Effects of two antihistamine-containing compounds upon performance at three altitudes.
DOT National Transportation Integrated Search
1968-06-01
In a study of 45 human subjects it was determined that a compound drug containing the antihistamine phenindamine did not statistically impair performance on a modified Mashburn coordinator. Another compound containing the antihistamine chlorphenirami...
Immunosuppressive Effects of Triclosan, Nonylphenol, and DDT on Human Natural Killer Cells In Vitro
Udoji, Felicia; Martin, Tamara; Etherton, Rachel; Whalen, Margaret M.
2010-01-01
Human natural killer (NK) cells are a first line immune defense against tumor cells and virally infected cells. If their function is impaired, it leaves an individual more susceptible to cancer development or viral infection. The ability of compounds that contaminate the environment to suppress the function of NK cells could contribute to increased risk of cancer development. There are a wide spectrum of compounds that significantly contaminate water and food that is consumed by humans leading to accumulation of some of these compounds in human tissues. In the current study, we examined the ability of three such compounds to diminish the function of human NK cells. Triclosan (TC) is an antimicrobial agent used in a large number of antibacterial soaps. Nonylphenol (NP) is a degradation product of compounds used as surfactants and as stabilizers in plastics. 4, 4′-dichlorodiphenyltrichloroethane (DDT) is a pesticide that is mainly used to control mosquitoes. The compounds were examined for their ability to suppress NK function following exposures of 1 hr, 24 hr, 48 hr, and 6 d. Each agent was able to substantially decrease NK lytic function within 24 hr. At a concentration of 5 μM, both TC and NP inhibited NK lytic function by 87 and 30%, respectively; DDT decreased function by 55% at 2.5 μM. The negative effects of each of these compounds persisted and/or intensified following a brief (1 hr) exposure to the compounds, indicating that the impairment of function cannot be eliminated by removal of the compound under in vitro conditions. PMID:20297919
Cannabinoids impair the formation of cholesteryl ester in cultured human cells.
Cornicelli, J A; Gilman, S R; Krom, B A; Kottke, B A
1981-01-01
The ability of cultured human fibroblasts to form cholesteryl esters from 14C-oleate is impaired by delta'-tetrahydrocannabinol, cannabidiol, and cannabinol, a group of natural products isolated from Cannabis sativa. This inhibition is compound and dose-related; 30 microM cannabidiol reduced esterification to less than 20% of the control values. The esterification of endogenous and exogenous cholesterol was affected, since inhibition was seen with either low density lipoproteins (200 micrograms/ml) or 25-hydroxycholesterol (5 micrograms/ml) as esterification stimuli. Cells treated with these compounds at doses of from 1 to 30 microM showed no impairment of protein synthesis, triglyceride or phospholipid formation, or ability to metabolize 125I-low density lipoproteins. An inhibition of cholesterol esterification was seen in human aortic medial cells. With increasing doses of these compounds, low density lipoproteins (25 micrograms/ml) became progressively less effective in suppressing HMG-CoA reductase in cultured human fibroblasts; with 30 microM cannabidiol the enzyme suppression was only 24% of that found in cells incubated with low density lipoproteins in the absence of drugs. Based on these data, we conclude that the cannabinoids "compartmentalize" cholesterol and, thus, make is unavailable for regulating cellular cholesterol metabolism. This may occur as a result of enhanced sterol efflux.
Barbieri, M; Ossato, A; Canazza, I; Trapella, C; Borelli, A C; Beggiato, S; Rimondo, C; Serpelloni, G; Ferraro, L; Marti, M
2016-10-01
It is well known that an impairment of learning and memory function is one of the major physiological effects caused by natural or synthetic cannabinoid consumption in rodents, nonhuman primates and in humans. JWH-018 and its halogenated derivatives (JWH-018-Cl and JWH-018-Br) are synthetic CB1/CB2 cannabinoid agonists, illegally marketed as "Spice" and "herbal blend" for their Cannabis-like psychoactive effects. In the present study the effects of acute exposure to JWH-018, JWH-018-Cl, JWH-018-Br (JWH-018-R compounds) and Δ(9)-THC (for comparison) on Novel Object Recognition test (NOR) has been investigated in mice. Moreover, to better characterize the effects of JWH-018-R compounds on memory function, in vitro electrophysiological and neurochemical studies in hippocampal preparations have been performed. JWH-018, JWH-018-Cl and JWH-018-Br dose-dependently impaired both short- and long-memory retention in mice (respectively 2 and 24 h after training session). Their effects resulted more potent respect to that evoked by Δ(9)-THC. Moreover, in vitro studies showed as JWH-018-R compounds negatively affected electrically evoked synaptic transmission, LTP and aminoacid (glutamate and GABA) release in hippocampal slices. Behavioral, electrophysiological and neurochemical effects were fully prevented by CB1 receptor antagonist AM251 pretreatment, suggesting a CB1 receptor involvement. These data support the hypothesis that synthetic JWH-018-R compounds, as Δ(9)-THC, impair cognitive function in mice by interfering with hippocampal synaptic transmission and memory mechanisms. This data outline the danger that the use and/or abuse of these synthetic cannabinoids may represent for the cognitive process in human consumer. Copyright © 2016 Elsevier Ltd. All rights reserved.
Health Assessment Document for Acrylonitrile (Final Report, 1983)
Acute acrylonitrile intoxication in humans, like many volatile organic compounds, results in irritation of the eyes and nose, weakness, labored breathing, dizziness, impaired judgement, cyanosis, nausea, and convulsions. Unlike many of these other organics, acrylonitrile causes s...
ALLIGATORS AND ENDOCRINE DISRUPTING CONTAMINANTS: A CURRENT PERSPECTIVE.AMERICAN ZOOLOGIST
Many xenobiotic compounds introduced into the environment by human activity have been shown to adversely affect wildlife. Reproductive disorders in wildlife include altered fertility, reduced viability of offspring, impaired hormone secretion or activity and modified reproductive...
Biallelic mutations in IRF8 impair human NK cell maturation and function
Mace, Emily M.; Gunesch, Justin T.; Chinn, Ivan K.; Angelo, Laura S.; Maisuria, Sheetal; Keller, Michael D.; Togi, Sumihito; Watkin, Levi B.; LaRosa, David F.; Jhangiani, Shalini N.; Muzny, Donna M.; Stray-Pedersen, Asbjørg; Coban Akdemir, Zeynep; Smith, Jansen B.; Hernández-Sanabria, Mayra; Le, Duy T.; Hogg, Graham D.; Cao, Tram N.; Freud, Aharon G.; Szymanski, Eva P.; Collin, Matthew; Cant, Andrew J.; Gibbs, Richard A.; Holland, Steven M.; Caligiuri, Michael A.; Ozato, Keiko; Paust, Silke; Doody, Gina M.; Lupski, James R.; Orange, Jordan S.
2016-01-01
Human NK cell deficiencies are rare yet result in severe and often fatal disease, particularly as a result of viral susceptibility. NK cells develop from hematopoietic stem cells, and few monogenic errors that specifically interrupt NK cell development have been reported. Here we have described biallelic mutations in IRF8, which encodes an interferon regulatory factor, as a cause of familial NK cell deficiency that results in fatal and severe viral disease. Compound heterozygous or homozygous mutations in IRF8 in 3 unrelated families resulted in a paucity of mature CD56dim NK cells and an increase in the frequency of the immature CD56bright NK cells, and this impairment in terminal maturation was also observed in Irf8–/–, but not Irf8+/–, mice. We then determined that impaired maturation was NK cell intrinsic, and gene expression analysis of human NK cell developmental subsets showed that multiple genes were dysregulated by IRF8 mutation. The phenotype was accompanied by deficient NK cell function and was stable over time. Together, these data indicate that human NK cells require IRF8 for development and functional maturation and that dysregulation of this function results in severe human disease, thereby emphasizing a critical role for NK cells in human antiviral defense. PMID:27893462
Biallelic mutations in IRF8 impair human NK cell maturation and function.
Mace, Emily M; Bigley, Venetia; Gunesch, Justin T; Chinn, Ivan K; Angelo, Laura S; Care, Matthew A; Maisuria, Sheetal; Keller, Michael D; Togi, Sumihito; Watkin, Levi B; LaRosa, David F; Jhangiani, Shalini N; Muzny, Donna M; Stray-Pedersen, Asbjørg; Coban Akdemir, Zeynep; Smith, Jansen B; Hernández-Sanabria, Mayra; Le, Duy T; Hogg, Graham D; Cao, Tram N; Freud, Aharon G; Szymanski, Eva P; Savic, Sinisa; Collin, Matthew; Cant, Andrew J; Gibbs, Richard A; Holland, Steven M; Caligiuri, Michael A; Ozato, Keiko; Paust, Silke; Doody, Gina M; Lupski, James R; Orange, Jordan S
2017-01-03
Human NK cell deficiencies are rare yet result in severe and often fatal disease, particularly as a result of viral susceptibility. NK cells develop from hematopoietic stem cells, and few monogenic errors that specifically interrupt NK cell development have been reported. Here we have described biallelic mutations in IRF8, which encodes an interferon regulatory factor, as a cause of familial NK cell deficiency that results in fatal and severe viral disease. Compound heterozygous or homozygous mutations in IRF8 in 3 unrelated families resulted in a paucity of mature CD56dim NK cells and an increase in the frequency of the immature CD56bright NK cells, and this impairment in terminal maturation was also observed in Irf8-/-, but not Irf8+/-, mice. We then determined that impaired maturation was NK cell intrinsic, and gene expression analysis of human NK cell developmental subsets showed that multiple genes were dysregulated by IRF8 mutation. The phenotype was accompanied by deficient NK cell function and was stable over time. Together, these data indicate that human NK cells require IRF8 for development and functional maturation and that dysregulation of this function results in severe human disease, thereby emphasizing a critical role for NK cells in human antiviral defense.
Impaired intracellular trafficking defines early Parkinson's disease
Hunn, Benjamin H.M.; Cragg, Stephanie J.; Bolam, J. Paul; Spillantini, Maria-Grazia; Wade-Martins, Richard
2015-01-01
Parkinson's disease (PD) is an insidious and incurable neurodegenerative disease, and represents a significant cost to individuals, carers, and ageing societies. It is defined at post-mortem by the loss of dopamine neurons in the substantia nigra together with the presence of Lewy bodies and Lewy neurites. We examine here the role of α-synuclein and other cellular transport proteins implicated in PD and how their aberrant activity may be compounded by the unique anatomy of the dopaminergic neuron. This review uses multiple lines of evidence from genetic studies, human tissue, induced pluripotent stem cells, and refined animal models to argue that prodromal PD can be defined as a disease of impaired intracellular trafficking. Dysfunction of the dopaminergic synapse heralds trafficking impairment. PMID:25639775
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, H.; Pangtey, B.S.; Modak, D.P.
1992-02-01
Organochlorine, organophosphorus and carbamate compounds are widely used pesticides in India for controlling disease carrying vectors and agricultural pests. Organochlorine compounds being persistent and lipophilic in nature, accumulate in the human body through food chain and environmental exposure. Accumulation of DDT, BHC and endosulfan has been implicated in the pathogenesis of cardiovascular disorders, hypertension and other health related problems. Earlier, the authors have observed respiratory impairment (36.5%) among workers engaged in spraying of organochlorine pesticides on mango trees at Malihabad. In the present investigation, the levels of chlorinated present investigation, the levels of chlorinated pesticides among exposed workers have beenmore » monitored to study the distribution pattern in blood and their excretion in urine of human subjects.« less
Chemerovski-Glikman, Marina; Mimouni, Michael; Dagan, Yarden; Haj, Esraa; Vainer, Igor; Allon, Raviv; Blumenthal, Eytan Z; Adler-Abramovich, Lihi; Segal, Daniel; Gazit, Ehud; Zayit-Soudry, Shiri
2018-06-19
Cataract, the leading cause of vision impairment worldwide, arises from abnormal aggregation of crystallin lens proteins. Presently, surgical removal is the only therapeutic approach. Recent findings have triggered renewed interest in development of non-surgical treatment alternatives. However, emerging treatments are yet to achieve full and consistent lens clearance. Here, the first ex vivo assay to screen for drug candidates that reduce human lenticular protein aggregation was developed. This assay allowed the identification of two leading compounds as facilitating the restoration of nearly-complete transparency of phacoemulsified cataractous preparation ex vivo. Mechanistic studies demonstrated that both compounds reduce cataract microparticle size and modify their amyloid-like features. In vivo studies confirmed that the lead compound, rosmarinic acid, delays cataract formation and reduces the severity of lens opacification in model rats. Thus, the ex vivo assay may provide an initial platform for broad screening of potential novel therapeutic agents towards pharmacological treatment of cataract.
Yamazaki, Mayako; Okabe, Mayuko; Yamamoto, Noriyuki; Yarimizu, Junko; Harada, Katsuya
2015-03-01
Despite the human 5-HT5A receptor being cloned in 1994, the biological function of this receptor has not been extensively characterized due to a lack of specific ligands. We recently reported that the selective 5-HT5A receptor antagonist ASP5736 ameliorated cognitive impairment in several animal models of schizophrenia. Given that areas of the brain with high levels of 5-HT5A receptor expression, such as the hippocampus and cerebral cortex, have important functions in cognition and memory, we evaluated the chemically diverse, potent and brain-penetrating 5-HT5A receptor antagonists ASP5736, AS2030680, and AS2674723 in rodent models of cognitive dysfunction associated with dementia. Each of these compounds exhibited a high affinity for recombinant 5-HT5A receptors that was comparable to that of the non-selective ligand of this receptor, lysergic acid diethylamide (LSD). Although each compound had a low affinity for other receptors, 5-HT5A was the only receptor for which all three compounds had a high affinity. Each of the three compounds ameliorated scopolamine-induced working memory deficit in mice and improved reference memory impairment in aged rats at similar doses. Further, ASP5736 decreased the binding of LSD to 5-HT5A receptors in the olfactory bulb of rats in a dose-dependent manner and occupied 15%-50% of brain 5-HT5A receptors at behaviorally effective doses. These results indicate that the 5-HT5A receptor is involved in learning and memory and that treatment with 5-HT5A receptor antagonists might be broadly effective for cognitive impairment associated with not only schizophrenia but also dementia. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Boyd, Robert A.; Furlong, Edward T.
2002-01-01
The U.S. Geological Survey and the National Park Service conducted a reconnaissance study to investigate the occurrence of selected human-health pharmaceutical compounds in water samples collected from Lake Mead on the Colorado River and Las Vegas Wash, a waterway used to transport treated wastewater from the Las Vegas metropolitan area to Lake Mead. Current research indicates many of these compounds can bioaccumulate and may adversely affect aquatic organisms by disrupting physiological processes, impairing reproductive functions, increasing cancer rates, contributing to the development of antibiotic-resistant strains of bacteria, and acting in undesirable ways when mixed with other substances. These compounds may be present in effluent because a high percentage of prescription and non-prescription drugs used for human-health purposes are excreted from the body as a mixture of parent compounds and degraded metabolite compounds; also, they can be released to the environment when unused products are discarded by way of toilets, sinks, and trash in landfills. Thirteen of 33 targeted compounds were detected in at least one water sample collected between October 2000 and August 2001. All concentrations were less than or equal to 0.20 micrograms per liter. The most frequently detected compounds in samples from Las Vegas Wash were caffeine, carbamazepine (used to treat epilepsy), cotinine (a metabolite of nicotine), and dehydronifedipine (a metabolite of the antianginal Procardia). Less frequently detected compounds in samples collected from Las Vegas Wash were antibiotics (clarithromycin, erythromycin, sulfamethoxazole, and trimethoprim), acetaminophen (an analgesic and anti-inflammatory), cimetidine (used to treat ulcers), codeine (a narcotic and analgesic), diltiazem (an antihypertensive), and 1,7-dimethylxanthine (a metabolite of caffeine). Fewer compounds were detected in samples collected from Lake Mead than from Las Vegas Wash. Caffeine was detected in all samples collected from Lake Mead. Other compounds detected in samples collected from Lake Mead were acetaminophen, carbamazepine, cotinine, 1,7-dimethylxanthine, and sulfamethoxazole.
Protective Effects of Foods Containing Flavonoids on Age-Related Cognitive Decline.
Gildawie, Kelsea R; Galli, Rachel L; Shukitt-Hale, Barbara; Carey, Amanda N
2018-06-01
Evidence suggests that flavonoids, polyphenolic compounds found in many plant-derived foods, such as berries, may allay cognitive impairment. We review recent research exploring the protective effects of flavonoids on age-related cognitive decline and neurodegenerative disorders in humans and animals. We also address the mechanisms by which flavonoids may exert their effects and promising avenues of future research. Flavonoids have been found to decrease neuroinflammation, reduce oxidative stress, and mediate neuroplasticity in animal models of neurodegeneration and aging. Injecting flavonoids encased in metal nanoparticles may further enhance the efficacy of flavonoids. Animal studies also demonstrate that flavonoid supplementation may alleviate neurodegenerative cognitive and memory impairments. Limited human studies, however, demonstrate the need for further clinical research investigating flavonoids. Flavonoid supplementation, as well as dietary modification to include whole foods high in flavonoids, may provide therapeutic potential for aging individuals experiencing cognitive deficits resulting from neurodegeneration.
Jardim, Natália S; Sartori, Glaúbia; Sari, Marcel H M; Müller, Sabrina G; Nogueira, Cristina W
2017-08-15
Bisphenol A (BPA) is a compound integrated in commodities, which consequently increases the human exposure to this toxicant. The deleterious effects of BPA exposure during periods of brain development have been documented mainly concerning the impairment in memory functions. Diphenyl diselenide (PhSe) 2 , an organoselenium compound, shows protective/restorative effects against memory deficits in experimental models. Thus, this study investigated the effects of (PhSe) 2 on the memory impairments induced by BPA exposure to male and female mice and the possible involvement of glutamatergic system in these effects. Three-week-old male and female Swiss mice received BPA (5mg/kg), intragastrically, from 21st to 60th postnatal day. After, the animals were intragastrically treated with (PhSe) 2 (1mg/kg) during seven days. The mice performed the behavioral memory tests and the [ 3 H] glutamate uptake and NMDA receptor subunits (2A and 2B) analyses were carried out in the hippocampus and cerebral cortex of mice. The results demonstrated that the BPA exposure induced impairment of object recognition memory in both sexes. However, it caused impairments in spatial memory in female and in the passive avoidance memory in male mice. Besides, BPA caused a decrease in the [ 3 H] glutamate uptake and NMDA receptor subunit levels in the cortical and hippocampal regions depending on the sex. Treatment with (PhSe) 2 reversed in a sex-independent manner the behavioral impairments and molecular alterations. In conclusion, BPA had a negative effect in different memory types as well as in the glutamatergic parameters in a sex-dependent manner and (PhSe) 2 treatment was effective against these alterations. Copyright © 2017 Elsevier Inc. All rights reserved.
Bellissimo, Teresa; Masciarelli, Silvia; Poser, Elena; Genovese, Ilaria; Del Rio, Alberto; Colotti, Gianni; Fazi, Francesco
2017-01-01
The development of small-molecule-based target therapy design for human disease and cancer is object of growing attention. Recently, specific microRNA (miRNA) mimicking compounds able to bind the miRNA-binding domain of Argonaute 2 protein (AGO2) to inhibit miRNA loading and its functional activity were described. Computer-aided molecular design techniques and RNA immunoprecipitation represent suitable approaches to identify and experimentally determine if a compound is able to impair the loading of miRNAs on AGO2 protein. Here, we describe these two methodologies that we recently used to select a specific compound able to interfere with the AGO2 functional activity and able to improve the retinoic acid-dependent myeloid differentiation of leukemic cells.
Islam, Md. Tofazzal; Laatsch, Hartmut; von Tiedemann, Andreas
2016-01-01
The release of zoospores from sporangia and motility of the released zoospores are critical in the disease cycle of the Peronosporomycetes that cause devastating diseases in plants, fishes, animals and humans. Disruption of any of these asexual life stages eliminates the possibility of pathogenesis. In the course of screening novel bioactive secondary metabolites, we found that extracts of some strains of marine Streptomyces spp. rapidly impaired motility and caused subsequent lysis of zoospores of the grapevine downy mildew pathogen Plasmopara viticola at 10 μg/ml. We tested a number of secondary metabolites previously isolated from these strains and found that macrotetrolide antibiotics such as nonactin, monactin, dinactin and trinactin, and nactic acids such as (+)-nonactic acid, (+)-homonactic acid, nonactic acid methyl ester, homonactic acid methyl ester, bonactin and feigrisolide C impaired motility and caused subsequent lysis of P. viticola zoospores in a dose- and time-dependent manners with dinactin being the most active compound (MIC 0.3 μg/ml). A cation channel-forming compound, gramicidin, and a carrier of monovalent cations, nigericin also showed similar biological activities. Among all 12 compounds tested, gramicidin most potently arrested the motility of zoospores at concentrations starting from 0.1 μg/ml. All macrotetrolide antibiotics also displayed similar motility impairing activities against P. viticola, Phytophthora capsici, and Aphanomyces cochlioides zoospores indicating non-specific biological effects of these compounds toward peronosporomyctes. Furthermore, macrotetrolide antibiotics and gramicidin also markedly suppressed the release of zoospores from sporangia of P. viticola in a dose-dependent manner. As macrotetrolide antibiotics and gramicidin are known as enhancers of mitochondrial ATPase activity, inhibition of zoosporogenesis and motility of zoospores by these compounds are likely linked with hydrolysis of ATP through enhanced ATPase activity in mitochondria. This is the first report on motility inhibitory and lytic activities of macrotetrolide antibiotics and nactic acids against the zoospores of peronosporomycete phytopathogens. PMID:27917156
Zhou, Jing; Chen, Chin Ho; Aiken, Christopher
2006-12-01
The compound 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (DSB) potently and specifically inhibits human immunodeficiency virus type 1 (HIV-1) replication by delaying the cleavage of the CA-SP1 junction in Gag, leading to impaired maturation of the viral core. In this study, we investigated HIV-1 resistance to DSB by analyzing HIV-1 mutants encoding a variety of individual amino acid substitutions in the CA-SP1 cleavage site. Three of the substitutions were lethal to HIV-1 replication owing to a deleterious effect on particle assembly. The remaining mutants exhibited a range of replication efficiencies; however, each mutant was capable of replicating in the presence of concentrations of DSB that effectively inhibited wild-type HIV-1. Mutations conferring resistance to DSB also led to impaired binding of the compound to immature HIV-1 virions and loss of DSB-mediated inhibition of cleavage of Gag. Surprisingly, two of the DSB-resistant mutants retained an intermediate ability to bind the compound, suggesting that binding of DSB to immature HIV-1 particles may not be sufficient for antiviral activity. Overall, our results indicate that Gag amino acids L363 and A364 are critical for inhibition of HIV-1 replication by DSB and suggest that these residues form key contacts with the drug in the context of the assembling HIV-1 particle. These results have implications for the design of and screening for novel inhibitors of HIV-1 maturation.
Javitt, Daniel C.
2012-01-01
Over the last 20 years, glutamatergic models of schizophrenia have become increasingly accepted as etiopathological models of schizophrenia, based on the observation that phencyclidine (PCP) induces a schizophrenia-like psychosis by blocking neurotransmission at N-methyl-D-aspartate (NMDA)-type glutamate receptors. This article reviews developments in two key predictions of the model: first, that neurocognitive deficits in schizophrenia should follow the pattern of deficit predicted based on underlying NMDAR dysfunction and, second, that agents that stimulate NMDAR function should be therapeutically beneficial. As opposed to dopamine receptors, NMDAR are widely distributed throughout the brain, including subcortical as well as cortical brain regions, and sensory as well as association cortex. Studies over the past 20 years have documented severe sensory dysfunction in schizophrenia using behavioral, neurophysiological, and functional brain imaging approaches, including impaired generation of key sensory-related potentials such as mismatch negativity and visual P1 potentials. Similar deficits are observed in humans following administration of NMDAR antagonists such as ketamine in either humans or animal models. Sensory dysfunction, in turn, predicts impairments in higher order cognitive functions such as auditory or visual emotion recognition. Treatment studies have been performed with compounds acting directly at the NMDAR glycine site, such as glycine, D-serine, or D-cycloserine, and, more recently, with high-affinity glycine transport inhibitors such as RG1678 (Roche). More limited studies have been performed with compounds targeting the redox site. Overall, these compounds have been found to induce significant beneficial effects on persistent symptoms, suggesting novel approaches for treatment and prevention of schizophrenia. PMID:22987851
2016-10-01
evaluated using 209, 639, and 1269 magnification. For repre- sentative documentation of the morphology of each specimen, the photographs were taken from the...Holmes SJ, Kaplan SL, Jubelirer DP, Stechenberg BW, Hirsh SK (1984) Prospective evaluation of hearing impairment as a sequela of acute bacterial...enters the field of gene therapy and human studies commence, the question arises whether audiograms e the current gold standard for the evaluation of
Lamoral-Theys, Delphine; Wauthoz, Nathalie; Heffeter, Petra; Mathieu, Véronique; Jungwirth, Utte; Lefranc, Florence; Nève, Jean; Dubois, Jacques; Dufrasne, François; Amighi, Karim; Berger, Walter; Gailly, Philippe; Kiss, Robert
2012-01-01
Abstract Cancer cells exhibit de-regulation of multiple cellular signalling pathways and treatments of various types of cancers with polyphenols are promising. We recently reported the synthesis of a series of 33 novel divanillic and trivanillic polyphenols that displayed anticancer activity, at least in vitro, through inhibiting various kinases. This study revealed that minor chemical modifications of a trivanillate scaffold could convert cytotoxic compounds into cytostatic ones. Compound 13c, a tri-chloro derivative of trivanillic ester, displayed marked inhibitory activities against FGF-, VEGF-, EGF- and Src-related kinases, all of which are implicated not only in angiogenesis but also in the biological aggressiveness of various cancer types. The pan-anti-kinase activity of 13c occurs at less than one-tenth of its mean IC50in vitro growth inhibitory concentrations towards a panel of 12 cancer cell lines. Of the 26 kinases for which 13c inhibited their activity by >75%, eight (Yes, Fyn, FGF-R1, EGFR, Btk, Mink, Ret and Itk) are implicated in control of the actin cytoskeleton organization to varying degrees. Compound 13c accordingly impaired the typical organization of the actin cytoskeleton in human U373 glioblastoma cells. The pan-anti-kinase activity and actin cytoskeleton organization impairment provoked by 13c concomitantly occurs with calcium homeostasis impairment but without provoking MDR phenotype activation. All of these anticancer properties enabled 13c to confer therapeutic benefits in vivo in a mouse melanoma pseudometastatic lung model. These data argue in favour of further chemically modifying trivanillates to produce novel and potent anticancer drugs. PMID:21810170
Gootwine, Elisha; Abu-Siam, Mazen; Obolensky, Alexey; Rosov, Alex; Honig, Hen; Nitzan, Tali; Shirak, Andrey; Ezra-Elia, Raaya; Yamin, Esther; Banin, Eyal; Averbukh, Edward; Hauswirth, William W; Ofri, Ron; Seroussi, Eyal
2017-03-01
Applying CNGA3 gene augmentation therapy to cure a novel causative mutation underlying achromatopsia (ACHM) in sheep. Impaired vision that spontaneously appeared in newborn lambs was characterized by behavioral, electroretinographic (ERG), and histologic techniques. Deep-sequencing reads of an affected lamb and an unaffected lamb were compared within conserved genomic regions orthologous to human genes involved in similar visual impairment. Observed nonsynonymous amino acid substitutions were classified by their deleteriousness score. The putative causative mutation was assessed by producing compound CNGA3 heterozygotes and applying gene augmentation therapy using the orthologous human cDNA. Behavioral assessment revealed day blindness, and subsequent ERG examination showed attenuated photopic responses. Histologic and immunohistochemical examination of affected sheep eyes did not reveal degeneration, and cone photoreceptors expressing CNGA3 were present. Bioinformatics and sequencing analyses suggested a c.1618G>A, p.Gly540Ser substitution in the GMP-binding domain of CNGA3 as the causative mutation. This was confirmed by genetic concordance test and by genetic complementation experiment: All five compound CNGA3 heterozygotes, carrying both p.Arg236* and p.Gly540Ser mutations in CNGA3, were day-blind. Furthermore, subretinal delivery of the intact human CNGA3 gene using an adeno-associated viral vector (AAV) restored photopic vision in two affected p.Gly540Ser homozygous rams. The c.1618G>A, p.Gly540Ser substitution in CNGA3 was identified as the causative mutation for a novel form of ACHM in Awassi sheep. Gene augmentation therapy restored vision in the affected sheep. This novel mutation provides a large-animal model that is valid for most human CNGA3 ACHM patients; the majority of them carry missense rather than premature-termination mutations.
In-vitro effects of Thymus munbyanus essential oil and thymol on human sperm motility and function.
Chikhoune, Amirouche; Stouvenel, Laurence; Iguer-Ouada, Mokrane; Hazzit, Mohamed; Schmitt, Alain; Lorès, Patrick; Wolf, Jean Philippe; Aissat, Kamel; Auger, Jacques; Vaiman, Daniel; Touré, Aminata
2015-09-01
Traditional medicine has been used worldwide for centuries to cure or prevent disease and for male or female contraception. Only a few studies have directly investigated the effects of herbal compounds on spermatozoa. In this study, essential oil from Thymus munbyanus was extracted and its effect on human spermatozoa in vitro was analysed. Gas chromatography and Gas chromatography-mass spectrometry analyses identified 64 components, accounting for 98.9% of the composition of the oil. The principal components were thymol (52.0%), γ-terpinene (11.0%), ρ-cymene (8.5%) and carvacrol (5.2%). Freshly ejaculated spermatozoa was exposed from control individuals to various doses of the essential oil for different time periods, and recorded the vitality, the mean motility, the movement characteristics (computer-aided sperm analysis), the morphology and the ability to undergo protein hyperphosphorylation and acrosomal reaction, which constitute two markers of sperm capacitation and fertilizing ability. In vitro, both the essential oil extracted from T. munbyanus and thymol, the principal compound present in this oil, impaired human sperm motility and its capacity to undergo hyperphosphorylation and acrosome reaction. These compounds may, therefore, be of interest in the field of reproductive biology, as potential anti-spermatic agents. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Sepúlveda, Claudia S.; García, Cybele C.; Levingston Macleod, Jesica M.
2013-01-01
Several arenaviruses can cause severe hemorrhagic fever (HF) in humans, representing a public health threat in endemic areas of Africa and South America. The present study characterizes the potent virucidal activity of the carboxamide-derivatized aromatic disulfide NSC4492, an antiretroviral zinc finger-reactive compound, against Junín virus (JUNV), the causative agent of Argentine HF. The compound was able to inactivate JUNV in a time and temperature-dependent manner, producing more than 99 % reduction in virus titer upon incubation with virions at 37°C for 90 min. The ability of NSC4492-treated JUNV to go through different steps of the multiplication cycle was then evaluated. Inactivated virions were able to bind and enter into the host cell with similar efficiency as control infectious particles. In contrast, treatment with NSC4492 impaired the capacity of JUNV to drive viral RNA synthesis, as measured by quantitative RT-PCR, and blocked viral protein expression, as determined by indirect immunofluorescence. These results suggest that the disulfide NSC4492 targets on the arenavirus replication complex leading to impairment in viral RNA synthesis. Additionally, analysis of VLP produced in NSC4492-treated cells expressing JUNV matrix Z protein revealed that the compound may interact with Z resulting in an altered aggregation behavior of this protein, but without affecting its intrinsic self-budding properties. The potential perspectives of NSC4492 as an inactivating vaccinal compound for pathogenic arenaviruses are discussed. PMID:24278404
Genter, M B
1998-01-01
Carbimazole (2-carbethoxythio-1-methylimidazole) is a thiocarbamide drug used in the treatment of hyperthyroidism in humans. Side effects associated with carbimazole treatment are reported to include impaired taste, impaired olfaction, and hearing loss. The structurally similar antihyperthyroid drug methimazole (1-methyl-2-mercaptoimidazole), also reportedly associated with impaired taste and olfaction in humans, has recently been demonstrated by this laboratory to be an olfactory toxicant by both the oral and intraperitoneal routes of exposure in rodents. A systematic evaluation of sensory system effects of these compounds, either in rodents or humans, is not available in the literature. Male Long-Evans rats were used to evaluate the auditory and olfactory toxicity of carbimazole by two routes of exposure. Histopathological evaluation of nasal cavities from rats administered carbimazole via i.p. and oral routes revealed olfactory mucosal damage and early evidence of repair; a no-observed effect level (NOEL) of 100 mg/kg was observed for orally administered carbimazole. Further, these studies demonstrate evidence for the generation of the olfactory toxic metabolites of carbimazole by the olfactory mucosa itself, as incubation of carbimazole with an olfactory S9 preparation resulted in NADPH-dependent degradation of carbimazole. Evaluation of the auditory startle response in carbimazole-treated rats revealed no deficits, demonstrating that carbimazole does not cause a global loss of hearing in rats.
Cifre, Margalida; Díaz-Rúa, Rubén; Varela-Calviño, Rubén; Reynés, Bàrbara; Pericás-Beltrán, Jordi; Palou, Andreu; Oliver, Paula
2017-04-01
To analyse the usefulness of isolated human peripheral blood mononuclear cells (PBMC) to rapidly/easily reflect n-3 long-chain polyunsaturated fatty acid (LCPUFA) effects on lipid metabolism/inflammation gene profile, and evaluate if these effects are body mass index (BMI) dependent. PBMC from normoweight (NW) and overweight/obese (OW/OB) subjects were incubated with physiological doses of docosahexaenoic (DHA), eicosapentaenoic acid (EPA), or their combination. PBMC reflected increased beta-oxidation-like capacity (CPT1A expression) in OW/OB but only after DHA treatment. However, insensitivity to n-3 LCPUFA was evident in OW/OB for lipogenic genes: both PUFA diminished FASN and SREBP1C expression in NW, but no effect was observed for DHA in PBMC from high-BMI subjects. This insensitivity was also evident for inflammation gene profile: all treatments inhibited key inflammatory genes in NW; nevertheless, no effect was observed in OW/OB after DHA treatment, and EPA effect was impaired. SLC27A2, IL6 and TNFα PBMC expression analysis resulted especially interesting to determine obesity-related n-3 LCPUFA insensitivity. A PBMC-based human in vitro system reflects n-3 LCPUFA effects on lipid metabolism/inflammation which is impaired in OW/OB. These results confirm the utility of PBMC ex vivo systems for bioactive-compound screening to promote functional food development and to establish appropriate dietary strategies for obese population. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Discovery of a new series of imidazo[1,2-a]pyridine compounds as selective c-Met inhibitors.
Liu, Tong-Chao; Peng, Xia; Ma, Yu-Chi; Ji, Yin-Chun; Chen, Dan-Qi; Zheng, Ming-Yue; Zhao, Dong-Mei; Cheng, Mao-Sheng; Geng, Mei-Yu; Shen, Jing-Kang; Ai, Jing; Xiong, Bing
2016-05-01
Aberrant c-Met activation plays a critical role in cancer formation, progression and dissemination, as well as in development of resistance to anticancer drugs. Therefore, c-Met has emerged as an attractive target for cancer therapy. The aim of this study was to develop new c-Met inhibitors and elaborate the structure-activity relationships of identified inhibitors. Based on the predicted binding modes of Compounds 5 and 14 in docking studies, a new series of c-Met inhibitor-harboring 3-((1H-pyrrolo[3,2-c]pyridin-1-yl)sulfonyl)imidazo[1,2-a]pyridine scaffolds was discovered. Potent inhibitors were identified through extensive optimizations combined with enzymatic and cellular assays. A promising compound was further investigated in regard to its selectivity, its effects on c-Met signaling, cell proliferation and cell scattering in vitro. The most potent Compound 31 inhibited c-Met kinase activity with an IC50 value of 12.8 nmol/L, which was >78-fold higher than those of a panel of 16 different tyrosine kinases. Compound 31 (8, 40, 200 nmol/L) dose-dependently inhibited the phosphorylation of c-Met and its key downstream Akt and ERK signaling cascades in c-Met aberrant human EBC-1 cancer cells. In 12 human cancer cell lines harboring different background levels of c-Met expression/activation, Compound 31 potently inhibited c-Met-driven cell proliferation. Furthermore, Compound 31 dose-dependently impaired c-Met-mediated cell scattering of MDCK cells. This series of c-Met inhibitors is a promising lead for development of novel anticancer drugs.
Spigoni, Valentina; Fantuzzi, Federica; Tassotti, Michele; Brighenti, Furio; Bonadonna, Riccardo C.; Dei Cas, Alessandra
2017-01-01
Myeloid angiogenic cells (MACs) play a key role in endothelial repairing processes and functionality but their activity may be impaired by the lipotoxic effects of some molecules like stearic acid (SA). Among the dietary components potentially able to modulate endothelial function in vivo, (poly)phenolic compounds represent serious candidates. Here, we apply a comprehensive multidisciplinary approach to shed light on the prospects of Bergamot (Citrus bergamia), a citrus fruit rich in flavanones and other phenolic compounds, in the framework of lipotoxicity-induced MACs impairment. The flavanone profile of bergamot juice was characterized and 16 compounds were identified, with a new 3-hydroxy-3-methylglutaryl (HMG) flavanone, isosakuranetin-7-O-neohesperidoside-6″-O-HMG, described for the first time. Then, a pilot bioavailability study was conducted in healthy volunteers to assess the circulating flavanone metabolites in plasma and urine after consumption of bergamot juice. Up to 12 flavanone phase II conjugates (sulfates and glucuronides of hesperetin, naringenin and eriodyctiol) were detected and quantified. Finally, the effect of some of the metabolites identified in vivo, namely hesperetin-7-O-glucuronide, hesperetin-3′-O-glucuronide, naringenin-7-O-glucuronide and naringenin-4′-O-glucuronide, was tested, at physiological concentrations, on gene expression of inflammatory markers and apoptosis in MACs exposed to SA. Under these conditions, naringenin-4′-O-glucuronide and hesperetin-7-O-glucuronide were able to modulate inflammation, while no flavanone glucuronide was effective in curbing stearate-induced lipoapoptosis. These results demonstrate that some flavanone metabolites, derived from the in vivo transformation of bergamot juice phenolics in humans, may mitigate stearate-induced inflammation in MACs. PMID:29211032
Spigoni, Valentina; Mena, Pedro; Fantuzzi, Federica; Tassotti, Michele; Brighenti, Furio; Bonadonna, Riccardo C; Del Rio, Daniele; Dei Cas, Alessandra
2017-12-06
Myeloid angiogenic cells (MACs) play a key role in endothelial repairing processes and functionality but their activity may be impaired by the lipotoxic effects of some molecules like stearic acid (SA). Among the dietary components potentially able to modulate endothelial function in vivo, (poly)phenolic compounds represent serious candidates. Here, we apply a comprehensive multidisciplinary approach to shed light on the prospects of Bergamot ( Citrus bergamia ), a citrus fruit rich in flavanones and other phenolic compounds, in the framework of lipotoxicity-induced MACs impairment. The flavanone profile of bergamot juice was characterized and 16 compounds were identified, with a new 3-hydroxy-3-methylglutaryl (HMG) flavanone, isosakuranetin-7- O -neohesperidoside-6″- O -HMG, described for the first time. Then, a pilot bioavailability study was conducted in healthy volunteers to assess the circulating flavanone metabolites in plasma and urine after consumption of bergamot juice. Up to 12 flavanone phase II conjugates (sulfates and glucuronides of hesperetin, naringenin and eriodyctiol) were detected and quantified. Finally, the effect of some of the metabolites identified in vivo, namely hesperetin-7- O -glucuronide, hesperetin-3'- O -glucuronide, naringenin-7- O -glucuronide and naringenin-4'- O -glucuronide, was tested, at physiological concentrations, on gene expression of inflammatory markers and apoptosis in MACs exposed to SA. Under these conditions, naringenin-4'- O -glucuronide and hesperetin-7- O -glucuronide were able to modulate inflammation, while no flavanone glucuronide was effective in curbing stearate-induced lipoapoptosis. These results demonstrate that some flavanone metabolites, derived from the in vivo transformation of bergamot juice phenolics in humans, may mitigate stearate-induced inflammation in MACs.
Various MRS application tools for Alzheimer disease and mild cognitive impairment.
Gao, F; Barker, P B
2014-06-01
MR spectroscopy is a noninvasive technique that allows the detection of several naturally occurring compounds (metabolites) from well-defined regions of interest within the human brain. Alzheimer disease, a progressive neurodegenerative disorder, is the most common cause of dementia in the elderly. During the past 20 years, multiple studies have been performed on MR spectroscopy in patients with both mild cognitive impairment and Alzheimer disease. Generally, MR spectroscopy studies have found decreased N-acetylaspartate and increased myo-inositol in both patients with mild cognitive impairment and Alzheimer disease, with greater changes in Alzheimer disease than in mild cognitive impairment. This review summarizes the information content of proton brain MR spectroscopy and its related technical aspects, as well as applications of MR spectroscopy to mild cognitive impairment and Alzheimer disease. While MR spectroscopy may have some value in the differential diagnosis of dementias and assessing prognosis, more likely its role in the near future will be predominantly as a tool for monitoring disease response or progression in treatment trials. More work is needed to evaluate the role of MR spectroscopy as a biomarker in Alzheimer disease and its relationship to other imaging modalities. © 2014 by American Journal of Neuroradiology.
Targeting Virus-host Interactions of HIV Replication.
Weydert, Caroline; De Rijck, Jan; Christ, Frauke; Debyser, Zeger
2016-01-01
Cellular proteins that are hijacked by HIV in order to complete its replication cycle, form attractive new targets for antiretroviral therapy. In particular, the protein-protein interactions between these cellular proteins (cofactors) and viral proteins are of great interest to develop new therapies. Research efforts have led to the validation of different cofactors and some successes in therapeutic applications. Maraviroc, the first cofactor inhibitor approved for human medicinal use, provided a proof of concept. Furthermore, compounds developed as Integrase-LEDGF/p75 interaction inhibitors (LEDGINs) have advanced to early clinical trials. Other compounds targeting cofactors and cofactor-viral protein interactions are currently under development. Likewise, interactions between cellular restriction factors and their counteracting HIV protein might serve as interesting targets in order to impair HIV replication. In this respect, compounds targeting the Vif-APOBEC3G interaction have been described. In this review, we focus on compounds targeting the Integrase- LEDGF/p75 interaction, the Tat-P-TEFb interaction and the Vif-APOBEC3G interaction. Additionally we give an overview of currently discovered compounds presumably targeting cellular cofactor-HIV protein interactions.
Napolitano, Lara; Scalise, Mariafrancesca; Koyioni, Maria; Koutentis, Panayiotis; Catto, Marco; Eberini, Ivano; Parravicini, Chiara; Palazzolo, Luca; Pisani, Leonardo; Galluccio, Michele; Console, Lara; Carotti, Angelo; Indiveri, Cesare
2017-11-01
The LAT1 transporter is acknowledged as a pharmacological target of tumours since it is strongly overexpressed in many human cancers. The purpose of this work was to find novel compounds exhibiting potent and prolonged inhibition of the transporter. To this aim, compounds based on dithiazole and dithiazine scaffold have been screened in the proteoliposome experimental model. Inhibition was tested on the antiport catalysed by hLAT1 as transport of extraliposomal [ 3 H]histidine in exchange with intraliposomal histidine. Out of 59 compounds tested, 8 compounds, showing an inhibition higher than 90% at 100µM concentration, were subjected to dose-response analysis. Two of them exhibited IC 50 lower than 1µM. Inhibition kinetics, performed on the two best inhibitors, indicated a mixed type of inhibition with respect to the substrate. Furthermore, inhibition of the transporter was still present after removal of the compounds from the reaction mixture, but was reversed on addition of dithioerythritol, a S-S reducing agent, indicating the formation of disulfide(s) between the compounds and the protein. Molecular docking of the two best inhibitors on the hLAT1 homology structural model, highlighted interaction with the substrate binding site and formation of a covalent bond with the residue C407. Indeed, the inhibition was impaired in the hLAT1 mutant C407A confirming the involvement of that Cys residue. Treatment of SiHa cells expressing hLAT1 at relatively high level, with the two most potent inhibitors led to cell death which was not observed after treatment with a compound exhibiting very poor inhibitory effect. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhou, Heng; Xue, Wei; Chu, Shi-Feng; Wang, Zhen-Zhen; Li, Chuang-Jun; Jiang, Yi-Na; Luo, Lin-Ming; Luo, Piao; Li, Gang; Zhang, Dong-Ming; Chen, Nai-Hong
2016-08-01
Recent studies show that the extract of a Chinese herb Polygalae Radix exerts cognition-enhancing actions in rats and humans. The aim of this study was to characterize the pharmacological profiles of active compounds extracted from Polygalae Radix. Two fractions P3 and P6 and two compounds PTM-15 and polygalasaponin XXXII (PGS32) were prepared. Neuroprotective effects were evaluated in primary cortical neurons exposed to high concentration glutamate, serum deficiency or H2O2. Anti-dementia actions were assessed in scopolamine-induced amnesia in mice using step-through avoidance tests and channel water maze tests. After conducting the channel water maze tests, TrkB phosphorylation in mouse hippocampus was detected using Western blotting. Long-term potentiation (LTP) was induced in the dentate gyrus in adult rats; PGS32 (5 μL 400 μmol/L) was injected into the lateral cerebral ventricle 20 min after high frequency stimulation (HFS). Compared to the fraction P6, the fraction P3 showed more prominent neuroprotective effects in vitro and cognition-enhancing effects in scopolamine-induced amnesia in mice. One active compound PGS32 in the fraction P3 exerted potent cognition-enhancing action: oral administration of PGS32 (0.125 mg·kg(-1)·d(-1)) for 19 days abolished scopolamine-induced memory impairment in mice. Furthermore, PGS32 (0.5 and 2 mg·kg(-1)·d(-1)) significantly stimulated the phosphorylation of TrkB in the hippocampus. Intracerebroventricular injection of PGS32 significantly enhanced HFS-induced LTP in the dentate gyrus of rats. PGS32 attenuates scopolamine-induced cognitive impairments in mice, suggesting that it has a potential for the treatment of cognitive dysfunction and dementia.
Zhou, Heng; Xue, Wei; Chu, Shi-feng; Wang, Zhen-zhen; Li, Chuang-jun; Jiang, Yi-na; Luo, Lin-ming; Luo, Piao; Li, Gang; Zhang, Dong-ming; Chen, Nai-hong
2016-01-01
Aim: Recent studies show that the extract of a Chinese herb Polygalae Radix exerts cognition-enhancing actions in rats and humans. The aim of this study was to characterize the pharmacological profiles of active compounds extracted from Polygalae Radix. Methods: Two fractions P3 and P6 and two compounds PTM-15 and polygalasaponin XXXII (PGS32) were prepared. Neuroprotective effects were evaluated in primary cortical neurons exposed to high concentration glutamate, serum deficiency or H2O2. Anti-dementia actions were assessed in scopolamine-induced amnesia in mice using step-through avoidance tests and channel water maze tests. After conducting the channel water maze tests, TrkB phosphorylation in mouse hippocampus was detected using Western blotting. Long-term potentiation (LTP) was induced in the dentate gyrus in adult rats; PGS32 (5 μL 400 μmol/L) was injected into the lateral cerebral ventricle 20 min after high frequency stimulation (HFS). Results: Compared to the fraction P6, the fraction P3 showed more prominent neuroprotective effects in vitro and cognition-enhancing effects in scopolamine-induced amnesia in mice. One active compound PGS32 in the fraction P3 exerted potent cognition-enhancing action: oral administration of PGS32 (0.125 mg·kg−1·d−1) for 19 days abolished scopolamine-induced memory impairment in mice. Furthermore, PGS32 (0.5 and 2 mg·kg−1·d−1) significantly stimulated the phosphorylation of TrkB in the hippocampus. Intracerebroventricular injection of PGS32 significantly enhanced HFS-induced LTP in the dentate gyrus of rats. Conclusion: PGS32 attenuates scopolamine-induced cognitive impairments in mice, suggesting that it has a potential for the treatment of cognitive dysfunction and dementia. PMID:27180981
Health Risks and Benefits of Chickpea (Cicer arietinum) Consumption.
Gupta, Rinkesh Kumar; Gupta, Kriti; Sharma, Akanksha; Das, Mukul; Ansari, Irfan Ahmad; Dwivedi, Premendra D
2017-01-11
Chickpeas (CPs) are one of the most commonly consumed legumes, especially in the Mediterranean area as well as in the Western world. Being one of the most nutritional elements of the human diet, CP toxicity and allergy have raised health concerns. CPs may contain various antinutritional compounds, including protease inhibitors, phytic acid, lectins, oligosaccharides, and some phenolic compounds that may impair the utilization of the nutrients by people. Also, high consumption rates of CPs have enhanced the allergic problems in sensitive individuals as they contain many allergens. On the other hand, beneficial health aspects of CP consumption have received attention from researchers recently. Phytic acid, lectins, sterols, saponins, dietary fibers, resistant starch, oligosaccharides, unsaturated fatty acids, amylase inhibitors, and certain bioactive compounds such as carotenoids and isoflavones have shown the capability of lowering the clinical complications associated with various human diseases. The aim of this paper is to unravel the health risks as well as health-promoting aspects of CP consumption and to try to fill the gaps that currently exist. The present review also focuses on various prevention strategies to avoid health risks of CP consumption using simple but promising ways.
HYPOTHESIS: ZINC CAN BE EFFECTIVE IN TREATMENT OF VITILIGO
Bagherani, Nooshin; Yaghoobi, Reza; Omidian, Mohammad
2011-01-01
Vitiligo is a common depigmenting skin disorder (prevalence 0.1-2%), still represents a cause of stigmatization and quality of life impairment in a large population. Several theories on vitiligo etiopathogenesis have been suggested including in trauma, stress, and autoimmune and genetic predisposition, accumulation of toxic compounds, altered cellular environment, imbalance in the oxidant-antioxidant system, impaired melanocyte migration and/or proliferation, infection, and psychological factors. Zinc, as a trace element, has many vital functions in human. It is antiapoptotic factor and needed as a cofactor for antioxidant defense system. It plays an important role in the process of melanogenesis. It may be effective in prevention and treatment of vitiligo via some mechanism. Herein, we suggested some probable protective mechanism for zinc in association with vitiligo. PMID:22121258
Graham, Jennifer L.
2007-01-01
What are Harmful Algal Blooms (HABs)? Freshwater and marine harmful algal blooms (HABs) can occur anytime water use is impaired due to excessive accumulations of algae. HAB occurrence is affected by a complex set of physical, chemical, biological, hydrological, and meteorological conditions making it difficult to isolate specific causative environmental factors. Potential impairments include reduction in water quality, accumulation of malodorous scums in beach areas, algal production of toxins potent enough to poison both aquatic and terrestrial organisms, and algal production of taste-and-odor compounds that cause unpalatable drinking water and fish. HABs are a global problem, and toxic freshwater and (or) marine algae have been implicated in human and animal illness and death in over 45 countries worldwide and in at least 27 U.S. States (Yoo and others, 1995; Chorus and Bartram, 1999; Huisman and others, 2005).
Inhibitors of amino acids biosynthesis as antifungal agents.
Jastrzębowska, Kamila; Gabriel, Iwona
2015-02-01
Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy.
Lorenz, Mario; Paul, Friedemann; Moobed, Minoo; Baumann, Gert; Zimmermann, Benno F; Stangl, Karl; Stangl, Verena
2014-10-05
Catechol-O-methyltransferase (COMT) inactivates many endogenous and exogenous compounds by O-methylation. Therefore, it represents a major enzyme of the metabolic pathway with important biological functions in hormonal and drug metabolism. The tea catechin epigallocatechin-3-gallate (EGCG) is known to inhibit COMT enzymatic activity in vitro. Based on beneficial in vitro results, EGCG is extensively used in human intervention studies in a variety of human diseases. Owing to its low bioavailability, rather high doses of EGCG are frequently applied that may impair COMT activity in vivo. Enzymatic activities of four functional COMT single-nucleotide polymorphisms (SNPs) were determined in red blood cells (RBCs) in 24 healthy human volunteers (14 women, 10 men). The subjects were supplemented with 750 mg of EGCG and EGCG plasma levels and COMT enzyme activities in erythrocytes were measured before and 2 h after intervention. The homozygous Val→Met substitution in the SNP rs4680 resulted in significantly decreased COMT activity. Enzymatic COMT activities in RBCs were also affected by the other three COMT polymorphisms. EGCG plasma levels significantly increased after intervention. They were not influenced by any of the COMT SNPs and different enzyme activities. Ingestion of 750 mg EGCG did not result in impairment of COMT activity. However, COMT activity was significantly increased by 24% after EGCG consumption. These results indicate that supplementation with a high dose of EGCG does not impair the activity of COMT. Consequently, it may not interfere with COMT-mediated metabolism and elimination of exogenous and endogenous COMT substrates. Copyright © 2014 Elsevier B.V. All rights reserved.
Manral, Apra; Meena, Poonam; Saini, Vikas; Siraj, Fouzia; Shalini, Shruti; Tiwari, Manisha
2016-10-01
The development of agents that affect two or more relevant targets has drawn considerable attention in treatment of AD. Diallyl disulfide (DADS), an active principle of garlic, has been reported to prevent APP processing by amyloidogenic pathway. Recently, we have reported a new series of DADS derivatives and our findings revealed that compound 7k and 7l could provide good templates for developing new multifunctional agents for AD treatment. Thus, the present study was constructed to investigate the neuroprotective effect of DADS analogues (7k and 7l) against Aβ-induced neurotoxicity in SH-SY5Y human neuroblastoma cells and in ameliorating the cognition deficit induced by scopolamine in rat model. The results indicated that compound 7k and 7l significantly inhibited Aβ1-42-induced neuronal cell death by inhibiting ROS generation. Moreover, they prevented apoptosis, in response to ROS, by restoring normal Bax/Bcl-2 ratio. Furthermore, it was observed that scopolamine-induced memory impairment was coupled by alterations in neurotransmitters, acetylcholinesterase activity and oxidative stress markers. Histological analysis revealed severe damaging effects of scopolamine on the structure of cerebral cortex and hippocampus. Administration of compounds 7k and 7l at 5 mg/kg significantly reversed scopolamine-induced behavioural, biochemical, neurochemical and histological changes in a manner comparable to standard donepezil. Together the present findings and previous studies indicate that compounds 7k and 7l have neuroprotective and cognition-enhancing effects, which makes them a promising multi-target candidate for addressing the complex nature of AD.
Case Report: Diabetic Foot Ulcer Infection Treated with Topical Compounded Medications.
Agbi, Kelechi E; Carvalho, Maria; Phan, Ha; Tuma, Cristiane
2017-01-01
An adult diabetic male with three toes amputated on his right foot presented with an ulcer infection on his left foot, unresponsive to conventional antifungal oral medication for over two months. The ulcerated foot wound had a large impairment on the patient's quality of life, as determined by the Wound-QoL questionnaire. The compounding pharmacist recommended and the physician prescribed two topical compounded medicines, which were applied twice a day, free of charge at the compounding pharmacy. The foot ulcer infection was completely resolved following 13 days of treatment, with no longer any impairment on the patient's quality of life. This scientific case study highlights the value of pharmaceutical compounding in current therapeutics, the importance of the triad relationship, and the key role of the compounding pharmacist in diabetes care. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Discovery of a new series of imidazo[1,2-a]pyridine compounds as selective c-Met inhibitors
Liu, Tong-chao; Peng, Xia; Ma, Yu-chi; Ji, Yin-chun; Chen, Dan-qi; Zheng, Ming-yue; Zhao, Dong-mei; Cheng, Mao-sheng; Geng, Mei-yu; Shen, Jing-kang; Ai, Jing; Xiong, Bing
2016-01-01
Aim: Aberrant c-Met activation plays a critical role in cancer formation, progression and dissemination, as well as in development of resistance to anticancer drugs. Therefore, c-Met has emerged as an attractive target for cancer therapy. The aim of this study was to develop new c-Met inhibitors and elaborate the structure-activity relationships of identified inhibitors. Methods: Based on the predicted binding modes of Compounds 5 and 14 in docking studies, a new series of c-Met inhibitor-harboring 3-((1H-pyrrolo[3,2-c]pyridin-1-yl)sulfonyl)imidazo[1,2-a]pyridine scaffolds was discovered. Potent inhibitors were identified through extensive optimizations combined with enzymatic and cellular assays. A promising compound was further investigated in regard to its selectivity, its effects on c-Met signaling, cell proliferation and cell scattering in vitro. Results: The most potent Compound 31 inhibited c-Met kinase activity with an IC50 value of 12.8 nmol/L, which was >78-fold higher than those of a panel of 16 different tyrosine kinases. Compound 31 (8, 40, 200 nmol/L) dose-dependently inhibited the phosphorylation of c-Met and its key downstream Akt and ERK signaling cascades in c-Met aberrant human EBC-1 cancer cells. In 12 human cancer cell lines harboring different background levels of c-Met expression/activation, Compound 31 potently inhibited c-Met-driven cell proliferation. Furthermore, Compound 31 dose-dependently impaired c-Met-mediated cell scattering of MDCK cells. Conclusion: This series of c-Met inhibitors is a promising lead for development of novel anticancer drugs. PMID:27041462
Hung, Ching-Hsia; Chan, Shih-Hung; Chu, Pei-Ming; Tsai, Kun-Ling
2015-10-01
Atherosclerosis is believed to be an independent predictor of cardiovascular diseases. A growing body of evidence suggests that quercetin is a potent antioxidant and anti-inflammatory compound. The molecular mechanisms underlying its protective effects against oxidative stress in human endothelial cells remain unclear. This study was designed to confirm the hypothesis that quercetin inhibits oxidized LDL (oxLDL) induced endothelial oxidative damage by activating sirtuin 1 (SIRT1) and to explore the role of adenosine monophosphate activated protein kinase (AMPK), which is a negative regulator of Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) and free radicals. Human umbilical vein endothelial cells were treated with oxLDL with or without quercetin pretreatment. We found that quercetin pretreatment increased SIRT1 mRNA expression. In fact, quercetin protected against oxLDL-impaired SIRT1 and AMPK activities and reduced oxLDL-activated NOX2 and NOX4. However, silencing SIRT1 and AMPK diminished the protective function of quercetin against oxidative injuries. The results also indicated that oxLDL suppressed AKT/endothelial NO synthase, impaired mitochondrial dysfunction, and enhanced reactive oxygen species formation, activating the Nuclear Factor Kappa B (NF-κB) pathway. These results provide new insight regarding the possible molecular mechanisms of quercetin. Quercetin suppresses oxLDL-induced endothelial oxidative injuries by activating SIRT1 and modulating the AMPK/NADPH oxidase/AKT/endothelial NO synthase signaling pathway. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Naganuma, Misa; Motooka, Yumi; Sasaoka, Sayaka; Hatahira, Haruna; Hasegawa, Shiori; Fukuda, Akiho; Nakao, Satoshi; Shimada, Kazuyo; Hirade, Koseki; Mori, Takayuki; Yoshimura, Tomoaki; Kato, Takeshi; Nakamura, Mitsuhiro
2018-01-01
Platinum compounds cause several adverse events, such as nephrotoxicity, gastrointestinal toxicity, myelosuppression, ototoxicity, and neurotoxicity. We evaluated the incidence of renal impairment as adverse events are related to the administration of platinum compounds using the Japanese Adverse Drug Event Report database. We analyzed adverse events associated with the use of platinum compounds reported from April 2004 to November 2016. The reporting odds ratio at 95% confidence interval was used to detect the signal for each renal impairment incidence. We evaluated the time-to-onset profile of renal impairment and assessed the hazard type using Weibull shape parameter and used the applied association rule mining technique to discover undetected relationships such as possible risk factor. In total, 430,587 reports in the Japanese Adverse Drug Event Report database were analyzed. The reporting odds ratios (95% confidence interval) for renal impairment resulting from the use of cisplatin, oxaliplatin, carboplatin, and nedaplatin were 2.7 (2.5-3.0), 0.6 (0.5-0.7), 0.8 (0.7-1.0), and 1.3 (0.8-2.1), respectively. The lower limit of the reporting odds ratio (95% confidence interval) for cisplatin was >1. The median (lower-upper quartile) onset time of renal impairment following the use of platinum-based compounds was 6.0-8.0 days. The Weibull shape parameter β and 95% confidence interval upper limit of oxaliplatin were <1. In the association rule mining, the score of lift for patients who were treated with cisplatin and co-administered furosemide, loxoprofen, or pemetrexed was high. Similarly, the scores for patients with hypertension or diabetes mellitus were high. Our findings suggest a potential risk of renal impairment during cisplatin use in real-world setting. The present findings demonstrate that the incidence of renal impairment following cisplatin use should be closely monitored when patients are hypertensive or diabetic, or when they are co-administered furosemide, loxoprofen, or pemetrexed. In addition, healthcare professionals should closely assess a patient's background prior to treatment.
Screening for Small Molecule Inhibitors of Statin-Induced APP C-terminal Toxic Fragment Production
Poksay, Karen S.; Sheffler, Douglas J.; Spilman, Patricia; Campagna, Jesus; Jagodzinska, Barbara; Descamps, Olivier; Gorostiza, Olivia; Matalis, Alex; Mullenix, Michael; Bredesen, Dale E.; Cosford, Nicholas D. P.; John, Varghese
2017-01-01
Alzheimer’s disease (AD) is characterized by neuronal and synaptic loss. One process that could contribute to this loss is the intracellular caspase cleavage of the amyloid precursor protein (APP) resulting in release of the toxic C-terminal 31-amino acid peptide APP-C31 along with the production of APPΔC31, full-length APP minus the C-terminal 31 amino acids. We previously found that a mutation in APP that prevents this caspase cleavage ameliorated synaptic loss and cognitive impairment in a murine AD model. Thus, inhibition of this cleavage is a reasonable target for new therapeutic development. In order to identify small molecules that inhibit the generation of APP-C31, we first used an APPΔC31 cleavage site-specific antibody to develop an AlphaLISA to screen several chemical compound libraries for the level of N-terminal fragment production. This antibody was also used to develop an ELISA for validation studies. In both high throughput screening (HTS) and validation testing, the ability of compounds to inhibit simvastatin- (HTS) or cerivastatin- (validation studies) induced caspase cleavage at the APP-D720 cleavage site was determined in Chinese hamster ovary (CHO) cells stably transfected with wildtype (wt) human APP (CHO-7W). Several compounds, as well as control pan-caspase inhibitor Q-VD-OPh, inhibited APPΔC31 production (measured fragment) and rescued cell death in a dose-dependent manner. The effective compounds fell into several classes including SERCA inhibitors, inhibitors of Wnt signaling, and calcium channel antagonists. Further studies are underway to evaluate the efficacy of lead compounds – identified here using cells and tissues expressing wt human APP – in mouse models of AD expressing mutated human APP, as well as to identify additional compounds and determine the mechanisms by which they exert their effects. PMID:28261092
Alzahrani, Hasan A.; Boukraâ, Laïd; Bellik, Yuva; Abdellah, Fatiha; Bakhotmah, Balkees A.; Kolayli, Sevgi; Sahin, Huseyin
2012-01-01
It is well established that honey contains substantial antioxidant compounds that could protect cell components from the harmful action of free radicals. One can speculate that these compounds may strengthen the organism defenses and consequently prevent oxidative stress in humans. Therefore, over time, impaired cells can accumulate and lead to age-related diseases. A comparative study was carried out to assess the antioxidant activity of three varieties of honey from different botanical and geographical (Manuka honey from New Zealand, Acacia Honey from Germany and Wild carrot honey from Algeria). Manuka honey had the highest phenolic content with 899.09 ± 11.75 mg gallic acid/kg. A strong correlation between the antioxidant activities of honeys and their total phenol contents has been noticed. PMID:23121756
Stockburger, Carola; Miano, Davide; Pallas, Thea; Friedland, Kristina; Müller, Walter E
2016-01-01
The mitochondrial cascade hypothesis of dementia assumes mitochondrial dysfunction leading to reduced energy supply, impaired neuroplasticity, and finally cell death as one major pathomechanism underlying the continuum from brain aging over mild cognitive impairment to initial and advanced late onset Alzheimer's disease. Accordingly, improving mitochondrial function has become an important strategy to treat the early stages of this continuum. The metabolic enhancer piracetam has been proposed as possible prototype for those compounds by increasing impaired mitochondrial function and related aspects like mechanisms of neuroplasticity. We here report that piracetam at therapeutically relevant concentrations improves neuritogenesis in the human cell line SH-SY5Y over conditions mirroring the whole spectrum of age-associated cognitive decline. These effects go parallel with improvement of impaired mitochondrial dynamics shifting back fission and fusion balance to the energetically more favorable fusion site. Impaired fission and fusion balance can also be induced by a reduction of the mitochondrial permeability transition pore (mPTP) function as atractyloside which indicates the mPTP has similar effects on mitochondrial dynamics. These changes are also reduced by piracetam. These findings suggest the mPTP as an important target for the beneficial effects of piracetam on mitochondrial function.
Stockburger, Carola; Miano, Davide; Pallas, Thea; Müller, Walter E.
2016-01-01
The mitochondrial cascade hypothesis of dementia assumes mitochondrial dysfunction leading to reduced energy supply, impaired neuroplasticity, and finally cell death as one major pathomechanism underlying the continuum from brain aging over mild cognitive impairment to initial and advanced late onset Alzheimer's disease. Accordingly, improving mitochondrial function has become an important strategy to treat the early stages of this continuum. The metabolic enhancer piracetam has been proposed as possible prototype for those compounds by increasing impaired mitochondrial function and related aspects like mechanisms of neuroplasticity. We here report that piracetam at therapeutically relevant concentrations improves neuritogenesis in the human cell line SH-SY5Y over conditions mirroring the whole spectrum of age-associated cognitive decline. These effects go parallel with improvement of impaired mitochondrial dynamics shifting back fission and fusion balance to the energetically more favorable fusion site. Impaired fission and fusion balance can also be induced by a reduction of the mitochondrial permeability transition pore (mPTP) function as atractyloside which indicates the mPTP has similar effects on mitochondrial dynamics. These changes are also reduced by piracetam. These findings suggest the mPTP as an important target for the beneficial effects of piracetam on mitochondrial function. PMID:27747106
Influence of Bisphenol A on Type 2 Diabetes Mellitus
Provvisiero, Donatella Paola; Pivonello, Claudia; Muscogiuri, Giovanna; Negri, Mariarosaria; de Angelis, Cristina; Simeoli, Chiara; Pivonello, Rosario; Colao, Annamaria
2016-01-01
Bisphenol A (BPA) is an organic synthetic compound employed to produce plastics and epoxy resins. It is used as a structural component in polycarbonate beverage bottles and as coating for metal surface in food containers and packaging. The adverse effects of BPA on human health are widely disputed. BPA has been recently associated with a wide variety of medical disorders and, in particular, it was identified as potential endocrine-disrupting compound with diabetogenic action. Most of the clinical observational studies in humans reveal a positive link between BPA exposure, evaluated by the measurement of urinary BPA levels, and the risk of developing type 2 diabetes mellitus. Clinical studies on humans and preclinical studies on in vivo, ex vivo, and in vitro models indicate that BPA, mostly at low doses, may have a role in increasing type 2 diabetes mellitus developmental risk, directly acting on pancreatic cells, in which BPA induces the impairment of insulin and glucagon secretion, triggers inhibition of cell growth and apoptosis, and acts on muscle, hepatic, and adipose cell function, triggering an insulin-resistant state. The current review summarizes the available evidences regarding the association between BPA and type 2 diabetes mellitus, focusing on both clinical and preclinical studies. PMID:27782064
Gootwine, Elisha; Abu-Siam, Mazen; Obolensky, Alexey; Rosov, Alex; Honig, Hen; Nitzan, Tali; Shirak, Andrey; Ezra-Elia, Raaya; Yamin, Esther; Banin, Eyal; Averbukh, Edward; Hauswirth, William W.; Ofri, Ron; Seroussi, Eyal
2017-01-01
Purpose Applying CNGA3 gene augmentation therapy to cure a novel causative mutation underlying achromatopsia (ACHM) in sheep. Methods Impaired vision that spontaneously appeared in newborn lambs was characterized by behavioral, electroretinographic (ERG), and histologic techniques. Deep-sequencing reads of an affected lamb and an unaffected lamb were compared within conserved genomic regions orthologous to human genes involved in similar visual impairment. Observed nonsynonymous amino acid substitutions were classified by their deleteriousness score. The putative causative mutation was assessed by producing compound CNGA3 heterozygotes and applying gene augmentation therapy using the orthologous human cDNA. Results Behavioral assessment revealed day blindness, and subsequent ERG examination showed attenuated photopic responses. Histologic and immunohistochemical examination of affected sheep eyes did not reveal degeneration, and cone photoreceptors expressing CNGA3 were present. Bioinformatics and sequencing analyses suggested a c.1618G>A, p.Gly540Ser substitution in the GMP-binding domain of CNGA3 as the causative mutation. This was confirmed by genetic concordance test and by genetic complementation experiment: All five compound CNGA3 heterozygotes, carrying both p.Arg236* and p.Gly540Ser mutations in CNGA3, were day-blind. Furthermore, subretinal delivery of the intact human CNGA3 gene using an adeno-associated viral vector (AAV) restored photopic vision in two affected p.Gly540Ser homozygous rams. Conclusions The c.1618G>A, p.Gly540Ser substitution in CNGA3 was identified as the causative mutation for a novel form of ACHM in Awassi sheep. Gene augmentation therapy restored vision in the affected sheep. This novel mutation provides a large-animal model that is valid for most human CNGA3 ACHM patients; the majority of them carry missense rather than premature-termination mutations. PMID:28282490
Novelli, Michela; Beffy, Pascale; Menegazzi, Marta; De Tata, Vincenzo; Martino, Luisa; Sgarbossa, Anna; Porozov, Svetlana; Pippa, Anna; Masini, Matilde; Marchetti, Piero; Masiello, Pellegrino
2014-02-01
The extract of Hypericum perforatum (St. John's wort, SJW) and its component hyperforin (HPF) were previously shown to inhibit cytokine-induced activation of signal transducer and activator of transcription-1 and nuclear factor κB and prevent apoptosis in a cultured β-cell line. Objective of this study was to assess the protection exerted by SJW and HPF on isolated rat and human islets exposed to cytokines in vitro. Functional, ultrastructural, biomolecular and cell death evaluation studies were performed. In both rat and human islets, SJW and HPF counteracted cytokine-induced functional impairment and down-regulated mRNA expression of pro-inflammatory target genes, such as iNOS, CXCL9, CXCL10, COX2. Cytokine-induced NO production from cultured islets, evaluated by nitrites measurement in the medium, was significantly reduced in the presence of the vegetal compounds. Noteworthy, the increase in apoptosis and necrosis following 48-h exposure to cytokines was fully prevented by SJW and partially by HPF. Ultrastructural morphometric analysis in human islets exposed to cytokines for 20 h showed that SJW or HPF avoided early β-cell damage (e.g., mitochondrial alterations and loss of insulin granules). In conclusion, SJW compounds protect rat and human islets against cytokine effects by counteracting key mechanisms of cytokine-mediated β-cell injury and represent promising pharmacological tools for prevention or limitation of β-cell dysfunction and loss in type 1 diabetes.
Chen, Yao; Zhu, Jie; Mo, Jun; Yang, Hongyu; Jiang, Xueyang; Lin, Hongzhi; Gu, Kai; Pei, Yuqiong; Wu, Liang; Tan, Renxiang; Hou, Jing; Chen, Jingyi; Lv, Yang; Bian, Yaoyao; Sun, Haopeng
2018-12-01
Small molecule cholinesterases inhibitor (ChEI) provides an effective therapeutic strategy to treat Alzheimer's disease (AD). Currently, the discovery of new ChEI with multi-target effect is still of great importance. Herein, we report the synthesis, structure-activity relationship study and biological evaluation of a series of tacrine-cinnamic acid hybrids as new ChEIs. All target compounds are evaluated for their in vitro cholinesterase inhibitory activities. The representatives which show potent activity on cholinesterase, are evaluated for the amyloid β-protein self-aggregation inhibition and in vivo assays. The optimal compound 19, 27, and 30 (human AChE IC 50 = 10.2 ± 1.2, 16.5 ± 1.7, and 15.3 ± 1.8 nM, respectively) show good performance in ameliorating the scopolamine-induced cognition impairment and preliminary safety in hepatotoxicity evaluation. These compounds deserve further evaluation for the development of new therapeutic agents against AD.
Modeling autism spectrum disorders with human neurons.
Beltrão-Braga, Patricia C B; Muotri, Alysson R
2017-02-01
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by impaired social communication and interactions and by restricted and repetitive behaviors. Although ASD is suspected to have a heritable or sporadic genetic basis, its underlying etiology and pathogenesis are not well understood. Therefore, viable human neurons and glial cells produced using induced pluripotent stem cells (iPSC) to reprogram cells from individuals affected with ASD provide an unprecedented opportunity to elucidate the pathophysiology of these disorders, providing novel insights regarding ASD and a potential platform to develop and test therapeutic compounds. Herein, we discuss the state of art with regards to ASD modeling, including limitations of this technology, as well as potential future directions. This article is part of a Special Issue entitled SI: Exploiting human neurons. Copyright © 2016 Elsevier B.V. All rights reserved.
SEURAT-1 liver gold reference compounds: a mechanism-based review.
Jennings, Paul; Schwarz, Michael; Landesmann, Brigitte; Maggioni, Silvia; Goumenou, Marina; Bower, David; Leonard, Martin O; Wiseman, Jeffrey S
2014-12-01
There is an urgent need for the development of alternative methods to replace animal testing for the prediction of repeat dose chemical toxicity. To address this need, the European Commission and Cosmetics Europe have jointly funded a research program for 'Safety Evaluation Ultimately Replacing Animal Testing.' The goal of this program was the development of in vitro cellular systems and associated computational capabilities for the prediction of hepatic, cardiac, renal, neuronal, muscle, and skin toxicities. An essential component of this effort is the choice of appropriate reference compounds that can be used in the development and validation of assays. In this review, we focus on the selection of reference compounds for liver pathologies in the broad categories of cytotoxicity and lipid disorders. Mitochondrial impairment, oxidative stress, and apoptosis are considered under the category of cytotoxicity, while steatosis, cholestasis, and phospholipidosis are considered under the category of lipid dysregulation. We focused on four compound classes capable of initiating such events, i.e., chemically reactive compounds, compounds with specific cellular targets, compounds that modulate lipid regulatory networks, and compounds that disrupt the plasma membrane. We describe the molecular mechanisms of these compounds and the cellular response networks which they elicit. This information will be helpful to both improve our understanding of mode of action and help in the selection of appropriate mechanistic biomarkers, allowing us to progress the development of animal-free models with improved predictivity to the human situation.
Berry, Bonnie J; Smith, Alec S T; Long, Christopher J; Martin, Candace C; Hickman, James J
2018-05-22
Alzheimer's disease (AD) is characterized by slow, progressive neurodegeneration leading to severe neurological impairment, but current drug development efforts are limited by the lack of robust, human-based disease models. Amyloid-β (Aβ) is known to play an integral role in AD progression as it has been shown to interfere with neurological function. However, studies into AD pathology commonly apply Aβ to neurons for short durations at nonphysiological concentrations to induce an exaggerated dysfunctional phenotype. Such methods are unlikely to elucidate early stage disease dysfunction, when treatment is still possible, since damage to neurons by these high concentrations is extensive. In this study, we investigated chronic, pathologically relevant Aβ oligomer concentrations to induce an electrophysiological phenotype that is more representative of early AD progression compared to an acute high-dose application in human cortical neurons. The high, acute oligomer dose resulted in severe neuronal toxicity as well as upregulation of tau and phosphorylated tau. Chronic, low-dose treatment produced significant functional impairment without increased cell death or accumulation of tau protein. This in vitro phenotype more closely mirrors the status of early stage neural decline in AD pathology and could provide a valuable tool to further understanding of early stage AD pathophysiology and for screening potential therapeutic compounds.
Nutraceuticals in cognitive impairment and Alzheimer's disease.
Mecocci, P; Tinarelli, C; Schulz, R J; Polidori, M C
2014-01-01
Several chemical substances belonging to classes of natural dietary origin display protective properties against some age-related diseases including neurodegenerative ones, particularly Alzheimer's disease (AD). These compounds, known as nutraceuticals, differ structurally, act therefore at different biochemical and metabolic levels and have shown different types of neuroprotective properties. The aim of this review is to summarize data from observational studies, clinical trials, and randomized clinical trials (RCTs) in humans on the effects of selected nutraceuticals against age-related cognitive impairment and dementia. We report results from studies on flavonoids, some vitamins and other natural substances that have been studied in AD and that might be beneficial for the maintenance of a good cognitive performance. Due to the substantial lack of high-level evidence studies there is no possibility for recommendation of nutraceuticals in dementia-related therapeutic guidelines. Nevertheless, the strong potential for their neuroprotective action warrants further studies in the field.
Rodriguez-Falces, Javier; Place, Nicolas
2018-03-01
The compound muscle action potential (M wave) has been commonly used to assess the peripheral properties of the neuromuscular system. More specifically, changes in the M-wave features are used to examine alterations in neuromuscular propagation that can occur during fatiguing contractions. The utility of the M wave is based on the assumption that impaired neuromuscular propagation results in a decrease in M-wave size. However, there remains controversy on whether the size of the M wave is increased or decreased during and/or after high-intensity exercise. The controversy partly arises from the fact that previous authors have considered the M wave as a whole, i.e., without analyzing separately its first and second phases. However, in a series of studies we have demonstrated that the first and second phases of the M wave behave in a different manner during and after fatiguing contractions. The present review is aimed at five main objectives: (1) to describe the mechanistic factors that determine the M-wave shape; (2) to analyze the various factors influencing M-wave properties; (3) to emphasize the need to analyze separately the first and second M-wave phases to adequately identify and interpret changes in muscle fiber membrane properties; (4) to advance the hypothesis that it is an increase (and not a decrease) of the M-wave first phase which reflects impaired sarcolemmal membrane excitability; and (5) to revisit the involvement of impaired sarcolemmal membrane excitability in the reduction of the force generating capacity.
Monitoring indicators of harmful cyanobacteria in Texas
Kiesling, Richard L.; Gary, Robin H.; Gary, Marcus O.
2008-01-01
Harmful algal blooms can occur when certain types of microscopic algae grow quickly in water, forming visible patches that might harm the health of the environment, plants, or animals. In freshwater, species of Cyanobacteria (also known as bluegreen algae) are the dominant group of harmful, bloom-forming algae. When Cyanobacteria form a harmful algal bloom, potential impairments include restricted recreational activities because of algal scums or algal mats, potential loss of public water supply because of taste and odor compounds (for example, geosmin), and the production of toxins (for example, microcystin) in amounts capable of threatening human health and wildlife.
Habert, René; Livera, Gabriel; Rouiller-Fabre, Virginie
2014-01-01
Phthalates provide one of the most documented example evidencing how much we must be cautious when using the traditional paradigm based on extrapolation of experimental data from rodent studies for human health risk assessment of endocrine disruptors (EDs). Since foetal testis is known as one of the most sensitive targets of EDs, phthalate risk assessment is routinely based on the capacity of such compounds to decrease testosterone production by the testis or to impair masculinization in the rat during foetal life. In this paper, the well-established inhibiting effects of phthalates of the foetal Leydig cells function in the rat are briefly reviewed. Then, data obtained in humans and other species are carefully analysed. Already in January 2009, using the organotypic culture system named Fetal Testis Assay (FeTA) that we developed, we reported that phthalates might not affect testosterone production in human foetal testes. Several recent experimental studies using xenografts confirm the absence of detectable anti-androgenic effect of phthalates in the human foetal testes. Epidemiological studies led to contradictory results. Altogether, these findings suggest that phthalates effects on foetal Leydig cells are largely species-specific. Consequently, the phthalate threshold doses that disturb foetal steroidogenesis in rat testes and that are presently used to define the acceptable daily intake levels for human health protection must be questioned. This does not mean that phthalates are safe because these compounds have many deleterious effects upon germ cell development that may be common to the different studied species including human. More generally, the identification of common molecular, cellular or/and phenotypic targets in rat and human testes should precede the choice of the toxicological endpoint in rat to accurately assess the safety threshold of any ED in humans.
