Sample records for compounds representing major

  1. Essential oil composition of Eucalyptus microtheca and Eucalyptus viminalis.

    PubMed

    Maghsoodlou, Malek Taher; Kazemipoor, Nasrin; Valizadeh, Jafar; Falak Nezhad Seifi, Mohsen; Rahneshan, Nahid

    2015-01-01

    Eucalyptus (Fam. Myrtaceae) is a medicinal plant and various Eucalyptus species possess potent pharmacological actions against diabetes, hepatotoxicity, and inflammation. This study aims to investigate essential oil composition from leaves and flowers of E. microtheca and E. viminalis leaves growing in the Southeast of Iran. The aerial parts of these plants were collected from Zahedan, Sistan and Baluchestan province, Iran in 2013. After drying the plant materials in the shade, the chemical composition of the essential oils was obtained by hydro-distillation method using a Clevenger-type apparatus and analyzed by GC/MS. In the essential oil of E. microtheca leaves, 101 compounds representing 100%, were identified. Among them, α-phellandrene (16.487%), aromadendrene (12.773%), α-pinene (6.752%), globulol (5.997%), ledene (5.665%), P-cymen (5.251%), and β-pinene (5.006%) were the major constituents. In the oil of E. microtheca flowers, 88 compounds representing 100%, were identified in which α-pinene (16.246%), O-cymen (13.522%), β-pinene (11.082%), aromadendrene (7.444%), α-phellandrene (7.006%), globulol (5.419%), and 9-octadecenamide (5.414%) were the major components. Sixty six compounds representing 100% were identified in the oil of E. viminalis leaves. The major compounds were 1, 8-cineole (57.757%), α-pinene (13.379%), limonene (5.443%), and globulol (3.054%). The results showed the essential oils from the aerial parts of Eucalyptus species are a cheap source for the commercial isolation of α-phellandrene, α-pinene, and 1, 8-cineole compounds to be used in medicinal and food products. Furthermore, these plants could be an alternative source of insecticide agents.

  2. Antimicrobial Action of Compounds from Marine Seaweed

    PubMed Central

    Pérez, María José; Falqué, Elena; Domínguez, Herminia

    2016-01-01

    Seaweed produces metabolites aiding in the protection against different environmental stresses. These compounds show antiviral, antiprotozoal, antifungal, and antibacterial properties. Macroalgae can be cultured in high volumes and would represent an attractive source of potential compounds useful for unconventional drugs able to control new diseases or multiresistant strains of pathogenic microorganisms. The substances isolated from green, brown and red algae showing potent antimicrobial activity belong to polysaccharides, fatty acids, phlorotannins, pigments, lectins, alkaloids, terpenoids and halogenated compounds. This review presents the major compounds found in macroalga showing antimicrobial activities and their most promising applications. PMID:27005637

  3. Compound curvature laser window development

    NASA Technical Reports Server (NTRS)

    Verhoff, Vincent G.

    1993-01-01

    The NASA Lewis Research Center has developed and implemented a unique process for forming flawless compound curvature laser windows. These windows represent a major part of specialized, nonintrusive laser data acquisition systems used in a variety of compressor and turbine research test facilities. This report summarizes the main aspects of compound curvature laser window development. It is an overview of the methodology and the peculiarities associated with the formulation of these windows. Included in this discussion is new information regarding procedures for compound curvature laser window development.

  4. Biochemical changes in phenols, flavonoids, tannins, vitamin E, β-carotene and antioxidant activity during soaking of three white sorghum varieties

    PubMed Central

    Afify, Abd El-Moneim MR; El-Beltagi, Hossam S; El-Salam, Samiha M Abd; Omran, Azza A

    2012-01-01

    Objective To investigate the changes in total phenols, flavonoids, tannins, vitamin E, β-carotene and antioxidant activity during soaking of three white sorghum varieties. Methods The changes in total phenols, total flavonoids, tannins, phenolic acids compounds, flavonoid components, vitamin E, β-carotene and antioxidant activity during soaking of sorghum grains were determined. Results Total phenols, total flavonoids, tannins, vitamin E, β-carotene and antioxidant activity in raw sorghum were ranged from 109.21 to 116.70, 45.91 to 54.69, 1.39 to 21.79 mg/100 g, 1.74 to 5.25, 0.54 to 1.19 mg/kg and 21.72% to 27.69% and 25.29% to 31.97%, respectively. The above measured compounds were significantly decreased after soaking. p-Hydroxybenzoic acid, vanillic acid, syringic acid and cinnamic acid represent the major phenolic acids in Dorado variety. While ferulic acid, p-coumaric acid, gallic acid and caffeic acid represent the major phenolic acids in Shandaweel-6. On the other hand, protocatechuic acid represents the major phenolic acids in Giza-15. Regarding flavonoids components, Dorado was the highest variety in kampferol and naringenin while Shandaweel-6 was the highest variety in luteolin, apigenin, hypersoid, quercetin and christen. Finally, Giza-15 was the highest variety in catechin. Phenolic acids, flavonoid compounds and antioxidant activities were decreased after soaking. Conclusions Sorghum varieties have moderate quantities from total phenols, total flavonoids, tannins, phenolic acids compounds, flavonoid components, vitamin E, β-carotene and antioxidant activity which decreased after soaking. PMID:23569898

  5. Biochemical changes in phenols, flavonoids, tannins, vitamin E, β-carotene and antioxidant activity during soaking of three white sorghum varieties.

    PubMed

    Afify, Abd El-Moneim M R; El-Beltagi, Hossam S; El-Salam, Samiha M Abd; Omran, Azza A

    2012-03-01

    To investigate the changes in total phenols, flavonoids, tannins, vitamin E, β-carotene and antioxidant activity during soaking of three white sorghum varieties. The changes in total phenols, total flavonoids, tannins, phenolic acids compounds, flavonoid components, vitamin E, β-carotene and antioxidant activity during soaking of sorghum grains were determined. Total phenols, total flavonoids, tannins, vitamin E, β-carotene and antioxidant activity in raw sorghum were ranged from 109.21 to 116.70, 45.91 to 54.69, 1.39 to 21.79 mg/100 g, 1.74 to 5.25, 0.54 to 1.19 mg/kg and 21.72% to 27.69% and 25.29% to 31.97%, respectively. The above measured compounds were significantly decreased after soaking. p-Hydroxybenzoic acid, vanillic acid, syringic acid and cinnamic acid represent the major phenolic acids in Dorado variety. While ferulic acid, p-coumaric acid, gallic acid and caffeic acid represent the major phenolic acids in Shandaweel-6. On the other hand, protocatechuic acid represents the major phenolic acids in Giza-15. Regarding flavonoids components, Dorado was the highest variety in kampferol and naringenin while Shandaweel-6 was the highest variety in luteolin, apigenin, hypersoid, quercetin and christen. Finally, Giza-15 was the highest variety in catechin. Phenolic acids, flavonoid compounds and antioxidant activities were decreased after soaking. Sorghum varieties have moderate quantities from total phenols, total flavonoids, tannins, phenolic acids compounds, flavonoid components, vitamin E, β-carotene and antioxidant activity which decreased after soaking.

  6. Nonsterol Triterpenoids as Major Constituents of Olea europaea

    PubMed Central

    Stiti, Naïm; Hartmann, Marie-Andrée

    2012-01-01

    Plant triterpenoids represent a large and structurally diverse class of natural products. A growing interest has been focused on triterpenoids over the past decade due to their beneficial effects on human health. We show here that these bioactive compounds are major constituents of several aerial parts (floral bud, leaf bud, stem, and leaf) of olive tree, a crop exploited so far almost exclusively for its fruit and oil. O. europaea callus cultures were analyzed as well. Twenty sterols and twenty-nine nonsteroidal tetra- and pentacyclic triterpenoids belonging to seven types of carbon skeletons (oleanane, ursane, lupane, taraxerane, taraxastane, euphane, and lanostane) were identified and quantified by GC and GC-MS as free and esterified compounds. The oleanane-type compounds, oleanolic acid and maslinic acid, were largely predominant in all the organs tested, whereas they are practically absent in olive oil. In floral buds, they represented as much as 2.7% of dry matter. In callus cultures, lanostane-type compounds were the most abundant triterpenoids. In all the tissues analyzed, free and esterified triterpene alcohols exhibited different distribution patterns of their carbon skeletons. Taken together, these data provide new insights into largely unknown triterpene secondary metabolism of Olea europaea. PMID:22523691

  7. Identification and quantification of caffeoylquinic acids and flavonoids from artichoke (Cynara scolymus L.) heads, juice, and pomace by HPLC-DAD-ESI/MS(n).

    PubMed

    Schütz, Katrin; Kammerer, Dietmar; Carle, Reinhold; Schieber, Andreas

    2004-06-30

    A method for the identification and quantification of phenolic compounds from artichoke (Cynara scolymus L.) heads, juice, and pomace by HPLC with diode array and mass spectrometric detection was developed. Among the 22 major compounds, 11 caffeoylquinic acids and 8 flavonoids were detected. Quantification of individual compounds was carried out by external calibration. Apigenin 7-O-glucuronide was found to be the major flavonoid in all samples investigated. 1,5-Di-O-caffeoylquinic acid represented the major hydroxycinnamic acid, with 3890 mg/kg in artichoke heads and 3269 mg/kg in the pomace, whereas in the juice 1,3-di-O-caffeoylquinic acid (cynarin) was predominant, due to the isomerization during processing. Total phenolic contents of approximately 12 g/kg on a dry matter basis revealed that artichoke pomace is a promising source of phenolic compounds that might be recovered and used as natural antioxidants or functional food ingredients.

  8. Identification of Potent Chemotypes Targeting Leishmania major Using a High-Throughput, Low-Stringency, Computationally Enhanced, Small Molecule Screen

    PubMed Central

    Sharlow, Elizabeth R.; Close, David; Shun, Tongying; Leimgruber, Stephanie; Reed, Robyn; Mustata, Gabriela; Wipf, Peter; Johnson, Jacob; O'Neil, Michael; Grögl, Max; Magill, Alan J.; Lazo, John S.

    2009-01-01

    Patients with clinical manifestations of leishmaniasis, including cutaneous leishmaniasis, have limited treatment options, and existing therapies frequently have significant untoward liabilities. Rapid expansion in the diversity of available cutaneous leishmanicidal chemotypes is the initial step in finding alternative efficacious treatments. To this end, we combined a low-stringency Leishmania major promastigote growth inhibition assay with a structural computational filtering algorithm. After a rigorous assay validation process, we interrogated ∼200,000 unique compounds for L. major promastigote growth inhibition. Using iterative computational filtering of the compounds exhibiting >50% inhibition, we identified 553 structural clusters and 640 compound singletons. Secondary confirmation assays yielded 93 compounds with EC50s ≤ 1 µM, with none of the identified chemotypes being structurally similar to known leishmanicidals and most having favorable in silico predicted bioavailability characteristics. The leishmanicidal activity of a representative subset of 15 chemotypes was confirmed in two independent assay formats, and L. major parasite specificity was demonstrated by assaying against a panel of human cell lines. Thirteen chemotypes inhibited the growth of a L. major axenic amastigote-like population. Murine in vivo efficacy studies using one of the new chemotypes document inhibition of footpad lesion development. These results authenticate that low stringency, large-scale compound screening combined with computational structure filtering can rapidly expand the chemotypes targeting in vitro and in vivo Leishmania growth and viability. PMID:19888337

  9. Essential oil variation among natural populations of Lavandula multifida L. (Lamiaceae).

    PubMed

    Chograni, Hnia; Zaouali, Yosr; Rajeb, Chayma; Boussaid, Mohamed

    2010-04-01

    Volatiles from twelve wild Tunisian populations of Lavandula multifida L. growing in different bioclimatic zones were assessed by GC (RI) and GC/MS. Thirty-six constituents, representing 83.48% of the total oil were identified. The major components at the species level were carvacrol (31.81%), beta-bisabolene (14.89%), and acrylic acid dodecyl ester (11.43%). These volatiles, together with alpha-pinene, were also the main compounds discriminating the populations. According to these dominant compounds, one chemotype was revealed, a carvacrol/beta-bisabolene/acrylic acid dodecyl ester chemotype. However, a significant variation among the populations was observed for the majority of the constituents. A high chemical-population structure, estimated both by principal component analysis (PCA) and unweighted pair group method with averaging (UPGMA) cluster analysis based on Euclidean distances, was observed. Both methods allowed separation of the populations in three groups defined rather by minor than by major compounds. The population groups were not strictly concordant with their bioclimatic or geographic location. Conservation strategies should concern all populations, because of their low size and their high level of destruction. Populations exhibiting particular compounds other than the major ones should be protected first.

  10. Antioxidant Capacity and the Correlation with Major Phenolic Compounds, Anthocyanin, and Tocopherol Content in Various Extracts from the Wild Edible Boletus edulis Mushroom

    PubMed Central

    Vamanu, Emanuel; Nita, Sultana

    2013-01-01

    Boletus edulis is a wild edible mushroom habitually consumed by rural populations. Ethanolic and methanolic extracts was obtained in cold and hot water from dried fruit bodies. The antioxidant activity of freeze-dried extracts from B. edulis were investigated using free radicals scavenging activity, reducing power, metal chelating effect, inhibition of lipid peroxidation, and the identification of antioxidant compounds. The levels of different compounds with antioxidant properties were higher in alcoholic extracts compared with aqueous extracts. Rosmarinic acid was the major phenolic compound, it being identified in a concentration between 7 ± 0.23 and 56 ± 0.15 mg/100 g extract. A positive correlation between the content of total phenols, flavonoids, anthocyanins, and tocopherols, and the antioxidant capacity of the extracts was determined. The results showed that the ethanolic extract of Romanian wild mushroom B. edulis represents a natural source of functional compounds. PMID:23509707

  11. Antioxidant capacity and the correlation with major phenolic compounds, anthocyanin, and tocopherol content in various extracts from the wild edible Boletus edulis mushroom.

    PubMed

    Vamanu, Emanuel; Nita, Sultana

    2013-01-01

    Boletus edulis is a wild edible mushroom habitually consumed by rural populations. Ethanolic and methanolic extracts was obtained in cold and hot water from dried fruit bodies. The antioxidant activity of freeze-dried extracts from B. edulis were investigated using free radicals scavenging activity, reducing power, metal chelating effect, inhibition of lipid peroxidation, and the identification of antioxidant compounds. The levels of different compounds with antioxidant properties were higher in alcoholic extracts compared with aqueous extracts. Rosmarinic acid was the major phenolic compound, it being identified in a concentration between 7 ± 0.23 and 56 ± 0.15 mg/100 g extract. A positive correlation between the content of total phenols, flavonoids, anthocyanins, and tocopherols, and the antioxidant capacity of the extracts was determined. The results showed that the ethanolic extract of Romanian wild mushroom B. edulis represents a natural source of functional compounds.

