caused a time course increase of all cytokines, with IL-beta and TNF-alpha peaking at the 12th hour, whereas IL-6 and TGF-beta peaked at the 24 h observation. Rats fed with the phytoestrogen displayed a significantly lower level of proinflammatory cytokines and a higher level of TGF-beta, as shown also by Western blot analysis. This finding may offer promise in the field of nutraceutical intervention.
Lymphocyte DNA damage in Turkish asphalt workers detected by the comet assay.
Bacaksiz, Aysegul; Kayaalti, Zeliha; Soylemez, Esma; Tutkun, Engin; Soylemezoglu, Tulin
2014-01-01
Asphalt has a highly complex structure and it contains several organic compounds including polycyclic aromatic hydrocarbons and heterocyclic compounds. In this study, comet assay was used to detect the DNA damage in blood lymphocytes of 30 workers exposed to asphalt fumes and 30 nonexposed controls. This is the first report on Turkish asphalt workers' investigated DNA damage using the alkaline single cell gel electrophoresis (SCGE). The DNA damage was evaluated by the percentage of DNA in the comet tail (% tail DNA) for each cell. According to our results, workers exposed to asphalt fumes had higher DNA damage than the control group (p < 0.01). The present study showed that asphalt fumes caused a significant increase in DNA damage and the comet assay is a suitable method for determining DNA damage in asphalt workers.
Nakagawasai, Osamu; Arai, Yuichiro; Satoh, Shin-etsu; Satoh, Nobunori; Neda, Mitsuro; Hozumi, Masato; Oka, Ryusho; Hiraga, Hajime; Tadano, Takeshi
2004-01-01
It is well known that head-twitch response (HTR) in mice represents hallucinations, since administration of lysergic acid diethylamide (LSD) produces hallucinations in humans, and the HTR in mice is induced by administration of LSD as a hallucinogen. The HTR is produced by excitation of 5-hydroxytryptamine (5-HT)2A receptors. In this paper, we review the mechanisms of HTR induced by various drugs such as 5-HT precursor, 5-HT receptor agonist, 5-HT releaser, hallucinogenic compounds, benzodiazepins and cannabinoid. The response induced by HTR-inducers is significantly enhanced by combined treatment with a non-selective form of monoamine oxidase (MAO) inhibitor. Thus, the relationship between MAO activity and HTR caused by these drugs (especially, alpha-methylated analogous compounds which 5-fluoro-alpha-methyltryptamine, 6-fluoro-alpha-methyltryptamine and p-hydroxyamphetamine) is presented in detail.
Aronia melanocarpa Treatment and Antioxidant Status in Selected Tissues in Wistar Rats
Krośniak, Mirosław; Sanocka, Ilona; Bartoń, Henryk; Hebda, Tomasz; Francik, Sławomir
2014-01-01
Aronia juice is considered to be a source of compounds with high antioxidative potential. We conducted a study on the impact of compounds in the Aronia juice on oxidative stress in plasma and brain tissues. The influence of Aronia juice on oxidative stress parameters was tested with the use of a model with a high content of fructose and nonsaturated fats. Therefore, the activity of enzymatic (catalase, CAT, and paraoxonase, PON) and nonenzymatic (thiol groups, SH, and protein carbonyl groups, PCG) oxidative stress markers, which indicate changes in the carbohydrate and protein profiles, was marked in brain tissue homogenates. Adding Aronia caused statistically significant increase in the CAT activity in plasma in all tested diets, while the PON activity showed a statistically significant increase only in case of high fat diet. In animals fed with Aronia juice supplemented with carbohydrates or fat, statistically significant increase in the PON activity and the decrease in the CAT activity in brain tissue were observed. In case of the high fat diet, an increase in the number of SH groups and a decrease in the number of PCG groups in brain tissue were observed. PMID:25057488
Aronia melanocarpa treatment and antioxidant status in selected tissues in Wistar rats.
Francik, Renata; Krośniak, Mirosław; Sanocka, Ilona; Bartoń, Henryk; Hebda, Tomasz; Francik, Sławomir
2014-01-01
Aronia juice is considered to be a source of compounds with high antioxidative potential. We conducted a study on the impact of compounds in the Aronia juice on oxidative stress in plasma and brain tissues. The influence of Aronia juice on oxidative stress parameters was tested with the use of a model with a high content of fructose and nonsaturated fats. Therefore, the activity of enzymatic (catalase, CAT, and paraoxonase, PON) and nonenzymatic (thiol groups, SH, and protein carbonyl groups, PCG) oxidative stress markers, which indicate changes in the carbohydrate and protein profiles, was marked in brain tissue homogenates. Adding Aronia caused statistically significant increase in the CAT activity in plasma in all tested diets, while the PON activity showed a statistically significant increase only in case of high fat diet. In animals fed with Aronia juice supplemented with carbohydrates or fat, statistically significant increase in the PON activity and the decrease in the CAT activity in brain tissue were observed. In case of the high fat diet, an increase in the number of SH groups and a decrease in the number of PCG groups in brain tissue were observed.
NASA Technical Reports Server (NTRS)
Sandholm, S.; Olson, J.; Bradshaw, J.; Talbot, R.; Singh, H.; Gregory, G.; Blake, D.; Anderson, B.; Sachse, G.; Barrick, J.
1994-01-01
As part of NASA's Arctic Boundary Layer Expedition 3A and 3B field measurement programs, measurements of NO(x), HNO3, PAN, PPN, and NO(y) were made in the middle to lower troposphere over Alaska and Canada during the summers of 1988 and 1990. These measurements are used to assess the degree of closure within the reactive odd nitrogen (N(x)O(y)) budget through the comparison of the values of NO(y) measured with a catalytic convertor to the sum of individually measured NO(y) (i) compounds (i.e., sigmaNO(y)(i) = NO(x) + HNO3 + PAN + PPN). Significant differences were observed between the various study regions. In the lower 6 km of the troposphere over Alaska and the Hudson Bay lowlands of Canada a significant fraction of the NO(y) budget (30 to 60%) could not be accounted for by the measured sigmaNO(y)i. This deficit in the NO(y) budget is about 100 to 200 parts per trillion by volume (pptv) in the lower troposphere (0.15 to 3 km) and about 200 to 400 pptv in the middle free troposphere (3 to 6.2 km). Conversely, the NO(y) budget in the northern Labrador and Quebec regions of Canada is almost totally accounted for within the combined measurement uncertainties of NO(y) and the various NO(y)(i) compounds. A substantial portion of the NO(y) budget's 'missing compounds' appears to be coupled to the photochemical and/or dynamical parameters influencing the tropospheric oxidative potential over these regions. A combination of factors are suggested as the causes for the variability observed in the NO(y) budget. In addition, the apparent stability of compounds represented by the NO(y) budget deficit in the lower-altitude range questions the ability of these compounds to participate as reversible reservoirs for 'active' odd nitrogen and suggest that some portion of the NO(y) budget may consist of relatively unreactive nitrogen-containing compounds.
Southeast Asian Medicinal Plants as a Potential Source of Antituberculosis Agent
Sanusi, Shuaibu Babaji; Mohamed, Maryati; Mainasara, Muhammad Murtala
2017-01-01
Despite all of the control strategies, tuberculosis (TB) is still a major cause of death globally and one-third of the world's population is infected with TB. The drugs used for TB treatment have drawbacks of causing adverse side effects and emergence of resistance strains. Plant-derived medicines have since been used in traditional medical system for the treatment of numerous ailments worldwide. There were nine major review publications on antimycobacteria from plants in the last 17 years. However, none is focused on Southeast Asian medicinal plants. Hence, this review is aimed at highlighting the medicinal plants of Southeast Asian origin evaluated for anti-TB. This review is based on literatures published in various electronic database. A total of 132 plants species representing 45 families and 107 genera were reviewed; 27 species representing 20.5% exhibited most significant in vitro anti-TB activity (crude extracts and/or bioactive compounds 0–<10 µg/ml). The findings may motivate various scientists to undertake the project that may result in the development of crude extract that will be consumed as complementary or alternative TB drug or as potential bioactive compounds for the development of novel anti-TB drug. PMID:29081822
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaczmarski, Krzysztof; Guiochon, Georges A
2011-01-01
In supercritical fluid chromatography (SFC), the significant expansion of the mobile phase along the column causes the formation of axial and radial gradients of temperature. Due to these gradients, the mobile phase density, its viscosity, its velocity, its diffusion coefficients, etc. are not constant throughout the column. This results in a nonuniform flow velocity distribution, itself causing a loss of column efficiency in certain cases, even at low flow rates, as they do in HPLC. At high flow rates, an important deformation of the elution profiles of the sample components may occur. The model previously used to account satisfactorily formore » the retention of an unsorbed solute in SFC is applied to the modeling of the elution peak profiles of retained compounds. The numerical solution of the combined heat and mass balance equations provides the temperature and the pressure profiles inside the column and values of the retention time and the band profiles of retained compounds that are in excellent agreement with independent experimental data for large value of mobile phase reduced density. At low reduced densities, the band profiles can strongly depend on the column axial distribution of porosity.« less
Occupational skin hazards from synthetic plastics.
Tosti, A; Guerra, L; Vincenzi, C; Peluso, A M
1993-01-01
Epoxy and acrylic resins have numerous industrial applications but are also widely used in the household environment. These compounds are presently one of the most important sources of occupational contact dermatitis. Contact sensitization to epoxy resins is usually caused by the resin itself but hardeners or other additives, such as reactive diluents, plasticizers, fillers and pigments, can occasionally be responsible. Since completely cured epoxy resins are not sensitizers, epoxy resin sensitization is always due to the presence, in the final polymer, of uncured allergenic low molecular weight oligomers. Acrylates are now considered the fourth most common cause of contact sensitization due to resins. Unpolymerized monomers of acrylic compounds are known to be responsible for the contact allergy. Accelerators, inhibitors and catalysts, which are usually added to the acrylates to promote the polymerization process, can also sensitize. Both allergic and irritant contact dermatitis may be caused by exposure to epoxy or acrylic resins and their additives. Contact urticaria, allergic or irritant airborne contact dermatitis caused by volatile compounds, onychia and paronychia can also occur. From January of 1984 to May of 1992 we detected 39 cases of occupational allergic contact dermatitis to epoxy resin system substances and 11 cases of occupational contact sensitization to acrylic compounds. In our experience, the electronics industry as well as paint and glue related activities were the most important sources of epoxy sensitization. Dental materials and anaerobic sealants were found to be the most frequent acrylate sensitizers.
Antifungal potential of eugenyl acetate against clinical isolates of Candida species.
Musthafa, Khadar Syed; Hmoteh, Jutharat; Thamjarungwong, Benjamas; Voravuthikunchai, Supayang Piyawan
2016-10-01
The study evaluated the efficiency of eugenyl acetate (EA), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. Minimum inhibitory concentrations (MIC) of EA against Candida isolates were in the range between 0.1% and 0.4% (v/v). Spot assay further confirmed the susceptibility of Candida isolates to the compound upon treatment with respective 1 × MIC. Growth profile measured in time kill study evidence that the compound at 1 × MIC and 1/2 × MIC retarded the growth of Candida cells, divulging the fungicidal activity. Light microscopic observation demonstrated that upon treated with EA, rough cell morphology, cell damage, and fragmented patterns were observed in C. albicans, C. parapsilosis, C. tropicalis, and C. glabrata. Furthermore, unusual morphological changes of the organism were observed in scanning electron microscopic study. Therefore, it is validated that the compound could cause cell damage resulting in the cell death of Candida clinical isolates. Eventually, the compound at sub-MIC (0.0125% v/v) significantly inhibited serum-induced germ tube formation by C. albicans. Eugenyl acetate inhibited biofilm forming ability of the organisms as well as reduced the adherence of Candida cells to HaCaT keratinocytes cells. In addition, upon treatment with EA, the phagocytic activity of macrophages was increased significantly against C. albicans (P < 0.05). The results demonstrated the potential of EA as a valuable phytochemical to fight against emerging Candida infections. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hepatic 3D spheroid models for the detection and study of compounds with cholestatic liability
Hendriks, Delilah F. G.; Fredriksson Puigvert, Lisa; Messner, Simon; Mortiz, Wolfgang; Ingelman-Sundberg, Magnus
2016-01-01
Drug-induced cholestasis (DIC) is poorly understood and its preclinical prediction is mainly limited to assessing the compound’s potential to inhibit the bile salt export pump (BSEP). Here, we evaluated two 3D spheroid models, one from primary human hepatocytes (PHH) and one from HepaRG cells, for the detection of compounds with cholestatic liability. By repeatedly co-exposing both models to a set of compounds with different mechanisms of hepatotoxicity and a non-toxic concentrated bile acid (BA) mixture for 8 days we observed a selective synergistic toxicity of compounds known to cause cholestatic or mixed cholestatic/hepatocellular toxicity and the BA mixture compared to exposure to the compounds alone, a phenomenon that was more pronounced after extending the exposure time to 14 days. In contrast, no such synergism was observed after both 8 and 14 days of exposure to the BA mixture for compounds that cause non-cholestatic hepatotoxicity. Mechanisms behind the toxicity of the cholestatic compound chlorpromazine were accurately detected in both spheroid models, including intracellular BA accumulation, inhibition of ABCB11 expression and disruption of the F-actin cytoskeleton. Furthermore, the observed synergistic toxicity of chlorpromazine and BA was associated with increased oxidative stress and modulation of death receptor signalling. Combined, our results demonstrate that the hepatic spheroid models presented here can be used to detect and study compounds with cholestatic liability. PMID:27759057
Bizarro, Ana; Sousa, Diana; Lima, Raquel T; Musso, Loana; Cincinelli, Raffaella; Zuco, Vantina; De Cesare, Michelandrea; Dallavalle, Sabrina; Vasconcelos, M Helena
2018-02-13
Heat shock protein 90 (HSP90) is a well-known target for cancer therapy. In a previous work, some of us have reported a series of 3-aryl-naphtho[2,3- d ]isoxazole-4,9-diones as inhibitors of HSP90. In the present work, various compounds with new chromenopyridinone and thiochromenopyridinone scaffolds were synthesized as potential HSP90 inhibitors. Their binding affinity to HSP90 was studied in vitro. Selected compounds ( 5 and 8 ) were further studied in various tumor cell lines regarding their potential to cause cell growth inhibition, alter the cell cycle profile, inhibit proliferation, and induce apoptosis. Their effect on HSP90 client protein levels was also confirmed in two cell lines. Finally, the antitumor activity of compound 8 was studied in A431 squamous cell carcinoma xenografts in nude mice. Our results indicated that treatment with compounds 5 and 8 decreased the proliferation of tumor cell lines and compound 8 induced apoptosis. In addition, these two compounds were able to downregulate selected proteins known as "clients" of HSP90. Finally, treatment of xenografted mice with compound 5 resulted in a considerable dose-dependent inhibition of tumor growth. Our results show that two new compounds with a chromenopyridinone and thiochromenopyridinone scaffold are promising putative HSP90 inhibitors causing tumor cell growth inhibition.
The toxicity of dietary trans fats.
Ganguly, Riya; Pierce, Grant N
2015-04-01
Cardiovascular disease remains the leading cause of death today. Trans fatty acids have been identified as an important cause of cardiovascular disease and the resulting clinical end points such as strokes and heart attacks. Although legislative efforts have limited the trans fats in our diet, significant amounts remain. Understanding the impact trans fats have on our body, therefore, remains a critical focus of study. In addition, paradoxically, recent research has now identified an important cardioprotective role for a sub-category of trans fats, the ruminant trans fats. Learning more about the mechanisms responsible for not only the toxic actions of trans fats but also their potential as beneficial compounds within our diet is essential to modulate cardiovascular disease today. Copyright © 2015 Elsevier Ltd. All rights reserved.
Induction detection of concealed bulk banknotes
NASA Astrophysics Data System (ADS)
Fuller, Christopher; Chen, Antao
2011-10-01
Bulk cash smuggling is a serious issue that has grown in volume in recent years. By building on the magnetic characteristics of paper currency, induction sensing is found to be capable of quickly detecting large masses of banknotes. The results show that this method is effective in detecting bulk cash through concealing materials such as plastics, cardboards, fabrics and aluminum foil. The significant difference in the observed phase between the received signals caused by conducting materials and ferrite compounds, found in banknotes, provides a good indication that this process can overcome the interference by metal objects in a real sensing application. This identification strategy has the potential to not only detect the presence of banknotes, but also the number, while still eliminating false positives caused by metal objects.
[Indoor air pollution by polychlorinated biphenyl compounds in permanently elastic sealants].
Burkhardt, U; Bork, M; Balfanz, E; Leidel, J
1990-10-01
A common cause for indoor pollution by polycholorinated biphenyls (PCB) are defective capacitors of luminous discharge lamps. This paper describes elastic sealing compounds as another source of PCB pollution in buildings. In several rooms of a large school building indoor concentrations of 1000 ng PCB/m3 and more were registered. The total PCB concentration in sealing compounds ranged between 124,000 and 327,000 ppm. Blood specimens drawn from the school's personnel did not show elevated PCB concentrations, but additional incorporation of PCB via the respiratory tract cannot be excluded. We do not presume that any impairment of the health has been caused by this pollutant, but we think that reduction of the PCB indoor concentrations would be advisable for prophylactic purposes. Attention should be given to so-called open PCB systems such as elastic sealing compounds. Although they have been prohibited 1978, there might be a widespread use in older buildings.
Luque, F; Fernandez-Ramos, C; Entrala, E; Rosales, M J; Salas, M C; Navarro, J; Sánchez-Moreno, M
2000-12-01
Six compounds, all newly synthesized triazole-pyrimidine derivatives that proved inhibitory of in in vitro growth of epimastigotes in Trypanosoma cruzi and of promastigotes of Leishmania donovani and Phytomonas staheli, were studied to investigate their toxic effects. As a biological model, the plant trypanosome P. staheli, which causes sudden wilt in the oil palm and Hartrot in the coconut palm, was used. The six compounds markedly inhibited macromolecule synthesis (nucleic acids and proteins) by the parasite. The cells treated with these compounds present severe damage in their ultrastructure-intense 'vacuolization, and appearance of lysosomes as well as other residual bodies. The mitochondrial section appeared larger in size. with a swollen matrix. In addition, these compounds changed the excretion of end metabolites, primarily affecting ethanol and acetate excretion, possibly by directly influencing certain enzymes (alcohol dehydrogenase and acetate synthetase) or their synthesis. 2000 Elsevier Science Ltd.
Vlasits, Anna L.; Simon, Julian A.; Raible, David W.; Rubel, Edwin W; Owens, Kelly N.
2012-01-01
Loss of mechanosensory hair cells in the inner ear accounts for many hearing loss and balance disorders. Several beneficial pharmaceutical drugs cause hair cell death as a side effect. These include aminoglycoside antibiotics, such as neomycin, kanamycin and gentamicin, and several cancer chemotherapy drugs, such as cisplatin. Discovering new compounds that protect mammalian hair cells from toxic insults is experimentally difficult because of the inaccessibility of the inner ear. We used the zebrafish lateral line sensory system as an in vivo screening platform to survey a library of FDA-approved pharmaceuticals for compounds that protect hair cells from neomycin, gentamicin, kanamycin and cisplatin. Ten compounds were identified that provide protection from at least two of the four toxins. The resulting compounds fall into several drug classes, including serotonin and dopamine-modulating drugs, adrenergic receptor ligands, and estrogen receptor modulators. The protective compounds show different effects against the different toxins, supporting the idea that each toxin causes hair cell death by distinct, but partially overlapping, mechanisms. Furthermore, some compounds from the same drug classes had different protective properties, suggesting that they might not prevent hair cell death by their known target mechanisms. Some protective compounds blocked gentamicin uptake into hair cells, suggesting that they may block mechanotransduction or other routes of entry. The protective compounds identified in our screen will provide a starting point for studies in mammals as well as further research discovering the cellular signaling pathways that trigger hair cell death. PMID:22967486
NASA Astrophysics Data System (ADS)
Lopez Pinar, Angela; Rauhut, Doris; Ruehl, Ernst; Buettner, Andrea
2017-08-01
Fungal infections are detrimental for viticulture since they may reduce harvest yield and wine quality. This study aimed to characterize the effects of bunch rot and powdery mildew on wine aroma by quantification of representative aroma compounds using Stable Isotope Dilution Analysis (SIDA). For this purpose, samples affected to a high degree by each fungus were compared with a healthy sample in each case; to this aim, the respective samples were collected and processed applying identical conditions. Thereby, the effects of bunch rot were studied in three different grape varieties: White Riesling, Red Riesling and Gewürztraminer whereas the influence of powdery mildew was studied on the hybrid Gm 8622-3. Analyses revealed that both fungal diseases caused significant changes in the concentration of most target compounds. Thereby, the greatest effects were increases in the concentration of phenylacetic acid, acetic acid and γ-decalactone for both fungi and all grape varieties. Regarding other compounds, however, inconsistent effects of bunch rot were observed for the three varieties studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritti, Fabrice; Guiochon, Georges A; Mayfield, Kirsty
2010-01-01
The frontal analysis method was used to measure the adsorption isotherms of phenol, 4-chlorophenol, p-cresol, 4-methoxyphenol and caffeine on a series of columns packed with home-made alkyl-phenyl bonded silica particles. These ligands consist of a phenyl ring tethered to the silica support via a carbon chain of length ranging from 0 to 4 atoms. The adsorption isotherm models that fit best to the data account for solute-solute interactions that are likely caused by p-p interactions occurring between aromatic compounds and the phenyl group of the ligand. These interactions are the dominant factor responsible for the separation of low molecular weightmore » aromatic compounds on these phenyl-type stationary phases. The saturation capacities depend on whether the spacer of the ligands have an even or an odd number of carbon atoms, with the even alkyl chain lengths having a greater saturation capacity than the odd alkyl chain lengths. The trends in the adsorption equilibrium constant are also significantly different for the even and the odd chain length ligands.« less
Halász, István Zoltán; Bárány, Tamás
2016-08-24
In this work, the effect of mixing temperature (T mix ) on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT) oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR) and polar (acrylonitrile butadiene rubber, NBR) rubbers were modified by CBT (20 phr) for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA) tests. The CBT-caused viscosity changes were assessed by parallel-plate rheometry. The morphology was studied by scanning electron microscopy (SEM). CBT became better dispersed in the rubber matrices with elevated mixing temperatures (at which CBT was in partially molten state), which resulted in improved tensile properties. With increasing mixing temperature the size of the CBT particles in the compounds decreased significantly, from few hundred microns to 5-10 microns. Compounding at temperatures above 120 °C and 140 °C for NBR and SBR, respectively, yielded reduced tensile mechanical properties most likely due to the degradation of the base rubber. The viscosity reduction by CBT was more pronounced in mixes with coarser CBT dispersions prepared at lower mixing temperatures.
Detoxification of Fusaric Acid by the Soil Microbe Mucor rouxii.