Scopolamine provocation-based pharmacological MRI model for testing procognitive agents.
Hegedűs, Nikolett; Laszy, Judit; Gyertyán, István; Kocsis, Pál; Gajári, Dávid; Dávid, Szabolcs; Deli, Levente; Pozsgay, Zsófia; Tihanyi, Károly
2015-04-01
There is a huge unmet need to understand and treat pathological cognitive impairment. The development of disease modifying cognitive enhancers is hindered by the lack of correct pathomechanism and suitable animal models. Most animal models to study cognition and pathology do not fulfil either the predictive validity, face validity or construct validity criteria, and also outcome measures greatly differ from those of human trials. Fortunately, some pharmacological agents such as scopolamine evoke similar effects on cognition and cerebral circulation in rodents and humans and functional MRI enables us to compare cognitive agents directly in different species. In this paper we report the validation of a scopolamine based rodent pharmacological MRI provocation model. The effects of deemed procognitive agents (donepezil, vinpocetine, piracetam, alpha 7 selective cholinergic compounds EVP-6124, PNU-120596) were compared on the blood-oxygen-level dependent responses and also linked to rodent cognitive models. These drugs revealed significant effect on scopolamine induced blood-oxygen-level dependent change except for piracetam. In the water labyrinth test only PNU-120596 did not show a significant effect. This provocational model is suitable for testing procognitive compounds. These functional MR imaging experiments can be paralleled with human studies, which may help reduce the number of false cognitive clinical trials. © The Author(s) 2015.
Recent Developments in Folate Nutrition.
Naderi, Nassim; House, James D
The term folate (vitamin B9) refers to a group of water-soluble compounds that are nutritionally essential for the support of optimal human health and development. Folates participate in numerous one-carbon transfer reactions, including the methylation of important biomolecules (lipids, amino acids, DNA). A deficiency of folate leads to pathological outcomes including anemia and impairments in reproductive health and fetal development. Due to the linkage of impaired folate status with an increased prevalence of neural tube defects (NTDs) in babies, several jurisdictions required the fortification of the food supply with folic acid, a synthetic and stable form of folate. Data from the postfortification era have provided strong evidence for the reduction of NTDs due to folic acid fortification. However, concern is now growing with respect to the amount of synthetic folic acid within the human food supply. Excess folic acid intake has been linked to a masking of vitamin B12 deficiency, and concerns regarding the promotion of folate-sensitive cancers, including colorectal cancer. New strategies to ensure the supply of optimal folate to at-risk populations may be needed, including the use of biofortification approaches, in order to address recent concerns. © 2018 Elsevier Inc. All rights reserved.
Arshad, Laiba; Jantan, Ibrahim; Bukhari, Syed Nasir Abbas; Haque, Md Areeful
2017-01-01
The immune system is complex and pervasive as it functions to prevent or limit infections in the human body. In a healthy organism, the immune system and the redox balance of immune cells maintain homeostasis within the body. The failure to maintain the balance may lead to impaired immune response and either over activity or abnormally low activity of the immune cells resulting in autoimmune or immune deficiency diseases. Compounds containing α,β-unsaturated carbonyl-based moieties are often reactive. The reactivity of these groups is responsible for their diverse pharmacological activities, and the most important and widely studied include the natural compounds curcumin, chalcone, and zerumbone. Numerous studies have revealed the mainly immunosuppressive and anti-inflammatory activities of the aforesaid compounds. This review highlights the specific immunosuppressive effects of these natural α,β-unsaturated carbonyl-based compounds, and their analogs and derivatives on different types of immune cells of the innate (granulocytes, monocytes, macrophages, and dendritic cells) and adaptive (T cells, B cells, and natural killer cells) immune systems. The inhibitory effects of these compounds have been comprehensively studied on neutrophils, monocytes and macrophages but their effects on T cells, B cells, natural killer cells, and dendritic cells have not been well investigated. It is of paramount importance to continue generating experimental data on the mechanisms of action of α,β-unsaturated carbonyl-based compounds on immune cells to provide useful information for ensuing research to discover new immunomodulating agents.
Arshad, Laiba; Jantan, Ibrahim; Bukhari, Syed Nasir Abbas; Haque, Md. Areeful
2017-01-01
The immune system is complex and pervasive as it functions to prevent or limit infections in the human body. In a healthy organism, the immune system and the redox balance of immune cells maintain homeostasis within the body. The failure to maintain the balance may lead to impaired immune response and either over activity or abnormally low activity of the immune cells resulting in autoimmune or immune deficiency diseases. Compounds containing α,β-unsaturated carbonyl-based moieties are often reactive. The reactivity of these groups is responsible for their diverse pharmacological activities, and the most important and widely studied include the natural compounds curcumin, chalcone, and zerumbone. Numerous studies have revealed the mainly immunosuppressive and anti-inflammatory activities of the aforesaid compounds. This review highlights the specific immunosuppressive effects of these natural α,β-unsaturated carbonyl-based compounds, and their analogs and derivatives on different types of immune cells of the innate (granulocytes, monocytes, macrophages, and dendritic cells) and adaptive (T cells, B cells, and natural killer cells) immune systems. The inhibitory effects of these compounds have been comprehensively studied on neutrophils, monocytes and macrophages but their effects on T cells, B cells, natural killer cells, and dendritic cells have not been well investigated. It is of paramount importance to continue generating experimental data on the mechanisms of action of α,β-unsaturated carbonyl-based compounds on immune cells to provide useful information for ensuing research to discover new immunomodulating agents. PMID:28194110
Aufderheide, Michaela; Scheffler, Stefanie; Ito, Shigeaki; Ishikawa, Shinkichi; Emura, Makito
2015-01-01
Mucociliary clearance is the primary physical mechanism to protect the human airways against harmful effects of inhaled particles. Environmental factors play a significant role in the impairment of this defense mechanism, whereas cigarette smoke is discussed to be one of the clinically most important causes. Impaired mucociliary clearance in smokers has been connected to changes in ciliated cells such as decreased numbers, altered structure and beat frequency. Clinical studies have shown that cilia length is reduced in healthy smokers and that long-term exposure to cigarette smoke leads to reduced numbers of ciliated cells in mice. We present an in vitro model of primary normal human bronchiolar epithelial (NHBE) cells with in vivo like morphology to study the influence of cigarette mainstream smoke on ciliated cells. We exposed mucociliary differentiated cultures repeatedly to non-toxic concentrations of mainstream cigarette smoke (4 cigarettes, 5 days/week, 8 repetitions in total) at the air-liquid interface. Charcoal filter tipped cigarettes were compared to those being equipped with standard cellulose acetate filters. Histopathological analyses of the exposed cultures showed a reduction of cilia bearing cells, shortening of existing cilia and finally disappearance of all cilia in cigarette smoke exposed cells. In cultures exposed to charcoal filtered cigarette smoke, little changes in cilia length were seen after four exposure repetitions, but those effects were reversed after a two day recovery period. Those differences indicate that volatile organic compounds, being removed by the charcoal filter tip, affect primary bronchiolar epithelial cells concerning their cilia formation and function comparable with the in vivo situation. In conclusion, our in vitro model presents a valuable tool to study air-borne ciliatoxic compounds. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.
Saha, Prasenjit Prasad; Kumar, S. K. Praveen; Srivastava, Shubhi; Sinha, Devanjan; Pareek, Gautam; D'Silva, Patrick
2014-01-01
Iron-sulfur (Fe-S) clusters are versatile cofactors involved in regulating multiple physiological activities, including energy generation through cellular respiration. Initially, the Fe-S clusters are assembled on a conserved scaffold protein, iron-sulfur cluster scaffold protein (ISCU), in coordination with iron and sulfur donor proteins in human mitochondria. Loss of ISCU function leads to myopathy, characterized by muscle wasting and cardiac hypertrophy. In addition to the homozygous ISCU mutation (g.7044G→C), compound heterozygous patients with severe myopathy have been identified to carry the c.149G→A missense mutation converting the glycine 50 residue to glutamate. However, the physiological defects and molecular mechanism associated with G50E mutation have not been elucidated. In this report, we uncover mechanistic insights concerning how the G50E ISCU mutation in humans leads to the development of severe ISCU myopathy, using a human cell line and yeast as the model systems. The biochemical results highlight that the G50E mutation results in compromised interaction with the sulfur donor NFS1 and the J-protein HSCB, thus impairing the rate of Fe-S cluster synthesis. As a result, electron transport chain complexes show significant reduction in their redox properties, leading to loss of cellular respiration. Furthermore, the G50E mutant mitochondria display enhancement in iron level and reactive oxygen species, thereby causing oxidative stress leading to impairment in the mitochondrial functions. Thus, our findings provide compelling evidence that the respiration defect due to impaired biogenesis of Fe-S clusters in myopathy patients leads to manifestation of complex clinical symptoms. PMID:24573684
Musumeci, Lucia; Kuijpers, Marijke J; Gilio, Karen; Hego, Alexandre; Théâtre, Emilie; Maurissen, Lisbeth; Vandereyken, Maud; Diogo, Catia V; Lecut, Christelle; Guilmain, William; Bobkova, Ekaterina V; Eble, Johannes A; Dahl, Russell; Drion, Pierre; Rascon, Justin; Mostofi, Yalda; Yuan, Hongbin; Sergienko, Eduard; Chung, Thomas D Y; Thiry, Marc; Senis, Yotis; Moutschen, Michel; Mustelin, Tomas; Lancellotti, Patrizio; Heemskerk, Johan W M; Tautz, Lutz; Oury, Cécile; Rahmouni, Souad
2015-02-17
A limitation of current antiplatelet therapies is their inability to separate thrombotic events from bleeding occurrences. A better understanding of the molecular mechanisms leading to platelet activation is important for the development of improved therapies. Recently, protein tyrosine phosphatases have emerged as critical regulators of platelet function. This is the first report implicating the dual-specificity phosphatase 3 (DUSP3) in platelet signaling and thrombosis. This phosphatase is highly expressed in human and mouse platelets. Platelets from DUSP3-deficient mice displayed a selective impairment of aggregation and granule secretion mediated by the collagen receptor glycoprotein VI and the C-type lectin-like receptor 2. DUSP3-deficient mice were more resistant to collagen- and epinephrine-induced thromboembolism compared with wild-type mice and showed severely impaired thrombus formation on ferric chloride-induced carotid artery injury. Intriguingly, bleeding times were not altered in DUSP3-deficient mice. At the molecular level, DUSP3 deficiency impaired Syk tyrosine phosphorylation, subsequently reducing phosphorylation of phospholipase Cγ2 and calcium fluxes. To investigate DUSP3 function in human platelets, a novel small-molecule inhibitor of DUSP3 was developed. This compound specifically inhibited collagen- and C-type lectin-like receptor 2-induced human platelet aggregation, thereby phenocopying the effect of DUSP3 deficiency in murine cells. DUSP3 plays a selective and essential role in collagen- and C-type lectin-like receptor 2-mediated platelet activation and thrombus formation in vivo. Inhibition of DUSP3 may prove therapeutic for arterial thrombosis. This is the first time a protein tyrosine phosphatase, implicated in platelet signaling, has been targeted with a small-molecule drug. © 2014 American Heart Association, Inc.
DUSP3 Phosphatase Deficiency or Inhibition Limit Platelet Activation and Arterial Thrombosis
Musumeci, Lucia; Kuijpers, Marijke J; Gilio, Karen; Hego, Alexandre; Théâtre, Emilie; Maurissen, Lisbeth; Vandereyken, Maud; Diogo, Catia V; Lecut, Christelle; Guilmain, William; Bobkova, Ekaterina V; Eble, Johannes A.; Dahl, Russell; Drion, Pierre; Rascon, Justin; Mostofi, Yalda; Yuan, Hongbin; Sergienko, Eduard; Chung, Thomas DY; Thiry, Marc; Senis, Yotis; Moutschen, Michel; Mustelin, Tomas; Lancellotti, Patrizio; Heemskerk, Johan WM; Tautz, Lutz; Oury, Cécile; Rahmouni, Souad
2015-01-01
Background A limitation of current antiplatelet therapies is their inability to separate thrombotic events from bleeding occurrences. Better understanding of the molecular mechanisms leading to platelet activation is of importance for the development of improved therapies. Recently, protein tyrosine phosphatases (PTPs) have emerged as critical regulators of platelet function. Methods and Results This is the first report implicating the dual-specificity phosphatase 3 (DUSP3) in platelet signaling and thrombosis. This phosphatase is highly expressed in human and mouse platelets. Platelets from DUSP3-deficient mice displayed a selective impairment of aggregation and granule secretion mediated through the collagen receptor glycoprotein VI (GPVI) and the C-type lectin-like receptor 2 (CLEC-2). DUSP3-deficient mice were more resistant to collagen- and epinephrine-induced thromboembolism, compared to wild-type mice, and showed severely impaired thrombus formation upon ferric chloride-induced carotid artery injury. Intriguingly, bleeding times were not altered in DUSP3-deficient mice. At the molecular level, DUSP3 deficiency impaired Syk tyrosine phosphorylation, subsequently reducing phosphorylation of PLCγ2 and calcium fluxes. To investigate DUSP3 function in human platelets, a novel small-molecule inhibitor of DUSP3 was developed. This compound specifically inhibited collagen and CLEC-2-induced human platelet aggregation, thereby phenocopying the effect of DUSP3 deficiency in murine cells. Conclusions DUSP3 plays a selective and essential role in collagen- and CLEC-2-mediated platelet activation and thrombus formation in vivo. Inhibition of DUSP3 may prove therapeutic for arterial thrombosis. This is the first time a PTP, implicated in platelet signaling, has been targeted with a small-molecule drug. PMID:25520375
Weon, Jin Bae; Jung, Youn Sik; Ma, Choong Je
2016-01-01
Dianthus superbus (D. superbus) is a traditional crude drug used for the treatment of urethritis, carbuncles and carcinomas. The objective of this study was to confirm the cognitive enhancing effect of D. superbus in memory impairment induced mice and to elucidate the possible potential mechanism. Effect of D. superbus on scopolamine induced memory impairment on mice was evaluated using the Morris water maze and passive avoidance tests. We also investigated acetylcholinesterase (AChE) activity and brain-derived neurotropic factor (BDNF) expression in scopolamine-induced mice. HPLC-DAD analysis was performed to identify active compounds in D. superbus. The results revealed that D. superbus attenuated the learning and memory impairment induced by scopolamine. D. superbus also inhibited AChE levels in the hippocampi of the scopolamine-injected mice. Moreover, D. superbus increased BDNF expression in the hippocampus. Eight compounds were identified using HPLC-DAD analysis. The content of 4-hydroxyphenyl acetic acid was higher than contents of other compounds. These results indicated that D. superbus improved memory functioning accompanied by inhibition of AChE and upregulation of BDNF, suggesting that D. superbus may be a useful therapeutic agent for the prevention or treatment of Alzheimer’s disease. PMID:27133261
Weon, Jin Bae; Jung, Youn Sik; Ma, Choong Je
2016-05-01
Dianthus superbus (D. superbus) is a traditional crude drug used for the treatment of urethritis, carbuncles and carcinomas. The objective of this study was to confirm the cognitive enhancing effect of D. superbus in memory impairment induced mice and to elucidate the possible potential mechanism. Effect of D. superbus on scopolamine induced memory impairment on mice was evaluated using the Morris water maze and passive avoidance tests. We also investigated acetylcholinesterase (AChE) activity and brain-derived neurotropic factor (BDNF) expression in scopolamine-induced mice. HPLC-DAD analysis was performed to identify active compounds in D. superbus. The results revealed that D. superbus attenuated the learning and memory impairment induced by scopolamine. D. superbus also inhibited AChE levels in the hippocampi of the scopolamine-injected mice. Moreover, D. superbus increased BDNF expression in the hippocampus. Eight compounds were identified using HPLC-DAD analysis. The content of 4-hydroxyphenyl acetic acid was higher than contents of other compounds. These results indicated that D. superbus improved memory functioning accompanied by inhibition of AChE and upregulation of BDNF, suggesting that D. superbus may be a useful therapeutic agent for the prevention or treatment of Alzheimer's disease.
Costa, M A; Fonseca, B M; Marques, F; Teixeira, N A; Correia-da-Silva, G
2015-08-06
The noxious effects of cannabis consumption for fertility and pregnancy outcome are recognized for years. Its consumption during gestation is associated with alterations in foetal growth, low birth weight and preterm labor. The main psychoactive molecule of cannabis, Δ(9)-tetrahydrocannabinol (THC) impairs the production of reproductive hormones and is also able to cross the placenta barrier. However, its effect on the main placental cells, the trophoblasts, are unknown. Actually, the role of THC in cell survival/death of primary human cytotrophoblasts (CTs) and syncytiotrophoblasts (STs) and in the syncytialization process remains to be explored. Here, we show that THC has a dual effect, enhancing MTT metabolism at low concentrations, whereas higher doses decreased cell viability, on both trophoblast phenotypes, though the effects on STs were more evident. THC also diminished the generation of oxidative and nitrative stress and the oxidized form of glutathione, whereas the reduced form of this tripeptide was increased, suggesting that THC prevents ST cell death due to an antioxidant effect. Moreover, this compound enhanced the mitochondrial function of STs, as observed by the increased MTT metabolism and intracellular ATP levels. These effects were independent of cannabinoid receptors activation. Besides, THC impaired CT differentiation into STs, since it decreased the expression of biochemical and morphological biomarkers of syncytialization, through a cannabinoid receptor-dependent mechanism. Together, these results suggest that THC interferes with trophoblast turnover, preventing trophoblast cell death and differentiation, and contribute to disclose the cellular mechanisms that lead to pregnancy complications in women that consume cannabis-derived drugs during gestation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Aitken, R J; Muscio, L; Whiting, S; Connaughton, H S; Fraser, B A; Nixon, B; Smith, N D; De Iuliis, G N
2016-12-01
The need to protect human spermatozoa from oxidative stress during assisted reproductive technology, has prompted a detailed analysis of the impacts of phenolic compounds on the functional integrity of these cells. Investigation of 16 individual compounds revealed a surprising variety of negative effects including: (i) a loss of mitochondrial membrane potential (Δψm) via mechanisms that were not related to opening of the permeability transition pore but associated with a reduction in thiol expression, (ii) a decline in intracellular reduced glutathione, (iii) the stimulation of pro-oxidant activity including the induction of ROS generation from mitochondrial and non-mitochondrial sources, (iv) stimulation of lipid peroxidation, (v) the generation of oxidative DNA damage, and (vi) impaired sperm motility. For most of the polyphenolic compounds examined, the loss of motility was gradual and highly correlated with the induction of lipid peroxidation (r=0.889). The exception was gossypol, which induced a rapid loss of motility due to its inherent alkylating activity; one consequence of which was a marked reduction in carboxymethyl lysine expression on the sperm tail; a post-translational modification that is known to play a key role in the regulation of sperm movement. The only polyphenols that did not appear to have adverse effects on spermatozoa were resveratrol, genistein and THP at doses below 100μM. These compounds could, therefore, have some therapeutic potential in a clinical setting. Copyright © 2016 Elsevier Inc. All rights reserved.
Siatka, Tomáš; Adamcová, Markéta; Opletal, Lubomír; Cahlíková, Lucie; Jun, Daniel; Hrabinová, Martina; Kuneš, Jiří; Chlebek, Jakub
2017-07-14
Alzheimer's disease is an age-related, neurodegenerative disorder, characterized by cognitive impairment and restrictions in activities of daily living. This disease is the most common form of dementia with complex multifactorial pathological mechanisms. Many therapeutic approaches have been proposed. Among them, inhibition of acetylcholinesterase, butyrylcholinesterase, and prolyl oligopeptidase can be beneficial targets in the treatment of Alzheimer's disease. Roots, along with aerial parts of Argemone platyceras , were extracted with ethanol and fractionated on an alumina column using light petrol, chloroform and ethanol. Subsequently, repeated preparative thin-layer chromatography led to the isolation of (+)-laudanosine, protopine, (-)-argemonine, allocryptopine, (-)-platycerine, (-)-munitagine, and (-)-norargemonine belonging to pavine, protopine and benzyltetrahydroisoquinoline structural types. Chemical structures of the isolated alkaloids were elucidated by optical rotation, spectroscopic and spectrometric analysis (NMR, MS), and comparison with literature data. (+)-Laudanosine was isolated from A. platyceras for the first time. Isolated compounds were tested for human blood acetylcholinesterase, human plasma butyrylcholinesterase and recombinant prolyl oligopeptidase inhibitory activity. The alkaloids inhibited the enzymes in a dose-dependent manner. The most active compound (-)-munitagine, a pavine alkaloid, inhibited both acetylcholinesterase and prolyl oligopeptidase with IC 50 values of 62.3 ± 5.8 µM and 277.0 ± 31.3 µM, respectively.
Wasko, Brian M.; Smits, Jacqueline P.; Shull, Larry W.; Wiemer, David F.; Hohl, Raymond J.
2011-01-01
Statins and nitrogenous bisphosphonates (NBP) inhibit 3-hydroxy-3-methylglutaryl-coenzyme-A reductase (HMGCR) and farnesyl diphosphate synthase (FDPS), respectively, leading to depletion of farnesyl diphosphate (FPP) and disruption of protein prenylation. Squalene synthase (SQS) utilizes FPP in the first committed step from the mevalonate pathway toward cholesterol biosynthesis. Herein, we have identified novel bisphosphonates as potent and specific inhibitors of SQS, including the tetrasodium salt of 9-biphenyl-4,8-dimethyl-nona-3,7-dienyl-1,1-bisphosphonic acid (compound 5). Compound 5 reduced cholesterol biosynthesis and lead to a substantial intracellular accumulation of FPP without reducing cell viability in HepG2 cells. At high concentrations, lovastatin and zoledronate impaired protein prenylation and decreased cell viability, which limits their potential use for cholesterol depletion. When combined with lovastatin, compound 5 prevented lovastatin-induced FPP depletion and impairment of protein farnesylation. Compound 5 in combination with the NBP zoledronate completely prevented zoledronate-induced impairment of both protein farnesylation and geranylgeranylation. Cotreatment of cells with compound 5 and either lovastatin or zoledronate was able to significantly prevent the reduction of cell viability caused by lovastatin or zoledronate alone. The combination of an SQS inhibitor with an HMGCR or FDPS inhibitor provides a rational approach for reducing cholesterol synthesis while preventing nonsterol isoprenoid depletion. PMID:21903868
Tyrosine kinases, drugs, and Shigella flexneri dissemination.
Dragoi, Ana-Maria; Agaisse, Hervé
2014-01-01
Shigella flexneri is an enteropathogenic bacterium responsible for approximately 100 million cases of severe dysentery each year. S. flexneri colonization of the human colonic epithelium is supported by direct spread from cell to cell, which relies on actin-based motility. We have recently uncovered that, in intestinal epithelial cells, S. flexneri actin-based motility is regulated by the Bruton's tyrosine kinase (Btk). Consequently, treatment with Ibrutinib, a specific Btk inhibitor currently used in the treatment of B-cell malignancies, effectively impaired S. flexneri spread from cell to cell. Thus, therapeutic intervention capitalizing on drugs interfering with host factors supporting the infection process may represent an effective alternative to treatments with antimicrobial compounds.
Andreassen, Ashild; Steffensen, Inger-Lise; Olsen, Ann-Karin; Tanaka, Kiyoji; Wiger, Richard
2011-01-01
Mice deficient in the xeroderma pigmentosum group A gene (Xpa) exhibit impaired nucleotide excision repair (NER) and are expected to accumulate bulky DNA adducts when subjected to certain compounds (eg, heterocyclic amines). Multiple intestinal neoplasia (Min) mice (B6(Min)(/+)) are particularly sensitive to low concentrations of mutagenic compounds in food. They develop intestinal tumors spontaneously, and the number and size of the tumors increase following exposure to 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), which humans are exposed to via fried food. We previously reported that NER is inefficient in adult testicular cells. Reduced NER (genetic deficiency; Xpa(-/-)) is expected to represent risk factors for PhIP-induced genotoxicity and could possibly disturb spermatogenesis, particularly in B6(Min)(/+) mice. We therefore studied spermatogenesis in mice with combinations of Xpa and Min or wild-type genotypes 11 weeks after exposure to PhIP on days 3 to 6. Fewer offspring were obtained from B6(Min)(/+)Xpa(-/-) than from B6(Min)(/+)Xpa(+/+) or B6(Min)(/+)Xpa(+/-). Distributions of the different testicular cell types, indicative of normal spermatogenesis and relative testes weights, did not differ significantly in PhIP-exposed or unexposed mice regardless of their genotypes. We conclude that the removal of bulky DNA adducts does not seem to be essential for normal spermatogenesis.
Botanical Drugs as an Emerging Strategy in Inflammatory Bowel Disease: A Review.
Algieri, Francesca; Rodriguez-Nogales, Alba; Rodriguez-Cabezas, M Elena; Risco, Severiano; Ocete, M Angeles; Galvez, Julio
2015-01-01
Crohn's disease and ulcerative colitis are the two most common categories of inflammatory bowel disease (IBD), which are characterized by chronic inflammation of the intestine that comprises the patients' life quality and requires sustained pharmacological and surgical treatments. Since their aetiology is not completely understood, nonfully efficient drugs have been developed and those that show effectiveness are not devoid of quite important adverse effects that impair their long-term use. Therefore, many patients try with some botanical drugs, which are safe and efficient after many years of use. However, it is necessary to properly evaluate these therapies to consider a new strategy for human IBD. In this report we have reviewed the main botanical drugs that have been assessed in clinical trials in human IBD and the mechanisms and the active compounds proposed for their beneficial effects.
Verrax, J; Beck, R; Dejeans, N; Glorieux, C; Sid, B; Pedrosa, R Curi; Benites, J; Vásquez, D; Valderrama, J A; Calderon, P Buc
2011-02-01
Cancer cells are particularly vulnerable to treatments impairing redox homeostasis. Reactive oxygen species (ROS) can indeed play an important role in the initiation and progression of cancer, and advanced stage tumors frequently exhibit high basal levels of ROS that stimulate cell proliferation and promote genetic instability. In addition, an inverse correlation between histological grade and antioxidant enzyme activities is frequently observed in human tumors, further supporting the existence of a redox dysregulation in cancer cells. This biochemical property can be exploited by using redox-modulating compounds, which represent an interesting approach to induce cancer cell death. Thus, we have developed a new strategy based on the use of pharmacologic concentrations of ascorbate and redox-active quinones. Ascorbate-driven quinone redox cycling leads to ROS formation and provoke an oxidative stress that preferentially kill cancer cells and spare healthy tissues. Cancer cell death occurs through necrosis and the underlying mechanism implies an energetic impairment (ATP depletion) that is likely due to glycolysis inhibition. Additional mechanisms that participate to cell death include calcium equilibrium impairment and oxidative cleavage of protein chaperone Hsp90. Given the low systemic toxicity of ascorbate and the impairment of crucial survival pathways when associated with redox-active quinones, these combinations could represent an original approach that could be combined to standard cancer therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadanaciva, Sashi; Aleo, Michael D.; Strock, Christopher J.
To reduce costly late-stage compound attrition, there has been an increased focus on assessing compounds in in vitro assays that predict attributes of human safety liabilities, before preclinical in vivo studies are done. Relevant questions when choosing a panel of assays for predicting toxicity are (a) whether there is general concordance in the data among the assays, and (b) whether, in a retrospective analysis, the rank order of toxicity of compounds in the assays correlates with the known safety profile of the drugs in humans. The aim of our study was to answer these questions using nonsteroidal anti-inflammatory drugs (NSAIDs)more » as a test set since NSAIDs are generally associated with gastrointestinal injury, hepatotoxicity, and/or cardiovascular risk, with mitochondrial impairment and endoplasmic reticulum stress being possible contributing factors. Eleven NSAIDs, flufenamic acid, tolfenamic acid, mefenamic acid, diclofenac, meloxicam, sudoxicam, piroxicam, diflunisal, acetylsalicylic acid, nimesulide, and sulindac (and its two metabolites, sulindac sulfide and sulindac sulfone), were tested for their effects on (a) the respiration of rat liver mitochondria, (b) a panel of mechanistic endpoints in rat hepatocytes, and (c) the viability and organ morphology of zebrafish. We show good concordance for distinguishing among/between NSAID chemical classes in the observations among the three approaches. Furthermore, the assays were complementary and able to correctly identify “toxic” and “non-toxic” drugs in accordance with their human safety profile, with emphasis on hepatic and gastrointestinal safety. We recommend implementing our multi-assay approach in the drug discovery process to reduce compound attrition. - Highlights: • NSAIDS cause liver and GI toxicity. • Mitochondrial uncoupling contributes to NSAID liver toxicity. • ER stress is a mechanism that contributes to liver toxicity. • Zebrafish and cell based assays are complimentary.« less
Influence of the anti-inflammatory compound flosulide on granulocyte function.
Zimmerli, W; Sansano, S; Wiesenberg-Böttcher, I
1991-10-24
Polymorphonuclear leukocytes (PMN) are involved in inflammatory reactions. It is thought that oxygen-derived free radicals released from activated PMN may participate in tissue damage during inflammation. We have shown that flosulide (6-(2,4-difluorophenoxy)-5-methylsulfonylamino-1-indanone ), a novel highly potent anti-inflammatory compound, inhibits superoxide production induced by N-formyl-Met-Leu-Phe (FMLP), C5a and PMA without impairing bacterial killing or chemotaxis. Flosulide (10(-5)-10(-7) M) was more potent in inhibiting the FMLP-induced respiratory burst of PMN than the structurally related compound nimesulide. FMLP-induced superoxide generation was also inhibited by two human flosulide metabolites. A good correlation between this in vitro effect and in vivo anti-inflammatory potency in rat adjuvant arthritis was found for flosulide and its metabolites. Indomethacin, piroxicam and ibuprofen did not inhibit the respiratory burst at 10(-5) M. FMLP receptor number was decreased by 36% in the presence of 10(-5) M flosulide. However, a 250-fold molar excess of flosulide could not displace labeled FMLP from the receptor. Inhibition of degranulation of primary and secondary granules was a common effect of all anti-inflammatory compounds tested. At a concentration of 10(-5) M, all drugs inhibited degranulation to about the same degree, independent of their in vivo anti-inflammatory activity.
Studerus, Erich; Kometer, Michael; Hasler, Felix; Vollenweider, Franz X
2011-11-01
Psilocybin and related hallucinogenic compounds are increasingly used in human research. However, due to limited information about potential subjective side effects, the controlled medical use of these compounds has remained controversial. We therefore analysed acute, short- and long-term subjective effects of psilocybin in healthy humans by pooling raw data from eight double-blind placebo-controlled experimental studies conducted between 1999 and 2008. The analysis included 110 healthy subjects who had received 1-4 oral doses of psilocybin (45-315 µg/kg body weight). Although psilocybin dose-dependently induced profound changes in mood, perception, thought and self-experience, most subjects described the experience as pleasurable, enriching and non-threatening. Acute adverse drug reactions, characterized by strong dysphoria and/or anxiety/panic, occurred only in the two highest dose conditions in a relatively small proportion of subjects. All acute adverse drug reactions were successfully managed by providing interpersonal support and did not need psychopharmacological intervention. Follow-up questionnaires indicated no subsequent drug abuse, persisting perception disorders, prolonged psychosis or other long-term impairment of functioning in any of our subjects. The results suggest that the administration of moderate doses of psilocybin to healthy, high-functioning and well-prepared subjects in the context of a carefully monitored research environment is associated with an acceptable level of risk.
Bakhiya, Nadiya; Ziegenhagen, Rainer; Hirsch-Ernst, Karen I; Dusemund, Birgit; Richter, Klaus; Schultrich, Katharina; Pevny, Sophie; Schäfer, Bernd; Lampen, Alfonso
2017-06-01
Numerous food supplements contain phytochemical compounds as active ingredients. Although such supplements are often perceived by consumers as being risk-free, the safety of many of them is currently uncertain. The present review provides two examples for risk assessment for phytochemical ingredients that are used in certain supplements marketed for sportspeople-synephrine (extracted from fruits of Citrus aurantium) and hydroxycitric acid (HCA, isolated from fruits of Garcinia cambogia). Animal and human studies, as well as case reports, provide evidence for cardiovascular effects due to ingestion of high synephrine doses, especially in combination with caffeine and physical exertion. A dose of up to 6.7 mg synephrine/day, however, which is equivalent to the median dietary intake from conventional foods in Germany, is presumed to represent a safe intake from supplements. In subchronic animal studies, administration of high doses of certain HCA-containing preparations led to testicular toxicity (i.e., testicular atrophy and impaired spermatogenesis), yielding a no observed adverse effect level of 389 mg HCA/kg bw/day. In view of lack of adequate human data on the safety of HCA preparations, particularly with respect to the human male reproductive system, substantial uncertainties exist regarding the safety of supplements containing high amounts of HCA. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conte, Melissa; Lupette, Josselin; Seddiki, Khawla; Meï, Coline; Dolch, Lina-Juana; Gros, Valérie; Barette, Caroline; Rébeillé, Fabrice; Jouhet, Juliette; Maréchal, Eric
2018-06-01
Microalgae are a promising feedstock for the production of triacylglycerol (TAG) for a variety of potential applications, ranging from food and human health to biofuels and green chemistry. However, obtaining high TAG yields is challenging. A phenotypic assay for the accumulation of oil droplets was developed to screen a library of 1,200 drugs, annotated with pharmacology information, to select compounds that trigger TAG accumulation in the diatom Phaeodactylum tricornutum Using this screen, we identified 34 molecules acting in a dose-dependent manner. Previously characterized targets of these compounds include cell division and cell signaling effectors, membrane receptors and transporters, and sterol metabolism. Among the five compounds possibly acting on sterol metabolism, we focused our study on ethynylestradiol, a synthetic form of estrogen that is used in contraceptive pills and known for its ecological impact as an endocrine disruptor. Ethynylestradiol impaired the production of very-long-chain polyunsaturated fatty acids, destabilized the galactolipid versus phospholipid balance, and triggered the recycling of fatty acids from membrane lipids to TAG. The P. tricornutum transcriptomic response to treatment with ethynylestradiol was consistent with the reallocation of carbon from sterols to acetyl-coenzyme A and TAG. The mode of action and catabolism of ethynylestradiol are unknown but might involve several up-regulated cytochrome P450 proteins. A fatty acid elongase, Δ6-ELO-B1, might be involved in the impairment of very-long-chain polyunsaturated fatty acids and fatty acid turnover. This phenotypic screen opens new perspectives for the exploration of novel bioactive molecules, potential target genes, and pathways controlling TAG biosynthesis. It also unraveled the sensitivity of diatoms to endocrine disruptors, highlighting an impact of anthropogenic pollution on phytoplankton. © 2018 American Society of Plant Biologists. All Rights Reserved.
Sanz, Francisco José; Solana-Manrique, Cristina; Muñoz-Soriano, Verónica; Calap-Quintana, Pablo; Moltó, María Dolores; Paricio, Nuria
2017-07-01
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. It is caused by a loss of dopaminergic neurons in the substantia nigra pars compacta, leading to a decrease in dopamine levels in the striatum and thus producing movement impairment. Major physiological causes of neurodegeneration in PD are oxidative stress (OS) and mitochondrial dysfunction; these pathophysiological changes can be caused by both genetic and environmental factors. Although most PD cases are sporadic, it has been shown that 5-10% of them are familial forms caused by mutations in certain genes. One of these genes is the DJ-1 oncogene, which is involved in an early-onset recessive PD form. Currently, PD is an incurable disease for which existing therapies are not sufficiently effective to counteract or delay the progression of the disease. Therefore, the discovery of alternative drugs for the treatment of PD is essential. In this study we used a Drosophila PD model to identify candidate compounds with therapeutic potential for this disease. These flies carry a loss-of-function mutation in the DJ-1β gene, the Drosophila ortholog of human DJ-1, and show locomotor defects reflected by a reduced climbing ability. A pilot modifier chemical screen was performed, and several candidate compounds were identified based on their ability to improve locomotor activity of PD model flies. We demonstrated that some of them were also able to reduce OS levels in these flies. To validate the compounds identified in the Drosophila screen, a human cell PD model was generated by knocking down DJ-1 function in SH-SY5Y neuroblastoma cells. Our results showed that some of the compounds were also able to increase the viability of the DJ-1-deficient cells subjected to OS, thus supporting the use of Drosophila for PD drug discovery. Interestingly, some of them have been previously proposed as alternative therapies for PD or tested in clinical trials and others are first suggested in this study as potential drugs for the treatment of this disease. Copyright © 2017 Elsevier Inc. All rights reserved.
1992-08-25
concentrations of these compounds may be toxic or Inhibitory to the microflora, especially if the microorganisms have not been exposed to these compounds before...Slow acclimation of the microflora to lower concentrations of these compounds , that occur at the outskirts of contamination plumes, gradually...sulfate may impair the capability of the microorganisms to degrade these compounds , although anaerobic respiration -- in theory -- is more favorable
Amat-ur-Rasool, Hafsa; Ahmed, Mehboob
2015-01-01
Alzheimer's disease (AD), a big cause of memory loss, is a progressive neurodegenerative disorder. The disease leads to irreversible loss of neurons that result in reduced level of acetylcholine neurotransmitter (ACh). The reduction of ACh level impairs brain functioning. One aspect of AD therapy is to maintain ACh level up to a safe limit, by blocking acetylcholinesterase (AChE), an enzyme that is naturally responsible for its degradation. This research presents an in-silico screening and designing of hAChE inhibitors as potential anti-Alzheimer drugs. Molecular docking results of the database retrieved (synthetic chemicals and dietary phytochemicals) and self-drawn ligands were compared with Food and Drug Administration (FDA) approved drugs against AD as controls. Furthermore, computational ADME studies were performed on the hits to assess their safety. Human AChE was found to be most approptiate target site as compared to commonly used Torpedo AChE. Among the tested dietry phytochemicals, berberastine, berberine, yohimbine, sanguinarine, elemol and naringenin are the worth mentioning phytochemicals as potential anti-Alzheimer drugs The synthetic leads were mostly dual binding site inhibitors with two binding subunits linked by a carbon chain i.e. second generation AD drugs. Fifteen new heterodimers were designed that were computationally more efficient inhibitors than previously reported compounds. Using computational methods, compounds present in online chemical databases can be screened to design more efficient and safer drugs against cognitive symptoms of AD. PMID:26325402
Amat-Ur-Rasool, Hafsa; Ahmed, Mehboob
2015-01-01
Alzheimer's disease (AD), a big cause of memory loss, is a progressive neurodegenerative disorder. The disease leads to irreversible loss of neurons that result in reduced level of acetylcholine neurotransmitter (ACh). The reduction of ACh level impairs brain functioning. One aspect of AD therapy is to maintain ACh level up to a safe limit, by blocking acetylcholinesterase (AChE), an enzyme that is naturally responsible for its degradation. This research presents an in-silico screening and designing of hAChE inhibitors as potential anti-Alzheimer drugs. Molecular docking results of the database retrieved (synthetic chemicals and dietary phytochemicals) and self-drawn ligands were compared with Food and Drug Administration (FDA) approved drugs against AD as controls. Furthermore, computational ADME studies were performed on the hits to assess their safety. Human AChE was found to be most approptiate target site as compared to commonly used Torpedo AChE. Among the tested dietry phytochemicals, berberastine, berberine, yohimbine, sanguinarine, elemol and naringenin are the worth mentioning phytochemicals as potential anti-Alzheimer drugs The synthetic leads were mostly dual binding site inhibitors with two binding subunits linked by a carbon chain i.e. second generation AD drugs. Fifteen new heterodimers were designed that were computationally more efficient inhibitors than previously reported compounds. Using computational methods, compounds present in online chemical databases can be screened to design more efficient and safer drugs against cognitive symptoms of AD.
Hung, Chi-Feng; Hsiao, Chien-Yu; Hsieh, Wen-Hao; Li, Hsin-Ju; Tsai, Yi-Ju; Lin, Chun-Nan; Chang, Hsun-Hsien; Wu, Nan-Lin
2017-01-01
Licorice (Glycyrrhiza) species have been widely used as a traditional medicine and a natural sweetener in foods. The 18β-glycyrrhetinic acid (18β-GA) is a bioactive compound in licorice that exhibits potential anti-cancer, anti-inflammatory, and anti-microbial activities. Many synthesized derivatives of 18β-GA have been reported to be cytotoxic and suggested for the treatment of malignant diseases. In this study, we explored the possible pharmacological roles of an 18β-GA derivative in skin biology using primary human dermal fibroblasts and HaCaT keratinocytes as cell models. We found that this 18β-GA derivative did not cause cell death, but significantly enhanced the proliferation of dermal fibroblasts and HaCaT keratinocytes. A scratch wound healing assay revealed that the 18β-GA derivative promoted the migration of fibroblasts. Due to the important role of aquaporin-3 in cell migration and proliferation, we also investigated the expression of aquaporin-3 and found this compound up-regulated the expression of aquaporin-3 in dermal fibroblasts and HaCaT keratinocytes. In dermal fibroblasts, the 18β-GA derivative induced the phosphorylation of Akt, ERK, and p38. The inhibitor of Akt predominantly suppressed the 18β-GA derivative-induced expression of aquaporin-3. Collectively, this compound had a positive effect on the proliferation, migration, and aquaporin-3 expression of skin cells, implying its potential role in the treatment of skin diseases characterized by impaired wound healing or dermal defects.
Gruber, Wolfgang; Hutzinger, Martin; Elmer, Dominik Patrick; Parigger, Thomas; Sternberg, Christina; Cegielkowski, Lukasz; Zaja, Mirko; Leban, Johann; Michel, Susanne; Hamm, Svetlana; Vitt, Daniel; Aberger, Fritz
2016-01-01
A wide range of human malignancies displays aberrant activation of Hedgehog (HH)/GLI signaling, including cancers of the skin, brain, gastrointestinal tract and hematopoietic system. Targeting oncogenic HH/GLI signaling with small molecule inhibitors of the essential pathway effector Smoothened (SMO) has shown remarkable therapeutic effects in patients with advanced and metastatic basal cell carcinoma. However, acquired and de novo resistance to SMO inhibitors poses severe limitations to the use of SMO antagonists and urgently calls for the identification of novel targets and compounds. Here we report on the identification of the Dual-Specificity-Tyrosine-Phosphorylation-Regulated Kinase 1B (DYRK1B) as critical positive regulator of HH/GLI signaling downstream of SMO. Genetic and chemical inhibition of DYRK1B in human and mouse cancer cells resulted in marked repression of HH signaling and GLI1 expression, respectively. Importantly, DYRK1B inhibition profoundly impaired GLI1 expression in both SMO-inhibitor sensitive and resistant settings. We further introduce a novel small molecule DYRK1B inhibitor, DYRKi, with suitable pharmacologic properties to impair SMO-dependent and SMO-independent oncogenic GLI activity. The results support the use of DYRK1B antagonists for the treatment of HH/GLI-associated cancers where SMO inhibitors fail to demonstrate therapeutic efficacy. PMID:26784250
NASA Astrophysics Data System (ADS)
Oliveira, Catarina; Cagide, Fernando; Teixeira, José; Amorim, Ricardo; Sequeira, Lisa; Mesiti, Francesco; Silva, Tiago; Garrido, Jorge; Remião, Fernando; Vilar, Santiago; Uriarte, Eugenio; Oliveira, Paulo J.; Borges, Fernanda
2018-04-01
Alzheimer’s disease (AD) is a multifactorial age-related disease associated with oxidative stress (OS) and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy towards AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc) derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE) inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN1 (catechol derivative), and AntiOxBEN2 (pyrogallol derivative) and compounds 15-18, which have longer spacers. Compounds AntiOxBEN1 and 15, with a shorter carbon chain spacer (six- and eight-carbon) were shown to be potent antioxidants and BChE inhibitors (IC50 = 85 ± 5 and 106 ± 5 nM, respectively), while compounds 17 and 18 with a ten-carbon chain were more effective AChE inhibitors (IC50 = 7.7 ± 0.4 and 7.2 ± 0.5 nM, respectively). Interestingly, molecular modelling data pointed towards bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17, no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y) and human hepatocarcinoma (HepG2) cells, while Αβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favourable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB) permeability, the mitochondriotropic antioxidant AntiOxBEN1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related disease
Kamiński, Krzysztof; Obniska, Jolanta; Chlebek, Iwona; Wiklik, Beata; Rzepka, Sabina
2013-11-01
The synthesis and anticonvulsant properties of new N-Mannich bases of 3-phenyl- (9a-d), 3-(2-chlorophenyl)- (10a-d), 3-(3-chlorophenyl)- (11a-d) and 3-(4-chlorophenyl)-pyrrolidine-2,5-diones (12a-d) were described. The key synthetic strategies involve the formation of 3-substituted pyrrolidine-2,5-diones (5-8), and then aminoalkylation reaction (Mannich-type) with formaldehyde and corresponding secondary amines, which let to obtain the final compounds 9a-d, 10a-d, 11a-d and 12a-d in good yields. Initial anticonvulsant screening was performed in mice (ip) using the maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) seizures tests. The most effective compounds in mice were tested after oral administration in rats. The acute neurological toxicity was determined applying the minimal motor impairment rotarod test. The in vivo results revealed that numerous compounds were effective especially in the MES test (model of human tonic-clonic seizures). The most active in the MES seizures in rats was 1-[(4-benzyl-1-piperidyl)methyl]-3-(2-chlorophenyl)pyrrolidine-2,5-dione (10c) which showed ED50 value of 37.64mg/kg. It should be stressed that this molecule along with 9a, 9d and 10d showed protection in the psychomotor seizure test (6-Hz), which is known as an animal model of therapy-resistant epilepsy. Furthermore compounds 9a, 9d and 10d were also tested in the pilocarpine-induced status prevention (PISP) test to assess their potential effectiveness in status epilepticus. For the most promising molecule 9d an influence on human CYP3A4 isoform of P-450 cytochrome was studied in vitro. Copyright © 2013 Elsevier Ltd. All rights reserved.
Oliveira, Catarina; Cagide, Fernando; Teixeira, José; Amorim, Ricardo; Sequeira, Lisa; Mesiti, Francesco; Silva, Tiago; Garrido, Jorge; Remião, Fernando; Vilar, Santiago; Uriarte, Eugenio; Oliveira, Paulo J; Borges, Fernanda
2018-01-01
Alzheimer's disease (AD) is a multifactorial age-related disease associated with oxidative stress (OS) and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy toward AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc) derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE) inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN 1 (catechol derivative), and AntiOxBEN 2 (pyrogallol derivative) and compounds 15-18 , which have longer spacers. Compounds AntiOxBEN 1 and 15 , with a shorter carbon chain spacer (six- and eight-carbon) were shown to be potent antioxidants and BChE inhibitors (IC 50 = 85 ± 5 and 106 ± 5 nM, respectively), while compounds 17 and 18 with a 10-carbon chain were more effective AChE inhibitors (IC 50 = 7.7 ± 0.4 and 7.2 ± 0.5 μM, respectively). Interestingly, molecular modeling data pointed toward bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17 , no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y) and human hepatocarcinoma (HepG2) cells, while Aβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favorable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB) permeability, the mitochondriotropic antioxidant AntiOxBEN 1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related diseases.
Oliveira, Catarina; Cagide, Fernando; Teixeira, José; Amorim, Ricardo; Sequeira, Lisa; Mesiti, Francesco; Silva, Tiago; Garrido, Jorge; Remião, Fernando; Vilar, Santiago; Uriarte, Eugenio; Oliveira, Paulo J.; Borges, Fernanda
2018-01-01
Alzheimer's disease (AD) is a multifactorial age-related disease associated with oxidative stress (OS) and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy toward AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc) derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE) inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN1 (catechol derivative), and AntiOxBEN2 (pyrogallol derivative) and compounds 15–18, which have longer spacers. Compounds AntiOxBEN1 and 15, with a shorter carbon chain spacer (six- and eight-carbon) were shown to be potent antioxidants and BChE inhibitors (IC50 = 85 ± 5 and 106 ± 5 nM, respectively), while compounds 17 and 18 with a 10-carbon chain were more effective AChE inhibitors (IC50 = 7.7 ± 0.4 and 7.2 ± 0.5 μM, respectively). Interestingly, molecular modeling data pointed toward bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17, no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y) and human hepatocarcinoma (HepG2) cells, while Aβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favorable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB) permeability, the mitochondriotropic antioxidant AntiOxBEN1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related diseases. PMID:29740575
Marengo, Arianna; Fumagalli, Marco; Sanna, Cinzia; Maxia, Andrea; Piazza, Stefano; Cagliero, Cecilia; Rubiolo, Patrizia; Sangiovanni, Enrico; Dell'Agli, Mario
2018-01-10
Thistles species (Family: Compositae) are traditionally used in the Mediterranean area, particularly in Sardinia. They are usually gathered from the wild and used for both food and therapeutic purposes, including gastrointestinal disorders. This work aims to evaluate the anti-inflammatory activity of eight wild thistles from Sardinia, in an in vitro model of gastric inflammation, and to identify the major active compounds in the extracts. The hydro-alcoholic extract of the aerial part of each species was prepared. After the induction of inflammation by the addition of tumor necrosis factor-α (TNFα) (10ng/mL), AGS cells were treated with extracts/pure compounds under study. The inhibition of interleukin-8 (IL-8) release, IL-8 and NF-κB promoter activities and NF-κB nuclear translocation were evaluated. Extracts main components were identified by HPLC-PDA-MS/MS. Only Onopordum horridum Viv. and Onopordum illyricum L. hydro-alcoholic extracts reduced, in a concentration-dependent fashion, the IL-8 release and promoter activity in human gastric epithelial cells AGS. The effect was partially due to the NF-κB pathway impairment. Onopordum hydro-alcoholic extracts were also chemically profiled, and caffeoylquinic acid derivatives were the main compounds identified in the extract. Further investigations showed that 3,5 dicaffeoylquinic acid highly inhibited IL-8 secretion in AGS cells (IC 50 0.65μM), thus suggesting that this compound contributed, at least in part, to the anti-inflammatory activity elicited by O. illyricum extracts. Our results suggest that Onopordum species may exert beneficial effects against gastric inflammatory diseases. Thus, these wild plants deserve further investigations as preventive or co-adjuvant agents in gastric diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
[Human reproduction and environmental risk factors].
Petrelli, G; Mantovani, A; Menditto, A
1999-01-01
Environmental pollution is a great cause of concern, in particular, growing attention is being paid to the potential of many chemicals to affect the reproductive system in humans. The key role of prevention and control of reproductive hazards is recognized world-wide. Many chemicals have been shown to impair fertility and/or prenatal and perinatal development in experimental studies. However, a sufficient evidence of an effect on human reproduction is available for some compounds only. The use of biological markers may improve the assessment of exposure to chemicals, contribute to identify mechanisms of action and put into evidence early, reversible, biological effects. Valid biological markers are also needed in epidemiological studies: without reliable data on the level of current and past exposures it is difficult to establish a causal relationship between a pollutant and the occurrence of adverse health effects. A multidisciplinary approach to risk assessment is required. Priorities for interdisciplinary research on environmental chemicals and reproduction include the identification of susceptible population subgroups and risk assessment of exposure to multiple chemicals.
Ho, Giang Thanh Thi; Kase, Eili Tranheim; Wangensteen, Helle; Barsett, Hilde
2017-01-06
Type 2 diabetes (T2D) is manifested by progressive metabolic impairments in tissues such as skeletal muscle and liver, and these tissues become less responsive to insulin, leading to hyperglycemia. In the present study, stimulation of glucose and oleic acid uptake by elderflower extracts, constituents and metabolites were tested in vitro using the HepG2 hepatocellular liver carcinoma cell line and human skeletal muscle cells. Among the crude extracts, the 96% EtOH extract showed the highest increase in glucose and oleic acid uptake in human skeletal muscle cells and HepG2-cells. The flavonoids and phenolic acids contained therein were potent stimulators of glucose and fatty acid uptake in a dose-dependent manner. Most of the phenolic constituents and several of the metabolites showed high antioxidant activity and showed considerably higher α-amylase and α-glucosidase inhibition than acarbose. Elderflower might therefore be valuable as a functional food against diabetes.
Tobacco and areca nut chewing--reproductive impairments: an overview.
Kumar, Sunil
2013-04-01
A large number of people are using smokeless tobacco and areca nut worldwide. Sufficient data on tobacco smoking have harmful effect on human health and reproduction is available. However, data on the smokeless tobacco and areca nut use on human reproduction is scanty. This overview is an attempt to compose on the consumption of smokeless tobacco and areca nut on human reproduction and some relevant experimental data were also included. The existing studies suggest that tobacco and areca nut chewing alone, together or with other ingredients had reproductive toxic potential. Pregnant women using smokeless tobacco during pregnancy also had adverse effect on pregnancy and its outcome. Thus pregnant women must avoid consumption of any mixture containing areca nut and tobacco in order to protect the pregnancy and outcome. The data suggest that smokeless tobacco use is also harmful as smoking for reproduction and use of areca nut might have further compounded the problem. Copyright © 2012 Elsevier Inc. All rights reserved.
Brain diabetic neurodegeneration segregates with low intrinsic aerobic capacity
Choi, Joungil; Chandrasekaran, Krish; Demarest, Tyler G; Kristian, Tibor; Xu, Su; Vijaykumar, Kadambari; Dsouza, Kevin Geoffrey; Qi, Nathan R; Yarowsky, Paul J; Gallipoli, Rao; Koch, Lauren G; Fiskum, Gary M; Britton, Steven L; Russell, James W
2014-01-01
Objectives Diabetes leads to cognitive impairment and is associated with age-related neurodegenerative diseases including Alzheimer's disease (AD). Thus, understanding diabetes-induced alterations in brain function is important for developing early interventions for neurodegeneration. Low-capacity runner (LCR) rats are obese and manifest metabolic risk factors resembling human “impaired glucose tolerance” or metabolic syndrome. We examined hippocampal function in aged LCR rats compared to their high-capacity runner (HCR) rat counterparts. Methods Hippocampal function was examined using proton magnetic resonance spectroscopy and imaging, unbiased stereology analysis, and a Y maze. Changes in the mitochondrial respiratory chain function and levels of hyperphosphorylated tau and mitochondrial transcriptional regulators were examined. Results The levels of glutamate, myo-inositol, taurine, and choline-containing compounds were significantly increased in the aged LCR rats. We observed a significant loss of hippocampal neurons and impaired cognitive function in aged LCR rats. Respiratory chain function and activity were significantly decreased in the aged LCR rats. Hyperphosphorylated tau was accumulated within mitochondria and peroxisome proliferator-activated receptor-gamma coactivator 1α, the NAD+-dependent protein deacetylase sirtuin 1, and mitochondrial transcription factor A were downregulated in the aged LCR rat hippocampus. Interpretation These data provide evidence of a neurodegenerative process in the hippocampus of aged LCR rats, consistent with those seen in aged-related dementing illnesses such as AD in humans. The metabolic and mitochondrial abnormalities observed in LCR rat hippocampus are similar to well-described mechanisms that lead to diabetic neuropathy and may provide an important link between cognitive and metabolic dysfunction. PMID:25356430
1992-08-25
High initial concentrations of these compounds may be toxic or inhibitory to the microflora, especially if the microorganisms have not been exposed to...these compounds before. Slow acclimation of the microflora to lower concentrations of these compounds , that occur at the outskirts of contamination...acceptors such as nitrate or sulfate may impair the capability of the microorganisms to degrade these compounds , although anaerobic respiration -- in theory
Parbo, Peter; Ismail, Rola; Hansen, Kim V; Amidi, Ali; Mårup, Frederik H; Gottrup, Hanne; Brændgaard, Hans; Eriksson, Bengt O; Eskildsen, Simon F; Lund, Torben E; Tietze, Anna; Edison, Paul; Pavese, Nicola; Stokholm, Morten G; Borghammer, Per; Hinz, Rainer; Aanerud, Joel; Brooks, David J
2017-07-01
See Kreisl (doi:10.1093/awx151) for a scientific commentary on this article.Subjects with mild cognitive impairment associated with cortical amyloid-β have a greatly increased risk of progressing to Alzheimer's disease. We hypothesized that neuroinflammation occurs early in Alzheimer's disease and would be present in most amyloid-positive mild cognitive impairment cases. 11C-Pittsburgh compound B and 11C-(R)-PK11195 positron emission tomography was used to determine the amyloid load and detect the extent of neuroinflammation (microglial activation) in 42 mild cognitive impairment cases. Twelve age-matched healthy control subjects had 11C-Pittsburgh compound B and 10 healthy control subjects had 11C-(R)-PK11195 positron emission tomography for comparison. Amyloid-positivity was defined as 11C-Pittsburgh compound B target-to-cerebellar ratio above 1.5 within a composite cortical volume of interest. Supervised cluster analysis was used to generate parametric maps of 11C-(R)-PK11195 binding potential. Levels of 11C-(R)-PK11195 binding potential were measured in a selection of cortical volumes of interest and at a voxel level. Twenty-six (62%) of 42 mild cognitive impairment cases showed a raised cortical amyloid load compared to healthy controls. Twenty-two (85%) of the 26 amyloid-positive mild cognitive impairment cases showed clusters of increased cortical microglial activation accompanying the amyloid. There was a positive correlation between levels of amyloid load and 11C-(R)-PK11195 binding potentials at a voxel level within subregions of frontal, parietal and temporal cortices. 11C-(R)-PK11195 positron emission tomography reveals increased inflammation in a majority of amyloid positive mild cognitive impairment cases, its cortical distribution overlapping that of amyloid deposition. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zhao, Liping; Nicholson, Jeremy K; Lu, Aiping; Wang, Zhengtao; Tang, Huiru; Holmes, Elaine; Shen, Jian; Zhang, Xu; Li, Jia V; Lindon, John C
2012-07-06
Most chronic diseases impairing current human public health involve not only the human genome but also gene-environment interactions, and in the latter case the gut microbiome is an important factor. This makes the classical single drug-receptor target drug discovery paradigm much less applicable. There is widespread and increasing international interest in understanding the properties of traditional Chinese medicines (TCMs) for their potential utilization as a source of new drugs for Western markets as emerging evidence indicates that most TCM drugs are actually targeting both the host and its symbiotic microbes. In this review, we explore the challenges of and opportunities for harmonizing Eastern-Western drug discovery paradigms by focusing on emergent functions at the whole body level of humans as superorganisms. This could lead to new drug candidate compounds for chronic diseases targeting receptors outside the currently accepted "druggable genome" and shed light on current high interest issues in Western medicine such as drug-drug and drug-diet-gut microbial interactions that will be crucial in the development and delivery of future therapeutic regimes optimized for the individual patient.
Polyphenol Compound as a Transcription Factor Inhibitor.
Park, Seyeon
2015-10-30
A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor-DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein-protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)).
Bana, Emilie; Sibille, Estelle; Valente, Sergio; Cerella, Claudia; Chaimbault, Patrick; Kirsch, Gilbert; Dicato, Mario; Diederich, Marc; Bagrel, Denyse
2015-03-01
Cell division cycle (CDC) 25 proteins are key phosphatases regulating cell cycle transition and proliferation by regulating CDK/cyclin complexes. Overexpression of these enzymes is frequently observed in cancer and is related to aggressiveness, high-grade tumors and poor prognosis. Thus, targeting CDC25 by compounds, able to inhibit their activity, appears a good therapeutic approach. Here, we describe the synthesis of a new inhibitor (SV37) whose structure is based on both coumarin and quinone moieties. An analytical in vitro approach shows that this compound efficiently inhibits all three purified human CDC25 isoforms (IC50 1-9 µM) in a mixed-type mode. Moreover, SV37 inhibits growth of breast cancer cell lines. In MDA-MB-231 cells, reactive oxygen species generation is followed by pCDK accumulation, a mark of CDC25 dysfunction. Eventually, SV37 treatment leads to activation of apoptosis and DNA cleavage, underlining the potential of this new type of coumarin-quinone structure. © 2013 Wiley Periodicals, Inc.
Rosilio, Célia; Lounnas, Nadia; Nebout, Marielle; Imbert, Véronique; Hagenbeek, Thijs; Spits, Hergen; Asnafi, Vahid; Pontier-Bres, Rodolphe; Reverso, Julie; Michiels, Jean-François; Sahra, Issam Ben; Bost, Fréderic; Peyron, Jean-François
2013-08-09
We show here that the antidiabetic agents metformin and phenformin and the AMPK activator AICAR exert strong anti-tumoural effects on tPTEN-/- lymphoma cells and on human T-ALL cell lines and primary samples. The compounds act by inhibiting tumour metabolism and proliferation and by inducing apoptosis in parallel with an activation of AMPK and an inhibition of constitutive mTOR. In tPTEN-/- cells, the drugs potentiated the anti-leukaemic effects of dexamethasone, and metformin and phenformin synergised with 2-deoxyglucose (2DG) to impair tumour cell survival. In vivo, metformin and AICAR strongly decreased the growth of luciferase-expressing tPTEN-/- cells xenografted in Nude mice, demonstrating that metabolism targeting could be a potent adjuvant strategy for lymphoma/leukaemia treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Koh, Ming Teng; Rosenzweig-Lipson, Sharon; Gallagher, Michela
2013-01-01
A condition of excess activity in the hippocampal formation is observed in the aging brain and in conditions that confer additional risk during aging for Alzheimer's disease. Compounds that act as positive allosteric modulators at GABA(A) α5 receptors might be useful in targeting this condition because GABA(A) α5 receptors mediate tonic inhibition of principal neurons in the affected network. While agents to improve cognitive function in the past focused on inverse agonists, which are negative allosteric modulators at GABA(A) α5 receptors, research supporting that approach used only young animals and predated current evidence for excessive hippocampal activity in age-related conditions of cognitive impairment. Here, we used two compounds, Compound 44 [6,6-dimethyl-3-(3-hydroxypropyl)thio-1-(thiazol-2-yl)-6,7-dihydro-2-benzothiophen-4(5H)-one] and Compound 6 [methyl 3,5-diphenylpyridazine-4-carboxylate], with functional activity as potentiators of γ-aminobutyric acid at GABA(A) α5 receptors, to test their ability to improve hippocampal-dependent memory in aged rats with identified cognitive impairment. Improvement was obtained in aged rats across protocols differing in motivational and performance demands and across varying retention intervals. Significant memory improvement occurred after either intracereboventricular infusion with Compound 44 (100 μg) in a water maze task or systemic administration with Compound 6 (3 mg/kg) in a radial arm maze task. Furthermore, systemic administration improved behavioral performance at dosing shown to provide drug exposure in the brain and in vivo receptor occupancy in the hippocampus. These data suggest a novel approach to improve neural network function in clinical conditions of excess hippocampal activity. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.
Behavioral effects of MDMA ('ecstasy') on adult zebrafish.
Stewart, Adam; Riehl, Russell; Wong, Keith; Green, Jeremy; Cosgrove, Jessica; Vollmer, Karoly; Kyzar, Evan; Hart, Peter; Allain, Alexander; Cachat, Jonathan; Gaikwad, Siddharth; Hook, Molly; Rhymes, Kate; Newman, Alan; Utterback, Eli; Chang, Katie; Kalueff, Allan V
2011-06-01
3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') is a potent psychedelic drug inducing euphoria and hypersociability in humans, as well as hyperactivity and anxiety in rodents. Adult zebrafish (Danio rerio) have become a widely used species in neurobehavioral research. Here, we explore the effects of a wide range (0.25-120 mg/l) of acute MDMA doses on zebrafish behavior in the novel tank test. Although MDMA was inactive at lower doses (0.25-10 mg/l), higher doses reduced bottom swimming and immobility (40-120 mg/l) and impaired intrasession habituation (10-120 mg/l). MDMA also elevated brain c-fos expression, collectively confirming the usage of zebrafish models for screening of hallucinogenic compounds.
Opländer, Christian; Volkmar, Christine M; Paunel-Görgülü, Adnana; Fritsch, Thomas; van Faassen, Ernst E; Mürtz, Manfred; Grieb, Gerrit; Bozkurt, Ahmet; Hemmrich, Karsten; Windolf, Joachim; Suschek, Christoph V
2012-02-15
Vascular ischemic diseases, hypertension, and other systemic hemodynamic and vascular disorders may be the result of impaired bioavailability of nitric oxide (NO). NO but also its active derivates like nitrite or nitroso compounds are important effector and signal molecules with vasodilating properties. Our previous findings point to a therapeutical potential of cutaneous administration of NO in the treatment of systemic hemodynamic disorders. Unfortunately, no reliable data are available on the mechanisms, kinetics and biological responses of dermal application of nitric oxide in humans in vivo. The aim of the study was to close this gap and to explore the therapeutical potential of dermal nitric oxide application. We characterized with human skin in vitro and in vivo the capacity of NO, applied in a NO-releasing acidified form of nitrite-containing liniments, to penetrate the epidermis and to influence local as well as systemic hemodynamic parameters. We found that dermal application of NO led to a very rapid and significant transepidermal translocation of NO into the underlying tissue. Depending on the size of treated skin area, this translocation manifests itself through a significant systemic increase of the NO derivates nitrite and nitroso compounds, respectively. In parallel, this translocation was accompanied by an increased systemic vasodilatation and blood flow as well as reduced blood pressure. We here give evidence that in humans dermal application of NO has a therapeutic potential for systemic hemodynamic disorders that might arise from local or systemic insufficient availability of NO or its bio-active NO derivates, respectively. Copyright © 2012 Elsevier Inc. All rights reserved.
Bu, Pengli; Le, Yuan; Zhang, Yue; Zhang, Youcai; Cheng, Xingguo
2017-01-01
Sodium-taurocholate co-transporting polypeptide (Ntcp/NTCP) is the major uptake transporter of bile salts in mouse and human livers. In certain diseases, including endotoxemia, cholestasis, diabetes, and hepatocarcinoma, Ntcp/NTCP expression is markedly reduced, which interferes with enterohepatic circulation of bile salts, impairing the absorption of lipophilic compounds. Therefore, normal Ntcp/NTCP expression in the liver is physiologically important. Berberine is an herbal medicine used historically to improve liver function and has recently been shown to repress STAT signaling. However, berberine effects on Ntcp/NTCP expression are unknown, prompting use to investigate this possible connection. Our results showed that berberine dose-dependently increased Ntcp expression in male mouse liver and decreased taurocholic acid levels in serum but increased them in the liver. In mouse and human hepatoma cells, berberine induced Ntcp/NTCP mRNA and protein expression and increased cellular uptake of [3H] taurocholate. Mechanistically, berberine decreased nuclear protein levels of phospho-JAK2 and phospho-STAT5, thus disrupting the JAK2-STAT5 signaling. Moreover, berberine stimulated luciferase reporter expression from the mouse Ntcp promoter when one putative STAT5 response element (RE) (−1137 bp) was deleted and from the human NTCP promoter when three putative STAT5REs (−2898, −2164, and −691 bp) were deleted. Chromatin immunoprecipitation demonstrated that berberine decreased binding of phospho-STAT5 protein to the−2164 and −691 bp STAT5REs in the human NTCP promoter. In summary, berberine-disrupted STAT5 signaling promoted mouse and human Ntcp/NTCP expression, resulting in enhanced bile acid uptake. Therefore, berberine may be a therapeutic candidate compound for maintaining bile acid homeostasis. PMID:28154180
Bu, Pengli; Le, Yuan; Zhang, Yue; Zhang, Youcai; Cheng, Xingguo
2017-03-17
Sodium-taurocholate co-transporting polypeptide (Ntcp/NTCP) is the major uptake transporter of bile salts in mouse and human livers. In certain diseases, including endotoxemia, cholestasis, diabetes, and hepatocarcinoma, Ntcp/NTCP expression is markedly reduced, which interferes with enterohepatic circulation of bile salts, impairing the absorption of lipophilic compounds. Therefore, normal Ntcp/NTCP expression in the liver is physiologically important. Berberine is an herbal medicine used historically to improve liver function and has recently been shown to repress STAT signaling. However, berberine effects on Ntcp/NTCP expression are unknown, prompting use to investigate this possible connection. Our results showed that berberine dose-dependently increased Ntcp expression in male mouse liver and decreased taurocholic acid levels in serum but increased them in the liver. In mouse and human hepatoma cells, berberine induced Ntcp/NTCP mRNA and protein expression and increased cellular uptake of [3H] taurocholate. Mechanistically, berberine decreased nuclear protein levels of phospho-JAK2 and phospho-STAT5, thus disrupting the JAK2-STAT5 signaling. Moreover, berberine stimulated luciferase reporter expression from the mouse Ntcp promoter when one putative STAT5 response element (RE) (-1137 bp) was deleted and from the human NTCP promoter when three putative STAT5REs (-2898, -2164, and -691 bp) were deleted. Chromatin immunoprecipitation demonstrated that berberine decreased binding of phospho-STAT5 protein to the-2164 and -691 bp STAT5REs in the human NTCP promoter. In summary, berberine-disrupted STAT5 signaling promoted mouse and human Ntcp/NTCP expression, resulting in enhanced bile acid uptake. Therefore, berberine may be a therapeutic candidate compound for maintaining bile acid homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Xu, Cheng; Bentinger, Magnus; Savu, Octavian; Moshfegh, Ali; Sunkari, Vivekananda; Dallner, Gustav; Swiezewska, Ewa; Catrina, Sergiu-Bogdan; Brismar, Kerstin; Tekle, Michael
2017-01-01
Diabetes mellitus is characterized by hyperglycemia and capillary hypoxia that causes excessive production of free radicals and impaired antioxidant defense, resulting in oxidative stress and diabetes complications such as impaired wound healing. We have previously shown that modified forms of tocotrienols possess beneficial effects on the biosynthesis of the mevalonate pathway lipids including increase in mitochondrial CoQ. The aim of this study is to investigate the effects of mono-epoxy-tocotrienol-α on in vitro and in vivo wound healing models as well as its effects on mitochondrial function. Gene profiling analysis and gene expression studies on HepG2 cells and human dermal fibroblasts were performed by microarray and qPCR, respectively. In vitro wound healing using human fibroblasts was studied by scratch assay and in vitro angiogenesis using human dermal microvascular endothelial cells was studied by the tube formation assay. In vivo wound healing was performed in the diabetic db/db mouse model. For the study of mitochondrial functions and oxygen consumption rate Seahorse XF-24 was employed. In vitro, significant increase in wound closure and cell migration (p<0.05) both in normal and high glucose and in endothelial tube formation (angiogenesis) (p<0.005) were observed. Microarray profiling analysis showed a 20-fold increase of KIF26A gene expression and 11-fold decrease of lanosterol synthase expression. Expression analysis by qPCR showed significant increase of the growth factors VEGFA and PDGFB. The epoxidated compound induced a significantly higher basal and reserve mitochondrial capacity in both HDF and HepG2 cells. Additionally, in vivo wound healing in db/db mice, demonstrated a small but significant enhancement on wound healing upon local application of the compound compared to treatment with vehicle alone. Mono-epoxy-tocotrienol-α seems to possess beneficial effects on wound healing by increasing the expression of genes involved in cell growth, motility and angiogenes as well as on mitochondrial function. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of amyloid and small vessel disease on white matter network disruption.
Kim, Hee Jin; Im, Kiho; Kwon, Hunki; Lee, Jong Min; Ye, Byoung Seok; Kim, Yeo Jin; Cho, Hanna; Choe, Yearn Seong; Lee, Kyung Han; Kim, Sung Tae; Kim, Jae Seung; Lee, Jae Hong; Na, Duk L; Seo, Sang Won
2015-01-01
There is growing evidence that the human brain is a large scale complex network. The structural network is reported to be disrupted in cognitively impaired patients. However, there have been few studies evaluating the effects of amyloid and small vessel disease (SVD) markers, the common causes of cognitive impairment, on structural networks. Thus, we evaluated the association between amyloid and SVD burdens and structural networks using diffusion tensor imaging (DTI). Furthermore, we determined if network parameters predict cognitive impairments. Graph theoretical analysis was applied to DTI data from 232 cognitively impaired patients with varying degrees of amyloid and SVD burdens. All patients underwent Pittsburgh compound-B (PiB) PET to detect amyloid burden, MRI to detect markers of SVD, including the volume of white matter hyperintensities and the number of lacunes, and detailed neuropsychological testing. The whole-brain network was assessed by network parameters of integration (shortest path length, global efficiency) and segregation (clustering coefficient, transitivity, modularity). PiB retention ratio was not associated with any white matter network parameters. Greater white matter hyperintensity volumes or lacunae numbers were significantly associated with decreased network integration (increased shortest path length, decreased global efficiency) and increased network segregation (increased clustering coefficient, increased transitivity, increased modularity). Decreased network integration or increased network segregation were associated with poor performances in attention, language, visuospatial, memory, and frontal-executive functions. Our results suggest that SVD alters white matter network integration and segregation, which further predicts cognitive dysfunction.
Adverse ophthalmic reaction in poppers users: case series of ‘poppers maculopathy'
Davies, A J; Kelly, S P; Naylor, S G; Bhatt, P R; Mathews, J P; Sahni, J; Haslett, R; McKibbin, M
2012-01-01
Background Poppers are a recreational substance of abuse belonging to the alkyl nitrite family of compounds. In the United Kingdom, where they are legal to purchase but illegal to sell for human consumption, 10% of the general population have tried them. They are considered low risk to physical and mental health. Two recent case series from France demonstrated foveal pathology in individuals associated with poppers use. Method A case series of seven patients presenting to four hospitals in the United Kingdom with visual impairment and maculopathy associated with inhalation of poppers. Results All patients experienced visual symptoms associated with poppers use. The majority had impaired visual acuity, central scotomata, distortion, or phosphenes. Clinical signs on fundoscopy ranged from normal foveal appearance to yellow, dome-shaped lesions at the foveola. Spectral domain optical coherence tomography (SD-OCT) showed varying degrees of disruption of the presumed inner segment/outer segment (IS/OS) junction. Discussion Although poppers have been in use for several decades, in 2007, following legislative changes, there was a change in the most commonly used compound from isobutyl nitrite to isopropyl nitrite. There were no reports of ‘poppers maculopathy' before this. Poppers maculopathy may be missed if patients are not directly questioned about their use. The disruption or loss of the presumed IS/OS junction on SD-OCT are a characteristic feature. Further study of maculopathy in poppers users is now needed. Raising public awareness of the ocular risks associated with their use may be necessary. PMID:23079752
Adverse ophthalmic reaction in poppers users: case series of 'poppers maculopathy'.
Davies, A J; Kelly, S P; Naylor, S G; Bhatt, P R; Mathews, J P; Sahni, J; Haslett, R; McKibbin, M
2012-11-01
Poppers are a recreational substance of abuse belonging to the alkyl nitrite family of compounds. In the United Kingdom, where they are legal to purchase but illegal to sell for human consumption, 10% of the general population have tried them. They are considered low risk to physical and mental health. Two recent case series from France demonstrated foveal pathology in individuals associated with poppers use. A case series of seven patients presenting to four hospitals in the United Kingdom with visual impairment and maculopathy associated with inhalation of poppers. All patients experienced visual symptoms associated with poppers use. The majority had impaired visual acuity, central scotomata, distortion, or phosphenes. Clinical signs on fundoscopy ranged from normal foveal appearance to yellow, dome-shaped lesions at the foveola. Spectral domain optical coherence tomography (SD-OCT) showed varying degrees of disruption of the presumed inner segment/outer segment (IS/OS) junction. Although poppers have been in use for several decades, in 2007, following legislative changes, there was a change in the most commonly used compound from isobutyl nitrite to isopropyl nitrite. There were no reports of 'poppers maculopathy' before this. Poppers maculopathy may be missed if patients are not directly questioned about their use. The disruption or loss of the presumed IS/OS junction on SD-OCT are a characteristic feature. Further study of maculopathy in poppers users is now needed. Raising public awareness of the ocular risks associated with their use may be necessary.
Mitra, Amitava; Kesisoglou, Filippos
2013-11-04
Published reports have clearly shown that weakly basic drugs which have low solubility at high pH could have impaired absorption in patients with high gastric pH thus leading to reduced and variable bioavailability. Since such reduction in exposure can lead to significant loss of efficacy, it is imperative to (1) understand the behavior of the compound as a function of stomach pH to inform of any risk of bioavailability loss in clinical studies and (2) develop a robust formulation which can provide adequate exposure in achlorhydric patients. In this review paper, we provide an overview of the factors that can cause high gastric pH in human, discuss clinical and preclinical pharmacokinetic data for weak bases under conditions of normal and high gastric pH, and give examples of formulation strategies to minimize or mitigate the reduced absorption of weakly basic drugs under high gastric pH conditions. It should be noted that the ability to overcome pH sensitivity issues is highly compound dependent and there are no obvious and general solutions to overcome such effect. Further, we discuss, along with several examples, the use of biopharmaceutical tools such as in vitro dissolution, absorption modeling, and gastric pH modified animal models to assess absorption risk of weak bases in high gastric pH and also the use of these tools to enable development of formulations to mitigate such effects.
Novel therapeutics for gastro-esophageal reflux symptoms.
Zerbib, Frank; Simon, Mireille
2012-09-01
Approximately 20-30% of patients with gastro-esophageal reflux symptoms report inadequate symptom relief while on proton-pump inhibitor therapy. The mechanisms involved are failure of the antireflux barrier (transient lower esophageal sphincter relaxations), high proximal extent of the refluxate, esophageal hypersensitivity and impaired mucosal integrity. Persisting acid or nonacid reflux can be demonstrated in 40-50% of cases, suggesting that there is room for antireflux therapy in these patients. New antireflux compounds have been shown to decrease the occurrence of transient lower esophageal sphincter relaxations. The most promising classes of compounds are GABA type B agonists and metabotropic glutamate receptor 5 antagonists, which can reduce both reflux episodes and symptoms, but the development of these compounds has been abandoned for either safety issues or lack of efficacy. Esophageal hypersensitivity and impaired mucosal integrity may prove to be relevant therapeutic targets in the future.
Association between plasma endocannabinoids and appetite in hemodialysis patients: a pilot study
USDA-ARS?s Scientific Manuscript database
Weight loss is a well-recognized complication in subjects undergoing hemodialysis for impaired kidney function. This pilot study explored whether plasma levels of compounds known to mediate appetite, the endocannabinoids (EC) and EC-like compounds derived from polyunsaturated fatty acids (PUFA), ar...
Juvenile exposure to vinclozolin shifts sex ratios and impairs reproductive capacity of zebrafish.
Lor, Yer; Revak, Andrew; Weigand, Jenna; Hicks, Elisabeth; Howard, David R; King-Heiden, Tisha C
2015-12-01
Exposure to endocrine disruptors during critical periods of development can impact the sustainability of wild fish populations. Anti-androgenic compounds have received less attention, but are capable of modulating gonad differentiation and maturation, and impairing reproduction in fish. The fungicide vinclozolin (VZ) has been shown to impair reproduction in adult fish, but less is known about its effects following exposure earlier in development. Here we show that waterborne exposure to 400μg VZ/L during critical periods of sex differentiation (21-35 days post fertilization) permanently shifts sex ratios towards females, and alters the maturation of the gonad. Both fecundity and fertility were reduced, even when oogenesis and spermatogenesis recover and sperm motility is not altered. These results demonstrate the need to better understand the impacts of early exposure to anti-androgenic compounds on fish. Copyright © 2015 Elsevier Inc. All rights reserved.
Jiménez, W; Gal, C S; Ros, J; Cano, C; Cejudo, P; Morales-Ruiz, M; Arroyo, V; Pascal, M; Rivera, F; Maffrand, J P; Rodés, J
2000-10-01
Water retention in experimental cirrhosis can be reversed by blocking V(2)-vasopressin (AVP) receptors with the nonpeptide antagonist OPC-31260 or by using the kappa-opioid receptor agonist niravoline, a compound inhibiting central AVP release. However, reluctance to use these drugs in human beings has emerged because the former loses aquaretic efficacy in rats after 2 days of treatment and the latter may have adverse effects in humans. Recently, a new potent and selective nonpeptide V(2)-AVP receptor antagonist, SR121463, has been developed that could be useful for the treatment of dilutional hyponatremia in human cirrhosis. The current study assessed the aquaretic efficacy of 10-day chronic oral administration of SR121463 (0.5 mg/kg/day) in cirrhotic rats with ascites and impaired water excretion after a water load (minimum urinary osmolality >160 mOsm/kg and percentage of water load excreted <60%). Urine volume (UV), osmolality (U(Osm)V), and sodium excretion (U(Na)V) were measured daily. At the end of the 10-day treatment, mean arterial pressure also was measured. In basal conditions cirrhotic rats showed ascites, sodium retention, and impaired water excretion. UV, U(Osm)V, and U(Na)V did not change throughout the study in cirrhotic rats receiving the vehicle. In contrast, SR121463 increased UV and reduced U(Osm)V during the 10-day treatment. This resulted in a greater renal ability to excrete a water load and normalization in serum sodium and osmolality. During the first 6 days of treatment, SR121463 also increased U(Na)V without affecting mean arterial pressure. These data suggest that SR121463 could be of therapeutical value for chronic management of human cirrhosis.