  12. Simultaneous screening for 238 drugs in blood by liquid chromatography-ion spray tandem mass spectrometry with multiple-reaction monitoring.

    PubMed

    Gergov, M; Ojanperä, I; Vuori, E

    2003-09-25

    A liquid chromatography-tandem mass spectrometry (LC-MS-MS) method is presented for the qualitative screening for 238 drugs in blood samples, which is considerably more than in previous methods. After a two-step liquid-liquid extraction and C(18) chromatography, the compounds were introduced into a triple quadrupole mass spectrometer equipped with a turbo ion spray ion source operating in the positive ionization mode. Identification was based on the compound's absolute retention time, protonated molecular ion, and one representative fragment ion obtained by multiple reaction monitoring (MRM) at an individually selected collision energy of 20, 35, or 50 eV. The limit of detection (LOD) for the majority of the compounds (80%) was < or = 0.05 mg/l, ranging from 0.002 mg/l (e.g., antihistamines) to 5 mg/l (acidic compounds), and for malathion it was 10 mg/l. The LOD values were sufficiently low to allow the majority of compounds to be detected at therapeutic concentrations in the blood.

  13. Essential oil composition of Dracocephalum kotschyi Boiss. from Iran.

    PubMed

    Sonboli, Ali; Mirzania, Foroogh; Gholipour, Abbas

    2018-06-06

    Dracocephalum kotschyi is one of the medicinal and fragrant herbs that can be found in natural locations of mountainous areas. In this investigation the hydrodistilled essential oils obtained from aerial parts of two populations of D. kotschyi collected from Siahbisheh and Baladeh were analysed by capillary GC-FID and GC-MS. Essential oil analysis led to the identification of 48 compounds that represented 85.9 and 90.0% of the total oil compositions, respectively. As the major group of compounds, oxygenated monoterpens comprised 45.5 and 57.4% in the essential oils of compounds as the main group in the essential oils of Siahbisheh and Baladeh samples, respectively. Disagreement in the major contents of the essential oils of these two samples may be ascribed to differences in the ecological, climatic and genetically factors.

  14. Volatile Compounds with Characteristic Odor of Essential Oil from Magnolia obovata Leaves by Hydrodistillation and Solvent-assisted Flavor Evaporation.

    PubMed

    Miyazawa, Mitsuo; Nakashima, Yoshimi; Nakahashi, Hiroshi; Hara, Nobuyuki; Nakagawa, Hiroki; Usami, Atsushi; Chavasiri, Warinthorn

    2015-01-01

    The present study focuses on the volatile compounds with characteristic odor of essential oil from the leaves of Magnolia obovata by hydrodistillation (HD) and solvent-assisted flavor evaporation (SAFE) method. Eighty-seven compounds, representing 98.0% of the total oil, were identified using HD. The major compounds of HD oil were (E)-β-caryophyllene (23.7%), α-humulene (11.6%), geraniol (9.1%), and borneol (7.0%). In SAFE oil, fifty-eight compounds, representing 99.7% of the total oil, were identified. The main compounds of SAFE oil were (E)-β-caryophyllene (48.9%), α-humulene (15.7%), and bicyclogermacrene (4.2%). In this study, we newly identified eighty-five compounds of the oils from M. obovata leaves. These oils were also subjected to aroma evaluation by gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA). As a result, twenty-four (HD) and twenty-five (SAFE) aroma-active compounds were detected. (E)-β-Caryophyllene, α-humulene, linalool, geraniol, 1,8-cineole, and bicyclogermacrene were found to impart the characteristic odor of M. obovata leaves. These results imply that the oils of M. obovata leaves must be investigated further to clarify their potential application in the food and pharmaceutical industries.

  15. Development of Anti-Virulence Approaches for Candidiasis via a Novel Series of Small-Molecule Inhibitors of Candida albicans Filamentation

    PubMed Central

    Romo, Jesus A.; Pierce, Christopher G.; Chaturvedi, Ashok K.; Lazzell, Anna L.; McHardy, Stanton F.

    2017-01-01

    ABSTRACT Candida albicans remains the main etiologic agent of candidiasis, the most common fungal infection and now the third most frequent infection in U.S. hospitals. The scarcity of antifungal agents and their limited efficacy contribute to the unacceptably high morbidity and mortality rates associated with these infections. The yeast-to-hypha transition represents the main virulence factor associated with the pathogenesis of C. albicans infections. In addition, filamentation is pivotal for robust biofilm development, which represents another major virulence factor for candidiasis and further complicates treatment. Targeting pathogenic mechanisms rather than growth represents an attractive yet clinically unexploited approach in the development of novel antifungal agents. Here, we performed large-scale phenotypic screening assays with 30,000 drug-like small-molecule compounds within ChemBridge’s DIVERSet chemical library in order to identify small-molecule inhibitors of C. albicans filamentation, and our efforts led to the identification of a novel series of bioactive compounds with a common biaryl amide core structure. The leading compound of this series, N-[3-(allyloxy)-phenyl]-4-methoxybenzamide, was able to prevent filamentation under all liquid and solid medium conditions tested, suggesting that it impacts a common core component of the cellular machinery that mediates hypha formation under different environmental conditions. In addition to filamentation, this compound also inhibited C. albicans biofilm formation. This leading compound also demonstrated in vivo activity in clinically relevant murine models of invasive and oral candidiasis. Overall, our results indicate that compounds within this series represent promising candidates for the development of novel anti-virulence approaches to combat C. albicans infections. PMID:29208749

  16. Analysis of the major chiral compounds of Artemisia herba-alba essential oils (EOs) using reconstructed vibrational circular dichroism (VCD) spectra: En route to a VCD chiral signature of EOs.

    PubMed

    Said, Mohammed El-Amin; Vanloot, Pierre; Bombarda, Isabelle; Naubron, Jean-Valère; Dahmane, El Montassir; Aamouche, Ahmed; Jean, Marion; Vanthuyne, Nicolas; Dupuy, Nathalie; Roussel, Christian

    2016-01-15

    An unprecedented methodology was developed to simultaneously assign the relative percentages of the major chiral compounds and their prevailing enantiomeric form in crude essential oils (EOs). In a first step the infrared (IR) and vibrational circular dichroism (VCD) spectra of the crude essential oils were recorded and in a second step they were modelized as a linear weighted combination of the IR and VCD spectra of the individual spectra of pure enantiomer of the major chiral compounds present in the EOs. The VCD spectra of enantiomer of known enantiomeric excess shall be recorded if they are not yet available in a library of VCD spectra. For IR, the spectra of pure enantiomer or racemic mixture can be used. The full spectra modelizations were performed using a well known and powerful mathematical model (least square estimation: LSE) which resulted in a weighting of each contributing compound. For VCD modelization, the absolute value of each weighting represented the percentage of the associate compound while the attached sign addressed the correctness of the enantiomeric form used to build the model. As an example, a model built with the non-prevailing enantiomer will show a negative sign of the weighting value. For IR spectra modelization, the absolute value of each weighting represented the percentage of the compounds without of course accounting for the chirality of the prevailing enantiomers. Comparison of the weighting values issuing from IR and VCD spectra modelizations is a valuable source of information: if they are identical, the EOs are composed of nearly pure enantiomers, if they are different the chiral compounds of the EOs are not in an optically pure form. The method was applied on four samples of essential oil of Artemisia herba-alba in which the three major compounds namely (-)-α-thujone, (+)-β-thujone and (-)-camphor were found in different proportions as determined by GC-MS and chiral HPLC using polarimetric detector. In order to validate the methodology, the modelization of the VCD spectra was performed on purpose using the individual VCD spectra of (-)-α-thujone, (+)-β-thujone and (+)-camphor instead of (-)-camphor. During this work, the absolute configurations of (-)-α-thujone and (+)-β-thujone were confirmed by comparison of experimental and calculated VCD spectra as being (1S,4R,5R) and (1S,4S,5R) respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Characterization of bioactive compounds in Tunisian bitter orange (Citrus aurantium L.) peel and juice and determination of their antioxidant activities.

    PubMed

    Jabri Karoui, Iness; Marzouk, Brahim

    2013-01-01

    Citrus aurantium peel and juice aroma compounds were investigated by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), whereas phenolic compounds analysis was performed by reversed-phase high-performance liquid chromatography (RP-HPLC). Limonene was the major volatile compound of bitter orange peel (90.25%) and juice (91.61%). HPLC analysis of bitter orange peel and juice methanolic extracts indicated that phenolic acids constitute their main phenolic class representing 73.80% and 71.25%, respectively, followed by flavonoids (23.02% and 23.13%, resp.). p-Coumaric and ferulic acids were the most abundant phenolic compounds representing 24.68% and 23.79%, respectively, in the peel, while the juice contained 18.02% and 19.04%, respectively. The antioxidant activities of bitter orange peel and juice methanolic extracts have been evaluated using four in vitro assays, and the results were compared with the standard antioxidants (BHT, BHA, and ascorbic acid). Our findings demonstrated that Citrus aurantium peel and juice possess antioxidant activities which were less effective than those of antioxidant standards. Both extracts may be suggested as a new potential source of natural antioxidant.

  18. Characterization of Bioactive Compounds in Tunisian Bitter Orange (Citrus aurantium L.) Peel and Juice and Determination of Their Antioxidant Activities

    PubMed Central

    Jabri karoui, Iness; Marzouk, Brahim

    2013-01-01

    Citrus aurantium peel and juice aroma compounds were investigated by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), whereas phenolic compounds analysis was performed by reversed-phase high-performance liquid chromatography (RP-HPLC). Limonene was the major volatile compound of bitter orange peel (90.25%) and juice (91.61%). HPLC analysis of bitter orange peel and juice methanolic extracts indicated that phenolic acids constitute their main phenolic class representing 73.80% and 71.25%, respectively, followed by flavonoids (23.02% and 23.13%, resp.). p-Coumaric and ferulic acids were the most abundant phenolic compounds representing 24.68% and 23.79%, respectively, in the peel, while the juice contained 18.02% and 19.04%, respectively. The antioxidant activities of bitter orange peel and juice methanolic extracts have been evaluated using four in vitro assays, and the results were compared with the standard antioxidants (BHT, BHA, and ascorbic acid). Our findings demonstrated that Citrus aurantium peel and juice possess antioxidant activities which were less effective than those of antioxidant standards. Both extracts may be suggested as a new potential source of natural antioxidant. PMID:23841062

  19. The role of condensed tannins in animal production: advances, limitations and future directions

    USDA-ARS?s Scientific Manuscript database

    Tannins represent one of the most abundant polyphenolic compounds in plants, second only to lignin. Tannins exist as a multitude of chemically unique entities in nature. The most commonly occurring tannins are typically divided into two major classes based on chemical structure: hydrolysable or cond...

  20. Olive phenolic compounds: metabolic and transcriptional profiling during fruit development

    PubMed Central

    2012-01-01

    Background Olive (Olea europaea L.) fruits contain numerous secondary metabolites, primarily phenolics, terpenes and sterols, some of which are particularly interesting for their nutraceutical properties. This study will attempt to provide further insight into the profile of olive phenolic compounds during fruit development and to identify the major genetic determinants of phenolic metabolism. Results The concentration of the major phenolic compounds, such as oleuropein, demethyloleuropein, 3–4 DHPEA-EDA, ligstroside, tyrosol, hydroxytyrosol, verbascoside and lignans, were measured in the developing fruits of 12 olive cultivars. The content of these compounds varied significantly among the cultivars and decreased during fruit development and maturation, with some compounds showing specificity for certain cultivars. Thirty-five olive transcripts homologous to genes involved in the pathways of the main secondary metabolites were identified from the massive sequencing data of the olive fruit transcriptome or from cDNA-AFLP analysis. Their mRNA levels were determined using RT-qPCR analysis on fruits of high- and low-phenolic varieties (Coratina and Dolce d’Andria, respectively) during three different fruit developmental stages. A strong correlation was observed between phenolic compound concentrations and transcripts putatively involved in their biosynthesis, suggesting a transcriptional regulation of the corresponding pathways. OeDXS, OeGES, OeGE10H and OeADH, encoding putative 1-deoxy-D-xylulose-5-P synthase, geraniol synthase, geraniol 10-hydroxylase and arogenate dehydrogenase, respectively, were almost exclusively present at 45 days after flowering (DAF), suggesting that these compounds might play a key role in regulating secoiridoid accumulation during fruit development. Conclusions Metabolic and transcriptional profiling led to the identification of some major players putatively involved in biosynthesis of secondary compounds in the olive tree. Our data represent the first step towards the functional characterisation of important genes for the determination of olive fruit quality. PMID:22963618

  1. Squalenes, phytanes and other isoprenoids as major neutral lipids of methanogenic and thermoacidophilic 'archaebacteria'

    NASA Technical Reports Server (NTRS)

    Tornabene, T. G.; Langworthy, T. A.; Holzer, G.; Oro, J.

    1979-01-01

    The neutral lipids from nine species of methanogenic bacteria (five methanobacilli, two methanococci, a methanospirillum and a methanosarcina) and two thermoacidophilic bacteria (Thermo-plasma and Sulfolobus) have been analyzed. The neutral lipids were found to comprise a wide range (C14 to C30) of polyisoprenyl hydrocarbons with varying degrees of saturation. The principal components represented the three major isoprenoid series (C20 phytanyl, C25 pentaisoprenyl, and C30 squalenyl), in contrast with the neutral lipids of extreme halophiles, which consist predominantly of C2O (phytanyl, geranylgeraniol), C30 (squalenes), C40 (carotenes) and C50 (bacterioruberins compounds), as reported by Kates (1978). These results, which indicate strong general similarities between genetically diverse organisms, support the classification of these organisms in a separate phylogenetic group. The occurrence of similar isoprenoid compounds in petroleum and ancient sediments and the fact that the methanogens, halophiles and thermoacidophiles live in conditions presumed to have prevailed in archaen times suggest that the isoprenoid compounds in petroleum compounds and sediment may have been directly synthesized by organisms of this type

  2. [Microbial secondary metabolites as potential reserve of pharmaceuticals].

    PubMed

    Orlova, T I; Bulgakova, V G; Polin, A N

    2014-01-01

    The major characteristics of new bioactive microbial secondary metabolites are summarized in the review. A wide range of new molecular targets are implicated in discovery of new nonantibiotic compounds with some other pharmacological activities (noninfectious diseases). Microorganisms represent fascinating resources due to their production of novel products with broad spectra of bioactivities.

