Science.gov

Sample records for compounds lattice thermal

  1. Lattice thermal expansion for normal tetrahedral compound semiconductors

    SciTech Connect

    Omar, M.S. . E-mail: dr_m_s_omar@yahoo.com

    2007-02-15

    The cubic root of the deviation of the lattice thermal expansion from that of the expected value of diamond for group IV semiconductors, binary compounds of III-V and II-VI, as well as several ternary compounds from groups I-III-VI{sub 2}, II-IV-V{sub 2} and I-IV{sub 2}V{sub 3} semiconductors versus their bonding length are given straight lines. Their slopes were found to be 0.0256, 0.0210, 0.0170, 0.0259, 0.0196, and 0.02840 for the groups above, respectively. Depending on the valence electrons of the elements forming these groups, a formula was found to correlate all the values of the slopes mentioned above to that of group IV. This new formula which depends on the melting point and the bonding length as well as the number of valence electrons for the elements forming the compounds, will gives best calculated values for lattice thermal expansion for all compounds forming the groups mentioned above. An empirical relation is also found between the mean ionicity of the compounds forming the groups and their slopes mentioned above and that gave the mean ionicity for the compound CuGe{sub 2}P{sub 3} in the range of 0.442.

  2. Compressed sensing approach for calculating lattice thermal conductivity of complex thermoelectric compounds

    NASA Astrophysics Data System (ADS)

    Ozolins, Vidvuds; Xia, Yi; Nielson, Weston; Zhou, Fei

    2015-03-01

    Earth-abundant minerals such as tetrahedrite Cu12Sb4S13 have recently received attention as promising thermoelectrics due to a combination of a relatively high figure of merit (ZT > 1 at T = 700 K in tetrahedrite), good mechanical properties and inexpensive bulk processing methods. Like many large unit-cell thermoelectrics, these compounds often have complex chemical formulas with very large unit cells that pose challenges to our ability to study their lattice dynamical properties theoretically. Here we show that a recently introduced approach, compressive sensing lattice dynamics (CSLD) [F. Zhou et al., Phys. Rev. Lett. 113, 185501 (2014)] provides an accurate and computationally efficient platform for investigating anharmonic lattice dynamics in complex materials. We will discuss the basic ideas and illustrate the performance of CSLD for the lattice thermal conductivity κL of tetrahedrite, collusite, pyrite, and other earth-abundant mineral compounds.

  3. Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization

    NASA Astrophysics Data System (ADS)

    Seko, Atsuto; Togo, Atsushi; Hayashi, Hiroyuki; Tsuda, Koji; Chaput, Laurent; Tanaka, Isao

    2015-11-01

    Compounds of low lattice thermal conductivity (LTC) are essential for seeking thermoelectric materials with high conversion efficiency. Some strategies have been used to decrease LTC. However, such trials have yielded successes only within a limited exploration space. Here, we report the virtual screening of a library containing 54 779 compounds. Our strategy is to search the library through Bayesian optimization using for the initial data the LTC obtained from first-principles anharmonic lattice-dynamics calculations for a set of 101 compounds. We discovered 221 materials with very low LTC. Two of them even have an electronic band gap <1 eV , which makes them exceptional candidates for thermoelectric applications. In addition to those newly discovered thermoelectric materials, the present strategy is believed to be powerful for many other applications in which the chemistry of materials is required to be optimized.

  4. Thermal expansion and lattice dynamics of RB66 compounds at low temperatures

    SciTech Connect

    Novikov, V V; Avdashchenko, D V; Mitroshenkov, N V; Matovnikov, A V; Budko, Serguei L

    2014-10-01

    Thermal characteristics of the phonon and magnon subsystems of icosahedral borides RB66 (R = Gd, Tb, Dy, Ho, Eu, or Lu) have been studied based on the obtained experimental data on the thermal expansion of the borides and the earlier results on their heat capacity in the range of 2–300 K. The contribution to the expansion of borides containing paramagnetic R 3+ ions, which is characteristic of transition to the spin-glass state, has been revealed. The phonon spectrum moments of RB66 compounds and the Grüneisen parameters have been calculated.

  5. Reducing Lattice Thermal Conductivity of the Thermoelectric Compound AgSbTe2 (P4/mmm) by Lanthanum Substitution: Computational and Experimental Approaches

    NASA Astrophysics Data System (ADS)

    Amouyal, Yaron

    2014-10-01

    In this study we performed lattice dynamics first-principles calculations for the promising thermoelectric (TE) compound AgSbTe2, and estimated the stability of its three polymorphs over a wide temperature range from 0 to 600 K. We calculated the vibrational density of states of the AgSbTe2 (P4/mmm) phase. The results suggested that formation of substitutional defects at Ag-sublattice sites impedes lattice vibrations, thereby reducing lattice thermal conductivity. We focused on calculations based on the Debye approximation for the compound La0.125Ag0.875SbTe2, and predicted reduction of the average sound velocity from 1684 to 1563 m s-1 as a result of La doping. This is manifested as a ca. 14% reduction in thermal conductivity. To confirm the results from computation we produced two Ag-Sb-Te-based alloys, a ternary alloy without La addition and a quaternary alloy containing La. We measured the thermal conductivity of both alloys by use of the laser flash analysis method, and, as a result of La alloying, observed a reduction in thermal conductivity from 0.92 to 0.71 W m-1 K-1 at 573 K, as calculated from first principles.

  6. Colossal negative thermal expansion induced by magnetic phase competition on frustrated lattices in Laves phase compound (Hf,Ta)Fe2

    NASA Astrophysics Data System (ADS)

    Li, B.; Luo, X. H.; Wang, H.; Ren, W. J.; Yano, S.; Wang, C.-W.; Gardner, J. S.; Liss, K.-D.; Miao, P.; Lee, S.-H.; Kamiyama, T.; Wu, R. Q.; Kawakita, Y.; Zhang, Z. D.

    2016-06-01

    Competition between ferromagnetic and antiferromagnetic phases on frustrated lattices in hexagonal Laves phase compound Hf0.86Ta0.14Fe2 is investigated by using neutron diffraction as a function of temperature and magnetic fields and density-functional-theory calculations. At 325 K, the compound orders into the 120° frustrated antiferromagnetic state with a well-reduced magnetic moment, and an in-plane lattice contraction simultaneously sets in. With further cooling down, however, the accumulated distortion in turn destabilizes this susceptible frustrated structure. The frustration is completely relieved at 255 K when the first-order transition to the ferromagnetic state takes place, where a colossal negative volumetric thermal expansion, -123 ×10-6 /K, is obtained. Meanwhile, the antiferromagnetic state can be suppressed by few-tesla magnetic fields, which results in a colossal positive magnetostriction. Such delicate competition is attributed to the giant magnetic fluctuation inherent in the frustrated antiferromagnetic state. Therefore, the magnetoelastic instability is approached even under a small perturbation.

  7. Disorder scattering effect on the high-temperature lattice thermal conductivity of TiCoSb-based half-Heusler compounds

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Chen, Lidong; Zhang, Wenqing; Feng, Chude

    2005-07-01

    The lattice thermal conductivities of TiCoSb-based half-Heusler alloys are presented in the temperature range between 300 and 900K. A phenomenological model calculation of the high-temperature lattice thermal conductivities of these alloys was derived based on the Klemens-Callaway theory [Phys. Rev. 119, 507 (1960); ibid. 113, 1046 (1959)]. Good agreement was obtained between the calculated and the experimental data for TiCoSb, TiCo0.5Rh0.5Sb, and Ti0.5Zr0.5CoSb. Furthermore, the model predicts that simultaneously isoelectronic alloying on both Ti and Co sublattices could reduce the lattice thermal conductivity, and a κL value of 0.3W /mK is predicted for Ti0.5Zr0.5Co0.5Rh0.5Sb at 900K.

  8. A modified model for calculating lattice thermal expansion of I{sub 2}-IV-VI{sub 3} and I{sub 3}-V-VI{sub 4} tetrahedral compounds

    SciTech Connect

    Omar, M.S. . E-mail: dr_m_s_omar@yahoo.com

    2007-05-03

    A general empirical formula was found for calculating lattice thermal expansion for compounds having their properties extended for compound groups having different mean ionicity as well as more than one type of cation atoms with that of different numbers of them such as I{sub 2}-IV-VI{sub 3} and I{sub 3}-V-VI{sub 4}. The difference in the valence electrons for cations and anions in the compound was used to correlate the deviations caused by the compound ionicity. The ionicity effects, which are due to their different numbers for their types, were also added to the correlation equation. In general, the lattice thermal expansion for a compound semiconductor can be calculated from a relation containing melting point, mean atomic distance and number of valence electrons for the atoms forming the compound. The mean ionicity for the group compounds forming I{sub 2}-IV-VI{sub 3} was found to be 0.323 and 0.785 for the ternary group compounds of I{sub 3}-V-VI{sub 4}.

  9. Structure and thermoelectric properties of the quaternary compound Cs2[PdCl4]I2 with ultralow lattice thermal conductivity

    NASA Astrophysics Data System (ADS)

    Li, Wenfeng; Yang, Gui

    2016-03-01

    We study the electronic structure and thermoelectric properties of Cs2[PdCl4]I2 with ultralow lattice thermal conductivity using first-principles calculations and the semi-classical Boltzmann transport theory. The coexistence of several ionic and covalent bonds in Cs2[PdCl4]I2 indicates a similar Zintl phase crystal structure. Cs2[PdCl4]I2 is an indirect-band semiconductor with high density of states near the valence band maximum, which leads to high Seebeck coefficients even at high carrier concentrations. The calculated transport properties of p-type Cs2[PdCl4]I2 are higher than that of the known high-performance thermoelectric material CuGaTe2. The combination of good transport properties and ultralow lattice thermal conductivity suggests that Cs2[PdCl4]I2 can be a promising p-type thermoelectric material.

  10. Disorder scattering effect on the high-temperature lattice thermal conductivity of TiCoSb-based half-Heusler compounds

    SciTech Connect

    Zhou Min; Chen Lidong; Zhang Wenqing; Feng Chude

    2005-07-01

    The lattice thermal conductivities of TiCoSb-based half-Heusler alloys are presented in the temperature range between 300 and 900 K. A phenomenological model calculation of the high-temperature lattice thermal conductivities of these alloys was derived based on the Klemens-Callaway theory [Phys. Rev. 119, 507 (1960); ibid. 113, 1046 (1959)]. Good agreement was obtained between the calculated and the experimental data for TiCoSb, TiCo{sub 0.5}Rh{sub 0.5}Sb, and Ti{sub 0.5}Zr{sub 0.5}CoSb. Furthermore, the model predicts that simultaneously isoelectronic alloying on both Ti and Co sublattices could reduce the lattice thermal conductivity, and a {kappa}{sub L} value of 0.3 W/m K is predicted for Ti{sub 0.5}Zr{sub 0.5}Co{sub 0.5}Rh{sub 0.5}Sb at 900 K.

  11. Lattice dynamics and lattice thermal conductivity of thorium dicarbide

    NASA Astrophysics Data System (ADS)

    Liao, Zongmeng; Huai, Ping; Qiu, Wujie; Ke, Xuezhi; Zhang, Wenqing; Zhu, Zhiyuan

    2014-11-01

    The elastic and thermodynamic properties of ThC2 with a monoclinic symmetry have been studied by means of density functional theory and direct force-constant method. The calculated properties including the thermal expansion, the heat capacity and the elastic constants are in a good agreement with experiment. Our results show that the vibrational property of the C2 dimer in ThC2 is similar to that of a free standing C2 dimer. This indicates that the C2 dimer in ThC2 is not strongly bonded to Th atoms. The lattice thermal conductivity for ThC2 was calculated by means of the Debye-Callaway model. As a comparison, the conductivity of ThC was also calculated. Our results show that the ThC and ThC2 contributions of the lattice thermal conductivity to the total conductivity are 29% and 17%, respectively.

  12. Diverse lattice dynamics in ternary Cu-Sb-Se compounds

    PubMed Central

    Qiu, Wujie; Wu, Lihua; Ke, Xuezhi; Yang, Jihui; Zhang, Wenqing

    2015-01-01

    Searching and designing materials with extremely low lattice thermal conductivity (LTC) has attracted considerable attention in material sciences. Here we systematically demonstrate the diverse lattice dynamics of the ternary Cu-Sb-Se compounds due to the different chemical-bond environments. For Cu3SbSe4 and CuSbSe2, the chemical bond strength is nearly equally distributed in crystalline bulk, and all the atoms are constrained to be around their equilibrium positions. Their thermal transport behaviors are well interpreted by the perturbative phonon-phonon interactions. While for Cu3SbSe3 with obvious chemical-bond hierarchy, one type of atoms is weakly bonded with surrounding atoms, which leads the structure to the part-crystalline state. The part-crystalline state makes a great contribution to the reduction of thermal conductivity that can only be effectively described by including a rattling-like scattering process in addition to the perturbative method. Current results may inspire new approaches to designing materials with low lattice thermal conductivities for high-performance thermoelectric conversion and thermal barrier coatings. PMID:26328765

  13. Low lattice thermal conductivity of stanene.

    PubMed

    Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuchen; Zhang, Xiangchao; Zhu, Heyuan

    2016-02-03

    A fundamental understanding of phonon transport in stanene is crucial to predict the thermal performance in potential stanene-based devices. By combining first-principle calculation and phonon Boltzmann transport equation, we obtain the lattice thermal conductivity of stanene. A much lower thermal conductivity (11.6 W/mK) is observed in stanene, which indicates higher thermoelectric efficiency over other 2D materials. The contributions of acoustic and optical phonons to the lattice thermal conductivity are evaluated. Detailed analysis of phase space for three-phonon processes shows that phonon scattering channels LA + LA/TA/ZA ↔ TA/ZA are restricted, leading to the dominant contributions of high-group-velocity LA phonons to the thermal conductivity. The size dependence of thermal conductivity is investigated as well for the purpose of the design of thermoelectric nanostructures.

  14. Low lattice thermal conductivity of stanene

    PubMed Central

    Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuchen; Zhang, Xiangchao; Zhu, Heyuan

    2016-01-01

    A fundamental understanding of phonon transport in stanene is crucial to predict the thermal performance in potential stanene-based devices. By combining first-principle calculation and phonon Boltzmann transport equation, we obtain the lattice thermal conductivity of stanene. A much lower thermal conductivity (11.6 W/mK) is observed in stanene, which indicates higher thermoelectric efficiency over other 2D materials. The contributions of acoustic and optical phonons to the lattice thermal conductivity are evaluated. Detailed analysis of phase space for three-phonon processes shows that phonon scattering channels LA + LA/TA/ZA ↔ TA/ZA are restricted, leading to the dominant contributions of high-group-velocity LA phonons to the thermal conductivity. The size dependence of thermal conductivity is investigated as well for the purpose of the design of thermoelectric nanostructures. PMID:26838731

  15. Lattice Boltzmann approach to thermal transpiration

    SciTech Connect

    Sofonea, Victor

    2006-11-15

    Diffuse reflection boundary conditions are introduced in a thermal lattice Boltzmann model to allow for variable fluid density and temperature along the walls. The capability of this model to capture the main characteristics of the thermal transpiration phenomenon in a box at nonvanishing Knudsen numbers is demonstrated. The thermal creep velocity is found to be proportional to the temperature gradient imposed at the wall, whereas the accuracy of the simulation results are found to be of first or second order, depending on the numerical scheme.

  16. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Spuckler, Charles M.

    2008-01-01

    The lattice and radiation conductivity of thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the apparent thermal conductivity of the coating to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature and the scattering and absorption properties of the coating material. High temperature scattering and absorption of the coating systems can also be derived based on the testing results using the modeling approach. The model prediction is found to have good agreement with experimental observations.

  17. Multifunctional Lattices with Low Thermal Expansion and Low Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Xu, Hang; Liu, Lu; Pasini, Damiano

    Systems in space are vulnerable to large temperature changes when travelling into and out of the Earth's shadow. Variations in temperature can lead to undesired geometric changes in susceptible applications requiring very fine precision. In addition, temperature-sensitive electronic equipment hosted in a satellite needs adequate thermal-control to guarantee a moderate ambient temperature. To address these specifications, materials with low coefficient of thermal expansion (CTE) and low coefficient of thermal conductivity (CTC) over a wide range of temperatures are often sought, especially for bearing components in satellites. Besides low CTE and low CTC, these materials should also provide desirable stiffness, strength and extraordinarily low mass. This work presents ultralightweight bi-material lattices with tunable CTE and CTC, besides high stiffness and strength. We show that the compensation of the thermal expansion and joint rotation at the lattice joints can be used as an effective strategy to tailor thermomechanical performance. Proof-of-concept lattices are fabricated from Al and Ti alloy sheets via a simple snap-fit technique and vacuum brazing, and their CTE and CTC are assessed via a combination of experiments and theory. Corresponding Author.

  18. Lattice thermal conductivity crossovers in semiconductor nanowires.

    PubMed

    Mingo, N; Broido, D A

    2004-12-10

    For binary compound semiconductor nanowires, we find a striking relationship between the nanowire's thermal conductivity kappa(nwire), the bulk material's thermal conductivity kappa(bulk), and the mass ratio of the material's constituent atoms, r, as kappa(bulk)/kappa(nwire) (alpha) (1+1/r)(-3/2). A significant consequence is the presence of crossovers in which a material with higher bulk thermal conductivity than the rest is no longer the best nanowire thermal conductor. We show that this behavior stems from a change in the dominant phonon scattering mechanism with decreasing nanowire size. The results have important implications for nanoscale heat dissipation, thermoelectricity, and thermal conductivity of nanocomposites. PMID:15697834

  19. Thermal Curved Boundary Treatment for the Thermal Lattice Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Huang, Haibo; Lee, T. S.; Shu, C.

    In this paper, a recent curved non-slip wall boundary treatment for isothermal Lattice Boltzmann equation (LBE) [Z. Guo, C. Zheng and B. Shi, Phys. Fluids 14(6) (2002)] is extended to handle the thermal curved wall boundary for a double-population thermal lattice Boltzmann equation (TLBE). The unknown distribution population at a wall node which is necessary to fulfill streaming step is decomposed into its equilibrium and non-equilibrium parts. The equilibrium part is evaluated according to Dirichlet and Neumann boundary constraints, and the non-equilibrium part is obtained using a first-order extrapolation from fluid lattices. To validate the thermal boundary condition treatment, we carry out numerical simulations of Couette flow between two circular cylinders, the natural convection in a square cavity, and the natural convection in a concentric annulus between an outer square cylinder and an inner circular cylinder. The results agree very well with analytical solution or available data in the literature. Our numerical results also demonstrate that the TLBE together with the present boundary scheme is of second-order accuracy.

  20. Lattice dynamics and thermal expansion of quartz

    NASA Astrophysics Data System (ADS)

    Smirnov, M. B.

    1999-02-01

    The mechanism of the thermal expansion and the α-β phase transition of quartz are jointly studied within the framework of a lattice-dynamical treatment using the pair-wise potential by Tsuneyuki et al. [Phys. Rev. Lett. 61, 869 (1988)]. This shows that the essentially anomalous thermal expansion of quartz originates from the low-frequency phonon modes most of which have negative Grüeneisen coefficients. The main factor driving the α-phase structure variation at heating is the rotation of the SiO4 tetrahedra towards their β-phase positions. The volume variation follows this process thus keeping the static pressure small. The model reveals that at T>430 K a number of the phonons have imaginary quasiharmonic frequencies being governed by a double-well potential. This result does not suggest any large-scale lattice instability, and just indicates that the relevant vibrations are essentially anharmonic and that the actual crystal structure is of a dynamically averaged character. The contribution of such modes to the free energy has been included by the extension of the quasiharmonic theory proposed by Boyer and Hardy [Phys. Rev. B 24, 2577 (1981)]. Then the accurate free-energy optimization with respect to all the structural parameters provides the α-quartz structure at TTc~850 K, but it exists in the β phase at 850 Kthermal expansion of the β quartz.

  1. Lattice thermal conductivity of a silicon nanowire under surface stress

    NASA Astrophysics Data System (ADS)

    Liangruksa, Monrudee; Puri, Ishwar K.

    2011-06-01

    The effects of surface stress on the lattice thermal conductivity are investigated for a silicon nanowire. A phonon dispersion relation is derived based on a continuum approach for a nanowire under surface stress. The phonon Boltzmann equation and the relaxation time are employed to calculate the lattice thermal conductivity. Surface stress, which has a significant influence on the phonon dispersion and thus the Debye temperature, decreases the lattice thermal conductivity. The conductivity varies with changing surface stress, e.g., due to adsorption layers and material coatings. This suggests a phonon engineering approach to tune the conductivity of nanomaterials.

  2. Lattice-structures and constructs with designed thermal expansion coefficients

    DOEpatents

    Spadaccini, Christopher; Hopkins, Jonathan

    2014-10-28

    A thermal expansion-managed lattice structure having a plurality of unit cells each having flexure bearing-mounted tabs supported on a base and actuated by thermal expansion of an actuator having a thermal expansion coefficient greater than the base and arranged so that the tab is inwardly displaced into a base cavity. The flexure bearing-mounted tabs are connected to other flexure-bearing-mounted tabs of adjacent unit cells so that the adjacent unit cells are spaced from each other to accommodate thermal expansion of individual unit cells while maintaining a desired bulk thermal expansion coefficient of the lattice structure as a whole.

  3. Lattice thermal conductivity of nanograined half-Heusler solid solutions

    NASA Astrophysics Data System (ADS)

    Geng, Huiyuan; Meng, Xianfu; Zhang, Hao; Zhang, Jian

    2014-05-01

    We report a phenomenological model of atomic weight, lattice constant, temperature, and grain size to calculate the high-temperature lattice thermal conductivity of nanograined solid solutions. The theoretical treatment developed here is reasonably consistent with the experimental results of n-type MNiSn and p-type MCoSb alloys, where M is the combination of Hf, Zr, and Ti. For disordered half-Heusler alloys with moderated grain sizes, we predict that the reduction in lattice thermal conductivity due to grain boundary scattering is independent of the scattering parameter, which characterizes the phonon scattering cross section of point defects. In addition, the lattice thermal conductivity falls off with temperature as T-1/2 around the Debye temperature.

  4. Lattice thermal conductivity of nanograined half-Heusler solid solutions

    SciTech Connect

    Geng, Huiyuan Meng, Xianfu; Zhang, Hao; Zhang, Jian

    2014-05-19

    We report a phenomenological model of atomic weight, lattice constant, temperature, and grain size to calculate the high-temperature lattice thermal conductivity of nanograined solid solutions. The theoretical treatment developed here is reasonably consistent with the experimental results of n-type MNiSn and p-type MCoSb alloys, where M is the combination of Hf, Zr, and Ti. For disordered half-Heusler alloys with moderated grain sizes, we predict that the reduction in lattice thermal conductivity due to grain boundary scattering is independent of the scattering parameter, which characterizes the phonon scattering cross section of point defects. In addition, the lattice thermal conductivity falls off with temperature as T{sup –1∕2} around the Debye temperature.

  5. The lattice thermal conductivity of a semiconductor nanowire

    NASA Astrophysics Data System (ADS)

    Huang, Mei-Jiau; Chong, Wen-Yen; Chang, Tai-Ming

    2006-06-01

    It has been found experimentally as well as theoretically that the lattice thermal conductivity can be largely reduced by the size confinement effect. The significant boundary scattering effect is one of the dominant factors. In most existing lattice thermal conductivity models, an empirical relation is used for this scattering rate. An unconfined or confined phonon distribution obtained based on the phonon Boltzmann equation and the relaxation time approximation is then employed to calculate the lattice thermal conductivity. In this work, we first attempt to derive an analytical form of the boundary scattering rate for phonon conduction in a semiconductor nanowire and then claim two reasonable ways to take it into account correctly. Consistent mathematical models in the sense that the effects of the size confinement on (i) the phonon dispersion relation, (ii) the phonon distribution, (iii) the phonon group and phase velocities, and (iv) the Debye temperature are finally proposed.

  6. Stabilizing the thermal lattice Boltzmann method by spatial filtering

    NASA Astrophysics Data System (ADS)

    Gillissen, J. J. J.

    2016-10-01

    We propose to stabilize the thermal lattice Boltzmann method by filtering the second- and third-order moments of the collision operator. By means of the Chapman-Enskog expansion, we show that the additional numerical diffusivity diminishes in the low-wavnumber limit. To demonstrate the enhanced stability, we consider a three-dimensional thermal lattice Boltzmann system involving 33 discrete velocities. Filtering extends the linear stability of this thermal lattice Boltzmann method to 10-fold smaller transport coefficients. We further demonstrate that the filtering does not compromise the accuracy of the hydrodynamics by comparing simulation results to reference solutions for a number of standardized test cases, including natural convection in two dimensions.

  7. Dynamical thermal conductivity of the spin Lieb lattice

    NASA Astrophysics Data System (ADS)

    Yarmohammadi, Mohsen

    2016-05-01

    In the ferromagnetic insulator with the Dzyaloshinskii-Moriya interaction (DMI), we have theoretically investigated the dynamical thermal conductivity (DTC). In other words, we have investigated the frequency dependence of thermal conductivity, κ, of the Lieb lattice, a face-centered square lattice, subjected to a time dependence temperature gradient. Using linear response theory and Green's function approach, DTC has been obtained in the context of Heisenberg Hamiltonian. At low frequencies, DTC is found to be monotonically increasing with DMI strength (DMIS), temperature and next-nearest-neighbor (NNN) coupling. Also we have found that DTC includes a peak for different values of temperature, DMIS and NNN coupling. Furthermore we study the temperature dependence of thermal conductivity of Lieb lattice for different values of DMIS, NNN coupling and external magnetic filed. We witness a decrease in DTC with temperature due to the quantum effects in the system.

  8. The S=1 Underscreened Anderson Lattice model for Uranium compounds

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Simões, A. S. R.; Iglesias, J. R.; Lacroix, C.; Perkins, N. B.; Coqblin, B.

    2011-01-01

    Magnetic properties of uranium and neptunium compounds showing coexistence of the Kondo effect and ferromagnetic order are investigated within the degenerate Anderson Lattice Hamiltonian, describing a 5f2 electronic configuration with S = 1 spins. Through the Schrieffer-Wolff transformation, both an exchange Kondo interaction for the S = 1 f-spins and an effective f-band term are obtained, allowing to describe the coexistence of Kondo effect and ferromagnetic ordering and a weak delocalization of the 5f-electrons. We calculate the Kondo and Curie temperatures and we can account for the pressure dependence of the Curie temperature of UTe.

  9. Predicting lattice thermal conductivity with help from ab initio methods

    NASA Astrophysics Data System (ADS)

    Broido, David

    2015-03-01

    The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.

  10. Lattice constraints on the thermal photon rate

    NASA Astrophysics Data System (ADS)

    Ghiglieri, J.; Kaczmarek, O.; Laine, M.; Meyer, F.

    2016-07-01

    We estimate the photon production rate from an SU(3) plasma at temperatures of about 1.1 Tc and 1.3 Tc . Lattice results for the vector current correlator at spatial momenta k ˜(2 -6 )T are extrapolated to the continuum limit and analyzed with the help of a polynomial interpolation for the corresponding spectral function, which vanishes at zero frequency and matches to high-precision perturbative results at large invariant masses. For small invariant masses the interpolation is compared with the next-to-leading-order (NLO) weak-coupling result, hydrodynamics, and a holographic model. At vanishing invariant mass we extract the photon rate which for k ≳3 T is found to be close to the NLO weak-coupling prediction. For k ≲2 T uncertainties remain large but the photon rate is likely to fall below the NLO prediction, in accordance with the onset of a strongly interacting behavior characteristic of the hydrodynamic regime.

  11. Lattice thermal conductance of quantum wires with disorder

    NASA Astrophysics Data System (ADS)

    Vyhmeister, Erik; Hershfield, Selman

    We model the lattice thermal conductance in long quantum wires connected to two large heat baths at different temperatures in the harmonic approximation. The thermal conductance is computed with the Landauer formula for phonons, where it is related to the sum over all transmission probabilities for phonons through the wire. The net transmission probability is computed using a recursive Green function technique, which allows one to study long wires efficiently. We consider several different kinds of disorder to reduce the lattice thermal conductivity: periodic rectangular holes of varying sizes and shapes, periodic triangular holes, and narrow bands, averaged over randomness to account for variance in manufacturing. Depending on the model, the thermal conductance was reduced by 80 percent or more from the perfectly ordered wire case. Funded by NSF grant DMR-1461019.

  12. Calculation of the lattice thermal conductivity in granular crystals

    SciTech Connect

    Kazan, M.; Volz, S.

    2014-02-21

    This paper provides a general model for the lattice thermal conductivity in granular crystals. The key development presented in this model is that the contribution of surface phonons to the thermal conductivity and the interplay between phonon anharmonic scattering and phonon scattering by boundaries are considered explicitly. Exact Boltzmann equation including spatial dependence of phonon distribution function is solved to yield expressions for the rates at which phonons scatter by the grain boundaries in the presence of intrinsic phonon scattering mechanisms. The intrinsic phonon scattering rates are calculated from Fermi's golden rule, and the vibration parameters of the model are derived as functions of temperature and crystallographic directions by using a lattice dynamics approach. The accuracy of the model is demonstrated with reference to experimental measurements regarding the effects of surface orientation and isotope composition on the thermal conductivity in single crystals, and the effect of grains size and shape on the thermal conductivity tensor in granular crystals.

  13. Multispeed entropic lattice Boltzmann model for thermal flows

    NASA Astrophysics Data System (ADS)

    Frapolli, N.; Chikatamarla, S. S.; Karlin, I. V.

    2014-10-01

    An energy-conserving lattice Boltzmann (LB) model based on the entropic theory of admissible higher-order lattice is presented in detail. The entropy supporting `zero-one-three" lattice is used to construct a model capable of reproducing the full Fourier-Navier-Stokes equations at low Mach numbers. The proposed direct approach of constructing thermal models overcomes the shortcomings of existing models and retains one of the most important advantages of the LB methods, the exact space discretization of the advection step, thus paving the way for direct numerical simulation of thermal flows. New thermal wall boundary condition capable of handling curved geometries immersed in a multispeed lattice is proposed by extending the Tamm-Mott-Smith boundary condition. Entropic realization of the current model ensures stability of the model also for subgrid simulations. Numerical validation and thermodynamic consistency is demonstrated with classical setups such as thermal Couette flow, Rayleigh-Bénard natural convection, acoustic waves, speed of sound measurements, and shock tube simulations.

  14. Lattice thermal conductivity of dense silicate glass at high pressures

    NASA Astrophysics Data System (ADS)

    Chang, Y. Y.; Hsieh, W. P.

    2015-12-01

    The layered structure of the Earth's interior is generally believed to develop through the magma ocean differentiation in the early Earth. Previous seismic studies revealed the existence of ultra low velocity zones above the core mantle boundary (CMB) which was inferred to be associated with the remnant of a deep magma ocean. The heat flux through the core mantle boundary therefore would strongly depend on the thermal conductivity, both lattice (klat) and radiative (krad) of dense silicate melts and major constituent minerals of the lower mantle. Recent experimental results on the radiative thermal conductivity of dense silicate glasses and lower-mantle minerals suggest that krad of dense silicate glasses could be remarkably lower than krad of the surrounding solid mantle phases. In this case, the dense silicate melts will act as a trap for heat from the Earth's outer core. However, this conclusion remains uncertain because of the lack of direct measurements on lattice thermal conductivities of silicate glasses/melts under lower mantle pressures up to date. Here we report experimental results on lattice thermal conductivities of dense silicate glass with basaltic composition under pressures relevant to the Earth's lower mantle in a diamond-anvil cell using time-domain thermoreflectance method. The study will assist the comprehension of thermal transport properties of silicate melts in the Earth's deep interior and is crucial for understanding the dynamic and thermal evolution of the Earth's internal structure.

  15. Magnetic and Lattice Interaction in 3d Transition Metal Compounds

    NASA Astrophysics Data System (ADS)

    Jassim, Ishmaeel Khalil

    Available from UMI in association with The British Library. The importance and nature of magnetic and lattice degrees of freedom and their interaction in transition metal magnets has been investigated. As an example of localised behaviour, Heusler alloys in which the magnetic moment was confined to Mn atoms were chosen, e.g. Pd_2MnIn. The manganese atoms are separated by more than 4.6A. By systematically changing Pd for either Ag or Au the electron concentration can be varied in a continuous manner. Dependent upon the electron concentration several different antiferromagnetic structures consistent with an fcc lattice are observed at low temperatures. The type of magnetic order gives rise to distinct lattice distortion characteristic of the magnetic symmetry. A wide range of bulk measurements was carried out to characterise the materials, e.g. X-ray, neutron diffraction, magnetic susceptibility and specific heat (using both pulse and continuous heating techniques). The magnetic structures were, in some instances, frustrated as may be expected for antiferromagnetism on an fcc lattice. As an example of itinerant behaviour the Fe-Ni system was chosen. rm Fe_{1 -x}Ni_ x alloy systems have long been of considerable interest since rm Fe_ {65}Ni_{35} shows an anomalously small thermal expansion below T_ {rm c}. Numerous experiments have been carried out to understand this phenomenon, the Invar effect. The effect is most pronounced close to the composition defining the phase boundary between the bcc and fcc structures. The interplay between the magnetic and lattice degrees of freedom were investigated on an atomic scale using inelastic polarised neutron scattering. The polarisation dependence of the magneto vibrational scattering of the one phonon cross-sections has been investigated as a continuous function of q throughout the Brillouin zone in the Invar alloy rm Fe_{65 }Ni_{35}, and in two other FeNi samples out side the Invar region. The magneto vibrational scattering is

  16. Micro-architected Composite Lattices with Tunable Negative Thermal Expansions

    NASA Astrophysics Data System (ADS)

    Wang, Qiming

    Solid materials with minimum or negative thermal expansion (NTE) have broad applications, from dental fillings to thermal-sensitive precision instruments. Previous studies on NTE structures were mostly focused on theoretically design and 2D experimental demonstrations. Here, aided with multimaterial projection micro-stereolithography, we experimentally fabricate multi-material composite lattices that exhibit significant negative thermal expansion in three directions and over a large range of temperature variations. The negative thermal expansion is induced by the structural interaction of material components with distinct thermal expansion coefficients. The NTE performance can be tuned over a large range by varying the thermal expansion coefficient difference between constituent beams and geometrical arrangement. Our experimental results match qualitatively with a simple scaling law and quantitatively consistently with computational models.

  17. Application of the underscreened Kondo lattice model to neptunium compounds

    NASA Astrophysics Data System (ADS)

    Thomas, Christopher; da Rosa Simoes, Acirete S.; Iglesias, J. R.; Lacroix, C.; Coqublin, B.

    2012-12-01

    The coexistence of Kondo effect and ferromagnetic order has been observed in many uranium and neptunium compounds such as UTe or Np2PdGa3. This coexistence can be described within the underscreened Anderson lattice model with two f-electrons and S = 1 spins on each site. After performing the Schrieffer-Wolff transformation on this model, we have obtained an effective Hamiltonian with a f-band term in addition to the Kondo interaction for S = 1 spins. The results indicate a coexistence of Kondo effect and ferromagnetic order, with different relative values of the Kondo TK and Curie TC temperatures. We emphasize here especially the case TK < TC where there is a Kondo behavior below TC and a clear decrease of the magnetization below TK. Such a behavior has been observed in the magnetization curves of NpNiSi2 at low temperatures.

  18. Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices.

    PubMed

    Li, Q; Luo, K H; He, Y L; Gao, Y J; Tao, W Q

    2012-01-01

    In this paper, a coupling lattice Boltzmann (LB) model for simulating thermal flows on the standard two-dimensional nine-velocity (D2Q9) lattice is developed in the framework of the double-distribution-function (DDF) approach in which the viscous heat dissipation and compression work are considered. In the model, a density distribution function is used to simulate the flow field, while a total energy distribution function is employed to simulate the temperature field. The discrete equilibrium density and total energy distribution functions are obtained from the Hermite expansions of the corresponding continuous equilibrium distribution functions. The pressure given by the equation of state of perfect gases is recovered in the macroscopic momentum and energy equations. The coupling between the momentum and energy transports makes the model applicable for general thermal flows such as non-Boussinesq flows, while the existing DDF LB models on standard lattices are usually limited to Boussinesq flows in which the temperature variation is small. Meanwhile, the simple structure and general features of the DDF LB approach are retained. The model is tested by numerical simulations of thermal Couette flow, attenuation-driven acoustic streaming, and natural convection in a square cavity with small and large temperature differences. The numerical results are found to be in good agreement with the analytical solutions and/or other numerical results reported in the literature.

  19. Lattice thermal conductivity of filled skutterudites: An anharmonicity perspective

    SciTech Connect

    Geng, Huiyuan Meng, Xianfu; Zhang, Hao; Zhang, Jian

    2014-10-28

    We report a phenomenological model to calculate the high-temperature lattice thermal conductivity of filled skutterudite antimonides. The model needs no phonon resonant scattering terms. Instead, we assume that umklapp processes dominate the high-temperature phonon scattering. In order to represent the anharmonicity introduced by the filling atom, we introduce a Gaussian term into the relaxation time of the umklapp process. The developed model agrees remarkably well with the experimental results of RE{sub f}Co{sub 4}Sb{sub 12} and RE{sub f}Fe{sub 4}Sb{sub 12} (RE = Yb, Ba, and Ca) alloys. To further test the validity of our model, we calculate the lattice thermal conductivity of nanostructured or multi-filled skutterudites. The calculation results are also in good agreement with experiment, increasing our confidence in the developed anharmonicity model.

  20. Anisotropic lattice thermal conductivity in chiral tellurium from first principles

    SciTech Connect

    Peng, Hua; Kioussis, Nicholas; Stewart, Derek A.

    2015-12-21

    Using ab initio based calculations, we have calculated the intrinsic lattice thermal conductivity of chiral tellurium. We show that the interplay between the strong covalent intrachain and weak van der Waals interchain interactions gives rise to the phonon band gap between the lower and higher optical phonon branches. The underlying mechanism of the large anisotropy of the thermal conductivity is the anisotropy of the phonon group velocities and of the anharmonic interatomic force constants (IFCs), where large interchain anharmonic IFCs are associated with the lone electron pairs. We predict that tellurium has a large three-phonon scattering phase space that results in low thermal conductivity. The thermal conductivity anisotropy decreases under applied hydrostatic pressure.

  1. THERMAL DECOMPOSITION OF URANIUM COMPOUNDS

    DOEpatents

    Magel, T.T.; Brewer, L.

    1959-02-10

    A method is presented of preparing uranium metal of high purity consisting contacting impure U metal with halogen vapor at between 450 and 550 C to form uranium halide vapor, contacting the uranium halide vapor in the presence of H/sub 2/ with a refractory surface at about 1400 C to thermally decompose the uranium halides and deposit molten U on the refractory surface and collecting the molten U dripping from the surface. The entire operation is carried on at a sub-atmospheric pressure of below 1 mm mercury.

  2. Thermal expansion and lattice misfit in two-phase superalloys

    NASA Astrophysics Data System (ADS)

    Gornostyrev, Yu. N.; Kontsevoi, O. Yu.; Freeman, A. J.; Khromov, K. Yu.; Maksyutov, A. F.; Trefilov, A. V.; Katsnelson, M. I.; Lichtenstein, A. I.

    2004-03-01

    The magnitude of the lattice misfit between the γ and γ' phases is one of the key parameters determining the mechanical behavior, microstructure morphology and stability of γ/γ' high temperature superalloys. For the first time, the γ and γ' thermal expansion coefficients α(T) and the temperature dependence of the unconstrained lattice misfit parameter δ (T) for Ni-, Ir-, and Pt-based superalloys is obtained by means of ab initio full-potential electron and phonon spectrum calculations. We demonstrate that, in contrast with traditional beliefs, the electronic contribution to the misfit parameter dominates due to the strong compensation of the phonon contributions to α(T) from γ and γ'. The calculated results are in a good agreement with available experimental data for temperatures up to 0.8T_melt; at higher temperatures the effect of the redistribution of alloying elements between the γ, and γ' phases on δ (T) becomes essential.

  3. Biodegradable compounds: Rheological, mechanical and thermal properties

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  4. Lattice thermal conductivity of freestanding gallium nitride nanowires

    NASA Astrophysics Data System (ADS)

    Zou, Jie

    2010-08-01

    We report detailed calculations of the lattice thermal conductivity of freestanding gallium nitride (GaN) nanowires with diameters ranging from 20 to 140 nm. Results are compared with experimental data on GaN nanowires grown by thermal chemical vapor deposition (CVD). Calculations are based on the Boltzmann transport equation and take into account the change in the nonequilibrium phonon distribution in the case of diffuse scattering at the surfaces. Phonon dispersion relation is obtained in the elastic continuum approximation for each given nanowire. For valid comparisons with the experimental data, simulations are performed with a dopant concentration and impurity profile characteristic of thermal CVD GaN nanowires. Our results show that the room-temperature thermal conductivity of the nanowires has very low values, ranging from 6.74 W/m K at 20 nm to 16.4 W/m K at 140 nm. The obtained results are in excellent agreement with the experimental data. We have also demonstrated that in addition to impurity scattering, boundary scattering, and phonon confinement, the change in the nonequilibrium phonon distribution leads to a further reduction in the thermal conductivity of the nanowires and has to be taken into account in the calculations. Our conclusion is different from that of an earlier study which attributed the very low thermal conductivity to the unusually large mass-difference scattering in the nanowires.

  5. The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.

    ERIC Educational Resources Information Center

    Francisco, E.; And Others

    1988-01-01

    Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)

  6. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles.

    PubMed

    Qin, Guangzhao; Yan, Qing-Bo; Qin, Zhenzhen; Yue, Sheng-Ying; Hu, Ming; Su, Gang

    2015-02-21

    Phosphorene, the single layer counterpart of black phosphorus, is a novel two-dimensional semiconductor with high carrier mobility and a large fundamental direct band gap, which has attracted tremendous interest recently. Its potential applications in nano-electronics and thermoelectrics call for fundamental study of the phonon transport. Here, we calculate the intrinsic lattice thermal conductivity of phosphorene by solving the phonon Boltzmann transport equation (BTE) based on first-principles calculations. The thermal conductivity of phosphorene at 300 K is 30.15 W m(-1) K(-1) (zigzag) and 13.65 W m(-1) K(-1) (armchair), showing an obvious anisotropy along different directions. The calculated thermal conductivity fits perfectly to the inverse relationship with temperature when the temperature is higher than Debye temperature (ΘD = 278.66 K). In comparison to graphene, the minor contribution around 5% of the ZA mode is responsible for the low thermal conductivity of phosphorene. In addition, the representative mean free path (MFP), a critical size for phonon transport, is also obtained.

  7. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Spuckler, Charles M.

    2010-01-01

    The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.

  8. Demystifying umklapp vs normal scattering in lattice thermal conductivity

    NASA Astrophysics Data System (ADS)

    Maznev, A. A.; Wright, O. B.

    2014-11-01

    We discuss the textbook presentation of the concept of umklapp vs normal phonon-phonon scattering processes in the context of lattice thermal conductivity. A simplistic picture, in which the "momentum conservation" in a normal process leads to the conservation of the heat flux, is only valid within the single-velocity Debye model of phonon dispersion. Outside this model, the simple "momentum conservation" argument is demonstrably inaccurate and leads to conceptual confusion. Whether or not an individual scattering event changes the direction of the energy flow is determined by the phonon group velocity, which, unlike the quasimomentum, is a uniquely defined quantity independent of the choice of the primitive cell in reciprocal space. Furthermore, the statement that normal processes do not lead to a finite thermal conductivity when umklapp processes are absent is a statistical statement that applies to a phonon distribution rather than to individual scattering events. It is also important to understand that once umklapp processes are present, both normal and umklapp processes contribute to thermal resistance. A nuanced explanation of the subject would help avoid confusion of the student and establish a connection with cutting edge research.

  9. Filter-matrix lattice Boltzmann model for incompressible thermal flows.

    PubMed

    Zhuo, Congshan; Zhong, Chengwen; Cao, Jun

    2012-04-01

    In this study, a new filter-matrix lattice Boltzmann (FMLB) model is proposed and extended to include incompressible thermal flows. A new equilibrium solution is found in the improved FMLB model, which is derived from the Hermite expansion. As a result, the velocity-dependent pressure is removed, which is an inherent defect of Somers's FMLB model. In addition, the improved model is extended to include incompressible thermal flows by introducing a class of temperature-distribution function for evaluating the temperature field. Two different temperature-distribution functions are discussed. The improved FMLB model and the temperature-evaluation equation are combined into one coupled model. Numerical simulations are performed on the two-dimensional (2D) lid-driven square cavity flow and the 2D natural convection flow in a square cavity using the improved FMLB model and the two coupled models, respectively. The numerical results of the 2D lid-driven square cavity flow show that the improved FMLB model is superior to the lattice Bhatnagar-Gross-Krook (LBGK) model in terms of both accuracy and stability. When compared with the multi-relaxation-time (MRT) model, the similar accuracy and slightly enhanced stability can be obtained by the improved model. The advantage of the improved model is that it no longer relies on difficult selection of the free parameters requested by the MRT model; in addition, the force term is already included in the collision operator of the improved model. In the case of 2D natural convection flow, the numerical results of the two present models are almost the same, and both exhibit good agreement with the benchmark solution.

  10. Filter-matrix lattice Boltzmann model for incompressible thermal flows

    NASA Astrophysics Data System (ADS)

    Zhuo, Congshan; Zhong, Chengwen; Cao, Jun

    2012-04-01

    In this study, a new filter-matrix lattice Boltzmann (FMLB) model is proposed and extended to include incompressible thermal flows. A new equilibrium solution is found in the improved FMLB model, which is derived from the Hermite expansion. As a result, the velocity-dependent pressure is removed, which is an inherent defect of Somers's FMLB model. In addition, the improved model is extended to include incompressible thermal flows by introducing a class of temperature-distribution function for evaluating the temperature field. Two different temperature-distribution functions are discussed. The improved FMLB model and the temperature-evaluation equation are combined into one coupled model. Numerical simulations are performed on the two-dimensional (2D) lid-driven square cavity flow and the 2D natural convection flow in a square cavity using the improved FMLB model and the two coupled models, respectively. The numerical results of the 2D lid-driven square cavity flow show that the improved FMLB model is superior to the lattice Bhatnagar-Gross-Krook (LBGK) model in terms of both accuracy and stability. When compared with the multi-relaxation-time (MRT) model, the similar accuracy and slightly enhanced stability can be obtained by the improved model. The advantage of the improved model is that it no longer relies on difficult selection of the free parameters requested by the MRT model; in addition, the force term is already included in the collision operator of the improved model. In the case of 2D natural convection flow, the numerical results of the two present models are almost the same, and both exhibit good agreement with the benchmark solution.

  11. Bidirectional negative differential thermal resistance phenomenon and its physical mechanism in the Frenkel-Kontorova lattices

    NASA Astrophysics Data System (ADS)

    Jianqiang, Zhang; Linru, Nie; Chongyang, Chen; Xinyu, Zhang

    2016-07-01

    Thermal conduction of the Frenkel-Kontorova (FK) lattices with interfacial coupling is investigated numerically. The results indicate that: (i) For appropriate lattice periods, as the system is symmetric, a bidirectional negative differential thermal resistance (NDTR) phenomenon will appear. If the system is asymmetric, the bidirectional NDTR is gradually converted into an unidirectional NDTR. (ii) The bidirectional NDTR phenomenon effect also depends on the period of the FK lattice as the other parameters remains unchanged. With the increment of the lattice period, the bidirectional NDTR will gradually disappear. (iii) From a stochastic dynamics point of view, thermal transport properties of the system are determined by the competition between the two types of thermal conduction: one comes from the collusion between atoms, the other is due to the elastic coupling between atoms. For the smaller lattice periods, the former type of thermal conduction occupies the dominating position and the NDTR effect will appear.

  12. Thermal multicomponent lattice Boltzmann model for catalytic reactive flows

    NASA Astrophysics Data System (ADS)

    Kang, Jinfen; Prasianakis, Nikolaos I.; Mantzaras, John

    2014-06-01

    Catalytic reactions are of great interest in many applications related to power generation, fuel reforming and pollutant abatement, as well as in various biochemical processes. A recently proposed lattice Boltzmann model for thermal binary-mixture gas flows [J. Kang, N. I. Prasianakis, and J. Mantzaras, Phys. Rev. E. 87, 053304 (2013), 10.1103/PhysRevE.87.053304] is revisited and extended for the simulation of multispecies flows with catalytic reactions. The resulting model can handle flows with large temperature and concentration gradients. The developed model is presented in detail and validated against a finite volume Navier-Stokes solver in the case of channel-flow methane catalytic combustion. The surface chemistry is treated with a one-step global reaction for the catalytic total oxidation of methane on platinum. In order to take into account thermal effects, the catalytic boundary condition of S. Arcidiacono, J. Mantzaras, and I. V. Karlin [Phys. Rev. E 78, 046711 (2008), 10.1103/PhysRevE.78.046711] is adapted to account for temperature variations. Speed of sound simulations further demonstrate the physical integrity and unique features of the model.

  13. Multiblock approach for the passive scalar thermal lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Huang, Rongzong; Wu, Huiying

    2014-04-01

    A multiblock approach for the passive scalar thermal lattice Boltzmann method (TLBM) with multiple-relaxation-time collision scheme is proposed based on the Chapman-Enskog analysis. The interaction between blocks is executed in the moment space directly and an external force term is considered. Theoretical analysis shows that all the nonequilibrium parts of the nonconserved moments should be rescaled, while the nonequilibrium parts of the conserved moments can be calculated directly. Moreover, a local scheme based on the pseudoparticles for computing heat flux is proposed with no need to calculate temperature gradient based on the finite-difference scheme. In order to validate the multiblock approach and local scheme for computing heat flux, thermal Couette flow with wall injection is simulated and good results are obtained, which show that the adoption of the multiblock approach does not deteriorate the convergence rate of TLBM and the local scheme for computing heat flux has second-order convergence rate. Further application of the present approach is the simulation of natural convection in a square cavity with the Rayleigh number up to 109.

  14. Thermal multicomponent lattice Boltzmann model for catalytic reactive flows.

    PubMed

    Kang, Jinfen; Prasianakis, Nikolaos I; Mantzaras, John

    2014-06-01

    Catalytic reactions are of great interest in many applications related to power generation, fuel reforming and pollutant abatement, as well as in various biochemical processes. A recently proposed lattice Boltzmann model for thermal binary-mixture gas flows [J. Kang, N. I. Prasianakis, and J. Mantzaras, Phys. Rev. E. 87, 053304 (2013)] is revisited and extended for the simulation of multispecies flows with catalytic reactions. The resulting model can handle flows with large temperature and concentration gradients. The developed model is presented in detail and validated against a finite volume Navier-Stokes solver in the case of channel-flow methane catalytic combustion. The surface chemistry is treated with a one-step global reaction for the catalytic total oxidation of methane on platinum. In order to take into account thermal effects, the catalytic boundary condition of S. Arcidiacono, J. Mantzaras, and I. V. Karlin [Phys. Rev. E 78, 046711 (2008)] is adapted to account for temperature variations. Speed of sound simulations further demonstrate the physical integrity and unique features of the model. PMID:25019915

  15. Temperature dependence of thermal conductivities of coupled rotator lattice and the momentum diffusion in standard map

    NASA Astrophysics Data System (ADS)

    Li, Yunyun; Li, Nianbei; Li, Baowen

    2015-07-01

    In contrary to other 1D momentum-conserving lattices such as the Fermi-Pasta-Ulam β (FPU- β) lattice, the 1D coupled rotator lattice is a notable exception which conserves total momentum while exhibits normal heat conduction behavior. The temperature behavior of the thermal conductivities of 1D coupled rotator lattice had been studied in previous works trying to reveal the underlying physical mechanism for normal heat conduction. However, two different temperature behaviors of thermal conductivities have been claimed for the same coupled rotator lattice. These different temperature behaviors also intrigue the debate whether there is a phase transition of thermal conductivities as the function of temperature. In this work, we will revisit the temperature dependent thermal conductivities for the 1D coupled rotator lattice. We find that the temperature dependence follows a power law behavior which is different with the previously found temperature behaviors. Our results also support the claim that there is no phase transition for 1D coupled rotator lattice. We also give some discussion about the similarity of diffusion behaviors between the 1D coupled rotator lattice and the single kicked rotator also called the Chirikov standard map. It is found that the momentum diffusion constant for 1D coupled rotator lattice follows a power-law temperature dependence of T -3.2 which is close to that of Chirikov standard map which follows a behavior of T -3.

  16. Compound Refractive Lenses for Thermal Neutron Applications

    SciTech Connect

    Gary, Charles K.

    2013-11-12

    This project designed and built compound refractive lenses (CRLs) that are able to focus, collimate and image using thermal neutrons. Neutrons are difficult to manipulate compared to visible light or even x rays; however, CRLs can provide a powerful tool for focusing, collimating and imaging neutrons. Previous neutron CRLs were limited to long focal lengths, small fields of view and poor resolution due to the materials available and manufacturing techniques. By demonstrating a fabrication method that can produce accurate, small features, we have already dramatically improved the focal length of thermal neutron CRLs, and the manufacture of Fresnel lens CRLs that greatly increases the collection area, and thus efficiency, of neutron CRLs. Unlike a single lens, a compound lens is a row of N lenslets that combine to produce an N-fold increase in the refraction of neutrons. While CRLs can be made from a variety of materials, we have chosen to mold Teflon lenses. Teflon has excellent neutron refraction, yet can be molded into nearly arbitrary shapes. We designed, fabricated and tested Teflon CRLs for neutrons. We demonstrated imaging at wavelengths as short as 1.26 ? with large fields of view and achieved resolution finer than 250 μm which is better than has been previously shown. We have also determined designs for Fresnel CRLs that will greatly improve performance.

  17. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds

    DOE PAGESBeta

    Lindsay, Lucas R; Broido, David A.; Carrete, Jesus; Mingo, Natalio; Reinecke, Tom L.

    2015-03-27

    The lattice thermal conductivities (k) of binary compound materials are examined as a function of hydrostatic pressure P using a first-principles approach. Compound materials with relatively small mass ratios, such as MgO, show an increase in k with P, consistent with measurements. Conversely, compounds with large mass ratios (e.g., BSb, BAs, BeTe, BeSe) exhibit decreasing with increasing P, a behavior that cannot be understood using simple theories of k. This anomalous P dependence of k arises from the fundamentally different nature of the intrinsic scattering processes for heat-carrying acoustic phonons in large mass ratio compounds compared to those with smallmore » mass ratios. We find this work demonstrates the power of first principles methods for thermal properties and advances the understanding of thermal transport in non-metals.« less

  18. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds

    SciTech Connect

    Lindsay, Lucas R; Broido, David A.; Carrete, Jesus; Mingo, Natalio; Reinecke, Tom L.

    2015-03-27

    The lattice thermal conductivities (k) of binary compound materials are examined as a function of hydrostatic pressure P using a first-principles approach. Compound materials with relatively small mass ratios, such as MgO, show an increase in k with P, consistent with measurements. Conversely, compounds with large mass ratios (e.g., BSb, BAs, BeTe, BeSe) exhibit decreasing with increasing P, a behavior that cannot be understood using simple theories of k. This anomalous P dependence of k arises from the fundamentally different nature of the intrinsic scattering processes for heat-carrying acoustic phonons in large mass ratio compounds compared to those with small mass ratios. We find this work demonstrates the power of first principles methods for thermal properties and advances the understanding of thermal transport in non-metals.

  19. Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds

    NASA Astrophysics Data System (ADS)

    Kaya, Savaş; Kaya, Cemal; Islam, Nazmul

    2016-03-01

    The maximum hardness (MHP) and minimum polarizability (MPP) principles have been analyzed using the relationship among the lattice energies of ionic compounds with their electronegativities, chemical hardnesses and electrophilicities. Lattice energy, electronegativity, chemical hardness and electrophilicity values of ionic compounds considered in the present study have been calculated using new equations derived by some of the authors in recent years. For 4 simple reactions, the changes of the hardness (Δη), polarizability (Δα) and electrophilicity index (Δω) were calculated. It is shown that the maximum hardness principle is obeyed by all chemical reactions but minimum polarizability principles and minimum electrophilicity principle are not valid for all reactions. We also proposed simple methods to compute the percentage of ionic characters and inter nuclear distances of ionic compounds. Comparative studies with experimental sets of data reveal that the proposed methods of computation of the percentage of ionic characters and inter nuclear distances of ionic compounds are valid.

  20. Adaptive bimaterial lattices to mitigate thermal expansion mismatch stresses in satellite structures

    NASA Astrophysics Data System (ADS)

    Toropova, Marina M.; Steeves, Craig A.

    2015-08-01

    Earth-orbiting satellites regularly pass from sunlight to shade and back; these transitions are typically accompanied by significant temperature changes. When adjoining parts of a satellite that are made of different materials are subjected to large temperature changes, thermal mismatch stresses arise that are a function of the temperature change and the difference in coefficients of thermal expansion (CTEs) between the two materials. These thermal stresses are linked to undesirable deformation and, through long-term cycling, fatigue and failure of the structure. This paper describes a type of anisotropic lattice that can serve as a stress-free adaptor between two materials, eliminating thermal mismatch stresses and their concomitant consequences. The lattices consist of planar nonidentical anisotropic bimaterial cells, each designed based on a virtual triangle. Physically the cells consist of a triangle made of material with higher CTE surrounded by a hexagon made of material with lower CTE. Different skew angles of the hexagon make a particular cell and the whole lattice anisotropic. The cells can be designed and combined in a lattice in such a way that one edge of the lattice has CTE that coincides with the CTE of the first part of the structure (substrate 1), while the other edge of the lattice has CTE equal to the CTE of the second part of the structure (substrate 2). If all joints between the parts of each cell, neighbouring cells, and the lattice and the substrates are pinned, the whole structure will be free of thermal stresses. This paper will discuss the fundamental principles governing such lattices, their refinement for special circumstances, and opportunities for improving the structural performance of the lattices. This will be presented coupled to a rational strategy for lattice design.

  1. Lattice anharmonicity and thermal properties of strongly correlated Fe1- x Co x Si alloys

    NASA Astrophysics Data System (ADS)

    Povzner, A. A.; Nogovitsyna, T. A.; Filanovich, A. N.

    2015-10-01

    The temperature dependences of the thermal and elastic properties of strongly correlated metal alloys Fe1- x Co x Si ( x = 0.1, 0.3, 0.5) with different atomic chiralities have been calculated in the framework of the self-consistent thermodynamic model taking into account the influence of lattice anharmonicity. The lattice contributions to the heat capacity and thermal expansion coefficient of the alloys have been determined using the experimental data. It has been demonstrated that the invar effect in the thermal expansion of the lattice observed in the magnetically ordered region of Fe0.7Co0.3Si and Fe0.5Co0.5Si is not related to the lattice anharmonicity, even though its appearance correlates with variations in the atomic chirality.

  2. A New Thermal Lattice Boltzmann Formulation for Modeling Thermal Transport in Complex Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Karani, H.; Huber, C.

    2014-12-01

    Modeling heat transfer in porous media has numerous industrial and biological applications. Natural porous structures which can be found in many geological and biological systems are complex and generally heterogeneous over a wide range of length scales. The ability of multicomponent media to transfer heat at the continuum scale depends directly on the transport of heat through interfaces between the different constituents. Therefore constraining heat and also mass balance at a macroscopic level depends on the development of quantitative models that account for the processes occurring at smaller scales. Consequently, one needs to deal with several temporal and spatial scales which makes modeling of transport phenomena a complicated task. In the present study, we first investigate thermal transport in natural heterogeneous structures at the discrete scale. We introduce a new and simple lattice Boltzmann formulation which handles conjugate thermal boundary conditions at interfaces between two phases/components. Verification of the present interface treatment on benchmark problems confirms the accuracy and simplicity of the proposed approach. The model's implementation is independent of the interface geometry and provides a powerful method to model thermal transport in heterogeneous media with random microstructures. Because we are ultimately interested in developing macroscale (homogenized) conservation laws for heterogeneous media, we introduce a macroscopic thermal model based on variable-order (VO) time and space derivatives. The proposed thermal model maps the heterogeneities in temporal and spatial scales into the order of the fractional derivative, which allows us to steer away from a classical diffusion equation for complex heterogeneous media. We then verify the VO thermal model for benchmark problems and discuss the possible links between values of VO derivatives in the new conservation equation and microstructure through spatial correlation functions.

  3. Thermal investigation of compound cast steel tools

    NASA Astrophysics Data System (ADS)

    Schaper, Mirko; Haferkamp, Heinz; Niemeyer, Matthias; Pelz, Christoph; Viets, Roman

    1999-03-01

    Tools for hot forging are exposed to complex stresses during their life-cycle. Therefore, forging dies should have a high wear resistance and toughness on the surface, combined with excellent thermal conductivity in the die body. Hot-work tool steel is appropriate for this application except from its thermal conductance. Hence, a tool consisting of hot-work tool steel in the area of contact and heat-treatable steel as die body is favorable. A smoothly graded microstructure in the joint zone between the two steel alloys is needed to match with the requirements. Fabrication of such functionally graded dies by sand casting exhibits high sensitivity to temperature and geometry dependent parameters. To melt on the inlay's surface must be ensured without destroying this region according to overheat coarsening and mixing of alloying elements. Instead of empirical methods to optimize the process parameters, a thermographic CCD-device is used for visualization of the heat flow while pouring the melt on the inlay. In fact the molten metal flow can be directed homogeneously across the bonding surface at adequate temperatures after evaluation of thermography data. The use of a silica-aerogel sheet as opaque window beneath the inlay in the mold enables systematic development of gating and risering, whereas undesirable scaling of the inlay due to the change of emissivity is retarded. Infrared image sequences clearly demonstrate the influence of different ring gating systems concerning the filling properties. Non-joined cavities may even be classified from image data. Compound cast steel tools have been manufactured and examined in forging trials validating life-cycle prolongation.

  4. Thermal resistances of solder-boss/potting compound combinations

    NASA Technical Reports Server (NTRS)

    Veilleux, E. D.

    1968-01-01

    Formulas, which can be used as a design tool, are derived to calculate the thermal resistance of solder-boss/potting compound combinations, for different depths of a solder boss, in electronic cordwood modules. Since the solder boss is the heat source, its shape and position will affect the thermal resistance of the surrounding potting compound.

  5. Lattice Thermal Conductivity from Atomistic Simulations: ZrB2 and HfB2

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.

    2012-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 have a number of properties that make them attractive for applications in extreme environments. One such property is their high thermal conductivity. Computational modeling of these materials will facilitate understanding of fundamental mechanisms, elucidate structure-property relationships, and ultimately accelerate the materials design cycle. Progress in computational modeling of UHTCs however has been limited in part due to the absence of suitable interatomic potentials. Recently, we developed Tersoff style parameterizations of such potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current, in contrast to the more typical monotonic decay seen in monoatomic materials such as Silicon, for example. Results at room temperature and at elevated temperatures will be reported.

  6. First-principles calculation of the lattice thermal conductivity of the lower mantle

    NASA Astrophysics Data System (ADS)

    Stackhouse, S.; Stixrude, L. P.; Karki, B. B.; Liu, T.; Todd, B.

    2015-12-01

    The thermal conductivity of the lower mantle has important implications for the thermal structure of the Earth's interior. Estimates of the thermal conductivity of the most abundant phases, at core-mantle boundary conditions vary widely. We performed ab initio simulations to determine the lattice thermal conductivity of MgSiO3 perovskite, finding a value of about 7 ± 1 W m-1 K-1 at core-mantle boundary conditions, consistent with geophysical constraints for the thermal state at the base of the mantle. We find that lattice thermal conductivity depends strongly on pressure, explaining the dynamical stability of super-plumes, but weakly with temperature and composition. Our results show evidence of saturation, at lower mantle temperatures, as the phonon mean free path approaches the interatomic spacing. Combining our results with seismic tomography, we predict large lateral variations in the heat-flux from the core that could have important implications for core dynamics.

  7. Suppression of lattice thermal conductivity by mass-conserving cation mutation in multi-component semiconductors

    NASA Astrophysics Data System (ADS)

    Shibuya, Taizo; Skelton, Jonathan M.; Jackson, Adam J.; Yasuoka, Kenji; Togo, Atsushi; Tanaka, Isao; Walsh, Aron

    2016-10-01

    In semiconductors almost all heat is conducted by phonons (lattice vibrations), which is limited by their quasi-particle lifetimes. Phonon-phonon interactions represent scattering mechanisms that produce thermal resistance. In thermoelectric materials, this resistance due to anharmonicity should be maximised for optimal performance. We use a first-principles lattice-dynamics approach to explore the changes in lattice dynamics across an isostructural series where the average atomic mass is conserved: ZnS to CuGaS2 to Cu2ZnGeS4. Our results demonstrate an enhancement of phonon interactions in the multernary materials and confirm that lattice thermal conductivity can be controlled independently of the average mass and local coordination environments.

  8. Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires

    SciTech Connect

    Mamand, S.M.; Omar, M.S.; Muhammad, A.J.

    2012-05-15

    Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: Black-Right-Pointing-Pointer A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. Black-Right-Pointing-Pointer A direct method is used to calculate phonon group velocity for these nanowires. Black-Right-Pointing-Pointer 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. Black-Right-Pointing-Pointer Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2-300 K, was performed using a modified Callaway model. Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10{sup 14} m{sup -2} the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10{sup 14} m{sup -2}, lattice thermal conductivity would be independent of that.

  9. Competing orbital ordering in RVO{sub 3} compounds: High-resolution x-ray diffraction and thermal expansion

    SciTech Connect

    Sage, M. H.; Blake, G. R.; Palstra, T. T. M.; Marquina, C.

    2007-11-15

    We report evidence for the phase coexistence of orbital orderings of different symmetry in RVO{sub 3} compounds with intermediate-size rare earths. Through a study by high-resolution x-ray powder diffraction and thermal expansion, we show that the competing orbital orderings are associated with the magnitude of the VO{sub 6} octahedral tilting and magnetic exchange striction in these compounds and that the phase-separated state is stabilized by lattice strains.

  10. Elastic and Thermal Properties of Silicon Compounds from First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Hou, Haijun; Zhu, H. J.; Cheng, W. H.; Xie, L. H.

    2016-07-01

    The structural and elastic properties of V-Si (V3Si, VSi2, V5Si3, and V6Si5) compounds are studied by using first-principles method. The calculated equilibrium lattice parameters and formation enthalpy are in good agreement with the available experimental data and other theoretical results. The calculated results indicate that the V-Si compounds are mechanically stable. Elastic properties including bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also obtained. The elastic anisotropies of V-Si compounds are investigated via the three-dimensional (3D) figures of directional dependences of reciprocals of Young's modulus. Finally, based on the quasi-harmonic Debye model, the internal energy, Helmholtz free energy, entropy, heat capacity, thermal expansion coefficient, Grüneisen parameter, and Debye temperature of V-Si compounds have been calculated.

  11. Impact of internal crystalline boundaries on lattice thermal conductivity: Importance of boundary structure and spacing

    SciTech Connect

    Aghababaei, Ramin Anciaux, Guillaume; Molinari, Jean-François

    2014-11-10

    The low thermal conductivity of nano-crystalline materials is commonly explained via diffusive scattering of phonons by internal boundaries. In this study, we have quantitatively studied phonon-crystalline boundaries scattering and its effect on the overall lattice thermal conductivity of crystalline bodies. Various types of crystalline boundaries such as stacking faults, twins, and grain boundaries have been considered in FCC crystalline structures. Accordingly, the specularity coefficient has been determined for different boundaries as the probability of the specular scattering across boundaries. Our results show that in the presence of internal boundaries, the lattice thermal conductivity can be characterized by two parameters: (1) boundary spacing and (2) boundary excess free volume. We show that the inverse of the lattice thermal conductivity depends linearly on a non-dimensional quantity which is the ratio of boundary excess free volume over boundary spacing. This shows that phonon scattering across crystalline boundaries is mainly a geometrically favorable process rather than an energetic one. Using the kinetic theory of phonon transport, we present a simple analytical model which can be used to evaluate the lattice thermal conductivity of nano-crystalline materials where the ratio can be considered as an average density of excess free volume. While this study is focused on FCC crystalline materials, where inter-atomic potentials and corresponding defect structures have been well studied in the past, the results would be quantitatively applicable for semiconductors in which heat transport is mainly due to phonon transport.

  12. Impact of Lone-Pair Electrons on Thermal Conductivity in CuSbS2 Compound

    NASA Astrophysics Data System (ADS)

    Du, Baoli; Zhang, Ruizhi; Chen, Kan; Reece, Michael; Material research institute Team

    Compounds with intrinsically low lattice thermal conductivity are of practical importance for thermoelectric energy conversion. Recent studies suggest that s2 lone pair orbital electrons are a key contributing factor to the anomalously low lattice thermal conductivity of chalcogenide compounds that contain a nominally trivalent group VA element. CuSbS2 has an orthorhombic structure with space group Pnma. The pyramidal SbS5 units are separated by CuS4 tetrahedron so that the base of the square pyramidal units are aligned to face one another, thus directing the Sb lone pair electron density into the void separating the SbS5 units. Different from tetrahedrite, all the Cu atoms are bonded in the CuS4 tetrahedron. So, it has a perfect structure to study the influence of electron lone pair on thermal conductivity without the impact from trigonal coordinated Cu. In this work, the trivalent transition metal atom Fe and IIIA atom Ga without lone-pair electrons were chosen to substitute Sb in CuSbS2. The changes in the bonding environment by foreign atoms and their influences on the thermal properties have been studied and correlated. Marie Curie International Incoming Fellowship of the European Community Human Potential Program under Contract No. PIIF-GA-2013-622847.