45 CFR 1308.9 - Eligibility criteria: Speech or language impairments.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN... language impairments. (a) A speech or language impairment means a communication disorder such as stuttering... language disorder may be characterized by difficulty in understanding and producing language, including...
Plural Acquisition in Children with Specific Language Impairment.
ERIC Educational Resources Information Center
Oetting, Janna B.; Rice, Mabel L.
1993-01-01
A plural elicitation task and a nominal compounding task were administered to 18 children (age 5-6 years) with specific language impairment (SLI) and 2 control groups. SLI children's performance was affected by input frequency; three explanations within a model of linguistic normalcy are proposed to account for this frequency effect. (Author/DB)
Riese, Florian; Gietl, Anton; Zölch, Niklaus; Henning, Anke; O’Gorman, Ruth; Kälin, Andrea M.; Leh, Sandra E.; Buck, Alfred; Warnock, Geoffrey; Edden, Richard A.E.; Luechinger, Roger; Hock, Christoph; Kollias, Spyros; Michels, Lars
2017-01-01
The biomarker potential of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) for the in vivo characterization of preclinical stages in Alzheimer’s disease has not yet been explored. We measured GABA, glutamate + glutamine (Glx), and N-acetyl-aspartate (NAA) levels by single-voxel MEGA-PRESS magnetic resonance spectroscopy in the posterior cingulate cortex of 21 elderly subjects and 15 patients with amnestic mild cognitive impairment. Participants underwent Pittsburgh Compound B positron emission tomography, apolipoprotein E (APOE) genotyping, and neuropsychological examination. GABA, Glx, and NAA levels were significantly lower in patients. NAA was lower in Pittsburgh Compound B-positive subjects and APOE ε4 allele carriers. GABA, Glx, and NAA levels were positively correlated to CERAD word learning scores. Reductions in GABA, Glx, and NAA levels may serve as metabolic biomarkers for cognitive impairment in amnestic mild cognitive impairment. Because GABA and Glx do not seem to reflect amyloid β deposition or APOE genotype, they are less likely biomarker candidates for preclinical Alzheimer’s disease. PMID:25169676
An invertebrate hyperglycemic model for the identification of anti-diabetic drugs.
Matsumoto, Yasuhiko; Sumiya, Eriko; Sugita, Takuya; Sekimizu, Kazuhisa
2011-03-30
The number of individuals diagnosed with type 2 diabetes mellitus, which is caused by insulin resistance and/or abnormal insulin secretion, is increasing worldwide, creating a strong demand for the development of more effective anti-diabetic drugs. However, animal-based screening for anti-diabetic compounds requires sacrifice of a large number of diabetic animals, which presents issues in terms of animal welfare. Here, we established a method for evaluating the anti-diabetic effects of compounds using an invertebrate animal, the silkworm, Bombyx mori. Sugar levels in silkworm hemolymph increased immediately after feeding silkworms a high glucose-containing diet, resulting in impaired growth. Human insulin and 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, decreased the hemolymph sugar levels of the hyperglycemic silkworms and restored growth. Treatment of the isolated fat body with human insulin in an in vitro culture system increased total sugar in the fat body and stimulated Akt phosphorylation. These responses were inhibited by wortmannin, an inhibitor of phosphoinositide 3 kinase. Moreover, AICAR stimulated AMPK phosphorylation in the silkworm fat body. Administration of aminoguanidine, a Maillard reaction inhibitor, repressed the accumulation of Maillard reaction products (advanced glycation end-products; AGEs) in the hyperglycemic silkworms and restored growth, suggesting that the growth defect of hyperglycemic silkworms is caused by AGE accumulation in the hemolymph. Furthermore, we identified galactose as a hypoglycemic compound in jiou, an herbal medicine for diabetes, by monitoring its hypoglycemic activity in hyperglycemic silkworms. These results suggest that the hyperglycemic silkworm model is useful for identifying anti-diabetic drugs that show therapeutic effects in mammals.
Hung, Chi-Feng; Hsiao, Chien-Yu; Hsieh, Wen-Hao; Li, Hsin-Ju; Tsai, Yi-Ju; Lin, Chun-Nan; Chang, Hsun-Hsien; Wu, Nan-Lin
2017-01-01
Licorice (Glycyrrhiza) species have been widely used as a traditional medicine and a natural sweetener in foods. The 18β-glycyrrhetinic acid (18β-GA) is a bioactive compound in licorice that exhibits potential anti-cancer, anti-inflammatory, and anti-microbial activities. Many synthesized derivatives of 18β-GA have been reported to be cytotoxic and suggested for the treatment of malignant diseases. In this study, we explored the possible pharmacological roles of an 18β-GA derivative in skin biology using primary human dermal fibroblasts and HaCaT keratinocytes as cell models. We found that this 18β-GA derivative did not cause cell death, but significantly enhanced the proliferation of dermal fibroblasts and HaCaT keratinocytes. A scratch wound healing assay revealed that the 18β-GA derivative promoted the migration of fibroblasts. Due to the important role of aquaporin-3 in cell migration and proliferation, we also investigated the expression of aquaporin-3 and found this compound up-regulated the expression of aquaporin-3 in dermal fibroblasts and HaCaT keratinocytes. In dermal fibroblasts, the 18β-GA derivative induced the phosphorylation of Akt, ERK, and p38. The inhibitor of Akt predominantly suppressed the 18β-GA derivative-induced expression of aquaporin-3. Collectively, this compound had a positive effect on the proliferation, migration, and aquaporin-3 expression of skin cells, implying its potential role in the treatment of skin diseases characterized by impaired wound healing or dermal defects. PMID:28813533
Mondol, Muhammad Abdul Mojid; Farthouse, Jannatul; Islam, Mohammad Tofazzal; Schüffler, Anja; Laatsch, Hartmut
2017-02-24
The endophytic fungus Curvularia sp., strain M12, was isolated from a leaf of the medicinal plant Murraya koenigii and cultured on rice medium followed by chemical screening of the culture extract. Chromatographic analysis led to the isolation of four new compounds, murranofuran A (1), murranolide A (2), murranopyrone (3a), and murranoic acid A (4a), along with six known metabolites, N-(2-hydroxy-6-methoxyphenyl)acetamide (5), curvularin (6), (S)-dehydrocurvularin (7), pyrenolide A (8), modiolide A (9), and 8-hydroxy-6-methoxy-3-methylisocoumarin (10). The structures of the known compounds were confirmed by comparing ESI HR mass spectra, 1 H and 13 C NMR, and optical rotation data with values reported in the literature. The planar structures of the new compounds were elucidated by extensive analysis of 1D and 2D NMR and mass data. The absolute configurations of the new compounds were established by coupling constant analysis, modified Mosher's method, and CD data. Compound 8 showed a strong motility impairing activity against Phytophthora capsici zoospores at a low concentration (100% at 0.5 μg/mL) in a short time (30 min). Compounds 2, 3a, 6, 7, 9, and 10 exhibited zoospore motility impairment activity at higher concentrations (IC 50 : 50-100 μg/mL).
Betulin derivatives impair Leishmania braziliensis viability and host-parasite interaction.
Alcazar, Wilmer; López, Adrian Silva; Alakurtti, Sami; Tuononen, Maija-Liisa; Yli-Kauhaluoma, Jari; Ponte-Sucre, Alicia
2014-11-01
Leishmaniasis is a public health problem in tropical and subtropical areas of the world, including Venezuela. The incidence of treatment failure and the number of cases with Leishmania-HIV co-infection underscore the importance of developing alternative, economical and effective therapies against this disease. The work presented here analyzed whether terpenoids derived from betulin are active against New World Leishmania parasites. Initially we determined the concentration that inhibits the growth of these parasites by 50% or IC50, and subsequently evaluated the chemotactic effect of four compounds with leishmanicidal activity in the sub-micromolar and micromolar range. That is, we measured the migratory capacity of Leishmania (V.) braziliensis in the presence of increasing concentrations of compounds. Finally, we evaluated their cytotoxicity against the host cell and their effect on the infectivity of L. (V.) braziliensis. The results suggest that (1) compounds 14, 17, 18, 25 and 27 are active at concentrations lower than 10 μM; (2) compound 26 inhibits parasite growth with an IC50 lower than 1 μM; (3) compounds 18, 26 and 27 inhibit parasite migration at pico- to nanomolar concentrations, suggesting that they impair host-parasite interaction. None of the tested compounds was cytotoxic against J774.A1 macrophages thus indicating their potential as starting points to develop compounds that might affect parasite-host cell interaction, as well as being leishmanicidal. Copyright © 2014 Elsevier Ltd. All rights reserved.
Differential Effects of the Cannabinoid Agonist WIN55,212-2 on Delay and Trace Eyeblink Conditioning
Steinmetz, Adam B.; Freeman, John H.
2014-01-01
Central cannabinoid-1 receptors (CB1R) play a role in the acquisition of delay eyeblink conditioning but not trace eyeblink conditioning in humans and animals. However, it is not clear why trace conditioning is immune to the effects of cannabinoid receptor compounds. The current study examined the effects of variants of delay and trace conditioning procedures to elucidate the factors that determine the effects of CB1R agonists on eyeblink conditioning. In Experiment 1 rats were administered the cannabinoid agonist WIN55,212-2 during delay, long delay, or trace conditioning. Rats were impaired during delay and long delay but not trace conditioning; the impairment was greater for long delay than delay conditioning. Trace conditioning was further examined in Experiment 2 by manipulating the trace interval and keeping constant the conditioned stimulus (CS) duration. It was found that when the trace interval was 300 ms or less WIN55,212-2 administration impaired the rate of learning. Experiment 3 tested whether the trace interval duration or the relative durations of the CS and trace interval were critical parameters influencing the effects of WIN55,212-2 on eyeblink conditioning. Rats were not impaired with a 100 ms CS, 200 ms trace paradigm but were impaired with a 1000 ms CS, 500 ms trace paradigm, indicating that the duration of the trace interval does not matter but the proportion of the interstimulus interval occupied by the CS relative to the trace period is critical. Taken together the results indicate that cannabinoid agonists affect cerebellar learning the CS is longer than the trace interval. PMID:24128358
Hasler, Gregor; van der Veen, Jan Willem; Grillon, Christian; Drevets, Wayne C; Shen, Jun
2010-10-01
Impaired function of the central gamma-aminobutyric acid (GABA) system, which provides the brain's major inhibitory pathways, is thought to play an important role in the pathophysiology of anxiety disorders. The effect of acute psychological stress on the human GABA-ergic system is still unknown, however. The purpose of this study was to determine the effect of acute stress on prefrontal GABA levels. A recently developed noninvasive magnetic resonance spectroscopy method was used to measure changes in the GABA concentration of the prefrontal cortex in 10 healthy human subjects during a threat-of-shock condition and during a safe condition (two sessions on different days). The main outcome measure was the mean GABA concentration within a 3×3×2-cm(3) voxel selected from the medial prefrontal cortex. Prefrontal GABA decreased by approximately 18% in the threat-of-shock condition relative to the safe condition. This reduction was specific to GABA, since the concentrations of N-acetyl-aspartate, choline-containing compounds, and glutamate/glutamine levels obtained in the same spectra did not change significantly. This result appeared compatible with evidence from preclinical studies in rodents, which showed rapid presynaptic down-regulation of GABA-ergic neurotransmission in response to acute psychological stress. The molecular mechanism and functional significance of this reduced inhibitory effect of acute psychological stress in relation to impaired GABA-ergic function in anxiety disorders merit further investigation.
Human infertility: are endocrine disruptors to blame?
Marques-Pinto, André; Carvalho, Davide
2013-01-01
Over recent decades, epidemiological studies have been reporting worrisome trends in the incidence of human infertility rates. Extensive detection of industrial chemicals in human serum, seminal plasma and follicular fluid has led the scientific community to hypothesise that these compounds may disrupt hormonal homoeostasis, leading to a vast array of physiological impairments. Numerous synthetic and natural substances have endocrine-disruptive effects, acting through several mechanisms. The main route of exposure to these chemicals is the ingestion of contaminated food and water. They may disturb intrauterine development, resulting in irreversible effects and may also induce transgenerational effects. This review aims to summarise the major scientific developments on the topic of human infertility associated with exposure to endocrine disruptors (EDs), integrating epidemiological and experimental evidence. Current data suggest that environmental levels of EDs may affect the development and functioning of the reproductive system in both sexes, particularly in foetuses, causing developmental and reproductive disorders, including infertility. EDs may be blamed for the rising incidence of human reproductive disorders. This constitutes a serious public health issue that should not be overlooked. The exposure of pregnant women and infants to EDs is of great concern. Therefore, precautionary avoidance of exposure to EDs is a prudent attitude in order to protect humans and wildlife from permanent harmful effects on fertility. PMID:23985363
Zhao, Xiaofang; Luo, Guosong; Cheng, Ying; Yu, Wenjing; Chen, Run; Xiao, Bin; Xiang, Yuancai; Feng, Chunhong; Fu, Wenguang; Duan, Chunyan; Yao, Fuli; Xia, Xianming; Tao, Qinghua; Wei, Mei; Dai, Rongyang
2018-07-01
Compound C, a well-known inhibitor of AMP-activated protein kinase (AMPK), has been reported to exert antitumor activities in some types of cells. Whether compound C can exert antitumor effects in human cholangiocarcinoma (CCA) remains unknown. Here, we demonstrated that compound C is a potent inducer of cell death and autophagy in human CCA cells. Autophagy inhibitors increased the cytotoxicity of compound C towards human CCA cells, as confirmed by increased LDH release, and PARP cleavage. It is notable that compound C treatment increased phosphorylated Akt, sustained high levels of phosphorylated p70S6K, and decreased mTOR regulated p-ULK1 (ser757). Based on the data that blocking PI3K/Akt or mTOR had no apparent influence on autophagic response, we suggest that compound C induces autophagy independent of Akt/mTOR signaling in human CCA cells. Further study demonstrated that compound C inhibited the phosphorylation of JNK and its target c-Jun. Blocking JNK by SP600125 or siRNA suppressed autophagy induction upon compound C treatment. Moreover, compound C induced p38 MAPK activation, and its inhibition promoted autophagy induction via JNK activation. In addition, compound C induced p53 expression, and its inhibition attenuated compound C-induced autophagic response. Thus, compound C triggers autophagy, at least in part, via the JNK and p53 pathways in human CCA cells. In conclusion, suppresses autophagy could increase compound C sensitivity in human CCA. © 2018 Wiley Periodicals, Inc.
Wang, Weifeng; Zhou, Jing; Halambage, Upul D; Jurado, Kellie A; Jamin, Augusta V; Wang, Yujie; Engelman, Alan N; Aiken, Christopher
2017-05-01
The human immunodeficiency virus type 1 (HIV-1) capsid protein is an attractive therapeutic target, owing to its multifunctionality in virus replication and the high fitness cost of amino acid substitutions in capsids to HIV-1 infectivity. To date, small-molecule inhibitors have been identified that inhibit HIV-1 capsid assembly and/or impair its function in target cells. Here, we describe the mechanism of action of the previously reported capsid-targeting HIV-1 inhibitor, Boehringer-Ingelheim compound 1 (C1). We show that C1 acts during HIV-1 maturation to prevent assembly of a mature viral capsid. However, unlike the maturation inhibitor bevirimat, C1 did not significantly affect the kinetics or fidelity of Gag processing. HIV-1 particles produced in the presence of C1 contained unstable capsids that lacked associated electron density and exhibited impairments in early postentry stages of infection, most notably reverse transcription. C1 inhibited assembly of recombinant HIV-1 CA in vitro and induced aberrant cross-links in mutant HIV-1 particles capable of spontaneous intersubunit disulfide bonds at the interhexamer interface in the capsid lattice. Resistance to C1 was conferred by a single amino acid substitution within the compound-binding site in the N-terminal domain of the CA protein. Our results demonstrate that the binding site for C1 represents a new pharmacological vulnerability in the capsid assembly stage of the HIV-1 life cycle. IMPORTANCE The HIV-1 capsid protein is an attractive but unexploited target for clinical drug development. Prior studies have identified HIV-1 capsid-targeting compounds that display different mechanisms of action, which in part reflects the requirement for capsid function at both the efferent and afferent phases of viral replication. Here, we show that one such compound, compound 1, interferes with assembly of the conical viral capsid during virion maturation and results in perturbations at a specific protein-protein interface in the capsid lattice. We also identify and characterize a mutation in the capsid protein that confers resistance to the inhibitor. This study reveals a novel mechanism by which a capsid-targeting small molecule can inhibit HIV-1 replication. Copyright © 2017 American Society for Microbiology.
Polyphenols Inhibit Hepatitis C Virus Entry by a New Mechanism of Action.
Calland, Noémie; Sahuc, Marie-Emmanuelle; Belouzard, Sandrine; Pène, Véronique; Bonnafous, Pierre; Mesalam, Ahmed Atef; Deloison, Gaspard; Descamps, Véronique; Sahpaz, Sevser; Wychowski, Czeslaw; Lambert, Olivier; Brodin, Priscille; Duverlie, Gilles; Meuleman, Philip; Rosenberg, Arielle R; Dubuisson, Jean; Rouillé, Yves; Séron, Karin
2015-10-01
Despite the validation of direct-acting antivirals for hepatitis C treatment, the discovery of new compounds with different modes of action may still be of importance for the treatment of special patient populations. We recently identified a natural molecule, epigallocatechin-3-gallate (EGCG), as an inhibitor of hepatitis C virus (HCV) targeting the viral particle. The aim of this work was to discover new natural compounds with higher anti-HCV activity than that of EGCG and determine their mode of action. Eight natural molecules with structure similarity to EGCG were selected. HCV JFH1 in cell culture and HCV pseudoparticle systems were used to determine the antiviral activity and mechanism of action of the compounds. We identified delphinidin, a polyphenol belonging to the anthocyanidin family, as a new inhibitor of HCV entry. Delphinidin inhibits HCV entry in a pangenotypic manner by acting directly on the viral particle and impairing its attachment to the cell surface. Importantly, it is also active against HCV in primary human hepatocytes, with no apparent cytotoxicity and in combination with interferon and boceprevir in cell culture. Different approaches showed that neither aggregation nor destruction of the particle occurred. Cryo-transmission electron microscopy observations of HCV pseudoparticles treated with delphinidin or EGCG showed a bulge on particles that was not observed under control conditions. In conclusion, EGCG and delphinidin inhibit HCV entry by a new mechanism, i.e., alteration of the viral particle structure that impairs its attachment to the cell surface. In this article, we identify a new inhibitor of hepatitis C virus (HCV) infection, delphinidin, that prevents HCV entry. This natural compound, a plant pigment responsible for the blue-purple color of flowers and berries, belongs to the flavonoid family, like the catechin EGCG, the major component present in green tea extract, which is also an inhibitor of HCV entry. We studied the mode of action of these two compounds against HCV and demonstrated that they both act directly on the virus, inducing a bulging of the viral envelope. This deformation might be responsible for the observed inhibition of virus attachment to the cell surface. The discovery of such HCV inhibitors with an unusual mode of action is important to better characterize the mechanism of HCV entry into hepatocytes and to help develop a new class of HCV entry inhibitors. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Aflatoxin: A 50-Year Odyssey of Mechanistic and Translational Toxicology
Kensler, Thomas W.; Roebuck, Bill D.; Wogan, Gerald N.; Groopman, John D.
2011-01-01
Since their discovery 50 years ago, the aflatoxins have become recognized as ubiquitous contaminants of the human food supply throughout the economically developing world. The adverse toxicological consequences of these compounds in populations are quite varied because of a wide range of exposures leading to acute effects, including rapid death, and chronic outcomes such as hepatocellular carcinoma. Furthermore, emerging studies describe a variety of general adverse health effects associated with aflatoxin, such as impaired growth in children. Aflatoxin exposures have also been demonstrated to multiplicatively increase the risk of liver cancer in people chronically infected with hepatitis B virus (HBV) illustrating the deleterious impact that even low toxin levels in the diet can pose for human health. The public health impact of aflatoxin exposure is pervasive. Aflatoxin biomarkers of internal and biologically effective doses have been integral to the establishment of the etiologic role of this toxin in human disease through better estimates of exposure, expanded knowledge of the mechanisms of disease pathogenesis, and as tools for implementing and evaluating preventive interventions. PMID:20881231
van den Broek, Marcel P H; Groenendaal, Floris; Egberts, Antoine C G; Rademaker, Carin M A
2010-05-01
Examples of clinical applications of therapeutic hypothermia in modern clinical medicine include traumatic cardiac arrest, ischaemic stroke and, more recently, acute perinatal asphyxia in neonates. The exact mechanism of (neuro)protection by hypothermia is unknown. Since most enzymatic processes exhibit temperature dependency, it can be expected that therapeutic hypothermia may cause alterations in both pharmacokinetic and pharmacodynamic parameters, which could result in an increased risk of drug toxicity or therapy failure. Generalizable knowledge about the effect of therapeutic hypothermia on pharmacokinetics and pharmacodynamics could lead to more appropriate dosing and thereby prediction of clinical effects. This article reviews the evidence on the influence of therapeutic hypothermia on individual pharmacokinetic and pharmacodynamic parameters. A literature search was conducted within the PubMed, Embase and Cochrane databases from January 1965 to September 2008, comparing pharmacokinetic and/or pharmacodynamic parameters in hypothermia and normothermia regarding preclinical (animal) and clinical (human) studies. During hypothermia, pharmacokinetic parameters alter, resulting in drug and metabolite accumulation in the plasma for the majority of drugs. Impaired clearance is the most striking effect. Based on impaired clearance, dosages should be decreased considerably, especially for drugs with a low therapeutic index. Hypothetically, high-clearance compounds are affected more than low-clearance compounds because of the additional effect of impaired hepatic blood flow. The volume of distribution also changes, which may lead to therapy failure when it increases and could lead to toxicity when it decreases. The pH-partitioning hypothesis could contribute to the changes in the volumes of distribution for weak bases and acids, depending on their acid dissociation constants and acid-base status. Pharmacodynamic parameters may also alter, depending on the hypothermic regimen, drug target location, pharmacological mechanism and metabolic pathway of inactivation. The pharmacological response changes when target sensitivity alters. Rewarming patients to normothermia can also result in toxicity or therapy failure. The integrated effect of hypothermia on pharmacokinetic and pharmacodynamic properties of individual drugs is unclear. Therefore, therapeutic drug monitoring is currently considered essential for drugs with a low therapeutic index, drugs with active metabolites, high-clearance compounds and drugs that are inactivated by enzymes at the site of effect. Because most of the studies (74%) included in this review contain preclinical data, clinical pharmacokinetic/pharmacodynamic studies are essential for the development of substantiated dose regimens to avoid toxicity and therapy failure in patients treated with hypothermia.
Otten, Timothy G; Paerl, Hans W
2015-03-01
Cyanobacterial-derived water quality impairment issues are a growing concern worldwide. In addition to their ecological impacts, these organisms are prolific producers of bioactive secondary metabolites, many of which are known human intoxicants. To date only a handful of these compounds have been thoroughly studied and their toxicological risks estimated. While there are currently no national guidelines in place to deal with this issue, it is increasingly likely that within the next several years guidelines will be implemented. The intent of this review is to survey all relevant literature pertaining to cyanobacterial harmful algal bloom secondary metabolites, to inform a discussion on how best to manage this global public health threat.
Sieger, P; Cui, Y; Scheuerer, S
2017-07-15
pH-dependent solubility - permeability profiles offer a simple way to predict bioavailability after oral application, if bioavailability is only solubility and permeability driven. Combining both pH-dependent solubility and pH-dependent permeability in one diagram provides a pH-window (=ΔpH sol-perm ) from which the conditions for optimal oral bioavailability can be taken. The size of this window is directly proportional to the observed oral bioavailability. A set of 21 compounds, with known absolute human oral bioavailability, was used to establish this correlation. Compounds with ΔpH sol-perm <2 exhibit poor oral bioavailability (<25%). An increase of ΔpH sol-perm by one pH-unit increases oral bioavailability typically by approximately 25%. For compounds where ΔpH sol-perm ≥3 but still showing poor bioavailability, most probably other pharmacokinetic aspects (e.g. high clearance), are limiting exposure. Interestingly, the location of this pH-window seems to have a negligible influence on the observed oral bioavailability. In scenarios, where the bioavailability is impaired by certain factors, like for example proton pump inhibitor co-medication or food intake, the exact position of this pH-window might be beneficial for understanding the root cause. Copyright © 2017 Elsevier B.V. All rights reserved.
Herrmann, W M; Dietrich, B; Hiersemenzel, R
1990-01-01
In two double-blind, placebo-controlled clinical studies of the nootropic compound acetyl-L-carnitine on the electroencephalogram (EEG) and impaired brain functions of elderly outpatients with mild to moderate cognitive decline of the organic brain syndrome, statistically significant effects could be detected after eight weeks (on the EEG), and after 12 weeks of treatment (on the physician's clinical global impression and the patient-rated level of activities of daily living). Side-effects of acetyl-L-carnitine were generally minor and overall rare. Longer treatment periods and further specifications with regard to the aetiopathology and degree of cognitive impairment are recommended for further clinical studies of this promising compound.
Evranos-Aksoz, Begum; Ucar, Gulberk; Tas, Sadik Taskin; Aksoz, Erkan; Yelekci, Kemal; Erikci, Acelya; Sara, Yildirim; Iskit, Alper Bektas
2017-01-01
Depression is a momentous disease that can greatly reduce the quality of life and cause death. In depression, neurotransmitter levels such as serotonine, dopamine and noradrenaline are impaired. Monoamine oxidases (MAO) are responsible for oxidative catalysis of these monoamine neurotransmitters. Because of this relation, MAO-A inhibitors show antidepressant activity by regulating neurotransmitter levels. This study was carried out to investigate the design, synthesis and activity of new antidepressant compounds in pyrazoline and hydrazone structure. Chalcones and hydrazides were heated under reflux to give new pyrazoline and hydrazone derivatives. Docking simulations were performed using AutoDock4.2. hMAO activities were determined by a fluorimetric method. To determine cell viability, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used. Behavioral activities of the three compounds were determined by using Forced Swim Test, Step-Through Passive Avoidance Test, Elevated Plus Maze and Open Field Arena Tests. According to in vitro tests, all of the synthesized compounds were found more potent than moclobemide and six of the synthesized compounds were found more selective than moclobemide. Three of the synthesized compounds were investigated for their behavioral activities comparing with moclobemide after 7 days of i.p. treatment at 30 mg/kg. One of the three compounds elicited significant antidepressant properties. All of the synthesized compounds were found potent hMAO-A inhibitors in in vitro screening tests. Only one of the in vivo tested three compounds, (3-(2-hydroxy-5-methylphenyl)-5- p-tolyl-4,5-dihydropyrazol-1-yl)(pyridin-4-yl) methanone indicated significant antidepressant activity. This article opens a window for further development of new pyrazoline and hydrazone derivatives as antidepressant agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Selective cognitive impairments associated with NMDA receptor blockade in humans.
Rowland, Laura M; Astur, Robert S; Jung, Rex E; Bustillo, Juan R; Lauriello, John; Yeo, Ronald A
2005-03-01
Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) may be involved in the pathophysiology of schizophrenia. NMDAR antagonists like ketamine induce schizophrenia-like features in humans. In rodent studies, NMDAR antagonism impairs learning by disrupting long-term potentiation (LTP) in the hippocampus. This study investigated the effects of ketamine on spatial learning (acquisition) vs retrieval in a virtual Morris water task in humans. Verbal fluency, working memory, and learning and memory of verbal information were also assessed. Healthy human subjects participated in this double-blinded, placebo-controlled study. On two separate occasions, ketamine/placebo was administered and cognitive tasks were assessed in association with behavioral ratings. Ketamine impaired learning of spatial and verbal information but retrieval of information learned prior to drug administration was preserved. Schizophrenia-like symptoms were significantly related to spatial and verbal learning performance. Ketamine did not significantly impair attention, verbal fluency, or verbal working memory task performance. Spatial working memory was slightly impaired. In conclusion, these results provide evidence for ketamine's differential impairment of verbal and spatial learning vs retrieval. By using the Morris water task, which is hippocampal-dependent, this study helps bridge the gap between nonhuman animal and human NMDAR antagonism research. Impaired cognition is a core feature of schizophrenia. A better understanding of NMDA antagonism, its physiological and cognitive consequences, may provide improved models of psychosis and cognitive therapeutics.
Djelti, Fathia; Dhenain, Marc; Terrien, Jérémy; Picq, Jean-Luc; Hardy, Isabelle; Champeval, Delphine; Perret, Martine; Schenker, Esther; Epelbaum, Jacques; Aujard, Fabienne
2017-01-01
Age-associated cognitive impairment is a major health and social issue because of increasing aged population. Cognitive decline is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. In middle-aged healthy humans, fasting blood glucose levels in the upper normal range are associated with memory impairment and cerebral atrophy. Due to a close evolutional similarity to Man, non-human primates may be useful to investigate the relationships between glucose homeostasis, cognitive deficits and structural brain alterations. In the grey mouse lemur, Microcebus murinus, spatial memory deficits have been associated with age and cerebral atrophy but the origin of these alterations have not been clearly identified. Herein, we showed that, on 28 female grey mouse lemurs (age range 2.4-6.1 years-old), age correlated with impaired fasting blood glucose (rs=0.37) but not with impaired glucose tolerance or insulin resistance. In middle-aged animals (4.1-6.1 years-old), fasting blood glucose was inversely and closely linked with spatial memory performance (rs=0.56) and hippocampus (rs=−0.62) or septum (rs=−0.55) volumes. These findings corroborate observations in humans and further support the grey mouse lemur as a natural model to unravel mechanisms which link impaired glucose homeostasis, brain atrophy and cognitive processes. PMID:28039490
Djelti, Fathia; Dhenain, Marc; Terrien, Jérémy; Picq, Jean-Luc; Hardy, Isabelle; Champeval, Delphine; Perret, Martine; Schenker, Esther; Epelbaum, Jacques; Aujard, Fabienne
2016-12-28
Age-associated cognitive impairment is a major health and social issue because of increasing aged population. Cognitive decline is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. In middle-aged healthy humans, fasting blood glucose levels in the upper normal range are associated with memory impairment and cerebral atrophy. Due to a close evolutional similarity to Man, non-human primates may be useful to investigate the relationships between glucose homeostasis, cognitive deficits and structural brain alterations. In the grey mouse lemur, Microcebus murinus , spatial memory deficits have been associated with age and cerebral atrophy but the origin of these alterations have not been clearly identified. Herein, we showed that, on 28 female grey mouse lemurs (age range 2.4-6.1 years-old), age correlated with impaired fasting blood glucose (r s =0.37) but not with impaired glucose tolerance or insulin resistance. In middle-aged animals (4.1-6.1 years-old), fasting blood glucose was inversely and closely linked with spatial memory performance (r s =0.56) and hippocampus (r s =-0.62) or septum (r s =-0.55) volumes. These findings corroborate observations in humans and further support the grey mouse lemur as a natural model to unravel mechanisms which link impaired glucose homeostasis, brain atrophy and cognitive processes.
Inhibition of 11β-hydroxysteroid dehydrogenase 2 by the fungicides itraconazole and posaconazole.
Beck, Katharina R; Bächler, Murielle; Vuorinen, Anna; Wagner, Sandra; Akram, Muhammad; Griesser, Ulrich; Temml, Veronika; Klusonova, Petra; Yamaguchi, Hideaki; Schuster, Daniela; Odermatt, Alex
2017-04-15
Impaired 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2)-dependent cortisol inactivation can lead to electrolyte dysbalance, hypertension and cardiometabolic disease. Furthermore, placental 11β-HSD2 essentially protects the fetus from high maternal glucocorticoid levels, and its impaired function has been associated with altered fetal growth and a higher risk for cardio-metabolic diseases in later life. Despite its important role, 11β-HSD2 is not included in current off-target screening approaches. To identify potential 11β-HSD inhibitors among approved drugs, a pharmacophore model was used for virtual screening, followed by biological assessment of selected hits. This led to the identification of several azole fungicides as 11β-HSD inhibitors, showing a significant structure-activity relationship between azole scaffold size, 11β-HSD enzyme selectivity and inhibitory potency. A hydrophobic linker connecting the azole ring to the other, more polar end of the molecule was observed to be favorable for 11β-HSD2 inhibition and selectivity over 11β-HSD1. The most potent 11β-HSD2 inhibition, using cell lysates expressing recombinant human 11β-HSD2, was obtained for itraconazole (IC 50 139±14nM), its active metabolite hydroxyitraconazole (IC 50 223±31nM) and posaconazole (IC 50 460±98nM). Interestingly, experiments with mouse and rat kidney homogenates showed considerably lower inhibitory activity of these compounds towards 11β-HSD2, indicating important species-specific differences. Thus, 11β-HSD2 inhibition by these compounds is likely to be overlooked in preclinical rodent studies. Inhibition of placental 11β-HSD2 by these compounds, in addition to the known inhibition of cytochrome P450 enzymes and P-glycoprotein efflux transport, might contribute to elevated local cortisol levels, thereby affecting fetal programming. Copyright © 2017 Elsevier Inc. All rights reserved.
Menegazzi, Marta; Novelli, Michela; Beffy, Pascale; D'Aleo, Valentina; Tedeschi, Elisa; Lupi, Roberto; Zoratti, Elisa; Marchetti, Piero; Suzuki, Hisanori; Masiello, Pellegrino
2008-01-01
In both type 1 and type 2 diabetes, increased production of cytokines on autoimmune or metabolic basis is supposed to trigger an inflammatory process leading to dysfunction and death of pancreatic beta-cells. Therefore, anti-inflammatory pharmacological approaches aimed at blocking cytokine signalling pathways and consequent cytotoxicity in beta-cells are highly advisable. Based on previous evidence of cytokine antagonistic effects in other cell types, we explored the protective action of Hypericum perforatum (St-John's-wort) extract and its component hyperforin against cytokine-induced functional impairment and apoptosis in the INS-1E beta-cell line, searching for the underlying mechanisms. The results showed that either St-John's-wort extract or hyperforin (at 1-3 microM) prevented cytokine-induced impairment in glucose-stimulated insulin secretion and protected cells against apoptosis in a dose-dependent fashion. Inducible-NO-synthase expression was also potently hindered by the vegetal compounds. Interestingly, cytokine-induced activations of the signal-transducer-and-activator-of-transcription-1 (STAT-1) and the nuclear-factor-kappaB (NF-kappaB) were both down-regulated by SJW extract or HPF (range 0.5-5 microM) when evaluated by electrophoretic-mobility-shift-assay. Other transcription factors (CBF-1, SP-1) were unaffected. Components of SJW extract other than HPF were much less effective in down-regulating cytokine signalling. Significantly, inhibition of cytokine-elicited STAT-1 and NF-kappaB activation was confirmed in isolated rat and human islets incubated in the presence of these vegetal compounds. In conclusion, St-John's-wort extract and hyperforin are non-peptidyl compounds which, at low concentrations, target key mechanisms of cytokine-induced beta-cell injury, thereby improving beta-cell function and survival. Thus, they are potentially valuable for the prevention or limitation of beta-cell loss in diabetes.
Athanasopoulos, Athanasios N; Economopoulou, Matina; Orlova, Valeria V; Sobke, Astrid; Schneider, Darius; Weber, Holger; Augustin, Hellmut G; Eming, Sabine A; Schubert, Uwe; Linn, Thomas; Nawroth, Peter P; Hussain, Muzaffar; Hammes, Hans-Peter; Herrmann, Mathias; Preissner, Klaus T; Chavakis, Triantafyllos
2006-04-01
Staphylococcus aureus is a major human pathogen interfering with host-cell functions. Impaired wound healing is often observed in S aureus-infected wounds, yet, the underlying mechanisms are poorly defined. Here, we identify the extracellular adherence protein (Eap) of S aureus to be responsible for impaired wound healing. In a mouse wound-healing model wound closure was inhibited in the presence of wild-type S aureus and this effect was reversible when the wounds were incubated with an isogenic Eap-deficient strain. Isolated Eap also delayed wound closure. In the presence of Eap, recruitment of inflammatory cells to the wound site as well as neovascularization of the wound were prevented. In vitro, Eap significantly reduced intercellular adhesion molecule 1 (ICAM-1)-dependent leukocyte-endothelial interactions and diminished the consequent activation of the proinflammatory transcription factor nuclear factor kappaB (NFkappaB) in leukocytes associated with a decrease in expression of tissue factor. Moreover, Eap blocked alphav-integrin-mediated endothelial-cell migration and capillary tube formation, and neovascularization in matrigels in vivo. Collectively, the potent anti-inflammatory and antiangiogenic properties of Eap provide an underlying mechanism that may explain the impaired wound healing in S aureus-infected wounds. Eap may also serve as a lead compound for new anti-inflammatory and antiangiogenic therapies in several pathologies.
Contamination levels of human pharmaceutical compounds in French surface and drinking water.
Mompelat, S; Thomas, O; Le Bot, B
2011-10-01
The occurrence of 20 human pharmaceutical compounds and metabolites from 10 representative therapeutic classes was analysed from resource and drinking water in two catchment basins located in north-west France. 98 samples were analysed from 63 stations (surface water and drinking water produced from surface water). Of the 20 human pharmaceutical compounds selected, 16 were quantified in both the surface water and drinking water, with 22% of the values above the limit of quantification for surface water and 14% for drinking water). Psychostimulants, non-steroidal anti-inflammatory drugs, iodinated contrast media and anxiolytic drugs were the main therapeutic classes of human pharmaceutical compounds detected in the surface water and drinking water. The results for surface water were close to results from previous studies in spite of differences in prescription rates of human pharmaceutical compounds in different countries. The removal rate of human pharmaceutical compounds at 11 water treatment units was also determined. Only caffeine proved to be resistant to drinking water treatment processes (with a minimum rate of 5%). Other human pharmaceutical compounds seemed to be removed more efficiently (average elimination rate of over 50%) by adsorption onto activated carbon and oxidation/disinfection with ozone or chlorine (not taking account of the disinfection by-products). These results add to the increasing evidence of the occurrence of human pharmaceutical compounds in drinking water that may represent a threat to human beings exposed to a cocktail of human pharmaceutical compounds and related metabolites and by-products in drinking water.
Cheng, You-Hong; Eby, Jonathan M; LaPorte, Heather M; Volkman, Brian F; Majetschak, Matthias
2017-01-01
Recent evidence suggests that chemokine CXCL12, the cognate agonist of chemokine receptors CXCR4 and ACKR3, reduces thrombin-mediated impairment of endothelial barrier function. A detailed characterization of the effects of CXCL12 on thrombin-mediated human lung endothelial hyperpermeability is lacking and structure-function correlations are not available. Furthermore, effects of other CXCR4/ACKR3 ligands on lung endothelial barrier function are unknown. Thus, we tested the effects of a panel of CXCR4/ACKR3 ligands (CXCL12, CXCL11, ubiquitin, AMD3100, TC14012) and compared the CXCR4/ACKR3 activities of CXCL12 variants (CXCL12α/β, CXCL12(3-68), CXCL121, CXCL122, CXCL12-S-S4V, CXCL12-R47E, CXCL12-K27A/R41A/R47A) with their effects on human lung endothelial barrier function in permeability assays. CXCL12α enhanced human primary pulmonary artery endothelial cell (hPPAEC) barrier function, whereas CXCL11, ubiquitin, AMD3100 and TC14012 were ineffective. Pre-treatment of hPPAEC with CXCL12α and ubiquitin reduced thrombin-mediated hyperpermeability. CXCL12α-treatment of hPPAEC after thrombin exposure reduced barrier function impairment by 70% (EC50 0.05-0.5nM), which could be antagonized with AMD3100; ubiquitin (0.03-3μM) was ineffective. In a human lung microvascular endothelial cell line (HULEC5a), CXCL12α and ubiquitin post-treatment attenuated thrombin-induced hyperpermeability to a similar degree. CXCL12(3-68) was inefficient to activate CXCR4 in Presto-Tango β-arrestin2 recruitment assays; CXCL12-S-S4V, CXCL12-R47E and CXCL12-K27A/R41A/R47A showed significantly reduced potencies to activate CXCR4. While the potencies of all proteins in ACKR3 Presto-Tango assays were comparable, the efficacy of CXCL12(3-68) to activate ACKR3 was significantly reduced. The potencies to attenuate thrombin-mediated hPPAEC barrier function impairment were: CXCL12α/β, CXCL121, CXCL12-K27A/R41A/R47A > CXCL12-S-S4V, CXCL12-R47E > CXCL122 > CXCL12(3-68). Our findings indicate that CXCR4 activation attenuates thrombin-induced lung endothelial barrier function impairment and suggest that protective effects of CXCL12 are dictated by its CXCR4 agonist activity and interactions of distinct protein moieties with heparan sulfate on the endothelial surface. These data may facilitate development of compounds with improved pharmacological properties to attenuate thrombin-induced vascular leakage in the pulmonary circulation.
Pharmacological Enhancement of Memory and Executive Functioning in Laboratory Animals
Floresco, Stan B; Jentsch, James D
2011-01-01
Investigating how different pharmacological compounds may enhance learning, memory, and higher-order cognitive functions in laboratory animals is the first critical step toward the development of cognitive enhancers that may be used to ameliorate impairments in these functions in patients suffering from neuropsychiatric disorders. Rather than focus on one aspect of cognition, or class of drug, in this review we provide a broad overview of how distinct classes of pharmacological compounds may enhance different types of memory and executive functioning, particularly those mediated by the prefrontal cortex. These include recognition memory, attention, working memory, and different components of behavioral flexibility. A key emphasis is placed on comparing and contrasting the effects of certain drugs on different cognitive and mnemonic functions, highlighting methodological issues associated with this type of research, tasks used to investigate these functions, and avenues for future research. Viewed collectively, studies of the neuropharmacological basis of cognition in rodents and non-human primates have identified targets that will hopefully open new avenues for the treatment of cognitive disabilities in persons affected by mental disorders. PMID:20844477
Namour, Fares; Dobrovoljski, Gabriele; Chery, Celine; Audonnet, Sandra; Feillet, François; Sperl, Wolfgang; Gueant, Jean-Louis
2011-01-01
Juvenile megaloblastic anaemia 1 (OMIM # 261100) is a rare autosomic disorder characterized by selective cobalamin mal-absorption and inconstant proteinuria produced by mutations in either CUBN or AMN genes. Amnionless, the gene product of AMN, is a transmembrane protein that binds tightly to the N-terminal end of cubilin, the gene product of CUBN. Cubilin binds to intrinsic factor-cobalamin complex and is expressed in the distal intestine and the proximal renal tubule. We report a compound AMN heterozygosity with c.742C>T, p.Gln248X and c.208-2A>G mutations in 2 siblings that led to premature termination codon in exon 7 and exon 6, respectively. It produced a dramatic decrease in receptor activity in urine, despite absence of CUBN mutation and normal affinity of the receptor for intrinsic factor binding. Heterozygous carriers for c.742T and c.208-2G had no pathological signs. These results indicate that amnionless is essential for the correct luminal expression of cubilin in humans. PMID:21750092
Flavorings in Tobacco Products Induce Endothelial Cell Dysfunction.
Fetterman, Jessica L; Weisbrod, Robert M; Feng, Bihua; Bastin, Reena; Tuttle, Shawn T; Holbrook, Monica; Baker, Gregory; Robertson, Rose Marie; Conklin, Daniel J; Bhatnagar, Aruni; Hamburg, Naomi M
2018-06-14
Use of alternative tobacco products including electronic cigarettes is rapidly rising. The wide variety of flavored tobacco products available is of great appeal to smokers and youth. The flavorings added to tobacco products have been deemed safe for ingestion, but the cardiovascular health effects are unknown. The purpose of this study was to examine the effect of 9 flavors on vascular endothelial cell function. Freshly isolated endothelial cells from participants who use nonmenthol- or menthol-flavored tobacco cigarettes showed impaired A23187-stimulated nitric oxide production compared with endothelial cells from nonsmoking participants. Treatment of endothelial cells isolated from nonsmoking participants with either menthol (0.01 mmol/L) or eugenol (0.01 mmol/L) decreased A23187-stimulated nitric oxide production. To further evaluate the effects of flavoring compounds on endothelial cell phenotype, commercially available human aortic endothelial cells were incubated with vanillin, menthol, cinnamaldehyde, eugenol, dimethylpyrazine, diacetyl, isoamyl acetate, eucalyptol, and acetylpyrazine (0.1-100 mmol/L) for 90 minutes. Cell death, reactive oxygen species production, expression of the proinflammatory marker IL-6 (interleukin-6), and nitric oxide production were measured. Cell death and reactive oxygen species production were induced only at high concentrations unlikely to be achieved in vivo. Lower concentrations of selected flavors (vanillin, menthol, cinnamaldehyde, eugenol, and acetylpyridine) induced both inflammation and impaired A23187-stimulated nitric oxide production consistent with endothelial dysfunction. Our data suggest that short-term exposure of endothelial cells to flavoring compounds used in tobacco products have adverse effects on endothelial cell phenotype that may have relevance to cardiovascular toxicity. © 2018 American Heart Association, Inc.
Endocrine-disrupting chemicals-Mechanisms of action on male reproductive system.
Sidorkiewicz, Iwona; Zaręba, Kamil; Wołczyński, Sławomir; Czerniecki, Jan
2017-07-01
Endocrine-disrupting chemicals (EDCs) are exogenous compounds that can cause disturbances in the endocrine system and have multiple harmful effects on health by targeting different organs and systems in the human body. Mass industrial production and widespread use of EDCs have resulted in worldwide contamination. Accumulating evidence suggest that human exposure to EDCs is related to the impairment of male reproductive function and can interrupt other hormonally regulated metabolic processes, particularly if exposure occurs during early development. Investigation of studies absent in previous reviews and meta-analysis of adverse effects of EDCs on functioning of the male reproductive system is the core of this work. Four main modes of action of EDCs on male fertility have been summarized in this review. First, studies describing estrogen- pathway disturbing chemicals are investigated. Second, androgen-signaling pathway alterations and influence on androgen sensitive tissues are examined. Third, evaluation of steroidogenesis dysfunction is discussed by focusing on the steroid hormone biosynthesis pathway, which is targeted by EDCs. Last, the reportedly destructive role of reactive oxygen species (ROS) on sperm function is discussed. Spermatogenesis is a remarkably complex process, hence multiple studies point out various dysfunctions depending on the development state at which the exposure occurred. Collected data show the need to account for critical windows of exposure such as fetal, perinatal and pubertal periods as well as effects of mixtures of several compounds in future research.
Amano, Ryota; Yamashita, Atsuya; Kasai, Hirotake; Hori, Tomoka; Miyasato, Sayoko; Saito, Setsu; Yokoe, Hiromasa; Takahashi, Kazunori; Tanaka, Tomohisa; Otoguro, Teruhime; Maekawa, Shinya; Enomoto, Nobuyuki; Tsubuki, Masayoshi; Moriishi, Kohji
2017-09-01
Several cinnamic acid derivatives have been reported to exhibit antiviral activity. In this study, we prepared 17 synthetic cinnamic acid derivatives and screened them to identify an effective antiviral compound against hepatitis C virus (HCV). Compound 6, one of two hit compounds, suppressed the viral replications of genotypes 1b, 2a, 3a, and 4a with EC 50 values of 1.5-8.1 μM and SI values of 16.2-94.2. The effect of compound 6 on the phosphorylation of Tyr 705 in signal transducer and activator of transcription 3 (STAT3) was investigated because a cinnamic acid derivative AG490 was reported to suppress HCV replication and the activity of Janus kinase (JAK) 2. Compound 6 potently suppressed HCV replication, but it did not inhibit the JAK1/2-dependent phosphorylation of STAT3 Tyr 705 at the same concentration. Furthermore, a pan-JAK inhibitor tofacitinib potently impaired phosphorylation of STAT3 Tyr 705 , but it did not inhibit HCV replication in the replicon cells and HCV-infected cells at the same concentration, supporting the notion that the phosphorylated state of STAT3 Tyr 705 is not necessarily correlated with HCV replication. The production of reactive oxygen species (ROS) was induced by treatment with compound 6, whereas N-acetyl-cysteine restored HCV replication and impaired ROS production in the replicon cells treated with compound 6. These data suggest that compound 6 inhibits HCV replication via the induction of oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.
Andrews, Jr., William H.; Thompson, Cyril V [Knoxville, TN; Vass, Arpad A [Oak Ridge, TN; Smith, Rob R [Knoxville, TN
2011-12-13
An apparatus and a method for detecting a burial site of human remains are disclosed. An air stream is drawn through an air intake conduit from locations near potential burial sites of human remains. The air stream is monitored by one or more chemical sensors to determine whether the air stream includes one or more indicator compounds selected from halogenated compounds, hydrocarbons, nitrogen-containing compounds, sulfur-containing compounds, acid/ester compounds, oxygen-containing compounds, and naphthalene-containing compounds. When it is determined that an indicator compound is present in the air stream, this indicates that a burial site of human remains is below or nearby. Each sensor may be in electrical communication with an indicator that signals when the sensor has detected the presence of the indicator compound in the air stream. In one form, the indicator compound is a halogenated compound and/or a hydrocarbon, and the presence of the halogenated compound and/or the hydrocarbon in the air stream indicates that a burial site of human remains is below or nearby.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-04
...] Draft Guidance for Industry on Interim Product Reporting for Human Drug Compounding Outsourcing... Compounding Outsourcing Facilities Under Section 503B of the Federal Food, Drug, and Cosmetic Act.'' The draft... human drug compounders that choose to register as outsourcing facilities (outsourcing facilities). DATES...
Liu, Changda; Yang, Nan; Chen, Xiaoke; Tversky, Jody; Zhan, Jixun; Chehade, Mirna; Miller, Rachel L; Li, Xiu-Min
2017-03-01
Eotaxin/CCL-11 is a major chemoattractant that contributes to eosinophilic inflammation in asthma. Glucocorticoids inhibit inflammation, but long-time exposure may cause paradoxical adverse effects by augmenting eotaxin/CCL-11production. The aim of this study was to determine if 7,4'-dihydroxyflavone (7,4'-DHF), the eotaxin/CCL11 inhibitor isolated from Glycyrrhiza uralensis, reduces in vitro eotaxin production induced by long-time dexamethasone (Dex) exposure, and if so, to elucidate the mechanisms of this inhibition. Human lung fibroblast-1 cells were used to identify the potency of 7,4'-DHF compared with other compounds from G. uralensis, to compare 7,4'-DHF with Dex on eotaxin production following 24-h short-time culture and 72-h longer-time (LT) culture, and to determine the effects of the 7,4'-DHF on Dex LT culture augmented eotaxin production and molecule mechanisms. 7,4'-DHF was the most potent eotaxin/CCL-11 inhibitor among the ten compounds and provided continued suppression. In contrast to short-time culture, Dex LT culture increased constitutively, and IL-4/TNF-α stimulated eotaxin/CCL11 production by human lung fibroblast-1 cells. This adverse effect was abrogated by 7,4'-DHF co-culture. 7,4'-DHF significantly inhibited Dex LT culture augmentation of p-STAT6 and impaired HDAC2 expression. This study demonstrated that 7,4'-DHF has the ability to consistently suppress eotaxin production and prevent Dex-paradoxical adverse effects on eotaxin production. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Hepatic drug clearance following traumatic injury.
Slaughter, R L; Hassett, J M
1985-11-01
Trauma is a complex disease state associated with physiologic changes that have the potential to alter hepatic drug clearance mechanisms. These responses include alterations in hepatic blood flow, reduction in hepatic microsomal activity, reduction in hepatic excretion processes, and changes in protein binding. Hepatic blood flow is influenced by sympathomimetic activity. Both animal and human studies demonstrate an initial reduction and subsequent increase in hepatic blood flow, which coincides with an observed increase and subsequent return to normal in serum catecholamine concentrations. Unfortunately, there are no human studies that address the importance these findings may have to the clearance processes of high intrinsic clearance compounds. Animal studies of trauma indicate that hepatic microsomal activity is depressed during the post-traumatic period. Reduction in the hepatic clearance of antipyrine, a model low intrinsic compound, has also been demonstrated in animal models of trauma. In addition to these effects, hepatic excretion of substances such as indocyanine green and bilirubin have been demonstrated to be impaired in both traumatized animals and humans. Finally, substantial increases in the serum concentration of the binding protein alpha 1-acid glycoprotein occur in trauma patients. This has been reported to be associated with subsequent decreases in the free fraction of lidocaine and quinidine. In addition to changing serum drug concentration/response relationships, the pharmacokinetic behavior of drugs bound to alpha 1-acid glycoprotein should also change. Preliminary observations in our laboratory in a dog model of surgically-induced trauma have shown a reduction in the total clearance of lidocaine and reduction in free lidocaine concentration.(ABSTRACT TRUNCATED AT 250 WORDS)
PCSK1 Mutations and Human Endocrinopathies: From Obesity to Gastrointestinal Disorders.
Stijnen, Pieter; Ramos-Molina, Bruno; O'Rahilly, Stephen; Creemers, John W M
2016-08-01
Prohormone convertase 1/3, encoded by the PCSK1 gene, is a serine endoprotease that is involved in the processing of a variety of proneuropeptides and prohormones. Humans who are homozygous or compound heterozygous for loss-of-function mutations in PCSK1 exhibit a variable and pleiotropic syndrome consisting of some or all of the following: obesity, malabsorptive diarrhea, hypogonadotropic hypogonadism, altered thyroid and adrenal function, and impaired regulation of plasma glucose levels in association with elevated circulating proinsulin-to-insulin ratio. Recently, more common variants in the PCSK1 gene have been found to be associated with alterations in body mass index, increased circulating proinsulin levels, and defects in glucose homeostasis. This review provides an overview of the endocrinopathies and other disorders observed in prohormone convertase 1/3-deficient patients, discusses the possible biochemical basis for these manifestations of the disease, and proposes a model whereby certain missense mutations in PCSK1 may result in proteins with a dominant negative action.
Scheffel, Corinna; Niessen, Karin V; Rappenglück, Sebastian; Wanner, Klaus T; Thiermann, Horst; Worek, Franz; Seeger, Thomas
2018-09-01
Organophosphorus compounds, including nerve agents and pesticides, exert their toxicity through irreversible inhibition of acetylcholinesterase (AChE) resulting in an accumulation of acetylcholine and functional impairment of muscarinic and nicotinic acetylcholine receptors. Current therapy comprises oximes to reactivate AChE and atropine to antagonize effects induced by muscarinic acetylcholine receptors. Nicotinic malfunction leading to depression of the central and peripheral respiratory system is not directly treated calling for alternative therapeutic interventions. In the present study, we investigated the electrophysiological properties of the human nAChR subtype α7 (hα7-nAChR) and the functional effect of the 4-tert-butyl bispyridinium (BP) compound MB327 and of a series of novel substituted bispyridinium compounds on the receptors by an automated patch clamp technique. Activation of hα7-nAChRs was induced by nicotine and acetylcholine demonstrating rapid cationic influx up to 100μM. Agonist-induced currents decayed within a few milliseconds revealing fast desensitization of the receptors. Application of higher agonist concentrations led to a decline of current amplitudes which seemed to be due to increasing receptor desensitization. When 100μM of agonist was coapplied with low concentrations of the well characterized α7-specific positive allosteric modulator PNU-120596 (1μM-10μM), the maximum response and duration of nAChR activation were markedly augmented indicating an elongated mean open-time of receptors and prevention of receptor desensitization. However, co-application of increasing PNU-120596 concentrations (>10μM) with agonist induced a decline of potentiated current responses. Although less pronounced than PNU-120596, six of the twenty tested substituted BP compounds, in particular those with a substituent at 3-position and 4-position at the pyridinium moieties, were found to potentiate current responses of hα7-nAChRs, most pronounced MB327.This effect was clearly depended on the presence of the agonist indicating a positive allosteric mechanism of these compounds. Besides potentiation at low concentrations, these compounds seem to interact at different binding sites on hα7-nAChRs since enhancement decreased at high concentrations. The residual fourteen BP compounds, possessing either an isopropyl-group or more than one group at the pyridinium moiety, antagonized nicotinic currents exhibiting IC 50 of low up to high micromolar concentrations (∼1μM-300μM). Copyright © 2017 Elsevier B.V. All rights reserved.
Malik, Nasir; Efthymiou, Anastasia G; Mather, Karly; Chester, Nathaniel; Wang, Xiantao; Nath, Avindra; Rao, Mahendra S; Steiner, Joseph P
2014-12-01
Human primary neural tissue is a vital component for the quick and simple determination of chemical compound neurotoxicity in vitro. In particular, such tissue would be ideal for high-throughput screens that can be used to identify novel neurotoxic or neurotherapeutic compounds. We have previously established a high-throughput screening platform using human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) and neurons. In this study, we conducted a 2000 compound screen with human NSCs and rat cortical cells to identify compounds that are selectively toxic to each group. Approximately 100 of the tested compounds showed specific toxicity to human NSCs. A secondary screen of a small subset of compounds from the primary screen on human iPSCs, NSC-derived neurons, and fetal astrocytes validated the results from >80% of these compounds with some showing cell specific toxicity. Amongst those compounds were several cardiac glycosides, all of which were selectively toxic to the human cells. As the screen was able to reliably identify neurotoxicants, many with species and cell-type specificity, this study demonstrates the feasibility of this NSC-driven platform for higher-throughput neurotoxicity screens. Published by Elsevier B.V.
Emotion Causes Targeted Forgetting of Established Memories
Strange, Bryan A.; Kroes, Marijn C. W.; Fan, Judith E.; Dolan, Raymond J.
2010-01-01
Reconsolidation postulates that reactivation of a memory trace renders it susceptible to disruption by treatments similar to those that impair initial memory consolidation. Despite evidence that implicit, or non-declarative, human memories can be disrupted at retrieval, a convincing demonstration of selective impairment in retrieval of target episodic memories following reactivation is lacking. In human subjects, we demonstrate that if reactivation of a verbal memory, through successful retrieval, is immediately followed by an emotionally aversive stimulus, a significant impairment is evident in its later recall. This effect is time-dependent and persists for at least 6 days. Thus, in line with a reconsolidation hypothesis, established human episodic memories can be selectively impaired following their retrieval. PMID:21191439
Emotion causes targeted forgetting of established memories.
Strange, Bryan A; Kroes, Marijn C W; Fan, Judith E; Dolan, Raymond J
2010-01-01
Reconsolidation postulates that reactivation of a memory trace renders it susceptible to disruption by treatments similar to those that impair initial memory consolidation. Despite evidence that implicit, or non-declarative, human memories can be disrupted at retrieval, a convincing demonstration of selective impairment in retrieval of target episodic memories following reactivation is lacking. In human subjects, we demonstrate that if reactivation of a verbal memory, through successful retrieval, is immediately followed by an emotionally aversive stimulus, a significant impairment is evident in its later recall. This effect is time-dependent and persists for at least 6 days. Thus, in line with a reconsolidation hypothesis, established human episodic memories can be selectively impaired following their retrieval.
Nagase, Hiroyuki; Omae, Naoki; Omori, Akiko; Nakagawasai, Osamu; Tadano, Takeshi; Yokosuka, Akihito; Sashida, Yutaka; Mimaki, Yoshihiro; Yamakuni, Tohru; Ohizumi, Yasushi
2005-12-02
cAMP response element (CRE) transcription is dysregulated in neurodegenerative disorders in the central nervous system (CNS), including polyglutamine diseases. As the first step to find natural compounds with protective action against neurodegeneration in the CNS, we here examined whether six citrus flavonoids, namely nobiletin, 5-demethylnobiletin, tangeretin, sinensetin, 6-demethoxytangeretin, and 6-demethoxynobiletin, stimulated CRE-dependent transcription and induced neurite outgrowth in PC12D cells. Among the compounds, nobiletin most potently enhanced CRE-dependent transcription and neurite outgrowth by activating ERK/MAP kinase-dependent signalling to increase CREB phosphorylation. The transcription and neurite outgrowth were stimulated by nobiletin in a concentration-dependent manner, with a strong correlation between them. Furthermore, a 11-day oral administration of nobiletin rescued impaired memory in olfactory-bulbectomized mice documented to be accompanied by a cholinergic neurodegeneration. These results suggest that nobiletin with the activity to improve impaired memory may become a potential leading compound for drug development for neurodegenerative disorders exhibiting the dysregulated CRE-dependent transcription.
Davis, Angela L.; Qiao, Shuxi; Lesson, Jessica L.; Rojo de la Vega, Montserrat; Park, Sophia L.; Seanez, Carol M.; Gokhale, Vijay; Cabello, Christopher M.; Wondrak, Georg T.
2015-01-01
Pharmacological induction of proteotoxic stress is rapidly emerging as a promising strategy for cancer cell-directed chemotherapeutic intervention. Here, we describe the identification of a novel drug-like heat shock response inducer for the therapeutic induction of proteotoxic stress targeting malignant human melanoma cells. Screening a focused library of compounds containing redox-directed electrophilic pharmacophores employing the Stress & Toxicity PathwayFinderTM PCR Array technology as a discovery tool, a drug-like triphenylmethane-derivative (aurin; 4-[bis(p-hydroxyphenyl)methylene]-2,5-cyclohexadien-1-one) was identified as an experimental cell stress modulator that causes (i) heat shock factor transcriptional activation, (ii) up-regulation of heat shock response gene expression (HSPA6, HSPA1A, DNAJB4, HMOX1), (iii) early unfolded protein response signaling (phospho-PERK, phospho-eIF2α, CHOP (CCAAT/enhancer-binding protein homologous protein)), (iv) proteasome impairment with increased protein-ubiquitination, and (v) oxidative stress with glutathione depletion. Fluorescence polarization-based experiments revealed that aurin displays activity as a geldanamycin-competitive Hsp90α-antagonist, a finding further substantiated by molecular docking and ATPase inhibition analysis. Aurin exposure caused caspase-dependent cell death in a panel of human malignant melanoma cells (A375, G361, LOX-IMVI) but not in non-malignant human skin cells (Hs27 fibroblasts, HaCaT keratinocytes, primary melanocytes) undergoing the aurin-induced heat shock response without impairment of viability. Aurin-induced melanoma cell apoptosis depends on Noxa up-regulation as confirmed by siRNA rescue experiments demonstrating that siPMAIP1-based target down-regulation suppresses aurin-induced cell death. Taken together, our data suggest feasibility of apoptotic elimination of malignant melanoma cells using the quinone methide-derived heat shock response inducer aurin. PMID:25477506
Lee, Samuel M.; Sha, Di; Mohammed, Anum A.; Asress, Seneshaw; Glass, Jonathan D.; Chin, Lih-Shen; Li, Lian
2013-01-01
Charcot–Marie–Tooth disease type 1C (CMT1C) is a dominantly inherited motor and sensory neuropathy. Despite human genetic evidence linking missense mutations in SIMPLE to CMT1C, the in vivo role of CMT1C-linked SIMPLE mutations remains undetermined. To investigate the molecular mechanism underlying CMT1C pathogenesis, we generated transgenic mice expressing either wild-type or CMT1C-linked W116G human SIMPLE. Mice expressing mutant, but not wild type, SIMPLE develop a late-onset motor and sensory neuropathy that recapitulates key clinical features of CMT1C disease. SIMPLE mutant mice exhibit motor and sensory behavioral impairments accompanied by decreased motor and sensory nerve conduction velocity and reduced compound muscle action potential amplitude. This neuropathy phenotype is associated with focally infolded myelin loops that protrude into the axons at paranodal regions and near Schmidt–Lanterman incisures of peripheral nerves. We find that myelin infolding is often linked to constricted axons with signs of impaired axonal transport and to paranodal defects and abnormal organization of the node of Ranvier. Our findings support that SIMPLE mutation disrupts myelin homeostasis and causes peripheral neuropathy via a combination of toxic gain-of-function and dominant-negative mechanisms. The results from this study suggest that myelin infolding and paranodal damage may represent pathogenic precursors preceding demyelination and axonal degeneration in CMT1C patients. PMID:23359569
A systematic review of the antipsychotic properties of cannabidiol in humans.
Iseger, Tabitha A; Bossong, Matthijs G
2015-03-01
Despite extensive study over the past decades, available treatments for schizophrenia are only modestly effective and cause serious metabolic and neurological side effects. Therefore, there is an urgent need for novel therapeutic targets for the treatment of schizophrenia. A highly promising new pharmacological target in the context of schizophrenia is the endocannabinoid system. Modulation of this system by the main psychoactive component in cannabis, Δ9-tetrahydrocannabinol (THC), induces acute psychotic effects and cognitive impairment. However, the non-psychotropic, plant-derived cannabinoid agent cannabidiol (CBD) may have antipsychotic properties, and thus may be a promising new agent in the treatment of schizophrenia. Here we review studies that investigated the antipsychotic properties of CBD in human subjects. Results show the ability of CBD to counteract psychotic symptoms and cognitive impairment associated with cannabis use as well as with acute THC administration. In addition, CBD may lower the risk for developing psychosis that is related to cannabis use. These effects are possibly mediated by opposite effects of CBD and THC on brain activity patterns in key regions implicated in the pathophysiology of schizophrenia, such as the striatum, hippocampus and prefrontal cortex. The first small-scale clinical studies with CBD treatment of patients with psychotic symptoms further confirm the potential of CBD as an effective, safe and well-tolerated antipsychotic compound, although large randomised clinical trials will be needed before this novel therapy can be introduced into clinical practice. Copyright © 2015 Elsevier B.V. All rights reserved.
Hasler, Gregor; van der Veen, Jan Willem; Grillon, Christian; Drevets, Wayne C.; Shen, Jun
2011-01-01
Objective Impaired function of the central gamma-aminobutyric acid (GABA) system, which provides the brain’s major inhibitory pathways, is thought to play an important role in the pathophysiology of anxiety disorders. The effect of acute psychological stress on the human GABA-ergic system is still unknown, however. The purpose of this study was to determine the effect of acute stress on prefrontal GABA levels. Method A recently developed noninvasive magnetic resonance spectroscopy method was used to measure changes in the GABA concentration of the prefrontal cortex in 10 healthy human subjects during a threat-of-shock condition and during a safe condition (two sessions on different days). The main outcome measure was the mean GABA concentration within a 3×3×2-cm3 voxel selected from the medial prefrontal cortex. Results Prefrontal GABA decreased by approximately 18% in the threat-of-shock condition relative to the safe condition. This reduction was specific to GABA, since the concentrations of N-acetyl-aspartate, choline-containing compounds, and glutamate/glutamine levels obtained in the same spectra did not change significantly. Conclusions This result appeared compatible with evidence from preclinical studies in rodents, which showed rapid presynaptic down-regulation of GABA-ergic neurotransmission in response to acute psychological stress. The molecular mechanism and functional significance of this reduced inhibitory effect of acute psychological stress in relation to impaired GABA-ergic function in anxiety disorders merit further investigation. PMID:20634372
Targeting Inflammation in Heart Failure with Histone Deacetylase Inhibitors
McKinsey, Timothy A
2011-01-01
Cardiovascular insults such as myocardial infarction and chronic hypertension can trigger the heart to undergo a remodeling process characterized by myocyte hypertrophy, myocyte death and fibrosis, often resulting in impaired cardiac function and heart failure. Pathological cardiac remodeling is associated with inflammation, and therapeutic approaches targeting inflammatory cascades have shown promise in patients with heart failure. Small molecule histone deacetylase (HDAC) inhibitors block adverse cardiac remodeling in animal models, suggesting unforeseen potential for this class of compounds for the treatment of heart failure. In addition to their beneficial effects on myocardial cells, HDAC inhibitors have potent antiinflammatory actions. This review highlights the roles of HDACs in the heart and the potential for using HDAC inhibitors as broad-based immunomodulators for the treatment of human heart failure. PMID:21267510
Endocannabinoid system in neurodegenerative disorders.
Basavarajappa, Balapal S; Shivakumar, Madhu; Joshi, Vikram; Subbanna, Shivakumar
2017-09-01
Most neurodegenerative disorders (NDDs) are characterized by cognitive impairment and other neurological defects. The definite cause of and pathways underlying the progression of these NDDs are not well-defined. Several mechanisms have been proposed to contribute to the development of NDDs. These mechanisms may proceed concurrently or successively, and they differ among cell types at different developmental stages in distinct brain regions. The endocannabinoid system, which involves cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), endogenous cannabinoids and the enzymes that catabolize these compounds, has been shown to contribute to the development of NDDs in several animal models and human studies. In this review, we discuss the functions of the endocannabinoid system in NDDs and converse the therapeutic efficacy of targeting the endocannabinoid system to rescue NDDs. © 2017 International Society for Neurochemistry.
Consultation for Human, Veterinary, and Compounded Medications.
Moghadam, Gabriella; Forsythe, Lauren Eichstadt
2017-01-01
Providing consultation on medications is a daily responsibility for pharmacists. However, counseling components for veterinary or compounded medications can differ from those for manufactured medications for humans. This article lists the content that should be provided during consultation, describes differences between counseling for human and veterinary patients, and provides references that can be used. Because many veterinary medications are compounded, this article also provides information that should accompany compounded preparations. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Studies on reproductive toxicity of iloprost in rats, rabbits and monkeys.
Battenfeld, R; Schuh, W; Schöbel, C
1995-08-01
A reproduction toxicological test program was performed with the carbaprostacyclin derivative iloprost, an analogue to the endogenous prostacyclin PGI2, in order to detect possible effects on fertility and reproductive performance, on preimplantational, embryonal and fetal development, on delivery as well as on lactation and postpartum development. While in humans iloprost is administered as an i.v. infusion for 6 h/day, it was administered i.v. to rats, rabbits and monkeys by continuous infusion with a subcutaneously implanted pump. No influence on mating or reproductive parameters was found after treatment of male or female rats during the premating phase up to day 7 post coitum (p.c.). Embryonal and fetal development were not remarkably impaired in rabbits or monkeys after treatment throughout the period of organogenesis. The only remarkable observations in the embryotoxicity and peri-/postnatal studies in the rat were defects on the digits (reductions of phalangeal structures) in single individuals. These malformations were interpreted as resulting from a compound-related hypotonia with subsequent change in the regional blood flow and the consequence of temporary impairments of placental blood supply leading to hypoxia in the affected structures.
Neehus, Anna-Lena; Lam, Jenny; Haake, Kathrin; Merkert, Sylvia; Schmidt, Nico; Mucci, Adele; Ackermann, Mania; Schubert, Madline; Happle, Christine; Kühnel, Mark Philipp; Blank, Patrick; Philipp, Friederike; Goethe, Ralph; Jonigk, Danny; Martin, Ulrich; Kalinke, Ulrich; Baumann, Ulrich; Schambach, Axel; Roesler, Joachim; Lachmann, Nico
2018-01-09
Mendelian susceptibility to mycobacterial disease (MSMD) is caused by inborn errors of interferon gamma (IFNγ) immunity and is characterized by severe infections by weakly virulent mycobacteria. Although IFNγ is the macrophage-activating factor, macrophages from these patients have never been studied. We demonstrate the generation of heterozygous and compound heterozygous (iMSMD-cohet) induced pluripotent stem cells (iPSCs) from a single chimeric patient, who suffered from complete autosomal recessive IFNγR1 deficiency and received bone-marrow transplantation. Loss of IFNγR1 expression had no influence on the macrophage differentiation potential of patient-specific iPSCs. In contrast, lack of IFNγR1 in iMSMD-cohet macrophages abolished IFNγ-dependent phosphorylation of STAT1 and induction of IFNγ-downstream targets such as IRF-1, SOCS-3, and IDO. As a consequence, iMSMD-cohet macrophages show impaired upregulation of HLA-DR and reduced intracellular killing of Bacillus Calmette-Guérin. We provide a disease-modeling platform that might be suited to investigate novel treatment options for MSMD and to gain insights into IFNγ signaling in macrophages. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Uchida, Takashi; Yakumaru, Masafumi; Nishioka, Keisuke; Higashi, Yoshihiro; Sano, Tomohiko; Todo, Hiroaki; Sugibayashi, Kenji
2016-01-01
We evaluated the effectiveness of a silicone membrane as an alternative to human skin using the skin permeation parameters of chemical compounds. An in vitro permeation study using 15 model compounds was conducted, and permeation parameters comprising permeability coefficient (P), diffusion parameter (DL(-2)), and partition parameter (KL) were calculated from each permeation profile. Significant correlations were obtained in log P, log DL(-2), and log KL values between the silicone membrane and human skin. DL(-2) values of model compounds, except flurbiprofen, in the silicone membrane were independent of the lipophilicity of the model compounds and were 100-fold higher than those in human skin. For antipyrine and caffeine, which are hydrophilic, KL values in the silicone membrane were 100-fold lower than those in human skin, and P values, calculated as the product of a DL(-2) and KL, were similar. For lipophilic compounds, such as n-butyl paraben and flurbiprofen, KL values for silicone were similar to or 10-fold higher than those in human skin, and P values for silicone were 100-fold higher than those in human skin. Furthermore, for amphiphilic compounds with log Ko/w values from 0.5 to 3.5, KL values in the silicone membrane were 10-fold lower than those in human skin, and P values for silicone were 10-fold higher than those in human skin. The silicone membrane was useful as a human skin alternative in an in vitro skin permeation study. However, depending on the lipophilicity of the model compounds, some parameters may be over- or underestimated.
Chiang, Wen-Chieh; Chen, Chao-Yu; Lee, Ting-Chen; Lee, Hui-Ling; Lin, Yu-Wen
2015-01-01
Recently, the International Agency for Research on cancer classified outdoor air pollution and particulate matter from outdoor air pollution as carcinogenic to humans (IARC Group 1), based on sufficient evidence of carcinogenicity in humans and experimental animals and strong mechanistic evidence. In particular, a wide variety of volatile organic compounds (VOCs) are volatized or released into the atmosphere and can become ubiquitous, as they originate from many different natural and anthropogenic sources, such as paints, pesticides, vehicle exhausts, cooking fumes, and tobacco smoke. Humans may be exposed to VOCs through inhalation, ingestion, or dermal contact, which may increase the risk of leukemia, birth defects, neurocognitive impairment, and cancer. Therefore, the focus of this study was the development of a simple, effective and rapid sample preparation method for the simultaneous determination of seven metabolites (6 mercaptic acids+t,t-muconic acid) derived from five VOCs (acrylamide, 1,3-butadiene, acrylonitrile, benzene, and xylene) in human urine by using automated on-line solid-phase extraction (SPE) coupled with liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS). An aliquot of each diluted urinary sample was directly injected into an autosampler through a trap column to reduce contamination, and then the retained target compounds were eluted by back-flush mode into an analytical column for separation. Negative electrospray ionization tandem mass spectrometry was utilized for quantification. The coefficients of correlation (r(2)) for the calibration curves were greater than 0.995. Reproducibility was assessed by the precision and accuracy of intra-day and inter-day precision, which showed results for coefficient of variation (CV) that were low 0.9 to 6.6% and 3.7 to 8.5%, respectively, and results for recovery that ranged from 90.8 to 108.9% and 92.1 to 107.7%, respectively. The limits of detection (LOD) and limits of quantification (LOQ) were determined to within 0.010 to 0.769 ng mL(-1) and 0.033 to 2.564 ng mL(-1) in this study. A stability study test included 3 freeze/thaw cycles during short-term storage at room temperature for 36 h and long-term storage at -20 °C for 1 month, and the CV (coefficient of variation) showed less than 8.4, 7.4 and 9.7%, respectively. To the best of our knowledge, this is the first study to provide simple, small injection volumes (40 µL) and a rapid LC-MS/MS method combined with an on-line SPE step for the simultaneous detection, identification, and quantification of seven metabolites derived from five VOCs in human urine for evaluation of the future risk of human exposure to volatile organic compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
Jenkins, Jill A.; Goodbred, Steven L.; Olivier, Heather M.; Draugelis-Dale, Rassa O.; Alvarez, David A.
2009-01-01
The Santa Ana River (SAR) in southern California is impacted by effluents from wastewater treatment plants (WWTP), which are sources of organic wastewater compounds (OWCs) and urban runoff. The Santa Ana River is one of only three river basins supporting native populations of the federally listed Santa Ana sucker (Catostomus santaanae) at the time the fish was included on the list 2000. In 2004 and 2005, a U.S. Geological Survey and U.S. Fish and Wildlife Service study was undertaken to determine if the threatened Santa Ana sucker was potentially exposed to OWCs and endocrine disrupting compounds (EDCs) in the SAR by using the western mosquitofish (Gambusia affinis) as a surrogate fish model. Four Santa Ana River sites were chosen along a gradient of proximity to WWTP effluents: (1) a point source of tertiary treated wastewater effluent (TTWE), (2) Rialto Drain (just below a WWTP), (3) Prado Dam (11 kilometers [km] below WWTPs), and (4) Sunnyslope Creek (no WWTP but having urban runoff influence). A reference site having no WWTPs or urban runoff, Thousand Palms, was also sampled. Chemical analyses of passive sampler extracts results showed that 15 OWCs and EDCs were detected in water from the Santa Ana River sites. Many of these compounds contributed to activity from an estrogenic in-vitro assay that showed a significant potential for impacting endocrine and reproductive systems compared to the 25 organochlorine compounds detected in aquatic biota. The site showing compounds having highest influence on sex steroid hormone activities was the point source for TTWE. Sex steroid hormone levels, secondary sex characteristics, organosomatic indices, and sperm quality parameters indicated impairment of endocrine and reproductive function of male western mosquitofish in the Santa Ana River. Exposure to EDCs and consequent impairment in mosquitofish followed the gradient of proximity to WWTP effluents, where the most significant effects were found at TTWE point source and Rialto Drain, followed by Prado Dam and Sunnyslope Creek. Each of these sites is suitable habitat for the Santa Ana sucker, especially Sunnyslope Creek and Rialto Drain where juveniles reside. Various OWCs and EDCs were detected at each Santa Ana River site, although one specific compound or group of compounds could not be singled out as a causative factor. Di (2-ethylhexyl) phthalate was strongly negatively correlated with testosterone in male mosquitofish. One group of potent environmental estrogens that likely contributed to endocrine and reproductive impairment are the natural and synthetic estrogen hormones, especially ethinyl estradiol; however, this compound was not targeted in these investigations. The multiple lines of evidence for impaired reproductive and endocrine function in western mosquitofish due to OWCs and EDCs from the Santa Ana River can be used to identify potential problems for the Santa Ana sucker inhabiting the same and nearby sites.
Adebiyi, Olamide Elizabeth; Olopade, James Olukayode; Olayemi, Funsho Olakitike
2018-06-01
Exposures to toxic levels of vanadium and soluble vanadium compounds cause behavioral impairments and neurodegeneration via free radical production. Consequently, natural antioxidant sources have been explored for effective and cheap remedy following toxicity. Grewia carpinifolia has been shown to improve behavioral impairments in vanadium-induced neurotoxicity, however, the active compounds implicated remains unknown. Therefore, this study was conducted to investigate ameliorative effects of bioactive compounds from G. carpinifolia on memory and behavioral impairments in vanadium-induced neurotoxicity. Sixty BALB/c mice were equally divided into five groups (A-E). A (control); administered distilled water, B (standard); administered α-tocopherol (500 mg/kg) every 72 hr orally with daily dose of sodium metavanadate (3 mg/kg) intraperitoneally, test groups C, and D; received single oral dose of 100 μg β-spinasterol or stigmasterol (bioactive compounds from G. carpinifolia), respectively, along with sodium metavanadate and the model group E, received sodium metavanadate only for seven consecutive days. Memory, locomotion and muscular strength were accessed using Morris water maze, Open field and hanging wire tests. In vivo antioxidant and neuroprotective activities were evaluated by measuring catalase, superoxide dismutase, MDA, H 2 O 2 , and myelin basic protein (MBP) expression in the hippocampus. In Morris water maze, stigmasterol significantly (p ≤ 0.05) decreased escape latency and increased swimming time in target quadrant (28.01 ± 0.02; 98.24 ± 17.38 s), respectively, better than α-tocopherol (52.43 ± 13.25; 80.32 ± 15.21) and β-spinasterol (42.09 ± 14.27; 70.91 ± 19.24) in sodium metavanadate-induced memory loss (112.31 ± 9.35; 42.35 ± 11.05). β-Spinasterol and stigmasterol significantly increased exploration and latency in open field and hanging wire tests respectively. Stigmasterol also increased activities of antioxidant enzymes, decreased oxidative stress markers and lipid peroxidation in mice hippocampal homogenates, and increased MBP expression. The findings of this study indicate a potential for stigmasterol, a bioactive compound from G. carpinifolia in improving cognitive decline, motor coordination, and ameliorating oxidative stress in vanadium-induced neurotoxicity. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.