  3. Chlorination and cleavage of lignin structures by fungal chloroperoxidases

    Treesearch

    Patricia Ortiz-Bermudez; Ewald Srebotnik; Kenneth E. Hammel

    2003-01-01

    Two fungal chloroperoxidases (CPOs), the heme enzyme from Caldariomyces fumago and the vanadium enzyme from Curvularia inaequalis, chlorinated 1-(4-ethoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1,3-dihydroxypropane, a dimeric model compound that represents the major nonphenolic structure in lignin. Both enzymes also cleaved this dimer to give 1-chloro-4-ethoxy-3-...

  4. Anticancer effects of different seaweeds on human colon and breast cancers.

    PubMed

    Moussavou, Ghislain; Kwak, Dong Hoon; Obiang-Obonou, Brice Wilfried; Maranguy, Cyr Abel Ogandaga; Dinzouna-Boutamba, Sylvatrie-Danne; Lee, Dae Hoon; Pissibanganga, Ordelia Gwenaelle Manvoudou; Ko, Kisung; Seo, Jae In; Choo, Young Kug

    2014-09-24

    Seafoods and seaweeds represent some of the most important reservoirs of new therapeutic compounds for humans. Seaweed has been shown to have several biological activities, including anticancer activity. This review focuses on colorectal and breast cancers, which are major causes of cancer-related mortality in men and women. It also describes various compounds extracted from a range of seaweeds that have been shown to eradicate or slow the progression of cancer. Fucoidan extracted from the brown algae Fucus spp. has shown activity against both colorectal and breast cancers. Furthermore, we review the mechanisms through which these compounds can induce apoptosis in vitro and in vivo. By considering the ability of compounds present in seaweeds to act against colorectal and breast cancers, this review highlights the potential use of seaweeds as anticancer agents.

  5. Preliminary analysis of an extensive one year survey of trace elements and compounds in the suspended particulate matter in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Antoine, A. C.; Leibecki, H. F.; Neustadter, H. E.; Sidik, S. M.; Burr, J. C.; Craig, G. T.; Cornett, C. L.

    1974-01-01

    Beginning in 1971 a cooperative program has been carried on by the City of Cleveland Division of Air Pollution Control and NASA Lewis Research Center to study the trace element and compound concentrations in the ambient suspended particulate matter in Cleveland Ohio as a function of source, monitoring location and meteorological conditions. The major objectives were to determine the ambient concentration levels at representative urban sites and to develop a technique using trace element and compound data in conjunction with meteorological conditions to identify specific pollution sources which could be developed into a practical system that could be readily utilized by an enforcement agency.

  6. Lipophilic extracts of Cynara cardunculus L. var. altilis (DC): a source of valuable bioactive terpenic compounds.

    PubMed

    Ramos, Patrícia A B; Guerra, Ângela R; Guerreiro, Olinda; Freire, Carmen S R; Silva, Artur M S; Duarte, Maria F; Silvestre, Armando J D

    2013-09-04

    Lipophilic extracts of Cynara cardunculus L. var. altilis (DC) from the south of Portugal (Baixo Alentejo) were studied by gas chromatography-mass spectrometry. One sesquiterpene lactone, four pentacyclic triterpenes, and four sterols were reported for the first time as cultivated cardoon components, namely, deacylcynaropicrin, β- and α-amyrin, lupenyl and ψ-taraxasteryl acetates, stigmasterol, 24-methylenecholesterol, campesterol, and Δ(5)-avenasterol. In addition, other new compounds were identified: ten fatty acids, eight long-chain aliphatic alcohols, and six aromatic compounds. Four triterpenyl fatty acid esters were also detected. Sesquiterpene lactones and pentacyclic triterpenes were the major lipophilic families, representing respectively 2-46% and 10-89% of the detected compounds. Cynaropicrin was the most abundant sesquiterpene lactone, while taraxasteryl acetate was the main pentacyclic triterpene. Fatty acids and sterols, mainly hexadecanoic acid and β-sitosterol, were present at lower amounts (1-20% and 1-11% of the detected compounds). Long-chain aliphatic alcohols and aromatic compounds were detected at reduced abundances (1-6% of the detected compounds).

  7. Long-chain aliphatic beta-diketones from epicuticular wax of Vanilla bean species. Synthesis of nervonoylacetone.

    PubMed

    Ramaroson-Raonizafinimanana, B; Gaydou, E M; Bombarda, I

    2000-10-01

    Analysis of the neutral lipids from Vanilla fragrans and Vanilla tahitensis (Orchidaceae) without saponification resulted in the isolation and identification of a new product family in this plant: beta-dicarbonyl compounds. The compound structures are composed of a long aliphatic chain with 2,4-dicarbonyl carbons and a cis double bond at the n-9 position. They represent approximately 28% of the neutral lipids, that is, 1.5%, in immature beans, and approximately 10% of the neutral lipids, that is, 0.9%, in mature beans. Using retention indices, gas chromatography-mass spectrometry, derivatization reactions, and chemical degradation, five beta-dicarbonyl compounds have been identified including 16-pentacosene-2,4-dione, 18-heptacosene-2,4-dione, 20-nonacosene-2, 4-dione, 22-hentriacontene-2,4-dione, and 24-tritriacontene-2, 4-dione. Among them (Z)-18-heptacosene-2,4-dione, or nervonoylacetone, has been synthesized in two steps starting from nervonic acid. The major constituent, nervonoylacetone, represented 74.5% of the beta-dicarbonyl fraction. The range of these compounds has been studied in relation with bean maturity for V. fragrans and V. tahitensis species. This compound family has not been found in the leaves or stems of any of the three vanilla species studied and is markedly absent in the beans of V. madagascariensis.

  8. Wild Prunus Fruit Species as a Rich Source of Bioactive Compounds.

    PubMed

    Mikulic-Petkovsek, Maja; Stampar, Franci; Veberic, Robert; Sircelj, Helena

    2016-08-01

    Sugars, organic acids, carotenoids, tocopherols, chlorophylls, and phenolic compounds were quantified in fruit of 4 wild growing Prunus species (wild cherry, bird cherry, blackthorn, and mahaleb cherry) using HPLC-DAD-MSn. In wild Prunus, the major sugars were glucose and fructose, whereas malic and citric acids dominated among organic acids. The most abundant classes of phenolic compounds in the analyzed fruit species were anthocyanins, flavonols, derivatives of cinnamic acids, and flavanols. Two major groups of anthocyanins measured in Prunus fruits were cyanidin-3-rutinoside and cyanidin-3-glucoside. Flavonols were represented by 19 derivatives of quercetin, 10 derivatives of kaempferol, and 2 derivatives of isorhamnetin. The highest total flavonol content was measured in mahaleb cherry and bird cherry, followed by blackthorn and wild cherry fruit. Total phenolic content varied from 2373 (wild cherry) to 11053 mg GAE per kg (bird cherry) and ferric reducing antioxidant power antioxidant activity from 7.26 to 31.54 mM trolox equivalents per kg fruits. © 2016 Institute of Food Technologists®

  9. The genus Artemisia L. in the northern region of Saudi Arabia: essential oil variability and antibacterial activities.

    PubMed

    Guetat, Arbi; Al-Ghamdi, Faraj A; Osman, Ahmed K

    2017-03-01

    Four species of the genus Artemisia L. (Artemisia monosperma, Artemisia scoparia, Artemisia judaica and Artemisia sieberi) growing in the northern region of Saudi Arabia were investigated with respect to their volatile oil contents. The yield of oil varied between 0.30 and 0.41%, % (w/w). A. monosperma showed the highest number of compounds with 30 components representing 93.78% of oil composition. However, A. judaica showed the lowest number of compounds with only 16 components representing 87.47% of essential oil. A. scoparia and A. sieberi are both composed of 17 components, representing 97.14 and 94.2% of total oil composition. A. sieberi and A. judaica were dominated by spathulenol (30.42 and 28.41%, respectively). For A. monosperma, butanoic acid (17.87%) was a major component. However, A. scoparia was a chemotype of acenaphthene. (83.23%). Essential oil of studied species showed high antibacterial activities against common human pathogens.

  10. Development and Sequential Analysis of a New Multi-Agent, Anti-Acne Formulation Based on Plant-Derived Antimicrobial and Anti-Inflammatory Compounds.

    PubMed

    Saviuc, Crina; Ciubucă, Bianca; Dincă, Gabriela; Bleotu, Coralia; Drumea, Veronica; Chifiriuc, Mariana-Carmen; Popa, Marcela; Gradisteanu Pircalabioru, Gratiela; Marutescu, Luminita; Lazăr, Veronica

    2017-01-17

    The antibacterial and anti-inflammatory potential of natural, plant-derived compounds has been reported in many studies. Emerging evidence indicates that plant-derived essential oils and/or their major compounds may represent a plausible alternative treatment for acne, a prevalent skin disorder in both adolescent and adult populations. Therefore, the purpose of this study was to develop and subsequently analyze the antimicrobial activity of a new multi-agent, synergic formulation based on plant-derived antimicrobial compounds (i.e., eugenol, β-pinene, eucalyptol, and limonene) and anti-inflammatory agents for potential use in the topical treatment of acne and other skin infections. The optimal antimicrobial combinations selected in this study were eugenol/β-pinene/salicylic acid and eugenol/β-pinene/2-phenoxyethanol/potassium sorbate. The possible mechanisms of action revealed by flow cytometry were cellular permeabilization and inhibition of efflux pumps activity induced by concentrations corresponding to sub-minimal inhibitory (sub-MIC) values. The most active antimicrobial combination represented by salycilic acid/eugenol/β-pinene/2-phenoxyethanol/potassium sorbate was included in a cream base, which demonstrated thermodynamic stability and optimum microbiological characteristics.

  11. Bond dissociation enthalpies of a pinoresinol lignin model compound

    Treesearch

    Thomas Elder

    2014-01-01

    ABSTRACT: The pinoresinol unit is one of the principal interunit linkages in lignin. As such, its chemistry and properties are of major importance in understanding the behavior or the polymer. This work examines the homolytic cleavage of the pinoresinol system, representing the initial step in thermal degradation. The bond dissociation enthalpy of this reaction has...

  12. An enhanced approach for the use of satellite-derived leaf area index values in dry deposition modeling in the Athabasca oil sands region.

    PubMed

    Davies, Mervyn; Cho, Sunny; Spink, David; Pauls, Ron; Desilets, Michael; Shen, Yan; Bajwa, Kanwardeep; Person, Reid

    2016-12-15

    In the Athabasca oil sands region (AOSR) of Northern Alberta, the dry deposition of sulphur and nitrogen compounds represents a major fraction of total (wet plus dry) deposition due to oil sands emissions. The leaf area index (LAI) is a critical parameter that affects the dry deposition of these gaseous and particulate compounds to the surrounding boreal forest canopy. For this study, LAI values based on Moderate Resolution Imaging Spectroradiometer satellite imagery were obtained and compared to ground-based measurements, and two limitations with the satellite data were identified. The satellite LAI data firstly represents one-sided LAI values that do not account for the enhanced LAI associated with needle leaf geometry, and secondly, underestimates LAI in winter-time northern latitude regions. An approach for adjusting satellite LAI values for different boreal forest cover types, as a function of time of year, was developed to produce more representative LAI values that can be used by air quality sulphur and nitrogen deposition models. The application of the approach increases the AOSR average LAI for January from 0.19 to 1.40, which represents an increase of 637%. Based on the application of the CALMET/CALPUFF model system, this increases the predicted regional average dry deposition of sulphur and nitrogen compounds for January by factors of 1.40 to 1.30, respectively. The corresponding AOSR average LAI for July increased from 2.8 to 4.0, which represents an increase of 43%. This increases the predicted regional average dry deposition of sulphur and nitrogen compounds for July by factors of 1.28 to 1.22, respectively. These findings reinforce the importance of the LAI metric for predicting the dry deposition of sulphur and nitrogen compounds. While satellite data can provide enhanced spatial and temporal resolution, adjustments are identified to overcome associated limitations. This work is considered to have application for other deposition model studies where dry deposition represents a significant fraction of total deposition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media.

    PubMed

    Antonopoulou, M; Evgenidou, E; Lambropoulou, D; Konstantinou, I

    2014-04-15

    In view of the global concern about the occurrence of taste and odor (T&O) compounds in waters for drinking water supply and the necessity for the development of more innovative and efficient technologies for water treatment and depuration, the focus of this study is to provide a state of the art overview on current knowledge for the application of advanced oxidation technologies for the treatment of T&O compounds in aquatic media. The most representative and newly emerging compounds belonging to the major groups of T&O compounds, such as geosmin, methylisoborneol, benzothiazoles, mercaptans and sulfides as well as aromatic and other miscellaneous T&O compounds, are included in the systematic overview. The current data has been compiled and extensively discussed in terms of the degree of degradation, reaction kinetics, effect of operational parameters and water quality, identity of intermediate and final products and possible transformation pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Regional atmospheric emissions determined from measurements at Jeju Island, Korea: Halogenated compounds from China

    NASA Astrophysics Data System (ADS)

    Kim, Jooil; Li, Shanlan; Kim, Kyung-Ryul; Stohl, Andreas; Mühle, Jens; Kim, Seung-Kyu; Park, Mi-Kyung; Kang, Dong-Jin; Lee, Gangwoong; Harth, Christina M.; Salameh, Peter K.; Weiss, Ray F.

    2010-06-01

    High-frequency in-situ measurements of a wide range of halogenated compounds including chlorofluorocarbons (CFCs), halons, hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), perfluorinated compounds (PFCs), sulfur hexafluoride (SF6), and other chlorinated and brominated compounds have been made at Gosan (Jeju Island, Korea). Regional emissions of HCFC-22 (CHClF2) calculated from inverse modeling were combined with interspecies correlation methods to estimate national emissions for China, a major emitter of industrial halogenated gases. Our results confirm the signs of successful phase-out of primary ozone-depleting species such as CFCs, halons and many chlorinated or brominated compounds, along with substantial emissions of replacement HCFCs. Emissions derived for HFCs, PFCs, and SF6 were compared to published estimates and found to be a significant fraction of global totals. Overall, Chinese emissions of the halogenated compounds discussed here represent 19(14-17)% and 20(15-26)% of global emissions when evaluated in terms of their Ozone Depletion Potentials and 100-year Global Warming Potentials, respectively.