  13. Lattice thermal conductivity of disordered NiPd and NiPt alloys

    NASA Astrophysics Data System (ADS)

    Alam, Aftab; Mookerjee, Abhijit

    2006-05-01

    Numerical calculations of lattice thermal conductivity are reported for the binary alloys NiPd and NiPt. The present work is a continuation of an earlier paper by us (Alam and Mookerjee 2005 Phys. Rev. B 72 214207), which developed a theoretical framework for the calculation of configuration-averaged lattice thermal conductivity and thermal diffusivity in disordered alloys. The formulation was based on the augmented space theorem (Mookerjee 1973 J. Phys. C: Solid State Phys. 6 L205) combined with a scattering diagram technique. In this paper we shall show the dependence of the lattice thermal conductivity on a series of variables like phonon frequency, temperature and alloy composition. The temperature dependence of κ(T) and its relation to the measured thermal conductivity is discussed. The concentration dependence of κ appears to justify the notion of a minimum thermal conductivity as discussed by Kittel, Slack and others (Kittel 1948 Phys. Rev. 75 972, Brich and Clark 1940 Am. J. Sci. 238 613; Slack 1979 Solid State Physics vol 34, ed H Ehrenreich, F Seitz and D Turnbull (New York: Academic) p 1). We also study the frequency and composition dependence of the thermal diffusivity averaged over modes. A numerical estimate of this quantity gives an idea about the location of the mobility edge and the fraction of states in the frequency spectrum which is delocalized.

  14. Competing anisotropies on 3d sub-lattice of YNi4-xCoxB compounds

    NASA Astrophysics Data System (ADS)

    Caraballo Vivas, R. J.; Rocco, D. L.; Costa Soares, T.; Caldeira, L.; Coelho, A. A.; Reis, M. S.

    2014-08-01

    The magnetic anisotropy of 3d sub-lattices has an important rule on the overall magnetic properties of hard magnets. Intermetallics alloys with boron (R-Co/Ni-B, for instance) belong to those hard magnets family and are useful objects to help to understand the magnetic behavior of 3d sub-lattice, specially when the rare earth ions R do not have magnetic nature, like YCo4B ferromagnetic material. Interestingly, YNi4B is a paramagnetic material and Ni ions do not contribute to the magnetic anisotropy. We focused therefore our attention to YNi4-xCoxB series, with x = 0, 1, 2, 3, and 4. The magnetic anisotropy of these compounds is deeper described using statistical and preferential models of Co occupation among the possible Wyckoff positions into the CeCo4B type hexagonal structure. We found that the preferential model is the most suitable to explain the magnetization experimental data.

  15. Ultralow lattice thermal conductivity in topological insulator TlBiSe2

    NASA Astrophysics Data System (ADS)

    Ding, Guangqian; Carrete, Jesús; Li, Wu; Gao, G. Y.; Yao, Kailun

    2016-06-01

    We present ab-initio calculations of the phonon thermal transport properties of topological insulator TlBiSe2. Our results point to a very low lattice thermal conductivity, comparable or lower than those of some popular good thermoelectric materials. Furthermore, we find a slight thermal anisotropy between the in-plane and cross-plane directions in TlBiSe2, markedly smaller than those of van-der-Waals topological insulators explored so far. These conclusions are confirmed and explained by comprehensive analysis of the phonon spectrum of TlBiSe2. The combination of ultralow lattice thermal conductivity and small anisotropy makes TlBiSe2 a promising candidate for thermoelectric applications.

  16. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    SciTech Connect

    Omar, M.S.

    2012-11-15

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å{sup 3} for bulk to 57 Å{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup −6} K{sup −1} for a bulk crystal down to a minimum value of 0.1 × 10{sup −6} K{sup −1} for a 6 nm diameter nanoparticle.

  17. Mode dependent lattice thermal conductivity of single layer graphene

    SciTech Connect

    Wei, Zhiyong; Yang, Juekuan; Bi, Kedong; Chen, Yunfei

    2014-10-21

    Molecular dynamics simulation is performed to extract the phonon dispersion and phonon lifetime of single layer graphene. The mode dependent thermal conductivity is calculated from the phonon kinetic theory. The predicted thermal conductivity at room temperature exhibits important quantum effects due to the high Debye temperature of graphene. But the quantum effects are reduced significantly when the simulated temperature is as high as 1000 K. Our calculations show that out-of-plane modes contribute about 41.1% to the total thermal conductivity at room temperature. The relative contribution of out-of-plane modes has a little decrease with the increase of temperature. Contact with substrate can reduce both the total thermal conductivity of graphene and the relative contribution of out-of-plane modes, in agreement with previous experiments and theories. Increasing the coupling strength between graphene and substrate can further reduce the relative contribution of out-of-plane modes. The present investigations also show that the relative contribution of different mode phonons is not sensitive to the grain size of graphene. The obtained phonon relaxation time provides useful insight for understanding the phonon mean free path and the size effects in graphene.

  18. Iodine doping effects on the lattice thermal conductivity of oxidized polyacetylene nanofibers

    SciTech Connect

    Bi, Kedong E-mail: kedongbi@seu.edu.cn; Weathers, Annie; Pettes, Michael T.; Shi, Li E-mail: kedongbi@seu.edu.cn; Matsushita, Satoshi; Akagi, Kazuo; Goh, Munju

    2013-11-21

    Thermal transport in oxidized polyacetylene (PA) nanofibers with diameters in the range between 74 and 126 nm is measured with the use of a suspended micro heater device. With the error due to both radiation and contact thermal resistance corrected via a differential measurement procedure, the obtained thermal conductivity of oxidized PA nanofibers varies in the range between 0.84 and 1.24 W m{sup −1} K{sup −1} near room temperature, and decreases by 40%–70% after iodine doping. It is also found that the thermal conductivity of oxidized PA nanofibers increases with temperature between 100 and 350 K. Because of exposure to oxygen during sample preparation, the PA nanofibers are oxidized to be electrically insulating before and after iodine doping. The measurement results reveal that iodine doping can result in enhanced lattice disorder and reduced lattice thermal conductivity of PA nanofibers. If the oxidation issue can be addressed via further research to increase the electrical conductivity via doping, the observed suppressed lattice thermal conductivity in doped polymer nanofibers can be useful for the development of such conducting polymer nanostructures for thermoelectric energy conversion.

  19. Thermal instability of a compound resonator.

    PubMed

    Grudinin, Ivan S; Vahala, Kerry J

    2009-08-01

    We investigate the thermal and Kerr nonlinearity in a system of two optically-coupled silica microtoroid resonators experimentally and theoretically. A model for two coupled oscillators describing nonlinear resonance curves is developed. Stability of the static solutions is analyzed. It is shown that thermal nonlinearity is responsible for driving the eigenfrequencies of the two resonators apart, making the normal modes of the system unstable as the pump power grows. The red-detuned normal mode becomes unstable for certain pumping powers. PMID:19654817

  20. Lattice thermal conductivity of multi-component alloys

    SciTech Connect

    Caro, Magdalena; Béland, Laurent K.; Samolyuk, German D.; Stoller, Roger E.; Caro, Alfredo

    2015-06-12

    High entropy alloys (HEA) have unique properties including the potential to be radiation tolerant. These materials with extreme disorder could resist damage because disorder, stabilized by entropy, is the equilibrium thermodynamic state. Disorder also reduces electron and phonon conductivity keeping the damage energy longer at the deposition locations, eventually favoring defect recombination. In the short time-scales related to thermal spikes induced by collision cascades, phonons become the relevant energy carrier. In this paper, we perform a systematic study of phonon thermal conductivity in multiple component solid solutions represented by Lennard-Jones (LJ) potentials. We explore the conditions that minimize phonon mean free path via extreme alloy complexity, by varying the composition and the elements (differing in mass, atomic radii, and cohesive energy). We show that alloy complexity can be tailored to modify the scattering mechanisms that control energy transport in the phonon subsystem. Finally, our analysis provides a qualitative guidance for the selection criteria used in the design of HEA alloys with low phonon thermal conductivity.

  1. Decomposition model for phonon thermal conductivity of a monatomic lattice

    NASA Astrophysics Data System (ADS)

    Evteev, Alexander V.; Momenzadeh, Leila; Levchenko, Elena V.; Belova, Irina V.; Murch, Graeme E.

    2014-12-01

    An analytical treatment of decomposition of the phonon thermal conductivity of a crystal with a monatomic unit cell is developed on the basis of a two-stage decay of the heat current autocorrelation function observed in molecular dynamics simulations. It is demonstrated that the contributions from the acoustic short- and long-range phonon modes to the total phonon thermal conductivity can be presented in the form of simple kinetic formulas, consisting of products of the heat capacity and the average relaxation time of the considered phonon modes as well as the square of the average phonon velocity. On the basis of molecular dynamics calculations of the heat current autocorrelation function, this treatment allows for a self-consistent numerical evaluation of the aforementioned variables. In addition, the presented analysis allows, within the Debye approximation, for the identification of the temperature range where classical molecular dynamics simulations can be employed for the prediction of phonon thermal transport properties. As a case example, Cu is considered.

  2. Lattice thermal conductivity of multi-component alloys

    DOE PAGESBeta

    Caro, Magdalena; Béland, Laurent K.; Samolyuk, German D.; Stoller, Roger E.; Caro, Alfredo

    2015-06-12

    High entropy alloys (HEA) have unique properties including the potential to be radiation tolerant. These materials with extreme disorder could resist damage because disorder, stabilized by entropy, is the equilibrium thermodynamic state. Disorder also reduces electron and phonon conductivity keeping the damage energy longer at the deposition locations, eventually favoring defect recombination. In the short time-scales related to thermal spikes induced by collision cascades, phonons become the relevant energy carrier. In this paper, we perform a systematic study of phonon thermal conductivity in multiple component solid solutions represented by Lennard-Jones (LJ) potentials. We explore the conditions that minimize phonon meanmore » free path via extreme alloy complexity, by varying the composition and the elements (differing in mass, atomic radii, and cohesive energy). We show that alloy complexity can be tailored to modify the scattering mechanisms that control energy transport in the phonon subsystem. Finally, our analysis provides a qualitative guidance for the selection criteria used in the design of HEA alloys with low phonon thermal conductivity.« less

  3. Lattice thermal conductivity of MgO at conditions of Earth’s interior

    PubMed Central

    Tang, Xiaoli; Dong, Jianjun

    2010-01-01

    Thermal conductivity of the Earth’s lower mantle greatly impacts the mantle convection style and affects the heat conduction from the core to the mantle. Direct laboratory measurement of thermal conductivity of mantle minerals remains a technical challenge at the pressure-temperature (P-T) conditions relevant to the lower mantle, and previously estimated values are extrapolated from low P-T data based on simple empirical thermal transport models. By using a numerical technique that combines first-principles electronic structure theory and Peierls–Boltzmann transport theory, we predict the lattice thermal conductivity of MgO, previously used to estimate the thermal conductivity in the Earth, at conditions from ambient to the core-mantle boundary (CMB). We show that our first-principles technique provides a realistic model for the P-T dependence of lattice thermal conductivity of MgO at conditions from ambient to the CMB, and we propose thermal conductivity profiles of MgO in the lower mantle based on geotherm models. The calculated conductivity increases from 15 –20 W/K-m at the 670 km seismic discontinuity to 40 –50 W/K-m at the CMB. This large depth variation in calculated thermal conductivity should be included in models of mantle convection, which has been traditionally studied based on the assumption of constant conductivity. PMID:20176973

  4. Positron spectroscopy of point defects in the skyrmion-lattice compound MnSi

    NASA Astrophysics Data System (ADS)

    Reiner, Markus; Bauer, Andreas; Leitner, Michael; Gigl, Thomas; Anwand, Wolfgang; Butterling, Maik; Wagner, Andreas; Kudejova, Petra; Pfleiderer, Christian; Hugenschmidt, Christoph

    2016-07-01

    Outstanding crystalline perfection is a key requirement for the formation of new forms of electronic order in a vast number of widely different materials. Whereas excellent sample quality represents a standard claim in the literature, there are, quite generally, no reliable microscopic probes to establish the nature and concentration of lattice defects such as voids, dislocations and different species of point defects on the level relevant to the length and energy scales inherent to these new forms of order. Here we report an experimental study of the archetypical skyrmion-lattice compound MnSi, where we relate the characteristic types of point defects and their concentration to the magnetic properties by combining different types of positron spectroscopy with ab-initio calculations and bulk measurements. We find that Mn antisite disorder broadens the magnetic phase transitions and lowers their critical temperatures, whereas the skyrmion lattice phase forms for all samples studied underlining the robustness of this topologically non-trivial state. Taken together, this demonstrates the unprecedented sensitivity of positron spectroscopy in studies of new forms of electronic order.

  5. Positron spectroscopy of point defects in the skyrmion-lattice compound MnSi

    PubMed Central

    Reiner, Markus; Bauer, Andreas; Leitner, Michael; Gigl, Thomas; Anwand, Wolfgang; Butterling, Maik; Wagner, Andreas; Kudejova, Petra; Pfleiderer, Christian; Hugenschmidt, Christoph

    2016-01-01

    Outstanding crystalline perfection is a key requirement for the formation of new forms of electronic order in a vast number of widely different materials. Whereas excellent sample quality represents a standard claim in the literature, there are, quite generally, no reliable microscopic probes to establish the nature and concentration of lattice defects such as voids, dislocations and different species of point defects on the level relevant to the length and energy scales inherent to these new forms of order. Here we report an experimental study of the archetypical skyrmion-lattice compound MnSi, where we relate the characteristic types of point defects and their concentration to the magnetic properties by combining different types of positron spectroscopy with ab-initio calculations and bulk measurements. We find that Mn antisite disorder broadens the magnetic phase transitions and lowers their critical temperatures, whereas the skyrmion lattice phase forms for all samples studied underlining the robustness of this topologically non-trivial state. Taken together, this demonstrates the unprecedented sensitivity of positron spectroscopy in studies of new forms of electronic order. PMID:27388948

  6. Reduced thermal conductivity in niobium-doped calcium-manganate compounds for thermoelectric applications

    SciTech Connect

    Graff, Ayelet; Amouyal, Yaron

    2014-11-03

    Reduction of thermal conductivity is essential for obtaining high energy conversion efficiency in thermoelectric materials. We report on significant reduction of thermal conductivity in niobium-doped CaO(CaMnO{sub 3}){sub m} compounds for thermoelectric energy harvesting due to introduction of extra CaO-planes in the CaMnO{sub 3}-base material. We measure the thermal conductivities of the different compounds applying the laser flash analysis at temperatures between 300 and 1000 K, and observe a remarkable reduction in thermal conductivity with increasing CaO-planar density, from a value of 3.7 W·m{sup −1}K{sup −1} for m = ∞ down to 1.5 W·m{sup −1}K{sup −1} for m = 1 at 400 K. This apparent correlation between thermal conductivity and CaO-planar density is elucidated in terms of boundary phonon scattering, providing us with a practical way to manipulate lattice thermal conductivity via microstructural modifications.

  7. Observation of a magnetic field dependence of the lattice thermal conductivity

    NASA Astrophysics Data System (ADS)

    Jin, Hyungyu; Restrepo, Oscar; Antolin, Nikolas; Windl, Wolfgang; Barnes, Stewart; Heremans, Joseph

    2014-03-01

    Can phonons respond to magnetic fields? From the simple point of view of the classical lattice vibrations, there is no clue that phonons possess any magnetic characteristics. Here, we report for the first time that the lattice thermal conductivity can show a response to an external magnetic field in a non-magnetic semiconductor crystal. We observe a magnetic field dependence of the lattice thermal conductivity in a high quality 2x1015 Te doped single crystal of InSb. The electronic contribution is over 106 times smaller than the lattice. The effect is observed in the temperature regime where the Umklapp processes start appearing, and still mainly involve phonons with long mean free paths. A special thermal design is employed to obtain a high accuracy heat flux measurement. Detailed experimental procedures and results are presented along with a brief discussion about possible origins of the effect. HJ and JPH are supported by AFOSR MURI ``Cryogenic Peltier Cooling'' Contract #FA9550-10-1-0533; ODR and WW are supported by the Center for Emergent Materials, an NSF MRSEC at The Ohio State University (Grant DMR-0820414).

  8. Lattice Mismatch Dominant Yet Mechanically Tunable Thermal Conductivity in Bilayer Heterostructures.

    PubMed

    Gao, Yuan; Liu, Qingchang; Xu, Baoxing

    2016-05-24

    Heterostructures that are assembled by interfacing two-dimensional (2D) materials offer a unique platform for the emerging devices with unprecedented functions. The attractive functions in heterostructures that are usually absent and beyond the single layer 2D materials are largely affected by the inherent lattice mismatch between layers. Using nonequilibrium molecular dynamics simulations, we show that the phonon thermal transport in the graphene-MoS2 bilayer heterostructure is reduced by the lattice mismatch, and the reduction can be mitigated well by an external tension, weakening the effect of inherent mismatch-induced strain on thermal conductivity. Mechanical analysis in each layered component indicates that the external tension will alleviate the lattice mismatch-induced deformation. The phonon spectra are also softened by the applied tension with a significant shift of frequency from high to low modes. A universal theory is proposed to quantitatively predict the role of the lattice mismatch in thermal conductivity of various bilayer heterostructures and shows good agreement with simulations.

  9. Lattice Mismatch Dominant Yet Mechanically Tunable Thermal Conductivity in Bilayer Heterostructures.

    PubMed

    Gao, Yuan; Liu, Qingchang; Xu, Baoxing

    2016-05-24

    Heterostructures that are assembled by interfacing two-dimensional (2D) materials offer a unique platform for the emerging devices with unprecedented functions. The attractive functions in heterostructures that are usually absent and beyond the single layer 2D materials are largely affected by the inherent lattice mismatch between layers. Using nonequilibrium molecular dynamics simulations, we show that the phonon thermal transport in the graphene-MoS2 bilayer heterostructure is reduced by the lattice mismatch, and the reduction can be mitigated well by an external tension, weakening the effect of inherent mismatch-induced strain on thermal conductivity. Mechanical analysis in each layered component indicates that the external tension will alleviate the lattice mismatch-induced deformation. The phonon spectra are also softened by the applied tension with a significant shift of frequency from high to low modes. A universal theory is proposed to quantitatively predict the role of the lattice mismatch in thermal conductivity of various bilayer heterostructures and shows good agreement with simulations. PMID:27093571

  10. Application of the S=1 underscreened Anderson lattice model to Kondo uranium and neptunium compounds

    NASA Astrophysics Data System (ADS)

    Thomas, Christopher; da Rosa Simões, Acirete S.; Iglesias, J. R.; Lacroix, C.; Perkins, N. B.; Coqblin, B.

    2011-01-01

    Magnetic properties of uranium and neptunium compounds showing the coexistence of the Kondo screening effect and ferromagnetic order are investigated within the Anderson lattice Hamiltonian with a two-fold degenerate f level in each site, corresponding to 5f2 electronic configuration with S=1 spins. A derivation of the Schrieffer-Wolff transformation is presented and the resulting Hamiltonian has an effective f-band term, in addition to the regular exchange Kondo interaction between the S=1 f spins and the s=1/2 spins of the conduction electrons. The resulting effective Kondo lattice model can describe both the Kondo regime and a weak delocalization of the 5f electrons. Within this model we compute the Kondo and Curie temperatures as a function of model parameters, namely the Kondo exchange interaction constant JK, the magnetic intersite exchange interaction JH, and the effective f bandwidth. We deduce, therefore, a phase diagram of the model which yields the coexistence of the Kondo effect and ferromagnetic ordering and also accounts for the pressure dependence of the Curie temperature of uranium compounds such as UTe.

  11. Lattice dynamics and thermal expansion behavior in the metal cyanides M CN (M =Cu , Ag, Au): Neutron inelastic scattering and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Gupta, M. K.; Singh, Baltej; Mittal, R.; Rols, S.; Chaplot, S. L.

    2016-04-01

    We report measurement of temperature dependence of phonon spectra in quasi-one-dimensional metal cyanides M CN (M =Cu , Ag, Au). Ab initio lattice dynamics calculations have been performed to interpret the phonon spectra as well as to understand the anomalous anisotropic thermal expansion behavior in these compounds. We bring out the differences in the phonon mode behavior to explain the differences in the thermal expansion behavior among the three compounds. The chain-sliding modes are found to contribute maximum to the negative thermal expansion along the "c " axis in the Cu and Ag compounds, while the same modes contribute to positive thermal expansion in the Au compound. Several low-energy transverse modes lead to positive thermal expansion in the a -b plane in all the compounds. The calculated Born-effective charges show that AuCN has a covalent nature of bonding, which results in least distortion as well as the least number of unstable modes among the three cyanides. This result is well correlated with the fact that the coefficient of negative thermal expansion along the c axis in AuCN is the smallest.

  12. Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations

    DOE PAGESBeta

    Zhou, Fei; Nielson, Weston; Xia, Yi; Ozolins, Vidvuds

    2014-10-27

    First-principles prediction of lattice thermal conductivity KL of strongly anharmonic crystals is a long-standing challenge in solid state physics. Using recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics (CSLD). Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Non-intuitively, high accuracy is achieved when the model is trained on first-principles forces in quasi-random atomic configurations. The method is demonstrated for Si, NaCl, and Cu12Sb4S13, an earth-abundant thermoelectric with strong phononphonon interactions that limit the room-temperature KLmore » to values near the amorphous limit.« less

  13. Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations

    SciTech Connect

    Zhou, Fei; Nielson, Weston; Xia, Yi; Ozolins, Vidvuds

    2014-10-27

    First-principles prediction of lattice thermal conductivity KL of strongly anharmonic crystals is a long-standing challenge in solid state physics. Using recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics (CSLD). Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Non-intuitively, high accuracy is achieved when the model is trained on first-principles forces in quasi-random atomic configurations. The method is demonstrated for Si, NaCl, and Cu12Sb4S13, an earth-abundant thermoelectric with strong phononphonon interactions that limit the room-temperature KL to values near the amorphous limit.

  14. Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations

    SciTech Connect

    Zhou, Fei; Nielson, Weston; Xia, Yi; Ozoliņš, Vidvuds

    2014-10-01

    First-principles prediction of lattice thermal conductivity κL of strongly anharmonic crystals is a long-standing challenge in solid-state physics. Making use of recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics. Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Nonintuitively, high accuracy is achieved when the model is trained on first-principles forces in quasirandom atomic configurations. The method is demonstrated for Si, NaCl, and Cu12Sb4S13, an earth-abundant thermoelectric with strong phonon-phonon interactions that limit the room-temperature κL to values near the amorphous limit.

  15. Lattice anharmonicity and thermal conductivity from compressive sensing of first-principles calculations.

    PubMed

    Zhou, Fei; Nielson, Weston; Xia, Yi; Ozoliņš, Vidvuds

    2014-10-31

    First-principles prediction of lattice thermal conductivity κ(L) of strongly anharmonic crystals is a long-standing challenge in solid-state physics. Making use of recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics. Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Nonintuitively, high accuracy is achieved when the model is trained on first-principles forces in quasirandom atomic configurations. The method is demonstrated for Si, NaCl, and Cu(12)Sb(4)S(13), an earth-abundant thermoelectric with strong phonon-phonon interactions that limit the room-temperature κ(L) to values near the amorphous limit.

  16. Pressure dependence of harmonic and an harmonic lattice dynamics in MgO: A first-principles calculation and implications for lattice thermal conductivity

    SciTech Connect

    Tang, Xiaoli; Dong, Jianjun

    2009-06-01

    We report a recent first-principles calculation of harmonic and anharmonic lattice dynamics of MgO. The 2nd order harmonic and 3rd order anharmonic interatomic interaction terms are computed explicitly, and their pressure dependences are discussed. The phonon mode Grueneisen parameters derived based on our calculated 3rd order lattice anharmonicity are in good agreement with those estimated using the finite difference method. The implications for lattice thermal conductivity at high pressure are discussed based on a simple kinetic transport theory.

  17. Diameter Dependence of Lattice Thermal Conductivity of Single-Walled Carbon Nanotubes: Study from Ab Initio.

    PubMed

    Yue, Sheng-Ying; Ouyang, Tao; Hu, Ming

    2015-10-22

    The effects of temperature, tube length, defects, and surface functionalization on the thermal conductivity (κ) of single-walled carbon nanotubes (SWCNTs) were well documented in literature. However, diameter dependence of thermal conductivity of SWCNTs received less attentions. So far, diverse trends of the diameter dependence have been discussed by different methods and all the previous results were based on empirical interatomic potentials. In this paper, we emphasize to clarify accurate κ values of SWCNTs with different diameters and in-plane κ of graphene. All the studies were under the framework of anharmonic lattice dynamics and Boltzmann transport equation (BTE) based on first principle calculations. We try to infer the right trend of diameter dependent thermal conductivity of SWCNTs. We infer that graphene is the limitation as SWCNT with an infinite diameter. We analyzed the thermal conductivity contributions from each phonon mode in SWCNTs to explain the trend. Meanwhile, we also identify the extremely low thermal conductivity of ultra-thin SWCNTs.

  18. Strong reduction of the lattice thermal conductivity in superlattices and quantum dot superlattices

    NASA Astrophysics Data System (ADS)

    Fomin, V. M.; Nika, D. L.; Cocemasov, A. I.; Isacova, C. I.; Schmidt, O. G.

    2012-06-01

    Thermal transport is theoretically investigated in the planar Si/Ge superlattices and Si/Ge quantum dot superlattices. The phonon states in the considered nanostructures are obtained using the Face-centered Cubic Cell model of lattice dynamics. A significant reduction of the lattice thermal conductivity is revealed in both considered structures in a wide range of temperatures from 100 K to 400 K. This effect is explained by the removal of the high-energy and high-velocity phonon modes from the heat flux due to their localization in superlattice segments and the phonon scattering on the interfaces. The obtained results show prospects of the planar superlattices and quantum-dot superlattices for thermoelectric and thermo-insulating applications.

  19. From quantum to thermal topological-sector fluctuations of strongly interacting Bosons in a ring lattice

    NASA Astrophysics Data System (ADS)

    Roscilde, Tommaso; Faulkner, Michael F.; Bramwell, Steven T.; Holdsworth, Peter C. W.

    2016-07-01

    Inspired by recent experiments on Bose-Einstein condensates in ring traps, we investigate the topological properties of the phase of a one-dimensional Bose field in the presence of both thermal and quantum fluctuations—the latter ones being tuned by the depth of an optical lattice applied along the ring. In the regime of large filling of the lattice, quantum Monte Carlo simulations give direct access to the full statistics of fluctuations of the Bose-field phase, and of its winding number W along the ring. At zero temperature the winding-number (or topological-sector) fluctuations are driven by quantum phase slips localized around a Josephson link between two lattice wells, and their susceptibility is found to jump at the superfluid-Mott insulator transition. At finite (but low) temperature, on the other hand, the winding number fluctuations are driven by thermal activation of nearly uniform phase twists, whose activation rate is governed by the superfluid fraction. A quantum-to-thermal crossover in winding-number fluctuations is therefore exhibited by the system, and it is characterized by a conformational change in the topologically non-trivial configurations, from localized to uniform phase twists, which can be experimentally observed in ultracold Bose gases via matter-wave interference.

  20. From quantum to thermal topological-sector fluctuations of strongly interacting Bosons in a ring lattice

    NASA Astrophysics Data System (ADS)

    Roscilde, Tommaso; Faulkner, Michael F.; Bramwell, Steven T.; Holdsworth, Peter C. W.

    2016-07-01

    Inspired by recent experiments on Bose–Einstein condensates in ring traps, we investigate the topological properties of the phase of a one-dimensional Bose field in the presence of both thermal and quantum fluctuations—the latter ones being tuned by the depth of an optical lattice applied along the ring. In the regime of large filling of the lattice, quantum Monte Carlo simulations give direct access to the full statistics of fluctuations of the Bose-field phase, and of its winding number W along the ring. At zero temperature the winding-number (or topological-sector) fluctuations are driven by quantum phase slips localized around a Josephson link between two lattice wells, and their susceptibility is found to jump at the superfluid-Mott insulator transition. At finite (but low) temperature, on the other hand, the winding number fluctuations are driven by thermal activation of nearly uniform phase twists, whose activation rate is governed by the superfluid fraction. A quantum-to-thermal crossover in winding-number fluctuations is therefore exhibited by the system, and it is characterized by a conformational change in the topologically non-trivial configurations, from localized to uniform phase twists, which can be experimentally observed in ultracold Bose gases via matter–wave interference.

  1. Lattice dynamics of BaFe2X3(X=S,Se) compounds

    DOE PAGESBeta

    Popović, Z. V.; Šćepanović, M.; Lazarević, N.; Opačić, M.; Radonjić, M. M.; Tanasković, D.; Lei, Hechang; Petrovic, C.

    2015-02-27

    We present the Raman scattering spectra of the S=2 spin ladder compounds BaFe₂X₃ (X=S,Se) in a temperature range between 20 and 400 K. Although the crystal structures of these two compounds are both orthorhombic and very similar, they are not isostructural. The unit cell of BaFe₂S₃ (BaFe₂Se₃) is base-centered Cmcm (primitive Pnma), giving 18 (36) modes to be observed in the Raman scattering experiment. We have detected almost all Raman active modes, predicted by factor group analysis, which can be observed from the cleavage planes of these compounds. Assignment of the observed Raman modes of BaFe₂S(Se)₃ is supported by themore » lattice dynamics calculations. The antiferromagnetic long-range spin ordering in BaFe₂Se₃ below TN=255K leaves a fingerprint both in the A1g and B3g phonon mode linewidth and energy.« less

  2. Analytical insight into the lattice thermal conductivity and heat capacity of monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Saha, Dipankar; Mahapatra, Santanu

    2016-09-01

    We report, a detailed theoretical study on the lattice thermal conductivity of a suspended monolayer MoS2, far beyond its ballistic limit. The analytical approach adopted in this work mainly relies on the use of Boltzmann transport equation (BTE) within the relaxation time approximation (RTA), along with the first-principles calculations. Considering the relative contributions from the various in-plane and out-of-plane acoustic modes, we derive the closed-form expressions of the mode specific heat capacities, which we later use to obtain the phonon thermal conductivities of the monolayer MoS2. Besides finding the intrinsic thermal conductivity, we also analyse the effect of the phonon-boundary scattering, for different dimensions and edge roughness conditions. The viability of the semi-analytic solution of lattice thermal conductivity reported in this work ranges from a low temperature (T∼30 K) to a significantly high temperature (T∼550 K), and the room temperature (RT) thermal conductivity value has been obtained as 34.06 Wm-1K-1 which is in good agreement with the experimental result.

  3. Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit

    NASA Astrophysics Data System (ADS)

    Wei, Kai; Chen, Haosen; Pei, Yongmao; Fang, Daining

    2016-01-01

    The unexpected thermal distortions and failures in engineering raise the big concern about thermal expansion controlling. Thus, design of tailorable coefficient of thermal expansion (CTE) is urgently needed for the materials used in large temperature variation circumstance. Here, inspired by multi-fold rotational symmetry in crystallography, we have devised six kinds of periodic planar lattices, which incorporate tailorable CTE and high specific biaxial stiffness. Fabrication process, which overcame shortcomings of welding or adhesion connection, was developed for the dual-material planar lattices. The analytical predictions agreed well with the CTE measurements. It is shown that the planar lattices fabricated from positive CTE constituents, can give large positive, near zero and even negative CTEs. Furthermore, a generalized stationary node method was proposed for aperiodic lattices and even arbitrary structures with desirable thermal expansion. As an example, aperiodic quasicrystal lattices were designed and exhibited zero thermal expansion property. The proposed method for the lattices of lightweight, robust stiffness, strength and tailorable thermal expansion is useful in the engineering applications.

  4. Molecular simulations and lattice dynamics determination of Stillinger-Weber GaN thermal conductivity

    SciTech Connect

    Liang, Zhi; Jain, Ankit; McGaughey, Alan J. H.; Keblinski, Pawel

    2015-09-28

    The bulk thermal conductivity of Stillinger-Weber (SW) wurtzite GaN in the [0001] direction at a temperature of 300 K is calculated using equilibrium molecular dynamics (EMD), non-equilibrium MD (NEMD), and lattice dynamics (LD) methods. While the NEMD method predicts a thermal conductivity of 166 ± 11 W/m·K, both the EMD and LD methods predict thermal conductivities that are an order of magnitude greater. We attribute the discrepancy to significant contributions to thermal conductivity from long-mean free path phonons. We propose that the Grüneisen parameter for low-frequency phonons is a good predictor of the severity of the size effects in NEMD thermal conductivity prediction. For weakly anharmonic crystals characterized by small Grüneisen parameters, accurate determination of thermal conductivity by NEMD is computationally impractical. The simulation results also indicate the GaN SW potential, which was originally developed for studying the atomic-level structure of dislocations, is not suitable for prediction of its thermal conductivity.

  5. Thermal Lattice Boltzmann Simulations for Vapor-Liquid Two-Phase Flows in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Wei, Yikun; Qian, Yuehong

    2011-11-01

    A lattice Boltzmann model with double distribution functions is developed to simulate thermal vapor-liquid two-phase flows. In this model, the so-called mesoscopic inter-particle pseudo-potential for the single component multi-phase lattice Boltzmann model is used to simulate the fluid dynamics and the internal energy field is simulated by using a energy distribution function. Theoretical results for large-scale dynamics including the internal energy equation can be derived and numerical results for the coexistence curve of vapor-liquid systems are in good agreement with the theoretical predictions. It is shown from numerical simulations that the model has the ability to mimic phase transitions, bubbly flows and slugging flows. This research is support in part by the grant of Education Ministry of China IRT0844 and the grant of Shanghai CST 11XD1402300.

  6. Lattice thermal expansion and solubility limits of neodymium-doped ceria

    NASA Astrophysics Data System (ADS)

    Zhang, Jinhua; Ke, Changming; Wu, Hongdan; Yu, Jishun; Wang, Jingran

    2016-11-01

    NdxCe1-xO2-0.5x (x=0-1.0) powders were prepared by reverse coprecipitation-calcination method and characterized by XRD. The crystal structure of product powders transformed from single fluorite structure to the complex of fluorite and C-type cubic structure, and finally to trigonal structure with the increase of x-value. An empirical equation simulating the lattice parameter of neodymium doped ceria was established based on the experimental data. The lattice parameters of the fluorite structure solid solutions increased with extensive adoption of Nd3+, and the heating temperature going up. The average thermal expansion coefficients of neodymium doped ceria with fluorite structure are higher than 13.5×10-6 °C-1 from room temperature to 1200 °C.

  7. Thermal conductivities of one-dimensional anharmonic/nonlinear lattices: renormalized phonons and effective phonon theory

    NASA Astrophysics Data System (ADS)

    Li, Nianbei; Li, Baowen

    2012-12-01

    Heat transport in low-dimensional systems has attracted enormous attention from both theoretical and experimental aspects due to its significance to the perception of fundamental energy transport theory and its potential applications in the emerging field of phononics: manipulating heat flow with electronic anologs. We consider the heat conduction of one-dimensional nonlinear lattice models. The energy carriers responsible for the heat transport have been identified as the renormalized phonons. Within the framework of renormalized phonons, a phenomenological theory, effective phonon theory, has been developed to explain the heat transport in general one-dimensional nonlinear lattices. With the help of numerical simulations, it has been verified that this effective phonon theory is able to predict the scaling exponents of temperature-dependent thermal conductivities quantitatively and consistently.

  8. Lattice Thermal Transport in Si-based Nanocomposites for Thermoelectric Applications

    NASA Astrophysics Data System (ADS)

    Aksamija, Zlatan

    2015-06-01

    Silicon-germanium (SiGe) superlattices (SLs) have been studied for application as efficient thermoelectrics because of their low thermal conductivity, below that of bulk SiGe alloys. However, the cost of growing SLs is prohibitive, so Si-based nanocomposites, made by a ball-milling and sintering, have been proposed as a cost-effective replacement with similar properties. Because the lattice thermal conductivity of SiGe SLs is reduced by scattering from rough boundaries between layers, it is expected that grain boundary properties, for example roughness, orientation, and composition, will also substantially effect thermal transport in nanocomposites, resulting in many ways of adjusting their thermal conductivity by manipulation of grain size, shape, and crystal angle distributions. A model of phonon transport in nanocomposites was developed on the basis of the phonon Boltzmann transport equation. When nanocomposite structures were modeled by using a Voronoi tessellation to mimic the grains and their distribution, agreement with experimentally observed structures was excellent. To accurately treat phonon scattering from a series of atomically rough interfaces between the grains in the nanocomposite, we used a momentum-dependent specularity variable. Our results revealed thermal transport in Si-based nanocomposites is highly anisotropic and suggest further utilization of grain morphology to minimize thermal conductivity.

  9. Thermal hydraulic design analysis of ternary carbide fueled square-lattice honeycomb nuclear rocket engine

    SciTech Connect

    Furman, Eric M.; Anghaie, Samim

    1999-01-22

    A computational analysis is conducted to determine the optimum thermal-hydraulic design parameters for a square-lattice honeycomb nuclear rocket engine core that will incorporate ternary carbide based uranium fuels. Recent studies at the Innovative Nuclear Space Power and Propulsion Institute (INSPI) have demonstrated the feasibility of processing solid solution, ternary carbide fuels such as (U, Zr, Nb)C, (U, Zr, Ta)C, (U, Zr, Hf)C and (U, Zr, W)C. The square-lattice honeycomb design provides high strength and is amenable to the processing complexities of these ultrahigh temperature fuels. A parametric analysis is conducted to examine how core geometry, fuel thickness and the propellant flow area effect the thermal performance of the nuclear rocket engine. The principal variables include core size (length and diameter) and fuel element dimensions. The optimum core configuration requires a balance between high specific impulse and thrust level performance, and maintaining the temperature and strength limits of the fuel. A nuclear rocket engine simulation code is developed and used to examine the system performance as well as the performance of the main reactor core components. The system simulation code was originally developed for analysis of NERVA-Derivative and Pratt and Whitney XNR-2000 nuclear thermal rockets. The code is modified and adopted to the square-lattice geometry of the new fuel design. Thrust levels ranging from 44,500 to 222,400 N (10,000 to 50,000 lbf) are considered. The average hydrogen exit temperature is kept at 2800 K, which is well below the melting point of these fuels. For a nozzle area ratio of 300 and a thrust chamber pressure of 4.8 Mpa (700 psi), the specific impulse is 930 s. Hydrogen temperature and pressure distributions in the core and the fuel maximum temperatures are calculated.

  10. Phase separation in thermal systems: a lattice Boltzmann study and morphological characterization.

    PubMed

    Gan, Yanbiao; Xu, Aiguo; Zhang, Guangcai; Li, Yingjun; Li, Hua

    2011-10-01

    We investigate thermal and isothermal symmetric liquid-vapor separations via a fast Fourier transform thermal lattice Boltzmann (FFT-TLB) model. Structure factor, domain size, and Minkowski functionals are employed to characterize the density and velocity fields, as well as to understand the configurations and the kinetic processes. Compared with the isothermal phase separation, the freedom in temperature prolongs the spinodal decomposition (SD) stage and induces different rheological and morphological behaviors in the thermal system. After the transient procedure, both the thermal and isothermal separations show power-law scalings in domain growth, while the exponent for thermal system is lower than that for isothermal system. With respect to the density field, the isothermal system presents more likely bicontinuous configurations with narrower interfaces, while the thermal system presents more likely configurations with scattered bubbles. Heat creation, conduction, and lower interfacial stresses are the main reasons for the differences in thermal system. Different from the isothermal case, the release of latent heat causes the changing of local temperature, which results in new local mechanical balance. When the Prandtl number becomes smaller, the system approaches thermodynamical equilibrium much more quickly. The increasing of mean temperature makes the interfacial stress lower in the following way: σ=σ(0)[(T(c)-T)/(T(c)-T(0))](3/2), where T(c) is the critical temperature and σ(0) is the interfacial stress at a reference temperature T(0), which is the main reason for the prolonged SD stage and the lower growth exponent in the thermal case. Besides thermodynamics, we probe how the local viscosities influence the morphology of the phase separating system. We find that, for both the isothermal and thermal cases, the growth exponents and local flow velocities are inversely proportional to the corresponding viscosities. Compared with the isothermal case, the

  11. Lattice parameters and stability of the spinel compounds in relation to the ionic radii and electronegativities of constituting chemical elements.

    PubMed

    Brik, Mikhail G; Suchocki, Andrzej; Kamińska, Agata

    2014-05-19

    A thorough consideration of the relation between the lattice parameters of 185 binary and ternary spinel compounds, on one side, and ionic radii and electronegativities of the constituting ions, on the other side, allowed for establishing a simple empirical model and finding its linear equation, which links together the above-mentioned quantities. The derived equation gives good agreement between the experimental and modeled values of the lattice parameters in the considered group of spinels, with an average relative error of about 1% only. The proposed model was improved further by separate consideration of several groups of spinels, depending on the nature of the anion (oxygen, sulfur, selenium/tellurium, nitrogen). The developed approach can be efficiently used for prediction of lattice constants for new isostructural materials. In particular, the lattice constants of new hypothetic spinels ZnRE2O4, CdRE2S4, CdRE2Se4 (RE = rare earth elements) are predicted in the present Article. In addition, the upper and lower limits for the variation of the ionic radii, electronegativities, and their certain combinations were established, which can be considered as stability criteria for the spinel compounds. The findings of the present Article offer a systematic overview of the structural properties of spinels and can serve as helpful guides for synthesis of new spinel compounds.

  12. Lattice location and thermal evolution of small B complexes in crystalline Si

    SciTech Connect

    Romano, L.; Piro, A.M.; Mirabella, S.; Grimaldi, M.G.; Rimini, E.

    2005-11-14

    The lattice location of B in Si has been investigated by channelling analyses using nuclear reactions (650 keV proton beam, {sup 11}B(p,{alpha}){sup 8}Be). The formation at room temperature of a specific, small B complex in presence of an excess of point defects has been inferred. In particular, B implanted in Si or B substitutional dissolved in Si and irradiated with proton beam form a unique B complex with B atoms not randomly located. The angular scans along the <100> and <110> axes are compatible with B-B pairs aligned along the <100> axis. The thermal annealing in the 200-950 deg. C range of the B complexes, analyzed by lattice location and carrier concentration measurements, depends on the residual defect density in the lattice. The B complexes dissolve at low temperature if no excess of Si self-interstitials (Is) exists or they evolve into large B clusters and then dissolve at high temperature if Is supersaturation holds.

  13. Interfacial thermal conduction and negative temperature jump in one-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Cao, Xiaodong; He, Dahai

    2015-09-01

    We study the thermal boundary conduction in one-dimensional harmonic and ϕ4 lattices, both of which consist of two segments coupled by a harmonic interaction. For the ballistic interfacial heat transport through the harmonic lattice, we use both theoretical calculation and molecular dynamics simulation to study the heat flux and temperature jump at the interface as to gain insights into the Kapitza resistance at the atomic scale. In the weak coupling regime, the heat current is proportional to the square of the coupling strength for the harmonic model as well as anharmonic models. Interestingly, there exists a negative temperature jump between the interfacial particles in particular parameter regimes. A nonlinear response of the boundary temperature jump to the externally applied temperature difference in the ϕ4 lattice is observed. To understand the anomalous result, we then extend our studies to a model in which the interface is represented by a relatively small segment with gradually changing spring constants and find that the negative temperature jump still exists. Finally, we show that the local velocity distribution at the interface is so close to the Gaussian distribution that the existence or absence of a local equilibrium state is unable to be determined by numerics in this way.

  14. Ferromagnetism in the Kondo-lattice compound CePd2P2.

    PubMed

    Tran, Vinh Hung; Bukowski, Zbigniew

    2014-06-25

    We report physical properties of CePd2P2 crystallizing in the tetragonal ThCr2Si2-type structure (space group I4/mmm). Dc-magnetic susceptibility, magnetization, specific heat, electrical resistivity and magnetoresistance measurements establish a ferromagnetic ordering below the Curie temperature TC = 28.4 ± 0.2 K. Critical analysis of isothermal and isofield magnetization yields critical exponents of β = 0.405 ± 0.005, γ = 1.11 ± 0.05 and δ = 3.74 ± 0.04. The ordered state is characterized by saturation moment Ms ∼ 0.98μB and magnon energy gap Δ/kB ∼25–35 K. The studied properties reflect a competing influence of the Kondo and crystalline electric field (CEF) interactions. The strength of the Kondo effect is assigned by a low-temperature Kondo scale TK ∼19 ± 10 K and a high-temperature Kondo scale TK ~ H 117 } 10 K. A model of the inelastic scattering of the conduction electrons with an exchanged CEF energy ΔCEF was applied to the magnetic resistivity. An average value ΔCEF = 260 ± 30 K is consistent in the relationships with TK and TK H. We argue that the CePd2P2 compound appears to be a new ferromagnetic Kondo-lattice among the Ce-based intermetallics.

  15. Final Design and Experimental Validation of the Thermal Performance of the LHC Lattice Cryostats

    NASA Astrophysics Data System (ADS)

    Bourcey, N.; Capatina, O.; Parma, V.; Poncet, A.; Rohmig, P.; Serio, L.; Skoczen, B.; Tock, J.-P.; Williams, L. R.

    2004-06-01

    The recent commissioning and operation of the LHC String 2 have given a first experimental validation of the global thermal performance of the LHC lattice cryostat at nominal cryogenic conditions. The cryostat designed to minimize the heat inleak from ambient temperature, houses under vacuum and thermally protects the cold mass, which contains the LHC twin-aperture superconducting magnets operating at 1.9 K in superfluid helium. Mechanical components linking the cold mass to the vacuum vessel, such as support posts and insulation vacuum barriers are designed with efficient thermalisations for heat interception to minimise heat conduction. Heat inleak by radiation is reduced by employing multilayer insulation (MLI) wrapped around the cold mass and around an aluminium thermal shield cooled to about 60 K. Measurements of the total helium vaporization rate in String 2 gives, after substraction of supplementary heat loads and end effects, an estimate of the total thermal load to a standard LHC cell (107 m) including two Short Straight Sections and six dipole cryomagnets. Temperature sensors installed at critical locations provide a temperature mapping which allows validation of the calculated and estimated thermal performance of the cryostat components, including efficiency of the heat interceptions.

  16. Diameter Dependence of Lattice Thermal Conductivity of Single-Walled Carbon Nanotubes: Study from Ab Initio

    PubMed Central

    Yue, Sheng-Ying; Ouyang, Tao; Hu, Ming

    2015-01-01

    The effects of temperature, tube length, defects, and surface functionalization on the thermal conductivity (κ) of single-walled carbon nanotubes (SWCNTs) were well documented in literature. However, diameter dependence of thermal conductivity of SWCNTs received less attentions. So far, diverse trends of the diameter dependence have been discussed by different methods and all the previous results were based on empirical interatomic potentials. In this paper, we emphasize to clarify accurate κ values of SWCNTs with different diameters and in-plane κ of graphene. All the studies were under the framework of anharmonic lattice dynamics and Boltzmann transport equation (BTE) based on first principle calculations. We try to infer the right trend of diameter dependent thermal conductivity of SWCNTs. We infer that graphene is the limitation as SWCNT with an infinite diameter. We analyzed the thermal conductivity contributions from each phonon mode in SWCNTs to explain the trend. Meanwhile, we also identify the extremely low thermal conductivity of ultra-thin SWCNTs. PMID:26490342

  17. Dispersion relations of externally and thermally excited dust lattice modes in 2D complex plasma crystals

    SciTech Connect

    Yang Xuefeng; Cui Jian; Zhang Yuan; Liu Yue

    2012-07-15

    The dispersion relations of the externally and thermally (naturally) excited dust lattice modes (both longitudinal and transverse) in two-dimensional Debye-Yukawa complex plasma crystals are investigated. The dispersion relations are calculated numerically by taking the neutral gas damping effects into account and the numerical results are in agreement with the experimental data given by Nunomura et al.[Phys. Rev. E 65, 066402 (2002)]. It is found that for the mode excited by an external disturbance with a real frequency, the dispersion properties are changed at a critical frequency near where the group velocity of the mode goes to zero. Therefore, the high frequency branch with negative dispersion cannot be reached. In contrast, for the thermally excited mode, the dispersion curve can extend all the way to the negative dispersion region, while a 'cut-off' wave number exists at the long wavelength end of the dispersion in the transverse mode.

  18. Lattice Thermal Conductivity of Superlattices from an Adiabatic Bond Charge Model

    NASA Astrophysics Data System (ADS)

    Ward, Alistair; Broido, David

    2007-03-01

    The adiabatic bond charge model (ABCM) has successfully rendered phonon dispersions of a host of bulk semiconductors [1,2] and has also been used to calculate the phonon dispersions in quantum well superlattices [3]. We have developed an ABCM for superlattices and combined it with a symmetry-based representation of the anharmonic interatomic forces to calculate the lattice thermal conductivity of short-period superlattices, using an iterative solution to the Boltzmann-Peierls equation [4]. We compare our ABCM results with those obtained from some commonly used models for the interatomic forces in semiconductors to assess the importance of accurate descriptions of the phonon dispersions in thermal conductivity calculations. [1] W. Weber, Physical Review B 15, 4789 (1977). [2] K. C. Rustagi and W. Weber, Solid State Communications 18, 673 (1976). [3] S. K. Yip and Y. C. Chang, Physical Review B 30 7037 (1984). [4] D. A. Broido, A. Ward, and N. Mingo, Physical Review B 72, 014308 (2005).

  19. Three-Phonon Phase Space as an Indicator of the Lattice Thermal Conductivity in Semiconductors

    NASA Astrophysics Data System (ADS)

    Lindsay, L.; Broido, D. A.

    2007-03-01

    The room temperature lattice thermal conductivity of many semiconductors is limited primarily by three-phonon scattering processes arising from the anharmonicity of the interatomic potential. We employ an adiabatic bond charge model [1,2] for the phonon dispersions to calculate the phase space for three-phonon scattering events of several group IV and III-V semiconductors. We find that the amount of phase space available for this scattering in materials varies inversely with their measured thermal conductivities. Anomalous behavior occurs in III-V materials having large mass differences between cation and anion, which we explain in terms of the severely restricted three-phonon phase space arising from the large gap between acoustic and optic phonon branches. [1] W. Weber, Physical Review B 15, 4789 (1977). [2] K. C. Rustagi and W. Weber, Solid State Communications 18, 673 (1976).

  20. Orbital thermal analysis of lattice structured spacecraft using color video display techniques

    NASA Technical Reports Server (NTRS)

    Wright, R. L.; Deryder, D. D.; Palmer, M. T.

    1983-01-01

    A color video display technique is demonstrated as a tool for rapid determination of thermal problems during the preliminary design of complex space systems. A thermal analysis is presented for the lattice-structured Earth Observation Satellite (EOS) spacecraft at 32 points in a baseline non Sun-synchronous (60 deg inclination) orbit. Large temperature variations (on the order of 150 K) were observed on the majority of the members. A gradual decrease in temperature was observed as the spacecraft traversed the Earth's shadow, followed by a sudden rise in temperature (100 K) as the spacecraft exited the shadow. Heating rate and temperature histories of selected members and color graphic displays of temperatures on the spacecraft are presented.

  1. Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions.

    PubMed

    Lallemand, Pierre; Luo, Li-Shi

    2003-09-01

    The focus of the present work is to provide an analysis for the acoustic and thermal properties of the energy-conserving lattice Boltzmann models, and a solution to the numerical defects and instability associated with these models in two and three dimensions. We discover that a spurious algebraic coupling between the shear and energy modes of the linearized evolution operator is a defect universal to the energy-conserving Boltzmann models in two and three dimensions. This spurious mode coupling is highly anisotropic and may occur at small values of wave number k along certain directions, and it is a direct consequence of the following key features of the lattice Boltzmann equation: (1) its simple spatial-temporal dynamics, (2) the linearity of the relaxation modeling for collision operator, and (3) the energy-conservation constraint. To eliminate the spurious mode coupling, we propose a hybrid thermal lattice Boltzmann equation (HTLBE) in which the mass and momentum conservation equations are solved by using the multiple-relaxation-time model due to d'Humières, whereas the diffusion-advection equation for the temperature is solved separately by using finite-difference technique (or other means). Through the Chapman-Enskog analysis we show that the hydrodynamic equations derived from the proposed HTLBE model include the equivalent effect of gamma=C(P)/C(V) in both the speed and attenuation of sound. Appropriate coupling between the energy and velocity field is introduced to attain correct acoustics in the model. The numerical stability of the HTLBE scheme is analyzed by solving the dispersion equation of the linearized collision operator. We find that the numerical stability of the lattice Boltzmann scheme improves drastically once the spurious mode coupling is removed. It is shown that the HTLBE scheme is far superior to the existing thermal LBE schemes in terms of numerical stability, flexibility, and possible generalization for complex fluids. We also present

  2. Phonon lifetimes and lattice thermal conductivity of MgSiO_3 perovskite

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Sun, T.; Wentzcovitch, R. M.

    2013-12-01

    The phonon gas model (PGM) is a standard theoretical paradigm to describe lattice thermal conductivity, κ, of crystalline materials. Recently it was used to compute κ for MgO and MgSiO_3 perovskite (MgPv) at lower mantle conditions. While this model gives satisfactory results for MgO, several issues remain unresolved in applying this model to MgPv: 1) crystal structure complexity makes it difficult to sample lifetimes, τ_q , by rigorous calculations throughout the Brilloiun Zone. Extrapolation using 1/τ_q ∝ω^2 has been resorted to [1] and its validity is unclear; 2) according to lowest order perturbation theory, κ and τ_q ~ 1/ T at high temperatures. In contrast, experimental measurements [2] and classical molecular dynamics simulations [3] indicate that κ varies more slowly than 1/T. A possible phenomenological explanation is that phonon mean free path, l_q, cannot be smaller than one lattice spacing, even at very high T. We have investigated the validity of these approximations in MgPv by computing rigorously τ_q beyond perturbation theory for multiple q-points throughout the Brillouin Zone. We have used a recently developed hybrid method combining ab initio molecular dynamics and vibrational normal mode analysis to compute phonon lifetimes, frequency shifts, and lattice thermal conductivity. Our results overturn some common convictions in the field of heat transport. This should stimulate further studies on this topic so that existing discrepancies between theory and experiments can be reconciled and κ of MgPv can be predicted more accurately at lower mantle conditions. [1] Haruhiko Dekura et al. PRL 110, 025904 (2013) [2] Manthilake et al., PNAS, 108, 17901 (2011) [3] Haigis et al, EPSL, 355-356, 102-108 (2012) Research supported by NSF award EAR-1019853.

  3. Application of a ghost fluid approach for a thermal lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Khazaeli, Reza; Mortazavi, Saeed; Ashrafizaadeh, Mahmud

    2013-10-01

    In this paper, a ghost fluid (GF) method is utilized to propose a numerical approach to enhance the capability of thermal lattice Boltzmann method (TLBM) in dealing with complex geometries. A ghost fluid approach is imposed on a double-population thermal lattice Boltzmann method. A Cartesian grid handles the flow and the boundaries are imposed by a ghost fluid approach. The essence of this method is to decompose the unknown distribution functions into equilibrium and non-equilibrium parts at each ghost points. The major quantities are extrapolated from the image points to the corresponding ghost points to form the equilibrium parts. The non- equilibrium parts are then determined by using the bounce-back scheme. The method is relatively easy to apply, and second order accurate. There is no need to modify the original governing equations, and both Dirichlet and Neumann boundary conditions can be handled. The method is applied to Couette flow between two concentric circular cylinders, natural convection in a square cavity, natural convection in an annulus, and a forced convection in a lid-driven semi-circular cavity. The results obtained are generally in good agreement with that predicted by other theoretical and numerical efforts.

  4. Capturing the crystal: prediction of enthalpy of sublimation, crystal lattice energy, and melting points of organic compounds.

    PubMed

    Salahinejad, Maryam; Le, Tu C; Winkler, David A

    2013-01-28

    Accurate computational prediction of melting points and aqueous solubilities of organic compounds would be very useful but is notoriously difficult. Predicting the lattice energies of compounds is key to understanding and predicting their melting behavior and ultimately their solubility behavior. We report robust, predictive, quantitative structure-property relationship (QSPR) models for enthalpies of sublimation, crystal lattice energies, and melting points for a very large and structurally diverse set of small organic compounds. Sparse Bayesian feature selection and machine learning methods were employed to select the most relevant molecular descriptors for the model and to generate parsimonious quantitative models. The final enthalpy of sublimation model is a four-parameter multilinear equation that has an r(2) value of 0.96 and an average absolute error of 7.9 ± 0.3 kJ.mol(-1). The melting point model can predict this property with a standard error of 45° ± 1 K and r(2) value of 0.79. Given the size and diversity of the training data, these conceptually transparent and accurate models can be used to predict sublimation enthalpy, lattice energy, and melting points of organic compounds in general.

  5. Lattice Thermal Conductivity of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2 from Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Lawson, JOhn W.; Daw, Murray S.; Bauschlicher, Charles W.

    2011-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 are candidate materials for applications in extreme environments because of their high melting point, good mechanical properties and reasonable oxidation resistance. Unlike many ceramics, these materials have high thermal conductivity which can be advantageous, for example, to reduce thermal shock. Recently, we developed Tersoff style interatomic potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current. Results at room temperature and at elevated temperatures will be reported.

  6. Thermalization and Canonical Typicality in Translation-Invariant Quantum Lattice Systems

    NASA Astrophysics Data System (ADS)

    Müller, Markus P.; Adlam, Emily; Masanes, Lluís; Wiebe, Nathan

    2015-12-01

    It has previously been suggested that small subsystems of closed quantum systems thermalize under some assumptions; however, this has been rigorously shown so far only for systems with very weak interaction between subsystems. In this work, we give rigorous analytic results on thermalization for translation-invariant quantum lattice systems with finite-range interaction of arbitrary strength, in all cases where there is a unique equilibrium state at the corresponding temperature. We clarify the physical picture by showing that subsystems relax towards the reduction of the global Gibbs state, not the local Gibbs state, if the initial state has close to maximal population entropy and certain non-degeneracy conditions on the spectrumare satisfied.Moreover,we showthat almost all pure states with support on a small energy window are locally thermal in the sense of canonical typicality. We derive our results from a statement on equivalence of ensembles, generalizing earlier results by Lima, and give numerical and analytic finite size bounds, relating the Ising model to the finite de Finetti theorem. Furthermore, we prove that global energy eigenstates are locally close to diagonal in the local energy eigenbasis, which constitutes a part of the eigenstate thermalization hypothesis that is valid regardless of the integrability of the model.

  7. First principles lattice thermal conductivity of Li2Se, Li2Te and alloys: phase space guidelines for thermal transport

    NASA Astrophysics Data System (ADS)

    Lindsay, Lucas; Mukhopadhyay, Saikat; Parker, David

    The lattice thermal conductivities (k) of Li2Se, Li2Te and alloys are examined using a first-principles Peierls-Boltzmann transport methodology. The dominant resistance to heat-carrying acoustic phonons in Li2Se and Li2Te comes from the interactions of these modes with two optic phonons, aoo scattering. In typical cubic and hexagonal materials (e . g . , Si, GaAs, AlN) aoo scattering does not play a considerable role in determining k, as it requires significant bandwidth and dispersion of the optic phonon branches, both present in Li2Se and Li2Te. We discuss how these properties and other features of the phonon dispersion (e . g . , bunching of the acoustic branches and an acoustic-optic frequency gap) combine to determine the overall conductivity of a material. Thus, microscopic scattering phase space arguments are generalized to give a more comprehensive view of intrinsic thermal transport in crystalline solids. We note that these general considerations are important for the discovery and design of new `high k' and `low k' materials for thermal management applications. L. L., S. M. and D. S. P. acknowledge support from the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

  8. Measurement-induced disturbance and thermal negativity in 1D optical lattice chain

    SciTech Connect

    Guo, Jin-Liang; Lin-Wang; Long, Gui-Lu

    2013-03-15

    We study the measurement-induced disturbance (MID) in a 1D optical lattice chain with nonlinear coupling. Special attention is paid to the difference between the thermal entanglement and MID when considering the influences of the linear coupling constant, nonlinear coupling constant and external magnetic field. It is shown that MID is more robust than thermal entanglement against temperature T and external magnetic field B, and MID may reveal more properties about quantum correlations of the system, which can be seen from the point of view that MID can be nonzero when there is no thermal entanglement and MID can detect the critical point of quantum phase transition at finite temperature. - Highlights: Black-Right-Pointing-Pointer The nonlinear coupling constant can strengthen the quantum correlation. Black-Right-Pointing-Pointer MID is more robust than entanglement against temperature and magnetic field. Black-Right-Pointing-Pointer MID exhibits more information about quantum correlation than entanglement. Black-Right-Pointing-Pointer MID can detect the critical point of quantum phase transition at finite temperature.

  9. Thermal Lattice Expansion in Epitaxial SrTiO3(100) on Si(100)

    SciTech Connect

    McCready, David E.; Liang, Yong; Shutthanandan, V.; Wang, Chong M.; Thevuthasan, Suntharampillai

    2006-10-01

    Thermal lattice expansion in epitaxial SrTiO3(100) grown on Si(100) by molecular beam epitaxy was examined by in situ x-ray diffraction (XRD) at temperatures ranging from 25 C to 1000 C. The SrTiO3 layer thickness ({approx}400 ?) was determined a priori by ex situ x-ray reflectivity (XRR). In addition, the SrTiO3(100) film was further characterized before and after thermal treatment by Rutherford backscattering spectroscopy in channeling geometry (RBS/C) and transmission electron microscopy (TEM). The XRD results showed that the rate of thermal expansion in epitaxial SrTiO3 in the out-of-plane direction is approximately 1.5-2.0 times the bulk value. In addition, the SrTiO3 film was seen to relax after heating. RBS/C and TEM also revealed the formation of a thick ({approx}1000 ?), amorphous silica layer at the SrTiO3/Si interface. Interestingly, the SrTiO3 film retained its epitaxial form atop this non-templating surface while its crystalline quality improved with annealing. These results will be further discussed in the context of their potential application toward silicon-on-insulator (SOI) semiconductor architecture.

  10. Electrical Conductivity, Thermal Stability, and Lattice Defect Evolution During Cyclic Channel Die Compression of OFHC Copper

    NASA Astrophysics Data System (ADS)

    Satheesh Kumar, S. S.; Raghu, T.

    2015-02-01

    Oxygen-free high-conductivity (OFHC) copper samples are severe plastically deformed by cyclic channel die compression (CCDC) technique at room temperature up to an effective plastic strain of 7.2. Effect of straining on variation in electrical conductivity, evolution of deformation stored energy, and recrystallization onset temperatures are studied. Deformation-induced lattice defects are quantified using three different methodologies including x-ray diffraction profile analysis employing Williamson-Hall technique, stored energy based method, and electrical resistivity-based techniques. Compared to other severe plastic deformation techniques, electrical conductivity degrades marginally from 100.6% to 96.6% IACS after three cycles of CCDC. Decrease in recrystallization onset and peak temperatures is noticed, whereas stored energy increases and saturates at around 0.95-1.1J/g after three cycles of CCDC. Although drop in recrystallization activation energy is observed with the increasing strain, superior thermal stability is revealed, which is attributed to CCDC process mechanics. Low activation energy observed in CCDC-processed OFHC copper is corroborated to synergistic influence of grain boundary characteristics and lattice defects distribution. Estimated defects concentration indicated continuous increase in dislocation density and vacancy with strain. Deformation-induced vacancy concentration is found to be significantly higher than equilibrium vacancy concentration ascribed to hydrostatic stress states experienced during CCDC.

  11. Thermal lattice-Boltzmann method for non-ideal gases with potential energy

    NASA Astrophysics Data System (ADS)

    Ihle, T.; Kroll, D. M.

    2000-07-01

    We present a thermal lattice-Boltzmann method for gases with potential energy. In addition to the single particle distribution function, additional distribution functions for the potential energy and the non-ideal part of the pressure tensor are defined which contain information about the two-particle distribution function. Guided by the BBGKY-hierarchy, a set of three coupled kinetic equations for these distribution functions is proposed. By means of a Chapman-Enskog expansion it is shown that the correct hydrodynamic equations, including the equation for energy transport, are obtained in the limit of large length and time scales. We discuss how the model can be discretized in order to achieve second-order accuracy and Galilean-invariance. A reduced version of the model, in which the pressure field is adiabatically eliminated, is implemented in two dimensions on a hexagonal lattice. Its stability is investigated numerically, and tests of the accuracy for the transversal and longitudinal modes of linear hydrodynamics, as well as tests of Galilean-invariance, are performed. Comparisons are also made with a hybrid model, in which the energy equation is solved by a finite-difference scheme. The method was further simplified in two cases: (i) for a constant temperature, and (ii) for a gas with only excluded-volume interactions.

  12. Lattice thermal conductivity of crystalline and amorphous silicon with and without isotopic effects from the ballistic to diffusive thermal transport regime

    SciTech Connect

    Park, Minkyu; Lee, In-Ho; Kim, Yong-Sung

    2014-07-28

    Thermal conductivity of a material is an important physical parameter in electronic and thermal devices, and as the device size shrinks down, its length-dependence becomes unable to be neglected. Even in micrometer scale devices, materials having a long mean free path of phonons, such as crystalline silicon (Si), exhibit a strong length dependence of the thermal conductivities that spans from the ballistic to diffusive thermal transport regime. In this work, through non-equilibrium molecular-dynamics (NEMD) simulations up to 17 μm in length, the lattice thermal conductivities are explicitly calculated for crystalline Si and up to 2 μm for amorphous Si. The Boltzmann transport equation (BTE) is solved within a frequency-dependent relaxation time approximation, and the calculated lattice thermal conductivities in the BTE are found to be in good agreement with the values obtained in the NEMD. The isotopic effects on the length-dependent lattice thermal conductivities are also investigated both in the crystalline and amorphous Si.

  13. Phase stability and lattice thermal conductivity reduction in CoSb3 skutterudites, doped with chalcogen atoms

    NASA Astrophysics Data System (ADS)

    Battabyal, M.; Priyadarshini, B.; Pradipkanti, L.; Satapathy, Dillip K.; Gopalan, R.

    2016-07-01

    We report a significant reduction in the lattice thermal conductivity of the CoSb3 skuttertudites, doped with chalcogen atoms. Te/Se chalcogen atoms doped CoSb3 skutterudite samples (Te0.1Co4Sb12, Se0.1Co4Sb12, Te0.05Se0.05Co4Sb12) are processed by ball milling and spark plasma sintering. X-ray diffraction data combined with energy dispersive X-ray spectra indicate the doping of Te/Se chalcogen atoms in the skutterudite. The temperature dependent X-ray diffraction confirms the stability of the Te/Se doped CoSb3 skutterudite phase and absence of any secondary phase in the temperature range starting from 300 K to 773 K. The Raman spectroscopy reveals that different chalcogen dopant atoms cause different resonant optical vibrational modes between the dopant atom and the host CoSb3 skutterudite lattice. These optical vibrational modes do scatter heat carrying acoustic phonons in a different spectral range. It was found that among the Te/Se chalcogen atoms, Te atoms alter the host CoSb3 skutterudite lattice vibrations to a larger extent than Se atoms, and can potentially scatter more Sb related acoustic phonons. The Debye model of lattice thermal conductivity confirms that the resonant phonon scattering has important contributions to the reduction of lattice thermal conductivity in CoSb3 skutterudites doped with Te/Se chalcogen atoms. Lattice thermal conductivity ˜ 0.9 W/mK at 773 K is achieved in Te0.1Co4Sb12 skutterudites, which is the lowest value reported so far in CoSb3 skutterudites, doped with single Te chalcogen atom.

  14. Superconducting gap and vortex lattice of the heavy-fermion compound CeCu2Si2

    NASA Astrophysics Data System (ADS)

    Enayat, Mostafa; Sun, Zhixiang; Maldonado, Ana; Suderow, Hermann; Seiro, Silvia; Geibel, Christoph; Wirth, Steffen; Steglich, Frank; Wahl, Peter

    2016-01-01

    The order parameter and pairing mechanism for superconductivity in heavy-fermion compounds are still poorly understood. Scanning tunneling microscopy and spectroscopy at ultralow temperatures can yield important information about the superconducting order parameter and the gap structure. Here, we study the first heavy-fermion superconductor, CeCu2Si2 . Our data show the superconducting gap which is not fully formed and exhibits features that point to a multigap order parameter. Spatial mapping of the zero-bias conductance in magnetic field reveals the vortex lattice, which allows us to unequivocally link the observed conductance gap to superconductivity in CeCu2Si2 . The vortex lattice is found to be predominantly triangular with distortions at fields close to ˜0.7 Hc 2 .

  15. Two spin-peierls-like compounds exhibiting divergent structural features, lattice compression, and expansion in the low- temperature phase.

    PubMed

    Tian, Zhengfang; Duan, Haibao; Ren, Xiaoming; Lu, Changsheng; Li, Yizhi; Song, You; Zhu, Huizhen; Meng, Qingjin

    2009-06-18

    Two quasi-one-dimensional (quasi-1D) compounds, [4'-CH(3)Bz-4-RPy][Ni(mnt)(2)] (mnt(2-) = maleonitriledithiolate), where 4'-CH(3)Bz-4-RPy(+) = 1-(4'-methylbenzyl)pyridinium (denoted as compound 1) and 1-(4'-methylbenzyl)-4-aminopyridinium (denoted as compound 2), show a spin-Peierls-like transition with T(C) approximately 182 K for 1 and T(C) approximately 155 K for 2. The enthalpy changes for the transition are estimated to be DeltaH = 316.6 J.mol(-1) for 1 and 1082.1 J.mol(-1) for 2. From fits to the magnetic susceptibility, the magnetic exchange constants in the gapless state are calculated to be J = 166(2) K with g = 2.020(23) for 1 versus J = 42(0) K with g = 2.056(5) for 2. In the high-temperature (HT) phase, 1 and 2 are isostructural and crystallize in the monoclinic space group P2(1)/c. The nonmagnetic cations and paramagnetic anions form segregated columns with regular anionic and cationic stacks. In the low-temperature (LT) phase, the crystals of the two compounds undergo a transformation to the triclinic space group P-1, and both anionic and cationic stacks dimerize. In the transformation from the HT to LT phases, the two compounds exhibit divergent structural features, with lattice compression for 1 but lattice expansion for 2, due to intermolecular slippage. Combined with our previous studies, it is also noted that the transition temperature, T(C), is qualitatively related to the cell volume in the HT phase for the series of compounds [1-(4'-R-benzylpyridinium][Ni(mnt)(2)] (where R represents the substituent). When there is a single substituent in the para position of benzene, giving a larger cell volume, the transition temperature increases.