Seung, Tae Wan; Park, Seon Kyeong; Kang, Jin Yong; Kim, Jong Min; Park, Sang Hyun; Kwon, Bong Seok; Lee, Chang Jun; Kang, Jeong Eun; Kim, Dae Ok; Lee, Uk; Heo, Ho Jin
2018-03-01
The ameliorating effects of the ethyl acetate fraction from Hibiscus sabdariffa L. (EFHS) 2 against diabetes mellitus (DM) 3 and DM-induced cognitive impairment were investigated on streptozotocin (STZ) 4 -induced DM mice. The EFHS groups showed improved hyperglycemia and glucose tolerance compared to the STZ group. Furthermore, their liver and kidney function and lipid metabolic imbalance in the blood serum were effectively recovered. The EFHS groups significantly ameliorated STZ-induced cognitive impairment in Y-maze, passive avoidance, and Morris water maze (MWM) 5 tests. The EFHS groups showed significant improvement in the antioxidant and cholinergic systems of the brain tissue. In addition, EFHS had an excellent ameliorating effect on protein expression levels from the tau hyperphosphorylation pathways, such as phospho-c-Jun N-terminal kinases (p-JNK), 6 phospho-tau (p-tau), 7 and cleaved poly (ADP-ribose) polymerase (c-PARP). 8 The main compounds of EFHS were identified as various phenolic compounds, including hibiscus acid, caffeoylquinic acid (CQA) 9 isomers, and quercetin derivates. Therefore, EFHS containing various physiologically active materials can potentially be used for improving DM-induced cognitive impairment via its antioxidant activity, improvement of the cholinergic system, and hyperphosphorylation tau signaling. Copyright © 2017 Elsevier Ltd. All rights reserved.
Human biological monitoring of suspected endocrine-disrupting compounds
Faniband, Moosa; Lindh, Christian H; Jönsson, Bo AG
2014-01-01
Endocrine-disrupting compounds are exogenous agents that interfere with the natural hormones of the body. Human biological monitoring is a powerful method for monitoring exposure to endocrine disrupting compounds. In this review, we describe human biological monitoring systems for different groups of endocrine disrupting compounds, polychlorinated biphenyls, brominated flame retardants, phthalates, alkylphenols, pesticides, metals, perfluronated compounds, parabens, ultraviolet filters, and organic solvents. The aspects discussed are origin to exposure, metabolism, matrices to analyse, analytical determination methods, determinants, and time trends. PMID:24369128
Lazarus, Rebecca S.; Rattner, Barnett A.; Du, Bowen; McGowan, Peter C.; Blazer, Vicki S.; Ottinger, Mary Ann
2015-01-01
The osprey (Pandion haliaetus) is a well-known sentinel of environmental contamination, yet no studies have traced pharmaceuticals through the water–fish–osprey food web. A screening-level exposure assessment was used to evaluate the bioaccumulation potential of 113 pharmaceuticals and metabolites, and an artificial sweetener in this food web. Hypothetical concentrations in water reflecting “wastewater effluent dominated” or “dilution dominated” scenarios were combined with pH-specific bioconcentration factors (BCFs) to predict uptake in fish. Residues in fish and osprey food intake rate were used to calculate the daily intake (DI) of compounds by an adult female osprey. Fourteen pharmaceuticals and a drug metabolite with a BCF greater than 100 and a DI greater than 20 µg/kg were identified as being most likely to exceed the adult human therapeutic dose (HTD). These 15 compounds were also evaluated in a 40 day cumulative dose exposure scenario using first-order kinetics to account for uptake and elimination. Assuming comparable absorption to humans, the half-lives (t1/2) for an adult osprey to reach the HTD within 40 days were calculated. For 3 of these pharmaceuticals, the estimated t1/2 in ospreys was less than that for humans, and thus an osprey might theoretically reach or exceed the HTD in 3 to 7 days. To complement the exposure model, 24 compounds were quantified in water, fish plasma, and osprey nestling plasma from 7 potentially impaired locations in Chesapeake Bay. Of the 18 analytes detected in water, 8 were found in fish plasma, but only 1 in osprey plasma (the antihypertensive diltiazem). Compared to diltiazem detection rate and concentrations in water (10/12 detects,
Cytotoxicity evaluation using cryopreserved primary human hepatocytes in various culture formats.
Richert, Lysiane; Baze, Audrey; Parmentier, Céline; Gerets, Helga H J; Sison-Young, Rowena; Dorau, Martina; Lovatt, Cerys; Czich, Andreas; Goldring, Christopher; Park, B Kevin; Juhila, Satu; Foster, Alison J; Williams, Dominic P
2016-09-06
Sixteen training compounds selected in the IMI MIP-DILI consortium, 12 drug-induced liver injury (DILI) positive compounds and 4 non-DILI compounds, were assessed in cryopreserved primary human hepatocytes. When a ten-fold safety margin threshold was applied, the non-DILI-compounds were correctly identified 2h following a single exposure to pooled human hepatocytes (n=13 donors) in suspension and 14-days following repeat dose exposure (3 treatments) to an established 3D-microtissue co-culture (3D-MT co-culture, n=1 donor) consisting of human hepatocytes co-cultured with non-parenchymal cells (NPC). In contrast, only 5/12 DILI-compounds were correctly identified 2h following a single exposure to pooled human hepatocytes in suspension. Exposure of the 2D-sandwich culture human hepatocyte monocultures (2D-sw) for 3days resulted in the correct identification of 11/12 DILI-positive compounds, whereas exposure of the human 3D-MT co-cultures for 14days resulted in identification of 9/12 DILI-compounds; in addition to ximelagatran (also not identified by 2D-sw monocultures, Sison-Young et al., 2016), the 3D-MT co-cultures failed to detect amiodarone and bosentan. The sensitivity of the 2D human hepatocytes co-cultured with NPC to ximelagatran was increased in the presence of lipopolysaccharide (LPS), but only at high concentrations, therefore preventing its classification as a DILI positive compound. In conclusion (1) despite suspension human hepatocytes having the greatest metabolic capacity in the short term, they are the least predictive of clinical DILI across the MIP-DILI test compounds, (2) longer exposure periods than 72h of human hepatocytes do not allow to increase DILI-prediction rate, (3) co-cultures of human hepatocytes with NPC, in the presence of LPS during the 72h exposure period allow the assessment of innate immune system involvement of a given drug. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
SUMMARY: The major accomplishment of NTD’s air toxics program is the development of an exposure-dose- response model for acute exposure to volatile organic compounds (VOCs), based on momentary brain concentration as the dose metric associated with acute neurological impairments...
Finamore, Alberto; Bensehaila, Sarra
2017-01-01
The highly nutritional and ecofriendly Spirulina (Arthrospira platensis) has hypolipidemic, hypoglycemic, and antihypertensive properties. Spirulina contains functional compounds, such as phenolics, phycocyanins, and polysaccharides, with antioxidant, anti-inflammatory, and immunostimulating effects. Studies conducted on Spirulina suggest that it is safe in healthy subjects, but attitude to eating probably affects the acceptability of Spirulina containing foods. Although the antioxidant effect of Spirulina is confirmed by the intervention studies, the concerted modulation of antioxidant and inflammatory responses, suggested by in vitro and animal studies, requires more confirmation in humans. Spirulina supplements seem to affect more effectively the innate immunity, promoting the activity of natural killer cells. The effects on cytokines and on lymphocytes' proliferation depend on age, gender, and body weight differences. In this context, ageing and obesity are both associated with chronic low grade inflammation, immune impairment, and intestinal dysbiosis. Microbial-modulating activities have been reported in vitro, suggesting that the association of Spirulina and probiotics could represent a new strategy to improve the growth of beneficial intestinal microbiota. Although Spirulina might represent a functional food with potential beneficial effects on human health, the human interventions used only supplements. Therefore, the effect of food containing Spirulina should be evaluated in the future. PMID:28182098
Lost Forever or Temporarily Misplaced? The Long Debate about the Nature of Memory Impairment
ERIC Educational Resources Information Center
Squire, Larry R.
2006-01-01
Studies of memory impairment in humans and experimental animals have been fundamental to learning about the organization of memory and its cellular and molecular substrates. When memory impairment occurs, especially after perturbations of the nervous system, the question inevitably arises whether the impairment reflects impaired information…
Keles, Hasan O; Radoman, Milena; Pachas, Gladys N; Evins, A Eden; Gilman, Jodi M
2017-01-01
Intoxication from cannabis impairs cognitive performance, in part due to the effects of Δ9-tetrahydrocannabinol (THC, the primary psychoactive compound in cannabis) on prefrontal cortex (PFC) function. However, a relationship between impairment in cognitive functioning with THC administration and THC-induced change in hemodynamic response has not been demonstrated. We explored the feasibility of using functional near-infrared spectroscopy (fNIRS) to examine the functional changes of the human PFC associated with cannabis intoxication and cognitive impairment. Eighteen adult regular cannabis users (final sample, n = 13) performed a working memory task ( n -back) during fNIRS recordings, before and after receiving a single dose of oral synthetic THC (dronabinol; 20-50 mg). Functional data were collected using a continuous-wave NIRS device, in which 8 Sources and 7 detectors were placed on the forehead, resulting in 20 channels covering PFC regions. Physiological changes and subjective intoxication measures were collected. We found a significant increase in the oxygenated hemoglobin (HbO) concentration after THC administration in several channels on the PFC during both the high working memory load (2-back) and the low working memory load (0-back) condition. The increased HbO response was accompanied by a trend toward an increased number of omission errors after THC administration. The current study suggests that cannabis intoxication is associated with increases in hemodynamic blood flow to the PFC, and that this increase can be detected with fNIRS.
Ross, Jennifer A; Shipp, Eva M; Trueblood, Amber B; Bhattacharya, Amit
2016-08-01
To honor Tom Waters's work on emerging occupational health issues, we review the literature on physical along with chemical exposures and their impact on functional outcomes. Many occupations present the opportunity for exposure to multiple hazardous exposures, including both physical and chemical factors. However, little is known about how these different factors affect functional ability and injury. The goal of this review is to examine the relationships between these exposures, impairment of the neuromuscular and musculoskeletal systems, functional outcomes, and health problems with a focus on acute injury. Literature was identified using online databases, including PubMed, Ovid Medline, and Google Scholar. References from included articles were searched for additional relevant articles. This review documented the limited existing literature that discussed cognitive impairment and functional disorders via neurotoxicity for physical exposures (heat and repetitive loading) and chemical exposures (pesticides, volatile organic compounds [VOCs], and heavy metals). This review supports that workers are exposed to physical and chemical exposures that are associated with negative health effects, including functional impairment and injury. Innovation in exposure assessment with respect to quantifying the joint exposure to these different exposures is especially needed for developing risk assessment models and, ultimately, preventive measures. Along with physical exposures, chemical exposures need to be considered, alone and in combination, in assessing functional ability and occupationally related injuries. © 2016, Human Factors and Ergonomics Society.
Schaeffer, Evelin L; Forlenza, Orestes V; Gattaz, Wagner F
2009-01-01
Alzheimer disease (AD) is the leading cause of dementia in the elderly and has no known cure. Evidence suggests that reduced activity of specific subtypes of intracellular phospholipases A2 (cPLA2 and iPLA2) is an early event in AD and may contribute to memory impairment and neuropathology in the disease. The objective of this study was to review the literature focusing on the therapeutic role of PLA2 stimulation by cognitive training and positive modulators, or of supplementation with arachidonic acid (PLA2 product) in facilitating memory function and synaptic transmission and plasticity in either research animals or human subjects. MEDLINE database was searched (no date restrictions) for published articles using the keywords Alzheimer disease (mild, moderate, severe), mild cognitive impairment, healthy elderly, rats, mice, phospholipase A(2), phospholipid metabolism, phosphatidylcholine, arachidonic acid, cognitive training, learning, memory, long-term potentiation, protein kinases, dietary lipid compounds, cell proliferation, neurogenesis, and neuritogenesis. Reference lists of the identified articles were checked to select additional studies of interest. Overall, the data suggest that PLA2 activation is induced in the healthy brain during learning and memory. Furthermore, learning seems to regulate endogenous neurogenesis, which has been observed in AD brains. Finally, PLA2 appears to be implicated in homeostatic processes related to neurite outgrowth and differentiation in both neurodevelopmental processes and response to neuronal injury. The use of positive modulators of PLA2 (especially of cPLA2 and iPLA2) or supplementation with dietary lipid compounds (e.g., arachidonic acid) in combination with cognitive training could be a valuable therapeutic strategy for cognitive enhancement in early-stage AD.
Ebselen, a Small-Molecule Capsid Inhibitor of HIV-1 Replication.
Thenin-Houssier, Suzie; de Vera, Ian Mitchelle S; Pedro-Rosa, Laura; Brady, Angela; Richard, Audrey; Konnick, Briana; Opp, Silvana; Buffone, Cindy; Fuhrmann, Jakob; Kota, Smitha; Billack, Blase; Pietka-Ottlik, Magdalena; Tellinghuisen, Timothy; Choe, Hyeryun; Spicer, Timothy; Scampavia, Louis; Diaz-Griffero, Felipe; Kojetin, Douglas J; Valente, Susana T
2016-04-01
The human immunodeficiency virus type 1 (HIV-1) capsid plays crucial roles in HIV-1 replication and thus represents an excellent drug target. We developed a high-throughput screening method based on a time-resolved fluorescence resonance energy transfer (HTS-TR-FRET) assay, using the C-terminal domain (CTD) of HIV-1 capsid to identify inhibitors of capsid dimerization. This assay was used to screen a library of pharmacologically active compounds, composed of 1,280in vivo-active drugs, and identified ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], an organoselenium compound, as an inhibitor of HIV-1 capsid CTD dimerization. Nuclear magnetic resonance (NMR) spectroscopic analysis confirmed the direct interaction of ebselen with the HIV-1 capsid CTD and dimer dissociation when ebselen is in 2-fold molar excess. Electrospray ionization mass spectrometry revealed that ebselen covalently binds the HIV-1 capsid CTD, likely via a selenylsulfide linkage with Cys198 and Cys218. This compound presents anti-HIV activity in single and multiple rounds of infection in permissive cell lines as well as in primary peripheral blood mononuclear cells. Ebselen inhibits early viral postentry events of the HIV-1 life cycle by impairing the incoming capsid uncoating process. This compound also blocks infection of other retroviruses, such as Moloney murine leukemia virus and simian immunodeficiency virus, but displays no inhibitory activity against hepatitis C and influenza viruses. This study reports the use of TR-FRET screening to successfully identify a novel capsid inhibitor, ebselen, validating HIV-1 capsid as a promising target for drug development. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Jackman, A. L.; Kelland, L. R.; Kimbell, R.; Brown, M.; Gibson, W.; Aherne, G. W.; Hardcastle, A.; Boyle, F. T.
1995-01-01
Four cell lines, the mouse L1210 leukaemia, the human W1L2 lymphoblastoid and two human ovarian (CH1 and 41M) cell lines, were made resistant to ZD1694 (Tomudex) by continual exposure to incremental doses of the drug. A 500-fold increase in thymidylate synthase (TS) activity is the primary mechanism of resistance to ZD1694 in the W1L2:RD1694 cell line, which is consequently highly cross-resistant to other folate-based TS inhibitors, including BW1843U89, LY231514 and AG337, but sensitive to antifolates with other enzyme targets. The CH1:RD1694 cell line is 14-fold resistant to ZD1694, largely accounted for by the 4.2-fold increase in TS activity. Cross-resistance was observed to other TS inhibitors, including 5-fluorodeoxyuridine (FdUrd). 41M:RD1694 cells, when exposed to 0.1 microM [3H]ZD1694, accumulated approximately 20-fold less 3H-labelled material over 24 h than the parental line. Data are consistent with this being the result of impaired transport of the drug via the reduced folate/methotrexate carrier. Resistance was therefore observed to methotrexate but not to CB3717, a compound known to use this transport mechanism poorly. The mouse L1210:RD1694 cell line does not accumulate ZD1694 or Methotrexate (MTX) polyglutamates. Folylpolyglutamate synthetase substrate activity (using ZD1694 as the substrate) was decreased to approximately 13% of that observed in the parental line. Cross-resistance was found to those compounds known to be active through polyglutamation. PMID:7537518
Montgomery, Karienn S; Edwards, George; Levites, Yona; Kumar, Ashok; Myers, Catherine E; Gluck, Mark A; Setlow, Barry; Bizon, Jennifer L
2016-04-01
Elevated β-amyloid and impaired synaptic function in hippocampus are among the earliest manifestations of Alzheimer's disease (AD). Most cognitive assessments employed in both humans and animal models, however, are insensitive to this early disease pathology. One critical aspect of hippocampal function is its role in episodic memory, which involves the binding of temporally coincident sensory information (e.g., sights, smells, and sounds) to create a representation of a specific learning epoch. Flexible associations can be formed among these distinct sensory stimuli that enable the "transfer" of new learning across a wide variety of contexts. The current studies employed a mouse analog of an associative "transfer learning" task that has previously been used to identify risk for prodromal AD in humans. The rodent version of the task assesses the transfer of learning about stimulus features relevant to a food reward across a series of compound discrimination problems. The relevant feature that predicts the food reward is unchanged across problems, but an irrelevant feature (i.e., the context) is altered. Experiment 1 demonstrated that C57BL6/J mice with bilateral ibotenic acid lesions of hippocampus were able to discriminate between two stimuli on par with control mice; however, lesioned mice were unable to transfer or apply this learning to new problem configurations. Experiment 2 used the APPswe PS1 mouse model of amyloidosis to show that robust impairments in transfer learning are evident in mice with subtle β-amyloid-induced synaptic deficits in the hippocampus. Finally, Experiment 3 confirmed that the same transfer learning impairments observed in APPswePS1 mice were also evident in the Tg-SwDI mouse, a second model of amyloidosis. Together, these data show that the ability to generalize learned associations to new contexts is disrupted even in the presence of subtle hippocampal dysfunction and suggest that, across species, this aspect of hippocampal-dependent learning may be useful for early identification of AD-like pathology. © 2015 Wiley Periodicals, Inc.
Duncan, Robin E; Lau, Dominic; El-Sohemy, Ahmed; Archer, Michael C
2004-11-01
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase catalyzes the formation of mevalonate, a precursor of cholesterol that is also required for cell proliferation. Mevalonate depletion results in a G1 phase cell cycle arrest that is mediated in part by impaired activity of cyclin-dependent kinase (CDK) 2, and decreased expression of positive regulators of G1 to S phase progression. Inhibition of mevalonate synthesis may, therefore, be a useful strategy to impair the growth of malignant cells. Plant isoprenoids, including beta-ionone and geraniol, have previously been shown to inhibit rodent mammary tumor development, and rodent and avian hepatic HMG-CoA reductase activity. We hypothesized that the putative anti-proliferative and cell cycle inhibitory effects of beta-ionone and geraniol on MCF-7 human breast cancer cells in culture are mediated by mevalonate depletion resulting from inhibition of HMG-CoA reductase activity. Flow cytometric analysis showed a G1 arrest in isoprenoid-treated MCF-7 cells, and also a G2/M arrest at higher concentrations of isoprenoids. These compounds minimally affected the growth of MCF-10F normal breast epithelial cells. Both beta-ionone and geraniol inhibited CDK 2 activity and dose-dependently decreased the expression of cyclins D1, E, and A, and CDK 2 and 4, without changing the expression of p21cip1 or p27kip1. Although both beta-ionone and geraniol also inhibited MCF-7 proliferation, only geraniol inhibited HMG-CoA reductase activity. While these effects were significantly correlated (r2=0.89, P <0.01), they were not causally related, since exogenous mevalonate did not restore growth in geraniol-inhibited cells. These findings indicate that mechanisms other than impaired mevalonate synthesis mediate the anti-proliferative and cell cycle regulatory effects of beta-ionone and geraniol in human breast cancer cells.
Montgomery, Karienn S.; Edwards, George; Levites, Yona; Kumar, Ashok; Myers, Catherine E.; Gluck, Mark A.; Setlow, Barry; Bizon, Jennifer L.
2015-01-01
Elevated β-amyloid and impaired synaptic function in hippocampus are among the earliest manifestations of Alzheimer’s disease (AD). Most cognitive assessments employed in both humans and animal models, however, are insensitive to this early disease pathology. One critical aspect of hippocampal function is its role in episodic memory, which involves the binding of temporally coincident sensory information (e.g., sights, smells, and sounds) to create a representation of a specific learning epoch. Flexible associations can be formed among these distinct sensory stimuli that enable the “transfer” of new learning across a wide variety of contexts. The current studies employed a mouse analog of an associative “transfer learning” task that has previously been used to identify risk for prodromal AD in humans. The rodent version of the task assesses the transfer of learning about stimulus features relevant to a food reward across a series of compound discrimination problems. The relevant feature that predicts the food reward is unchanged across problems, but an irrelevant feature (i.e., the context) is altered. Experiment 1 demonstrated that C57BL6/J mice with bilateral ibotenic acid lesions of hippocampus were able to discriminate between two stimuli on par with control mice; however, lesioned mice were unable to transfer or apply this learning to new problem configurations. Experiment 2 used the APPswePS1 mouse model of amyloidosis to show that robust impairments in transfer learning are evident in mice with subtle β amyloid-induced synaptic deficits in the hippocampus. Finally, Experiment 3 confirmed that the same transfer learning impairments observed in APPswePS1 mice were also evident in the Tg-SwDI mouse, a second model of amyloidosis. Together, these data show that the ability to generalize learned associations to new contexts is disrupted even in the presence of subtle hippocampal dysfunction and suggest that, across species, this aspect of hippocampal-dependent learning may be useful for early identification of AD-like pathology. PMID:26418152
Ordaz-Trinidad, Nancy; Dorantes-Alvarez, Lidia; Salas-Benito, Juan
2015-01-01
Patents on phytochemicals are being registered worldwide. Such phytochemicals provide benefits to human health, and include terpenoids, phenolic compounds, alkaloids, lignin, and fiber. This review has the purpose to provide a comprehensive overview of patents published in the last five years about extraction of phytochemicals and their application in the food and pharmaceutical industry. Forty eight pa- tents were analyzed and classified in four topics of interest; 1) Extraction, 2) Functional foods, 3) Biological activity, and 4) Prevention of diseases. Extraction yield of phytochemicals is the critical step. The techniques to extract phytochemicals include enzymat- ic hydrolysis, nano-particulate precipitation, salts formation and combination of solvents; however, the use of ultrasound and microwave is increasing. Patents concerning functional foods include pediatric formulations, sport drink, and compo- sitions that produce beneficial effects. Biological activity of plant extracts tested in animals or cell cultures, as antioxidant, anti-inflammatory, anticancer activity, reduction of obesity and diabetes are presented in this review. Application of phy- tochemicals in the prevention and treatment of health disorders, such as diabetes, gastritis, enteritis, topical inflammation, macular degeneration, gingivitis, prostatic hyperplasia, urinary impairments. Patents revised include 30% methodologies for extraction of phytochemicals, 16% application of phytochem- icals in food matrixes to obtain functional foods, 18% biological activity of extracts or compounds and 36% application in the prevention and treatment of illness, which reveals a great interest to protect intellectual property concerning applica- tion of phytochemicals formulations for human health.
Morabito, Rossana; Marino, Angela; Dossena, Silvia; La Spada, Giuseppa
2014-06-01
Nematocyst discharge and concomitant delivery of toxins is triggered to perform both defence and predation strategies in Cnidarians, and may lead to serious local and systemic reactions in humans. Pelagia noctiluca (Cnidaria, Scyphozoa) is a jellyfish particularly abundant in the Strait of Messina (Italy). After accidental contact with this jellyfish, not discharged nematocysts or even fragments of tentacles or oral arms may tightly adhere to the human skin and, following discharge, severely increase pain and the other adverse consequences of the sting. The aim of the present study is to verify if the local anesthetic lidocaine and other compounds, like alcohols, acetic acid and ammonia, known to provide pain relief after jellyfish stings, may also affect in situ discharge of nematocysts. Discharge was induced by a combined physico-chemical stimulation of oral arms by chemosensitizers (such as N-acetylated sugars, aminoacids, proteins and nucleotides), in the presence or absence of 1% lidocaine, 70% ethanol, 5% acetic acid or 20% ammonia, followed by mechanical stimulation by a non-vibrating test probe. The above mentioned compounds failed to induce discharge per se, and dramatically impaired the chemosensitizer-induced discharge response. We therefore suggest that prompt local treatment of the stung epidermis with lidocaine, acetic acid, ethanol and ammonia may provide substantial pain relief and help in reducing possible harmful local and systemic adverse reaction following accidental contact with P. noctiluca specimens. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fama, Rosemary; Sullivan, Edith V; Sassoon, Stephanie A; Pfefferbaum, Adolf; Zahr, Natalie M
2016-12-01
Executive functioning and episodic memory impairment occur in HIV infection (HIV) and chronic alcoholism (ALC). Comorbidity of these conditions (HIV + ALC) is prevalent and heightens risk of vulnerability to separate and compounded deficits. Age and disease-related variables can also serve as mediators of cognitive impairment and should be considered, given the extended longevity of HIV-infected individuals in this era of improved pharmacological therapy. HIV, ALC, HIV + ALC, and normal controls (NC) were administered traditional and computerized tests of executive function and episodic memory. Test scores were expressed as age- and education-corrected Z-scores; selective tests were averaged to compute Executive Function and Episodic Memory Composite scores. Efficiency scores were calculated for tests with accuracy and response times. HIV, ALC, and HIV + ALC had lower scores than NC on Executive Function and Episodic Memory Composites, with HIV + ALC even lower than ALC and HIV on the Episodic Memory Composite. Impairments in planning and free recall of visuospatial material were observed in ALC, whereas impairments in psychomotor speed, sequencing, narrative free recall, and pattern recognition were observed in HIV. Lower decision-making efficiency scores than NC occurred in all 3 clinical groups. In ALC, age and lifetime alcohol consumption were each unique predictors of Executive Function and Episodic Memory Composite scores. In HIV + ALC, age was a unique predictor of Episodic Memory Composite score. Disease-specific and disease-overlapping patterns of impairment in HIV, ALC, and HIV + ALC have implications regarding brain systems disrupted by each disease and clinical ramifications regarding the complexities and compounded damping of cognitive functioning associated with dual diagnosis that may be exacerbated with aging. Copyright © 2016 by the Research Society on Alcoholism.
2016-09-01
AWARD NUMBER: W81XWH-15-1-0296 TITLE: Targeting MEK5 Enhances Radiosensitivity of Human Prostate Cancer and Impairs Tumor- Associated...3. DATES COVERED 31 Aug 2015 - 30 Aug 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting MEK5 Enhances Radiosensitivity of Human Prostate...therapeutic modality for the treatment of human prostate cancer. However, tumors often demonstrate resistance to ionizing radiation and continue to
Menthone aryl acid hydrazones: a new class of anticonvulsants.
Jain, Jainendra; Kumar, Y; Sinha, Reema; Kumar, Rajeev; Stables, James
2011-01-01
A series of ten compounds (Compounds J(1)-J(10)) of (±) 3-menthone aryl acid hydrazone was synthesized and characterized by thin layer chromatography and spectral analysis. Synthesized compounds were evaluated for anticonvulsant activity after intraperitoneal (i.p) administration to mice by maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) induced seizure method and minimal clonic seizure test. Minimal motor impairment was also determined for these compounds. Results obtained showed that four compounds out of ten afforded significant protection in the minimal clonic seizure screen at 6 Hz. Compound J(6), 4-Chloro-N-(2-isopropyl-5-methylcyclohexylidene) benzohydrazide was found to be the most active compound with MES ED(50) of 16.1 mg/kg and protective index (pI) of greater than 20, indicating that (±) 3-menthone aryl acid hydrazone possesses better and safer anticonvulsant properties than other reported menthone derivatives viz. menthone Schiff bases, menthone semicarbazides and thiosemicarbazides.
45 CFR 1308.11 - Eligibility criteria: Hearing impairment including deafness.
Code of Federal Regulations, 2010 CFR
2010-10-01
... hearing loss can include impaired listening skills, delayed language development, and articulation... OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR... frequently, and receive speech, language or hearing services as indicated by the IEPs. As soon as special...
A Manual Control Test for the Detection and Deterrence of Impaired Drivers
NASA Technical Reports Server (NTRS)
Stein, A. C.; Allen, R. W.; Jex, H. R.
1984-01-01
A brief manual control test and a decision strategy were developed, laboratory tested, and field validated which provide a means for detecting human operator impairment from alcohol or other drugs. The test requires the operator to stabilize progressively unstable controlled element dynamics. Control theory and experimental data verify that the human operator's control ability on this task is constrained by basic cybernetic characteristics, and that task performance is reliably affected by impairment effects on these characteristics. Assessment of human operator control ability is determined by a statistically based decision strategy. The operator is allowed several chances to exceed a preset pass criterion. Procedures are described for setting the pass criterion based on individual ability and a desired unimpaired failure rate. These procedures were field tested with apparatus installed in automobiles that were designed to discourage drunk drivers from operating their vehicles. This test program demonstrated that the control task and detection strategy could be applied in a practical setting to screen human operators for impairment in their basic cybernetic skills.
Rivalta, Ivan; Lisi, George P; Snoeberger, Ning-Shiuan; Manley, Gregory; Loria, J Patrick; Batista, Victor S
2016-11-29
Allosteric enzymes regulate a wide range of catalytic transformations, including biosynthetic mechanisms of important human pathogens, upon binding of substrate molecules to an orthosteric (or active) site and effector ligands at distant (allosteric) sites. We find that enzymatic activity can be impaired by small molecules that bind along the allosteric pathway connecting the orthosteric and allosteric sites, without competing with endogenous ligands. Noncompetitive allosteric inhibitors disrupted allostery in the imidazole glycerol phosphate synthase (IGPS) enzyme from Thermotoga maritima as evidenced by nuclear magnetic resonance, microsecond time-scale molecular dynamics simulations, isothermal titration calorimetry, and kinetic assays. The findings are particularly relevant for the development of allosteric antibiotics, herbicides, and antifungal compounds because IGPS is absent in mammals but provides an entry point to fundamental biosynthetic pathways in plants, fungi, and bacteria.
Code of Federal Regulations, 2013 CFR
2013-10-01
...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Pollution Prevention Equipment § 162.050-11 Marking. (a) Each... other chemical compounds that do not impair operation of the item. (8) If the item is an oil content...
Code of Federal Regulations, 2012 CFR
2012-10-01
...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Pollution Prevention Equipment § 162.050-11 Marking. (a) Each... other chemical compounds that do not impair operation of the item. (8) If the item is an oil content...
Code of Federal Regulations, 2010 CFR
2010-10-01
...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Pollution Prevention Equipment § 162.050-11 Marking. (a) Each... other chemical compounds that do not impair operation of the item. (8) If the item is an oil content...
Code of Federal Regulations, 2014 CFR
2014-10-01
...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Pollution Prevention Equipment § 162.050-11 Marking. (a) Each... other chemical compounds that do not impair operation of the item. (8) If the item is an oil content...
Code of Federal Regulations, 2011 CFR
2011-10-01
...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Pollution Prevention Equipment § 162.050-11 Marking. (a) Each... other chemical compounds that do not impair operation of the item. (8) If the item is an oil content...
Maksay, Gábor; Bíró, Tímea; Laube, Bodo; Nemes, Péter
2008-01-01
Human alpha1 and hyperekplexia mutant alpha1(R271L) glycine receptors (GlyRs) were transiently expressed in human embryonic kidney 293 cells for [3H]strychnine binding. Binding parameters were determined using a ternary allosteric model. The hyperekplexia mutation increased the positive cooperativity of 0.3 mM propofol and glycine binding by about six times: the cooperativity factor beta was 0.26 for alpha1 GlyRs and 0.04 for alpha1(R271L) GlyRs. Thus, propofol restored the potency of glycine impaired by the mutation. Five nortropeines, i.e. substituted benzoates of nortropine and a new compound, nortropisetron were prepared and also examined on [3H]strychnine binding. They showed nanomolar displacing potencies amplified by the hyperekplexia mutation. The affinity of nor-O-zatosetron (2.6 nM) is one of the highest reported for GlyRs. This binding test offers an in vitro method to evaluate agents against neurological disorders associated with inherited mutations of GlyRs.
Novel selective human mitochondrial kinase inhibitors: design, synthesis and enzymatic activity.
Ciliberti, Nunzia; Manfredini, Stefano; Angusti, Angela; Durini, Elisa; Solaroli, Nicola; Vertuani, Silvia; Buzzoni, Lisa; Bonache, Maria Cruz; Ben-Shalom, Efrat; Karlsson, Anna; Saada, Ann; Balzarini, Jan
2007-04-15
Selective and effective TK2 inhibitors can be obtained by introduction of bulky lipophilic chains (acyl or alkyl entities) at the 2' position of araT and BVaraU, nucleoside analogues naturally endowed with a low TK2 affinity. These derivatives showed a competitive inhibitory activity against TK2 in micromolar range. BVaraU nucleoside analogues, modified on the 2'-O-acyl chain with a terminal N-Boc amino-group, conserved or increased the inhibitory activity against TK2 (7l and 7m IC(50): 6.4 and 3.8 microM, respectively). The substitution of an ester for a carboxamide moiety at the 2' position of araT afforded a consistent reduction of the inhibitory activity (25, IC(50): 480 microM). On the contrary, modifications at 2'-OH position of araC and araG, have provided inactive derivatives against TK2 and dGK, respectively. The biological activity of a representative compound, 2'-O-decanoyl-BVaraU, was also investigated in normal human fibroblasts and was found to impair mitochondrial function due to TK2 inhibition.
Cao, Hui-Hui; Chu, Jian-Hong; Kwan, Hiu-Yee; Su, Tao; Yu, Hua; Cheng, Chi-Yan; Fu, Xiu-Qiong; Guo, Hui; Li, Ting; Tse, Anfernee Kai-Wing; Chou, Gui-Xin; Mo, Huan-Biao; Yu, Zhi-Ling
2016-01-01
Signal transducer and activator of transcription 3 (STAT3) signaling is constantly activated in human melanoma, and promotes melanoma metastasis. The dietary flavonoid apigenin is a bioactive compound that possesses low toxicity and exerts anti-metastatic activity in melanoma. However, the anti-metastasis mechanism of apigenin has not been fully elucidated. In the present study, we showed that apigenin suppressed murine melanoma B16F10 cell lung metastasis in mice, and inhibited cell migration and invasion in human and murine melanoma cells. Further study indicated that apigenin effectively suppressed STAT3 phosphorylation, decreased STAT3 nuclear localization and inhibited STAT3 transcriptional activity. Apigenin also down-regulated STAT3 target genes MMP-2, MMP-9, VEGF and Twist1, which are involved in cell migration and invasion. More importantly, overexpression of STAT3 or Twist1 partially reversed apigenin-impaired cell migration and invasion. Our data not only reveal a novel anti-metastasis mechanism of apigenin but also support the notion that STAT3 is an attractive and promising target for melanoma treatment. PMID:26911838
Colas, Damien; Chuluun, Bayarsaikhan; Garner, Craig C; Heller, H Craig
2017-04-01
Down syndrome (DS) is a common genetic cause of intellectual disability yet no pro-cognitive drug therapies are approved for human use. Mechanistic studies in a mouse model of DS (Ts65Dn mice) demonstrate that impaired cognitive function is due to excessive neuronal inhibitory tone. These deficits are normalized by chronic, short-term low doses of GABA A receptor (GABA A R) antagonists in adult animals, but none of the compounds investigated are approved for human use. We explored the therapeutic potential of flumazenil (FLUM), a GABA A R antagonist working at the benzodiazepine binding site that has FDA approval. Long-term memory was assessed by the Novel Object Recognition (NOR) testing in Ts65Dn mice after acute or short-term chronic treatment with FLUM. Short-term, low, chronic dose regimens of FLUM elicit long-lasting (>1week) normalization of cognitive function in both young and aged mice. FLUM at low dosages produces long lasting cognitive improvements and has the potential of fulfilling an unmet therapeutic need in DS. Copyright © 2017. Published by Elsevier Inc.
In vitro assessment of anticytotoxic and antigenotoxic effects of CANOVA(®).
do Nascimento, Henrique Fonseca Sousa; Cardoso, Plínio Cerqueira Dos Santos; Ribeiro, Helem Ferreira; Mota, Tatiane Cristina; Gomes, Lorena Monteiro; Khayat, André Salim; Guimarães, Adriana Costa; Amorim, Marucia Irena Medeiros; Burbano, Rommel Rodriguéz; Bahia, Marcelo de Oliveira
2016-08-01
CANOVA(®) (CA) is a homeopathic immunomodulator. It contains several homeopathic medicines prepares according to the Brazilian Pharmacopoeia. CA is indicated in clinical conditions in which the immune system is impaired and against tumors. N-methyl-N-nitrosourea (NMU) is an N-nitroso compound, with genotoxic/mutagenic properties. Although several studies have shown promising results in the use of CA, there are no studies reporting possible antigenotoxic effects. This study evaluated the in vitro antigenotoxic and anticytotoxic effects of CA in human lymphocytes exposed to NMU. Samples of human lymphocytes that were subjected to different concentrations of a mixture containing CA and NMU were used. The genotoxicity/antigenotoxicity of CA was evaluated by the comet assay, anticytotoxicity was assessed by quantification of apoptosis and necrosis using acridine orange/ethidium bromide. CA significantly reduced DNA damage induced by NMU and reduced significantly the frequency of NMU-induced apoptosis after 24 h of treatment. CA has an important cytoprotective effect significantly reducing the DNA damage and apoptosis induced by the carcinogen NMU. Copyright © 2016 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Transgenerational Effects of Prenatal Bisphenol A on Social Recognition
Wolstenholme, Jennifer T.; Goldsby, Jessica A.; Rissman, Emilie F.
2014-01-01
Bisphenol A (BPA) is a man-made endocrine disrupting compound used to manufacture polycarbonate plastics. It is found in plastic bottles, canned food linings, thermal receipts and other commonly used items. Over 93% of people have detectable BPA levels in their urine. Epidemiological studies report correlations between BPA levels during pregnancy and activity, anxiety, and depression in children. We fed female mice control or BPA–containing diets that produced plasma BPA concentrations similar to concentrations in humans. Females were mated and at birth, pups were fostered to control dams to limit BPA exposure to gestation in the first generation. Sibling pairs were bred to the third generation with no further BPA exposure. First (F1) and third (F3) generation juveniles were tested for social recognition and in the open field. Adult F3 mice were tested for olfactory discrimination. In both generations, BPA exposed juvenile mice displayed higher levels of investigation than controls in a social recognition task. In F3 BPA exposed mice, dishabituation to a novel female was impaired. In the open field, no differences were noted in F1 mice, while in F3, BPA lineage mice were more active than controls. No impairments were detected in F3 mice, all were able to discriminate different male urine pools and urine from water. No sex differences were found in any task. These results demonstrate that BPA exposure during gestation has long lasting, transgenerational effects on social recognition and activity in mice. These findings show that BPA exposure has transgenerational actions on behavior and have implications for human neurodevelopmental behavioral disorders. PMID:24100195
Transgenerational effects of prenatal bisphenol A on social recognition.
Wolstenholme, Jennifer T; Goldsby, Jessica A; Rissman, Emilie F
2013-11-01
Bisphenol A (BPA) is a man-made endocrine disrupting compound used to manufacture polycarbonate plastics. It is found in plastic bottles, canned food linings, thermal receipts and other commonly used items. Over 93% of people have detectable BPA levels in their urine. Epidemiological studies report correlations between BPA levels during pregnancy and activity, anxiety, and depression in children. We fed female mice control or BPA-containing diets that produced plasma BPA concentrations similar to concentrations in humans. Females were mated and at birth, pups were fostered to control dams to limit BPA exposure to gestation in the first generation. Sibling pairs were bred to the third generation with no further BPA exposure. First (F1) and third (F3) generation juveniles were tested for social recognition and in the open field. Adult F3 mice were tested for olfactory discrimination. In both generations, BPA exposed juvenile mice displayed higher levels of investigation than controls in a social recognition task. In F3 BPA exposed mice, dishabituation to a novel female was impaired. In the open field, no differences were noted in F1 mice, while in F3, BPA lineage mice were more active than controls. No impairments were detected in F3 mice, all were able to discriminate different male urine pools and urine from water. No sex differences were found in any task. These results demonstrate that BPA exposure during gestation has long lasting, transgenerational effects on social recognition and activity in mice. These findings show that BPA exposure has transgenerational actions on behavior and have implications for human neurodevelopmental behavioral disorders. © 2013.
Ishiguro, Kazuhiro; Ando, Takafumi; Watanabe, Osamu; Goto, Hidemi
2008-10-15
6-Shogaol and 6-gingerol are ginger components with similar chemical structures. However, while 6-shogaol damages microtubules, 6-gingerol does not. We have investigated the molecular mechanism of 6-shogaol-induced microtubule damage and found that the action of 6-shogaol results from the structure of alpha,beta-unsaturated carbonyl compounds. alpha,beta-Unsaturated carbonyl compounds such as 6-shogaol react with sulfhydryl groups of cysteine residues in tubulin, and impair tubulin polymerization. The reaction with sulfhydryl groups depends on the chain length of alpha,beta-unsaturated carbonyl compounds. In addition, alpha,beta-unsaturated carbonyl compounds are more reactive with sulfhydryl groups in tubulin than in 2-mercaptoethanol, dithiothreitol, glutathione and papain, a cysteine protease.
Sun, Guanglong; Wang, Junwei; Guo, Xiaodan; Lei, Min; Zhang, Yinan; Wang, Xiachang; Shen, Xu; Hu, Lihong
2018-02-10
A series of LX2343 derivatives were designed, synthesized and evaluated as neuroprotective agents for Alzheimer's disease (AD) in vitro. Most of the compounds displayed potent neuroprotective activities. Especially for compound A6, exhibited a remarkable EC 50 value of 0.22 μM. Further investigation demonstrated that compound A6 can significantly reduce Aβ production and increase Aβ clearance, and alleviate Tau hyperphosphorylation. Most importantly, compound A6 could ameliorate learning and memory impairments in APP/PS1 transgenic mice. The present study evidently showed that compound A6 is a potent neuroprotective agent and might serve as a promising lead candidate for the treatment of Alzheimer's disease. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
1980-10-01
Organizations Compounds Tested Morphological Tests Toxic Substances Functional Tests rR ACT Cutlue OM v.a e sif nemooery ad Identify by block number) %MITRE has...demonstrated ability to evaluate and predict hepatic impairment rvsulting from toxicant exposures. This directory is a companion to Selected Short-Term...Hepatic Toxicity Tests, which describes the available hepatic testing protocols and assesses their suitability for a screening program. This direc
Cannabidiol Prevents Motor and Cognitive Impairments Induced by Reserpine in Rats.
Peres, Fernanda F; Levin, Raquel; Suiama, Mayra A; Diana, Mariana C; Gouvêa, Douglas A; Almeida, Valéria; Santos, Camila M; Lungato, Lisandro; Zuardi, Antônio W; Hallak, Jaime E C; Crippa, José A; Vânia, D'Almeida; Silva, Regina H; Abílio, Vanessa C
2016-01-01
Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa that presents antipsychotic, anxiolytic, anti-inflammatory, and neuroprotective effects. In Parkinson's disease patients, CBD is able to attenuate the psychotic symptoms induced by L-DOPA and to improve quality of life. Repeated administration of reserpine in rodents induces motor impairments that are accompanied by cognitive deficits, and has been applied to model both tardive dyskinesia and Parkinson's disease. The present study investigated whether CBD administration would attenuate reserpine-induced motor and cognitive impairments in rats. Male Wistar rats received four injections of CBD (0.5 or 5 mg/kg) or vehicle (days 2-5). On days 3 and 5, animals received also one injection of 1 mg/kg reserpine or vehicle. Locomotor activity, vacuous chewing movements, and catalepsy were assessed from day 1 to day 7. On days 8 and 9, we evaluated animals' performance on the plus-maze discriminative avoidance task, for learning/memory assessment. CBD (0.5 and 5 mg/kg) attenuated the increase in catalepsy behavior and in oral movements - but not the decrease in locomotion - induced by reserpine. CBD (0.5 mg/kg) also ameliorated the reserpine-induced memory deficit in the discriminative avoidance task. Our data show that CBD is able to attenuate motor and cognitive impairments induced by reserpine, suggesting the use of this compound in the pharmacotherapy of Parkinson's disease and tardive dyskinesia.
Time-dependent VOC-profile of decomposed human and animal remains in laboratory environment.
Rosier, E; Loix, S; Develter, W; Van de Voorde, W; Tytgat, J; Cuypers, E
2016-09-01
A validated method using a thermal desorber combined with a gas chromatograph coupled to a mass spectrometer was used to identify the volatile organic compounds released in decomposed human and animal remains after 9 and 12 months in glass jars in a laboratory environment. This is a follow-up study on a previous report where the first 6 months of decomposition of 6 human and 26 animal remains was investigated. In the first report, out of 452 identified compounds, a combination of 8 compounds was proposed as human and pig specific. The goal of the current study was to investigate if these 8 compounds were still released after 9 and 12 months. The next results were noticed: 287 compounds were identified; only 9 new compounds were detected and 173 were no longer seen. Sulfur-containing compounds were less prevalent as compared to the first month of decomposition. The appearance of nitrogen-containing compounds and alcohols was increasingly evident during the first 6 months, and the same trend was seen in the following 6 months. Esters became less important after 6 months. From the proposed human and pig specific compounds, diethyl disulfide was only detected during the first months of decomposition. Interestingly, the 4 proposed human and pig specific esters, as well as pyridine, 3-methylthio-1-propanol and methyl(methylthio)ethyl disulfide were still present after 9 and 12 months of decomposition. This means that these 7 human and pig specific markers can be used in the development of training aids for cadaver dogs during the whole decomposition process. Diethyl disulfide can be used in training aids for the first month of decomposition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Berger, Zdenek; Perkins, Sarah; Ambroise, Claude; Oborski, Christine; Calabrese, Matthew; Noell, Stephen; Riddell, David; Hirst, Warren D
2015-01-01
Mutations in glucocerebrosidase (GBA1) cause Gaucher disease and also represent a common risk factor for Parkinson's disease and Dementia with Lewy bodies. Recently, new tool molecules were described which can increase turnover of an artificial substrate 4MUG when incubated with mutant N370S GBA1 from human spleen. Here we show that these compounds exert a similar effect on the wild-type enzyme in a cell-free system. In addition, these tool compounds robustly increase turnover of 4MUG by GBA1 derived from human cortex, despite substantially lower glycosylation of GBA1 in human brain, suggesting that the degree of glycosylation is not important for compound binding. Surprisingly, these tool compounds failed to robustly alter GBA1 turnover of 4MUG in the mouse brain homogenate. Our data raise the possibility that in vivo models with humanized glucocerebrosidase may be needed for efficacy assessments of such small molecules.
Misik, Jan; Korabecny, Jan; Nepovimova, Eugenie; Kracmarova, Alzbeta; Kassa, Jiri
2016-01-26
Inhibitors of cholinesterase are important drugs for therapy of Alzheimer's disease and the search for new modifications is extensive, including dual inhibitors or multi-target hybrid compounds. The aim of the present study was a preliminary evaluation of pro-cognitive effects of newly-developed 7-MEOTA-donepezil like hybrids (compounds no. 1 and 2) and N-alkylated tacrine derivatives (compounds no. 3 and 4) using an animal model of pharmacologically-induced cognitive deficit. Male Wistar rats were subjected to tests of learning and memory in a water maze and step-through passive avoidance task. Cognitive impairment was induced by 3-quinuclidinyl benzilate (QNB, 2mgkg(-1)), administered intraperitoneally 1h before training sessions. Cholinesterase inhibitors were administered as a single therapeutic dose following the QNB at 30min at the following dose rates; 1 (25.6mgkg(-1)), 2 (12.3mgkg(-1)), 3 (5.7mgkg(-1)), 4 (5.2mgkg(-1)). The decrease in total path within the 10-swim session (water maze), the preference for target quadrant (water maze) and the entrance latency (passive avoidance) were taken as indicators of learning ability in rats. The effects of novel compounds were compared to that of standards tacrine (5.2mgkg(-1)) and donepezil (2.65mgkg(-1)). QNB significantly impaired spatial navigation as well as fear learning. Generally, the performance of rats was improved when treated with novel inhibitors and this effect reached efficiency of standard donepezil at selected doses. There was a significant improvement in the groups treated with compounds 2 and 3 in all behavioral tasks. The rest of the novel compounds succeed in the passive avoidance test. In summary, the potential of novel inhibitors (especially compounds 2 and 3) was proved and further detailed evaluation of these compounds as potential drugs for Alzheimer's disease treatment is proposed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Cytotoxic components of Pereskia bleo (Kunth) DC. (Cactaceae) leaves.
Malek, Sri Nurestri Abdul; Shin, Sim Kae; Wahab, Norhanom Abdul; Yaacob, Hashim
2009-05-06
Dihydroactinidiolide (1) and a mixture of sterols [campesterol (2), stigmasterol (3) and beta-sitosterol (4)], together with the previously isolated individual compounds beta-sitosterol (4), 2,4-di-tert-butylphenol (5), alpha-tocopherol (6), phytol (7) were isolated from the active ethyl acetate fraction of Pereskia bleo (Kunth) DC. (Cactaceae) leaves. Cytotoxic activities of the above mentioned compounds against five human carcinoma cell lines, namely the human nasopharyngeal epidermoid carcinoma cell line (KB), human cervical carcinoma cell line (CasKi), human colon carcinoma cell line (HCT 116), human hormone-dependent breast carcinoma cell line (MCF7) and human lung carcinoma cell line (A549); and non-cancer human fibroblast cell line (MRC-5) were investigated. Compound 5 possessed very remarkable cytotoxic activity against KB cells, with an IC(50 )value of 0.81microg/mL. This is the first report on the cytotoxic activities of the compounds isolated from Pereskia bleo.
Human figure drawing distinguishes Alzheimer's patients: a cognitive screening test study.
Stanzani Maserati, Michelangelo; D'Onofrio, Renato; Matacena, Corrado; Sambati, Luisa; Oppi, Federico; Poda, Roberto; De Matteis, Maddalena; Naldi, Ilaria; Liguori, Rocco; Capellari, Sabina
2018-05-01
To study human figure drawing in a group of Alzheimer's disease (AD) patients and compare it with a group of patients with mild cognitive impairment (MCI) and controls. We evaluated consecutive outpatients over a one-year period. Patients were classified as affected by AD or by MCI. All patients and controls underwent a simplified version of the human-figure drawing test and MMSE. A qualitative and quantitative analysis of all human figures was obtained. 112 AD, 100 MCI patients and 104 controls were enrolled. AD patients drew human figures poor in details and globally smaller than MCI patients and controls. Human figures drawn by MCI patients are intermediate in body height between those of the AD patients and the healthy subjects. The head-to-body ratio of human figures drawn by AD patients is greater than controls and MCI patients, while the human figure size-relative-to-page space index is significantly smaller. Body height is an independent predictor of cognitive impairment correlating with its severity and with the number of the figure's details. Human figures drawn by AD patients are different from those drawn by healthy subjects and MCI patients. Human figure drawing test is a useful tool for orienting cognitive impairment's diagnosis.
Evaluating SGLT2 inhibitors for type 2 diabetes: pharmacokinetic and toxicological considerations.
Scheen, André J
2014-05-01
Inhibitors of sodium-glucose cotransporters type 2 (SGLT2), which increase urinary glucose excretion independently of insulin, are proposed as a novel approach for the management of type 2 diabetes mellitus (T2DM). An extensive literature search was performed to analyze the pharmacokinetic characteristics, toxicological issues and safety concerns of SGLT2 inhibitors in humans. This review focuses on three compounds (dapagliflozin, canagliflozin, empagliflozin) with results obtained in healthy volunteers (including drug-drug interactions), patients with T2DM (single dose and multiple doses) and special populations (those with renal or hepatic impairment). The three pharmacological agents share an excellent oral bioavailability, long half-life allowing once-daily administration, low accumulation index and renal clearance, the absence of active metabolites and a limited propensity to drug-drug interactions. No clinically relevant changes in pharmacokinetic parameters were observed in T2DM patients or in patients with mild/moderate renal or hepatic impairment. Adverse events are a slightly increased incidence of mycotic genital and rare benign urinary infections. SGLT2 inhibitors have the potential to reduce several cardiovascular risk factors, and cardiovascular outcome trials are currently ongoing. The best positioning of SGLT2 inhibitors in the armamentarium for treating T2DM is still a matter of debate.
NASA Astrophysics Data System (ADS)
Sundaresan, Alamelu; Kulkarni, Anil D.; Yamauchi, Keiko; Pellis, Neal R.
2006-09-01
Space travel and long-term space residence such as envisaged in the exploration era implicates burdens on the immune system. An optimal immune response is required to countered and with-stand exposure to pathogens. Countermeasure development is an important avenue in space research especially for long-term space exploration. Microgravity exposure causes detrimental effects in lymphocyte functions which may impair immune response. Impaired lymphocyte function can be remedied by bypassing cell membrane events. This is done by using compounds such as Phorbol Myristate Acetate (PMA). Since activation in mouse splenocytes was augmented using nucleotides, it was essential to observe their effects on human lymphocyte locomotion. A nucleotide/nucleoside (NT/NT) mixture from Otsuka Pharmaceuticals (Naruto, Japan) was used at recommended doses. In lymphocytes cultured in modeled microgravity, the NT/NT mixture used orchestrated locomotion recovery by more than 87%, similar to the response documented with PMA in lymphocytes. Both 12µM and 120µM doses worked similarly. These are preliminary results leading to the possible use of the NT/NT mixture to mitigate immune suppression in micro-gravity. More studies in this direction are required to delineate the role of NT/NT on the immune response in microgravity.
Chen, Feng; Eckman, Elizabeth A; Eckman, Christopher B
2006-06-01
For millennia, ginseng and some of its components have been used to treat a wide variety of medical conditions, including age-related memory impairment. Because of its purported effects and apparently low rate of side effects, ginseng remains one of the top selling natural product remedies in the United States. Given its potential role for improving age-related memory impairments and its common use in China for the treatment of Alzheimer's disease-like symptoms, we analyzed the effects of commercially available preparations of ginseng on the accumulation of the Alzheimer's amyloid beta peptide (Abeta) in a cell-based model system. In this model system, ginseng treatment resulted in a significant reduction in the levels of Abeta in the conditioned medium. We next examined the effects of several compounds isolated from ginseng and found that certain ginsenosides lowered Abeta concentration in a dose-dependent manner with ginsenoside Rg3 having an approximate IC50 of under 25 microM against Abeta42. Furthermore, we found that three of these isolated components, ginsenoside Rg1, Rg3, and RE, resulted in significant reductions in the amount of Abeta detected in the brains of animals after single oral doses of these agents. The results indicate that ginseng itself, or purified ginsenosides, may have similarly useful effects in human disease.
Pantethine rescues a Drosophila model for pantothenate kinase–associated neurodegeneration
Rana, Anil; Seinen, Erwin; Siudeja, Katarzyna; Muntendam, Remco; Srinivasan, Balaji; van der Want, Johannes J.; Hayflick, Susan; Reijngoud, Dirk-Jan; Kayser, Oliver; Sibon, Ody C. M.
2010-01-01
Pantothenate kinase–associated neurodegeneration (PKAN), a progressive neurodegenerative disorder, is associated with impairment of pantothenate kinase function. Pantothenate kinase is the first enzyme required for de novo synthesis of CoA, an essential metabolic cofactor. The pathophysiology of PKAN is not understood, and there is no cure to halt or reverse the symptoms of this devastating disease. Recently, we and others presented a PKAN Drosophila model, and we demonstrated that impaired function of pantothenate kinase induces a neurodegenerative phenotype and a reduced lifespan. We have explored this Drosophila model further and have demonstrated that impairment of pantothenate kinase is associated with decreased levels of CoA, mitochondrial dysfunction, and increased protein oxidation. Furthermore, we searched for compounds that can rescue pertinent phenotypes of the Drosophila PKAN model and identified pantethine. Pantethine feeding restores CoA levels, improves mitochondrial function, rescues brain degeneration, enhances locomotor abilities, and increases lifespan. We show evidence for the presence of a de novo CoA biosynthesis pathway in which pantethine is used as a precursor compound. Importantly, this pathway is effective in the presence of disrupted pantothenate kinase function. Our data suggest that pantethine may serve as a starting point to develop a possible treatment for PKAN. PMID:20351285
Yang, Xiu-wei; Xu, Bo; Ran, Fu-xiang; Wang, Rui-qing; Wu, Jun; Cui, Jing-rong
2007-01-01
To screen antitumor active compounds, drug-like or leading compounds from Chinese traditional and herbal drugs. Eleven coumarin compounds isolated from the Chinese traditional and herbal drugs were studied for their antitumor activities in vitro by determining the inhibition rates against growth of human bladder carcinoma cell line E-J. It showed that umbelliferone, scoparone, demethylfuropinarine, isopimpinellin, forbesoside, columbianadin, decursin and glycycoumarin inhibited the growth of human bladder carcinoma cell line E-J in vitro and their activities showed a concentration-effect relationship. The inhibitory effects of forbesoside, columbianadin, decursin and umbelliferone, with IC50 values of 7.50x10(-7), 2.30x10(-6), 6.00x10(-6) and 1.30x10(-6) mol/L, respectively, were stronger than those of the other tested compounds. However, xanthotoxin, esculin and sphondin did not inhibit the growth of human bladder carcinoma cell line E-J in this assay condition. These findings indicate that forbesoside, columbianadin, esculin, decursin and umbelliferone would be effective or regarded as potent drug-like or leading compounds against human bladder carcinoma.
Tabrizian, Kaveh; Azami, Kian; Belaran, Maryam; Soodi, Maliheh; Abdi, Khosrou; Fanoudi, Sahar; Sanati, Mehdi; Mottaghi Dastjerdi, Negar; Soltany Rezaee-Rad, Mohammad; Sharifzadeh, Mohammad
2016-10-01
Zinc, an essential micronutrient and biochemical element of the human body, plays structural, catalytic, and regulatory roles in numerous physiological functions. In the current study, the effects of a pretraining oral administration of zinc chloride (10, 25, and 50 mg/kg) for 14 consecutive days and post-training bilateral intra-hippocampal infusion of 1400W as a selective inducible nitric oxide synthase (iNOS) inhibitor (10, 50, and 100 μM/side), alone and in combination, on the spatial memory retention in Morris water maze (MWM) were investigated. Animals were trained for 4 days and tested 48 h after completion of training. Also, the molecular effects of these compounds on the expression of choline acetyltransferase (ChAT), as a cholinergic marker in the CA1 region of the hippocampus and medial septal area (MSA), were evaluated. Behavioral and molecular findings of this study showed that a 2-week oral administration of zinc chloride (50 mg/kg) impaired spatial memory retention in MWM and decreased ChAT expression. Immunohistochemical analysis of post-training bilateral intra-hippocampal infusion of 1400W revealed a significant increase in ChAT immunoreactivity. Furthermore, post-training bilateral intra-hippocampal infusion of 1400W into the CA1 region of the hippocampus reversed zinc chloride-induced spatial memory impairment in MWM and significantly increased ChAT expression in comparison with zinc chloride-treated animals. Taken together, these results emphasize the role of selective iNOS inhibitors in reversing zinc chloride-induced spatial memory deficits via modulation of cholinergic marker expression.
Dellafiora, Luca; Galaverna, Gianni; Dall'Asta, Chiara
2017-03-15
Deoxynivalenol is a food borne mycotoxin belonging to the trichothecenes family that may cause severe injuries in human and animals. The inhibition of protein synthesis via the interaction with the ribosome has been identified as a crucial mechanism underlying toxic action. However, it is not still fully understood how and to what extent compounds belonging to trichothecenes family affect human and animal health. In turn, this scenario causes delay in managing the related health risk. Aimed at supporting the hazard identification process, the in silico analysis may be a straightforward tool to investigate the structure-activity relationship of trichothecenes, finding out molecules of possible concern to carry forth in the risk assessment process. In this framework, this work investigated through a molecular modeling approach the structural basis underlying the interaction with the ribosome under a structure-activity relationship perspective. To identify further forms possibly involved in the total trichothecenes-dependent ribotoxic load, the model was challenged with a set of 16 trichothecene modified forms found in plants, fungi and animals, including also compounds never tested before for the capability to bind and inhibit the ribosome. Among them, only the regiospecific glycosylation in the position 3 of the sesquiterpenoid scaffold (i.e. T-2 toxin-3-glucuronide, α and β isomers of T-2 toxin-3-glucoside and deoxynivalenol-3-glucuronide) was found impairing the interaction with the ribosome, while the other compounds tested (i.e. neosolaniol, nivalenol, fusarenon-X, diacetoxyscirpenol, NT-1 toxin, HT-2 toxin, 19- and 20-hydroxy-T-2 toxin, T-2 toxin triol and tetraol, and 15-deacetyl-T-2 toxin), were found potentially able to inhibit the ribosome. Accordingly, they should be included with high priority in further risk assessment studies in order to better characterize the trichothecenes-related hazard. Copyright © 2017 Elsevier B.V. All rights reserved.
Mariano, Doc; de Souza, D; Meinerz, D F; Allebrandt, J; de Bem, A F; Hassan, W; Rodrigues, Oed; da Rocha, Jbt
2017-09-01
Acquired immunodeficiency syndrome (AIDS) is a worldwide disease characterized by impairments of immune function. AIDS can be associated with oxidative stress (OS) that can be linked to selenium (Se) deficiency. Se is fundamental for the synthesis of selenoproteins, such as glutathione peroxidase and thioredoxin reductase. These enzymes catalyze the decomposition of reactive oxygen species and contribute to maintain equilibrium in cell redox status. Literature data indicate that organoselenium compounds, such as ebselen and diphenyl diselenide, have antioxidant properties in vitro and in vivo models associated with OS. Nevertheless, selenocompounds can also react and oxidize thiols groups, inducing toxicity in mammals. Here, we tested the potential cytotoxic and genotoxic properties of six analogs of the prototypal anti-HIV drug azidothymidine (AZT) containing Se (5'-Se-(phenyl)zidovudine; 5'-Se-(1,3,5-trimethylphenyl)zidovudine; 5'-Se-(1-naphtyl)zidovudine; 5'-Se-(4-chlorophenyl)zidovudine) (C4); 5'-Se-(4-methylphenyl)zidovudine (C5); and 5'-(4-methylbenzoselenoate)zidovudine). C5 increased the rate of dithiothreitol oxidation (thiol oxidase activity) and C2-C4 and C6 (at 100 µM) increased DNA damage index (DI) in human leukocytes. Moreover, C5 (200 µM) decreased human leukocyte viability to about 50%. Taken together, these results indicated the low in vitro toxicity in human leukocytes of some Se-containing analogs of AZT.
Castro, Edison; Martinez, Zachary S; Seong, Chang-Soo; Cabrera-Espinoza, Andrea; Ruiz, Mauro; Hernandez Garcia, Andrea; Valdez, Federico; Llano, Manuel; Echegoyen, Luis
2016-12-22
HIV-1 maturation can be impaired by altering protease (PR) activity, the structure of the Gag-Pol substrate, or the molecular interactions of viral structural proteins. Here we report the synthesis and characterization of new cationic N,N-dimethyl[70]fulleropyrrolidinium iodide derivatives that inhibit more than 99% of HIV-1 infectivity at low micromolar concentrations. Analysis of the HIV-1 life cycle indicated that these compounds inhibit viral maturation by impairing Gag and Gag-Pol processing. Importantly, fullerene derivatives 2a-c did not inhibit in vitro PR activity and strongly interacted with HIV immature capsid protein in pull-down experiments. Furthermore, these compounds potently blocked infectivity of viruses harboring mutant PR that are resistant to multiple PR inhibitors or mutant Gag proteins that confer resistance to the maturation inhibitor Bevirimat. Collectively, our studies indicate fullerene derivatives 2a-c as potent and novel HIV-1 maturation inhibitors.
Nayyab, Saman; O'Connor, Mary; Brewster, Jennifer; Gravier, James; Jamieson, Mitchell; Magno, Ethan; Miller, Ryan D; Phelan, Drew; Roohani, Keyana; Williard, Paul; Basu, Amit; Reid, Christopher W
2017-06-09
N-Acetylglucosaminidases (GlcNAcases) play an important role in the remodeling and recycling of bacterial peptidoglycan by degrading the polysaccharide backbone. Genetic deletions of autolysins can impair cell division and growth, suggesting an opportunity for using small molecule autolysin inhibitors both as tools for studying the chemical biology of autolysins and also as antibacterial agents. We report here the synthesis and evaluation of a panel of diamides that inhibit the growth of Bacillus subtilis. Two compounds, fgkc (21) and fgka (5), were found to be potent inhibitors (MIC 3.8 ± 1.0 and 21.3 ± 0.1 μM, respectively). These compounds inhibit the B. subtilis family 73 glycosyl hydrolase LytG, an exo GlcNAcase. Phenotypic analysis of fgkc (21)-treated cells demonstrates a propensity for cells to form linked chains, suggesting impaired cell growth and division.
A Curriculum for Teaching Human Sexuality to Mentally Impaired Adolescents.
ERIC Educational Resources Information Center
Rinckey, David Jason
Presented is a developmentally sequenced curriculum designed for teaching human sexuality to mentally impaired adolescents. A brief objective is presented, teaching methods are listed, and materials needed are described (in terms of author, title, source, and price) for each of the following topic areas: vocabulary of sexuality; fact vs. myths;…
Human Serial Learning: Enhancement with Arecholine and Choline and Impairment with Scopolamine
ERIC Educational Resources Information Center
Sitaram, N.; Weingartner, Herbert
1978-01-01
The effects of particular drugs in human memory abilities was examined. The degree of memory enhancement produced by arecholine and choline and the impairment after scopolamaine were inversely proportional to the subject's performance in placebo; that is, "poor" performers were more vulnerable to the drugs than were "good" performers. (Author/CP)
Egert, M; Höhne, H-M; Weber, T; Simmering, R; Banowski, B; Breves, R
2013-12-01
The C-S lyase activity of bacteria in the human armpit releases highly malodorous, volatile sulfur compounds from nonvolatile precursor molecules. Such compounds significantly contribute to human body odour. Hence, C-S lyase represents an attractive target for anti-body-odour cosmetic products. Here, aiming at a final use in an ethanol-based deodorant formulation, 267 compounds and compound mixtures were screened for their ability to inhibit the C-S lyase activity of a Stapyhlococcus sp. crude extract. Staphylococcus sp. Isolate 128, closely related to Staphylococcus hominis, was chosen as the test bacterium, as it showed a reproducibly high specific C-S lyase activity on three different culturing media. Using a photometric assay and benzylcysteine as substrate, six rather complex, plant-derived compound mixtures and five well defined chemical compounds or compound mixtures were identified as inhibitors, leading to an inhibition of ≥70% at concentrations of ≤0·5% in the assay. The inhibition data have demonstrated that compounds with two vicinal hydroxyl groups or one hydroxyl and one keto group bound to an aryl residue are characteristic for the inhibition. The substances identified as C-S lyase inhibitors have the potential to improve the performance of anti-body-odour cosmetic products, for example, ethanol-based deodorants. Bacterial C-S lyase represents one of the key enzymes involved in human body odour formation. The aim of this study was to identify compounds inhibiting the C-S lyase activity of a Staphylococcus sp. isolate from the human skin. The compounds identified as the best inhibitors are characterized by the following features: two vicinal hydroxyl groups or one hydroxyl and one keto group bound to an aryl residue. They might be used to improve the performance of cosmetic products aiming to prevent the formation of microbially caused human body odour, for example, ethanol-based deodorants. © 2013 The Society for Applied Microbiology.
Tabata, Yoshikuni; Murai, Norio; Sasaki, Takeo; Taniguchi, Sachie; Suzuki, Shuichi; Yamazaki, Kazuto; Ito, Masashi
2015-10-01
Stem cell research has been progressing rapidly, contributing to regenerative biology and regenerative medicine. In this field, small-molecule compounds affecting stem cell proliferation/differentiation have been explored to understand stem cell biology and support regenerative medicine. In this study, we established a multiparametric screening system to detect bioactive compounds affecting the cell fate of human neural stem/progenitor cells (NSCs/NPCs), using human fetal hippocampal NSCs/NPCs, HIP-009 cells. We examined effects of 410 compounds, which were collected based on mechanisms of action (MOAs) and chemotypes, on HIP-009's cell fate (self-renewal, neuronal and astrocytic differentiation) and morphology by automated multiparametric assays and profiled induced cellular phenotypes. We found that this screening classified compounds with the same MOAs into subgroups according to additional pharmacological effects (e.g., mammalian target of rapamycin complex 1 [mTORC1] inhibitors and mTORC1/mTORC2 dual inhibitors among mTOR inhibitors). Moreover, it identified compounds that have off-target effects under matrix analyses of MOAs and structure similarities (e.g., neurotropic effects of amitriptyline among tri- and tetracyclic compounds). Therefore, this automated, medium-throughput and multiparametric screening system is useful for finding compounds that affect the cell fate of human NSCs/NPCs for supporting regenerative medicine and to fingerprint compounds based on human stem cells' multipotency, leading to understanding of stem cell biology. © 2015 Society for Laboratory Automation and Screening.
Munikrishnappa, Chandrashekar Suradhenupura; Puranik, Sangamesh B; Kumar, G V Suresh; Prasad, Y Rajendra
2016-08-25
A novel series of 5-bromo-pyrimidine derivatives (5a-l, 6a-h, 9a-m and 10a-d) were synthesized through multi step reactions starting from 5-bromo-2,4-dichloro pyrimidine. The newly synthesized compounds were characterized using elemental analysis and spectral data (IR, (1)H NMR, (13)C NMR and LC-MS) analysis. The titled compounds were evaluated for their in vitro cytotoxic activity against tumor cell lines panel consisted of HCT116 (human colon cancer cell line), A549 (human lung cancer cell line), K562 (human chronic myeloid leukemia cell line), U937 (human acute monocytic myeloid leukemia cell line), and L02 (human normal cell line) by using MTT assay Mosmann's method. As most of the compounds are highly potent against K562 cells, all the synthesized compounds were evaluated for Bcr/Abl tyrosine kinase inhibitory activity by using well-established ADP-Glo assay method. Dasatinib was utilized as positive control to validate in both biological evaluations. The biological activity revealed that the compounds 5c, 5e, 6g, 9e, 9f and 10c were potent Bcr/Abl kinase inhibitors among the titled compounds. Thus these compounds may be promising lead compounds to be developed as an alternative for current Dasatinib therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Safety profiles of old and new antimicrobials for the treatment of MRSA infections.
Bassetti, Matteo; Righi, Elda
2016-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of severe nosocomial and community-acquired infections. Various adverse effects have been associated with compounds that are commonly used in the treatment of MRSA. Prolonged use of high-dose vancomycin has been linked with nephrotoxicity. Linezolid use has been associated with lactic acidosis in regimens longer than 14 days and occurrence of thrombocytopenia in patients with renal impairment. Daptomycin use correlates with reversible and often asymptomatic myopathy. Among new compounds, telavancin has shown increased toxicity compared to vancomycin, especially in patients with severe renal impairment, while a low rate of adverse effects was reported others glycolipopeptides such as dalbavancin and oritavancin and for new cephalosporins. Recently studied oxazolidinones (tedizolid and radezolid) also showed mild adverse effects in Phase 2 and 3 clinical trials. Due to the constant increase in antimicrobial resistance, the use of higher doses and prolonged regimens of antibiotics employed in the treatment of Gram-positive infections has become more common and linked to increased toxicity. Furthermore, new compounds with MRSA activity have been recently approved and will be regularly employed in clinical practice. The knowledge of the adverse effects and risk factors for the development of toxicity associated with anti-MRSA antimicrobials is paramount for the correct use of old and new compounds, especially in the treatment of severe infections.
Mitochondrial Bioenergetics and Dysfunction in Failing Heart.
Sheeran, Freya L; Pepe, Salvatore
2017-01-01
Energy insufficiency has been recognized as a key feature of systolic heart failure. Although mitochondria have long been known to sustain myocardial work energy supply, the capacity to therapeutically target mitochondrial bioenergetics dysfunction is hampered by a complex interplay of multiple perturbations that progressively compound causing myocardial failure and collapse. Compared to non-failing human donor hearts, activity rates of complexes I and IV, nicotinamide nucleotide transhydrogenase (NADPH-transhydrogenase, Nnt) and the Krebs cycle enzymes isocitrate dehydrogenase, malate dehydrogenase and aconitase are markedly decreased in end-stage heart failure. Diminished REDOX capacity with lower total glutathione and coenzyme Q 10 levels are also a feature of chronic left ventricular failure. Decreased enzyme activities in part relate to abundant and highly specific oxidative, nitrosylative, and hyperacetylation modifications. In this brief review we highlight that energy deficiency in end-stage failing human left ventricle predominantly involves concomitantly impaired activities of key electron transport chain and Krebs cycle enzymes rather than altered expression of respective genes or proteins. Augmented oxidative modification of these enzyme subunit structures, and the formation of highly reactive secondary metabolites, implicates dysfunction due to diminished capacity for management of mitochondrial reactive oxygen species, which contribute further to progressive decreases in bioenergetic capacity and contractile function in human heart failure.
Sasaki, Ryohei; Suzuki, Yoko; Yonezawa, Yuko; Ota, Yosuke; Okamoto, Yoshiaki; Demizu, Yusuke; Huang, Peng; Yoshida, Hiromi; Sugimura, Kazuro; Mizushina, Yoshiyuki
2008-05-01
Among the vitamin K (VK) compounds, VK3 exhibits distinct cytotoxic activity in cancer cells and is thought to affect redox cycling; however, the underlying mechanisms remain unclear. Here we demonstrate that VK3 selectively inhibits DNA polymerase (pol) gamma, the key enzyme responsible for mitochondrial DNA replication and repair. VK3 at 30 microM inhibited pol gamma by more than 80%, caused impairment of mitochondrial DNA replication and repair, and induced a significant increase in reactive oxygen species (ROS), leading to apoptosis. At a lower concentration (3 microM), VK3 did not cause a significant increase in ROS, but was able to effectively inhibit cell proliferation, which could be reversed by supplementing glycolytic substrates. The cytotoxic action of VK3 was independent of p53 tumor suppressor gene status. Interestingly, VK3 only inhibited pol gamma but did not affect other pol including human pol alpha, pol beta, pol delta, and pol epsilon. VK1 and VK2 exhibited no inhibitory effect on any of the pol tested. These data together suggest that the inhibition of pol gamma by VK3 is relatively specific, and that this compound seems to exert its anticancer activity by two possible mechanisms in a concentration-dependent manner: (1) induction of ROS-mediated cell death at high concentrations; and (2) inhibition of cell proliferation at lower concentrations likely through the suppression of mitochondrial respiratory function. These findings may explain various cytotoxic actions induced by VK3, and may pave the way for the further use of VK3.
Haarhaus, Birgit; Seiwerth, Jasmin; Cawelius, Anja; Schwabe, Kay; Quirin, Karl-Werner; Schempp, Christoph M.
2017-01-01
Gentiana lutea is a herbal bitter drug that is used to enhance gastrointestinal motility and secretion. Recently we have shown that amarogentin, a characteristic bitter compound of Gentiana lutea extract (GE), binds to the bitter taste receptors TAS2R1 and TAS2R38 in human keratinocytes, and stimulates the synthesis of epidermal barrier proteins. Here, we wondered if GE also modulates lipid synthesis in human keratinocytes. To address this issue, human primary keratinocytes were incubated for 6 days with GE. Nile Red labeling revealed that GE significantly increased lipid synthesis in keratinocytes. Similarly, gas chromatography with flame ionization detector indicated that GE increases the amount of triglycerides in keratinocytes. GE induced the expression of epidermal ceramide synthase 3, but not sphingomyelinase. Lipid synthesis, as well as ceramide synthase 3 expression, could be specifically blocked by inhibitors of the p38 MAPK and PPARγ signaling pathway. To assess if GE also modulates lipid synthesis in vivo, we performed a proof of concept half side comparison on the volar forearms of 33 volunteers. In comparison to placebo, GE significantly increased the lipid content of the treated skin areas, as measured with a sebumeter. Thus, GE enhances lipid synthesis in human keratinocytes that is essential for building an intact epidermal barrier. Therefore, GE might be used to improve skin disorders with an impaired epidermal barrier, e.g., very dry skin and atopic eczema. PMID:28829355
Wölfle, Ute; Haarhaus, Birgit; Seiwerth, Jasmin; Cawelius, Anja; Schwabe, Kay; Quirin, Karl-Werner; Schempp, Christoph M
2017-08-22
Gentiana lutea is a herbal bitter drug that is used to enhance gastrointestinal motility and secretion. Recently we have shown that amarogentin, a characteristic bitter compound of Gentiana lutea extract (GE), binds to the bitter taste receptors TAS2R1 and TAS2R38 in human keratinocytes, and stimulates the synthesis of epidermal barrier proteins. Here, we wondered if GE also modulates lipid synthesis in human keratinocytes. To address this issue, human primary keratinocytes were incubated for 6 days with GE. Nile Red labeling revealed that GE significantly increased lipid synthesis in keratinocytes. Similarly, gas chromatography with flame ionization detector indicated that GE increases the amount of triglycerides in keratinocytes. GE induced the expression of epidermal ceramide synthase 3, but not sphingomyelinase. Lipid synthesis, as well as ceramide synthase 3 expression, could be specifically blocked by inhibitors of the p38 MAPK and PPARγ signaling pathway. To assess if GE also modulates lipid synthesis in vivo, we performed a proof of concept half side comparison on the volar forearms of 33 volunteers. In comparison to placebo, GE significantly increased the lipid content of the treated skin areas, as measured with a sebumeter. Thus, GE enhances lipid synthesis in human keratinocytes that is essential for building an intact epidermal barrier. Therefore, GE might be used to improve skin disorders with an impaired epidermal barrier, e.g., very dry skin and atopic eczema.
Santofimia-Castaño, Patricia; Izquierdo-Alvarez, Alicia; Plaza-Davila, María; Martinez-Ruiz, Antonio; Fernandez-Bermejo, Miguel; Mateos-Rodriguez, Jose M; Salido, Gines M; Gonzalez, Antonio
2018-01-01
Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is an organoselenium radical scavenger compound, which has strong antioxidant and anti-inflammatory effects. However, evidence suggests that this compound could exert deleterious actions on cell physiology. In this study, we have analyzed the effect of ebselen on rat pancreatic AR42J cells. Cytosolic free-Ca 2+ concentration ([Ca 2+ ] c ), cellular oxidative status, setting of endoplasmic reticulum stress, and phosphorylation of major mitogen-activated protein kinases were analyzed. Our results show that ebselen evoked a concentration-dependent increase in [Ca 2+ ] c . The compound induced an increase in the generation of reactive oxygen species in the mitochondria. We also observed an increase in global cysteine oxidation in the presence of ebselen. In the presence of ebselen an impairment of cholecystokinin-evoked amylase release was noted. Moreover, involvement of the unfolded protein response markers, ER chaperone and signaling regulator GRP78/BiP, eukaryotic translation initiation factor 2α and X-box binding protein 1 was detected. Finally, increases in the phosphorylation of SAPK/JNK, p38 MAPK, and p44/42 MAPK in the presence of ebselen were also observed. Our results provide evidences for an impairment of cellular oxidative state and enzyme secretion, the induction of endoplasmic reticulum stress and the activation of crucial mitogen-activated protein kinases in the presence of ebselen. As a consequence ebselen exerts a potential toxic effect on AR42J cells. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Blakely, Randy D. (Inventor); Robertson, David (Inventor)
2006-01-01
Isolated polynucleotide molecules and peptides encoded by these molecules are used in the analysis of human norepinephrine (NE) transporter variants, as well as in diagnostic and therapeutic applications, relating to a human NE transporter polymorphism. By analyzing genomic DNA or amplified genomic DNA, or amplified cDNA derived from mRNA, it is possible to type a human NE transporter with regard to the human NE transporter polymorphism, for example, in the context of diagnosing and treating NE transport impairments, and disorders associated with NE transport impairments, such as orthostatic intolerance.