  15. Qualitative and Quantitative Analysis of the Major Constituents in Chinese Medical Preparation Lianhua-Qingwen Capsule by UPLC-DAD-QTOF-MS

    PubMed Central

    Jia, Weina; Wang, Chunhua; Wang, Yuefei; Pan, Guixiang; Jiang, Miaomiao; Li, Zheng; Zhu, Yan

    2015-01-01

    Lianhua-Qingwen capsule (LQC) is a commonly used Chinese medical preparation to treat viral influenza and especially played a very important role in the fight against severe acute respiratory syndrome (SARS) in 2002-2003 in China. In this paper, a rapid ultraperformance liquid chromatography coupled with diode-array detector and quadrupole time-of-flight mass spectrometry (UPLC-DAD-QTOF-MS) method was established for qualitative and quantitative analysis of the major constituents of LQC. A total of 61 compounds including flavonoids, phenylpropanoids, anthraquinones, triterpenoids, iridoids, and other types of compounds were unambiguously or tentatively identified by comparing the retention times and accurate mass measurement with reference compounds or literature data. Among them, twelve representative compounds were further quantified as chemical markers in quantitative analysis, including salidroside, chlorogenic acid, forsythoside E, cryptochlorogenic acid, amygdalin, sweroside, hyperin, rutin, forsythoside A, phillyrin, rhein, and glycyrrhizic acid. The UPLC-DAD method was evaluated with linearity, limit of detection (LOD), limit of quantification (LOQ), precision, stability, repeatability, and recovery tests. The results showed that the developed quantitative method was linear, sensitive, and precise for the quality control of LQC. PMID:25654135

  16. Suspect screening and non-targeted analysis of drinking water using point-of-use filters.

    PubMed

    Newton, Seth R; McMahen, Rebecca L; Sobus, Jon R; Mansouri, Kamel; Williams, Antony J; McEachran, Andrew D; Strynar, Mark J

    2018-03-01

    Monitored contaminants in drinking water represent a small portion of the total compounds present, many of which may be relevant to human health. To understand the totality of human exposure to compounds in drinking water, broader monitoring methods are imperative. In an effort to more fully characterize the drinking water exposome, point-of-use water filtration devices (Brita ® filters) were employed to collect time-integrated drinking water samples in a pilot study of nine North Carolina homes. A suspect screening analysis was performed by matching high resolution mass spectra of unknown features to molecular formulas from EPA's DSSTox database. Candidate compounds with those formulas were retrieved from the EPA's CompTox Chemistry Dashboard, a recently developed data hub for approximately 720,000 compounds. To prioritize compounds into those most relevant for human health, toxicity data from the US federal collaborative Tox21 program and the EPA ToxCast program, as well as exposure estimates from EPA's ExpoCast program, were used in conjunction with sample detection frequency and abundance to calculate a "ToxPi" score for each candidate compound. From ∼15,000 molecular features in the raw data, 91 candidate compounds were ultimately grouped into the highest priority class for follow up study. Fifteen of these compounds were confirmed using analytical standards including the highest priority compound, 1,2-Benzisothiazolin-3-one, which appeared in 7 out of 9 samples. The majority of the other high priority compounds are not targets of routine monitoring, highlighting major gaps in our understanding of drinking water exposures. General product-use categories from EPA's CPCat database revealed that several of the high priority chemicals are used in industrial processes, indicating the drinking water in central North Carolina may be impacted by local industries. Published by Elsevier Ltd.

  17. Inhibition of thioredoxin reductase but not of glutathione reductase by the major classes of alkylating and platinum-containing anticancer compounds.

    PubMed

    Witte, Anne-Barbara; Anestål, Karin; Jerremalm, Elin; Ehrsson, Hans; Arnér, Elias S J

    2005-09-01

    Mammalian thioredoxin reductase (TrxR) is important for cell proliferation, antioxidant defense, and redox signaling. Together with glutathione reductase (GR) it is the main enzyme providing reducing equivalents to many cellular processes. GR and TrxR are flavoproteins of the same enzyme family, but only the latter is a selenoprotein. With the active site containing selenocysteine, TrxR may catalyze reduction of a wide range of substrates, but can at the same time easily be targeted by electrophilic compounds due to the extraordinarily high reactivity of a selenolate moiety. Here we addressed the inhibition of the enzyme by major anticancer alkylating agents and platinum-containing compounds and we compared it to that of GR. We confirmed prior studies suggesting that the nitrosourea carmustine can inhibit both GR and TrxR. We next found, however, that nitrogen mustards (chlorambucil and melphalan) and alkyl sulfonates (busulfan) efficiently inhibited TrxR while these compounds, surprisingly, did not inhibit GR. Inhibitions were concentration and time dependent and apparently irreversible. Anticancer anthracyclines (daunorubicin and doxorubicin) were, in contrast to the alkylating agents, not inhibitors but poor substrates of TrxR. We also found that TrxR, but not GR, was efficiently inhibited by both cisplatin, its monohydrated complex, and oxaliplatin. Carboplatin, in contrast, could not inhibit any of the two enzymes. These findings lead us to conclude that representative compounds of the major classes of clinically used anticancer alkylating agents and most platinum compounds may easily target TrxR, but not GR. The TrxR inhibition should thereby be considered as a factor that may contribute to the cytotoxicity seen upon clinical use of these drugs.

  18. Oxidative cleavage of non-phenolic β-O-4 lignin model dimers by an extracellular aromatic peroxygenase

    Treesearch

    Matthias Kinne; Marzena Poraj-Kobielska; Rene Ullrich; Paula Nousiainen; Jussi Sipilä; Katrin Scheibner; Kenneth E. Hammel; Martin Hofrichter

    2011-01-01

    The extracellular aromatic peroxygenase of the agaric fungus Agrocybe aegerita catalyzed the H2O2-dependent cleavage of non-phenolic arylgiycerol-ß-aryl ethers (ß-O-4 ethers). For instance 1-(3,4-dimethoxyphenyl)-2-(2-methoxy-phenoxy)propane-1,3-diol, a recalcitrant dimeric lignin model compound that represents the major...

  19. Southeast Asian Medicinal Plants as a Potential Source of Antituberculosis Agent

    PubMed Central

    Sanusi, Shuaibu Babaji; Mohamed, Maryati; Mainasara, Muhammad Murtala

    2017-01-01

    Despite all of the control strategies, tuberculosis (TB) is still a major cause of death globally and one-third of the world's population is infected with TB. The drugs used for TB treatment have drawbacks of causing adverse side effects and emergence of resistance strains. Plant-derived medicines have since been used in traditional medical system for the treatment of numerous ailments worldwide. There were nine major review publications on antimycobacteria from plants in the last 17 years. However, none is focused on Southeast Asian medicinal plants. Hence, this review is aimed at highlighting the medicinal plants of Southeast Asian origin evaluated for anti-TB. This review is based on literatures published in various electronic database. A total of 132 plants species representing 45 families and 107 genera were reviewed; 27 species representing 20.5% exhibited most significant in vitro anti-TB activity (crude extracts and/or bioactive compounds 0–<10 µg/ml). The findings may motivate various scientists to undertake the project that may result in the development of crude extract that will be consumed as complementary or alternative TB drug or as potential bioactive compounds for the development of novel anti-TB drug. PMID:29081822

  20. Electrochemical Cobalt-Catalyzed C-H Activation.

    PubMed

    Sauermann, Nicolas; Meyer, Tjark H; Ackermann, Lutz

    2018-06-19

    Carbon-heteroatom bonds represent omnipresent structural motifs of the vast majority of functionalized materials and bioactive compounds. C-H activation has emerged as arguably the most efficient strategy to construct C-Het bonds. Despite of major advances, these C-H transformations were largely dominated by precious transition metal catalysts, in combination with stoichiometric, toxic metal oxidants. Herein, we discuss the recent evolution of cobalt-catalyzed C-H activations that enable C-Het formations with electricity as the sole sustainable oxidant until May 2018. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Chemosystematics in the Opiliones (Arachnida): a comment on the evolutionary history of alkylphenols and benzoquinones in the scent gland secretions of Laniatores

    PubMed Central

    Raspotnig, Günther; Bodner, Michaela; Schäffer, Sylvia; Koblmüller, Stephan; Schönhofer, Axel; Karaman, Ivo

    2015-01-01

    Large prosomal scent glands constitute a major synapomorphic character of the arachnid order Opiliones. These glands produce a variety of chemicals very specific to opilionid taxa of different taxonomic levels, and thus represent a model system to investigate the evolutionary traits in exocrine secretion chemistry across a phylogenetically old group of animals. The chemically best-studied opilionid group is certainly Laniatores, and currently available chemical data allow first hypotheses linking the phylogeny of this group to the evolution of major chemical classes of secretion chemistry. Such hypotheses are essential to decide upon a best-fitting explanation of the distribution of scent-gland secretion compounds across extant laniatorean taxa, and hence represent a key toward a well-founded opilionid chemosystematics. PMID:26074662

  2. Chemosystematics in the Opiliones (Arachnida): a comment on the evolutionary history of alkylphenols and benzoquinones in the scent gland secretions of Laniatores.

    PubMed

    Raspotnig, Günther; Bodner, Michaela; Schäffer, Sylvia; Koblmüller, Stephan; Schönhofer, Axel; Karaman, Ivo

    2015-04-01

    Large prosomal scent glands constitute a major synapomorphic character of the arachnid order Opiliones. These glands produce a variety of chemicals very specific to opilionid taxa of different taxonomic levels, and thus represent a model system to investigate the evolutionary traits in exocrine secretion chemistry across a phylogenetically old group of animals. The chemically best-studied opilionid group is certainly Laniatores, and currently available chemical data allow first hypotheses linking the phylogeny of this group to the evolution of major chemical classes of secretion chemistry. Such hypotheses are essential to decide upon a best-fitting explanation of the distribution of scent-gland secretion compounds across extant laniatorean taxa, and hence represent a key toward a well-founded opilionid chemosystematics.

  3. Contrast-induced acute kidney injury: potential new strategies.

    PubMed

    Briguori, Carlo; Donnarumma, Elvira; Quintavalle, Cristina; Fiore, Danilo; Condorelli, Gerolama

    2015-03-01

    Contrast-induced acute kidney injury (CI-AKI) is an impairment of renal function following contrast media administration in the absence of an alternative cause. It represents a powerful predictor of poor early and late outcomes. Here, we review the major strategies to prevent CI-AKI. Hydration represents the gold standard as a prophylactic measure to prevent CI-AKI, acting by increasing urine flow rate and, thereby, by limiting the time of contact between the contrast media and the tubular epithelial cells. An optimal hydration regimen should be defined according to predefined clinical markers, such as urine flow rate, or left ventricular end-diastolic pressure. Recently, high-dose statins pretreatment has been included in the guidelines of CI-AKI prevention. However, uncertainty still exists on the efficacy of several compounds tested in both observational trials and randomized studies to prevent CI-AKI. Compounds evaluated include diuretics (furosemide), antioxidants (i.e. N-acetylcysteine and statins) and vasodilators (i.e. calcium antagonists, dopamine and fenoldopam). Hydration still represents the most reliable strategy to prevent CI-AKI. New prophylactic strategies for acute kidney injury are still under investigation.

  4. [Proteins and saponins in the lipid preparation obtained by extraction of soybean flour].

    PubMed

    Baukova, N A; Alekseeva, S G; Sorokoumova, G M; Selishcheva, A A; Martynova, O M; Rogozhkina, E A; Shvets, V I

    2002-01-01

    A complex lipid preparation was obtained by extraction of soybean flour with organic solvents. This preparation was shown to include not only phospholipids (major components), but also up to 30% saponins. These compounds were identified by TLC, HPLC, and 1H-NMR spectroscopy. Minor components of the lipid extract were represented by polypeptides associated with phospholipids via electrostatic or hydrophobic forces.

  5. Essential oils of Cupressus funebris, juniperus communis, and j. chinensis (cupressaceae) as repellents against ticks (Acari; Ixodidae) and mosquitoes (diptera; Culicidae) and as toxiants against mosquitoes

    USDA-ARS?s Scientific Manuscript database

    Juniperus communis leaf oil, J. chinensis wood oil and Cupressus funebris wood oil (Cupressaceae) from China were analyzed by gas chromatography and gas chromatography-mass spectrometry. We identified 104 compounds representing 66.8-95.5% of the oils. The major components of J. communis were a-pinen...

  6. Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Lee, S. C.; Chiu, Gloria M. Y.

    Volatile organic compounds (VOCs), PAHs and carbonyl compounds are the major toxic components in Hong Kong. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan areas throughout Hong Kong for a long time. A 1-yr monitoring program for VOCs, PAHs and carbonyl compounds had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the variations and correlations of each selected species (VOCs, PAHs and carbonyl compounds). This study is aimed to analyze toxic volatile organic compounds (benzene, toluene, ethylbenzene and xylene), two carbonyl compounds (formaldehyde, acetaldehyde), and selective polycyclic aromatic hydrocarbons. The monitoring program started from 16 April 1999 to 30 March 2000. Ambient VOC concentrations, many of which originate from the same sources as particulate PAHs and carbonyls compounds, show significant quantities of benzene, toluene and xylenes. Correlations and multivariate analysis of selected gaseous and particulate phase organic pollutants were performed. Source identification by principle component analysis and hierarchical cluster analysis allowed the identification of four sources (factors) for the roadside monitoring station. Factor 1 represents the effect of diesel vehicle exhaust. Factor 2 shows the contribution of aromatic compounds. Factor 3 explains photochemical products—formaldehyde and acetaldehyde. Factor 4 explains the effect of gasoline vehicle exhaust.

  7. From old alkylating agents to new minor groove binders.

    PubMed

    Puyo, Stéphane; Montaudon, Danièle; Pourquier, Philippe

    2014-01-01

    Alkylating agents represent the oldest class of anticancer agents with the approval of mechloretamine by the FDA in 1949. Even though their clinical use is far beyond the use of new targeted therapies, they still occupy a major place in the treatment of specific malignancies, sometimes representing the unique option for the treatment of refractory tumors. Here, we are reviewing the major classes of alkylating agents, with a particular focus on the latest generations of compounds that specifically target the minor groove of the DNA. These naturally occurring derivatives have a unique mechanism of action that explains the recent regain of interest in developing new classes of alkylating agents that could be used in combination with other anticancer drugs to enhance tumor response in the clinic. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Phenolic composition and antioxidant potential of grain legume seeds: A review.