Crutcher, Frankie K; Puckhaber, Lorraine S; Bell, Alois A; Liu, Jinggao; Duke, Sara E; Stipanovic, Robert D; Nichols, Robert L
2017-06-21
Fusarium oxysporum f. sp. vasinfectum race 4 (VCG0114), which causes root rot and wilt of cotton (Gossypium hirsutum and G. barbadense), has been identified recently for the first time in the western hemisphere in certain fields in the San Joaquin Valley of California. This pathotype produces copious quantities of the plant toxin fusaric acid (5-butyl-2-pyridinecarboxylic acid) compared to other isolates of F. oxysporum f. sp. vasinfectum (Fov) that are indigenous to the United States. Fusaric acid is toxic to cotton plants and may help the pathogen compete with other microbes in the soil. We found that a laboratory strain of the fungus Mucor rouxii converts fusaric acid into a newly identified compound, 8-hydroxyfusaric acid. The latter compound is significantly less phytotoxic to cotton than the parent compound. On the basis of bioassays of hydroxylated analogues of fusaric acid, hydroxylation of the butyl side chain of fusaric acid may affect a general detoxification of fusaric acid. Genes that control this hydroxylation may be useful in developing biocontrol agents to manage Fov.
Zhu, Hu; Liu, Wei; Tian, Baozhen; Liu, Huijun; Ning, Shoujiao
2011-01-01
Extracts of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum, inhibited quorum sensing in Chromobacterium violaceum CV026. G. lucidum fruiting bodies were milled and extracted with ethyl acetate. The crude extract was dissolved in an appropriate concentration of methanol, sterilized by filtration through a 0.22-μm membrane filter, and added to Ch. Violaceum CV026 cultures, which were used as an indicator to monitor quorum sensing inhibition. Inhibitory activity was measured by quantifying violacein production using a microplate reader. Methanol-soluble compounds extracted from G. lucidum significantly inhibited quorum sensing-controlled behavior in Ch. Violaceum in a concentration-dependent manner. The results suggest that compounds in G. lucidum might be useful to control and handle detrimental infections caused by human, animal, and plant pathogens. Further studies are in progress in our lab to isolate the specific compounds from G. lucidum extract, evaluate them as quorum sensing inhibitors, and analyze their mechanism of action.
Natural compound cudraflavone B shows promising anti-inflammatory properties in vitro.
Hošek, Jan; Bartos, Milan; Chudík, Stanislav; Dall'Acqua, Stefano; Innocenti, Gabbriella; Kartal, Murat; Kokoška, Ladislav; Kollár, Peter; Kutil, Zsófia; Landa, Přemysl; Marek, Radek; Závalová, Veronika; Žemlička, Milan; Šmejkal, Karel
2011-04-25
Cudraflavone B (1) is a prenylated flavonoid found in large amounts in the roots of Morus alba, a plant used as a herbal remedy for its reputed anti-inflammatory properties. The present study shows that this compound causes a significant inhibition of inflammatory mediators in selected in vitro models. Thus, 1 was identified as a potent inhibitor of tumor necrosis factor α (TNFα) gene expression and secretion by blocking the translocation of nuclear factor κB (NF-κB) from the cytoplasm to the nucleus in macrophages derived from a THP-1 human monocyte cell line. The NF-κB activity reduction resulted in the inhibition of cyclooxygenase 2 (COX-2) gene expression. Compound 1 acts as a COX-2 and COX-1 inhibitor with higher selectivity toward COX-2 than indomethacin. Pretreatment of cells by 1 shifted the peak in an regulatory gene zinc-finger protein 36 (ZFP36) expression assay. This natural product has noticeable anti-inflammatory properties, suggesting that 1 potentially could be used for development as a nonsteroidal anti-inflammatory drug lead.
Jiang, Ping; Lucy, Charles A
2015-10-15
Electrospray ionization mass spectrometry (ESI-MS) has significantly impacted the analysis of complex biological and petroleum samples. However ESI-MS has limited ionization efficiency for samples in low dielectric and low polarity solvents. Addition of a make-up solvent through a T union or electrospray solvent through continuous flow extractive desorption electrospray ionization (CF-EDESI) enable ionization of analytes in non-ESI friendly solvents. A conventional make-up solvent addition setup was used and a CF-EDESI source was built for ionization of nitrogen-containing standards in hexane or hexane/isopropanol. Factors affecting the performance of both sources have been investigated and optimized. Both the make-up solvent addition and CF-EDESI improve the ionization efficiency for heteroatom compounds in non-ESI friendly solvents. Make-up solvent addition provides higher ionization efficiency than CF-EDESI. Neither the make-up solvent addition nor the CF-EDESI eliminates ionization suppression of nitrogen-containing compounds caused by compounds of the same chemical class. Copyright © 2015 Elsevier B.V. All rights reserved.
[Algicidal effect of (2-isobutoxyphenyl) amine on Alexandrium tamarense].
Zhang, Huajun; Peng, Yun; Zhang, Su; An, Xinli; Li, Yi; Zheng, Wei; Zheng, Tianling
2015-07-04
A strain named BS01 showed strong algicidal activity to Alexandrium tamarense and we got algicidal compound (2-isobutoxyphenyl) amine from BS01 to study its algicidal effect on A. tamarense. We studied the algicidal mechanism of (2-isobutoxyphenyl) amine on photosynthetic process, antioxidant enzyme activities and morphological change of A. tamarense. After 24 hours treatment with (2-isobutoxyphenyl) amine, algicidal activity was 84. 1% with the concentration of 20 µg/mL. The compound could induce a reactive oxygen species burst in P. globosa in 0. 5 hours which could cause serious oxidative damage to algal cells. The Fv/Fm value which could reflect photosystem II (PS II) electron flow status also decreased. To eliminate the excess ROS, the activities of the antioxidant systems (including superoxide dismutase and catalase) increased significantly during exposure. Transmission electron microscope analysis showed obvious morphological modifications of chloroplast dismantling as a part of the algicidal process. These results indicated that the lysis mechanism of algicidal compound on algae may primarily be the increasing level of ROS in the algal cells.
The effect of yeast extract addition on quality of fermented sausages at low NaCl content.
Campagnol, Paulo Cezar Bastianello; dos Santos, Bibiana Alves; Wagner, Roger; Terra, Nelcindo Nascimento; Pollonio, Marise Aparecida Rodrigues
2011-03-01
Fermented sausages with 25% or 50% of their NaCl replaced by KCl and supplemented with 1% or 2% concentrations of yeast extract were produced. The sausage production process was monitored with physical, chemical and microbiological analyses. After production, the sausage samples were submitted to a consumer study and their volatile compounds were extracted by solid-phase microextraction and analyzed by GC-MS. The replacement of NaCl by KCl did not significantly influence the physical, chemical or microbiological characteristics. The sensory quality of the fermented sausages with a 50% replacement was poor compared with the full-salt control samples. The use of yeast extract at a 2% concentration increased volatile compounds that arose from amino acids and carbohydrate catabolism. These compounds contributed to the suppression of the sensory-quality defects caused by the KCl introduction, thus enabling the production of safe fermented sausages that have acceptable sensory qualities with half as much sodium content. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.
Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment.
Kim, Young Mo; Park, Donghee; Lee, Dae Sung; Park, Jong Moon
2008-04-15
Cokes wastewater is one of the most toxic industrial effluents since it contains high concentrations of toxic compounds such as phenols, cyanides and thiocyanate. Although activated sludge process has been adapted to treat this wastewater, nitrification process has been occasionally upset by serious inhibitory effects of toxic compounds. In this study, therefore, we examined inhibitory effects of ammonia, thiocyanate, free cyanide, ferric cyanide, phenol and p-cresol on nitrification in an activated sludge system, and then correlated their threshold concentrations with the full-scale pre-denitrification process for treating cokes wastewater. Ammonia below 350 mg/L did not cause substrate inhibition for nitrifying bacteria. Thiocyanate above 200mg/L seemed to inhibit nitrification, but it was due to the increased loading of ammonia produced from its biodegradation. Free cyanide above 0.2mg/L seriously inhibited nitrification, but ferric cyanide below 100mg/L did not. Phenol and p-cresol significantly inhibited nitrification above 200 mg/L and 100mg/L, respectively. Meantime, activated carbon was added to reduce inhibitory effects of phenol and free cyanide.
Antimicrobial activity of synthetic bornyl benzoates against Trypanosoma cruzi
Corrêa, P R C; Miranda, R R S; Duarte, L P; Silva, G D F; Filho, S A Vieira; Okuma, A A; Carazza, F; Morgado-Díaz, J A; Pinge-Filho, P; Yamauchi, L M; Nakamura, C V; Yamada-Ogatta, S F
2012-01-01
We report here for the first time the in vitro effects of (1S,2R,4S)-1,7,7-trimethyl-bicyclo[2.2.1]heptan-2-yl-3′,4′,5′-trimethoxy benzoate (1) and (1S,2R,4S)-1,7,7-trimethyl-bicyclo[2.2.1]heptan-2-yl benzoate (2) on the growth and ultrastructure of Trypanosoma cruzi. These two synthetic compounds exerted an antiproliferative effect on the epimastigote forms of the parasite. The ICs50/72h of two synthetic L-bornyl benzoates, 1 and 2, was 10.1 and 12.8 μg/ml, respectively. Both compounds were more selective against epimastigotes than HEp-2 cells. Ultrastructural analysis revealed intense cytoplasmic vacuolization and the appearance of cytoplasmic materials surrounded by membranes. The treatment of peritoneal macrophages with compounds 1 and 2 caused a significant decrease in the number of T. cruzi-infected cells. L-Bornyl benzoate derivatives may serve as a potential source for the development of more effective and safer chemotherapeutic agents against T. cruzi infections. PMID:22943546
Jacks of metal/metalloid chelation trade in plants—an overview
Anjum, Naser A.; Hasanuzzaman, Mirza; Hossain, Mohammad A.; Thangavel, Palaniswamy; Roychoudhury, Aryadeep; Gill, Sarvajeet S.; Rodrigo, Miguel A. Merlos; Adam, Vojtěch; Fujita, Masayuki; Kizek, Rene; Duarte, Armando C.; Pereira, Eduarda; Ahmad, Iqbal
2015-01-01
Varied environmental compartments including soils are being contaminated by a myriad toxic metal(loid)s (hereafter termed as “metal/s”) mainly through anthropogenic activities. These metals may contaminate food chain and bring irreparable consequences in human. Plant-based approach (phytoremediation) stands second to none among bioremediation technologies meant for sustainable cleanup of soils/sites with metal-contamination. In turn, the capacity of plants to tolerate potential consequences caused by the extracted/accumulated metals decides the effectiveness and success of phytoremediation system. Chelation is among the potential mechanisms that largely govern metal-tolerance in plant cells by maintaining low concentrations of free metals in cytoplasm. Metal-chelation can be performed by compounds of both thiol origin (such as GSH, glutathione; PCs, phytochelatins; MTs, metallothioneins) and non-thiol origin (such as histidine, nicotianamine, organic acids). This paper presents an appraisal of recent reports on both thiol and non-thiol compounds in an effort to shed light on the significance of these compounds in plant-metal tolerance, as well as to provide scientific clues for the advancement of metal-phytoextraction strategies. PMID:25883598
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sousa, A. M.; Coutinho, W. S.; Lima, A. F.
2015-02-21
We have investigated the structural, bonding, and electronic properties of both ferroelectric (FE) and paraelectric (PE) phases of the hexagonal LuMnO{sub 3} compound using calculations based on density functional theory. The structural properties have been determined by employing the generalized gradient approximation with Perdew-Burke-Ernzerhof and Wu-Cohen parameterization. The bonding and electronic properties have been treated by recently developed modified Becke-Johnson exchange potential, which succeeded to open a band gap for both PE and FE phases, in agreement with experimental predictions. The Bader’s topological analysis of electronic density showed that the character of the Lu–O axial bonds changes when the crystalmore » exhibits the PE → FE structural transition. This fact is in agreement with experimental findings. The covalent character of the Lu–O bond significantly increases due to orbital hybridization between the Lu 5d{sub z}{sup 2} and O 2p{sub z}-states. This bonding mechanism causes the ferroelectricity in the hexagonal LuMnO{sub 3} compound.« less
Inhibitors of Dengue virus and West Nile virus proteases based on the aminobenzamide scaffold.
Aravapalli, Sridhar; Lai, Huiguo; Teramoto, Tadahisa; Alliston, Kevin R; Lushington, Gerald H; Ferguson, Eron L; Padmanabhan, R; Groutas, William C
2012-07-01
Dengue and West Nile viruses (WNV) are mosquito-borne members of flaviviruses that cause significant morbidity and mortality. There is no approved vaccine or antiviral drugs for human use to date. In this study, a series of functionalized meta and para aminobenzamide derivatives were synthesized and subsequently screened in vitro against Dengue virus and West Nile virus proteases. Four active compounds were identified which showed comparable activity toward the two proteases and shared in common a meta or para(phenoxy)phenyl group. The inhibition constants (K(i)) for the most potent compound 7n against Dengue and West Nile virus proteases were 8.77 and 5.55 μM, respectively. The kinetics data support a competitive mode of inhibition of both proteases by compound 7n. This conclusion is further supported by molecular modeling. This study reveals a new chemical scaffold which is amenable to further optimization to yield potent inhibitors of the viral proteases via the combined utilization of iterative medicinal chemistry/structure-activity relationship studies and in vitro screening. Copyright © 2012 Elsevier Ltd. All rights reserved.
The effect of tributyltin on human eosinophilic [correction of eosinophylic] leukemia EoL-1 cells.
Sroka, Jolanta; Włosiak, Przemysław; Wilk, Anna; Antonik, Justyna; Czyz, Jarosław; Madeja, Zbigniew
2008-01-01
Organotin compounds are chemicals that are widely used in industry and agriculture as plastic stabilizers, catalysts and biocides. Many of them, including tributyltin (TBT), have been detected in human food and, as a consequence, detectable levels have been found in human blood. As organotin compounds were shown to possess immunotoxic activity, we focused our attention on the effect of TBT on the basic determinants of the function of eosinophils, i.e. cell adhesiveness and motility. We used human eosinophylic leukemia EoL-1 cells, a common in vitro cellular model of human eosinophils. Here, we demonstrate that TBT causes a dose-dependent decrease in the viability of EoL-1 cells. When administered at sub-lethal concentrations, TBT significantly decreases the adhesion of EoL-1 cells to human fibroblasts (HSFs) and inhibits their migration on fibroblast surfaces. Since the basic function of eosinophils is to invade inflamed tissues, our results indicate that TBT, and possibly other organotin compounds, may affect major cellular properties involved in the determination of in vivo eosinophil function.
Kaiser, Andrea; Carle, Reinhold; Kammerer, Dietmar R
2013-06-01
Fresh herbs were water- and steam-blanched at 90-100°C and 100°C, respectively, for 1-10 min and 30 s to 7 min for parsley and marjoram, respectively, and subsequently minced to obtain a paste. For the first time, phenolic compounds of unheated marjoram were characterised by high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS). Hereby, 10 phenolics were detected. Among them, apigenin-glucuronide, lucenin-2 and lithospermic acid were tentatively identified for the first time. In unheated parsley, apart from the major compound apiin, 10 further phenolics were characterised including several p-coumaric acid derivatives which were newly detected. Except for apiin, short-time steam- and water-blanching (1 min), respectively, did not cause significant losses of phenolic compounds, and thus proved to be the most suitable measures to ensure polyphenol retention. Consequently, blanching is a recommendable initial operation in the processing of parsley and marjoram into novel paste-like products. Copyright © 2012 Elsevier Ltd. All rights reserved.
Reversal of multidrug resistance by morning glory resin glycosides in human breast cancer cells.
Figueroa-González, Gabriela; Jacobo-Herrera, Nadia; Zentella-Dehesa, Alejandro; Pereda-Miranda, Rogelio
2012-01-27
Reversal of multidrug resistance (MDR) by thirty resin glycosides from the morning glory family (Convolvulaceae) was evaluated in vinblastine-resistant human breast carcinoma cells (MCF-7/Vin). The effects of these amphipathic compounds on the cytotoxicity and P-glycoprotein (P-gp)-mediated MDR were estimated with the sulforhodamine B colorimetric assay. Active noncytotoxic compounds exerted a potentiation effect of vinblastine susceptibility by 1- to over 1906-fold at tested concentrations of 5 and 25 μg/mL. Murucoidin V (1) enhanced vinblastine activity 255-fold when incorporated at 25 μg/mL and also, based on flow cytometry, significantly increased the intracellular accumulation of rhodamine 123 with the use of reserpine as a positive control for a MDR reversal agent. Incubation of MCF-7/Vin cells with 1 caused an increase in uptake and notably lowered the efflux rate of rhodamine 123. Decreased expression of P-glycoprotein by compound 1 was detected by immunofluorescence flow cytometry after incubation with an anti-P-gp monoclonal antibody. These results suggest that resin glycosides represent potential efflux pump inhibitors for overcoming MDR in cancer therapy.
A Review of Nanoliposomal Delivery System for Stabilization of Bioactive Omega-3 Fatty Acids
Hadian, Zahra
2016-01-01
Currently, bioactive compounds are required in the design and production of functional foods, with the aim of improving the health status of consumers all around the world. Various epidemiological and clinical studies have demonstrated the salutary role of eicosapentaenoic acid (EPA, 22:6 n−3) and docosahexaenoic acid (DHA, 22:5 n−3) in preventing diseases and reducing mortality from cardiovascular diseases. The unsaturated nature of bioactive lipids leads to susceptibility to oxidation under environmental conditions. Oxidative deterioration of omega-3 fatty acids can cause the reduction in their nutritional quality and sensory properties. Encapsulation of these fatty acids could create a barrier against reaction with harmful environmental factors. Currently, fortification of foods containing bioactive omega-3 fatty acids has found great application in the food industries of different countries. Previous studies have suggested that nano-encapsulation has significant effects on the stability of physical and chemical properties of bioactive compounds. Considering the functional role of omega-3 fatty acids, this study has provided a literature review on applications of nanoliposomal delivery systems for encapsulation of these bioactive compounds. PMID:26955449
Measurement of nasal patency in anesthetized and conscious dogs.
Koss, Michael C; Yu, Yongxin; Hey, John A; McLeod, Robbie L
2002-02-01
Experiments were undertaken to characterize a noninvasive chronic, model of nasal congestion in which nasal patency is measured using acoustic rhinometry. Compound 48/80 was administered intranasally to elicit nasal congestion in five beagle dogs either by syringe (0.5 ml) in thiopental sodium-anesthetized animals or as a mist (0.25 ml) in the same animals in the conscious state. Effects of mast cell degranulation on nasal cavity volume as well as on minimal cross-sectional area (A(min)) and intranasal distance to A(min) (D(min)) were studied. Compound 48/80 caused a dose-related decrease in nasal cavity volume and A(min) together with a variable increase in D(min). Maximal responses were seen at 90-120 min. Compound 48/80 was less effective in producing nasal congestion in conscious animals, which also had significantly larger basal nasal cavity volumes. These results demonstrate the utility of using acoustic rhinometry to measure parameters of nasal patency in dogs and suggest that this model may prove useful in studies of the actions of decongestant drugs.
Chaetochromones A and B, two new polyketides from the fungus Chaetomium indicum (CBS.860.68).
Lu, Keyang; Zhang, Yisheng; Li, Li; Wang, Xuewei; Ding, Gang
2013-09-05
Chaetochromones A (1) and B (2), two novel polyketides, were isolated from the crude extract of fungus Chaetomium indicum (CBS.860.68) together with three known analogues PI-3(3), PI-4 (4) and SB236050 (5). The structures of these compounds were determined by HRESI-MS and NMR experiments. Chaetochromones A (1) and B (2) are a member of the polyketides family, which might originate from a similar biogenetic pathway as the known compounds PI-3 (3), PI-4 (4) and SB236050 (5). The biological activities of these secondary metabolites were evaluated against eight plant pathogens, including Alternaria alternata, Ilyonectria radicicola, Trichoderma viride pers, Aspergillus niger, Fusarium verticillioide, Irpex lacteus (Fr.), Poria placenta (Fr.) Cooke and Coriolus versicolor (L.) Quél. Compound 1 displayed moderate inhibitory rate (>60%) against the brown rot fungus Poria placenta (Fr.) Cooke, which causes significant wood decay. In addition, the cytotoxic activities against three cancer cell lines A549, MDA-MB-231, PANC-1 were also tested, without any inhibitory activities being detected.
Zimmerman, L.R.; Ziegler, A.C.; Thurman, E.M.
2002-01-01
A method for the determination of two common odor-causing compounds in water, geosmin and 2-methylisoborneol, was modified and verified by the U.S. Geological Survey's Organic Geochemistry Research Group in Lawrence, Kansas. The optimized method involves the extraction of odor-causing compounds from filtered water samples using a divinylbenzene-carboxen-polydimethylsiloxane cross-link coated solid-phase microextraction (SPME) fiber. Detection of the compounds is accomplished using capillary-column gas chromatography/mass spectrometry (GC/MS). Precision and accuracy were demonstrated using reagent-water, surface-water, and ground-water samples. The mean accuracies as percentages of the true compound concentrations from water samples spiked at 10 and 35 nanograms per liter ranged from 60 to 123 percent for geosmin and from 90 to 96 percent for 2-methylisoborneol. Method detection limits were 1.9 nanograms per liter for geosmin and 2.0 nanograms per liter for 2-methylisoborneol in 45-milliliter samples. Typically, concentrations of 30 and 10 nanograms per liter of geosmin and 2-methylisoborneol, respectively, can be detected by the general public. The calibration range for the method is equivalent to concentrations from 5 to 100 nanograms per liter without dilution. The method is valuable for acquiring information about the production and fate of these odor-causing compounds in water.
Influenza virus inactivated by artificial ribonucleases as a prospective killed virus vaccine.
Fedorova, Antonina A; Goncharova, Elena P; Kovpak, Mikhail P; Vlassov, Valentin V; Zenkova, Marina A
2012-04-19
The inactivation of viral particles with agents causing minimal damage to the structure of surface epitopes is a well-established approach for the production of killed virus vaccines. Here, we describe new agents for the inactivation of influenza virus, artificial ribonucleases (aRNases), which are chemical compounds capable of cleaving RNA molecules. Several aRNases were identified, exhibiting significant virucidal activity against the influenza A virus and causing a minimal effect on the affinity of monoclonal antibodies for the inactivated virus. Using a murine model of the influenza virus infection, a high protective activity of the aRNase-inactivated virus as a vaccine was demonstrated. The results of the experiments demonstrate the efficacy of novel chemical agents in the preparation of vaccines against influenza and, perhaps, against other infections caused by RNA viruses. Copyright © 2012 Elsevier Ltd. All rights reserved.