Role of transition metal exporters in virulence: the example of Neisseria meningitidis.
Guilhen, Cyril; Taha, Muhamed-Kheir; Veyrier, Frédéric J
2013-01-01
Transition metals such as iron, manganese, and zinc are essential micronutrients for bacteria. However, at high concentration, they can generate non-functional proteins or toxic compounds. Metal metabolism is therefore regulated to prevent shortage or overload, both of which can impair cell survival. In addition, equilibrium among these metals has to be tightly controlled to avoid molecular replacement in the active site of enzymes. Bacteria must actively maintain intracellular metal concentrations to meet physiological needs within the context of the local environment. When intracellular buffering capacity is reached, they rely primarily on membrane-localized exporters to maintain metal homeostasis. Recently, several groups have characterized new export systems and emphasized their importance in the virulence of several pathogens. This article discusses the role of export systems as general virulence determinants. Furthermore, it highlights the contribution of these exporters in pathogens emergence with emphasis on the human nasopharyngeal colonizer Neisseria meningitidis.
Ciccolella, Marianna; Corti, Stefania; Catteruccia, Michela; Petrini, Stefania; Tozzi, Giulia; Rizza, Teresa; Carrozzo, Rosalba; Nizzardo, Monica; Bordoni, Andreina; Ronchi, Dario; D'Amico, Adele; Rizzo, Cristiano; Comi, Giacomo Pietro; Bertini, Enrico
2013-02-01
Brown-Vialetto-Van Laere (BVVL) syndrome is a rare disorder characterised by progressive pontobulbar palsy and sensorineural deafness. Causative mutations in genes encoding human riboflavin transporter 2 (hRFT2) and 3 (hRFT3) have been identified in BVVL patients. We report the clinical and molecular features of a severe BVVL patient in whom screening of SLC52A3/hRFT2 was negative. Sequence analysis identified two novel compound heterozygous mutations in SLC52A2/hRFT3, namely c.155C>T and c.1255G>A, leading to the amino acid changes p.S52F and p.G419S, respectively. Functional studies show that these defects impair the gene expression of the corresponding transporter, resulting in a significant reduction of riboflavin transport. These findings support the pathogenetic role of SLC52A2/hRFT3 in BVVL with important clinical and therapeutic implications.
Exposure to common quaternary ammonium disinfectants decreases fertility in mice
Melin, Vanessa E.; Potineni, Haritha; Hunt, Patricia; Griswold, Jodi; Siems, Bill; Werre, Stephen R.; Hrubec, Terry C.
2014-01-01
Quaternary ammonium compounds (QACs) are antimicrobial disinfectants commonly used in commercial and household settings. Extensive use of QACs results in ubiquitous human exposure, yet reproductive toxicity has not been evaluated. Decreased reproductive performance in laboratory mice coincided with the introduction of a disinfectant containing both alkyl dimethyl benzyl ammonium chloride (ADBAC) and didecyl dimethyl ammonium chloride (DDAC). QACs were detected in caging material over a period of several months following cessation of disinfectant use. Breeding pairs exposed for six months to a QAC disinfectant exhibited decreases in fertility and fecundity: increased time to first litter, longer pregnancy intervals, fewer pups per litter and fewer pregnancies. Significant morbidity in near term dams was also observed. In summary, exposure to a common QAC disinfectant mixture significantly impaired reproductive health in mice. This study illustrates the importance of assessing mixture toxicity of commonly used products whose components have only been evaluated individually. PMID:25483128
[Marijuana for medical purposes--public health perspective].
Gazdek, Davorka
2014-01-01
Studies show significant negative effects of smoking marijuana on physical and mental health as well as social and occupational functioning. At the same time, there are more considerations about its ability to treat a number of diseases. This review summarizes current data in scientific literature that examines the medical effects of marijuana on human health with particular emphasis on its potential in medicine. Marijuana has a range of adverse health effects, particularly relating to young people because of higher risk for psychosis, traffic accidents, and cognitive impairment. Marijuana may be helpful in relieving symptoms of nausea and vomiting, increasing appetite and pain relief for persons with cancer, AIDS and multiple sclerosis. Smoking marijuana can impose significant public health risks. If there is a medical role for using marijuana, it lies in the application of clearly defined medical protocols and chemically defined compounds, not with using the unprocessed cannabis plant.
Domain-specific cognitive impairment in patients with COPD and control subjects
Cleutjens, Fiona AHM; Franssen, Frits ME; Spruit, Martijn A; Vanfleteren, Lowie EGW; Gijsen, Candy; Dijkstra, Jeanette B; Ponds, Rudolf WHM; Wouters, Emiel FM; Janssen, Daisy JA
2017-01-01
Impaired cognitive function is increasingly recognized in COPD. Yet, the prevalence of cognitive impairment in specific cognitive domains in COPD has been poorly studied. The aim of this cross-sectional observational study was to compare the prevalence of domain-specific cognitive impairment between patients with COPD and non-COPD controls. A neuropsychological assessment was administered in 90 stable COPD patients and 90 non-COPD controls with comparable smoking status, age, and level of education. Six core tests from the Maastricht Aging Study were used to assess general cognitive impairment. By using Z-scores, compound scores were constructed for the following domains: psychomotor speed, planning, working memory, verbal memory, and cognitive flexibility. General cognitive impairment and domain-specific cognitive impairment were compared between COPD patients and controls after correction for comorbidities using multivariate linear and logistic regression models. General cognitive impairment was found in 56.7% of patients with COPD and in 13.3% of controls. Deficits in the following domains were more often present in patients with COPD after correction for comorbidities: psychomotor speed (17.8% vs 3.3%; P<0.001), planning (17.8% vs 1.1%; P<0.001), and cognitive flexibility (43.3% vs 12.2%; P<0.001). General cognitive impairment and impairments in the domains psychomotor speed, planning, and cognitive flexibility affect the COPD patients more than their matched controls. PMID:28031706
Daniel, O; Meier, M S; Schlatter, J; Frischknecht, P
1999-01-01
Phenolic compounds are widely distributed in the plant kingdom. Plant tissues may contain up to several grams per kilogram. External stimuli such as microbial infections, ultraviolet radiation, and chemical stressors induce their synthesis. The phenolic compounds resveratrol, flavonoids, and furanocoumarins have many ecologic functions and affect human health. Ecologic functions include defense against microbial pathogens and herbivorous animals. Phenolic compounds may have both beneficial and toxic effects on human health. Effects on low-density lipoproteins and aggregation of platelets are beneficial because they reduce the risk of coronary heart disease. Mutagenic, cancerogenic, and phototoxic effects are risk factors of human health. The synthesis of phenolic compounds in plants can be modulated by the application of herbicides and, to a lesser extent, insecticides and fungicides. The effects on ecosystem functioning and human health are complex and cannot be predicted with great certainty. The consequences of the combined natural and pesticide-induced modulating effects for ecologic functions and human health should be further evaluated. PMID:10229712
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, Maria J.; Castano, Beatriz; Jimenez, Silvia
Maternal cholestasis causes oxidative damage to the placental-fetal unit that may challenge the outcome of pregnancy. This has been associated with the accumulation of biliary compounds able to induce oxidative stress. However, other cholephilic compounds such as ursodeoxycholic acid (UDCA) and bilirubin have direct anti-oxidant properties. In the present study we investigated whether these compounds exert a protective effect on cholestasis-induced oxidative stress in placenta as compared to maternal and fetal livers, and whether this is due in part to the activation of anti-oxidant mechanisms involving vitamin C uptake and biliverdin/bilirubin recycling. In human placenta (JAr) and liver (HepG2) cells,more » deoxycholic acid (DCA) similar rates of free radical generation. In JAr (not HepG2), the mitochondrial membrane potential and cell viability were impaired by low DCA concentrations; this was partly prevented by bilirubin and UDCA. In HepG2, taurocholic acid (TCA) and UDCA up-regulated biliverdin-IX{alpha} reductase (BVR{alpha}) and the vitamin C transporter SVCT2 (not SVCT1), whereas bilirubin up-regulated both SVCT1 and SVCT2. In JAr, TCA and UDCA up-regulated BVR{alpha}, SVCT1 and SVCT2, whereas bilirubin up-regulated only SVCT2. A differential response to these compounds of nuclear receptor expression (SXR, CAR, FXR and SHP) was found in both cell types. When cholestasis was induced in pregnant rats, BVR{alpha}, SVCT1 and SVCT2 expression in maternal and fetal livers was stimulated, and this was further enhanced by UDCA treatment. In placenta, only BVR{alpha} was up-regulated. In conclusion, bilirubin accumulation and UDCA administration may directly and indirectly protect the placental-fetal unit from maternal cholestasis-induced oxidative stress.« less
Inhibiting Microbial Toxins Using Plant-Derived Compounds and Plant Extracts
Upadhyay, Abhinav; Mooyottu, Shankumar; Yin, Hsinbai; Surendran Nair, Meera; Bhattaram, Varunkumar; Venkitanarayanan, Kumar
2015-01-01
Many pathogenic bacteria and fungi produce potentially lethal toxins that cause cytotoxicity or impaired cellular function either at the site of colonization or other locations in the body through receptor-mediated interactions. Various factors, including biotic and abiotic environments, competing microbes, and chemical cues affect toxin expression in these pathogens. Recent work suggests that several natural compounds can modulate toxin production in pathogenic microbes. However, studies explaining the mechanistic basis for their effect are scanty. This review discusses the potential of various plant-derived compounds for reducing toxin production in foodborne and other microbes. In addition, studies highlighting their anti-toxigenic mechanism(s) are discussed. PMID:28930207
Estrogenic activity of phenolic additives determined by an in vitro yeast bioassay.
Miller, D; Wheals, B B; Beresford, N; Sumpter, J P
2001-01-01
We used a recombinant yeast estrogen assay to assess the activity of 73 phenolic additives that are used as sunscreens, preservatives, disinfectants, antioxidants, flavorings, or for perfumery. Thirty-two of these compounds displayed activity: 22 with potencies relative to 17beta-estradiol, ranging from 1/3,000 to < 1/3,000,000, and 10 compounds with an impaired response that could not be directly compared with 17beta-estradiol. Forty-one compounds were inactive. The major criteria for activity appear to be the presence of an unhindered phenolic OH group in a para position and a molecular weight of 140-250 Da. PMID:11266322
VISUAL FUNCTION CHANGES AFTER SUBCHRONIC TOLUENE INHALATION IN LONG-EVANS RATS.
Chronic exposure to volatile organic compounds, including toluene, has been associated with visual deficits such as reduced visual contrast sensitivity or impaired color discrimination in studies of occupational or residential exposure. These reports remain controversial, howeve...
Jun, Yi; Chunju, Yuan; Qi, Ai; Liuxia, Deng; Guolong, Yu
2014-04-01
The low frequency of survival of stem cells implanted in the myocardium after acute myocardial infarction may be caused by inflammation and oxidative stress in the myocardial microenvironment. We evaluated the effects of a traditional Chinese medicine, Compound Danshen Dripping Pills, on the cardiac microenvironment and cardiac function when used alone or in combination with human umbilical cord blood mononuclear cell transplant after acute myocardial infarction. After surgically induced acute myocardial infarction, rabbits were treated with Compound Danshen Dripping Pills alone or in combination with human umbilical cord blood mononuclear cell transplant. Evaluation included histology, measurement of left ventricular ejection fraction and fractional shortening, leukocyte count, count of green fluorescent protein positive cells, superoxide dismutase activity, and malondialdehyde content. Combination treatment with Compound Danshen Dripping Pills and human umbilical cord blood mononuclear cell transplant significantly increased the survival of implanted cells, inhibited cardiac cell apoptosis, decreased oxidative stress, decreased the inflammatory response, and improved cardiac function. Rabbits treated with either Compound Danshen Dripping Pills or human umbilical cord blood mononuclear cells alone had improvement in these effects compared with untreated control rabbits. Combination therapy with Compound Danshen Dripping Pills and human umbilical cord blood mononuclear cells may improve cardiac function and morphology after acute myocardial infarction.
Role of Oxidative Stress in Male Reproductive Dysfunctions with Reference to Phthalate Compounds.
Sedha, Sapna; Kumar, Sunil; Shukla, Shruti
2015-11-14
A wide variety of environmental chemicals/xenobiotics including phthalates have been shown to cause oxidative stress targeting the endocrine system and cause reproductive anomalies. The present review describes various issues by oxidative stress causing male reproductive dysfunctions. Here in this review, the importance and role of phthalate compounds in male reproductive dysfunction has been well documented. One class of environmental endocrine disruptors is phthalates. Phthalate compounds are mostly used as plasticizers, which increase the flexibility, durability, longevity, and etc. of the plastics. Large-scale use of plastic products in our daily life as well as thousands of workers engaged in the manufacture of plastic and plastic products and recycling plastic industry are potentially exposed to these chemicals. Further, general population as well as vulnerable groups i.e. children and pregnant women are also exposed to these chemicals. Phthalates are among wide variety of environmental toxicants capable of compromising male fertility by inducing a state of oxidative stress in the testes. They may also generate reactive oxygen species (ROS) that may affect various physiological and reproductive functions. The available data points out that phthalate compounds may also induce oxidative stress in the male reproductive organs mainly testis and epididymis. They impair spermatogenic process by inducing oxidative stress and apoptosis in germ cells or target sertoli cells and thereby hamper spermatogenesis. They also impair the Leydig cell function by inducing ROS, thereby decreasing the levels of steroidogenic enzymes. Thus in utero and postnatal exposure to phthalate compounds might lead to decreased sperm count and various other reproductive anomalies in the young male.
45 CFR 1308.7 - Eligibility criteria: Health impairment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 4 2011-10-01 2011-10-01 false Eligibility criteria: Health impairment. 1308.7... DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND... DISABILITIES Health Services Performance Standards § 1308.7 Eligibility criteria: Health impairment. (a) A...
45 CFR 1308.7 - Eligibility criteria: Health impairment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 4 2012-10-01 2012-10-01 false Eligibility criteria: Health impairment. 1308.7... DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND... DISABILITIES Health Services Performance Standards § 1308.7 Eligibility criteria: Health impairment. (a) A...
45 CFR 1308.7 - Eligibility criteria: Health impairment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 4 2013-10-01 2013-10-01 false Eligibility criteria: Health impairment. 1308.7... DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND... DISABILITIES Health Services Performance Standards § 1308.7 Eligibility criteria: Health impairment. (a) A...
45 CFR 1308.7 - Eligibility criteria: Health impairment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 4 2014-10-01 2014-10-01 false Eligibility criteria: Health impairment. 1308.7... DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND... DISABILITIES Health Services Performance Standards § 1308.7 Eligibility criteria: Health impairment. (a) A...
45 CFR 1308.7 - Eligibility criteria: Health impairment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 4 2010-10-01 2010-10-01 false Eligibility criteria: Health impairment. 1308.7... DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND... DISABILITIES Health Services Performance Standards § 1308.7 Eligibility criteria: Health impairment. (a) A...
Affective Education for Visually Impaired Children.
ERIC Educational Resources Information Center
Locke, Don C.; Gerler, Edwin R., Jr.
1981-01-01
Evaluated the effectiveness of the Human Development Program (HDP) and the Developing Understanding of Self and Others (DUSO) program used with visually impaired children. Although HDP and DUSO affected the behavior of visually impaired children, they did not have any effect on children's attitudes toward school. (RC)
Human biomarkers are comprised of compounds from cellular metabolism, oxidative stress, and the microbiome of bacteria in the gut, genitourinary, and pulmonary tracts. When we examine patterns in human biomarkers to discern human health state or diagnose specific diseases, it is...
Crow, J. Allen; Herring, Katye L.; Xie, Shuqi; Borazjani, Abdolsamad; Potter, Philip M.; Ross, Matthew K.
2009-01-01
Summary Two major isoforms of human carboxylesterases (CEs) are found in metabolically active tissues, CES1 and CES2. These hydrolytic enzymes are involved in xenobiotic and endobiotic metabolism. CES1 is abundantly expressed in human liver and monocytes/macrophages, including the THP1 cell line; CES2 is expressed in liver but not in monocytes/macrophages. The cholesteryl ester hydrolysis activity in human macrophages has been attributed to CES1. Here, we report the direct inhibitory effects of several endogenous oxysterols and fatty acids on the CE activity of THP1 monocytes/macrophages and recombinant human CES1 and CES2. Using THP1 whole-cell lysates we found: (1) 27-hydroxycholesterol (27-HC) is a potent inhibitor of carboxylesterase activity (IC50=33 nM); (2) 24(S),25-epoxycholesterol had moderate inhibitory activity (IC50=8.1 μM); and (3) cholesterol, 7-ketocholesterol, 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 25-hydroxycholesterol each had little inhibitory activity. 27-HC was a partially noncompetitive inhibitor of recombinant CES1 (Kiapp=10 nM) and impaired intracellular CES1 activity following treatment of intact THP1 cells. In contrast, recombinant CES2 activity was not inhibited by 27-HC, suggesting isoform-selective inhibition by 27-HC. Furthermore, unsaturated fatty acids were better inhibitors of CES1 activity than saturated fatty acids, while CES2 activity was unaffected by any fatty acid. Arachidonic acid (AA) was the most potent fatty acid inhibitor of recombinant CES1 and acted by a noncompetitive mechanism (Kiapp=1.7 μM); when not complexed to albumin, exogenous AA penetrated intact THP1 cells and inhibited CES1. Inhibition results are discussed in light of recent structural models for CES1 that describe ligand binding sites separate from the active site. In addition, oxysterol-mediated inhibition of CES1 activity was demonstrated by pretreatment of human liver homogenates or intact THP1 cells with exogenous 27-HC, which resulted in significantly reduced hydrolysis of the pyrethroid insecticide bioresmethrin, a CES1-specific xenobiotic substrate. Collectively, these findings suggest that CE activity of recombinant CES1, cell lysates, and intact cells can be impaired by naturally occurring lipids, which may compromise the ability of CES1 to both detoxify environmental pollutants and metabolize endogenous compounds in vivo. PMID:19761868
Davis, Angela L; Qiao, Shuxi; Lesson, Jessica L; Rojo de la Vega, Montserrat; Park, Sophia L; Seanez, Carol M; Gokhale, Vijay; Cabello, Christopher M; Wondrak, Georg T
2015-01-16
Pharmacological induction of proteotoxic stress is rapidly emerging as a promising strategy for cancer cell-directed chemotherapeutic intervention. Here, we describe the identification of a novel drug-like heat shock response inducer for the therapeutic induction of proteotoxic stress targeting malignant human melanoma cells. Screening a focused library of compounds containing redox-directed electrophilic pharmacophores employing the Stress & Toxicity PathwayFinder(TM) PCR Array technology as a discovery tool, a drug-like triphenylmethane-derivative (aurin; 4-[bis(p-hydroxyphenyl)methylene]-2,5-cyclohexadien-1-one) was identified as an experimental cell stress modulator that causes (i) heat shock factor transcriptional activation, (ii) up-regulation of heat shock response gene expression (HSPA6, HSPA1A, DNAJB4, HMOX1), (iii) early unfolded protein response signaling (phospho-PERK, phospho-eIF2α, CHOP (CCAAT/enhancer-binding protein homologous protein)), (iv) proteasome impairment with increased protein-ubiquitination, and (v) oxidative stress with glutathione depletion. Fluorescence polarization-based experiments revealed that aurin displays activity as a geldanamycin-competitive Hsp90α-antagonist, a finding further substantiated by molecular docking and ATPase inhibition analysis. Aurin exposure caused caspase-dependent cell death in a panel of human malignant melanoma cells (A375, G361, LOX-IMVI) but not in non-malignant human skin cells (Hs27 fibroblasts, HaCaT keratinocytes, primary melanocytes) undergoing the aurin-induced heat shock response without impairment of viability. Aurin-induced melanoma cell apoptosis depends on Noxa up-regulation as confirmed by siRNA rescue experiments demonstrating that siPMAIP1-based target down-regulation suppresses aurin-induced cell death. Taken together, our data suggest feasibility of apoptotic elimination of malignant melanoma cells using the quinone methide-derived heat shock response inducer aurin. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Lake, Nicole J; Webb, Bryn D; Stroud, David A; Richman, Tara R; Ruzzenente, Benedetta; Compton, Alison G; Mountford, Hayley S; Pulman, Juliette; Zangarelli, Coralie; Rio, Marlene; Boddaert, Nathalie; Assouline, Zahra; Sherpa, Mingma D; Schadt, Eric E; Houten, Sander M; Byrnes, James; McCormick, Elizabeth M; Zolkipli-Cunningham, Zarazuela; Haude, Katrina; Zhang, Zhancheng; Retterer, Kyle; Bai, Renkui; Calvo, Sarah E; Mootha, Vamsi K; Christodoulou, John; Rötig, Agnes; Filipovska, Aleksandra; Cristian, Ingrid; Falk, Marni J; Metodiev, Metodi D; Thorburn, David R
2017-08-03
The synthesis of all 13 mitochondrial DNA (mtDNA)-encoded protein subunits of the human oxidative phosphorylation (OXPHOS) system is carried out by mitochondrial ribosomes (mitoribosomes). Defects in the stability of mitoribosomal proteins or mitoribosome assembly impair mitochondrial protein translation, causing combined OXPHOS enzyme deficiency and clinical disease. Here we report four autosomal-recessive pathogenic mutations in the gene encoding the small mitoribosomal subunit protein, MRPS34, in six subjects from four unrelated families with Leigh syndrome and combined OXPHOS defects. Whole-exome sequencing was used to independently identify all variants. Two splice-site mutations were identified, including homozygous c.321+1G>T in a subject of Italian ancestry and homozygous c.322-10G>A in affected sibling pairs from two unrelated families of Puerto Rican descent. In addition, compound heterozygous MRPS34 mutations were identified in a proband of French ancestry; a missense (c.37G>A [p.Glu13Lys]) and a nonsense (c.94C>T [p.Gln32 ∗ ]) variant. We demonstrated that these mutations reduce MRPS34 protein levels and the synthesis of OXPHOS subunits encoded by mtDNA. Examination of the mitoribosome profile and quantitative proteomics showed that the mitochondrial translation defect was caused by destabilization of the small mitoribosomal subunit and impaired monosome assembly. Lentiviral-mediated expression of wild-type MRPS34 rescued the defect in mitochondrial translation observed in skin fibroblasts from affected subjects, confirming the pathogenicity of MRPS34 mutations. Our data establish that MRPS34 is required for normal function of the mitoribosome in humans and furthermore demonstrate the power of quantitative proteomic analysis to identify signatures of defects in specific cellular pathways in fibroblasts from subjects with inherited disease. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Context Switch Effects on Acquisition and Extinction in Human Predictive Learning
ERIC Educational Resources Information Center
Rosas, Juan M.; Callejas-Aguilera, Jose E.
2006-01-01
Four experiments tested context switch effects on acquisition and extinction in human predictive learning. A context switch impaired probability judgments about a cue-outcome relationship when the cue was trained in a context in which a different cue underwent extinction. The context switch also impaired judgments about a cue trained in a context…
USDA-ARS?s Scientific Manuscript database
Calorie restriction (CR) inhibits inflammation and slows aging in many animal species, but in rodents housed in pathogen-free facilities, CR impairs immunity against certain pathogens. However, little is known about the effects of long-term moderate CR on immune function in humans. In this multi-cen...
Erber, Matthias; Lee, Geoffrey
2015-09-01
Lyophilized reagents are used on a daily basis in coagulation diagnostics. They often contain a number of excipients in addition to the active compound. Some of these excipients may, however, influence coagulation dynamics. Besides from plasmatic coagulation bulking agents may influence platelet properties. We therefore studied the influence of a variety of bulking agents (glycine, mannitol, sucrose and trehalose) as well as a surfactant (Tween® 80) on whole blood coagulation using thromboelastometry (ROTEM®) and platelet function analysis (ROTEM® platelet). Both disaccharides as well as Tween® 80 did not influence whole blood coagulation in the concentration range investigated. The addition of glycine and mannitol solutions to the ROTEM® measurement leads to an impaired clot formation as well as overall clot strength while clotting initiation remained barely influenced. Hypertonic glycine and mannitol solutions exhibit different clot formation impairment when correlated to their osmolar concentration and compared to equally osmolar NaCl-solutions. The effect of glycine was assigned to fibrin formation impairment identified with the FIBTEM assay. Platelet function analysis revealed that hypertonic glycine solutions do not alter platelet function but hypertonic mannitol and NaCl solutions do. While the influence observed for glycine may be due to fibrinogen precipitation, the mechanism of mannitol appears to be more complex as platelet function as well as fibrin-based clot formation are influenced. This study therefore demonstrates the necessity to check for coagulation impairment due to compounds contained in lyophilized reagents.
NASA Astrophysics Data System (ADS)
Azam, Mohammad; Khan, Azmat Ali; Al-Resayes, Saud I.; Islam, Mohammad Shahidul; Saxena, Ajit Kumar; Dwivedi, Sourabh; Musarrat, Javed; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal
2015-05-01
In this work, we report a series of benzimidazole derivatives synthesized from benzene-1,2-diamine and aryl-aldehydes at room temperature. The synthesized compounds have been characterized on the basis of elemental analysis and various spectroscopic studies viz., IR, 1H- and 13C-NMR, ESI-MS as well by X-ray single X-ray crystallographic study. Interaction of these compounds with CT-DNA has been examined with fluorescence experiments and showed significant binding ability. All the synthesized compounds have been screened for their antitumor activities against various human cancer cell lines viz., Human breast adenocarcinoma cell line (MCF-7), Human leukemia cell line (THP-1), Human prostate cancer cell lines (PC-3) and adenocarcinomic human alveolar basal epithelial cell lines (A-549). Interestingly, all the compounds showed significant anticancer activity.
Zhou, Jiajun; Zhang, Qiang; Henriquez, Joseph E; Crawford, Robert B; Kaminski, Norbert E
2018-05-31
The aryl hydrocarbon receptor (AHR) is a cytosolic ligand-activated transcription factor involved in xenobiotic sensing, cell cycle regulation and cell development. In humans, the activation of AHR by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a high affinity AHR-ligand, impairs the secretion of immunoglobulin M (IgM) to suppress humoral immunity. However, the mechanisms bridging the activation of AHR and the impairment of IgM secretion by human primary B cells remain poorly understood. Recent transcriptomic analysis revealed upregulation of lymphocyte-specific protein tyrosine kinase (LCK) in AHR activated human primary B cells. LCK is a well-characterized tyrosine kinase that phosphorylates critical signaling proteins involved in activation and cytokine production in T cells. Conversely, the role of LCK in human primary B cells is not well understood. In the current studies, we have verified the transcriptomic finding by detecting AHR-mediated upregulation of LCK protein in human primary B cells. We also confirmed the role of AHR in the upregulation of LCK by using a specific AHR antagonist, which abolished the AHR-mediated increase of LCK. Furthermore, we have confirmed the role of LCK in the AHR-mediated suppression of IgM by using LCK specific inhibitors, which restored IgM secretion by human B cells in the presence of TCDD. Collectively, the current studies demonstrate a novel role of LCK in IgM secretion and provide new insights into the mechanism for AHR-mediated impairment of immunoglobulin secretion by human primary B cells.
Kamimura, Hidetaka; Ito, Satoshi
2016-01-01
1. Chimeric mice with humanized livers are expected to be a novel tool for new drug development. This review discusses four applications where these animals can be used efficiently to collect supportive data for selecting the best compound in the final stage of drug discovery. 2. The first application is selection of the final compound based on estimated pharmacokinetic parameters in humans. Since chimeric mouse livers are highly repopulated with human hepatocytes, hepatic clearance values in vivo could be used preferentially to estimate pharmacokinetic profiles for humans. 3. The second is prediction of human-specific or disproportionate metabolites. Chimeric mice reproduce human-specific metabolites of drugs under development to conform to ICH guidance M3(R2), except for compounds that were extensively eliminated by co-existing mouse hepatocytes. 4. The third is identifying metabolites with distinct pharmacokinetic profiles in humans. Slow metabolite elimination specifically in humans increases its exposure level, but if its elimination is faster in laboratory animals, the animal exposure level might not satisfy ICH guidance M3(R2). 5. Finally, two examples of reproducing acute liver toxicity in chimeric mice are introduced. Integrated pharmacokinetics, metabolism and toxicity information are expected to assist pharmaceutical scientists in selecting the best candidate compound in new drug development.
2010-01-01
Background Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions. Objectives To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures. Methods In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 μg/m3) or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions. Measurements and Main Results Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin) and endothelial-independent (sodium nitroprusside and verapamil) vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P < 0.001), bradykinin (P < 0.05), sodium nitroprusside (P < 0.05) and verapamil (P < 0.001). In addition, the net release of tissue plasminogen activator during bradykinin infusion was impaired following diesel exhaust exposure (P < 0.05). Conclusion Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust under ETC conditions was also associated with a novel finding of impaired of calcium channel-dependent vasomotor function. This implies that certain cardiovascular endpoints seem to be related to general diesel exhaust properties, whereas the novel calcium flux-related effect may be associated with exhaust properties more specific for the ETC condition, for example a higher content of diesel soot particles along with their adsorbed organic compounds. PMID:20653945
Shalom-Feuerstein, Ruby; Serror, Laura; Aberdam, Edith; Müller, Franz-Josef; van Bokhoven, Hans; Wiman, Klas G; Zhou, Huiqing; Aberdam, Daniel; Petit, Isabelle
2013-02-05
Ectodermal dysplasia is a group of congenital syndromes affecting a variety of ectodermal derivatives. Among them, ectrodactyly, ectodermal dysplasia, and cleft lip/palate (EEC) syndrome is caused by single point mutations in the p63 gene, which controls epidermal development and homeostasis. Phenotypic defects of the EEC syndrome include skin defects and limbal stem-cell deficiency. In this study, we designed a unique cellular model that recapitulated major embryonic defects related to EEC. Fibroblasts from healthy donors and EEC patients carrying two different point mutations in the DNA binding domain of p63 were reprogrammed into induced pluripotent stem cell (iPSC) lines. EEC-iPSC from both patients showed early ectodermal commitment into K18(+) cells but failed to further differentiate into K14(+) cells (epidermis/limbus) or K3/K12(+) cells (corneal epithelium). APR-246 (PRIMA-1(MET)), a small compound that restores functionality of mutant p53 in human tumor cells, could revert corneal epithelial lineage commitment and reinstate a normal p63-related signaling pathway. This study illustrates the relevance of iPSC for p63 related disorders and paves the way for future therapy of EEC.
Cue-independent memory impairment by reactivation-coupled interference in human declarative memory.
Zhu, Zijian; Wang, Yingying; Cao, Zhijun; Chen, Biqing; Cai, Huaqian; Wu, Yanhong; Rao, Yi
2016-10-01
Memory is a dynamic process. While memory becomes increasingly resistant to interference after consolidation, a brief reactivation renders it unstable again. Previous studies have shown that interference, when applied upon reactivation, impairs the consolidated memory, presumably by disrupting the reconsolidation of the memory. However, attempts have failed in disrupting human declarative memory, raising a question about whether declarative memory becomes unstable upon reactivation. Here, we used a double-cue/one-target paradigm, which associated the same target with two different cues in initial memory formation. Only one cue/target association was later reactivated and treated with behavioral interference. Our results showed, for the first time, that reactivation-coupled interference caused cue-independent memory impairment that generalized to other cues associated with the memory. Critically, such memory impairment appeared immediately after interference, before the reconsolidation process was completed, suggesting that common manipulations of reactivation-coupled interference procedures might disrupt other processes in addition to the reconsolidation process in human declarative memory. Copyright © 2016. Published by Elsevier B.V.
Bergamaschi, Mateus M; Queiroz, Regina Helena Costa; Chagas, Marcos Hortes Nisihara; de Oliveira, Danielle Chaves Gomes; De Martinis, Bruno Spinosa; Kapczinski, Flávio; Quevedo, João; Roesler, Rafael; Schröder, Nadja; Nardi, Antonio E; Martín-Santos, Rocio; Hallak, Jaime Eduardo Cecílio; Zuardi, Antonio Waldo; Crippa, José Alexandre S
2011-05-01
Generalized Social Anxiety Disorder (SAD) is one of the most common anxiety conditions with impairment in social life. Cannabidiol (CBD), one major non-psychotomimetic compound of the cannabis sativa plant, has shown anxiolytic effects both in humans and in animals. This preliminary study aimed to compare the effects of a simulation public speaking test (SPST) on healthy control (HC) patients and treatment-naïve SAD patients who received a single dose of CBD or placebo. A total of 24 never-treated patients with SAD were allocated to receive either CBD (600 mg; n=12) or placebo (placebo; n=12) in a double-blind randomized design 1 h and a half before the test. The same number of HC (n=12) performed the SPST without receiving any medication. Each volunteer participated in only one experimental session in a double-blind procedure. Subjective ratings on the Visual Analogue Mood Scale (VAMS) and Negative Self-Statement scale (SSPS-N) and physiological measures (blood pressure, heart rate, and skin conductance) were measured at six different time points during the SPST. The results were submitted to a repeated-measures analysis of variance. Pretreatment with CBD significantly reduced anxiety, cognitive impairment and discomfort in their speech performance, and significantly decreased alert in their anticipatory speech. The placebo group presented higher anxiety, cognitive impairment, discomfort, and alert levels when compared with the control group as assessed with the VAMS. The SSPS-N scores evidenced significant increases during the testing of placebo group that was almost abolished in the CBD group. No significant differences were observed between CBD and HC in SSPS-N scores or in the cognitive impairment, discomfort, and alert factors of VAMS. The increase in anxiety induced by the SPST on subjects with SAD was reduced with the use of CBD, resulting in a similar response as the HC.
Bergamaschi, Mateus M; Queiroz, Regina Helena Costa; Chagas, Marcos Hortes Nisihara; de Oliveira, Danielle Chaves Gomes; De Martinis, Bruno Spinosa; Kapczinski, Flávio; Quevedo, João; Roesler, Rafael; Schröder, Nadja; Nardi, Antonio E; Martín-Santos, Rocio; Hallak, Jaime Eduardo Cecílio; Zuardi, Antonio Waldo; Crippa, José Alexandre S
2011-01-01
Generalized Social Anxiety Disorder (SAD) is one of the most common anxiety conditions with impairment in social life. Cannabidiol (CBD), one major non-psychotomimetic compound of the cannabis sativa plant, has shown anxiolytic effects both in humans and in animals. This preliminary study aimed to compare the effects of a simulation public speaking test (SPST) on healthy control (HC) patients and treatment-naïve SAD patients who received a single dose of CBD or placebo. A total of 24 never-treated patients with SAD were allocated to receive either CBD (600 mg; n=12) or placebo (placebo; n=12) in a double-blind randomized design 1 h and a half before the test. The same number of HC (n=12) performed the SPST without receiving any medication. Each volunteer participated in only one experimental session in a double-blind procedure. Subjective ratings on the Visual Analogue Mood Scale (VAMS) and Negative Self-Statement scale (SSPS-N) and physiological measures (blood pressure, heart rate, and skin conductance) were measured at six different time points during the SPST. The results were submitted to a repeated-measures analysis of variance. Pretreatment with CBD significantly reduced anxiety, cognitive impairment and discomfort in their speech performance, and significantly decreased alert in their anticipatory speech. The placebo group presented higher anxiety, cognitive impairment, discomfort, and alert levels when compared with the control group as assessed with the VAMS. The SSPS-N scores evidenced significant increases during the testing of placebo group that was almost abolished in the CBD group. No significant differences were observed between CBD and HC in SSPS-N scores or in the cognitive impairment, discomfort, and alert factors of VAMS. The increase in anxiety induced by the SPST on subjects with SAD was reduced with the use of CBD, resulting in a similar response as the HC. PMID:21307846
Synthesis of cyclic 1,9-acetal derivatives of forskolin and their bioactivity evaluation.
Ponnam, Devendar; Shilpi, Singh; Srinivas, K V N S; Suiab, Luqman; Alam, Sarfaraz; Amtul, Zehra; Arigari, Niranjan Kumar; Jonnala, Kotesh Kumar; Siddiqui, Lubna; Dubey, Vijaya; Tiwari, Ashok Kumar; Balasubramanian, Sridhar; Khan, Feroz
2014-11-24
A new series of 1,9-acetals of forskolin were synthesized by treating with aromatic and aliphatic aldehydes using Ceric ammonium nitrate as catalyst and evaluated for anticancer and α-glucosidase inhibition activities. Among the synthesized compounds 2a, 2b and 3a showed potential cytotoxic activity towards human cancer cell lines MCF-7 (Human Breast Adenocarcinoma), MDA-MB (Human Breast Carcinoma), HeLa (Human Cervix Adenocarcinoma), A498 (Human Kidney Carcinoma), K562 (Human Erythromyeloblastoid leukemia), SH-SY5Y (Human Neuroblastoma), Hek293 (Human Embryonic Kidney) and WRL68 (Human Hepatic) with IC50 values ranging between 0.95 and 47.96 μg/ml. Osmotic fragility test revealed compound 3a as non-toxic to human erythrocytes at the tested concentrations of 50 and 100 μg/ml. Compounds 1g (IC50 value 0.76 μg/ml) and 1p (IC50 value 0.74 μg/ml) significantly inhibited α-glucosidase in in vitro system. In silico based docking, ADME and toxicity risk assessment studies also showed discernible α-glucosidase activity for compounds 1g, 1p compared to standard acarbose. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
MOMENTARY BRAIN CONCENTRATION OF TRICHLOROETHYLENE PREDICTS THE EFFECTS ON RAT VISUAL FUNCTION.
This manuscript demonstrates that the level neurological impairment following acute reversible exposure to trichloroethylene, a volatile organic compound, is more accurately described when extrapolations across exposure conditions are based on target tissue (brain) dose level, th...
7 CFR 1466.4 - National priorities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...
7 CFR 1466.4 - National priorities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...
7 CFR 1466.4 - National priorities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...
7 CFR 1466.4 - National priorities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...
7 CFR 1466.4 - National priorities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...
Environmental exposure to preformed nitroso compounds.
Tricker, A R; Spiegelhalder, B; Preussmann, R
1989-01-01
In the human environment, nitrosatable amine precursors to N-nitroso compounds and nitrosating species such as nitrite and oxides of nitrogen are abundant. As a result, the formation of N-nitroso compounds and human exposure to these compounds show a rather complex pattern. The largest known human exposures to exogenous N-nitrosamines occur in the work place. This is particularly evident in the rubber and tyre manufacturing industry and in metal cutting and grinding shops. Nearly all industries which are concerned with the production and/or use of amines have a related nitrosamine problem. Outside the industrial environment, commodities such as cosmetics, pharmaceuticals, rubber and household products, which are either prepared from amines or contain high concentrations of amino compounds, may be subject to contamination by low concentrations of N-nitroso compounds. This contamination may result from the use of contaminated starting materials, in particular amines, or from the formation of N-nitroso compounds during manufacturing processes. A similar problem exists with agricultural chemicals. As our knowledge of the occurrence and formation of N-nitroso compounds in the environment increases, preventive measures can be introduced, particularly in manufacturing industries, to reduce the levels of human exposure to nitrosamines in the work place and to protect the consumer from nitrosamine exposure from household commodities.
Moorman, Michelle C.
2012-01-01
Organic compounds studied in a U.S. Geological Survey (USGS) assessment of water samples from the Neuse River and the public supply system for the Town of Smithfield, North Carolina, generally are manmade and include pesticides, gasoline hydrocarbons, solvents, personal-care and domestic-use products, disinfection by-products, and manufacturing additives. Of the 277 compounds assessed, a total of 113 compounds were detected in samples collected approximately monthly during 2002–2005 at the drinking-water intake for the town's water-treatment plant on the Neuse River. Fifty-two organic compounds were commonly detected (in at least 20 percent of the samples) in source water and (or) finished water. The diversity of compounds detected suggests a variety of sources and uses, including wastewater discharges, industrial, agricultural, domestic, and others. Only once during the study did an organic compound concentration exceed a human-health benchmark (benzo[a]pyrene). A human-health benchmark is a chemical concentration specific to water above which there is a risk to humans, however, benchmarks were available for only 18 of the 42 compounds with detected concentrations greater than 0.1 micrograms per liter. On the basis of this assessment, adverse effects to human health are assumed to be negligible.
Bioactive Compounds and Their Neuroprotective Effects in Diabetic Complications
Oh, Yoon Sin
2016-01-01
Hyperglycemia, hyperlipidemia and impaired insulin signaling during the development of diabetes can cause diabetic complications, such as diabetic neuropathy, resulting in significant morbidity and mortality. Although various therapeutics are available for the treatment of diabetic neuropathy, no absolute cure exists, and additional research is necessary to comprehensively understand the underlying pathophysiological pathways. A number of studies have demonstrated the potential health benefits of bioactive compounds, i.e., flavonoids and vitamins, which may be effective as supplementary treatments for diabetes and its complications. In this review, we highlight the most recent reports about the mechanisms of action of bioactive compounds (flavonoids and vitamins) possessing potential neuroprotective properties in diabetic conditions. Additional clinical studies are required to determine the appropriate dose and duration of bioactive compound supplementation for neuroprotection in diabetic patients. PMID:27483315
Effects of fendiline on cocaine-seeking behavior in the rat.
Cunningham, Jonathan J; Orr, Erin; Lothian, Barbara C; Morgen, Jennifer; Brebner, Karen
2015-12-01
L-type Ca(2+) channels (LTCC) and GABAB receptors are both possible targets in the development of new pharmacological compounds for cocaine addiction. Drugs that target either receptor attenuate a wide range of cocaine-seeking behaviors in the rat. However, there is no current human-approved pharmacotherapeutic intervention for psychostimulant addiction. This study examined the effects of a human-approved LTCC blocker, fendiline, on cocaine-taking and cocaine-seeking behavior in rats. The effects of combining fendiline with the GABAB receptor agonist baclofen on cocaine self-administration were also tested. Male Wistar rats were trained to self-administer cocaine, and the effects of fendiline pretreatment (vehicle, 1.78, 3.16, 5.62 mg/kg, intraperitoneal (IP)) were tested on progressive ratio responding and cue- and drug-induced reinstatement. The effects of baclofen (vehicle, 0.56, 1.78, 3.16, 5.62 mg/kg, IP) combined with fendiline (5.62 mg/kg, IP) were tested on progressive ratio responding. Control experiments measured locomotor activity and lever pressing for food in rats that received both baclofen and fendiline prior to the test session. Acute injections of fendiline prior to cue- or drug-induced reinstatement significantly attenuated lever-pressing behavior (p < 0.05). Fendiline and baclofen, but not fendiline alone, not only significantly attenuated breakpoints, but also impaired general motor behavior and naturalistic reinforcement (p < 0.05). These data suggest that the LTCC blocker fendiline may represent a novel pharmacotherapeutic intervention to prevent reinstatement to cocaine seeking. Also, co-administration of fendiline and baclofen not only can attenuate the motivation to take cocaine, but also impairs general motor behavior and naturalistic reinforcement.
Mirzaa, Ghayda M.; Vitre, Benjamin; Carpenter, Gillian; Abramowicz, Iga; Gleeson, Joseph G.; Paciorkowski, Alex R.; Cleveland, Don W.; Dobyns, William B.; O’Driscoll, Mark
2015-01-01
Defects in centrosome, centrosomal-associated and spindle-associated proteins are the most frequent cause of Primary Microcephaly (PM) and Microcephalic Primordial Dwarfism (MPD) syndromes in humans. Mitotic progression and segregation defects, microtubule spindle abnormalities and impaired DNA damage-induced G2-M cell cycle checkpoint proficiency have been documented in cell lines from these patients. This suggests that impaired mitotic entry, progression and exit strongly contribute to PM and MPD. Considering the vast protein networks involved in coordinating this cell cycle stage, the list of potential target genes that could underlie novel developmental disorders is large. One such complex network, with a direct microtubule-mediated physical connection to the centrosome, is the kinetochore. This centromeric-associated structure nucleates microtubule attachments onto mitotic chromosomes. Here, we described novel compound heterozygous variants in CENPE in two siblings who exhibit a profound MPD associated with developmental delay, simplified gyri and other isolated abnormalities. CENPE encodes centromere-associated protein E (CENP-E), a core kinetochore component functioning to mediate chromosome congression initially of misaligned chromosomes and in subsequent spindle microtubule capture during mitosis. Firstly, we present a comprehensive clinical description of these patients. Then, using patient cells we document abnormalities in spindle microtubule organisation, mitotic progression and segregation, before modeling the cellular pathogenicity of these variants in an independent cell system. Our cellular analysis shows that a pathogenic defect in CENP-E, a kinetochore-core protein, largely phenocopies PCNT-mutated Microcephalic Osteodysplastic Primordial Dwarfism type II patient cells. PCNT encodes a centrosome-associated protein. These results highlight a common underlying pathomechanism. Our findings provide the first evidence for a kinetochore-based route to MPD in humans. PMID:24748105
Mirzaa, Ghayda M; Vitre, Benjamin; Carpenter, Gillian; Abramowicz, Iga; Gleeson, Joseph G; Paciorkowski, Alex R; Cleveland, Don W; Dobyns, William B; O'Driscoll, Mark
2014-08-01
Defects in centrosome, centrosomal-associated and spindle-associated proteins are the most frequent cause of primary microcephaly (PM) and microcephalic primordial dwarfism (MPD) syndromes in humans. Mitotic progression and segregation defects, microtubule spindle abnormalities and impaired DNA damage-induced G2-M cell cycle checkpoint proficiency have been documented in cell lines from these patients. This suggests that impaired mitotic entry, progression and exit strongly contribute to PM and MPD. Considering the vast protein networks involved in coordinating this cell cycle stage, the list of potential target genes that could underlie novel developmental disorders is large. One such complex network, with a direct microtubule-mediated physical connection to the centrosome, is the kinetochore. This centromeric-associated structure nucleates microtubule attachments onto mitotic chromosomes. Here, we described novel compound heterozygous variants in CENPE in two siblings who exhibit a profound MPD associated with developmental delay, simplified gyri and other isolated abnormalities. CENPE encodes centromere-associated protein E (CENP-E), a core kinetochore component functioning to mediate chromosome congression initially of misaligned chromosomes and in subsequent spindle microtubule capture during mitosis. Firstly, we present a comprehensive clinical description of these patients. Then, using patient cells we document abnormalities in spindle microtubule organization, mitotic progression and segregation, before modeling the cellular pathogenicity of these variants in an independent cell system. Our cellular analysis shows that a pathogenic defect in CENP-E, a kinetochore-core protein, largely phenocopies PCNT-mutated microcephalic osteodysplastic primordial dwarfism-type II patient cells. PCNT encodes a centrosome-associated protein. These results highlight a common underlying pathomechanism. Our findings provide the first evidence for a kinetochore-based route to MPD in humans.
Mutations in the satellite cell gene MEGF10 cause a recessive congenital myopathy with minicores.
Boyden, Steven E; Mahoney, Lane J; Kawahara, Genri; Myers, Jennifer A; Mitsuhashi, Satomi; Estrella, Elicia A; Duncan, Anna R; Dey, Friederike; DeChene, Elizabeth T; Blasko-Goehringer, Jessica M; Bönnemann, Carsten G; Darras, Basil T; Mendell, Jerry R; Lidov, Hart G W; Nishino, Ichizo; Beggs, Alan H; Kunkel, Louis M; Kang, Peter B
2012-05-01
We ascertained a nuclear family in which three of four siblings were affected with an unclassified autosomal recessive myopathy characterized by severe weakness, respiratory impairment, scoliosis, joint contractures, and an unusual combination of dystrophic and myopathic features on muscle biopsy. Whole genome sequence from one affected subject was filtered using linkage data and variant databases. A single gene, MEGF10, contained nonsynonymous mutations that co-segregated with the phenotype. Affected subjects were compound heterozygous for missense mutations c.976T > C (p.C326R) and c.2320T > C (p.C774R). Screening the MEGF10 open reading frame in 190 patients with genetically unexplained myopathies revealed a heterozygous mutation, c.211C > T (p.R71W), in one additional subject with a similar clinical and histological presentation as the discovery family. All three mutations were absent from at least 645 genotyped unaffected control subjects. MEGF10 contains 17 atypical epidermal growth factor-like domains, each of which contains eight cysteine residues that likely form disulfide bonds. Both the p.C326R and p.C774R mutations alter one of these residues, which are completely conserved in vertebrates. Previous work showed that murine Megf10 is required for preserving the undifferentiated, proliferative potential of satellite cells, myogenic precursors that regenerate skeletal muscle in response to injury or disease. Here, knockdown of megf10 in zebrafish by four different morpholinos resulted in abnormal phenotypes including unhatched eggs, curved tails, impaired motility, and disorganized muscle tissue, corroborating the pathogenicity of the human mutations. Our data establish the importance of MEGF10 in human skeletal muscle and suggest satellite cell dysfunction as a novel myopathic mechanism.
Scafuri, Bernardina; Marabotti, Anna; Carbone, Virginia; Minasi, Paola; Dotolo, Serena; Facchiano, Angelo
2016-01-01
We investigated the potential role of apple phenolic compounds in human pathologies by integrating chemical characterization of phenolic compounds in three apple varieties, computational approaches to identify potential protein targets of the compounds, bioinformatics analyses on data from public archive of gene expression data, and functional analyses to hypothesize the effects of the selected compounds in molecular pathways. Starting by the analytic characterization of phenolic compounds in three apple varieties, i.e. Annurca, Red Delicious, and Golden Delicious, we used computational approaches to verify by reverse docking the potential protein targets of the identified compounds. Direct docking validation of the potential protein-ligand interactions has generated a short list of human proteins potentially bound by the apple phenolic compounds. By considering the known chemo-preventive role of apple antioxidants’ extracts against some human pathologies, we performed a functional analysis by comparison with experimental gene expression data and interaction networks, obtained from public repositories. The results suggest the hypothesis that chemo-preventive effects of apple extracts in human pathologies, in particular for colorectal cancer, may be the interference with the activity of nucleotide metabolism and methylation enzymes, similarly to some classes of anticancer drugs. PMID:27587238
ERIC Educational Resources Information Center
Chawarska, Katarzyna; Volkmar, Fred
2007-01-01
Face recognition impairments are well documented in older children with Autism Spectrum Disorders (ASD); however, the developmental course of the deficit is not clear. This study investigates the progressive specialization of face recognition skills in children with and without ASD. Experiment 1 examines human and monkey face recognition in…
Severe obesity and diabetes insipidus in a patient with PCSK1 deficiency☆
Frank, Graeme R.; Fox, Joyce; Candela, Ninfa; Jovanovic, Zorica; Bochukova, Elena; Levine, Jeremiah; Papenhausen, Peter R.; O'Rahilly, Stephen; Farooqi, I. Sadaf
2013-01-01
Non-synonymous mutations affecting both alleles of PCSK1 (proprotein convertase 1/3) are associated with obesity and impaired prohormone processing. We report a proband who was compound heterozygous for a maternally inherited frameshift mutation and a paternally inherited 474kb deletion that encompasses PCSK1, representing a novel genetic mechanism underlying this phenotype. Although pro-vasopressin is not a known physiological substrate of PCSK1, the development of central diabetes insipidus in this proband suggests that PCSK1 deficiency can be associated with impaired osmoregulation. PMID:23800642
Warashina, Tsutomu; Umehara, Kaoru; Miyase, Toshio
2012-01-01
A MeOH extract from the roots of Taraxacum platycarpum has shown significant effects on the proliferation of normal human skin fibroblasts. Chemical analysis of the extract resulted in the isolation of 26 compounds, including eight new triterpenes, one new sesquiterpene glycoside, and seventeen known compounds. The structure of each new compound was established using NMR spectroscopy. Some triterpenes had a significant effect on the proliferation of normal human skin fibroblasts.
Summary of Surface-Water Quality Data from the Illinois River Basin in Northeast Oklahoma, 1970-2007
Andrews, William J.; Becker, Mark F.; Smith, S. Jerrod; Tortorelli, Robert L.
2009-01-01
The quality of streams in the Illinois River Basin of northeastern Oklahoma is potentially threatened by increased quantities of wastes discharged from increasing human populations, grazing of about 160,000 cattle, and confined animal feeding operations raising about 20 million chickens. Increasing numbers of humans and livestock in the basin contribute nutrients and bacteria to surface water and groundwater, causing greater than the typical concentrations of those constituents for this region. Consequences of increasing contributions of these substances can include increased algal growth (eutrophication) in streams and lakes; impairment of habitat for native aquatic animals, including desirable game fish species; impairment of drinking-water quality by sediments, turbidity, taste-and-odor causing chemicals, toxic algal compounds, and bacteria; and reduction in the aesthetic quality of the streams. The U.S. Geological Survey, in cooperation with the Oklahoma Scenic Rivers Commission, prepared this report to summarize the surface-water-quality data collected by the U.S. Geological Survey at five long-term surface-water-quality monitoring sites. The data summarized include major ions, nutrients, sediment, and fecal-indicator bacteria from the Illinois River Basin in Oklahoma for 1970 through 2007. General water chemistry, concentrations of nitrogen and phosphorus compounds, chlorophyll-a (an indicator of algal biomass), fecal-indicator bacteria counts, and sediment concentrations were similar among the five long-term monitoring sites in the Illinois River Basin in northeast Oklahoma. Most water samples were phosphorus-limited, meaning that they contained a smaller proportion of phosphorus, relative to nitrogen, than typically occurs in algal tissues. Greater degrees of nitrogen limitation occurred at three of the five sites which were sampled back to the 1970s, probably due to use of detergents containing greater concentrations of phosphorus than in subsequent periods. Concentrations of nitrogen, phosphorus, and sediment, and counts of bacteria generally increased with streamflow at the five sites, probably due to runoff from the land surface and re-suspension of streambed sediments. Phosphorus concentrations typically exceeded the Oklahoma standard of 0.037 milligrams per liter for Scenic Rivers. Concentrations of chlorophyll-a in phytoplankton in water samples collected at the five sites were not well correlated with streamflow, nor to concentrations of the nutrients nitrogen and phosphorus, probably because much of the algae growing in these streams are periphyton attached to streambed cobbles and other debris, rather than phytoplankton in the water column. Sediment concentrations correlated with phosphorus concentrations in water samples collected at the sites, probably due to sorption of phosphorus to soil particles and streambed sediments and runoff of soils and animal wastes at the land surface and resuspension of streambed sediments and phosphorus during wet, high-flow periods. Fecal coliform bacteria counts at the five sites sometimes exceeded the Oklahoma Primary Body Contact Standard of 400 colonies per 100 milliliters when streamflows were greater than 1000 cubic feet per second. Ultimately, Lake Tenkiller, an important ecological and economic resource for the region, receives the compounds that runoff the land surface or seep to local streams from groundwater in the basin. Because of eutrophication from increased nutrient loading, Lake Tenkiller is listed for impairment by diminished dissolved oxygen concentrations, phosphorus, and chlorophyll-a by the State of Oklahoma in evaluation of surface-water quality required by section 303d of the Clean Water Act. Stored phosphorus in soils and streambed and lakebed sediments may continue to provide phosphorus to local streams and lakes for decades to come. Steps are being made to reduce local sources of phosphorus, including upgrades in capacity and effective
Cytotoxic Compounds from Brucea mollis
Tung, Mai Hung Thanh; Đuc, Ho Viet; Huong, Tran Thu; Duong, Nguyen Thanh; Phuong, Do Thi; Thao, Do Thi; Tai, Bui Huu; Kim, Young Ho; Bach, Tran The; Cuong, Nguyen Manh
2013-01-01
Ten compounds, including soulameanone (1), isobruceine B (2), 9-methoxy-canthin-6-one (3), bruceolline F (4), niloticine (5), octatriacontan-1-ol (6), bombiprenone (7), α-tocopherol (8), inosine (9), and apigenin 7-O-β-D-glucopyranoside (10), were isolated from the leaves, stems, and roots of Brucea mollis Wall. ex Kurz. Their structures were determined using one-and two-dimensional NMR spectroscopy and mass spectrometry. All compounds were evaluated for their cytotoxic activity against KB (human carcinoma of the mouth), LU-1 (human lung adenocarcinoma), LNCaP (human prostate adeno-carcinoma), and HL-60 (human promyelocytic leukemia) cancer cell lines. Compound 2 showed significant cytotoxic activity against KB, LU-1, LNCaP, and HL-60 cancer cells with IC50 values of 0.39, 0.40, 0.34, and 0.23 μg/mL, respectively. In addition, compounds 3 and 5 showed significant cytotoxic activity against KB, LU-1, LNCaP, and HL-60 cancer cells with IC50 values around 1–4 μg/mL. Compounds 9-methoxycanthin-6-one (3) and niloticine (5) have been discovered for the first time from the Brucea genus. PMID:24106661
Azam, Mohammad; Khan, Azmat Ali; Al-Resayes, Saud I; Islam, Mohammad Shahidul; Saxena, Ajit Kumar; Dwivedi, Sourabh; Musarrat, Javed; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal
2015-05-05
In this work, we report a series of benzimidazole derivatives synthesized from benzene-1,2-diamine and aryl-aldehydes at room temperature. The synthesized compounds have been characterized on the basis of elemental analysis and various spectroscopic studies viz., IR, (1)H- and (13)C-NMR, ESI-MS as well by X-ray single X-ray crystallographic study. Interaction of these compounds with CT-DNA has been examined with fluorescence experiments and showed significant binding ability. All the synthesized compounds have been screened for their antitumor activities against various human cancer cell lines viz., Human breast adenocarcinoma cell line (MCF-7), Human leukemia cell line (THP-1), Human prostate cancer cell lines (PC-3) and adenocarcinomic human alveolar basal epithelial cell lines (A-549). Interestingly, all the compounds showed significant anticancer activity. Copyright © 2015 Elsevier B.V. All rights reserved.
Characterization of Chemical Constituents of Human Sweat: A Study Based on Indian Population.
Moulvi, Aafrinnaz; Minz, Pooja; Rath, Subrata; Ashma, Richa
2018-06-01
There is a strong evidence in the literature that human odor is unique to an individual; therefore, the focus of this study was to strengthen this evidence through the testing of sweat samples on unrelated individuals with the same ethnicity. Sweat samples were collected from 42 unrelated Indian males and females residing in the same city to determine the chemical constituents in human sweat. The volatile compounds of sweat were subsequently analyzed and identified using gas chromatography-mass spectrometry, and a National Institute of Standards and Technology library was used for individual profiling. A total of 78 compounds were identified in human sweat tested with 22 compounds found to be unique to the individual (frequency of occurrence one). A scent profile, or "chexmotype," unique to the sweat of each individual was obtained. This is the first extensive study on an Indian population with 36 new compounds detected in human sweat.
Discovery of an Oxybenzylglycine Based Peroxisome Proliferator Activated Receptor Alpha Selective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J.; Kennedy, L; Shi, Y
2010-01-01
An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) {alpha} agonist, with an EC{sub 50} of 10 nM for human PPAR{alpha} and {approx}410-fold selectivity vs human PPAR{gamma} in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPAR{delta}. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystalmore » structures of the early lead compound 12 and compound 2 in complex with PPAR{alpha} ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPAR{alpha} in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.« less
Prediction of human population responses to toxic compounds by a collaborative competition.
Eduati, Federica; Mangravite, Lara M; Wang, Tao; Tang, Hao; Bare, J Christopher; Huang, Ruili; Norman, Thea; Kellen, Mike; Menden, Michael P; Yang, Jichen; Zhan, Xiaowei; Zhong, Rui; Xiao, Guanghua; Xia, Menghang; Abdo, Nour; Kosyk, Oksana; Friend, Stephen; Dearry, Allen; Simeonov, Anton; Tice, Raymond R; Rusyn, Ivan; Wright, Fred A; Stolovitzky, Gustavo; Xie, Yang; Saez-Rodriguez, Julio
2015-09-01
The ability to computationally predict the effects of toxic compounds on humans could help address the deficiencies of current chemical safety testing. Here, we report the results from a community-based DREAM challenge to predict toxicities of environmental compounds with potential adverse health effects for human populations. We measured the cytotoxicity of 156 compounds in 884 lymphoblastoid cell lines for which genotype and transcriptional data are available as part of the Tox21 1000 Genomes Project. The challenge participants developed algorithms to predict interindividual variability of toxic response from genomic profiles and population-level cytotoxicity data from structural attributes of the compounds. 179 submitted predictions were evaluated against an experimental data set to which participants were blinded. Individual cytotoxicity predictions were better than random, with modest correlations (Pearson's r < 0.28), consistent with complex trait genomic prediction. In contrast, predictions of population-level response to different compounds were higher (r < 0.66). The results highlight the possibility of predicting health risks associated with unknown compounds, although risk estimation accuracy remains suboptimal.
Windig, J J; Mulder, H A; Ten Napel, J; Knol, E F; Mathur, P K; Crump, R E
2012-07-01
The purpose of this study was to evaluate measures of boar (Sus scrofa) taint as potential selection criteria to reduce boar taint so that castration of piglets will become unnecessary. Therefore, genetic parameters of boar taint measures and their genetic correlations with finishing traits were estimated. In particular, the usefulness of a human panel assessing boar taint (human nose score) was compared with chemical assessment of boar taint compounds, androstenone, skatole, and indole. Heritability estimates for androstenone, skatole, and indole were 0.54, 0.41, and 0.33, respectively. The heritability for the human nose score using multiple panelists was 0.12, and ranged from 0.12 to 0.19 for individual panelists. Genetic correlations between scores of panelists were generally high up to unity. The genetic correlations between human nose scores and the boar taint compounds ranged from 0.64 to 0.999. The boar taint compounds and human nose scores had low or favorable genetic correlations with finishing traits. Selection index estimates indicated that the effectiveness of a breeding program based on human nose scores can be comparable to a breeding program based on the boar taint compounds themselves. Human nose scores can thus be used as a cheap and fast alternative for the costly determination of boar taint compounds, needed in breeding pigs without boar taint.
Zhou, Jing; Liu, Tao; Cui, Hanjin; Fan, Rong; Zhang, Chunhu; Peng, Weijun; Yang, Ali; Zhu, Lin; Wang, Yang; Tang, Tao
2017-01-01
An overarching consequence of traumatic brain injury (TBI) is the cognitive impairment. It may hinder individual performance of daily tasks and determine people's subjective well-being. The damage to synaptic plasticity, one of the key mechanisms of cognitive dysfunction, becomes the potential therapeutic strategy of TBI. In this study, we aimed to investigate whether Xuefu Zhuyu Decoction (XFZYD), a traditional Chinese medicine, provided a synaptic regulation to improve cognitive disorder following TBI. Morris water maze and modified neurological severity scores were performed to assess the neurological and cognitive abilities. The PubChem Compound IDs of the major compounds of XFZYD were submitted into BATMAN-TCM, an online bioinformatics analysis tool, to predict the druggable targets related to synaptic function. Furthermore, we validated the prediction through immunohistochemical, RT-PCR and western blot analyses. We found that XFZYD enhanced neuroprotection, simultaneously improved learning and memory performances in controlled cortical impact rats. Bioinformatics analysis revealed that the improvements of XFZYD implied the Long-term potentiation relative proteins including NMDAR1, CaMKII and GAP-43. The further confirmation of molecular biological studies confirmed that XFZYD upregulated the mRNA and protein levels of NMDAR1, CaMKII and GAP-43. Pharmacological synaptic regulation of XFZYD could provide a novel therapeutic strategy for cognitive impairment following TBI. PMID:29069769
Maddox, Stephanie A.; Watts, Casey S.; Doyère, Valérie; Schafe, Glenn E.
2013-01-01
The study of the cellular and molecular mechanisms underlying the consolidation and reconsolidation of traumatic fear memories has progressed rapidly in recent years, yet few compounds have emerged that are readily useful in a clinical setting for the treatment of anxiety disorders such as post-traumatic stress disorder (PTSD). Here, we use a combination of biochemical, behavioral, and neurophysiological methods to systematically investigate the ability of garcinol, a naturally-occurring histone acetyltransferase (HAT) inhibitor derived from the rind of the fruit of the Kokum tree (Garcina indica), to disrupt the consolidation and reconsolidation of Pavlovian fear conditioning, a widely studied rodent model of PTSD. We show that local infusion of garcinol into the rat lateral amygdala (LA) impairs the training and retrieval-related acetylation of histone H3 in the LA. Further, we show that either intra-LA or systemic administration of garcinol within a narrow window after either fear conditioning or fear memory retrieval significantly impairs the consolidation and reconsolidation of a Pavlovian fear memory and associated neural plasticity in the LA. Our findings suggest that a naturally-occurring compound derived from the diet that regulates chromatin function may be useful in the treatment of newly acquired or recently reactivated traumatic memories. PMID:23349897
USDA-ARS?s Scientific Manuscript database
Concord grape juice contains flavonoid polyphenol compounds, which have antioxidant and anti-inflammatory properties and influence neuronal signaling. Concord grape juice supplementation has been shown to reduce inflammation, blood pressure, and vascular pathology in individuals with cardiovascular...
Metal status in human endometrium: Relation to cigarette smoking and histological lesions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rzymski, Piotr, E-mail: rzymskipiotr@ump.edu.pl; Rzymski, Paweł; Tomczyk, Katarzyna
Human endometrium is a thick, blood vessel-rich, glandular tissue which undergoes cyclic changes and is potentially sensitive to the various endogenous and exogenous compounds supplied via the hematogenous route. As recently indicated, several metals including Cd, Pb, Cr and Ni represent an emerging class of potential metalloestrogens and can be implicated in alterations of the female reproductive system including endometriosis and cancer. In the present study, we investigated the content of five metals: Cd, Cr, Ni, Pb and Zn in 25 samples of human endometrium collected from Polish females undergoing diagnostic or therapeutic curettage of the uterine cavity. The overallmore » mean metal concentration (analyzed using microwave induced plasma atomic emission spectrometry MIP-OES) decreased in the following order: Cr>Pb>Zn>Ni>Cd. For the first time it was demonstrated that cigarette smoking significantly increases the endometrial content of Cd and Pb. Concentration of these metals was also positively correlated with years of smoking and the number of smoked cigarettes. Tissue samples with recognized histologic lesions (simple hyperplasia, polyposis and atrophy) were characterized by a 2-fold higher Cd level. No relation between the age of the women and metal content was found. Our study shows that human endometrium can be a potential target of metal accumulation within the human body. Quantitative analyses of endometrial metal content could serve as an additional indicator of potential impairments of the menstrual cycle and fertility. - Highlights: • Cd, Cr, Ni, Pb and Zn are detectable in human endometrium. • Mean metal content in human endometrium decreases in Cr>Pb>Zn>Ni>Cd order. • Cigarettes smoking increases endometrial content of Cd and Pb. • Lesioned endometrial tissue was characterized by higher metal contents.« less
Brain aging in the canine: a diet enriched in antioxidants reduces cognitive dysfunction.
Cotman, Carl W; Head, Elizabeth; Muggenburg, Bruce A; Zicker, S; Milgram, Norton W
2002-01-01
Animal models that simulate various aspects of human brain aging are an essential step in the development of interventions to manage cognitive dysfunction in the elderly. Over the past several years we have been studying cognition and neuropathology in the aged-canine (dog). Like humans, canines naturally accumulate deposits of beta-amyloid (Abeta) in the brain with age. Further, canines and humans share the same Abeta sequence and also first show deposits of the longer Abeta1-42 species followed by the deposition of Abeta1-40. Aged canines like humans also show increased oxidative damage. As a function of age, canines show impaired learning and memory on tasks similar to those used in aged primates and humans. The extent of Abeta deposition correlates with the severity of cognitive dysfunction in canines. To test the hypothesis that a cascade of mechanisms centered on oxidative damage and Abeta results in cognitive dysfunction we have evaluated the cognitive effects of an antioxidant diet in aged canines. The diet resulted in a significant improvement in the ability of aged but not young animals to acquire progressively more difficult learning tasks (e.g. oddity discrimination learning). The canine represent a higher animal model to study the earliest declines in the cognitive continuum that includes age associated memory impairments (AAMI) and mild cognitive impairment (MCI) observed in human aging. Thus, studies in the canine model suggest that oxidative damage impairs cognitive function and that antioxidant treatment can result in significant improvements, supporting the need for further human studies. Copyright 2002 Elsevier Science Inc.
Shimura, Satomi; Watashi, Koichi; Fukano, Kento; Peel, Michael; Sluder, Ann; Kawai, Fumihiro; Iwamoto, Masashi; Tsukuda, Senko; Takeuchi, Junko S; Miyake, Takeshi; Sugiyama, Masaya; Ogasawara, Yuki; Park, Sam-Yong; Tanaka, Yasuhito; Kusuhara, Hiroyuki; Mizokami, Masashi; Sureau, Camille; Wakita, Takaji
2017-04-01
The sodium taurocholate co-transporting polypeptide (NTCP) is the main target of most hepatitis B virus (HBV) specific entry inhibitors. Unfortunately, these agents also block NTCP transport of bile acids into hepatocytes, and thus have the potential to cause adverse effects. We aimed to identify small molecules that inhibit HBV entry while maintaining NTCP transporter function. We characterized a series of cyclosporine (CsA) derivatives for their anti-HBV activity and NTCP binding specificity using HepG2 cells overexpressing NTCP and primary human hepatocytes. The four most potent derivatives were tested for their capacity to prevent HBV entry, but maintain NTCP transporter function. Their antiviral activity against different HBV genotypes was analysed. We identified several CsA derivatives that inhibited HBV infection with a sub-micromolar IC 50 . Among them, SCY446 and SCY450 showed low activity against calcineurin (CN) and cyclophilins (CyPs), two major CsA cellular targets. This suggested that instead, these compounds interacted directly with NTCP to inhibit viral attachment to host cells, and have no immunosuppressive function. Importantly, we found that SCY450 and SCY995 did not impair the NTCP-dependent uptake of bile acids, and inhibited multiple HBV genotypes including a clinically relevant nucleoside analog-resistant HBV isolate. This is the first example of small molecule selective inhibition of HBV entry with no decrease in NTCP transporter activity. It suggests that the anti-HBV activity can be functionally separated from bile acid transport. These broadly active anti-HBV molecules are potential candidates for developing new drugs with fewer adverse effects. In this study, we identified new compounds that selectively inhibited hepatitis B virus (HBV) entry, and did not impair bile acid uptake. Our evidence offers a new strategy for developing anti-HBV drugs with fewer side effects. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Balado, Miguel; Puentes, Beatriz; Couceiro, Lucía; Fuentes-Monteverde, Juan C.; Rodríguez, Jaime; Osorio, Carlos R.; Jiménez, Carlos; Lemos, Manuel L.
2017-01-01
Photobacterium damselae subsp damselae (Pdd) is a Vibrionaceae that has a wide pathogenic potential against many marine animals and also against humans. Some strains of this bacterium acquire iron through the siderophore vibrioferrin. However, there are virulent strains that do not produce vibrioferrin, but they still give a strong positive reaction in the CAS test for siderophore production. In an in silico search on the genome sequences of this type of strains we could not find any ORF which could be related to a siderophore system. To identify genes that could encode a siderophore-mediated iron acquisition system we used a mini-Tn10 transposon random mutagenesis approach. From more than 1,400 mutants examined, we could isolate a mutant (BP53) that showed a strong CAS reaction independently of the iron levels of the medium. In this mutant the transposon was inserted into the idh gene, which encodes an isocitrate dehydrogenase that participates in the tricarboxylic acid cycle. The mutant did not show any growth impairment in rich or minimal media, but it accumulated a noticeable amount of citrate (around 7 mM) in the culture medium, irrespective of the iron levels. The parental strain accumulated citrate, but in an iron-regulated fashion, being citrate levels 5–6 times higher under iron restricted conditions. In addition, a null mutant deficient in citrate synthase showed an impairment for growth at high concentrations of iron chelators, and showed almost no reaction in the CAS test. Chemical analysis by liquid chromatography of the iron-restricted culture supernatants resulted in a CAS-positive fraction with biological activity as siderophore. HPLC purification of that fraction yielded a pure compound which was identified as citrate from its MS and NMR spectral data. Although the production of another citrate-based compound with siderophore activity cannot be ruled out, our results suggest that Pdd secretes endogenous citrate and use it for iron scavenging from the cell environment. PMID:28848719
Wang, Wenbao; Wang, Wei; Yao, Guodong; Ren, Qiang; Wang, Di; Wang, Zedan; Liu, Peng; Gao, Pinyi; Zhang, Yan; Wang, Shaojie; Song, Shaojiang
2018-05-10
Sarsasapogenin, an active ingredient in Rhizoma anemarrhenae, is a promising bioactive lead compound in the treatment of Alzheimer's disease. To search for more efficient anti-Alzheimer agents, a series of novel sarsasapogenin-triazolyl hybrids were designed, synthesized, and evaluated for their Aβ 1-42 aggregation inhibitory activities. Most of these new hybrids displayed potent Aβ 1-42 aggregation inhibition. In particular, the promising compounds 6j and 6o displayed a better ability to interrupt the formation of Aβ 1-42 fibrils than curcumin. Moreover, 6j and 6o exhibited moderate neuroprotective effects against H 2 O 2 -induced neurotoxicity in SH-SY5Y cells. To investigate whether 6j and 6o could improve cognitive deficits, we performed behavioral tests to examine the learning and memory impairments induced by intracerebroventricular injection of Aβ 1-42 (ICV-Aβ 1-42 ) in mice and TUNEL staining to observe neuronal apoptosis in the hippocampus. The results obtained indicated that oral treatment with 6j and 6o significantly ameliorated cognitive impairments in behavioral tests and TUNEL staining showed that 6j and 6o attenuated neuronal loss in the brain. Taken together, the results we obtained showed that the sarsasapogenin skeleton could be a promising structural template for the development of new anti-Alzheimer drug candidates, and compounds 6j and 6o have the potential to be important lead compounds for further research. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Amanov, K; Mamadiev, M; Khuzhamberdiev, M A; Gorkin, V Z
1994-01-01
Intoxication of rats with the herbicide paraquat (1,1-dimethyl-4,4-bipyridilium dichloride) was accompanied by accumulation in lungs, brain, heart, liver or kidney of malonic dialdehyde (MDA) (the compounds reacting with 2-thiobarbituric acid), indicating that the intoxication stimulated lipid peroxidation (LPO) in biomembranes. Treatment of the intoxicated rats with the antioxidant diludin (2,6-dimethyl-3,5-diethoxycarbonyl-1,4-dihydropyridine) or with the nucleophilic reagents sodium ascorbate or thiosulphate normalized the content of MDA in lungs, brain, heart, liver or kidney demonstrating the reversibility of the LPO stimulation caused by paraquat. On incubation of mitochondrial fractions of homogenates of lungs, brain, heart, liver or kidney of the intoxicated rats (as compared with the corresponding fractions from the intact animals) a decrease was noted in deamination of the substrates of monoamine oxidases serotonin, tryptamine, benzylamine, tyramine; at the same time, deamination of glucosamine and gamma-aminobutyric acid was increased and deamination of putrescine and L-lysine appeared. These impairments in deamination of nitrogenous compounds caused by paraquat were reversible. All the impairments were normalized by the treatment of the experimental animals with the antioxidative and nucleophilic reagents; a decrease was noted in the rate of development of the lethal paraquat intoxication and appearance of morphological manifestations of normalization. The data obtained suggest that the reversible, qualitative modification ("transformation") of the monoamine oxidases of the type A might explain the peculiarities of the alterations in deamination of nitrogenous compounds in paraquat intoxication.
Baier, Scott R; Zbasnik, Richard; Schlegel, Vicki; Zempleni, Janos
2014-06-01
Sulforaphane is a naturally occurring isothiocyanate in cruciferous vegetables. Sulforaphane inhibits histone deacetylases, leading to the transcriptional activation of genes including tumor suppressor genes. The compound has attracted considerable attention in the chemoprevention of prostate cancer. Here we tested the hypothesis that sulforaphane is not specific for tumor suppressor genes but also activates loci such as long terminal repeats (LTRs), which might impair genome stability. Studies were conducted using chemically pure sulforaphane in primary human IMR-90 fibroblasts and in broccoli sprout feeding studies in healthy adults. Sulforaphane (2.0 μM) caused an increase in LTR transcriptional activity in cultured cells. Consumption of broccoli sprouts (34, 68 or 102 g) by human volunteers caused a dose dependent elevation in LTR mRNA in circulating leukocytes, peaking at more than a 10-fold increase. This increase in transcript levels was associated with an increase in histone H3 K9 acetylation marks in LTR 15 in peripheral blood mononuclear cells from subjects consuming sprouts. Collectively, this study suggests that sulforaphane has off-target effects that warrant further investigation when recommending high levels of sulforaphane intake, despite its promising activities in chemoprevention. Copyright © 2014 Elsevier Inc. All rights reserved.
Husain, Nazim; Mahmood, Riaz
2017-08-01
The toxicity of hexavalent chromium [Cr(VI)] in biological systems is thought to be closely associated with the generation of free radicals and reactive oxygen species. These species are produced when Cr(VI) is reduced to its trivalent form in the cell. This process results in oxidative stress due to an imbalance between the detoxifying ability of the cell and the production of free radicals. We have studied the effect of potassium dichromate (K 2 Cr 2 O 7 ), a [Cr(VI)] compound, on the antioxidant power of human erythrocytes and lymphocytes under in vitro conditions. Incubation of erythrocytes and lymphocytes with different concentrations of K 2 Cr 2 O 7 resulted in a marked dose-dependent decrease in reduced glutathione and an increase in oxidized glutathione and reactive oxygen species levels. The antioxidant power of the cells was decreased, as determined by metal reducing and free radical quenching assays. These results show that [Cr(VI)] upregulates the generation of reactive oxygen species and, as a consequence, the cellular antioxidant defences are compromised. The resulting oxidative stress may contribute to Cr(VI)-induced cellular damage.
Yamada, Shigeru; Kotake, Yaichiro; Nakano, Mizuho; Sekino, Yuko; Kanda, Yasunari
2015-08-01
Organotin compounds, such as tributyltin (TBT), are well-known endocrine disruptors. TBT acts at the nanomolar level through genomic pathways via the peroxisome proliferator activated receptor (PPAR)/retinoid X receptor (RXR). We recently reported that TBT inhibits cell growth and the ATP content in the human embryonic carcinoma cell line NT2/D1 via a non-genomic pathway involving NAD(+)-dependent isocitrate dehydrogenase (NAD-IDH), which metabolizes isocitrate to α-ketoglutarate. However, the molecular mechanisms by which NAD-IDH mediates TBT toxicity remain unclear. In the present study, we evaluated the effects of TBT on mitochondrial NAD-IDH and energy production. Staining with MitoTracker revealed that nanomolar TBT levels induced mitochondrial fragmentation. TBT also degraded the mitochondrial fusion proteins, mitofusins 1 and 2. Interestingly, apigenin, an inhibitor of NAD-IDH, mimicked the effects of TBT. Incubation with an α-ketoglutarate analogue partially recovered TBT-induced mitochondrial dysfunction, supporting the involvement of NAD-IDH. Our data suggest that nanomolar TBT levels impair mitochondrial quality control via NAD-IDH in NT2/D1 cells. Thus, mitochondrial function in embryonic cells could be used to assess cytotoxicity associated with metal exposure.
Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions.