    PubMed

    Singh, Balwinder; Singh, Jatinder Pal; Kaur, Amritpal; Singh, Narpinder

    2017-11-01

    Legumes are a good source of bioactive phenolic compounds which play significant roles in many physiological as well as metabolic processes. Phenolic acids, flavonoids and condensed tannins are the primary phenolic compounds that are present in legume seeds. Majority of the phenolic compounds are present in the legume seed coats. The seed coat of legume seeds primarily contains phenolic acids and flavonoids (mainly catechins and procyanidins). Gallic and protocatechuic acids are common in kidney bean and mung bean. Catechins and procyanidins represent almost 70% of total phenolic compounds in lentils and cranberry beans (seed coat). The antioxidant activity of phenolic compounds is in direct relation with their chemical structures such as number as well as position of the hydroxyl groups. Processing mostly leads to the reduction of phenolic compounds in legumes owing to chemical rearrangements. Phenolic content also decreases due to leaching of water-soluble phenolic compounds into the cooking water. The health benefits of phenolic compounds include acting as anticarcinogenic, anti-thrombotic, anti-ulcer, anti-artherogenic, anti-allergenic, anti-inflammatory, antioxidant, immunemodulating, anti-microbial, cardioprotective and analgesic agents. This review provides comprehensive information of phenolic compounds identified in grain legume seeds along with discussing their antioxidant and health promoting activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Essential Oils of Myrtaceae Species Growing Wild in Tunisia: Chemical Variability and Antifungal Activity Against Biscogniauxia mediterranea, the Causative Agent of Charcoal Canker.

    PubMed

    Yangui, Islem; Zouaoui Boutiti, Meriem; Boussaid, Mohamed; Messaoud, Chokri

    2017-07-01

    The chemical composition of five Eucalyptus species and five Myrtus communis L. populations was investigated using GC/MS and GC-FID. For Eucalyptus essential oils, 32 compounds, representing 88.56 - 96.83% of the total oil according to species, were identified. The main compounds were 1,8-cineole, α-pinene, p-cymene, γ-gurjunene, α-aromadendrene, and β-phellandrene. For Myrtle essential oils, 26 compounds, representing 93.13 - 98.91% of the total oil were identified. α-Pinene, 1,8-cineole, linalool, and myrtenyl acetate were found to be the major compounds. Principal component analysis (PCA) showed chemical differentiation between Eucalyptus species and between Myrtle populations. Biscogniauxia mediterranea, the causative agent of charcoal canker, was identified according to its morphological and molecular characteristics. Essential oils of the investigated Eucalyptus species and Myrtle populations were tested for their antifungal capacity against this fungus. The antifungal activity varied according to the essential oil composition. Biscogniauxia mediterranea exhibited powerful resistance to some essential oils including them of Eucalyptus lehmannii and Eucalyptus sideroxylon but it was very sensitive to Eucalyptus camaldulensis oil (IC 50  = 3.83 mg/ml) and M. communis oil from Zaghouan (IC 50  = 1 mg/ml). This sensitivity was found to be correlated to some essential oil compounds such as p-cymene, carvacrol, cuminaldehyde, and linalool. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  10. Expansion of chemical space for collaborative lead generation and drug discovery: the European Lead Factory Perspective.

    PubMed

    Karawajczyk, Anna; Giordanetto, Fabrizio; Benningshof, Jorg; Hamza, Daniel; Kalliokoski, Tuomo; Pouwer, Kees; Morgentin, Remy; Nelson, Adam; Müller, Gerhard; Piechot, Alexander; Tzalis, Dimitrios

    2015-11-01

    High-throughput screening (HTS) represents a major cornerstone of drug discovery. The availability of an innovative, relevant and high-quality compound collection to be screened often dictates the final fate of a drug discovery campaign. Given that the chemical space to be sampled in research programs is practically infinite and sparsely populated, significant efforts and resources need to be invested in the generation and maintenance of a competitive compound collection. The European Lead Factory (ELF) project is addressing this challenge by leveraging the diverse experience and know-how of academic groups and small and medium enterprises (SMEs) engaged in synthetic and/or medicinal chemistry. Here, we describe the novelty, diversity, structural complexity, physicochemical characteristics and overall attractiveness of this first batch of ELF compounds for HTS purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Seaweeds as Preventive Agents for Cardiovascular Diseases: From Nutrients to Functional Foods

    PubMed Central

    Cardoso, Susana M.; Pereira, Olívia R.; Seca, Ana M. L.; Pinto, Diana C. G. A.; Silva, Artur M. S.

    2015-01-01

    Being naturally enriched in key nutrients and in various health-promoting compounds, seaweeds represent promising candidates for the design of functional foods. Soluble dietary fibers, peptides, phlorotannins, lipids and minerals are macroalgae’s major compounds that can hold potential in high-value food products derived from macroalgae, including those directed to the cardiovascular-health promotion. This manuscript revises available reported data focusing the role of diet supplementation of macroalgae, or extracts enriched in bioactive compounds from macroalgae origin, in targeting modifiable markers of cardiovascular diseases (CVDs), like dyslipidemia, oxidative stress, vascular inflammation, hypertension, hypercoagulability and activation of the sympathetic and renin-angiotensin systems, among others. At last, the review also describes several products that have been formulated with the use of whole macroalgae or extracts, along with their claimed cardiovascular-associated benefits. PMID:26569268

  12. Speciated Chemical Composition of Biomass Burning Aerosol from Various Fuels during FIREX

    NASA Astrophysics Data System (ADS)

    Jen, C.; Hatch, L. E.; Kreisberg, N. M.; Selimovic, V.; Yokelson, R. J.; Barsanti, K.; Goldstein, A. H.

    2017-12-01

    Biomass burning is the largest global source of atmospheric primary carbonaceous aerosols and the second largest global source of non-methane organic compounds, including volatile and semi-volatile organic compounds that are now understood to be major contributors to secondary particle formation in the atmosphere. As wildfires in forested regions such as the western United States become larger and more frequent, understanding the chemical composition of biomass burning organic aerosol is needed to better predict their increasing impact on human health, air quality, and climate. This study presents emission profiles of chemically speciated intermediate and semi-volatile organic compounds present in biomass burning aerosol particles ≤1.0 μm. Biomass burning organic aerosol (BBOA) samples from a variety of fuel types and burning conditions were collected during the FIREX campaign at the USDA Fire Lab (Missoula, MT). Fuels were primarily selected from vegetation commonly found in the western United States, such as ponderosa pine, lodgepole pine, ceanothus, and chaparral. Collected BBOA was thermally desorbed from the filters and analyzed using online derivatization and 2-dimensional gas chromatography with an electron impact (70 eV) and vacuum ultra violet light (10.5 eV) high resolution time of flight mass spectrometer for compound identification. Emission profiles for specific compounds (e.g., levoglucosan) and families of compounds (e.g., sugars and methoxyphenols) show distinct variations between different fuel types, with major differences between fresh and partially decomposed fuels. Results also illustrate the variability in chemical species between burns conducted under similar conditions. Furthermore, chemical fingerprints, representing ratios of normalized emissions for key chemical compounds, were measured for specific fuels/conditions and could be used in future field studies to help identify contributions of various vegetation to total BBOA and in models to estimate the chemical composition of BBOA emissions.

  13. Allelopathy of Bracken Fern (Pteridium arachnoideum): New Evidence from Green Fronds, Litter, and Soil

    PubMed Central

    Juliano Gualtieri, Sonia Cristina; Rodrigues-Filho, Edson; Macías, Francisco Antonio

    2016-01-01

    The neotropical bracken fern Pteridium arachnoideum (Kaulf.) Maxon. (Dennstaedtiaceae) is described as an aggressive pioneer plant species. It invades abandoned or newly burned areas and represents a management challenge at these invaded sites. Native to the Atlantic Forest and Cerrado (Tropical Savanna) Brazilian biomes, P. arachnoideum has nevertheless become very problematic in these conservation hotspots. Despite some reports suggesting a possible role of allelopathy in this plant’s dominance, until now there has been little evidence of isolated and individually identified compounds with phytotoxic activities present in its tissues or in the surrounding environment. Thus, the aim of this study was to investigate the allelopathic potential of P. arachnoideum by isolating and identifying any secondary metabolites with phytotoxic activity in its tissues, litter, and soil. Bioguided phytochemical investigation led to the isolation and identification of the proanthocyanidin selligueain A as the major secondary compound in the green fronds and litter of this fern. It is produced by P. arachnoideum in its green fronds, remains unaltered during the senescence process, and is the major secondary compound present in litter. Selligueain A showed phytotoxic activity against the selected target species sesame (Sesamum indicum) early development. In particular, the compound inhibited root and stem growth, and root metaxylem cell size but did not affect chlorophyll content. This compound can be considered as an allelochemical because it is present in the soil under P. arachnoideum patches as one of the major compounds in the soil solution. This is the first report of the presence of selligueain A in any member of the Dennstaedtiaceae family and the first time an isolated and identified allelochemical produced by members of the Pteridium species complex has been described. This evidence of selligueain A as a putative allelochemical of P. arachnoideum reinforces the role of allelopathy in the dominance processes of this plant in the areas where it occurs. PMID:27552161

  14. Structure-activity relationship study and optimisation of 2-aminopyrrole-1-benzyl-4,5-diphenyl-1H-pyrrole-3-carbonitrile as a broad spectrum metallo-β-lactamase inhibitor.

    PubMed

    McGeary, Ross P; Tan, Daniel T C; Selleck, Christopher; Monteiro Pedroso, Marcelo; Sidjabat, Hanna E; Schenk, Gerhard

    2017-09-08

    A SAR study on derivatives of 2-amino-1-benzyl-4,5-diphenyl-1H-pyrrole-3-carbonitrile 5a revealed that the 3-carbonitrile group, vicinal 4,5-diphenyl and N-benzyl side chains of the pyrrole are important for the inhibitory potencies of these compounds against members representing the three main subclasses of metallo-β-lactamases (MBLs), i.e. IMP-1 (representing the B1 subgroup), CphA (B2) and AIM-1 (B3). Coupling of 5a with a series of acyl chlorides and anhydrides led to the discovery of two N-acylamide derivatives, 10 and 11, as the two most potent IMP-1 inhibitors in this series. However, these compounds are less effective towards CphA and AIM-1. The N-benzoyl derivative of 5a retained potent in vitro activity against each of MBLs tested (with inhibition constants in the low μM range). Importantly, this compound also significantly enhanced the sensitivity of IMP-1, CphA- or AIM-1-producing cell cultures towards meropenem. This compound presents a promising starting point for the development of a universal MBL inhibitor, targeting members of each of the major subgroups of this family of enzymes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Chemical composition and antioxidant activities of the essential oil from Nandina domestica fruits.

    PubMed

    Bi, Shu-Feng; Zhu, Guang-Qi; Wu, Jie; Li, Zhong-Kang; Lv, Yong-Zhan; Fang, Ling

    2016-01-01

    The chemical composition and antioxidant activities of the essential oil from Nandina domestica fruits were studied for the first time. Twenty-two compounds, representing 82.79% of the oil, were identified from the oil. The major compounds were 3-hexen-1-ol (12.9%), linalool (12.3%), 2-methoxy-4-vinylphenol (9.9%), oleic acid (8.0%), furfural (5.8%) and 2,6-di-tert-butyl-4-methylphenol (5.7%). The antioxidant activities of the oil were evaluated using reducing power, metal chelating ability and scavenging capacity against 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-3-ethylbenzthiazoline-6-sulfonate (ABTS) and superoxide anion free radical. The oil exhibited significant antioxidant activities.

  16. Chemical Compositions and Insecticidal Activities of Alpinia kwangsiensis Essential Oil against Lasioderma serricorne.

    PubMed

    Wu, Yan; Zhang, Wen-Juan; Huang, Dong-Ye; Wang, Ying; Wei, Jian-Yu; Li, Zhi-Hua; Sun, Jian-Sheng; Bai, Jia-Feng; Tian, Zhao-Fu; Wang, Ping-Juan; Du, Shu-Shan

    2015-12-08

    The essential oil obtained by hydrodistillation from Alpinia kwangsiensis rhizomes was investigated by GC-MS. A total of 31 components representing 92.45% of the oil were identified and the main compounds in the oil were found to be camphor (17.59%), eucalyptol (15.16%), β-pinene (11.15%) and α-pinene (10.50%). These four compounds were subsequently isolated and the essential oil and four isolated compounds exhibited potent insecticidal activity against Lasioderma serricorne adults. During the assay, it was shown that the essential oil exhibited both potential contact (LD50 = of 24.59 μg/adult) and fumigant (LC50 = of 9.91 mg/L air) toxicity against Lasioderma serricorne. The study revealed that the insecticidal activity of the essential oil can be attributed to the synergistic effects of its diverse major components, which indicates that oil of Alpinia kwangsiensis and its isolated compounds have potential to be developed into natural insecticides to control insects in stored grains and traditional Chinese medicinal materials.

  17. Untargeted analysis to monitor metabolic changes of garlic along heat treatment by LC-QTOF MS/MS.

    PubMed

    Molina-Calle, María; Sánchez de Medina, Verónica; Calderón-Santiago, Mónica; Priego-Capote, Feliciano; Luque de Castro, María D

    2017-09-01

    Black garlic is increasing its popularity in cuisine around the world; however, scant information exists on the composition of this processed product. In this study, polar compounds in fresh garlic and in samples taken at different times during the heat treatment process to obtain black garlic have been characterized by liquid chromatography coupled to tandem mass spectrometry in high resolution mode. Ninety-five compounds (mainly amino acids and metabolites, organosulfur compounds, and saccharides and derivatives) were tentatively identified in all the analysed samples and classified as a function of the family they belong to. Statistical analysis of the results allowed establishing that the major changes in garlic occur during the first days of treatment, and they mainly affect to the three representative families. The main pathways involved in the synthesis of the compounds affected by heat treatment, and their evolution during the process were studied. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Development of a common priority list of pharmaceuticals relevant for the water cycle.

    PubMed

    de Voogt, P; Janex-Habibi, M-L; Sacher, F; Puijker, L; Mons, M

    2009-01-01

    Pharmaceutically active compounds (PhACs), including prescription drugs, over-the-counter medications, drugs used in hospitals and veterinary drugs, have been found throughout the water cycle. A desk study was initiated by the Global Water Research Coalition to consolidate a uniform selection of such compounds in order to judge risks of PhACs for the water cycle. By identifying major existing prioritization efforts and evaluating the criteria they use, this study yields a representative and qualitative profile ('umbrella view') of priority pharmaceuticals based on an extensive set of criteria. This can then be used for further studies on analytical methods, occurrence, treatability and potential risks associated with exposure to PhACs in water supply, identifying compounds most likely to be encountered and that may have significant impact on human health. For practical reasons, the present study excludes veterinary drugs. The pragmatic approach adopted provides an efficient tool to manage risks related to pharmaceuticals and provides assistance for selecting compounds for future studies.