Molecular Diagnosis of Putative Stargardt Disease by Capture Next Generation Sequencing
Shi, Wei; Huang, Ping; Min, Qingjie; Li, Minghan; Yu, Xinping; Wu, Yaming; Zhao, Guangyu; Tong, Yi; Jin, Zi-Bing; Qu, Jia; Gu, Feng
2014-01-01
Stargardt Disease (STGD) is the commonest genetic form of juvenile or early adult onset macular degeneration, which is a genetically heterogeneous disease. Molecular diagnosis of STGD remains a challenge in a significant proportion of cases. To address this, seven patients from five putative STGD families were recruited. We performed capture next generation sequencing (CNGS) of the probands and searched for potentially disease-causing genetic variants in previously identified retinal or macular dystrophy genes. Seven disease-causing mutations in ABCA4 and two in PROM1 were identified by CNGS, which provides a confident genetic diagnosis in these five families. We also provided a genetic basis to explain the differences among putative STGD due to various mutations in different genes. Meanwhile, we show for the first time that compound heterozygous mutations in PROM1 gene could cause cone-rod dystrophy. Our findings support the enormous potential of CNGS in putative STGD molecular diagnosis. PMID:24763286
Direct vapor/solid synthesis of mercuric iodide using compounds of mercury and iodine
Skinner, Nathan L.
1990-01-01
A process is disclosed for producing high purity mercuric iodide by passing a gaseous source of a mercuric compound through a particulate bed of a low vapor pressure iodide compound which is maintained at an elevated temperature which is the lower of either: (a) just below the melting or volatilization temperature of the iodide compound (which ever is lower); or (b) just below the volatilization point of the other reaction product formed during the reaction; to cause the mercuric compound to react with the iodide compound to form mercuric iodide which then passes as a vapor out of the bed into a cooler condensation region.
Hepatocyte-based in vitro model for assessment of drug-induced cholestasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Sagnik, E-mail: Sagnik.Chatterjee@pharm.kuleuven.be; Richert, Lysiane, E-mail: l.richert@kaly-cell.com; Augustijns, Patrick, E-mail: Patrick.Augustijns@pharm.kuleuven.be
Early detection of drug-induced cholestasis remains a challenge during drug development. We have developed and validated a biorelevant sandwich-cultured hepatocytes- (SCH) based model that can identify compounds causing cholestasis by altering bile acid disposition. Human and rat SCH were exposed (24–48 h) to known cholestatic and/or hepatotoxic compounds, in the presence or in the absence of a concentrated mixture of bile acids (BAs). Urea assay was used to assess (compromised) hepatocyte functionality at the end of the incubations. The cholestatic potential of the compounds was expressed by calculating a drug-induced cholestasis index (DICI), reflecting the relative residual urea formation bymore » hepatocytes co-incubated with BAs and test compound as compared to hepatocytes treated with test compound alone. Compounds with clinical reports of cholestasis, including cyclosporin A, troglitazone, chlorpromazine, bosentan, ticlopidine, ritonavir, and midecamycin showed enhanced toxicity in the presence of BAs (DICI ≤ 0.8) for at least one of the tested concentrations. In contrast, the in vitro toxicity of compounds causing hepatotoxicity by other mechanisms (including diclofenac, valproic acid, amiodarone and acetaminophen), remained unchanged in the presence of BAs. A safety margin (SM) for drug-induced cholestasis was calculated as the ratio of lowest in vitro concentration for which was DICI ≤ 0.8, to the reported mean peak therapeutic plasma concentration. SM values obtained in human SCH correlated well with reported % incidence of clinical drug-induced cholestasis, while no correlation was observed in rat SCH. This in vitro model enables early identification of drug candidates causing cholestasis by disturbed BA handling. - Highlights: • Novel in vitro assay to detect drug-induced cholestasis • Rat and human sandwich-cultured hepatocytes (SCH) as in vitro models • Cholestatic compounds sensitize SCH to toxic effects of accumulating bile acids • Drug-induced cholestasis index (DICI) as measure of a drug's cholestatic signature • In vitro findings correlate well with clinical reports on cholestasis.« less
Maruyama, Hajime; Ogura, Jiro; Fujikawa, Asuka; Terada, Yusuke; Tsujimoto, Takashi; Koizumi, Takahiro; Kuwayama, Kaori; Kobayashi, Masaki; Yamaguchi, Hiroaki; Iseki, Ken
2013-01-01
Intestinal ischemia-reperfusion (I/R) causes gut dysfunction and promotes multi-organ failure. The liver and kidney can be affected by multi-organ failure after intestinal I/R. Organic anion transporting polypeptides (OATPs) and organic anion transporters (OATs) are recognized in a broad spectrum from endogenous compounds to xenobiotics, including clinically important drugs. Therefore, it is important for understanding the pharmacokinetics to obtain evidence of alterations in OATPs and OATs expression and transport activities. In the present study, we investigated the expression of rat Oatps and Oats after intestinal I/R. We used intestinal ischemia-reperfusion (I/R) model rats. Real-time PCR and Western blotting were used to assess mRNA and protein expression levels. Plasma concentration and biliary excretion of sulfobromophthalein (BSP), which is used as a model compound of organic anion drugs, were measured after intravenous administration in intestinal I/R rats. Although Oat1 and Oat3 mRNA levels were not altered in the kidney, Oatp1a1, Oatp1b2 and Oatp2b1 mRNA levels in the liver were significantly decreased at 1-6 h after intestinal I/R. Moreover, Oatp1a1 and Oatp2b1 protein expression levels were decreased at 1 h after intestinal I/R. Plasma concentration of BSP, which is a typical substrate of Oatps, in intestinal I/R rats reperfused 1 h was increased than that in sham-operated rats. Moreover, the area under the concentration-time curve (AUC₀₋₉₀) in intestinal I/R rats reperfused 1 h was significantly increased than that in sham-operated rats. The total clearance (CL(tot)) and the biliary clearance (CL(bile)) in intestinal I/R rats reperfused 1 h were significantly decreased than those in sham-operated rats. Oatp1a1 and Oatp2b1 expression levels are decreased by intestinal I/R. The decreases in these transporters cause alteration of pharmacokinetics of organic anion compound. The newly found influence of intestinal I/R on the expression and function of Oatps may be a key to perform appropriate drug therapy.
Babu, Tirumalasetty Muni Chandra; Rammohan, Aluru; Baki, Vijaya Bhaskar; Devi, Savita; Gunasekar, Duvvuru; Rajendra, Wudayagiri
2016-01-01
Continuous usage of synthetic chemotherapeutic drugs causes adverse effects, which prompted for the development of alternative therapeutics for gastric cancer from natural source. This study was carried out with a specific aim to screen gastroprotective compounds from the fruits of Syzygium alternifolium (Myrtaceae). Three flavonoids, namely, 1) 5-hydroxy-7,4′-dimethoxy-6,8-di-C-methylflavone, 2) kaempferol-3-O-β-d-glucopyranoside, and 3) kaempferol-3-O-α-l-rhamnopyranoside were isolated from the above medicinal plant by employing silica gel column chromatography and are characterized by NMR techniques. Antigastric cancer activity of these flavonoids was examined on AGS cell lines followed by cell cycle progression assay. In addition, pharmacophore-based screening and molecular dynamics of protein–ligand complex were carried out to identify potent scaffolds. The results showed that compounds 2 and 3 exhibited significant cytotoxic effect, whereas compound 1 showed moderate effect on AGS cells by inhibiting G2/M phase of cell cycle. Molecular docking analysis revealed that compound 2 has higher binding energies on human growth factor receptor-2 (HER2). The constructed pharmacophore models reveal that the compounds have more number of H-bond Acc/Don features which contribute to the inhibition of HER2 activity. By selecting these features, 34 hits were retrieved using the query compound 2. Molecular dynamic simulations (MDS) of protein–ligand complexes demonstrated conspicuous inhibition of HER2 as evidenced by dynamic trajectory analysis. Based on these results, the compound ZINC67903192 was identified as promising HER2 inhibitor against gastric cancer. The present work provides a basis for the discovery a new class of scaffolds from natural products for gastric carcinoma. PMID:27853354
Babu, Tirumalasetty Muni Chandra; Rammohan, Aluru; Baki, Vijaya Bhaskar; Devi, Savita; Gunasekar, Duvvuru; Rajendra, Wudayagiri
2016-01-01
Continuous usage of synthetic chemotherapeutic drugs causes adverse effects, which prompted for the development of alternative therapeutics for gastric cancer from natural source. This study was carried out with a specific aim to screen gastroprotective compounds from the fruits of Syzygium alternifolium (Myrtaceae). Three flavonoids, namely, 1) 5-hydroxy-7,4'-dimethoxy-6,8-di-C-methylflavone, 2) kaempferol-3-O- β -d-glucopyranoside, and 3) kaempferol-3-O- α -l-rhamnopyranoside were isolated from the above medicinal plant by employing silica gel column chromatography and are characterized by NMR techniques. Antigastric cancer activity of these flavonoids was examined on AGS cell lines followed by cell cycle progression assay. In addition, pharmacophore-based screening and molecular dynamics of protein-ligand complex were carried out to identify potent scaffolds. The results showed that compounds 2 and 3 exhibited significant cytotoxic effect, whereas compound 1 showed moderate effect on AGS cells by inhibiting G2/M phase of cell cycle. Molecular docking analysis revealed that compound 2 has higher binding energies on human growth factor receptor-2 (HER2). The constructed pharmacophore models reveal that the compounds have more number of H-bond Acc/Don features which contribute to the inhibition of HER2 activity. By selecting these features, 34 hits were retrieved using the query compound 2. Molecular dynamic simulations (MDS) of protein-ligand complexes demonstrated conspicuous inhibition of HER2 as evidenced by dynamic trajectory analysis. Based on these results, the compound ZINC67903192 was identified as promising HER2 inhibitor against gastric cancer. The present work provides a basis for the discovery a new class of scaffolds from natural products for gastric carcinoma.
Ponce-Robles, L; Oller, I; Agüera, A; Trinidad-Lozano, M J; Yuste, F J; Malato, S; Perez-Estrada, L A
2018-08-15
Cork boiling wastewater is a very complex mixture of naturally occurring compounds leached and partially oxidized during the boiling cycles. The effluent generated is recalcitrant and could cause a significant environmental impact. Moreover, if this untreated industrial wastewater enters a municipal wastewater treatment plant it could hamper or reduce the efficiency of most activated sludge degradation processes. Despite the efforts to treat the cork boiling wastewater for reusing purposes, is still not well-known how safe these compounds (original compounds and oxidation by-products) will be. The purpose of this work was to apply an HPLC-high resolution mass spectrometry method and subsequent non-target screening using a multivariate analysis method (PCA), to explore relationships between samples (treatments) and spectral features (masses or compounds) that could indicate changes in formation, degradation or polarity, during coagulation/flocculation (C/F) and photo-Fenton (PhF). Although, most of the signal intensities were reduced after the treatment line, 16 and 4 new peaks were detected to be formed after C/F and PhF processes respectively. The use of this non-target approach showed to be an effective strategy to explore, classify and detect transformation products during the treatment of an unknown complex mixture. Copyright © 2018 Elsevier B.V. All rights reserved.
Metabolic PathFinding: inferring relevant pathways in biochemical networks.
Croes, Didier; Couche, Fabian; Wodak, Shoshana J; van Helden, Jacques
2005-07-01
Our knowledge of metabolism can be represented as a network comprising several thousands of nodes (compounds and reactions). Several groups applied graph theory to analyse the topological properties of this network and to infer metabolic pathways by path finding. This is, however, not straightforward, with a major problem caused by traversing irrelevant shortcuts through highly connected nodes, which correspond to pool metabolites and co-factors (e.g. H2O, NADP and H+). In this study, we present a web server implementing two simple approaches, which circumvent this problem, thereby improving the relevance of the inferred pathways. In the simplest approach, the shortest path is computed, while filtering out the selection of highly connected compounds. In the second approach, the shortest path is computed on the weighted metabolic graph where each compound is assigned a weight equal to its connectivity in the network. This approach significantly increases the accuracy of the inferred pathways, enabling the correct inference of relatively long pathways (e.g. with as many as eight intermediate reactions). Available options include the calculation of the k-shortest paths between two specified seed nodes (either compounds or reactions). Multiple requests can be submitted in a queue. Results are returned by email, in textual as well as graphical formats (available in http://www.scmbb.ulb.ac.be/pathfinding/).
Lo, David; Weng, Jingning; Liu, xiaohong; Yang, Juhua; He, Fen; Wang, Yun; Liu, Xuyang
2016-01-01
PURPOSE To detect the disease-causing gene in a Chinese pedigree with autosomal-recessive retinitis pigmentosa (ARRP). METHODS All subjects in this family underwent a complete ophthalmic examination. Targeted-capture next generation sequencing (NGS) was performed on the proband to detect variants. All variants were verified in the remaining family members by PCR amplification and Sanger sequencing. RESULTS All the affected subjects in this pedigree were diagnosed with retinitis pigmentosa (RP). The compound heterozygous c.138delA (p.Asp47IlefsX24) and c.1841G>T (p.Gly614Val) mutations in the Crumbs homolog 1 (CRB1) gene were identified in all the affected patients but not in the unaffected individuals in this family. These mutations were inherited from their parents, respectively. CONCLUSION The novel compound heterozygous mutations in CRB1 were identified in a Chinese pedigree with ARRP using targeted-capture next generation sequencing. After evaluating the significant heredity and impaired protein function, the compound heterozygous c.138delA (p.Asp47IlefsX24) and c.1841G>T (p.Gly614Val) mutations are the causal genes of early onset ARRP in this pedigree. To the best of our knowledge, there is no previous report regarding the compound mutations. PMID:27806333
Rodriguez, Jocelyn; Maibach, Howard I
2016-01-01
Increased awareness of skin cancer and mosquito-transmitted diseases has increased use of insect repellents and sunscreens. The challenge in setting recommendations for use and reapplication, especially when used concomitantly, lies in finding the balance between applying a durable product effective in withstanding natural and physical factors such as water, sweat, temperature and abrasion, while limiting percutaneous absorption and decreasing risk of potential dermal and systemic toxicity. Inorganic sunscreens show no or little percutaneous absorption or toxic effects in comparison to organic sunscreens, which show varying levels of dermal penetration and cutaneous adverse effects. An alternative to N,N-diethyl-m-toluamide (DEET), the traditional gold standard compound in insect repellents, picaridin appears as efficacious, has lower risk of toxicity, and when used simultaneously with sunscreen may decrease percutaneous absorption of both compounds. Conversely, combined use of DEET and sunscreen results in significantly higher absorption of both compounds. It is important to increase consumer awareness of "washing in" of various compounds leading to increased risk of toxicity, as well as differences in reapplication need due to "washing off" caused by water, sweat and abrasion. Although much remains to be studied, to maximize efficacy and decrease toxicity, contemporary research tools, including dermatopharmokinetics, should aid these prospective advances.
Quantification and characterization of volatiles evolved during extrusion of rice and soy flours.
Vodovotz, Y; Zasypkin, D; Lertsiriyothin, W; Lee, T C; Bourland, C T
2000-01-01
NASA-Johnson Space Center is designing and building a habitat (Bioregenerative Planetary Life Support Systems Test Complex, BIO-Plex) intended for evaluating advanced life support systems developed for long-duration missions to the Moon or Mars where all consumables will be recycled and reused. A food system based on raw products obtained from higher plants (such as soybeans, rice, and wheat) may be a central feature of a biologically based Advanced Life Support System. To convert raw crops to edible ingredients or food items, multipurpose processing equipment such as an extruder is ideal. Volatile compounds evolved during the manufacturing of these food products may accumulate and reach toxic levels. Additionally, off-odors often dissipated in open-air environments without consequence may cause significant discomfort in the BIO-Plex. Rice and defatted soy flours were adjusted to 16% moisture, and triplicate samples were extruded using a tabletop single-screw extruder. The extrudate was collected in specially designed Tedlar bags from which air samples could be extracted. The samples were analyzed by GC-MS with special emphasis on compounds with Spacecraft Maximum Allowable Concentrations (SMACs). Results showed a combination of alcohols, aldehydes, ketones, and carbonyl compounds in the different flours. Each compound and its SMAC value, as well as its impact on the air revitalization system, was discussed.
Carballa, M; Omil, F; Lema, J M; Llompart, M; García, C; Rodriguez, I; Gómez, M; Ternes, T
2005-01-01
Thirteen pharmaceutical and cosmetic compounds have been surveyed along the different units of a municipal sewage treatment plant (STP) to study their fate across each step and the overall removal efficiency. The STP studied corresponds to a population of approximately 100,000 inhabitants located in Galicia (northwest Spain), including three main sections: pre-treatment (coarse and fine screening, grit and fat removal); primary treatment (sedimentation tanks); and secondary treatment (conventional activated sludge). Among all the substances considered (galaxolide, tonalide, carbamazepine, diazepam, diclofenac, ibuprofen, naproxen, estrone, estradiol, ethinylestradiol, roxitromycin, sulfamethoxazole and iopromide), only significant concentrations were found for two musks (galaxolide and tonalide), two antiphlogistics (ibuprofen and naproxen), two natural estrogens (estrone, estradiol), one antibiotic (sulfamethoxazole) and the X-ray contrast media (iopromide), being the other compounds below the quantification level. In the primary treatment, only the fragrances were partly removed, with efficiencies of 20-50% for galaxolide and tonalide. However, the aerobic treatment caused an important reduction in all compounds detected, between 35 and 75%, with the exception of iopromide. The overall removal efficiency of the STP ranged between 70 and 90% for the fragrances, 45 and 70% for the acidic compounds, around 67% for estradiol and 57% for the antibiotic sulfamethoxazole.
Organics and nitrogen removal from textile auxiliaries wastewater with A2O-MBR in a pilot-scale.
Sun, Faqian; Sun, Bin; Hu, Jian; He, Yangyang; Wu, Weixiang
2015-04-09
The removal of organic compounds and nitrogen in an anaerobic-anoxic-aerobic membrane bioreactor process (A(2)O-MBR) for treatment of textile auxiliaries (TA) wastewater was investigated. The results show that the average effluent concentrations of chemical oxygen demand (COD), ammonium nitrogen (NH4(+)-N) and total nitrogen (TN) were about 119, 3 and 48 mg/L under an internal recycle ratio of 1.5. The average removal efficiency of COD, NH4(+)-N and TN were 87%, 96% and 55%, respectively. Gas chromatograph-mass spectrometer analysis indicated that, although as much as 121 different types of organic compounds were present in the TA wastewater, only 20 kinds of refractory organic compounds were found in the MBR effluent, which could be used as indicators of effluents from this kind of industrial wastewater. Scanning electron microscopy analysis revealed that bacterial foulants were significant contributors to membrane fouling. An examination of foulants components by wavelength dispersive X-ray fluorescence showed that the combination of organic foulants and inorganic compounds enhanced the formation of gel layer and thus caused membrane fouling. The results will provide valuable information for optimizing the design and operation of wastewater treatment system in the textile industry. Copyright © 2015 Elsevier B.V. All rights reserved.
Quantification and characterization of volatiles evolved during extrusion of rice and soy flours
NASA Technical Reports Server (NTRS)
Vodovotz, Y.; Zasypkin, D.; Lertsiriyothin, W.; Lee, T. C.; Bourland, C. T.
2000-01-01
NASA-Johnson Space Center is designing and building a habitat (Bioregenerative Planetary Life Support Systems Test Complex, BIO-Plex) intended for evaluating advanced life support systems developed for long-duration missions to the Moon or Mars where all consumables will be recycled and reused. A food system based on raw products obtained from higher plants (such as soybeans, rice, and wheat) may be a central feature of a biologically based Advanced Life Support System. To convert raw crops to edible ingredients or food items, multipurpose processing equipment such as an extruder is ideal. Volatile compounds evolved during the manufacturing of these food products may accumulate and reach toxic levels. Additionally, off-odors often dissipated in open-air environments without consequence may cause significant discomfort in the BIO-Plex. Rice and defatted soy flours were adjusted to 16% moisture, and triplicate samples were extruded using a tabletop single-screw extruder. The extrudate was collected in specially designed Tedlar bags from which air samples could be extracted. The samples were analyzed by GC-MS with special emphasis on compounds with Spacecraft Maximum Allowable Concentrations (SMACs). Results showed a combination of alcohols, aldehydes, ketones, and carbonyl compounds in the different flours. Each compound and its SMAC value, as well as its impact on the air revitalization system, was discussed.
Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages.
Wilson, Brittan A; Smith, Val H; deNoyelles, Frank; Larive, Cynthia K
2003-05-01
Treated wastewaters in the United States contain detectable quantities of surfactants, antibiotics, and other types of antimicrobial chemicals contained in pharmaceutical and personal-care products (PPCPs) that are released into stream ecosystems. The degradation characteristics of many of these chemicals are not yet known, nor are the chemical properties of their byproducts. They also are not currently mandated for removal under the U.S. Clean Water Act. Three representative PPCPs were individually tested in this study using a series of laboratory dilution bioassays: Ciprofloxacin (an antibiotic), Triclosan (an antimicrobial agent), and Tergitol NP 10 (a surfactant), to determine their effects on natural algal communities sampled both upstream and downstream of the Olathe, KS wastewater treatment plant (WWTP). There were no significant treatment effects on algal community growth rates during the exponential phase of growth, but significant differences were observed in the final biomass yields (p < 0.001). All three compounds caused marked shifts in the community structure of suspended and attached algae at both the upstream and downstream sites (p < 0.05). Increasing the concentrations of all three compounds over a 3 orders of magnitude range also caused a consistent decline in final algal genus richness in the bioassays. Our results suggest that these three PPCPs may potentially influence both the structure and the function of algal communities in stream ecosystems receiving WWTP effluents. These changes could result in shifts in both the nutrient processing capacity and the natural food web structure of these streams.
P2X7 receptor antagonism: Implications in diabetic retinopathy.
Platania, Chiara Bianca Maria; Giurdanella, Giovanni; Di Paola, Luisa; Leggio, Gian Marco; Drago, Filippo; Salomone, Salvatore; Bucolo, Claudio
2017-08-15
Diabetic retinopathy (DR) is the most frequent complication of diabetes and one of leading causes of blindness worldwide. Early phases of DR are characterized by retinal pericyte loss mainly related to concurrent inflammatory process. Recently, an important link between P2X7 receptor (P2X7R) and inflammation has been demonstrated indicating this receptor as potential pharmacological target in DR. Here we first carried out an in silico molecular modeling study in order to characterize the allosteric pocket in P2X7R, and identify a suitable P2X7R antagonist through molecular docking. JNJ47965567 was identified as the hit compound in docking calculations, as well as for its absorption, distribution, metabolism and excretion (ADME) profile. As an in vitro model of early diabetic retinopathy, human retinal pericytes were exposed to high glucose (25mM, 48h) that caused a significant (p<0.05) release of IL-1β and LDH. The block of P2X7R by JNJ47965567 significantly (p<0.05) reverted the damage elicited by high glucose, detected as IL-1β and LDH release. Overall, our findings suggest that the P2X7R represents an attractive pharmacological target to manage the early phase of diabetic retinopathy, and the compound JNJ47965567 is a good template to discover other P2X7R selective antagonists. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, Jixia; Zhu, Feng; Lubet, Ronald A.; De Luca, Antonella; Grubbs, Clinton; Ericson, Marna E.; D’Alessio, Amelia; Normano, Nicola; Dong, Zigang; Bode, Ann M.