  16. Novel correlation of Schottky constants with lattice energies for II-VI and I-VII compounds

    SciTech Connect

    Wiedemeier, Heribert

    2010-10-15

    Correlations of computed Schottky constants (K{sub S}=[V''{sub Zn}][V{sub S}{sup ..}]) with structural and thermodynamic properties showed linear dependences of log K{sub S} on the lattice energies for the Zn-, Cd-, Hg-, Mg-, and Sr-chalcogenides and for the Na- and K-halides. These findings suggest a basic relation between the Schottky constants and the lattice energies for these families of compounds from different parts of the Periodic Table, namely, {Delta}H{sub T,L}{sup o}=-(2.303nRT log K{sub S})+2.303nRm{sub b}+2.303nRTi{sub b}. {Delta}H{sub T,L}{sup o} is the experimental (Born-Haber) lattice energy (enthalpy), n is a constant approximately equal to the formal valence (charge) of the material, m{sub b} and i{sub b} are the slope and intercept, respectively, of the intercept b (of the log K{sub S} versus {Delta}H{sub L}{sup o} linear relation) versus the reciprocal temperature. The results of this work also provide an empirical correlation between the Gibbs free energy of vacancy formation and the lattice energy. - Graphical abstract: For the Zn-chalcogenides, the quantities n and I{sub e} are 2.007 and 650.3 kcal (2722 kJ), respectively. For the other groups of compounds, they are approximately equal to the formal valences and ionization energies of the metals: Log K{sub S{approx}}-(2.303nRT){sup -1} (0.99{Delta}H{sup o}{sub T,L}-I{sub e}).

  17. Topological Metal of NaBi with Ultralow Lattice Thermal Conductivity and Electron-phonon Superconductivity

    PubMed Central

    Li, Ronghan; Cheng, Xiyue; Xie, Qing; Sun, Yan; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu

    2015-01-01

    By means of first-principles and ab initio tight-binding calculations, we found that the compound of NaBi is a three-dimensional non-trivial topological metal. Its topological feature can be confirmed by the presence of band inversion, the derived effective Z2 invariant and the non-trivial surface states with the presence of Dirac cones. Interestingly, our calculations further demonstrated that NaBi exhibits the uniquely combined properties between the electron-phonon coupling superconductivity in nice agreement with recent experimental measurements and the obviously anisotropic but extremely low thermal conductivity. The spin-orbit coupling effects greatly affect those properties. NaBi may provide a rich platform to study the relationship among metal, topology, superconductivity and thermal conductivity. PMID:25676863

  18. Transition to and from the skyrmion lattice phase by electric fields in a magnetoelectric compound.

    PubMed

    Okamura, Y; Kagawa, F; Seki, S; Tokura, Y

    2016-01-01

    Dissipation-less electric control of magnetic state variable is an important target of contemporary spintronics. The non-volatile control of magnetic skyrmions, nanometre-sized spin-swirling objects, with electric fields may exemplify this goal. The skyrmion-hosting magnetoelectric chiral magnet Cu2OSeO3 provides a unique platform for the implementation of such control; however, the hysteresis that accompanies the first-order transition associated with the skyrmion phase is negligibly narrow in practice. Here we demonstrate another method that functions irrespective of the transition boundary. Combination of magnetic-susceptibility measurements and microwave spectroscopy reveals that although the metastable skyrmion lattice is normally hidden behind a more thermodynamically stable conical phase, it emerges under electric fields and persists down to the lowest temperature. Once created, this metastable skyrmion lattice remains without electric fields, establishing a bistability distinct from the transition hysteresis. This bistability thus enables non-volatile electric-field control of the skyrmion lattice even in temperature/magnetic-field regions far from the transition boundary. PMID:27580648

  19. Transition to and from the skyrmion lattice phase by electric fields in a magnetoelectric compound

    NASA Astrophysics Data System (ADS)

    Okamura, Y.; Kagawa, F.; Seki, S.; Tokura, Y.

    2016-09-01

    Dissipation-less electric control of magnetic state variable is an important target of contemporary spintronics. The non-volatile control of magnetic skyrmions, nanometre-sized spin-swirling objects, with electric fields may exemplify this goal. The skyrmion-hosting magnetoelectric chiral magnet Cu2OSeO3 provides a unique platform for the implementation of such control; however, the hysteresis that accompanies the first-order transition associated with the skyrmion phase is negligibly narrow in practice. Here we demonstrate another method that functions irrespective of the transition boundary. Combination of magnetic-susceptibility measurements and microwave spectroscopy reveals that although the metastable skyrmion lattice is normally hidden behind a more thermodynamically stable conical phase, it emerges under electric fields and persists down to the lowest temperature. Once created, this metastable skyrmion lattice remains without electric fields, establishing a bistability distinct from the transition hysteresis. This bistability thus enables non-volatile electric-field control of the skyrmion lattice even in temperature/magnetic-field regions far from the transition boundary.

  20. Transition to and from the skyrmion lattice phase by electric fields in a magnetoelectric compound

    PubMed Central

    Okamura, Y.; Kagawa, F.; Seki, S.; Tokura, Y.

    2016-01-01

    Dissipation-less electric control of magnetic state variable is an important target of contemporary spintronics. The non-volatile control of magnetic skyrmions, nanometre-sized spin-swirling objects, with electric fields may exemplify this goal. The skyrmion-hosting magnetoelectric chiral magnet Cu2OSeO3 provides a unique platform for the implementation of such control; however, the hysteresis that accompanies the first-order transition associated with the skyrmion phase is negligibly narrow in practice. Here we demonstrate another method that functions irrespective of the transition boundary. Combination of magnetic-susceptibility measurements and microwave spectroscopy reveals that although the metastable skyrmion lattice is normally hidden behind a more thermodynamically stable conical phase, it emerges under electric fields and persists down to the lowest temperature. Once created, this metastable skyrmion lattice remains without electric fields, establishing a bistability distinct from the transition hysteresis. This bistability thus enables non-volatile electric-field control of the skyrmion lattice even in temperature/magnetic-field regions far from the transition boundary. PMID:27580648

  1. Intrinsic ultralow lattice thermal conductivity of the unfilled skutterudite FeSb3

    NASA Astrophysics Data System (ADS)

    Fu, Yuhao; Singh, David J.; Li, Wu; Zhang, Lijun

    2016-08-01

    It is generally accepted that unfilled skutterudites process high lattice thermal conductivity κl that can be efficiently reduced upon filling. Here by using first-principles Boltzmann-Peierls transport calculations, we find pure skutterudite of FeSb3 with no filler in fact has an intrinsic ultralow κl smaller than that of CoSb3 by one order of magnitude. The value is even smaller than those of most of the fully filled skutterudites. This finding means that with FeSb3 as a reference, filling does not necessarily lower κl. The ultralow κl of FeSb3 is a consequence of the overall softening of phonon spectrum, especially the lowering in frequency of optical phonon branches associated with the weakly bonded Sb4 rings. They overlap more with heat-carrying acoustic phonons and significantly increase the phase space for three-phonon anharmonic scattering processes. This provides an alternative non-filling-related mechanism for lowering the κl of skutterudites.

  2. Lattice Boltzmann kinetic modeling and simulation of thermal liquid-vapor system

    NASA Astrophysics Data System (ADS)

    Gan, Yanbiao; Xu, Aiguo; Zhang, Guangcai; Wang, Junqi; Yu, Xijun; Yang, Yang

    2014-04-01

    We present a highly efficient lattice Boltzmann (LB) kinetic model for thermal liquid-vapor system. Three key components are as below: (i) a discrete velocity model (DVM) by Kataoka et al. [Phys. Rev. E69, 035701(R) (2004)]; (ii) a forcing term Ii aiming to describe the interfacial stress and recover the van der Waals (VDW) equation of state (EOS) by Gonnella et al. [Phys. Rev. E76, 036703 (2007)] and (iii) a Windowed Fast Fourier Transform (WFFT) scheme and its inverse by our group [Phys. Rev. E84, 046715 (2011)] for solving the spatial derivatives, together with a second-order Runge-Kutta (RK) finite difference scheme for solving the temporal derivative in the LB equation. The model is verified and validated by well-known benchmark tests. The results recovered from the present model are well consistent with previous ones [Phys. Rev. E84, 046715 (2011)] or theoretical analysis. The usage of less discrete velocities, high-order RK algorithm and WFFT scheme with 16th-order in precision makes the model more efficient by about 10 times and more accurate than the original one.

  3. Reduction of the temperature jump in the immersed boundary-thermal lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Seta, Takeshi; Hayashi, Kosuke; Tomiyama, Akio

    2015-11-01

    We analytically and numerically investigate the boundary errors computed by the immersed boundary-thermal lattice Boltzmann method (IB-TLBM) with the two-relaxation-time (TRT) collision operator. In the linear collision operator of the TRT, we decompose the distribution function into symmetric and antisymmetric components and define the relaxation parameters for each part. We derive the theoretical relation between the relaxation parameters for the symmetric and antisymmetric parts of the distribution function so as to eliminate the temperature jump. The simple TRT collision operator succeeds in reducing the temperature jump occurring at the high relaxation time in the IB-TLBM calculation. The porous plate problem numerically and analytically demonstrate that the velocity squared terms should be neglected in the equilibrium distribution function in order to eliminate the effect of the advection velocity on the temperature jump in the IB-TLBMs. The passive scalar model without the velocity squared terms more accurately calculates the incompressible temperature equation in the IB-TLBMs, compared to the double distribution model, which is based on the relation of the distribution function gk = (ek - u)2fk / 2 . We apply the passive scalar model without the velocity squared terms to the simulation of the natural convection between a hot circular cylinder and a cold square enclosure. The proposed method adequately sets the boundary values and provides reasonable average Nusselt numbers and maximum absolute values of the stream function.

  4. Tinselenidene: a Two-dimensional Auxetic Material with Ultralow Lattice Thermal Conductivity and Ultrahigh Hole Mobility

    PubMed Central

    Zhang, Li-Chuan; Qin, Guangzhao; Fang, Wu-Zhang; Cui, Hui-Juan; Zheng, Qing-Rong; Yan, Qing-Bo; Su, Gang

    2016-01-01

    By means of extensive ab initio calculations, a new two-dimensional (2D) atomic material tin selenide monolayer (coined as tinselenidene) is predicted to be a semiconductor with an indirect gap (~1.45 eV) and a high hole mobility (of order 10000 cm2V−1S−1), and will bear an indirect-direct gap transition under a rather low strain (<0.5 GPa). Tinselenidene has a very small Young’s modulus (20–40 GPa) and an ultralow lattice thermal conductivity (<3 Wm−1K−1 at 300 K), making it probably the most flexible and most heat-insulating material in known 2D atomic materials. In addition, tinseleniden has a large negative Poisson’s ratio of −0.17, thus could act as a 2D auxetic material. With these intriguing properties, tinselenidene could have wide potential applications in thermoelectrics, nanomechanics and optoelectronics. PMID:26830330

  5. Phonon-induced diamagnetic force and its effect on the lattice thermal conductivity.

    PubMed

    Jin, Hyungyu; Restrepo, Oscar D; Antolin, Nikolas; Boona, Stephen R; Windl, Wolfgang; Myers, Roberto C; Heremans, Joseph P

    2015-06-01

    Phonons are displacements of atoms around their rest positions in a crystalline solid. They carry sound and heat, but are not classically associated with magnetism. Here, we show that phonons are, in fact, sensitive to magnetic fields, even in diamagnetic materials. We do so by demonstrating experimentally that acoustic phonons in a diamagnetic semiconductor (InSb) scatter more strongly from one another when a magnetic field is applied. We attribute this observation to the magnetic-field sensitivity of the anharmonicity of the interatomic bonds that govern the probability of phonon-phonon interactions. The displacements of atoms locally affect the orbital motion of valence band electrons, which, in the presence of an external magnetic field, spatially modulates the orbital diamagnetism around the displaced atoms. The spatial gradient in magnetic moment results in an anharmonic magnetic force exerted on the displaced atom. The process is modelled by ab initio calculations that, without the use of a single adjustable parameter, reproduce the observed 12% decrease in the lattice thermal conductivity under a 7 T magnetic field at a temperature of 5.2 K. PMID:25799325

  6. Lattice Thermal Conductivity of Ultra High Temperature Ceramics ZrB2 and HfB2 from Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Murray, Daw S.; Bauschlicher, Charles W., Jr.

    2011-01-01

    Atomistic Green-Kubo simulations are performed to evaluate the lattice thermal conductivity for single crystals of the ultra high temperature ceramics ZrB2 and HfB2 for a range of temperatures. Recently developed interatomic potentials are used for these simulations. Heat current correlation functions show rapid oscillations which can be identified with mixed metal-Boron optical phonon modes. Agreement with available experimental data is good.

  7. Ba-filled Ni–Sb–Sn based skutterudites with anomalously high lattice thermal conductivity

    DOE PAGESBeta

    Paschinger, W.; Rogl, Gerda; Grytsiv, A.; Michor, H.; Heinrich, P. R.; Mueller, H.; Puchegger, S.; Klobes, B.; Hermann, Raphael P.; Reinecker, M.; et al

    2016-06-21

    Here, in this study, novel filled skutterudites BayNi4Sb12-xSnx (ymax = 0.93) have been prepared by arc melting followed by annealing at 250, 350 and 450°C up to 30 days in vacuum-sealed quartz vials. Extension of the homogeneity region, solidus temperatures and structural investigations were performed for the skutterudite phase in the ternary Ni–Sn–Sb and in the quaternary Ba–Ni–Sb–Sn systems. Phase equilibria in the Ni–Sn–Sb system at 450°C were established by means of Electron Probe Microanalysis (EPMA) and X-ray Powder Diffraction (XPD). With rather small cages Ni4(Sb,Sn)12, the Ba–Ni–Sn–Sb skutterudite system is perfectly suited to study the influence of filler atomsmore » on the phonon thermal conductivity. Single-phase samples with the composition Ni4Sb8.2Sn3.8, Ba0.42Ni4Sb8.2Sn3.8 and Ba0.92Ni4Sb6.7Sn5.3 were used to measure their physical properties, i.e. temperature dependent electrical resistivity, Seebeck coefficient and thermal conductivity. The resistivity data demonstrate a crossover from metallic to semiconducting behaviour. The corresponding gap width was extracted from the maxima in the Seebeck coefficient data as a function of temperature. Single crystal X-ray structure analyses at 100, 200 and 300 K revealed the thermal expansion coefficients as well as Einstein and Debye temperatures for Ba0.73Ni4Sb8.1Sn3.9 and Ba0.95Ni4Sb6.1Sn5.9. These data were in accordance with the Debye temperatures obtained from the specific heat (4.4 K < T < 140 K) and Mössbauer spectroscopy (10 K < T < 290 K). Rather small atom displacement parameters for the Ba filler atoms indicate a severe reduction in the “rattling behaviour” consistent with the high levels of lattice thermal conductivity. The elastic moduli, collected from Resonant Ultrasonic Spectroscopy ranged from 100 GPa for Ni4Sb8.2Sn3.8 to 116 GPa for Ba0.92Ni4Sb6.7Sn5.3. The thermal expansion coefficients were 11.8 × 10-6 K-1 for Ni4Sb8.2Sn3.8 and 13.8 × 10-6 K-1 for Ba0.92Ni4

  8. Ba-filled Ni-Sb-Sn based skutterudites with anomalously high lattice thermal conductivity.

    PubMed

    Paschinger, W; Rogl, G; Grytsiv, A; Michor, H; Heinrich, P R; Müller, H; Puchegger, S; Klobes, B; Hermann, R P; Reinecker, M; Eisenmenger-Sitter, Ch; Broz, P; Bauer, E; Giester, G; Zehetbauer, M; Rogl, P F

    2016-07-01

    Novel filled skutterudites BayNi4Sb12-xSnx (ymax = 0.93) have been prepared by arc melting followed by annealing at 250, 350 and 450 °C up to 30 days in vacuum-sealed quartz vials. Extension of the homogeneity region, solidus temperatures and structural investigations were performed for the skutterudite phase in the ternary Ni-Sn-Sb and in the quaternary Ba-Ni-Sb-Sn systems. Phase equilibria in the Ni-Sn-Sb system at 450 °C were established by means of Electron Probe Microanalysis (EPMA) and X-ray Powder Diffraction (XPD). With rather small cages Ni4(Sb,Sn)12, the Ba-Ni-Sn-Sb skutterudite system is perfectly suited to study the influence of filler atoms on the phonon thermal conductivity. Single-phase samples with the composition Ni4Sb8.2Sn3.8, Ba0.42Ni4Sb8.2Sn3.8 and Ba0.92Ni4Sb6.7Sn5.3 were used to measure their physical properties, i.e. temperature dependent electrical resistivity, Seebeck coefficient and thermal conductivity. The resistivity data demonstrate a crossover from metallic to semiconducting behaviour. The corresponding gap width was extracted from the maxima in the Seebeck coefficient data as a function of temperature. Single crystal X-ray structure analyses at 100, 200 and 300 K revealed the thermal expansion coefficients as well as Einstein and Debye temperatures for Ba0.73Ni4Sb8.1Sn3.9 and Ba0.95Ni4Sb6.1Sn5.9. These data were in accordance with the Debye temperatures obtained from the specific heat (4.4 K < T < 140 K) and Mössbauer spectroscopy (10 K < T < 290 K). Rather small atom displacement parameters for the Ba filler atoms indicate a severe reduction in the "rattling behaviour" consistent with the high levels of lattice thermal conductivity. The elastic moduli, collected from Resonant Ultrasonic Spectroscopy ranged from 100 GPa for Ni4Sb8.2Sn3.8 to 116 GPa for Ba0.92Ni4Sb6.7Sn5.3. The thermal expansion coefficients were 11.8 × 10(-6) K(-1) for Ni4Sb8.2Sn3.8 and 13.8 × 10(-6) K(-1) for Ba0.92Ni4Sb6.7Sn5.3. The room temperature Vickers

  9. Effects of Lattice Defects and Niobium Doping on Thermoelectric Properties of Calcium Manganate Compounds for Energy Harvesting Applications

    NASA Astrophysics Data System (ADS)

    Graff, Ayelet; Amouyal, Yaron

    2016-03-01

    We have investigated the thermoelectric (TE) properties of Ruddlesden-Popper (RP) CaO(CaMnO3) m n-type compounds, to be applied for TE waste heat recovery at elevated temperatures. We prepared several Nb-doped and undoped CaO(CaMnO3) m compounds having different CaO planar densities by controlling the Ca content via solid-state reaction, and characterized the resulting microstructures by x-ray diffraction analysis and high-resolution scanning electron microscopy. The thermal conductivity, electrical conductivity, and TE thermopower of the different compounds were measured in the range from 300 K through 1000 K. We observed a remarkable reduction in thermal conductivity as a result of increasing the CaO planar density for the Nb-doped RP compounds, from a value of 2.9 W m-1 K-1 for m = ∞ down to 1.3 W m-1 K-1 for m = 1 at 1000 K. This trend was, however, accompanied by a corresponding reduction in electrical conductivity from 76 Ω-1 cm-1 to 2.9 Ω-1 cm-1, which is associated with electron scattering. Finally, we propose an approach that enables optimization of the TE performance of these RP compounds.

  10. Relationship between changes in the crystal lattice strain and thermal conductivity of high burnup UO 2 pellets

    NASA Astrophysics Data System (ADS)

    Amaya, Masaki; Nakamura, Jinichi; Fuketa, Toyoshi; Kosaka, Yuji

    2010-01-01

    Two kinds of disk-shaped UO 2 samples (4 mm in diameter and 1 mm in thickness) were irradiated in a test reactor up to about 60 and 130 GWd/t, respectively. The microstructures of the samples were investigated by means of optical microscopy, scanning electron microscopy/ electron probe micro-analysis (SEM/EPMA) and micro-X-ray diffractometry. The measured lattice parameters tended to be considerably smaller than the reported values, and the typical cauliflower structure which is often observed in high burnup fuel pellet is hardly seen in these samples. Thermal diffusivities of the samples were also measured by using a laser flash method, and their thermal conductivities were evaluated by multiplying the heat capacity of unirradiated UO 2 and sample densities. While the thermal conductivities of sample 2 showed recovery after being annealed at 1500 K, those of sample 4 were not clearly observed even after being annealed at 1500 K. These trends suggest that the amount of accumulated irradiation-induced defects depends on the irradiation condition of each sample. From the comparison of the changes in the lattice parameter and strain energy density before and after the thermal diffusivity measurements, it is likely that the thermal conductivity recovery in the temperature region from 1200 to 1500 K is related to the migration of dislocation.

  11. First-Principles Prediction of Ultralow Lattice Thermal Conductivity of Dumbbell Silicene: A Comparison with Low-Buckled Silicene.

    PubMed

    Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuanfeng; Zhang, Rongjun; Lu, Hongliang; Zhang, David Wei; Zhu, Heyuan

    2016-08-17

    The dumbbell structure of two-dimensional group IV material offers alternatives to grow thin films for diverse applications. Thermal properties are important for these applications. We obtain the lattice thermal conductivity of low-buckled (LB) and dumbbell (DB) silicene by using first-principles calculations and the Boltzmann transport equation for phonons. For LB silicene, the calculated lattice thermal conductivity with naturally occurring isotope concentrations is 27.72 W/mK. For DB silicene, the calculated value is 2.86 W/mK. The thermal conductivity for DB silicene is much lower than LB silicene due to stronger phonon scattering. Our results will induce further theoretical and experimental investigations on the thermoelectric (TE) properties of DB silicene. The size-dependent thermal conductivity in both LB and DB silicene is investigated as well for designing TE devices. This work sheds light on the manipulation of phonon transport in two-dimensional group IV materials by dumbbell structure formed from the addition of adatoms. PMID:27460331

  12. First-Principles Prediction of Ultralow Lattice Thermal Conductivity of Dumbbell Silicene: A Comparison with Low-Buckled Silicene.

    PubMed

    Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuanfeng; Zhang, Rongjun; Lu, Hongliang; Zhang, David Wei; Zhu, Heyuan

    2016-08-17

    The dumbbell structure of two-dimensional group IV material offers alternatives to grow thin films for diverse applications. Thermal properties are important for these applications. We obtain the lattice thermal conductivity of low-buckled (LB) and dumbbell (DB) silicene by using first-principles calculations and the Boltzmann transport equation for phonons. For LB silicene, the calculated lattice thermal conductivity with naturally occurring isotope concentrations is 27.72 W/mK. For DB silicene, the calculated value is 2.86 W/mK. The thermal conductivity for DB silicene is much lower than LB silicene due to stronger phonon scattering. Our results will induce further theoretical and experimental investigations on the thermoelectric (TE) properties of DB silicene. The size-dependent thermal conductivity in both LB and DB silicene is investigated as well for designing TE devices. This work sheds light on the manipulation of phonon transport in two-dimensional group IV materials by dumbbell structure formed from the addition of adatoms.

  13. A nonlocal Fourier's law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices

    NASA Astrophysics Data System (ADS)

    Challamel, Noël; Grazide, Cécile; Picandet, Vincent; Perrot, Arnaud; Zhang, Yingyan

    2016-06-01

    This study focuses on heat conduction in unidimensional lattices also known as microstructured rods. The lattice thermal properties can be representative of concentrated thermal interface phases in one-dimensional segmented rods. The exact solution of the linear time-dependent spatial difference equation associated with the lattice problem is presented for some given initial and boundary conditions. This exact solution is compared to the quasicontinuum approximation built by continualization of the lattice equations. A rational-based asymptotic expansion of the pseudo-differential problem leads to an equivalent nonlocal-type Fourier's law. The differential nonlocal Fourier's law is analysed with respect to thermodynamic models available in the literature, such as the Guyer-Krumhansl-type equation. The length scale of the nonlocal heat law is calibrated with respect to the lattice spacing. An error analysis is conducted for quantifying the efficiency of the nonlocal model to capture the lattice evolution problem, as compared to the local model. The propagation of error with the nonlocal model is much slower than that in its local counterpart. A two-dimensional thermal lattice is also considered and approximated by a two-dimensional nonlocal heat problem. It is shown that nonlocal and continualized heat equations both approximate efficiently the two-dimensional thermal lattice response. These extended continuous heat models are shown to be good candidates for approximating the heat transfer behaviour of microstructured rods or membranes.

  14. Massively parallel sampling of lattice proteins reveals foundations of thermal adaptation

    NASA Astrophysics Data System (ADS)

    Venev, Sergey V.; Zeldovich, Konstantin B.

    2015-08-01

    Evolution of proteins in bacteria and archaea living in different conditions leads to significant correlations between amino acid usage and environmental temperature. The origins of these correlations are poorly understood, and an important question of protein theory, physics-based prediction of types of amino acids overrepresented in highly thermostable proteins, remains largely unsolved. Here, we extend the random energy model of protein folding by weighting the interaction energies of amino acids by their frequencies in protein sequences and predict the energy gap of proteins designed to fold well at elevated temperatures. To test the model, we present a novel scalable algorithm for simultaneous energy calculation for many sequences in many structures, targeting massively parallel computing architectures such as graphics processing unit. The energy calculation is performed by multiplying two matrices, one representing the complete set of sequences, and the other describing the contact maps of all structural templates. An implementation of the algorithm for the CUDA platform is available at http://www.github.com/kzeldovich/galeprot and calculates protein folding energies over 250 times faster than a single central processing unit. Analysis of amino acid usage in 64-mer cubic lattice proteins designed to fold well at different temperatures demonstrates an excellent agreement between theoretical and simulated values of energy gap. The theoretical predictions of temperature trends of amino acid frequencies are significantly correlated with bioinformatics data on 191 bacteria and archaea, and highlight protein folding constraints as a fundamental selection pressure during thermal adaptation in biological evolution.

  15. Thermal oxidation of 3-5 compound semiconductors

    NASA Astrophysics Data System (ADS)

    Monteironeto, Othon Derego

    1988-11-01

    Thermal oxidation of 3-5 compound semiconductors has been studied in the temperature range of 300 to 600 C. Two members of this class of materials, namely InP and GaAs, were the object of the experimental work carried out here. The main analytical tools used were transmission electron microscopy (TEM) and secondary ion mass spectroscopy (SIMS). TEM was employed to access microstructural changes and SIMS to access the composition redistribution that takes place as a consequence of the oxidation reaction. Below 400 C oxidation of both materials led to the formation of amorphous scales, which consisted of a mixture of gallium and arsenic oxides in the case of GaAs, and indium phosphate and oxide in the case of InP. The oxidation kinetics of InP was found to be slower than that of GaAs. In the high temperature regime, i.e., above 400 C, the oxidation of both materials resulted in crystalline products. Precipitation of the group 5 element at the scale/semiconductor interface took place during oxidation. At the GaAs/Ga2O3interface, As precipitates were formed with a truncated square pyramid shape bound by (111) sub GaAs planes. The precipitates found at the InPO4/InP interface were either a phosphorus rich phase or red phosphorus. Strong vaporization under the electron beam prohibited a more accurate determination. The morphology of those precipitates were very similar to the As ones in GaAs.

  16. Thermal oxidation of III-V compound semiconductors

    SciTech Connect

    Neto, O.R.M.

    1988-11-01

    Thermal oxidation of III-V compound semiconductors has been studied in the temperature range of 300/degree/C to 600/degree/C. Two members of this class of materials, namely InP and GaAs, were the object of the experimental work carried out here. The main analytical tools used were transmission electron microscopy (TEM) and secondary ion mass spectroscopy (SIMS). TEM was employed to access microstructural changes and SIMS to access the composition redistribution that takes place as a consequence of the oxidation reaction. Below 400/degree/C oxidation of both materials led to the formation of amorphous scales, which consisted of a mixture of gallium and arsenic oxides in the case of GaAs, and indium phosphate and oxide in the case of InP. The oxidation kinetics of InP was found to be slower than that of GaAs. In the high temperature regime, i.e., above 400/degree/C, the oxidation of both materials resulted in crystalline products. Precipitation of the group V element at the scale/semiconductor interface took place during oxidation. At the GaAs/Ga/sub 2/O/sub 3/interface, As precipitates were formed with a truncated square pyramid shape bound by /l brace/111/r brace//sub GaAs/ planes. The precipitates found at the InPO/sub 4//InP interface were either a phosphorus rich phase or red phosphorus. Strong vaporization under the electron beam prohibited a more accurate determination. The morphology of those precipitates were very similar to the As ones in GaAs. 83 refs., 48 figs., 6 tabs.

  17. Thermal Diffusivity of Palm Olein and Compounds Containing β-carotene

    NASA Astrophysics Data System (ADS)

    de Freitas Cabral, A. J.; de Oliveira, P. C.; Moreira, S. G. C.; Alcantara, P.

    2011-09-01

    The effect of dissolving β-carotene into palm olein was experimentally investigated using time-resolved thermal lens spectroscopy. The thermal diffusivity of palm olein was measured, and the dependence on the concentration of the compounds was studied. The results show an enhancement in the thermal diffusivity by increasing the quantity of β-carotene in the compounds. This behavior was interpreted on the basis of the electronic structure of the β-carotene molecule.

  18. Electron-phonon coupling and thermal transport in the thermoelectric compound Mo3Sb7–xTex

    DOE PAGESBeta

    Bansal, Dipanshu; Li, Chen W.; Said, Ayman H.; Abernathy, Douglas L.; Yan, Jiaqiang; Delaire, Olivier A.

    2015-12-07

    Phonon properties of Mo3Sb7–xTex (x = 0, 1.5, 1.7), a potential high-temperature thermoelectric material, have been studied with inelastic neutron and x-ray scattering, and with first-principles simulations. The substitution of Te for Sb leads to pronounced changes in the electronic struc- ture, local bonding, phonon density of states (DOS), dispersions, and phonon lifetimes. Alloying with tellurium shifts the Fermi level upward, near the top of the valence band, resulting in a strong suppression of electron-phonon screening, and a large overall stiffening of interatomic force- constants. The suppression in electron-phonon coupling concomitantly increases group velocities and suppresses phonon scattering rates, surpassingmore » the effects of alloy-disorder scattering, and re- sulting in a surprising increased lattice thermal conductivity in the alloy. We also identify that the local bonding environment changes non-uniformly around different atoms, leading to variable perturbation strengths for different optical phonon branches. The respective roles of changes in phonon group velocities and phonon lifetimes on the lattice thermal conductivity are quantified. Lastly, our results highlight the importance of the electron-phonon coupling on phonon mean-free-paths in this compound, and also estimates the contributions from boundary scattering, umklapp scattering, and point-defect scattering.« less

  19. Thermal transport and spin-phonon coupling in the one-dimensional antiferromagnetic spin chain compound CuSb2O6

    NASA Astrophysics Data System (ADS)

    Prasai, Narayan; Cohn, Joshua; Rebello, Alwyn; Smith, Michael; Neumeier, John J.

    2014-03-01

    We report thermal conductivity (κ) measurements on single crystals of the S = 1 / 2 antiferromagnetic spin-chain compound CuSb2O6 over the temperature range 5 K <= T <= 300 K . Similar measurements on the non-magnetic analog compound, ZnSb2O6, allow for a comparison of the lattice thermal conductivities. The role of spin-phonon coupling and twinning on the anisotropic thermal transport of CuSb2O6 will be discussed. This material is based upon work supported by the U.S. Department of Energy Office of Basic Energy Sciences grant DE-FG02-12ER46888 (Univ. Miami) and the National Science Foundation under grant DMR-0907036 (Mont. St. Univ.).

  20. Giant Phonon Anharmonicity and Anomalous Pressure Dependence of Lattice Thermal Conductivity in Y2Si2O7 silicate.

    PubMed

    Luo, Yixiu; Wang, Jiemin; Li, Yiran; Wang, Jingyang

    2016-01-01

    Modification of lattice thermal conductivity (κL) of a solid by means of hydrostatic pressure (P) has been a crucially interesting approach that targets a broad range of advanced materials from thermoelectrics and thermal insulators to minerals in mantle. Although it is well documented knowledge that thermal conductivity of bulk materials normally increase upon hydrostatic pressure, such positive relationship is seriously challenged when it comes to ceramics with complex crystal structure and heterogeneous chemical bonds. In this paper, we predict an abnormally negative trend dκL/dP < 0 in Y2Si2O7 silicate using density functional theoretical calculations. The mechanism is disclosed as combined effects of slightly decreased group velocity and significantly augmented scattering of heat-carrying acoustic phonons in pressured lattice, which is originated from pressure-induced downward shift of low-lying optic and acoustic phonons. The structural origin of low-lying optic phonons as well as the induced phonon anharmonicity is also qualitatively elucidated with respect to intrinsic bonding heterogeneity of Y2Si2O7. The present results are expected to bring deeper insights for phonon engineering and modulation of thermal conductivity in complex solids with diverging structural flexibility, enormous bonding heterogeneity, and giant phonon anharmonicity. PMID:27430670

  1. Giant Phonon Anharmonicity and Anomalous Pressure Dependence of Lattice Thermal Conductivity in Y2Si2O7 silicate

    NASA Astrophysics Data System (ADS)

    Luo, Yixiu; Wang, Jiemin; Li, Yiran; Wang, Jingyang

    2016-07-01

    Modification of lattice thermal conductivity (κL) of a solid by means of hydrostatic pressure (P) has been a crucially interesting approach that targets a broad range of advanced materials from thermoelectrics and thermal insulators to minerals in mantle. Although it is well documented knowledge that thermal conductivity of bulk materials normally increase upon hydrostatic pressure, such positive relationship is seriously challenged when it comes to ceramics with complex crystal structure and heterogeneous chemical bonds. In this paper, we predict an abnormally negative trend dκL/dP < 0 in Y2Si2O7 silicate using density functional theoretical calculations. The mechanism is disclosed as combined effects of slightly decreased group velocity and significantly augmented scattering of heat-carrying acoustic phonons in pressured lattice, which is originated from pressure-induced downward shift of low-lying optic and acoustic phonons. The structural origin of low-lying optic phonons as well as the induced phonon anharmonicity is also qualitatively elucidated with respect to intrinsic bonding heterogeneity of Y2Si2O7. The present results are expected to bring deeper insights for phonon engineering and modulation of thermal conductivity in complex solids with diverging structural flexibility, enormous bonding heterogeneity, and giant phonon anharmonicity.

  2. Giant Phonon Anharmonicity and Anomalous Pressure Dependence of Lattice Thermal Conductivity in Y2Si2O7 silicate

    PubMed Central

    Luo, Yixiu; Wang, Jiemin; Li, Yiran; Wang, Jingyang

    2016-01-01

    Modification of lattice thermal conductivity (κL) of a solid by means of hydrostatic pressure (P) has been a crucially interesting approach that targets a broad range of advanced materials from thermoelectrics and thermal insulators to minerals in mantle. Although it is well documented knowledge that thermal conductivity of bulk materials normally increase upon hydrostatic pressure, such positive relationship is seriously challenged when it comes to ceramics with complex crystal structure and heterogeneous chemical bonds. In this paper, we predict an abnormally negative trend dκL/dP < 0 in Y2Si2O7 silicate using density functional theoretical calculations. The mechanism is disclosed as combined effects of slightly decreased group velocity and significantly augmented scattering of heat-carrying acoustic phonons in pressured lattice, which is originated from pressure-induced downward shift of low-lying optic and acoustic phonons. The structural origin of low-lying optic phonons as well as the induced phonon anharmonicity is also qualitatively elucidated with respect to intrinsic bonding heterogeneity of Y2Si2O7. The present results are expected to bring deeper insights for phonon engineering and modulation of thermal conductivity in complex solids with diverging structural flexibility, enormous bonding heterogeneity, and giant phonon anharmonicity. PMID:27430670

  3. Electron-phonon interaction and thermal boundary resistance at the crystal-amorphous interface of the phase change compound GeTe

    SciTech Connect

    Campi, Davide; Bernasconi, Marco; Donadio, Davide; Sosso, Gabriele C.; Behler, Jörg

    2015-01-07

    Phonon dispersion relations and electron-phonon coupling of hole-doped trigonal GeTe have been computed by density functional perturbation theory. This compound is a prototypical phase change material of interest for applications in phase change non-volatile memories. The calculations allowed us to estimate the electron-phonon contribution to the thermal boundary resistance at the interface between the crystalline and amorphous phases present in the device. The lattice contribution to the thermal boundary resistance has been computed by non-equilibrium molecular dynamics simulations with an interatomic potential based on a neural network scheme. We find that the electron-phonon term contributes to the thermal boundary resistance to an extent which is strongly dependent on the concentration and mobility of the holes. Further, for measured values of the holes concentration and electrical conductivity, the electron-phonon term is larger than the contribution from the lattice. It is also shown that the presence of Ge vacancies, responsible for the p-type degenerate character of the semiconductor, strongly affects the lattice thermal conductivity of the crystal.

  4. Some properties of correlations of quantum lattice systems in thermal equilibrium

    SciTech Connect

    Fröhlich, Jürg; Ueltschi, Daniel

    2015-05-15

    Simple proofs of uniqueness of the thermodynamic limit of KMS states and of the decay of equilibrium correlations are presented for a large class of quantum lattice systems at high temperatures. New quantum correlation inequalities for general Heisenberg models are described. Finally, a simplified derivation of a general result on power-law decay of correlations in 2D quantum lattice systems with continuous symmetries is given, extending results of McBryan and Spencer for the 2D classical XY model.

  5. Fast preparation and thermal transport property of TiCoSb-based half-Heusler compounds

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Jie; Tang, Xin-Feng; Zhang, Qing-Jie

    2007-11-01

    TiCoSb-based half-Heusler compounds with the substitution of Zr for Ti have been prepared quickly by combining high-energy ball milling method with spark plasma sintering technique, and their thermal transport properties have been investigated. With the increase of the concentration of Zr, the thermal conductivity of Ti1-xZrxCoSb compounds decreases significantly. Compared with the thermal conductivity of TiCoSb compound, that of Ti0.5Zr0.5CoSb decreases by 200% at 1000 K.

  6. Implicit temperature-correction-based immersed-boundary thermal lattice Boltzmann method for the simulation of natural convection

    NASA Astrophysics Data System (ADS)

    Seta, Takeshi

    2013-06-01

    In the present paper, we apply the implicit-correction method to the immersed-boundary thermal lattice Boltzmann method (IB-TLBM) for the natural convection between two concentric horizontal cylinders and in a square enclosure containing a circular cylinder. The Chapman-Enskog multiscale expansion proves the existence of an extra term in the temperature equation from the source term of the kinetic equation. In order to eliminate the extra term, we redefine the temperature and the source term in the lattice Boltzmann equation. When the relaxation time is less than unity, the new definition of the temperature and source term enhances the accuracy of the thermal lattice Boltzmann method. The implicit-correction method is required in order to calculate the thermal interaction between a fluid and a rigid solid using the redefined temperature. Simulation of the heat conduction between two concentric cylinders indicates that the error at each boundary point of the proposed IB-TLBM is reduced by the increment of the number of Lagrangian points constituting the boundaries. We derive the theoretical relation between a temperature slip at the boundary and the relaxation time and demonstrate that the IB-TLBM requires a small relaxation time in order to avoid temperature distortion around the immersed boundary. The streamline, isotherms, and average Nusselt number calculated by the proposed method agree well with those of previous numerical studies involving natural convection. The proposed IB-TLBM improves the accuracy of the boundary conditions for the temperature and velocity using an adequate discrete area for each of the Lagrangian nodes and reduces the penetration of the streamline on the surface of the body.

  7. Implicit temperature-correction-based immersed-boundary thermal lattice Boltzmann method for the simulation of natural convection.

    PubMed

    Seta, Takeshi

    2013-06-01

    In the present paper, we apply the implicit-correction method to the immersed-boundary thermal lattice Boltzmann method (IB-TLBM) for the natural convection between two concentric horizontal cylinders and in a square enclosure containing a circular cylinder. The Chapman-Enskog multiscale expansion proves the existence of an extra term in the temperature equation from the source term of the kinetic equation. In order to eliminate the extra term, we redefine the temperature and the source term in the lattice Boltzmann equation. When the relaxation time is less than unity, the new definition of the temperature and source term enhances the accuracy of the thermal lattice Boltzmann method. The implicit-correction method is required in order to calculate the thermal interaction between a fluid and a rigid solid using the redefined temperature. Simulation of the heat conduction between two concentric cylinders indicates that the error at each boundary point of the proposed IB-TLBM is reduced by the increment of the number of Lagrangian points constituting the boundaries. We derive the theoretical relation between a temperature slip at the boundary and the relaxation time and demonstrate that the IB-TLBM requires a small relaxation time in order to avoid temperature distortion around the immersed boundary. The streamline, isotherms, and average Nusselt number calculated by the proposed method agree well with those of previous numerical studies involving natural convection. The proposed IB-TLBM improves the accuracy of the boundary conditions for the temperature and velocity using an adequate discrete area for each of the Lagrangian nodes and reduces the penetration of the streamline on the surface of the body.

  8. Numerical Simulation of the Proton Spin-Lattice Relaxation in Bimetallic Chain Compounds

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.

    In response to recent proton spin relaxation-time measurements on a bimetallic chain compound NiCu(C7H6N2O6) (H2O)3\\cdot2H2O, we simulate the Raman relaxation process in Heisenberg alternating-spin chains on the assumption of predominantly dipolar hyperfine interactions between protons and magnetic ions. The relaxation time T1 is formulated within the spin-wave theory and is estimated as a function of temperature and an applied field H by a quantum Monte Carlo method. The low-temperature behavior of the relaxation rate T1-1 qualitatively varies with (S,s), while T1-1 is almost proportional to H-1/2 due to the characteristic dispersion relations.

  9. Dinitrogen extrusion from enoldiazo compounds under thermal conditions: synthesis of donor-acceptor cyclopropenes.

    PubMed

    Deng, Yongming; Jing, Changcheng; Doyle, Michael P

    2015-08-21

    Donor-acceptor cyclopropenes are formed quantitatively or in high yield from enoldiazoacetates and enoldiazoacetamides under moderate thermal conditions. They are more versatile than their corresponding enoldiazocarbonyl compounds as carbene precursors.

  10. Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary-thermal lattice Boltzmann method.

    PubMed

    Amiri Delouei, A; Nazari, M; Kayhani, M H; Succi, S

    2014-05-01

    In this study, the immersed boundary-thermal lattice Boltzmann method has been used to simulate non-Newtonian fluid flow over a heated circular cylinder. The direct-forcing algorithm has been employed to couple the off-lattice obstacles and on-lattice fluid nodes. To investigate the effect of boundary sharpness, two different diffuse interface schemes are considered to interpolate the velocity and temperature between the boundary and computational grid points. The lattice Boltzmann equation with split-forcing term is applied to consider the effects of the discrete lattice and the body force to the momentum flux, simultaneously. A method for calculating the Nusselt number based on diffuse interface schemes is developed. The rheological and thermal properties of non-Newtonian fluids are investigated under the different power-law indices and Reynolds numbers. The effect of numerical parameters on the accuracy of the proposed method has been investigated in detail. Results show that the rheological and thermal properties of non-Newtonian fluids in the presence of a heated immersed body can be suitably captured using the immersed boundary thermal lattice Boltzmann method. PMID:25353919

  11. Temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with a soft on-site potential.

    PubMed

    Yang, Linlin; Li, Nianbei; Li, Baowen

    2014-12-01

    The temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with soft on-site potential (soft-KG) are investigated systematically. Similarly to the previously studied hard-KG lattices, the existence of renormalized phonons is also confirmed in soft-KG lattices. In particular, the temperature dependence of the renormalized phonon frequency predicted by a classical field theory is verified by detailed numerical simulations. However, the thermal conductivities of soft-KG lattices exhibit the opposite trend in temperature dependence in comparison with those of hard-KG lattices. The interesting thing is that the temperature-dependent thermal conductivities of both soft- and hard-KG lattices can be interpreted in the same framework of effective phonon theory. According to the effective phonon theory, the exponents of the power-law dependence of the thermal conductivities as a function of temperature are only determined by the exponents of the soft or hard on-site potentials. These theoretical predictions are consistently verified very well by extensive numerical simulations.

  12. Temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with a soft on-site potential

    NASA Astrophysics Data System (ADS)

    Yang, Linlin; Li, Nianbei; Li, Baowen

    2014-12-01

    The temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with soft on-site potential (soft-KG) are investigated systematically. Similarly to the previously studied hard-KG lattices, the existence of renormalized phonons is also confirmed in soft-KG lattices. In particular, the temperature dependence of the renormalized phonon frequency predicted by a classical field theory is verified by detailed numerical simulations. However, the thermal conductivities of soft-KG lattices exhibit the opposite trend in temperature dependence in comparison with those of hard-KG lattices. The interesting thing is that the temperature-dependent thermal conductivities of both soft- and hard-KG lattices can be interpreted in the same framework of effective phonon theory. According to the effective phonon theory, the exponents of the power-law dependence of the thermal conductivities as a function of temperature are only determined by the exponents of the soft or hard on-site potentials. These theoretical predictions are consistently verified very well by extensive numerical simulations.

  13. Lattice Thermal Conductivity of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2 from Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.

    2012-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 have a number of properties that make them attractive for applications in extreme environments. One such property is their high thermal conductivity. Computational modeling of these materials will facilitate understanding of fundamental mechanisms, elucidate structure-property relationships, and ultimately accelerate the materials design cycle. Progress in computational modeling of UHTCs however has been limited in part due to the absence of suitable interatomic potentials. Recently, we developed Tersoff style parameterizations of such potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current, in contrast to the more typical monotonic decay seen in monoatomic materials such as Silicon, for example. Results at room temperature and at elevated temperatures will be reported.

  14. Thermoelectric properties of monolayer MSe2 (M = Zr, Hf): low lattice thermal conductivity and a promising figure of merit

    NASA Astrophysics Data System (ADS)

    Ding, Guangqian; Gao, G. Y.; Huang, Zhishuo; Zhang, Wenxu; Yao, Kailun

    2016-09-01

    Monolayer transition-metal dichalcogenides (TMDCs) MX2 (M = Mo, W, Zr, Hf, etc; X = S, Se, Te) have become well-known in recent times for their promising applications in thermoelectrics and field effect transistors. In this work, we perform a systematic study on the thermoelectric properties of monolayer ZrSe2 and HfSe2 using first-principles calculations combined with Boltzmann transport equations. Our results point to a competitive thermoelectric figure of merit (close to 1 at optimal doping) in both monolayer ZrSe2 and HfSe2, which is markedly higher than previous explored monolayer TMDCs such as MoS2 and MoSe2. We also reveal that the higher figure of merits arise mainly from their low lattice thermal conductivity, and this is partly due to the strong coupling of acoustic modes with low frequency optical modes. It is found that the figure of merits can be better optimized in n-type than in p-type. In particular, the performance of HfSe2 is superior to ZrSe2 at a higher temperature. Our results suggest that monolayer ZrSe2 and HfSe2 with lower lattice thermal conductivity than usual monolayer TMDCs are promising candidates for thermoelectric applications.

  15. Antiferromagnetic Kondo lattice in the layered compounds Re2NiGa9Ge2 (Re =Ce, Pr, Sm)

    NASA Astrophysics Data System (ADS)

    Zhu, Yanglin; Liu, Jinyu; Hu, Jin; Adams, Daniel; Spinu, Leonard; Mao, Zhiqiang

    Intermetallic compounds containing rare-earth/actinide elements with 4f/5f electrons have formed a special family of strongly correlated materials, i.e. heavy fermion systems. We have recently found a new layered rare earth intermetallic system showing moderate heavy fermion behavior: Re2NiGa9Ge2 (Re =Ce, Sm, Pr). The Re =Ce and Sm members were previously synthesized, while their electronic properties have not been reported. We have recently grown single crystals of Re2NiGa9Ge2 (Re =Ce, Sm, Pr) and characterized their electronic and magnetic properties. We find all these materials are antiferromagnetic, with TN = 2.5 K, 5 K, 3.4 K respectively for Re =Ce, Pr and Sm. Moreover, they also exhibit large values of electronic specific coefficient: γ ~ 101 mJ mol-Ce-1 K-2 for Re =Ce, 368 mJ mol-Pr-1 K-2 for Re =Pr, and 196.4 mJ mol-Sm-1 K-2 for Re =Sm, indicating enhanced Kondo effect and the presence of AFM Kondo lattice. Our findings suggest that Re2NiGa9Ge2 (Re =Ce, Pr, Sm) could be interesting candidate materials for exploring novel exotic properties of correlated electrons through external parameter tuning such as chemical substitution and pressure.

  16. Spin-glass-like behavior and negative thermal expansion in antiperovskite Mn{sub 3}Ni{sub 1−x}Cu{sub x}N compounds

    SciTech Connect

    Ding, Lei; Wang, Cong Sun, Ying; Colin, Claire V.; Chu, Lihua

    2015-06-07

    The Cu-doping effect on the lattice and magnetic properties in Mn{sub 3}Ni{sub 1−x}Cu{sub x}N (x = 0, 0.3, 0.5, 0.7, 1.0) was extensively investigated. We observed that the Cu-doping at the Ni site complicated the magnetic ground states, which induced the competition of antiferromagnetic and ferromagnetic interactions. Spin-glass-like behavior, arising from possible site-randomness and competing interactions of magnetism, was observed in compounds with x = 0.3, 0.5, and 0.7, and typically discussed by means of the measurement of ac magnetic susceptibility for x = 0.7. The negative thermal expansion (NTE) behavior, due to the magnetic ordering transition, was observed in Mn{sub 3}Ni{sub 1−x}Cu{sub x}N compounds using variable temperature x-ray diffraction. It reveals that the introduction of Cu effectively broadens the temperature range displaying negative thermal expansion. The relationship between the local lattice distortion and the competing magnetic ground states might play an important role in broadening the NTE temperature range in this antiperovskite compound.

  17. Nematic order by thermal disorder in a three-dimensional lattice spin model with dipolarlike interactions.

    PubMed

    Chamati, Hassan; Romano, Silvano

    2014-08-01

    At low temperatures, some lattice spin models with simple ferromagnetic or antiferromagnetic interactions (for example, nearest-neighbor interaction being isotropic in spin space on a bipartite three-dimensional lattice) produce orientationally ordered phases exhibiting nematic (second-rank) order, in addition to the primary first-rank one; on the other hand, in the literature, they have been rather seldom investigated in this respect. Here we study the thermodynamic properties of a three-dimensional model with dipolar-like interaction. Its ground state is found to exhibit full orientational order with respect to a suitably defined staggered magnetization (polarization), but no nematic second-rank order. Extensive Monte Carlo simulations, in conjunction with finite-size scaling analysis, have been used for characterizing its critical behavior; on the other hand, it has been found that nematic order does indeed set in at low temperatures, via a mechanism of order by disorder. PMID:25215748

  18. Workplace monitoring for volatile organic compounds using thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Grote, Ardith A; Kennedy, Eugene R

    2002-10-01

    The interest in the identification of volatile organic compounds in the workplace has been a major focus of many National Institute for Occupational Safety and Health (NIOSH) field studies. A primary technique for sampling and analysis of these compounds is summarized by NIOSH Manual of Analytical Methods (NMAM) 2549. This is a screening method that uses a multi-bed sorbent to trap a wide variety of compounds and compound classes. Thermal desorption techniques are used as a first attempt to characterize potential contaminants in a workplace and to determine what future sampling and analyses must be performed. Field examples are provided to show the versatility of thermal desorption methods and techniques. Due to their sensitivity, thermal desorption tube methods are sometimes required in order to measure the workplace concentrations of unusual compounds. In other situations, the exposures are too high or varied to make thermal desorption tubes practical. In these cases, the identification of contaminants with thermal desorption tubes leads to new method developments for the quantification of specific compounds using more conventional solid sorbent-solvent desorption based methods.

  19. Friction, wear, and thermal stability studies of some organotin and organosilicon compounds

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1973-01-01

    Thermal decomposition temperatures were determined for a number of organotin and organosilicon compounds. A ball-on-disk sliding friction apparatus was used to determine the friction and wear characteristics of two representative compounds, (1) 3-tri-n-butylstannyl (diphenyl) and (2) 3-tri-n-butylsilyl (diphenyl). Friction and wear test conditions included a 1-kg load, 25 to 225 C disk temperatures, and a dry air atmosphere. The tin and silicon compounds yielded friction and wear results either lower than or similar to those obtained with a polyphenyl ether and a C-ether. The maximum thermal decomposition temperatures obtained in the silicon and tin series were 358 and 297 C, respectively. Increasing the steric hindrance around the silicon or tin atoms increased the thermal stability. Future work with these compounds will emphasize their use as antiwear additives rather than base fluids.

  20. Comparison of Brazed Residual Stress and Thermal Deformation between X-Type and Pyramidal Lattice Truss Sandwich Structure: Neutron Diffraction Measurement and Simulation Study

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchun; Wei, Zhiquan; Luo, Yun; Zhang, Weiya; Woo, Wanchuck

    2016-06-01

    This paper uses finite element method and neutron diffraction measurement to study the residual stress in lattice truss sandwich structure. A comparison of residual stress and thermal deformation between X-type and pyramidal lattice truss sandwich structure has been carried out. The residual stresses are concentrated in the middle joint and then decreases gradually to both the ends. The residual stresses in the X-type lattice truss sandwich structure are smaller than those in pyramidal structure. The maximum longitudinal and transverse stresses of pyramidal structure are 220 and 202 MPa, respectively, but they decrease to 190 and 145 MPa for X-type lattice truss sandwich structure, respectively. The thermal deformation for lattice truss sandwich panel structure is of wave shape. The X-type has a better resistance to thermal deformation than pyramidal lattice truss sandwich structure. The maximum wave deformation of pyramidal structure (0.02 mm) is about twice as that of X-type (0.01 mm) at the same brazing condition.

  1. First principles calculation of lattice thermal conductivity of metals considering phonon-phonon and phonon-electron scattering

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Lu, Zexi; Ruan, Xiulin

    2016-06-01

    The effect of phonon-electron (p-e) scattering on lattice thermal conductivity is investigated for Cu, Ag, Au, Al, Pt, and Ni. We evaluate both phonon-phonon (p-p) and p-e scattering rates from first principles and calculate the lattice thermal conductivity (κL). It is found that p-e scattering plays an important role in determining the κL of Pt and Ni at room temperature, while it has negligible effect on the κL of Cu, Ag, Au, and Al. Specifically, the room temperature κLs of Cu, Ag, Au, and Al predicted from density-functional theory calculations with the local density approximation are 16.9, 5.2, 2.6, and 5.8 W/m K, respectively, when only p-p scattering is considered, while it is almost unchanged when p-e scattering is also taken into account. However, the κL of Pt and Ni is reduced from 7.1 and 33.2 W/m K to 5.8 and 23.2 W/m K by p-e scattering. Even though Al has quite high electron-phonon coupling constant, a quantity that characterizes the rate of heat transfer from hot electrons to cold phonons in the two-temperature model, p-e scattering is not effective in reducing κL owing to the relatively low p-e scattering rates in Al. The difference in the strength of p-e scattering in different metals can be qualitatively understood by checking the amount of electron density of states that is overlapped with the Fermi window. Moreover, κL is found to be comparable to the electronic thermal conductivity in Ni.

  2. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride.

    PubMed

    Wu, Xufei; Lee, Jonghoon; Varshney, Vikas; Wohlwend, Jennifer L; Roy, Ajit K; Luo, Tengfei

    2016-01-01

    Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Gallium-Nitride (w-GaN)--another important wide bandgap semiconductor with the same crystal structure and similar atomic masses as w-ZnO. However, the thermal conductivity values show large differences (400 W/mK of w-GaN vs. 50 W/mK of w-ZnO at room temperature). It is found that the much lower thermal conductivity of ZnO originates from the smaller phonon group velocities, larger three-phonon scattering phase space and larger anharmonicity. Compared to w-GaN, w-ZnO has a smaller frequency gap in phonon dispersion, which is responsible for the stronger anharmonic phonon scattering, and the weaker interatomic bonds in w-ZnO leads to smaller phonon group velocities. The thermal conductivity of w-ZnO also shows strong size effect with nano-sized grains or structures. The results from this work help identify the cause of large discrepancies in w-ZnO thermal conductivity and will provide in-depth understanding of phonon dynamics for the design of w-ZnO-based electronics. PMID:26928396

  3. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics – a Comparative Study with Gallium Nitride

    PubMed Central

    Wu, Xufei; Lee, Jonghoon; Varshney, Vikas; Wohlwend, Jennifer L.; Roy, Ajit K.; Luo, Tengfei

    2016-01-01

    Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Gallium-Nitride (w-GaN) – another important wide bandgap semiconductor with the same crystal structure and similar atomic masses as w-ZnO. However, the thermal conductivity values show large differences (400 W/mK of w-GaN vs. 50 W/mK of w-ZnO at room temperature). It is found that the much lower thermal conductivity of ZnO originates from the smaller phonon group velocities, larger three-phonon scattering phase space and larger anharmonicity. Compared to w-GaN, w-ZnO has a smaller frequency gap in phonon dispersion, which is responsible for the stronger anharmonic phonon scattering, and the weaker interatomic bonds in w-ZnO leads to smaller phonon group velocities. The thermal conductivity of w-ZnO also shows strong size effect with nano-sized grains or structures. The results from this work help identify the cause of large discrepancies in w-ZnO thermal conductivity and will provide in-depth understanding of phonon dynamics for the design of w-ZnO-based electronics. PMID:26928396

  4. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride.

    PubMed

    Wu, Xufei; Lee, Jonghoon; Varshney, Vikas; Wohlwend, Jennifer L; Roy, Ajit K; Luo, Tengfei

    2016-03-01

    Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Gallium-Nitride (w-GaN)--another important wide bandgap semiconductor with the same crystal structure and similar atomic masses as w-ZnO. However, the thermal conductivity values show large differences (400 W/mK of w-GaN vs. 50 W/mK of w-ZnO at room temperature). It is found that the much lower thermal conductivity of ZnO originates from the smaller phonon group velocities, larger three-phonon scattering phase space and larger anharmonicity. Compared to w-GaN, w-ZnO has a smaller frequency gap in phonon dispersion, which is responsible for the stronger anharmonic phonon scattering, and the weaker interatomic bonds in w-ZnO leads to smaller phonon group velocities. The thermal conductivity of w-ZnO also shows strong size effect with nano-sized grains or structures. The results from this work help identify the cause of large discrepancies in w-ZnO thermal conductivity and will provide in-depth understanding of phonon dynamics for the design of w-ZnO-based electronics.

  5. Effects of guest atomic species on the lattice thermal conductivity of type-I silicon clathrate studied via classical molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kumagai, Tomohisa; Nakamura, Kaoru; Yamada, Susumu; Ohnuma, Toshiharu

    2016-08-01

    The effects of guest atomic species in Si clathrates on the lattice thermal conductivity were studied using classical molecular dynamics calculations. The interaction between a host atom and a guest atom was described by the Morse potential function while that between host atoms was described by the Tersoff potential. The parameters of the potentials were newly determined for this study such that the potential curves obtained from first-principles calculations for the insertion of a guest atom into a Si cage were successfully reproduced. The lattice thermal conductivities were calculated by using the Green-Kubo method. The experimental lattice thermal conductivity of Ba8Ga16Si30 can be successfully reproduced using the method. As a result, the lattice thermal conductivities of type-I Si clathrates, M8Si46 (M = Na, Mg, K, Ca Rb, Sr, Cs, or Ba), were obtained. It is found that the lattice thermal conductivities of M8Si46, where M is IIA elements (i.e., M = Mg, Ca, Sr, or Ba) tend to be lower than those of M8Si46, where M is IA elements (i.e., M = Na, K, Rb, or Cs). Those of mM8Si46, where m was artificially modified atomic weight were also obtained. The obtained lattice thermal conductivity can be regarded as a function of a characteristic frequency, fc. That indicates minimum values around fc=2-4 THz, which corresponds to the center of the frequencies of the transverse acoustic phonon modes associated with Si cages.

  6. Thermoelectric Properties of Silicon Germanium: An Investigation of the Reduction of Lattice Thermal Conductivity and Enhancement of Power Factor

    NASA Astrophysics Data System (ADS)

    Lahwal, Ali Sadek

    Thermoelectric materials are of technological interest owing to their ability of direct thermal-to-electrical energy conversion. In thermoelectricity, thermal gradients can be used to generate an electrical power output. Recent efforts in thermoelectrics are focused on developing higher efficient power generation materials. In this dissertation, the overall goal is to investigate both the n-type and p-type of the state of the art thermoelectric material, silicon germanium (SiGe), for high temperature power generation. Further improvement of thermoelectric performance of Si-Ge alloys hinges upon how to significantly reduce the as yet large lattice thermal conductivity, and optimizing the thermoelectric power factor PF. Our methods, in this thesis, will be into two different approaches as follow: The first approach is manipulating the lattice thermal conductivity of n and p-type SiGe alloys via direct nanoparticle inclusion into the n-type SiGe matrix and, in a different process, using a core shell method for the p-type SiGe. This approach is in line with the process of in-situ nanocomposites. Nanocomposites have become a new paradigm for thermoelectric research in recent years and have resulted in the reduction of thermal conductivity via the nano-inclusion and grain boundary scattering of heat-carrying phonons. To this end, a promising choice of nano-particle to include by direct mixing into a SiGe matrix would be Yttria Stabilized Zirconia ( YSZ). In this work we report the preparation and thermoelectric study of n-type SiGe + YSZ nanocomposites prepared by direct mechanical mixing followed by Spark Plasma Sintering (SPS) processing. Specifically, we experimentally investigated the reduction of lattice thermal conductivity (kappaL) in the temperature range (30--800K) of n-type Si 80Ge20P2 alloys with the incorporation of YSZ nanoparticles (20 ˜ 40 nm diameter) into the Si-Ge matrix. These samples synthesized by SPS were found to have densities > 95% of the

  7. Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain

    NASA Astrophysics Data System (ADS)

    Xie, Han; Ouyang, Tao; Germaneau, Éric; Qin, Guangzhao; Hu, Ming; Bao, Hua

    2016-02-01

    Strain engineering is one of the most promising and effective routes toward continuously tuning the electronic and optic properties of materials, while thermal properties are generally believed to be insensitive to mechanical strain. In this paper, the strain-dependent thermal conductivity of monolayer silicene under uniform biaxial tension is computed by solving the phonon Boltzmann transport equation with interatomic force constants extracted from first-principles calculations. Unlike the commonly believed understanding that thermal conductivity only slightly decreases with increased tensile strain for bulk materials, it is found that the thermal conductivity of silicene can increase dramatically with strain. Depending on the size, the maximum thermal conductivity of strained silicene can be a few times higher than that of the unstrained case. Such an unusual strain dependence is mainly attributed to the dramatic enhancement in the acoustic phonon lifetime. Such enhancement plausibly originates from the flattening of the buckling of the silicene structure upon stretching, which is unique for silicene as compared with other common two-dimensional materials. Our findings offer perspectives on modulating the thermal properties of low-dimensional structures for applications such as thermoelectrics, thermal circuits, and nanoelectronics.

  8. Specific heat and thermal conductivity of UCu4+ x Al8- x compounds

    NASA Astrophysics Data System (ADS)

    Nasreen, F.; Torikachvili, M. S.; Kothapalli, K.; Kohama, Y.; Zapf, V. S.; Nakotte, H.

    2013-05-01

    We report on thermal conductivity and specific heat measurements for eight UCu4+ x Al8- x compounds (0 ≤ x ≤ 2.0) as a function of temperature and magnetic field. For this series of compounds, previous magnetic and transport studies indicated a transition from magnetic to a non-magnetic heavy fermion state near x cr ≈ 1.15. This paper presents supplementary specific heat and thermal conductivity studies. The ratio of the specific heat over temperature C/T data on the non magnetic compound with x cr ≈ 1.15 show logarithmic dependence with T, a hallmark of non-Fermi liquid (NFL) behavior due to the proximity of a quantum critical point. Compounds with higher Cu content ( x > x cr ) exhibit unusual temperature scaling in the specific heat possibly due to an increase in disorder between Cu and Al. Thermal conductivity data show stark contrast in the behaviors between the magnetic ( x = 0.5) and non-magnetic compound ( x = 1.75). Our results confirm that a simple free-electron picture is inadequate for the description of the low-temperature thermal conductivity properties in non-magnetic UCu4+ x Al8- x compounds.

  9. Rapid thermal annealing of indium phosphide compound semiconductors

    NASA Technical Reports Server (NTRS)

    Biedenbender, Michael D.; Kapoor, Vik J.; Williams, W. D.

    1987-01-01

    The rapid thermal annealing (RTA) of indium phosphide (InP) substrates using a proximity contact method and silicon nitride encapsulation is investigated. The surface conditions of the InP substrates following cleaning with procedures A and B are analyzed. Procedure A involves using an iodic acid solution to remove work-damage InP surface layers and B is a degasssing process and hydrofluoric acid solution for native oxide removal. AES, XPS, and SIMS data of the proximity contact and silicon nitride encapsulated annealed samples are examined. The data reveal that RTA using proximity contact with silicon wafers does not provide adequate protection; however, the InP sample is successfully annealed when protected by a silicon nitride encapsulant.

  10. Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure.

    PubMed

    Dalton, Douglas Allen; Hsieh, Wen-Pin; Hohensee, Gregory T; Cahill, David G; Goncharov, Alexander F

    2013-01-01

    Thermal conductivity of mantle materials controlling the heat balance and thermal evolution of the Earth remains poorly constrained as the available experimental and theoretical techniques are limited in probing minerals under the relevant conditions. We report measurements of thermal conductivity of MgO at high pressure up to 60 GPa and 300 K via diamond anvil cells using the time-domain thermoreflectance technique. These measurements are complemented by model calculations which take into account the effect of temperature and mass disorder of materials within the Earth. Our model calculations agree with the experimental pressure dependencies at 300 and 2000 K for MgO. Furthermore, they predict substantially smaller pressure dependence for mass disordered materials as the mechanism of scattering changes. The calculated thermal conductivity at the core-mantle boundary is smaller than the majority of previous predictions resulting in an estimated total heat flux of 10.4 TW, which is consistent with modern geomodeling estimates.

  11. Thermal Cycling Effects on the Thermoelectric Properties of n-Type In, Ce based Skutterudite Compounds

    SciTech Connect

    Biswas, Krishnendu; Subramanian, Mas A.; Good, Morris S.; Roberts, Kamandi C.; Hendricks, Terry J.

    2012-06-14

    N-type In-filled CoSb3 are known skutterudite compounds that have shown promising thermoelectric (TE) properties resulting in high dimensionless figure of merit values at elevated temperatures. Their use in various waste heat recovery applications will require that they survive and operate after exposure to harsh thermal cycling environments. This research focused on uncovering the thermal cycling effects on thermoelectric properties of n-type In0.2Co4Sb12 and In0.2Ce0.15Co4Sb12 skutterudite compositions as well as quantifying their temperature-dependent structural properties (elastic modulus, shear modulus, and Poisson's ratio). It was observed that the Seebeck coefficient and resistivity increased only slightly in the double-filled In,Ce skutterudite materials upon thermal cycling. In the In-filled skutterudites the Seebeck coefficient remained approximately the same on thermal cycling, while electrical resistivity increased significantly after thermal cycling. Results also show that thermal conductivity marginally decreases in the case of In-filled skutterudites, whereas the reduction is more pronounced in In, Ce-based skutterudite compounds. The possible reason for this kind of reduction can be attributed to grain pinning effects due to formation of nano inclusions. High temperature structural property measurements (i.e., Young's modulus and shear modulus) are also reported and the results show that these structural properties decrease slowly as temperature increases and the compounds are structurally stable after numerous thermal cycles.

  12. Optic phonon bandwidth and lattice thermal conductivity: The case of L i2X (X =O , S, Se, Te)

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Lindsay, L.; Parker, D. S.

    2016-06-01

    We examine the lattice thermal conductivities (κl) of L i2X (X =O ,S ,Se ,Te ) using a first-principles Peierls-Boltzmann transport methodology. We find low κl values ranging between 12 and 30 W m-1K-1 despite light Li atoms, a large mass difference between constituent atoms, and tightly bunched acoustic branches, all features that give high κl in other materials including BeSe (630 W m-1K-1 ), BeTe (370 W m-1K-1 ), and cubic BAs (3170 W m-1K-1 ). Together these results suggest a missing ingredient in the basic guidelines commonly used to understand and predict κl. Unlike typical simple systems (e.g., Si, GaAs, SiC), the dominant resistance to heat-carrying acoustic phonons in L i2Se and L i2Te comes from interactions of these modes with two optic phonons. These interactions require significant bandwidth and dispersion of the optic branches, both present in L i2X materials. These considerations are important for the discovery and design of new materials for thermal management applications and give a more comprehensive understanding of thermal transport in crystalline solids.

  13. Optic phonon bandwidth and lattice thermal conductivity: The case of Li2X ( X=O , S, Se, Te)

    DOE PAGESBeta

    Mukhopadhyay, S.; Lindsay, L.; Parker, D. S.