  19. Chromatographic and Spectral Analysis of Two Main Extractable Compounds Present in Aqueous Extracts of Laminated Aluminum Foil Used for Protecting LDPE-Filled Drug Vials

    PubMed Central

    Akapo, Samuel O.; Syed, Sajid; Mamangun, Anicia; Skinner, Wayne

    2009-01-01

    Laminated aluminum foils are increasingly being used to protect drug products packaged in semipermeable containers (e.g., low-density polyethylene (LDPE)) from degradation and/or evaporation. The direct contact of such materials with primary packaging containers may potentially lead to adulteration of the drug product by extractable or leachable compounds present in the closure system. In this paper, we described a simple and reliable HPLC method for analysis of an aqueous extract of laminated aluminum foil overwrap used for packaging LDPE vials filled with aqueous pharmaceutical formulations. By means of combined HPLC-UV, GC/MS, LC/MS/MS, and NMR spectroscopy, the two major compounds detected in the aqueous extracts of the representative commercial overwraps were identified as cyclic oligomers with molecular weights of 452 and 472 and are possibly formed from poly-condensation of the adhesive components, namely, isophthalic acid, adipic acid, and diethylene glycol. Lower molecular weight compounds that might be associated with the “building blocks” of these compounds were not detected in the aqueous extracts. PMID:20140083

  20. Infusions of artichoke and milk thistle represent a good source of phenolic acids and flavonoids.

    PubMed

    Pereira, Carla; Barros, Lillian; Carvalho, Ana Maria; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2015-01-01

    Cynara scolymus L. (artichoke) and Silybum marianum (L.) Gaertn (milk thistle) are two herbs well-known for their efficiency in the prevention/treatment of liver injuries, among other chronic diseases. Therefore, the aim of this work was to characterize specific bioactive components, phenolic compounds, in hydromethanolic extracts but also in infusions (the most commonly used preparations) obtained from the whole plant of milk thistle and artichoke. The phenolic profiles were accessed using HPLC-DAD-MS/ESI. Infusions of both species presented higher phenolic contents than the hydromethanolic extracts. Milk thistle presented a similar phenolic composition between the two preparations, revealing only differences in the quantities obtained. Nevertheless, artichoke revealed a slightly different profile considering infusion and hydromethanolic extracts. Apigenin-7-O-glucuronide was the major flavonoid found in milk thistle, while luteolin-7-O-glucuronide was the most abundant in artichoke. Therefore, infusions of both artichoke and milk thistle represent a good source of bioactive compounds, especially phenolic acids and flavonoids.

  1. HDAC inhibitors: a 2013-2017 patent survey.

    PubMed

    Faria Freitas, Micaela; Cuendet, Muriel; Bertrand, Philippe

    2018-04-19

    Zinc-dependent histone deacetylases (HDAC) inhibitors represent an important class of biologically active compounds with four of them approved by the FDA. A wide range of molecules has been reported for applications in several human diseases.Area covered: This review covers recent efforts in the synthesis and applications of HDAC inhibitors from 2013-2017.Expert opinion: HDAC inhibitors represent an important class of biologically active compounds for single or combination therapies. The current synthetic methodologies are oriented towards selective HDAC isoforms to achieve better therapeutic effects. Among the recent patents available, most of them focus on HDAC6 selective inhibitors. Beside this search for isoform selectivity, the quest for zinc binding groups with better pharmacokinetic properties and high potency against HDACs only motivates medicinal chemists, as well as the design of inhibitors targeting HDACs and at the same time another biological target. If the major applications are for anticancer activity, one can note the emerging applications in neurological or metabolic disorders or for the stimulation of the immune system.

  2. The life sulfuric: microbial ecology of sulfur cycling in marine sediments

    PubMed Central

    Wasmund, Kenneth; Mußmann, Marc

    2017-01-01

    Summary Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular‐ and ecosystem‐level processes. Sulfur‐transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate‐rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep‐subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. PMID:28419734

  3. The Brown Alga Stypopodium zonale (Dictyotaceae): A Potential Source of Anti-Leishmania Drugs

    PubMed Central

    Soares, Deivid Costa; Szlachta, Marcella Macedo; Teixeira, Valéria Laneuville; Soares, Angelica Ribeiro; Saraiva, Elvira Maria

    2016-01-01

    This study evaluated the anti-Leishmania amazonensis activity of a lipophilic extract from the brown alga Stypopodium zonale and atomaric acid, its major compound. Our initial results revealed high inhibitory activity for intracellular amastigotes in a dose-dependent manner and an IC50 of 0.27 μg/mL. Due to its high anti-Leishmania activity and low toxicity toward host cells, we fractionated the lipophilic extract. A major meroditerpene in this extract, atomaric acid, and its methyl ester derivative, which was obtained by a methylation procedure, were identified by nuclear magnetic resonance (NMR) spectroscopy. Both compounds inhibited intracellular amastigotes, with IC50 values of 20.2 μM (9 μg/mL) and 22.9 μM (10 μg/mL), and selectivity indexes of 8.4 μM and 11.5 μM. The leishmanicidal activity of both meroditerpenes was independent of nitric oxide (NO) production, but the generation of reactive oxygen species (ROS) may be at least partially responsible for the amastigote killing. Our results suggest that the lipophilic extract of S. zonale may represent an important source of compounds for the development of anti-Leishmania drugs. PMID:27618071

  4. The Chemistry of Nitroxyl-Releasing Compounds

    PubMed Central

    DuMond, Jenna F.

    2011-01-01

    Abstract Nitroxyl (HNO) demonstrates a diverse and unique biological profile compared to nitric oxide, a redox-related compound. Although numerous studies support the use of HNO as a therapeutic agent, the inherent chemical reactivity of HNO requires the use of donor molecules. Two general chemical strategies currently exist for HNO generation from nitrogen-containing molecules: (i) the disproportionation of hydroxylamine derivatives containing good leaving groups attached to the nitrogen atom and (ii) the decomposition of nitroso compounds (X-N=O, where X represents a good leaving group). This review summarizes the synthesis and structure, the HNO-releasing mechanisms, kinetics and by-product formation, and alternative reactions of six major groups of HNO donors: Angeli's salt, Piloty's acid and its derivatives, cyanamide, diazenium diolate-derived compounds, acyl nitroso compounds, and acyloxy nitroso compounds. A large body of work exists defining these six groups of HNO donors and the overall chemistry of each donor requires consideration in light of its ability to produce HNO. The increasing interest in HNO biology and the potential of HNO-based therapeutics presents exciting opportunities to further develop HNO donors as both research tools and potential treatments. Antioxid. Redox Signal. 14, 1637–1648. PMID:21235345

  5. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation

    PubMed Central

    Saladino, Raffaele; Carota, Eleonora; Botta, Giorgia; Kapralov, Mikhail; Timoshenko, Gennady N.; Rozanov, Alexei Y.; Krasavin, Eugene; Di Mauro, Ernesto

    2015-01-01

    Liquid formamide has been irradiated by high-energy proton beams in the presence of powdered meteorites, and the products of the catalyzed resulting syntheses were analyzed by mass spectrometry. Relative to the controls (no radiation, or no formamide, or no catalyst), an extremely rich, variegate, and prebiotically relevant panel of compounds was observed. The meteorites tested were representative of the four major classes: iron, stony iron, chondrites, and achondrites. The products obtained were amino acids, carboxylic acids, nucleobases, sugars, and, most notably, four nucleosides: cytidine, uridine, adenosine, and thymidine. In accordance with theoretical studies, the detection of HCN oligomers suggests the occurrence of mechanisms based on the generation of radical cyanide species (CN·) for the synthesis of nucleobases. Given that many of the compounds obtained are key components of extant organisms, these observations contribute to outline plausible exogenous high-energy–based prebiotic scenarios and their possible boundary conditions, as discussed. PMID:25870268

  6. Volatile organic compounds concentrations during the construction process in newly-built timber-frame houses: source identification and emission kinetics.

    PubMed

    Plaisance, H; Vignau-Laulhere, J; Mocho, P; Sauvat, N; Raulin, K; Desauziers, V

    2017-05-24

    Building and furniture materials are known to be major sources of volatile organic compounds (VOCs) indoors. During the construction process, an introduced material can have a more or less long-term impact on the indoor air quality according to the building characteristics. In this study, field measurements were carried out at six construction stages in three energy-efficient timber-frame houses. Data analysis focused on the ten most abundant compounds found among an initial list of fifteen target VOCs, namely formaldehyde, acetaldehyde, hexanal, toluene, m/p-xylenes, ethylbenzene, styrene, α-pinene, 3-carene and d-limonene. The chemical compositions and concentration variation patterns were recorded. The results showed a high pollution count, with m/p-xylenes and ethylbenzene concentrations ranging from 1900 to 5100 μg m -3 occurring at the time of the structural work (representing more than 88% of the sum of the target VOCs). Emission tests done on a large number of materials used in the construction revealed that this pollution is due to the emissions from the polyurethane adhesive mastic used as a sealing material. The emission kinetics of polyurethane adhesive mastic was assessed alone and also within a material assembly reconstituting a room wall. The results showed that the superposition of materials led to a slowing down of the VOC emission process from polyurethane adhesive mastic, which explains the concentration decays recorded in houses during the construction process. At the final construction stage, the concentration levels were low for all compounds (the sums of the target VOCs were between 18 and 32 μg m -3 ), with the aldehydes (formaldehyde, acetaldehyde and hexanal) now becoming the major fraction in the chemical composition in the last stages of construction (representing 50-70% of the sum of the target VOCs). This is in agreement with the fact that the sources of aldehydes are the most numerous among the materials and have rather slow emission kinetics.

  7. Glycoconjugates in Host-Helminth Interactions

    PubMed Central

    Prasanphanich, Nina Salinger; Mickum, Megan L.; Heimburg-Molinaro, Jamie; Cummings, Richard D.

    2013-01-01

    Helminths are multicellular parasitic worms that comprise a major class of human pathogens and cause an immense amount of suffering worldwide. Helminths possess an abundance of complex and unique glycoconjugates that interact with both the innate and adaptive arms of immunity in definitive and intermediate hosts. These glycoconjugates represent a major untapped reservoir of immunomodulatory compounds, which have the potential to treat autoimmune and inflammatory disorders, and antigenic glycans, which could be exploited as vaccines and diagnostics. This review will survey current knowledge of the interactions between helminth glycans and host immunity and highlight the gaps in our understanding which are relevant to advancing therapeutics, vaccine development, and diagnostics. PMID:24009607

  8. 4-aminoquinoline analogues and its platinum (II) complexes as antimalarial agents.

    PubMed

    de Souza, Nicolli Bellotti; Carmo, Arturene M L; Lagatta, Davi C; Alves, Márcio José Martins; Fontes, Ana Paula Soares; Coimbra, Elaine Soares; da Silva, Adilson David; Abramo, Clarice

    2011-07-01

    The high incidence of malaria and drug-resistant strains of Plasmodium have turned this disease into a problem of major health importance. One of the approaches used to control it is to search for new antimalarial agents, such as quinoline derivates. This class of compounds composes a broad group of antimalarial agents, which are largely employed, and inhibits the formation of β-haematin (malaria pigment), which is lethal to the parasite. More specifically, 4-aminoquinoline derivates represent potential sources of antimalarials, as the example of chloroquine, the most used antimalarial worldwide. In order to assess antimalarial activity, 12 4-aminoquinoline derived drugs were obtained and some of these derivatives were used to obtain platinum complexes platinum (II). These compounds were tested in vivo in a murine model and revealed remarkable inhibition of parasite multiplication values, whose majority ranged from 50 to 80%. In addition they were not cytotoxic. Thus, they may be object of further research for new antimalarial agents. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  9. Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data

    NASA Astrophysics Data System (ADS)

    Miller, Shelly L.; Anderson, Melissa J.; Daly, Eileen P.; Milford, Jana B.

    Four receptor-oriented source apportionment models were evaluated by applying them to simulated personal exposure data for select volatile organic compounds (VOCs) that were generated by Monte Carlo sampling from known source contributions and profiles. The exposure sources modeled are environmental tobacco smoke, paint emissions, cleaning and/or pesticide products, gasoline vapors, automobile exhaust, and wastewater treatment plant emissions. The receptor models analyzed are chemical mass balance, principal component analysis/absolute principal component scores, positive matrix factorization (PMF), and graphical ratio analysis for composition estimates/source apportionment by factors with explicit restriction, incorporated in the UNMIX model. All models identified only the major contributors to total exposure concentrations. PMF extracted factor profiles that most closely represented the major sources used to generate the simulated data. None of the models were able to distinguish between sources with similar chemical profiles. Sources that contributed <5% to the average total VOC exposure were not identified.

  10. Assessment of soil and water contaminants from selected locations in and near the Idaho Army National Guard Orchard Training Area, Ada County, Idaho, 2001-2003

    USGS Publications Warehouse

    Parliman, D.J.