2012-01-01
Lapatinib, an oral, small-molecule, reversible inhibitor of both EGFR and HER2, is highly active in HER2 positive breast cancer as a single agent and in combination with other therapeutics. However, resistance against lapatinib is an unresolved problem in clinical oncology. Recently, interest in the use of natural compounds to prevent or treat cancers has gained increasing interest because of presumed low toxicity. Quercetin-3-methyl ether, a naturally occurring compound present in various plants, has potent anticancer activity. Here, we found that quercetin-3-methyl ether caused in a significant growth inhibition of lapatinib-sensitive and -resistant breast cancer cells. Western blot data showed that quercetin-3-methyl ether had no effect on Akt or ERKs signaling in resistant cells. However, quercetin-3-methyl ether caused a pronounced G2/M block mainly through the Chk1-Cdc25c-cyclin B1/Cdk1 pathway in lapatinib-sensitive and -resistant cells. In contrast, lapatinib produced an accumulation of cells in the G1 phase mediated through cyclin D1, but only in lapatinib-sensitive cells. Moreover, quercetin-3-methyl ether induced significant apoptosis, accompanied with increased levels of cleaved caspase 3, caspase 7 and poly (ADP-ribose) polymerase (PARP) in both cell lines. Overall, these results suggested that quercetin-3-methyl ether might be a novel and promising therapeutic agent in lapatinib-sensitive or -resistant breast cancer patients. PMID:22086611
Song, Ming-Ke; Liu, Hong; Jiang, Hua-Liang; Yue, Jian-Min; Hu, Guo-Yuan
2006-02-15
14-Benzoyltalatisamine is a potent and selective blocker of the delayed rectifier K+ channel found in a computational virtual screening study. The compound was found to block the K+ channel from the extracellular side. However, it is unclear whether 14-benzoyltalatisamine shares the same block mechanism with tetraethylammonium (TEA). In order to elucidate how the hit compound found by the virtual screening interacts with the outer vestibule of the K+ channel, the effects of 14-benzoyltalatisamine and TEA on the delayed rectifier K+ current of rat dissociated hippocampal neurons were compared using whole-cell voltage-clamp recording. External application of 14-benzoyltalatisamine and TEA reversibly inhibited the current with IC50 values of 10.1+/-2.2 microM and 1.05+/-0.21 mM, respectively. 14-Benzoyltalatisamine exerted voltage-dependent inhibition, markedly accelerated the decay of the current, and caused a significant hyperpolarizing shift of the steady-state activation curve, whereas TEA caused voltage-independent inhibition, without affecting the kinetic parameters of the current. The blockade by 14-benzoyltalatisamine, but not by TEA, was significantly diminished in a high K+ (60 mM) external solution. The potency of 14-benzoyltalatisamine was markedly reduced in the presence of 15 mM TEA. The results suggest that 14-benzoyltalatisamine bind to the external pore entry of the delayed rectifier K+ channel with partial insertion into the selectivity filter, which is in conformity with that predicted by the molecular docking model in the virtual screening.
Thienoquinolins exert diuresis by strongly inhibiting UT-A urea transporters
Ren, Huiwen; Wang, Yanhua; Xing, Yongning; Ran, Jianhua; Liu, Ming; Lei, Tianluo; Zhou, Hong; Li, Runtao; Sands, Jeff M.
2014-01-01
Urea transporters (UT) play an important role in the urine concentration mechanism by mediating intrarenal urea recycling, suggesting that UT inhibitors could have therapeutic use as a novel class of diuretic. Recently, we found a thienoquinolin UT inhibitor, PU-14, that exhibited diuretic activity. The purpose of this study was to identify more potent UT inhibitors that strongly inhibit UT-A isoforms in the inner medullary collecting duct (IMCD). Efficient thienoquinolin UT inhibitors were identified by structure-activity relationship analysis. Urea transport inhibition activity was assayed in perfused rat terminal IMCDs. Diuretic activity of the compound was determined in rats and mice using metabolic cages. The results show that the compound PU-48 exhibited potent UT-A inhibition activity. The inhibition was 69.5% with an IC50 of 0.32 μM. PU-48 significantly inhibited urea transport in perfused rat terminal IMCDs. PU-48 caused significant diuresis in UT-B null mice, which indicates that UT-A is the target of PU-48. The diuresis caused by PU-48 did not change blood Na+, K+, or Cl− levels or nonurea solute excretion in rats and mice. No toxicity was detected in cells or animals treated with PU-48. The results indicate that thienoquinolin UT inhibitors induce a diuresis by inhibiting UT-A in the IMCD. This suggests that they may have the potential to be developed as a novel class of diuretics with fewer side effects than classical diuretics. PMID:25298523
Thienoquinolins exert diuresis by strongly inhibiting UT-A urea transporters.
Ren, Huiwen; Wang, Yanhua; Xing, Yongning; Ran, Jianhua; Liu, Ming; Lei, Tianluo; Zhou, Hong; Li, Runtao; Sands, Jeff M; Yang, Baoxue
2014-12-15
Urea transporters (UT) play an important role in the urine concentration mechanism by mediating intrarenal urea recycling, suggesting that UT inhibitors could have therapeutic use as a novel class of diuretic. Recently, we found a thienoquinolin UT inhibitor, PU-14, that exhibited diuretic activity. The purpose of this study was to identify more potent UT inhibitors that strongly inhibit UT-A isoforms in the inner medullary collecting duct (IMCD). Efficient thienoquinolin UT inhibitors were identified by structure-activity relationship analysis. Urea transport inhibition activity was assayed in perfused rat terminal IMCDs. Diuretic activity of the compound was determined in rats and mice using metabolic cages. The results show that the compound PU-48 exhibited potent UT-A inhibition activity. The inhibition was 69.5% with an IC50 of 0.32 μM. PU-48 significantly inhibited urea transport in perfused rat terminal IMCDs. PU-48 caused significant diuresis in UT-B null mice, which indicates that UT-A is the target of PU-48. The diuresis caused by PU-48 did not change blood Na(+), K(+), or Cl(-) levels or nonurea solute excretion in rats and mice. No toxicity was detected in cells or animals treated with PU-48. The results indicate that thienoquinolin UT inhibitors induce a diuresis by inhibiting UT-A in the IMCD. This suggests that they may have the potential to be developed as a novel class of diuretics with fewer side effects than classical diuretics. Copyright © 2014 the American Physiological Society.
Ultrasound Assisted Extraction of Phenolic Compounds from Peaches and Pumpkins
Altemimi, Ammar; Watson, Dennis G.; Choudhary, Ruplal; Dasari, Mallika R.; Lightfoot, David A.
2016-01-01
The ultrasound-assisted extraction (UAE) method was used to optimize the extraction of phenolic compounds from pumpkins and peaches. The response surface methodology (RSM) was used to study the effects of three independent variables each with three treatments. They included extraction temperatures (30, 40 and 50°C), ultrasonic power levels (30, 50 and 70%) and extraction times (10, 20 and 30 min). The optimal conditions for extractions of total phenolics from pumpkins were inferred to be a temperature of 41.45°C, a power of 44.60% and a time of 25.67 min. However, an extraction temperature of 40.99°C, power of 56.01% and time of 25.71 min was optimal for recovery of free radical scavenging activity (measured by 1, 1-diphenyl-2-picrylhydrazyl (DPPH) reduction). The optimal conditions for peach extracts were an extraction temperature of 41.53°C, power of 43.99% and time of 27.86 min for total phenolics. However, an extraction temperature of 41.60°C, power of 44.88% and time of 27.49 min was optimal for free radical scavenging activity (judged by from DPPH reduction). Further, the UAE processes were significantly better than solvent extractions without ultrasound. By electron microscopy it was concluded that ultrasonic processing caused damage in cells for all treated samples (pumpkin, peach). However, the FTIR spectra did not show any significant changes in chemical structures caused by either ultrasonic processing or solvent extraction. PMID:26885655
Biological abatement of enzyme inhibitors
USDA-ARS?s Scientific Manuscript database
Lignocellulose pretreatments release phenolic compounds that cause enzyme inhibition and deactivation. Bio-abatement, the biological removal of furfurals, acetic acid and phenolics, may utilize fungal fermentation to metabolize these compounds to CO2, water, cell mass, and heat. Our work with Coni...
Zhang, Shuai; Wang, Jianmin; Xu, Wenchun; Liu, Yusi; Wang, Wei; Wu, Kaifeng; Wang, Zhe; Zhang, Xuemei
2015-01-01
Two-component systems (TCSs) have the potential to be an effective target of the antimicrobials, and thus received much attention in recent years. VicK/VicR is one of TCSs in Streptococcus pneumoniae (S. pneumoniae), which is essential for pneumococcal survival. We have previously obtained several Traditional Chinese Medicine monomers using a computer-based screening. In this study, either alone or in combination with penicillin, their antimicrobial activities were evaluated based on in vivo and in vitro assays. The results showed that the MICs of 5'-(Methylthio)-5'-deoxyadenosine, octanal 2, 4-dinitrophenylhydrazone, deoxyshikonin, kavahin, and dodecyl gallate against S. pneumoniae were 37.1, 38.5, 17, 68.5, and 21 μg/mL, respectively. Time-killing assays showed that these compounds elicited bactericidal effects against S. pneumoniae D39 strain, which led to a 6-log reduction in CFU after exposure to compounds at four times of the MIC for 24 h. The five compounds inhibited the growth of Streptococcus pyogenes, Streptococcus mitis, Streptococcus mutans or Streptococcus pseudopneumoniae, meanwhile, deoxyshikonin and dodecyl gallate displayed strong inhibitory activities against Staphylococcus aureus. These compounds showed no obvious cytotoxicity effects on Vero cells. Survival time of the mice infected by S. pneumoniae strains was prolonged by the treatment with the compounds. Importantly, all of the five compounds exerted antimicrobial effects against multidrug-resistant clinical strains of S. pneumoniae. Moreover, even at sub-MIC concentration, they inhibited cell division and biofilm formation. The five compounds all have enhancement effect on penicillin. Deoxyshikonin and dodecyl gallate showed significantly synergic antimicrobial activity with penicillin in vivo and in vitro, and effectively reduced nasopharyngeal and lung colonization caused by different penicillin-resistant pneumococcal serotypes. In addition, the two compounds also showed synergic antimicrobial activity with erythromycin and tetracycline. Taken together, our results suggest that these novel VicK inhibitors may be promising compounds against the pneumococcus, including penicillin-resistant strains.
Dorer, Conrad; Vogt, Carsten; Neu, Thomas R; Stryhanyuk, Hryhoriy; Richnow, Hans-Hermann
2016-04-01
Ethylbenzene and toluene degradation under nitrate-, Mn(IV)-, or Fe(III)-reducing conditions was investigated by compound specific stable isotope analysis (CSIA) using three model cultures (Aromatoleum aromaticum EbN1, Georgfuchsia toluolica G5G6, and a Azoarcus-dominated mixed culture). Systematically lower isotope enrichment factors for carbon and hydrogen were observed for particulate Mn(IV). The increasing diffusion distances of toluene or ethylbenzene to the solid Mn(IV) most likely caused limited bioavailability and hence resulted in the observed masking effect. The data suggests further ethylbenzene hydroxylation by ethylbenzene dehydrogenase (EBDH) and toluene activation by benzylsuccinate synthase (BSS) as initial activation steps. Notably, significantly different values in dual isotope analysis were detected for toluene degradation by G. toluolica under the three studied redox conditions, suggesting variations in the enzymatic transition state depending on the available TEA. The results indicate that two-dimensional CSIA has significant potential to assess anaerobic biodegradation of ethylbenzene and toluene at contaminated sites. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yoshitomi, Kayo; Taniguchi, Shiduku; Tanaka, Keiichiro; Uji, Yuya; Akimitsu, Kazuya; Gomi, Kenji
2016-02-01
Rice is one of the most important crops worldwide and is widely used as a model plant for molecular studies of monocotyledonous species. The plant hormone jasmonic acid (JA) is involved in rice-pathogen interactions. In addition, volatile compounds, including terpenes, whose production is induced by JA, are known to be involved in the rice defense system. In this study, we analyzed the JA-induced terpene synthase OsTPS24 in rice. We found that OsTPS24 was localized in chloroplasts and produced a monoterpene, γ-terpinene. The amount of γ-terpinene increased after JA treatment. γ-Terpinene had significant antibacterial activity against Xanthomonas oryzae pv. oryzae (Xoo); however, it did not show significant antifungal activity against Magnaporthe oryzae. The antibacterial activity of the γ-terpinene against Xoo was caused by damage to bacterial cell membranes. These results suggest that γ-terpinene plays an important role in JA-induced resistance against Xoo, and that it functions as an antibacterial compound in rice. Copyright © 2015 Elsevier GmbH. All rights reserved.
Countermeasure for Radiation Protection and Repair
NASA Technical Reports Server (NTRS)
2008-01-01
Exposure to ionizing radiation during long-duration space missions is expected to cause short-term illness and increase long-term risk of cancer for astronauts. Radiation-induced free radicals overload the antioxidant defense mechanisms and lead to cellular damage at the membrane, enzyme, and chromosome levels. A large number of radioprotective agents were screened, but most had significant side effects. But there is increasing evidence that significant radioprotective benefit is achieved by increasing the dietary intake of foods with high antioxidant potential. Early plant-growing systems for space missions will be limited in both size and volume to minimize power and mass requirements. These systems will be well suited to producing plants containing high concentrations of bioprotective antioxidants. This project explored whether the production of bioprotective compounds could be increased by altering the lighting system, without increasing the space or power requirements for production, and evaluated the effects of environmental conditions (light quantity, light quality, and carbon dioxide [CO2] concentration) on the production of bioprotective compounds in lettuce, which provide a biological countermeasure for radiation exposure. The specific deliverables were to develop a database of bioprotectant compounds in plants that are suitable for use on longduration space missions, develop protocols for maintaining and increasing bioprotectant production under light emitting diodes (LEDs), recommend lighting requirements to produce dietary countermeasures of radiation, and publish results in the Journal of the American Society for Horticultural Science.
Jones, Andrew Maxwell Phineas; Saxena, Praveen Kumar
2013-01-01
Oxidative browning is a common and often severe problem in plant tissue culture systems caused by the accumulation and oxidation of phenolic compounds. The current study was conducted to investigate a novel preventative approach to address this problem by inhibiting the activity of the phenylalanine ammonia lyase enzyme (PAL), thereby reducing the biosynthesis of phenolic compounds. This was accomplished by incorporating 2-aminoindane-2-phosphonic acid (AIP), a competitive PAL inhibitor, into culture media of Artemisia annua as a model system. Addition of AIP into culture media resulted in significant reductions in visual tissue browning, a reduction in total phenol content, as well as absorbance and autoflourescence of tissue extracts. Reduced tissue browning was accompanied with a significant increase in growth on cytokinin based medium. Microscopic observations demonstrated that phenolic compounds accumulated in discrete cells and that these cells were more prevalent in brown tissue. These cells were highly plasmolyzed and often ruptured during examination, demonstrating a mechanism in which phenolics are released into media in this system. These data indicate that inhibiting phenylpropanoid biosynthesis with AIP is an effective approach to reduce tissue browning in A. annua. Additional experiments with Ulmus americana and Acer saccharum indicate this approach is effective in many species and it could have a wide application in systems where oxidative browning restricts the development of biotechnologies. PMID:24116165
Virtual screening and biological evaluation of novel antipyretic compounds.
Froes, Thamires Quadros; Melo, Miriam C C; Souza, Gloria E P; Castilho, Marcelo Santos; Soares, Denis M
2017-11-01
Due to the absence of safety of the antipyretics to patients with cardiovascular dysfunction, new targets to treat inflammation have been pursued. mPGES-1 is a promising target because its inhibition would not cause the side-effects related to COX inhibition. To identify novel inhibitors of mPGES-1, we developed a ligand-based pharmacophore model that differentiates true inhibitors from decoys and enlightens the structure-activity relationships for known mPGES-1 inhibitors. The model (four hydrophobic centers, two hydrogen bond acceptor and two hydrogen bond donor points) was employed to select lead-like compounds from ZINC database for in vivo evaluation. Among the 18 compounds selected, five inhibited the fever induced by LPS. The most potent compound (5-(4-fluorophenyl)-3-({6-methylimidazo[1,2-a]pyridin-2-yl}methyl)-2,3dihydro-1,3,4-oxadiazol-2-one) is active peripherally (i.v.) or centrally (i.c.v.) (82.18% and 112% reduction, respectively) and reduces (69.13%) hypothalamic PGE 2 production, without significant COX-1/2 inhibition. In conclusion, our in silico approach leads to the selection of a compound that presents the chemical features to inhibit mPGES-1 and reduces fever induced by LPS. Furthermore, the in vivo and in vitro results support the hypothesis that its mechanism of action does not depend on COX inhibition. Hence, it can be considered a promising lead compound for antipyretic development, once it would not have the side-effects of COX-1/2 inhibitors. © 2017 John Wiley & Sons A/S.
Bousfiha, Amale; Bakhchane, Amina; Charoute, Hicham; Detsouli, Mustapha; Rouba, Hassan; Charif, Majida; Lenaers, Guy; Barakat, Abdelhamid
2017-10-01
In the present work, we identified two novel compound heterozygote mutations in the GPR98 (G protein-coupled receptor 98) gene causing Usher syndrome. Whole-exome sequencing was performed to study the genetic causes of Usher syndrome in a Moroccan family with three affected siblings. We identify two novel compound heterozygote mutations (c.1054C > A, c.16544delT) in the GPR98 gene in the three affected siblings carrying post-linguale bilateral moderate hearing loss with normal vestibular functions and before installing visual disturbances. This is the first time that mutations in the GPR98 gene are described in the Moroccan deaf patients.
Negishi, Yuya; Mizobuchi, Kei; Urashima, Mitsuyoshi; Nakano, Tadashi
2017-01-01
Purpose To report the spectrum of ABCC6 variants in Japanese patients with angioid streaks (AS). Patients and Methods This was a single-center cohort study. The medical records of 20 patients with AS from 18 unrelated Japanese families were retrospectively reviewed. Screening of the ABCC6 gene (exons 1 to 31) was performed using PCR-based Sanger sequencing. Results Eight ABCC6 variants were identified as candidate disease-causing variants. These eight variants included five known variants (p.Q378X, p.R419Q, p.V848CfsX83, p.R1114C, and p.R1357W), one previously reported variant (p.N428S) of unknown significance, and two novel variants (c.1939C>T [p.H647Y] and c.3374C>T [p.S1125F]); the three latter variants were determined to be variants of significance. The following four variants were frequently identified: p.V848CfsX83 (14/40 alleles, 35.0%), p.Q378X (7/40 alleles, 17.5%), p.R1357W (6/40 alleles, 15.0%), and p.R419Q (4/40 alleles, 10.0%). The ABCC6 variants were identified in compound heterozygous or homozygous states in 13 of 18 probands. Two families showed a pseudodominant inheritance pattern. Pseudoxanthoma elasticum was seen in 15 of 17 patients (88.2%) who underwent dermatological examination. Conclusions We identified disease-causing ABCC6 variants that were in homozygous or compound heterozygous states in 13 of 18 families (72.2%). Our results indicated that ABCC6 variants play a significant role in patients with AS in the Japanese population. PMID:28912966
Feksa, Denise Lima; Coelho, Ritiéle Pinto; Aparecida da Costa Güllich, Angélica; Dal Ponte, Emanuelle S; da Costa Escobar Piccoli, Jacqueline; Manfredini, Vanusa
2018-02-01
Non-alcoholic fatty liver disease is a spectrum of liver changes, ranging from hepatic steatosis to hepatocellular carcinoma. The Citrus maxima (CM) has been shown to be beneficial to the organism, and these activities are attributed to the presence of phytochemical compounds. The objective of this study was to evaluate the n vitro antioxidant potential of the CM leaves extract and on Wistar rats submitted to hepatic steatosis induction by fructose-associated hyperlipid diet (FHD). For the evaluation of in vivo effects, the animals were distributed in G1 (normal diet - ND), G2 (FHD), G3 (ND + extract 50mg/kg) and G4 (FHD + extract 50 mg/kg). All the parameters were determined through classical methodologies. The extract showed a significant antioxidant potential in vitro. In the in vivo analysis, the diet used was able to induce the development of metabolic abnormalities that favored the formation of hepatic steatosis (G2). Changes in inflammatory markers, increase in markers of oxidative damage, and reduction of antioxidant defenses were also observed. In addition, the extract did not cause changes in the animals' weight gain and acted as an anti-inflammatory, since G4 animals exhibited significantly reduced levels of the inflammatory markers. In the liver, the extract significantly decreased the content of fat, cholesterol and triglycerides compared to G2. The extract also showed antioxidant activity (G4) when compared to G2. The results suggest that the extract of CM leaf showed hepatoprotective, hypolipidemic, anti-inflammatory and antioxidant activities and the presence of phenolic compounds is a probable cause for such activities. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Depth-estimation-enabled compound eyes
NASA Astrophysics Data System (ADS)
Lee, Woong-Bi; Lee, Heung-No
2018-04-01
Most animals that have compound eyes determine object distances by using monocular cues, especially motion parallax. In artificial compound eye imaging systems inspired by natural compound eyes, object depths are typically estimated by measuring optic flow; however, this requires mechanical movement of the compound eyes or additional acquisition time. In this paper, we propose a method for estimating object depths in a monocular compound eye imaging system based on the computational compound eye (COMPU-EYE) framework. In the COMPU-EYE system, acceptance angles are considerably larger than interommatidial angles, causing overlap between the ommatidial receptive fields. In the proposed depth estimation technique, the disparities between these receptive fields are used to determine object distances. We demonstrate that the proposed depth estimation technique can estimate the distances of multiple objects.
Authman, Mohammad M N; Abbas, Wafaa T; Abumourad, Iman M K; Kenawy, Amany M
2013-05-01
The effects of cyanide, used in illegal fishing, on one of the most economically important Nile fishes, the African catfish (Clarias gariepinus), were studied. Cyanide impacts were evaluated in terms of biochemical, molecular and histopathological characteristics. After exposure to sublethal concentration (0.05mg/l) of potassium cyanide (KCN) for two and four weeks, GOT (glutamate oxaloacetate transaminase) was significantly increased in both male and female, while GPT (glutamate pyruvate transaminase), total plasma protein, phosphoprotein phosphorus (Vgt) in serum, vitellogenin gene expression (Vtg mRNA) and estrogen receptors (ER mRNA) were significantly decreased in female. On the other hand, male C. gariepinus showed a significant increase in Vtg and Vtg mRNA. Liver, testis and ovaries showed distinct histopathological changes. It was concluded that, cyanide caused damaging effects to fish and can cause serious disturbance in the natural reproduction and a drastic decline in fish population. Therefore, it is recommended that, the use of cyanide compounds must be prohibited to conserve the fisheries resources. Copyright © 2013 Elsevier Inc. All rights reserved.
Effect of urbanization on the water resources of eastern Chester County, Pennsylvania
Sloto, R.A.