    2016-06-07

    Here, we examine the lattice thermal conductivities ( l) of Li2X (X=O, S, Se, Te) using a first-principles Peierls-Boltzmann transport methodology. We find low l values ranging between 12 and 30 W/m-K despite light Li atoms, a large mass difference between constituent atoms and tightly bunched acoustic branches, all features that give high l in other materials including BeSe (630 W/m-1K-1), BeTe (370 W/m-1K-1) and cubic BAs (3150 W/m-1K-1). Together these results suggest a missing ingredient in the basic guidelines commonly used to understand and predict l. Unlike typical simple systems (e.g., Si, GaAs, SiC), the dominant resistance to heat-carryingmore » acoustic phonons in Li2Se and Li2Te comes from interactions of these modes with two optic phonons. These interactions require significant bandwidth and dispersion of the optic branches, both present in Li2X materials. Finally, these considerations are important for the discovery and design of new materials for thermal management applications, and give a more comprehensive understanding of thermal transport in crystalline solids.« less

  14. Frustrated electrons on a spatially anisotropic triangular lattice: Emergent competition of charge orders and exotic disorders due to thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Yoshida, Tempei; Hotta, Chisa

    2014-12-01

    We study the interplay of correlation and thermal fluctuation in a system consisting of two species of classical particles with up and down spin on a geometrically frustrated anisotropic triangular lattice, described by an extended four-state Potts model. The model corresponds to the strong coupling limit of the extended Hubbard model at quarter-filling, which is known to host several competing charge ordered phases as well as an exotic quantum state called pinball liquid. The frustrated intersite Coulomb interactions together with the on-site Coulomb interaction generate macroscopically degenerate manifolds of low-energy states. They compete entropically at finite temperature and two characteristic states emerge; a threefold periodic charge ordered state and a quasi-one-dimensionally disordered state called "good defect state" characterized by the systematic generation of ferroelectric bonds. The two states show good correspondence with the threefold charge order and the pinball liquid in the extended Hubbard model, and are separated by the partial Mott transition taking place on one of the three sublattices of the triangular lattice.

  15. The impact of milling and thermal processing on phenolic compounds in cereal grains.

    PubMed

    Ragaee, Sanaa; Seetharaman, Koushik; Abdel-Aal, El-Sayed M

    2014-01-01

    Consumption of wholegrain foods has been recommended for healthy diets. The beneficial health properties of wholegrain products have been associated with the presence of higher amounts of dietary fiber and antioxidants and lower calories as compared to their respective refined ones. Phenolic compounds are mainly attributed to antioxidant properties of wholegrain foods. This review article provides a single comprehensive source that describes effects of milling and thermal processing on phenolic compounds and antioxidant properties in cereals. In general, milling and pearling processes affect the distribution of phenolic, compounds and thus antioxidant properties vary among the milling fractions. Thermal processes such as baking and extrusion could cause negative or positive effects on phenolic compounds and antioxidant properties of the end product subject to grain type and processing conditions. Thus factors that enhance health benefits of wholegrain cereal products have been discussed.

  16. Measurement of the lattice thermal expansion coefficients of thin metal films on substrates

    SciTech Connect

    Kraft, O.; Nix, W.D.

    1998-03-01

    A difference in thermal expansion between a thin film and its substrate causes mechanical stresses in the film. Therefore, knowledge of the thermal expansion coefficients of thin films are important for their technological applications. In this article, we present an analysis which can be used to extract the thermal expansion coefficient of a thin film material using a commonly used x-ray technique. The major advantage of our approach is that it is not necessary to remove the film from the substrate. The knowledge of the elastic constants of the thin film material and their temperature dependence is not required, which is particularly useful when thin film alloys are studied whose thermal and elastic properties are not available. For verification of the method, we investigated thin Al films because the thermal and elastic properties of bulk Al are well known. The comparison of our results with the bulk properties shows a reasonable agreement, indicating the validity of the new method. {copyright} {ital 1998 American Institute of Physics.}

  17. Experiment on the thermal conductivity and permeability of physical and chemical compound adsorbents for sorption process

    NASA Astrophysics Data System (ADS)

    Jin, Z. Q.; Wang, L. W.; Jiang, L.; Wang, R. Z.

    2013-08-01

    For the adsorbents in the application of refrigeration, the density of the material inside the adsorber changes because the adsorption/desorption of the refrigerant inside the adsorbents. Consequently the thermal conductivity and permeability of the adsorbents also change. In order to investigate the heat and mass transfer performance of consolidated compound adsorbent under the different equilibrium state of adsorption/desorption, the thermal conductivity and permeability test system is set up using the guarded hot plate measuring method and the principle of Ergun equation. Then various mass ratios between adsorbent and matrix of consolidated physical and chemical compound adsorbents are developed and tested under different ammonia adsorption quantity. Result shows that the thermal conductivity and permeability have strong dependence with the ratios and consolidated density of the compound adsorbent. Meanwhile, the thermal conductivity and permeability of the chemical compound adsorbents vary significantly with different adsorption quantity of ammonia, and the values for the physical compound adsorbents almost maintain a constant value with different values of adsorption quantity.

  18. Lattice location and thermal stability of implanted Fe in ZnO

    SciTech Connect

    Rita, E.; Wahl, U.; Correia, J.G.; Alves, E.; Soares, J.C.

    2004-11-22

    The emission channeling technique was applied to evaluate the lattice location of implanted {sup 59}Fe in single-crystalline ZnO. The angular distribution of {beta}{sup -} particles emitted by {sup 59}Fe was monitored with a position-sensitive electron detector, following 60 keV low dose (2.0x10{sup 13} cm{sup -2}) room-temperature implantation of the precursor isotope {sup 59}Mn. The emission patterns around the [0001], [1102],[1101], and [2113] directions revealed that following annealing at 800 deg. C, 95(8)% of the Fe atoms occupy ideal substitutional Zn sites with rms displacements of 0.06-0.09 A.

  19. Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure

    PubMed Central

    Dalton, Douglas Allen; Hsieh, Wen-Pin; Hohensee, Gregory T.; Cahill, David G.; Goncharov, Alexander F.

    2013-01-01

    Thermal conductivity of mantle materials controlling the heat balance and thermal evolution of the Earth remains poorly constrained as the available experimental and theoretical techniques are limited in probing minerals under the relevant conditions. We report measurements of thermal conductivity of MgO at high pressure up to 60 GPa and 300 K via diamond anvil cells using the time-domain thermoreflectance technique. These measurements are complemented by model calculations which take into account the effect of temperature and mass disorder of materials within the Earth. Our model calculations agree with the experimental pressure dependencies at 300 and 2000 K for MgO. Furthermore, they predict substantially smaller pressure dependence for mass disordered materials as the mechanism of scattering changes. The calculated thermal conductivity at the core-mantle boundary is smaller than the majority of previous predictions resulting in an estimated total heat flux of 10.4 TW, which is consistent with modern geomodeling estimates. PMID:23929068

  20. Length divergence of the lattice thermal conductivity in suspended graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Majee, Arnab K.; Aksamija, Zlatan

    2016-06-01

    Thermal properties of graphene have attracted much attention, culminating in a recent measurement of its length dependence in ribbons up to 9 μ m long. In this paper, we use the improved Callaway model to solve the phonon Boltzmann transport equation while capturing both the resistive (umklapp, isotope, and edge roughness) and nonresistive (normal) contributions. We show that for lengths smaller than 100 μ m , scaling the ribbon length while keeping the width constant leads to a logarithmic divergence of thermal conductivity. The length dependence is driven primarily by a ballistic-to-diffusive transition in the in-plane (LA and TA) branches, while in the hydrodynamic regime when 10 μ m thermal conductivity converges beyond L >100 μ m due to the coupling between in-plane and flexural modes. This coupling leads to renormalization of ZA phonon dispersion in the long-wavelength range, preventing further divergence of thermal conductivity. We also uncover a strong dependence on sample width, which we attribute to the interplay between nonresistive normal and diffusive edge scattering in the Poisseuille flow regime. We conclude that normal processes play a crucial role in the length and width dependence of thermal transport in graphene in the hydrodynamic regime and dictate the relative in-plane (LA+TA) to out-of-plane (ZA) contribution to transport.

  1. First Principles Calculations of Electronic and Thermal Properties of AIRE (RE = La, Ce and Pr) Compounds

    NASA Astrophysics Data System (ADS)

    Srivastava, Vipul; Aynyas, M.; Rajagopalan, M.; Sanyal, S. P.

    2008-04-01

    Electronic properties of non-magnetic cubic B2-type AIRE (RE = La, Ce and Pr) compounds have been derived from self-consistent tight binding linear muffin tin orbital method at ambient pressure. These compounds show metallic behaviour under ambient conditions. While thermal properties like Debye temperature and Grüneisen constant are calculated at T = 0 K within the Debye-Grüneisen model and compared with the others theoretical results. We have also performed a pressure induced variation of Debye temperature. We have found a decrease in Debye temperature around 40 kbar in all the AIRE compounds.

  2. An Improved Momentum-Exchanged Immersed Boundary-Based Lattice Boltzmann Method for Incompressible Viscous Thermal Flows

    NASA Astrophysics Data System (ADS)

    Chen, Mufeng; Niu, Xiaodong

    2016-06-01

    An improved momentum-exchanged immersed boundary-based lattice Boltzmann method (MEIB-LBM) for incompressible viscous thermal flows is presented here. MEIB-LBM was first proposed by Niu et al, which has been shown later that the non-slip boundary condition is not satisfied. Wang. et al. and Hu. et al overcome this drawback by iterative method. But it needs to give an appropriate relaxation parameter. In this work, we come back to the intrinsic feature of LBM, which uses the density distribution function as a dependent variable to evolve the flow field, and uses the density distribution function correction at the neighboring Euler mesh points to satisfy the non-slip boundary condition on the immersed boundary. The same idea can also be applied to the thermal flows with fluid-structure interference. The merits of present improvements for the original MEIB-LBM are that the intrinsic feature of LBM is kept and the flow penetration across the immersed boundaries is avoided. To validate the present method, examples, including forced convection over a stationary heated circular cylinder for heat flux condition, and natural convection with a suspended circle particle in viscous fluid, are simulated. The streamlines, isothermal contours, the drag coefficients and Nusselt numbers are calculated and compared to the benchmark results to demonstrate the effective of the present method.

  3. Lattice dynamics and thermal equation of state of cubic CaSiO3 perovskite

    NASA Astrophysics Data System (ADS)

    Sun, T.; Wentzcovitch, R. M.

    2013-12-01

    CaSiO3 perovskite (CaPv) is believed to be the third most abundant mineral in the Earth's lower mantle and is a major component of subducted mid-ocean ridge basalt (MORB). A well constrained thermal equation of state for CaPv is key to several geophysical problems, e.g., lower mantle composition, density contrast between mantle and plates, nature of D' region, etc. Its experimental and theoretical determination have been very challenging because the cubic structure that CaPv adopts at lower mantle conditions is unstable at low temperatures and some of its harmonic phonons have imaginary frequencies. We have used a recently developed hybrid method combining ab initio molecular dynamics with vibrational normal mode analysis to compute its free energy and thermal equation of state at lower mantle conditions. These results are essential to understand the fate of subducted MORB in the mantle. Research supported by NSF grants EAR-1319361 and EAR-1019853

  4. Lattice-Boltzmann-based two-phase thermal model for simulating phase change.

    PubMed

    Kamali, M R; Gillissen, J J J; van den Akker, H E A; Sundaresan, Sankaran

    2013-09-01

    A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when the phase change effects are included in the model. This approach employs multiple distribution functions, one for a pseudotemperature scalar variable and the rest for the various species. A nonideal equation of state (EOS) is introduced by using a pseudopotential LB model. The evolution equation for the pseudotemperature variable is constructed in such a manner that in the continuum limit one recovers the well known macroscopic energy conservation equation for the mixtures. Heats of reaction, the enthalpy change associated with the phase change, and the diffusive transport of enthalpy are all taken into account; but the dependence of enthalpy on pressure, which is usually a small effect in most nonisothermal flows encountered in chemical reaction systems, is ignored. The energy equation is coupled to the LB equations for species transport and pseudopotential interaction forces through the EOS by using the filtered local pseudotemperature field. The proposed scheme is validated against simple test problems for which analytical solutions can readily be obtained.

  5. Role of ions in thermal diffusion of DNA: Lattice Boltzmann based simulations

    NASA Astrophysics Data System (ADS)

    Hammack, Audrey; Rana, Daharsh; May, Karl; Bledsoe, Matthew; Kreft Pearce, Jennifer; Chen, Yeng-Long

    2008-11-01

    The Ludwig-Soret effect, the migrarion of a species as a consequence of a temperature gradient, has been a factor in the development of microfluidic laboratory instrumentation. In a system consisting of DNA in a buffered salt solution exposed to a temperature gradient in micro channels, it has previously been observed that DNA will migrate to the colder regions, yielding an irregular density profile. We present a computational model in order to quantify the motion of the particles and describe the causes of this migration. In this construct, the salt ions are modeled as charged point particles and DNA as charged beads connected by springs. The motions of particles is calculated by using a combination of Brownian dynamics and the lattice Boltzmann method. We observe that the salt are also affected by the temperature gradient, creating a density profile. By varying the number of ions, the charge of the ions and the length of the DNA chain, we observe that the accumulation of ions in the cold region enhances the migration of the DNA to those regions of the channel.

  6. GC/FT-IR ANALYSIS OF THE THERMALLY LABILE COMPOUND TRIS (2,3-DIBROMOPROPYL) PHOSPHATE

    EPA Science Inventory

    A fast and convenient GC method has been developed for a compound [tris(2,3-dibromopropyl)phosphate] that poses a difficult analytical problem for both GC (thermal instability/low volatility) and LC (not amenable to commonly available, sensitive detectors) analysis. his method em...

  7. A theoretical study of the elastic and thermal properties of ScRu compound under pressure

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Li, Rui-Zi; Qi, San-Tao; Chen, Bao; Shen, Jiang

    2014-06-01

    The elastic and thermal properties of ScRu under pressure are studied using a first-principles pseudopotential method within the generalized gradient approximation. The calculated lattice parameter and formation enthalpy are in good agreement with the previous experimental and theoretical results. From the static finite strain technique, we obtained three independent elastic constants (C 11, C 12 and C 44) and various secondary elasticity parameters such as shear modulus, Young’s modulus and elastic anisotropy, as functions of pressure. This study also provided the pressure and temperature variations of the bulk modulus, Debye temperature, thermal expansion coefficient and heat capacity in wide pressure (0-60 GPa) and temperature (0-1800 K) ranges.

  8. Optimization of Norbornadiene Compounds for Solar Thermal Storage by First-Principles Calculations.

    PubMed

    Kuisma, Mikael; Lundin, Angelica; Moth-Poulsen, Kasper; Hyldgaard, Per; Erhart, Paul

    2016-07-21

    Molecular photoswitches capable of storing solar energy are interesting candidates for future renewable energy applications. Here, using quantum mechanical calculations, we carry out a systematic screening of crucial optical (solar spectrum match) and thermal (storage energy density) properties of 64 such compounds based on the norbornadiene-quadricyclane system. Whereas a substantial number of these molecules reach the theoretical maximum solar power conversion efficiency, this requires a strong red-shift of the absorption spectrum, which causes undesirable absorption by the photoisomer as well as reduced thermal stability. These compounds typically also have a large molecular mass, leading to low storage densities. By contrast, single-substituted systems achieve a good compromise between efficiency and storage density, while avoiding competing absorption by the photo-isomer. This establishes guiding principles for the future development of molecular solar thermal storage systems.

  9. Optimization of Norbornadiene Compounds for Solar Thermal Storage by First-Principles Calculations.

    PubMed

    Kuisma, Mikael; Lundin, Angelica; Moth-Poulsen, Kasper; Hyldgaard, Per; Erhart, Paul

    2016-07-21

    Molecular photoswitches capable of storing solar energy are interesting candidates for future renewable energy applications. Here, using quantum mechanical calculations, we carry out a systematic screening of crucial optical (solar spectrum match) and thermal (storage energy density) properties of 64 such compounds based on the norbornadiene-quadricyclane system. Whereas a substantial number of these molecules reach the theoretical maximum solar power conversion efficiency, this requires a strong red-shift of the absorption spectrum, which causes undesirable absorption by the photoisomer as well as reduced thermal stability. These compounds typically also have a large molecular mass, leading to low storage densities. By contrast, single-substituted systems achieve a good compromise between efficiency and storage density, while avoiding competing absorption by the photo-isomer. This establishes guiding principles for the future development of molecular solar thermal storage systems. PMID:27254282

  10. Electrical and thermal transport properties of RECu4 Au compounds, RE=Nd, Gd

    NASA Astrophysics Data System (ADS)

    Bashir, Aiman Kamal; Tchokonté, Moise Bertin Tchoula; Strydom, A. M.

    2016-09-01

    We report the electrical and thermal transport properties of NdCu4 Au and GdCu4 Au compounds, crystallizing in the cubic MgCu4 Sn - type crystal structure, with space group F 4 bar 3 m (no. 216).These properties are reported through measurements of electrical resistivity, ρ(T) , thermoelectric power, S(T) and thermal conductivity, λ(T) . ρ(T) and S(T) data indicate an antiferromagnetic (AFM)-like anomaly associated with a N e ´ el temperature TN=3.9 K and 10.9 K for NdCu4 Au and GdCu4 Au compounds, respectively. ρ(T) data for both compounds shows a sudden drop at TN. Above TN, ρ(T) results are characteristic of an electron-phonon interaction in the presence of s - d scattering. Application of magnetic field slightly suppresses TN value in GdCu4 Au compound from TN=10.9 K in a field of 0 T to 10.1 K in a field of 6 T. S(T) data at low temperatures for both compounds shows a minimum at TN. Critical analysis of S(T) in terms of the phenomenological resonance model yield the positions (Ef) and bandwidths (Wf) of the 4 f - band in both compounds: Ef=3.81(6)K, Wf=329(58) K for the Nd compound and Ef=18.2(4) K, Wf=306(5) K for the Gd compound. λ(T) for both compounds decreases linearly upon cooling from room temperature. The reduced Lorentz number L /L0 deviates from the Wiedmann-Franz at low temperature with a strong increase in L /L0 upon cooling the samples from room temperature.

  11. Thermoelectric Properties of Silicon Germanium: An In-depth Study to the Reduction of Lattice Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Thompson, Daniel Ross

    properties of the resulting materials were investigated. Based on the densities, x-ray diffraction patterns, derived lattice constants, and Vegard's law it will be shown that the SE SPS method does successfully alloy multiple compositions of undoped SiGe. The third and most important study demonstrated that SiGe alloyed using the SE SPS synthesis technique can be successfully doped to a n and p type thermoelectric (TE) material. This required an investigation of all of the TE transport properties of these materials. A significant investigation and commentary will be provided for the lattice thermal conductivity of SiGe. The need for this investigation arises from the difference in synthesis processes between the traditional MA and the novel SE SPS techniques. The MA powder is already alloyed into micron sized powders that are consolidated by the HP for an extended time (>1 hour), which allows for grain growth. The SE SPS method relies on diffusion being promoted by the electric field assisted sintering technique and occurs over a very short period of time (<30 minutes). Therefore it can not be assumed that grain growth is not affected by the time dependent processes of sintering and diffusion with the SE SPS process. As will be discussed grain size plays a role in the lattice thermal conductivity of SiGe. It is surprising and physically interesting that the MA+HP standards and the SE SPS samples have lattice thermal conductivities that indicate the dominant scattering mechanism is the same. The physical insight provided by the fourth study is made possible by the existence of the new SE SPS synthesis method for SiGe. The MA method is optimized by the addition of GaP to the n-type SiGe materials during processing. The explanation for this optimization is a subject of debate within the community. Although, a staunch conclusion can not be made due to the need for more samples and carrier concentration data, this initial study does indicate that one physical explanation within

  12. Correlation of lattice defects and thermal processing in the crystallization of titania nanotube arrays

    NASA Astrophysics Data System (ADS)

    Hosseinpour, Pegah M.; Yung, Daniel; Panaitescu, Eugen; Heiman, Don; Menon, Latika; Budil, David; Lewis, Laura H.

    2014-12-01

    Titania nanotubes have the potential to be employed in a wide range of energy-related applications such as solar energy-harvesting devices and hydrogen production. As the functionality of titania nanostructures is critically affected by their morphology and crystallinity, it is necessary to understand and control these factors in order to engineer useful materials for green applications. In this study, electrochemically-synthesized titania nanotube arrays were thermally processed in inert and reducing environments to isolate the role of post-synthesis processing conditions on the crystallization behavior, electronic structure and morphology development in titania nanotubes, correlated with the nanotube functionality. Structural and calorimetric studies revealed that as-synthesized amorphous nanotubes crystallize to form the anatase structure in a three-stage process that is facilitated by the creation of structural defects. It is concluded that processing in a reducing gas atmosphere versus in an inert environment provides a larger unit cell volume and a higher concentration of Ti3+ associated with oxygen vacancies, thereby reducing the activation energy of crystallization. Further, post-synthesis annealing in either reducing or inert atmospheres produces pronounced morphological changes, confirming that the nanotube arrays thermally transform into a porous morphology consisting of a fragmented tubular architecture surrounded by a network of connected nanoparticles. This study links explicit data concerning morphology, crystallization and defects, and shows that the annealing gas environment determines the details of the crystal structure, the electronic structure and the morphology of titania nanotubes. These factors, in turn, impact the charge transport and consequently the functionality of these nanotubes as photocatalysts.

  13. Chlorinated aromatic compounds in a thermal process promoted by oxychlorination of ferric chloride.

    PubMed

    Fujimori, Takashi; Takaoka, Masaki; Morisawa, Shinsuke

    2010-03-15

    The relationship between the formation of chlorinated aromatic (aromatic-Cl) compounds and ferric chloride in the solid phase during a thermal process motivated us to study the chemical characteristics of iron in a model solid sample, a mixture of FeCl(3) x 6H(2)O, activated carbon, and boron nitride, with increasing temperature. Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy revealed drastic changes in the chemical form of amorphous iron, consistent with other analytical methods, such as X-ray diffraction using synchrotron radiation (SR-XRD) and Fourier-transform infrared (FT-IR) spectroscopy. Atomic-scale evidence of the chlorination of aromatic carbon was detected by Cl-K X-ray absorption near edge structure (XANES) spectroscopy. These results showed the thermal formation mechanism of aromatic-Cl compounds in the solid phase with ferric chloride. We attribute the formation of aromatic-Cl compounds to the chlorination of carbon, based on the oxychlorination reaction of FeCl(3) at temperatures in excess of ca. 300 degrees C, when the carbon matrix is activated by carbon gasification, catalyzed by Fe(2)O(3), and surface oxygen complexes (SOC) generated by a catalytic cycle of FeCl(2) and FeOCl. Chemical changes of trace iron in a thermal process may offer the potential to generate aromatic-Cl compounds in the solid phase.

  14. Time-resolved observation of band-gap shrinking and electron-lattice thermalization within X-ray excited gallium arsenide.

    PubMed

    Ziaja, Beata; Medvedev, Nikita; Tkachenko, Victor; Maltezopoulos, Theophilos; Wurth, Wilfried

    2015-01-01

    Femtosecond X-ray irradiation of solids excites energetic photoelectrons that thermalize on a timescale of a few hundred femtoseconds. The thermalized electrons exchange energy with the lattice and heat it up. Experiments with X-ray free-electron lasers have unveiled so far the details of the electronic thermalization. In this work we show that the data on transient optical reflectivity measured in GaAs irradiated with femtosecond X-ray pulses can be used to follow electron-lattice relaxation up to a few tens of picoseconds. With a dedicated theoretical framework, we explain the so far unexplained reflectivity overshooting as a result of band-gap shrinking. We also obtain predictions for a timescale of electron-lattice thermalization, initiated by conduction band electrons in the temperature regime of a few eVs. The conduction and valence band carriers were then strongly non-isothermal. The presented scheme is of general applicability and can stimulate further studies of relaxation within X-ray excited narrow band-gap semiconductors. PMID:26655671

  15. Time-resolved observation of band-gap shrinking and electron-lattice thermalization within X-ray excited gallium arsenide.

    PubMed

    Ziaja, Beata; Medvedev, Nikita; Tkachenko, Victor; Maltezopoulos, Theophilos; Wurth, Wilfried

    2015-12-11

    Femtosecond X-ray irradiation of solids excites energetic photoelectrons that thermalize on a timescale of a few hundred femtoseconds. The thermalized electrons exchange energy with the lattice and heat it up. Experiments with X-ray free-electron lasers have unveiled so far the details of the electronic thermalization. In this work we show that the data on transient optical reflectivity measured in GaAs irradiated with femtosecond X-ray pulses can be used to follow electron-lattice relaxation up to a few tens of picoseconds. With a dedicated theoretical framework, we explain the so far unexplained reflectivity overshooting as a result of band-gap shrinking. We also obtain predictions for a timescale of electron-lattice thermalization, initiated by conduction band electrons in the temperature regime of a few eVs. The conduction and valence band carriers were then strongly non-isothermal. The presented scheme is of general applicability and can stimulate further studies of relaxation within X-ray excited narrow band-gap semiconductors.

  16. Time-resolved observation of band-gap shrinking and electron-lattice thermalization within X-ray excited gallium arsenide

    NASA Astrophysics Data System (ADS)

    Ziaja, Beata; Medvedev, Nikita; Tkachenko, Victor; Maltezopoulos, Theophilos; Wurth, Wilfried

    2015-12-01

    Femtosecond X-ray irradiation of solids excites energetic photoelectrons that thermalize on a timescale of a few hundred femtoseconds. The thermalized electrons exchange energy with the lattice and heat it up. Experiments with X-ray free-electron lasers have unveiled so far the details of the electronic thermalization. In this work we show that the data on transient optical reflectivity measured in GaAs irradiated with femtosecond X-ray pulses can be used to follow electron-lattice relaxation up to a few tens of picoseconds. With a dedicated theoretical framework, we explain the so far unexplained reflectivity overshooting as a result of band-gap shrinking. We also obtain predictions for a timescale of electron-lattice thermalization, initiated by conduction band electrons in the temperature regime of a few eVs. The conduction and valence band carriers were then strongly non-isothermal. The presented scheme is of general applicability and can stimulate further studies of relaxation within X-ray excited narrow band-gap semiconductors.

  17. Thermal dilepton rates and electrical conductivity of the QGP from the lattice

    NASA Astrophysics Data System (ADS)

    Ding, Heng-Tong; Kaczmarek, Olaf; Meyer, Florian

    2016-08-01

    We investigate the temperature dependence of the thermal dilepton rate and the electrical conductivity of the gluon plasma at temperatures of 1.1, 1.3, and 1.5 Tc in quenched QCD. Making use of nonperturbatively clover-improved Wilson valence quarks allows for a clean extrapolation of the vector meson correlation function to the continuum limit. We found that the vector correlation function divided by T3 is almost temperature independent in the current temperature window. The spectral functions are obtained by χ2 fitting of phenomenologically inspired Ansätze for the spectral function to the continuum extrapolated correlator data, where the correlations between the data points have been included. Systematic uncertainties arising from varying the Ansätze motivated from strong coupling theory as well as perturbation theory are discussed and estimated. We found that the electrical conductivity of the hot medium, related to the slope of the vector spectral function at zero frequency and momentum, is 0.2 Ce m≲σ /T ≲0.7 Ce m for T =1.1 Tc and 0.2 Ce m≲σ /T ≲0.4 Ce m for the higher temperatures. The dilepton rates and soft photon rates, resulting from the obtained spectral functions, show no significant temperature dependence, either.

  18. Simple microscope using a compound refractive lens and a wide-bandwidth thermal neutron beam

    SciTech Connect

    Cremer, J. T.; Park, H.; Piestrup, M. A.; Gary, C. K.; Pantell, R. H.; Flocchini, R. G.; Egbert, H. P.; Kloh, M. D.; Walker, R. B.

    2007-04-02

    The results of imaging experiments using biconcave, spherical compound refractive lenses (CRLs) and a wide-bandwidth thermal neutron beam are presented. Two CRLs were used, consisting of 155 beryllium and 120 copper lenses. The experiments were performed using a thermal neutron beam line at McClellan Nuclear Radiation Center reactor. The authors obtained micrographs of cadmium slits with up to 5x magnification and 0.3 mm resolution. The CRL resolution was superior to a pinhole camera with the same aperture diameter. The modulation transfer function (MTF) of the CRL was calculated and compared with the measured MTF at five spatial frequencies, showing good agreement.

  19. Correlation and size dependence of the lattice strain, binding energy, elastic modulus, and thermal stability for Au and Ag nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, X. J.; Zhou, Z. F.; Yang, L. W.; Li, J. W.; Xie, G. F.; Fu, S. Y.; Sun, C. Q.

    2011-04-01

    As a group of wonder materials, gold and silver at the nanoscale demonstrate many intriguing properties that cannot be seen from their bulk counterparts. However, consistent insight into the mechanism behind the fascinations and their interdependence given by one integrated model is highly desirable. Based on Goldschmidt-Pauling's rule of bond contraction and its extension to the local bond energy, binding energy density, and atomic cohesive energy, we have developed such a model that is able to reconcile the observed size dependence of the lattice strain, core level shift, elastic modulus, and thermal stability of Au and Ag nanostructures from the perspective of skin-depth bond order loss. Theoretical reproduction of the measured size trends confirms that the undercoordination-induced local bond contraction, bond strength gain, and the associated binding energy density gain, the cohesive energy loss and the tunable fraction of such undercoordinated atoms dictate the observed fascinations, which should shed light on the understanding of the unusual behavior of other nanostructured materials as well.

  20. Electron-phonon coupling and thermal transport in the thermoelectric compound Mo3Sb7–xTex

    SciTech Connect

    Bansal, Dipanshu; Li, Chen W.; Said, Ayman H.; Abernathy, Douglas L.; Yan, Jiaqiang; Delaire, Olivier A.

    2015-12-07

    Phonon properties of Mo3Sb7–xTex (x = 0, 1.5, 1.7), a potential high-temperature thermoelectric material, have been studied with inelastic neutron and x-ray scattering, and with first-principles simulations. The substitution of Te for Sb leads to pronounced changes in the electronic struc- ture, local bonding, phonon density of states (DOS), dispersions, and phonon lifetimes. Alloying with tellurium shifts the Fermi level upward, near the top of the valence band, resulting in a strong suppression of electron-phonon screening, and a large overall stiffening of interatomic force- constants. The suppression in electron-phonon coupling concomitantly increases group velocities and suppresses phonon scattering rates, surpassing the effects of alloy-disorder scattering, and re- sulting in a surprising increased lattice thermal conductivity in the alloy. We also identify that the local bonding environment changes non-uniformly around different atoms, leading to variable perturbation strengths for different optical phonon branches. The respective roles of changes in phonon group velocities and phonon lifetimes on the lattice thermal conductivity are quantified. Lastly, our results highlight the importance of the electron-phonon coupling on phonon mean-free-paths in this compound, and also estimates the contributions from boundary scattering, umklapp scattering, and point-defect scattering.

  1. Negative thermal expansion and associated anomalous physical properties: review of the lattice dynamics theoretical foundation

    NASA Astrophysics Data System (ADS)

    Dove, Martin T.; Fang, Hong

    2016-06-01

    Negative thermal expansion (NTE) is the phenomenon in which materials shrink rather than expand on heating. Although NTE had been previously observed in a few simple materials at low temperature, it was the realisation in 1996 that some materials have NTE over very wide ranges of temperature that kick-started current interest in this phenomenon. Now, nearly two decades later, a number of families of ceramic NTE materials have been identified. Increasingly quantitative studies focus on the mechanism of NTE, through techniques such as high-pressure diffraction, local structure probes, inelastic neutron scattering and atomistic simulation. In this paper we review our understanding of vibrational mechanisms of NTE for a range of materials. We identify a number of different cases, some of which involve a small number of phonons that can be described as involving rotations of rigid polyhedral groups of atoms, others where there are large bands of phonons involved, and some where the transverse acoustic modes provide the main contribution to NTE. In a few cases the elasticity of NTE materials has been studied under pressure, identifying an elastic softening under pressure. We propose that this property, called pressure-induced softening, is closely linked to NTE, which we can demonstrate using a simple model to describe NTE materials. There has also been recent interest in the role of intrinsic anharmonic interactions on NTE, particularly guided by calculations of the potential energy wells for relevant phonons. We review these effects, and show how anhamonicity affects the response of the properties of NTE materials to pressure.

  2. Magnetic structure of the antiferromagnetic Kondo lattice compounds CeRhAl4Si2 and CeIrAl4Si2

    DOE PAGESBeta

    Ghimire, N. J.; Calder, S.; Janoschek, M.; Bauer, E. D.

    2015-06-01

    In this article, we have investigated the magnetic ground state of the antiferromagnetic Kondo-lattice compounds CeMAl4Si2(M = Rh, Ir) using neutron powder diffraction. Although both of these compounds show two magnetic transitions TN1 and TN2 in the bulk properties measurements, evidence for magnetic long-range order was only found below the lower transition TN2. Analysis of the diffraction profiles reveals a commensurate antiferromagnetic structure with a propagation vector k = (0, 0, 1/2). The magnetic moment in the ordered state of CeRhAl4Si2 and CeIrAl4Si2 were determined to be 1.14(2) and 1.41(3) μB/Ce, respectively, and are parallel to the crystallographic c-axis inmore » agreement with magnetic susceptibility measurements.« less

  3. Comparative Ab-Initio Study of Substituted Norbornadiene-Quadricyclane Compounds for Solar Thermal Storage

    PubMed Central

    2016-01-01

    Molecular photoswitches that are capable of storing solar energy, so-called molecular solar thermal storage systems, are interesting candidates for future renewable energy applications. In this context, substituted norbornadiene-quadricyclane systems have received renewed interest due to recent advances in their synthesis. The optical, thermodynamic, and kinetic properties of these systems can vary dramatically depending on the chosen substituents. The molecular design of optimal compounds therefore requires a detailed understanding of the effect of individual substituents as well as their interplay. Here, we model absorption spectra, potential energy storage, and thermal barriers for back-conversion of several substituted systems using both single-reference (density functional theory using PBE, B3LYP, CAM-B3LYP, M06, M06-2x, and M06-L functionals as well as MP2 calculations) and multireference methods (complete active space techniques). Already the diaryl substituted compound displays a strong red-shift compared to the unsubstituted system, which is shown to result from the extension of the conjugated π-system upon substitution. Using specific donor/acceptor groups gives rise to a further albeit relatively smaller red-shift. The calculated storage energy is found to be rather insensitive to the specific substituents, although solvent effects are likely to be important and require further study. The barrier for thermal back-conversion exhibits strong multireference character and as a result is noticeably correlated with the red-shift. Two possible reaction paths for the thermal back-conversion of diaryl substituted quadricyclane are identified and it is shown that among the compounds considered the path via the acceptor side is systematically favored. Finally, the present study establishes the basis for high-throughput screening of norbornadiene-quadricyclane compounds as it provides guidelines for the level of accuracy that can be expected for key properties from

  4. Effect of AlN content on the lattice site location of terbium ions in Al x Ga1-x N compounds

    NASA Astrophysics Data System (ADS)

    Fialho, M.; Rodrigues, J.; Magalhães, S.; Correia, M. R.; Monteiro, T.; Lorenz, K.; Alves, E.

    2016-03-01

    Terbium lattice site location and optical emission in Tb implanted Al x Ga1-x N (0 ≤ x ≤ 1) samples grown by halide vapour phase epitaxy on (0001) sapphire substrates are investigated as a function of AlN content. The samples were implanted with a fluence of 5 × 1014 cm-2 of terbium ions and an energy of 150 keV. Lattice implantation damage is reduced using channelled ion implantation performed along the <0001> axis, normal to the sample surface. Afterwards, thermal annealing treatments at 1400 °C for GaN and 1200 °C for samples with x > 0 were performed to reduce the damage and to activate the optical emission of Tb3+ ions. The study of lattice site location is achieved measuring detailed angular ion channelling scans across the <0001>, < 10\\bar{1}1> and < \\bar{2}113> axial directions. The precise location of the implanted Tb ions is obtained by combining the information of these angular scans with simulations using the Monte Carlo code FLUX. In addition to a Ga/Al substitutional fraction and a random fraction, a fraction of Tb ions occupying a site displaced by 0.2 Å along c-axis from the Ga/Al substitutional site was considered, giving a good agreement between the experimental results and the simulation. Photoluminescence studies proved the optical activation of Tb3+ after thermal annealing and the enhancement of the 5D4 to 7F6 transition intensity with increasing AlN content.

  5. Lattice specific heat for the RMIn5 (R=Gd, La, Y; M=Co, Rh) compounds: Non-magnetic contribution subtraction

    NASA Astrophysics Data System (ADS)

    Facio, Jorge I.; Betancourth, D.; Cejas Bolecek, N. R.; Jorge, G. A.; Pedrazzini, Pablo; Correa, V. F.; Cornaglia, Pablo S.; Vildosola, V.; García, D. J.

    2016-06-01

    We analyze theoretically a common experimental process used to obtain the magnetic contribution to the specific heat of a given magnetic material. In the procedure, the specific heat of a non-magnetic analog is measured and used to subtract the non-magnetic contributions, which are generally dominated by the lattice degrees of freedom in a wide range of temperatures. We calculate the lattice contribution to the specific heat for the magnetic compounds GdMIn5 (M=Co, Rh) and for the non-magnetic YMIn5 and LaMIn5 (M=Co, Rh), using density functional theory based methods. We find that the best non-magnetic analog for the subtraction depends on the magnetic material and on the range of temperatures. While the phonon specific heat contribution of YRhIn5 is an excellent approximation to the one of GdCoIn5 in the full temperature range, for GdRhIn5 we find a better agreement with LaCoIn5, in both cases, as a result of an optimum compensation effect between masses and volumes. We present measurements of the specific heat of the compounds GdMIn5 (M=Co, Rh) up to room temperature where it surpasses the value expected from the Dulong-Petit law. We obtain a good agreement between theory and experiment when we include anharmonic effects in the calculations.

  6. Lattice thermal conductivity of ultra high temperature ceramics ZrB{sub 2} and HfB{sub 2} from atomistic simulations

    SciTech Connect

    Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W. Jr.

    2011-10-15

    Atomistic Green-Kubo simulations are performed to evaluate the lattice thermal conductivity for single crystals of the ultra high temperature ceramics ZrB{sub 2} and HfB{sub 2}. Recently developed interatomic potentials are used for these simulations. Heat current correlation functions show rapid oscillations, which can be identified with mixed metal-Boron optical phonon modes. Results for temperatures from 300K to 1000K are presented.

  7. Application of thermal desorption to the biological monitoring of organic compounds in exhaled breath.

    PubMed

    Periago, J F; Prado, C; Ibarra, I; Tortosa, J

    1993-12-24

    We have developed a thermal desorption-gas chromatographic method for the analysis of organic compounds in exhaled breath air, to be used in the biological monitoring of environmental exposure. The exhaled breath sampler is based on the concentration of compounds present in alveolar air in a solid sorbent material. Isoflurane (1-chloro-2,2,2-trifluoroethyl-difluoromethyl-ether), an inhaled anaesthetic used widely in surgery, and styrene, used in boat construction and the manufacture of fibreglass-reinforced plastics, are partially eliminated from the body in exhaled breath, samples of which can therefore be used to monitor biological exposure to these two organic compounds. Recoveries were tested in controlled atmospheres of isoflurane or styrene, with Chromosorb 106 or Tenax, respectively, as the adsorbent. We also investigated the influence of relative humidity, an important factor in breath sampling, on adsorption.

  8. Nanostructure and thermal properties of melt compounded PE/clay nanocomposites filled with an organosilylated montmorillonite

    SciTech Connect

    Scarfato, Paola; Incarnato, Loredana; Di Maio, Luciano; Dittrich, Bettina; Niebergall, Ute; Böhning, Martin; Schartel, Bernhard

    2015-12-17

    In this work we report on the functionalization of a natural sodium montmorillonite (MMT) with (3-glycidyloxypropyl)trimethoxysilane by a silylation procedure and on its use as nanofiller in melt compounding of polyethylene nanocomposites. The obtained organosilylated clay showed higher interlayer spacing than the original MMT and higher thermal stability with respect to most of commercial organoclays modified with alkylammonium salts. Its addition (at 5wt%) to two different polyethylene matrices (a low density polyethylene, LDPE, and a high density polyethylene, HDPE), processed in a pilot-scale twin-screw extruder, allowed to produce hybrids with nanoscale dispersion of the filler, as demonstrated by X-ray diffraction. Thermogravimetric and differential scanning thermal analyses point out that the obtained nanocomposites do not show noticeable changes in the thermal behavior of both LDPE and HDPE, even if a slight reduction in the overall bulk crystallinity was observed in presence of the nanofillers.

  9. Nanostructure and thermal properties of melt compounded PE/clay nanocomposites filled with an organosilylated montmorillonite

    NASA Astrophysics Data System (ADS)

    Scarfato, Paola; Incarnato, Loredana; Di Maio, Luciano; Dittrich, Bettina; Niebergall, Ute; Böhning, Martin; Schartel, Bernhard

    2015-12-01

    In this work we report on the functionalization of a natural sodium montmorillonite (MMT) with (3-glycidyloxypropyl)trimethoxysilane by a silylation procedure and on its use as nanofiller in melt compounding of polyethylene nanocomposites. The obtained organosilylated clay showed higher interlayer spacing than the original MMT and higher thermal stability with respect to most of commercial organoclays modified with alkylammonium salts. Its addition (at 5wt%) to two different polyethylene matrices (a low density polyethylene, LDPE, and a high density polyethylene, HDPE), processed in a pilot-scale twin-screw extruder, allowed to produce hybrids with nanoscale dispersion of the filler, as demonstrated by X-ray diffraction. Thermogravimetric and differential scanning thermal analyses point out that the obtained nanocomposites do not show noticeable changes in the thermal behavior of both LDPE and HDPE, even if a slight reduction in the overall bulk crystallinity was observed in presence of the nanofillers.

  10. Investigation of thermodynamic parameters in the thermal decomposition of plastic waste-waste lube oil compounds.

    PubMed

    Kim, Yong Sang; Kim, Young Seok; Kim, Sung Hyun

    2010-07-01

    Thermal decomposition properties of plastic waste-waste lube oil compounds were investigated under nonisothermal conditions. Polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) were selected as representative household plastic wastes. A plastic waste mixture (PWM) and waste lube oil (WLO) were mixed with mixing ratios of 33, 50, and 67 (w/w) % on a PWM weight basis, and thermogravimetric (TG) experiments were performed from 25 to 600 degrees C. The Flynn-Wall method and the Ozawa-Flynn-Wall method were used for analyses of thermodynamic parameters. In this study, activation energies of PWM/WLO compounds ranged from 73.4 to 229.6 kJ/mol between 0.2 and 0.8 of normalized mass conversions, and the 50% PWM/WLO compound had lower activation energies and enthalpies among the PWM/WLO samples at each mass conversion. At the point of maximum differential mass conversion, the analyzed activation energies, enthalpies, entropies, and Gibbs free energies indicated that mixing PWM and WLO has advantages in reducing energy to decrease the degree of disorder. However, no difference in overall energy that would require overcoming both thermal decomposition reactions and degree of disorder was observed among PWM/WLO compounds under these experimental conditions.

  11. Coupled theoretical interpretation and experimental investigation of the anisotropy of the lattice thermal conductivity of Bi{sub 2}Te{sub 3} single crystal

    SciTech Connect

    Jacquot, A.; Bayer, B.; Winkler, M.; Boettner, H.; Jaegle, M.

    2012-09-15

    The Debye model is modified for the calculation of the lattice thermal conductivity and used to gain insight into the anisotropy of Bi{sub 2}Te{sub 3}. In this work, the Debye temperature is not used to estimate the cutoff frequencies of the phonons that carry heat. The cutoff frequencies are defined by setting an upper limit to the energy of acoustic phonons using the complete dispersion relations. The anisotropy of the thermal conductivity is found to be unrelated to the anisotropy of the sound velocities. It is found that the sound velocity is almost isotropic when the longitudinal and two transversal waves are added together. In addition the relaxation time must be a function of the cutoff frequencies and counterbalances the anisotropy arising from the variation of the number of acoustic phonons traveling in various directions. It is concluded that the anisotropy of the thermal conductivity is mostly related to the Grueneisen's constant. - Graphical abstract: Dispersion relations of Bi{sub 2}Te{sub 3} along c-axis. The cutoff frequencies are found to be anisotropic and are defined exactly in this article where the acoustic branch crosses the optical branch. This affects both the number of phonons that carry heat in a given direction and the number of phonons that can scatter them. This is decisive for understanding the lattice thermal conductivity. Highlights: Black-Right-Pointing-Pointer Prediction of the anisotropy of the lattice thermal conductivity. Black-Right-Pointing-Pointer Provide a definition of the cutoff frequencies that makes sense. Black-Right-Pointing-Pointer Reduction of the number of frees parameter in phenomenological model. Black-Right-Pointing-Pointer Prediction that the anisotropy is a function of the scattering mechanism. Black-Right-Pointing-Pointer Means of experimental verification of theory.

  12. Structure-Activity Relationship Analysis of the Thermal Stabilities of Nitroaromatic Compounds Following Different Decomposition Mechanisms.

    PubMed

    Li, Jiazhong; Liu, Huanxiang; Huo, Xing; Gramatica, Paola

    2013-02-01

    The decomposition behavior of energetic materials is very important for the safety problems concerning their production, transportation, use and storage, because molecular decomposition is intimately connected to their explosive properties. Nitroaromatic compounds, particularly nitrobenzene derivatives, are often considered as prototypical energetic molecules, and some of them are commonly used as high explosives. Quantitative structure-activity relationship (QSAR) represents a potential tool for predicting the thermal stability properties of energetic materials. But it is reported that constructing general reliable models to predict their stability and their potential explosive properties is a very difficult task. In this work, we make our efforts to investigate the relationship between the molecular structures and corresponding thermal stabilities of 77 nitrobenzene derivatives with various substituent functional groups (in ortho, meta and/or para positions). The proposed best MLR model, developed by the new software QSARINS, based on Genetic Algorithm for variable selection and with various validation tools, is robust, stable and predictive with R(2) of 0.86, QLOO (2) of 0.79 and CCC of 0.90. The results indicated that, though difficult, it is possible to build predictive, externally validated QSAR models to estimate the thermal stability of nitroaromatic compounds.

  13. Analysis of organic compounds in water by direct adsorption and thermal desorption. [Dissertation

    SciTech Connect

    Ryan, J.P. Jr.

    1980-03-01

    An instrument was designed and constructed that makes it possible to thermally desorb organic compounds from wet adsorption traps to a gas chromatograph in an efficient and reproducible manner. Based on this device, a method of analyzing organics in water was developed that is rapid, sensitive, and of broader scope than previously published methods. The system was applied to the analysis of compounds with a wide range of volatilities. Temperature and flow parameters were investigated and specific procedures for quantitation were established. Real samples, including tap water and well water, were also analyzed with this system. Depending on the analysis requirements, the thermal desorption instrument can be used with either packed column or high resolution open-tubular column gas chromatography. The construction plans of normal and high-resolution systems are presented along with chromatograms and data produced by each. Finally, an improved thermal desorption instrument is described. Modifications to the basic system, including splitless injection onto a capillary column, automation, dual cryogenic trapping, reduction of scale, and effluent splitting to dual detection are discussed at length as they relate to the improved instrument.

  14. Evaluation of thermal catalytic decomposition of organic compounds with TiO2 by packed-capillary gas chromatography.

    PubMed

    Ueta, Ikuo; Mizuguchi, Ayako; Tani, Kazue; Kawakubo, Susumu; Saito, Yoshihiro

    2014-01-01

    A novel method for evaluating the thermal catalytic decomposition of organic compounds on a solid acid catalyst was developed using a capillary gas chromatography-flame ionization detector (GC-FID) equipped with a packed-capillary column. The thermal catalytic decomposition of various organic compounds was investigated by introducing gaseous or liquid organic compounds into a heated test tube packed with TiO2 particles. The resulting carbon monoxide (CO) and carbon dioxide (CO2) in the test tube were determined in a conventional capillary GC system with a methanizer after separation on a packed-capillary column. In the packed-capillary GC system, several parameters affecting thermal catalytic reactions of various organic compounds were successfully evaluated, such as the type of the catalysts and the effect of catalytic temperatures. Finally, a sequential decomposition of organic compounds was confirmed in the heated reaction tube packed with TiO2 particles. PMID:24614737

  15. Lattice thermal expansion of the solid solutions (La{sub 1−x}Sm{sub x}){sub 2}Ce{sub 2}O{sub 7}

    SciTech Connect

    Wu, Hongdan; Lei, Xinrong; Zhang, Jinhua; Yu, Jishun; Zhang, Suxin

    2014-09-15

    Highlights: • Sm-doped La{sub 2}Ce{sub 2}O{sub 7} was prepared by the coprecipitation–calcination method. • In situ HT-XRD measurements revealed that is much stable than 8YSZ. • Its thermal expansion is better than 8YSZ. - Abstract: A series of solid solutions with the general formula (La{sub 1−x}Sm{sub x}){sub 2}Ce{sub 2}O{sub 7} (0.0 ≤ x ≤ 1.0) were prepared by the coprecipitation–calcination method. The products obtained were characterized by powder X-ray diffraction for phase purity. It was observed that La{sup 3+} and Sm{sup 3+} can form complete solid solution in (La,Sm){sub 2}Ce{sub 2}O{sub 7} with defect-fluorite-type phase. The unit cell parameters of these solutions were calculated by a least squares method and the lattice parameters decreased linearly as x increased. The lattice thermal expansion behavior of (La{sub 1−x}Sm{sub x}){sub 2}Ce{sub 2}O{sub 7} (0.0 ≤ x ≤ 1.0) was investigated by high-temperature X-ray diffraction in the temperature range 298–1623 K. The lattice parameters a{sub T} of all the solutions at different temperature can be expressed as a{sub T} = a + bT + cT{sup 2}. As x < 1, the thermal expansion has a sudden decrease at ca. 473 K. The coefficients of lattice thermal expansion of Sm{sub 2}Ce{sub 2}O{sub 7} were 10.2–13.6 × 10{sup −6} K{sup −1} from 298 to 1623 K, and without the thermal contraction at low temperature. The materials show positive or negative thermal expansion due to the asymmetric anharmonic vibration.

  16. Competing anisotropies on 3d sub-lattice of YNi{sub 4–x}Co{sub x}B compounds

    SciTech Connect

    Caraballo Vivas, R. J.; Rocco, D. L.; Reis, M. S.; Caldeira, L.; Coelho, A. A.

    2014-08-14

    The magnetic anisotropy of 3d sub-lattices has an important rule on the overall magnetic properties of hard magnets. Intermetallics alloys with boron (R-Co/Ni-B, for instance) belong to those hard magnets family and are useful objects to help to understand the magnetic behavior of 3d sub-lattice, specially when the rare earth ions R do not have magnetic nature, like YCo{sub 4}B ferromagnetic material. Interestingly, YNi{sub 4}B is a paramagnetic material and Ni ions do not contribute to the magnetic anisotropy. We focused therefore our attention to YNi{sub 4–x}Co{sub x}B series, with x = 0, 1, 2, 3, and 4. The magnetic anisotropy of these compounds is deeper described using statistical and preferential models of Co occupation among the possible Wyckoff positions into the CeCo{sub 4}B type hexagonal structure. We found that the preferential model is the most suitable to explain the magnetization experimental data.

  17. Spectroscopic investigation of volatile compounds produced during thermal and radiofrequency bipolar cautery on porcine liver

    NASA Astrophysics Data System (ADS)

    Rey, J. M.; Schramm, D.; Hahnloser, D.; Marinov, D.; Sigrist, M. W.

    2008-07-01

    The potential risks associated with the emission of by-products emitted by surgical cautery are of concern. Various investigations—mostly based on gas chromatography—have been performed to analyse the so-called surgical smoke but controversies remain in terms of composition and concentrations of compounds present in the smoke and hence the associated risk to human health. This quantitative model study uses for the first time CO2-laser-based photoacoustic spectroscopy and focuses on the analysis of volatile organic compounds produced during thermal- and radiofrequency bipolar cautery on porcine liver. The latter instrument is employed in actual human surgery. Concentrations in the ppm to sub-ppm range and molar fractions could be determined for carbon dioxide, water vapour, ammonia, ethanol and methanol. Distinct differences particularly in the methanol and ethanol contents were found between the two cautery devices employed.

  18. Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor.

    PubMed

    Karuppiah, J; Reddy, E Linga; Reddy, P Manoj Kumar; Ramaraju, B; Karvembu, R; Subrahmanyam, Ch

    2012-10-30

    Total oxidation of mixture of dilute volatile organic compounds was carried out in a dielectric barrier discharge reactor with various transition metal oxide catalysts integrated in-plasma. The experimental results indicated the best removal efficiencies in the presence of metal oxide catalysts, especially MnO(x), whose activity was further improved with AgO(x) deposition. It was confirmed water vapor improves the efficiency of the plasma reactor, probably due to the formation of hydroxyl species, whereas, in situ decomposition of ozone on the catalyst surface may lead to nascent oxygen. It may be concluded that non-thermal plasma approach is beneficial for the removal of mixture of volatile organic compounds than individual VOCs, probably due to the formation of reactive intermediates like aldehydes, peroxides, etc.

  19. Stripping of organic compounds from wastewater as an auxiliary fuel of regenerative thermal oxidizer.

    PubMed

    Chang, Meng-Wen; Chern, Jia-Ming

    2009-08-15

    Organic solvents with different volatilities are widely used in various processes and generate air and water pollution problems. In the cleaning processes of electronics industries, most volatile organic compounds (VOCs) are vented to air pollution control devices while most non-volatile organic solvents dissolve in the cleaning water and become the major sources of COD in wastewater. Discharging a high-COD wastewater stream to wastewater treatment facility often disturbs the treatment performance. A pretreatment of the high-COD wastewater is therefore highly desirable. This study used a packed-bed stripping tower in combination with a regenerative thermal oxidizer to remove the COD in the wastewater from a printed circuit board manufacturing process and to utilize the stripped organic compounds as the auxiliary fuel of the RTO. The experimental results showed that up to 45% of the COD could be removed and 66% of the RTO fuel could be saved by the combined treatment system.

  20. Electronic and thermal properties of TiFe{sub 2} compound: An ab initio study

    SciTech Connect

    Sathyakumari, V. S.; Sankar, S. Mahalakshmi, K.; Subashree, G.; Krithiga, R.

    2015-06-24

    A systematic study of electronic, and thermal properties such as the Density of states, Fermi energy, Debye temperature and specific heat coefficient, has been carried out using the results of electronic bandstructure and related characteristics of the Laves phase compound, TiFe{sub 2}. Computation of electronic bandstructure and associated properties has been carried out using the tight-binding-linear-muffin-tin-orbital (TB-LMTO) method within atomic sphere approximation (ASA). The calculated values are compared with the available results of literature.

  1. Thermal reaction studies of organic model compound-mineral matter interactions in solids

    SciTech Connect

    Buchanan, A.C. III; Britt, P.F.; Thomas, K.B.

    1995-07-01

    The solid-state chemistry of silica-immobilized phenethyl phenyl ethers is being investigated in the presence of interdispersed aluininosilicates at temperatures relevant to coal processing to gain a better understanding of the impact of mineral matter on pyrolysis and liquefaction mechanisms. Results demonstrate the dramatic effect that aluminosilicates can have in altering the normal thermal reaction pathways for these models of ether linkages in lignin and low rank coals. An investigation of the chemistry of these model compounds at low temperatures (ca. 150-200{degrees}C) in the presence of aluminosilicates, including montmorillonite, is currently being investigated to delineate the chemical transformations that can occur during lignin maturation.

  2. Laboratory investigation of thermal degradation of a mixture of hazardous organic compounds. 1

    SciTech Connect

    Graham, J.L.; Hall, D.L.; Dellinger, B.

    1986-07-01

    In this report, the effect of oxygen concentration on the thermal stability of the components of a mixture of carbon tetrachloride, monochlorobenzene, 1,1,2-trichloro-,1,2,2-trifluoroethane (Freon 113 (Du Pont)), trichloroethylene, and toluene and the formation of thermal reaction products is examined. Thermal decomposition studies were conducted in atmospheres in which combustion oxygen was in excess, stoichiometric, and absent (pyrolysis). The components were also run individually in atmospheres with stoichiometric and excess oxygen. Results indicate that decreasing oxygen concentration increased the stability of the mixture components except Freon 113 and carbon tetrachloride. Furthermore, with the exception of Freon 113, each component was less stable in the mixture as compared to pure compound data. The stability of Freon 113 remained unchanged regardless of reaction atmosphere. It was found that the number and complexity of thermal reaction products increased with decreasing oxygen concentration. In all cases, products ranged from simple chlorinated aliphatics to complex polynuclear aromatics. 18 references, 7 figures, 2 tables.

  3. Thermal annealing and zinc doping effects on the lattice constant of organometallic vapor phase grown GaAs epilayers on heavily In-doped substrates

    NASA Astrophysics Data System (ADS)

    Imai, Tetsuji; Fuke, Shunro; Mori, Katsumi; Kuwahara, Kazuhiro

    1989-02-01

    Undoped and Zn-doped (˜3×1020/cm3) GaAs epilayers are grown on In-doped (order of 1020/cm3) GaAs substrates by the organometallic vapor phase epitaxy method. By thermal annealing of the undoped epilayer, changes in the perpendicular lattice constant a⊥, together with the apparent changes in surface morphology such as the appearance of a cross-hatched structure or a narrowing of the cross-hatched line spacing, are observed. It is also found that Zn doping is very effective to obtain thick, coherently grown epilayers on In-doped GaAs substrates. No appreciable changes in a⊥ and no generation of misfit dislocations are found because of the hardening of the crystalline lattice, similar to the case of In doping to GaAs bulk crystals.

  4. Molecular mobility depending on chain length and thermally induced molecular motion of n-alkane/urea inclusion compounds

    NASA Astrophysics Data System (ADS)

    Nakaoki, Takahiko; Nagano, Hiromasa; Yanagida, Toshinori

    2004-08-01

    Solid-state high resolution 13C NMR was used to analyze the end group conformation and molecular mobility of n-alkanes in a urea host as a function of the carbon number of the n-alkane. It was shown that the chemical shift of the inner methylenes could be interpreted by the γ- gauche effect. Of further interest is our finding that the chemical shift of 3-methylene is independent of both chain length and temperature, a result indicating that the torsional rotation of the bond ω 3 between the 4-methylene and 5-methylene carbons is so inhibited that there is little gauche conformation. The chemical shift of the inner methylenes indicated a different tendency between the even- and the odd-numbered n-alkanes. The fact that the signals of the even-numbered n-alkanes were observed at a comparatively more upfield location than those of the odd-numbered ones indicated that the even-numbered n-alkane had a higher molecular mobility and tended to adopt a more gauche conformation. The decomposition temperature obtained by thermal analysis also suggested a difference between the even- and odd-numbered n-alkanes. The decomposition temperature of the even-numbered n-alkane/urea inclusion compounds was a little lower than that of the odd-numbered ones, a disparity corresponding to the higher molecular mobility of the n-alkane in the urea host. The spin-lattice relaxation time ( T1C) increased with increasing chain length for chains with less than the 14 carbon atoms but reached a constant value for all longer chains. This result is completely different from that for the n-alkane crystal, which gave a longer T1C depending on the chain length, and can be explained by a reduced intermolecular interaction between the n-alkane and the urea host. Clearly, T1C measurements can be applied to confirm the formation of inclusion compounds. However, the different T1C values between the methyl, 2-, 3-, and inner methylene carbons indicates that the n-alkane molecule does not rotate so fast

  5. Ionothermal synthesis of open-framework metal phosphates with a Kagomé lattice network exhibiting canted anti-ferromagnetism† †Electronic supplementary information (ESI) available: Cif files, atomic parameters, X-ray diffraction patterns, IR spectra, TG curves, and thermal ellipsoid plot and atomic label schemes of compound 1–4. See DOI: 10.1039/c4tc00290c Click here for additional data file.

    PubMed Central

    Wang, Guangmei; Valldor, Martin; Mallick, Bert

    2014-01-01

    Four open-framework transition-metal phosphates; (NH4)2Co3(HPO4)2F4 (1), (NH4)Co3(HPO4)2(H2PO4)F2 (2), KCo3(HPO4)2(H2PO4)F2 (3), and KFe3(HPO4)2(H2PO4)F2 (4); are prepared by ionothermal synthesis using pyridinium hexafluorophosphate as the ionic liquid. Single-crystal X-ray diffraction analyses reveal that the four compounds contain cobalt/iron–oxygen/fluoride layers with Kagomé topology composed of interlinked face-sharing MO3F3/MO4F2 octahedra. PO3OH pseudo-tetrahedral groups augment the [M3O6F4] (1)/[M3O8F2] layers on both sides to give M3(HPO4)2F4 (1) and M3(HPO4)2F2 (2–4) layers. These layers are stacked along the a axis in a sequence AA…, resulting in the formation of a layer structure for (NH4)2Co3(HPO4)2F4(1). In NH4Co3(HPO4)2(H2PO4)F2 and KM3(HPO4)2(H2PO4)F2, the M3(HPO4)2F2 layers are stacked along the a axis in a sequence AAi… and are connected by [PO3(OH)] tetrahedra, giving rise to a 3-D open framework structure with 10-ring channels along the [001] direction. The negative charges of the inorganic framework are balanced by K+/NH4 + ions located within the channels. The magnetic transition metal cations themselves form layers with stair-case Kagomé topology. Magnetic susceptibility and magnetization measurements reveal that all four compounds exhibit a canted anti-ferromagnetic ground state (T c = 10 or 13 K for Co and T c = 27 K for Fe) with different canting angles. The full orbital moment is observed for both Co2+ and Fe2+. PMID:25580250

  6. Thermal and oxidation stability of organo-fluorine compound-mixed electrolyte solutions for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Nishikawa, Daiki; Nakajima, Tsuyoshi; Ohzawa, Yoshimi; Koh, Meiten; Yamauchi, Akiyoshi; Kagawa, Michiru; Aoyama, Hirokazu

    2013-12-01

    Thermal and oxidation stability of fluorine compound-mixed electrolyte solutions have been investigated. Charge/discharge behavior of natural graphite electrode has been also examined in the same electrolyte solutions. Fluorine compounds demonstrate much lower reactivity with metallic Li than ethylene carbonate/dimethyl carbonate. Fluorine compound-mixed electrolyte solutions show the lower reactivity with LiC6 and the smaller exothermic peaks due to decomposition of electrolyte solutions and surface films than original solutions without fluorine compound. Oxidation currents are also smaller in fluorine compound-mixed electrolyte solutions than in original ones. First coulombic efficiencies in fluorine compound-mixed electrolyte solutions are similar to those in original ethylene carbonate-based solutions except one case. Mixing of fluorine compounds highly increase first coulombic efficiencies of natural graphite electrode in propylene carbonate-containing solution.

  7. Effect of lattice constant on pseudo Jahn-Teller polar distortion: Application to search for new multiferroic compounds

    NASA Astrophysics Data System (ADS)

    Song, Guang; Zhang, Weiyi

    2016-08-01

    By analog to Maxwell construction for the first-order phase transition, the pseudo Jahn-Teller polar distortion arises naturally once the local bond length of transition-metal oxygen octahedra is enhanced beyond the inflexion point of pair potential into the concave-down dominated region. This concept is applied to search for the new multiferroic compounds for which we specifically choose the (BaMnO3)1/(BaFeO3)1 superlattice as a candidate. The large Ba radius favors the polar distortion in a BaMnO3 layer, while the orbital-ordering-induced superexchange ferromagnetic coupling among Fe-Fe and double-exchange mediated ferromagnetic coupling among Fe-Mn ions stabilize the overall ferromagnetic insulator. A large magnetic moment of 7 μB per unit cell and electric polarization of 14.4 μ Ccm -2 are obtained. Our study offers an important insight for designing robust multiferroic compounds in the future.

  8. Thermal Decomposition Mechanisms of Lignin Model Compounds: From Phenol to Vanillin

    NASA Astrophysics Data System (ADS)

    Scheer, Adam Michael

    Lignin is a complex, aromatic polymer abundant in cellulosic biomass (trees, switchgrass etc.). Thermochemical breakdown of lignin for liquid fuel production results in undesirable polycyclic aromatic hydrocarbons that lead to tar and soot byproducts. The fundamental chemistry governing these processes is not well understood. We have studied the unimolecular thermal decomposition mechanisms of aromatic lignin model compounds using a miniature SiC tubular reactor. Products are detected and characterized using time-of-flight mass spectrometry with both single photon (118.2 nm; 10.487 eV) and 1 + 1 resonance-enhanced multiphoton ionization (REMPI) as well as matrix isolation infrared spectroscopy. Gas exiting the heated reactor (300 K--1600 K) is subject to a free expansion after a residence time of approximately 100 micros. The expansion into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. By understanding the unimolecular fragmentation patterns of phenol (C6H5OH), anisole (C6H 5OCH3) and benzaldehyde (C6H5CHO), the more complicated thermocracking processes of the catechols (HO-C 6H4-OH), methoxyphenols (HO-C6H4-OCH 3) and hydroxybenzaldehydes (HO-C6H4-CHO) can be interpreted. These studies have resulted in a predictive model that allows the interpretation of vanillin, a complex phenolic ether containing methoxy, hydroxy and aldehyde functional groups. This model will serve as a guide for the pyrolyses of larger systems including lignin monomers such as coniferyl alcohol. The pyrolysis mechanisms of the dimethoxybenzenes (H3C-C 6H4-OCH3) and syringol, a hydroxydimethoxybenzene have also been studied. These results will aid in the understanding of the thermal fragmentation of sinapyl alcohol, the most complex lignin monomer. In addition to the model compound work, pyrolyisis of biomass has been studied via the pulsed laser ablation of poplar wood. With the REMPI scheme, aromatic lignin decomposition

  9. Electron spin-lattice relaxation mechanisms of nitroxyl radicals in ionic liquids and conventional organic liquids: temperature dependence of a thermally activated process.

    PubMed

    Kundu, Krishnendu; Kattnig, Daniel R; Mladenova, Boryana Y; Grampp, Günter; Das, Ranjan

    2015-03-26

    During the past two decades, several studies have established a significant role played by a thermally activated process in the electron spin relaxation of nitroxyl free radicals in liquid solutions. Its role has been used to explain the spin relaxation behavior of these radicals in a wide range of viscosities and microwave frequencies. However, no temperature dependence of this process has been reported. In this work, our main aim was to investigate the temperature dependence of this process in neat solvents. Electron spin-lattice relaxation times of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and 4-hydroxy-TEMPO (TEMPOL), in X-band microwave frequency, were measured by the pulse saturation recovery technique in three room-temperature ionic liquids ([bmim][BF4], [emim][BF4], and [bmim][PF6]), di-isononyl phthalate, and sec-butyl benzene. The ionic liquids provided a wide range of viscosity in a modest range of temperature. An auxiliary aim was to examine whether the dynamics of a probe molecule dissolved in ionic liquids was different from that in conventional molecular liquids, as claimed in several reports on fluorescence dynamics in ionic liquids. This was the reason for the inclusion of di-isononyl phthalate, whose viscosities are similar to that of the ionic liquids in similar temperatures, and sec-butyl benzene. Rotational correlation times of the nitroxyl radicals were determined from the hyperfine dependence of the electron paramagnetic resonance (EPR) line widths. Observation of highly well-resolved proton hyperfine lines, riding over the nitrogen hyperfine lines, in the low viscosity regime in all the solvents, gave more accurate values of the rotational correlation times than the values generally measured in the absence of these hyperfine lines and reported in the literature. The measured rotational correlation times obeyed a modified Stokes-Einstein-Debye relation of temperature dependence in all solvents. By separating the contributions of g

  10. Electron spin-lattice relaxation mechanisms of nitroxyl radicals in ionic liquids and conventional organic liquids: temperature dependence of a thermally activated process.

    PubMed

    Kundu, Krishnendu; Kattnig, Daniel R; Mladenova, Boryana Y; Grampp, Günter; Das, Ranjan

    2015-03-26

    During the past two decades, several studies have established a significant role played by a thermally activated process in the electron spin relaxation of nitroxyl free radicals in liquid solutions. Its role has been used to explain the spin relaxation behavior of these radicals in a wide range of viscosities and microwave frequencies. However, no temperature dependence of this process has been reported. In this work, our main aim was to investigate the temperature dependence of this process in neat solvents. Electron spin-lattice relaxation times of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and 4-hydroxy-TEMPO (TEMPOL), in X-band microwave frequency, were measured by the pulse saturation recovery technique in three room-temperature ionic liquids ([bmim][BF4], [emim][BF4], and [bmim][PF6]), di-isononyl phthalate, and sec-butyl benzene. The ionic liquids provided a wide range of viscosity in a modest range of temperature. An auxiliary aim was to examine whether the dynamics of a probe molecule dissolved in ionic liquids was different from that in conventional molecular liquids, as claimed in several reports on fluorescence dynamics in ionic liquids. This was the reason for the inclusion of di-isononyl phthalate, whose viscosities are similar to that of the ionic liquids in similar temperatures, and sec-butyl benzene. Rotational correlation times of the nitroxyl radicals were determined from the hyperfine dependence of the electron paramagnetic resonance (EPR) line widths. Observation of highly well-resolved proton hyperfine lines, riding over the nitrogen hyperfine lines, in the low viscosity regime in all the solvents, gave more accurate values of the rotational correlation times than the values generally measured in the absence of these hyperfine lines and reported in the literature. The measured rotational correlation times obeyed a modified Stokes-Einstein-Debye relation of temperature dependence in all solvents. By separating the contributions of g

  11. Thermoelectric properties of monolayer MSe2 (M = Zr, Hf): low lattice thermal conductivity and a promising figure of merit.