    2004-01-01

    In 2001, the National Guard Bureau and the U.S. Geological Survey began a project to compile hydrogeologic data and determine presence or absence of soil, surface-water, and ground-water contamination at the Idaho Army National Guard Orchard Training Area in southwestern Idaho. Between June 2002 and April 2003, a total of 114 soil, surface-water, ground-water, precipitation, or dust samples were collected from 68 sample sites (65 different locations) in the Orchard Training Area (OTA) or along the vehicle corridor to the OTA. Soil and water samples were analyzed for concentrations of selected total trace metals, major ions, nutrients, explosive compounds, semivolatile organics, and petroleum hydrocarbons. Water samples also were analyzed for concentrations of selected dissolved trace metals and major ions. Distinguishing naturally occurring large concentrations of trace metals, major ions, and nutrients from contamination related to land and water uses at the OTA was difficult. There were no historical analyses for this area to compare with modern data, and although samples were collected from 65 locations in and near the OTA, sampled areas represented only a small part of the complex OTA land-use areas and soil types. For naturally occurring compounds, several assumptions were made?anomalously large concentrations, when tied to known land uses, may indicate presence of contamination; naturally occurring concentrations cannot be separated from contamination concentrations in mid- and lower ranges of data; and smallest concentrations may represent the lowest naturally occurring range of concentrations and (or) the absence of contaminants related to land and water uses. Presence of explosive, semivolatile organic (SVOC), and petroleum hydrocarbon compounds in samples indicates contamination from land and water uses. In areas along the vehicle corridor and major access roads within the OTA, most trace metal, major ion, and nutrient concentrations in soil samples were not in the upper 10th percentile of data, but concentrations of 25 metals, ions, or nutrients were in the upper 10th percentile in a puddle sample near the heavy equipment maneuvering area, MPRC-H. The largest concentrations of tin, ammonia, and nitrite plus nitrate (as nitrogen) in water from the OTA were detected in a sample from this puddle. Petroleum hydrocarbons were the most common contaminant, detected in all soil and surface-water samples. An SVOC, bis (2-ethylhexyl) phthalate, a plasticizer, was detected at a site along the vehicle corridor. In Maneuver Areas within the OTA, many soil samples contained at least one trace metal, major ion, or nutrient in the upper 10th percentile of data, and the largest concentrations of cobalt, iron, mercury, titanium, sodium, ammonia, or total phosphorus were detected in 6 of 13 soil samples outside the Tadpole Lake area. The largest concentrations of aluminum, arsenic, beryllium, nickel, selenium, silver, strontium, thallium, vanadium, chloride, potassium, sulfate, and nitrite plus nitrate were detected in soil samples from the Tadpole Lake area. Water from Tadpole Lake contained the largest total concentrations of 19 trace metals, 4 major ions, and 1 nutrient. Petroleum hydrocarbons were detected in 5 soil samples and water from Tadpole Lake. SVOCs related to combustion of fuel or plasticizers were detected in 1 soil sample. Explosive compounds were detected in 1 precipitation sample.In the Impact Area within the OTA, most soil samples contained at least one trace metal, major ion, or nutrient in the upper 10th percentile of data, and the largest concentrations of barium, chromium, copper, manganese, lead, or orthophosphate were detected in 6 of the 18 soil samples. Petroleum hydrocarbons were detected in 4 soil samples, SVOCs in 6 samples, and explosive compounds in 4 samples. In the mobilization and training equipment site (MATES) compound adjacent to the OTA, all soil and water samples contained at lea

  11. A Potential Alternative against Neurodegenerative Diseases: Phytodrugs

    PubMed Central

    Pérez-Hernández, Jesús; Zaldívar-Machorro, Víctor Javier; Villanueva-Porras, David; Vega-Ávila, Elisa; Chavarría, Anahí

    2016-01-01

    Neurodegenerative diseases (ND) primarily affect the neurons in the human brain secondary to oxidative stress and neuroinflammation. ND are more common and have a disproportionate impact on countries with longer life expectancies and represent the fourth highest source of overall disease burden in the high-income countries. A large majority of the medicinal plant compounds, such as polyphenols, alkaloids, and terpenes, have therapeutic properties. Polyphenols are the most common active compounds in herbs and vegetables consumed by man. The biological bioactivity of polyphenols against neurodegeneration is mainly due to its antioxidant, anti-inflammatory, and antiamyloidogenic effects. Multiple scientific studies support the use of herbal medicine in the treatment of ND; however, relevant aspects are still pending to explore such as metabolic analysis, pharmacokinetics, and brain bioavailability. PMID:26881043

  12. ProTox: a web server for the in silico prediction of rodent oral toxicity

    PubMed Central

    Drwal, Malgorzata N.; Banerjee, Priyanka; Dunkel, Mathias; Wettig, Martin R.; Preissner, Robert

    2014-01-01

    Animal trials are currently the major method for determining the possible toxic effects of drug candidates and cosmetics. In silico prediction methods represent an alternative approach and aim to rationalize the preclinical drug development, thus enabling the reduction of the associated time, costs and animal experiments. Here, we present ProTox, a web server for the prediction of rodent oral toxicity. The prediction method is based on the analysis of the similarity of compounds with known median lethal doses (LD50) and incorporates the identification of toxic fragments, therefore representing a novel approach in toxicity prediction. In addition, the web server includes an indication of possible toxicity targets which is based on an in-house collection of protein–ligand-based pharmacophore models (‘toxicophores’) for targets associated with adverse drug reactions. The ProTox web server is open to all users and can be accessed without registration at: http://tox.charite.de/tox. The only requirement for the prediction is the two-dimensional structure of the input compounds. All ProTox methods have been evaluated based on a diverse external validation set and displayed strong performance (sensitivity, specificity and precision of 76, 95 and 75%, respectively) and superiority over other toxicity prediction tools, indicating their possible applicability for other compound classes. PMID:24838562

  13. A study on the seasonal variation of the essential oil composition from Plectranthus hadiensis and its antibacterial activity.

    PubMed

    Sripathi, Raju; Jayagopal, Dharani; Ravi, Subban

    2018-04-01

    The chemical composition and seasonal variation of the essential oil from the aerial parts of Plectranthus hadiensis grown during the rainy and summer seasons in the Western Ghats of India was analysed by GC-MS technique. The analysis of rainy season oil led to the identification of 31 compounds, representing 96.4% of the essential oil and the winter season oil led to 25 compounds, representing 95.1% of the oil. Most of the compounds were sesquiterpenes and oxygenated monoterpenes. The major components of the rainy season oil were L-fenchone (30.42%), β-farnesene (11.87%), copaene(11.10%), 2,3-dimethyl hydroquinone (10.78%), α-caryophyllene(8.41%) and piperitone oxide (3.94%) and of the summer season oil are L-fenchone (31.55%), copaene(11.93%), β-farnesene (10.45%), 1,8-naphthalenedione, 8a-ethylperhydro (10.06%), α-caryophyllene(6.36%), piperitone oxide (5.79%) and limonene(4.63%). Antibacterial activity of the essential oil of P. hadiensis was tested using zone of inhibition and minimum inhibition concentration methods. Both the oils inhibited the organisms and showed the zone of inhibition in the range of 20-35 mm with MIC values between 32 and 64 mg/dL.

  14. Nonribosomal peptides and polyketides of Burkholderia: new compounds potentially implicated in biocontrol and pharmaceuticals.

    PubMed

    Esmaeel, Qassim; Pupin, Maude; Jacques, Philippe; Leclère, Valérie

    2017-05-25

    Bacteria belonging to the genus Burkholderia live in various ecological niches and present a significant role in the environments through the excretion of a wide variety of secondary metabolites including modular nonribosomal peptides (NRPs) and polyketides (PKs). These metabolites represent a widely distributed biomedically and biocontrol important class of natural products including antibiotics, siderophores, and anticancers as well as biopesticides that are considered as a novel source that can be used to defend ecological niche from competitors and to promote plant growth. The aim of this review is to present all NRPs produced or potentially produced by strains of Burkholderia, as NRPs represent a major source of active compounds implicated in biocontrol. The review is a compilation of results from a large screening we have performed on 48 complete sequenced genomes available in NCBI to identify NRPS gene clusters, and data found in the literature mainly because some interesting compounds are produced by strains not yet sequenced. In addition to NRPs, hybrids NRPs/PKs are also included. Specific features about biosynthetic gene clusters and structures of the modular enzymes responsible for the synthesis, the biological activities, and the potential uses in agriculture and pharmaceutical of NRPs and hybrids NRPs/PKs will also be discussed.

  15. Enzymatic production and emission of floral scent volatiles in Jasminum sambac.

    PubMed

    Bera, Paramita; Mukherjee, Chiranjit; Mitra, Adinpunya

    2017-03-01

    Floral scent composed of low molecular weight volatile organic compounds. The sweet fragrance of any evening blooming flower is dominated by benzenoid and terpenoid volatile compounds. Floral scent of Jasminum sambac (Oleaceae) includes three major benzenoid esters - benzylacetate, methylbenzoate, and methylsalicylate and three major terpene compounds viz. (E)-β-ocimene, linalool and α-farnesene. We analyzed concentrations and emission rates of benzenoids and terpenoids during the developmental stages of J. sambac flower. In addition to spatial emission from different floral parts, we studied the time-course mRNA accumulations of phenylalanine ammonia-lyase (PAL) and the two representative genes of terpenoid pathway, namely 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) and terpene synthase (TPS). Further, in vitro activities of several enzymes of phenylpropanoid/benzenoid pathway viz., PAL and acetyl-coenzyme A: benzylalcohol acetyltransferase (BEAT), S-adenosyl-l-methionine: benzoic acid carboxyl methyl transferase (BAMT) and S-adenosyl-l-methionine: salicylic acid carboxyl methyltransferase (SAMT) were studied. All the above enzyme activities along with the in vitro activities of DXR and TPS were found to follow a certain rhythm as observed in the emission of different benzenoid and terpenoid compounds. Linalool emission peaked after petal opening and coincided with maximal expression of JsTPS gene as evidenced from RT-PCR analyses (semi-quantitative). The maximum transcript accumulation of this gene was observed in flower petals, indicating that the petals of J. sambac flower play an important role as a major contributor of volatile precursors. The transcripts accumulation of JsDXR and JsTPS in different developmental stages and in different floral part showed that emissions of terpenoid volatiles in J. sambac flower are partially regulated at transcription levels. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Mini-Review: Antifouling Natural Products from Marine Microorganisms and Their Synthetic Analogs

    PubMed Central

    Wu, Ze-Hong; Wang, Yu; Wang, Chang-Yun; Xu, Ying

    2017-01-01

    Biofouling causes huge economic loss and generates serious ecological issues worldwide. Marine coatings incorporated with antifouling (AF) compounds are the most common practices to prevent biofouling. With a ban of organotins and an increase in the restrictions regarding the use of other AF alternatives, exploring effective and environmentally friendly AF compounds has become an urgent demand for marine coating industries. Marine microorganisms, which have the largest biodiversity, represent a rich and important source of bioactive compounds and have many medical and industrial applications. This review summarizes 89 natural products from marine microorganisms and 13 of their synthetic analogs with AF EC50 values ≤ 25 μg/mL from 1995 (the first report about marine microorganism-derived AF compounds) to April 2017. Some compounds with the EC50 values < 5 μg/mL and LC50/EC50 ratios > 50 are highlighted as potential AF compounds, and the preliminary analysis of structure-relationship (SAR) of these compounds is also discussed briefly. In the last part, current challenges and future research perspectives are proposed based on opinions from many previous reviews. To provide clear guidance for the readers, the AF compounds from microorganisms and their synthetic analogs in this review are categorized into ten types, including fatty acids, lactones, terpenes, steroids, benzenoids, phenyl ethers, polyketides, alkaloids, nucleosides and peptides. In addition to the major AF compounds which targets macro-foulers, this review also includes compounds with antibiofilm activity since micro-foulers also contribute significantly to the biofouling communities. PMID:28846626

  17. Mini-Review: Antifouling Natural Products from Marine Microorganisms and Their Synthetic Analogs.

    PubMed

    Wang, Kai-Ling; Wu, Ze-Hong; Wang, Yu; Wang, Chang-Yun; Xu, Ying

    2017-08-28

    Biofouling causes huge economic loss and generates serious ecological issues worldwide. Marine coatings incorporated with antifouling (AF) compounds are the most common practices to prevent biofouling. With a ban of organotins and an increase in the restrictions regarding the use of other AF alternatives, exploring effective and environmentally friendly AF compounds has become an urgent demand for marine coating industries. Marine microorganisms, which have the largest biodiversity, represent a rich and important source of bioactive compounds and have many medical and industrial applications. This review summarizes 89 natural products from marine microorganisms and 13 of their synthetic analogs with AF EC 50 values ≤ 25 μg/mL from 1995 (the first report about marine microorganism-derived AF compounds) to April 2017. Some compounds with the EC 50 values < 5 μg/mL and LC 50 /EC 50 ratios > 50 are highlighted as potential AF compounds, and the preliminary analysis of structure-relationship (SAR) of these compounds is also discussed briefly. In the last part, current challenges and future research perspectives are proposed based on opinions from many previous reviews. To provide clear guidance for the readers, the AF compounds from microorganisms and their synthetic analogs in this review are categorized into ten types, including fatty acids, lactones, terpenes, steroids, benzenoids, phenyl ethers, polyketides, alkaloids, nucleosides and peptides. In addition to the major AF compounds which targets macro-foulers, this review also includes compounds with antibiofilm activity since micro-foulers also contribute significantly to the biofouling communities.

  18. Current exposure of 200 pregnant Danish women to phthalates, parabens and phenols.

    PubMed

    Tefre de Renzy-Martin, Katrine; Frederiksen, Hanne; Christensen, Jeppe Schultz; Boye Kyhl, Henriette; Andersson, Anna-Maria; Husby, Steffen; Barington, Torben; Main, Katharina M; Jensen, Tina Kold

    2014-01-01

    Many phthalates, parabens and phenols are suspected to have endocrine-disrupting properties in humans. They are found in consumer products, including food wrapping, cosmetics and building materials. The foetus is particularly vulnerable and exposure to these chemicals therefore is of concern for pregnant women. We investigated current exposure to several commonly used phthalates, parabens and phenols in healthy, pregnant Danish women. A total of 200 spot urine samples were collected between 8 and 30 weeks of gestation and analysed for metabolites of ten phenols, seven parabens and 16 phthalate by liquid chromatography-tandem mass spectrometry representing 26 non-persistent compounds. The majority of analytes were present in the urine sample collected from most women who participated. Thus, in 174 of the 200 women, metabolites of more than 13 (>50%) of 26 compounds were detected simultaneously. The number of compounds detected per woman (either as the parent compound or its metabolite(s)) ranged from 7 to 21 with a median of 16. The majority of compounds correlated positively with each other within and between chemical groups, suggesting combined exposure sources. Estimated daily intakes (DIs) of phthalates and bisphenol A (BPA) were below their individual tolerable DI (TDI) and with hazard quotients below 1. In conclusion, we found detectable levels of phthalate metabolites, parabens and phenols in almost all pregnant women, suggesting combined multiple exposures. Although the estimated DI of phthalates and BPA for an individual was below TDI, our results still raise concern, as current toxicological risk assessments in humans do not take into account simultaneous exposure. The true cumulative risk for the foetus may therefore be underestimated.

  19. R 14 (Au, M) 51 (R = Y, La–Nd, Sm–Tb, Ho, Er, Yb, Lu; M = Al, Ga, Ge, In, Sn, Sb, Bi): Stability Ranges and Site Preference in the Gd 14Ag 51 Structure Type

    DOE PAGES

    Celania, Chris; Smetana, Volodymyr; Provino, Alessia; ...