1987-01-01
The effects of human activity on the water resources of a 207-square-mile area of eastern Chester County was evaluated. The most serious consequence of urbanization is the contamination of ground water by volatile organic compounds, which were detected in 39 percent of the 70 wells sampled. As many as nine compounds were found in one water sample, and the concentration of total volatile organic compounds was as high as 17,400 ug/L (micrograms per liter). In the Chester Valley, volatile organic compounds are moving down the hydraulic gradient caused by quarry dewatering. Movement through the quarries reduces concentrations of these compounds and removes most of them. Phenol was detected in 28 percent of 54 wells sampled, with concentrations up to 7 ug/L. Metals, except for iron and manganese, and other trace constituents generally are not a water-quality problem. However, ground water in an area in Chester Valley has been contaminated by concentrations of boron as high as 20,000 ug/L and lithium as high as 13,000 ug/L. The ground water discharges to Valley Creek, where concentrations of boron are as high as 130 ug/L and lithium as high as 800 ug/L. Concentrations of chloride as high as 2,100 mg/L (milligrams per liter) were found in a well at a former highway salt storage site. Wells completed in carbonate rock downgradient from the Pennsylvania Turnpike had chloride concentrations as high as 350 mg/L. The base-neutral organic compounds bis(2-ethylhexyl) phthalate, di-n-butyl phthalate, and 1,2-dichlorobenzene, and the pesticides alachlor, aldrian, diazanon, DDD, DDT, dieldrin, methyl parathion, picloram, and 2,4-D were detected in a few water samples in low concentrations, However, these organic compounds do not present a widespread water-quality problem. Neither acid organic compounds nor polychlorinated napthalenes (PCN) were detected in ground water. The growth of public water and sewer systems has resulted in a significant interbasin transfer of water. Estimates for 1984 range from a net loss of 630 million gallons in the Valley Creek basin to a net gain of 783 million gallons in the Chester Creek basin. The quantity of wastewater discharged from treatment plants generally correlates well with the altitude of the water table and poorly with water use or precipitation, indicating substantial ground-water infiltration. Estimated ground-water infiltration to the West Goshen treatment plant for 1980-84 was 0.8 cubic feet per square mile, or 10 percent of the long-term average flow of Chester Creek. Estimated ground-water infiltration to the Valley Forge sewer system was as high as 4.9 million gallons per day. Dewatering operations at two active quarries in Chester Valley have lowered water levels locally and increased the range of the fluctuation of the local water table. The spread of the cones of depression caused by quarry pumping is limited by geologic and hydrologic controls. Pumping of high-capacity wells in Chester Valley has caused small local cones of depression and may have caused some reaches of Valley Creek or its tributaries to lose water. One of the greatest effects of human activity on the surface-water system has been the accumulation of organic compounds, particularly PCB and pesticides, on stream-bottom material. PCB, DDE, and dieldrin were found in bottom material from all eight streams sampled. Land-use changes in 10 selected subbasins were quantified and related to stream-benthic invertebrate diversity index. from 1970-80, the diversity index increased at all sites. Subbasins that had a greater change in land use had a greater increase in diversity index. The increase may be due to the banning of certain pesticides such as DDT, a decreasing use of pesticides in urbanizing subbasins, or flushing or burial of older pesticide-contaminated sediment.
The Chemistry of Garlic and Onions.
ERIC Educational Resources Information Center
Block, Eric
1985-01-01
Discusses structures and characteristics of sulfur compounds which cause the odor of garlic and the crying which may result from an onion. These compounds are dependent on conditions of extraction and account for medical properties long ascribed to garlic and onions. (DH)
The effects of compound 48/80, morphine, and mast cell depletion on electroshock seizure in mice.
Yillar, D O; Küçükhüseyin, C
2008-01-01
The effects of compound 48/80 (C48/80), morphine, and mast cell depletion on maximal electroshock seizure (MES) were studied in Swiss albino mice. An electrical current (60Hz, 0.2 msec) inducing convulsions in 50% of the animals (CC50) was assessed as 46 mA. Compound 48/80 (5 mg/kg) and morphine (100mg/kg) were administered subcutaneously. CC50 was applied separately to electroshock-unexposed animal groups at 15, 30, 60, 120, and 240 min after the onset of the experiment. In untreated controls, the percent of seizure induced by CC50 and percent of death among mice having convulsions were 50 and 20, respectively. After C48/80, a significant increase in rates of seizure at 60th and 120th min and death beyond 60th min (p < .0001) indicates a pro-convulsive action of the drug, probably caused by a reduction in MES threshold. In contrast, rate of seizure tended to decrease following mast-cell depletion, which was readily reversed by C48/80 at the 60th min (p < .0001). Mast-cell depletion, alone or plus morphine, significantly increased the death percentage of convulsions. Morphine alone reduced the percentage of seizure induced by the application of CC50 in the mast-cell depleted animals (anticonvulsive action) but increased the percent of dying animals by as much as 100% at the 30th and 60th min (p < .0001). Combined morphine + C48/80 not only augmented the anticonvulsive effect of morphine at the 30th min but also nullified the rate of death among mice having convulsions. We concluded that compound 48/80 (1) penetrates into the central nervous system to produce a central effect; (2) acts as pro-convulsive, and (3) paradoxically augments the anticonvulsive action of morphine, likely caused by the ability of the compound to increase the permeability of blood-brain barrier for morphine or by the release of histamine from mast cells in the brain, acting as anticonvulsant through the stimulation of H1 receptors or both. The precise mechanism of the increased death rate by C48/80 or morphine in intact and in mast-cell-depleted mice appears to involve pro-convulsive effects, cardiovascular impairment, and respiratory depression. The nullification of morphine-induced lethal toxicity by C48/80 could be due to the antagonistic interaction of the drug with opiate receptors in the brain.
Stringfellow, D A; Weed, S D
1980-01-01
The ability of polyriboinosionic acid [poly(rI)].polyribocytidylic acid [poly(rC)], mismatched analog poly (rI).poly[r(C12Uracil)n], and poly(rI).poly(rC) complexed with poly L-lysine and carboxymethylcellulose [poly(ICLc)] to induce interferon and the comparative toxicity of each in cats were evaluated. Each induced high levels of circulating interferon, although poly(ICLC) injected intravenously at 1 to 4 mg/kg induced up to 10 times more interferon than the other compounds. Each compound was pyrogenic and caused a transient decrease in leukocyte numbers. Poly(rI).poly(rC) and the mismatched analog caused severe diarrhea and nausea at the highest drug concentrations (1 to 4 mg/kg), but poly (ICLC) did not. Each compound also caused depression and lethargy and impaired coordination. PMID:6157363
International Space Station Air Quality Assessed According to Toxicologically-Grouped Compounds
NASA Technical Reports Server (NTRS)
James, John T.; Limero, Thomas F.; Beck, Steve; Cheng, Patti F.; deVera, Vanessa J.; Hand, Jennifer; Macatangay, Ariel
2010-01-01
Scores of compounds are found in the International Space Station (ISS) atmospheric samples that are returned to the Johnson Space Center Toxicology Laboratory for analysis. Spacecraft Maximum Allowable Concentrations (SMACs) are set with the view that each compound is present as if there were no other compounds present. In order to apply SMACs to the interpretation of the analytical data, the toxicologist must employ some method of combining the potential effects of the aggregate of compounds found in the atmospheric samples. The simplest approach is to assume that each quantifiable compound has the potential for some effect in proportion to the applicable SMAC, and then add all the proportions. This simple paradigm disregards the fact that most compounds have potential to adversely affect only a few physiological systems, and their effects would be independent rather than additive. An improved approach to dealing with exposure to mixtures is to add the proportions only for compounds that adversely affect the same physiological system. For example, toxicants that cause respiratory irritation are separated from those that cause neurotoxicity or cardio-toxicity. Herein we analyze ISS air quality data according to toxicological groups with a view that this could be used for understanding any crew symptoms occurring at the time of the sample acquisition. In addition, this approach could be useful in post-flight longitudinal surveys where the flight surgeon may need to identify post-flight, follow-up medical studies because of on-orbit exposures that target specific physiological systems.
International Space Station Air Quality Assessed According to Toxicologically-Grouped Compounds
NASA Technical Reports Server (NTRS)
James, John T.; Limero, Tom; DeVera, Vanessa; Cheng, Patti; Hand, Jennifer; Macatangay, Ariel; Beck, Steve
2009-01-01
Scores of compounds are found in the International Space Station (ISS) atmospheric samples that are returned to the Johnson Space Center Toxicology Laboratory for analysis. Spacecraft Maximum Allowable Concentrations (SMACs) are set with the view that each compound is present as if there were no other compounds present. In order to apply SMACs to the interpretation of the analytical data, the toxicologist must employ some method of combining the potential effects of the aggregate of compounds found in the atmospheric samples. The simplest approach is to assume that each quantifiable compound has the potential for some effect in proportion to the applicable SMAC, and then add all the proportions. This simple paradigm disregards the fact that most compounds have potential to adversely affect only a few physiological systems, and their effects would be independent rather than additive. An improved approach to dealing with exposure to mixtures is to add the proportions only for compounds that adversely affect the same physiological system. For example, toxicants that cause respiratory irritation are separated from those that cause neurotoxicity or cardio-toxicity. Herein we analyze ISS air quality data according to toxicological groups with a view that this could be used for understanding any crew symptoms occurring at the time of the sample. In addition, this approach could be useful in post-flight longitudinal surveys where the flight surgeon may need to identify post-flight, follow-up medical studies because of on-orbit exposures that target specific physiological systems.
Atrazine retention and degradation in the vadose zone at a till plain site in central Indiana
Bayless, E.R.
2001-01-01
The vadose zone was examined as an environmental compartment where significant quantities of atrazine and its degradation compounds may be stored and transformed. The vadose zone was targeted because regional studies in the White River Basin indicated a large discrepancy between the mass of atrazine applied to fields and the amount of the pesticide and its degradation compounds that are measured in ground and surface water. A study site was established in a rotationally cropped field in the till plain of central Indiana. Data were gathered during the 1994 growing season to characterize the site hydrogeology and the distribution of atrazine, desethylatrazine, deisopropylatrazine, didealkylatrazine and hydroxyatrazine in runoff, pore water, and ground water. The data indicated that atrazine and its degradation compounds were transported from land surface to a depth of 1.5 m within 60 days of application, but were undetected in the saturated zone at nearby monitoring wells. A numerical model was developed, based on the field data, to provide information about processes that could retain and degrade atrazine in the vadose zone. Simulations indicated that evapotranspiration is responsible for surface directed soil-moisture flow during much of the growing season. This process causes retention and degradation of atrazine in the vadose zone. Increased residence time in the vadose zone leads to nearly complete transformation of atrazine and its degradation products to unquantified degradation compounds. As a result of mascropore flow, small quantities of atrazine and its degradation compounds may reach the saturated zone.
Azimi, Sara; Zonouzi, Afsaneh; Firuzi, Omidreza; Iraji, Aida; Saeedi, Mina; Mahdavi, Mohammad; Edraki, Najmeh
2017-09-29
Alzheimer's disease is characterized by chronic neurodegeneration leading to dementia. The main cause of neurodegeneration is considered to be the accumulation of amyloid-β. Inhibiting BACE1 is a well-studied approach to lower the burden of amyloid-β aggregates. We designed a series of imidazopyridines-based compounds bearing phthalimide moieties as inhibitors of BACE1. The compounds 8a-o were synthesized by the Groebke-Blackburn-Bienaymé three-component reaction of heteroaromatic amidines, aldehydes and isocyanides. Evaluating the BACE1 inhibitory effects of the synthesized compounds revealed that introducing an aminocyclohexyl moiety in the imidazopyridine core resulted in a significant improvement in its BACE1 inhibitory potential. In this regard, compound 8e was the most potent against BACE1 with an IC 50 value of 2.84 (±0.95) μM. Molecular docking revealed that the nitrogen atom of imidazopyridines and the oxygen atom of the phenoxypropyl linker were involved in hydrogen bound interactions with Asp228 and Asp32 of BACE1 active site, respectively. The phthalimide moiety oriented toward the flap pocket and interacted with phe108, lle110, Trp115, Ile118 through van der Waal's and hydrophobic interactions. These findings demonstrate that imidazopyridines-based compounds bearing phthalimide moiety have the potential to decrease amyloid-β levels and ameliorate the symptoms of Alzheimer's disease. Copyright © 2017. Published by Elsevier Masson SAS.
In Vitro Metabolism and Stability of the Actinide Chelating Agent 3,4,3-LI(1,2-HOPO)
Choi, Taylor A.; Furimsky, Anna M.; Swezey, Robert; Bunin, Deborah I.; Byrge, Patricia; Iyer, Lalitha V.; Chang, Polly Y.; Abergel, Rebecca J.
2015-01-01
The hydroxypyridinonate ligand 3,4,3-LI(1,2-HOPO) is currently under development for radionuclide chelation therapy. The preclinical characterization of this highly promising ligand comprised the evaluation of its in vitro properties, including microsomal, plasma, and gastrointestinal fluid stability, cytochrome P450 inhibition, plasma protein binding, and intestinal absorption using the Caco-2 cell line. When mixed with active human liver microsomes, no loss of parent compound was observed after 60 minutes, indicating compound stability in the presence of liver microsomal P450. At the tested concentrations, 3,4,3-LI(1,2-HOPO) did not significantly influence the activities of any of the cytochromal isoforms screened. Thus, 3,4,3-LI(1,2-HOPO) is unlikely to cause drug-drug interactions by inhibiting the metabolic clearance of co-administered drugs metabolized by these enzymes. Plasma protein binding assays revealed that the compound is protein-bound in dogs and less extensively in rats and humans. In the plasma stability study, the compound was stable after 1 h at 37°C in mouse, rat, dog, and human plasma samples. Finally, a bi-directional permeability assay demonstrated that 3,4,3-LI(1,2-HOPO) is not permeable across the Caco-2 monolayer, highlighting the need to further evaluate the effects of various compounds with known permeability enhancement properties on the permeability of the ligand in future studies. PMID:25727482
In vitro metabolism and stability of the actinide chelating agent 3,4,3-LI(1,2-HOPO).
Choi, Taylor A; Furimsky, Anna M; Swezey, Robert; Bunin, Deborah I; Byrge, Patricia; Iyer, Lalitha V; Chang, Polly Y; Abergel, Rebecca J
2015-05-01
The hydroxypyridinonate ligand 3,4,3-LI(1,2-HOPO) is currently under development for radionuclide chelation therapy. The preclinical characterization of this highly promising ligand comprised the evaluation of its in vitro properties, including microsomal, plasma, and gastrointestinal fluid stability, cytochrome P450 inhibition, plasma protein binding, and intestinal absorption using the Caco-2 cell line. When mixed with active human liver microsomes, no loss of parent compound was observed after 60 min, indicating compound stability in the presence of liver microsomal P450. At the tested concentrations, 3,4,3-LI(1,2-HOPO) did not significantly influence the activities of any of the cytochromal isoforms screened. Thus, 3,4,3-LI(1,2-HOPO) is unlikely to cause drug-drug interactions by inhibiting the metabolic clearance of coadministered drugs metabolized by these enzymes. Plasma protein-binding assays revealed that the compound is protein-bound in dogs and less extensively in rats and humans. In the plasma stability study, the compound was stable after 1 h at 37°C in mouse, rat, dog, and human plasma samples. Finally, a bidirectional permeability assay demonstrated that 3,4,3-LI(1,2-HOPO) is not permeable across the Caco-2 monolayer, highlighting the need to further evaluate the effects of various compounds with known permeability enhancement properties on the permeability of the ligand in future studies. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
In Vitro Metabolism and Stability of the Actinide Chelating Agent 3,4,3-LI(1,2-HOPO)
Choi, Taylor A.; Furimsky, Anna M.; Swezey, Robert; ...
2015-02-27
We report that the hydroxypyridinonate ligand 3,4,3-LI(1,2-HOPO) is currently under development for radionuclide chelation therapy. The preclinical characterization of this highly promising ligand comprised the evaluation of its in vitro properties, including microsomal, plasma, and gastrointestinal fluid stability, cytochrome P450 inhibition, plasma protein binding, and intestinal absorption using the Caco-2 cell line. When mixed with active human liver microsomes, no loss of parent compound was observed after 60 minutes, indicating compound stability in the presence of liver microsomal P450. At the tested concentrations, 3,4,3-LI(1,2-HOPO) did not significantly influence the activities of any of the cytochromal isoforms screened. Thus, 3,4,3-LI(1,2-HOPO) ismore » unlikely to cause drug-drug interactions by inhibiting the metabolic clearance of co-administered drugs metabolized by these enzymes. Plasma protein binding assays revealed that the compound is protein-bound in dogs and less extensively in rats and humans. In the plasma stability study, the compound was stable after 1 h at 37°C in mouse, rat, dog, and human plasma samples. Finally, a bi-directional permeability assay demonstrated that 3,4,3-LI(1,2-HOPO) is not permeable across the Caco-2 monolayer, highlighting the need to further evaluate the effects of various compounds with known permeability enhancement properties on the permeability of the ligand in future studies.« less
Influence of intense THz radiation on spin state of photoswitchable compound Cu(hfac)2L(Pr).
Veber, Sergey L; Fedin, Matvey V; Maryunina, Ksenia Yu; Boldyrev, Kirill N; Sheglov, Mikhail A; Kubarev, Vitaly V; Shevchenko, Oleg A; Vinokurov, Nikolay A; Kulipanov, Gennady N; Sagdeev, Renad Z; Ovcharenko, Victor I; Bagryanskaya, Elena G
2013-02-21
The family of magnetoactive compounds Cu(hfac)(2)L(R) exhibits thermo- and photoswitching phenomena promising for various applications. Photoswitching of the Cu(hfac)(2)L(Pr) compound can be observed at temperatures below 20 K and is accompanied by transition to metastable structural state. Reverse conversion to stable structure could not be induced by light of near-IR-vis-UV regions up to date. The far-IR spectra of metastable and stable structural states are different and show characteristic absorption lines in the range of 170-240 cm(-1). These frequencies are accessible by NovoFEL - high-power THz free-electron laser user facility in Novosibirsk. We investigate selective influence of THz radiation on relaxation processes from metastable to stable structural state, which can be monitored by electron paramagnetic resonance (EPR). For this purpose, the experimental station based on X-band EPR spectrometer has been constructed by the THz beamline of NovoFEL and equipped with multimodal THz waveguide allowing to fed radiation directly into the EPR resonator. It has been found that irradiation of studied compound with high-power THz light causes significant but nondestructive increase of its temperature. Apart from this effect, no resonant influence of THz irradiation on relaxation processes has been observed. The experimental results have been rationalized taking into account vibrational relaxation times of the studied compound. Further experiments based on pulse heating by THz radiation have been proposed.
In Vitro Metabolism and Stability of the Actinide Chelating Agent 3,4,3-LI(1,2-HOPO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Taylor A.; Furimsky, Anna M.; Swezey, Robert
We report that the hydroxypyridinonate ligand 3,4,3-LI(1,2-HOPO) is currently under development for radionuclide chelation therapy. The preclinical characterization of this highly promising ligand comprised the evaluation of its in vitro properties, including microsomal, plasma, and gastrointestinal fluid stability, cytochrome P450 inhibition, plasma protein binding, and intestinal absorption using the Caco-2 cell line. When mixed with active human liver microsomes, no loss of parent compound was observed after 60 minutes, indicating compound stability in the presence of liver microsomal P450. At the tested concentrations, 3,4,3-LI(1,2-HOPO) did not significantly influence the activities of any of the cytochromal isoforms screened. Thus, 3,4,3-LI(1,2-HOPO) ismore » unlikely to cause drug-drug interactions by inhibiting the metabolic clearance of co-administered drugs metabolized by these enzymes. Plasma protein binding assays revealed that the compound is protein-bound in dogs and less extensively in rats and humans. In the plasma stability study, the compound was stable after 1 h at 37°C in mouse, rat, dog, and human plasma samples. Finally, a bi-directional permeability assay demonstrated that 3,4,3-LI(1,2-HOPO) is not permeable across the Caco-2 monolayer, highlighting the need to further evaluate the effects of various compounds with known permeability enhancement properties on the permeability of the ligand in future studies.« less
Acoustic rhinometry in the dog: a novel large animal model for studies of nasal congestion.
Koss, Michael C; Yu, Yongxin; Hey, John A; McLeod, Robbie L
2002-01-01
The aim of this project was to develop and pharmacologically characterize an experimental dog model of nasal congestion in which nasal patency is measured using acoustic rhinometry. Solubilized compound 48/80 (0.3-3.0%) was administered intranasally to thiopental anesthetized beagle dogs to elicit nasal congestion via localized mast cell degranulation. Compound 48/80-induced effects on parameters of nasal patency were studied in vehicle-treated animals, as well as in the same animals pretreated 2 hours earlier with oral d-pseudoephedrine or chlorpheniramine. Local mast cell degranulation caused a close-related decrease in nasal cavity volume and minimal cross-sectional area (Amin) together with a highly variable increase in nasal secretions. Maximal responses were seen at 90-120 minutes after 48/80 administration. Oral administration of the adrenergic agonist, d-pseudoephedrine (3.0 mg/kg), significantly antagonized all of the nasal effects of compound 48/80 (3.0%). In contrast, oral administration of the histamine H1 receptor antagonist chlorpheniramine (10 mg/kg) appeared to reduce the increased nasal secretions but was without effect on the compound 48/ 80-induced nasal congestion (i.e., volume and Amin). These results show the effectiveness of using acoustic rhinometry in this anesthetized dog model. The observations that compound 48/80-induced nasal congestion was prevented by d-pseudoephedrine pretreatment, but not by chlorpheniramine, suggest that this noninvasive model system may provide an effective tool with which to study the actions of decongestant drugs in preclinical investigations.
Kulprachakarn, Kanokwan; Ounjaijean, Sakaewan; Wungrath, Jukkrit; Mani, Raj; Rerkasem, Kittipan
2017-12-01
The diabetic foot ulcer (DFU) is an invariably common complication of diabetes mellitus, it is also a significant cause of amputation as well as extended hospitalization. As most patients with DFU suffer from malnutrition, which has been related to improper metabolic micronutrients status, alterations can affect impaired wound healing process. Micronutrients and herbal remedies applications present a wide range of health advantages to patients with DFU. The purpose of this review is to provide current evidence on the potential effect of dietary supplementations such as vitamins A, C, D, E, magnesium, zinc, copper, iron, boron, and such naturally occurring compounds as Aloe vera, Naringin, and Radix Astragali (RA) and Radix Rehmanniae (RR) in the administration of lower extremity wounds, especially in DFU, and to present some insights for applications in the treatment of DFU patients in the future.
High transmission Ni compound refractive lens for high energy X-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brancewicz, M., E-mail: brancew@spring8.or.jp; Itou, M.; Sakurai, Y.
We present a new planar Ni compound refractive lens for high energy X-rays (116 keV). The lens is composed of identical plano-concave elements with longitudinal parabolic grooves manufactured by a punch technique. In order to increase the lens transmission, the thickness of the single lens at the parabolic groove vertex was reduced to less than 5 μm and the radius of curvature was reduced to about 20 μm. The small radius of curvature allowed us to reduce the number of single elements needed to get the focal length of 3 m to 54 single lenses. The gain parameter has beenmore » significantly improved compared to the previous lenses due to higher transmission, but the focused beam size and its gain are not as good as expected, mostly due to the aberrations caused by the lens shape imperfections.« less
Synthesis and evaluation of 1-amino-6-halo-β-carbolines as antimalarial and antiprion agents.