    PubMed

    Ding, Guangqian; Gao, G Y; Huang, Zhishuo; Zhang, Wenxu; Yao, Kailun

    2016-09-16

    Monolayer transition-metal dichalcogenides (TMDCs) MX2 (M = Mo, W, Zr, Hf, etc; X = S, Se, Te) have become well-known in recent times for their promising applications in thermoelectrics and field effect transistors. In this work, we perform a systematic study on the thermoelectric properties of monolayer ZrSe2 and HfSe2 using first-principles calculations combined with Boltzmann transport equations. Our results point to a competitive thermoelectric figure of merit (close to 1 at optimal doping) in both monolayer ZrSe2 and HfSe2, which is markedly higher than previous explored monolayer TMDCs such as MoS2 and MoSe2. We also reveal that the higher figure of merits arise mainly from their low lattice thermal conductivity, and this is partly due to the strong coupling of acoustic modes with low frequency optical modes. It is found that the figure of merits can be better optimized in n-type than in p-type. In particular, the performance of HfSe2 is superior to ZrSe2 at a higher temperature. Our results suggest that monolayer ZrSe2 and HfSe2 with lower lattice thermal conductivity than usual monolayer TMDCs are promising candidates for thermoelectric applications.

  12. Modeling of gas transport with electrochemical reaction in nickel-yttria-stabilized zirconia anode during thermal cycling by Lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Guo, Pengfei; Guan, Yong; Liu, Gang; Liang, Zhiting; Liu, Jianhong; Zhang, Xiaobo; Xiong, Ying; Tian, Yangchao

    2016-09-01

    This work reports an investigation of the impact of microstructure on the performance of solid oxide fuel cells (SOFC) composed of nickel yttria-stabilized zirconia (Ni YSZ). X-ray nano computed tomography (nano-CT) was used to obtain three-dimensional (3D) models of Ni-YSZ composite anode samples subjected to different thermal cycles. Key parameters, such as triple phase boundary (TPB) density, were calculated using 3D reconstructions. The electrochemical reaction occurring at active-TPB was modeled by the Lattice Boltzmann Method for simulation of multi-component mass transfer in porous anodes. The effect of different electrode geometries on the mass transfer and the electrochemical reaction in anodes was studied by TPB distributions measured by nano CT for samples subjected to different thermal cycles. The concentration polarization and the activation polarization were estimated respectively. The results demonstrate that a combined approach involving nano-CT experiments in conjunction with simulations of gas transport and electrochemical reactions using the Lattice Boltzmann method can be used to better understand the relationship between electrode microstructure and performance of nickel yttria-stabilized zirconia anodes.

  13. Thermoelectric properties of monolayer MSe2 (M = Zr, Hf): low lattice thermal conductivity and a promising figure of merit.

    PubMed

    Ding, Guangqian; Gao, G Y; Huang, Zhishuo; Zhang, Wenxu; Yao, Kailun

    2016-09-16

    Monolayer transition-metal dichalcogenides (TMDCs) MX2 (M = Mo, W, Zr, Hf, etc; X = S, Se, Te) have become well-known in recent times for their promising applications in thermoelectrics and field effect transistors. In this work, we perform a systematic study on the thermoelectric properties of monolayer ZrSe2 and HfSe2 using first-principles calculations combined with Boltzmann transport equations. Our results point to a competitive thermoelectric figure of merit (close to 1 at optimal doping) in both monolayer ZrSe2 and HfSe2, which is markedly higher than previous explored monolayer TMDCs such as MoS2 and MoSe2. We also reveal that the higher figure of merits arise mainly from their low lattice thermal conductivity, and this is partly due to the strong coupling of acoustic modes with low frequency optical modes. It is found that the figure of merits can be better optimized in n-type than in p-type. In particular, the performance of HfSe2 is superior to ZrSe2 at a higher temperature. Our results suggest that monolayer ZrSe2 and HfSe2 with lower lattice thermal conductivity than usual monolayer TMDCs are promising candidates for thermoelectric applications. PMID:27487270

  14. Development of Design Technology on Thermal-Hydraulic Performance in Tight-Lattice Rod Bundles: II - Rod Bowing Effect on Boiling Transition under Transient Conditions

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Tamai, Hidesada; Kureta, Masatoshi; Ohnuki, Akira; Akimoto, Hajime

    A thermal-hydraulic feasibility project for an Innovative Water Reactor for Flexible fuel cycle (FLWR) has been performed since 2002. In this R&D project, large-scale thermal-hydraulic tests, several model experiments and development of advanced numerical analysis codes have been carried out. In this paper, we describe the critical power characteristics in a 37-rod tight-lattice bundle with rod bowing under transient states. It is observed that transient Boiling Transition (BT) always occurs axially at exit elevation of upper high-heat-flux region and transversely in the central area of the bundle, which is same as that under steady state. For the postulated power increase and flow decrease cases that may be possibly met in a normal operation of the FLWR, it is confirmed that no BT occurs when Initial Critical Power Ratio (ICPR) is 1.3. Moreover, when the transients are run under severer ICPR that causes BT, the transient critical powers are generally same as the steady ones. The experiments are analyzed with a modified TRAC-BFI code, where Japan Atomic Energy Agency (JAEA) newest critical power correlation is implemented for the BT judgement. The code shows good prediction for the occurrence or the non occurrence of the BT and predicts the BT starting time conservatively. Traditional quasi-steady state prediction of the transient BT is confirmed being applicable for the postulated abnormal transient processes in the tight-lattice bundle with rod bowing.

  15. Thermoelectric properties of monolayer MSe2 (M = Zr, Hf): low lattice thermal conductivity and a promising figure of merit

    NASA Astrophysics Data System (ADS)

    Ding, Guangqian; Gao, G. Y.; Huang, Zhishuo; Zhang, Wenxu; Yao, Kailun

    2016-09-01

    Monolayer transition-metal dichalcogenides (TMDCs) MX2 (M = Mo, W, Zr, Hf, etc; X = S, Se, Te) have become well-known in recent times for their promising applications in thermoelectrics and field effect transistors. In this work, we perform a systematic study on the thermoelectric properties of monolayer ZrSe2 and HfSe2 using first-principles calculations combined with Boltzmann transport equations. Our results point to a competitive thermoelectric figure of merit (close to 1 at optimal doping) in both monolayer ZrSe2 and HfSe2, which is markedly higher than previous explored monolayer TMDCs such as MoS2 and MoSe2. We also reveal that the higher figure of merits arise mainly from their low lattice thermal conductivity, and this is partly due to the strong coupling of acoustic modes with low frequency optical modes. It is found that the figure of merits can be better optimized in n-type than in p-type. In particular, the performance of HfSe2 is superior to ZrSe2 at a higher temperature. Our results suggest that monolayer ZrSe2 and HfSe2 with lower lattice thermal conductivity than usual monolayer TMDCs are promising candidates for thermoelectric applications.

  16. Degradation of volatile organic compounds in a non-thermal plasma air purifier.

    PubMed

    Schmid, Stefan; Jecklin, Matthias C; Zenobi, Renato

    2010-03-01

    The degradation of volatile organic compounds in a commercially available non-thermal plasma based air purifying system was investigated. Several studies exist that interrogate the degradation of VOCs in closed air systems using a non-thermal plasma combined with a heterogeneous catalyst. For the first time, however, our study was performed under realistic conditions (normal indoor air, 297.5K and 12.5 g m(-3) water content) on an open system, in the absence of an auxiliary catalyst, and using standard operating air flow rates (up to 320 L min(-1)). Cyclohexene, benzene, toluene, ethylbenzene and the xylene isomers were nebulized and guided through the plasma air purifier. The degradation products were trapped by activated charcoal tubes or silica gel tubes, and analyzed using gas chromatography mass spectrometry. Degradation efficiencies of 11+/-1.6% for cyclohexene, <2% for benzene, 11+/-2.4% for toluene, 3+/-1% for ethylbenzene, 1+/-1% for sigma-xylene, and 3+/-0.4% for m-/rho-xylene were found. A fairly wide range of degradation products could be identified. On both trapping media, various oxidized species such as alcohols, aldehydes, ketones and one epoxide were observed. The formation of adipaldehyde from nebulized cyclohexene clearly indicates an ozonolysis reaction. Other degradation products observed suggests reactions with OH radicals. We propose that mostly ozone and OH radicals are responsible for the degradation of organic molecules in the plasma air purifier. PMID:20167347

  17. Synthesis and Thermal Decomposition Mechanism of the Energetic Compound 3,5-Dinitro-4-nitroxypyrazole

    NASA Astrophysics Data System (ADS)

    Feng, Xiao-Qin; Cao, Duan-Lin; Cui, Jian-Lan

    2016-07-01

    A novel energetic material, 3,5-dinitro-4-nitroxypyrazole (DNNP), was synthesized via nitration and nucleophilic substitution reaction using 4-chloropyrazole as raw material. The structure of DNNP was characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), and elemental analysis. Its detonation properties were calculated and compared with those of other commonly used energetic compounds. The thermal decomposition mechanism of DNNP was studied by means of thermogravimetry and differential scanning calorimetry coupled with a mass spectrometry (DSC-MS). The results show that the detonation properties of DNNP were better than those of TNT and comparable to those of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). In addition, the thermal decomposition mechanism of DNNP was supposed. Initially, the O-NO2 bond was broken, thereby producing a nitropyrazole oxygen radical. Subsequently, the nitropyrazole oxygen radical was decomposed by free radical cleavage of nitro or isomerized to nitritepyrazole and subsequently decomposed by free radical cleavage of the nitroso group. Finally, pyrazole ring fission occurred and produced N2, NO, N2O, and CO2.

  18. Thermally stimulated luminescence studies of undoped, Cu- and Mn-doped CaSO4 compounds

    NASA Astrophysics Data System (ADS)

    Manam, J.; Das, S.

    Thermally stimulated luminescence (TSL) of undoped and doped CaSO4 with activators such as Cu and Mn has been investigated. The polycrystalline samples of undoped and doped CaSO4 are prepared by the melting method. The formation of CaSO4 compound is confirmed by X-ray diffraction and Fourier transform infrared studies. Scanning electron microscopic studies of CaSO4 are also carried out. The TSL glow curves of undoped CaSO4, Cu- and Mn-doped CaSO4 are studied. Comparison of the thermoluminescence (TL) intensity of the most intensive glow peak of Cu-doped CaSO4 compound with that of undoped CaSO4 shows that addition of Cu impurity in CaSO4 compound enhances the TL intensity by about four times. However, the addition of Mn impurity to undoped CaSO4 increases the TL intensity by about three times when compared with that of undoped CaSO4. The TL-dose dependence of all three samples was studied and was observed to be almost linear in the studied range of irradiation time. Among the samples studied, namely undoped CaSO4 and Cu- and Mn-doped CaSO4, Cu-doped CaSO4 is found to be the most sensitive. The trap parameters, namely order of kinetics (b), activation energy (E) and frequency factor (s) associated with the most intensive glow peaks of CaSO4:Mn, CaSO4:Cu and CaSO4 phosphors were determined using the glow curve shape (Chen's) method.

  19. Evaluation of bioactive compounds of black mulberry juice after thermal, microwave, ultrasonic processing, and storage at different temperatures.

    PubMed

    Jiang, Bo; Mantri, Nitin; Hu, Ya; Lu, Jiayin; Jiang, Wu; Lu, Hongfei

    2015-07-01

    The effect of different sterilization methods (thermal, microwave, and ultrasonic processing) on the main bioactive compounds and antioxidant activity of black mulberry juice during selected storage time (8 days) and temperatures (5, 15, and 25 ℃) was investigated. The antioxidant activity of thermal-treated juice depleted with storage time, whilst both ultrasound- and microwave-treated juices showed transient increase in antioxidant activity during the first 2 days that later decreased with storage time. Lower temperature storage preserved more bioactive compounds and antioxidant activity, especially in ultrasound sterilized samples. The activation energy values were 15.99, 13.07, and 12.81 kJ/mol for ultrasonic, microwave, and thermal pasteurization processes, respectively. In general, ultrasound-sterilized samples showed higher total phenolics, anthocyanin, and antioxidant activity compared to the microwave- and thermal-processed juice during the storage time especially at lower temperatures.

  20. Charge transport and vector meson dissociation across the thermal phase transition in lattice QCD with two light quark flavors

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Francis, Anthony; Jäger, Benjamin; Meyer, Harvey B.

    2016-03-01

    We compute and analyze correlation functions in the isovector vector channel at vanishing spatial momentum across the deconfinement phase transition in lattice QCD. The simulations are carried out at temperatures T /Tc=0.156 , 0.8, 1.0, 1.25 and 1.67 with Tc≃203 MeV for two flavors of Wilson-Clover fermions with a zero-temperature pion mass of ≃270 MeV . Exploiting exact sum rules and applying a phenomenologically motivated Ansatz allows us to determine the spectral function ρ (ω ,T ) via a fit to the lattice correlation function data. From these results we estimate the electrical conductivity across the deconfinement phase transition via a Kubo formula and find evidence for the dissociation of the ρ meson by resolving its spectral weight at the available temperatures. We also apply the Backus-Gilbert method as a model-independent approach to this problem. At any given frequency, it yields a local weighted average of the true spectral function. We use this method to compare kinetic theory predictions and previously published phenomenological spectral functions to our lattice study.

  1. Structural and Thermal Diffusivity Studies of Polycrystalline (CuSe)1-xSex Metal Chalcogenide Compound

    NASA Astrophysics Data System (ADS)

    Josephine, L. Y. C.; Talib, Z. A.; Yunus, W. M. M.; Zainal, Z.; Moksin, M. M.; Lim, K. P.; Yusoff, W. D. W.

    2007-05-01

    This paper reports the preparation and the characterization of the (CuSe)1-xSex metal chalcogenide semiconductor compounds with different stoichiometric compositions of Se (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) in bulk form. The (CuSe)1-xSex compounds were prepared using the solid state reaction by varying the ratio of CuSe:Se in the reaction mixture. X-ray powder diffraction analysis is used to identify and measure the mass absorption coefficient of the (CuSe)1-xSex compounds to support the thermal diffusivity behaviour. The thermal diffusivity of the polycrystalline (CuSe)1-xSex compounds were measured and analyzed for the first time, using the photoflash technique. The thermal diffusivity values were determined to be in the range of 2.524 × 10-3 cm 2 /s to 1.125 × 10-2 cm 2 /s. It was found that the thermal diffusivity value tends to decrease as the parameter x increases. The relationship between the thermal diffusivity, mass absorption coefficient and density of the (CuSe)1-xSex are discussed in detail.

  2. Extremely low-temperature properties of silicone compound used for thermal coupling in cryostat of SWIR/ASTER on TERRA

    NASA Astrophysics Data System (ADS)

    Kobayashi, Minoru; Akao, Hiroshi; Akagi, Shigeki; Kikuchi, Masakuni; Tatsumi, Kenji; Kawada, Masakuni

    2014-07-01

    The SWIR(Short Wave-length Infrared Radiometer) is one of the optical sensors in ASTER(Advanced Space-borne Thermal Emission and Reflection Radiometer). ASTER is installed in the EOS(Earth Observing System) TERRA spacecraft of NASA. TERRA was launched on December18, 1999, and is employed still on the orbit for 14 years in January, 2014, The detector of SWIR is cooled at temperature 77K by cryocooler with the optimum sensitivity. SWIR had continued to take the numerous image data for more than five years of the mission period on orbit, and the cryocooler is still operating normally. However, a gradual rise in temperature of the detector has been seen after launch. Silicone compound have been used in order to achieve heat transfer between the detector and the cryocooler. On investigation, we have found that thermal conductivity of the silicone compound has been gradually reduced. We evaluated the low temperature properties (such as thermal conductivity, strength etc.) of the silicone compound. In addition, we analyzed the temperature conditions and the thermal stress values of cryostat in the orbit. As a result, the silicone compound solidified at low temperature shows a behavior similar to adhesive. Depending on the thermal stress generated at a low temperature, there is a possibility that destruction such as peeling occurs.

  3. Multiscale Modeling of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2: Application to Lattice Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W.

    2012-01-01

    We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.

  4. Using a melanin granule lattice model to study the thermal effects of pulsed and scanning light irradiations through a measurement aperture

    NASA Astrophysics Data System (ADS)

    Kim, Do-Hyun

    2011-12-01

    Optical radiation hazards of scanning light sources are often evaluated using pulsed light source criteria, with the relevant pulse parameter equivalent to the scanning light source determined by the energy delivered through a measurement aperture. However, physical equivalence has not been completely understood: a pulsed light source is temporally dynamic but spatially stationary, while a scanning light source is temporally stationary but spatially dynamic. This study introduces a numerical analysis based upon the melanin granule lattice model to investigate the equivalence of scanning and pulsed light sources through a measurement aperture and their respective thermal effects in the pigmented retinal layer. The numerical analysis calculates the thermal contribution of individual melanin granules with varying temporal sequence, and finds that temperature changes and thermal damage thresholds for the two different types of light sources were not equal. However, dwell times of 40 to 200 μsec did not produce significant differences between pulsed and scanning light sources in temperature change and thermal damage thresholds to the sample tissue.

  5. Synthesis, Structure, and Magnetic Properties of A2Cu5(TeO3)(SO4)3(OH)4 (A = Na, K): The First Compounds with a 1D Kagomé Strip Lattice.

    PubMed

    Tang, Yingying; Guo, Wenbin; Xiang, Hongping; Zhang, Suyun; Yang, Ming; Cui, Meiyan; Wang, Nannan; He, Zhangzhen

    2016-01-19

    Two new tellurite-sulfates A2Cu5(TeO3)(SO4)3(OH)4 (A = Na, K) have been synthesized by a conventional hydrothermal method. Both compounds feature 1D kagomé strip structure built by distorted CuO6 octahedra, which can be regarded as the dimensional reduction of kagomé lattice. Magnetic measurements confirmed that the titled compounds possess antiferromagnetic ordering at low temperature, while a field-induced magnetic transition can be observed at critical field. To the best of our knowledge, this is the first time to obtain distorted kagomé strip compounds.

  6. YCa3(CrO)3(BO3)4: A Cr(3+) Kagomé Lattice Compound Showing No Magnetic Order down to 2 K.

    PubMed

    Wang, Chun-Hai; Avdeev, Maxim; Kennedy, Brendan J; Küpers, Michael; Ling, Chris D

    2016-08-01

    We report a new gaudefroyite-type compound YCa3(CrO)3(BO3)4, in which Cr(3+) ions (3d(3), S = 3/2) form an undistorted kagomé lattice. Using a flux agent, the synthesis was significantly accelerated with the typical calcining time reduced from more than 2 weeks to 2 d. The structure of YCa3(CrO)3(BO3)4 was determined by combined Rietveld refinements against X-ray and neutron diffraction data. Symmetry distortion refinement starting from a disordered YCa3(MnO)3(BO3)4 model was applied to avoid overparameterization. There are two ordering models, namely, K2-1 and K2-2, with the space groups P63 (No. 173) and P3̅ (No. 147), respectively, that differ in the [BO3] ordering between different channels (in-phase or out-of-phase). Both models give similarly good fits to the diffraction data. YCa3(CrO)3(BO3)4 is an insulator with the major band gap at Eg = 1.65 eV and a second transition at 1.78 eV. Magnetically, YCa3(CrO)3(BO3)4 is dominated by anti-ferromagnetic exchange along edge-sharing CrO6 octahedral chains perpendicular to the kagomé planes, with Θ ≈ -120 K and μeff ≈ 3.92 μB. The compound shows no spin ordering or freezing down to at least 2 K.

  7. Suppression of temperature hysteresis in negative thermal expansion compound BiNi1-xFexO3 and zero-thermal expansion composite

    NASA Astrophysics Data System (ADS)

    Nabetani, K.; Muramatsu, Y.; Oka, K.; Nakano, K.; Hojo, H.; Mizumaki, M.; Agui, A.; Higo, Y.; Hayashi, N.; Takano, M.; Azuma, M.

    2015-02-01

    Negative thermal expansion (NTE) of BiNi1-xFexO3 is investigated. All x = 0.05, 0.075, 0.10, and 0.15 samples shows large NTE with the coefficient of linear thermal expansion (CTE) αL exceeding -150 ppm K-1 induced by charge transfer between Bi5+ and Ni2+ in the controlled temperature range near room temperature. Compared with Bi1-xLnxNiO3 (Ln: rare-earth elements), the thermal hysteresis that causes a problem for practical application is suppressed because random distribution of Fe in the Ni site changes the first order transition to second order-like transition. The CTE of BiNi0.85Fe0.15O3 reaches -187 ppm K-1 and it is demonstrated that 18 vol. % addition of the present compound compensates for the thermal expansion of epoxy resin.

  8. Anisotropic lattice thermal expansion of PbFeBO4: A study by X-ray and neutron diffraction, Raman spectroscopy and DFT calculations

    SciTech Connect

    Murshed, M. Mangir; Mendive, Cecilia B.; Curti, Mariano; Nénert, Gwilherm; Kalita, Patricia E.; Lipinska, Kris; Cornelius, Andrew L.; Huq, Ashfia; Gesing, Thorsten M.

    2014-11-01

    We present the lattice thermal expansion of mullite-type PbFeBO4 in this study. The thermal expansion coefficients of the metric parameters were obtained from composite data collected from temperature-dependent neutron and X-ray powder diffraction between 10 K and 700 K. The volume thermal expansion was modeled using extended Grüneisen first-order approximation to the zero-pressure equation of state. The additive frame of the model includes harmonic, quasi-harmonic and intrinsic anharmonic potentials to describe the change of the internal energy as a function of temperature. Moreover, the unit-cell volume at zero-pressure and 0 K was optimized during the DFT simulations. Harmonic frequencies of the optical Raman modes at the Γ-point of the Brillouin zone at 0 K were also calculated by DFT, which help to assign and crosscheck the experimental frequencies. The low-temperature Raman spectra showed significant anomaly in the antiferromagnetic regions, leading to softening or hardening of some phonons. Selected modes were analyzed using a modified Klemens model. The shift of the frequencies and the broadening of the line-widths helped to understand the anharmonic vibrational behaviors of the PbO4, FeO6 and BO3 polyhedra as a function of temperature.

  9. Anisotropic lattice thermal expansion of PbFeBO4: A study by X-ray and neutron diffraction, Raman spectroscopy and DFT calculations

    DOE PAGESBeta

    Murshed, M. Mangir; Mendive, Cecilia B.; Curti, Mariano; Nénert, Gwilherm; Kalita, Patricia E.; Lipinska, Kris; Cornelius, Andrew L.; Huq, Ashfia; Gesing, Thorsten M.

    2014-11-01

    We present the lattice thermal expansion of mullite-type PbFeBO4 in this study. The thermal expansion coefficients of the metric parameters were obtained from composite data collected from temperature-dependent neutron and X-ray powder diffraction between 10 K and 700 K. The volume thermal expansion was modeled using extended Grüneisen first-order approximation to the zero-pressure equation of state. The additive frame of the model includes harmonic, quasi-harmonic and intrinsic anharmonic potentials to describe the change of the internal energy as a function of temperature. Moreover, the unit-cell volume at zero-pressure and 0 K was optimized during the DFT simulations. Harmonic frequencies ofmore » the optical Raman modes at the Γ-point of the Brillouin zone at 0 K were also calculated by DFT, which help to assign and crosscheck the experimental frequencies. The low-temperature Raman spectra showed significant anomaly in the antiferromagnetic regions, leading to softening or hardening of some phonons. Selected modes were analyzed using a modified Klemens model. The shift of the frequencies and the broadening of the line-widths helped to understand the anharmonic vibrational behaviors of the PbO4, FeO6 and BO3 polyhedra as a function of temperature.« less

  10. Lattice Thermal Conductivity of the Binary and Ternary Group-IV Alloys Si-Sn, Ge-Sn, and Si-Ge-Sn

    NASA Astrophysics Data System (ADS)

    Khatami, S. N.; Aksamija, Z.

    2016-07-01

    Efficient thermoelectric (TE) energy conversion requires materials with low thermal conductivity and good electronic properties. Si-Ge alloys, and their nanostructures such as thin films and nanowires, have been extensively studied for TE applications; other group-IV alloys, including those containing Sn, have not been given as much attention as TEs, despite their increasing applications in other areas including optoelectronics. We study the lattice thermal conductivity of binary (Si-Sn and Ge-Sn) and ternary (Si-Ge-Sn) alloys and their thin films in the Boltzmann transport formalisms, including a full phonon dispersion and momentum-dependent boundary-roughness scattering. We show that Si-Sn alloys have the lowest conductivity (3 W /mK ) of all the bulk alloys, more than 2 times lower than Si-Ge, attributed to the larger difference in mass between the two constituents. In addition, we demonstrate that thin films offer an additional reduction in thermal conductivity, reaching around 1 W /mK in 20-nm-thick Si-Sn, Ge-Sn, and ternary Si-Ge-Sn films, which is near the conductivity of amorphous SiO2 . We conclude that group-IV alloys containing Sn have the potential for high-efficiency TE energy conversion.

  11. Coupling of the lattice and superlattice deformations and hysteresis in thermal expansion for the quasi-one-dimensional conductor TaS3.

    PubMed

    Golovnya, A V; Pokrovskii, V Ya; Shadrin, P M

    2002-06-17

    An original interferometer-based setup for measurements of length of needlelike samples is developed, and thermal expansion of o-TaS(3) crystals is studied. Below the Peierls transition the temperature hysteresis of length L is observed, the width of the hysteresis loop deltaL/L being up to 5 x 10(-5). The behavior of the loop is anomalous: the length changes so that it is in front of its equilibrium value. The hysteresis loop couples with that of conductivity. With lowering the temperature down to 100 K the charge-density waves' elastic modulus grows achieving a value comparable with the lattice Young modulus. Our results could be helpful in consideration of different systems with intrinsic superstructures.

  12. Finding New Thermoelectric Compounds Using Crystallographic Data: Atomic Displacement Parameters

    SciTech Connect

    Chakoumakos, B.C.; Mandrus, D.G.; Sales, B.C.; Sharp, J.W.

    1999-08-29

    A new structure-property relationship is discussed which links atomic displacement parameters (ADPs) and the lattice thermal conductivity of clathrate-like compounds. For many clathrate-like compounds, in which one of the atom types is weakly bound and ''rattles'' within its atomic cage, room temperature ADP information can be used to estimate the room temperature lattice thermal conductivity, the vibration frequency of the ''rattler'', and the temperature dependence of the heat capacity. Neutron data and X-ray crystallography data, reported in the literature, are used to apply this analysis to several promising classes of thermoelectric materials.

  13. Lattice dynamics and thermal conductivity of skutterudites CoSb3 and IrSb3 from first principles: Why IrSb3 is a better thermal conductor than CoSb3

    NASA Astrophysics Data System (ADS)

    Li, Wu; Mingo, Natalio

    2014-09-01

    Materials with heavier atomic masses usually possess lower lattice thermal conductivity (κ). The reported κ of IrSb3 skutterudite is about 35% higher than that of CoSb3, despite Ir being much heavier than Co. We study the lattice dynamics and κ of CoSb3 and IrSb3 from first principles. We unveil the physical reasons for the difference in κ by comparing all the influential factors: phonon velocities, anharmonicity characterized by the third-order interatomic force constants, the weighted phase space W, and the atomic mass. We find the increased mass from Co to Ir is ultimately the dominant factor resulting in the increase of κ in IrSb3, and the other factors tend to reduce κ. Larger mass leads to smaller thermal displacements causing weaker anharmonic scattering. Our work provides deeper insight to understand the correlation of κ of systems sharing the same crystal structure. We also find that the decreases in acoustic phonon frequencies and Debye temperature in IrSb3 are almost entirely due to the mass increase from Co to Ir.

  14. Novel negative resists using thermally stable crosslinkers based on phenolic compounds

    NASA Astrophysics Data System (ADS)

    Kajita, Toru; Kobayashi, Eiichi; Ota, Toshiyuki; Miura, Takao

    1993-09-01

    This is a preliminary report on a family of crosslinkers based on phenolic compounds for negative-working photoresists which are suitable for KrF excimer laser exposure using poly(hydroxystyrene) (PHS) as a base resin. The crosslinkers are benzylic derivatives having etherificated or esterificated phenolic hydroxyl group. Several effects upon the resist performances of chemically amplified (CA) resist systems comprising onium salt, PHS, and the crosslinkers are mainly discussed: i.e., sort of substituent, sort of mother molecular structure, sort of crosslinkable group, baking conditions, PHS's molecular weight, additives, and so on. The CA resist gives quarter-micron line and space pairs without swelling using a KrF excimer laser exposure. Moreover, in this report another effective method for inhibiting the swelling is proposed. Finally, a unique negative resist, which is not a CA resist, is also presented. It gives negative-tone images by thermal crosslinking reaction following photo- induced dissociation of the protective group of crosslinker.

  15. Chapter 1 Thermal Spectroscopy of Magnesium-Zinc Binary Compounds Near Absolute Zero Kelvin

    NASA Astrophysics Data System (ADS)

    Morishita, Masao; Yamamoto, Hiroaki; Matsumoto, Yasutomo

    The electronic states for the intermetallic compounds, Mg48Zn52, Mg2Zn3, MgZn2 and Mg2Zn11 in the Mg-Zn binary system were investigated by measuring the coefficients [gamma] of the electronic contribution to the heat capacities and calculating the densities of states (DOS) in the vicinities of the Fermi levels (EF) by the DV-X[alpha] molecular orbital method. The [gamma] value of Mg2Zn11 was found to be nearly equal to that of pure Zn while the [gamma] value of Mg48Zn52 and Mg2Zn3 was similar to that of pure Mg. The [gamma] value of MgZn2 was comparable to the simple compositional average of the [gamma] values of pure Mg and Zn. Such [gamma] values probably result from the localization or de-localization of valence electrons, consistent with the DOS theoretically calculated by the DV-X[alpha] molecular orbital method. The combined use of the measured [gamma] and the calculated DOS is expected to provide an important method to clarify electronic states of substances as thermal spectroscopy.

  16. Giant thermal vibrations in the framework compounds Ba1 -xSrxAl2O4

    NASA Astrophysics Data System (ADS)

    Kawaguchi, S.; Ishii, Y.; Tanaka, E.; Tsukasaki, H.; Kubota, Y.; Mori, S.

    2016-08-01

    Synchrotron x-ray diffraction experiments were performed on the network compounds Ba1 -xSrxAl2O4 at temperatures between 15 and 800 K. The ferroelectric phase of the parent BaAl2O4 is largely suppressed by substituting a small amount of Sr for Ba and disappears for x ≥0.1 . Structural refinements reveal that the isotropic atomic displacement parameter Biso in the bridging oxygen atom is largely independent of temperature and retains an anomalously large value in the adjacent paraelectric phase even at the lowest temperature. The Biso systematically increases as x increases, exhibiting an especially large value for x =0.5 . According to previous electron diffraction experiments for Ba1 -xSrxAl2O4 with x ≥0.1 , strong thermal diffuse scattering occurs at two reciprocal points relating to two distinct soft modes at the M and K points over a wide range of temperatures below 800 K [Y. Ishii et al., Sci. Rep. 6, 19154 (2016), 10.1038/srep19154]. Although the latter mode disappears at approximately 200 K, the former does not condense, at least down to 100 K. The anomalously large Biso observed in this study is ascribed to these soft modes existing in a wide temperature range.

  17. Infrared, Raman, resonance Raman spectra and lattice dynamics calculations of the solid potassium(I) nickel(II) thiophosphate compound, KNiPS 4

    NASA Astrophysics Data System (ADS)

    Sourisseau, C.; Cavagnat, R.; Fouassier, M.; Brec, R.; Elder, S. H.

    1995-06-01

    The UV-visible (350-850 nm), infrared and Raman (20-700 cm -1) spectra of a new KNiPS 4 solid compound have been analyzed using powder samples and crystalline platelets. From polarization measurements, the main electronic transition of 1F 2← 1A 1 type due to the PS 43- thiophosphate groups are localized in the 360-570 nm range and vibrational assignments for most of the fundamental modes are proposed. These assignments were checked by complete valence force field lattice dynamics calculations in the various symmetry blocks of the tetragonal crystal structure (D 4h14). Potential energy distributions as well as mean squared vibrational amplitude calculations have shown strong ν(NiS) and σ(SPS) couplings in the (NiPS 4) - structural chains and remarkably high ν(NiS) infrared frequencies. Furthermore, the resonance Raman spectra of single crystals and powder samples were recorded over a wide range (647.1-476.5 nm) of excitatiob wavelengths. This allowed to probe the nature of the broad electronic transition of the complex centered around 510 nm and responsible for KNiPS 4 brown color. The Raman excitation profiles of several fundamentals and combination bands were thus established. Under resonance conditions, various crystalline components of A 1g, B 1g and B 2g symmetry for the ν 4(F 2) or ν 2(E) deformation modes of the PS 43- groups are enhanced. No overtone progressions involving totally symmetric modes were observed but anomalously intense high-order combination bands were detected. It is thus concluded that adiabatic as well as non-adiabatic interactions must play a great role in the vibronically induced Raman scattering processes. Reasons for this peculiar behavior are discussed in relation to the X-ray crystal structure of the KNiPS 4 compound. All the experimental results imply the presence of substantial site and factor group effects on the optical and vibronic properties of the thiophosphate anions.

  18. Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation.

    PubMed

    Agcam, E; Akyıldız, A; Akdemir Evrendilek, G

    2014-01-15

    Processing of orange juice by pulsed electric fields (PEF) and thermal pasteurisation was carried out to compare changes in total phenolic concentration, hydroxybenzoic acid, hydroxycinnamic acids, flavonols, flavones and flavonones before and after being stored at 4°C for 180days. Changes in the initial total phenolic concentration of the samples varied depending on the applied electric field intensity and thermal pasteurisation. Hesperidin and chlorogenic acids were detected as the most abounded flavonoid and phenolic acids in the orange juice, respectively. Except for syringic acid and neoeriocitrin, the concentration of the phenolic compounds indentified in the orange juice samples enhanced after the PEF or thermal pasteurisation. The samples treated with PEF had more stable flavonoids and phenolic acids than those treated with the thermal pasteurisation. The PEF-treated samples had higher sensory scores than the heat-treated samples.

  19. Thermal decomposition of high-nitrogen energetic compounds: TAGzT and GUzT

    NASA Astrophysics Data System (ADS)

    Hayden, Heather F.

    The U.S. Navy is exploring high-nitrogen compounds as burning-rate additives to meet the growing demands of future high-performance gun systems. Two high-nitrogen compounds investigated as potential burning-rate additives are bis(triaminoguanidinium) 5,5-azobitetrazolate (TAGzT) and bis(guanidinium) 5,5'-azobitetrazolate (GUzT). Small-scale tests showed that formulations containing TAGzT exhibit significant increases in the burning rates of RDX-based gun propellants. However, when GUzT, a similarly structured molecule was incorporated into the formulation, there was essentially no effect on the burning rate of the propellant. Through the use of simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) and Fourier-Transform ion cyclotron resonance (FTICR) mass spectrometry methods, an investigation of the underlying chemical and physical processes that control the thermal decomposition behavior of TAGzT and GUzT alone and in the presence of RDX, was conducted. The objective was to determine why GUzT is not as good a burning-rate enhancer in RDX-based gun propellants as compared to TAGzT. The results show that TAGzT is an effective burning-rate modifier in the presence of RDX because the decomposition of TAGzT alters the initial stages of the decomposition of RDX. Hydrazine, formed in the decomposition of TAGzT, reacts faster with RDX than RDX can decompose itself. The reactions occur at temperatures below the melting point of RDX and thus the TAGzT decomposition products react with RDX in the gas phase. Although there is no hydrazine formed in the decomposition of GUzT, amines formed in the decomposition of GUzT react with aldehydes, formed in the decomposition of RDX, resulting in an increased reaction rate of RDX in the presence of GUzT. However, GUzT is not an effective burning-rate modifier because its decomposition does not alter the initial gas-phase decomposition of RDX. The decomposition of GUzT occurs at temperatures above the melting point

  20. Magnetic and thermal properties of RCu9In2 (R=La, Ce, Pr, Nd, Sm and Eu) compounds

    NASA Astrophysics Data System (ADS)

    Baran, S.; Przewoźnik, J.; Kalychak, Ya. M.; Tyvanchuk, Yu.; Szytuła, A.

    2016-07-01

    The RCu9In2 intermetallics with R=La, Ce, Pr, Nd, Sm, Eu have been synthesized and characterized with regards to their crystal structure as well as magnetic and thermal properties. The compounds have tetragonal structure of the YNi9In2-type (space group P4/mbm). Except for LaCu8.25In2.75, they exhibit localized magnetism due to the presence of magnetic moments on the respective trivalent rare-earth ions. The Nd-, Sm- and Eu- based compounds order antiferromagnetically below 4.6, 11.0 and 23.2 K, respectively.

  1. Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow.

    PubMed

    Safari, Hesameddin; Rahimian, Mohammad Hassan; Krafczyk, Manfred

    2013-07-01

    In this article, a method based on the multiphase lattice Boltzmann framework is presented which is applicable to liquid-vapor phase-change phenomena. Both liquid and vapor phases are assumed to be incompressible. For phase changes occurring at the phase interface, the divergence-free condition of the velocity field is no longer satisfied due to the gas volume generated by vaporization or fluid volume generated by condensation. Thus, we extend a previous model by a suitable equation to account for the finite divergence of the velocity field within the interface region. Furthermore, the convective Cahn-Hilliard equation is extended to take into account vaporization effects. In a first step, a D1Q3 LB model is constructed and validated against the analytical solution of a one-dimensional Stefan problem for different density ratios. Finally the model is extended to two dimensions (D2Q9) to simulate droplet evaporation. We demonstrate that the results obtained by this approach are in good agreement with theory. PMID:23944580

  2. Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow

    NASA Astrophysics Data System (ADS)

    Safari, Hesameddin; Rahimian, Mohammad Hassan; Krafczyk, Manfred

    2013-07-01

    In this article, a method based on the multiphase lattice Boltzmann framework is presented which is applicable to liquid-vapor phase-change phenomena. Both liquid and vapor phases are assumed to be incompressible. For phase changes occurring at the phase interface, the divergence-free condition of the velocity field is no longer satisfied due to the gas volume generated by vaporization or fluid volume generated by condensation. Thus, we extend a previous model by a suitable equation to account for the finite divergence of the velocity field within the interface region. Furthermore, the convective Cahn-Hilliard equation is extended to take into account vaporization effects. In a first step, a D1Q3 LB model is constructed and validated against the analytical solution of a one-dimensional Stefan problem for different density ratios. Finally the model is extended to two dimensions (D2Q9) to simulate droplet evaporation. We demonstrate that the results obtained by this approach are in good agreement with theory.

  3. Preparation and properties of tin-doped indium oxide thin films by thermal decomposition of organometallic compounds

    SciTech Connect

    Furusaki, T.; Kodaira, K.; Yamamoto, M.; Shimada, S.; Matsushita, T.

    1986-08-01

    Transparent and conductive tin-doped indium oxide thin films were prepared on soda-lime and quartz glass substrates by thermal decomposition of organometallic compounds. The optical transmittance of the films was 90% in the visible region. The electric resistivity changed from 6-8 x 10/sup 3-/ ..cap omega..-cm to 3-4 x 10/sup -2/ ..cap omega..-cm, depending on composition and, after annealing in vacuum, it decreased by a factor of 2-10.

  4. Competition between the Direct Exchange Interaction and Superexchange Interaction in Layered Compounds LiCrSe2, LiCrTe2, and NaCrTe2 with a Triangular Lattice.

    PubMed

    Kobayashi, Shintaro; Ueda, Hiroaki; Michioka, Chishiro; Yoshimura, Kazuyoshi

    2016-08-01

    Physical properties of new S = 3/2 triangular-lattice compounds LiCrSe2, LiCrTe2, and NaCrTe2 have been investigated by X-ray diffraction and magnetic measurements. These compounds crystallize in the ordered NiAs-type structure, where alkali metal ions and Cr atoms stack alternately. Despite their isomorphic structures, magnetic properties of these three compounds are different; NaCrTe2 has an A-type spin structure with ferromagnetic layers, LiCrTe2 is likely to exhibit a helical spin structure, and LiCrSe2 shows a first-order-like phase transition from the paramagnetic trigonal phase to the antiferromagnetic monoclinic phase. In these compounds and the other chromium chalcogenides with a triangular lattice, we found a general relationship between the Curie-Weiss temperature and magnetic structures. This relation indicates that the competition between the antiferromagnetic direct d-d exchange interaction and the ferromagnetic superexchange interaction plays an important role in determining the ground state of chromium chalcogenides. PMID:27400024

  5. Influence of thermal and dense-phase carbon dioxide pasteurization on physicochemical properties and flavor compounds in Hami melon juice.

    PubMed

    Chen, Jiluan; Zhang, Jing; Feng, Zuoshan; Song, Lijun; Wu, Jihong; Hu, Xiaosong

    2009-07-01

    The influence of thermal and dense-phase carbon dioxide (DP-CO(2)) pasteurization on physicochemical properties and flavor compounds in Hami melon juice was investigated. Melon juice was pasteurized using DP-CO(2) treatment and compared to a conventional high-temperature-short-time (HTST) method. The DP-CO(2) treatment was carried out using a DP-CO(2) unit (55 degrees C, 60 min, and 35 MPa). The thermal pasteurization was performed at 90 degrees C for 60 s with an adapted laboratory setup. Effects of variations to both treatments on pH and concentrations of microbes, beta-carotene, ascorbic acid, sugars, organic acids, and volatile compounds were investigated. The changes of pH and organic acid and sugar concentrations were not significant. There were significant differences between treatments in microbial count, vitamin C, beta-carotene, and volatile compound concentrations. In general, DP-CO(2) treatment had less of an effect on the measured variables than the thermal treatment.

  6. Lattice QCD

    SciTech Connect

    Bornyakov, V.G.

    2005-06-01

    Possibilities that are provided by a lattice regularization of QCD for studying nonperturbative properties of QCD are discussed. A review of some recent results obtained from computer calculations in lattice QCD is given. In particular, the results for the QCD vacuum structure, the hadron mass spectrum, and the strong coupling constant are considered.

  7. Investigation of atmospheric pressure capillary non-thermal plasmas and their applications to the degradation of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Yin, Shu-Min

    Atmospheric pressure capillary non-thermal plasma (AP-CNTP) has been investigated as a potential technology far the removal of volatile organic compounds (VOCs) in Advanced Life Support Systems (ALS). AP-CNTP is a destructive technology far the removal of VOCs from air streams by active plasma species, such as electrons, ions, and excited molecules. Complete VOC destruction ideally results in the formation of water, carbon dioxide (CO2), and other by-product's may also form, including ozone (O3), nitrous oxide (N2O), nitrogen dioxide (NO2), and decomposed hydrocarbons. Several organic compounds, such as BTEX, ethylene, n-heptane, isooctane, methanol and NH3, were tested in an AP-CNTP system. Parametric experiments were carried out by varying plasma discharge power, flowrates, and initial concentrations. The degradation efficiency varied depending on the chemical nature of the compounds. A plasmochemical kinetic model was derived for toluene, ethylbenzene, and m-xylene and n-heptane.

  8. Superradiance Lattice

    NASA Astrophysics Data System (ADS)

    Wang, Da-Wei; Liu, Ren-Bao; Zhu, Shi-Yao; Scully, Marlan O.

    2015-01-01

    We show that the timed Dicke states of a collection of three-level atoms can form a tight-binding lattice in momentum space. This lattice, coined the superradiance lattice (SL), can be constructed based on electromagnetically induced transparency (EIT). For a one-dimensional SL, we need the coupling field of the EIT system to be a standing wave. The detuning between the two components of the standing wave introduces an effective uniform force in momentum space. The quantum lattice dynamics, such as Bloch oscillations, Wannier-Stark ladders, Bloch band collapsing, and dynamic localization can be observed in the SL. The two-dimensional SL provides a flexible platform for Dirac physics in graphene. The SL can be extended to three and higher dimensions where no analogous real space lattices exist with new physics waiting to be explored.

  9. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air. PMID:26493981

  10. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  11. Thermal noise and optomechanical features in the emission of a membrane-coupled compound cavity laser diode

    PubMed Central

    Baldacci, Lorenzo; Pitanti, Alessandro; Masini, Luca; Arcangeli, Andrea; Colangelo, Francesco; Navarro-Urrios, Daniel; Tredicucci, Alessandro

    2016-01-01

    We demonstrate the use of a compound optical cavity as linear displacement detector, by measuring the thermal motion of a silicon nitride suspended membrane acting as the external mirror of a near-infrared Littrow laser diode. Fluctuations in the laser optical power induced by the membrane vibrations are collected by a photodiode integrated within the laser, and then measured with a spectrum analyzer. The dynamics of the membrane driven by a piezoelectric actuator is investigated as a function of air pressure and actuator displacement in a homodyne configuration. The high Q-factor (~3.4 · 104 at 8.3 · 10−3 mbar) of the fundamental mechanical mode at ~73 kHz guarantees a detection sensitivity high enough for direct measurement of thermal motion at room temperature (~87 pm RMS). The compound cavity system here introduced can be employed as a table-top, cost-effective linear displacement detector for cavity optomechanics. Furthermore, thanks to the strong optical nonlinearities of the laser compound cavity, these systems open new perspectives in the study of non-Markovian quantum properties at the mesoscale. PMID:27538586

  12. Thermal noise and optomechanical features in the emission of a membrane-coupled compound cavity laser diode.

    PubMed

    Baldacci, Lorenzo; Pitanti, Alessandro; Masini, Luca; Arcangeli, Andrea; Colangelo, Francesco; Navarro-Urrios, Daniel; Tredicucci, Alessandro

    2016-01-01

    We demonstrate the use of a compound optical cavity as linear displacement detector, by measuring the thermal motion of a silicon nitride suspended membrane acting as the external mirror of a near-infrared Littrow laser diode. Fluctuations in the laser optical power induced by the membrane vibrations are collected by a photodiode integrated within the laser, and then measured with a spectrum analyzer. The dynamics of the membrane driven by a piezoelectric actuator is investigated as a function of air pressure and actuator displacement in a homodyne configuration. The high Q-factor (~3.4 · 10(4) at 8.3 · 10(-3) mbar) of the fundamental mechanical mode at ~73 kHz guarantees a detection sensitivity high enough for direct measurement of thermal motion at room temperature (~87 pm RMS). The compound cavity system here introduced can be employed as a table-top, cost-effective linear displacement detector for cavity optomechanics. Furthermore, thanks to the strong optical nonlinearities of the laser compound cavity, these systems open new perspectives in the study of non-Markovian quantum properties at the mesoscale. PMID:27538586

  13. Electronic Band Structure, Optical, Thermal and Bonding Properties of XMg2O4(X = Si, Ge) Spinel Compounds

    NASA Astrophysics Data System (ADS)

    Semari, F.; Ouahrani, T.; Khachai, H.; Khenata, R.; Rabah, M.; Bouhemadou, A.; Murtaza, G.; Amin, B.; Rached, D.

    2013-07-01

    Bonding nature as well as structural, optoelectronic and thermal properties of the cubic XMg2O4(X = Si, Ge) spinel compounds have been calculated using a full-potential augmented plane-wave plus local orbitals (FP-APW+lo) method within the density functional theory. The exchange-correlation potential was treated with the PBE-GGA approximation to calculate the total energy. Moreover, the modified Becke-Johnson potential (TB-mBJ) was also applied to improve the electronic band structure calculations. The computed ground-state parameters (a, B, B‧ and u) are in excellent agreements with the available theoretical data. Calculations of the electronic band structure and bonding properties show that these compounds have a direct energy band gap (Γ-Γ) with a dominated ionic character and the TB-mBJ approximation yields larger fundamental band gaps compared to those obtained using the PBE-GGA. Optical properties such as the complex dielectric function ɛ(ω), reflectivity R(ω) and energy loss function L(ω), for incident photon energy up to 40 eV, have been predicted. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the effects of pressure P and temperature T on the thermal expansion coefficient, Debye temperature and heat capacity for the considered compounds are investigated for the first time.

  14. Thermal noise and optomechanical features in the emission of a membrane-coupled compound cavity laser diode

    NASA Astrophysics Data System (ADS)

    Baldacci, Lorenzo; Pitanti, Alessandro; Masini, Luca; Arcangeli, Andrea; Colangelo, Francesco; Navarro-Urrios, Daniel; Tredicucci, Alessandro

    2016-08-01

    We demonstrate the use of a compound optical cavity as linear displacement detector, by measuring the thermal motion of a silicon nitride suspended membrane acting as the external mirror of a near-infrared Littrow laser diode. Fluctuations in the laser optical power induced by the membrane vibrations are collected by a photodiode integrated within the laser, and then measured with a spectrum analyzer. The dynamics of the membrane driven by a piezoelectric actuator is investigated as a function of air pressure and actuator displacement in a homodyne configuration. The high Q-factor (~3.4 · 104 at 8.3 · 10‑3 mbar) of the fundamental mechanical mode at ~73 kHz guarantees a detection sensitivity high enough for direct measurement of thermal motion at room temperature (~87 pm RMS). The compound cavity system here introduced can be employed as a table-top, cost-effective linear displacement detector for cavity optomechanics. Furthermore, thanks to the strong optical nonlinearities of the laser compound cavity, these systems open new perspectives in the study of non-Markovian quantum properties at the mesoscale.

  15. Thermal noise and optomechanical features in the emission of a membrane-coupled compound cavity laser diode.

    PubMed

    Baldacci, Lorenzo; Pitanti, Alessandro; Masini, Luca; Arcangeli, Andrea; Colangelo, Francesco; Navarro-Urrios, Daniel; Tredicucci, Alessandro

    2016-08-19

    We demonstrate the use of a compound optical cavity as linear displacement detector, by measuring the thermal motion of a silicon nitride suspended membrane acting as the external mirror of a near-infrared Littrow laser diode. Fluctuations in the laser optical power induced by the membrane vibrations are collected by a photodiode integrated within the laser, and then measured with a spectrum analyzer. The dynamics of the membrane driven by a piezoelectric actuator is investigated as a function of air pressure and actuator displacement in a homodyne configuration. The high Q-factor (~3.4 · 10(4) at 8.3 · 10(-3) mbar) of the fundamental mechanical mode at ~73 kHz guarantees a detection sensitivity high enough for direct measurement of thermal motion at room temperature (~87 pm RMS). The compound cavity system here introduced can be employed as a table-top, cost-effective linear displacement detector for cavity optomechanics. Furthermore, thanks to the strong optical nonlinearities of the laser compound cavity, these systems open new perspectives in the study of non-Markovian quantum properties at the mesoscale.

  16. Surfactant-thermal method to prepare two novel two-dimensional Mn–Sb–S compounds for photocatalytic applications

    SciTech Connect

    Nie, Lina; Xiong, Wei-Wei; Li, Peizhou; Han, Jianyu; Zhang, Guodong; Yin, Shengming; Zhao, Yanli; Xu, Rong; Zhang, Qichun

    2014-12-15

    Two novel two-dimensional crystalline chalcogenidoantimonates, [MnSb{sub 2}S{sub 4}(N{sub 2}H{sub 4}){sub 2}] (1) and [Mn(tepa)Sb{sub 6}S{sub 10}] (2) (tepa=tetraethylenepentamine), have been successfully synthesized under surfactant-thermal conditions through using PEG-400 and sodium dodecyl sulfate as reaction media, respectively. In compound 1, [MnS{sub 2}N{sub 4}]{sub n}{sup 2n−} species connect [SbS{sub 2}]{sub n}{sup n−} chains via vertex-sharing S atoms to form neutral layered frameworks, while in compound 2, 8-membered windows [Sb{sub 4}S{sub 8}]{sub n}{sup 4n−}, 24-membered windows [Sb{sub 12}S{sub 24}]{sub n}{sup 12n−} and Mn atoms are connected together to form neutral 2D-[MnSb{sub 6}S{sub 10}] layers. All Sb atoms in both complexes form [Sb{sup ⍰}S{sub 3}]{sup 3−} trigonal-pyramid by coordinating with three S atoms. The steep UV–vis absorption edges indicate that 1 and 2 have the band gaps of 1.96 eV and 2.12 eV, respectively. Both compound 1 and 2 show active visible-light-driven photocatalytic properties for hydrogen production. - Graphiacl abstract: Two novel 2D framework sulfides, [MnSb{sub 2}S{sub 4}(N{sub 2}H{sub 4}){sub 2}] (1) and [Mn(tepa)Sb{sub 6}S{sub 10}] (2) (tepa=tetraethylenepentamine), have been successfully synthesized under surfactant-thermal conditions and show active visible-light-driven photocatalytic properties for hydrogen production. - Highlights: • Two novel two-dimensional Mn–Sb–sulfide frameworks. • Synthesis through surfactant-thermal condition. • Photocatalytic properties for hydrogen generation.

  17. X-rays structural analysis and thermal stability studies of the ternary compound {alpha}-AlFeSi

    SciTech Connect

    Roger, J.; Bosselet, F.; Viala, J.C.

    2011-05-15

    From literature data presently available, the decomposition temperature and the nature of the decomposition reaction of the ternary compound {alpha}-AlFeSi (also designated as {alpha}{sub H} or {tau}{sub 5}) are not clearly identified. Moreover, some uncertainties remain concerning its crystal structure. The crystallographic structure and thermochemical behaviour of the ternary compound {alpha}-AlFeSi were meticulously studied. The crystal structure of {alpha}-AlFeSi was examined at room temperature from X-ray single crystal intensity data. It presents hexagonal symmetry, space group P6{sub 3}/mmc with unit cell parameters (293 K) a=12.345(2) A and c=26.210(3) A (V=3459 A{sup 3}). The average chemical formula obtained from refinement is Al{sub 7.1}Fe{sub 2}Si. From isothermal reaction-diffusion experiments and Differential Thermal Analysis, the title compound decomposes peritectically upon heating into {theta}-Fe{sub 4}Al{sub 13}(Si), {gamma}-Al{sub 3}FeSi and a ternary Al-rich liquid. Under atmospheric pressure, the temperature of this reversible transformation has been determined to be 772{+-}12 {sup o}C. -- Graphical abstract: Partial representation of the crystal structure of the {alpha}-Al{sub 7.1}Fe{sub 2}Si compound. Display Omitted Highlights: The main findings of our work are: {yields} a detailed X-rays crystal structure determination of the ternary compound {alpha}-AlFeSi. {yields} The precision of the silicon atoms positions in the crystal structure. {yields} A precised determination of the decomposition temperature of this compound.

  18. Multidimensional gas chromatography using microfluidic switching and low thermal mass gas chromatography for the characterization of targeted volatile organic compounds.

    PubMed

    Luong, J; Gras, R; Hawryluk, M; Shellie, R A; Cortes, H J

    2013-05-01

    Volatile organic compounds such as light hydrocarbons, dienes, and aromatic compounds are often encountered in the manufacturing and processing environments of chemical and petrochemical segments. These compounds need to be closely monitored for process optimization, plant maintenance and industrial hygiene purposes. A high throughput analytical approach has been successfully developed and implemented for the accurate measurement of fourteen commonly encountered analytes. The approach incorporates a recently introduced 5-port planar microfluidic device configured for use as a Deans switch for multidimensional gas chromatography. The use of multidimensional gas chromatography allows the elimination of potential chromatographic contaminants with a substantial enhancement of stationary phase selectivity via the use of columns with different separation mechanisms, and the back-flushing of heavier undesired hydrocarbons. A low thermal mass gas chromatographic module was employed in the second dimension of the two-dimensional gas chromatography system and was used to provide independent temperature control, and rapid heating and cooling to meet the high throughput requirements. By successfully combining these concepts, complete analysis of fourteen targeted components can be conducted in less than 120s. Repeatability of retention times for all compounds was found to be less than 0.05% (n=20). Repeatability of area counts at two levels, namely 10ppmv and 1000ppmv over a period of two days was found to be less than 3% (n=20). Apart from methane, which has a detection limit of 0.4ppmv, the rest of the compounds were found to have detection limits of less than 0.2ppmv. Compounds of interest were found to be linear over a range of 500ppbv-3000ppmv with correlation coefficients greater than 0.999.

  19. First Principles Investigation of the Elastic, Optoelectronic and Thermal Properties of XRuSb: (X = V, Nb, Ta) Semi-Heusler Compounds Using the mBJ Exchange Potential

    NASA Astrophysics Data System (ADS)

    Bencherif, K.; Yakoubi, A.; Della, N.; Miloud Abid, O.; Khachai, H.; Ahmed, R.; Khenata, R.; Bin Omran, S.; Gupta, S. K.; Murtaza, G.

    2016-07-01

    Semi-Heusler materials are intensively investigated due to their potential use in diverse applications, such as in spintronics and green energy applications. In this work, we employ the density functional theory to calculate the structural, electronic, elastic, thermal and optical properties of the VRuSb, NbRuSb and TaRuSb semi-Heusler compounds. The calculated results for the lattice constants, bulk moduli and their corresponding pressure derivative values are in fairly good agreement with previous works. In addition, besides the local density approximation, the modified Becke-Johnson exchange potential is also used to improve the value of the band gaps. The bonding nature reveals a mixture of covalent and ionic bonding character of the VRuSb, NbRuSb and TaRuSb compounds. Furthermore, the elastic constants ( C ij) and the related elastic moduli confirm their stability in the cubic phase and demonstrate their ductile nature. We also analyze the influence of the pressure and temperature on the primitive cell volume, heat capacity, volume expansion coefficient, and Debye temperature of the semi-Heusler compounds. Additionally, we investigate the optical properties, such as the complex dielectric function, refractive index, reflectivity, and the energy loss function.

  20. Thermal engine driven heat pump for recovery of volatile organic compounds

    DOEpatents

    Drake, Richard L.

    1991-01-01

    The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.

  1. Intermolecula transfer and elimination of molecular hydrogen in thermal reactions of unsaturated organic compounds

    SciTech Connect

    Suria, S.

    1995-02-10

    Two reactions which are important to coal liquefaction include intermolecular transfer and the elimination of two hydrogen atoms. We have designed several model reactions to probe the viability of several hydrogen transfer and elimination pathways. This report described studies on these reactions using organic model compounds.

  2. Abiotic formation of hydrocarbons and oxygenated compounds during thermal decomposition of iron oxalate

    NASA Technical Reports Server (NTRS)

    McCollom, T. M.; Simoneit, B. R.

    1999-01-01

    The formation of organic compounds during the decomposition of iron oxalate dihydrate (IOD) was investigated as a possible analog for abiotic organic synthesis in geological systems. After heating at 330 degrees C for 2-4 days, IOD decomposed to a mixture of the minerals siderite and magnetite plus gas and non-volatile organic compounds. The organic products included an extremely large variety of compounds, making identification of individual reaction products difficult. However, the non-volatile products were dominated by several homologous series of alkylated cyclic compounds mostly containing a single aromatic ring, including alkylphenols, alkylbenzenes, alkyltetrahydronaphthols, and alkyltetrahydronaphthalenes. Traces of n-alkanols, n-alkanoic acids, n-alkanones, and n-alkanes were also identified. Carbon in the gas phase was predominantly CO2 (+CO?), with lesser amounts of light hydrocarbons to > C6 including all possible branched and normal isomers of the alkanes and alkenes. The organic products were apparently the result of two concurrent reaction processes: (1) condensation of the two-carbon units present in the initial oxalate moiety, and (2) Fischer-Tropsch-type synthesis from CO2 or CO generated during the experiment. Compounds produced by the former process may not be characteristic of synthesis from the single-carbon precursors which predominate in geologic systems, suggesting iron oxalate decomposition may not provide a particularly suitable analog for investigation of abiotic organic synthesis. When water was included in the reaction vessels, CO2 and traces of methane and light hydrocarbon gases were the only carbon products observed (other than siderite), suggesting that the presence of water allowed the system to proceed rapidly towards equilibrium and precluded the formation of metastable organic intermediates.

  3. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds

    PubMed Central

    Sackett, Tara E.; Thomas, Sean C.

    2016-01-01

    Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha) to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME)–gas chromatography–mass spectrometry (GC-MS) to qualitatively describe organic compounds in both biochar (through headspace extraction), and in the water leachates (through direct injection). Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species-specific patterns of plant

  4. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds.

    PubMed

    Gale, Nigel V; Sackett, Tara E; Thomas, Sean C

    2016-01-01

    Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha) to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME)-gas chromatography-mass spectrometry (GC-MS) to qualitatively describe organic compounds in both biochar (through headspace extraction), and in the water leachates (through direct injection). Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species-specific patterns of plant

  5. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds

    PubMed Central

    Sackett, Tara E.; Thomas, Sean C.

    2016-01-01

    Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha) to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME)–gas chromatography–mass spectrometry (GC-MS) to qualitatively describe organic compounds in both biochar (through headspace extraction), and in the water leachates (through direct injection). Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species-specific patterns of plant

  6. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds.

    PubMed

    Gale, Nigel V; Sackett, Tara E; Thomas, Sean C

    2016-01-01

    Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha) to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME)-gas chromatography-mass spectrometry (GC-MS) to qualitatively describe organic compounds in both biochar (through headspace extraction), and in the water leachates (through direct injection). Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species-specific patterns of plant

  7. [Determination of volatile organic compounds in ambient air by thermal desorption-gas chromatography-triple quadrupole tandem mass spectrometry].

    PubMed

    Feng, Lili; Hu, Xiaofang; Yu, Xiaojuan; Zhang, Wenying

    2016-02-01

    A method was established for the simultaneous determination of 23 volatile organic compounds (VOCs) in ambient air with combination of thermal desorption (TD) and gas chromatography-triple quadrupole tandem mass spectrometry (GC-MS/MS). The air samples were collected by active sampling method using Tenax-TA sorbent tubes, and desorbed by thermal desorption. The analytes were determined by GC-MS/MS in selected reaction monitoring (SRM) mode, and internal standard method was applied to quantify the VOCs. The results of all the 23 VOCs showed good linearities in low level (0. 01-1 ng) and high level (1-100 ng) with all the correlation coefficients (r2) more than 0. 99. The method quantification limits were between 0. 000 08-1 µg/m3. The method was validated by means of recovery experiments (n = 6) at three spiked levels of 2, 10 and 50 ng. The recoveries between 77% and 124% were generally obtained. The relative standard deviations (RSDs) in all cases were lower than 20%, except for chlorobenzene at the low spiked level. The developed method was applied to determine VOCs in ambient air collected at three sites in Shanghai. Several compounds, like benzene, toluene, ethylbenzene, m-xylenes, p-xylenes, styrene, 1, 2, 4-trimethylbenzene and hexachlorobutadiene were detected and confirmed in all the samples analyzed. The method is highly accurate, reliable and sensitive for monitoring the VOCs in ambient air. PMID:27382728

  8. Fabrication of Porous Copper with Directional Pores through Thermal Decomposition of Compounds

    NASA Astrophysics Data System (ADS)

    Nakajima, Hideo; Ide, Takuya

    2008-02-01

    Lotus-type porous copper with aligned long cylindrical pores was fabricated by unidirectional solidification in an argon atmosphere. The hydrogen dissolved in molten copper through thermal decomposition of titanium hydride contained in the mold, which then formed hydrogen gas that evolved into the gas pores in the solidified copper. On the other hand, titanium may form oxides in the melt that serve as nucleation sites for insoluble hydrogen. The porosity and pore size decreased with increasing atmospheric argon pressure during the solidification, which can be explained by the Boyle-Charles law and the possible suppression of the decomposition due to external pressure. The addition of titanium hydride was more effective when it was added just before the melt solidified than when it was added to the melt. Moreover, the thermal decomposition method (TDM) is superior to the conventional fabrication method, which requires high pressure hydrogen gas. Thus, TDM is a promising fabrication technique for various lotus metals.

  9. Wet thermal oxidation of Al(x)Ga(1-x)As compounds

    NASA Astrophysics Data System (ADS)

    Burton, R. S.; Schlesinger, T. E.

    1994-11-01

    Results are presented on the wet thermal oxidation of Al(x)Ga(1-x)As. The growth of wet thermal oxides of Al(x)Ga(1-x)As is shown to be linear with time. An O2 carrier gas was found to form a self-terminating oxide for compositions investigated (x greater than 0.4), but required elevated temperature for substantial growth. The use of a medium oxygen concentration (about 20%) in a N2 carrier formed nonuniform oxides for all compositions investigated. A low O2 concentration (0.1%) in the N2 carrier was found to reduce the activation energy of the oxidation process for Al(0.6)Ga(0.4)As from 1.9 to 1.0 eV while increasing the activation energy of Al(0.8)Ga(0.2)As from 1.6 to 1.75 eV. For these wet thermal oxides it is observed that lateral oxidation at heterojunction interfaces is enhanced. This enhanced lateral oxidation can be attributed to local stress due to the smaller volume of the growing oxide compared to the volume of the consumed semiconductor.

  10. Phosphorescence versus thermally activated delayed fluorescence. Controlling singlet-triplet splitting in brightly emitting and sublimable Cu(I) compounds.

    PubMed

    Leitl, Markus J; Krylova, Valentina A; Djurovich, Peter I; Thompson, Mark E; Yersin, Hartmut

    2014-11-12

    Photophysical properties of two highly emissive three-coordinate Cu(I) complexes, (IPr)Cu(py2-BMe2) (1) and (Bzl-3,5Me)Cu(py2-BMe2) (2), with two different N-heterocyclic (NHC) ligands were investigated in detail (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene; Bzl-3,5Me = 1,3-bis(3,5-dimethylphenyl)-1H-benzo[d]imidazol-2-ylidene; py2-BMe2 = di(2-pyridyl)dimethylborate). The compounds exhibit remarkably high emission quantum yields of more than 70% in the powder phase. Despite similar chemical structures of both complexes, only compound 1 exhibits thermally activated delayed blue fluorescence (TADF), whereas compound 2 shows a pure, yellow phosphorescence. This behavior is related to the torsion angles between the two ligands. Changing this angle has a huge impact on the energy splitting between the first excited singlet state S1 and triplet state T1 and therefore on the TADF properties. In addition, it was found that, in both compounds, spin-orbit coupling (SOC) is particularly effective compared to other Cu(I) complexes. This is reflected in short emission decay times of the triplet states of only 34 μs (1) and 21 μs (2), respectively, as well as in the zero-field splittings of the triplet states amounting to 4 cm(-1) (0.5 meV) for 1 and 5 cm(-1) (0.6 meV) for 2. Accordingly, at ambient temperature, compound 1 exhibits two radiative decay paths which are thermally equilibrated: one via the S1 state as TADF path (62%) and one via the T1 state as phosphorescence path (38%). Thus, if this material is applied in an organic light-emitting diode, the generated excitons are harvested mainly in the singlet state, but to a significant portion also in the triplet state. This novel mechanism based on two separate radiative decay paths reduces the overall emission decay time distinctly. PMID:25260042

  11. Surfactant-thermal method to prepare two novel two-dimensional Mn-Sb-S compounds for photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Nie, Lina; Xiong, Wei-Wei; Li, Peizhou; Han, Jianyu; Zhang, Guodong; Yin, Shengming; Zhao, Yanli; Xu, Rong; Zhang, Qichun

    2014-12-01

    Two novel two-dimensional crystalline chalcogenidoantimonates, [MnSb2S4(N2H4)2] (1) and [Mn(tepa)Sb6S10] (2) (tepa=tetraethylenepentamine), have been successfully synthesized under surfactant-thermal conditions through using PEG-400 and sodium dodecyl sulfate as reaction media, respectively. In compound 1, [MnS2N4]n2n- species connect [SbS2]nn- chains via vertex-sharing S atoms to form neutral layered frameworks, while in compound 2, 8-membered windows [Sb4S8]n4n-, 24-membered windows [Sb12S24]n12n- and Mn atoms are connected together to form neutral 2D-[MnSb6S10] layers. All Sb atoms in both complexes form [SbшS3]3- trigonal-pyramid by coordinating with three S atoms. The steep UV-vis absorption edges indicate that 1 and 2 have the band gaps of 1.96 eV and 2.12 eV, respectively. Both compound 1 and 2 show active visible-light-driven photocatalytic properties for hydrogen production.

  12. Synthesis and characterization of an energetic compound Cu(Mtta)2(NO3)2 and effect on thermal decomposition of ammonium perchlorate.

    PubMed

    Yang, Qi; Chen, Sanping; Xie, Gang; Gao, Shengli

    2011-12-15

    An energetic coordination compound Cu(Mtta)(2)(NO(3))(2) has been synthesized by using 1-methyltetrazole (Mtta) as ligand and its structure has been characterized by X-ray single crystal diffraction. The central copper (II) cation was coordinated by four O atoms from two Mtta ligands and two N atoms from two NO(3)(-) anions to form a six-coordinated and distorted octahedral structure. 2D superamolecular layer structure was formed by the extensive intermolecular hydrogen bonds between Mtta ligands and NO(3)(-) anions. Thermal decomposition process of the compound was predicted based on DSC and TG-DTG analyses results. The kinetic parameters of the first exothermic process of the compound were studied by the Kissinger's and Ozawa-Doyle's methods. Sensitivity tests revealed that the compound was insensitive to mechanical stimuli. In addition, compound was explored as additive to promote the thermal decomposition of ammonium perchlorate (AP) by differential scanning calorimetry.