Yang, Dong Joo; Moh, Sang Hyun; Son, Dong Hwee; You, Seunghoon; Kinyua, Ann W; Ko, Chang Mann; Song, Miyoung; Yeo, Jinhee; Choi, Yun-Hee; Kim, Ki Woo
2016-07-08
Skin is the outermost layer of the human body that is constantly exposed to environmental stressors, such as UV radiation and toxic chemicals, and is susceptible to mechanical wounding and injury. The ability of the skin to repair injuries is paramount for survival and it is disrupted in a spectrum of disorders leading to skin pathologies. Diabetic patients often suffer from chronic, impaired wound healing, which facilitate bacterial infections and necessitate amputation. Here, we studied the effects of gallic acid (GA, 3,4,5-trihydroxybenzoic acid; a plant-derived polyphenolic compound) on would healing in normal and hyperglucidic conditions, to mimic diabetes, in human keratinocytes and fibroblasts. Our study reveals that GA is a potential antioxidant that directly upregulates the expression of antioxidant genes. In addition, GA accelerated cell migration of keratinocytes and fibroblasts in both normal and hyperglucidic conditions. Further, GA treatment activated factors known to be hallmarks of wound healing, such as focal adhesion kinases (FAK), c-Jun N-terminal kinases (JNK), and extracellular signal-regulated kinases (Erk), underpinning the beneficial role of GA in wound repair. Therefore, our results demonstrate that GA might be a viable wound healing agent and a potential intervention to treat wounds resulting from metabolic complications.
Wu, Lishuang; Guo, Xingliang; Liu, Xianglong; Yang, Hong
2017-01-01
Harmful cyanobacterial blooms have severely impaired freshwater quality and threatened human health worldwide. Here, a Gram-positive bacterium, Bacillus sp. strain S51107, which exhibits strong algicidal activity against Microcystis aeruginosa , was isolated from Lake Taihu. We found that the algicidal activity of strain S51107 was regulated primarily by NprR-NprX quorum sensing (QS), in which the mature form of the signaling peptide NprX was identified as the SKPDIVG heptapeptide. Disruption of the nprR-nprX cassette markedly decreased the algicidal activity, and complemented strains showed significantly recovered algicidal activity. Strain S51107 produced low-molecular-weight algicidal compounds [indole-3-carboxaldehyde and cyclo(Pro-Phe)] and high-molecular-weight algicidal substance(s) (>3 kDa). Moreover, the production of high-molecular-weight algicidal substance(s) was regulated by NprR-NprX QS, but the production of low-molecular-weight algicidal compounds was not. High-molecular-weight algicidal substance(s) played a more important role than low-molecular-weight algicidal compounds in the algicidal activity of strain S51107. The results of this study could increase our knowledge about algicidal characteristics of a potential algicidal bacterium, Bacillus sp. strain S51107, and provide the first evidence that the algicidal activity of Gram-positive algicidal bacteria is regulated by QS, which will greatly enhance our understanding of the interactions between algae and indigenous algicidal bacteria, thereby providing aid in the design and optimization of strategies to control harmful algae blooms.
Wu, Lishuang; Guo, Xingliang; Liu, Xianglong; Yang, Hong
2017-01-01
Harmful cyanobacterial blooms have severely impaired freshwater quality and threatened human health worldwide. Here, a Gram-positive bacterium, Bacillus sp. strain S51107, which exhibits strong algicidal activity against Microcystis aeruginosa, was isolated from Lake Taihu. We found that the algicidal activity of strain S51107 was regulated primarily by NprR-NprX quorum sensing (QS), in which the mature form of the signaling peptide NprX was identified as the SKPDIVG heptapeptide. Disruption of the nprR-nprX cassette markedly decreased the algicidal activity, and complemented strains showed significantly recovered algicidal activity. Strain S51107 produced low-molecular-weight algicidal compounds [indole-3-carboxaldehyde and cyclo(Pro-Phe)] and high-molecular-weight algicidal substance(s) (>3 kDa). Moreover, the production of high-molecular-weight algicidal substance(s) was regulated by NprR-NprX QS, but the production of low-molecular-weight algicidal compounds was not. High-molecular-weight algicidal substance(s) played a more important role than low-molecular-weight algicidal compounds in the algicidal activity of strain S51107. The results of this study could increase our knowledge about algicidal characteristics of a potential algicidal bacterium, Bacillus sp. strain S51107, and provide the first evidence that the algicidal activity of Gram-positive algicidal bacteria is regulated by QS, which will greatly enhance our understanding of the interactions between algae and indigenous algicidal bacteria, thereby providing aid in the design and optimization of strategies to control harmful algae blooms. PMID:29075240
Anti-tumor and anti-angiogenic ergosterols from Ganoderma lucidum
NASA Astrophysics Data System (ADS)
Chen, Shaodan; Yong, Tianqiao; Zhang, Yifang; Su, Jiyan; Jiao, Chunwei; Xie, Yizhen
2017-10-01
This study was carried out to isolate chemical constituents from the lipid enriched fraction of Ganoderma lucidum extract and to evaluate their anti-proliferative effect on cancer cell lines and human umbilical vein endothelial cells. Ergosterol derivatives (1-14) were isolated from the lipid enriched fraction of G. lucidum. Their structures were established on the basis of spectroscopic analyses or by comparison of mass and NMR spectral data with those reported previously. Amongst, compound 1 was isolated and identified as a new compound. All the compounds were evaluated for their inhibitory effect on tumor cells and human umbilical vein endothelial cells in vitro. Compounds 9-13 displayed inhibitory activity against two tumor cell lines and human umbilical vein endothelial cells, which indicated that these four compounds had both anti-tumor and anti-angiogenesis activities. Compound 2 had significant selective inhibition against two tumor cell lines, while 3 exhibited selective inhibition against human umbilical vein endothelial cells. The structure–activity relationships for inhibiting human HepG2 cells were revealed by 3D-QASR. Ergosterol content in different parts of the raw material and products of G. lucidum was quantified. This study provides a basis for further development and utilization of ergosterol derivatives as natural nutraceuticals and functional food ingredients, or as source of new potential antitumor or anti-angiogenesis chemotherapy agent.
Fang, Fang; Liu, Gengtao
2007-12-01
The aim of the present study was to access the protective effect of a novel synthesized squamosamide cyclic analogue, compound FLZ, on memory impairment in artificially senescent mice induced by chronic injection of D-galactose and sodium nitrite (NaNO(2)). Artificially senescent mouse model was induced by consecutive injection of D-galactose (120 mg/kg) and NaNO(2) (90 mg/kg) once daily for 60 days. Compound FLZ (75 and 150 mg/kg) was orally administered once daily for 30 days after D-galactose and NaNO(2) injection for 30 days. The water maze test was used to evaluate the learning and memory function of mice. The content of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in serum were determined using different biochemical kits. The alterations in hippocampus morphology were assessed by light and electronic microscope. Immunoreactive cells of Bcl-2 in the hippocampus were counted by immunohistochemical staining, and Bcl-2 protein expression was analysed by Western blot method. The results indicate that injection of D-galactose and NaNO(2) induces memory impairment and neuronal damage in hippocampus of mice. In addition, serum SOD and GSH-Px activities decreased, while MDA level increased. Bcl-2-positive neurons and Bcl-2 protein expression in the hippocampus decreased remarkably. Oral administration of FLZ for 30 days significantly improved the cognitive deficits and the biochemical markers mentioned above, and also reduced the pathological alterations in mouse hippocampus. The results suggest that FLZ ameliorates memory deficits and pathological injury in artificially senescent mice induced by chronic injection of D-galactose and NaNO(2), indicating that FLZ is worth further studies for fighting antisenescence and dementia.
Molrine, D C; Polk, D B; Ciamarra, A; Phillips, N; Ambrosino, D M
1995-01-01
Vitamin A deficiency is associated with increased childhood morbidity and mortality from respiratory and diarrheal diseases. In order to evaluate the effect of vitamin A on human antibody responses, we developed a vitamin A-deficient severe combined immunodeficient (SCID) mouse model. Vitamin A-deficient mice were produced by depriving them of vitamin A at day 7 of gestation. Mice were reconstituted with human peripheral blood lymphocytes (huPBL) from tetanus toxoid immune donors at 6 weeks of age and immunized with tetanus toxoid at 6 and 8 weeks of age. Secondary human antibody responses were determined 10 days later. The geometric mean human anti-tetanus toxoid immunoglobulin G concentrations were 3.75 micrograms/ml for the deficient mice and 148 micrograms/ml for controls (P = 0.0005). Vitamin A-deficient mice had only a 2.9-fold increase in human anti-tetanus toxoid antibody compared with a 74-fold increase in controls (P < 0.01). Supplementation with vitamin A prior to reconstitution restored human antibody responses to normal. These data suggest that vitamin A deficiency impairs human antibody responses. We speculate that impaired responses could increase susceptibility to certain infections. Furthermore, we propose that effects of other nutritional deficiencies on the human immune system could be evaluated in the SCID-huPBL model. PMID:7622207
Izquierdo, Alicia; Belcher, Annabelle M; Scott, Lori; Cazares, Victor A; Chen, Jack; O'Dell, Steven J; Malvaez, Melissa; Wu, Tiffany; Marshall, John F
2010-01-01
A growing body of evidence indicates that protracted use of methamphetamine (mAMPH) causes long-term impairments in cognitive function in humans. Aside from the widely reported problems with attention, mAMPH users exhibit learning and memory deficits, particularly on tasks requiring response control. Although binge mAMPH administration to animals results in cognitive deficits, few studies have attempted to test behavioral flexibility in animals after mAMPH exposure. The aim of this study was to evaluate whether mAMPH would produce impairments in two tasks assessing flexible responding in rats: a touchscreen-based discrimination-reversal learning task and an attentional set shift task (ASST) based on a hallmark test of executive function in humans, the Wisconsin Card Sort. We treated male Long-Evans rats with a regimen of four injections of 2 mg/kg mAMPH (or vehicle) within a single day, a dosing regimen shown earlier to produce object recognition impairments. We then tested them on (1) reversal learning after pretreatment discrimination learning or (2) the ASST. Early reversal learning accuracy was impaired in mAMPH-treated rats. MAMPH pretreatment also selectively impaired reversal performance during ASST testing, leaving set-shifting performance intact. Postmortem analysis of [(125)I]RTI-55 binding revealed small (10-20%) but significant reductions in striatal dopamine transporters produced by this mAMPH regimen. Together, these results lend new information to the growing field documenting impaired cognition after mAMPH exposure, and constitute a rat model of the widely reported decision-making deficits resulting from mAMPH abuse seen in humans.
Using Simulations To Understand Older Adults with Sensory Impairment.
ERIC Educational Resources Information Center
Clubok, Miriam
2000-01-01
Summarizes two popular models for increasing sensitivity to sensory impairment in the elderly and details a third model used in training human service students and practitioners. Ideas and techniques presented work toward understanding the impact of sensory impairment on the daily life of older adults and to identify coping techniques to improve…
Perceptions of Schooling, Pedagogy and Notation in the Lives of Visually-Impaired Musicians
ERIC Educational Resources Information Center
Baker, David; Green, Lucy
2016-01-01
This article discusses findings on schooling, pedagogy and notation in the life-experiences of amateur and professional visually-impaired musicians/music teachers, and the professional experiences of sighted music teachers who work with visually-impaired learners. The study formed part of a broader UK Arts and Humanities Research Council funded…
MacFabe, Derrick F.
2012-01-01
Recent evidence suggests potential, but unproven, links between dietary, metabolic, infective, and gastrointestinal factors and the behavioral exacerbations and remissions of autism spectrum disorders (ASDs). Propionic acid (PPA) and its related short-chain fatty acids (SCFAs) are fermentation products of ASD-associated bacteria (Clostridia, Bacteriodetes, Desulfovibrio). SCFAs represent a group of compounds derived from the host microbiome that are plausibly linked to ASDs and can induce widespread effects on gut, brain, and behavior. Intraventricular administration of PPA and SCFAs in rats induces abnormal motor movements, repetitive interests, electrographic changes, cognitive deficits, perseveration, and impaired social interactions. The brain tissue of PPA-treated rats shows a number of ASD-linked neurochemical changes, including innate neuroinflammation, increased oxidative stress, glutathione depletion, and altered phospholipid/acylcarnitine profiles. These directly or indirectly contribute to acquired mitochondrial dysfunction via impairment in carnitine-dependent pathways, consistent with findings in patients with ASDs. Of note, common antibiotics may impair carnitine-dependent processes by altering gut flora favoring PPA-producing bacteria and by directly inhibiting carnitine transport across the gut. Human populations that are partial metabolizers of PPA are more common than previously thought. PPA has further bioactive effects on neurotransmitter systems, intracellular acidification/calcium release, fatty acid metabolism, gap junction gating, immune function, and alteration of gene expression that warrant further exploration. These findings are consistent with the symptoms and proposed underlying mechanisms of ASDs and support the use of PPA infusions in rats as a valid animal model of the condition. Collectively, this offers further support that gut-derived factors, such as dietary or enteric bacterially produced SCFAs, may be plausible environmental agents that can trigger ASDs or ASD-related behaviors and deserve further exploration in basic science, agriculture, and clinical medicine. PMID:23990817
Calas, André-Guilhem; Richard, Olivier; Même, Sandra; Beloeil, Jean-Claude; Doan, Bich-Thuy; Gefflaut, Thierry; Même, William; Crusio, Wim E; Pichon, Jacques; Montécot, Céline
2008-07-01
Glufosinate-ammonium (GLA), the active compound of a worldwide-used herbicide, acts by inhibiting the plant glutamine synthetase (GS) leading to a lethal accumulation of ammonia. GS plays a pivotal role in the mammalian brain where it allows neurotransmitter glutamate recycling within astroglia. Clinical studies report that an acute GLA ingestion induces convulsions and memory impairment in humans. Toxicological studies performed at doses used for herbicidal activity showed that GLA is probably harmless at short or medium range periods. However, effects of low doses of GLA on chronically exposed subjects are not known. In our study, C57BL/6J mice were treated during 10 weeks three times a week with 2.5, 5 and 10mg/kg of GLA. Effects of this chronic treatment were assessed at behavioral, structural and metabolic levels by using tests of spatial memory, locomotor activity and anxiety, hippocampal magnetic resonance imaging (MRI) texture analysis, and hippocampal GS activity assay, respectively. Chronic GLA treatments have effects neither on anxiety nor on locomotor activity of mice but at 5 and 10mg/kg induce (1) mild memory impairments, (2) a modification of hippocampal texture and (3) a significant increase in hippocampal GS activity. It is suggested that these modifications may be causally linked one to another. Since glutamate is the main neurotransmitter in hippocampus where it plays a crucial role in spatial memory, hippocampal MRI texture and spatial memory alterations might be the consequences of hippocampal glutamate homeostasis modification revealed by increased GS activity in hippocampus. The present study provides the first data that show cerebral alterations after chronic exposure to GLA.
Age-dependent cognitive impairment in a Drosophila fragile X model and its pharmacological rescue.
Choi, Catherine H; McBride, Sean M J; Schoenfeld, Brian P; Liebelt, David A; Ferreiro, David; Ferrick, Neal J; Hinchey, Paul; Kollaros, Maria; Rudominer, Rebecca L; Terlizzi, Allison M; Koenigsberg, Eric; Wang, Yan; Sumida, Ai; Nguyen, Hanh T; Bell, Aaron J; McDonald, Thomas V; Jongens, Thomas A
2010-06-01
Fragile X syndrome afflicts 1 in 2,500 individuals and is the leading heritable cause of mental retardation worldwide. The overriding clinical manifestation of this disease is mild to severe cognitive impairment. Age-dependent cognitive decline has been identified in Fragile X patients, although it has not been fully characterized nor examined in animal models. A Drosophila model of this disease has been shown to display phenotypes bearing similarity to Fragile X symptoms. Most notably, we previously identified naive courtship and memory deficits in young adults with this model that appear to be due to enhanced metabotropic glutamate receptor (mGluR) signaling. Herein we have examined age-related cognitive decline in the Drosophila Fragile X model and found an age-dependent loss of learning during training. We demonstrate that treatment with mGluR antagonists or lithium can prevent this age-dependent cognitive impairment. We also show that treatment with mGluR antagonists or lithium during development alone displays differential efficacy in its ability to rescue naive courtship, learning during training and memory in aged flies. Furthermore, we show that continuous treatment during aging effectively rescues all of these phenotypes. These results indicate that the Drosophila model recapitulates the age-dependent cognitive decline observed in humans. This places Fragile X in a category with several other diseases that result in age-dependent cognitive decline. This demonstrates a role for the Drosophila Fragile X Mental Retardation Protein (dFMR1) in neuronal physiology with regard to cognition during the aging process. Our results indicate that misregulation of mGluR activity may be causative of this age onset decline and strengthens the possibility that mGluR antagonists and lithium may be potential pharmacologic compounds for counteracting several Fragile X symptoms.
Terry, Alvin V.; Buccafusco, Jerry J.; Schade, R. Foster; Vandenhuerk, Leah; Callahan, Patrick M.; Beck, Wayne D.; Hutchings, Elizabeth J.; Chapman, James M.; Li, Pei; Bartlett, Michael G.
2012-01-01
Cotinine, the most predominant metabolite of nicotine in mammalian species, has a pharmacological half-life that greatly exceeds its precursor. However, until recently, relatively few studies had been conducted to systematically characterize the behavioral pharmacology of cotinine. Our previous work indicated that cotinine improves prepulse inhibition of the auditory startle response in rats in pharmacological impairment models and that it improves working memory in non-human primates. Here we tested the hypothesis that cotinine improves sustained attention in rats and attenuates behavioral alterations induced by the glutamate (NMDA) antagonist MK-801. The effects of acute subcutaneous (dose range 0.03–10.0 mg/kg) and chronic oral administration (2.0 mg/kg/day in drinking water) of cotinine were evaluated in fixed and variable stimulus duration (VSD) as well as variable intertrial interval (VITI) versions of a five choice serial reaction time task (5C-SRTT). The results indicated only subtle effects of acute cotinine (administered alone) on performance of the 5C-SRTT (e.g., decreases in timeout responses). However, depending on dose, acute treatment with cotinine attenuated MK-801-related impairments in accuracy and elevations in timeout responses, and it increased the number of completed trials. Moreover, chronic cotinine attenuated MK-801-related impairments in accuracy and it reduced premature and timeout responses when the demands of the task were increased (i.e., by presenting VSDs or VITIs in addition to administering MK-801). These data suggest that cotinine may represent a prototype for compounds that have therapeutic potential for neuropsychiatric disorders (i.e., by improving sustained attention and decreasing impulsive and compulsive behaviors), especially those characterized by glutamate receptor alterations. PMID:22244928
Cicero, Arrigo Francesco Giuseppe; Fogacci, Federica; Morbini, Martino; Colletti, Alessandro; Bove, Marilisa; Veronesi, Maddalena; Giovannini, Marina; Borghi, Claudio
2017-09-01
A number of natural compounds have individually demonstrated to improve glucose and lipid levels in humans. To evaluate the short-term glucose and lipid-lowering activity in subjects with impaired fasting glucose. To assess the effects of a combination of nutraceuticals based on Lagerstroemia speciosa, Berberis aristata, Curcuma longa, Alpha-lipoic acid, Chrome picolinate and Folic acid, we performed a double-blind, parallel group, placebo-controlled, randomized clinical trial in 40 adults affected by impaired fasting glucose (FPG = 100-125 mg/dL) in primary prevention of cardiovascular disease. After a period of 2 weeks of dietary habits correction only, patients continued the diet and began a period of 8 weeks of treatment with nutraceutical or placebo. Data related to lipid pattern, insulin resistance, liver function and hsCRP were obtained at the baseline and at the end of the study. No side effects were detected in both groups of subjects. After the nutraceutical treatment, and compared to the placebo-treated group, the enrolled patients experienced a significant improvement in TG (-34.7%), HDL-C (+13.7), FPI (-13.4%), and HOMA-Index (-25%) versus the baseline values. No significant changes were observed in the other investigated parameters in both groups (Body Mass Index, LDL-C, hsCRP). The tested combination of nutraceuticals showed clinical efficacy in the improvement of TG, HDL-C, FPI and HOMA-Index, with an optimal tolerability profile. Further confirmation is needed to verify these observations on the middle and long term with a larger number of subjects.
Discovery of novel human acrosin inhibitors by virtual screening
NASA Astrophysics Data System (ADS)
Liu, Xuefei; Dong, Guoqiang; Zhang, Jue; Qi, Jingjing; Zheng, Canhui; Zhou, Youjun; Zhu, Ju; Sheng, Chunquan; Lü, Jiaguo
2011-10-01
Human acrosin is an attractive target for the discovery of male contraceptive drugs. For the first time, structure-based drug design was applied to discover structurally diverse human acrosin inhibitors. A parallel virtual screening strategy in combination with pharmacophore-based and docking-based techniques was used to screen the SPECS database. From 16 compounds selected by virtual screening, a total of 10 compounds were found to be human acrosin inhibitors. Compound 2 was found to be the most potent hit (IC50 = 14 μM) and its binding mode was investigated by molecular dynamics simulations. The hit interacted with human acrosin mainly through hydrophobic and hydrogen-bonding interactions, which provided a good starting structure for further optimization studies.
[Dietary phytoestrogen and its potential benefits in adult human health].
Garrido, Argelia; de la Maza, María Pía; Valladares, Luis
2003-11-01
Human diet contains a series of bioactive vegetal compounds that can improve human health. Among these, there has been a special interest for phytoestrogens. This article reviews the evidence about the potential benefits of phytoestrogens for human health. Forty eight manuscripts were selected for their study design and relevance to human health. The cell growth inhibitory effects of phytoestrogens and their implication in breast cancer are reviewed. Also the effects of these compounds on serum lipid levels and the effectiveness of a phytoestrogen derivate, ipriflavone, on the prevention of osteoporosis are analyzed. Although these compounds have a great potential for improving health, there is still not enough evidence to recommend the routine use of phytoestrogens.
Synthesis and Evaluation of New 1,3,4-Thiadiazole Derivatives as Antinociceptive Agents.
Altıntop, Mehlika Dilek; Can, Özgür Devrim; Demir Özkay, Ümide; Kaplancıklı, Zafer Asım
2016-08-01
In the current work, new 1,3,4-thiadiazole derivatives were synthesized and investigated for their antinociceptive effects on nociceptive pathways of nervous system. The effects of these compounds against mechanical, thermal and chemical stimuli were evaluated by tail-clip, hot-plate and acetic acid-induced writhing tests, respectively. In addition, activity cage was performed to assess the locomotor activity of animals. The obtained data indicated that compounds 3b, 3c, 3d, 3e, 3g and 3h increased the reaction times of mice both in the hot-plate and tail-clip tests, indicating the centrally mediated antinociceptive activity of these compounds. Additionally, the number of writhing behavior was significantly decreased by the administration of compounds 3a, 3c, 3e and 3f, which pointed out the peripherally mediated antinociceptive activity induced by these four compounds. According to the activity cage tests, compounds 3a, 3c and 3f significantly decreased both horizontal and vertical locomotor activity of mice. Antinociceptive behavior of these three compounds may be non-specific and caused by possible sedative effect or motor impairments.
Human exposure, biomarkers, and fate of organotins in the environment.
Okoro, Hussein K; Fatoki, Olalekan S; Adekola, Folahan A; Ximba, Bhekumusa J; Snyman, Reinette G; Opeolu, Beatrice
2011-01-01
Organotin compounds result from the addition of organic moieties to inorganic tin.Thus, one or more tin-carbon bonds exist in each organotin molecule. The organo-tin compounds are ubiquitous in the environment. Organotin compounds have many uses, including those as fungicides and stabilizers in plastics, among others in industry. The widespread use of organotins as antifouling agents in boat paints has resulted in pollution of freshwater and marine ecosystems. The presence of organotin compounds in freshwater and marine ecosystems is now understood to be a threat, because of the amounts found in water and the toxicity of some organotin compounds to aquatic organisms, and perhaps to humans as well. Organotin com-pounds are regarded by many to be global pollutants of a stature similar to biphenyl,mercury, and the polychlorinated dibenzodioxins. This stature results from the high toxicity, persistence, bioaccumulation, and endocrine disruptive features of even very low levels of selected organotin compounds.Efforts by selected governmental agencies and others have been undertaken to find a global solution to organotin pollution. France was the first country to ban the use of the organotins in 1980. This occurred before the international maritime organization (IMO) called for a global treaty to ban the application of tributyltin (TBT)-based paints. In this chapter, we review the organotin compounds with emphasis on the human exposure, fate, and distribution of them in the environment. The widespread use of the organotins and their high stability have led to contamination of some aquatic ecosystems. As a result, residues of the organotins may reach humans via food consumption. Notwithstanding the risk of human exposure, only limited data are available on the levels at which the organotins exist in foodstuffs consumed by humans. Moreover, the response of marine species to the organotins, such as TBT, has not been thoroughly investigated. Therefore, more data on the organotins and the consequences of exposure to them are needed. In particular, we believe the following areas need attention: expanded toxicity testing in aquatic species, human exposure, human body burdens, and the research to identify biomarkers for testing the toxicity of the organotins to marine invertebrates.
A human microdose study of the antimalarial drug GSK3191607 in healthy volunteers.
Okour, Malek; Derimanov, Geo; Barnett, Rodger; Fernandez, Esther; Ferrer, Santiago; Gresham, Stephanie; Hossain, Mohammad; Gamo, Francisco-Javier; Koh, Gavin; Pereira, Adrian; Rolfe, Katie; Wong, Deborah; Young, Graeme; Rami, Harshad; Haselden, John
2018-03-01
GSK3191607, a novel inhibitor of the Plasmodium falciparum ATP4 (PfATP4) pathway, is being considered for development in humans. However, a key problem encountered during the preclinical evaluation of the compound was its inconsistent pharmacokinetic (PK) profile across preclinical species (mouse, rat and dog), which prevented reliable prediction of PK parameters in humans and precluded a well-founded assessment of the potential for clinical development of the compound. Therefore, an open-label microdose (100 μg, six subjects) first time in humans study was conducted to assess the human PK of GSK3191607 following intravenous administration of [14C]-GSK3191607. A human microdose study was conducted to investigate the clinical PK of GSK3191607 and enable a Go/No Go decision on further progression of the compound. The PK disposition parameters estimated from the microdose study, combined with preclinical in vitro and in vivo pharmacodynamic parameters, were all used to estimate the potential efficacy of various oral dosing regimens in humans. The PK profile, based on the microdose data, demonstrated a half-life (~17 h) similar to other antimalarial compounds currently in clinical development. However, combining the microdose data with the pharmacodynamic data provided results that do not support further clinical development of the compound for a single dose cure. The information generated by this study provides a basis for predicting the expected oral PK profiles of GSK3191607 in man and supports decisions on the future clinical development of the compound. © 2017 The British Pharmacological Society.
Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system?
Eyre, Janet A; Smith, Martin; Dabydeen, Lyvia; Clowry, Gavin J; Petacchi, Eliza; Battini, Roberta; Guzzetta, Andrea; Cioni, Giovanni
2007-11-01
Subjects with severe hemiplegic cerebral palsy have increased ipsilateral corticospinal projections from their noninfarcted cortex. We investigated whether their severe impairment might, in part, be caused by activity-dependent, competitive displacement of surviving contralateral corticospinal projections from the affected cortex by more active ipsilateral corticospinal projections from the nonaffected cortex, thereby compounding the impairment. Transcranial magnetic stimulation (TMS) characterized corticospinal tract development from each hemisphere over the first 2 years in 32 healthy children, 14 children with unilateral stroke, and 25 with bilateral lesions. Magnetic resonance imaging and anatomic studies compared corticospinal tract growth in 13 patients with perinatal stroke with 46 healthy subjects. Infants with unilateral lesions initially had responses after TMS of the affected cortex, which became progressively more abnormal, and seven were eventually lost. There was associated hypertrophy of the ipsilateral corticospinal axons projecting from the noninfarcted cortex. Magnetic resonance imaging and anatomic studies demonstrated hypertrophy of the corticospinal tract from the noninfarcted hemisphere. TMS findings soon after the stroke did not predict impairment; subsequent loss of responses and hypertrophy of ipsilateral corticospinal axons from the noninfarcted cortex predicted severe impairment at 2 years. Infants with bilateral lesions maintained responses to TMS from both hemispheres with a normal pattern of development. Rather than representing "reparative plasticity," increased ipsilateral projections from the noninfarcted cortex compound disability by competitively displacing surviving contralateral corticospinal projections from the infarcted cortex. This may provide a pathophysiological explanation for why signs of hemiplegic cerebral palsy appear late and progress over the first 2 years of life.
Previous studies have measured various physiological responses in fish from exposure to endocrine disrupting compounds, while others have observed higher level effects on reproduction and development. However, little is understood about the relationship that might exist between a...
Schmidt, Andreas; Marescau, Bart; Boehm, Ernest A; Renema, W Klaas Jan; Peco, Ruben; Das, Anib; Steinfeld, Robert; Chan, Sharon; Wallis, Julie; Davidoff, Michail; Ullrich, Kurt; Waldschütz, Ralph; Heerschap, Arend; De Deyn, Peter P; Neubauer, Stefan; Isbrandt, Dirk
2004-05-01
We generated a knockout mouse model for guanidinoacetate N-methyltransferase (GAMT) deficiency (MIM 601240), the first discovered human creatine deficiency syndrome, by gene targeting in embryonic stem cells. Disruption of the open reading frame of the murine GAMT gene in the first exon resulted in the elimination of 210 of the 237 amino acids present in mGAMT. The creation of an mGAMT null allele was verified at the genetic, RNA and protein levels. GAMT knockout mice have markedly increased guanidinoacetate (GAA) and reduced creatine and creatinine levels in brain, serum and urine, which are key findings in human GAMT patients. In vivo (31)P magnetic resonance spectroscopy showed high levels of PGAA and reduced levels of creatine phosphate in heart, skeletal muscle and brain. These biochemical alterations were comparable to those found in human GAMT patients and can be attributed to the very similar GAMT expression patterns found by us in human and mouse tissues. We provide evidence that GAMT deficiency in mice causes biochemical adaptations in brain and skeletal muscle. It is associated with increased neonatal mortality, muscular hypotonia, decreased male fertility and a non-leptin-mediated life-long reduction in body weight due to reduced body fat mass. Therefore, GAMT knockout mice are a valuable creatine deficiency model for studying the effects of high-energy phosphate depletion in brain, heart, skeletal muscle and other organs.
Mutations in Alström protein impair terminal differentiation of cardiomyocytes.
Shenje, Lincoln T; Andersen, Peter; Halushka, Marc K; Lui, Cecillia; Fernandez, Laviel; Collin, Gayle B; Amat-Alarcon, Nuria; Meschino, Wendy; Cutz, Ernest; Chang, Kenneth; Yonescu, Raluca; Batista, Denise A S; Chen, Yan; Chelko, Stephen; Crosson, Jane E; Scheel, Janet; Vricella, Luca; Craig, Brian D; Marosy, Beth A; Mohr, David W; Hetrick, Kurt N; Romm, Jane M; Scott, Alan F; Valle, David; Naggert, Jürgen K; Kwon, Chulan; Doheny, Kimberly F; Judge, Daniel P
2014-03-04
Cardiomyocyte cell division and replication in mammals proceed through embryonic development and abruptly decline soon after birth. The process governing cardiomyocyte cell cycle arrest is poorly understood. Here we carry out whole-exome sequencing in an infant with evidence of persistent postnatal cardiomyocyte replication to determine the genetic risk factors. We identify compound heterozygous ALMS1 mutations in the proband, and confirm their presence in her affected sibling, one copy inherited from each heterozygous parent. Next, we recognize homozygous or compound heterozygous truncating mutations in ALMS1 in four other children with high levels of postnatal cardiomyocyte proliferation. Alms1 mRNA knockdown increases multiple markers of proliferation in cardiomyocytes, the percentage of cardiomyocytes in G2/M phases, and the number of cardiomyocytes by 10% in cultured cells. Homozygous Alms1-mutant mice have increased cardiomyocyte proliferation at 2 weeks postnatal compared with wild-type littermates. We conclude that deficiency of Alström protein impairs postnatal cardiomyocyte cell cycle arrest.
Bourrié, Bernard; Bribes, Estelle; Esclangon, Martine; Garcia, Laurent; Marchand, Jean; Thomas, Corinne; Maffrand, Jean-Pierre; Casellas, Pierre
1999-01-01
Experimental autoimmune encephalomyelitis (EAE) is a T cell autoimmune disorder that is a widely used animal model for multiple sclerosis (MS) and, as in MS, clinical signs of EAE are associated with blood–brain barrier (BBB) disruption. SR 57746A, a nonpeptide drug without classical immunosuppressive properties, efficiently protected the BBB and impaired intrathecal IgG synthesis (two conventional markers of MS exacerbation) and consequently suppressed EAE clinical signs. This compound inhibited EAE-induced spinal cord mononuclear cell invasion and normalized tumor necrosis factor α and IFN-γ mRNA expression within the spinal cord. These data suggested that pharmacological intervention aimed at inhibiting proinflammatory cytokine expression within the central nervous system provided protection against BBB disruption, the first clinical sign of EAE and probably the key point of acute MS attacks. This finding could lead to the development of a new class of compounds for oral therapy of MS, as a supplement to immunosuppressive agents. PMID:10536012
Mutations in Alström Protein Impair Terminal Differentiation of Cardiomyocytes
Shenje, Lincoln T.; Andersen, Peter; Halushka, Marc K.; Lui, Cecillia; Fernandez, Laviel; Collin, Gayle B.; Amat-Alarcon, Nuria; Meschino, Wendy; Cutz, Ernest; Chang, Kenneth; Yonescu, Raluca; Batista, Denise A. S.; Chen, Yan; Chelko, Stephen; Crosson, Jane E.; Scheel, Janet; Vricella, Luca; Craig, Brian D.; Marosy, Beth A.; Mohr, David W.; Hetrick, Kurt N.; Romm, Jane M.; Scott, Alan F.; Valle, David; Naggert, Jürgen K.; Kwon, Chulan; Doheny, Kimberly F.; Judge, Daniel P.
2014-01-01
Cardiomyocyte cell division and replication in mammals proceed through embryonic development and abruptly decline soon after birth. The process governing cardiomyocyte cell cycle arrest is poorly understood. Here we carry out whole exome sequencing in an infant with evidence of persistent postnatal cardiomyocyte replication to determine the genetic risk factors. We identify compound heterozygous ALMS1 mutations in the proband, and confirm their presence in her affected sibling, one copy inherited from each heterozygous parent. Next, we recognise homozygous or compound heterozygous truncating mutations in ALMS1 in four other children with high levels of postnatal cardiomyocyte proliferation. Alms1 mRNA knockdown increases multiple markers of proliferation in cardiomyocytes, the percentage of cardiomyocytes in G2/M phases, and the number of cardiomyocytes by 10% in cultured cells. Homozygous Alms1-mutant mice have increased cardiomyocyte proliferation at two weeks postnatal compared to wild-type littermates. We conclude that deficiency of Alström protein impairs postnatal cardiomyocyte cell cycle arrest. PMID:24595103
Peng, Xiaofang; Ma, Jinyu; Chao, Jianfei; Sun, Zheng; Chang, Raymond Chuen-Chung; Tse, Iris; Li, Edmund T S; Chen, Feng; Wang, Mingfu
2010-06-09
Advanced glycation endproducts (AGEs) are a group of complex and heterogeneous compounds formed from nonenzymatic reactions. The accumulation of AGEs in vivo has been implicated as a major pathogenic process in diabetic complications and other health disorders, such as atherosclerosis and Alzheimer's disease, and normal aging. In this study, we investigate the inhibitory effects of cinnamon bark proanthocyanidins, catechin, epicatechin, and procyanidin B2 on the formation of specific AGE representatives including pentosidine, N(epsilon)-(carboxymethyl)lysine (CML), and methylglyoxal (MGO) derived AGEs. These compounds displayed obvious inhibitory effects on these specific AGEs, which are largely attributed to both their antioxidant activities and carbonyl scavenging capacities. Meanwhile, in terms of their potent MGO scavenging capacities, effects of these proanthocyanidins on insulin signaling pathways interfered by MGO were evaluated in 3T3-L1 adipocytes. According to the results, proanthocyanidins exerted protective effects on glucose consumption impaired by MGO in 3T3-L1 fat cells.
Shin, Suk-Chul; Lee, Dong-Ung
2013-07-01
To study the chemical constituents and their anti-amnesic effect from the hooks of Uncaria rhynchophylla. The isolation of compounds was performed by chromatographic techniques and their structures were identified on the basis of spectral analysis. Their ameliorating effects on scopolamine-induced memory impairment in vivo using a Morris water-maze task and passive avoidance task system were evaluated. Activity-guided fractionation of the total extracts resulted in the isolation of four constituents, trans-anethole (1), p-anisaldehyde (2), estragole (3), and 3-oxo-olean-12-en-28-oic acid (4), which were found for the first time from this plant. Compound 1 exhibited a better memory enhancing effect than tacrine, a positive agent, at the same dose in the passive avoidance test and a similar property in the water-maze test, and its action may be mediated, in part, by the acetylcholine enhancing cholinergic nervous system. Copyright © 2013 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, M.K.; Minta, J.O.
1985-08-01
The authors have examined the effects of anti-inflammatory and anti-rheumatic drugs on membrane-bound and purified Na /K -ATPase activity in vitro. Only the gold-containing compounds (gold sodium thiomalate and auranofin) were found to inhibit the enzyme activity in a dose-dependent manner. Sodium thiomalate and triethylphosphine, the ligand compounds for gold sodium thiomalate and auranofin, respectively, had no effect on ATPase activity. The antagonistic properties was abolished by preincubation of the gold compounds with dithiothreitol. Lineweaver-Burke analysis of the inhibitions of purified ATPase by the gold compounds was found to follow uncompetitive kinetics. Inhibition of ATPase by gold may cause disruptionmore » of transmembrane cation transport and thus result in impairment of several metabolic processes and cellular functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corsi, P.; D'Aprile, A.; Nico, B.
Styrene-7,8-oxide (SO), a chemical compound widely used in industrial applications, is a potential hazard for humans, particularly in occupational settings. Neurobehavioral changes are consistently observed in occupationally exposed individuals and alterations of neurotransmitters associated with neuronal loss have been reported in animal models. Although the toxic effects of styrene have been extensively documented, the molecular mechanisms responsible for SO-induced neurotoxicity are still unclear. A possible dopamine-mediated effect of styrene neurotoxicity has been previously demonstrated, since styrene oxide alters dopamine neurotransmission in the brain. Thus, the present study hypothesizes that styrene neurotoxicity may involve synaptic contacts. Primary striatal neurons were exposedmore » to styrene oxide at different concentrations (0.1-1 mM) for different time periods (8, 16, and 24 h) to evaluate the dose able to induce synaptic impairments. The expression of proteins crucial for synaptic transmission such as Synapsin, Synaptophysin, and RAC-1 were considered. The levels of Synaptophysin and RAC-1 decreased in a dose-dependent manner. Accordingly, morphological alterations, observed at the ultrastructural level, primarily involved the pre-synaptic compartment. In SO-exposed cultures, the biochemical cascade of caspases was activated affecting the cytoskeleton components as their target. Thus the impairments in synaptic contacts observed in SO-exposed cultures might reflect a primarily morphological alteration of neuronal cytoskeleton. In addition, our data support the hypothesis developed by previous authors of reactive oxygen species (ROS) initiating events of SO cytotoxicity.« less
K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions
Ostrem, Jonathan M.; Peters, Ulf; Sos, Martin L.; Wells, James A.; Shokat, Kevan M.
2014-01-01
Somatic mutations in the small GTPase K-Ras are the most common activating lesions found in human cancer, and are generally associated with poor response to standard therapies1–3. Efforts to target this oncogene directly have faced difficulties owing to its picomolar affinity for GTP/GDP4 and the absence of known allosteric regulatory sites. Oncogenic mutations result in functional activation of Ras family proteins by impairing GTP hydrolysis5,6. With diminished regulation by GTPase activity, the nucleotide state of Ras becomes more dependent on relative nucleotide affinity and concentration. This gives GTP an advantage over GDP7 and increases the proportion of active GTP-bound Ras. Here we report the development of small molecules that irreversibly bind to a common oncogenic mutant, K-Ras(G12C). These compounds rely on the mutant cysteine for binding and therefore do not affect the wild-type protein. Crystallographic studies reveal the formation of a new pocket that is not apparent in previous structures of Ras, beneath the effector binding switch-II region. Binding of these inhibitors to K-Ras(G12C) disrupts both switch-I and switch-II, subverting the native nucleotide preference to favour GDP over GTP and impairing binding to Raf. Our data provide structure-based validation of a new allosteric regulatory site on Ras that is targetable in a mutant-specific manner. PMID:24256730
Peng, Xiaoli; Gan, Jing; Wang, Qian; Shi, Zhenqiang; Xia, Xiaodong
2016-11-30
3-Monochloro-1,2-propanediol (3-MCPD) is the most toxic chloropropanols compounds in foodstuff which mainly generated during thermal processing. Kidney is one of the primary target organs for 3-MCPD. Using human embryonic kidney cell (HEK293FT) as an in vitro model, we found that 3-MCPD caused concentration-dependent increase in cytoxicity as assessed by dye uptake, lactatedehydrogenase (LDH) leakage and MTT assays. HEK293FT cell treated with 3-MCPD suffered the decrease of mitochondrial membrane potential and the impairment of mitochondrial oxidative phosphorylation system, especially the reduced amount of mRNA expression and protein synthesis of electron transport chain complex II, complex IV, and complex III. More importantly, energy release (ATP synthesis) was significantly inhibited by 3-MCPD resulting from the down regulation expressions of ATP synthase (ATP6 and ATP8), as well as the loss of transmembrane potential required for synthesis of ATP. The decreased ratio of mitochondrial apoptogenic factors Bax/Bcl-2 and the cytochrome-c release from mitochondria to cytosol followed by the activation of apoptotic initiators caspase 9 and apoptotic executioners (caspase 3, caspase 6 and caspase 7) leading to apoptosis. The activation of caspase 8 and caspase 2 implied that there were probably other factors to induce the caspase-dependent apoptosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
CHLORPYRIFOS DEVELOPMENTAL NEUROTOXICITY: INTERACTION WITH GLUCOCORTICOIDS IN PC12 CELLS
Slotkin, Theodore A.; Card, Jennifer; Seidler, Frederic J.
2012-01-01
Prenatal coexposures to glucocorticoids and organophosphate pesticides are widespread. Glucocorticoids are elevated by maternal stress and are commonly given in preterm labor; organophosphate exposures are virtually ubiquitous. We used PC12 cells undergoing neurodifferentiation in order to assess whether dexamethasone enhances the developmental neurotoxicity of chlorpyrifos, focusing on concentrations relevant to human exposures. By themselves, each agent reduced the number of cells and the combined exposure elicited a correspondingly greater effect than with either agent alone. There was no general cytotoxicity, as cell growth was actually enhanced, and again, the combined treatment evoked greater cellular hypertrophy than with the individual compounds. The effects on neurodifferentiation were more complex. Chlorpyrifos alone had a promotional effect on neuri to genesis whereas dexamethasone impaired it; combined treatment showed an overall impairment greater than that seen with dexamethasone alone. The effect of chlorpyrifos on differentiation into specific neurotransmitter phenotypes was shifted by dexamethasone. Either agent alone promoted differentiation into the dopaminergic phenotype at the expense of the cholinergic phenotype. However, in dexamethasone-primed cells, chlorpyrifos actually enhanced cholinergic neurodifferentiation instead of suppressing this phenotype. Our results indicate that developmental exposure to glucocorticoids, either in the context of stress or the therapy of preterm labor, could enhance the developmental neurotoxicity of organophosphates and potentially of other neurotoxicants, as well as producing neurobehavioral outcomes distinct from those seen with either individual agent. PMID:22796634
Leri, Manuela; Ramazzotti, Matteo; Vasarri, Marzia; Peri, Sara; Barletta, Emanuela; Pretti, Carlo; Degl'Innocenti, Donatella
2018-04-21
Posidonia oceanica (L.) Delile is a marine plant with interesting biological properties potentially ascribed to the synergistic combination of bioactive compounds. Our previously described extract, obtained from the leaves of P. oceanica , showed the ability to impair HT1080 cell migration by targeting both expression and activity of gelatinases. Commonly, the lack of knowledge about the mechanism of action of phytocomplexes may be an obstacle regarding their therapeutic use and development. The aim of this study was to gain insight into the molecular signaling through which such bioactive compounds impact on malignant cell migration and gelatinolytic activity. The increase in autophagic vacuoles detected by confocal microscopy suggested an enhancement of autophagy in a time and dose dependent manner. This autophagy activation was further confirmed by monitoring pivotal markers of autophagy signaling as well as by evidencing an increase in IGF-1R accumulation on cell membranes. Taken together, our results confirm that the P. oceanica phytocomplex is a promising reservoir of potent and cell safe molecules able to defend against malignancies and other diseases in which gelatinases play a major role in progression. In conclusion, the attractive properties of this phytocomplex may be of industrial interest in regard to the development of novel health-promoting and pharmacological products for the treatment or prevention of several diseases.
Protective effect of n-butanol extract from Alpinia oxyphylla on learning and memory impairments.
Shi, Shao-huai; Zhao, Xu; Liu, Ai-jing; Liu, Bing; Li, Huan; Wu, Bo; Bi, Kai-shun; Jia, Ying
2015-02-01
Alzheimer's disease (AD) is one of the major neurological diseases of the elderly. How to safely and effectively remove the toxic Aβ42 peptide through blood-brain barrier (BBB) is considered to be an effective method for the prevention and treatment of AD. The compounds whose molecule weight is less than 400 Da and the number of hydrogen bonding is less than 10 are more likely to permeate BBB. In our previous study, we have several small molecule compounds which are isolated from n-butanol (NB) extract of Alpinia oxyphylla that are similar with this kind of compounds This study explored the neuroprotective effects of the NB significantly protected against learning and memory impairments induced by Aβ(1-42) in Y-maze test, active avoidance test and Morris water maze test. Besides, NB (180 mg/kg, 360 mg/kg) was able to attenuate the neuronal damage and apoptosis in the frontal cortex and hippocampus in mice. In addition, the inhibition of β-secretase and the level of Aβ(1-42) are also involved in the action mechanisms of NB in this experimental model. This study provided an experimental basis for clinical application of A. oxyphylla Miq. in AD therapy. Copyright © 2014 Elsevier Inc. All rights reserved.
Compound heterozygous MYO7A mutations segregating Usher syndrome type 2 in a Han family.
Zong, Ling; Chen, Kaitian; Wu, Xuan; Liu, Min; Jiang, Hongyan
2016-11-01
Identification of rare deafness genes for inherited congenital sensorineural hearing impairment remains difficult, because a large variety of genes are implicated. In this study we applied targeted capture and next-generation sequencing to uncover the underlying gene in a three-generation Han family segregating recessive inherited hearing loss and retinitis pigmentosa. After excluding mutations in common deafness genes GJB2, SLC26A4 and the mitochondrial gene, genomic DNA of the proband of a Han family was subjected to targeted next-generation sequencing. The candidate mutations were confirmed by Sanger sequencing and subsequently analyzed with in silico tools. An unreported splice site mutation c.3924+1G > C compound with c.6028G > A in the MYO7A gene were detected to cosegregate with the phenotype in this pedigree. Both mutations, located in the evolutionarily conserved FERM domain in myosin VIIA, were predicted to be pathogenic. In this family, profound sensorineural hearing impairment and retinitis pigmentosa without vestibular disorder, constituted the typical Usher syndrome type 2. Identification of novel mutation in compound heterozygosity in MYO7A gene revealed the genetic origin of Usher syndrome type 2 in this Han family. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Delayed matching to sample and concurrent learning in nonamnesic humans with alcohol dependence.
Bowden, S C; Benedikt, R; Ritter, A J
1992-05-01
Small samples of alcohol-dependent subjects who showed no clinical signs of Wernicke-Korsakoff syndrome were compared with nonalcohol-dependent controls on two animal memory tests which are performed poorly by human amnesics. Compared to the control subjects, the alcohol-dependent subjects' performance was impaired on a version of the delayed matching to sample task. On concurrent discrimination learning the overall group difference just failed to reach significance. The results are interpreted as suggesting that behavioural impairment may occur in alcohol-dependent subjects who are not clinically amnesic, and that the impairment is similar in type to that observed in cases of severe Wernicke-Korsakoff syndrome.
Weed, Michael R; Gold, Lisa H; Polis, Ilham; Koob, George F; Fox, Howard S; Taffe, Michael A
2004-01-01
Infection with simian immunodeficiency virus (SIV) in macaques provides an excellent model of AIDS including HIV-induced central nervous system (CNS) pathology and cognitive/behavioral impairment. Recently a behavioral test battery has been developed for macaques based on the CANTAB human neuropsychological testing battery. As with human neuropsychological batteries, different tasks are thought to involve different neural substrates, and therefore performance profiles may assess function in particular brain regions. Ten rhesus monkeys were infected with SIV after being trained on two or more of the battery tasks addressing memory (delayed nonmatching to sample, DNMS), spatial working memory (using a self-ordered spatial search task, SOSS), motivation (progressive-ratio, PR), reaction time (RT), and/or fine motor skills (bimanual motor skill, BMS). Performance was compared to that of 9 uninfected monkeys. Overall, some aspect of performance was impaired in all 10 monkeys following infection. Consistent with results in human AIDS patients, individual performance was impaired most often on battery tasks thought to be sensitive to frontostriatal dopaminergic functioning such as SOSS, RT, and BMS. These results further demonstrate the similarity of behavioral impairment produced by SIV and HIV on homologous behavioral tests, and establish the utility of the testing battery for further investigations into the CNS mechanisms of the reported behavioral changes.
Gilley, Cynthia; MacDonald, Mary; Nachon, Florian; Schopfer, Lawrence M; Zhang, Jun; Cashman, John R; Lockridge, Oksana
2009-10-01
The goal was to test 14 nerve agent model compounds of soman, sarin, tabun, and cyclohexyl methylphosphonofluoridate (GF) for their suitability as substitutes for true nerve agents. We wanted to know whether the model compounds would form the identical covalent adduct with human butyrylcholinesterase that is produced by reaction with true nerve agents. Nerve agent model compounds containing thiocholine or thiomethyl in place of fluorine or cyanide were synthesized as Sp and Rp stereoisomers. Purified human butyrylcholinesterase was treated with a 45-fold molar excess of nerve agent analogue at pH 7.4 for 17 h at 21 degrees C. The protein was denatured by boiling and was digested with trypsin. Aged and nonaged active site peptide adducts were quantified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry of the tryptic digest mixture. The active site peptides were isolated by HPLC and analyzed by MALDI-TOF-TOF mass spectrometry. Serine 198 of butyrylcholinesterase was covalently modified by all 14 compounds. Thiocholine was the leaving group in all compounds that had thiocholine in place of fluorine or cyanide. Thiomethyl was the leaving group in the GF thiomethyl compounds. However, sarin thiomethyl compounds released either thiomethyl or isopropyl, while soman thiomethyl compounds released either thiomethyl or pinacolyl. Thiocholine compounds reacted more rapidly with butyrylcholinesterase than thiomethyl compounds. Labeling with the model compounds resulted in aged adducts that had lost the O-alkyl group (O-ethyl for tabun, O-cyclohexyl for GF, isopropyl for sarin, and pinacolyl for soman) in addition to the thiocholine or thiomethyl group. The nerve agent model compounds containing thiocholine and the GF thiomethyl analogue were found to be suitable substitutes for true soman, sarin, tabun, and GF in terms of the adduct that they produced with human butyrylcholinesterase. However, the soman and sarin thiomethyl compounds yielded two types of adducts, one of which was thiomethyl phosphonate, a modification not found after treatment with authentic soman and sarin.
Impaired threat prioritisation after selective bilateral amygdala lesions
Bach, Dominik R.; Hurlemann, Rene; Dolan, Raymond J.
2015-01-01
The amygdala is proposed to process threat-related information in non-human animals. In humans, empirical evidence from lesion studies has provided the strongest evidence for a role in emotional face recognition and social judgement. Here we use a face-in-the-crowd (FITC) task which in healthy control individuals reveals prioritised threat processing, evident in faster serial search for angry compared to happy target faces. We investigate AM and BG, two individuals with bilateral amygdala lesions due to Urbach–Wiethe syndrome, and 16 control individuals. In lesion patients we show a reversal of a threat detection advantage indicating a profound impairment in prioritising threat information. This is the first direct demonstration that human amygdala lesions impair prioritisation of threatening faces, providing evidence that this structure has a causal role in responding to imminent danger. PMID:25282058
Nakamura, Noriko; Inselman, Amy L.; White, Gene A.; Chang, Ching-Wei; Trbojevich, Raul A.; Sepehr, Estatira; Voris, Kristie L.; Patton, Ralph E.; Bryant, Matthew S.; Harrouk, Wafa; McIntyre, Barry; Foster, Paul M.; Hansen, Deborah K.
2015-01-01
BACKGROUND 2-hydroxy-4-methoxybenzophenone (HMB) is an ultraviolet (UV)-absorbing compound used in many cosmetic products as a UV-protecting agent and in plastics for preventing UV-induced photodecomposition. HMB has been detected in over 95% of randomly collected human urine samples from adults and from premature infants, and it may have estrogenic potential. METHODS To determine the effects of maternal and lactational exposure to HMB on development and reproductive organs of offspring, time-mated female Harlan Sprague-Dawley rats were dosed with 0, 1,000, 3,000, 10,000, 25,000, or 50,000 ppm HMB (7-8 per group) added to chow from gestation day 6 until weaning on postnatal day (PND) 23. RESULTS AND CONCLUSION Exposure to HMB was associated with reduced body and organ weights in female and male offspring. No significant differences were observed in the number of implantation sites/litter, mean resorptions/litter, % litters with resorptions, number and weights of live fetuses, or sex ratios between the control and HMB dose groups. Normalized anogenital distance in male pups at PND 23 was decreased in the highest dose group. Spermatocyte development was impaired in testes of male offspring in the highest dose group. In females, follicular development was delayed in the highest dose group. However, by evaluating levels of the compound in rat serum, the doses at which adverse events occurred are much higher than usual human exposure levels. Thus, exposure to less than 10,000 ppm HMB does not appear to be associated with adverse effects on the reproductive system in rats. PMID:25707689
[Effects of lead exposure on the human body and health implications].
Moreira, Fátima Ramos; Moreira, Josino Costa
2004-02-01
To review the literature concerning the risks associated with exposure to lead and lead compounds, especially in children and in populations that are occupationally exposed. Using "chumbo" [lead] and "efeitos" [effects] as search terms, two large databases, namely PubMed (United States National Library of Medicine) and LILACS (Literatura Latino-Americana e do Caribe em Ciências da Saúde [Latin American and Caribbean Literature in the Health Sciences]), were searched for studies on lead toxicity from 1988 to 2002. Other sources used to conduct the search include the web page of the United States Agency for Toxic Substances and Disease Registry, in Atlanta, Georgia, and the library of the Toxicology Laboratory of the Center for Workers' Health and Human Ecology at the National School of Public Health [Centro de Estudos da Saúde de Trabalhador e Ecologia Humana, Escola Nacional de Saúde Pública], Fundação Oswaldo Cruz, Rio de Janeiro, Brazil. The toxic effects of lead and lead compounds have been extensively studied for over a century. In recent years, epidemiologic studies have focused primarily on the neurotoxic effects of lead on children, particularly in terms of impaired intellectual ability and behavioral problems. However, there is still insufficient information on the mechanisms of action that account for such toxicity. More in-depth studies are also needed on the effects of lead exposure on bone, the central nervous system, the cardiovascular system, the kidneys, the liver, the male and female reproductive systems, and the endocrine system. The potential teratogenicity and carcinogenicity of lead, as well as its effect on pregnancy outcomes and neonatal growth and development, also require further study.
Babizhayev, Mark A; Yegorov, Yegor E
2010-01-01
The purpose of this study was to determine how the naturally occurring molecules N-acetylcarnosine, L-carnosine, and carcinine, which are chemical or pharmacological chaperones, affect the cells and biomolecules of patients with skin diseases, cosmetic skin lesions, or underlying clinically significant visual impairment such as age-related cataracts, age-related retinal degeneration, and ocular complications of diabetes. We evaluated and characterized the effects of cited pharmacological chaperones on enzyme activity, protein structure in tissues, and other biomarkers of diseases in skin cells and tissues or in ocular tissues (human cataractous and normal lenses) derived from ophthalmic patients or age-matched donors. The samples were used to test imidazole-containing peptidomimetic chemical/pharmacological chaperones in relation to oxidative stress induced by reaction with lipid peroxides or advanced non-enzymatic glycation processes. Chaperone function is characterized by interaction with other proteins, mediating their folding, transport, and interaction with other molecules, lipid peroxidation products, and membranes. Although these therapies remain on hold pending further investigation, we present growing evidence demonstrating the ability of N-acetylcarnosine (lubricant eye drops) or carcinine pharmacological chaperone therapy to act as novel treatments for age-related cataracts, age-related macular degeneration, and ocular complications of diabetes. Finally, we examine strategies for identifying potential chaperone compounds and for experimentally demonstrating chaperone and transglycating (de-glycation) types of activity in in vitro and in vivo models of human age-related eye diseases, such as cataracts, and advanced glycation tissue protein-engineered systems.
[Obesity: a review of currently used antiobesity drugs and new compounds in clinical development].
Zieba, Remigiusz
2007-10-19
This review summarizes data on currently used antiobesity drugs and new compounds under clinical development. Three antiobesity drugs are currently accepted for long-term use. Sibutramine is a noradrenaline and serotonin reuptake inhibitor which reduces body weight by about 4-5 kg but increases heart rate and arterial blood pressure. Orlistat is a gastrointestinal lipase inhibitor which results in mean weight loss by about 3 kg and reduces the incidence of type 2 diabetes in patients with impaired glucose tolerance; however, adverse gastrointestinal effects have been observed. Rimonabant is an endocannabinoid CB1 receptor antagonist which induces a 4-5 kg mean weight loss and improves glycemic and lipid profiles, but it induces anxiety and depressive disorders. Unfortunately, there are no data on the chronic administration of these drugs. Other drugs can induce weight loss, e.g. some antidepressants, antiseizure agents, and antidiabetic drugs. The moderate efficacy of currently used antiobesity drugs has led to an intense effort to identify new, safe antiobesity drugs with better therapeutic profiles. The new antiobesity drugs under clinical development include: 1) agents that affect neurotransmitters in the central nervous system, including noradrenaline and dopamine reuptake inhibitors (bupropion, radafaxine), selective 5HT2C receptor agonists (lorcaserin), and selective 5HT6 receptor antagonists, 2) agents that modulate the activity of neuropeptides influencing food intake, including leptin analogues, human ciliary neurotrophic factor (Axokine), neuropeptide Y antagonists, and melanine-concentrating hormone antagonists, 3) agents that affect the peripheral satiety signals and brain-gut axis, e.g. selective cholecystokinin receptor A agonists, PYY3-36, agents decreasing ghrelin activity, 4) thermogenic agents, e.g. selective beta3 receptor agonists and selective thyroid hormone receptor beta agonists, and 5) others, e.g. human growth hormone fragment (AOD9604) and gastrointestinal lipase inhibitor (cetilistat).
An in vitro examination of the antioxidant and anti-inflammatory properties of buckwheat honey.
van den Berg, A J J; van den Worm, E; van Ufford, H C Quarles; Halkes, S B A; Hoekstra, M J; Beukelman, C J
2008-04-01
Hydroxyl radical and hypochlorite anion formed at the wound site from superoxide anion produced by activated polymorphonuclear neutrophils (PMNs) are considered important factors in impaired wound healing. Superoxide anion may also react with nitric oxide produced by macrophages to form peroxynitrite, a third strong oxidant that damages surrounding tissue. In order to select honey for use in wound-healing products, different samples were compared for their capacity to reduce levels of reactive oxygen species (ROS) in vitro. Honey samples were tested in assays for inhibition of ROS production by activated human PMNs, antioxidant activity (scavenging of superoxide anion in a cell-free system) and inhibition of human complement (reducing levels of ROS by limiting formation of complement factors that attract and stimulate PMNs). For buckwheat honey (NewYork, US), moisture and free acid content were determined by refractive index measurement and potentiometric titration respectively. Honey constituents other than sugars were investigated by thin layer chromatography, using natural product reagent to detect phenolic compounds. Constituents with antioxidant properties were detected by spraying the chromatogram with DPPH. Although most honey samples were shown to be active, significant differences were observed, with the highly active honey exceeding the activities of samples with minor effects by factors of 4 to 30. Most pronounced activities were found for American buckwheat honey from the state of NewYork. Phenolic constituents of buckwheat honey were shown to have antioxidant activity. As buckwheat honey was most effective in reducing ROS levels, it was selected for use in wound-healing products. The major antioxidant properties in buckwheat honey derive from its phenolic constituents, which are present in relatively large amounts. Its phenolic compounds may also exert antibacterial activity, whereas its low pH and high free acid content may assist wound healing.
Haage, Pernilla; Kronstrand, Robert; Carlsson, Björn; Kugelberg, Fredrik C; Josefsson, Martin
2016-02-05
The analgesic drug tramadol and its metabolites are chiral compounds, with the (+)- and (-)-enantiomers showing different pharmacological and toxicological effects. This novel enantioselective method, based on LC-MS/MS in reversed phase mode, enabled measurement of the parent compound and its three main metabolites O-desmethyltramadol, N-desmethyltramadol and N,O-didesmethyltramadol simultaneously. Whole blood samples of 0.5g were fortified with internal standards (tramadol-(13)C-D3 and O-desmethyl-cis-tramadol-D6) and extracted under basic conditions (pH 11) by liquid-liquid extraction. Chromatography was performed on a chiral alpha-1-acid glycoprotein (AGP) column preceded by an AGP guard column. The mobile phase consisted of 0.8% acetonitrile and 99.2% ammonium acetate (20mM, pH 7.2). A post-column infusion with 0.05% formic acid in acetonitrile was used to enhance sensitivity. Quantitation as well as enantiomeric ratio measurements were covered by quality controls. Validation parameters for all eight enantiomers included selectivity (high), matrix effects (no ion suppression/enhancement), calibration model (linear, weight 1/X(2), in the range of 0.25-250ng/g), limit of quantitation (0.125-0.50ng/g), repeatability (2-6%) and intermediate precision (2-7%), accuracy (83-114%), dilution integrity (98-115%), carry over (not exceeding 0.07%) and stability (stable in blood and extract). The method was applied to blood samples from a healthy volunteer administrated a single 100mg dose and to a case sample concerning an impaired driver, which confirmed its applicability in human pharmacokinetic studies as well as in toxicological and forensic investigations. Copyright © 2015 Elsevier B.V. All rights reserved.
Palmeira, Vanila F.; Kneipp, Lucimar F.; Rozental, Sonia; Alviano, Celuta S.; Santos, André L. S.
2008-01-01
Background Fonsecaea pedrosoi is the principal etiologic agent of chromoblastomycosis, a fungal disease whose pathogenic events are poorly understood. Current therapy for chromoblastomycosis is suboptimal due to toxicity of the available therapeutic agents and the emergence of drug resistance. Compounding these problems is the fact that endemic countries and regions are economically poor. Purpose and Principal Findings In the present work, we have investigated the effect of human immunodeficiency virus (HIV) peptidase inhibitors (PIs) on the F. pedrosoi conidial secreted peptidase, growth, ultrastructure and interaction with different mammalian cells. All the PIs impaired the acidic conidial-derived peptidase activity in a dose-dependent fashion, in which nelfinavir produced the best inhibitory effect. F. pedrosoi growth was also significantly reduced upon exposure to PIs, especially nelfinavir and saquinavir. PIs treatment caused profound changes in the conidial ultrastructure as shown by transmission electron microscopy, including invaginations in the cytoplasmic membrane, disorder and detachment of the cell wall, enlargement of fungi cytoplasmic vacuoles, and abnormal cell division. The synergistic action on growth ability between nelfinavir and amphotericin B, when both were used at sub-inhibitory concentrations, was also observed. PIs reduced the adhesion and endocytic indexes during the interaction between conidia and epithelial cells (CHO), fibroblasts or macrophages, in a cell type-dependent manner. Moreover, PIs interfered with the conidia into mycelia transformation when in contact with CHO and with the susceptibility killing by macrophage cells. Conclusions/Significance Overall, by providing the first evidence that HIV PIs directly affects F. pedrosoi development and virulence, these data add new insights on the wide-spectrum efficacy of HIV PIs, further arguing for the potential chemotherapeutic targets for aspartyl-type peptidase produced by this human pathogen. PMID:18852883
DeGreeff, Lauryn E; Furton, Kenneth G
2011-09-01
Human remains detection canines are used in locating deceased humans in diverse scenarios and environments based on odor produced during the decay process of the human body. It has been established that human remains detection canines are capable of locating human remains specifically, as opposed to living humans or animal remains, thus suggesting a difference in odor between the different sources. This work explores the collection and determination of such odors using a dynamic headspace concentration device. The airflow rate and three sorbent materials-Dukal cotton gauze, Johnson & Johnson cotton-blend gauze, and polyester material-used for odor collection were evaluated using standard compounds. It was determined that higher airflow rates and openly woven material, e.g., Dukal cotton gauze, yielded significantly less total volatile compounds due to compound breakthrough through the sorbent material. Collection from polymer- and cellulose-based materials demonstrated that the molecular backbone of the material is a factor in compound collection as well. Volatiles, including cyclic and straight-chain hydrocarbons, organic acids, sulfides, aldehydes, ketones, and alcohols, were collected from a population of 27 deceased bodies from two collection locations. The common compounds between the subjects were compared and the odor profiles were determined. These odor profiles were compared with those of animal remains and living human subjects collected in the same manner. Principal component analysis showed that the odor profiles of the three sample types were distinct.
Koch, Kathrin; Myers, Nicholas E; Göttler, Jens; Pasquini, Lorenzo; Grimmer, Timo; Förster, Stefan; Manoliu, Andrei; Neitzel, Julia; Kurz, Alexander; Förstl, Hans; Riedl, Valentin; Wohlschläger, Afra M; Drzezga, Alexander; Sorg, Christian
2015-12-01
Amyloid-β pathology (Aβ) and impaired cognition characterize Alzheimer's disease (AD); however, neural mechanisms that link Aβ-pathology with impaired cognition are incompletely understood. Large-scale intrinsic connectivity networks (ICNs) are potential candidates for this link: Aβ-pathology affects specific networks in early AD, these networks show disrupted connectivity, and they process specific cognitive functions impaired in AD, like memory or attention. We hypothesized that, in AD, regional changes of ICNs, which persist across rest- and cognitive task-states, might link Aβ-pathology with impaired cognition via impaired intrinsic connectivity. Pittsburgh compound B (PiB)-positron emission tomography reflecting in vivo Aβ-pathology, resting-state fMRI, task-fMRI, and cognitive testing were used in patients with prodromal AD and healthy controls. In patients, default mode network's (DMN) functional connectivity (FC) was reduced in the medial parietal cortex during rest relative to healthy controls, relatively increased in the same region during an attention-demanding task, and associated with patients' cognitive impairment. Local PiB-uptake correlated negatively with DMN connectivity. Importantly, corresponding results were found for the right lateral parietal region of an attentional network. Finally, structural equation modeling confirmed a direct influence of DMN resting-state FC on the association between Aβ-pathology and cognitive impairment. Data provide evidence that disrupted intrinsic network connectivity links Aβ-pathology with cognitive impairment in early AD. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Kandawasvika, Gwendoline Q.; Ogundipe, Enitan; Gumbo, Felicity Z.; Kurewa, Edith N.; Mapingure, Munyaradzi P.; Stray-Pedersen, Babill
2011-01-01
Aim: The aim of this article is to document the risk of neurodevelopmental impairment (NDI) among infants enrolled in a programme for the prevention of mother-to-child transmission of HIV (human immunodeficiency virus) in Zimbabwe using the Bayley Infant Neurodevelopmental Screener (BINS). Method: We prospectively followed up infants at three…
Ma, Dan; Shield, Julian P.H.; Dean, Wendy; Leclerc, Isabelle; Knauf, Claude; Burcelin, Rémy; Rutter, Guy A.; Kelsey, Gavin
2004-01-01
Transient neonatal diabetes mellitus (TNDM) is a rare inherited diabetic syndrome apparent in the first weeks of life and again during early adulthood. The relative contributions of reduced islet β cell number and impaired β cell function to the observed hypoinsulinemia are unclear. The inheritance pattern of this imprinted disorder implicates overexpression of one or both genes within the TNDM locus: ZAC, which encodes a proapoptotic zinc finger protein, and HYMAI, which encodes an untranslated mRNA. To investigate the consequences for pancreatic function, we have developed a high-copy transgenic mouse line, TNDM29, carrying the human TNDM locus. TNDM29 neonates display hyperglycemia, and older adults, impaired glucose tolerance. Neonatal hyperglycemia occurs only on paternal transmission, analogous to paternal dependence of TNDM in humans. Embryonic pancreata of TNDM29 mice showed reductions in expression of endocrine differentiation factors and numbers of insulin-staining structures. By contrast, β cell mass was normal or elevated at all postnatal stages, whereas pancreatic insulin content in neonates and peak serum insulin levels after glucose infusion in adults were reduced. Expression of human ZAC and HYMAI in these transgenic mice thus recapitulates key features of TNDM and implicates impaired development of the endocrine pancreas and β cell function in disease pathogenesis. PMID:15286800
Miranda, Cláudia C; Fernandes, Tiago G; Pinto, Sandra N; Prieto, Manuel; Diogo, M Margarida; Cabral, Joaquim M S
2018-05-21
Stem cell's unique properties confer them a multitude of potential applications in the fields of cellular therapy, disease modelling and drug screening fields. In particular, the ability to differentiate neural progenitors (NP) from human induced pluripotent stem cells (hiPSCs) using chemically-defined conditions provides an opportunity to create a simple and straightforward culture platform for application in these fields. Here, we demonstrated that hiPSCs are capable of undergoing neural commitment inside microwells, forming characteristic neural structures resembling neural rosettes and further give rise to glial and neuronal cells. Furthermore, this platform can be applied towards the study of the effect of neurotoxic molecules that impair normal embryonic development. As a proof of concept, the neural teratogenic potential of the antiepileptic drug valproic acid (VPA) was analyzed. It was verified that exposure to VPA, close to typical dosage values (0.3 to 0.75 mM), led to a prevalence of NP structures over neuronal differentiation, as confirmed by analysis of the expression of neural cell adhesion molecule, as well as neural rosette number and morphology assessment. The methodology proposed herein for the generation and neural differentiation of hiPSC aggregates can potentially complement current toxicity tests such as the humanized embryonic stem cell test for the detection of teratogenic compounds that can interfere with normal embryonic development. Copyright © 2018 Elsevier B.V. All rights reserved.
Jiménez de Oya, Nereida; Blázquez, Ana-Belén; Casas, Josefina; Saiz, Juan-Carlos; Martín Acebes, Miguel A
2018-04-30
Mosquito-borne flaviviruses are a group of RNA viruses that constitute global threats for human and animal health. Replication of these pathogens is strictly dependent on cellular lipid metabolism. We have evaluated the effect of the pharmacological activation of Adenosine Monophosphate-activated Protein Kinase (AMPK), a master regulator of lipid metabolism, on the infection of three medically relevant flaviviruses: West Nile virus (WNV), Zika virus (ZIKV) and dengue virus (DENV). WNV is responsible for recurrent outbreaks of meningitis and encephalitis affecting humans and horses worldwide. ZIKV has caused a recent pandemic associated with birth defects (microcephaly), reproductive disorders, and severe neurological complications (Guillain-Barré syndrome). DENV is the etiological agent of the most prevalent mosquito-borne viral disease that can induce a potentially lethal complication called severe dengue. Our results showed, for the first time, that activation of AMPK using the specific small molecule activator PF-06409577 reduced both WNV, ZIKV, and DENV infection. This antiviral effect was associated to an impairment of viral replication due to the modulation of host cell lipid metabolism exerted by the compound. These results support that the pharmacological activation of AMPK, which currently constitutes an important pharmacological target for human diseases, could also provide a feasible approach for broad-spectrum host-directed antiviral discovery. Copyright © 2018 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Kennedy, Lawrence J.; Shi, Yan
2010-04-12
An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) {alpha} agonist, with an EC{sub 50} of 10 nM for human PPAR{alpha} and 410-fold selectivity vs human PPAR{gamma} in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPAR{delta}. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystalmore » structures of the early lead compound 12 and compound 2 in complex with PPAR{alpha} ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPAR{alpha} in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.« less
Shin, Dong-Hyun; Leem, Dong-Gyu; Shin, Ji-Sun; Kim, Joo-Il; Kim, Kyung-Tack; Choi, Sang Yoon; Lee, Myung-Hee; Choi, Jung-Hye; Lee, Kyung-Tae
2018-04-01
Extended endoplasmic reticulum (ER) stress may initiate apoptotic pathways in cancer cells, and ER stress has been reported to possibly increase tumor death in cancer therapy. We previously reported that caspase-8 played an important role in compound K-induced apoptosis via activation of caspase-3 directly or indirectly through Bid cleavage, cytochrome c release, and caspase-9 activation in HL-60 human leukemia cells. The mechanisms leading to apoptosis in A549 and SK-MES-1 human lung cancer cells and the role of ER stress have not yet been understood. The apoptotic effects of compound K were analyzed using flow cytometry, and the changes in protein levels were determined using Western blot analysis. The intracellular calcium levels were monitored by staining with Fura-2/AM and Fluo-3/AM. Compound K-induced ER stress was confirmed through increased phosphorylation of eIF2α and protein levels of GRP78/BiP, XBP-1S, and IRE1α in human lung cancer cells. Moreover, compound-K led to the accumulation of intracellular calcium and an increase in m-calpain activities that were both significantly inhibited by pretreatment either with BAPTA-AM (an intracellular Ca 2+ chelator) or dantrolene (an RyR channel antagonist). These results were correlated with the outcome that compound K induced ER stress-related apoptosis through caspase-12, as z-ATAD-fmk (a specific inhibitor of caspase-12) partially ameliorated this effect. Interestingly, 4-PBA (ER stress inhibitor) dramatically improved the compound K-induced apoptosis. Cell survival and intracellular Ca 2+ homeostasis during ER stress in human lung cancer cells are important factors in the induction of the compound K-induced apoptotic pathway.
Teen Drug Use: Impacts and Outcomes.
ERIC Educational Resources Information Center
Casemore, Bradley P.
Each generation of adolescents is exposed to a wider array of stressors and environmental deficits. Use, abuse, and dependence on alcohol and other drugs greatly impairs youths' ability to develop fully, and exacerbates and compounds other biopsychosocial problems. Physiologically, the onset of secondary sex characteristics, the growth spurt,…
The acute effects of cannabinoids on memory in humans: a review.
Ranganathan, Mohini; D'Souza, Deepak Cyril
2006-11-01
Cannabis is one of the most frequently used substances. Cannabis and its constituent cannabinoids are known to impair several aspects of cognitive function, with the most robust effects on short-term episodic and working memory in humans. A large body of the work in this area occurred in the 1970s before the discovery of cannabinoid receptors. Recent advances in the knowledge of cannabinoid receptors' function have rekindled interest in examining effects of exogenous cannabinoids on memory and in understanding the mechanism of these effects. The literature about the acute effects of cannabinoids on memory tasks in humans is reviewed. The limitations of the human literature including issues of dose, route of administration, small sample sizes, sample selection, effects of other drug use, tolerance and dependence to cannabinoids, and the timing and sensitivity of psychological tests are discussed. Finally, the human literature is discussed against the backdrop of preclinical findings. Acute administration of Delta-9-THC transiently impairs immediate and delayed free recall of information presented after, but not before, drug administration in a dose- and delay-dependent manner. In particular, cannabinoids increase intrusion errors. These effects are more robust with the inhaled and intravenous route and correspond to peak drug levels. This profile of effects suggests that cannabinoids impair all stages of memory including encoding, consolidation, and retrieval. Several mechanisms, including effects on long-term potentiation and long-term depression and the inhibition of neurotransmitter (GABA, glutamate, acetyl choline, dopamine) release, have been implicated in the amnestic effects of cannabinoids. Future research in humans is necessary to characterize the neuroanatomical and neurochemical basis of the memory impairing effects of cannabinoids, to dissect out their effects on the various stages of memory and to bridge the expanding gap between the humans and preclinical literature.
Wang, Qing-Hui; Guo, Shuai; Yang, Xue-Yan; Zhang, Yi-Fan; Shang, Ming-Ying; Shang, Ying-Hui; Xiao, Jun-Jun; Cai, Shao-Qing
2017-03-01
Four prenylated flavonoids compounds 1-4, named sinopodophyllines A-D, and a flavonoid glycoside (compound 13), sinopodophylliside A, together with 19 known compounds (compounds 5-12 and 14-24) were isolated from the fruits of Sinopodophyllum hexandrum. The structures of new compounds were elucidated by extensive spectroscopic analysis, including HRESIMS, 1D and 2D NMR. Compounds 1-6, 9-11, and 14-17 were tested for their cytotoxicity against human breast-cancer T47D, MCF-7 and MDA-MB-231 cells in vitro, and compounds 2, 5, 6, 10 and 11 showed significant cytotoxicity (IC 50 values < 10 μmol·L -1 ) against T47D cells. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Severe obesity and diabetes insipidus in a patient with PCSK1 deficiency.
Frank, Graeme R; Fox, Joyce; Candela, Ninfa; Jovanovic, Zorica; Bochukova, Elena; Levine, Jeremiah; Papenhausen, Peter R; O'Rahilly, Stephen; Farooqi, I Sadaf
2013-01-01
Non-synonymous mutations affecting both alleles of PCSK1 (proprotein convertase 1/3) are associated with obesity and impaired prohormone processing. We report a proband who was compound heterozygous for a maternally inherited frameshift mutation and a paternally inherited 474kb deletion that encompasses PCSK1, representing a novel genetic mechanism underlying this phenotype. Although pro-vasopressin is not a known physiological substrate of PCSK1, the development of central diabetes insipidus in this proband suggests that PCSK1 deficiency can be associated with impaired osmoregulation. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Memory and mood during MDMA intoxication, with and without memantine pretreatment.
de Sousa Fernandes Perna, E B; Theunissen, E L; Kuypers, K P C; Heckman, P; de la Torre, R; Farre, M; Ramaekers, J G
2014-12-01
Previous studies have shown that single doses of MDMA can affect mood and impair memory in humans. The neuropharmacological mechanisms involved in MDMA-induced memory impairment are not clear. Memantine, an NMDA and alpha 7 nicotinic acetylcholine (ACh) receptor antagonist, was able to reverse MDMA-induced memory impairment in rats. This study investigated whether treatment with memantine can prevent MDMA-induced memory impairment in humans. 15 subjects participated in a double-blind, placebo controlled, within-subject design. Subjects received both pre-treatment (placebo/memantine 20 mg) (T1) and treatment (placebo/MDMA 75 mg) (T2) on separate test days. T1 preceded T2 by 120 min. Memory function was assessed 90 min after T2 by means of a Visual Verbal Learning Task, a Prospective Memory Task, the Sternberg Memory Task and the Abstract Visual Pattern Learning Task. Profile of Mood State and psychomotor performance were also assessed to control whether MDMA and memantine interactions would selectively pertain to memory or transfer to other domains as well. MDMA significantly impaired performance in the visual verbal learning task and abstract visual pattern learning task. Pre-treatment with memantine did not prevent MDMA-induced memory impairment in these two tasks. Both positive (vigour, arousal, elation) and negative mood effects (anxiety) were increased by MDMA. The responses were not altered by pretreatment with memantine which had no effect on memory or mood when given alone. These preliminary results suggest that memantine does not reverse MDMA-induced memory impairment and mood in humans. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Martel, Jan; Wu, Cheng-Yeu; Hung, Cheng-Yu; Wong, Tsui-Yin; Cheng, Ann-Joy; Cheng, Mei-Ling; Shiao, Ming-Shi; Young, John D.
2016-03-01
Nanoparticles entering the human body instantly become coated with a ``protein corona'' that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an ``organic corona'' containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body.Nanoparticles entering the human body instantly become coated with a ``protein corona'' that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an ``organic corona'' containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08116e
Identification of Human Semiochemicals Attractive to the Major Vectors of Onchocerciasis
Young, Ryan M.; Burkett-Cadena, Nathan D.; McGaha, Tommy W.; Rodriguez-Perez, Mario A.; Toé, Laurent D.; Adeleke, Monsuru A.; Sanfo, Moussa; Soungalo, Traore; Katholi, Charles R.; Noblet, Raymond; Fadamiro, Henry; Torres-Estrada, Jose L.; Salinas-Carmona, Mario C.; Baker, Bill; Unnasch, Thomas R.; Cupp, Eddie W.