Thompson, Mark J; Louth, Jennifer C; Little, Susan M; Jackson, Matthew P; Boursereau, Yohan; Chen, Beining; Coldham, Iain
2012-04-01
Malaria is one of the world's most devastating parasitic diseases, causing almost one million deaths each year. Growing resistance to classical antimalarial drugs, such as chloroquine, necessitates the discovery of new therapeutic agents for successful control of this global disease. Here, we report the synthesis of some 6-halo-β-carbolines as analogues of the potent antimalarial natural product, manzamine A, retaining its heteroaromatic core whilst providing compounds with much improved synthetic accessibility. Two compounds displayed superior activity to chloroquine itself against a resistant Plasmodium falciparum strain, identifying them as promising leads for future development. Furthermore, in line with previous reports of similarities in antimalarial and antiprion effects of aminoaryl-based antimalarial agents, the 1-amino-β-carboline libraries were also found to possess significant bioactivity against a prion-infected cell line. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vannini, Federica; MacKessack-Leitch, Andrew C; Eschbach, Erin K; Chattopadhyay, Mitali; Kodela, Ravinder; Kashfi, Khosrow
2015-10-15
We recently reported the synthesis of NOSH-aspirin, a novel hybrid compound capable of releasing both nitric oxide (NO) and hydrogen sulfide (H2S). In NOSH-aspirin, the two moieties that release NO and H2S are covalently linked at the 1, 2 positions of acetyl salicylic acid, i.e., ortho-NOSH-aspirin. Here we report on the synthesis of meta- and para-NOSH-aspirins. We also made a head-to-head evaluation of the effects of these three positional isomers of NOSH-aspirin on colon cancer cell kinetics and induction of reactive oxygen species, which in recent years has emerged as a key event in causing cancer cell regression. Electron donating/withdrawing groups incorporated about the benzoate moiety significantly affected the potency of these compounds with respect to colon cancer cell growth inhibition. Copyright © 2015 Elsevier Ltd. All rights reserved.
β-Lapachone attenuates mitochondrial dysfunction in MELAS cybrid cells.
Jeong, Moon Hee; Kim, Jin Hwan; Seo, Kang-Sik; Kwak, Tae Hwan; Park, Woo Jin
2014-11-21
Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a mitochondrial disease caused by mutations in the mitochondrial genome. This study investigated the efficacy of β-lapachone (β-lap), a natural quinone compound, in rescuing mitochondrial dysfunction in MELAS cybrid cells. β-Lap significantly restored energy production and mitochondrial membrane potential as well as normalized the elevated ROS level in MELAS cybrid cells. Additionally, β-lap reduced lactic acidosis and restored glucose uptake in the MELAS cybrid cells. Finally, β-lap activated Sirt1 by increasing the intracellular NAD(+)/NADH ratio, which was accompanied by increased mtDNA content. Two other quinone compounds (idebenone and CoQ10) that have rescued mitochondrial dysfunction in previous studies of MELAS cybrid cells had a minimal effect in the current study. Taken together, these results demonstrated that β-lap may provide a novel therapeutic modality for the treatment of MELAS. Copyright © 2014 Elsevier Inc. All rights reserved.
Meier, J R; Monarca, S; Patterson, K S; Villarini, M; Daniel, F B; Moretti, M; Pasquini, R
1996-06-17
Mutagenicity analysis of urine from rats treated by oral gavage with MX at a dose of 64 mg/kg for 14 days revealed that only 0.3% of the administered compound was excreted in a genotoxically active form. At lower doses, mutagenicity was not detectable. No evidence of micronucleus induction in peripheral blood erythrocytes was observed in mice treated similarly. These findings indicate that MX is extensively detoxified in vivo and is unlikely to cause genetic damage in systemic tissues except at relatively high doses where detoxification pathways become saturated. In a separate experiment, significant depressions were observed in D-glucaric acid and thioether excretion and in levels of several liver enzymes involved in xenobiotic metabolism. The mechanism for these metabolic alterations and their relevance to the in vivo metabolism of the compound require further investigation.
Is cutaneous malignant melanoma associated with the use of antibacterial soaps?
Arbesman, H
1999-07-01
Since 1960, the incidence of melanoma has increased dramatically in Caucasians worldwide, and during the past decade has risen at a rate of 6% a year in the USA. A hypothesis regarding this increased incidence suggests that the prevalent use of antibacterial soaps that contain photosensitizing compounds may be a risk factor for the development of cutaneous malignant melanoma. These antibacterial soaps were introduced in the 1960s and compounds with photosensitizing properties are still present in various soaps throughout the industrialized world. The use of these antibacterial soaps, in combination with sun exposure, leads to free radical production in the skin. These free radicals are hypothesized to cause damage to melanocytes, leading to the development of melanoma. Various epidemiological findings regarding melanoma are consistent with this hypothesis. A significant reduction in the number of new cases of melanoma could be achieved if this hypothesis is correct.
NASA Astrophysics Data System (ADS)
Pakhira, Santanu; Kundu, Asish K.; Mazumdar, Chandan; Ranganathan, R.
2018-05-01
In this work, we report the effect of random magnetic anisotropy (RMA) on the valence, magnetocaloric and resistivity properties in a glassy intermetallic material Sm2Ni0.87Si2.87. On the basis of detailed studies on the valence band and core level electronic structure, we have established that both the Sm3+ and Sm2+ ions are present in the system, suggesting the compound to be of mixed valence in nature. The significant observation of positive magnetic entropy change in zero-field cooled measurement has been argued due to the presence of RMA that develops due to local electronic environmental variations between the rare-earth ions in the system. The quantum interference effect caused by the elastic electron–electron interaction is responsible for the resistivity upturn at low-temperature for this disordered metallic conductor.
Identification of a new source of reticle contamination
NASA Astrophysics Data System (ADS)
Grenon, Brian J.; Brinkley, David
2016-10-01
Since the introduction of 248 and 193 nm lithography sub-pellicle contamination has been a significant problem and a major contributor to reticle costs and semiconductor yield losses. The most common contaminant identified has been ammonium sulfate commonly called haze, however there have been many other contaminants identified and grouped in the category as haze. In attempts to mitigate the cause of this problem various processes and manufacturing protocols have been put in place to either prevent the problem or identify the source of the problem before there is a negative impact in the wafer fab. In spite of efforts to manage the effects of sub-pellicle contamination in the wafer fab, the problem continues to exist. Over the years we have identified many of the compounds and their sources that exist on the sub-pellicle surface, however one has been elusive. This paper will provide both the identification of this compound and its source.
Macías-Rubalcava, Martha L; Ruiz-Velasco Sobrino, M Emma; Meléndez-González, Claudio; Hernández-Ortega, Simón
2014-04-23
From the fermentation mycelium of the endophytic fungus Edenia gomezpompae were obtained several phytotoxic compounds including two new members of the naphthoquinone spiroketal family, namely, palmarumycin EG1 (1) and preussomerin EG4 (4). In addition, preussomerins EG1-EG3 (7-9) and palmarumycins CP19 (2), CP17 (3), and CP2 (6), as well as ergosta-4,6,8(14),22-tetraen-3-one (5), were obtained. Compounds 2, 3, and 5 are new to this species. The structures of palmarumycins CP19 (2) and CP17 (3) were unambiguously determined by X-ray analysis. The isolates and mycelium organic extracts from four morphological variants of E. gomezpompae caused significant inhibition of seed germination, root elongation, and seedling respiration of Amaranthus hypochondriacus, Solanum lycopersicum, and Echinochloa crus-galli. The treatments also affected respiration on intact mitochondria isolated from spinach.
Juškaitė, Vaida; Ramanauskienė, Kristina; Briedis, Vitalis
2017-06-27
Resveratrol is well known for its antioxidant activity and susceptibility to ultraviolet radiation. Development of formulations providing improved stability and relevant drug delivery of resveratrol is still a challenging task. The aim of this study was to determine protective characteristics of formulated microemulsions by evaluating photoisomerization of resveratrol and to investigate the effects of resveratrol on human keratinocyte cells under oxidative stress caused by ultraviolet radiation. Incorporation of resveratrol into microemulsions resulted in increased photostability of active compounds and the results demonstrated that photodegradation of resveratrol was significantly delayed. Results of biopharmaceutical evaluation in vitro demonstrated that up to 60 % of resveratrol was released from microemulsions within 6 hours under a constant release rate profile. In vivo biological testing confirmed the ability of resveratrol to protect cells from oxidative stress and to increase cell viability. It was concluded that microemulsions might be considered in the development of UV light sensitive compounds.
Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection
Hall, Alex; Troupin, Andrea; Londono-Renteria, Berlin; Colpitts, Tonya M.
2017-01-01
Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development. PMID:28644404
Gupta, Suruchi; Kaul, Sanjana; Singh, Baljinder; Vishwakarma, Ram A; Dhar, Manoj K
2016-11-01
Endophytes from medicinal plants represent a potential source of bioactive compounds. During the present investigation, fungal endophytes were isolated from turmeric (Curcuma longa), an important medicinal plant. A total of 207 endophytic fungal isolates were obtained from the rhizome of C. longa L. They were grouped into seven genera based on morphological and molecular data. The fungal endophytes of C. longa were evaluated for antifungal activity against Colletotrichum gloeosporioides, the causal organism of leaf spot of turmeric. The disease is a major cause for economic loss in turmeric cultivation. Endophytic Phoma herbarum showed significant activity against C. gloeosporioides and was therefore selected for further studies. A compound gentisyl alcohol was isolated from P. herbarum which showed effective antagonism against C. gloeosporioides. The organism could therefore be used as a biocontrol agent against C. gloeosporioides.
Quinoline-glycomimetic conjugates reducing lipogenesis and lipid accumulation in hepatocytes.
Palit, Subhadeep; Mukherjee, Sanghamitra; Niyogi, Sougata; Banerjee, Anindyajit; Patra, Dipendu; Chakraborty, Amit; Chakrabarti, Saikat; Chakrabarti, Partha; Dutta, Sanjay
2018-06-13
Non-alcoholic fatty liver disease (NAFLD) characterized by excess accumulation of triglyceride in hepatocyte is the major cause of chronic liver disease worldwide and no approved drug is available. The mechanistic target of rapamycin complexes (mTORC) have been implicated to promote lipogenesis and fat accumulation in liver and thus serve as attractive drug targets. Generation of no or low cytotoxic mTOR inhibitors are required as the existing cytotoxic mTOR inhibitors are not useful for NAFLD therapy. We have synthesized novel compounds based on the privileged ATP site binder quinoline scaffold conjugated to glucose and galactosamine derivatives that have significantly low cytotoxicity yet having strong mTORC1 inhibitory activity at low micromolar concentrations. These compounds also effectively inhibit the rate of lipogenesis and lipid accumulation in cultured hepatocytes. This is the first report of glycomimetic-quinoline derivatives that reduce lipid load in hepatocytes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gopalan, Rajendran C; Emerce, Esra; Wright, Colin W; Karahalil, Bensu; Karakaya, Ali E; Anderson, Diana
2011-12-15
Malaria is a mosquito-borne infectious disease caused by the genus Plasmodium. It causes one million deaths per year in African children under the age of 5 years. There is an increasing development of resistance of malarial parasites to chloroquine and other currently used anti-malarial drugs. Some plant products such as the indoloquinoline alkaloid cryptolepine have been shown to have potent activity against P. falciparum in vitro. On account of its toxicity, cryptolepine is not suitable for use as an antimalarial drug but a number of analogues of cryptolepine have been synthesised in an attempt to find compounds that have reduced cytotoxicity and these have been investigated in the present study in human sperm and lymphocytes using the Comet assay. The results suggest that cryptolepine and the analogues cause DNA damage in lymphocytes, but appear to have no effect on human sperm at the assessed doses. In the context of antimalarial drug development, the data suggest that all cryptolepine compounds and in particular 2,7-dibromocryptolepine cause DNA damage and therefore may not be suitable for pre clinical development as antimalarial agents. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Srinivasan, Rangesh; Sorial, George A
2011-01-01
Problems due to the taste and odor in drinking water are common in treatment facilities around the world. Taste and odor are perceived by the public as the primary indicators of the safely and acceptability of drinking water and are mainly caused by the presence of two semi-volatile compounds--2-methyl isoborneol (MIB) and geosmin. A review of these two taste and odor causing compounds in drinking water is presented. The sources for the formation of these compounds in water are discussed along with the health and regulatory implications. The recent developments in the analysis of MIB/geosmin in water which have allowed for rapid measurements in the nanogram per liter concentrations are also discussed. This review focuses on the relevant treatment alternatives, that are described in detail with emphasis on their respective advantages and problems associated with their implementation in a full-scale facility. Conventional treatment processes in water treatment plants, such as coagulation, sedimentation and chlorination have been found to be ineffective for removal of MIB/geosmin. Studies have shown powdered activated carbon, ozonation and biofiltration to be effective in treatment of these two compounds. Although some of these technologies are more effective and show more promise than the others, much work remains to be done to optimize these technologies so that they can be retrofitted or installed with minimal impact on the overall operation and effectiveness of the treatment system.
Consequences of plant phenolic compounds for productivity and health of ruminants.
Waghorn, Garry C; McNabb, Warren C
2003-05-01
Plant phenolic compounds are diverse in structure but are characterised by hydroxylated aromatic rings (e.g. flavan-3-ols). They are categorised as secondary metabolites, and their function in plants is often poorly understood. Many plant phenolic compounds are polymerised into larger molecules such as the proanthocyanidins (PA; condensed tannins) and lignins. Only the lignins, PA, oestrogenic compounds and hydrolysable tannins will be considered here. Lignins slow the physical and microbial degradation of ingested feed, because of resilient covalent bonding with hemicellulose and cellulose, rather than any direct effects on the rumen per se. The PA are prevalent in browse and are expressed in the foliage of some legumes (e.g. Lotus spp.), but rarely in grasses. They reduce the nutritive value of poor-quality diets, but can also have substantial benefits for ruminant productivity and health when improved temperate forages are fed. Beneficial effects are dependent on the chemical and physical structure, and concentration of the PA in the diet, but they have been shown to improve live-weight gain, milk yield and protein concentration, and ovulation rate. They prevent bloat in cattle, reduce gastrointestinal nematode numbers, flystrike and CH4 production. Some phenolic compounds (e.g. coumestans) cause temporary infertility, whilst those produced by Fusarium fungi found in pasture, silage or stored grains can cause permanent infertility. The HT may be toxic because products of their metabolism can cause liver damage and other metabolic disorders.
Cryolite process for the solidification of radioactive wastes
Wielang, Joseph A.; Taylor, Larry L.
1976-01-01
An improved method is provided for solidifying liquid wastes containing significant quantities of sodium or sodium compounds by calcining in a fluidized-bed calciner. The formation of sodium nitrate which will cause agglomeration of the fluidized-bed particles is retarded by adding aluminum and a fluoride to the waste in order to produce cryolite during calcination. The off-gas of the calciner is scrubbed with a solution containing aluminum in order to complex any fluoride which may be liberated by subsequent dissolution of cryolite and prevent corrosion in the off-gas cleanup system.
The Role of Connectivity on Electronic Properties of Lead Iodide Perovskite-Derived Compounds
2017-01-01
We use a layered solution crystal growth method to synthesize high-quality single crystals of two different benzylammonium lead iodide perovskite-like organic/inorganic hybrids. The well-known (C6H5CH2NH3)2PbI4 phase is obtained in the form of bright orange platelets, with a structure comprised of single ⟨100⟩-terminated sheets of corner-sharing PbI6 octahedra separated by bilayers of the organic cations. The presence of water during synthesis leads to formation of a novel minority phase that crystallizes in the form of nearly transparent, light yellow bar-shaped crystals. This phase adopts the monoclinic space group P21/n and incorporates water molecules, with structural formula (C6H5CH2NH3)4Pb5I14·2H2O. The crystal structure consists of ribbons of edge-sharing PbI6 octahedra separated by the organic cations. Density functional theory calculations including spin–orbit coupling show that these edge-sharing PbI6 octahedra cause the band gap to increase with respect to corner-sharing PbI6 octahedra in (C6H5CH2NH3)2PbI4. To gain systematic insight, we model the effect of the connectivity of PbI6 octahedra on the band gap in idealized lead iodide perovskite-derived compounds. We find that increasing the connectivity from corner-, via edge-, to face-sharing causes a significant increase in the band gap. This provides a new mechanism to tailor the optical properties in organic/inorganic hybrid compounds. PMID:28677956
[Ibogaine - structure, influence on human body, clinical relevance].
Zdrojewicz, Zygmunt; Kuszczak, Bartłomiej; Olszak, Natalia
2016-07-29
Ibogaine is a natural chemical compound, which belongs to the indole alkaloid family. It can be naturally found within the root bark of african plant Tabernanthe iboga. Ibogaine plays a significant role among tribal cultures. Ibogaine, in small amount, causes reduction of hunger, thirst and exhaustion. In bigger amount, however, it can cause intensive visions. Other effects include reduction or complete disappearance of absitnence symptoms visible in people addicted to the nicotine, alcohol, methamphetamine, cocaine or opioids, what has been scientifically proven after the tests on animals and small groups of people. After oral application, 80% of ibogaine is subjected to the Odemethylation into noribogaine; main catalyzing enzyme is cytochrome CYP2D6. Research suggests, that ibogaine acts in many places within central nervous system. NMDA receptors seem to play main role in its anti-addiction properties. It is important to mention the side effects of the compound, which are cardiotoxicity and neurotoxicity, what makes it harder to use its beneficial properties. Because of this, Ibogaine is included among the dangerous substance. However, there are a few clinics in the world which specializes in the use of the compound in order to interrupt the sypmtoms acute opioid withdrawal syndrome as well as a substance benficial in curing other addictions. There is more hope with synthetic derivatives of ibogaine, which although are less toxic still keep their anti-addiction properties. The aim is to collect the available knowledge related to the structure and effects on human body of alkaloid Tabernanthe iboga and consider the possibility of commercial medical use. © 2016 MEDPRESS.
Activities of various compounds against murine and primate polyomaviruses.
Andrei, G; Snoeck, R; Vandeputte, M; De Clercq, E
1997-01-01
Polyomavirus infections in humans are due to BK virus (BKV) and JC virus (JCV). Diseases associated with human polyomaviruses occur mostly in immunocompromised adults, e.g., progressive multifocal leukoencephalopathy (PML), caused by JCV, in AIDS patients and hemorrhagic cystitis and uretral stenosis, caused by BKV, in transplant recipients. No therapy is available for these diseases, which necessitates the development of chemical entities that are active against polyomaviruses. Several antiviral compounds were evaluated to determine their effects on the in vitro replication of mouse polyomavirus and the primate viruses simian virus 40 (SV40), SV40 PML-1, and SV40 PML-2. The activity of the different compounds was assessed by a cytopathic effect reduction assay and confirmed in a virus yield assay. Cidofovir [HPMPC; (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine] and its cyclic counterpart emerged as the most selective antipolyomavirus agents. The 50% inhibitory concentrations for HPMPC were in the range of 4 to 7 micrograms/ml, and its selectivity index varied from 11 to 20 for mouse polyomavirus and from 23 to 33 for SV40 strains in confluent cell monolayers. Cell cytotoxicity was up to 15-fold greater in growing cells. Other acyclic nucleoside phosphonates (i.e., HPMPA; [(S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine] and PMEG [9-(2-phosphonylmethoxyethyl)-guanine]) also showed some activity but had low selectivity. None of the other drugs tested against these animal viruses (i.e., acyclovir, ganciclovir, brivudine, ribavirin, foscarnet, and cytarabine) showed significant activity. Thus, HPMPC deserves further evaluation as a candidate drug for polyomavirus infections in the immunocompromised host. PMID:9055998
NaOH-free debittering of table olives using power ultrasound.
Habibi, Maryam; Golmakani, Mohammad-Taghi; Farahnaky, Asgar; Mesbahi, Gholamreza; Majzoobi, Mahsa
2016-02-01
A major drawback to the extension of NaOH-free olive debittering is its lengthy processing. In this research, the power ultrasound efficacy was investigated in a laboratory scale to accelerate this process. Olive fruits were sonicated in water or brine (15% NaCl). The effects of ultrasound-assisted debittering (UAD) were evaluated on olives physicochemical and textural properties in comparison with conventional debittering (CD). In UAD, however, the removal rate of phenolic compounds, which cause olives natural bitterness, increased significantly and as a result, the processing time decreased by 37.8% and 38.6% when debittering was done in water and brine, respectively. The chemical compositions, fatty acids profile, total color differences, Firmness and other textural parameters of UAD-treated samples remained unchanged and their antioxidant activity was significantly higher in comparison with CD-treated samples. Remarkably, UAD was able to speed up and promote NaOH-free olive debittering, without causing any undesirable changes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Leaching behavior of total organic carbon, nitrogen, and phosphorus from banana peel.
Jiang, Ruixue; Sun, Shujuan; Xu, Yan; Qiu, Xiudong; Yang, Jili; Li, Xiaochen
2015-01-01
The leaching behavior of organic carbon and nutrient compounds from banana peel (BP) was investigated in batch assays with respect to particle size, contact time, pH value, and temperature. The granularity, contact time, pH, and temperature caused no significant effects on the leaching of total phosphorus (TP) from the BP. The maximum leached total nitrogen (TN) content was found at pH 5.0 and 90 minutes, while no significant effects were caused by the granularity and temperature. The maximum leached total organic carbon (TOC) content was found by using a powder of 40 mesh, 150 minutes and at pH 6.0, while the temperature had no effect on the TOC leaching. The proportions of the TN, TP, and TOC contents leached from the dried BP ranged from 33.6% to 40.9%, 60.4% to 72.7%, and 8.2% to 9.9%, respectively, indicating that BP could be a potential pollution source for surface and ground water if discharged as domestic waste or reutilized without pretreatment.
Yang, Lei-Lei; Zhao, Yong; Luo, Shi-Ming; Ma, Jun-Yu; Ge, Zhao-Jia; Shen, Wei; Yin, Shen
2018-03-15
Previous studies suggest that hydrogen sulfide (H 2 S) and ammonia (NH 3 ) are two major air pollutants which can cause damage to porcine health. However, the mechanisms underlying toxic effects of these compounds on porcine oocyte maturation are not clear. To clarify the mechanism, we evaluated the oocyte quality by detecting some events during oocytes maturation. In our study, porcine oocytes were cultured with different concentrations of Na 2 S and/or NH 4 Cl in vitro and the rate of the first polar body extrusion decreased significantly. Also, actin filament was seriously disrupted to damage the cytoskeleton which resulted in reduced rate of oocyte maturation. We explored the reactive oxygen species (ROS) generation and found that the ROS level was increased significantly after Na 2 S treatment but not after NH 4 Cl treatment. Moreover, early stage apoptosis rate was significantly increased and autophagy protein LC3 B expression level was higher in oocytes treated with Na 2 S and/or NH 4 Cl, which might be caused by ROS elevation. Additionally, exposure to Na 2 S and/or NH 4 Cl also caused ROS generation and early apoptosis in cumulus cells, which might further affect oocyte maturation in vitro. In summary, our data suggested that exposure to H 2 S and/or NH 3 decreased porcine oocyte maturation in vitro, which might be caused by actin disruption, ROS generation, early apoptosis and autophagy. Copyright © 2017 Elsevier B.V. All rights reserved.