  13. Low-Temperature Magnetic and Thermal Properties of Some Low-Dimensional Compounds

    NASA Astrophysics Data System (ADS)

    Lukin, Jonathan Allen

    Heat capacity and A.C. susceptibility measurements of powdered alpha-rm MnC_2O_4cdot2H_2O have led to its description as a Heisenberg chain antiferromagnet with exchange J/k = -1.17(2) K. Anomalies in C_{p} signal the onset of long-range order at T_{N} = 2.4 K and an order-order transition at T_2 = 1.5 K. For T_2lattice were deduced. The powder susceptibility and heat capacity of alpha- rm CoC_2O_4cdot2H_2O delineate a 2D Ising antiferromagnet with J/k = -30+/- 2 K, | J^'/J |~ 3times 10^{-3}, and an ordering temperature T_{N }=6.23(2) K. The measured susceptibility above 20 K of alpha-rm NiC _2O_4cdot2H_2O agrees with that of a spin-1 Heisenberg chain with J/k = -19.5+/- 1 K; a peak in C_{p } indicates magnetic ordering at T _{N} = 6.33(2) K. X-ray diffraction, heat capacity, and magnetic susceptibility measurements of rm ErBa_2Cu _3O_{x} with 6.12 <= x<=6.91 revealed several effects correlated with the oxygen concentration x. The fully -oxygenated orthorhombic material, with a superconducting transition temperature T_{c} = 92 K, exhibits a 2D Ising-like peak corresponding to magnetic ordering of the Er^{3+} moments at T_{m} = 0.604 K. Removal of oxygen reduces the lattice orthorhombicity and depresses both T_{c} and T_{m}, until in the 2 = 6.12, 6.23 tetragonal phases superconductivity and long-range magnetic order are quenched. These

  14. Role of volatile compounds on the thermal evolution of Pluto and Charon

    NASA Astrophysics Data System (ADS)

    Mitri, G.; Tobie, G.; Bellino, G.; Yao, C.; Deschamps, F.; Cadek, O.; Mège, D.

    2015-12-01

    The first images taken by New Horizons suggest that the dwarf planet Pluto and its moon Charon are much more active than previously anticipated, with possible recent resurfacing events. This is unexpected for bodies the sizes of Pluto and Charon several billions after their formation. Radiogenic heating is expected to be rather low at present, and tidal heating due to the interaction between the two companions may have played a role but only during the early stage of the evolution before the system reached dual synchronization (Robuchon and Nimmo, Icarus 2011; Barr and Collins, Icarus 2015). Recent resurfacings may suggests a slow cooling of the interior associated with recent activation of dynamical processes in the interior, possibly helped by the presence of anti-freezing compounds, such as ammonia and methanol, and low-conductivity gas clathrates. In order to determine in which conditions Pluto and Charon may be active several billions after their formation, we investigate the role of anti-freezing compounds (ammonia and methanol) and gas compounds on the formation and evolution of an internal ocean. Using a parameterized model initially developed for Titan (Tobie et al. Icarus, 2005), we model the thermo-chemical evolution of Pluto's and Charon's interior, including the formation of an internal ocean and its subsequent crystallization, the formation/dissociation of gas clathrates and their feedback on the internal cooling rate, by assuming various initial compositions. A particular attention will be paid on the conditions under which convective instabilities may initiate in the outer ice shell, on the coupling between ocean crystallization and surface deformation, and on their consequences for the geological activity of Pluto and Charon.

  15. Synthesis, characterization, thermal properties and antiproliferative potential of copper(II) 4'-phenyl-terpyridine compounds.

    PubMed

    Ma, Zhen; Zhang, Bian; Guedes da Silva, M Fátima C; Silva, Joana; Mendo, Ana Soraia; Baptista, Pedro Viana; Fernandes, Alexandra R; Pombeiro, Armando J L

    2016-03-28

    Reactions between 4'-phenyl-terpyridine (L) and several Cu(II) salts (p-toluenesulfonate, benzoate and o-, m- or p-hydroxybenzoate) led to the formation of [Cu(p-SO3C6H4CH3)L(H2O)2](p-SO3C6H4CH3) (1), [Cu(OCOPh)2L] (2), [Cu(o-OCOC6H4OH)2L] (3), [Cu(m-OCOC6H4OH)2L]4·MeOH (·MeOH) and [Cu(p-OCOC6H4OH)2L]5·2H2O (·2H2O), which were characterized by elemental and TG-DTA analyses, ESI-MS, IR spectroscopy and single crystal X-ray diffraction, as well as by conductivimetry. In all structures the Cu atoms present N3O3 octahedral coordination geometries, which, in 2-5, are highly distorted as a result of the chelating-bidentate mode of one of the carboxylate ligands. Intermolecular π···π stacking interactions could also be found in 2-5 (in the 3.569-3.651 Å range and involving solely the pyridyl rings). Medium-strong hydrogen bond interactions lead to infinite 1D chains (in 1 and 4) and to an infinite 2D network (in 5). Compounds 1 and 4 show high in vitro cytotoxicity towards HCT116 colorectal carcinoma and HepG2 hepatocellular carcinoma cell lines. The antiproliferative potential of compound 1 is due to an increase of the apoptotic process that was confirmed by Hoechst staining, flow cytometry and RT-qPCR. All compounds able to non-covalently intercalate the DNA helix and induce in vitro pDNA double-strand breaks in the absence of H2O2. Concerning compound 1, the hydroxyl radical and singlet oxygen do not appear to be involved in the pDNA cleavage process and the fact that this cleavage also occurs in the absence of molecular oxygen points to a hydrolytic mechanism of cleavage.

  16. Characterization of thermal desorption with the Deans-switch technique in gas chromatographic analysis of volatile organic compounds.

    PubMed

    Ou-Yang, Chang-Feng; Huang, Ying-Xue; Huang, Ting-Jyun; Chen, Yong-Shen; Wang, Chieh-Heng; Wang, Jia-Lin

    2016-09-01

    This study presents a novel application based on the Deans-switch cutting technique to characterize the thermal-desorption (TD) properties for gas chromatographic (GC) analysis of ambient volatile organic compounds (VOCs). Flash-heating of the sorbent bed at high temperatures to desorb trapped VOCs to GC may easily produce severe asymmetric or tailing GC peaks affecting resolution and sensitivity if care is not taken to optimize the TD conditions. The TD peak without GC separation was first examined for the quality of the TD peak by analyzing a standard gas mixture from C2 to C12 at ppb level. The Deans switch was later applied in two different stages. First, it was used to cut the trailing tail of the TD peak, which, although significantly improved the GC peak symmetry, led to more loss of the higher boiling compounds than the low boiling ones, thus suggesting compound discrimination. Subsequently, the Deans switch was used to dissect the TD peak into six 30s slices in series, and an uneven distribution in composition between the slices were found. A progressive decrease in low boiling compounds and increase in higher boiling ones across the slices indicated severe inhomogeneity in the TD profile. This finding provided a clear evidence to answer the discrimination problem found with the tail cutting approach to improve peak symmetry. Through the use of the innovated slicing method based on the Deans-switch cutting technique, optimization of TD injection for highly resolved, symmetric and non-discriminated GC peaks can now be more quantitatively assessed and guided. PMID:27492597

  17. Thermal instability of compound variants of carnitine palmitoyltransferase II and impaired mitochondrial fuel utilization in influenza-associated encephalopathy.

    PubMed

    Yao, Dengbing; Mizuguchi, Hiroshi; Yamaguchi, Miyoko; Yamada, Hiroshi; Chida, Junji; Shikata, Koji; Kido, Hiroshi

    2008-05-01

    Influenza-associated encephalopathy (IAE) is characterized by persistent high fever, febrile convulsions, severe brain edema, and high mortality in otherwise apparently healthy individuals. We have reported that a large proportion of patients suffering from disabling or fatal IAE, with transiently elevated serum acylcarnitine during high fever, exhibit a thermolabile phenotype of compound homo-/heterozygous variants of carnitine palmitoyltransferase II (CPT II, gene symbol CPT2). We characterized the enzymatic properties of five single and three compound CPT II variants in patients with IAE. The kinetic characteristics of WT and variant CPT IIs, expressed in COS-7 cells, indicated that the variants exert a dominant-negative effect on the homotetrameric protein of the enzyme. Among the variants, three compound variations found in patients with severe encephalopathy; [c.1055T>G (p.Phe352Cys); c.1102G>A (p.Val368Ile)], [c.1511C>T (p.Pro504Leu); c.1813G>C (p.Val605Leu)], and [c.1055T>G (p.Phe352Cys); c.1102G>A (p.Val368Ile); c.1813G>C (p.Val605Leu)], showed reduced activities, thermal instability, and short half-lives compared with the WT. Like other disease-causing mutant proteins, these variant proteins were poly-ubiquitinated and rapidly degraded by a lactacystin-sensitive proteasome pathway. COS-7 cells transfected with the compound variants had their fatty acid beta-oxidation decreased to 30-59% and intracellular ATP levels to 48-79%, and a marked reduction of mitochondrial membrane potential at 41 degrees C, compared with control cells transfected with WT at 37 degrees C. The unstable CPT II variants with decreased enzymatic activities may bring mitochondrial fuel utilization below the phenotypic threshold during high fever, and thus may play an important etiopathological role in the development of brain edema of IAE.

  18. Characterization of thermal desorption with the Deans-switch technique in gas chromatographic analysis of volatile organic compounds.

    PubMed

    Ou-Yang, Chang-Feng; Huang, Ying-Xue; Huang, Ting-Jyun; Chen, Yong-Shen; Wang, Chieh-Heng; Wang, Jia-Lin

    2016-09-01

    This study presents a novel application based on the Deans-switch cutting technique to characterize the thermal-desorption (TD) properties for gas chromatographic (GC) analysis of ambient volatile organic compounds (VOCs). Flash-heating of the sorbent bed at high temperatures to desorb trapped VOCs to GC may easily produce severe asymmetric or tailing GC peaks affecting resolution and sensitivity if care is not taken to optimize the TD conditions. The TD peak without GC separation was first examined for the quality of the TD peak by analyzing a standard gas mixture from C2 to C12 at ppb level. The Deans switch was later applied in two different stages. First, it was used to cut the trailing tail of the TD peak, which, although significantly improved the GC peak symmetry, led to more loss of the higher boiling compounds than the low boiling ones, thus suggesting compound discrimination. Subsequently, the Deans switch was used to dissect the TD peak into six 30s slices in series, and an uneven distribution in composition between the slices were found. A progressive decrease in low boiling compounds and increase in higher boiling ones across the slices indicated severe inhomogeneity in the TD profile. This finding provided a clear evidence to answer the discrimination problem found with the tail cutting approach to improve peak symmetry. Through the use of the innovated slicing method based on the Deans-switch cutting technique, optimization of TD injection for highly resolved, symmetric and non-discriminated GC peaks can now be more quantitatively assessed and guided.

  19. Degradation of pharmaceutical compound pentoxifylline in water by non-thermal plasma treatment.

    PubMed

    Magureanu, Monica; Piroi, Daniela; Mandache, Nicolae Bogdan; David, Victor; Medvedovici, Andrei; Parvulescu, Vasile I

    2010-06-01

    The decomposition of a model pharmaceutical compound, pentoxifylline, in aqueous solution was investigated using a dielectric barrier discharge (DBD) in coaxial configuration, operated in pulsed regime, at atmospheric pressure and room temperature. The solution was made to flow as a film over the surface of the inner electrode of the plasma reactor, so the discharge was generated at the gas-liquid interface. Oxygen was introduced with a flow rate of 600sccm. After 60min plasma treatment 92.5% removal of pentoxifylline was achieved and the corresponding decomposition yield was 16g/kWh. It was found that pentoxifylline degradation depended on the initial concentration of the compound, being faster for lower concentrations. Faster decomposition of pentoxifylline could be also achieved by increasing the pulse repetition rate, and implicitly the power introduced in the discharge, however, this had little effect on the decomposition yield. The degradation products were investigated by liquid chromatography-mass spectrometry technique (LC-MS). The evolution of the intermediates during plasma treatment showed a fast increase in the first 30min, followed by a slower decrease, so that these products are almost completely removed after 120min treatment time.

  20. Comparison of Sn-Ag-Cu Solder Alloy Intermetallic Compound Growth Under Different Thermal Excursions for Fine-Pitch Flip-Chip Assemblies

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Liu, Xi; Chow, Justin; Wu, Yi Ping; Sitaraman, Suresh K.

    2013-08-01

    The intermetallic compound (IMC) evolution in Cu pad/Sn-Ag-Cu solder interface and Sn-Ag-Cu solder/Ni pad interface was investigated using thermal shock experiments with 100- μm-pitch flip-chip assemblies. The experiments show that low standoff height of solder joints and high thermomechanical stress play a great role in the interfacial IMC microstructure evolution under thermal shock, and strong cross-reaction of pad metallurgies is evident in the intermetallic growth. Furthermore, by comparing the IMC growth during thermal aging and thermal shock, it was found that thermal shock accelerates IMC growth and that kinetic models based on thermal aging experiments underpredict IMC growth in thermal shock experiments. Therefore, new diffusion kinetic parameters were determined for the growth of (Cu,Ni)6Sn5 using thermal shock experiments, and the Cu diffusion coefficient through the IMC layer was calculated to be 0.2028 μm2/h under thermal shock. Finite-element models also show that the solder stresses are higher under thermal shock, which could explain why the IMC growth is faster and greater under thermal shock cycling as opposed to thermal aging.

  1. Synthesis, characterization and thermal studies on metal complexes of new azo compounds derived from sulfa drugs

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Gad-Elkareem, Mohamed A. M.

    2007-12-01

    Four new azo ligands, L1 and HL2-4, of sulfa drugs have been prepared and characterized. [MX 2(L1)(H 2O) m]· nH 2O; [(MX 2) 2(HL2 or HL3)(H 2O) m]· nH 2O and [M 2X 3(L4)(H 2O)]· nH 2O; M = Co(II), Ni(II) and Cu(II) (X = Cl) and Zn(II) (X = AcO); m = 0-4 and n = 0-3, complexes were prepared. Elemental and thermal analyses (TGA and DTA), IR, solid reflectance spectra, magnetic moment and molar conductance measurements have accomplished characterization of the complexes. The IR data reveal that HL1 and HL2-3 ligands behave as a bidentate neutral ligands while HL4 ligand behaves as a bidentate monoionic ligand. They coordinated to the metal ions via the carbonyl O, enolic sulfonamide sbnd S(O)OH, pyrazole or thiazole N and azo N groups. The molar conductance data reveal that the chelates are non-electrolytes. From the solid reflectance spectra and magnetic moment data, the complexes were found to have octahedral, tetrahedral and square planar geometrical structures. The thermal behaviour of these chelates shows that the water molecules (hydrated and coordinated) and the anions are removed in a successive two steps followed immediately by decomposition of the ligand in the subsequent steps. The activation thermodynamic parameters, such as, E*, Δ H*, Δ S* and Δ G* are calculated from the TG curves applying Coats-Redfern method.

  2. Crystal structures, lattice potential energies, and thermochemical properties of crystalline compounds (1-C(n)H(2n+1)NH3)2ZnCl4(s) (n = 8, 10, 12, and 13).

    PubMed

    Liu, Yupu; Di, Youying; He, Donghua; Zhou, Qian; Dou, Jianmin

    2011-11-01

    As part of our ongoing project involving the study of (1-C(n)H(2n+1)NH(3))(2)MCl(4)(s) (where M is a divalent metal ion and n = 8-18), we have synthesized the compounds (1-C(n)H(2n+1)NH(3))(2)ZnCl(4)(s) (n = 8, 10, 12, and 13), and the details of the structures are reported herein. All of the compounds were crystallized in the monoclinic form with the space group P2(1)/n for (1-C(8)H(17)NH(3))(2)ZnCl(4)(s), P21/c for (1-C(10)H(21)NH(3))(2)ZnCl(4)(s), P2(1)/c for (1-C(12)H(25)NH(3))(2)ZnCl(4)(s), and P2(1)/m for (1-C(13)H(27)NH(3))(2)ZnCl(4)(s). The lattice potential energies and ionic volumes of the cations and the common anion of the title compounds were obtained from crystallographic data. Molar enthalpies of dissolution of the four compounds at various molalities were measured at 298.15 K in the double-distilled water. According to Pitzer's theory, molar enthalpies of dissolution of the title compounds at infinite dilution were obtained. Finally, using the values of molar enthalpies of dissolution at infinite dilution (Δ(s)H(m)(∞)) and other auxiliary thermodynamic data, the enthalpy change of the dissociation of [ZnCl(4)](2-)(g) for the reaction [ZnCl(4)](2-)(g)→ Zn(2+)(g) + 4Cl(-)(g) was obtained, and then the hydration enthalpies of cations were calculated by designing a thermochemical cycle.

  3. Improving breakdown, conductive, and thermal performances for SOI high voltage LDMOS using a partial compound buried layer

    NASA Astrophysics Data System (ADS)

    Hu, Shengdong; Luo, Jun; Jiang, YuYu; Cheng, Kun; Chen, Yinhui; Jin, Jingjing; Wang, Jian'an; Zhou, Jianlin; Tang, Fang; Zhou, Xichuan; Gan, Ping

    2016-03-01

    A novel SOI LDMOS with a partial compound buried layer structure (P-CBL SOI) is proposed in this paper. The buried oxide layer at the source-side is replaced by a compound buried layer (CBL) of "top oxide-middle polysilicon-bottom oxide", and the buried oxide layer at the drain-side is just as the conventional SOI LDMOS (C-SOI). Firstly, a new peak of electric field is introduced at the interface and the whole lateral electric field in the top silicon layer is modulated, resulting in a higher lateral BV. Secondly, impurity doping meeting the RESURF effect in the top silicon layer is higher because the top oxide is thinner than the conventional buried oxide layer, leading to a lower Ron,sp at the on-state and an enhanced vertical BV at the off-state. Finally, thermal conductivity of polysilicon is higher than that of SiO2, offering a lower self-heating effect. The influences of structure parameters on the devices performances are investigated. Compared with those of C-SOI LDMOS on the same top silicon layer of 4 μm, buried dielectric layer of 4 μm, and drift region of 40 μm, BV of P-CBL SOI LDMOS is enhanced by 33.4%, Ron,sp is reduced by 37.4%, and the maximum temperature at the power of 1 mW/μm is depressed by 13.3 K, respectively.

  4. Testing and linearity calibration of films of phenol compounds exposed to thermal neutron field for EPR dosimetry.

    PubMed

    Gallo, S; Panzeca, S; Longo, A; Altieri, S; Bentivoglio, A; Dondi, D; Marconi, R P; Protti, N; Zeffiro, A; Marrale, M

    2015-12-01

    This paper reports the preliminary results obtained by Electron Paramagnetic Resonance (EPR) measurements on films of IRGANOX® 1076 phenols with and without low content (5% by weight) of gadolinium oxide (Gd2O3) exposed in the thermal column of the Triga Mark II reactor of LENA (Laboratorio Energia Nucleare Applicata) of Pavia (Italy). Thanks to their size, the phenolic films here presented are good devices for the dosimetry of beams with high dose gradient and which require accurate knowledge of the precise dose delivered. The dependence of EPR signal as function of neutron dose was investigated in the fluence range between 10(11) cm(-2) and 10(14) cm(-2). Linearity of EPR response was found and the signal was compared with that of commercial alanine films. Our analysis showed that gadolinium oxide (5% by weight) can enhance the thermal neutron sensitivity more than 18 times. Irradiated dosimetric films of phenolic compound exhibited EPR signal fading of about 4% after 10 days from irradiation. PMID:26242561

  5. Secondary and compound concentrators for parabolic-dish solar-thermal power systems

    SciTech Connect

    Jaffe, L.D.; Poon, P.T.

    1981-04-15

    A secondary optical element may be added to a parabolic dish solar concentrator to increase the geometric concentration ratio attainable at a given intercept factor. This secondary may be a Fresnel lens or a mirror, such as a compound elliptic concentrator or a hyperbolic trumpet. At a fixed intercept factor, higher overall geometric concentration may be obtainable with a long focal length primary and a suitable secondary matched to it. Use of a secondary to increase the geometric concentration ratio is more likely to be worthwhile if the receiver temperature is high and if errors in the primary are large. Folding the optical path with a secondary may reduce cost by locating the receiver and power conversion equipment closer to the ground and by eliminating the heavy structure needed to support this equipment at the primary focus. Promising folded-path configurations include the Ritchey-Chretien and perhaps some three-element geometries. Folding the optical path may be most useful in systems that provide process heat.

  6. Adsorption and desorption characteristics of semiconductor volatile organic compounds on the thermal swing honeycomb zeolite concentrator.

    PubMed

    Chang, Feng-Tang; Lin, Yu-Chih; Bai, Hsunling; Pei, Bau-Shei

    2003-11-01

    The use of a honeycomb zeolite concentrator and an oxidation process is one of the most popular methods demonstrated to control volatile organic compound (VOCs) emissions from waste gases in semiconductor manufacturing plants. This study attempts to characterize the performance of a concentrator in terms of the removal efficiencies of semiconductor VOCs (isopropyl alcohol [IPA], acetone, propylene glycol methyl ether [PGME], and propylene glycol monomethyl ether acetate [PGMEA]) under several parameters that govern the actual operations. Experimental results indicated that at inlet temperatures of under 40 degrees C and a relative humidity of under 80%, the removal efficiency of a zeolite concentrator can be maintained well over 90%. The optimal rotation speed of the concentrator is between 3 and 4.5 rph in this study. The optimal rotation speed increases with the VOCs inlet concentration. Furthermore, reducing the concentration ratio helps to increase the removal efficiency, but it also increases the incineration cost. With reference to competitive adsorption, PGMEA and PGME are more easily adsorbed on a zeolite concentrator than are IPA and acetone because of their high boiling points and molecular weights.

  7. Secondary and compound concentrators for parabolic dish solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Poon, P. T.

    1981-01-01

    A secondary optical element may be added to a parabolic dish solar concentrator to increase the geometric concentration ratio attainable at a given intercept factor. This secondary may be a Fresnel lens or a mirror, such as a compound elliptic concentrator or a hyperbolic trumpet. At a fixed intercept factor, higher overall geometric concentration may be obtainable with a long focal length primary and a suitable secondary matched to it. Use of a secondary to increase the geometric concentration ratio is more likely to e worthwhile if the receiver temperature is high and if errors in the primary are large. Folding the optical path with a secondary may reduce cost by locating the receiver and power conversion equipment closer to the ground and by eliminating the heavy structure needed to support this equipment at the primary focus. Promising folded-path configurations include the Ritchey-Chretien and perhaps some three element geometries. Folding the optical path may be most useful in systems that provide process heat.

  8. Treatment of malignant melanoma by selective thermal neutron capture therapy using melanoma-seeking compound.

    PubMed

    Mishima, Y; Ichihashi, M; Tsuji, M; Hatta, S; Ueda, M; Honda, C; Suzuki, T

    1989-05-01

    As pigment cells undergo melanoma genesis, accentuated melanogenesis concurrently occurs in principle. Subsequent to the understanding of intrinsic factors controlling both processes, we found our selective melanoma neutron capture therapy (NCT) using 10B-dopa (melanin substrate) analogue, 10B1-p-boronophenylalanine (10B1-BPA), followed by 10B(n, alpha)7Li reaction, induced by essentially harmless thermal neutrons, which releases energy of 2.33 MeV to 14 mu, the diameter of melanoma cells. In vitro/in vivo radiobiological analysis revealed the highly enhanced melanoma killing effect of 10B1-BPA. Chemical and prompt gamma ray spectrometry assays of 10B accumulated within melanoma cells after 10B1-BPA administration in vitro and in vivo show high affinity, e.g., 10B melanoma/blood ratio of 11.5. After successfully eradicating melanoma transplanted into hamsters with NCT, we advanced to preclinical studies using spontaneously occurring melanoma in Duroc pig skin. We cured three melanoma cases, 4.6 to 12 cm in diameter, by single neutron capture treatment. Complete disappearance of melanoma was obtained without substantial side effects. Acute and subacute toxicity as well as pharmacodynamics of 10B1-BPA have been studied in relation to therapeutic dosage requirements. Clinical radiation dosimetry using human phantom has been carried out. Further preclinical studies using human melanoma transplanted into nude mouse have been a useful model for obtaining optimal results for each melanoma type. We recently treated the first human melanoma patient with our NCT, using essentially the method for Duroc pig melanoma, and obtained similar regression time course leading to cure.

  9. Treatment of malignant melanoma by selective thermal neutron capture therapy using melanoma-seeking compound

    SciTech Connect

    Mishima, Y.; Ichihashi, M.; Tsuji, M.; Hatta, S.; Ueda, M.; Honda, C.; Suzuki, T.

    1989-05-01

    As pigment cells undergo melanoma genesis, accentuated melanogenesis concurrently occurs in principle. Subsequent to the understanding of intrinsic factors controlling both processes, we found our selective melanoma neutron capture therapy (NCT) using 10B-dopa (melanin substrate) analogue, 10B1-p-boronophenylalanine (10B1-BPA), followed by 10B(n, alpha)7Li reaction, induced by essentially harmless thermal neutrons, which releases energy of 2.33 MeV to 14 mu, the diameter of melanoma cells. In vitro/in vivo radiobiological analysis revealed the highly enhanced melanoma killing effect of 10B1-BPA. Chemical and prompt gamma ray spectrometry assays of 10B accumulated within melanoma cells after 10B1-BPA administration in vitro and in vivo show high affinity, e.g., 10B melanoma/blood ratio of 11.5. After successfully eradicating melanoma transplanted into hamsters with NCT, we advanced to preclinical studies using spontaneously occurring melanoma in Duroc pig skin. We cured three melanoma cases, 4.6 to 12 cm in diameter, by single neutron capture treatment. Complete disappearance of melanoma was obtained without substantial side effects. Acute and subacute toxicity as well as pharmacodynamics of 10B1-BPA have been studied in relation to therapeutic dosage requirements. Clinical radiation dosimetry using human phantom has been carried out. Further preclinical studies using human melanoma transplanted into nude mouse have been a useful model for obtaining optimal results for each melanoma type. We recently treated the first human melanoma patient with our NCT, using essentially the method for Duroc pig melanoma, and obtained similar regression time course leading to cure.

  10. Multistage symmetry breaking in the breathing pyrochlore lattice Li(Ga ,In )Cr 4O8

    NASA Astrophysics Data System (ADS)

    Lee, S.; Do, S.-H.; Lee, W.-J.; Choi, Y. S.; Lee, M.; Choi, E. S.; Reyes, A. P.; Kuhns, P. L.; Ozarowski, A.; Choi, K.-Y.

    2016-05-01

    We present magnetic susceptibility, dielectric constant, high-frequency electron spin resonance, 7Li nuclear magnetic resonance, and zero-field muon spin relaxation measurements of LiACr4O8 (A =Ga , In), towards realizing a breathing pyrochlore lattice. Unlike the uniform pyrochlore ZnCr2O4 lattice, both the In and the Ga compounds feature two-stage symmetry breaking: a magnetostructural phase transition with subsequent antiferromagnetic ordering. We find a disparate symmetry breaking process between the In and the Ga compounds, having different degrees of bond alternation. Our data reveal that the Ga compound with moderate bond alternation shows the concomitant structural and magnetic transition at TS=15.2 K, followed by the magnetic ordering at Tm=12.9 K. In contrast, the In compound with strong bond alternation undergoes a thermal crossover at T*≈20.1 K from a tetramer singlet to a dimer singlet or a correlated paramagnet with a separate weak magnetostructural transition at TS=17.6 K and the second antiferromagnetic ordering at Tm=13.7 K. This suggests that the magnetic phases and correlations of the breathing pyrochlore lattice can be determined from the competition between bond alternation and spin-lattice coupling, thus stabilizing long-range magnetic ordering against a nonmagnetic singlet.

  11. Magnetic structure of the antiferromagnetic Kondo lattice compounds CeRhAl4Si2 and CeIrAl4Si2

    SciTech Connect

    Ghimire, N. J.; Calder, S.; Janoschek, M.; Bauer, E. D.

    2015-06-01

    In this article, we have investigated the magnetic ground state of the antiferromagnetic Kondo-lattice compounds CeMAl4Si2(M = Rh, Ir) using neutron powder diffraction. Although both of these compounds show two magnetic transitions TN1 and TN2 in the bulk properties measurements, evidence for magnetic long-range order was only found below the lower transition TN2. Analysis of the diffraction profiles reveals a commensurate antiferromagnetic structure with a propagation vector k = (0, 0, 1/2). The magnetic moment in the ordered state of CeRhAl4Si2 and CeIrAl4Si2 were determined to be 1.14(2) and 1.41(3) μB/Ce, respectively, and are parallel to the crystallographic c-axis in agreement with magnetic susceptibility measurements.

  12. Low-dimensional compounds containing cyano groups. XIV. Crystal structure, spectroscopic, thermal and magnetic properties of [CuL {sub 2}][Pt(China){sub 4}] complexes (L=ethylenediamine or N,N-dimethylethylenediamine)

    SciTech Connect

    Potocnak, Ivan . E-mail: ivan.potocnak@upjs.sk; Vavra, Martin; Cizmar, Erik; Tibenska, Katarina; Orendacova, Alzbeta; Steinborn, Dirk; Wagner, Christoph; Dusek, Michal; Fejfarova, Karla; Schmidt, Harry; Muller, Thomas; Orendac, Martin; Feher, Alexander

    2006-07-15

    Violet crystals of [Cu(en){sub 2}][Pt(China){sub 4}] and blue crystals of [Cu(dmen){sub 2}][Pt(China){sub 4}] were crystallized from the water-methanol solution containing CuCl{sub 2}.2H{sub 2}O, ethylenediamine (en) or N,N-dimethylethylenediamine (dmen) and K{sub 2}[Pt(China){sub 4}].3H{sub 2}O. Both compounds were characterized using elemental analysis, infrared and UV-VIS spectroscopy, magnetic measurements, specific heat measurements and thermal analysis. X-ray structure analysis revealed chain-like structure in both compounds. The covalent chains are built of Cu(II) ions linked by [Pt(China){sub 4}]{sup 2-} anions in the [111] and [101] direction, respectively. The Cu(II) atoms are hexacoordinated by four nitrogen atoms in the equatorial plane from two molecules of bidentate ligands L with average Cu-N distance of 2.022(2) and 2.049(4) A, respectively. Axial positions are occupied by two nitrogen atoms from bridging [Pt(China){sub 4}]{sup 2-} anions at longer Cu-N distance of 2.537(2) and 2.600(5) A, respectively. Both materials are characterized by the presence of weak antiferromagnetic exchange coupling. Despite the one-dimensional (1D) character of the structure, the analysis of magnetic properties and specific heat at very low temperatures shows that [Cu(en){sub 2}][Pt(China){sub 4}] behaves as two-dimensional (2D) spatially anisotropic square lattice Heisenberg magnet, while more pronounced influence of interlayer coupling is observed in [Cu(dmen){sub 2}][Pt(China){sub 4}]. - Graphical abstract: Chain-like structure in [Cu(en){sub 2}][Pt(China){sub 4}] (R=H) and [Cu(dmen){sub 2}][Pt(China){sub 4}] (R=CH{sub 3}) compounds.

  13. Thermal transformation of quaternary compounds in NaF-CaF{sub 2}-AlF{sub 3} system

    SciTech Connect

    Zaitseva, Julia N.; Yakimov, Igor S.; Kirik, Sergei D.

    2009-08-15

    Details of quaternary compounds formation in the system NaF-CaF{sub 2}-AlF{sub 3} are specified. To achieve this aim, the samples of phases NaCaAlF{sub 6} and Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14} have been obtained by high-temperature solid-phase synthesis. Their thermal behavior when heated up to 800 deg. C has been studied using the methods of high-temperature X-ray diffraction (XRD) and thermal analysis (TA). The system under consideration can be regarded as a quasibinary section CaF{sub 2}-NaAlF{sub 4}, where at T=745-750 deg. C invariant equilibrium is implemented with the phases CaF{sub 2}-NaCaAlF{sub 6}-Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14}-(liquid melt)-(NaAlF{sub 4}). The peculiarity of the equilibrium is NaAlF{sub 4} metastability at normal pressure. Below the equilibrium temperature the quaternary phase Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14} is stable and NaCaAlF{sub 6} above this temperature. The phase NaCaAlF{sub 6} fixed by rapid quenching from high temperatures and when heated up to 640 deg. C decomposes, yielding Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14}. Further heating in vacuum at temperature up to 740 deg. C results in decomposition of Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14} into CaF{sub 2} and Na{sub 3}AlF{sub 6}. The expected reverse transformation of Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14} into NaCaAlF{sub 6} has not been observed under experimental conditions. Transformations in bulk samples reveal direct and reverse transformation of quaternary phases. Synopsis: Thermal transformation of the quaternary compounds in system (NaF-CaF{sub 2}-AlF{sub 3}) was investigated using high-temperature X-ray diffraction (XRD) and thermal analysis (TA). In the system the invariant equilibrium is implemented with the phases CaF{sub 2}-NaCaAlF{sub 6}-Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14}-(liquid melt)-(NaAlF{sub 4}) at T=745-750 deg. C. - Graphical Abstract: The paper concerns of a small piece of the ternary system (NaF-CaF{sub 2}-AlF{sub 3}) which is very important for

  14. Determination of off-flavor compounds, 2-methylisoborneol and geosmin, in salmon fillets using stir bar sorptive extraction–thermal desorption coupled with gas chromatography–mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A sensitive and solvent-less method for the determination of musty and earthy off-flavor compounds, 2-methylisoborneol (MIB) and geosmin (GSM), in salmon tissue was developed using stir bar sorptive extraction -thermal desorption coupled with gas chromatography -mass spectrometry (SBSE -TD -GCMS). M...

  15. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: Discrete gap breathers in a two-dimensional diatomic face-centered square lattice

    NASA Astrophysics Data System (ADS)

    Lü, Bin-Bin; Tian, Qiang

    2009-10-01

    In this paper we study the existence and stability of two-dimensional discrete gap breathers in a two-dimensional diatomic face-centered square lattice consisting of alternating light and heavy atoms, with on-site potential and coupling potential. This study is focused on two-dimensional breathers with their frequency in the gap that separates the acoustic and optical bands of the phonon spectrum. We demonstrate the possibility of the existence of two-dimensional gap breathers by using a numerical method. Six types of two-dimensional gap breathers are obtained, i.e., symmetric, mirror-symmetric and asymmetric, whether the center of the breather is on a light or a heavy atom. The difference between one-dimensional discrete gap breathers and two-dimensional discrete gap breathers is also discussed. We use Aubry's theory to analyze the stability of discrete gap breathers in the two-dimensional diatomic face-centered square lattice.

  16. A model to predict the adsorber thermal behavior during treatment of volatile organic compounds onto wet activated carbon.

    PubMed

    Pré, P; Delage, F; Le Cloirec, P

    2002-11-01

    A model for adsorption of volatile organic compounds (VOCs) onto a wet activated carbon bed was proposed in this study. This model accounts for temperature changes induced by the reversed and coupled mass-transfer processes of both organic species adsorption and water desorption. Indeed, it was experimentally pointed out that temperature rises, which result from the exothermal nature of the energetic interactions between the organic molecule and the activated carbon surface, are notably reduced when the adsorbent contains an initial moisture of approximately 10% in weight. Moreover, it was shown that water rate desorption was enhanced in the presence of organic vapor. This phenomenon may be explained by the displacement of sorbed water bythe organic molecules, owing to more intensive interactions with the activated carbon surface. The model proposed was elaborated from a previous comprehensive analysis of the diffusion mechanisms governing VOC adsorption at high concentrations onto a dry activated carbon bed. In a similar way, a theoretical approach was developed to model water desorption during drying of a wet activated carbon bed under pure flowing air. At last, a theoretical depiction of both competitive and reverse processes was outlined. The final model fits reasonably with experimental data relative to both breakthrough curves and thermal wave shape along the bed, even if local temperature change calculation may require some further improvement.

  17. Pyrolysis reaction networks for lignin model compounds: unraveling thermal deconstruction of β-O-4 and α-O-4 compounds

    SciTech Connect

    Choi, Yong S.; Singh, Rahul; Zhang, Jing; Balasubramanian, Ganesh; Sturgeon, Matthew R.; Katahira, Rui; Chupka, Gina; Beckham, Gregg T.; Shanks, Brent H.

    2016-01-01

    Although lignin is one of the main components of biomass, its pyrolysis chemistry is not well understood due to complex heterogeneity. To gain insights into this chemistry, the pyrolysis of seven lignin model compounds (five ..beta..-O-4 and two ..alpha..-O-4 linked molecules) was investigated in a micropyrolyzer connected to GC-MS/FID. According to quantitative product mole balance for the reaction networks, concerted retro-ene fragmentation and homolytic dissociation were strongly suggested as the initial reaction step for ..beta..-O-4 compounds and ..alpha..-O-4 compounds, respectively. The difference in reaction pathway between compounds with different linkages was believed to result from thermodynamics of the radical initiation. The rate constants for the different reaction pathways were predicted from ab initio density functional theory calculations and pre-exponential literature values. The computational findings were consistent with the experiment results, further supporting the different pyrolysis mechanisms for the ..beta..-ether linked and ..alpha..-ether linked compounds. A combination of the two pathways from the dimeric model compounds was able to describe qualitatively the pyrolysis of a trimeric lignin model compound containing both ..beta..-O-4 and ..alpha..-O-4 linkages.

  18. Antiferromagnetic Kondo lattice in the layered compound CePd1–xBi₂ and comparison to the superconductor LaPd1–xBi₂

    DOE PAGESBeta

    Han, Fei; Wan, Xiangang; Phelan, Daniel; Stoumpos, Constantinos C.; Sturza, Mihai; Malliakas, Christos D.; Li, Qing'an; Han, Tian-Heng; Zhao, Qingbiao; Chung, Duck Young; et al

    2015-07-13

    The layered compound CePd1–xBi₂ with the tetragonal ZrCuSi₂-type structure was obtained from excess Bi flux. Magnetic susceptibility data of CePd1–xBi₂ show an antiferromagnetic ordering below 6 K and are anisotropic along the c axis and the ab plane. The anisotropy is attributed to crystal-electric-field (CEF) effects and a CEF model which is able to describe the susceptibility data is given. An enhanced Sommerfeld coefficient γ of 0.191 J mol Ce⁻¹ K⁻² obtained from specific-heat measurement suggests a moderate Kondo effect in CePd1–xBi₂. Other than the antiferromagnetic peak at 6 K, the resistivity curve shows a shoulderlike behavior around 75 Kmore » which could be attributed to the interplay between Kondo and CEF effects. Magnetoresistance and Hall-effect measurements suggest that the interplay reconstructs the Fermi-surface topology of CePd1–xBi₂ around 75 K. Electronic structure calculations reveal that the Pd vacancies are important to the magnetic structure and enhance the CEF effects which quench the orbital moment of Ce at low temperatures.« less

  19. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: Crystal structure and magnetic properties of Nd(Mn1-xFex)2Si2 compounds

    NASA Astrophysics Data System (ADS)

    Chen, Ye-Qing; Luo, Jun; Liang, Jing-Kui; Li, Jing-Bo; Rao, Guang-Hui

    2009-11-01

    X-ray powder diffraction, resistivity and magnetization studies have been performed on polycrystalline Nd(FexMn1-x)2Si2 (0 <= x <= 1) compounds which crystallize in a ThCr2Si2-type structure with the space group I4/mmm. The field-cooled temperature dependence of the magnetization curves shows that, at low temperatures, NdFe2Si2 is antiferromagnetic, while the other compounds show ferromagnetic behaviour. The substitution of Fe for Mn leads to a decrease in lattice parameters a, c and unit-cell volume V. The Curie temperature of the compounds first increases, reaches a maximum around x = 0.7, then decreases with Fe content. However, the saturation magnetization decreases monotonically with increasing Fe content. This Fe concentration dependent magnetization of Nd(FexMn1-x)2Si2 compounds can be well explained by taking into account the complex effect on magnetic properties due to the substitution of Mn by Fe. The temperature's square dependence on electrical resistivity indicates that the curve of Nd(Fe0.6Mn0.4)2Si2 has a quasi-linear character above its Curie temperature, which is typical of simple metals.

  20. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn-Ag-Cu/Cu solder joint during different thermal conditions

    NASA Astrophysics Data System (ADS)

    Tan, Ai Ting; Tan, Ai Wen; Yusof, Farazila

    2015-06-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn-Ag-Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided.

  1. Construction of a cryogen-free thermal desorption gas chromatographic system with off-the-shelf components for monitoring ambient volatile organic compounds.

    PubMed

    Ou-Yang, Chang-Feng; Liao, Wei-Cheng; Wang, Pei-Chieh; Fan, Gang-Jei; Hsiao, Chien-Cheng; Chuang, Ming-Tung; Chang, Chih-Chung; Lin, Neng-Huei; Wang, Jia-Lin

    2016-04-01

    An automated gas chromatographic system aimed at performing unattended measurements of ambient volatile organic compounds was configured and tested. By exploiting various off-the-shelf components, the thermal desorption unit was easily assembled and can be connected with any existing commercial gas chromatograph in the laboratory to minimize cost. The performance of the complete thermal desorption gas chromatographic system was assessed by analyzing a standard mixture containing 56 target nonmethane hydrocarbons from C2 -C12 at sub-ppb levels. Particular attention was given to the enrichment efficiency of the C2 compounds, such as ethane (b.p. = -88.6°C) and ethylene (b.p. = -104.2°C), due to their extremely high volatilities. Quality assurance was performed in terms of the linearity, precision and limits of detection of the target compounds. To further validate the system, field measurements of target compounds in ambient air were compared with those of a commercial total hydrocarbon analyzer and a carbon monoxide analyzer. Highly coherent results from the three instruments were observed during a two-month period of synchronized measurements. Moreover, the phenomenon of opposite diurnal variations between the biogenic isoprene and anthropogenic species was exploited to help support the field applicability of the thermal desorption gas chromatographic method. PMID:26924196

  2. Submicron magnetite grains and carbon compounds in Martian meteorite ALH84001: inorganic, abiotic formation by shock and thermal metamorphism.

    PubMed

    Treiman, Allan H

    2003-01-01

    Purported biogenic features of the ALH84001 Martian meteorite (the carbonate globules, their submicron magnetite grains, and organic matter) have reasonable inorganic origins, and a comprehensive hypothesis is offered here. The carbonate globules were deposited from hydrothermal water, without biological mediation. Thereafter, ALH84001 was affected by an impact shock event, which raised its temperature nearly instantaneously to 500-700K, and induced iron-rich carbonate in the globules to decompose to magnetite and other minerals. The rapidity of the temperature increase caused magnetite grains to nucleate in abundance; hence individual crystals were very small. Nucleation and growth of magnetite crystals were fastest along edges and faces of the precursor carbonate grains, forcing the magnetite grains to be platy or elongated, including the "truncated hexa-octahedra" shape. ALH84001 had formed at some depth within Mars where the lithostatic pressure was significantly above that of Mars' surface. Also, because the rock was at depth, the impact heat dissipated slowly. During this interval, magnetite crystals approached chemical equilibria with surrounding minerals and gas. Their composition, nearly pure Fe(3)O(4), reflects those of equilibria; elements that substitute into magnetite are either absent from iron-rich carbonate (e.g., Ti, Al, Cr), or partitioned into other minerals during magnetite formation (Mg, Mn). Many microstructural imperfections in the magnetite grains would have annealed out as the rock cooled. In this post-shock thermal regime, carbon-bearing gas from the decomposition of iron carbonates reacted with water in the rock (or from its surroundings) to produce organic matter via Fischer-Tropschlike reactions. Formation of such organic compounds like polycyclic aromatic hydrocarbons would have been catalyzed by the magnetite (formation of graphite, the thermochemically stable phase, would be kinetically hindered). PMID:14577885

  3. Submicron Magnetite Grains and Carbon Compounds in Martian Meteorite ALH84001: Inorganic, Abiotic Formation by Shock and Thermal Metamorphism

    NASA Astrophysics Data System (ADS)

    Treiman, Allan H.

    2003-06-01

    Purported biogenic features of the ALH84001 Martian meteorite (the carbonate globules, their submicron magnetite grains, and organic matter) have reasonable inorganic origins, and a comprehensive hypothesis is offered here. The carbonate globules were deposited from hydrothermal water, without biological mediation. Thereafter, ALH84001 was affected by an impact shock event, which raised its temperature nearly instantaneously to 500-700K, and induced iron-rich carbonate in the globules to decompose to magnetite and other minerals. The rapidity of the temperature increase caused magnetite grains to nucleate in abundance; hence individual crystals were very small. Nucleation and growth of magnetite crystals were fastest along edges and faces of the precursor carbonate grains, forcing the magnetite grains to be platy or elongated, including the "truncated hexa-octahedra" shape. ALH84001 had formed at some depth within Mars where the lithostatic pressure was significantly above that of Mars' surface. Also, because the rock was at depth, the impact heat dissipated slowly. During this interval, magnetite crystals approached chemical equilibria with surrounding minerals and gas. Their composition, nearly pure Fe3O4, reflects those of equilibria; elements that substitute into magnetite are either absent from iron-rich carbonate (e.g., Ti, Al, Cr), or partitioned into other minerals during magnetite formation (Mg, Mn). Many microstructural imperfections in the magnetite grains would have annealed out as the rock cooled. In this post-shock thermal regime, carbon-bearing gas from the decomposition of iron carbonates reacted with water in the rock (or from its surroundings) to produce organic matter via Fischer-Tropschlike reactions. Formation of such organic compounds like polycyclic aromatic hydrocarbons would have been catalyzed by the magnetite (formation of graphite, the thermochemically stable phase, would be kinetically hindered).

  4. Submicron magnetite grains and carbon compounds in Martian meteorite ALH84001: inorganic, abiotic formation by shock and thermal metamorphism.

    PubMed

    Treiman, Allan H

    2003-01-01

    Purported biogenic features of the ALH84001 Martian meteorite (the carbonate globules, their submicron magnetite grains, and organic matter) have reasonable inorganic origins, and a comprehensive hypothesis is offered here. The carbonate globules were deposited from hydrothermal water, without biological mediation. Thereafter, ALH84001 was affected by an impact shock event, which raised its temperature nearly instantaneously to 500-700K, and induced iron-rich carbonate in the globules to decompose to magnetite and other minerals. The rapidity of the temperature increase caused magnetite grains to nucleate in abundance; hence individual crystals were very small. Nucleation and growth of magnetite crystals were fastest along edges and faces of the precursor carbonate grains, forcing the magnetite grains to be platy or elongated, including the "truncated hexa-octahedra" shape. ALH84001 had formed at some depth within Mars where the lithostatic pressure was significantly above that of Mars' surface. Also, because the rock was at depth, the impact heat dissipated slowly. During this interval, magnetite crystals approached chemical equilibria with surrounding minerals and gas. Their composition, nearly pure Fe(3)O(4), reflects those of equilibria; elements that substitute into magnetite are either absent from iron-rich carbonate (e.g., Ti, Al, Cr), or partitioned into other minerals during magnetite formation (Mg, Mn). Many microstructural imperfections in the magnetite grains would have annealed out as the rock cooled. In this post-shock thermal regime, carbon-bearing gas from the decomposition of iron carbonates reacted with water in the rock (or from its surroundings) to produce organic matter via Fischer-Tropschlike reactions. Formation of such organic compounds like polycyclic aromatic hydrocarbons would have been catalyzed by the magnetite (formation of graphite, the thermochemically stable phase, would be kinetically hindered).

  5. Lattice constants and expansivities of gas hydrates from 10 K up to the stability limit.

    PubMed

    Hansen, T C; Falenty, A; Kuhs, W F

    2016-02-01

    The lattice constants of hydrogenated and deuterated CH4-, CO2-, Xe- (clathrate structure type I) and N2-hydrates (clathrate structure type II) from 10 K up to the stability limit were established in neutron- and synchrotron diffraction experiments and were used to derive the related thermal expansivities. The following results emerge from this analysis: (1) The differences of expansivities of structure type I and II hydrates are fairly small. (2) Despite the larger guest-size of CO2 as compared to methane, CO2-hydrate has the smaller lattice constants at low temperatures, which is ascribed to the larger attractive guest-host interaction of the CO2-water system. (3) The expansivity of CO2-hydrate is larger than for CH4-hydrate which leads to larger lattice constants for the former at temperatures above ∼150 K; this is likely due to the higher motional degrees of freedom of the CO2 guest molecules. (4) The cage occupancies of Xe- and CO2-hydrates affect significantly the lattice constants. (5) Similar to ice Ih, the deuterated compounds have generally slightly larger lattice constants which can be ascribed to the somewhat weaker H-bonding. (6) Compared to ice Ih, the high temperature expansivities are about 50% larger; in contrast to ice Ih and the empty hydrate, there is no negative thermal expansion at low temperature. (7) A comparison of the experimental results with lattice dynamical work, with models based on an Einstein oscillator model, and results from inelastic neutron scattering suggest that the contribution of the guest atoms' vibrational energy to thermal expansion is important, most prominently for CO2- and Xe-hydrates. PMID:26851915

  6. Lattice constants and expansivities of gas hydrates from 10 K up to the stability limit

    NASA Astrophysics Data System (ADS)

    Hansen, T. C.; Falenty, A.; Kuhs, W. F.

    2016-02-01

    The lattice constants of hydrogenated and deuterated CH4-, CO2-, Xe- (clathrate structure type I) and N2-hydrates (clathrate structure type II) from 10 K up to the stability limit were established in neutron- and synchrotron diffraction experiments and were used to derive the related thermal expansivities. The following results emerge from this analysis: (1) The differences of expansivities of structure type I and II hydrates are fairly small. (2) Despite the larger guest-size of CO2 as compared to methane, CO2-hydrate has the smaller lattice constants at low temperatures, which is ascribed to the larger attractive guest-host interaction of the CO2-water system. (3) The expansivity of CO2-hydrate is larger than for CH4-hydrate which leads to larger lattice constants for the former at temperatures above ˜150 K; this is likely due to the higher motional degrees of freedom of the CO2 guest molecules. (4) The cage occupancies of Xe- and CO2-hydrates affect significantly the lattice constants. (5) Similar to ice Ih, the deuterated compounds have generally slightly larger lattice constants which can be ascribed to the somewhat weaker H-bonding. (6) Compared to ice Ih, the high temperature expansivities are about 50% larger; in contrast to ice Ih and the empty hydrate, there is no negative thermal expansion at low temperature. (7) A comparison of the experimental results with lattice dynamical work, with models based on an Einstein oscillator model, and results from inelastic neutron scattering suggest that the contribution of the guest atoms' vibrational energy to thermal expansion is important, most prominently for CO2- and Xe-hydrates.

  7. Reversible bulk-phase change of anthroyl compounds for photopatterning based on photodimerization in the molten state and thermal back reaction.

    PubMed

    Kihara, Hideyuki; Yoshida, Masaru

    2013-04-10

    As new organic materials for rewritable photopatterning, 2-anthroyl and 9-anthroyl ester compounds were synthesized. Their bulk-phase changes (we use "bulk-phase change" as complete phase change in a mass of a material neither in a surface nor in a small quantity in this study) triggered by photodimerization under melting conditions (melt-photodimerization) and subsequent thermal back reactions were investigated. All the anthroyl compounds exhibited melting points lower than ca. 160 °C, and they were nearly quantitatively converted to the corresponding photodimers by UV irradiation at temperatures of ∼5 °C higher than their respective melting points. We found that there were two kinds of bulk-phase change behaviors through the photoreaction. Two of the anthroyl compounds remained isotropic and lost fluidity during the melt-photodimerization. The obtained photodimers exhibited robust solid-state amorphous phases at room temperature. In contrast, the other three anthroyl compounds showed crystallization during the melt-photodimerization. The resulting photodimers changed from isotropic to crystalline phases, even at high temperature. Various experiments revealed that the bulk phase of the photodimers was affected not by the existence of regioisomers but by their fluidity at the photoirradiation temperature. The latter three photodimers retained enough fluidity, reflecting their high molecular mobilities at the photoirradiation temperature at which the isothermal crystallization occurred. The other two products were not able to crystallize due to low fluidity, resulting in amorphous phases. We also found that all the photodimers reverted to the corresponding monomers by thermal back reaction and recovered their initial photochemical and thermal properties. Using these reversible bulk-phase changes of the anthroyl compounds, we successfully demonstrated rewritable photopatterning in not only negative images but also positive ones, based on the optical contrast

  8. Fluctuating multicomponent lattice Boltzmann model

    NASA Astrophysics Data System (ADS)

    Belardinelli, D.; Sbragaglia, M.; Biferale, L.; Gross, M.; Varnik, F.

    2015-02-01

    Current implementations of fluctuating lattice Boltzmann equations (FLBEs) describe single component fluids. In this paper, a model based on the continuum kinetic Boltzmann equation for describing multicomponent fluids is extended to incorporate the effects of thermal fluctuations. The thus obtained fluctuating Boltzmann equation is first linearized to apply the theory of linear fluctuations, and expressions for the noise covariances are determined by invoking the fluctuation-dissipation theorem directly at the kinetic level. Crucial for our analysis is the projection of the Boltzmann equation onto the orthonormal Hermite basis. By integrating in space and time the fluctuating Boltzmann equation with a discrete number of velocities, the FLBE is obtained for both ideal and nonideal multicomponent fluids. Numerical simulations are specialized to the case where mean-field interactions are introduced on the lattice, indicating a proper thermalization of the system.

  9. Subwavelength Lattice Optics by Evolutionary Design

    PubMed Central

    2015-01-01

    This paper describes a new class of structured optical materials—lattice opto-materials—that can manipulate the flow of visible light into a wide range of three-dimensional profiles using evolutionary design principles. Lattice opto-materials are based on the discretization of a surface into a two-dimensional (2D) subwavelength lattice whose individual lattice sites can be controlled to achieve a programmed optical response. To access a desired optical property, we designed a lattice evolutionary algorithm that includes and optimizes contributions from every element in the lattice. Lattice opto-materials can exhibit simple properties, such as on- and off-axis focusing, and can also concentrate light into multiple, discrete spots. We expanded the unit cell shapes of the lattice to achieve distinct, polarization-dependent optical responses from the same 2D patterned substrate. Finally, these lattice opto-materials can also be combined into architectures that resemble a new type of compound flat lens. PMID:25380062

  10. Built-in-polarization field effect on lattice thermal conductivity of AlxGa1-xN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Pansari, Anju; Gedam, Vikas; Kumar Sahoo, Bijaya

    2015-12-01

    The built-in-polarization field at the interface of AlxGa1-xN/GaN heterostructure enhances elastic constant, phonon velocity, Debye temperature and their bowing constants of barrier material AlxGa1-xN. The combined phonon relaxation time of acoustics phonons has been computed for with and without built-in-polarization field at room temperature for different aluminum (Al) content (x). Our result shows that the built-in-polarization field suppresses the scattering mechanisms and enhances the combined relaxation time. The thermal conductivity of AlxGa1-xN has been estimated as a function of temperature for x=0, 0.1, 0.5 and 1 for with and without polarization field. Minimum thermal conductivity has been observed for x=0.1 and 0.5. Analysis shows that up to a certain temperature (different for different x) the polarization field acts as negative effect and reduces the thermal conductivity and after this temperature thermal conductivity is significantly contributed by polarization field. This signifies pyroelectric character of AlxGa1-xN. The pyroelectric transition temperature of AlxGa1-xN alloy has been predicted for different x. Our study reports that room temperature thermal conductivity of AlxGa1-xN/GaN heterostructure is enhanced by built-in-polarization field. The temperature dependence of thermal conductivity for x=0.1 and 0.5 are in line with prior experimental studies. The method we have developed can be used for the simulation of heat transport in nitride devices to minimize the self heating processes and in polarization engineering strategies to optimize the thermoelectric performance of AlxGa1-xN/GaN heterostructures.

  11. A method for measuring vapor pressures of low-volatility organic aerosol compounds using a thermal desorption particle beam mass spectrometer.

    PubMed

    Chattopadhyay, S; Tobias, H J; Ziemann, P J

    2001-08-15

    A temperature-programmed thermal desorption method for measuring vapor pressures of low-volatility organic aerosol compounds has been developed. The technique employs a thermal desorption particle beam mass spectrometer we have recently developed for real-time composition analysis of organic aerosols. Particles are size selected using a differential mobility analyzer, sampled into a high-vacuum chamber as an aerodynamically focused beam, collected by impaction on a cryogenically cooled surface, slowly vaporized by resistive heating, and analyzed in a quadrupole mass spectrometer. A simple evaporation model developed from the kinetic theory of gases is used to calculate compound vapor pressures over the temperature range of evaporation. The data are fit to a Clausius-Clapeyron equation to obtain a relationship between vapor pressure and temperature and to determine the heat of vaporization. The technique has been evaluated using C13-C18 monocarboxylic and C6-C8 dicarboxylic acids, which have vapor pressures at 25 degrees C of approximately 10(-4) - 10(-6) Pa, but less volatile compounds can also be analyzed. The method is relatively simple and rapid and yields vapor pressures and heats of vaporization that are in good agreement with literature values. The technique will be used to generate a new database of vapor pressures for low-volatility atmospheric organic compounds.

  12. Finite-temperature mechanical instability in disordered lattices.

    PubMed

    Zhang, Leyou; Mao, Xiaoming

    2016-02-01

    Mechanical instability takes different forms in various ordered and disordered systems and little is known about how thermal fluctuations affect different classes of mechanical instabilities. We develop an analytic theory involving renormalization of rigidity and coherent potential approximation that can be used to understand finite-temperature mechanical stabilities in various disordered systems. We use this theory to study two disordered lattices: a randomly diluted triangular lattice and a randomly braced square lattice. These two lattices belong to two different universality classes as they approach mechanical instability at T=0. We show that thermal fluctuations stabilize both lattices. In particular, the triangular lattice displays a critical regime in which the shear modulus scales as G∼T(1/2), whereas the square lattice shows G∼T(2/3). We discuss generic scaling laws for finite-T mechanical instabilities and relate them to experimental systems. PMID:26986291

  13. Detection of gaseous compounds by needle trap sampling and direct thermal-desorption photoionization mass spectrometry: concept and demonstrative application to breath gas analysis.

    PubMed

    Kleeblatt, Juliane; Schubert, Jochen K; Zimmermann, Ralf

    2015-02-01

    A fast detection method to analyze gaseous organic compounds in complex gas mixtures was developed, using a needle trap device (NTD) in conjunction with thermal-desorption photoionization time-of-flight mass spectrometry (TD-PI-TOFMS). The mass spectrometer was coupled via a deactivated fused silica capillary to an injector of a gas chromatograph. In the hot injector, the analytes collected on the NTD were thermally desorbed and directly transferred to the PI-TOFMS ion source. The molecules are softly ionized either by single photon ionization (SPI, 118 nm) or by resonance enhanced multiphoton ionization (REMPI, 266 nm), and the molecular ion signals are detected in the TOF mass analyzer. Analyte desorption and the subsequent PI-TOFMS detection step only lasts ten seconds. The specific selectivity of REMPI (i.e., aromatic compounds) and universal ionization characteristics render PI-MS as a promising detection system. As a first demonstrative application, the alveolar phase breath gas of healthy, nonsmoking subjects was sampled on NTDs. While smaller organic compounds such as acetone, acetaldehyde, isoprene, or cysteamine can be detected in the breath gas with SPI, REMPI depicts the aromatic substances phenol and indole at 266 nm. In the breath gas of a healthy, smoking male subject, several xenobiotic substances such as benzene, toluene, styrene, and ethylbenzene can be found as well. Furthermore, the NTD-REMPI-TOFMS setup was tested for breath gas taken from a mechanically ventilated pig under continuous intravenous propofol (2,6-diisopropylphenol, narcotic drug) infusion.

  14. Ultralow Thermal Conductivity in Full Heusler Semiconductors.

    PubMed

    He, Jiangang; Amsler, Maximilian; Xia, Yi; Naghavi, S Shahab; Hegde, Vinay I; Hao, Shiqiang; Goedecker, Stefan; Ozoliņš, Vidvuds; Wolverton, Chris

    2016-07-22

    Semiconducting half and, to a lesser extent, full Heusler compounds are promising thermoelectric materials due to their compelling electronic properties with large power factors. However, intrinsically high thermal conductivity resulting in a limited thermoelectric efficiency has so far impeded their widespread use in practical applications. Here, we report the computational discovery of a class of hitherto unknown stable semiconducting full Heusler compounds with ten valence electrons (X_{2}YZ, X=Ca, Sr, and Ba; Y=Au and Hg; Z=Sn, Pb, As, Sb, and Bi) through high-throughput ab initio screening. These new compounds exhibit ultralow lattice thermal conductivity κ_{L} close to the theoretical minimum due to strong anharmonic rattling of the heavy noble metals, while preserving high power factors, thus resulting in excellent phonon-glass electron-crystal materials.

  15. Ultralow Thermal Conductivity in Full Heusler Semiconductors.

    PubMed

    He, Jiangang; Amsler, Maximilian; Xia, Yi; Naghavi, S Shahab; Hegde, Vinay I; Hao, Shiqiang; Goedecker, Stefan; Ozoliņš, Vidvuds; Wolverton, Chris

    2016-07-22

    Semiconducting half and, to a lesser extent, full Heusler compounds are promising thermoelectric materials due to their compelling electronic properties with large power factors. However, intrinsically high thermal conductivity resulting in a limited thermoelectric efficiency has so far impeded their widespread use in practical applications. Here, we report the computational discovery of a class of hitherto unknown stable semiconducting full Heusler compounds with ten valence electrons (X_{2}YZ, X=Ca, Sr, and Ba; Y=Au and Hg; Z=Sn, Pb, As, Sb, and Bi) through high-throughput ab initio screening. These new compounds exhibit ultralow lattice thermal conductivity κ_{L} close to the theoretical minimum due to strong anharmonic rattling of the heavy noble metals, while preserving high power factors, thus resulting in excellent phonon-glass electron-crystal materials. PMID:27494488

  16. Ultralow Thermal Conductivity in Full Heusler Semiconductors

    NASA Astrophysics Data System (ADS)

    He, Jiangang; Amsler, Maximilian; Xia, Yi; Naghavi, S. Shahab; Hegde, Vinay I.; Hao, Shiqiang; Goedecker, Stefan; OzoliĆš, Vidvuds; Wolverton, Chris

    2016-07-01

    Semiconducting half and, to a lesser extent, full Heusler compounds are promising thermoelectric materials due to their compelling electronic properties with large power factors. However, intrinsically high thermal conductivity resulting in a limited thermoelectric efficiency has so far impeded their widespread use in practical applications. Here, we report the computational discovery of a class of hitherto unknown stable semiconducting full Heusler compounds with ten valence electrons (X2Y Z , X =Ca , Sr, and Ba; Y =Au and Hg; Z =Sn , Pb, As, Sb, and Bi) through high-throughput ab initio screening. These new compounds exhibit ultralow lattice thermal conductivity κL close to the theoretical minimum due to strong anharmonic rattling of the heavy noble metals, while preserving high power factors, thus resulting in excellent phonon-glass electron-crystal materials.

  17. Phonon scattering due to van der Waals forces in the lattice thermal conductivity of Bi{sub 2}Te{sub 3} thin films

    SciTech Connect

    Park, Kyeong Hyun Mohamed, Mohamed; Ravaioli, Umberto; Aksamija, Zlatan

    2015-01-07

    In this work, we calculate the thermal conductivity of layered bismuth telluride (Bi{sub 2}Te{sub 3}) thin films by solving the Boltzmann transport equation in the relaxation-time approximation using full phonon dispersion and compare our results with recently published experimental data and molecular dynamics simulation. The group velocity of each phonon mode is readily extracted from the full phonon dispersion obtained from first-principle density-functional theory calculation and is used along with the phonon frequency to compute the various scattering terms. Our model incorporates the typical interactions impeding thermal transport (e.g., umklapp, isotope, and boundary scatterings) and introduces a new interaction capturing the reduction of phonon transmission through van der Waals interfaces of adjacent Bi{sub 2}Te{sub 3} quintuple layers forming the virtual superlattice thin film. We find that this novel approach extends the empirical Klemens-Callaway relaxation model in such anisotropic materials and recovers the experimental anisotropy while using a minimal set of parameters.

  18. Perspectives in Lattice QCD

    NASA Astrophysics Data System (ADS)

    Kuramashi, Yoshinobu

    2007-12-01

    Preface -- Fixed point actions, symmetries and symmetry transformations on the lattice / P. Hasenfratz -- Algorithms for dynamical fennions / A. D. Kennedy -- Applications of chiral perturbation theory to lattice QCD / Stephen R. Sharpe -- Lattice QCD with a chiral twist / S. Sint -- Non-perturbative QCD: renormalization, O(A) - Improvement and matching to Heavy Quark effective theory / Rainer Sommer.

  19. Anomalous thermal expansion in the square-net compounds RE4TGe8 (RE = Yb, Gd; T = Cr-Ni, Ag).

    PubMed

    Peter, Sebastian C; Chondroudi, Maria; Malliakas, Christos D; Balasubramanian, Mahalingam; Kanatzidis, Mercouri G

    2011-09-01

    The family of materials RE(4)TGe(8) (RE = Yb, Gd; T = transition metal) exhibits directional zero thermal expansion (ZTE) via a process that is associated with the linking of planar square nets in the third dimension. The Ge square nets in these compounds exhibit commensurate long-range modulations similar to those observed in charge-density-wave compounds. The ZTE is manifested in the plane of the square nets from 10 to 300 K with negligible volume expansion below ∼160 K. The specific atomic arrangement in RE(4)TGe(8) enables a Poisson-like mechanism that allows the structure to contract along one direction as it expands only slightly in the perpendicular direction.

  20. Anomalous thermal expansion in the square-net compounds RE{sub 4}TGe{sub 8} (RE = Yb, Gd; T = Cr-Ni, Ag).

    SciTech Connect

    Peter, S. C.; Chondroudi, M.; Malliakas, C. D.; Balasubramanian, M.; Kanatzidis, M. G.

    2011-01-01

    The family of materials RE{sub 4}TGe{sub 8} (RE = Yb, Gd; T = transition metal) exhibits directional zero thermal expansion (ZTE) via a process that is associated with the linking of planar square nets in the third dimension. The Ge square nets in these compounds exhibit commensurate long-range modulations similar to those observed in charge-density-wave compounds. The ZTE is manifested in the plane of the square nets from 10 to 300 K with negligible volume expansion below {approx}160 K. The specific atomic arrangement in RE{sub 4}TGe{sub 8} enables a Poisson-like mechanism that allows the structure to contract along one direction as it expands only slightly in the perpendicular direction.

  1. A catalogue of urban hydrocarbons for the city of Leeds: atmospheric monitoring of volatile organic compounds by thermal desorption-gas chromatography.

    PubMed

    Hassoun, S; Pilling, M J; Bartle, K D

    1999-10-01

    A method has been developed for the speciation and quantitative determination of hydrocarbons in urban air in the city of Leeds. Hydrocarbons were pre-concentrated by adsorbent tube air sampling and analyzed using thermal desorption and gas chromatography with flame ionization detection and structural confirmation by mass spectrometric detection. While automated volatile organic compound (VOC) analyzers produced data for a maximum of about 30 compounds simultaneously, with the method described here, a total of 68 C6-C12 hydrocarbons were measured simultaneously in one analysis at parts per billion (ppb) levels. Several monitoring surveys were performed, one during the winter of 1993 and the other in the summer of 1994, at a number of sites to investigate the levels of VOCs identified in the urban air of Leeds.

  2. Three interesting coordination compounds based on metalloligand and alkaline-earth ions: Syntheses, structures, thermal behaviors and magnetic property

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Qian, Jun; Zhang, Chi

    2016-09-01

    Based on metalloligand LCu ([Cu(2,4-pydca)2]2-, 2,4-pydca2- = pyridine-2,4-dicarboxylate) and alkaline-earth ions (Ca2+, Sr2+, and Ba2+), three interesting coordination compounds, [Ca(H2O)7][LCu·H2O]·H2O (1), {Sr[LCu·H2O]·4H2O}n (2), and {Ba[LCu·H2O]·8H2O}n (3), have been synthesized and well-characterized by elemental analysis, infrared spectroscopy, thermogravimetric and single-crystal X-ray diffraction analysis. X-ray crystallographic studies reveal that 1 features a discrete 0D coordination compound, while 2 and 3 exhibit the 2D network and 1D chain structures, respectively. Compound 2 is constructed from {LCu}2 dimers connected with {Sr2} units, which is fabricated by two Sr2+ ions bridged via two μ2-O bridges, while compound 3 is formed by 1D {Ba}n chain linked with metalloligands LCu and exhibits an interesting sandwich like chain structure. It is noted that the coordination numbers of alkaline-earth ions are in positive correlation with their radiuses. Moreover, the magnetic property of compound 2 has been studied.

  3. Dibenzo[a,j]phenazine-Cored Donor-Acceptor-Donor Compounds as Green-to-Red/NIR Thermally Activated Delayed Fluorescence Organic Light Emitters.

    PubMed

    Data, Przemyslaw; Pander, Piotr; Okazaki, Masato; Takeda, Youhei; Minakata, Satoshi; Monkman, Andrew P

    2016-05-01

    A new family of thermally activated delayed fluorescence (TADF) emitters based on U-shaped D-A-D architecture with a novel accepting unit has been developed. All investigated compounds have small singlet-triplet energy splitting (ΔEST ) ranging from 0.02 to 0.20 eV and showed efficient TADF properties. The lowest triplet state of the acceptor unit plays the key role in the TADF mechanism. OLEDs fabricated with these TADF emitters achieved excellent efficiencies up to 16 % external quantum efficiency (EQE). PMID:27060474

  4. A diffusive badge sampler for volatile organic compounds in ambient air and determination using a thermal desorption-GC/MS system.

    PubMed

    Yamamoto, Noriko; Matsubasa, Tomoko; Kumagai, Nami; Mori, Sachiko; Suzuki, Koji

    2002-01-15

    A sensitive personal badge sampler packed with Carbopack B for ambient levels of volatile organic compounds and an analytical system using a thermal desorption-preconcentration-GC/MS have been developed. The capacity of the new sampler was sufficient for an 8-h sampling period, and the analytical method was sensitive enough for the measurement of sub-ppb levels for a 2-h sampling period. The samplers were compared to diffusive samplers (OVM 3500) for typical environmental concentrations. There was a good correlation between the results obtained with the new samplers and the OVM samplers.