2015-01-01
Background Entomological indicators are considered key metrics to document the interruption of transmission of Onchocerca volvulus, the etiological agent of human onchocerciasis. Human landing collection is the standard employed for collection of the vectors for this parasite. Recent studies reported the development of traps that have the potential for replacing humans for surveillance of O. volvulus in the vector population. However, the key chemical components of human odor that are attractive to vector black flies have not been identified. Methodology/Principal Findings Human sweat compounds were analyzed using GC-MS analysis and compounds common to three individuals identified. These common compounds, with others previously identified as attractive to other hematophagous arthropods were evaluated for their ability to stimulate and attract the major onchocerciasis vectors in Africa (Simulium damnosum sensu lato) and Latin America (Simulium ochraceum s. l.) using electroantennography and a Y tube binary choice assay. Medium chain length carboxylic acids and aldehydes were neurostimulatory for S. damnosum s.l. while S. ochraceum s.l. was stimulated by short chain aliphatic alcohols and aldehydes. Both species were attracted to ammonium bicarbonate and acetophenone. The compounds were shown to be attractive to the relevant vector species in field studies, when incorporated into a formulation that permitted a continuous release of the compound over time and used in concert with previously developed trap platforms. Conclusions/Significance The identification of compounds attractive to the major vectors of O. volvulus will permit the development of optimized traps. Such traps may replace the use of human vector collectors for monitoring the effectiveness of onchocerciasis elimination programs and could find use as a contributing component in an integrated vector control/drug program aimed at eliminating river blindness in Africa. PMID:25569240
Identification of human semiochemicals attractive to the major vectors of onchocerciasis.
Young, Ryan M; Burkett-Cadena, Nathan D; McGaha, Tommy W; Rodriguez-Perez, Mario A; Toé, Laurent D; Adeleke, Monsuru A; Sanfo, Moussa; Soungalo, Traore; Katholi, Charles R; Noblet, Raymond; Fadamiro, Henry; Torres-Estrada, Jose L; Salinas-Carmona, Mario C; Baker, Bill; Unnasch, Thomas R; Cupp, Eddie W
2015-01-01
Entomological indicators are considered key metrics to document the interruption of transmission of Onchocerca volvulus, the etiological agent of human onchocerciasis. Human landing collection is the standard employed for collection of the vectors for this parasite. Recent studies reported the development of traps that have the potential for replacing humans for surveillance of O. volvulus in the vector population. However, the key chemical components of human odor that are attractive to vector black flies have not been identified. Human sweat compounds were analyzed using GC-MS analysis and compounds common to three individuals identified. These common compounds, with others previously identified as attractive to other hematophagous arthropods were evaluated for their ability to stimulate and attract the major onchocerciasis vectors in Africa (Simulium damnosum sensu lato) and Latin America (Simulium ochraceum s. l.) using electroantennography and a Y tube binary choice assay. Medium chain length carboxylic acids and aldehydes were neurostimulatory for S. damnosum s.l. while S. ochraceum s.l. was stimulated by short chain aliphatic alcohols and aldehydes. Both species were attracted to ammonium bicarbonate and acetophenone. The compounds were shown to be attractive to the relevant vector species in field studies, when incorporated into a formulation that permitted a continuous release of the compound over time and used in concert with previously developed trap platforms. The identification of compounds attractive to the major vectors of O. volvulus will permit the development of optimized traps. Such traps may replace the use of human vector collectors for monitoring the effectiveness of onchocerciasis elimination programs and could find use as a contributing component in an integrated vector control/drug program aimed at eliminating river blindness in Africa.
Sjögren, E; Halldin, M M; Stålberg, O; Sundgren-Andersson, A K
2018-05-01
The transient receptor potential vanilloid receptor 1 (TRPV1) is a nonselective cation channel involved in the mediation of peripheral pain to the central nervous system. As such, the TRPV1 is an accessible molecular target that lends itself well to the understanding of nociceptive signalling. This study encompasses preclinical investigations of three molecules with the prospect to establish them as suitable analgesic model compounds in human intradermal pain relief studies. The inhibitory effectiveness was evaluated by means of in vitro assays, TRPV1 expressing Chinese hamster ovary cells (CHO-K1) and rat dorsal root ganglion cultures in fluorescent imaging plate reader and whole cell patch clamp systems, as well as in vivo by capsaicin-evoked pain-related behavioural response studies in rat. Secondary pharmacology, pharmacokinetics and preclinical safety were also assessed. In vitro, all three compounds were effective at inhibiting capsaicin-activated TRPV1. The concentration producing 50% inhibition (IC 50 ) determined was in the range of 3-32 nmol/L and 10-501 nmol/L using CHO-K1 and dorsal root ganglion cultures, respectively. In vivo, all compounds showed dose-dependent reduction in capsaicin-evoked pain-related behavioural responses in rat. None of the three compounds displayed any significant activity on any of the secondary targets tested. The compounds were also shown to be safe from a toxicological, drug metabolism and pharmacokinetic perspective, for usage in microgram doses in the human skin. The investigated model compounds displayed ideal compound characteristics as pharmacological and translational tools to address efficacy on the human native TRPV1 target in human skin in situ. This work details the pharmaceutical work-up of three TRPV1-active investigational compounds, to obtain regulatory approval, for subsequent use in humans. This fast and cost-effective preclinical development path may impact research beyond the pain management area, as it allows human target engagement information gathering early in drug development. © 2018 European Pain Federation - EFIC®.
Novel Acylguanidine-Based Inhibitor of HIV-1
Mwimanzi, Philip; Tietjen, Ian; Miller, Scott C.; Shahid, Aniqa; Cobarrubias, Kyle; Kinloch, Natalie N.; Baraki, Bemuluyigza; Richard, Jonathan; Finzi, Andrés; Fedida, David; Brumme, Zabrina L.
2016-01-01
ABSTRACT The emergence of transmissible HIV-1 strains with resistance to antiretroviral drugs highlights a continual need for new therapies. Here we describe a novel acylguanidine-containing compound, 1-(2-(azepan-1-yl)nicotinoyl)guanidine (or SM111), that inhibits in vitro replication of HIV-1, including strains resistant to licensed protease, reverse transcriptase, and integrase inhibitors, without major cellular toxicity. At inhibitory concentrations, intracellular p24Gag production was unaffected, but virion release (measured as extracellular p24Gag) was reduced and virion infectivity was substantially impaired, suggesting that SM111 acts at a late stage of viral replication. SM111-mediated inhibition of HIV-1 was partially overcome by a Vpu I17R mutation alone or a Vpu W22* truncation in combination with Env N136Y. These mutations enhanced virion infectivity and Env expression on the surface of infected cells in the absence and presence of SM111 but also impaired Vpu's ability to downregulate CD4 and BST2/tetherin. Taken together, our results support acylguanidines as a class of HIV-1 inhibitors with a distinct mechanism of action compared to that of licensed antiretrovirals. Further research on SM111 and similar compounds may help to elucidate knowledge gaps related to Vpu's role in promoting viral egress and infectivity. IMPORTANCE New inhibitors of HIV-1 replication may be useful as therapeutics to counteract drug resistance and as reagents to perform more detailed studies of viral pathogenesis. SM111 is a small molecule that blocks the replication of wild-type and drug-resistant HIV-1 strains by impairing viral release and substantially reducing virion infectivity, most likely through its ability to prevent Env expression at the infected cell surface. Partial resistance to SM111 is mediated by mutations in Vpu and/or Env, suggesting that the compound affects host/viral protein interactions that are important during viral egress. Further characterization of SM111 and similar compounds may allow more detailed pharmacological studies of HIV-1 egress and provide opportunities to develop new treatments for HIV-1. PMID:27512074
Martel, Jan; Wu, Cheng-Yeu; Hung, Cheng-Yu; Wong, Tsui-Yin; Cheng, Ann-Joy; Cheng, Mei-Ling; Shiao, Ming-Shi; Young, John D
2016-03-14
Nanoparticles entering the human body instantly become coated with a "protein corona" that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an "organic corona" containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body.
Engineered human broncho-epithelial tissue-like assemblies
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor)
2012-01-01
Three-dimensional human broncho-epithelial tissue-like assemblies (TLAs) are produced in a rotating wall vessel (RWV) with microcarriers by coculturing mesenchymal bronchial-tracheal cells (BTC) and bronchial epithelium cells (BEC). These TLAs display structural characteristics and express markers of in vivo respiratory epithelia. TLAs are useful for screening compounds active in lung tissues such as antiviral compounds, cystic fibrosis treatments, allergens, and cytotoxic compounds.
Synthesis and evaluation of new 3-phenylcoumarin derivatives as potential antidepressant agents.
Sashidhara, Koneni V; Rao, K Bhaskara; Singh, Seema; Modukuri, Ram K; Aruna Teja, G; Chandasana, Hardik; Shukla, Shubha; Bhatta, Rabi S
2014-10-15
A series of amine substituted 3-phenyl coumarin derivatives were designed and synthesized as potential antidepressant agents. In preliminary screening, all compounds were evaluated in forced swimming test (FST), a model to screen antidepressant activity in rodents. Among the series, compounds 5c and 6a potentially decreased the immobility time by 73.4% and 79.7% at a low dose of 0.5 mg/kg as compared to standard drug fluoxetine (FXT) which reduced the immobility time by 74% at a dose of 20 mg/kg, ip. Additionally, these active compounds also exhibited significant efficacy in tail suspension test (TST) (another model to screen antidepressant compounds). Interestingly, rotarod and locomotor activity tests confirmed that these two compounds do not have any motor impairment effect and neurotoxicity in mice. Our studies demonstrate that the new 3-phenylcoumarin derivatives may serve as a promising antidepressant lead and hence pave the way for further investigation around this chemical space. Copyright © 2014 Elsevier Ltd. All rights reserved.
Substituted 2-Phenyl-Imidazopyridines: A New Class of Drug Leads for Human African Trypanosomiasis
Tatipaka, Hari Babu; Gillespie, J. Robert; Chatterjee, Arnab K.; Norcross, Neil R.; Hulverson, Matthew A.; Ranade, Ranae M.; Nagendar, Pendem; Creason, Sharon A.; McQueen, Joshua; Duster, Nicole A.; Nagle, Advait; Supek, Frantisek; Molteni, Valentina; Wenzler, Tanja; Brun, Reto; Glynne, Richard; Buckner, Frederick S.; Gelb, Michael H.
2014-01-01
A phenotypic screen of a compound library for antiparasitic activity on Trypanosoma brucei, the causative agent of human African trypanosomiasis, led to the identification of substituted 2-(3-aminophenyl) oxazolopyridines as a starting point for hit-to-lead medicinal chemistry. A total of 110 analogues were prepared, which led to the identification of 64, a substituted 2-(3-aminophenyl) imidazopyridine. This compound showed antiparasitic activity in vitro with an EC50 of 2 nM and displayed reasonable drug-like properties when tested in a number of in vitro assays. The compound was orally bioavailable and displayed good plasma and brain exposure in mice. Compound 64 cured mice infected with Trypanosoma brucei when dosed orally down to 2.5 mg/kg. Given its potent anti-parasitic properties and its ease of synthesis, compound 64 represents a new lead for the development of drugs to treat human African trypanosomiasis. PMID:24354316
Hrnkova, Miroslava; Zilka, Norbert; Minichova, Zuzana; Koson, Peter; Novak, Michal
2007-01-26
Human truncated tau protein is an active constituent of the neurofibrillary degeneration in sporadic Alzheimer's disease. We have shown that modified tau protein, when expressed as a transgene in rats, induced AD characteristic tau cascade consisting of tau hyperphosphorylation, formation of argyrophilic tangles and sarcosyl-insoluble tau complexes. These pathological changes led to the functional impairment characterized by a variety of neurobehavioural symptoms. In the present study we have focused on the behavioural alterations induced by transgenic expression of human truncated tau. Transgenic rats underwent a battery of behavioural tests involving cognitive- and sensorimotor-dependent tasks accompanied with neurological assessment at the age of 4.5, 6 and 9 months. Behavioural examination of these rats showed altered spatial navigation in Morris water maze resulting in less time spent in target quadrant (p<0.05) and fewer crossings over previous platform position (p<0.05) during probe trial. Spontaneous locomotor activity and anxiety in open field was not influenced by transgene expression. However beam walking test revealed that transgenic rats developed progressive sensorimotor disturbances related to the age of tested animals. The disturbances were most pronounced at the age of 9 months (p<0.01). Neurological alterations indicating impaired reflex responses were other added features of behavioural phenotype of this novel transgenic rat. These results allow us to suggest that neurodegeneration, caused by the non-mutated human truncated tau derived from sporadic human AD, result in the neuronal dysfunction consequently leading to the progressive neurobehavioural impairment.
Mutations in Nicotinamide Nucleotide Transhydrogenase (NNT) cause familial glucocorticoid deficiency
Meimaridou, Eirini; Kowalczyk, Julia; Guasti, Leonardo; Hughes, Claire R.; Wagner, Florian; Frommolt, Peter; Nürnberg, Peter; Mann, Nicholas P.; Banerjee, Ritwik; Saka, H. Nurcin; Chapple, J. Paul; King, Peter J.; Clark, Adrian J.L.; Metherell, Louise A.
2012-01-01
Using targeted exome sequencing we identified mutations in NNT, an antioxidant defence gene, in patients with familial glucocorticoid deficiency. In mice with Nnt loss, higher levels of adrenocortical cell apoptosis and impaired glucocorticoid production were observed. NNT knockdown in a human adrenocortical cell line resulted in impaired redox potential and increased ROS levels. Our results suggest that NNT may have a role in ROS detoxification in human adrenal glands. PMID:22634753
Acupuncture improves cognitive function: A systematic review☆
Leung, Mason Chin Pang; Yip, Ka Keung; Lam, Chung Tsung; Lam, Ka Shun; Lau, Wai; Yu, Wing Lam; Leung, Amethyst King Man; So, Kwok-fai
2013-01-01
BACKGROUND: Acupuncture has been used as a treatment for cognitive impairment. OBJECTIVE: This review assesses clinical evidence for or against acupuncture as a treatment for cognitive impairment. This review also discusses the proposed mechanism(s) that could link acupuncture to improved cognitive function. METHODS: We searched the literature using PolyUone search from its inception to January 2013, with full text available and language limited to English. Levels of evidence were examined using Oxford Centre for Evidence-based Medicine–Levels of Evidence (March, 2009). RESULTS: Twelve studies met the inclusion criteria: 3 human studies and 9 animal studies. Levels of evidence ranged from level 1b to level 5. CONCLUSION: Most animal studies demonstrated a positive effect of acupuncture on cognitive impairment. However, the results of human studies were inconsistent. Further high-quality human studies with greater statistical power are needed to determine the effectiveness of acupuncture and an optimal protocol. PMID:25206464
TRIMETHYLTIN, A SELECTIVE LIMBIC SYSTEM NEUROTOXICANT, IMPAIRS RADIAL-ARM MAZE PERFORMANCE
Rats were trained for fifteen sessions in an automated eight arm radial maze prior to treatment with 6 mg/kg trimethyltin chloride. This compound is a neurotoxicant which primarily damages the limbic system, in particular pyramidal cells in the CA3 region of the hippocampus. Foll...
The volatile organic compound 2,2,4-trimethylpentane (TMP, “isooctane”) is a primary constituent of gasoline for which the current health effects data are insufficient to permit EPA to conduct a risk assessment. We evaluated potential neurological impairment from acute inhalati...
The volatile organic compound 2,2,4-trimethylpentane (TMP, "isooctane") is a constituent of gasoline for which the current health effects data are insufficient to permit the US Environmental Protection Agency to conduct a risk assessment. The potential neurological impairment fro...
2014-01-01
Arsenic-containing lipids (arsenolipids) are natural products present in fish and algae. Because these compounds occur in foods, there is considerable interest in their human toxicology. We report the synthesis and characterization of seven arsenic-containing lipids, including six natural products. The compounds comprise dimethylarsinyl groups attached to saturated long-chain hydrocarbons (three compounds), saturated long-chain fatty acids (two compounds), and monounsaturated long chain fatty acids (two compounds). The arsenic group was introduced through sodium dimethylarsenide or bis(dimethylarsenic) oxide. The latter route provided higher and more reproducible yields, and consequently, this pathway was followed to synthesize six of the seven compounds. Mass spectral properties are described to assist in the identification of these compounds in natural samples. The pure synthesized arsenolipids will be used for in vitro experiments with human cells to test their uptake, biotransformation, and possible toxic effects. PMID:24683287
ERIC Educational Resources Information Center
Elias, Ryan J.; Hopfer, Helene; Hofstaedter, Amanda N.; Hayes, John E.
2017-01-01
The human nose is a very sensitive detector and is able to detect potent aroma compounds down to low ng/L levels. These levels are often below detection limits of analytical instrumentation. The following laboratory exercise is designed to compare instrumental and human methods for the detection of volatile odor active compounds. Reference…
The Risk Assessment Forum (RAF) Human Health TEFs document describes EPA’s updated approach for evaluating the human health risks from exposures to environmental media containing dioxin-like compounds. It recommends the use of consensus TEF values for 2,3,7,8-tetrachlorodibenzo-...
Three new sesquiterpenes from Pterocarpus santalinus.
Li, Li; Tao, Run-Hong; Wu, Ji-Ming; Guo, Ya-Ping; Huang, Chao; Liang, Hong-Gang; Fan, Le-Zhi; Zhang, Hai-Yan; Sun, Ren-Kuan; Shang, Lei; Lu, Li-Na; Huang, Jian; Wang, Jin-Hui
2018-04-01
Three new sesquiterpenes of canusesnol K (1), canusesnol L (2) and 12, 15-dihydroxycurcumene (3), along with five known ones (4-8), were isolated from the heartwood extract of Pterocarpus santalinus. Their structures were established by extensive analyses of 1D and 2D NMR spectroscopy, including 1 H NMR, 13 C NMR, HSQC, HMBC and NOESY, and HRESI-MS. The absolute configurations of the new compounds were established with Modified Mosher's method. The cytotoxic activities of all these compounds against HepG2 (human liver cancer), MCF-7 (human breast cancer), MDA-MB-231 (human breast cancer), and Hela (human cervical carcinoma) cancer cell lines were evaluated. Compound 1 exhibited moderate cytotoxic activity toward MDA-MB-231 cell lines.
[Indoor air pollution by polychlorinated biphenyl compounds in permanently elastic sealants].
Burkhardt, U; Bork, M; Balfanz, E; Leidel, J
1990-10-01
A common cause for indoor pollution by polycholorinated biphenyls (PCB) are defective capacitors of luminous discharge lamps. This paper describes elastic sealing compounds as another source of PCB pollution in buildings. In several rooms of a large school building indoor concentrations of 1000 ng PCB/m3 and more were registered. The total PCB concentration in sealing compounds ranged between 124,000 and 327,000 ppm. Blood specimens drawn from the school's personnel did not show elevated PCB concentrations, but additional incorporation of PCB via the respiratory tract cannot be excluded. We do not presume that any impairment of the health has been caused by this pollutant, but we think that reduction of the PCB indoor concentrations would be advisable for prophylactic purposes. Attention should be given to so-called open PCB systems such as elastic sealing compounds. Although they have been prohibited 1978, there might be a widespread use in older buildings.
Brychkova, Galina; Yarmolinsky, Dmitry; Batushansky, Albert; Grishkevich, Vladislav; Khozin-Goldberg, Inna; Fait, Aaron; Amir, Rachel; Fluhr, Robert; Sagi, Moshe
2015-01-01
Plant sulfite oxidase [SO; E.C.1.8.3.1] has been shown to be a key player in protecting plants against exogenous toxic sulfite. Recently we showed that SO activity is essential to cope with rising dark-induced endogenous sulfite levels in tomato plants (Lycopersicon esculentum/Solanum lycopersicum Mill. cv. Rheinlands Ruhm). Here we uncover the ramifications of SO impairment on carbon, nitrogen and sulfur (S) metabolites. Current analysis of the wild-type and SO-impaired plants revealed that under controlled conditions, the imbalanced sulfite level resulting from SO impairment conferred a metabolic shift towards elevated reduced S-compounds, namely sulfide, S-amino acids (S-AA), Co-A and acetyl-CoA, followed by non-S-AA, nitrogen and carbon metabolite enhancement, including polar lipids. Exposing plants to dark-induced carbon starvation resulted in a higher degradation of S-compounds, total AA, carbohydrates, polar lipids and total RNA in the mutant plants. Significantly, a failure to balance the carbon backbones was evident in the mutants, indicated by an increase in tricarboxylic acid cycle (TCA) cycle intermediates, whereas a decrease was shown in stressed wild-type plants. These results indicate that the role of SO is not limited to a rescue reaction under elevated sulfite, but SO is a key player in maintaining optimal carbon, nitrogen and sulfur metabolism in tomato plants. PMID:27135342
Li, Guo-Fu; Yu, Guo; Li, Yanfei; Zheng, Yi; Zheng, Qing-Shan; Derendorf, Hartmut
2018-07-01
Quantitative prediction of unbound drug fraction (f u ) is essential for scaling pharmacokinetics through physiologically based approaches. However, few attempts have been made to evaluate the projection of f u values under pathological conditions. The primary objective of this study was to predict f u values (n = 105) of 56 compounds with or without the information of predominant binding protein in patients with varying degrees of hepatic insufficiency by accounting for quantitative changes in molar concentrations of either the major binding protein or albumin plus alpha 1-acid glycoprotein associated with differing levels of hepatic dysfunction. For the purpose of scaling, data pertaining to albumin and α1-acid glycoprotein levels in response to differing degrees of hepatic impairment were systematically collected from 919 adult donors. The results of the present study demonstrate for the first time the feasibility of physiologically based scaling f u in hepatic dysfunction after verifying with experimentally measured data of a wide variety of compounds from individuals with varying degrees of hepatic insufficiency. Furthermore, the high level of predictive accuracy indicates that the inter-relation between the severity of hepatic impairment and these plasma protein levels are physiologically accurate. The present study enhances the confidence in predicting f u in hepatic insufficiency, particularly for albumin-bound drugs. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Olive Tree (Olea europeae L.) Leaves: Importance and Advances in the Analysis of Phenolic Compounds
Abaza, Leila; Taamalli, Amani; Nsir, Houda; Zarrouk, Mokhtar
2015-01-01
Phenolic compounds are becoming increasingly popular because of their potential role in contributing to human health. Experimental evidence obtained from human and animal studies demonstrate that phenolic compounds from Olea europaea leaves have biological activities which may be important in the reduction in risk and severity of certain chronic diseases. Therefore, an accurate profiling of phenolics is a crucial issue. In this article, we present a review work on current treatment and analytical methods used to extract, identify, and/or quantify phenolic compounds in olive leaves. PMID:26783953
Traffic noise causes physiological stress and impairs breeding migration behaviour in frogs
Tennessen, Jennifer B.; Parks, Susan E.; Langkilde, Tracy
2014-01-01
Human-generated noise has profoundly changed natural soundscapes in aquatic and terrestrial ecosystems, imposing novel pressures on ecological processes. Despite interest in identifying the ecological consequences of these altered soundscapes, little is known about the sublethal impacts on wildlife population health and individual fitness. We present evidence that noise induces a physiological stress response in an amphibian and impairs mate attraction in the natural environment. Traffic noise increased levels of a stress-relevant glucocorticoid hormone (corticosterone) in female wood frogs (Lithobates sylvaticus) and impaired female travel towards a male breeding chorus in the field, providing insight into the sublethal consequences of acoustic habitat loss. Given that prolonged elevated levels of corticosterone can have deleterious consequences on survival and reproduction and that impaired mate attraction can impact population persistence, our results suggest a novel pathway by which human activities may be imposing population-level impacts on globally declining amphibians. PMID:27293653
Traffic noise causes physiological stress and impairs breeding migration behaviour in frogs.
Tennessen, Jennifer B; Parks, Susan E; Langkilde, Tracy
2014-01-01
Human-generated noise has profoundly changed natural soundscapes in aquatic and terrestrial ecosystems, imposing novel pressures on ecological processes. Despite interest in identifying the ecological consequences of these altered soundscapes, little is known about the sublethal impacts on wildlife population health and individual fitness. We present evidence that noise induces a physiological stress response in an amphibian and impairs mate attraction in the natural environment. Traffic noise increased levels of a stress-relevant glucocorticoid hormone (corticosterone) in female wood frogs (Lithobates sylvaticus) and impaired female travel towards a male breeding chorus in the field, providing insight into the sublethal consequences of acoustic habitat loss. Given that prolonged elevated levels of corticosterone can have deleterious consequences on survival and reproduction and that impaired mate attraction can impact population persistence, our results suggest a novel pathway by which human activities may be imposing population-level impacts on globally declining amphibians.
Jack, Clifford R; Wiste, Heather J; Vemuri, Prashanthi; Weigand, Stephen D; Senjem, Matthew L; Zeng, Guang; Bernstein, Matt A; Gunter, Jeffrey L; Pankratz, Vernon S; Aisen, Paul S; Weiner, Michael W; Petersen, Ronald C; Shaw, Leslie M; Trojanowski, John Q; Knopman, David S
2010-11-01
Biomarkers of brain Aβ amyloid deposition can be measured either by cerebrospinal fluid Aβ42 or Pittsburgh compound B positron emission tomography imaging. Our objective was to evaluate the ability of Aβ load and neurodegenerative atrophy on magnetic resonance imaging to predict shorter time-to-progression from mild cognitive impairment to Alzheimer's dementia and to characterize the effect of these biomarkers on the risk of progression as they become increasingly abnormal. A total of 218 subjects with mild cognitive impairment were identified from the Alzheimer's Disease Neuroimaging Initiative. The primary outcome was time-to-progression to Alzheimer's dementia. Hippocampal volumes were measured and adjusted for intracranial volume. We used a new method of pooling cerebrospinal fluid Aβ42 and Pittsburgh compound B positron emission tomography measures to produce equivalent measures of brain Aβ load from either source and analysed the results using multiple imputation methods. We performed our analyses in two phases. First, we grouped our subjects into those who were 'amyloid positive' (n = 165, with the assumption that Alzheimer's pathology is dominant in this group) and those who were 'amyloid negative' (n = 53). In the second phase, we included all 218 subjects with mild cognitive impairment to evaluate the biomarkers in a sample that we assumed to contain a full spectrum of expected pathologies. In a Kaplan-Meier analysis, amyloid positive subjects with mild cognitive impairment were much more likely to progress to dementia within 2 years than amyloid negative subjects with mild cognitive impairment (50 versus 19%). Among amyloid positive subjects with mild cognitive impairment only, hippocampal atrophy predicted shorter time-to-progression (P < 0.001) while Aβ load did not (P = 0.44). In contrast, when all 218 subjects with mild cognitive impairment were combined (amyloid positive and negative), hippocampal atrophy and Aβ load predicted shorter time-to-progression with comparable power (hazard ratio for an inter-quartile difference of 2.6 for both); however, the risk profile was linear throughout the range of hippocampal atrophy values but reached a ceiling at higher values of brain Aβ load. Our results are consistent with a model of Alzheimer's disease in which Aβ deposition initiates the pathological cascade but is not the direct cause of cognitive impairment as evidenced by the fact that Aβ load severity is decoupled from risk of progression at high levels. In contrast, hippocampal atrophy indicates how far along the neurodegenerative path one is, and hence how close to progressing to dementia. Possible explanations for our finding that many subjects with mild cognitive impairment have intermediate levels of Aβ load include: (i) individual subjects may reach an Aβ load plateau at varying absolute levels; (ii) some subjects may be more biologically susceptible to Aβ than others; and (iii) subjects with mild cognitive impairment with intermediate levels of Aβ may represent individuals with Alzheimer's disease co-existent with other pathologies.
McRae, Steven; Pagliai, Fernando A; Mohapatra, Nrusingh P; Gener, Alejandro; Mahmou, Asma Sayed Abdelgeliel; Gunn, John S; Lorca, Graciela L; Gonzalez, Claudio F
2010-02-19
Acid phosphatase activity in the highly infectious intracellular pathogen Francisella tularensis is directly related with the ability of these bacteria to survive inside host cells. Pharmacological inactivation of acid phosphatases could potentially help in the treatment of tularemia or even be utilized to neutralize the infection. In the present work, we report inhibitory compounds for three of the four major acid phosphatases produced by F. tularensis SCHU4: AcpA, AcpB, and AcpC. The inhibitors were identified using a catalytic screen from a library of chemicals approved for use in humans. The best results were obtained against AcpA. The two compounds identified, ascorbate (K(i) = 380 +/- 160 microM) and 2-phosphoascorbate (K(i) = 3.2 +/- 0.85 microM) inhibit AcpA in a noncompetitive, nonreversible fashion. A potential ascorbylation site in the proximity of the catalytic pocket of AcpA was identified using site-directed mutagenesis. The effects of the inhibitors identified in vitro were evaluated using bioassays determining the ability of F. tularensis to survive inside infected cells. The presence of ascorbate or 2-phosphoascorbate impaired the intramacrophage survival of F. tularensis in an AcpA-dependent manner as it was probed using knockout strains. The evidence presented herein indicated that ascorbate could be a good alternative to be used clinically to improve treatments against tularemia.
Textile dyes induce toxicity on zebrafish early life stages.
de Oliveira, Gisele Augusto Rodrigues; de Lapuente, Joaquín; Teixidó, Elisabet; Porredón, Constança; Borràs, Miquel; de Oliveira, Danielle Palma
2016-02-01
Textile manufacturing is one of the most polluting industrial sectors because of the release of potentially toxic compounds, such as synthetic dyes, into the environment. Depending on the class of the dyes, their loss in wastewaters can range from 2% to 50% of the original dye concentration. Consequently, uncontrolled use of such dyes can negatively affect human health and the ecological balance. The present study assessed the toxicity of the textile dyes Direct Black 38 (DB38), Reactive Blue 15 (RB15), Reactive Orange 16 (RO16), and Vat Green 3 (VG3) using zebrafish (Danio rerio) embryos for 144 h postfertilization (hpf). At the tested conditions, none of the dyes caused significant mortality. The highest RO16 dose significantly delayed or inhibited the ability of zebrafish embryos to hatch from the chorion after 96 hpf. From 120 hpf to 144 hpf, all the dyes impaired the gas bladder inflation of zebrafish larvae, DB38 also induced curved tail, and VG3 led to yolk sac edema in zebrafish larvae. Based on these data, DB38, RB15, RO16, and VG3 can induce malformations during embryonic and larval development of zebrafish. Therefore, it is essential to remove these compounds from wastewater or reduce their concentrations to safe levels before discharging textile industry effluents into the aquatic environment. © 2015 SETAC.
McRae, Steven; Pagliai, Fernando A.; Mohapatra, Nrusingh P.; Gener, Alejandro; Abdelgeliel Mahmou, Asma Sayed; Gunn, John S.; Lorca, Graciela L.; Gonzalez, Claudio F.
2010-01-01
Acid phosphatase activity in the highly infectious intracellular pathogen Francisella tularensis is directly related with the ability of these bacteria to survive inside host cells. Pharmacological inactivation of acid phosphatases could potentially help in the treatment of tularemia or even be utilized to neutralize the infection. In the present work, we report inhibitory compounds for three of the four major acid phosphatases produced by F. tularensis SCHU4: AcpA, AcpB, and AcpC. The inhibitors were identified using a catalytic screen from a library of chemicals approved for use in humans. The best results were obtained against AcpA. The two compounds identified, ascorbate (Ki = 380 ± 160 μm) and 2-phosphoascorbate (Ki = 3.2 ± 0.85 μm) inhibit AcpA in a noncompetitive, nonreversible fashion. A potential ascorbylation site in the proximity of the catalytic pocket of AcpA was identified using site-directed mutagenesis. The effects of the inhibitors identified in vitro were evaluated using bioassays determining the ability of F. tularensis to survive inside infected cells. The presence of ascorbate or 2-phosphoascorbate impaired the intramacrophage survival of F. tularensis in an AcpA-dependent manner as it was probed using knockout strains. The evidence presented herein indicated that ascorbate could be a good alternative to be used clinically to improve treatments against tularemia. PMID:20028980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lybarger, J.A.; Spengler, R.F.; Brown, D.R.
1998-10-01
This paper estimates the health costs at Superfund sites for conditions associated with volatile organic compounds (VOCs) in drinking water. Health conditions were identified from published literature and registry information as occurring at excess rates in VOC-exposed populations. These health conditions were: (1) some categories of birth defects, (2) urinary tract disorders, (3) diabetes, (4) eczema and skin conditions, (5) anemia, (6) speech and hearing impairments in children under 10 years of age, and (7) stroke. Excess rates were used to estimate the excess number of cases occurring among the total population living within one-half mile of 258 Superfund sites.more » These sites had evidence of completed human exposure pathways for VOCs in drinking water. For each type of medical condition, an individual`s expected medical costs, long-term care costs, and lost work time due to illness or premature mortality were estimated. Costs were calculated to be approximately $330 million per year, in the absence of any remediation or public health intervention programs. The results indicate the general magnitude of the economic burden associated with a limited number of contaminants at a portion of all Superfund sites, thus suggesting that the burden would be greater than that estimated in this study if all contaminants at all Superfund sites could be taken into account.« less
Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species
Wythe, Joshua D.; Liu, Jiandong; Cartry, Jerome; Vogler, Georg; Mohapatra, Bhagyalaxmi; Otway, Robyn T.; Huang, Yu; King, Isabelle N.; Maillet, Marjorie; Zheng, Yi; Crawley, Timothy; Taghli-Lamallem, Ouarda; Semsarian, Christopher; Dunwoodie, Sally; Winlaw, David; Harvey, Richard P.; Fatkin, Diane; Towbin, Jeffrey A.; Molkentin, Jeffery D.; Srivastava, Deepak; Ocorr, Karen; Bruneau, Benoit G.
2011-01-01
Unraveling the gene regulatory networks that govern development and function of the mammalian heart is critical for the rational design of therapeutic interventions in human heart disease. Using the Drosophila heart as a platform for identifying novel gene interactions leading to heart disease, we found that the Rho-GTPase Cdc42 cooperates with the cardiac transcription factor Tinman/Nkx2-5. Compound Cdc42, tinman heterozygous mutant flies exhibited impaired cardiac output and altered myofibrillar architecture, and adult heart–specific interference with Cdc42 function is sufficient to cause these same defects. We also identified K+ channels, encoded by dSUR and slowpoke, as potential effectors of the Cdc42–Tinman interaction. To determine whether a Cdc42–Nkx2-5 interaction is conserved in the mammalian heart, we examined compound heterozygous mutant mice and found conduction system and cardiac output defects. In exploring the mechanism of Nkx2-5 interaction with Cdc42, we demonstrated that mouse Cdc42 was a target of, and negatively regulated by miR-1, which itself was negatively regulated by Nkx2-5 in the mouse heart and by Tinman in the fly heart. We conclude that Cdc42 plays a conserved role in regulating heart function and is an indirect target of Tinman/Nkx2-5 via miR-1. PMID:21690310
Schirmer, Helena; Pereira, Talita Carneiro Brandão; Rico, Eduardo Pacheco; Rosemberg, Denis Broock; Bonan, Carla Denise; Bogo, Maurício Reis; Souto, André Arigony
2012-03-01
Sirtuins (SIRTs) are NAD(+)-dependent deacetylases that catalyze the hydrolysis of acetyl-lysine residues. They play an important role in many physiological and pathophysiological processes, such as the regulation of lifespan and the prevention of metabolic diseases. In this study, we analyzed the effect of resveratrol on the gene expression levels of SIRT1, SIRT3, SIRT4, PGC1α, and NAMPT, as well as its effect on NAD(+) and NADH levels, in the liver of non stressed or non impaired wild-type zebrafish. Semiquantative RT-PCR assays showed that resveratrol did not change the mRNA levels of SIRT1 and PGC1α but decreased the expression levels of the SIRT3, SIRT4, and NAMPT genes. The decrease in NAMPT mRNA levels was accompanied by an increase in NADH levels, thereby decreasing the NAD(+)/H ratio. Taken together, our results suggest that resveratrol plays a modulatory role in the transcription of the NAMPT, SIRT3, and SIRT4 genes. Zebrafish is an interesting tool that can be used to understand the mechanisms of SIRTs and NAMPT metabolism and to help develop therapeutic compounds. However, further investigations using healthy experimental animals are required to study the modulation of the SIRT and NAMPT genes by resveratrol before it is used as a nutraceutical compound in healthy humans.
Bhosale, Sachin K; Deshpande, Shreenivas R; Wagh, Rajendra D
2017-03-01
The title compound, 3-(4-chlorophenyl)-4-formyl-[1, 2, 3] oxadiazol-3-ium-5-olate 5 was synthesized under ultrasonication by formylation of 3-(4-chlorophenyl)-[1, 2, 3] oxadiazol-3-ium-5-olate 4 and characterized by spectral studies. The ultrasonic method of synthesis was found to be simple, ecofriendly, economical, reduces reaction time and gave good yield when compared with traditional methods of synthesis. Anticancer activity of the compounds were tested against 60 human tumor cell lines and compared with standard drug vincristine sulphate. Compound 5 was found to be active against CNS (SNB-75, %GI=46.71), renal (UO-31, %GI=31.52), non small cell lung (NCI-H522, %GI=25.65), leukemia (MOLT-4, %GI=23.02) human tumor cell lines whereas, compound 4 against breast (MDA-MB-231/ATCC, %GI=19.90, T-47D %GI=16.50, MCF-7 15.10) and ovarian (IGROV1 %GI=19.30, OVCAR-4 %GI=17.90) human tumor cell lines. Compound 5 showed higher cytotoxicity against NCI-H23 cells (non small lung cancer cell panel) as compared to standard drug vincristine sulphate. Further structural modification of these compounds may lead to potent anticancer activity.
Kanaan, Georges N; Ichim, Bianca; Gharibeh, Lara; Maharsy, Wael; Patten, David A; Xuan, Jian Ying; Reunov, Arkadiy; Marshall, Philip; Veinot, John; Menzies, Keir; Nemer, Mona; Harper, Mary-Ellen
2018-04-01
Glutaredoxin 2 (GRX2), a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and cardiac hypertrophy in mice but the impact on mitochondrial structure and function in intact cardiomyocytes and in humans has not been explored. We hypothesized that Grx2 controls cardiac mitochondrial dynamics and function in cellular and mouse models, and that low expression is associated with human cardiac dysfunction. Here we show that Grx2 absence impairs mitochondrial fusion, ultrastructure and energetics in primary cardiomyocytes and cardiac tissue. Moreover, provision of the glutathione precursor, N-acetylcysteine (NAC) to Grx2-/- mice did not restore glutathione redox or prevent impairments. Using genetic and histopathological data from the human Genotype-Tissue Expression consortium we demonstrate that low GRX2 is associated with fibrosis, hypertrophy, and infarct in the left ventricle. Altogether, GRX2 is important in the control of cardiac mitochondrial structure and function, and protects against human cardiac pathologies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Ward, Libby; Pasinetti, Giulio Maria
2016-01-01
Extensive evidence has demonstrated that psychological stress has detrimental effects on psychological health, cognitive function, and ultimately well-being. While stressful events are a significant cause of psychopathology, most individuals exposed to adversity maintain normal psychological functioning. The mechanisms underlying such resilience are poorly understood, and there is an urgent need to identify and target these mechanisms to promote resilience under stressful events. Botanicals have been used throughout history to treat various medical conditions; however, the development of botanical compounds into potential preventative and therapeutic agents in studies promoting brain health is hindered by the fact that most orally consumed botanicals are extensively metabolized during absorption and/or by post-absorptive xenobiotic metabolism. Therefore, the primary objective of this review article is to provide recommendations for developing natural compounds as novel therapeutic strategies to promote resilience in susceptible subjects. The development of botanical polyphenols to ultimately attenuate mood disorders and cognitive impairment will rely on understanding (1) the absorption and bioavailability of botanical polyphenols with emphasis on flavan-3-ols, (2) the characterization of tissue specific accumulation of biologically available polyphenols and their mechanisms of action in the brain, and eventually (3) the characterization of biologically available polyphenol metabolites in mechanisms associated with the promotion of resilience against mood disorders and cognitive impairment in response to stress. We also summarize exciting new lines of investigation about the role of botanicals such as polyphenols in the promotion of cognitive and psychological resilience. This information will provide a strategical framework for the future development of botanicals as therapeutic agents to promote resilience, ultimately preventing and/or therapeutically treating cognitive impairment and psychological dysfunction. PMID:27342633
Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees.
Williamson, Sally M; Wright, Geraldine A
2013-05-15
Pesticides are important agricultural tools often used in combination to avoid resistance in target pest species, but there is growing concern that their widespread use contributes to the decline of pollinator populations. Pollinators perform sophisticated behaviours while foraging that require them to learn and remember floral traits associated with food, but we know relatively little about the way that combined exposure to multiple pesticides affects neural function and behaviour. The experiments reported here show that prolonged exposure to field-realistic concentrations of the neonicotinoid imidacloprid and the organophosphate acetylcholinesterase inhibitor coumaphos and their combination impairs olfactory learning and memory formation in the honeybee. Using a method for classical conditioning of proboscis extension, honeybees were trained in either a massed or spaced conditioning protocol to examine how these pesticides affected performance during learning and short- and long-term memory tasks. We found that bees exposed to imidacloprid, coumaphos, or a combination of these compounds, were less likely to express conditioned proboscis extension towards an odor associated with reward. Bees exposed to imidacloprid were less likely to form a long-term memory, whereas bees exposed to coumaphos were only less likely to respond during the short-term memory test after massed conditioning. Imidacloprid, coumaphos and a combination of the two compounds impaired the bees' ability to differentiate the conditioned odour from a novel odour during the memory test. Our results demonstrate that exposure to sublethal doses of combined cholinergic pesticides significantly impairs important behaviours involved in foraging, implying that pollinator population decline could be the result of a failure of neural function of bees exposed to pesticides in agricultural landscapes.
Ward, Libby; Pasinetti, Giulio Maria
2016-09-01
Extensive evidence has demonstrated that psychological stress has detrimental effects on psychological health, cognitive function, and ultimately well-being. While stressful events are a significant cause of psychopathology, most individuals exposed to adversity maintain normal psychological functioning. The mechanisms underlying such resilience are poorly understood, and there is an urgent need to identify and target these mechanisms to promote resilience under stressful events. Botanicals have been used throughout history to treat various medical conditions; however, the development of botanical compounds into potential preventative and therapeutic agents in studies promoting brain health is hindered by the fact that most orally consumed botanicals are extensively metabolized during absorption and/or by post-absorptive xenobiotic metabolism. Therefore, the primary objective of this review article is to provide recommendations for developing natural compounds as novel therapeutic strategies to promote resilience in susceptible subjects. The development of botanical polyphenols to ultimately attenuate mood disorders and cognitive impairment will rely on understanding (1) the absorption and bioavailability of botanical polyphenols with emphasis on flavan-3-ols, (2) the characterization of tissue-specific accumulation of biologically available polyphenols and their mechanisms of action in the brain, and eventually (3) the characterization of biologically available polyphenol metabolites in mechanisms associated with the promotion of resilience against mood disorders and cognitive impairment in response to stress. We also summarize exciting new lines of investigation about the role of botanicals such as polyphenols in the promotion of cognitive and psychological resilience. This information will provide a strategical framework for the future development of botanicals as therapeutic agents to promote resilience, ultimately preventing and/or therapeutically treating cognitive impairment and psychological dysfunction.
Lins, Brittney R; Phillips, Anthony G; Howland, John G
2015-12-01
New pharmacological treatments for the cognitive deficits in schizophrenia are needed. Tetrahydroprotoberberines, such as govadine, are one class of compounds with dopaminergic activities that may be useful in treating some aspects of the cognitive symptoms of the disorder. The objective of the present studies was to test the effects of the D- and L-enantiomers of govadine on the impairment in a paired-associate learning (PAL) task produced by acute MK-801 in rats. We also assessed effects of the typical antipsychotic haloperidol as a comparator compound. MK-801 (0.05, 0.1, 0.15, and 0.2 mg/kg), D- and L-govadine (0.3, 1.0, and 3.0 mg/kg), and haloperidol (0.05, 0.1, and 0.25 mg/kg) were administered acutely to rats well trained on the PAL task in touchscreen-equipped operant conditioning chambers. Acute MK-801 impaired performance of PAL in a dose-dependent manner by reducing accuracy and increasing correction trials. L-Govadine (1.0 mg/kg), but not D-govadine, blocked the disruptive effects of MK-801 (0.15 mg/kg) on PAL. Haloperidol failed to affect the MK-801-induced disruption of PAL. Higher doses of L-govadine and haloperidol dramatically impaired performance of the task which confounded interpretation of cognitive outcomes. L-Govadine appears unique in its ability to improve performance of the MK-801-induced impairment in the PAL task. This behavioral effect may relate the ability of L-govadine to antagonize dopamine D2 receptors while also promoting dopamine efflux. Future research should further characterize the role of the dopamine system in the rodent PAL task to elucidate the mechanisms of its pro-cognitive effects.
Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees
Williamson, Sally M.; Wright, Geraldine A.
2013-01-01
SUMMARY Pesticides are important agricultural tools often used in combination to avoid resistance in target pest species, but there is growing concern that their widespread use contributes to the decline of pollinator populations. Pollinators perform sophisticated behaviours while foraging that require them to learn and remember floral traits associated with food, but we know relatively little about the way that combined exposure to multiple pesticides affects neural function and behaviour. The experiments reported here show that prolonged exposure to field-realistic concentrations of the neonicotinoid imidacloprid and the organophosphate acetylcholinesterase inhibitor coumaphos and their combination impairs olfactory learning and memory formation in the honeybee. Using a method for classical conditioning of proboscis extension, honeybees were trained in either a massed or spaced conditioning protocol to examine how these pesticides affected performance during learning and short- and long-term memory tasks. We found that bees exposed to imidacloprid, coumaphos, or a combination of these compounds, were less likely to express conditioned proboscis extension towards an odor associated with reward. Bees exposed to imidacloprid were less likely to form a long-term memory, whereas bees exposed to coumaphos were only less likely to respond during the short-term memory test after massed conditioning. Imidacloprid, coumaphos and a combination of the two compounds impaired the bees' ability to differentiate the conditioned odour from a novel odour during the memory test. Our results demonstrate that exposure to sublethal doses of combined cholinergic pesticides significantly impairs important behaviours involved in foraging, implying that pollinator population decline could be the result of a failure of neural function of bees exposed to pesticides in agricultural landscapes. PMID:23393272
A human fecal contamination index for ranking impaired ...
Human fecal pollution of surface water remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for recreational water quality risk management. The transition from a research subject to a management tool requires the integration of standardized water sampling, laboratory, and data analysis procedures. In this study, a standardized HF183/BacR287 qPCR method was combined with a water sampling strategy and Bayesian data algorithm to establish a human fecal contamination index that can be used to rank impaired recreational water sites polluted with human waste. Stability and bias of index predictions were investigated under various parameters including siteswith different pollution levels, sampling period time range (1-15 weeks), and number of qPCR replicates per sample (2-14 replicates). Sensitivity analyses were conducted with simulated data sets (100 iterations) seeded with HF183/BacR287 qPCR laboratory measurements from water samples collected from three Southern California sites (588 qPCR measurements). Findings suggest that site ranking is feasible and that all parameters tested influence stability and bias in human fecal contamination indexscoring. Trends identified by sensitivity analyses will provide managers with the information needed to design and conduct field studies to rank impaired recreational water sites based
The insidious effect of diatoms on copepod reproduction
NASA Astrophysics Data System (ADS)
Miralto, A.; Barone, G.; Romano, G.; Poulet, S. A.; Ianora, A.; Russo, G. L.; Buttino, I.; Mazzarella, G.; Laabir, M.; Cabrini, M.; Giacobbe, M. G.
1999-11-01
The productive regions of the ocean are characterized by seasonal blooms of phytoplankton which are generally dominated by diatoms. This algal class has, therefore, traditionally been regarded as providing the bulk of the food that sustains the marine food chain to top consumers and important fisheries. However, this beneficial role has recently been questioned on the basis of laboratory studies showing that although dominant zooplankton grazers such as copepods feed extensively on diatoms, the hatching success of eggs thus produced is seriously impaired. Here we present evidence from the field showing that the hatching success of wild copepods feeding on a diatom-dominated bloom is also heavily compromised, with only 12% of the eggs hatching compared with 90% in post-bloom conditions. We report on the structure of the three aldehydes isolated from diatoms that are responsible for this biological activity, and show that these compounds arrest embryonic development in copepod and sea urchin bioassays and have antiproliferative and apoptotic effects on human carcinoma cells.
Ronald, Sharon; Awate, Sanket; Rath, Abhijit; Carroll, Jennifer; Galiano, Floyd; Dwyer, Donard; Kleiner-Hancock, Heather; Mathis, J. Michael; Vigod, Simone
2013-01-01
The Tousled-like kinases (TLKs) are involved in chromatin assembly, DNA repair, and transcription. Two TLK genes exist in humans, and their expression is often dysregulated in cancer. TLKs phosphorylate Asf1 and Rad9, regulating double-strand break (DSB) repair and the DNA damage response (DDR). TLKs maintain genomic stability and are important therapeutic intervention targets. We identified specific inhibitors of TLKs from several compound libraries, some of which belong to the family of phenothiazine antipsychotics. The inhibitors prevented the TLK-mediated phosphorylation of Rad9(S328) and impaired checkpoint recovery and DSB repair. The inhibitor thioridazine (THD) potentiated tumor killing with chemotherapy and also had activity alone. Staining for γ-H2AX revealed few positive cells in untreated tumors, but large numbers in mice treated with low doxorubicin or THD alone, possibly the result of the accumulation of DSBs that are not promptly repaired as they may occur in the harsh tumor growth environment. PMID:23946870
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Seokheon; Kim, Joo Yeon; Hwang, Joohyun
Highlights: •Heptachlor inhibited mitochondrial electron transport chain complex III activity. •Heptachlor promoted generation of reactive oxygen species. •Heptachlor induced Bax activation. •Heptachlor induced mitochondria-mediated and caspase-dependent apoptosis. -- Abstract: Environmental toxins like pesticides have been implicated in the pathogenesis of Parkinson’s disease (PD). Epidemiological studies suggested that exposures to organochlorine pesticides have an association with an increased PD risk. In the present study, we examined the mechanism of toxicity induced by an organochlorine pesticide heptachlor. In a human dopaminergic neuroblastoma SH-SY5Y cells, heptachlor induced both morphological and functional damages in mitochondria. Interestingly, the compound inhibited mitochondrial electron transport chain complexmore » III activity. Rapid generation of reactive oxygen species and the activation of Bax were then detected. Subsequently, mitochondria-mediated, caspase-dependent apoptosis followed. Our results raise a possibility that an organochlorine pesticide heptachlor can act as a neurotoxicant associated with PD.« less
Giampieri, Francesca; Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Mazzoni, Luca; Capocasa, Franco; Sabbadini, Silvia; Alvarez-Suarez, Josè M; Afrin, Sadia; Rosati, Carlo; Pandolfini, Tiziana; Molesini, Barbara; Sánchez-Sevilla, José F; Amaya, Iraida; Mezzetti, Bruno; Battino, Maurizio
2018-01-24
Food fortification through the increase and/or modulation of bioactive compounds has become a major goal for preventing several diseases, including cancer. Here, strawberry lines of cv. Calypso transformed with a construct containing an anthocyanidin synthase (ANS) gene were produced to study the effects on anthocyanin biosynthesis, metabolism, and transcriptome. Three strawberry ANS transgenic lines (ANS L5, ANS L15, and ANS L18) were analyzed for phytochemical composition and total antioxidant capacity (TAC), and their fruit extracts were assessed for cytotoxic effects on hepatocellular carcinoma. ANS L18 fruits had the highest levels of total phenolics and flavonoids, while those of ANS L15 had the highest anthocyanin concentration; TAC positively correlated with total polyphenol content. Fruit transcriptome was also specifically affected in the polyphenol biosynthesis and in other related metabolic pathways. Fruit extracts of all lines exerted cytotoxic effects in a dose/time-dependent manner, increasing cellular apoptosis and free radical levels and impairing mitochondrial functionality.
Bahadar, Haji; Maqbool, Faheem; Mostafalou, Sara; Baeeri, Maryam; Rahimifard, Mahban; Navaei-Nigjeh, Mona; Abdollahi, Mohammad
2015-05-01
Benzene (C6H6) is an organic compound used in petrochemicals and numerous other industries. It is abundantly released to our environment as a chemical pollutant causing widespread human exposure. This study mainly focused on benzene induced toxicity on rat pancreatic islets with respect to oxidative damage, insulin secretion and glucokinase (GK) activity. Benzene was dissolved in corn oil and administered orally at doses 200, 400 and 800mg/kg/day, for 4 weeks. In rats, benzene significantly raised the concentration of plasma insulin. Also the effect of benzene on the release of glucose-induced insulin was pronounced in isolated islets. Benzene caused oxidative DNA damage and lipid peroxidation, and also reduced the cell viability and total thiols groups, in the islets of exposed rats. In conclusion, the current study revealed that pancreatic glucose metabolism is susceptible to benzene toxicity and the resultant oxidative stress could lead to functional abnormalities in the pancreas. Copyright © 2015 Elsevier B.V. All rights reserved.
Environmental Mercury and Its Toxic Effects
Rice, Kevin M.; Walker, Ernest M.; Wu, Miaozong; Gillette, Chris
2014-01-01
Mercury exists naturally and as a man-made contaminant. The release of processed mercury can lead to a progressive increase in the amount of atmospheric mercury, which enters the atmospheric-soil-water distribution cycles where it can remain in circulation for years. Mercury poisoning is the result of exposure to mercury or mercury compounds resulting in various toxic effects depend on its chemical form and route of exposure. The major route of human exposure to methylmercury (MeHg) is largely through eating contaminated fish, seafood, and wildlife which have been exposed to mercury through ingestion of contaminated lower organisms. MeHg toxicity is associated with nervous system damage in adults and impaired neurological development in infants and children. Ingested mercury may undergo bioaccumulation leading to progressive increases in body burdens. This review addresses the systemic pathophysiology of individual organ systems associated with mercury poisoning. Mercury has profound cellular, cardiovascular, hematological, pulmonary, renal, immunological, neurological, endocrine, reproductive, and embryonic toxicological effects. PMID:24744824
Beutler, E; Forman, L; West, C; Gelbart, T
1988-03-15
The effect of the xanthone derivative 2-(2-hydroxyethoxy)-6-(1-H-tetrazole-5-yl)xanthen-9-one (BW A440C) on red cells was studied. When added to stored red cells at a concentration of 6 mM, greatly improved preservation of 2,3-diphosphoglycerate (2,3-DPG) was observed. There was no effect on internal pH of the erythrocyte. At a concentration 0.500 mM, many red cell enzyme activities were inhibited completely. At a 0.500 mM concentration, however, inhibition of pyruvate kinase and diphosphoglycerate phosphatase was most striking. Inhibition of either of these enzymes could result in elevation of 2,3-DPG levels. BW A440C in concentrations which elevated 2,3-DPG levels in humans caused a decrease in 2,3-DPG levels in rabbits and markedly impaired the viability of 21-day stored rabbit erythrocytes.
This document describes the U.S. Environmental Protection Agency’s (U.S. EPA’s) updated approach for evaluating the human health risks from exposures to environmental media containing dioxin-like compounds (DLCs).
Vilaboa, Nuria; Boré, Alba; Martin-Saavedra, Francisco; Bayford, Melanie; Winfield, Natalie; Firth-Clark, Stuart; Kirton, Stewart B.
2017-01-01
Abstract Comparative modeling of the DNA-binding domain of human HSF1 facilitated the prediction of possible binding pockets for small molecules and definition of corresponding pharmacophores. In silico screening of a large library of lead-like compounds identified a set of compounds that satisfied the pharmacophoric criteria, a selection of which compounds was purchased to populate a biased sublibrary. A discriminating cell-based screening assay identified compound 001, which was subjected to systematic analysis of structure–activity relationships, resulting in the development of compound 115 (IHSF115). IHSF115 bound to an isolated HSF1 DNA-binding domain fragment. The compound did not affect heat-induced oligomerization, nuclear localization and specific DNA binding but inhibited the transcriptional activity of human HSF1, interfering with the assembly of ATF1-containing transcription complexes. IHSF115 was employed to probe the human heat shock response at the transcriptome level. In contrast to earlier studies of differential regulation in HSF1-naïve and -depleted cells, our results suggest that a large majority of heat-induced genes is positively regulated by HSF1. That IHSF115 effectively countermanded repression in a significant fraction of heat-repressed genes suggests that repression of these genes is mediated by transcriptionally active HSF1. IHSF115 is cytotoxic for a variety of human cancer cell lines, multiple myeloma lines consistently exhibiting high sensitivity. PMID:28369544
BitterDB: a database of bitter compounds
Wiener, Ayana; Shudler, Marina; Levit, Anat; Niv, Masha Y.
2012-01-01
Basic taste qualities like sour, salty, sweet, bitter and umami serve specific functions in identifying food components found in the diet of humans and animals, and are recognized by proteins in the oral cavity. Recognition of bitter taste and aversion to it are thought to protect the organism against the ingestion of poisonous food compounds, which are often bitter. Interestingly, bitter taste receptors are expressed not only in the mouth but also in extraoral tissues, such as the gastrointestinal tract, indicating that they may play a role in digestive and metabolic processes. BitterDB database, available at http://bitterdb.agri.huji.ac.il/bitterdb/, includes over 550 compounds that were reported to taste bitter to humans. The compounds can be searched by name, chemical structure, similarity to other bitter compounds, association with a particular human bitter taste receptor, and so on. The database also contains information on mutations in bitter taste receptors that were shown to influence receptor activation by bitter compounds. The aim of BitterDB is to facilitate studying the chemical features associated with bitterness. These studies may contribute to predicting bitterness of unknown compounds, predicting ligands for bitter receptors from different species and rational design of bitterness modulators. PMID:21940398
Psychological Education for Visually Impaired Children.
ERIC Educational Resources Information Center
Locke, Don C.; Gerler, Edwin R., Jr.
1979-01-01
The study investigated the effects of two psychological education programs (Developing Understanding of Self and Others--DUSO, and Human Development Program--HDP or Magic Circle) on the affective growth of 42 visually impaired children in grades kindergarten through 3. (Author/SBH)
Islam, Md Koushikul; Baudin, Maria; Eriksson, Jonas; Öberg, Christopher; Habjan, Matthias; Weber, Friedemann; Överby, Anna K; Ahlm, Clas; Evander, Magnus
2016-04-01
Rift Valley fever virus (RVFV) is an emerging virus that causes serious illness in humans and livestock. There are no approved vaccines or treatments for humans. The purpose of the study was to identify inhibitory compounds of RVFV infection without any preconceived idea of the mechanism of action. A whole-cell-based high-throughput drug screening assay was developed to screen 28,437 small chemical compounds targeting RVFV infection. To accomplish both speed and robustness, a replication-competent NSs-deleted RVFV expressing a fluorescent reporter gene was developed. Inhibition of fluorescence intensity was quantified by spectrophotometry and related to virus infection in human lung epithelial cells (A549). Cell toxicity was assessed by the Resazurin cell viability assay. After primary screening, 641 compounds were identified that inhibited RVFV infection by ≥80%, with ≥50% cell viability at 50 µM concentration. These compounds were subjected to a second screening regarding dose-response profiles, and 63 compounds with ≥60% inhibition of RVFV infection at 3.12 µM compound concentration and ≥50% cell viability at 25 µM were considered hits. Of these, six compounds with high inhibitory activity were identified. In conclusion, the high-throughput assay could efficiently and safely identify several promising compounds that inhibited RVFV infection. © 2016 Society for Laboratory Automation and Screening.
A Diet Enriched with Curcumin Impairs Newly Acquired and Reactivated Fear Memories
Monsey, Melissa S; Gerhard, Danielle M; Boyle, Lara M; Briones, Miguel A; Seligsohn, Ma'ayan; Schafe, Glenn E
2015-01-01
Curcumin, a yellow-pigment compound found in the popular Indian spice turmeric (Curcuma longa), has been extensively investigated for its anti-inflammatory, chemopreventative, and antidepressant properties. Here, we examined the efficacy of dietary curcumin at impairing the consolidation and reconsolidation of a Pavlovian fear memory, a widely studied animal model of traumatic memory formation in posttraumatic stress disorder (PTSD). We show that a diet enriched with 1.5% curcumin prevents the training-related elevation in the expression of the immediate early genes (IEGs) Arc/Arg3.1 and Egr-1 in the lateral amygdala (LA) and impairs the ‘consolidation' of an auditory Pavlovian fear memory; short-term memory (STM) is intact, whereas long-term memory (LTM) is significantly impaired. Next, we show that dietary curcumin impairs the ‘reconsolidation' of a recently formed auditory Pavlovian fear memory; fear memory retrieval (reactivation) and postreactivation (PR)-STM are intact, whereas PR-LTM is significantly impaired. Additional experiments revealed that dietary curcumin is also effective at impairing the reconsolidation of an older, well-consolidated fear memory. Furthermore, we observed that fear memories that fail to reconsolidate under the influence of dietary curcumin are impaired in an enduring manner; unlike extinguished fear memories, they are not subject to reinstatement or renewal. Collectively, our findings indicate that a diet enriched with curcumin is capable of impairing fear memory consolidation and reconsolidation processes, findings that may have important clinical implications for the treatment of disorders such as PTSD that are characterized by unusually strong and persistently reactivated fear memories. PMID:25430781
Schöbel, Nicole; Radtke, Debbie; Kyereme, Jessica; Wollmann, Nadine; Cichy, Annika; Obst, Katja; Kallweit, Kerstin; Kletke, Olaf; Minovi, Amir; Dazert, Stefan; Wetzel, Christian H; Vogt-Eisele, Angela; Gisselmann, Günter; Ley, Jakob P; Bartoshuk, Linda M; Spehr, Jennifer; Hofmann, Thomas; Hatt, Hanns
2014-07-01
Astringency is an everyday sensory experience best described as a dry mouthfeel typically elicited by phenol-rich alimentary products like tea and wine. The neural correlates and cellular mechanisms of astringency perception are still not well understood. We explored taste and astringency perception in human subjects to study the contribution of the taste as well as of the trigeminal sensory system to astringency perception. Subjects with either a lesion or lidocaine anesthesia of the Chorda tympani taste nerve showed no impairment of astringency perception. Only anesthesia of both the lingual taste and trigeminal innervation by inferior alveolar nerve block led to a loss of astringency perception. In an in vitro model of trigeminal ganglion neurons of mice, we studied the cellular mechanisms of astringency perception. Primary mouse trigeminal ganglion neurons showed robust responses to 8 out of 19 monomeric phenolic astringent compounds and 8 polymeric red wine polyphenols in Ca(2+) imaging experiments. The activating substances shared one or several galloyl moieties, whereas substances lacking the moiety did not or only weakly stimulate responses. The responses depended on Ca(2+) influx and voltage-gated Ca(2+) channels, but not on transient receptor potential channels. Responses to the phenolic compound epigallocatechin gallate as well as to a polymeric red wine polyphenol were inhibited by the Gαs inactivator suramin, the adenylate cyclase inhibitor SQ, and the cyclic nucleotide-gated channel inhibitor l-cis-diltiazem and displayed sensitivity to blockers of Ca(2+)-activated Cl(-) channels. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Kutchukian, Peter S; Warren, Lee; Magliaro, Brian C; Amoss, Adam; Cassaday, Jason A; O'Donnell, Gregory; Squadroni, Brian; Zuck, Paul; Pascarella, Danette; Culberson, J Chris; Cooke, Andrew J; Hurzy, Danielle; Schlegel, Kelly-Ann Sondra; Thomson, Fiona; Johnson, Eric N; Uebele, Victor N; Hermes, Jeffrey D; Parmentier-Batteur, Sophie; Finley, Michael
2017-02-17
N-methyl-d-aspartate receptors (NMDARs) mediate glutamatergic signaling that is critical to cognitive processes in the central nervous system, and NMDAR hypofunction is thought to contribute to cognitive impairment observed in both schizophrenia and Alzheimer's disease. One approach to enhance the function of NMDAR is to increase the concentration of an NMDAR coagonist, such as glycine or d-serine, in the synaptic cleft. Inhibition of alanine-serine-cysteine transporter-1 (Asc-1), the primary transporter of d-serine, is attractive because the transporter is localized to neurons in brain regions critical to cognitive function, including the hippocampus and cortical layers III and IV, and is colocalized with d-serine and NMDARs. To identify novel Asc-1 inhibitors, two different screening approaches were performed with whole-cell amino acid uptake in heterologous cells stably expressing human Asc-1: (1) a high-throughput screen (HTS) of 3 M compounds measuring 35 S l-cysteine uptake into cells attached to scintillation proximity assay beads in a 1536 well format and (2) an iterative focused screen (IFS) of a 45 000 compound diversity set using a 3 H d-serine uptake assay with a liquid scintillation plate reader in a 384 well format. Critically important for both screening approaches was the implementation of counter screens to remove nonspecific inhibitors of radioactive amino acid uptake. Furthermore, a 15 000 compound expansion step incorporating both on- and off-target data into chemical and biological fingerprint-based models for selection of additional hits enabled the identification of novel Asc-1-selective chemical matter from the IFS that was not identified in the full-collection HTS.
Jurica, Karlo; Brčić Karačonji, Irena; Kopjar, Nevenka; Shek-Vugrovečki, Ana; Cikač, Tihana; Benković, Vesna
2018-04-06
Strawberry tree (Arbutus unedo L., Ericaceae) leaves represent a potent source of biologically active compounds and have been used for a long to relieve symptoms of various health impairments and diseases. Two major compounds related to their beneficial activities in animals and humans are arbutin and hydroquinone. To establish potential benefit/risk ratio associated with daily oral administration of strawberry tree water leaf extract, arbutin and hydroquinone in doses expected to be non-toxic. We performed a 14-day and a 28-day study on male and female Lewis rats and evaluated main haematological parameters and the effects of treatments on the levels of primary DNA damage in white blood cells (WBC) using the alkaline comet assay. Our findings suggest no significant changes in the haematological parameters following prolonged exposure to strawberry tree water leaf extract, arbutin, and hydroquinone. However, hydroquinone causes increased, and extract as well as arbutin decreased WBC count in male rats compared to control after 14 days of treatment. DNA damage measured in WBC of rats treated with all compounds was below 10% of the DNA in the comet tail, which indicates low genotoxicity. The genotoxic potential of strawberry water leaf extract was within acceptable limits and reflected effects of a complex chemical composition upon DNA. We also observed slight gender- and exposure time- related differences in primary DNA damage in the leucocytes of control and treated rats. Future studies should investigate which doses of strawberry tree water leaf extract would be most promising for the potential use as a substitute for bearberry leaves for treatment of urinary infection. Copyright © 2017 Elsevier B.V. All rights reserved.
Volatile organic compounds (VOCs) in exhaled breath originate from current or previous environmental exposures (exogenous compounds) and internal metabolic anabolic and catabolic) production (endogenous compounds). The origins of certain VOCs in breath presumed to be endogenous ...
Is preterm birth a human-specific syndrome?
Phillips, Julie Baker; Abbot, Patrick; Rokas, Antonis
2015-01-01
Human preterm birth (PTB), a multifactorial syndrome affecting offspring born before 37 completed weeks of gestation, is the leading cause of newborn death worldwide. Remarkably, the degree to which early parturition contributes to mortality in other placental mammals remains unclear. To gain insights on whether PTB is a human-specific syndrome, we examined within- and between-species variation in gestation length across placental mammals and the impact of early parturition on offspring fitness. Within species, gestation length is normally distributed, and all species appear to occasionally give birth before the ‘optimal’ time. Furthermore, human gestation length, like that of many mammalian species, scales proportionally to body mass, suggesting that this trait, like many others, is constrained by body size. Premature humans suffer from numerous cognitive impairments, but little is known of cognitive impairments in other placental mammals. Human gestation differs in the timing of the ‘brain growth spurt’, where unlike many mammals, including closely related primates, the trajectory of human brain growth directly overlaps with the parturition time window. Thus, although all mammals experience early parturition, the fitness costs imposed by the cognitive impairments may be unique to our species. Describing PTB broadly in mammals opens avenues for comparative studies on the physiological and genetic regulators of birth timing as well as the development of new mammalian models of the disease. PMID:26077822
Baiju, Thekke V; Almeida, Renata G; Sivanandan, Sudheesh T; de Simone, Carlos A; Brito, Lucas M; Cavalcanti, Bruno C; Pessoa, Claudia; Namboothiri, Irishi N N; da Silva Júnior, Eufrânio N
2018-05-10
Morita-Baylis-Hillman acetates and α-bromonitroalkenes have been employed in cascade reactions with lawsone and 2-aminonaphthoquinone for the one-pot synthesis of heterocycle fused quinonoid compounds. The reactions reported here utilized the 1,3-binucleophilic potential of hydroxy- and aminonaphthoquinones and the 1,2/1,3-bielectrophilic potential of bromonitroalkenes and Morita-Baylis-Hillman acetates for the synthesis of pyrrole and furan fused naphthoquinones. The synthesized compounds were evaluated against HCT-116 (human colon carcinoma cells), PC3 (human prostate cancer cells), HL-60 (human promyelocytic leukemia cells), SF295 (human glioblastoma cells) and NCI-H460 (human lung cancer cells) and exhibited antitumor activity with IC 50 values as low as < 2 μM. Selected compounds were also evaluated against OVCAR-8 (ovary), MX-1 (breast) and JURKAT (leukemia) cell lines. The cytotoxic potential of the quinones evaluated was also assayed using non-tumor cells, exemplified by peripheral blood mononuclear (PBMC) and L929 cells. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Exhaled human breath analysis has become a standard technique for assessing exposure to exogenous volatile organic compounds (VOCs) such as trihalomethanes from water chlorination; aromatics, hydrocarbons, and oxygenates from fuels usage; and various chlorinated solvents from i...
Leri, Manuela; Vasarri, Marzia; Peri, Sara; Barletta, Emanuela; Pretti, Carlo; Degl’Innocenti, Donatella
2018-01-01
Posidonia oceanica (L.) Delile is a marine plant with interesting biological properties potentially ascribed to the synergistic combination of bioactive compounds. Our previously described extract, obtained from the leaves of P. oceanica, showed the ability to impair HT1080 cell migration by targeting both expression and activity of gelatinases. Commonly, the lack of knowledge about the mechanism of action of phytocomplexes may be an obstacle regarding their therapeutic use and development. The aim of this study was to gain insight into the molecular signaling through which such bioactive compounds impact on malignant cell migration and gelatinolytic activity. The increase in autophagic vacuoles detected by confocal microscopy suggested an enhancement of autophagy in a time and dose dependent manner. This autophagy activation was further confirmed by monitoring pivotal markers of autophagy signaling as well as by evidencing an increase in IGF-1R accumulation on cell membranes. Taken together, our results confirm that the P. oceanica phytocomplex is a promising reservoir of potent and cell safe molecules able to defend against malignancies and other diseases in which gelatinases play a major role in progression. In conclusion, the attractive properties of this phytocomplex may be of industrial interest in regard to the development of novel health-promoting and pharmacological products for the treatment or prevention of several diseases. PMID:29690502
NASA Astrophysics Data System (ADS)
Dorshow, Richard B.; Fitch, Richard M.; Galen, Karen P.; Wojdyla, Jolette K.; Poreddy, Amruta R.; Freskos, John N.; Rajagopalan, Raghavan; Shieh, Jeng-Jong; Demirjian, Sevag G.
2013-02-01
Renal function assessment is needed for the detection of acute kidney injury and chronic kidney disease. Glomerular filtration rate (GFR) is now widely accepted as the best indicator of renal function, and current clinical guidelines advocate its use in the staging of kidney disease. The optimum measure of GFR is by the use of exogenous tracer agents. However current clinically employed agents lack sensitivity or are cumbersome to use. An exogenous GFR fluorescent tracer agent, whose elimination rate could be monitored noninvasively through skin would provide a substantial improvement over currently available methods. We developed a series of novel aminopyrazine analogs for use as exogenous fluorescent GFR tracer agents that emit light in the visible region for monitoring GFR noninvasively over skin. In rats, these compounds are eliminated by the kidney with urine recovery greater than 90% of injected dose, are not broken down or metabolized in vivo, are not secreted by the renal tubules, and have clearance values similar to a GFR reference compound, iothalamate. In addition, biological half-life of these compounds measured in rats by noninvasive optical methods correlated with plasma derived methods. In this study, we show that this noninvasive methodology with our novel fluorescent tracer agents can detect impaired renal function. A 5/6th nephrectomy rat model is employed.
Peters, Sheila Annie
2008-01-01
Despite recent advances in understanding of the role of the gut as a metabolizing organ, recognition of gut wall metabolism and/or other factors contributing to intestinal loss of a compound has been a challenging task due to the lack of well characterized methods to distinguish it from first-pass hepatic extraction. The implications of identifying intestinal loss of a compound in drug discovery and development can be enormous. Physiologically based pharmacokinetic (PBPK) simulations of pharmacokinetic profiles provide a simple, reliable and cost-effective way to understand the mechanisms underlying pharmacokinetic processes. The purpose of this article is to demonstrate the application of PBPK simulations in bringing to light intestinal loss of orally administered drugs, using two example compounds: verapamil and an in-house compound that is no longer in development (referred to as compound A in this article). A generic PBPK model, built in-house using MATLAB software and incorporating absorption, metabolism, distribution, biliary and renal elimination models, was employed for simulation of concentration-time profiles. Modulation of intrinsic hepatic clearance and tissue distribution parameters in the generic PBPK model was done to achieve a good fit to the observed intravenous pharmacokinetic profiles of the compounds studied. These optimized clearance and distribution parameters are expected to be invariant across different routes of administration, as long as the kinetics are linear, and were therefore employed to simulate the oral profiles of the compounds. For compounds with reasonably good solubility and permeability, an area under the concentration-time curve for the simulated oral profile that far exceeded the observed would indicate some kind of loss in the intestine. PBPK simulations applied to compound A showed substantial loss of the compound in the gastrointestinal tract in humans but not in rats. This accounted for the lower bioavailability of the compound in humans than in rats. PBPK simulations of verapamil identified gut wall metabolism, well established in the literature, and showed large interspecies differences with respect to both gut wall metabolism and drug-induced delays in gastric emptying. Mechanistic insights provided by PBPK simulations can be very valuable in answering vital questions in drug discovery and development. However, such applications of PBPK models are limited by the lack of accurate inputs for clearance and distribution. This article demonstrates a successful application of PBPK simulations to identify and quantify intestinal loss of two model compounds in rats and humans. The limitation of inaccurate inputs for the clearance and distribution parameters was overcome by optimizing these parameters through fitting intravenous profiles. The study also demonstrated that the large interspecies differences associated with gut wall metabolism and gastric emptying, evident for the compounds studied, make animal model extrapolations to humans unreliable. It is therefore important to do PBPK simulations of human pharmacokinetic profiles to understand the relevance of intestinal loss of a compound in humans.
Cuatrecasas, Pedro
2006-01-01
Despite striking advances in the biomedical sciences, the flow of new drugs has slowed to a trickle, impairing therapeutic advances as well as the commercial success of drug companies. Reduced productivity in the drug industry is caused mainly by corporate policies that discourage innovation. This is compounded by various consequences of mega-mergers, the obsession for blockbuster drugs, the shift of control of research from scientists to marketers, the need for fast sales growth, and the discontinuation of development compounds for nontechnical reasons. Lessons from the past indicate that these problems can be overcome, and herein, new and improved directions for drug discovery are suggested. PMID:17080187
Sharda, Anish; Kim, Sarah H.; Jasuja, Reema; Gopal, Srila; Flaumenhaft, Robert; Furie, Barbara C.
2015-01-01
Protein disulfide isomerase (PDI), secreted from platelets and endothelial cells after injury, is required for thrombus formation. The effect of platelet and endothelial cell granule contents on PDI-mediated thrombus formation was studied by intravital microscopy using a mouse model of Hermansky-Pudlak syndrome in which platelet dense granules are absent. Platelet deposition and fibrin generation were nearly absent, and extracellular PDI was significantly reduced in HPS6−/− mice after vascular injury. HPS6−/− platelets displayed impaired PDI secretion and impaired exocytosis of α granules, lysosomes, and T granules due to decreased sensitivity to thrombin, but these defects could be corrected by addition of subthreshold amounts of adenosine 5′-diphosphate (ADP). Human Hermansky-Pudlak syndrome platelets demonstrated similar characteristics. Infusion of wild-type platelets rescued thrombus formation in HPS6−/− mice. Human umbilical vein endothelial cells in which the HPS6 gene was silenced displayed impaired PDI secretion and exocytosis of Weibel-Palade bodies. Defective thrombus formation in Hermansky-Pudlak syndrome, associated with impaired exocytosis of residual granules in endothelial cells and platelets, the latter due to deficiency of ADP, is characterized by a defect in T granule secretion, a deficiency in extracellular PDI secretion, and impaired fibrin generation and platelet aggregation. Hermansky-Pudlak syndrome is an example of a hereditary disease whereby impaired PDI secretion contributes to a bleeding phenotype. PMID:25593336
Amen, Yhiya M; Zhu, Qinchang; Tran, Hai-Bang; Afifi, Mohamed S; Halim, Ahmed F; Ashour, Ahmed; Mira, Amira; Shimizu, Kuniyoshi
2016-07-01
A new oxygenated lanostane-type triterpene, named lucidumol C, together with six known compounds, was isolated from the chloroform extract of the fruiting bodies of Ganoderma lingzhi. Structures were established based on extensive spectroscopic and chemical studies. Potential cytotoxic activities of the isolated compounds were evaluated against human colorectal carcinoma (HCT-116, Caco-2), human liver carcinoma (HepG2), and human cervical carcinoma (HeLa) cell lines using WST-1 reagent. Selectivity was evaluated using normal human fibroblast cells (TIG-1 and HF19). Among the compounds, lucidumol C showed potent selective cytotoxicity against HCT-116 cells with an IC50 value of 7.86 ± 4.56 µM and selectivity index (SI) >10 with remarkable cytotoxic activities against Caco-2, HepG2 and HeLa cell lines.
Dry-Enzyme Test For Gaseous Chemicals
NASA Technical Reports Server (NTRS)
Barzana, Eduardo; Karel, Marcus; Klibanov, Alexander
1990-01-01
Simple, dry-chemical test detects ethanol in human breath. Method of test also adapted to detection of such toxic chemicals as formaldehyde in airstreams. Used qualitatively to detect chemical compounds above present level; for example, ethanol above legal level for driving. Also used to indicate quantitatively concentrations of compounds. Involves dry enzyme and color indicator. Adapted to detect any gaseous compound transformed by enzymes to produce change evident to human eye or to instrument.
Does Compound I Vary Significantly between Isoforms of Cytochrome P450?