Cytotoxic responses of selected insecticides in chick ganglia cultures.
Sharma, R P; Obersteiner, E J
1981-01-01
Various agricultural chemicals, e.g. pesticides, are known to cause different toxic effects in man and animals. Some of these produce responses involving the nervous tissue. Total of 52 such chemicals, representing organophosphates, carbamates and other miscellaneous insecticides were evaluated to determine their relative cytotoxic effects in avian dorsal root ganglia cultures. Many of these chemicals caused a slight stimulation of cellular growth at very low concentrations. At toxic concentrations, a dose-related but nonspecific inhibition of cell growth occurred. The cytotoxic changes included the decreased migration of cells from the culture implant, varicosities in and shortening of various cells and vacuolization and rounding of neuroglial cells. At high concentrations, pigmentary degeneration and complete abolition of cell growth were observed. The toxic effects were numerically scored in a random blind fashion and the concentrations of individual chemicals to produce a half maximal effect (IC50) in culture were determined from the dose-response curves. The IC50 values for various chemicals ranged from approximately 10(-6) M for compounds like methylparathion, diazinon, paraoxon and Vendex to greater than 10(-2) M for chlorpyriphos and methylchlorpyriphos. No significant correlations of nerve fiber or glial cell cytotoxicity were apparent with other toxic or physico-chemical properties such as lethal dose in animals, cholinesterase inhibition, lipophilicity or water solubility of chemicals. Clinically neurotoxic and nonneurotoxic compounds caused similar cytotoxic effects in ganglia cultures. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:7272842
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubet, R.A.; Kouri, R.E.; Curren, R.A.
1990-01-01
BALB/c-3T3 cells were employed to examine the genotoxic potential of a variety of known chemical carcinogens. BALB/c-3T3 cells displayed a dose-dependent transformation response to a variety of carcinogens (polycyclic hydrocarbons, methylating agents, ethylating agents, aflatoxin B{sub 1} (AFT{sub 1}), and 4-nitroquinoline-N-oxide (4-NQO)). When the ability of these compounds to induce mutagenesis to resistance to the cardiac glycoside ouabain (OUA{sup R}) was examined, the authors found the short chain alkylating agents to be particularly effective mutagens, causing biologic effects at doses below those necessary to induce a transformation response. In contrast, the polycyclic hydrocarbons which were potent transforming agents were weaker,more » albeit significant, mutagens for the OUA{sup R} locus in this system, while AFB{sub 1} was quite weak. Further studies were performed with 5-azacytidine (5-AZA) and the nongenotoxic carcinogen cinnamyl anthranilate (CIN). 5-AZA was a potent transforming agent, but failed to cause mutagenesis. CIN similarly caused in vitro transformation. When a series of eight structurally diverse compounds were examined in both the BALB/c-3T3 and C3H10T1/2 mouse fibroblast transformation systems, the BALB/c-3T3 system was shown to be sensitive to a wide variety of potential carcinogens, whereas the C3H10T1/2 system proved routinely sensitive only to the polycyclic hydrocarbons.« less
Thiyagarajan, Santhananmari; Bavya, Manoharan; Jamal, Alruwaili
2016-09-01
Biofouling is considered as a main issue of concern in aquatic environment causing severe economic loss and pollution. The aim of the present study was to isolate marine fungus antagonistic to biofouling bacteria and to define antifouling compounds present in it. Using standard plate method five predominant biofouling bacteria viz., Methylococcus sp., Flavobacterium sp., Marinococcus sp., Serratia sp. and Pseudomonas sp. were isolated from marine solid substances on Zobell's agar. Tolerance range of these bacteria to NaCl was 2-10%. Isolation of fungi from mangrove and estuarine sediments and their screening identified Aspergillus sp. EF4 as a potential isolate. This isolate caused inhibition of all the five test bacterial cultures measuring zone diameters respectively of 11, 16, 12, 13 and 11mm.? Subsequent to submerged fermentation using shaking flask method this fungus produced bioactive compounds within 5 days. The culture parameters optimized were raffinose as carbon source, yeast extract as lone nitrogen source, pH up to 9.0 and temperature up to 40?C. Antifouling compounds of culture filtrate were separated and detected by a three-step procedure involving thin layer chromatography, bioautography and preparative TLC. The in vitro assay involving glass slide-wooden stick-biofilm method revealed that these compounds could cause inhibition and destruction of bacteria to an extent of 2.16 x 104 CFU ml-1 and 2.46 x 104 CFU ml-1 respectively while growth of bacteria in control beaker was enumerated to be 4.41 x 104 CFU ml-1. High performance liquid chromatography of culture filtrate indicated probable principal antifouling compound as Fumonisin B2. Isolation of antagonistic marine fungus from Indian coast and detection of its antifouling compound would help in planning effective strategies for controlling biofouling in marine environment.
Manuvakhova, Marina S.; Johnson, Guyla G.; White, Misti C.; Ananthan, Subramaniam; Sosa, Melinda; Maddox, Clinton; McKellip, Sara; Rasmussen, Lynn; Wennerberg, Krister; Hobrath, Judith V.; White, E. Lucile; Maddry, Joseph A.; Grimaldi, Maurizio
2012-01-01
Neuronal noncytokine-dependent p50/p65 nuclear factor-κB (the primary NF-κB complex in the brain) activation has been shown to exert neuroprotective actions. Thus neuronal activation of NF-κB could represent a viable neuroprotective target. We have developed a cell-based assay able to detect NF-κB expression enhancement, and through its use we have identified small molecules able to up-regulate NF-κB expression and hence trigger its activation in neurons. We have successfully screened approximately 300,000 compounds and identified 1,647 active compounds. Cluster analysis of the structures within the hit population yielded 14 enriched chemical scaffolds. One high-potency and chemically attractive representative of each of these 14 scaffolds and four singleton structures were selected for follow-up. The experiments described here highlighted that seven compounds caused noncanonical long-lasting NF-κB activation in primary astrocytes. Molecular NF-κB docking experiments indicate that compounds could be modulating NF-κB-induced NF-κB expression via enhancement of NF-κB binding to its own promoter. Prototype compounds increased p65 expression in neurons and caused its nuclear translocation without affecting the inhibitor of NF-κB (I-κB). One of the prototypical compounds caused a large reduction of glutamate-induced neuronal death. In conclusion, we have provided evidence that we can use small molecules to activate p65 NF-κB expression in neurons in a cytokine receptor-independent manner, which results in both long-lasting p65 NF-κB translocation/activation and decreased glutamate neurotoxicity. PMID:21046675
Inhibitors of Trypanosoma cruzi Sir2 related protein 1 as potential drugs against Chagas disease
KongThoo Lin, Paul; Costa, David M.; Perez-Cabezas, Begoña; Tavares, Joana; Roura-Ferrer, Meritxell; Ramos, Isbaal; Ronin, Céline; Major, Louise L.; Ciesielski, Fabrice; Pemberton, Iain K.; MacDougall, Jane; Ciapetti, Paola; Cordeiro-da-Silva, Anabela
2018-01-01
Chagas disease remains one of the most neglected diseases in the world despite being the most important parasitic disease in Latin America. The characteristic chronic manifestation of chagasic cardiomyopathy is the region’s leading cause of heart-related illness, causing significant mortality and morbidity. Due to the limited available therapeutic options, new drugs are urgently needed to control the disease. Sirtuins, also called Silent information regulator 2 (Sir2) proteins have long been suggested as interesting targets to treat different diseases, including parasitic infections. Recent studies on Trypanosoma cruzi sirtuins have hinted at the possibility to exploit these enzymes as a possible drug targets. In the present work, the T. cruzi Sir2 related protein 1 (TcSir2rp1) is genetically validated as a drug target and biochemically characterized for its NAD+-dependent deacetylase activity and its inhibition by the classic sirtuin inhibitor nicotinamide, as well as by bisnaphthalimidopropyl (BNIP) derivatives, a class of parasite sirtuin inhibitors. BNIPs ability to inhibit TcSir2rp1, and anti-parasitic activity against T. cruzi amastigotes in vitro were investigated. The compound BNIP Spermidine (BNIPSpd) (9), was found to be the most potent inhibitor of TcSir2rp1. Moreover, this compound showed altered trypanocidal activity against TcSir2rp1 overexpressing epimastigotes and anti-parasitic activity similar to the reference drug benznidazole against the medically important amastigotes, while having the highest selectivity index amongst the compounds tested. Unfortunately, BNIPSpd failed to treat a mouse model of Chagas disease, possibly due to its pharmacokinetic profile. Medicinal chemistry modifications of the compound, as well as alternative formulations may improve activity and pharmacokinetics in the future. Additionally, an initial TcSIR2rp1 model in complex with p53 peptide substrate was obtained from low resolution X-ray data (3.5 Å) to gain insight into the potential specificity of the interaction with the BNIP compounds. In conclusion, the search for TcSir2rp1 specific inhibitors may represent a valuable strategy for drug discovery against T. cruzi. PMID:29357372
Inhibitors of Trypanosoma cruzi Sir2 related protein 1 as potential drugs against Chagas disease.
Gaspar, Luís; Coron, Ross P; KongThoo Lin, Paul; Costa, David M; Perez-Cabezas, Begoña; Tavares, Joana; Roura-Ferrer, Meritxell; Ramos, Isbaal; Ronin, Céline; Major, Louise L; Ciesielski, Fabrice; Pemberton, Iain K; MacDougall, Jane; Ciapetti, Paola; Smith, Terry K; Cordeiro-da-Silva, Anabela
2018-01-01
Chagas disease remains one of the most neglected diseases in the world despite being the most important parasitic disease in Latin America. The characteristic chronic manifestation of chagasic cardiomyopathy is the region's leading cause of heart-related illness, causing significant mortality and morbidity. Due to the limited available therapeutic options, new drugs are urgently needed to control the disease. Sirtuins, also called Silent information regulator 2 (Sir2) proteins have long been suggested as interesting targets to treat different diseases, including parasitic infections. Recent studies on Trypanosoma cruzi sirtuins have hinted at the possibility to exploit these enzymes as a possible drug targets. In the present work, the T. cruzi Sir2 related protein 1 (TcSir2rp1) is genetically validated as a drug target and biochemically characterized for its NAD+-dependent deacetylase activity and its inhibition by the classic sirtuin inhibitor nicotinamide, as well as by bisnaphthalimidopropyl (BNIP) derivatives, a class of parasite sirtuin inhibitors. BNIPs ability to inhibit TcSir2rp1, and anti-parasitic activity against T. cruzi amastigotes in vitro were investigated. The compound BNIP Spermidine (BNIPSpd) (9), was found to be the most potent inhibitor of TcSir2rp1. Moreover, this compound showed altered trypanocidal activity against TcSir2rp1 overexpressing epimastigotes and anti-parasitic activity similar to the reference drug benznidazole against the medically important amastigotes, while having the highest selectivity index amongst the compounds tested. Unfortunately, BNIPSpd failed to treat a mouse model of Chagas disease, possibly due to its pharmacokinetic profile. Medicinal chemistry modifications of the compound, as well as alternative formulations may improve activity and pharmacokinetics in the future. Additionally, an initial TcSIR2rp1 model in complex with p53 peptide substrate was obtained from low resolution X-ray data (3.5 Å) to gain insight into the potential specificity of the interaction with the BNIP compounds. In conclusion, the search for TcSir2rp1 specific inhibitors may represent a valuable strategy for drug discovery against T. cruzi.
Topical Hazard Evaluation Program Procedural Guide.
1982-01-01
conditions and are percent (w/v) Oil of tion reaction under test not expected to cause a Bergamot solution conditions. photochemical irritation...photochemical skin irritant ( Bergamot oil). d. All compounds-are handled with caution. Current test procedures cannot eliminate the possibility of individual...percent ethyl alcohol. One additional compound applied along with the test compounds is a 10 percent solution (w/v) of Bergamot oil" in 95 percent ethyl
Padhi, Sally; Dias, Itamar; Korn, Victoria L; Bennett, Joan W
2018-04-10
White-nose syndrome (WNS) is caused by Pseudogymnoascus destructans , a psychrophilic fungus that infects hibernating bats and has caused a serious decline in some species. Natural aroma compounds have been used to control growth of fungal food storage pathogens, so we hypothesized that a similar strategy could work for control of P. destructans . The effectiveness of exposure to low concentrations of the vapor phase of four of these compounds was tested on mycelial plugs and conidiospores at temperatures of 5, 10 and 15 °C. Here we report the efficacy of vapor phase mushroom alcohol (1-octen-3-ol) for inhibiting mycelial and conidiospore growth of P. destructans at 0.4 and 0.8 µmol/mL and demonstrate that the R enantiomer of this compound is more effective than the S enantiomer, supporting the finding that biological systems can be sensitive to stereochemistry. Further, we report that vapor phase leaf aldehyde ( trans -2-hexenal), a common aroma compound associated with cut grass odors and also the major volatile compound in extra virgin olive oil, is more effective than mushroom alcohol. At 0.05 µmol/mL, trans -2-hexenal is fungicidal to both conidiospores and mycelia of P. destructans .
Expression proteomics study to determine metallodrug targets and optimal drug combinations.
Lee, Ronald F S; Chernobrovkin, Alexey; Rutishauser, Dorothea; Allardyce, Claire S; Hacker, David; Johnsson, Kai; Zubarev, Roman A; Dyson, Paul J
2017-05-08
The emerging technique termed functional identification of target by expression proteomics (FITExP) has been shown to identify the key protein targets of anti-cancer drugs. Here, we use this approach to elucidate the proteins involved in the mechanism of action of two ruthenium(II)-based anti-cancer compounds, RAPTA-T and RAPTA-EA in breast cancer cells, revealing significant differences in the proteins upregulated. RAPTA-T causes upregulation of multiple proteins suggesting a broad mechanism of action involving suppression of both metastasis and tumorigenicity. RAPTA-EA bearing a GST inhibiting ethacrynic acid moiety, causes upregulation of mainly oxidative stress related proteins. The approach used in this work could be applied to the prediction of effective drug combinations to test in cancer chemotherapy clinical trials.
Pest-managing efficacy of trans-asarone isolated from Daucus carota L. seeds.
Momin, Rafikali A; Nair, Muraleeddharan G
2002-07-31
The bioactive hexane extract of Daucus carota seed yielded 2,4,5-trimethoxybenzaldehyde (1), oleic acid (2), trans-asarone (3), and geraniol (4). Compounds 1-4 were evaluated for their mosquitocidal, nematicidal, antifeedant, and antimicrobial activities. Only trans-asarone was active in the assays performed, causing 100% mortality to fourth-instar mosquito larvae, Aedes aegyptii, at 200 microg mL(-1) and the nematodes Caenorhabditis elegans and Panagrellus redivivus at 100 microg mL(-1). In feeding trials, trans-asarone also caused significant weight reductions of the caterpillars Helicovarpa zea, Heliothis virescens, and Manduca sexta when incorporated into artificial diet at a concentration of 100 microg mL(-1). Also, it exhibited slight activity at 100 microg mL(-1) against the yeasts Candida albicans, Candida parapsilasis, and Candida kruseii.
Oosterman, Johanneke E; Belsham, Denise D
2016-01-01
Specific neurons in the hypothalamus are regulated by peripheral hormones and nutrients to maintain proper metabolic control. It is unclear if nutrients can directly control clock gene expression. We have therefore utilized the immortalized, hypothalamic cell line mHypoE-37, which exhibits robust circadian rhythms of core clock genes. mHypoE-37 neurons were exposed to 0.5 or 5.5 mM glucose, comparable to physiological levels in the brain. Per2 and Bmal1 mRNAs were assessed every 3 hours over 36 hours. Incubation with 5.5 mM glucose significantly shortened the period and delayed the phase of Per2 mRNA levels, but had no effect on Bmal1. Glucose had no significant effect on phospho-GSK3β, whereas AMPK phosphorylation was altered. Thus, the AMPK inhibitor Compound C was utilized, and mRNA levels of Per2, Bmal1, Cryptochrome1 (Cry1), agouti-related peptide (AgRP), carnitine palmitoyltransferase 1C (Cpt1c), and O-linked N-acetylglucosamine transferase (Ogt) were measured. Remarkably, Compound C dramatically reduced transcript levels of Per2, Bmal1, Cry1, and AgRP, but not Cpt1c or Ogt. Because AMPK was not inhibited at the same time or concentrations as the clock genes, we suggest that the effect of Compound C on gene expression occurs through an AMPK-independent mechanism. The consequences of inhibition of the rhythmic expression of clock genes, and in turn downstream metabolic mediators, such as AgRP, could have detrimental effects on overall metabolic processes. Importantly, the effects of the most commonly used AMPK inhibitor Compound C should be interpreted with caution, considering its role in AMPK-independent repression of specific genes, and especially clock gene rhythm dysregulation.
Oosterman, Johanneke E.; Belsham, Denise D.
2016-01-01
Specific neurons in the hypothalamus are regulated by peripheral hormones and nutrients to maintain proper metabolic control. It is unclear if nutrients can directly control clock gene expression. We have therefore utilized the immortalized, hypothalamic cell line mHypoE-37, which exhibits robust circadian rhythms of core clock genes. mHypoE-37 neurons were exposed to 0.5 or 5.5 mM glucose, comparable to physiological levels in the brain. Per2 and Bmal1 mRNAs were assessed every 3 hours over 36 hours. Incubation with 5.5 mM glucose significantly shortened the period and delayed the phase of Per2 mRNA levels, but had no effect on Bmal1. Glucose had no significant effect on phospho-GSK3β, whereas AMPK phosphorylation was altered. Thus, the AMPK inhibitor Compound C was utilized, and mRNA levels of Per2, Bmal1, Cryptochrome1 (Cry1), agouti-related peptide (AgRP), carnitine palmitoyltransferase 1C (Cpt1c), and O-linked N-acetylglucosamine transferase (Ogt) were measured. Remarkably, Compound C dramatically reduced transcript levels of Per2, Bmal1, Cry1, and AgRP, but not Cpt1c or Ogt. Because AMPK was not inhibited at the same time or concentrations as the clock genes, we suggest that the effect of Compound C on gene expression occurs through an AMPK-independent mechanism. The consequences of inhibition of the rhythmic expression of clock genes, and in turn downstream metabolic mediators, such as AgRP, could have detrimental effects on overall metabolic processes. Importantly, the effects of the most commonly used AMPK inhibitor Compound C should be interpreted with caution, considering its role in AMPK-independent repression of specific genes, and especially clock gene rhythm dysregulation. PMID:26784927
Pal, Dilipkumar; Mazumder, Upal Kanti
2014-12-01
Mikania scandens, a twining herb that grows as a weed in India and Bangladesh is used as vegetables and is a good source of vitamin A, C, B complex, mikanin, sesquiterpenes, betasitosterin, stigmasterol and friedelin. The present communication reports CNS depressant activities with special emphasis to brain biogenic amines in mice. Ethanol extract of leaves of M. scandens (EEMS) was prepared by Soxhalation and analyzed chemically. EEMS potentiated sleeping time induced by pentobarbitone, diazepam and meprobamate and showed significant reduction in the number of writhes and stretches. EEMS caused significant protection against pentylene tetrazole-induced convulsion and increased catecholamines and brain amino acids level significantly. Results showed that EEMS produced good CNS depressant effects in mice.
Development of novel antibiofouling materials from natural phenol compounds
NASA Astrophysics Data System (ADS)
Chelikani, Rahul; Kim, Dong Shik
2007-03-01
Biofilms consist of a gelatinous matrix formed on a solid surface by microbial organisms.Biofilm is caused due to the adhesion of microbes to solid surfaces with production of extracellular polymers and the process of the biofilm formation is reffered to as biofouling.Biofouling causes serious problems in chemical, medical and pharmaceutical industries.Although there have been some antibiofouling materials developed over the years,no plausible results have been found yet.Natural polyphenolic compounds like flavanoids,cathechins have strong antioxidant and antimicrobial properties.Recently,apocynin,a phenol derivative,was polymerized to form oligomers,which can regulate intracellular pathways in cancer cells preventing cell proliferation and migration.These natural phenolic compounds have never been applied to solid surfaces to prevent biofouling.It is thought that probably because of the difficulty to crosslink them to form a stable coating.In this study,some novel polyphenolic compounds synthesized using enzymatic technique from cashew nut shell liquid,a cheap and renewable byproduct of the cashew industry are used as coating materials to prevent biofouling.The interaction of these materials with microbes preventing fouling on surfaces and the chemico-physical properties of the materials causing the antibiofouling effect will be discussed.It is critical to understand the antibiofouling mechanism of these materials for better design and application in various fields.
Shaari, Khozirah; Rosli, Rozita
2018-01-01
Reactive oxygen species are well known for induction of oxidative stress conditions through oxidation of vital biomarkers leading to cellular death via apoptosis and other process, thereby causing devastative effects on the host organs. This effect is believed to be linked with pathological alterations seen in several neurodegenerative disease conditions. Many phytochemical compounds proved to have robust antioxidant activities that deterred cells against cytotoxic stress environment, thus protect apoptotic cell death. In view of that we studied the potential of glucomoringin-isothiocyanate (GMG-ITC) or moringin to mitigate the process that lead to neurodegeneration in various ways. Neuroprotective effect of GMG-ITC was performed on retinoic acid (RA) induced differentiated neuroblastoma cells (SHSY5Y) via cell viability assay, flow cytometry analysis and fluorescence microscopy by means of acridine orange and propidium iodide double staining, to evaluate the anti-apoptotic activity and morphology conservation ability of the compound. Additionally, neurite surface integrity and ultrastructural analysis were carried out by means of scanning and transmission electron microscopy to assess the orientation of surface and internal features of the treated neuronal cells. GMG-ITC pre-treated neuron cells showed significant resistance to H2O2-induced apoptotic cell death, revealing high level of protection by the compound. Increase of intracellular oxidative stress induced by H2O2 was mitigated by GMG-ITC. Thus, pre-treatment with the compound conferred significant protection to cytoskeleton and cytoplasmic inclusion coupled with conservation of surface morphological features and general integrity of neuronal cells. Therefore, the collective findings in the presence study indicated the potentials of GMG-ITC to protect the integrity of neuron cells against induced oxidative-stress related cytotoxic processes, the hallmark of neurodegenerative diseases. PMID:29723199
Jaafaru, Mohammed Sani; Nordin, Norshariza; Shaari, Khozirah; Rosli, Rozita; Abdull Razis, Ahmad Faizal
2018-01-01
Reactive oxygen species are well known for induction of oxidative stress conditions through oxidation of vital biomarkers leading to cellular death via apoptosis and other process, thereby causing devastative effects on the host organs. This effect is believed to be linked with pathological alterations seen in several neurodegenerative disease conditions. Many phytochemical compounds proved to have robust antioxidant activities that deterred cells against cytotoxic stress environment, thus protect apoptotic cell death. In view of that we studied the potential of glucomoringin-isothiocyanate (GMG-ITC) or moringin to mitigate the process that lead to neurodegeneration in various ways. Neuroprotective effect of GMG-ITC was performed on retinoic acid (RA) induced differentiated neuroblastoma cells (SHSY5Y) via cell viability assay, flow cytometry analysis and fluorescence microscopy by means of acridine orange and propidium iodide double staining, to evaluate the anti-apoptotic activity and morphology conservation ability of the compound. Additionally, neurite surface integrity and ultrastructural analysis were carried out by means of scanning and transmission electron microscopy to assess the orientation of surface and internal features of the treated neuronal cells. GMG-ITC pre-treated neuron cells showed significant resistance to H2O2-induced apoptotic cell death, revealing high level of protection by the compound. Increase of intracellular oxidative stress induced by H2O2 was mitigated by GMG-ITC. Thus, pre-treatment with the compound conferred significant protection to cytoskeleton and cytoplasmic inclusion coupled with conservation of surface morphological features and general integrity of neuronal cells. Therefore, the collective findings in the presence study indicated the potentials of GMG-ITC to protect the integrity of neuron cells against induced oxidative-stress related cytotoxic processes, the hallmark of neurodegenerative diseases.