  5. Fabrication of glass-ceramics containing spin-chain compound SrCuO{sub 2} and its high thermal conductivity

    SciTech Connect

    Terakado, Nobuaki Watanabe, Kouki; Kawamata, Takayuki; Yokochi, Yuudai; Takahashi, Yoshihiro; Koike, Yoji; Fujiwara, Takumi

    2015-04-06

    High thermal conductivity materials are in great demand for heat-flow control and heat dissipation in electronic devices. In this study, we have produced a glass-ceramics that contains spin-chain compound SrCuO{sub 2} and have found that the glass-ceramics yields high thermal conductivity of ∼5 W K{sup −1} m{sup −1} even at room temperature. The glass-ceramics is fabricated through crystallization of inhomogeneous melt-quenched oxides made from SrCO{sub 3}, CuO, Li{sub 2}CO{sub 3}, Ga{sub 2}O{sub 3}, and Al{sub 2}O{sub 3}. Transmission electron microscopy and X-ray and electron diffraction reveal that SrCuO{sub 2} crystallites with a size of 100–200 nm are precipitated in the glass-ceramics. The highness of the thermal conductivity is attributable to two sources: one is elongation of phonon mean free path due to the crystallization of the inhomogeneous structure or structural ordering. The other is emergence of the heat carriers, spinons, in the SrCuO{sub 2}. This highly thermal conductive glass-ceramics is expected to be utilized as base materials for heat-flow control devices.

  6. Preparation and structure of BiCrTeO{sub 6}: A new compound in Bi–Cr–Te–O system. Thermal expansion studies of Cr{sub 2}TeO{sub 6}, Bi{sub 2}TeO{sub 6} and BiCrTeO{sub 6}

    SciTech Connect

    Vats, Bal Govind; Phatak, Rohan; Krishnan, K.; Kannan, S.

    2013-09-01

    Graphical abstract: A new compound BiCrTeO{sub 6} in the Bi–Cr–Te–O system was prepared by solid state route and characterized by X-ray diffraction method. The crystal structure of BiCrTeO{sub 6} shows that there is one distinct site for bismuth (Bi) atom (pink color), one chromium rich (Cr/Te = 68/32) (blue/green color), one tellurium rich (Te/Cr = 68/32) sites (green/blue color), and one distinct site for oxygen (O) atom (red color) in the unit cell. All cations in this structure show an octahedral coordination with oxygen atoms at the corners. The thermogram (TG) of the compound in air shows that it is stable up to 1103 K and decomposes thereafter. The thermal expansion behaviour of BiCrTeO{sub 6} was studied using high temperature X-ray diffraction method from room temperature to 923 K under vacuum of 10{sup −8} atmosphere and showed positive thermal expansion with the average volume thermal expansion coefficients of 16.0 × 10{sup −6}/K. - Highlights: • A new compound BiCrTeO{sub 6} in Bi–Cr–Te–O system was prepared and characterized. • The crystal structure of BiCrTeO{sub 6} was determined by Rietveld refinement method. • The structure of BiCrTeO{sub 6} shows an octahedral coordination for all the metal ions. • The thermal expansion behavior of BiCrTeO{sub 6} from room temperature to 923 K showed a positive thermal expansion. • The average volume thermal expansion coefficient for BiCrTeO{sub 6} is 16.0 × 10{sup −6}/K. - Abstract: A new compound BiCrTeO{sub 6} in Bi–Cr–Te–O system was prepared by solid state reaction of Bi{sub 2}O{sub 3}, Cr{sub 2}O{sub 3} and H{sub 6}TeO{sub 6} in oxygen and characterized by X-ray diffraction (XRD) method. It could be indexed on a trigonal lattice, with the space group P-31c, unit cell parameters a = 5.16268(7) Å and c = 9.91861(17) Å. The crystal structure of BiCrTeO{sub 6} was determined by Rietveld refinement method using the powder XRD data. Structure shows that there is one distinct

  7. Thermal and Electric Properties of the FeAs2-xSbx (x=0, 1, or 2) Marcasite Compounds from First Principles

    NASA Astrophysics Data System (ADS)

    Bang, Semi; Orabi, Rabih Al Rahal Al; Wee, Daehyun

    2016-04-01

    Thermoelectric energy conversion has been considered as one piece of the future solution to the energy crisis for a long time. In thermoelectric energy conversion, thermoelectric materials, which exhibit strong coupling between heat flow and electric current, are used to convert thermal energy into electrical energy and vice versa. Hence, thermoelectric devices can be potential and present applications for both thermoelectric generation and cooling system. There are significant demands for thermoelectric materials that can be used for environment-friendly cooling applications that need to be met. A few recent studies reported thermoelectric properties of the FeAs2-xSbx (x=0, 1, or 2) marcasite compounds, which has a potential for becoming a good thermoelectric material for low-temperature cooling applications. The compound can be more environment-friendly and more economically viable than other competing materials, for the composition does not involve rare and expensive element like Te or Pt. In this study, we investigate thermoelectric properties of the FeAs2-xSbx (x=0, 1, or 2) marcasite compounds by first-principles calculations in order to demonstrate the feasibility for the use in practical cooling applications. Electronic band structures and density of states are constructed from DFT (density functional theory) calculations, from which electrical properties, including the Seebeck coefficient and the electrical conductivity, are estimated. At the same time, vibrational characteristics are investigated through DFPT (density functional perturbation theory) calculations, from which the thermal conductivity is estimated using semiempirical formulae and the Grüneissen parameters of the compound obtained at the level of the QHA (quasi-harmonic approximation).

  8. Multigroup Reactor Lattice Cell Calculation

    1990-03-01

    The Winfrith Improved Multigroup Scheme (WIMS), is a general code for reactor lattice cell calculations on a wide range of reactor systems. In particular, the code will accept rod or plate fuel geometries in either regular arrays or in clusters, and the energy group structure has been chosen primarily for thermal calculations. The basic library has been compiled with 14 fast groups, 13 resonance groups and 42 thermal groups, but the user is offered themore » choice of accurate solutions in many groups or rapid calculations in few groups. Temperature dependent thermal scattering matrices for a variety of scattering laws are available in the library for the principal moderators which include hydrogen, deuterium, graphite, beryllium and oxygen. WIMSD5 is a succesor version of WIMS-D/4.« less

  9. The Fermilab lattice supercomputer project

    NASA Astrophysics Data System (ADS)

    Fischler, Mark; Atac, R.; Cook, A.; Deppe, J.; Gaines, I.; Husby, D.; Nash, T.; Pham, T.; Zmuda, T.; Hockney, George; Eichten, E.; Mackenzie, P.; Thacker, H. B.; Toussaint, D.

    1989-06-01

    The ACPMAPS system is a highly cost effective, local memory MIMD computer targeted at algorithm development and production running for gauge theory on the lattice. The machine consists of a compound hypercube of crates, each of which is a full crossbar switch containing several processors. The processing nodes are single board array processors based on the Weitek XL chip set, each with a peak power of 20 MFLOPS and supported by 8MBytes of data memory. The system currently being assembled has a peak power of 5 GFLOPS, delivering performance at approximately $250/MFLOP. The system is programmable in C and Fortran. An underpinning of software routines (CANOPY) provides an easy and natural way of coding lattice problems, such that the details of parallelism, and communication and system architecture are transparent to the user. CANOPY can easily be ported to any single CPU or MIMD system which supports C, and allows the coding of typical applications with very little effort.

  10. Orbital optical lattices with bosons

    NASA Astrophysics Data System (ADS)

    Kock, T.; Hippler, C.; Ewerbeck, A.; Hemmerich, A.

    2016-02-01

    This article provides a synopsis of our recent experimental work exploring Bose-Einstein condensation in metastable higher Bloch bands of optical lattices. Bipartite lattice geometries have allowed us to implement appropriate band structures, which meet three basic requirements: the existence of metastable excited states sufficiently protected from collisional band relaxation, a mechanism to excite the atoms initially prepared in the lowest band with moderate entropy increase, and the possibility of cross-dimensional tunneling dynamics, necessary to establish coherence along all lattice axes. A variety of bands can be selectively populated and a subsequent thermalization process leads to the formation of a condensate in the lowest energy state of the chosen band. As examples the 2nd, 4th and 7th bands in a bipartite square lattice are discussed. The geometry of the 2nd and 7th bands can be tuned such that two inequivalent energetically degenerate energy minima arise at the X ±-points at the edge of the 1st Brillouin zone. In this case even a small interaction energy is sufficient to lock the phase between the two condensation points such that a complex-valued chiral superfluid order parameter can emerge, which breaks time reversal symmetry. In the 4th band a condensate can be formed at the Γ-point in the center of the 1st Brillouin zone, which can be used to explore topologically protected band touching points. The new techniques to access orbital degrees of freedom in higher bands greatly extend the class of many-body scenarios that can be explored with bosons in optical lattices.

  11. Thermoelectric materials ternary penta telluride and selenide compounds

    DOEpatents

    Sharp, Jeffrey W.

    2001-01-01

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  12. Thermoelectric materials: ternary penta telluride and selenide compounds

    DOEpatents

    Sharp, Jeffrey W.

    2002-06-04

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  13. Determination of a wide range of volatile organic compounds in ambient air using multisorbent adsorption/thermal desorption and gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Pankow, J.F.; Luo, W.; Isabelle, L.M.; Bender, D.A.; Baker, R.J.

    1998-01-01

    Adsorption/thermal desorption with multisorbent air-sampling cartridges was developed for the determination of 87 method analytes including halogenated alkanes, halogenated alkenes, ethers, alcohols, nitriles, esters, ketones, aromatics, a disulfide, and a furan. The volatilities of the compounds ranged from that of dichlorofluoromethane (CFC12) to that of 1,2,3- trichlorobenzene. The eight most volatile compounds were determined using a 1.5-L air sample and a sample cartridge containing 50 mg of Carbotrap B and 280 mg of Carboxen 1000; the remaining 79 compounds were determined using a 5-L air sample and a cartridge containing 180 mg of Carbotrap B and 70 mg of Carboxen 1000. Analysis and detection were by gas chromatography/mass spectrometry. The minimum detectable level (MDL) concentration values ranged from 0.01 parts per billion by volume (ppbv) for chlorobenzene to 0.4 ppbv for bromomethane; most of the MDL values were in the range 0.02-0.06 ppbv. No breakthrough was detected with the prescribed sample volumes. Analyte stability on the cartridges was very good. Excellent recoveries were obtained with independent check standards. Travel spike recoveries ranged from 90 to 110% for 72 of the 87 compounds. The recoveries were less than 70% for bromomethane and chloroethene and for a few compounds such as methyl acetate that are subject to losses by hydrolysis; the lowest travel spike recovery was obtained for bromomethane (62%). Blank values for all compounds were either below detection or very low. Ambient atmospheric sampling was conducted in New Jersey from April to December, 1997. Three sites characterized by low, moderate, and high densities of urbanization/traffic were sampled. The median detected concentrations of the compounds were either similar at all three sites (as with the chlorofluorocarbon compounds) or increased with the density of urbanization/traffic (as with dichloromethane, MTBE, benzene, and toluene). For toluene, the median detected

  14. Thermally-induced single-crystal-to-single-crystal transformations from a 2D two-fold interpenetrating square lattice layer to a 3D four-fold interpenetrating diamond framework and its application in dye-sensitized solar cells.

    PubMed

    Gao, Song; Fan, Rui Qing; Wang, Xin Ming; Wei, Li Guo; Song, Yang; Du, Xi; Xing, Kai; Wang, Ping; Yang, Yu Lin

    2016-07-28

    In this work, a rare 2D → 3D single-crystal-to-single-crystal transformation (SCSC) is observed in metal-organic coordination complexes, which is triggered by thermal treatment. The 2D two-fold interpenetrating square lattice layer [Cd(IBA)2]n (1) is irreversibly converted into a 3D four-fold interpenetrating diamond framework {[Cd(IBA)2(H2O)]·2.5H2O}n (2) (HIBA = 4-(1H-imidazol-1-yl)benzoic acid). Consideration is given to these two complexes with different interpenetrating structures and dimensionality, and their influence on photovoltaic properties are studied. Encouraged by the UV-visible absorption and HOMO-LUMO energy states matched for sensitizing TiO2, the two complexes are employed in combination with N719 in dye-sensitized solar cells (DSSCs) to compensate absorption in the ultraviolet and blue-violet region, offset competitive visible light absorption of I3(-) and reducing charge the recombination of injected electrons. After co-sensitization with 1 and 2, the device co-sensitized by 1/N719 and 2/N719 to yield overall efficiencies of 7.82% and 8.39%, which are 19.94% and 28.68% higher than that of the device sensitized only by N719 (6.52%). Consequently, high dimensional interpenetrating complexes could serve as excellent co-sensitizers and have application in DSSCs. PMID:27356177

  15. Thermally-induced single-crystal-to-single-crystal transformations from a 2D two-fold interpenetrating square lattice layer to a 3D four-fold interpenetrating diamond framework and its application in dye-sensitized solar cells.

    PubMed

    Gao, Song; Fan, Rui Qing; Wang, Xin Ming; Wei, Li Guo; Song, Yang; Du, Xi; Xing, Kai; Wang, Ping; Yang, Yu Lin

    2016-07-28

    In this work, a rare 2D → 3D single-crystal-to-single-crystal transformation (SCSC) is observed in metal-organic coordination complexes, which is triggered by thermal treatment. The 2D two-fold interpenetrating square lattice layer [Cd(IBA)2]n (1) is irreversibly converted into a 3D four-fold interpenetrating diamond framework {[Cd(IBA)2(H2O)]·2.5H2O}n (2) (HIBA = 4-(1H-imidazol-1-yl)benzoic acid). Consideration is given to these two complexes with different interpenetrating structures and dimensionality, and their influence on photovoltaic properties are studied. Encouraged by the UV-visible absorption and HOMO-LUMO energy states matched for sensitizing TiO2, the two complexes are employed in combination with N719 in dye-sensitized solar cells (DSSCs) to compensate absorption in the ultraviolet and blue-violet region, offset competitive visible light absorption of I3(-) and reducing charge the recombination of injected electrons. After co-sensitization with 1 and 2, the device co-sensitized by 1/N719 and 2/N719 to yield overall efficiencies of 7.82% and 8.39%, which are 19.94% and 28.68% higher than that of the device sensitized only by N719 (6.52%). Consequently, high dimensional interpenetrating complexes could serve as excellent co-sensitizers and have application in DSSCs.

  16. Thermal conductivity studies of a polyurea cross-linked silica aerogel-RTV 655 compound for cryogenic propellant tank applications in space

    NASA Astrophysics Data System (ADS)

    Sabri, F.; Marchetta, J.; Smith, K. M.

    2013-10-01

    Silica-based aerogel is an ideal thermal insulator with a makeup of up to 99% air associated with the highly porous nature of this material. Polyurea cross-linked silica aerogel (PCSA) has superior mechanical properties compared to the native aerogels yet retains the highly porous open pore network and functions as an ideal thermal insulator with added load-bearing capability necessary for some applications. Room temperature vulcanizing rubber-RTV 655—is a space qualified elastomeric thermal insulator and encapsulant with high radiation and temperature tolerance as well as chemical resistance. Storage and transport of cryogenic propellant liquids is an integral part of the success of future space exploratory missions and is an area under constant development. Limitations and shortcomings of current cryogenic tank materials and insulation techniques such as non-uniform insulation layers, self-pressurization, weight and durability issues of the materials used, has motivated the quest for alternative materials. Both RTV 655 and PCSA are promising space qualified materials with unique and tunable microscopic and macroscopic properties making them attractive candidates for this study. In this work, the effect of PCSA geometry and volume concentration on the thermal behavior of RTV 655—PCSA compound material has been investigated at room temperature and at a cryogenic temperature. Macroscopic and microscopic PCSA material was encapsulated at increasing concentrations in an RTV 655 elastomeric matrix. The effect of pulverization on the nanopores of PCSA as a method for creating large quantities of homogeneous PCSA microparticles has also been investigated and is reported. The PCSA volume concentrations ranged between 22% and 75% for both geometries. Thermal conductivity measurements were performed based on the steady state transient plane source method.

  17. Some new nano-structure zinc(II) coordination compounds of an imidazolidine Schiff base: Spectral, thermal, antimicrobial properties and DNA interaction

    NASA Astrophysics Data System (ADS)

    Montazerozohori, Morteza; Musavi, Sayed Alireza; Naghiha, Asghar; Zohour, Mostafa Montazer

    2014-08-01

    Some novel nano-sized structure zinc complexes of a new Schiff base ligand entitled as (3-nitro-benzylidene)-{2-[2-(3-nitro-phenyl)-imidazolidine-1-yl]-ethyl}-amine(L) with general formula of ZnLX2 wherein X = Cl-, Br-, I-, SCN- and N3- have been synthesized under ultrasonic conditions. The ligand and its complexes have been characterized by elemental analysis, molar conductance measurements, FT-IR, 1H and 13C NMR and UV-Visible spectroscopy. The resulting data from spectral investigation especially 1H and 13C NMR well confirmed formation of an imidazolidine ring in the ligand structure. Transmission electron microscopy (TEM) showed nano-size structures with average particle sizes of 21.80-78.10 nm for the zinc(II) Schiff base complexes. The free Schiff base and its Zn(II) complexes have been screened in vitro both for antibacterial activity against some gram-positive and gram-negative bacteria and also for antifungal activity. The metal complexes were found to be more active than the free Schiff base ligand. The results showed that ZnL(N3)2 is the most effective inhibitor against Escherichia coli, Pseudomonas aereuguinosa, Staphylococcus aureus and Candida albicans while ZnLBr2 was found to be more effective against Bacillus subtillis than other compounds. Moreover, DNA cleavage potential of all compounds with plasmid DNA was investigated. The results showed that the ligand and ZnLCl2 complex cleave DNA more efficiently than others. In final, thermal analysis of ligand and its complexes revealed that they are decomposed via 2-3 thermal steps in the range of room temperature to 1000 °C. Furthermore some activation kinetic parameters such as A, E*, ΔH*, ΔS* and ΔG* were calculated based on TG/DTA plots by use of coats - Redfern relation. Positive values of activation energy evaluated for the compounds confirmed the thermal stability of them. In addition to, the positive ΔH*, and ΔG* values suggested endothermic character for the thermal decomposition steps.

  18. Synthesis, crystal structure, thermal analysis and dielectric properties of [(C4H9)4N]3Bi2Cl9 compound

    NASA Astrophysics Data System (ADS)

    Trigui, W.; Oueslati, A.; Chaabane, I.; Hlel, F.

    2015-07-01

    A new organic-inorganic tri-tetrabutylammonium nonachlorobibismuthate(III) compound was prepared. It was found to crystallize in the monoclinic system (P21/n space group) with the following lattice parameters: a=11.32(2) Å, b=22.30(3) Å, c=28.53(2) Å and β=96.52(0)°. The [Bi2Cl9]3- anions are surrounded by six [(C4H9)N]+ cations, forming an octahedral configuration. These octahedra are sharing corners in order to provide the tri-dimensional network cohesion. The differential scanning calorimetry reveals four order-disorder reversible phase transitions located at 214, 238, 434 and 477 K. The Raman and infrared spectra confirm the presence of both cationic [(C4H9)N]+ and anionic [Bi2Cl9]3- parts. The dielectric parameters, real and imaginary dielectric permittivity (ε‧ and ε″), and dielectric loss tangent (tg δ), were measured in the frequency range of 209 kHz-5 MHz at different temperatures. The variations of dielectric dispersion (ε') and dielectric absorption (ε″) with frequency show a distribution of relaxation times, which is probably related to the change in the dynamical state of the [(C4H9)4N]+ cations and the [Bi2Cl9]3- anions.

  19. Thermal desorption/gas chromatographic/mass spectrometric analysis of volatile organic compounds in the offices of smokers and nonsmokers.

    PubMed

    Bayer, C W; Black, M S

    1987-08-01

    The indoor air quality of the offices of smokers and nonsmokers was surveyed for volatile organic compound identities and concentrations. These results were examined to determine whether environmental tobacco smoke contamination could be distinguished from airborne pollutants outgassing from other sources. It was not possible to positively attribute volatile organic contaminants to environmental tobacco smoke. It was possible to distinguish between smokers' and nonsmokers' offices by determining airborne nicotine levels. PMID:2957003

  20. High throughput analysis of atmospheric volatile organic compounds by thermal injection--isothermal gas chromatography--time-of-flight mass spectrometry.

    PubMed

    Wilson, Ryan B; Hoggard, Jamin C; Synovec, Robert E

    2013-01-15

    Sixty one volatile organic compounds (VOCs) from a standard gas mixture were separated via isothermal gas chromatography coupled with time-of-flight mass spectrometry (GC-TOFMS) in a ≈ 35s separation time window (≈ 45 s separation). The VOCs in the standard gas mixture were selected based on the EPA TO-15 methodology. The high throughput separation was achieved with a relatively high total peak capacity (n(c) ≈ 114), by simultaneously minimizing both on-column and off-column peak width broadening. The on-column contributions to peak width broadening were minimized by taking into account and applying GC separation theory for the selection of column dimensions and carrier gas flow rate conditions. Both fast cryogenic focusing and re-injection of compounds (implemented via a commercially available thermal modulator and referred to herein as thermal injection (TI) and fast TOFMS detection (100 scans/s)) were applied to reduce off-column sources of peak width band broadening (sometimes referred to as off-column band broadening). Cryogenic focusing during TI and minimal band broadening-based dilution during separation resulted in preconcentration factors for the detected peaks ranging from 78 (1,4-dichlorobenzene) to 420 (propylene). Since the injected volume for preconcentration was 500 μl, and based on the detected noise levels at selected m/z for each analyte compound, the concentration limit of detection (LOD) ranged from 67 ppbv (parts per billion by volume) for propylene, to 4 ppbv for freon-12. While application of standard VOC analysis conditions leads to separation times typically ranging from ≈ 30 to 50 min, the isothermal GC-TOFMS method reported herein represents a 40-fold improvement in analysis time while maintaining peak capacity and detection sensitivity that is comparable to traditional GC-MS VOC analysis. PMID:23200363

  1. Effect of thermal processing on the profile of bioactive compounds and antioxidant capacity of fermented orange juice.

    PubMed

    Escudero-López, Blanca; Cerrillo, Isabel; Gil-Izquierdo, Ángel; Hornero-Méndez, Dámaso; Herrero-Martín, Griselda; Berná, Genoveva; Medina, Sonia; Ferreres, Federico; Martín, Franz; Fernández-Pachón, María-Soledad

    2016-11-01

    Previously, we reported that alcoholic fermentation enhanced flavanones and carotenoids content of orange juice. The aim of this work was to evaluate the influence of pasteurization on the qualitative and quantitative profile of bioactive compounds and the antioxidant capacity of fermented orange juice. Ascorbic acid (203 mg/L), total flavanones (647 mg/L), total carotenoids (7.07 mg/L) and provitamin A (90.06 RAEs/L) values of pasteurized orange beverage were lower than those of fermented juice. Total phenolic remained unchanged (585 mg/L) and was similar to that of original juice. The flavanones naringenin-7-O-glucoside, naringenin-7-O-rutinoside, hesperetin-7-O-rutinoside, hesperetin-7-O-glucoside and isosakuranetin-7-O-rutinoside, and the carotenoids karpoxanthin and isomer, neochrome, lutein, ζ-carotene, zeaxanthin, mutatoxanthin epimers, β-cryptoxanthin and auroxanthin epimers were the major compounds. Pasteurization produced a decrease in antioxidant capacity of fermented juice. However, TEAC (5.45 mM) and ORAC (6353 μM) values of orange beverage were similar to those of original orange juice. The novel orange beverage could be a valuable source of bioactive compounds with antioxidant capacity and exert potential beneficial effects.

  2. Determination of off-flavor compounds, 2-methylisoborneol and geosmin, in salmon fillets using stir bar sorptive extraction-thermal desorption coupled with gas chromatography-mass spectrometry.

    PubMed

    Ruan, E D; Aalhus, J L; Summerfelt, S T; Davidson, J; Swift, B; Juárez, M

    2013-12-20

    A sensitive and solvent-less method for the determination of musty and earthy off-flavor compounds, 2-methylisoborneol (MIB) and geosmin (GSM), in salmon tissue was developed using stir bar sorptive extraction-thermal desorption coupled with gas chromatography-mass spectrometry (SBSE-TD-GCMS). MIB and GSM were solid phase extracted using polydimethylsiloxane (PDMS) coated stir bars, analyzed by gas chromatography, and detected in full scan mode of mass selective detector (MSD). Using this method, the calibration curves of MIB and GSM were linear in the range of 0.3-100ng/L, with a correlation coefficient above 0.999 and RSDs less than 4% (n=4). The limit of detection (LOD, S/N=3, n=6) and limit of quantification (LOQ, S/N=10, n=6) of MIB and GSM were both ∼0.3 and 1ng/L, respectively. The recoveries of MIB and GSM were 22% and 29% by spike in 30ng/L standard compounds, 23% and 30% by spike-in 100ng/L standard compounds in salmon tissue samples with good precision (<8% of RSDs, n=6), respectively. The recoveries of MIB and GSM were better than reported methodologies using SPME fibres (<10%) in fish tissue samples. This method was successfully applied to monitor and characterize depurated salmon fillet samples (0, 3, 6 and 10 days).

  3. Towards a predictive route for selection of doping elements for the thermoelectric compound PbTe from first-principles

    NASA Astrophysics Data System (ADS)

    Joseph, Elad; Amouyal, Yaron

    2015-05-01

    Striving for improvements of the thermoelectric (TE) properties of the technologically important lead telluride (PbTe) compound, we investigate the influence of different doping elements on the thermal conductivity, Seebeck coefficient, and electrical conductivity applying density functional theory calculations. Our approach combines total-energy calculations yielding lattice vibrational properties with the Boltzmann transport theory to obtain electronic transport properties. We find that doping with elements from the 1st and 3rd columns of the periodic table reduces the sound velocity and, consequently, the lattice thermal conductivity, while 2nd column dopants have no such influence. Furthermore, 1.6 at. % doping with 4th and 5th column elements provides the highest reduction of lattice thermal conductivity. Out of this group, Hf doping results in maximum reduction of the sound velocity from 2030 m s-1 for pure PbTe to 1370 m s-1, which is equivalent to ca. 32% reduction of lattice thermal conductivity. The highest power factor values calculated for 1.6 at. % doping range between 40 and 56 μW cm-1 K-2, and are obtained for substitution with dopants having the same valence as Pb or Te, such as those located at the 2nd, 14th, and 16th columns of the periodic table. We demonstrate how this method may be generalized for dopant-selection-oriented materials design aimed at improving TE performance of other compounds.

  4. On Traveling Waves in Lattices: The Case of Riccati Lattices

    NASA Astrophysics Data System (ADS)

    Dimitrova, Zlatinka

    2012-09-01

    The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattices as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka-Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka-Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holling lattices.

  5. Polybenzimidazole compounds

    DOEpatents

    Klaehn, John R.; Peterson, Eric S.; Wertsching, Alan K.; Orme, Christopher J.; Luther, Thomas A.; Jones, Michael G.

    2010-08-10

    A PBI compound that includes imidazole nitrogens, at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2--, where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least five equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about fifteen equivalents.

  6. Characterization of Key Aroma Compounds in Raw and Thermally Processed Prawns and Thermally Processed Lobsters by Application of Aroma Extract Dilution Analysis.

    PubMed

    Mall, Veronika; Schieberle, Peter

    2016-08-24

    Application of aroma extract dilution analysis (AEDA) to an aroma distillate of blanched prawn meat (Litopenaeus vannamei) (BPM) revealed 40 odorants in the flavor dilution (FD) factor range from 4 to 1024. The highest FD factors were assigned to 2-acetyl-1-pyrroline, 3-(methylthio)propanal, (Z)-1,5-octadien-3-one, trans-4,5-epoxy-(E)-2-decenal, (E)-3-heptenoic acid, and 2-aminoacetophenone. To understand the influence of different processing conditions on odorant formation, fried prawn meat was investigated by means of AEDA in the same way, revealing 31 odorants with FD factors between 4 and 2048. Also, the highest FD factors were determined for 2-acetyl-1-pyrroline, 3-(methylthio)propanal, and (Z)-1,5-octadien-3-one, followed by 4-hydroxy-2,5-dimethyl-3(2H)-furanone, (E)-3-heptenoic acid, and 2-aminoacetophenone. As a source of the typical marine, sea breeze-like odor attribute of the seafood, 2,4,6-tribromoanisole was identified in raw prawn meat as one of the contributors. Additionally, the aroma of blanched prawn meat was compared to that of blanched Norway and American lobster meat, respectively (Nephrops norvegicus and Homarus americanus). Identification experiments revealed the same set of odorants, however, with differing FD factors. In particular, 3-hydroxy-4,5-dimethyl-2(5H)-furanone was found as the key aroma compound in blanched Norway lobster, whereas American lobster contained 3-methylindole with a high FD factor.

  7. Characterization of Key Aroma Compounds in Raw and Thermally Processed Prawns and Thermally Processed Lobsters by Application of Aroma Extract Dilution Analysis.

    PubMed

    Mall, Veronika; Schieberle, Peter

    2016-08-24

    Application of aroma extract dilution analysis (AEDA) to an aroma distillate of blanched prawn meat (Litopenaeus vannamei) (BPM) revealed 40 odorants in the flavor dilution (FD) factor range from 4 to 1024. The highest FD factors were assigned to 2-acetyl-1-pyrroline, 3-(methylthio)propanal, (Z)-1,5-octadien-3-one, trans-4,5-epoxy-(E)-2-decenal, (E)-3-heptenoic acid, and 2-aminoacetophenone. To understand the influence of different processing conditions on odorant formation, fried prawn meat was investigated by means of AEDA in the same way, revealing 31 odorants with FD factors between 4 and 2048. Also, the highest FD factors were determined for 2-acetyl-1-pyrroline, 3-(methylthio)propanal, and (Z)-1,5-octadien-3-one, followed by 4-hydroxy-2,5-dimethyl-3(2H)-furanone, (E)-3-heptenoic acid, and 2-aminoacetophenone. As a source of the typical marine, sea breeze-like odor attribute of the seafood, 2,4,6-tribromoanisole was identified in raw prawn meat as one of the contributors. Additionally, the aroma of blanched prawn meat was compared to that of blanched Norway and American lobster meat, respectively (Nephrops norvegicus and Homarus americanus). Identification experiments revealed the same set of odorants, however, with differing FD factors. In particular, 3-hydroxy-4,5-dimethyl-2(5H)-furanone was found as the key aroma compound in blanched Norway lobster, whereas American lobster contained 3-methylindole with a high FD factor. PMID:27486834

  8. Engineering novel optical lattices.

    PubMed

    Windpassinger, Patrick; Sengstock, Klaus

    2013-08-01

    Optical lattices have developed into a widely used and highly recognized tool to study many-body quantum physics with special relevance for solid state type systems. One of the most prominent reasons for this success is the high degree of tunability in the experimental setups. While at the beginning quasi-static, cubic geometries were mainly explored, the focus of the field has now shifted toward new lattice topologies and the dynamical control of lattice structures. In this review we intend to give an overview of the progress recently achieved in this field on the experimental side. In addition, we discuss theoretical proposals exploiting specifically these novel lattice geometries. PMID:23828639

  9. Monocrystal Elastic Constants of the Negative-Thermal-Expansion Compound Zirconium Tungstate (ZrW2O8)

    NASA Astrophysics Data System (ADS)

    Drymiotis, F. R.; Ledbetter, H.; Betts, J. B.; Kimura, T.; Lashley, J. C.; Migliori, A.; Ramirez, A. P.; Kowach, G. R.; van Duijn, J.

    2004-07-01

    We measured zirconium tungstate's elastic constants Cij. This compound shows relatively soft, nearly isotropic elastic constants with normal Poisson ratios and no approach to Born instability. ZrW2O8 shows normal ambient-temperature elastic constants Cij, but remarkable dCij/dT that show dominant low-frequency acoustic-vibration modes. From the bulk modulus, we estimated the total ambient-temperature thermodynamic Grüneisen parameter as γ=-1.2. The dB/dT slope gives a Grüneisen parameter γ=-7. The 300 0K bulk-modulus increase (40%) seems unprecedented and breaks Birch's law of corresponding states.

  10. Growth mechanism and properties of the thermal and anodic oxides of the 3-5 compound semiconductors

    NASA Astrophysics Data System (ADS)

    Wilmsen, C. W.

    1985-03-01

    The mechanisms of oxide growth on InP, GaP, GaAs, and InGaAs were investigated and their electrical properties measured. Islands were observed as the initial stage of anodization of InP and GaAs, but the details of the growth on the two materials are different. The thermal oxides of InP and GaP also differ in composition and surface topography. InP forms bubbles and GaP has pits under the oxide. Traps at the deposited insulator/InP interface were also investigated.

  11. Nuclear quadrupole spin-lattice relaxation in Bi{sub 4}Ge{sub 3}O{sub 12} single crystals doped with atoms of d or f elements. Crystal field effects in compounds exhibiting anomalous magnetic properties

    SciTech Connect

    Orlov, V. G. Sergeev, G. S.; Asaji, Tetsuo; Kravchenko, E. A.; Kargin, Yu. F.

    2010-02-15

    The nuclear quadrupole spin-lattice relaxation was studied in the range 4.2-300 K for single crystals of Bi{sub 4}Ge{sub 3}O{sub 12} doped with minor amounts (the tenth fractions of mol%) of paramagnetic atoms of Cr, Nd, and Gd. Unusual spin dynamic features were recently found for these crystals at room temperature: a dramatic (up to 8-fold) increase in the effective nuclear quadrupole spin-spin relaxation time T{sub 2}* occurred upon doping the pure Bi{sub 4}Ge{sub 3}O{sub 12} sample. Unlike T{sub 2}*, the effective spin-lattice relaxation time T{sub 1}* at room temperature differs insignificantly for both doped and pure samples. But at lower temperatures, the samples exhibit considerably different behavior of the spin-lattice relaxation with temperature, which is caused by different contributions to the relaxation process of the dopant paramagnetic atoms. The distinctive maximum in the temperature dependence of the spin-lattice relaxation time for the Nd-doped crystal is shown to result from the crystal electric field effects.

  12. Speciation of inorganic and organometallic compounds in solid biological samples by thermal vaporization and plasma emission spectrometry

    SciTech Connect

    Hanamura, S.; Smith, B.W.; Winefordner, J.D.

    1983-11-01

    By means of thermal vaporization, inorganic, organic, and metallorganic species are separated and elemental emission in a microwave plasma is detected as a function of vaporization temperature. Solid samples of 250 mg or more are used to avoid problems with sample heterogeneity. The precision of characteristic appearance temperatures is +/-2/sup 0/C. The single electrode atmosphere pressure microwave plasma system is extremely tolerant to the introduction of water, organic solvents, and air. The measurement system contained a repetition wavelength scan device to allow background correction. The plasma temperature was 5500 K. The system was used to measure C, H, N, O, and Hg in orchard leaves and in tuna fish. 9 figures, 5 tables.

  13. Supersymmetry on the lattice

    NASA Astrophysics Data System (ADS)

    Bergner, Georg; Catterall, Simon

    2016-08-01

    We discuss the motivations, difficulties and progress in the study of supersymmetric lattice gauge theories focusing in particular on 𝒩 = 1 and 𝒩 = 4 super-Yang-Mills in four dimensions. Brief reviews of the corresponding lattice formalisms are given and current results are presented and discussed. We conclude with a summary of the main aspects of current work and prospects for the future.

  14. Laterally closed lattice homomorphisms

    NASA Astrophysics Data System (ADS)

    Toumi, Mohamed Ali; Toumi, Nedra

    2006-12-01

    Let A and B be two Archimedean vector lattices and let be a lattice homomorphism. We call that T is laterally closed if T(D) is a maximal orthogonal system in the band generated by T(A) in B, for each maximal orthogonal system D of A. In this paper we prove that any laterally closed lattice homomorphism T of an Archimedean vector lattice A with universal completion Au into a universally complete vector lattice B can be extended to a lattice homomorphism of Au into B, which is an improvement of a result of M. Duhoux and M. Meyer [M. Duhoux and M. Meyer, Extended orthomorphisms and lateral completion of Archimedean Riesz spaces, Ann. Soc. Sci. Bruxelles 98 (1984) 3-18], who established it for the order continuous lattice homomorphism case. Moreover, if in addition Au and B are with point separating order duals (Au)' and B' respectively, then the laterally closedness property becomes a necessary and sufficient condition for any lattice homomorphism to have a similar extension to the whole Au. As an application, we give a new representation theorem for laterally closed d-algebras from which we infer the existence of d-algebra multiplications on the universal completions of d-algebras.

  15. Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing.

    PubMed

    Sánchez-Moreno, Concepción; Plaza, Lucía; Elez-Martínez, Pedro; De Ancos, Begoña; Martín-Belloso, Olga; Cano, M Pilar

    2005-06-01

    Bioactive compounds (vitamin C, carotenoids, and flavanones) and DPPH* radical scavenging capacity (RSC) were measured in orange juice (OJ) subjected to different technologies. High pressure (HP) (400 MPa/40 degrees C/1 min), pulsed electric fields (PEF) (35 kVcm(-1)/750 micros), low pasteurization (LPT) (70 degrees C/30 s), high pasteurization (HPT) (90 degrees C/1 min), HPT plus freezing (HPT+F) (-38 degrees C/15 min), and freezing (F) were studied. Among the treatments assayed, even though the losses in total vitamin C were < 9%, treatments with the higher temperatures tended to show the higher decrease in the content of both forms of vitamin C. HP treatment led to an increased (P < 0.05) carotenoid release (53.88%) and vitamin A value (38.74%). PEF treatment did not modify individual or total carotenoids content. Traditional thermal treatments did not exert any effect on total carotenoid content or vitamin A value. With regard to individual carotenoid extraction, HPT and HPT+F led to different releases of carotenoids. With respect to flavanones, HP treatment led to increased (P < 0.05) naringenin (20.16%) and hesperetin (39.88%) contents, whereas PEF treatment did not modify flavanone content. In general, pasteurization and freezing process led to a diminished (P < 0.05) naringenin content (16.04%), with no modification in hesperetin. HP and PEF treatments did not modify DPPH* RSC. In the case of traditional thermal technologies, HPT treatment showed a decrease (P < 0.05) in RSC (6.56%), whereas LPT, HPT+F, and F treatments did not modify RSC. Vitamin C modulated RSC, in terms of antioxidant concentration (EC50) and kinetics (AE = 1/EC50TEC50), in the treated and untreated OJ. In summary, HP and PEF technologies were more effective than HPT treatment in preserving bioactive compounds and RSC of freshly squeezed orange juice.

  16. Antioxidant Activity and Thermal Stability of Oleuropein and Related Phenolic Compounds of Olive Leaf Extract after Separation and Concentration by Salting-Out-Assisted Cloud Point Extraction.

    PubMed

    Stamatopoulos, Konstantinos; Katsoyannos, Evangelos; Chatzilazarou, Arhontoula

    2014-04-08

    A fast, clean, energy-saving, non-toxic method for the stabilization of the antioxidant activity and the improvement of the thermal stability of oleuropein and related phenolic compounds separated from olive leaf extract via salting-out-assisted cloud point extraction (CPE) was developed using Tween 80. The process was based on the decrease of the solubility of polyphenols and the lowering of the cloud point temperature of Tween 80 due to the presence of elevated amounts of sulfates (salting-out) and the separation from the bulk solution with centrifugation. The optimum conditions were chosen based on polyphenols recovery (%), phase volume ratio (Vs/Vw) and concentration factor (Fc). The maximum recovery of polyphenols was in total 95.9%; Vs/Vw was 0.075 and Fc was 15 at the following conditions: pH 2.6, ambient temperature (25 °C), 4% Tween 80 (w/v), 35% Na₂SO₄ (w/v) and a settling time of 5 min. The total recovery of oleuropein, hydroxytyrosol, luteolin-7-O-glucoside, verbascoside and apigenin-7-O-glucoside, at optimum conditions, was 99.8%, 93.0%, 87.6%, 99.3% and 100.0%, respectively. Polyphenolic compounds entrapped in the surfactant-rich phase (Vs) showed higher thermal stability (activation energy (Ea) 23.8 kJ/mol) compared to non-entrapped ones (Ea 76.5 kJ/mol). The antioxidant activity of separated polyphenols remained unaffected as determined by the 1,1-diphenyl-2-picrylhydrazyl method.

  17. Antioxidant Activity and Thermal Stability of Oleuropein and Related Phenolic Compounds of Olive Leaf Extract after Separation and Concentration by Salting-Out-Assisted Cloud Point Extraction

    PubMed Central

    Stamatopoulos, Konstantinos; Katsoyannos, Evangelos; Chatzilazarou, Arhontoula

    2014-01-01

    A fast, clean, energy-saving, non-toxic method for the stabilization of the antioxidant activity and the improvement of the thermal stability of oleuropein and related phenolic compounds separated from olive leaf extract via salting-out-assisted cloud point extraction (CPE) was developed using Tween 80. The process was based on the decrease of the solubility of polyphenols and the lowering of the cloud point temperature of Tween 80 due to the presence of elevated amounts of sulfates (salting-out) and the separation from the bulk solution with centrifugation. The optimum conditions were chosen based on polyphenols recovery (%), phase volume ratio (Vs/Vw) and concentration factor (Fc). The maximum recovery of polyphenols was in total 95.9%; Vs/Vw was 0.075 and Fc was 15 at the following conditions: pH 2.6, ambient temperature (25 °C), 4% Tween 80 (w/v), 35% Na2SO4 (w/v) and a settling time of 5 min. The total recovery of oleuropein, hydroxytyrosol, luteolin-7-O-glucoside, verbascoside and apigenin-7-O-glucoside, at optimum conditions, was 99.8%, 93.0%, 87.6%, 99.3% and 100.0%, respectively. Polyphenolic compounds entrapped in the surfactant-rich phase (Vs) showed higher thermal stability (activation energy (Ea) 23.8 kJ/mol) compared to non-entrapped ones (Ea 76.5 kJ/mol). The antioxidant activity of separated polyphenols remained unaffected as determined by the 1,1-diphenyl-2-picrylhydrazyl method. PMID:26784869

  18. THE EMMA LATTICE DESIGN

    SciTech Connect

    BERG,J.S.; RUGGIERO, A.; MACHIDA, S.; KOSCIELNIAK, S.

    2007-06-25

    EMMA is a 10 to 20 MeV electron ring designed to test our understanding of beam dynamics in a relativistic linear non-scaling fixed field alternating gradient accelerator (FFAG). This paper describes the design of the EMMA lattice. We begin with a summary of the experimental goals that impact the lattice design, and then outline what motivated the choice for the basic lattice parameters, such as the type of cells, the number of cells, and the RF frequency. We next list the different configurations that we wish to operate the machine in so as to accomplish our experimental goals. Finally, we enumerate the detailed lattice parameters, showing how these parameters result from the various lattice configurations.

  19. Lattice Dynamics of a Protein Crystal

    SciTech Connect

    Meinhold, Lars; Merzel, Franci; Smith, Jeremy C.

    2007-09-28

    All-atom lattice-dynamical calculations are reported for a crystalline protein, ribonuclease A. The sound velocities, density of states, heat capacity (C{sub V}) and thermal diffuse scattering are all consistent with available experimental data. C{sub V}{proportional_to}T{sup 1.68} for T<35 K, significantly deviating from a Debye solid. In Bragg peak vicinity, inelastic scattering of x rays by phonons is found to originate from acoustic mode scattering. The results suggest an approach to protein crystal physics combining all-atom lattice-dynamical calculations with experiments on next-generation neutron sources.

  20. Analysis of the Thermal Degradation of the Individual Anthocyanin Compounds of Black Carrot (Daucus carota L.): A New Approach Using High-Resolution Proton Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Iliopoulou, Ioanna; Thaeron, Delphine; Baker, Ashley; Jones, Anita; Robertson, Neil

    2015-08-12

    The black carrot dye is a mixture of cyanidin molecules, the nuclear magnetic resonance (NMR) spectrum of which shows a highly overlapped aromatic region. In this study, the (1)H NMR (800 MHz) aromatic chemical shifts of the mixture were fully assigned by overlaying them with the characterized (1)H NMR chemical shifts of the separated compounds. The latter were isolated using reverse-phase high-performance liquid chromatography (RP-HPLC), and their chemical shifts were identified using (1)H and two-dimensional (2D) correlation spectroscopy (COSY) NMR spectroscopy. The stability of the black carrot mixture to heat exposure was investigated at pH 3.6, 6.8, and 8.0 by heat-treating aqueous solutions at 100 °C and the powdered material at 180 °C. From integration of high-resolution (1)H NMR spectra, it was possible to follow the relative degradation of each compound, offering advantages over the commonly used ultraviolet/visible (UV/vis) and HPLC approaches. UV/vis spectroscopy and CIE color measurements were used to determine thermally induced color changes, under normal cooking conditions.

  1. Features of magnetic and thermal properties of R(Co1-xFex)2 (x≤0.16) quasibinary compounds with R=Dy, Ho, Er

    NASA Astrophysics Data System (ADS)

    Anikin, Maksim; Tarasov, Evgeniy; Kudrevatykh, Nikolay; Inishev, Aleksander; Semkin, Mikhail; Volegov, Aleksey; Zinin, Aleksander

    2016-11-01

    In this work the results of measurements of high field susceptibility, paraprocess susceptibility and thermal properties of R(Co1-xFex)2 intermetallic compounds (R=Dy, Ho, Er and x=(0-0.16)) are presented (heat capacity and magnetocaloric effect (MCE)). A magnetic structure of the Ho(Co0.88Fe0.12)2 at 293 K and 78 K was studied by neutron powder diffraction. Some peculiarities of a high-field susceptibility were revealed at low temperatures and around the Curie point (TC). In temperature range lower than TC by (100-150) K, magnetic contributions to a zero-field heat capacity were found. Studying MCE in wide temperatures range, the large change of the entropy magnetic contribution (°S) was observed which correlates with °T phenomenon. In particular, for the Er(Co0.84Fe0.16)2 compound the °S value at low temperatures is six times higher than that at Curie point. The possible reasons of such behavior were discussed.

  2. Analysis of the Thermal Degradation of the Individual Anthocyanin Compounds of Black Carrot (Daucus carota L.): A New Approach Using High-Resolution Proton Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Iliopoulou, Ioanna; Thaeron, Delphine; Baker, Ashley; Jones, Anita; Robertson, Neil

    2015-08-12

    The black carrot dye is a mixture of cyanidin molecules, the nuclear magnetic resonance (NMR) spectrum of which shows a highly overlapped aromatic region. In this study, the (1)H NMR (800 MHz) aromatic chemical shifts of the mixture were fully assigned by overlaying them with the characterized (1)H NMR chemical shifts of the separated compounds. The latter were isolated using reverse-phase high-performance liquid chromatography (RP-HPLC), and their chemical shifts were identified using (1)H and two-dimensional (2D) correlation spectroscopy (COSY) NMR spectroscopy. The stability of the black carrot mixture to heat exposure was investigated at pH 3.6, 6.8, and 8.0 by heat-treating aqueous solutions at 100 °C and the powdered material at 180 °C. From integration of high-resolution (1)H NMR spectra, it was possible to follow the relative degradation of each compound, offering advantages over the commonly used ultraviolet/visible (UV/vis) and HPLC approaches. UV/vis spectroscopy and CIE color measurements were used to determine thermally induced color changes, under normal cooking conditions. PMID:26160425

  3. Broad Negative Thermal Expansion Operation-Temperature Window Achieved by Adjusting Fe-Fe Magnetic Exchange Coupling in La(Fe,Si)13 Compounds.

    PubMed

    Li, Shaopeng; Huang, Rongjin; Zhao, Yuqiang; Li, Wen; Wang, Wei; Huang, Chuanjun; Gong, Pifu; Lin, Zheshuai; Li, Laifeng

    2015-08-17

    Cubic La(Fe,Si)13-based compounds have been recently developed as promising negative thermal expansion(NTE) materials, but the narrow NTE operation-temperature window(∼110 K) restricts their actual applications. In this work, we demonstrate that the NTE operation-temperature window of LaFe(13-x)Si(x) can be significantly broadened by adjusting Fe-Fe magnetic exchange coupling as x ranges from 2.8 to 3.1. In particular, the NTE operation-temperature window of LaFe10.1Si2.9 is extended to 220 K. More attractively, the coefficients of thermal expansion of LaFe10.0Si3.0 and LaFe9.9Si3.1 are homogeneous in the NTE operation-temperature range of about 200 K, which is much valuable for the stability of fabricating devices. The further experimental characterizations combined with first-principles studies reveal that the tetragonal phase is gradually introduced into the cubic phase as the Si content increases, hence modifies the Fe-Fe interatomic distance. The reduction of the overall Fe-Fe magnetic exchange interactions contributes to the broadness of NTE operation-temperature window for LaFe(13-x)Si(x). PMID:26196377

  4. Determination of trace amounts of off-flavor compounds in drinking water by stir bar sorptive extraction and thermal desorption GC-MS.

    PubMed

    Ochiai, N; Sasamoto, K; Takino, M; Yamashita, S; Daishima, S; Heiden, A; Hoffman, A

    2001-10-01

    A method for the determination of trace amounts of off-flavor compounds including 2-methylisoborneol, geosmin and 2,4,6-trichloroanisole in drinking water was developed using the stir bar sorptive extraction technique followed by thermal desorption-GC-MS analysis. The extraction conditions such as extraction mode, salt addition, extraction temperature, sample volume and extraction time were examined. Water samples (20, 40 and 60 ml) were extracted for 60-240 min at room temperature (25 degrees C) using stir bars with a length of 10 mm and coated with a 500 microm layer of polydimethylsiloxane. The extract was analyzed by thermal desorption-GC-MS in the selected ion monitoring mode. The method showed good linearity over the concentration range from 0.1 or 0.2 or 0.5 to 100 ng l(-1) for all the target analytes, and the correlation coefficients were greater than 0.9987. The detection limits ranged from 0.022 to 0.16 ng l(-1). The recoveries (89-109%) and precision (RSD: 0.80-3.7%) of the method were examined by analyzing raw water and tap water samples fortified at the 1 ng l(-1) level. The method was successfully applied to low-level samples (raw water and tap water).

  5. Determination of volatile organic compounds in different microenvironments by multibed adsorption and short-path thermal desorption followed by gas chromatographic-mass spectrometric analysis.

    PubMed

    Kuntasal, Oznur Oğuz; Karman, Deniz; Wang, Daniel; Tuncel, Semra G; Tuncel, Gürdal

    2005-12-16

    A multiphase assurance approach was developed for the accurate and precise determination of volatile organic compounds (VOCs) in different microenvironments. This approach includes (i) development of a method including adsorption of VOCs onto a multisorbent media followed by short-path thermal desorption (SPTD) pre-concentration and gas chromatography (GC) coupled to a mass spectrometry (MS) quantification, (ii) validation of the sampling and analytical method and (iii) validation of the data using a multidimensional procedure. Tenax TA and Carbopack B sorbent combinations were used to collect 102 individual VOCs ranging from C5 to C12. Method parameters including thermal desorption temperature, desorption time and cryofocusing temperature were optimized. The average recoveries and method detection limits (MDL) for the target analytes were in the range 80-100% and 0.01-0.14 ppbv, respectively. The method also showed good linearity (R2 > 0.99) and precision (<8%) values. Validation of the method was performed under real environmental conditions at a gas station, in an office and a residential household to examine the influence of variation in meteorological conditions such as temperature and relative humidity and a wide range of VOC concentrations. The sampling and analytical method resulted in successful determination of VOC in different microenvironments. Finally, validation of the data was performed by assessing fingerprint and time series plots and correlation matrices together with meteorological parameters such as mixing height, wind speed and temperature. The data validation procedure provided detection of both faulty data and air pollution episodes.

  6. Analysis of semi-volatile organic compounds in indoor suspended particulate matter by thermal desorption coupled with gas chromatography/mass spectrometry.

    PubMed

    Mercier, Fabien; Glorennec, Philippe; Blanchard, Olivier; Le Bot, Barbara

    2012-09-01

    People are exposed to multiple pollutants, especially indoors. In the perspective of a cumulative risk assessment, a multi-residue analytical method was developed to assess the contamination of indoor suspended particulate matter by 55 semi-volatile organic compounds (SVOCs) including musk fragrances, organochlorines (OCs), organophosphates (OPs), polycyclic aromatic hydrocarbons (PAHs), polybromodiphenylethers (PBDEs), polychlorobiphenyls (PCBs), phthalates and pyrethroids. It is based on thermal desorption (TD) coupled with gas chromatography/mass spectrometry (GC/MS). Once the thermal desorption conditions were optimized, the method was validated in terms of quantification limits and accuracy using a standard reference material (SRM 2585). Instrumental quantification limits were 10 pg (some OCs, some pyrethroids, musk fragrances, OPs, PAHs, PBDEs and PCBs), 100 pg (phthalates and other OCs) and 1000 pg (other pyrethroids) corresponding respectively to method quantification limits of 1, 10, and 100 pg/m³ for a sampled air volume of 20 m³. Calibration quadratic curves for ranges of 10-1000, 100-10,000, and 1000-100,000 pg, depending on the substance, exhibit determination coefficients above 0.999. Recoveries were between 61 and 96% for chlorinated pesticides, PAHs, PBDEs and PCBs present in the SRM 2585. A test of the method on indoor particulate matter samples (PM₁₀) collected on quartz fiber filters in French dwellings demonstrated its ability to quantify SVOCs from a small amount of PM.

  7. Thermal cooking changes the profile of phenolic compounds, but does not attenuate the anti-inflammatory activities of black rice

    PubMed Central

    Bhawamai, Sassy; Lin, Shyh-Hsiang; Hou, Yuan-Yu; Chen, Yue-Hwa

    2016-01-01

    Background Evidence on biological activities of cooked black rice is limited. This study examined the effects of washing and cooking on the bioactive ingredients and biological activities of black rice. Methods Cooked rice was prepared by washing 0–3 times followed by cooking in a rice cooker. The acidic methanol extracts of raw and cooked rice were used for the analyses. Results Raw black rice, both washed and unwashed, had higher contents of polyphenols, anthocyanins, and cyanidin-3-glucoside (C3G), but lower protocatechuic acid (PA), than did cooked samples. Similarly, raw rice extracts were higher in ferric-reducing antioxidant power (FRAP) activities than extracts of cooked samples. Nonetheless, extracts of raw and cooked rice showed similar inhibitory potencies on nitric oxide, tumor necrosis factor-α, and interleukin-6 productions in lipopolysaccharide-activated macrophages, whereas equivalent amounts of C3G and PA did not possess such inhibitory effects. Conclusions Thermal cooking decreased total anthocyanin and C3G contents and the FRAP antioxidative capacity, but did not affect anti-inflammatory activities of black rice. Neither C3G nor PA contributed to the anti-inflammatory activity of black rice. PMID:27652685

  8. A realistic lattice example

    SciTech Connect

    Courant, E.D.; Garren, A.A.

    1985-10-01

    A realistic, distributed interaction region (IR) lattice has been designed that includes new components discussed in the June 1985 lattice workshop. Unlike the test lattices, the lattice presented here includes utility straights and the mechanism for crossing the beams in the experimental straights. Moreover, both the phase trombones and the dispersion suppressors contain the same bending as the normal cells. Vertically separated beams and 6 Tesla, 1-in-1 magnets are assumed. Since the cells are 200 meters long, and have 60 degree phase advance, this lattice has been named RLD1, in analogy with the corresponding test lattice, TLD1. The quadrupole gradient is 136 tesla/meter in the cells, and has similar values in other quadrupoles except in those in the IR`s, where the maximum gradient is 245 tesla/meter. RLD1 has distributed IR`s; however, clustered realistic lattices can easily be assembled from the same components, as was recently done in a version that utilizes the same type of experimental and utility straights as those of RLD1.

  9. Superalloy Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Nathal, M. V.; Hebsur, M. G.; Kraus, D. L.

    2003-01-01

    In their simplest form, lattice block panels are produced by direct casting and result in lightweight, fully triangulated truss-like configurations which provide strength and stiffness [2]. The earliest realizations of lattice block were made from A1 and steels, primarily under funding from the US Navy [3]. This work also showed that the mechanical efficiency (eg., specific stiffness) of lattice block structures approached that of honeycomb structures [2]. The lattice architectures are also less anisotropic, and the investment casting route should provide a large advantage in cost and temperature capability over honeycombs which are limited to alloys that can be processed into foils. Based on this early work, a program was initiated to determine the feasibility of extending the high temperature superalloy lattice block [3]. The objective of this effort was to provide an alternative to intermetallics and composites in achieving a lightweight high temperature structure without sacrificing the damage tolerance and moderate cost inherent in superalloys. To establish the feasibility of the superalloy lattice block concept, work was performed in conjunction with JAMCORP, Inc. Billerica, MA, to produce a number of lattice block panels from both IN71 8 and Mar-M247.

  10. Mass-dependent and Mass-independent Sulphur Isotope Fractionation Accompanying Thermal- and Photo-chemical Decomposition of Sulphur Bearing Organic Compounds

    NASA Astrophysics Data System (ADS)

    Oduro, Harry; Izon, Gareth; Ono, Shuhei

    2014-05-01

    The bimodal S-isotope record, specifically the transition from mass independent (MIF) to mass dependent fractionation (MDF), is perhaps the most widely cited line of evidence for an irreversible rise in atmospheric oxygen at ca. 2.4Ga. The production and preservation of S-MIF, manifested in both Δ33S and Δ36S, within the geological record are linked to atmospheric O2 via a number of arguments. However, to date, the only mechanism capable of generating S-MIF consistent with the Archaean sedimentary records involves gas-phase ultraviolet irradiation of SO21 photolysis. More recently, Δ33S S-MIF trends have been reported from en vitro thermochemical sulphate reduction (TSR) experiments, prompting authors to question the importance of S-MIF as a proxy for Earth oxidation2. Importantly, whilst emerging TSR experiments3,4 affirm the reported Δ33S trends2, these experiments fail to identify correlated S-MIF between Δ33S and Δ36S values3,4. Realization that S-MIF is confined to Δ33S during TSR, precludes TSR as a mechanism responsible for the origin of the Archaean S-MIF record but strongly suggests the effect originating from a magnetic isotope effect (MIE) associated with 33S nucleus3,4. Clearly, photochemical and thermochemical processes impart different Δ36S/Δ33S trends with significant variation in δ34S; however, a complete experimental elucidation of mechanisms responsible for the S-MIF and S-MIE signatures is lacking. Interestingly, a complete understanding of the S-isotope chemistry during thermal- and photo-chemical decomposition may reveal wavelength and thermal dependence archived in the sedimentary record. Here we extend the experimental database to explore the magnitude and sign of Δ36S/Δ33S and δ34S produced during both photo- and thermochemical processes. Here the organic sulphur compounds (OSC) utilized in these experiments carries diagnostic Δ36S/Δ33S patterns that differ from those reported from photolysis experiment SO2 and from the

  11. Organic topological insulators in organometallic lattices.

    PubMed

    Wang, Z F; Liu, Zheng; Liu, Feng

    2013-01-01

    Topological insulators are a recently discovered class of materials having insulating bulk electronic states but conducting boundary states distinguished by nontrivial topology. So far, several generations of topological insulators have been theoretically predicted and experimentally confirmed, all based on inorganic materials. Here, based on first-principles calculations, we predict a family of two-dimensional organic topological insulators made of organometallic lattices. Designed by assembling molecular building blocks of triphenyl-metal compounds with strong spin-orbit coupling into a hexagonal lattice, this new classes of organic topological insulators are shown to exhibit nontrivial topological edge states that are robust against significant lattice strain. We envision that organic topological insulators will greatly broaden the scientific and technological impact of topological insulators.

  12. Josephson vortex lattice in layered superconductors

    SciTech Connect

    Koshelev, A. E.; Dodgson, M. J. W.

    2013-09-15

    Many superconducting materials are composed of weakly coupled conducting layers. Such a layered structure has a very strong influence on the properties of vortex matter in a magnetic field. This review focuses on the properties of the Josephson vortex lattice generated by the magnetic field applied in the direction of the layers. The theoretical description is based on the Lawrence-Doniach model in the London limit, which takes only the phase degree of freedom of the superconducting order parameter into account. In spite of its simplicity, this model leads to an amazingly rich set of phenomena. We review in detail the structure of an isolated vortex line and various properties of the vortex lattice, in both dilute and dense limits. In particular, we extensively discuss the influence of the layered structure and thermal fluctuations on the selection of lattice configurations at different magnetic fields.

  13. Superalloy Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Whittenberger, J. D.; Hebsur, M. G.; Kantzos, P. T.; Krause, D. L.

    2004-01-01

    Initial investigations of investment cast superalloy lattice block suggest that this technology will yield a low cost approach to utilize the high temperature strength and environmental resistance of superalloys in lightweight, damage tolerant structural configurations. Work to date has demonstrated that relatively large superalloy lattice block panels can be successfully investment cast from both IN-718 and Mar-M247. These castings exhibited mechanical properties consistent with the strength of the same superalloys measured from more conventional castings. The lattice block structure also accommodates significant deformation without failure, and is defect tolerant in fatigue. The potential of lattice block structures opens new opportunities for the use of superalloys in future generations of aircraft applications that demand strength and environmental resistance at elevated temperatures along with low weight.

  14. Shaken lattice interferometry

    NASA Astrophysics Data System (ADS)

    Weidner, Carrie; Yu, Hoon; Anderson, Dana

    2016-05-01

    In this work, we report on progress towards performing interferometry using atoms trapped in an optical lattice. That is, we start with atoms in the ground state of an optical lattice potential V(x) =V0cos [ 2 kx + ϕ(t) ] , and by a prescribed phase function ϕ(t) , transform from one atomic wavefunction to another. In this way, we implement the standard interferometric sequence of beam splitting, propagation, reflection, reverse propagation, and recombination. Through the use of optimal control techniques, we have computationally demonstrated a scalable accelerometer that provides information on the sign of the applied acceleration. Extension of this idea to a two-dimensional shaken-lattice-based gyroscope is discussed. In addition, we report on the experimental implementation of the shaken lattice system.

  15. SPIN ON THE LATTICE.

    SciTech Connect

    ORGINOS,K.

    2003-01-07

    I review the current status of hadronic structure computations on the lattice. I describe the basic lattice techniques and difficulties and present some of the latest lattice results; in particular recent results of the RBC group using domain wall fermions are also discussed. In conclusion, lattice computations can play an important role in understanding the hadronic structure and the fundamental properties of Quantum Chromodynamics (QCD). Although some difficulties still exist, several significant steps have been made. Advances in computer technology are expected to play a significant role in pushing these computations closer to the chiral limit and in including dynamical fermions. RBC has already begun preliminary dynamical domain wall fermion computations [49] which we expect to be pushed forward with the arrival of QCD0C. In the near future, we also expect to complete the non-perturbative renormalization of the relevant derivative operators in quenched QCD.

  16. Asymptotic energy of lattices

    NASA Astrophysics Data System (ADS)

    Yan, Weigen; Zhang, Zuhe

    2009-04-01

    The energy of a simple graph G arising in chemical physics, denoted by E(G), is defined as the sum of the absolute values of eigenvalues of G. As the dimer problem and spanning trees problem in statistical physics, in this paper we propose the energy per vertex problem for lattice systems. In general for a type of lattice in statistical physics, to compute the entropy constant with toroidal, cylindrical, Mobius-band, Klein-bottle, and free boundary conditions are different tasks with different hardness and may have different solutions. We show that the energy per vertex of plane lattices is independent of the toroidal, cylindrical, Mobius-band, Klein-bottle, and free boundary conditions. In particular, the asymptotic formulae of energies of the triangular, 33.42, and hexagonal lattices with toroidal, cylindrical, Mobius-band, Klein-bottle, and free boundary conditions are obtained explicitly.

  17. LaPtSb: a half-Heusler compound with high thermoelectric performance.

    PubMed

    Xue, Q Y; Liu, H J; Fan, D D; Cheng, L; Zhao, B Y; Shi, J

    2016-07-21

    The electronic and transport properties of the half-Heusler compound LaPtSb are investigated by performing first-principles calculations combined with semi-classical Boltzmann theory and deformation potential theory. Compared with many typical half-Heusler compounds, LaPtSb exhibits an obviously larger power factor at room temperature, especially for the n-type system. Together with the very low lattice thermal conductivity, the thermoelectric figure of merit (ZT) of LaPtSb can be optimized to a record high value of 2.2 by fine tuning the carrier concentration.

  18. LaPtSb: a half-Heusler compound with high thermoelectric performance.

    PubMed

    Xue, Q Y; Liu, H J; Fan, D D; Cheng, L; Zhao, B Y; Shi, J

    2016-07-21

    The electronic and transport properties of the half-Heusler compound LaPtSb are investigated by performing first-principles calculations combined with semi-classical Boltzmann theory and deformation potential theory. Compared with many typical half-Heusler compounds, LaPtSb exhibits an obviously larger power factor at room temperature, especially for the n-type system. Together with the very low lattice thermal conductivity, the thermoelectric figure of merit (ZT) of LaPtSb can be optimized to a record high value of 2.2 by fine tuning the carrier concentration. PMID:27321233

  19. Lattice properties of MgB{sub 2} versus temperature and pressure

    SciTech Connect

    Jorgensen, J. D.; Hinks, D. G.; Short, S.

    2001-06-01

    We have determined the structural properties of the superconducting compound MgB{sub 2} as a function of temperature from 11 to 297 K and as a function of hydrostatic pressure up to 0.62 GPa using neutron powder diffraction. This compound, when compared to other diborides with the same structure, is characterized by unusually large anisotropies of both the thermal expansion and compressibility, with the c-axis responses being substantially larger. We speculate that the comparatively weaker metal-boron bonding in MgB{sub 2} manifested by these lattice responses, is important for establishing the structural features that give rise to high-T{sub c} superconductivity in this structure type.

  20. Automated Lattice Perturbation Theory

    SciTech Connect

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  1. Additive lattice kirigami

    PubMed Central

    Castle, Toen; Sussman, Daniel M.; Tanis, Michael; Kamien, Randall D.

    2016-01-01

    Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes. PMID:27679822

  2. Legless locomotion in lattices

    NASA Astrophysics Data System (ADS)

    Schiebel, Perrin; Dai, Jin; Gong, Chaohui; Serrano, Miguel M.; Mendelson, Joseph R., III; Choset, Howie; Goldman, Daniel I.

    2015-03-01

    By propagating waves from head to tail, limbless organisms like snakes can traverse terrain composed of rocks, foliage, soil and sand. Previous research elucidated how rigid obstacles influence snake locomotion by studying a model terrain-symmetric lattices of pegs placed in hard ground. We want to understand how different substrate-body interaction modes affect performance in desert-adapted snakes during transit of substrates composed of both rigid obstacles and granular media (GM). We tested Chionactis occipitalis, the Mojave shovel-nosed snake, in two laboratory treatments: lattices of 0 . 64 cm diameter obstacles arrayed on both a hard, slick substrate and in a GM of ~ 0 . 3 mm diameter glass particles. For all lattice spacings, d, speed through the hard ground lattices was less than that in GM lattices. However, maximal undulation efficiencies ηu (number of body lengths advanced per undulation cycle) in both treatments were comparable when d was intermediate. For other d, ηu was lower than this maximum in hard ground lattices, while on GM, ηu was insensitive to d. To systematically explore such locomotion, we tested a physical robot model of the snake; performance depended sensitively on base substrate, d and body wave parameters.

  3. Additive lattice kirigami

    PubMed Central

    Castle, Toen; Sussman, Daniel M.; Tanis, Michael; Kamien, Randall D.

    2016-01-01

    Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes.

  4. A study of microtubule dipole lattices

    NASA Astrophysics Data System (ADS)

    Nandi, Shubhendu

    Microtubules are cytoskeletal protein polymers orchestrating a host of important cellular functions including, but not limited to, cell support, cell division, cell motility and cell transport. In this thesis, we construct a toy-model of the microtubule lattice composed of vector Ising spins representing tubulin molecules, the building block of microtubules. Nearest-neighbor and next-to-nearest neighbor interactions are considered within an anisotropic dielectric medium. As a consequence of the helical topology, we observe that certain spin orientations render the lattice frustrated with nearest neighbor ferroelectric and next-to-nearest neighbor antiferroelectric bonds. Under these conditions, the lattice displays the remarkable property of stabilizing certain spin patterns that are robust to thermal fluctuations. We model this behavior in the framework of a generalized Ising model known as the J1 - J2 model and theoretically determine the set of stable patterns. Employing Monte-Carlo methods, we demonstrate the stability of such patterns in the microtubule lattice at human physiological temperatures. This suggests a novel biological mechanism for storing information in living organisms, whereby the tubulin spin (dipole moment) states become information bits and information gets stored in microtubules in a way that is robust to thermal fluctuations.

  5. The effect of mineral fillers on the rheological, mechanical and thermal properties of halogen-free flame-retardant polypropylene/expandable graphite compounds

    NASA Astrophysics Data System (ADS)

    Mattausch, Hannelore; Laske, Stephan; Hohenwarter, Dieter; Holzer, Clemens

    2015-05-01

    In many polyolefin applications, such as electrical cables or automotive applications, the fire protection is a very important task. Unfortunately flame-retardant polymeric materials are often halogenated and form toxic substances in case of fire, which explains the general requirement to reduce the halogen content to zero. Non-halogenated, state-of-the-art flame retardants must be incorporated into the polymer in very high grades (> 40 wt%) leading to massive decrease in mechanical properties and/or processability. In this research work halogen-free flame-retardant polypropylene (PP) /expandable graphite (EG) were filled with minerals fillers such as layered silicates (MMT), magnesium hydroxide (MgOH), zeolite (Z) and expanded perlite (EP) in order to enhance the flame-retardant effect. The rheological, mechanical and thermal properties of these materials were investigated to gain more fundamental knowledge about synergistic combinations of flame-retardants and other additives. The rheological properties were characterized with a rotational rheometer with plate-plate setup. The EG/EP/PP compound exhibited the highest increase in viscosity (˜ 37 %). As representative value for the mechanical properties the Young's modulus was chosen. The final Young's modulus values of the twofold systems gained higher values than the single ones. Thermo gravimetric analysis (TGA) was utilized to investigate the material with respect to volatile substances and combustion behavior. All materials decomposed in one-step degradation. The EG filled compounds showed a significant increase in sample weight due to the expansion of EG. The combustion behavior of these materials was characterized by cone calorimeter tests. Especially combinations of expandable graphite with mineral fillers exhibit a reduction of the peak heat release rate during cone calorimeter measurements of up to 87% compared to pure PP.