2011-01-01
The cytochrome P450 (CYP) enzymes are important in many areas, including pharmaceutical development. Subtle changes in the electronic structure of the active species, Compound I, have been postulated previously to account partly for the experimentally observed differences in reactivity between isoforms. Current predictive models of CYP metabolism typically assume an identical Compound I in all isoforms. Here we present a method to calculate the electronic structure and to estimate the Fe–O bond enthalpy of Compound I, and apply it to several human and bacterial CYP isoforms. Conformational flexibility is accounted for by sampling large numbers of structures from molecular dynamics simulations, which are subsequently optimized with density functional theory (B3LYP) based quantum mechanics/molecular mechanics. The observed differences in Compound I between human isoforms are small: They are generally smaller than the spread of values obtained for the same isoform starting from different initial structures. Hence, it is unlikely that the variation in activity between human isoforms is due to differences in the electronic structure of Compound I. A larger difference in electronic structure is observed between the human isoforms and P450cam and may be explained by the slightly different hydrogen-bonding environment surrounding the cysteinyl sulfur. The presence of substrate in the active site of all isoforms studied appears to cause a slight decrease in the Fe–O bond enthalpy, apparently due to displacement of water out of the active site, suggesting that Compound I is less stable in the presence of substrate. PMID:21863858
Park, Woong Jae; Ma, Eunsook
2012-11-05
Small molecule HAT inhibitors are useful tools to unravel the role of histone acetyltransferases (HATs) in the cell and they also have relevance in oncology. We synthesized a series of 2-acylamino-1-(3- or 4-carboxyphenyl)benzamides 8–19 bearing C6, C8, C10, C12, C14, and C16 acyl chains at the 2-amino position of 2-aminobenzoic acid. Enzyme inhibition of these compounds was investigated using in vitro PCAF HAT assays. The inhibitory activities of compounds 8–10, 16, and 19 were similar to that of anacardic acid, and 17 was found to be more active than anacardic acid at 100 μM. Compounds 11–15 showed the low inhibitory activity on PCAF HAT. The cytotoxicity of the synthesized compounds was evaluated by SRB (sulforhodamine B) assay against seven human cancer cell lines: HT-29 (colon), HCT-116 (colon), MDA-231 (breast), A549 (lung), Hep3B (hepatoma), HeLa (cervical) and Caki (kidney) and one normal cell line (HSF). Compound 17 was more active than anacardic acid against human colon cancer (HCT 116, IC(50): 29.17 μM), human lung cancer (A549, IC₅₀: 32.09 μM) cell lines. 18 was more active than anacardic acid against human colon cancer (HT-29, IC₅₀: 35.49 μM and HCT 116, IC₅₀: 27.56 μM), human lung cancer (A549, IC₅₀: 30.69 μM), and human cervical cancer (HeLa, IC₅₀: 34.41 μM) cell lines. The apparent permeability coefficient (P(app), cm/s) values of two compounds (16 and 17) were evaluated as 68.21 and 71.48 × 10⁻⁶ cm/s by Caco-2 cell permeability assay.
Cognitive Compensation of Speech Perception With Hearing Impairment, Cochlear Implants, and Aging
Clarke, Jeanne; Pals, Carina; Benard, Michel R.; Bhargava, Pranesh; Saija, Jefta; Sarampalis, Anastasios; Wagner, Anita; Gaudrain, Etienne
2016-01-01
External degradations in incoming speech reduce understanding, and hearing impairment further compounds the problem. While cognitive mechanisms alleviate some of the difficulties, their effectiveness may change with age. In our research, reviewed here, we investigated cognitive compensation with hearing impairment, cochlear implants, and aging, via (a) phonemic restoration as a measure of top-down filling of missing speech, (b) listening effort and response times as a measure of increased cognitive processing, and (c) visual world paradigm and eye gazing as a measure of the use of context and its time course. Our results indicate that between speech degradations and their cognitive compensation, there is a fine balance that seems to vary greatly across individuals. Hearing impairment or inadequate hearing device settings may limit compensation benefits. Cochlear implants seem to allow the effective use of sentential context, but likely at the cost of delayed processing. Linguistic and lexical knowledge, which play an important role in compensation, may be successfully employed in advanced age, as some compensatory mechanisms seem to be preserved. These findings indicate that cognitive compensation in hearing impairment can be highly complicated—not always absent, but also not easily predicted by speech intelligibility tests only.
NASA Technical Reports Server (NTRS)
James, John T.
2011-01-01
Safe breathing air for space faring crews is essential whether they are inside an Extravehicular Mobility Suit (EMU), a small capsule such as Soyuz, or the expansive International Space Station (ISS). Sources of air pollution can include entry of propellants, excess offgassing from polymeric materials, leakage of systems compounds, escape of payload compounds, over-use of utility compounds, microbial metabolism, and human metabolism. The toxicological risk posed by a compound is comprised of the probability of escaping to cause air pollution and the magnitude of adverse effects on human health if escape occurs. The risk from highly toxic compounds is controlled by requiring multiple levels of containment to greatly reduce the probability of escape; whereas compounds that are virtually non-toxic may require little or no containment. The potential for toxicity is determined by the inherent toxicity of the compound and the amount that could potentially escape into the breathing air.
Sorrentino, Flavia; Gonzalez del Rio, Ruben; Zheng, Xingji; Presa Matilla, Jesus; Torres Gomez, Pedro; Martinez Hoyos, Maria; Perez Herran, Maria Esther; Mendoza Losana, Alfonso; Av-Gay, Yossef
2016-01-01
Here we describe the development and validation of an intracellular high-throughput screening assay for finding new antituberculosis compounds active in human macrophages. The assay consists of a luciferase-based primary identification assay, followed by a green fluorescent protein-based secondary profiling assay. Standard tuberculosis drugs and 158 previously recognized active antimycobacterial compounds were used to evaluate assay robustness. Data show that the assay developed is a short and valuable tool for the discovery of new antimycobacterial compounds. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Hopple, Jessica A.; Delzer, Gregory C.; Kingsbury, James A.
2009-01-01
Source water, defined as groundwater collected from a community water system well prior to water treatment, was sampled from 221 wells during October 2002 to July 2005 and analyzed for 258 anthropogenic organic compounds. Most of these compounds are unregulated in drinking water and include pesticides and pesticide degradates, gasoline hydrocarbons, personal-care and domestic-use products, and solvents. The laboratory analytical methods used in the study have detection levels that commonly are 100 to 1,000 times lower than State and Federal standards and guidelines for protecting water quality. Detections of anthropogenic organic compounds do not necessarily indicate a concern to human health but rather help to identify emerging issues and track changes in occurrence and concentrations over time. Less than one-half (120) of the 258 compounds were detected in at least one source-water sample. Chloroform, in 36 percent of samples, was the most commonly detected of the 12 compounds that were in about 10 percent or more of source-water samples. The herbicides atrazine, metolachlor, prometon, and simazine also were among the commonly detected compounds. The commonly detected degradates of atrazine - deethylatrazine and deisopropylatrazine - as well as degradates of acetochlor and alachlor, generally were detected at concentrations similar to or greater than concentrations of the parent herbicide. The compounds perchloroethene, trichloroethene, 1,1,1-trichloroethane, methyl tert-butyl ether, and cis-1,2-dichloroethene also were detected commonly. The most commonly detected compounds in source-water samples generally were among those detected commonly across the country and reported in previous studies by the U.S. Geological Survey's National Water-Quality Assessment Program. Relatively few compounds were detected at concentrations greater than human-health benchmarks, and 84 percent of the concentrations were two or more orders of magnitude less than benchmarks. Five compounds (perchloroethene, trichloroethene, 1,2-dibromoethane, acrylonitrile, and dieldrin) were detected at concentrations greater than their human-health benchmark. The human-health benchmarks used for comparison were U.S. Environmental Protection Agency Maximum Contaminant Levels (MCLs) for regulated compounds and Health-Based Screening Levels developed by the U.S. Geological Survey in collaboration with the U.S. Environmental Protection Agency and other agencies for unregulated compounds. About one-half of all detected compounds do not have human-health benchmarks or adequate toxicity information to evaluate results in a human-health context. Ninety-four source-water and finished-water (water that has passed through all the treatment processes but prior to distribution) sites were sampled at selected community water systems during June 2004 to September 2005. Most of the samples were analyzed for compounds that were detected commonly or at relatively high concentrations during the initial source-water sampling. The majority of the finished-water samples represented water blended with water from one or more other wells. Thirty-four samples were from water systems that did not blend water from sampled wells with water from other wells prior to distribution. The comparison of source- and finished-water samples represents an initial assessment of whether compounds present in source water also are present in finished water and is not intended as an evaluation of water-treatment efficacy. The treatment used at the majority of the community water systems sampled is disinfection, which, in general, is not designed to remove the compounds monitored in this study. Concentrations of all compounds detected in finished water were less than their human-health benchmarks. Two detections of perchloroethene and one detection of trichloroethene in finished water had concentrations within an order of magnitude of the MCL. Concentrations of disinfection by-products were
Muraki, Michiro; Hirota, Kiyonori
2017-07-03
Fas ligand plays a key role in the human immune system as a major cell death inducing protein. The extracellular domain of human Fas ligand (hFasLECD) triggers apoptosis of malignant cells, and therefore is expected to have substantial potentials in medical biotechnology. However, the current application of this protein to clinical medicine is hampered by a shortage of the benefits relative to the drawbacks including the side-effects in systemic administration. Effective procedures for the engineering of the protein by attaching useful additional functions are required to overcome the problem. A procedure for the site-specific chemical conjugation of hFasLECD with a fluorochrome and functional proteins was devised using an inverse-electron-demand Diels-Alder reaction between trans-cyclooctene group and methyltetrazine group. The conjugations in the present study were attained by using much less molar excess amounts of the compounds to be attached as compared with the conventional chemical modification reactions using maleimide derivatives in the previous study. The isolated conjugates of hFasLECD with sulfo-Cy3, avidin and rabbit IgG Fab' domain presented the functional and the structural integrities of the attached molecules without impairing the specific binding activity toward human Fas receptor extracellular domain. The present study provided a new fundamental strategy for the production of the engineered hFasLECDs with additional beneficial functions, which will lead to the developments of the improved diagnostic systems and the effective treatment methods of serious diseases by using this protein as a component of novel molecular tools.
Fluegge, Keith
2017-02-01
Mostafalou and Abdollahi (Arch Toxicol, 2016. doi: 10.1007/s00204-016-1849-x ) have recently conducted a review exploring human exposure to pesticides and systematically highlighting known toxic mechanisms from these exposures. Their review is extensive and appraises the literature on pesticide toxicity in a number of domains, including neurotoxicity and developmental toxicity. However, as important as it may be to understand the toxicological potential of these chemicals in humans and other species, the role of these chemicals as proxies for other environmental exposures should not be excluded. Recently, we published evidence suggesting use of the herbicide, glyphosate, may predict health care utilization for attention-deficit hyperactivity disorder (ADHD), a neurodevelopmental disorder that is characterized by cognitive impairments leading to attention deficits, impulsivity, and hyperactivity. Given that the finding appeared to be land-dependent, we concluded that glyphosate may be an instrumental variable that predicts severe ADHD mostly through its inseparableness from nitrogen fertilizers at a county level and increasing agricultural air emissions of the compound, nitrous oxide (N 2 O). Since the WHO designates N 2 O as an important modern health medicine, its environmental imprint is largely thought to be inconsequential in a human health context and, unfortunately, not worthy of further consideration. Our findings and subsequent review on the topic are not amenable to this complacency. We argue that future pesticide risk assessments be made more comprehensive insofar as identifying not only critical, direct routes of toxicity, as extensively reviewed by Mostafalou and Abdollahi (2016), but also indirect toxicological mechanisms such as the one presented in this correspondence.
Bergström, Tomas; Kann, Nina; Adamiak, Beata; Hannoun, Charles; Kindler, Eveline; Jónsdóttir, Hulda R.; Muth, Doreen; Kint, Joeri; Forlenza, Maria; Müller, Marcel A.; Drosten, Christian; Thiel, Volker; Trybala, Edward
2014-01-01
Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS–CoV), and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections. PMID:24874215
USDA-ARS?s Scientific Manuscript database
Trichothecenes are sesquiterpene mycotoxins produced by several fungal genera including Fusarium, Trichothecium, Myrothecium, Stachybotrys, and Trichoderma. These toxins have attracted great attention because they are frequent contaminants of food and animal feed, and can be easily absorbed by anim...
Intellectual Performance and Reading Skills after Localized Head Injury in Childhood.
ERIC Educational Resources Information Center
Chadwick, Oliver; And Others
1981-01-01
Ninety-seven school-age children who had previously sustained a unilateral compound depressed fracture of the skull were studied using tests of intelligence and reading attainment. Intellectual impairment was significantly associated with overall severity of brain trauma. Neither the child's age at injury nor the brain hemisphere damaged had…
Current Practice in Psychopharmacology for Children and Adolescents with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Floyd, Elizabeth Freeman; McIntosh, David E.
2009-01-01
Autism spectrum disorders (ASDs) are a complex group of neurodevelopmental conditions that develop in early childhood and involve a range of impairments in core areas of social interaction, communication, and restricted behavior and interests. Associated behavioral problems such as tantrums, aggression, and self-injury frequently compound the core…
Glycyrrhizic acid attenuates stem cell-like phenotypes of human dermal papilla cells.
Kiratipaiboon, Chayanin; Tengamnuay, Parkpoom; Chanvorachote, Pithi
2015-12-15
Although the growth of unwanted hair or hirsutism is a harmless condition, many people find it bothersome and embarrassing. Maintaining stem cell features of dermal papilla cells is a critical biological process that keeps the high rate of hair growth. Glycyrrhizic acid has been reported to impair hair growth in some studies; however, its underlying mechanism has not yet been investigated. This study aimed to explore the effect and underlying mechanism of glycyrrhizic acid on stemness of human dermal papilla cells. The stem cell molecular markers, epithelial to mesenchymal markers and Wnt/β-catenin-associated proteins of human dermal papilla cell line and primary human dermal papilla cells were analysed by western blot analysis and immunocytochemistry. The present study demonstrated that glycyrrhizic acid significantly depressed the stemness of dermal papilla cells in dose- and time-dependent manners. Clonogenicity and stem cell markers in the glycyrrhizic acid-treated cells were found to gradually decrease in the culture in a time-dependent manner. Our results demonstrated that glycyrrhizic acid exerted the stem cell suppressing effects through the interruption of ATP-dependent tyrosine kinase/glycogen synthase kinase3β-dependent mechanism which in turn down-regulated the β-catenin signalling pathway, coupled with decreased its down-stream epithelial-mesenchymal transition and self-renewal transcription factors, namely, Oct-4, Nanog, Sox2, ZEB1 and Snail. The effect of glycyrrhizic acid on the reduction of stem cell features was also observed in the primary dermal papilla cells directly obtained from human hair follicles. These results revealed a novel molecular mechanism of glycyrrhizic acid in regulation of dermal papilla cells and provided the evidence supporting the use of this compound in suppressing the growth of unwanted hair. Copyright © 2015 Elsevier GmbH. All rights reserved.
Zhao, Wei; Wang, Jun; Bi, Weina; Ferruzzi, Mario; Yemul, Shrishailam; Freire, Daniel; Mazzola, Paolo; Ho, Lap; Dubner, Lauren; Pasinetti, Giulio Maria
2016-01-01
Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction. PMID:26235983
The Alzheimer’s Disease Neuroimaging Initiative: Progress report and future plans
Weiner, Michael W.; Aisen, Paul S.; Jack, Clifford R.; Jagust, William J.; Trojanowski, John Q.; Shaw, Leslie; Saykin, Andrew J.; Morris, John C.; Cairns, Nigel; Beckett, Laurel A.; Toga, Arthur; Green, Robert; Walter, Sarah; Soares, Holly; Snyder, Peter; Siemers, Eric; Potter, William; Cole, Patricia E.; Schmidt, Mark
2010-01-01
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) beginning in October 2004, is a 6-year re-search project that studies changes of cognition, function, brain structure and function, and biomarkers in elderly controls, subjects with mild cognitive impairment, and subjects with Alzheimer’s disease (AD). A major goal is to determine and validate MRI, PET images, and cerebrospinal fluid (CSF)/blood biomarkers as predictors and outcomes for use in clinical trials of AD treatments. Structural MRI, FDG PET, C-11 Pittsburgh compound B (PIB) PET, CSF measurements of amyloid β (Aβ) and species of tau, with clinical/cognitive measurements were performed on elderly controls, subjects with mild cognitive impairment, and subjects with AD. Structural MRI shows high rates of brain atrophy, and has high statistical power for determining treatment effects. FDG PET, C-11 Pittsburgh compound B PET, and CSF measurements of Aβ and tau were significant predictors of cognitive decline and brain atrophy. All data are available at UCLA/LONI/ADNI, without embargo. ADNI-like projects started in Australia, Europe, Japan, and Korea. ADNI provides significant new information concerning the progression of AD. PMID:20451868
Membrane Inlet Mass Spectrometry for Homeland Security and Forensic Applications
NASA Astrophysics Data System (ADS)
Giannoukos, Stamatios; Brkić, Boris; Taylor, Stephen; France, Neil
2015-02-01
A man-portable membrane inlet mass spectrometer has been built and tested to detect and monitor characteristic odors emitted from the human body and also from threat substances. In each case, a heated membrane sampling probe was used. During human scent monitoring experiments, data were obtained for inorganic gases and volatile organic compounds emitted from human breath and sweat in a confined space. Volatile emissions were detected from the human body at low ppb concentrations. Experiments with compounds associated with narcotics, explosives, and chemical warfare agents were conducted for a range of membrane types. Test compounds included methyl benzoate (odor signature of cocaine), piperidine (precursor in clandestine phencyclidine manufacturing processes), 2-nitrotoluene (breakdown product of TNT), cyclohexanone (volatile signature of plastic explosives), dimethyl methylphosphonate (used in sarin and soman nerve agent production), and 2-chloroethyl ethyl sulfide (simulant compound for sulfur mustard gas). Gas phase calibration experiments were performed allowing sub-ppb LOD to be established. The results showed excellent linearity versus concentration and rapid membrane response times.
Membrane inlet mass spectrometry for homeland security and forensic applications.
Giannoukos, Stamatios; Brkić, Boris; Taylor, Stephen; France, Neil
2015-02-01
A man-portable membrane inlet mass spectrometer has been built and tested to detect and monitor characteristic odors emitted from the human body and also from threat substances. In each case, a heated membrane sampling probe was used. During human scent monitoring experiments, data were obtained for inorganic gases and volatile organic compounds emitted from human breath and sweat in a confined space. Volatile emissions were detected from the human body at low ppb concentrations. Experiments with compounds associated with narcotics, explosives, and chemical warfare agents were conducted for a range of membrane types. Test compounds included methyl benzoate (odor signature of cocaine), piperidine (precursor in clandestine phencyclidine manufacturing processes), 2-nitrotoluene (breakdown product of TNT), cyclohexanone (volatile signature of plastic explosives), dimethyl methylphosphonate (used in sarin and soman nerve agent production), and 2-chloroethyl ethyl sulfide (simulant compound for sulfur mustard gas). Gas phase calibration experiments were performed allowing sub-ppb LOD to be established. The results showed excellent linearity versus concentration and rapid membrane response times.
Cognitive impairment and olfactory panic from occupational exposure to VOCs.
Reinhartz, Abe
2006-10-01
A Canadian government clerical worker in her early thirties developed frontal lobe dysfunction from inhalation of volatile organic compounds off-gassed during an office renovation. Pulmonary function, bronchial provocation, allergy testing, and a brain (SPECT) scan were performed. SPECT scanning showed frontotemporal hypoperfusion and neuropsychologic testing revealed deficits in verbal learning and poor organizational memory. A significant component of this worker's impairment was the development of "olfactory panic," a debilitating aversion to odor accompanied by symptoms of panic. The Ontario Workplace Safety and Insurance Appeals Tribunal granted entitlement for her cognitive difficulties and olfactory panic as a result of her toxic exposure.
Zhong, Ke; Liu, Zhan-Chi; Wang, Jia-Lin; Liu, Xu-Sheng
2017-09-01
In this study, we investigated the effect of the entomopathogenic fungus Nomuraea rileyi on Helicoverpa armigera cellular immune responses. Nomuraea rileyi infection had no effect on total hemocyte count (THC), but impaired hemocyte-mediated phagocytosis, nodulation, and encapsulation responses. Nomuraea rileyi infection led to a significant reduction in hemocyte spreading. An in vitro assay revealed that plasma from N. rileyi infected H. armigera larvae suppressed the spreading ability of hemocytes from naïve larvae. We infer that N. rileyi suppresses the cellular immune response of its host, possibly by secreting exogenous, cytotoxic compounds into the host's hemolymph. © 2017 Wiley Periodicals, Inc.
Ishibashi, S; Yokota, T; Shiojiri, T; Matunaga, T; Tanaka, H; Nishina, K; Hirota, H; Inaba, A; Yamada, M; Kanda, T; Mizusawa, H
2003-05-01
Acute axonal polyneuropathy and Wernicke-Korsakoff encephalopathy developed simultaneously in three patients. Nerve conduction studies (NCS) detected markedly decreased compound muscle action potentials (CMAPs) and sensory nerve action potentials (SNAPs) with minimal conduction slowing; sympathetic skin responses (SSRs) were also notably decreased. Sural nerve biopsies showed only mild axonal degeneration with scattered myelin ovoid formation. The symptoms of neuropathy lessened within two weeks after an intravenous thiamine infusion. CMAPs, SNAPs, and SSRs also increased considerably. We suggest that this is a new type of peripheral nerve impairment: physiological conduction failure with minimal conduction delay due to thiamine deficiency.
Anticancer activity of ferrocenylthiosemicarbazones.
Sandra, Cortez-Maya; Elena, Klimova; Marcos, Flores-Alamo; Elena, Martínez-Klimova; Arturo, Ramírez-Ramírez; Teresa, Ramírez Apan; Marcos, Martínez-García
2014-03-01
Aliphatic and aromatic ferrocenylthiosemicarbazones were synthesized. The characterization of the new ferrocenylthiosemicarbazones was done by IR, (1)H-NMR and (13)C-NMR spectroscopy, elemental analysis and X-ray diffraction studies. The biological activity of the obtained compounds was assessed in terms of anticancer activity. Their activity against U251 (human glyoblastoma), PC-3 (human prostatic adenocarcinoma), K562 (human chronic myelogenous leukemia), HCT-15 (human colorectal adenocarcinoma), MCF-7 (human mammary adenocarcinoma) and SKLU-1 (human lung adenocarcinoma) cell lines was studied and compared with cisplatin. All tested compounds showed good activity and the aryl-chloro substituted ferrocenylthiosemicarbazones showed the best anticancer activity.
Staphylococcus aureus IsdB Is a Hemoglobin Receptor Required for Heme Iron Utilization▿
Torres, Victor J.; Pishchany, Gleb; Humayun, Munir; Schneewind, Olaf; Skaar, Eric P.
2006-01-01
The pathogenesis of human infections caused by the gram-positive microbe Staphylococcus aureus has been previously shown to be reliant on the acquisition of iron from host hemoproteins. The iron-regulated surface determinant system (Isd) encodes a heme transport apparatus containing three cell wall-anchored proteins (IsdA, IsdB, and IsdH) that are exposed on the staphylococcal surface and hence have the potential to interact with human hemoproteins. Here we report that S. aureus can utilize the host hemoproteins hemoglobin and myoglobin, but not hemopexin, as iron sources for bacterial growth. We demonstrate that staphylococci capture hemoglobin on the bacterial surface via IsdB and that inactivation of isdB, but not isdA or isdH, significantly decreases hemoglobin binding to the staphylococcal cell wall and impairs the ability of S. aureus to utilize hemoglobin as an iron source. Stable-isotope-tracking experiments revealed removal of heme iron from hemoglobin and transport of this compound into staphylococci. Importantly, mutants lacking isdB, but not isdH, display a reduction in virulence in a murine model of abscess formation. Thus, IsdB-mediated scavenging of iron from hemoglobin represents an important virulence strategy for S. aureus replication in host tissues and for the establishment of persistent staphylococcal infections. PMID:17041042
Shi, Hui; Xu, Xiao; Zhang, Bin; Xu, Jiahao; Pan, Zhaoji; Gong, Aihua; Zhang, Xu; Li, Rong; Sun, Yaoxiang; Yan, Yongmin; Mao, Fei; Qian, Hui; Xu, Wenrong
2017-01-01
Human umbilical cord-derived mesenchymal stem cells (hucMSCs) are suggested as a promising therapeutic tool in regenerative medicine, however, their efficacy requires improvement. Small molecules and drugs come up to be a convenient strategy in regulating stem cells fate and function. Here, we evaluated 3,3′-diindolylmethane (DIM), a natural small-molecule compound involved in the repairing effects of hucMSCs on a deep second-degree burn injury rat model. HucMSCs primed with 50 μM of DIM exhibited desirable repairing effects compared with untreated hucMSCs. DIM enhanced the stemness of hucMSCs, which was related to the activation of Wnt/β-catenin signaling. β-catenin inhibition impaired the healing effects of DIM-primed hucMSCs (DIM-hucMSCs) in vivo. Moreover, we demonstrated that DIM upregulated Wnt11 expression in hucMSC-derived exosomes. Wnt11 knockdown inhibited β-catenin activation and stemness induction in DIM-hucMSCs and abrogated their therapeutic effects in vivo. Thus, our findings indicate that DIM promotes the stemness of hucMSCs through increased exosomal Wnt11 autocrine signaling, which provides a novel strategy for improving the therapeutic effects of hucMSCs on wound healing. PMID:28529644
NEUROTOXICITY OF TRAFFIC-RELATED AIR POLLUTION
Costa, Lucio G.; Cole, Toby B.; Coburn, Jacki; Chang, Yu-Chi; Dao, Khoi; Roqué, Pamela J.
2015-01-01
The central nervous system is emerging as an important target for adverse health effects of air pollution, where it may contribute to neurodevelopmental and neurodegenerative disorders. Air pollution comprises several components, including particulate matter (PM) and ultrafine particulate matter (UFPM), gases, organic compounds, and metals. An important source of ambient PM and UFPM is represented by traffic-related air pollution, primarily diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution, and to traffic-related air pollution or DE in particular, may lead to neurotoxicity. In particular, air pollution is emerging as a possible etiological factor in neurodevelopmental (e.g. autism spectrum disorders) and neurodegenerative (e.g. Alzheimer’s disease) disorders. The most prominent effects caused by air pollution in both humans and animals are oxidative stress and neuro-inflammation. Studies in mice acutely exposed to DE (250-300 μg/m3 for six hours) have shown microglia activation, increased lipid peroxidation, and neuro-inflammation in various brain regions, particularly the hippocampus and the olfactory bulb. An impairment of adult neurogenesis was also found. In most cases, the effects of DE were more pronounced in male mice, possibly because of lower antioxidant abilities due to lower expression of paraoxonase 2. PMID:26610921
Neurotoxicity of traffic-related air pollution.
Costa, Lucio G; Cole, Toby B; Coburn, Jacki; Chang, Yu-Chi; Dao, Khoi; Roqué, Pamela J
2017-03-01
The central nervous system is emerging as an important target for adverse health effects of air pollution, where it may contribute to neurodevelopmental and neurodegenerative disorders. Air pollution comprises several components, including particulate matter (PM) and ultrafine particulate matter (UFPM), gases, organic compounds, and metals. An important source of ambient PM and UFPM is represented by traffic-related air pollution, primarily diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution, and to traffic-related air pollution or DE in particular, may lead to neurotoxicity. In particular, air pollution is emerging as a possible etiological factor in neurodevelopmental (e.g. autism spectrum disorders) and neurodegenerative (e.g. Alzheimer's disease) disorders. The most prominent effects caused by air pollution in both humans and animals are oxidative stress and neuro-inflammation. Studies in mice acutely exposed to DE (250-300μg/m 3 for 6h) have shown microglia activation, increased lipid peroxidation, and neuro-inflammation in various brain regions, particularly the hippocampus and the olfactory bulb. An impairment of adult neurogenesis was also found. In most cases, the effects of DE were more pronounced in male mice, possibly because of lower antioxidant abilities due to lower expression of paraoxonase 2. Copyright © 2015 Elsevier B.V. All rights reserved.
Human ACAT inhibitory effects of shikonin derivatives from Lithospermum erythrorhizon.
An, Sojin; Park, Yong-Dae; Paik, Young-Ki; Jeong, Tae-Sook; Lee, Woo Song
2007-02-15
Three naphthoquinones were isolated by bioassay-guided fractionation from the CHCl(3) extracts of roots of Lithospermum erythrorhizon. They were identified as acetylshikonin (1), isobutyrylshikonin (2), and beta-hydroxyisovalerylshikonin (3) on the basis of their spectroscopic analyses. The compounds 1-3 were tested for their inhibitory activities against human ACAT-1 (hACAT-1) or human ACAT-2 (hACAT-2). Compound 2 preferentially inhibited hACAT-2 (IC(50)=57.5microM) than hACAT-1 (32% at 120microM), whereas compounds 1 and 3 showed weak inhibitory activities in both hACAT-1 and -2. To develop more potent hACAT inhibitor, shikonin derivatives (5-11) were synthesized by semi-synthesis of shikonin (4), which was prepared by hydrolysis of 1-3. Among them, compounds 5 and 7 exhibited the strong inhibitory activities against hACAT-1 and -2. Furthermore, we demonstrated that compound 7 behaved as a potent ACAT inhibitor in not only in vitro assay system but also cell-based assay system.
Zhu, Cuige; Zuo, Yinglin; Wang, Ruimin; Liang, Baoxia; Yue, Xin; Wen, Gesi; Shang, Nana; Huang, Lei; Chen, Yu; Du, Jun; Bu, Xianzhang
2014-08-14
A series of new ortho-aryl chalcones have been designed and synthesized. Many of these compounds were found to exhibit significant antiproliferation activity toward a panel of cancer cell lines. Selected compounds show potent cytotoxicity against several drug resistant cell lines including paclitaxel (Taxol) resistant human ovarian carcinoma cells, vincristine resistant human ileocecum carcinoma cells, and doxorubicin resistant human breast carcinoma cells. Further investigation revealed that active analogues could inhibit the microtubule polymerization by binding to colchicine site and thus induce multipolar mitosis, G2/M phase arrest, and apoptosis of cancer cells. Furthermore, affinity-based fluorescence enhancement was observed during the binding of active compounds with tubulin, which greatly facilitated the determination of tubulin binding site of the compounds. Finally, selected compound 26 was found to exhibit obvious in vivo antitumor activity in A549 tumor xenografts model. Our systematic studies implied a new scaffold targeting tubulin and mitosis for novel antitumor drug discovery.
Neef, Stefan; Mann, Christian; Zwenger, Anne; Dybkova, Nataliya; Maier, Lars S
2017-07-01
Sarcoplasmic reticulum (SR) Ca 2+ leak induced by Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) is centrally involved in atrial and ventricular arrhythmogenesis as well as heart failure remodeling. Consequently, treating SR Ca 2+ leak has been proposed as a novel therapeutic paradigm, but compounds for use in humans are lacking. SMP-114 ("Rimacalib") is a novel, orally available CaMKII inhibitor developed for human use that has already entered clinical phase II trials to treat rheumatoid arthritis. We speculated that SMP-114 might also be useful to treat cardiac SR Ca 2+ leak. SMP-114 significantly reduces SR Ca 2+ leak (as assessed by Ca 2+ sparks) in human atrial (0.72 ± 0.33 sparks/100 µm/s vs. control 3.02 ± 0.91 sparks/100 µm/s) and failing left ventricular (0.78 ± 0.23 vs. 1.69 ± 0.27 sparks/100 µm/s) as well as in murine ventricular cardiomyocytes (0.30 ± 0.07 vs. 1.50 ± 0.28 sparks/100 µm/s). Associated with lower SR Ca 2+ leak, we found that SMP-114 suppressed the occurrence of spontaneous arrhythmogenic spontaneous Ca 2+ release (0.356 ± 0.109 vs. 0.927 ± 0.216 events per 30 s stimulation cessation). In consequence, post-rest potentiation of Ca 2+ -transient amplitude (measured using Fura-2) during the 30 s pause was improved by SMP-114 (52 ± 5 vs. 37 ± 4%). Noteworthy, SMP-114 has these beneficial effects without negatively impairing global excitation-contraction coupling: neither systolic Ca 2+ release nor single cell contractility was compromised, and also SR Ca 2+ reuptake, in line with resulting cardiomyocyte relaxation, was not impaired by SMP-114 in our assays. SMP-114 demonstrated potential to treat SR Ca 2+ leak and consequently proarrhythmogenic events in rodent as well as in human atrial cardiomyocytes and cardiomyocytes from patients with heart failure. Further research is necessary towards clinical use in cardiac disease.
Impact of higher-order heme degradation products on hepatic function and hemodynamics.
Seidel, Raphael A; Claudel, Thierry; Schleser, Franziska A; Ojha, Navin K; Westerhausen, Matthias; Nietzsche, Sandor; Sponholz, Christoph; Cuperus, Frans; Coldewey, Sina M; Heinemann, Stefan H; Pohnert, Georg; Trauner, Michael; Bauer, Michael
2017-08-01
Biliverdin and bilirubin were previously considered end products of heme catabolism; now, however, there is evidence for further degradation to diverse bioactive products. Z-BOX A and Z-BOX B arise upon oxidation with unknown implications for hepatocellular function and integrity. We studied the impact of Z-BOX A and B on hepatic functions and explored their alterations in health and cholestatic conditions. Functional implications and mechanisms were investigated in rats, hepatocytic HepG2 and HepaRG cells, human immortalized hepatocytes, and isolated perfused livers. Z-BOX A and B were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in acute and acute-on-chronic liver failure and hereditary unconjugated hyperbilirubinemia. Z-BOX A and B are found in similar amounts in humans and rodents under physiological conditions. Serum concentrations increased ∼20-fold during cholestatic liver failure in humans (p<0.001) and in hereditary deficiency of bilirubin glucuronidation in rats (p<0.001). Pharmacokinetic studies revealed shorter serum half-life of Z-BOX A compared to its regio-isomer Z-BOX B (p=0.035). While both compounds were taken up by hepatocytes, Z-BOX A was enriched ∼100-fold and excreted in bile. Despite their reported vasoconstrictive properties in the brain vasculature, BOXes did not affect portal hemodynamics. Both Z-BOX A and B showed dose-dependent cytotoxicity, affected the glutathione redox state, and differentially modulated activity of Rev-erbα and Rev-erbβ. Moreover, BOXes-triggered remodeling of the hepatocellular cytoskeleton. Our data provide evidence that higher-order heme degradation products, namely Z-BOX A and B, impair hepatocellular integrity and might mediate intra- and extrahepatic cytotoxic effects previously attributed to hyperbilirubinemia. Degradation of the blood pigment heme yields the bile pigment bilirubin and the oxidation products Z-BOX A and Z-BOX B. Serum concentrations of these bioactive molecules increase in jaundice and can impair liver function and integrity. Amounts of Z-BOX A and Z-BOX B that are observed during liver failure in humans have profound effects on hepatic function when added to cultured liver cells or infused into healthy rats. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Hellweg, Rainer; Huber, Roman; Kuhl, Alexander; Riepe, Matthias W.; Lohmann, Peter
2006-01-01
Impairment of hippocampal function precedes frontal and parietal cortex impairment in human Alzheimer's disease(AD). Neurotrophins are critical for behavioral performance and neuronal survival in AD. We used complex and radial mazes to assess spatial orientation and learning in wild-type and B6-Tg(ThylAPP)23Sdz (APP23) animals, a transgenic mouse…
Impairments of spatial working memory and attention following acute psychosocial stress.
Olver, James S; Pinney, Myra; Maruff, Paul; Norman, Trevor R
2015-04-01
Few studies have investigated the effect of an acute psychosocial stress paradigm on impaired attention and working memory in humans. Further, the duration of any stress-related cognitive impairment remains unclear. The aim of this study was to examine the effect of an acute psychosocial stress paradigm, the Trier Social Stress, on cognitive function in healthy volunteers. Twenty-three healthy male and female subjects were exposed to an acute psychosocial stress task. Physiological measures (salivary cortisol, heart rate and blood pressure) and subjective stress ratings were measured at baseline, in anticipation of stress, immediately post-stress and after a period of rest. A neuropsychological test battery including spatial working memory and verbal memory was administered at each time point. Acute psychosocial stress produced significant increases in cardiovascular and subjective measures in the anticipatory and post-stress period, which recovered to baseline after rest. Salivary cortisol steadily declined over the testing period. Acute psychosocial stress impaired delayed verbal recall, attention and spatial working memory. Attention remained impaired, and delayed verbal recall continued to decline after rest. Acute psychosocial stress is associated with an impairment of a broad range of cognitive functions in humans and with prolonged abnormalities in attention and memory. Copyright © 2014 John Wiley & Sons, Ltd.
Kedzierska, Ewa; Orzelska, Jolanta; Perković, Ivana; Knežević, Danijel; Fidecka, Sylwia; Kaiser, Marcel; Zorc, Branka
2016-02-01
New primaquine (PQ) urea and semicarbazide derivatives 1-4 were screened for the first time for central nervous system (CNS) and antimalarial activity. Behavioural tests were performed on mice. In vitro cytotoxicity on L-6 cells and activity against erythrocytic stages of Plasmodium falciparum was determined. Compound 4 inhibited 'head-twitch' responses and decreased body temperature of mice, which suggests some involvement of the serotonergic system. Compound 4 protected mice against clonic seizures and was superior in the antimalarial test. A hybrid of two PQ urea 2 showed a strong antimalarial activity, confirming the previous findings of the high activity of bis(8-aminoquinolines) and other bisantimalarial drugs. All the compounds decreased the locomotor activity of mice, what suggests their weak depressive effects on the CNS, while PQ derivatives 1 and 2 increased amphetamine-induced hyperactivity. None of the compounds impaired coordination, what suggests a lack of their neurotoxicity. All the tested compounds presented an antinociceptive activity in the 'writhing' test. Compounds 3 and 4 were active in nociceptive tests, and those effects were reversed by naloxone. Compound 4 could be a useful lead compound in the development of CNS active agents and antimalarials, whereas compound 3 may be considered as the most promising lead for new antinociceptive agents. © 2015 Société Française de Pharmacologie et de Thérapeutique.
Quantifying exploratory low dose compounds in humans with AMS
Dueker, Stephen R.; Vuong, Le T.; Lohstroh, Peter N.; Giacomo, Jason A.; Vogel, John S.
2010-01-01
Accelerator Mass Spectrometry is an established technology whose essentiality extends beyond simply a better detector for radiolabeled molecules. Attomole sensitivity reduces radioisotope exposures in clinical subjects to the point that no population need be excluded from clinical study. Insights in human physiochemistry are enabled by the quantitative recovery of simplified AMS processes that provide biological concentrations of all labeled metabolites and total compound related material at non-saturating levels. In this paper, we review some of the exploratory applications of AMS 14C in toxicological, nutritional, and pharmacological research. This body of research addresses the human physiochemistry of important compounds in their own right, but also serves as examples of the analytical methods and clinical practices that are available for studying low dose physiochemistry of candidate therapeutic compounds, helping to broaden the knowledge base of AMS application in pharmaceutical research. PMID:21047543
Evaluation of nitrate-substituted pseudocholine esters of aspirin as potential nitro-aspirins.
Gilmer, John F; Moriarty, Louise M; Clancy, John M
2007-06-01
Herein we explore some designs for nitro-aspirins, compounds potentially capable of releasing both aspirin and nitric oxide in vivo. A series of nitrate-bearing alkyl esters of aspirin were prepared based on the choline ester template preferred by human plasma butyrylcholinesterase. The degradation kinetics of the compounds were followed in human plasma solution. All compounds underwent hydrolysis rapidly (t(1/2) approximately 1min) but generating exclusively the corresponding nitro-salicylate. The one exception, an N-propyl, N-nitroxyethyl aminoethanol ester produced 9.2% aspirin in molar terms indicating that the nitro-aspirin objective is probably achievable if due cognisance can be paid to the demands of the activating enzyme. Even at this low level of aspirin release, this compound is the most successful nitro-aspirin reported to date in the key human plasma model.
Brandt, Anna Paula; Gozzi, Gustavo Jabor; Pires, Amanda do Rocio Andrade; Martinez, Glaucia Regina; Dos Santos Canuto, André Vinícius; Echevarria, Aurea; Di Pietro, Attilio; Cadena, Sílvia Maria Suter Correia
2016-08-25
Toxicity of the SYD-1 mesoionic compound (3-[4-chloro-3-nitrophenyl]-1,2,3-oxadiazolium-5-olate) was evaluated on human liver cancer cells (HepG2) grown in either high glucose (HG) or galactose (GAL) medium, and also on suspended cells kept in HG medium. SYD-1 was able to decrease the viability of cultured HepG2 cells in a dose-dependent manner, as assessed by MTT, LDH release and dye with crystal violet assays, but no effect was observed on suspended cells after 1-40 min of treatment. Respiration analysis was performed after 2 min (suspended cells) or 24 h (cultured cells) of treatment: no change was observed in suspended cells, whereas SYD-1 inhibited as well basal, leak and uncoupled states of the respiration in cultured cells with HG medium. These inhibitions were consistent with the decrease in pyruvate level and increase in lactate level. Even more extended results were obtained with HepG2 cells grown in GAL medium where, additionally, the ATP amount was reduced. Furthermore, SYD-1 appears not to be transported by the main ABC multidrug transporters. These results show that SYD-1 is able to change the metabolism of HepG2 cells, and suggest that its cytotoxicity is related to impairment of mitochondrial metabolism. Therefore, we may propose that SYD-1 is a potential candidate for hepatocarcinoma treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dairou, Julien; Petit, Emile; Ragunathan, Nilusha
2009-05-01
Bronchial epithelial cells express xenobiotic-metabolizing enzymes (XMEs) that are involved in the biotransformation of inhaled toxic compounds. The activities of these XMEs in the lung may modulate respiratory toxicity and have been linked to several diseases of the airways. Arylamine N-acetyltransferases (NAT) are conjugating XMEs that play a key role in the biotransformation of aromatic amine pollutants such as the tobacco-smoke carcinogens 4-aminobiphenyl (4-ABP) and {beta}-naphthylamine ({beta}-NA). We show here that functional human NAT1 or its murine counterpart Nat2 are present in different lung epithelial cells i.e. Clara cells, type II alveolar cells and bronchial epithelial cells, thus indicating thatmore » inhaled aromatic amines may undergo NAT-dependent biotransformation in lung epithelium. Exposure of these cells to pathophysiologically relevant amounts of oxidants known to contribute to lung dysfunction, such as H{sub 2}O{sub 2} or peroxynitrite, was found to impair the NAT1/Nat2-dependent cellular biotransformation of aromatic amines. Genetic and non genetic impairment of intracellular NAT enzyme activities has been suggested to compromise the important detoxification pathway of aromatic amine N-acetylation and subsequently to contribute to an exacerbation of untoward effects of these pollutants on health. Our study suggests that oxidative/nitroxidative stress in lung epithelial cells, due to air pollution and/or inflammation, could contribute to local and/or systemic dysfunctions through the alteration of the functions of pulmonary NAT enzymes.« less
Wiechmann, Katja; Müller, Hans; Fischer, Dagmar; Jauch, Johann; Werz, Oliver
2015-11-01
The acylphloroglucinols hyperforin (Hypf) and myrtucommulone A (MC A) induce death of cancer cells by triggering the intrinsic/mitochondrial pathway of apoptosis, accompanied by a loss of the mitochondrial membrane potential and release of cytochrome c. However, the upstream targets and mechanisms leading to these mitochondrial events in cancer cells remain elusive. Here we show that Hypf and MC A directly act on mitochondria derived from human leukemic HL-60 cells and thus, disrupt mitochondrial functions. In isolated mitochondria, Hypf and MC A efficiently impaired mitochondrial viability (EC50 = 0.2 and 0.9 µM, respectively), caused loss of the mitochondrial membrane potential (at 0.03 and 0.1 µM, respectively), and suppressed mitochondrial ATP synthesis (IC50 = 0.2 and 0.5 µM, respectively). Consequently, the compounds activated the adenosine monophosphate-activated protein kinase (AMPK) in HL-60 cells, a cellular energy sensor involved in apoptosis of cancer cells. Side by side comparison with the protonophore CCCP and the ATP synthase inhibitor oligomycin suggest that Hypf and MC A act as protonophores that primarily dissipate the mitochondrial membrane potential by direct interaction with the mitochondrial membrane. Together, Hypf and MC A abolish the mitochondrial proton motive force that on one hand impairs mitochondrial viability and on the other cause activation of AMPK due to lowered ATP levels which may further facilitate the intrinsic mitochondrial pathway of apoptosis.
Kingsbury, James A.; Delzer, Gregory C.; Hopple, Jessica A.
2008-01-01
Source water, herein defined as stream water collected at a water-system intake prior to water treatment, was sampled at nine community water systems, ranging in size from a system serving about 3,000 people to one that serves about 2 million people. As many as 17 source-water samples were collected at each site over about a 12-month period between 2002 and 2004 for analysis of 258 anthropogenic organic compounds. Most of these compounds are unregulated in drinking water, and the compounds analyzed include pesticides and selected pesticide degradates, gasoline hydrocarbons, personal-care and domestic-use compounds, and solvents. The laboratory analytical methods used in this study have relatively low detection levels - commonly 100 to 1,000 times lower than State and Federal standards and guidelines for protecting water quality. Detections, therefore, do not necessarily indicate a concern to human health but rather help to identify emerging issues and to track changes in occurrence and concentrations over time. About one-half (134) of the compounds were detected at least once in source-water samples. Forty-seven compounds were detected commonly (in 10 percent or more of the samples), and six compounds (chloroform, atrazine, simazine, metolachlor, deethylatrazine, and hexahydrohexamethylcyclopentabenzopyran (HHCB) were detected in more than one-half of the samples. Chloroform was the most commonly detected compound - in every sample (year round) at five sites. Findings for chloroform and the fragrances HHCB and acetyl hexamethyl tetrahydronaphthalene (AHTN) indicate an association between occurrence and the presence of large upstream wastewater discharges in the watersheds. The herbicides atrazine, simazine, and metolachlor also were among the most commonly detected compounds. Degradates of these herbicides, as well as those of a few other commonly occurring herbicides, generally were detected at concentrations similar to or greater than concentrations of the parent compound. Samples typically contained mixtures of two or more compounds. The total number of compounds and their total concentration in samples generally increased with the amount of urban and agricultural land use in a watershed. Annual mean concentrations of all compounds were less than human-health benchmarks. Single-sample concentrations of anthropogenic organic compounds in source water generally were less than 0.1 microgram per liter and less than established human-health benchmarks. Human-health benchmarks used for comparison were U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Levels (MCLs) for regulated compounds and U.S. Geological Survey Health-Based Screening Levels for unregulated compounds. About one-half of all detected compounds do not have human-health benchmarks or adequate toxicity information for evaluating results in a human-health context. During a second sampling phase (2004-05), source water and finished water (water that has passed through all the treatment processes but prior to distribution) were sampled at eight of the nine community water systems. Water-treatment processes differ among the systems. Specifically, treatment at five of the systems is conventional, typically including steps of coagulation, flocculation, sedimentation, filtration, and disinfection. One water system uses slow sand filtration and disinfection, a second system uses ozone as a preliminary treatment step to conventional treatment, and a third system is a direct filtration treatment plant that uses many of the steps employed in conventional treatment. Most of these treatment steps are not designed specifically to remove the compounds monitored in this study. About two-thirds of the compounds detected commonly in source water were detected at similar frequencies in finished water. Although the water-treatment steps differ somewhat among the eight water systems, the amount of change in concentration of the compounds from source- to finish
Min, Nyo; Leong, Pok Thim; Lee, Regina Ching Hua; Khuan, Jeffery Seng Eng; Chu, Justin Jang Hann
2018-02-01
Hand Foot Mouth Disease (HFMD), resulting from human enterovirus A71 (HEVA71) infection can cause severe neurological complications leading to fatality in young children. Currently, there is no approved antiviral for therapeutic treatment against HEVA71 infection. In this study, a 500-compound flavonoid library was screened to identify potential inhibitors of HEVA71 using high-throughput immunofluorescence-based phenotypic screening method. Two lead flavonoid compounds, ST077124 and ST024734 at the non-cytotoxic concentration of 50 μM were found to be effective antivirals that inhibited replication of HEVA71, reducing infectious viral titers by 3.5 log 10 PFU/ml and 2.5 log 10 PFU/ml respectively. Our study revealed that ST077124 is a specific antiviral compound that inhibits human enteroviruses while ST024734 exhibited antiviral activity against human enteroviruses as well as dengue virus type-2. We also identified that both compounds affected the viral RNA transcription and translation machinery of HEVA71 but did not interfere with the viral internal ribosomal entry site (IRES) activity. Hence, our findings strongly suggest that ST077124 and ST024734 are effective antiviral compounds of minimal cytotoxicity and could serve as promising therapeutic agents against HEVA71 infection. Copyright © 2017 Elsevier B.V. All rights reserved.
Compound Stimulus Extinction Reduces Spontaneous Recovery in Humans
ERIC Educational Resources Information Center
Coelho, Cesar A. O.; Dunsmoor, Joseph E.; Phelps, Elizabeth A.
2015-01-01
Fear-related behaviors are prone to relapse following extinction. We tested in humans a compound extinction design ("deepened extinction") shown in animal studies to reduce post-extinction fear recovery. Adult subjects underwent fear conditioning to a visual and an auditory conditioned stimulus (CSA and CSB, respectively) separately…
METHOD OF LIQUID-LIQUID EXTRACTION OF BLOOD SURROGATES FOR ASSESSING HUMAN EXPOSURE TO JET FUEL
A baseline method of liquid?liquid extraction for assessing human exposure to JP-8 jet fuel was established by extracting several representative compounds ranging from very volatile to semi-volatile organic compounds, including benzene, toluene, nonane, decane, undecane, tridec...
Antizar-Ladislao, Blanca
2008-02-01
Tributyltin (TBT) is a toxic chemical used for various industrial purposes such as slime control in paper mills, disinfection of circulating industrial cooling waters, antifouling agents, and the preservation of wood. Due to its widespread use as an antifouling agent in boat paints, TBT is a common contaminant of marine and freshwater ecosystems exceeding acute and chronic toxicity levels. TBT is the most significant pesticide in marine and freshwaters in Europe and consequently its environmental level, fate, toxicity and human exposure are of current concern. Thus, the European Union has decided to specifically include TBT compounds in its list of priority compounds in water in order to control its fate in natural systems, due to their toxic, persistent, bioaccumulative and endocrine disruptive characteristics. Additionally, the International Maritime Organization has called for a global treaty that bans the application of TBT-based paints starting 1 of January 2003, and total prohibition by 1 of January 2008. This paper reviews the state of the science regarding TBT, with special attention paid to the environmental levels, toxicity, and human exposure. TBT compounds have been detected in a number of environmental samples. In humans, organotin compounds have been detected in blood and in the liver. As for other persistent organic pollutants, dietary intake is most probably the main route of exposure to TBT compounds for the general population. However, data concerning TBT levels in foodstuffs are scarce. It is concluded that investigations on experimental toxicity, dietary intake, potential human health effects and development of new sustainable technologies to remove TBT compounds are clearly necessary.
2011-01-01
Background Since the classic Hopkins and Groom druggable genome review in 2002, there have been a number of publications updating both the hypothetical and successful human drug target statistics. However, listings of research targets that define the area between these two extremes are sparse because of the challenges of collating published information at the necessary scale. We have addressed this by interrogating databases, populated by expert curation, of bioactivity data extracted from patents and journal papers over the last 30 years. Results From a subset of just over 27,000 documents we have extracted a set of compound-to-target relationships for biochemical in vitro binding-type assay data for 1,736 human proteins and 1,654 gene identifiers. These are linked to 1,671,951 compound records derived from 823,179 unique chemical structures. The distribution showed a compounds-per-target average of 964 with a maximum of 42,869 (Factor Xa). The list includes non-targets, failed targets and cross-screening targets. The top-278 most actively pursued targets cover 90% of the compounds. We further investigated target ranking by determining the number of molecular frameworks and scaffolds. These were compared to the compound counts as alternative measures of chemical diversity on a per-target basis. Conclusions The compounds-per-protein listing generated in this work (provided as a supplementary file) represents the major proportion of the human drug target landscape defined by published data. We supplemented the simple ranking by the number of compounds assayed with additional rankings by molecular topology. These showed significant differences and provide complementary assessments of chemical tractability. PMID:21569515
Crowther, Gregory J.; Hillesland, Heidi K.; Keyloun, Katelyn R.; Reid, Molly C.; Lafuente-Monasterio, Maria Jose; Ghidelli-Disse, Sonja; Leonard, Stephen E.; He, Panqing; Jones, Jackson C.; Krahn, Mallory M.; Mo, Jack S.; Dasari, Kartheek S.; Fox, Anna M. W.; Boesche, Markus; El Bakkouri, Majida; Rivas, Kasey L.; Leroy, Didier; Hui, Raymond; Drewes, Gerard; Maly, Dustin J.; Van Voorhis, Wesley C.; Ojo, Kayode K.
2016-01-01
In 2010 the identities of thousands of anti-Plasmodium compounds were released publicly to facilitate malaria drug development. Understanding these compounds’ mechanisms of action—i.e., the specific molecular targets by which they kill the parasite—would further facilitate the drug development process. Given that kinases are promising anti-malaria targets, we screened ~14,000 cell-active compounds for activity against five different protein kinases. Collections of cell-active compounds from GlaxoSmithKline (the ~13,000-compound Tres Cantos Antimalarial Set, or TCAMS), St. Jude Children’s Research Hospital (260 compounds), and the Medicines for Malaria Venture (the 400-compound Malaria Box) were screened in biochemical assays of Plasmodium falciparum calcium-dependent protein kinases 1 and 4 (CDPK1 and CDPK4), mitogen-associated protein kinase 2 (MAPK2/MAP2), protein kinase 6 (PK6), and protein kinase 7 (PK7). Novel potent inhibitors (IC50 < 1 μM) were discovered for three of the kinases: CDPK1, CDPK4, and PK6. The PK6 inhibitors are the most potent yet discovered for this enzyme and deserve further scrutiny. Additionally, kinome-wide competition assays revealed a compound that inhibits CDPK4 with few effects on ~150 human kinases, and several related compounds that inhibit CDPK1 and CDPK4 yet have limited cytotoxicity to human (HepG2) cells. Our data suggest that inhibiting multiple Plasmodium kinase targets without harming human cells is challenging but feasible. PMID:26934697
Organic Compounds in Potomac River Water Used for Public Supply near Washington, D.C., 2003-05
Brayton, Michael J.; Denver, Judith M.; Delzer, Gregory C.; Hamilton, Pixie A.
2008-01-01
Organic compounds studied in this U.S. Geological Survey (USGS) assessment generally are man-made, including, in part, pesticides, solvents, gasoline hydrocarbons, personal care and domestic-use products, and refrigerants and propellants. A total of 85 of 277 compounds were detected at least once among the 25 samples collected approximately monthly during 2003-05 at the intake of the Washington Aqueduct, one of several community water systems on the Potomac River upstream from Washington, D.C. The diversity of compounds detected indicate a variety of different sources and uses (including wastewater discharge, industrial, agricultural, domestic, and others) and different pathways (including treated wastewater outfalls located upstream, overland runoff, and ground-water discharge) to drinking-water supplies. Seven compounds were detected year-round in source-water intake samples, including selected herbicide compounds commonly used in the Potomac River Basin and in other agricultural areas across the United States. Two-thirds of the 26 compounds detected most commonly in source water (in at least 20 percent of the samples) also were detected most commonly in finished water (after treatment but prior to distribution). Concentrations for all detected compounds in source and finished water generally were less than 0.1 microgram per liter and always less than human-health benchmarks, which are available for about one-half of the detected compounds. On the basis of this screening-level assessment, adverse effects to human health are expected to be negligible (subject to limitations of available human-health benchmarks).
Organic Compounds in Clackamas River Water Used for Public Supply near Portland, Oregon, 2003-05
Carpenter, Kurt D.; McGhee, Gordon
2009-01-01
Organic compounds studied in this U.S. Geological Survey (USGS) assessment generally are man-made, including pesticides, gasoline hydrocarbons, solvents, personal care and domestic-use products, disinfection by-products, and manufacturing additives. In all, 56 compounds were detected in samples collected approximately monthly during 2003-05 at the intake for the Clackamas River Water plant, one of four community water systems on the lower Clackamas River. The diversity of compounds detected suggests a variety of different sources and uses (including wastewater discharges, industrial, agricultural, domestic, and others) and different pathways to drinking-water supplies (point sources, precipitation, overland runoff, ground-water discharge, and formation during water treatment). A total of 20 organic compounds were commonly detected (in at least 20 percent of the samples) in source water and (or) finished water. Fifteen compounds were commonly detected in source water, and five of these compounds (benzene, m- and p-xylene, diuron, simazine, and chloroform) also were commonly detected in finished water. With the exception of gasoline hydrocarbons, disinfection by-products, chloromethane, and the herbicide diuron, concentrations in source and finished water were less than 0.1 microgram per liter and always less than human-health benchmarks, which are available for about 60 percent of the compounds detected. On the basis of this screening-level assessment, adverse effects to human health are assumed to be negligible (subject to limitations of available human-health benchmarks).
Lin, Rong-Dih; Chen, Mei-Chuan; Liu, Yan-Ling; Lin, Yi-Tzu; Lu, Mei-Kuang; Hsu, Feng-Lin; Lee, Mei-Hsien
2015-12-02
Nontoxic natural products useful in skin care cosmetics are of considerable interest. Tyrosinase is a rate-limiting enzyme for which its inhibitor is useful in developing whitening cosmetics. Pyracantha koidzumii (Hayata) Rehder is an endemic species in Taiwan that exhibits tyrosinase-inhibitory activity. To find new active natural compounds from P. koidzumii, we performed bioguided isolation and studied the related activity in human epidermal melanocytes. In total, 13 compounds were identified from P. koidzumii in the present study, including two new compounds, 3,6-dihydroxy-2,4-dimethoxy-dibenzofuran (9) and 3,4-dihydroxy-5-methoxybiphenyl-2'-O-β-d-glucopyranoside (13), as well as 11 known compounds. The new compound 13 exhibited maximum potency in inhibiting cellular tyrosinase activity, the protein expression of cellular tyrosinase and tyrosinase-related protein-2, as well as the mRNA expression of Paired box 3 and microphthalmia-associated transcription factor in a concentration-dependent manner. In the enzyme kinetic assay, the new compound 13 acted as an uncompetitive mixed-type inhibitor against the substrate l-3,4-dihydroxyphenylalanine and had a Km value against this substrate of 0.262 mM, as calculated using the Lineweaver-Burk plots. Taken together, our findings show compound 13 exhibits tyrosinase inhibition in human melanocytes and compound 13 may be a potential candidate for use in cosmetics.
Lin, Rong-Dih; Chen, Mei-Chuan; Liu, Yan-Ling; Lin, Yi-Tzu; Lu, Mei-Kuang; Hsu, Feng-Lin; Lee, Mei-Hsien
2015-01-01
Nontoxic natural products useful in skin care cosmetics are of considerable interest. Tyrosinase is a rate-limiting enzyme for which its inhibitor is useful in developing whitening cosmetics. Pyracantha koidzumii (Hayata) Rehder is an endemic species in Taiwan that exhibits tyrosinase-inhibitory activity. To find new active natural compounds from P. koidzumii, we performed bioguided isolation and studied the related activity in human epidermal melanocytes. In total, 13 compounds were identified from P. koidzumii in the present study, including two new compounds, 3,6-dihydroxy-2,4-dimethoxy-dibenzofuran (9) and 3,4-dihydroxy-5-methoxybiphenyl-2ʹ-O-β-d-glucopyranoside (13), as well as 11 known compounds. The new compound 13 exhibited maximum potency in inhibiting cellular tyrosinase activity, the protein expression of cellular tyrosinase and tyrosinase-related protein-2, as well as the mRNA expression of Paired box 3 and microphthalmia-associated transcription factor in a concentration-dependent manner. In the enzyme kinetic assay, the new compound 13 acted as an uncompetitive mixed-type inhibitor against the substrate l-3,4-dihydroxyphenylalanine and had a Km value against this substrate of 0.262 mM, as calculated using the Lineweaver–Burk plots. Taken together, our findings show compound 13 exhibits tyrosinase inhibition in human melanocytes and compound 13 may be a potential candidate for use in cosmetics. PMID:26633381
Fancher, R Marcus; Zhang, Hongjian; Sleczka, Bogdan; Derbin, George; Rockar, Richard; Marathe, Punit
2011-07-01
A preclinical canine model capable of predicting a compound's potential for pH-dependent absorption in humans was developed. This involved the surgical insertion of a gastrostomy feeding tube into the stomach of a beagle dog. The tube was sutured in position to allow frequent withdrawal of gastric fluid for pH measurement. Therefore, it was possible to measure pH in the stomach and assess the effect of gastric pH-modifying agents on the absorption of various test compounds. Fasted gastric pH in the dog showed considerable inter- and intra-animal variability. Pretreatment of pentagastrin (6 µg/kg intramuscularly) 20 min prior to test compound administration was determined to be adequate for simulating fasting stomach pH in humans. Pretreatment with famotidine [40 mg orally] 1 h prior to test compound administration was determined to be adequate for simulating human gastric pH when acid-reducing agents are coadministered. Pentagastrin and famotidine pretreatments were used to test two discovery compounds and distinct differences in their potential for pH-dependent absorption were observed. The model described herein can be used preclinically to screen out compounds, differentiate compounds, and support the assessment of various formulation- and prodrug-based strategies to mitigate the pH effect. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association
Banks, William A; Farr, Susan A; Morley, John E; Wolf, Kathy M; Geylis, Valeria; Steinitz, Michael
2007-08-01
Amyloid beta protein (Abeta) levels are elevated in the brain of Alzheimer's disease patients. Anti-Abeta antibodies can reverse the histologic and cognitive impairments in mice which overexpress Abeta. Passive immunization appears safer than vaccination and treatment of patients will likely require human rather than xenogenic antibodies. Effective treatment will likely require antibody to cross the blood-brain barrier (BBB). Unfortunately, antibodies typically cross the BBB very poorly and accumulate less well in brain than even albumin, a substance nearly totally excluded from the brain. We compared the ability of two anti-Abeta human monoclonal IgM antibodies, L11.3 and HyL5, to cross the BBB of young CD-1 mice to that of young and aged SAMP8 mice. The SAMP8 mouse has a spontaneous mutation that induces an age-related, Abeta-dependent cognitive deficit. There was preferential uptake of intravenously administered L11.3 in comparison to HyL5, albumin, and a control human monoclonal IgM (RF), especially by hippocampus and olfactory bulb in aged SAMP8 mice. Injection of L11.3 into the brains of aged SAMP8 mice reversed both learning and memory impairments in aged SAMP8 mice, whereas IgG and IgM controls were ineffective. Pharmacokinetic analysis predicted that an intravenous dose 1000 times higher than the brain injection dose would reverse cognitive impairments. This predicted intravenous dose reversed the impairment in learning, but not memory, in aged SAMP8 mice. In conclusion, an IgM antibody was produced that crosses the BBB to reverse cognitive impairment in a murine model of Alzheimer's disease.
Simultaneous quantitative analysis of nine vitamin D compounds in human blood using LC-MS/MS.
Abu Kassim, Nur Sofiah; Gomes, Fabio P; Shaw, Paul Nicholas; Hewavitharana, Amitha K
2016-01-01
It has been suggested that each member of the family of vitamin D compounds may have different function(s). Therefore, selective quantification of each compound is important in clinical research. Development and validation attempts of a simultaneous determination method of 12 vitamin D compounds in human blood using precolumn derivatization followed by LC-MS/MS is described. Internal standard calibration with 12 stable isotope labeled analogs was used to correct for matrix effects in MS detector. Nine vitamin D compounds were quantifiable in blood samples with detection limits within femtomole levels. Serum (compared with plasma) was found to be a more suitable sample type, and protein precipitation (compared with saponification) a more effective extraction method for vitamin D assay.
Rhythmic motor entrainment in children with speech and language impairments: tapping to the beat.
Corriveau, Kathleen H; Goswami, Usha
2009-01-01
In prior work (Corriveau et al., 2007), we showed that children with speech and language impairments (SLI) were significantly less sensitive than controls to two auditory cues to rhythmic timing, amplitude envelope rise time and duration. Here we explore whether rhythmic problems extend to rhythmic motor entrainment. Tapping in synchrony with a beat has been described as the simplest rhythmic act that humans perform. We explored whether tapping to a beat would be impaired in children for whom auditory rhythmic timing is impaired. Children with SLI were indeed found to be impaired in a range of measures of paced rhythmic tapping, but were not equally impaired in tapping in an unpaced control condition requiring an internally-generated rhythm. The severity of impairment in paced tapping was linked to language and literacy outcomes.
Myer, Catherine E; Bryant, Deborah; DeLuca, John; Gluck, Mark A
2002-01-01
In humans, anterograde amnesia can result from damage to the medial temporal (MT) lobes (including hippocampus), as well as to other brain areas such as basal forebrain. Results from animal classical conditioning studies suggest that there may be qualitative differences in the memory impairment following MT vs. basal forebrain damage. Specifically, delay eyeblink conditioning is spared after MT damage in animals and humans, but impaired in animals with basal forebrain damage. Recently, we have likewise shown delay eyeblink conditioning impairment in humans with amnesia following anterior communicating artery (ACoA) aneurysm rupture, which damages the basal forebrain. Another associative learning task, a computer-based concurrent visual discrimination, also appears to be spared in MT amnesia while ACoA amnesics are slower to learn the discriminations. Conversely, animal and computational models suggest that, even though MT amnesics may learn quickly, they may learn qualitatively differently from controls, and these differences may result in impaired transfer when familiar information is presented in novel combinations. Our initial data suggests such a two-phase learning and transfer task may provide a double dissociation between MT amnesics (spared initial learning but impaired transfer) and ACoA amnesics (slow initial learning but spared transfer). Together, these emerging data suggest that there are subtle but dissociable differences in the amnesic syndrome following damage to the MT lobes vs. basal forebrain, and that these differences may be most visible in non-declarative tasks such as eyeblink classical conditioning and simple associative learning.
NASA Astrophysics Data System (ADS)
Kourghi, Mohamad; De Ieso, Michael L.; Nourmohammadi, Saeed; Pei, Jinxin V.; Yool, Andrea J.
2018-04-01
Aquaporins are integral proteins that facilitate the transmembrane transport of water and small solutes. In addition to enabling water flux, mammalian Aquaporin-1 (AQP1) channels activated by cyclic GMP can carry non-selective monovalent cation currents, selectively blocked by arylsulfonamide compounds AqB007 (IC50 170 µM) and AqB011 (IC50 14 µM). In silico models suggested that ligand docking might involve the cytoplasmic loop D (between AQP1 transmembrane domains 4 and 5), but the predicted site of interaction remained to be tested. Work here shows that mutagenesis of two conserved arginine residues in loop D slowed the activation of the AQP1 ion conductance and impaired the sensitivity of the channel to block by AqB011. Substitution of residues in loop D with proline showed effects on ion conductance amplitude that varied with position, suggesting that the structural conformation of loop D is important for AQP1 channel gating. Human AQP1 wild type, AQP1 mutant channels with alanines substituted for two arginines (R159A+R160A), and mutants with proline substituted for single residues threonine (T157P), aspartate (D158P), arginine (R159P, R160P) or glycine (G165P) were expressed in Xenopus laevis oocytes. Conductance responses were analyzed by two-electrode voltage clamp. Optical osmotic swelling assays and confocal microscopy were used to confirm mutant and wild type AQP1-expressing oocytes were expressed in the plasma membrane. After application of membrane-permeable cGMP, R159A+R160A channels had a significantly slower rate of activation as compared with wild type, consistent with impaired gating. AQP1 R159A+R160A channels showed no significant block by AqB011 at 50 µM, in contrast to the wild type channel which was blocked effectively. T157P, D158P and R160P mutations had impaired activation compared to wild type; R159P showed no significant effect; and G165P appeared to augment the conductance amplitude. These findings provide evidence for the role of the loop D as a gating domain for AQP1 ion channels, and identify the likely site of interaction of AqB011 in the proximal loop D sequence.
Impairing existing declarative memory in humans by disrupting reconsolidation
Chan, Jason C. K.; LaPaglia, Jessica A.
2013-01-01
During the past decade, a large body of research has shown that memory traces can become labile upon retrieval and must be restabilized. Critically, interrupting this reconsolidation process can abolish a previously stable memory. Although a large number of studies have demonstrated this reconsolidation associated amnesia in nonhuman animals, the evidence for its occurrence in humans is far less compelling, especially with regard to declarative memory. In fact, reactivating a declarative memory often makes it more robust and less susceptible to subsequent disruptions. Here we show that existing declarative memories can be selectively impaired by using a noninvasive retrieval–relearning technique. In six experiments, we show that this reconsolidation-associated amnesia can be achieved 48 h after formation of the original memory, but only if relearning occurred soon after retrieval. Furthermore, the amnesic effect persists for at least 24 h, cannot be attributed solely to source confusion and is attainable only when relearning targets specific existing memories for impairment. These results demonstrate that human declarative memory can be selectively rewritten during reconsolidation. PMID:23690586
Rush, C R; Baker, R W; Rowlett, J K
2000-02-01
Six non-drug-abusing humans were trained to discriminate 15 mg zolpidem in the present experiment. After participants acquired discrimination, a range of doses of zolpidem (2.5-15.0 mg), triazolam (0.0625-0.3750 mg), pentobarbital (25-150 mg), caffeine (100-600 mg), and placebo were tested to determine whether they shared discriminative-stimulus effects with 15 mg zolpidem. The participant-rated and performance-impairing effects of zolpidem, triazolam, pentobarbital, and caffeine were assessed concurrently. Triazolam and pentobarbital dose dependently increased zolpidem-appropriate responding. Caffeine occasioned low levels of zolpidem-appropriate responding. Zolpidem, triazolam, and pentobarbital, but not caffeine, generally produced a similar constellation of participant-rated drug effects (e.g., increased scores for the Pentobarbital, Chlorpromazine, and Alcohol Group subscale on the Addiction Research Center Inventory) and dose dependently impaired performance. These results suggest that humans can reliably discriminate zolpidem. Despite its unique benzodiazepine-receptor binding profile, the discriminative-stimulus, participant-rated, and performance-impairing effects of zolpidem are similar to those of the barbiturates and benzodiazepines.
Thorne, Natasha; Malik, Nasir; Shah, Sonia; Zhao, Jean; Class, Bradley; Aguisanda, Francis; Southall, Noel; Xia, Menghang; McKew, John C; Rao, Mahendra; Zheng, Wei
2016-05-01
Astrocytes are the predominant cell type in the nervous system and play a significant role in maintaining neuronal health and homeostasis. Recently, astrocyte dysfunction has been implicated in the pathogenesis of many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Astrocytes are thus an attractive new target for drug discovery for neurological disorders. Using astrocytes differentiated from human embryonic stem cells, we have developed an assay to identify compounds that protect against oxidative stress, a condition associated with many neurodegenerative diseases. This phenotypic oxidative stress assay has been optimized for high-throughput screening in a 1,536-well plate format. From a screen of approximately 4,100 bioactive tool compounds and approved drugs, we identified a set of 22 that acutely protect human astrocytes from the consequences of hydrogen peroxide-induced oxidative stress. Nine of these compounds were also found to be protective of induced pluripotent stem cell-differentiated astrocytes in a related assay. These compounds are thought to confer protection through hormesis, activating stress-response pathways and preconditioning astrocytes to handle subsequent exposure to hydrogen peroxide. In fact, four of these compounds were found to activate the antioxidant response element/nuclear factor-E2-related factor 2 pathway, a protective pathway induced by toxic insults. Our results demonstrate the relevancy and utility of using astrocytes differentiated from human stem cells as a disease model for drug discovery and development. Astrocytes play a key role in neurological diseases. Drug discovery efforts that target astrocytes can identify novel therapeutics. Human astrocytes are difficult to obtain and thus are challenging to use for high-throughput screening, which requires large numbers of cells. Using human embryonic stem cell-derived astrocytes and an optimized astrocyte differentiation protocol, it was possible to screen approximately 4,100 compounds in titration to identify 22 that are cytoprotective of astrocytes. This study is the largest-scale high-throughput screen conducted using human astrocytes, with a total of 17,536 data points collected in the primary screen. The results demonstrate the relevancy and utility of using astrocytes differentiated from human stem cells as a disease model for drug discovery and development. ©AlphaMed Press.
Nagashima, Shunta; Maruyama, Junichi; Kawano, Shodai; Iwasa, Hiroaki; Nakagawa, Kentaro; Ishigami-Yuasa, Mari; Kagechika, Hiroyuki; Nishina, Hiroshi; Hata, Yutaka
2016-06-01
Transcriptional co-activator with PDZ-binding motif (TAZ) plays versatile roles in cell proliferation and differentiation. It is phosphorylated by large tumor suppressor kinases, the core kinases of the tumor-suppressive Hippo pathway. Phosphorylation induces the cytoplasmic accumulation of TAZ and its degradation. In human cancers, the deregulation of the Hippo pathway and gene amplification enhance TAZ activity. TAZ interacts with TEA domain family members (TEAD), and upregulates genes implicated in epithelial-mesenchymal transition. It also confers stemness to cancer cells. Thus, TAZ activation provides cancer cells with malignant properties and worsens the clinical prognosis. Therefore, TAZ attracts attention as a therapeutic target in cancer therapy. We applied 18 606 small chemical compounds to human osteosarcoma U2OS cells expressing GFP-fused TAZ (GFP-TAZ), monitored the subcellular localization of GFP-TAZ, and selected 33 compounds that shifted GFP-TAZ to the cytoplasm. Unexpectedly, only a limited number of compounds suppressed TAZ-mediated enhancement of TEAD-responsive reporter activity. Moreover, the compounds that weakened TEAD reporter activity did not necessarily decrease the unphosphorylated TAZ. In this study, we focused on three compounds that decreased both TEAD reporter activity and unphosphorylated TAZ, and treated several human cancer cells with these compounds. One compound did not show a remarkable effect, whereas the other two compounds compromised the cell viability in certain cancer cells. In conclusion, the GFP-TAZ-based assay can be used as the first screening for compounds that inhibit TAZ and show anticancer properties. To develop anticancer drugs, we need additional assays to select the compounds. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Immunomodulatory properties of kappa opioids and synthetic cannabinoids in HIV-1 neuropathogenesis.
Hu, Shuxian; Sheng, Wen S; Rock, Robert Bryan
2011-12-01
Anti-retroviral therapy (ART) has had a tremendous impact on the clinical outcomes of HIV-1 infected individuals. While ART has produced many tangible benefits, chronic, long-term consequences of HIV infection have grown in importance. HIV-1-associated neurocognitive disorder (HAND) represents a collection of neurological syndromes that have a wide range of functional cognitive impairments. HAND remains a serious threat to AIDS patients, and there currently remains no specific therapy for the neurological manifestations of HIV-1. Based upon work in other models of neuroinflammation, kappa opioid receptors (KOR) and synthetic cannabinoids have emerged as having neuroprotective properties and the ability to dampen pro-inflammatory responses of glial cells; properties that may have a positive influence in HIV-1 neuropathogenesis. The ability of KOR ligands to inhibit HIV-1 production in human microglial cells and CD4 T lymphocytes, demonstrate neuroprotection, and dampen chemokine production in astrocytes provides encouraging data to suggest that KOR ligands may emerge as potential therapeutic agents in HIV neuropathogenesis. Based upon findings that synthetic cannabinoids inhibit HIV-1 expression in human microglia and suppress production of inflammatory mediators such as nitric oxide (NO) in human astrocytes, as well as a substantial literature demonstrating neuroprotective properties of cannabinoids in other systems, synthetic cannabinoids have also emerged as potential therapeutic agents in HIV neuropathogenesis. This review focuses on these two classes of compounds and describes the immunomodulatory and neuroprotective properties attributed to each in the context of HIV neuropathogenesis.
Mutations in PROP1 cause familial combined pituitary hormone deficiency.
Wu, W; Cogan, J D; Pfäffle, R W; Dasen, J S; Frisch, H; O'Connell, S M; Flynn, S E; Brown, M R; Mullis, P E; Parks, J S; Phillips, J A; Rosenfeld, M G
1998-02-01
Combined pituitary hormone deficiency (CPHD) in man denotes impaired production of growth hormone (GH) and one or more of the other five anterior pituitary hormones. Mutations of the pituitary transcription factor gene POU1F1 (the human homologue of mouse Pit1) are responsible for deficiencies of GH, prolactin and thyroid stimulating hormone (TSH) in Snell and Jackson dwarf mice and in man, while the production of adrenocorticotrophic hormone (ACTH), luteinizing hormone (LH) and follicle stimulating hormone (FSH) is preserved. The Ames dwarf (df) mouse displays a similar phenotype, and appears to be epistatic to Snell and Jackson dwarfism. We have recently positionally cloned the putative Ames dwarf gene Prop1, which encodes a paired-like homeodomain protein that is expressed specifically in embryonic pituitary and is necessary for Pit1 expression. In this report, we have identified four CPHD families with homozygosity or compound heterozygosity for inactivating mutations of PROP1. These mutations in the human PROP1 gene result in a gene product with reduced DNA-binding and transcriptional activation ability in comparison to the product of the murine df mutation. In contrast to individuals with POU1F1 mutations, those with PROP1 mutations cannot produce LH and FSH at a sufficient level and do not enter puberty spontaneously. Our results identify a major cause of CPHD in humans and suggest a direct or indirect role for PROP1 in the ontogenesis of pituitary gonadotropes, as well as somatotropes, lactotropes and caudomedial thyrotropes.
Mellegård, H; Stalheim, T; Hormazabal, V; Granum, P E; Hardy, S P
2009-07-01
To identify the phenolic compounds in the leaves of Sphagnum papillosum and examine their antibacterial activity at pH appropriate for the undissociated forms. Bacterial counts of overnight cultures showed that whilst growth of Staphylococcus aureus 50084 was impaired in the presence of milled leaves, the phenol-free fraction of holocellulose of S. papillosum had no bacteriostatic effect. Liquid chromatography-mass spectrometry analysis of an acetone-methanol extract of the leaves detected eight phenolic compounds. Antibacterial activity of the four dominating phenols specific to Sphagnum leaves, when assessed in vitro as minimal inhibitory concentrations (MICs), were generally >2.5 mg ml(-1). MIC values of the Sphagnum-specific compound 'sphagnum acid' [p-hydroxy-beta-(carboxymethyl)-cinnamic acid] were >5 mg ml(-1). No synergistic or antagonistic effects of the four dominating phenols were detected in plate assays. Sphagnum-derived phenolics exhibit antibacterial activity in vitro only at concentrations far in excess of those found in the leaves. We have both identified the phenolic compounds in S. papillosum and assessed their antibacterial activity. Our data indicate that phenolic compounds in isolation are not potent antibacterial agents and we question their potency against food-borne pathogens.
Mei, Yu-Qin; Pan, Zong-Fu; Chen, Wen-Teng; Xu, Min-Hua; Zhu, Dan-Yan; Yu, Yong-Ping; Lou, Yi-Jia
2016-01-01
Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a.
Mei, Yu-qin; Pan, Zong-fu; Chen, Wen-teng; Xu, Min-hua; Zhu, Dan-yan; Yu, Yong-ping; Lou, Yi-jia
2016-01-01
Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a. PMID:27315062
An appetitive conditioned stimulus enhances fear acquisition and impairs fear extinction
Leung, Hiu T.; Holmes, Nathan M.
2016-01-01
Four experiments used between- and within-subject designs to examine appetitive–aversive interactions in rats. Experiments 1 and 2 examined the effect of an excitatory appetitive conditioned stimulus (CS) on acquisition and extinction of conditioned fear. In Experiment 1, a CS shocked in a compound with an appetitive excitor (i.e., a stimulus previously paired with sucrose) underwent greater fear conditioning than a CS shocked in a compound with a neutral stimulus. Conversely, in Experiment 2, a CS extinguished in a compound with an appetitive excitor underwent less extinction than a CS extinguished in a compound with a neutral stimulus. Experiments 3 and 4 compared the amount of fear conditioning to an appetitive excitor and a familiar but neutral target CS when the compound of these stimuli was paired with shock. In each experiment, more fear accrued to the appetitive excitor than to the neutral CS. These results show that an appetitive excitor influences acquisition and extinction of conditioned fear to a neutral CS and itself undergoes a greater associative change than the neutral CS across compound conditioning. They are discussed with respect to the role of motivational information in regulating an associative change in appetitive–aversive interactions. PMID:26884229
PFIESTERIA PISCICIDA-INDUCED COGNITIVE EFFECTS: VISUAL SIGNAL DETECTION PERFORMANCE AND REVERSAL.
Humans exposed to Pfiesteria piscicida report cognitive impairment. In a rat model, we showed that exposure to Pfiesteria impaired learning a new task, but not performance of previously-learned behavior. In this study, we characterized the behavioral effects of Pfiesteria in rats...
Mechanical ventilation and sepsis impair protein metabolism in the diaphragm of neonatal pigs
USDA-ARS?s Scientific Manuscript database
Mechanical ventilation (MV) impairs diaphragmatic function and diminishes the ability to wean from ventilatory support in adult humans. In normal neonatal pigs, animals that are highly anabolic, endotoxin (LPS) infusion induces sepsis, reduces peripheral skeletal muscle protein synthesis rates, but ...