Vo-Dinh, Tuan
1994-01-01
The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds
Vo-Dinh, Tuan
1993-01-01
The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds.
Vo-Dinh, T.
1994-06-07
The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds. 14 figs.
Tuan Vodinh.
1993-12-21
The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds. 14 figures.
Physiological performance of the soybean crosses in salinity stress
NASA Astrophysics Data System (ADS)
Wibowo, F.; Armaniar
2018-02-01
Plants grown in saline soils will experience salinity stress. Salinity stresses, one of which causes oxidative stress, that cause an imbalance in the production ROS compounds (Reactive Oxygen Species), antioxidants and chlorophyll. Where the reaction of this compound can affect plant growth and plant production. This study aims to inform performance and action gene to soybean physiological character that potential to tolerant from salinity soil that characterized by the presence of SOD and POD antioxidant compounds and chlorophyll. This research used a destructive analysis from crossbred (AxN) and (GxN). A = Anjasmoro varieties and G = Grobogan varieties as female elders and N = Grobogan varieties as male elders (N1, N2, N3, N4, N5) that have been through the stage of saline soil selection. Research result can be concluded that GxN cross is more potential for Inheritance of the offspring. This can be seen from the observed skewness of character SOD, POD compounds, Chlorophyll a and chlorophyll b.
Oceanic protection of prebiotic organic compounds from UV radiation
NASA Technical Reports Server (NTRS)
Cleaves, H. J.; Miller, S. L.; Bada, J. L. (Principal Investigator)
1998-01-01
It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.
Lipstick dermatitis due to C18 aliphatic compounds.
Hayakawa, R; Matsunaga, K; Suzuki, M; Arima, Y; Ohkido, Y
1987-04-01
An 18-year-old girl developed cheilitis. She had a past history of lip cream dermatitis, but the cause was not found. Patch tests with 2 lipsticks were strongly positive. Tests with the ingredients were positive to 2 aliphatic compounds, glyceryl diisostearate and diisostearyl malate. Impurities in the materials were suspected as the cause. Analysis by gas chromatography detected 3 chemicals in glyceryl diisostearate and 1 in diisostearyl malate as impurities. Patch testing with the impurities and glyceryl monoisostearate 0.01% pet in glyceryl diisostearate and isostearyl alcohol 0.25% pet in diisostearyl malate were strongly positive. The characteristics common to the 2 chemicals were liquidity at room temperature, branched C18 aliphatic compound and primary alcohol. Chemicals lacking any of the above 3 features did not react.
[Lung disorders due to metals].
Rüegger, M
1995-03-11
Though metals represent the largest group of elements they rather rarely cause respiratory diseases. This article will therefore review the most important ones caused by inhaled dusts of metals and some of their inorganic compounds, but leaving aside silicosis and silicatosis as well as iatrogenically induced metal pneumopathies. Among toxic inflammatory diseases metal fume fever, an influenza-like condition caused by zinc oxide, ranks as the commonest. Activities such as oxi-acetylene cutting and welding of zinc covered metal pieces account for about 90% of all cases compensated in Switzerland. Due to the non-recurrent character of this type of work, the typical waning of symptoms while exposure is going on has become seldom. Toxic pneumonia caused by inhaled metal fumes occurs rather seldom. However, serious cases have been reported where soldiers were exposed to zinc chloride from smoke bombs. The existence and extent of chronic airflow limitation due to occupational exposure to metallic dusts have not been widely examined but are to be assumed when there is poor occupational hygiene. Concerning asthma, there are at least four metals and several of their compounds which have been proven to cause variable airway narrowing, namely chromium, nickel, platinum and cobalt (the latter as hardmetal). Platinum complex salts (chloro-compounds) are very potent sensitizers leading to a notable prevalence of asthma among exposed workforces. Nevertheless, there have been no such cases in Switzerland for more than ten years. Hard-metal not only causes asthma but also an alveolitis-like interstitial lung disease progressing to fibrosis.(ABSTRACT TRUNCATED AT 250 WORDS)
Vadillo, Miguel A; Ortega-Castro, Nerea; Barberia, Itxaso; Baker, A G
2014-01-01
Many theories of causal learning and causal induction differ in their assumptions about how people combine the causal impact of several causes presented in compound. Some theories propose that when several causes are present, their joint causal impact is equal to the linear sum of the individual impact of each cause. However, some recent theories propose that the causal impact of several causes needs to be combined by means of a noisy-OR integration rule. In other words, the probability of the effect given several causes would be equal to the sum of the probability of the effect given each cause in isolation minus the overlap between those probabilities. In the present series of experiments, participants were given information about the causal impact of several causes and then they were asked what compounds of those causes they would prefer to use if they wanted to produce the effect. The results of these experiments suggest that participants actually use a variety of strategies, including not only the linear and the noisy-OR integration rules, but also averaging the impact of several causes.
Silva, Lilian N D; Ribeiro-Neto, José A; Valadares, Jéssica M M; Costa, Mariana M; Lima, Luciana A R S; Grillo, Luciano A M; Cortes, Vanessa F; Santos, Herica L; Alves, Stênio N; Barbosa, Leandro A
2016-08-01
Culex quinquefasciatus is the main vector of lymphatic filariasis and combating this insect is of great importance to public health. There are reports of insects that are resistant to the products currently used to control this vector, and therefore, the search for new products has increased. In the present study, we have evaluated the effects of fatty acid methyl esters (FAMEs) that showed larvicidal activity against C. quinquefasciatus, on glucose, total protein, and triacylglycerol contents and Na(+)/K(+)-ATPase activity in mosquito larvae. The exposure of the fourth instar larvae to the compounds caused a decrease in the total protein content and an increase in the activity of the Na(+)/K(+)-ATPase. Furthermore, the direct effect of FAMEs on cell membrane was assessed on purified pig kidney Na(+)/K(+)-ATPase membranes, erythrocyte ghost membranes, and larvae membrane preparation. No modifications on total phospholipids and cholesterol content were found after FAMEs 20 min treatment on larvae membrane preparation, but only 360 µg/mL FAME 2 was able to decrease total phospholipid of erythrocyte ghost membrane. Moreover, only 60 and 360 µg/mL FAME 3 caused an activation of purified Na(+)/K(+)-ATPase, that was an opposite effect of FAMEs treatment in larvae membrane preparation, and caused an inhibition of the pump activity. These data together suggest that maybe FAMEs can modulate the Na(+)/K(+)-ATPase on intact larvae for such mechanisms and not for a direct effect, one time that the direct effect of FAMEs in membrane preparation decreased the activity of Na(+)/K(+)-ATPase. The biochemical changes caused by the compounds were significant and may negatively influence the development and survival of C. quinquefasciatus larvae.
Chemical effect on diffusion in intermetallic compounds
NASA Astrophysics Data System (ADS)
Chen, Yi-Ting
With the trend of big data and the Internet of things, we live in a world full of personal electronic devices and small electronic devices. In order to make the devices more powerful, advanced electronic packaging such as wafer level packaging or 3D IC packaging play an important role. Furthermore, ?-bumps, which connect silicon dies together with dimension less than 10 ?m, are crucial parts in advanced packaging. Owing to the dimension of ?-bumps, they transform into intermetallic compound from tin based solder after the liquid state bonding process. Moreover, many new reliability issues will occur in electronic packaging when the bonding materials change; in this case, we no longer have tin based solder joint, instead, we have intermetallic compound ?-bumps. Most of the potential reliability issues in intermetallic compounds are caused by the chemical reactions driven by atomic diffusion in the material; thus, to know the diffusivities of atoms inside a material is significant and can help us to further analyze the reliability issues. However, we are lacking these kinds of data in intermetallic compound because there are some problems if used traditional Darken's analysis. Therefore, we considered Wagner diffusivity in our system to solve the problems and applied the concept of chemical effect on diffusion by taking the advantage that large amount of energy will release when compounds formed. Moreover, by inventing the holes markers made by Focus ion beam (FIB), we can conduct the diffusion experiment and obtain the tracer diffusivities of atoms inside the intermetallic compound. We applied the technique on Ni3Sn4 and Cu3Sn, which are two of the most common materials in electronic packaging, and the tracer diffusivities are measured under several different temperatures; moreover, microstructure of the intermetallic compounds are investigated to ensure the diffusion environment. Additionally, the detail diffusion mechanism was also discussed in aspect of diffusion activation enthalpy and diffusion pre-factor by using lattice structure simulation. Last but not the least, X-ray photoelectron spectroscopy and First principal calculation simulation were used to observe the electron binding energies in the intermetallic compound and illustrate the partial covalent bonding behavior in the intermetallic compounds.
Signals of Systemic Immunity in Plants: Progress and Open Questions
Ádám, Attila L.; Nagy, Zoltán Á.; Kátay, György; Mergenthaler, Emese; Viczián, Orsolya
2018-01-01
Systemic acquired resistance (SAR) is a defence mechanism that induces protection against a wide range of pathogens in distant, pathogen-free parts of plants after a primary inoculation. Multiple mobile compounds were identified as putative SAR signals or important factors for influencing movement of SAR signalling elements in Arabidopsis and tobacco. These include compounds with very different chemical structures like lipid transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE1), methyl salicylate (MeSA), dehydroabietinal (DA), azelaic acid (AzA), glycerol-3-phosphate dependent factor (G3P) and the lysine catabolite pipecolic acid (Pip). Genetic studies with different SAR-deficient mutants and silenced lines support the idea that some of these compounds (MeSA, DIR1 and G3P) are activated only when SAR is induced in darkness. In addition, although AzA doubled in phloem exudate of tobacco mosaic virus (TMV) infected tobacco leaves, external AzA treatment could not induce resistance neither to viral nor bacterial pathogens, independent of light conditions. Besides light intensity and timing of light exposition after primary inoculation, spectral distribution of light could also influence the SAR induction capacity. Recent data indicated that TMV and CMV (cucumber mosaic virus) infection in tobacco, like bacteria in Arabidopsis, caused massive accumulation of Pip. Treatment of tobacco leaves with Pip in the light, caused a drastic and significant local and systemic decrease in lesion size of TMV infection. Moreover, two very recent papers, added in proof, demonstrated the role of FMO1 (FLAVIN-DEPENDENT-MONOOXYGENASE1) in conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates after microbial attack and acts as a potent inducer of plant immunity to bacterial and oomycete pathogens in Arabidopsis. These results argue for the pivotal role of Pip and NHP as an important signal compound of SAR response in different plants against different pathogens. PMID:29642641
Dooyema, Carrie A; Neri, Antonio; Lo, Yi-Chun; Durant, James; Dargan, Paul I; Swarthout, Todd; Biya, Oladayo; Gidado, Saheed O; Haladu, Suleiman; Sani-Gwarzo, Nasir; Nguku, Patrick M; Akpan, Henry; Idris, Sa'ad; Bashir, Abdullahi M; Brown, Mary Jean
2012-04-01
In May 2010, a team of national and international organizations was assembled to investigate children's deaths due to lead poisoning in villages in northwestern Nigeria. Our goal was to determine the cause of the childhood lead poisoning outbreak, investigate risk factors for child mortality, and identify children < 5 years of age in need of emergency chelation therapy for lead poisoning. We administered a cross-sectional, door-to-door questionnaire in two affected villages, collected blood from children 2-59 months of age, and obtained soil samples from family compounds. Descriptive and bivariate analyses were performed with survey, blood lead, and environmental data. Multivariate logistic regression techniques were used to determine risk factors for childhood mortality. We surveyed 119 family compounds. Of 463 children < 5 years of age, 118 (25%) had died in the previous year. We tested 59% (204/345) of children < 5 years of age, and all were lead poisoned (≥ 10 µg/dL); 97% (198/204) of children had blood lead levels (BLLs) ≥ 45 µg/dL, the threshold for initiating chelation therapy. Gold ore was processed inside two-thirds of the family compounds surveyed. In multivariate modeling, significant risk factors for death in the previous year from suspected lead poisoning included the age of the child, the mother's work at ore-processing activities, community well as primary water source, and the soil lead concentration in the compound. The high levels of environmental contamination, percentage of children < 5 years of age with elevated BLLs (97%, > 45 µg/dL), and incidence of convulsions among children before death (82%) suggest that most of the recent childhood deaths in the two surveyed villages were caused by acute lead poisoning from gold ore-processing activities. Control measures included environmental remediation, chelation therapy, public health education, and control of mining activities.
Neri, Antonio; Lo, Yi-Chun; Durant, James; Dargan, Paul I.; Swarthout, Todd; Biya, Oladayo; Gidado, Saheed O.; Haladu, Suleiman; Sani-Gwarzo, Nasir; Nguku, Patrick M.; Akpan, Henry; Idris, Sa’ad; Bashir, Abdullahi M.; Brown, Mary Jean
2011-01-01
Background: In May 2010, a team of national and international organizations was assembled to investigate children’s deaths due to lead poisoning in villages in northwestern Nigeria. Objectives: Our goal was to determine the cause of the childhood lead poisoning outbreak, investigate risk factors for child mortality, and identify children < 5 years of age in need of emergency chelation therapy for lead poisoning. Methods: We administered a cross-sectional, door-to-door questionnaire in two affected villages, collected blood from children 2–59 months of age, and obtained soil samples from family compounds. Descriptive and bivariate analyses were performed with survey, blood lead, and environmental data. Multivariate logistic regression techniques were used to determine risk factors for childhood mortality. Results: We surveyed 119 family compounds. Of 463 children < 5 years of age, 118 (25%) had died in the previous year. We tested 59% (204/345) of children < 5 years of age, and all were lead poisoned (≥ 10 µg/dL); 97% (198/204) of children had blood lead levels (BLLs) ≥ 45 µg/dL, the threshold for initiating chelation therapy. Gold ore was processed inside two-thirds of the family compounds surveyed. In multivariate modeling, significant risk factors for death in the previous year from suspected lead poisoning included the age of the child, the mother’s work at ore-processing activities, community well as primary water source, and the soil lead concentration in the compound. Conclusion: The high levels of environmental contamination, percentage of children < 5 years of age with elevated BLLs (97%, > 45 µg/dL), and incidence of convulsions among children before death (82%) suggest that most of the recent childhood deaths in the two surveyed villages were caused by acute lead poisoning from gold ore–processing activities. Control measures included environmental remediation, chelation therapy, public health education, and control of mining activities. PMID:22186192
Analysis of Common and Specific Mechanisms of Liver Function Affected by Nitrotoluene Compounds
Deng, Youping; Meyer, Sharon A.; Guan, Xin; Escalon, Barbara Lynn; Ai, Junmei; Wilbanks, Mitchell S.; Welti, Ruth; Garcia-Reyero, Natàlia; Perkins, Edward J.
2011-01-01
Background Nitrotoluenes are widely used chemical manufacturing and munitions applications. This group of chemicals has been shown to cause a range of effects from anemia and hypercholesterolemia to testicular atrophy. We have examined the molecular and functional effects of five different, but structurally related, nitrotoluenes on using an integrative systems biology approach to gain insight into common and disparate mechanisms underlying effects caused by these chemicals. Methodology/Principal Findings Sprague-Dawley female rats were exposed via gavage to one of five concentrations of one of five nitrotoluenes [2,4,6-trinitrotoluene (TNT), 2-amino-4,6-dinitrotoluene (2ADNT) 4-amino-2,6-dinitrotoulene (4ADNT), 2,4-dinitrotoluene (2,4DNT) and 2,6-dinitrotoluene (2,6DNT)] with necropsy and tissue collection at 24 or 48 h. Gene expression profile results correlated well with clinical data and liver histopathology that lead to the concept that hematotoxicity was followed by hepatotoxicity. Overall, 2,4DNT, 2,6DNT and TNT had stronger effects than 2ADNT and 4ADNT. Common functional terms, gene expression patterns, pathways and networks were regulated across all nitrotoluenes. These pathways included NRF2-mediated oxidative stress response, aryl hydrocarbon receptor signaling, LPS/IL-1 mediated inhibition of RXR function, xenobiotic metabolism signaling and metabolism of xenobiotics by cytochrome P450. One biological process common to all compounds, lipid metabolism, was found to be impacted both at the transcriptional and lipid production level. Conclusions/Significance A systems biology strategy was used to identify biochemical pathways affected by five nitroaromatic compounds and to integrate data that tie biochemical alterations to pathological changes. An integrative graphical network model was constructed by combining genomic, gene pathway, lipidomic, and physiological endpoint results to better understand mechanisms of liver toxicity and physiological endpoints affected by these compounds. PMID:21346803
Second-generation compound for the modulation of utrophin in the therapy of DMD
Guiraud, Simon; Squire, Sarah E.; Edwards, Benjamin; Chen, Huijia; Burns, David T.; Shah, Nandini; Babbs, Arran; Davies, Stephen G.; Wynne, Graham M.; Russell, Angela J.; Elsey, David; Wilson, Francis X.; Tinsley, Jon M.; Davies, Kay E.
2015-01-01
Duchenne muscular dystrophy (DMD) is a lethal, X-linked muscle-wasting disease caused by lack of the cytoskeletal protein dystrophin. There is currently no cure for DMD although various promising approaches are progressing through human clinical trials. By pharmacologically modulating the expression of the dystrophin-related protein utrophin, we have previously demonstrated in dystrophin-deficient mdx studies, daily SMT C1100 treatment significantly reduced muscle degeneration leading to improved muscle function. This manuscript describes the significant disease modifying benefits associated with daily dosing of SMT022357, a second-generation compound in this drug series with improved physicochemical properties and a more robust metabolism profile. These studies in the mdx mouse demonstrate that oral administration of SMT022357 leads to increased utrophin expression in skeletal, respiratory and cardiac muscles. Significantly, utrophin expression is localized along the length of the muscle fibre, not just at the synapse, and is fibre-type independent, suggesting that drug treatment is modulating utrophin transcription in extra-synaptic myonuclei. This results in improved sarcolemmal stability and prevents dystrophic pathology through a significant reduction of regeneration, necrosis and fibrosis. All these improvements combine to protect the mdx muscle from contraction induced damage and enhance physiological function. This detailed evaluation of the SMT C1100 drug series strongly endorses the therapeutic potential of utrophin modulation as a disease modifying therapeutic strategy for all DMD patients irrespective of their dystrophin mutation. PMID:25935002
2011-01-01
Background Traditional assessment of drug-induced hepatotoxicity includes morphological examination of the liver and evaluation of liver enzyme activity in serum. The objective of the study was to determine the origin of drug-related elevation in serum alanine aminotransferase (ALT) activity in the absence of morphologic changes in the liver by utilizing molecular and immunohistochemical techniques. Methods Sixteen female Sprague-Dawley rats were divided into 2 groups (control and treated, n = 4 per group) and treated rats were dosed orally twice daily (400 mg/kg/day) for 7 days with a VEGFR-2 compound (AG28262), which in a previous study caused ALT elevation without morphological changes. Serum of both treated and control animals were evaluated on day 3 of treatment and at day 8. Three separate liver lobes (caudate, right medial, and left lateral) were examined for determination of ALT tissue activity, ALT gene expression and morphological changes. Results ALT activity was significantly (p < 0.01) elevated on day 3 and further increased on day 8. Histologic changes or increase in TUNEL and caspase3 positive cells were not observed in the liver lobes examined. ALT gene expression in the caudate lobe was significantly up-regulated by 63%. ALT expression in the left lateral lobe was not significantly affected. Statistically significant increased liver ALT enzymatic activity occurred in the caudate (96%) and right medial (41%) lobes but not in the left lateral lobe. Conclusions AG28262, a VEFG-r2 inhibitor, causes an increase in serum ALT, due in part to both gene up-regulation. Differences between liver lobes may be attributable to differential distribution of blood from portal circulation. Incorporation of molecular data, such as gene and protein expression, and sampling multiple liver lobes may shed mechanistic insight to the evaluation of hepatotoxicity. PMID:21846403
Fuentealba, Carmen; Bera, Monali; Jessen, Bart; Sace, Fred; Stevens, Greg J; Trajkovic, Dusko; Yang, Amy H; Evering, Winston
2011-08-17
Traditional assessment of drug-induced hepatotoxicity includes morphological examination of the liver and evaluation of liver enzyme activity in serum. The objective of the study was to determine the origin of drug-related elevation in serum alanine aminotransferase (ALT) activity in the absence of morphologic changes in the liver by utilizing molecular and immunohistochemical techniques. Sixteen female Sprague-Dawley rats were divided into 2 groups (control and treated, n = 4 per group) and treated rats were dosed orally twice daily (400 mg/kg/day) for 7 days with a VEGFR-2 compound (AG28262), which in a previous study caused ALT elevation without morphological changes. Serum of both treated and control animals were evaluated on day 3 of treatment and at day 8. Three separate liver lobes (caudate, right medial, and left lateral) were examined for determination of ALT tissue activity, ALT gene expression and morphological changes. ALT activity was significantly (p < 0.01) elevated on day 3 and further increased on day 8. Histologic changes or increase in TUNEL and caspase3 positive cells were not observed in the liver lobes examined. ALT gene expression in the caudate lobe was significantly up-regulated by 63%. ALT expression in the left lateral lobe was not significantly affected. Statistically significant increased liver ALT enzymatic activity occurred in the caudate (96%) and right medial (41%) lobes but not in the left lateral lobe. AG28262, a VEFG-r2 inhibitor, causes an increase in serum ALT, due in part to both gene up-regulation. Differences between liver lobes may be attributable to differential distribution of blood from portal circulation. Incorporation of molecular data, such as gene and protein expression, and sampling multiple liver lobes may shed mechanistic insight to the evaluation of hepatotoxicity.
Antioxidant and Anti-stress Compounds Improve Regrowth of Cryopreserved Rubus Shoot Tips
USDA-ARS?s Scientific Manuscript database
Regrowth of plants after cryopreservation varies and resulting regrowth ranges from poor to excellent. Oxidative stress is a potential cause of damage in plant tissues. Antioxidants and anti-stress compounds may improve regrowth by preventing or repairing the damage. Lipoic acid (LA), glutathione (...