  6. Consideration on the broad quantification range of gaseous reduced sulfur compounds with the combined application of gas chromatography and thermal desorber

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Hyun

    2011-07-01

    In this work, the dynamic range of gas chromatography (GC) combined with a thermal desorber (TD) was investigated through a series of calibration experiments. To this end, standard gases of reduced sulfur compounds (RSC: H 2S, CH 3SH, DMS, CS 2 and DMDS) covering a relatively wide concentration range (2-100 nmol mol -1 (or ppb)) were analyzed by regulating sample loading range from 40 to 1200 mL (3.3-4900 pmol). It shows that the upper limits of GC-TD quantification are far higher than those of GC alone, although the cold trap unit in a TD suffers from breakthrough after a dose of RSC (e.g., 500 (DMDS) to 1600 pmol (H 2S)). Its quantification uncertainties tend to grow systematically with decreases in standard concentrations and sample loading volume, especially with H 2S. According to this study, the use of TD generally reduces the absolute detectability of GC by about one order of magnitude. Such reduction caused by TD application can be compensated efficiently with similar magnitude through the magnification of sample supply. Moreover, the TD system allows to increase sample volume (up to 3 orders of magnitude or above), it can ultimately help extend the practical range of RSC qualification in a fairly reliable manner.

  7. Nonpolar organic compounds in fine particles: quantification by thermal desorption-GC/MS and evidence for their significant oxidation in ambient aerosols in Hong Kong.

    PubMed

    Yu, Jian Zhen; Huang, X H Hilda; Ho, Steven S H; Bian, Qijing

    2011-12-01

    Nonpolar organic compounds (NPOCs) in ambient particulate matter (PM) commonly include n-alkanes, branched alkanes, hopanes and steranes, and polycyclic aromatic hydrocarbons (PAHs). The recent development of thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) has greatly reduced time and labor in their quantification by eliminating the laborious solvent extraction and sample concentration steps in the traditional approach that relies on solvent extraction. The simplicity of the TD-GCMS methods has afforded us concentration data of NPOCs in more than 90 aerosol samples in two aerosol field studies and 20 vehicular emissions-dominated source samples in Hong Kong over the past few years. In this work, we examine the interspecies relationships between select NPOCs and their concentration ratios to elemental carbon (EC) among the ambient samples and among the source samples. Our analysis indicates that hopanes were mainly from vehicular emissions and they were significantly oxidized in ambient PM. The hopane/EC ratio in ambient samples was on average less than half of the ratio in vehicular emissions-dominated source samples. This highlights the necessity in considering oxidation loss in applying organic tracer data in source apportionment studies. Select PAH/EC ratio-ratio plots reveal that PAHs had diverse sources and vehicular emissions were unlikely a dominant source for PAHs in Hong Kong. Biomass burning and other regional sources likely dominated ambient PAHs in Hong Kong. PMID:21983947

  8. Theoretical studies on the crystal structure, thermodynamic properties, detonation performance and thermal stability of cage-tetranitrotetraazabicyclooctane as a novel high energy density compound.

    PubMed

    Zhao, Guo-zheng; Lu, Ming

    2013-01-01

    The B3LYP/6-31G (d) method of density functional theory (DFT) was used to study molecular geometry, electronic structure, infrared spectrum (IR) and thermodynamic properties. The heat of formation (HOF) and calculated density were estimated to evaluate the detonation properties using Kamlet-Jacobs equations. Thermal stability of 3,5,7,10,12,14,15,16-octanitro- 3,5,7,10,12,14,15,16-octaaza-heptacyclo[7.5.1.1(2,8).0(1,11).0(2,6).0(4,13).0(6,11)]hexadecane (cage-tetranitrotetraazabicyclooctane) was investigated by calculating the bond dissociation energy (BDE) at unrestricted B3LYP/6-31G (d) level. The calculated results show that the N-NO2 bond is a trigger bond during thermolysis initiation process. The crystal structure obtained by molecular mechanics (MM) methods belongs to Pna2(1) space group, with cell parameters a=12.840 Å, b=9.129 Å, c=14.346 Å, Z=6 and ρ=2.292 g·cm(-3). Both the detonation velocity of 9.96 km·s(-1) and the detonation pressure of 47.47 GPa are better than those of CL-20. According to the quantitative standard of energetics and stability, as a high energy density compound (HEDC), cage-tetranitrotetraazabicyclooctane essentially satisfies this requirement. PMID:22790340

  9. Effect of Fe(II) spin crossover on charge distribution in and lattice properties of thiospinels

    NASA Astrophysics Data System (ADS)

    Womes, M.; Jumas, J. C.

    2013-03-01

    The spinels AgFe0.5Sn1.5S4 and CuFe0.5Sn1.5S4 belong to the rare examples of purely inorganic compounds in which Fe(II) exhibits a thermally induced transition from a low spin 3d(t2g)6(eg)0 to a high spin 3d(t2g)4(eg)2 electronic ground state. The extremely rare situation of having 119Sn as a second Mössbauer isotope in the lattice besides 57Fe is used to obtain deeper insight in the consequences the spin transition has on the lattice properties. To this end, 119Sn Mössbauer spectra were recorded between 5 and 500 K. The temperature dependence of the 119Sn hyperfine parameters is analysed. The data are compared to those obtained for the spinels AgMn0.5Sn1.5S4 and CuMn0.5Sn1.5S4 which are characterised by a temperature-independent high spin ground state. The results are discussed in terms of Fe-Sn charge transfer, local distortions on the tin site and changes of the vibrational lattice properties induced by the Fe spin transition.

  10. Lattice Boltzmann method for simulation of compressible flows on standard lattices.

    PubMed

    Prasianakis, Nikolaos I; Karlin, Iliya V

    2008-07-01

    The recently introduced lattice Boltzmann model for thermal flow simulation on a standard lattice [Prasianakis and Karlin, Phys. Rev. E 76, 016702 (2007)] is studied numerically in the case where compressibility effects are essential. It is demonstrated that the speed of sound and shock propagation are described correctly in a wide temperature range, and that it is possible to take into account additional physics such as heat sources and sinks. A remarkable simplicity of the model makes it viable for engineering applications in subsonic flows with large temperature and density variations. PMID:18764078

  11. Lattice dynamics of BaFe2X3(X=S,Se) compounds

    SciTech Connect

    Popović, Z. V.; Šćepanović, M.; Lazarević, N.; Opačić, M.; Radonjić, M. M.; Tanasković, D.; Lei, Hechang; Petrovic, C.

    2015-02-27

    We present the Raman scattering spectra of the S=2 spin ladder compounds BaFe₂X₃ (X=S,Se) in a temperature range between 20 and 400 K. Although the crystal structures of these two compounds are both orthorhombic and very similar, they are not isostructural. The unit cell of BaFe₂S₃ (BaFe₂Se₃) is base-centered Cmcm (primitive Pnma), giving 18 (36) modes to be observed in the Raman scattering experiment. We have detected almost all Raman active modes, predicted by factor group analysis, which can be observed from the cleavage planes of these compounds. Assignment of the observed Raman modes of BaFe₂S(Se)₃ is supported by the lattice dynamics calculations. The antiferromagnetic long-range spin ordering in BaFe₂Se₃ below TN=255K leaves a fingerprint both in the A1g and B3g phonon mode linewidth and energy.

  12. Lattice studies of baryons

    SciTech Connect

    David Richards

    2004-10-01

    This talk describes progress at understanding the properties of the nucleon and its excitations from lattice QCD. I begin with a review of recent lattice results for the lowest-lying states of the excited baryon spectrum. The need to approach physical values of the light quark masses is emphasized, enabling the effects of the pion cloud to be revealed. I then outline the development of techniques that will enable the extraction of the masses of the higher resonances, and describe how such calculations provide insight into the structure of the hadrons. Finally, I discuss direct probes of the quark and gluon structure of baryons through the lattice measurement of the moments of quark distributions and of Generalized Parton Distributions.

  13. Latticed pentamode acoustic cloak.

    PubMed

    Chen, Yi; Liu, Xiaoning; Hu, Gengkai

    2015-01-01

    We report in this work a practical design of pentamode acoustic cloak with microstructure. The proposed cloak is assembled by pentamode lattice made of a single-phase solid material. The function of rerouting acoustic wave round an obstacle has been demonstrated numerically. It is also revealed that shear related resonance due to weak shear resistance in practical pentamode lattices punctures broadband feature predicted based on ideal pentamode cloak. As a consequence, the latticed pentamode cloak can only conceal the obstacle in segmented frequency ranges. We have also shown that the shear resonance can be largely reduced by introducing material damping, and an improved broadband performance can be achieved. These works pave the way for experimental demonstration of pentamode acoustic cloak. PMID:26503821

  14. Latticed pentamode acoustic cloak

    PubMed Central

    Chen, Yi; Liu, Xiaoning; Hu, Gengkai

    2015-01-01

    We report in this work a practical design of pentamode acoustic cloak with microstructure. The proposed cloak is assembled by pentamode lattice made of a single-phase solid material. The function of rerouting acoustic wave round an obstacle has been demonstrated numerically. It is also revealed that shear related resonance due to weak shear resistance in practical pentamode lattices punctures broadband feature predicted based on ideal pentamode cloak. As a consequence, the latticed pentamode cloak can only conceal the obstacle in segmented frequency ranges. We have also shown that the shear resonance can be largely reduced by introducing material damping, and an improved broadband performance can be achieved. These works pave the way for experimental demonstration of pentamode acoustic cloak. PMID:26503821

  15. Exact Lattice Supersymmetry

    SciTech Connect

    Catterall, Simon; Kaplan, David B.; Unsal, Mithat

    2009-03-31

    We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.

  16. Lattice of the CSR

    NASA Astrophysics Data System (ADS)

    Xia, J. W.; Yuan, Y. J.; Song, M. T.; Zhang, W. Z.; Yang, X. D.; He, Y.; Mao, L. Z.; Xia, G. X.; Yang, J. C.; Wu, J. X.; Liu, W.

    2001-12-01

    CSR, a new Cooler-Storage-Ring project, is the post-acceleration system of the Heavy Ion Research Facility in Lanzhou (HIRFL). It consists of a main ring (CSRm) and an experimental ring (CSRe). From the HIRFL cyclotron system the heavy ions will be accumulated, cooled and accelerated in the CSRm, then extracted fast and injected into the CSRe for many internal-target experiments with electron cooling. The experimental ring (CSRe) will be operated with three lattice modes for different experiments. The details of the lattice for the two rings will be described in this paper.

  17. Investigating the Structural, Thermal, and Electronic Properties of the Zircon-Type ZrSiO4, ZrGeO4 and HfSiO4 Compounds

    NASA Astrophysics Data System (ADS)

    Chiker, Fafa; Boukabrine, Fatiha; Khachai, H.; Khenata, R.; Mathieu, C.; Bin Omran, S.; Syrotyuk, S. V.; Ahmed, W. K.; Murtaza, G.

    2016-11-01

    In the present study, the structural, thermal, and electronic properties of some important orthosilicate dielectrics, such as the ZrSiO4, ZrGeO4, and HfSiO4 compounds, have been investigated theoretically with the use of first-principle calculations. We attribute the application of the modified Becke-Johnson exchange potential, which is basically an improvement over the local density approximation and the Perdew-Burke-Ernzerhof exchange-correlation functional, for a better description of the band gaps of the compounds. This resulted in a good agreement with our estimated values in comparison with the reported experimental data, specifically for the ZrSiO4, and HfSiO4 compounds. Conversely, for the ZrGeO4 compound, the calculated electronic band structure shows a direct band gap at the Γ point with the value of 5.79 eV. Furthermore, our evaluated thermal properties that are calculated by using the quasi-harmonic Debye model indicated that the volume variation with temperature is higher in the ZrGeO4 compound as compared to both the ZrSiO4 and HfSiO4 compounds, which is ascribed to the difference between the electron shells of the Si and Ge atoms. Therefore, these results also indicate that while the entropy ( S) and enthalpy ( U) parameters increase monotonically, the free energy ( G), in contrast, decreases monotonically with increasing temperature, respectively. Moreover, the pressure and temperature dependencies of the Debye temperature Θ, thermal expansion coefficient, and heat capacities C V were also predicted in our study.

  18. Investigating the Structural, Thermal, and Electronic Properties of the Zircon-Type ZrSiO4, ZrGeO4 and HfSiO4 Compounds

    NASA Astrophysics Data System (ADS)

    Chiker, Fafa; Boukabrine, Fatiha; Khachai, H.; Khenata, R.; Mathieu, C.; Bin Omran, S.; Syrotyuk, S. V.; Ahmed, W. K.; Murtaza, G.

    2016-07-01

    In the present study, the structural, thermal, and electronic properties of some important orthosilicate dielectrics, such as the ZrSiO4, ZrGeO4, and HfSiO4 compounds, have been investigated theoretically with the use of first-principle calculations. We attribute the application of the modified Becke-Johnson exchange potential, which is basically an improvement over the local density approximation and the Perdew-Burke-Ernzerhof exchange-correlation functional, for a better description of the band gaps of the compounds. This resulted in a good agreement with our estimated values in comparison with the reported experimental data, specifically for the ZrSiO4, and HfSiO4 compounds. Conversely, for the ZrGeO4 compound, the calculated electronic band structure shows a direct band gap at the Γ point with the value of 5.79 eV. Furthermore, our evaluated thermal properties that are calculated by using the quasi-harmonic Debye model indicated that the volume variation with temperature is higher in the ZrGeO4 compound as compared to both the ZrSiO4 and HfSiO4 compounds, which is ascribed to the difference between the electron shells of the Si and Ge atoms. Therefore, these results also indicate that while the entropy (S) and enthalpy (U) parameters increase monotonically, the free energy (G), in contrast, decreases monotonically with increasing temperature, respectively. Moreover, the pressure and temperature dependencies of the Debye temperature Θ, thermal expansion coefficient, and heat capacities C V were also predicted in our study.

  19. Variation of magnetism and half-metallicity in Ru{sub 2}VSi with lattice expansion

    SciTech Connect

    Bhat, Idris Hamid; Gupta, Dinesh C.

    2015-06-24

    Full-potential linearized augmented plane wave method has been employed to investigate the electronic and magnetic properties of Ru{sub 2}VSi Heusler alloy at optimized lattice parameter and in expanded lattice. Present computations predict that Ru{sub 2}VSi has a ferromagnetic ground state with an optimized lattice constant 5.952 Å. The compound in ambient conditions was found to have metallic character. However, increased value of lattice parameter induces 100% spin-polarization in the material at Fermi energy. Further, the band gap tends to increase and the material behaves as pure half-metallic at an increased value of lattice constant.

  20. Effects of thermal fluctuations on thermal inflation

    SciTech Connect

    Hiramatsu, Takashi; Miyamoto, Yuhei; Yokoyama, Jun’ichi

    2015-03-12

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.

  1. Effects of thermal fluctuations on thermal inflation

    SciTech Connect

    Hiramatsu, Takashi; Miyamoto, Yuhei; Yokoyama, Jun'ichi E-mail: miyamoto@resceu.s.u-tokyo.ac.jp

    2015-03-01

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.

  2. Rigidity of lattice domes

    NASA Technical Reports Server (NTRS)

    Savelyev, V. A.

    1979-01-01

    The means of ensuring total rigidity of lattice domes, using comparison with solid shells of 1-3 layers are discussed. Irregularities of manufacture, processing, and other factors are considered, as they relate to diminution of rigidity. The discussion uses the concepts of upper and lower critical loads on the structure in question.

  3. Supersymmetry on the Lattice

    NASA Astrophysics Data System (ADS)

    Schaich, David

    2016-03-01

    Lattice field theory provides a non-perturbative regularization of strongly interacting systems, which has proven crucial to the study of quantum chromodynamics among many other theories. Supersymmetry plays prominent roles in the study of physics beyond the standard model, both as an ingredient in model building and as a tool to improve our understanding of quantum field theory. Attempts to apply lattice techniques to supersymmetric field theories have a long history, but until recently these efforts have generally encountered insurmountable difficulties related to the interplay of supersymmetry with the lattice discretization of spacetime. In recent years these difficulties have been overcome for a class of theories that includes the particularly interesting case of maximally supersymmetric Yang-Mills (N = 4 SYM) in four dimensions, which is a cornerstone of AdS/CFT duality. In combination with computational advances this progress enables practical numerical investigations of N = 4 SYM on the lattice, which can address questions that are difficult or impossible to handle through perturbation theory, AdS/CFT duality, or the conformal bootstrap program. I will briefly review some of the new ideas underlying this recent progress, and present some results from ongoing large-scale numerical calculations, including comparisons with analytic predictions.

  4. Progress in lattice QCD

    SciTech Connect

    Andreas S. Kronfeld

    2002-09-30

    After reviewing some of the mathematical foundations and numerical difficulties facing lattice QCD, I review the status of several calculations relevant to experimental high-energy physics. The topics considered are moments of structure functions, which may prove relevant to search for new phenomena at the LHC, and several aspects of flavor physics, which are relevant to understanding CP and flavor violation.

  5. The JKJ Lattice

    NASA Astrophysics Data System (ADS)

    Shigaki, Kenta; Noda, Fumiaki; Yamamoto, Kazami; Machida, Shinji; Molodojentsev, Alexander; Ishi, Yoshihiro

    2002-12-01

    The JKJ high-intensity proton accelerator facility consists of a 400-MeV linac, a 3-GeV 1-MW rapid-cycling synchrotron and a 50-GeV 0.75-MW synchrotron. The lattice and beam dynamics design of the two synchrotrons are reported.

  6. Fibonacci Optical Lattices

    NASA Astrophysics Data System (ADS)

    Singh, Kevin; Geiger, Zachary; Senaratne, Ruwan; Rajagopal, Shankari; Fujiwara, Kurt; Weld, David; Weld Group Team

    2015-05-01

    Quasiperiodicity is intimately involved in quantum phenomena from localization to the quantum Hall effect. Recent experimental investigation of quasiperiodic quantum effects in photonic and electronic systems have revealed intriguing connections to topological phenomena. However, such experiments have been limited by the absence of techniques for creating tunable quasiperiodic structures. We propose a new type of quasiperiodic optical lattice, constructed by intersecting a Gaussian beam with a 2D square lattice at an angle with an irrational tangent. The resulting potential, a generalization of the Fibonacci lattice, is a physical realization of the mathematical ``cut-and-project'' construction which underlies all quasiperiodic structures. Calculation of the energies and wavefunctions of atoms loaded into the proposed quasiperiodic lattice demonstrate a fractal energy spectrum and the existence of edge states. We acknowledge support from the ONR (award N00014-14-1-0805), the ARO and the PECASE program (award W911NF-14-1-0154), the AFOSR (award FA9550-12-1-0305), and the Alfred P. Sloan foundation (grant BR2013-110).

  7. Shaken Lattice Interferometry

    NASA Astrophysics Data System (ADS)

    Weidner, Carrie; Yu, Hoon; Anderson, Dana

    2015-05-01

    This work introduces a method to perform interferometry using atoms trapped in an optical lattice. Starting at t = 0 with atoms in the ground state of a lattice potential V(x) =V0cos [ 2 kx + ϕ(t) ] , we show that it is possible to transform from one atomic wavefunction to another by a prescribed shaking of the lattice, i.e., by an appropriately tailored time-dependent phase shift ϕ(t) . In particular, the standard interferometer sequence of beam splitting, propagation, reflection, reverse propagation, and recombination can be achieved via a set of phase modulation operations {ϕj(t) } . Each ϕj(t) is determined using a learning algorithm, and the split-step method calculates the wavefunction dynamics. We have numerically demonstrated an interferometer in which the shaken wavefunctions match the target states to better than 1 % . We carried out learning using a genetic algorithm and optimal control techniques. The atoms remain trapped in the lattice throughout the full interferometer sequence. Thus, the approach may be suitable for use in an dynamic environment. In addition to the general principles, we discuss aspects of the experimental implementation. Supported by the Office of Naval Research (ONR) and Northrop Grumman.

  8. X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction

    SciTech Connect

    Siegrist, R.L. |; Lowe, K.S.; Murdoch, L.D. |; Slack, W.W.; Houk, T.C.

    1998-03-01

    The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies.

  9. Effects of post-reflow cooling rate and thermal aging on growth behavior of interfacial intermetallic compound between SAC305 solder and Cu substrate

    NASA Astrophysics Data System (ADS)

    Hu, Xiaowu; Xu, Tao; Jiang, Xiongxin; Li, Yulong; Liu, Yi; Min, Zhixian

    2016-04-01

    The interfacial reactions between Cu and Sn3Ag0.5Cu (SAC305) solder reflowed under various cooling rates were investigated. It is found that the cooling rate is an important parameter in solder reflow process because it influences not only microstructure of solder alloy but also the morphology and growth of intermetallic compounds (IMCs) formed between solder and Cu substrate. The experimental results indicate that only scallop-like Cu6Sn5 IMC layer is observed between solder and Cu substrate in case of water cooling and air cooling, while bilayer composed of scallop-like Cu6Sn5 and thin layer-like Cu3Sn is detected under furnace cooling due to sufficient reaction time to form Cu3Sn between Cu6Sn5 IMC and Cu substrate which resulted from slow cooling rate. Samples with different reflow cooling rates were further thermal-aged at 423 K. And it is found that the thickness of IMC increases linearly with square root of aging time. The growth constants of interfacial IMC layer during aging were obtained and compared for different cooling rates, indicating that the IMC layer thickness increased faster in samples under low cooling rate than in the high cooling rate under the same aging condition. The long prismatic grains were formed on the existing interfacial Cu6Sn5 grains to extrude deeply into solder matrix with lower cooling rate and long-term aging, and the Cu6Sn5 grains coarsened linearly with cubic root of aging time.

  10. Intra- versus Inter-dimer Charge Inhomogeneity in the Triangular Lattice Compounds of β'-Cs[Pd(dmit)2]2: A Degree of Freedom Characteristic of an Interchange of Energy Levels in the Molecular Orbitals

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takashi; Tamura, Masafumi; Yakushi, Kyuya; Kato, Reizo

    2016-10-01

    We have carried out the complete analyses of the C=C stretching modes in the vibrational spectra in the triangular lattice of β'-Cs[Pd(dmit)2]2 in order to solve the puzzling phenomenon that the ground state is neither spin frustration nor anti-ferromagnetic state but octamerization. We found that both charge-rich and charge-poor dimers are non-centrosymmetric dimers with the inhomogeneous charges. Because the energy levels of HOMO and LUMO are interchanged due to the tight dimerization, the cooperative interaction between the inter-site Coulomb repulsions and the valence-bond formation operates within and between dimers, those which contribute to the inter-dimer and intra-dimer charge separations, respectively. Octamer is the minimal unit under both cooperative interactions. In the high-temperature phase of β'-Cs[Pd(dmit)2]2, the competition between octamerization and tetramerization is observed because of the suppression of the intra-dimer cooperative interaction. The competition between two different states indicates the degree of freedom characteristic of the molecular orbital due to the tight dimerization. The cooperative interactions of the various X[Pd(dmit)2]2 salts are quantitatively evaluated from the C=C stretching modes.

  11. Advanced thermoelectric materials with enhanced crystal lattice structure and methods of preparation

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Caillat, Thierry F. (Inventor); Borshchevsky, Alexander (Inventor)

    1998-01-01

    New skutterudite phases including Ru.sub.0.5 Pd.sub.0.5 Sb.sub.3, RuSb.sub.2 Te, and FeSb.sub.2 Te, have been prepared having desirable thermoelectric properties. In addition, a novel thermoelectric device has been prepared using skutterudite phase Fe.sub.0.5 Ni.sub.0.5 Sb.sub.3. The skutterudite-type crystal lattice structure of these semiconductor compounds and their enhanced thermoelectric properties results in semiconductor materials which may be used in the fabrication of thermoelectric elements to substantially improve the efficiency of the resulting thermoelectric device. Semiconductor materials having the desired skutterudite-type crystal lattice structure may be prepared in accordance with the present invention by using powder metallurgy techniques. Measurements of electrical and thermal transport properties of selected semiconductor materials prepared in accordance with the present invention, demonstrated high Hall mobilities and good Seebeck coefficients. These materials have low thermal conductivity and relatively low electrical resistivity, and are good candidates for low temperature thermoelectric applications.

  12. Lattice dynamics and disorder-induced contraction in functionalized graphene

    NASA Astrophysics Data System (ADS)

    Feng Huang, Liang; Zeng, Zhi

    2013-02-01

    The lattice dynamics and disorder-induced contraction in hydrogenated, fluorinated, and chlorinated graphene are studied by first-principles simulation. The effects of the functionalization on the phonon dispersions, Grüneissen constants, vibrational thermodynamic functions (free energy, internal energy, entropy, and heat capacity), thermal-expansion coefficients, and bulk moduli are systematically investigated. Functionalization changes the chemical-bond length, mass, thickness, vibrational-mode symmetry, and mode number, and subsequently has significant effects on the phonon dispersions and Grüneissen constants. Functionalization generally increases the vibrational thermodynamic functions, and their temperature dependences all present conventional isotope effects. Functionalization suppresses (enhances) the thermal contraction (expansion) of the lattice, due to the increases in the system mass, membrane thickness, and the compressibility of the phonons. Both the lattice-constant variation and the phonon thermalization contribute to the temperature dependence of the bulk modulus. Both pristine and hydrogenated graphene can be viewed as two kinds of materials having the Invar and Elinvar properties. The contribution to the lattice contraction in functionalized graphene from the conformation disorder (about 2.0%) is much larger than that by thermalization (<0.1% at 300 K), which explains the mismatch between the experimental and theoretical lattice constants.

  13. Enhanced negative thermal expansion in La(1-x)Pr(x)Fe10.7Co0.8Si1.5 compounds by doping the magnetic rare-earth element praseodymium.

    PubMed

    Li, Wen; Huang, Rongjin; Wang, Wei; Tan, Jie; Zhao, Yuqiang; Li, Shaopeng; Huang, Chuanjun; Shen, Jun; Li, Laifeng

    2014-06-01

    Experiments have been performed to enhance negative thermal expansion (NTE) in the La(Fe,Co,Si)13-based compounds by optimizing the chemical composition, i.e., proper substitution of La by magnetic element Pr. It is found that increasing the absolute value of the average coefficient of thermal expansion (CTE) in the NTE temperature region (200-300 K) attributes to enhancement of the spontaneous magnetization and its growth rate with increasing Pr content. Typically, the average CTE of La(1-x)Pr(x)Fe10.7Co0.8Si1.5 with x = 0.5 reaches as large as -38.5 × 10(-6) K(-1) between 200 and 300 K (ΔT = 100 K), which is 18.5% larger than that of x = 0. The present results highlight the potential applications of La(Fe,Co,Si)13-based compounds with a larger NTE coefficient.

  14. Enhanced negative thermal expansion in La(1-x)Pr(x)Fe10.7Co0.8Si1.5 compounds by doping the magnetic rare-earth element praseodymium.

    PubMed

    Li, Wen; Huang, Rongjin; Wang, Wei; Tan, Jie; Zhao, Yuqiang; Li, Shaopeng; Huang, Chuanjun; Shen, Jun; Li, Laifeng

    2014-06-01

    Experiments have been performed to enhance negative thermal expansion (NTE) in the La(Fe,Co,Si)13-based compounds by optimizing the chemical composition, i.e., proper substitution of La by magnetic element Pr. It is found that increasing the absolute value of the average coefficient of thermal expansion (CTE) in the NTE temperature region (200-300 K) attributes to enhancement of the spontaneous magnetization and its growth rate with increasing Pr content. Typically, the average CTE of La(1-x)Pr(x)Fe10.7Co0.8Si1.5 with x = 0.5 reaches as large as -38.5 × 10(-6) K(-1) between 200 and 300 K (ΔT = 100 K), which is 18.5% larger than that of x = 0. The present results highlight the potential applications of La(Fe,Co,Si)13-based compounds with a larger NTE coefficient. PMID:24848739

  15. Preparation of uranium compounds

    DOEpatents

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  16. Lattice Quantum Chromodynamics

    NASA Astrophysics Data System (ADS)

    Sachrajda, C. T.

    2016-10-01

    I review the the application of the lattice formulation of QCD and large-scale numerical simulations to the evaluation of non-perturbative hadronic effects in Standard Model Phenomenology. I present an introduction to the elements of the calculations and discuss the limitations both in the range of quantities which can be studied and in the precision of the results. I focus particularly on the extraction of the QCD parameters, i.e. the quark masses and the strong coupling constant, and on important quantities in flavour physics. Lattice QCD is playing a central role in quantifying the hadronic effects necessary for the development of precision flavour physics and its use in exploring the limits of the Standard Model and in searches for inconsistencies which would signal the presence of new physics.

  17. Introduction to lattice QCD

    SciTech Connect

    Gupta, R.

    1998-12-31

    The goal of the lectures on lattice QCD (LQCD) is to provide an overview of both the technical issues and the progress made so far in obtaining phenomenologically useful numbers. The lectures consist of three parts. The author`s charter is to provide an introduction to LQCD and outline the scope of LQCD calculations. In the second set of lectures, Guido Martinelli will discuss the progress they have made so far in obtaining results, and their impact on Standard Model phenomenology. Finally, Martin Luescher will discuss the topical subjects of chiral symmetry, improved formulation of lattice QCD, and the impact these improvements will have on the quality of results expected from the next generation of simulations.

  18. Synthesis, growth, structural, thermal and optical studies of pyrrolidinium-2-carboxylate-4-nitrophenol single crystals

    NASA Astrophysics Data System (ADS)

    Swarna Sowmya, N.; Sampathkrishnan, S.; Vidyalakshmi, Y.; Sudhahar, S.; Mohan Kumar, R.

    2015-06-01

    Organic nonlinear optical material, pyrrolidinium-2-carboxylate-4-nitrophenol (PCN) was synthesized and single crystals were grown by slow evaporation solution growth method. Single crystal X-ray diffraction analysis confirmed the structure and lattice parameters of PCN crystals. Infrared, Raman and NMR spectral analyses were used to elucidate the functional groups present in the compound. The thermal behavior of synthesized compound was studied by thermogravimetric and differential scanning calorimetry (TG-DSC) analyses. The photoluminescence property was studied by exciting the crystal at 360 nm. The relative second harmonic generation (SHG) efficiency of grown crystal was estimated by using Nd:YAG laser with fundamental wavelength of 1064 nm.

  19. Structural and Thermal Properties of Elementary and Binary Tetrahedral Semiconductor Nanoparticles

    NASA Astrophysics Data System (ADS)

    Omar, M. S.

    2016-01-01

    We report an equation free from fitting parameters as a direct calculation of size-dependent mean bond length for group IV and compounds from the III-V and II-VI binary groups. Size-dependent melting temperature and thermal expansion are also investigated for some materials forming the groups mentioned above. The empirical relation, which is obtained from fitting experimental data of melting enthalpy, is used to recalculate their values as well as entropy. The nanosize dependence of lattice thermal expansion for elements forming group IV is analyzed according to the hard sphere model, while mean ionicity is used for groups III-V and II-VI.

  20. Topological hardcore bosons on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.

    2016-09-01

    This paper presents a connection between the topological properties of hardcore bosons and that of magnons in quantum spin magnets. We utilize the Haldane-like hardcore bosons on the honeycomb lattice as an example. We show that this system maps to a spin-$1/2$ quantum XY model with a next-nearest-neighbour Dzyaloshinsky-Moriya interaction. We obtain the magnon excitations of the quantum spin model and compute the edge states, Berry curvature, thermal and spin Nernst conductivities. Due to the mapping from spin variables to bosons, the hardcore bosons possess the same nontrivial topological properties as those in quantum spin system. These results are important in the study of magnetic excitations in quantum magnets and they are also useful for understanding the control of ultracold bosonic quantum gases in honeycomb optical lattices, which is experimentally accessible.

  1. Revisiting the microtrabecular lattice.

    PubMed

    Clegg, James S

    2010-11-01

    The 'microtrabecular lattice' (MTL) that Keith Porter described in the 1970s and 1980s is reconsidered as a proposed fundamental cytoplasmic structure of eukaryotic cells. Although considered to be an artefact by most cell biologists of his time (and probably ours), the case is made that something like the MTL may well exist, but in a much more dynamic form than images from electron microscopy imply and convey.

  2. Crystallographic Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh

    2016-06-01

    Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows.

  3. Crystallographic Lattice Boltzmann Method.

    PubMed

    Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh

    2016-01-01

    Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098

  4. Crystallographic Lattice Boltzmann Method

    PubMed Central

    Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh

    2016-01-01

    Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098

  5. A Mechanical Lattice Aid for Crystallography Teaching.

    ERIC Educational Resources Information Center

    Amezcua-Lopez, J.; Cordero-Borboa, A. E.

    1988-01-01

    Introduces a 3-dimensional mechanical lattice with adjustable telescoping mechanisms. Discusses the crystalline state, the 14 Bravais lattices, operational principles of the mechanical lattice, construction methods, and demonstrations in classroom. Provides lattice diagrams, schemes of the lattice, and various pictures of the lattice. (YP)

  6. A lattice-free concept lattice update algorithm

    NASA Astrophysics Data System (ADS)

    Outrata, Jan

    2016-02-01

    Upon a change of input data, one usually wants an update of output computed from the data rather than recomputing the whole output over again. In Formal Concept Analysis, update of concept lattice of input data when introducing new objects to the data can be done by any of the so-called incremental algorithms for computing concept lattice. The algorithms use and update the lattice while introducing new objects to input data one by one. The present concept lattice of input data without the new objects is thus required by the computation. However, the lattice can be large and may not fit into memory. In this paper, we propose an efficient algorithm for updating the lattice from the present and new objects only, not requiring the possibly large concept lattice of present objects. The algorithm results as a modification of the Close-by-One algorithm for computing the set of all formal concepts, or its modifications like Fast Close-by-One, Parallel Close-by-One or Parallel Fast Close-by-One, to compute new and modified formal concepts and the changes of the lattice order relation only. The algorithm can be used not only for updating the lattice when new objects are introduced but also when some existing objects are removed from the input data or attributes of the objects are changed. We describe the algorithm, discuss efficiency issues and present an experimental evaluation of its performance and a comparison with the AddIntent incremental algorithm for computing concept lattice.

  7. Abnormal thermal expansion, multiple transitions, magnetocaloric effect, and electronic structure of Gd6Co4.85

    NASA Astrophysics Data System (ADS)

    Zhang, Jiliang; Zheng, Zhigang; Shan, Guangcun; Bobev, Svilen; Shek, Chan Hung

    2015-10-01

    The structure of known Gd4Co3 compound is re-determined as Gd6Co4.85, adopting the Gd6Co1.67Si3 structure type, which is characterized by two disorder Co sites filling the Gd octahedral and a short Gd-Gd distance within the octahedra. The compound shows uniaxial negative thermal expansion in paramagnetic state, significant negative expansion in ferromagnetic state, and positive expansion below ca. 140 K. It also exhibits large magnetocaloric effect, with an entropy change of -6.4 J kg-1 K-1 at 50 kOe. In the lattice of the compound, Co atoms at different sites show different spin states. It was confirmed by the X-ray photoelectron spectra and calculation of electronic structure and shed lights on the abnormal thermal expansion. The stability of such compound and the origin of its magnetism are also discussed based on measured and calculated electronic structures.

  8. Lattice instability in the AlMgB14 structure

    NASA Astrophysics Data System (ADS)

    Wan, L. F.; Beckman, S. P.

    2014-04-01

    The lattice dynamics of the AlMgB14 structure is characterized by phonon vibrational modes that are calculated from first-principles methods. The stoichiometric composition of AlMgB14 is found to have three soft phonon modes, which have displacements associated with metal atoms vibrating against the B lattice. This lattice instability is believed to be associated with the occupation of electronic states in the conduction bands. The off-stoichiometric occupation sweeps the Fermi level from the conduction band into the gap, and as a result the observed soft phonon modes are driven away. Based on a simple electron counting scheme, as also discussed by Mori [39], it is observed that stable XYB14 compounds have between 15 and 16 electrons contributed to the B-lattice from the metal species.

  9. Competing lattice fluctuations and magnetic excitations in CuO

    NASA Astrophysics Data System (ADS)

    Choi, K.-Y.; Lee, W.-J.; Glamazda, A.; Lemmens, P.; Wulferding, D.; Sekio, Y.; Kimura, T.

    2013-05-01

    Lattice vibrations as well as magnetic excitations are investigated using Raman scattering to understand the high-Tc multiferroic properties of CuO. We observe a flat, broad spinon continuum extending to 2800 cm-1, being superimposed by magnon excitations with energies below 1350 cm-1. This allows us to estimate an exchange coupling constant of J=108 meV. Three Raman-active phonon modes predicted by lattice dynamical calculations are assigned and analyzed. We find a crossover temperature T*=140-150 K through which new phonon modes are activated and phonon parameters show appreciable anomalies. This feature is discussed in terms of a competition of polar and nonpolar lattice distortions. Our study suggests the importance of competing lattice fluctuations for multiferroic compounds, which possess an intermediate multiferroic phase.

  10. Magnetic order of Tb3Co2.2Si1.8 and Dy3Co2.2Si1.8 as a representative of the family of compounds with orthorhombic distortion of rare earth lattice

    NASA Astrophysics Data System (ADS)

    Morozkin, A. V.; Isnard, O.; Nirmala, R.; Malik, S. K.

    2015-09-01

    Magnetic measurements indicate that the rare earth intermetallic compounds Tb3Co2.2Si1.8 and Dy3Co2.2Si1.8 (Dy3Co2.2Si1.8-type) exhibit ferromagnetic transition at 132 K and 74 K and a spin-reorientation transition around 42 K and 35 K, respectively. Below Curie temperature, both compounds are soft ferromagnets, whereas below the spin reorientation transition they are permanent magnets with antiferromagnetic component: the values of critical field Hc=30 kOe, coercive field Hcoer=17 kOe and residual magnetization Mres=4.1 μB/Tb for Tb3Co2.2Si1.8 and Hc=14 kOe, Hcoer=21.5 kOe and Mres=3.7 μB/Dy for Dy3Co2.2Si1.8 at 2 K. The magnetocaloric effect of Dy3Co2.2Si1.8 is calculated in terms of isothermal magnetic entropy change (ΔSm) and it reaches a values of -16.5 J/kg K at 75 K for a field change of 140 kOe (-8.1 J/kg K at 70 K, for 0-50 kOe change) and -6.0 J/kg K for a field change of 140 kOe (-1.4 J/kg K, for 0-50 kOe change) around 40 K. Neutron diffraction study in zero applied field shows mixed ferro-antiferromagnetic ordering of Tb3Co2.2Si1.8 below ~127 K with wave vectors K0=[0, 0, 0] and K1=[±Kx, 0, 0] (Kx≈3/10). Between ~127 K and 53 K the magnetic structure of Tb3Co2.2Si1.8 is set of canted ferromagnetic cones with a resulting b-axis ferromagnetic component, whereas below 43 K its magnetic structure is set of canted ferromagnetic cones with a resulting c-axis ferromagnetic component. Between 53 K and 43 K the high-temperature magnetic order of Tb3Co2.2Si1.8 transforms to the low-temperature order via an intermediate state. The level of orthorhombic distortion of the Tb-sublattice determines the magnetic ordering of Tb3Co2.2Si1.8 in the Tb→Tb3Co2.2Si1.8→Tb3Co2Ge3→TbGe sequence.

  11. Towards a predictive route for selection of doping elements for the thermoelectric compound PbTe from first-principles

    SciTech Connect

    Joseph, Elad; Amouyal, Yaron

    2015-05-07

    Striving for improvements of the thermoelectric (TE) properties of the technologically important lead telluride (PbTe) compound, we investigate the influence of different doping elements on the thermal conductivity, Seebeck coefficient, and electrical conductivity applying density functional theory calculations. Our approach combines total-energy calculations yielding lattice vibrational properties with the Boltzmann transport theory to obtain electronic transport properties. We find that doping with elements from the 1st and 3rd columns of the periodic table reduces the sound velocity and, consequently, the lattice thermal conductivity, while 2nd column dopants have no such influence. Furthermore, 1.6 at. % doping with 4th and 5th column elements provides the highest reduction of lattice thermal conductivity. Out of this group, Hf doping results in maximum reduction of the sound velocity from 2030 m s{sup −1} for pure PbTe to 1370 m s{sup −1}, which is equivalent to ca. 32% reduction of lattice thermal conductivity. The highest power factor values calculated for 1.6 at. % doping range between 40 and 56 μW cm{sup −1} K{sup −2}, and are obtained for substitution with dopants having the same valence as Pb or Te, such as those located at the 2nd, 14th, and 16th columns of the periodic table. We demonstrate how this method may be generalized for dopant-selection-oriented materials design aimed at improving TE performance of other compounds.

  12. Lattice-induced nonadiabatic frequency shifts in optical lattice clocks

    SciTech Connect

    Beloy, K.

    2010-09-15

    We consider the frequency shift in optical lattice clocks which arises from the coupling of the electronic motion to the atomic motion within the lattice. For the simplest of three-dimensional lattice geometries this coupling is shown to affect only clocks based on blue-detuned lattices. We have estimated the size of this shift for the prospective strontium lattice clock operating at the 390-nm blue-detuned magic wavelength. The resulting fractional frequency shift is found to be on the order of 10{sup -18} and is largely overshadowed by the electric quadrupole shift. For lattice clocks based on more complex geometries or other atomic systems, this shift could potentially be a limiting factor in clock accuracy.

  13. Phonon and magnon dispersions of incommensurate spin ladder compound Sr14Cu24O41

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Bansal, Dipanshu; Sullivan, Sean; Zhou, Jianshi; Delaire, Olivier; Shi, Li

    There are a variety of compounds consisting of two or more interpenetrating sublattices with lattice periods incommensurate at least along one crystal axis. One example is spin ladder compound Sr14Cu24O41 consisting of incommensurate spin ladder and spin chain sublattices. It has been predicted that unique phonon modes occur in these compounds due to the relative motion of the sublattices. In the low-wavelength limit, there is only one longitudinal acoustic mode due to the rigid translation of both sublattices. In addition, one extra pseudo-acoustic mode is present due to relative sliding motions of the two sublattices. Although the theoretical aspects of the lattice dynamics of incommensurate compounds have been studied, there have been few experimental investigations on their phonon dynamics. In this work, single crystals of Sr14Cu24O41are grown by the traveling solvent floating zone method. The phonon dispersion of Sr14Cu24O41 is studied through inelastic neutron scattering measurements in order to better understand its phonon dynamics. In addition, its magnon dispersion is investigated and correlated to the large directional magnon thermal conductivity. The measurements reveal a wealth of intriguing features on phonons and magnons in the spin ladder compound. This work is supported by ARO MURI program under Award # W911NF-14-1-0016.

  14. Antiferromagnetic Kondo lattice in the layered compound CePd1–xBi₂ and comparison to the superconductor LaPd1–xBi₂

    SciTech Connect

    Han, Fei; Wan, Xiangang; Phelan, Daniel; Stoumpos, Constantinos C.; Sturza, Mihai; Malliakas, Christos D.; Li, Qing'an; Han, Tian-Heng; Zhao, Qingbiao; Chung, Duck Young; Kanatzidis, Mercouri G.

    2015-07-13

    The layered compound CePd1–xBi₂ with the tetragonal ZrCuSi₂-type structure was obtained from excess Bi flux. Magnetic susceptibility data of CePd1–xBi₂ show an antiferromagnetic ordering below 6 K and are anisotropic along the c axis and the ab plane. The anisotropy is attributed to crystal-electric-field (CEF) effects and a CEF model which is able to describe the susceptibility data is given. An enhanced Sommerfeld coefficient γ of 0.191 J mol Ce⁻¹ K⁻² obtained from specific-heat measurement suggests a moderate Kondo effect in CePd1–xBi₂. Other than the antiferromagnetic peak at 6 K, the resistivity curve shows a shoulderlike behavior around 75 K which could be attributed to the interplay between Kondo and CEF effects. Magnetoresistance and Hall-effect measurements suggest that the interplay reconstructs the Fermi-surface topology of CePd1–xBi₂ around 75 K. Electronic structure calculations reveal that the Pd vacancies are important to the magnetic structure and enhance the CEF effects which quench the orbital moment of Ce at low temperatures.

  15. Single identities for lattice theory and for weakly associative lattices

    SciTech Connect

    McCune, W.; Padmanabhan, R.

    1995-03-13

    We present a single identity for the variety of all lattices that is much simpler than those previously known to us. We also show that the variety of weakly associative lattices is one-based, and we present a generalized one-based theorem for subvarieties of weakly associative lattices that can be defined with absorption laws. The automated theorem-proving program OTTER was used in substantial way to obtain the results.

  16. Lattice vibrational properties of americium selenide

    NASA Astrophysics Data System (ADS)

    Arya, B. S.; Aynyas, Mahendra; Sanyal, S. P.

    2016-05-01

    Lattice vibrational properties of AmSe have been studied by using breathing shell models (BSM) which includes breathing motion of electrons of the Am atoms due to f-d hybridization. The phonon dispersion curves, specific heat calculated from present model. The calculated phonon dispersion curves of AmSe are presented follow the same trend as observed in uranium selenide. We discuss the significance of this approach in predicting the phonon dispersion curves of these compounds and examine the role of electron-phonon interaction.

  17. Carousel deployment mechanism for coilable lattice truss

    NASA Technical Reports Server (NTRS)

    Warden, Robert M.; Jones, P. Alan

    1989-01-01

    The development of a mechanism for instrumentation and solar-array deployment is discussed. One part of the technology consists of a smart motor which can operate in either an analog mode to provide high speed and torque, or in the stepper mode to provide accurate positioning. The second technology consists of a coilable lattice mast which is deployed and rotated about its axis with a common drive system. A review of the design and function of the system is presented. Structural and thermal test data are included.

  18. Engineered nonlinear lattices.

    PubMed

    Clausen, C B; Christiansen, P L; Torner, L; Gaididei, Y B

    1999-11-01

    We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear discrete equation. The proposed structure therefore provides an experimental setting for exploring discrete effects in a controlled manner. In particular, we show propagation of breathers that are eventually trapped by discreteness. When the stripes are wide the beams evolve in a structure we term a quasilattice, which interpolates between a lattice system and a continuous system. PMID:11970457

  19. Progress in the understanding of the fluctuating lattice Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Dünweg, Burkhard; Schiller, Ulf D.; Ladd, Anthony J. C.

    2009-04-01

    We give a brief account of the development of methods to include thermal fluctuations into lattice Boltzmann algorithms. Emphasis is put on our recent work [B. Dünweg, U.D. Schiller, A.J.C. Ladd, Phys. Rev. E 76 (2007) 036704] which provides a clear understanding in terms of statistical mechanics.

  20. Ab initio interionic potentials for UN by multiple lattice inversion

    NASA Astrophysics Data System (ADS)

    Chen, P. H.; Wang, X. L.; Lai, X. C.; Li, G.; Ao, B. Y.; Long, Y.

    2010-09-01

    Based on the Chen-Möbius lattice inversion and a series of pseudopotential total-energy curves, interionic pair potentials for UN were derived. By means of molecular dynamic (MD), we have examined this interionic potentials. Comparing with the experimental data, the thermal expansion coefficient and the compressibility were well reproduced by this potentials.

  1. Synthesis, crystal structure, thermal analysis and vibrational spectroscopy accomplished with DFT calculation of new hybrid compound [2-CH3C6H4NH3]HSO4.H2O

    NASA Astrophysics Data System (ADS)

    Ben Hassen, C.; Boujelbene, M.; Marweni, S.; Bahri, M.; Mhiri, T.

    2015-10-01

    The present paper undertakes the study of a new organic/inorganic hybrid compound [2-CH3C6H4NH3]HSO4.H2O characterized by the X-ray diffraction, TG-DTA, IR and Raman spectroscopy accomplished with DFT calculation. It is crystallized in the monoclinic system with the centrosymmetric space group P 21/c, with a = 9.445 (5) Å, b = 10.499 Å, c = 10.073 Å, β = 90.627 (5)° and Z = 4. The atomic arrangement can be described as inorganic layers built by infinite chains, parallel to the (a c) planes between which the organic cations are inserted. In this atomic arrangement, hydrogen bonds and π-π interactions between the different species have an important role in the tri-dimensional network cohesion. Besides, the X-ray powder diffraction of the title compound confirms the existence of only one phase at room temperature. The thermal decomposition of precursors studied by thermo gravimetric analysis (TGA), the differential thermal analysis (DTA) and the temperature-dependent X-ray diffraction, show crystalline anhydrous compounds upon dehydration. DFT/BHHLYP calculations were performed, using the DZV (d,p) basis set, to determine the harmonic frequencies of the vibrational modes of an optimized cluster structure. The calculated modes were animated using the Molden graphical package to give tentative assignments of the observed IR and Raman spectra.

  2. Thermal evolution of the crystal structure of the orthorhombic perovskite LaFeO{sub 3}

    SciTech Connect

    Dixon, Charlotte A.L.; Kavanagh, Christopher M.; Knight, Kevin S.; Kockelmann, Winfried; Morrison, Finlay D.; Lightfoot, Philip

    2015-10-15

    The thermal evolution of the crystal structure of the prototypical orthorhombic perovskite LaFeO{sub 3} has been studied in detail by powder neutron diffraction in the temperature range 25thermal behavior to be understood. In particular, the largest-amplitude symmetry modes (viz. in-phase and out-of-phase octahedral tilts, and A-site cation displacements) are shown to display relatively ‘normal’ behavior, increasing with decreasing temperature, which contrasts with the anomalous behavior previously shown by the derivative Bi{sub 0.5}La{sub 0.5}FeO{sub 3}. However, an unexpected behavior is seen in the nature of the intra-octahedral distortion, which is used to rationalize the unique occurrence of a temperature dependent crossover of the a and c unit cell metrics in this compound. - Graphical abstract: The unusual thermal evolution of lattice metrics in the perovskite LaFeO{sub 3} is rationalized from a detailed powder neutron diffraction study. - Highlights: • Crystal structure of the perovskite LaFeO{sub 3} studied in detail by powder neutron diffraction. • Unusual thermal evolution of lattice metrics rationalized. • Contrasting behavior to Bi-doped LaFeO{sub 3}. • Octahedral distortion/tilt parameters explain unusual a and c lattice parameter behavior.

  3. Two Nucleons on a Lattice

    SciTech Connect

    S.R. Beane; P.F.Bedaque; A. Parreno; M.J. Savage

    2004-04-01

    The two-nucleon sector is near an infrared fixed point of QCD and as a result the S-wave scattering lengths are unnaturally large compared to the effective ranges and shape parameters. It is usually assumed that a lattice QCD simulation of the two-nucleon sector will require a lattice that is much larger than the scattering lengths in order to extract quantitative information. In this paper we point out that this does not have to be the case: lattice QCD simulations on much smaller lattices will produce rigorous results for nuclear physics.

  4. Nuclear Physics and Lattice QCD

    SciTech Connect

    Beane, Silas

    2003-11-01

    Impressive progress is currently being made in computing properties and interac- tions of the low-lying hadrons using lattice QCD. However, cost limitations will, for the foreseeable future, necessitate the use of quark masses, Mq, that are signif- icantly larger than those of nature, lattice spacings, a, that are not significantly smaller than the physical scale of interest, and lattice sizes, L, that are not sig- nificantly larger than the physical scale of interest. Extrapolations in the quark masses, lattice spacing and lattice volume are therefore required. The hierarchy of mass scales is: L 1 j Mq j â ºC j a 1 . The appropriate EFT for incorporating the light quark masses, the finite lattice spacing and the lattice size into hadronic observables is C-PT, which provides systematic expansions in the small parame- ters e m L, 1/ Lâ ºC, p/â ºC, Mq/â ºC and aâ ºC . The lattice introduces other unphysical scales as well. Lattice QCD quarks will increasingly be artificially separated

  5. Determination of free and bound phenolic compounds in buckwheat spaghetti by RP-HPLC-ESI-TOF-MS: effect of thermal processing from farm to fork.

    PubMed

    Verardo, Vito; Arraez-Roman, David; Segura-Carretero, Antonio; Marconi, Emanuele; Fernandez-Gutierrez, Alberto; Caboni, Maria Fiorenza

    2011-07-27

    Nowadays there is considerable interest in the consumption of alternative crops as potential recipes for gluten-free products production. Therefore, the use of buckwheat for the production of gluten-free pasta has been investigated in the present study. RP-HPLC-ESI-TOF-MS has been applied for the separation and characterization of free and bound phenolic compounds in buckwheat flour and buckwheat spaghetti. Thus, 32 free and 24 bound phenolic compounds in buckwheat flour and spaghetti have been characterized and quantified. To the authors' knowledge, protochatechuic-4-O-glucoside acid and procyanidin A have been detected in buckwheat for the first time. The results have demonstrated a decrease of total free phenolic compounds from farm to fork (from flour to cooked spaghetti) of about 74.5%, with a range between 55.3 and 100%, for individual compounds. The decrease in bound phenols was 80.9%, with a range between 46.2 and 100%. The spaghetti-making process and the cooking caused losses of 46.1 and 49.4% of total phenolic compounds, respectively. Of the total phenolic compounds present in dried spaghetti, 11.6% were dissolved in water after cooking.

  6. Crystal structure analysis of intermetallic compounds

    NASA Technical Reports Server (NTRS)

    Conner, R. A., Jr.; Downey, J. W.; Dwight, A. E.

    1968-01-01

    Study concerns crystal structures and lattice parameters for a number of new intermetallic compounds. Crystal structure data have been collected on equiatomic compounds, formed between an element of the Sc, Ti, V, or Cr group and an element of the Co or Ni group. The data, obtained by conventional methods, are presented in an easily usable tabular form.

  7. Elimination of spurious lattice fermion solutions and noncompact lattice QCD

    SciTech Connect

    Lee, T.D.

    1997-09-22

    It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.

  8. The effects of molecular and lattice structures on thermotropic phase behaviour of zinc(II) undecanoate and isomeric zinc(II) undecynoates

    NASA Astrophysics Data System (ADS)

    Nelson, Peter N.; Taylor, Richard A.; Ellis, Henry A.

    2013-02-01

    Molecular structures, hydrocarbon chain packing, in the crystal lattice and their effects on the thermal behaviour of saturated and isomeric zinc(II) undecynoates have been investigated by a variety of physical methods. All the compounds crystallize in a monoclinic crystal system with a being the long axis. The hydrocarbon chains adopt the fully extended all-trans conformation and are arranged as methyl-methyl overlapping bilayers within a lamellar. Furthermore, in order to enhance lattice stability, hydrocarbon chains, from different layers in the lamellar are not in the same plane but are packed in an alternating spatial arrangement and are tilted at ca. 60° to the metal basal plane. In a molecule, four carbonyl groups bind to a zinc atom, in a bridging bidentate mode, to form a three dimensional polymeric network. At elevated temperatures a highly viscous phase, a polymeric ionic mesophase, possibly a smectic C phase, is observed for 10-undecynoate only, whereas two crystal-crystal and crystal-isotropic liquid transitions are observed for the undecanoate and 9-undecynoate, respectively. Though head group coordination is nearly iso-structural, differences in molecular symmetry and lattice packing are evident. These arise from differences in the spatial orientation of the high electron density hydrocarbon chains in the crystal lattice. Indeed, it is the relative balance between head group electrostatic and van der Waals interactions at elevated temperatures that accounts for formation of the mesophase. Surprisingly, all the freshly synthesized compounds are meta-stable, only achieving complete stability over several days. Furthermore, on heating and cooling the compounds, thermotropic behaviour is altered so that on re-heating, subtle changes in phase textures are observed.

  9. Optical Abelian lattice gauge theories

    SciTech Connect

    Tagliacozzo, L.; Celi, A.; Zamora, A.; Lewenstein, M.

    2013-03-15

    We discuss a general framework for the realization of a family of Abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable for quantum simulations. Within this class, we study in detail the phases of a U(1)-invariant lattice gauge theory in 2+1 dimensions, originally proposed by P. Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4 Multiplication-Sign 4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices, where we discuss in detail a protocol for the preparation of the ground-state. We propose two key experimental tests that can be used as smoking gun of the proper implementation of a gauge theory in optical lattices. These tests consist in verifying the absence of spontaneous (gauge) symmetry breaking of the ground-state and the presence of charge confinement. We also comment on the relation between standard compact U(1) lattice gauge theory and the model considered in this paper. - Highlights: Black-Right-Pointing-Pointer We study the quantum simulation of dynamical gauge theories in optical lattices. Black-Right-Pointing-Pointer We focus on digital simulation of abelian lattice gauge theory. Black-Right-Pointing-Pointer We rediscover and discuss the puzzling phase diagram of gauge magnets. Black-Right-Pointing-Pointer We detail the protocol for time evolution and ground-state preparation in any phase. Black-Right-Pointing-Pointer We provide two experimental tests to validate gauge theory quantum simulators.

  10. Effect of cobalt doping on the structural, magnetic and abnormal thermal expansion properties of NaZn13-type La(Fe1-xCox)11.4Al1.6 compounds.

    PubMed

    Zhao, Yuqiang; Huang, Rongjin; Li, Shaopeng; Wang, Wei; Jiang, Xingxing; Lin, Zheshuai; Li, Jiangtao; Li, Laifeng

    2016-07-27

    Cubic NaZn13-type La(Fe1-xCox)11.4Al1.6 compounds were synthesized and extensively explored through crystal structure and magnetization analyses. By optimizing the chemical composition, the isotropic abnormal properties of excellent zero and giant negative thermal expansion in a pure form were both found at different temperature ranges through room temperature. Moreover, the temperature regions with the remarkable abnormal thermal expansion (ATE) properties have been broadened which are controlled by the dM/dT. The present study demonstrates that the ATE behavior mainly depends on special structural and magnetic properties. These diverse properties suggest the high potential of La(Fe1-xCox)11.4Al1.6 for the development of abnormal expansion materials. PMID:27411397

  11. Role of acoustic phonons in the negative thermal expansion of layered structures and nanotubes based on them

    NASA Astrophysics Data System (ADS)

    Eremenko, V. V.; Sirenko, A. F.; Sirenko, V. A.; Dolbin, A. V.; Gospodarev, I. A.; Syrkin, E. S.; Feodosyev, S. B.; Bondar, I. S.; Minakova, K. A.

    2016-05-01

    Calculations on a microscopic level are used to explain the experimentally observed negative linear thermal expansion along some directions in a number of crystalline compounds with complicated lattices and anisotropic interactions between atoms. Anomalies in the temperature dependence of the coefficient of linear thermal expansion are analyzed in layered crystals made up of monatomic layers (graphite and graphene nanofilms) and multilayer "sandwiches" (transition metal dichalcogenides), in multilayered crystal structures such as high-temperature superconductors where the anisotropy of the interatomic interactions is not conserved in the long-range order, and in graphene nanotubes. The theoretical calculations are compared with data from x-ray, neutron diffraction, and dilatometric measurements.

  12. Excitonic surface lattice resonances

    NASA Astrophysics Data System (ADS)

    Humphrey, A. D.; Gentile, M. J.; Barnes, W. L.

    2016-08-01

    Electromagnetic resonances are important in controlling light at the nanoscale. The most studied such resonance is the surface plasmon resonance that is associated with metallic nanostructures. Here we explore an alternative resonance, the surface exciton-polariton resonance, one based on excitonic molecular materials. Our study is based on analytical and numerical modelling. We show that periodic arrays of suitable molecular nanoparticles may support surface lattice resonances that arise as a result of coherent interactions between the particles. Our results demonstrate that excitonic molecular materials are an interesting alternative to metals for nanophotonics; they offer the prospect of both fabrication based on supramolecular chemistry and optical functionality arising from the way the properties of such materials may be controlled with light.

  13. Local atomic arrangements and lattice distortions in layered Ge-Sb-Te crystal structures

    NASA Astrophysics Data System (ADS)

    Lotnyk, Andriy; Ross, Ulrich; Bernütz, Sabine; Thelander, Erik; Rauschenbach, Bernd

    2016-05-01

    Insights into the local atomic arrangements of layered Ge-Sb-Te compounds are of particular importance from a fundamental point of view and for data storage applications. In this view, a detailed knowledge of the atomic structure in such alloys is central to understanding the functional properties both in the more commonly utilized amorphous–crystalline transition and in recently proposed interfacial phase change memory based on the transition between two crystalline structures. Aberration-corrected scanning transmission electron microscopy allows direct imaging of local arrangement in the crystalline lattice with atomic resolution. However, due to the non-trivial influence of thermal diffuse scattering on the high-angle scattering signal, a detailed examination of the image contrast requires comparison with theoretical image simulations. This work reveals the local atomic structure of trigonal Ge-Sb-Te thin films by using a combination of direct imaging of the atomic columns and theoretical image simulation approaches. The results show that the thin films are prone to the formation of stacking disorder with individual building blocks of the Ge2Sb2Te5, Ge1Sb2Te4 and Ge3Sb2Te6 crystal structures intercalated within randomly oriented grains. The comparison with image simulations based on various theoretical models reveals intermixed cation layers with pronounced local lattice distortions, exceeding those reported in literature.

  14. Local atomic arrangements and lattice distortions in layered Ge-Sb-Te crystal structures

    PubMed Central

    Lotnyk, Andriy; Ross, Ulrich; Bernütz, Sabine; Thelander, Erik; Rauschenbach, Bernd

    2016-01-01

    Insights into the local atomic arrangements of layered Ge-Sb-Te compounds are of particular importance from a fundamental point of view and for data storage applications. In this view, a detailed knowledge of the atomic structure in such alloys is central to understanding the functional properties both in the more commonly utilized amorphous–crystalline transition and in recently proposed interfacial phase change memory based on the transition between two crystalline structures. Aberration-corrected scanning transmission electron microscopy allows direct imaging of local arrangement in the crystalline lattice with atomic resolution. However, due to the non-trivial influence of thermal diffuse scattering on the high-angle scattering signal, a detailed examination of the image contrast requires comparison with theoretical image simulations. This work reveals the local atomic structure of trigonal Ge-Sb-Te thin films by using a combination of direct imaging of the atomic columns and theoretical image simulation approaches. The results show that the thin films are prone to the formation of stacking disorder with individual building blocks of the Ge2Sb2Te5, Ge1Sb2Te4 and Ge3Sb2Te6 crystal structures intercalated within randomly oriented grains. The comparison with image simulations based on various theoretical models reveals intermixed cation layers with pronounced local lattice distortions, exceeding those reported in literature. PMID:27220411

  15. Local atomic arrangements and lattice distortions in layered Ge-Sb-Te crystal structures.

    PubMed

    Lotnyk, Andriy; Ross, Ulrich; Bernütz, Sabine; Thelander, Erik; Rauschenbach, Bernd

    2016-05-25

    Insights into the local atomic arrangements of layered Ge-Sb-Te compounds are of particular importance from a fundamental point of view and for data storage applications. In this view, a detailed knowledge of the atomic structure in such alloys is central to understanding the functional properties both in the more commonly utilized amorphous-crystalline transition and in recently proposed interfacial phase change memory based on the transition between two crystalline structures. Aberration-corrected scanning transmission electron microscopy allows direct imaging of local arrangement in the crystalline lattice with atomic resolution. However, due to the non-trivial influence of thermal diffuse scattering on the high-angle scattering signal, a detailed examination of the image contrast requires comparison with theoretical image simulations. This work reveals the local atomic structure of trigonal Ge-Sb-Te thin films by using a combination of direct imaging of the atomic columns and theoretical image simulation approaches. The results show that the thin films are prone to the formation of stacking disorder with individual building blocks of the Ge2Sb2Te5, Ge1Sb2Te4 and Ge3Sb2Te6 crystal structures intercalated within randomly oriented grains. The comparison with image simulations based on various theoretical models reveals intermixed cation layers with pronounced local lattice distortions, exceeding those reported in literature.

  16. Buckling modes in pantographic lattices

    NASA Astrophysics Data System (ADS)

    Giorgio, Ivan; Della Corte, Alessandro; dell'Isola, Francesco; Steigmann, David J.

    2016-07-01

    We study buckling patterns in pantographic sheets, regarded as two-dimensional continua consisting of lattices of continuously distributed fibers. The fibers are modeled as beams endowed with elastic resistance to stretching, shearing, bending and twist. Included in the theory is a non-standard elasticity due to geodesic bending of the fibers relative to the lattice surface. xml:lang="fr"

  17. Low-dimensional compounds containing cyano groups. XVII. Crystal structure, spectroscopic, thermal and magnetic properties of [Cu(bmen){sub 2}][Pt(CN){sub 4}] (bmen=N,N'-dimethylethylenediamine)

    SciTech Connect

    Potocnak, Ivan Vavra, Martin; Cizmar, Erik; Kajnakova, Marcela; Radvakova, Alena; Steinborn, Dirk; Zvyagin, Sergei A.; Wosnitza, Jochen; Feher, Alexander

    2009-01-15

    The synthesis, structural analysis, spectroscopic studies, susceptibility and specific-heat measurements of {l_brace}[Cu(bmen){sub 2}][Pt(CN){sub 4}]{r_brace}{sub n} (bmen=N,N'-dimethylethylenediamine) are presented. X-ray crystal-structure analysis revealed that the [Pt(CN){sub 4}]{sup 2-} building blocks are combined with [Cu(bmen){sub 2}]{sup 2+} units to form a chain-like structure along the a axis. The Cu(II) atoms are hexacoordinated by four nitrogen atoms in the equatorial plane belonging to two molecules of bidentate bmen ligands with average Cu-N distance of 2.043(18) A. The axial positions are occupied by two nitrogen atoms from bridging [Pt(CN){sub 4}]{sup 2-} anions at a longer axial Cu-N distance of 2.490(4) A. The compound is characterized by the presence of a weak antiferromagnetic exchange coupling J/k{sub B}=0.6 K. Despite the one-dimensional (1D) character of the structure, the analysis of the magnetic properties and specific heat at very low temperatures shows that [Cu(bmen){sub 2}][Pt(CN){sub 4}] behaves as a two-dimensional (2D) square-lattice Heisenberg magnet with weak interlayer coupling. - Graphical abstract: The synthesis, structural analysis, spectroscopic studies, susceptibility and specific-heat measurements of {l_brace}[Cu(bmen){sub 2}][Pt(CN){sub 4}]{r_brace}{sub n} (bmen=N,N'-dimethylethylenediamine) are presented. X-ray crystal-structure analysis revealed that the [Pt(CN){sub 4}]{sup 2-} building blocks are combined with [Cu(bmen){sub 2}]{sup 2+} units to form a chain-like structure. The compound is characterized by the presence of a weak antiferromagnetic exchange coupling J/k{sub B}=-0.6 K. Despite the one-dimensional character of the structure, the analysis of the magnetic properties and specific heat at very low temperatures shows that [Cu(bmen){sub 2}][Pt(CN){sub 4}] behaves as a two-dimensional square-lattice Heisenberg magnet with weak interlayer coupling.

  18. Non-Gaussian resistance noise in misfit layer compounds: Bi-Se-Cr

    NASA Astrophysics Data System (ADS)

    Peng, Lintao; Freedman, Alex; Clarke, Samantha; Freedman, Danna; Grayson, M.

    Misfit layer ternary compounds Bi-Se-Cr have been synthesized and structurally and magnetically characterized. However, the nature of the magnetic ordering below the transition temperature remains debatable between ferromagnetic and spin-glass. These misfit layer compounds consist of two alternating chalcogenide layers of CrSe2 and BiSe along the c-axis. Whereas the a-axis is lattice matched, the lattice mismatch along the b-axis introduces non-periodic modulation of atomic position leading to quasi-crystalline order along the b-axis alone. We explore unconventional electrical transport properties in the noise spectrum of these compounds. After thinning down the compounds to nanoscale, Van der Pauw devices are fabricated with standard electron beam lithography process. Large resistance noise was observed at temperature below the Cure temperature. The magnitude of resistance noise is much greater than trivial intrinsic noises like thermal Johnson noise and increases as temperature decreases. The probability density function of the relative noise shows 2-4 peaks among different observations which indicate strong non-Gaussian statistic property suggesting glassy behaviors in this material.

  19. Thermoluminescence and lattice defects in LiF

    NASA Technical Reports Server (NTRS)

    Stoebe, T. G.; Watanabe, S.

    1975-01-01

    The principal effect of thermal and optical treatments in an ionic solid is to alter the lattice defect equilibrium, including the concentration and arrangement of ion vacancies, impurities, impurity-vacancy associates, and assorted electrons and holes which may be associated with such defects. This paper examines the relationship between these defects and thermoluminescence in the case of lithium fluoride at and above room temperature. The discussion focuses on lattice defect equilibrium, thermoluminescent trapping centers, the relationship between recombination and luminescence, the supralinearity and sensitization of the dosimetry grade of LiF and activation energy parameters.

  20. Nonlinear dust-lattice waves: a modified Toda lattice

    SciTech Connect

    Cramer, N. F.

    2008-09-07

    Charged dust grains in a plasma interact with a Coulomb potential, but also with an exponential component to the potential, due to Debye shielding in the background plasma. Here we investigate large-amplitude oscillations and waves in dust-lattices, employing techniques used in Toda lattice analysis. The lattice consists of a linear chain of particles, or a periodic ring as occurs in experimentally observed dust particle clusters. The particle motion has a triangular waveform, and chaotic motion for large amplitude motion of a grain.