    2017-12-19

    Twenty new ternary representatives of the Gd 14Ag 51 structure type have been synthesized within the R-Au-M family (R = Y, La–Nd, Sm–Tb, Ho, Er, Yb, Lu; M = Al, Ga, Ge, In, Sn, Sb, Bi) using solid state synthesis techniques. The list of post transition metals (M) involved in the formation of this type of structure could be augmented by five new representatives. All compounds crystallize in the hexagonal space group P6/m (#175) with the unit cell ranges of a = 12.3136(2)–12.918(1) Å and c = 8.9967(3)–9.385(1) Å, and incorporate different degrees of Au/M mixing. The involvement of themore » post transition element in the structure varies from one to another compound both qualitatively and quantitatively. A rather significant phase width can be expected for the majority of compounds, however, not without exclusions. The distribution of the post transition metals within the structure has been analyzed via single crystal X-ray diffraction. While the positional disorder of one near-origin Au position is expectable for all compounds due to steric reasons, two specimens show an obvious deviation from the others including another Au position split along the c axis. Lastly, possible factors affecting this behavior are discussed.« less

  20. R 14 (Au, M) 51 (R = Y, La–Nd, Sm–Tb, Ho, Er, Yb, Lu; M = Al, Ga, Ge, In, Sn, Sb, Bi): Stability Ranges and Site Preference in the Gd 14Ag 51 Structure Type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celania, Chris; Smetana, Volodymyr; Provino, Alessia

    Twenty new ternary representatives of the Gd 14Ag 51 structure type have been synthesized within the R-Au-M family (R = Y, La–Nd, Sm–Tb, Ho, Er, Yb, Lu; M = Al, Ga, Ge, In, Sn, Sb, Bi) using solid state synthesis techniques. The list of post transition metals (M) involved in the formation of this type of structure could be augmented by five new representatives. All compounds crystallize in the hexagonal space group P6/m (#175) with the unit cell ranges of a = 12.3136(2)–12.918(1) Å and c = 8.9967(3)–9.385(1) Å, and incorporate different degrees of Au/M mixing. The involvement of themore » post transition element in the structure varies from one to another compound both qualitatively and quantitatively. A rather significant phase width can be expected for the majority of compounds, however, not without exclusions. The distribution of the post transition metals within the structure has been analyzed via single crystal X-ray diffraction. While the positional disorder of one near-origin Au position is expectable for all compounds due to steric reasons, two specimens show an obvious deviation from the others including another Au position split along the c axis. Lastly, possible factors affecting this behavior are discussed.« less

  1. High-speed separation and characterization of major constituents in Radix Paeoniae Rubra by fast high-performance liquid chromatography coupled with diode-array detection and time-of-flight mass spectrometry.

    PubMed

    Liu, E-Hu; Qi, Lian-Wen; Li, Bin; Peng, Yong-Bo; Li, Ping; Li, Chang-Yin; Cao, Jun

    2009-01-01

    A fast high-performance liquid chromatography (HPLC) method coupled with diode-array detection (DAD) and electrospray ionization time-of-flight mass spectrometry (ESI-TOFMS) has been developed for rapid separation and sensitive identification of major constituents in Radix Paeoniae Rubra (RPR). The total analysis time on a short column packed with 1.8-microm porous particles was about 20 min without a loss in resolution, six times faster than the performance of a conventional column analysis (115 min). The MS fragmentation behavior and structural characterization of major compounds in RPR were investigated here for the first time. The targets were rapidly screened from RPR matrix using a narrow mass window of 0.01 Da to restructure extracted ion chromatograms. Accurate mass measurements (less than 5 ppm error) for both the deprotonated molecule and characteristic fragment ions represent reliable identification criteria for these compounds in complex matrices with similar if not even better performance compared with tandem mass spectrometry. A total of 26 components were screened and identified in RPR including 11 monoterpene glycosides, 11 galloyl glucoses and 4 other phenolic compounds. From the point of time savings, resolving power, accurate mass measurement capability and full spectral sensitivity, the established fast HPLC/DAD/TOFMS method turns out to be a highly useful technique to identify constituents in complex herbal medicines. (c) 2008 John Wiley & Sons, Ltd.

  2. Photooxidation products of polycyclic aromatic compounds containing sulfur.

    PubMed

    Bobinger, Stefan; Andersson, Jan T

    2009-11-01

    Photooxidation of crude oil components is an important process that removes pollutants from the environment. Polycyclic aromatic compounds (PACs) are known to be toxic to many life forms, but little is known about their photooxidation products in the aqueous phase. We here identify a large number of photoproducts from 11 benzothiophenes, a polycyclic aromatic sulfur heterocycle that is a major representative of PACs in crude oil. The investigated compounds contain two to four methyl groups and an ethyl or an n-octyl group. In water, the products arise through oxidation of alkyl side chains to aldehydes and carboxylic acids or through an opening in one of the aromatic rings. The product analysis was performed using gas chromatography with mass spectrometric or atomic emission detection. The main product is always a sulfobenzoic acid, which strongly lowers the pH of the solution. With long alkyl substituents, surfactants are formed, which may possess solubilizing properties in water. The larger the number of alkyl groups, the faster is the photooxidation. Several of the identified acidic compounds were also found when whole crude oil was photooxidized, showing that simulation with individual compounds reflects the situation in whole crude.

  3. GDA, a web-based tool for Genomics and Drugs integrated analysis.

    PubMed

    Caroli, Jimmy; Sorrentino, Giovanni; Forcato, Mattia; Del Sal, Giannino; Bicciato, Silvio

    2018-05-25

    Several major screenings of genetic profiling and drug testing in cancer cell lines proved that the integration of genomic portraits and compound activities is effective in discovering new genetic markers of drug sensitivity and clinically relevant anticancer compounds. Despite most genetic and drug response data are publicly available, the availability of user-friendly tools for their integrative analysis remains limited, thus hampering an effective exploitation of this information. Here, we present GDA, a web-based tool for Genomics and Drugs integrated Analysis that combines drug response data for >50 800 compounds with mutations and gene expression profiles across 73 cancer cell lines. Genomic and pharmacological data are integrated through a modular architecture that allows users to identify compounds active towards cancer cell lines bearing a specific genomic background and, conversely, the mutational or transcriptional status of cells responding or not-responding to a specific compound. Results are presented through intuitive graphical representations and supplemented with information obtained from public repositories. As both personalized targeted therapies and drug-repurposing are gaining increasing attention, GDA represents a resource to formulate hypotheses on the interplay between genomic traits and drug response in cancer. GDA is freely available at http://gda.unimore.it/.

  4. Toxicological characterisation of two novel selective aryl hydrocarbon receptor modulators in Sprague-Dawley rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahiout, Selma, E-mail: selma.mahiout@helsinki.fi

    The aryl hydrocarbon receptor (AHR) mediates the toxicity of dioxins, but also plays important physiological roles. Selective AHR modulators, which elicit some effects imparted by this receptor without causing the marked toxicity of dioxins, are presently under intense scrutiny. Two novel such compounds are IMA-08401 (N-acetyl-N-phenyl-4-acetoxy-5-chloro-1, 2-dihydro-1-methyl-2-oxo-quinoline-3-carboxamide) and IMA-07101 (N-acetyl-N-(4-trifluoromethylphenyl)-4-acetoxy-1, 2-dihydro-5-methoxy-1-methyl-2-oxo-quinoline-3-carboxamide). They represent, as diacetyl prodrugs, AHR-active metabolites of the drug compounds laquinimod and tasquinimod, respectively, which are intended for the treatment of autoimmune diseases and cancer. Here, we toxicologically assessed the novel compounds in Sprague-Dawley rats, after a single dose (8.75–92.5 mg/kg) and 5-day repeated dosing at the highestmore » doses achievable (IMA-08401: 100 mg/kg/day; and IMA-07101: 75 mg/kg/day). There were no overt clinical signs of toxicity, but body weight gain was marginally retarded, and the treatments induced minimal hepatic extramedullary haematopoiesis. Further, both the absolute and relative weights of the thymus were significantly decreased. Cyp1a1 gene expression was substantially increased in all tissues examined. The hepatic induction profile of other AHR battery genes was distinct from that caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The only marked alterations in serum clinical chemistry variables were a reduction in triglycerides and an increase in 3-hydroxybutyrate. Liver and kidney retinol and retinyl palmitate concentrations were affected largely in the same manner as reported for TCDD. In vitro, the novel compounds activated CYP1A1 effectively in H4IIE cells. Altogether, these novel compounds appear to act as potent activators of the AHR, but lack some major characteristic toxicities of dioxins. They therefore represent promising new selective AHR modulators. - Highlights: • IMA-08401 and IMA-07101 are novel, effective activators of the AHR. • In rats, they lacked the wasting syndrome and thyroid imbalance typical of TCDD. • They also affected the AHR-battery genes in a distinct manner. • Therefore, the compounds appear to represent promising new selective AHR modulators. • They may have potential as drug compound candidates and research tools.« less

  5. Occurrence of organophosphate flame retardants in drinking water from China.

    PubMed

    Li, Jun; Yu, Nanyang; Zhang, Beibei; Jin, Ling; Li, Meiying; Hu, Mengyang; Zhang, Xiaowei; Wei, Si; Yu, Hongxia

    2014-05-01

    Several organophosphate flame retardants (OPFRs) have been identified as known or suspected carcinogens or neurotoxic substances. Given the potential health risks of these compounds, we conducted a comprehensive survey of nine OPFRs in drinking water in China. We found total concentrations of OPFRs in tap water ranging from 85.1 ng/L to 325 ng/L, and tris(2-butoxyethyl) phosphate (TBEP), triphenyl phosphate (TPP), and tris(2-chloroisopropyl) phosphate (TCPP) were the most common components. Similar OPFR concentrations and profiles were observed in water samples processed through six different waterworks in Nanjing, China. However, boiling affected OPFR levels in drinking water by either increasing (e.g., TBEP) or decreasing (e.g., tributyl phosphate, TBP) concentrations depending on the particular compound and the state of the indoor environment. We also found that bottled water contained many of the same major OPFR compounds with concentrations 10-25% lower than those in tap water, although TBEP contamination in bottled water remained a concern. Finally, we concluded that the risk of ingesting OPFRs through drinking water was not a major health concern for either adults or children in China. Nevertheless, drinking water ingestion represents an important exposure pathway for OPFRs. Copyright © 2014. Published by Elsevier Ltd.

  6. The life sulfuric: microbial ecology of sulfur cycling in marine sediments.

    PubMed

    Wasmund, Kenneth; Mußmann, Marc; Loy, Alexander

    2017-08-01

    Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Hypopigmenting Effects of Brown Algae-Derived Phytochemicals: A Review on Molecular Mechanisms

    PubMed Central

    Azam, Mohammed Shariful; Choi, Jinkyung; Lee, Min-Sup; Kim, Hyeung-Rak

    2017-01-01

    There is a rapid increase in the demand for natural hypopigmenting agents from marine sources for cosmeceutical and pharmaceutical applications. Currently, marine macroalgae are considered as a safe and effective source of diverse bioactive compounds. Many research groups are exploring marine macroalgae to discover and characterize novel compounds for cosmeceutical, nutraceutical, and pharmaceutical applications. Many types of bioactive secondary metabolites from marine algae, including phlorotannins, sulfated polysaccharides, carotenoids, and meroterpenoids, have already been documented for their potential applications in the pharmaceutical industry. Among these metabolites, phlorotannins from brown algae have been widely screened for their pharmaceutical and hypopigmenting effects. Unfortunately, the majority of these articles did not have detailed investigations on molecular targets, which is critical to fulfilling the criteria for their cosmeceutical and pharmaceutical use. Very recently, a few meroterpenoids have been discovered from Sargassum sp., with the examination of their anti-melanogenic properties and mechanisms. Despite the scarcity of in vivo and clinical investigations of molecular mechanistic events of marine algae-derived hypopigmenting agents, identifying the therapeutic targets and their validation in humans has been a major challenge for future studies. In this review, we focused on available data representing molecular mechanisms underlying hypopigmenting properties of potential marine brown alga-derived compounds. PMID:28946635

  8. Electronic tongue for nitro and peroxide explosive sensing.

    PubMed

    González-Calabuig, Andreu; Cetó, Xavier; Del Valle, Manel

    2016-06-01

    This work reports the application of a voltammetric electronic tongue (ET) towards the simultaneous determination of both nitro-containing and peroxide-based explosive compounds, two families that represent the vast majority of compounds employed either in commercial mixtures or in improvised explosive devices. The multielectrode array was formed by graphite, gold and platinum electrodes, which exhibited marked mix-responses towards the compounds examined; namely, 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), pentaerythritol tetranitrate (PETN), 2,4,6-trinitrotoluene (TNT), N-methyl-N,2,4,6-tetranitroaniline (Tetryl) and triacetone triperoxide (TATP). Departure information was the set of voltammograms, which were first analyzed by means of principal component analysis (PCA) allowing the discrimination of the different individual compounds, while artificial neural networks (ANNs) were used for the resolution and individual quantification of some of their mixtures (total normalized root mean square error for the external test set of 0.108 and correlation of the obtained vs. expected concentrations comparison graphs r>0.929). Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Determination of anthocyanins and non-anthocyanin polyphenols by ultra performance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI-MS) in jussara (Euterpe edulis) extracts.

    PubMed

    Vieira, Gláucia S; Marques, Anna S F; Machado, Mariana T C; Silva, Vanessa M; Hubinger, Miriam D

    2017-06-01

    This work aimed to propose two analytical methods for the quantitative and qualitative analysis of major anthocyanins and non-anthocyanin phenolic compounds in jussara ( Euterpe edulis ) extracts, using ultra performance liquid chromatography-mass spectrometry. These methods were evaluated for selectivity, precision, linearity, detection and quantification limits. The complete separation of 5 anthocyanins and 22 non-anthocyanins polyphenols was achieved in 4.5 and 7 min, respectively. Limits of detection ranged from 0.55 to 9.24 µg/L, with relative standard deviation for concentration up to 7.0%. In jussara extract, 13 of the 27 analytes were characterized. The dominant compound was cyanidin-3-O-rutinoside, representing about 73% of the total phenolic compounds content (approximately 23 mg/g of extract in dry weight). Other phenolic compounds found in the extract were: cyanidin-3-O-glucoside, pelargonidin-3-O-glucoside, quercetin, rutin, myricetin, kaempferol, kaempferol-3-O-rutinoside, luteolin, apigenin, catechin, ellagic acid and 4,5-dicaffeoylquinic acid.

  10. Polysaccharides and lignin from oak wood used in cooperage: Composition, interest, assays: A review.

    PubMed

    Le Floch, Alexandra; Jourdes, Michael; Teissedre, Pierre-Louis

    2015-11-19

    It is widely accepted that alcoholic beverage quality depends on their ageing in premium quality oak wood. From the choice of wood to beverage ageing, through the different steps in cask manufacturing, many factors should be considered. One of the biggest challenge in cooperages is to take into account all these factors. Most of the studies are interested in phenolic compounds, extracted during ageing and especially involved in wine oxidation, colour, and sensory properties such as astringency and bitterness. Oak aroma volatile compounds have also been the subject of numerous studies. These compounds of interest are part of low molecular weight compounds which represent 2%-10% of oak wood composition. However, three polymers constitute the main part of oak wood: cellulose, hemicellulose and lignin. As far as we are aware, few studies concerning the role of these major macromolecules in oak wood have been published previously. This article reviews oak wood polysaccharides and lignin, their potential interest and different assays used to determine their content. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater.

    PubMed

    Safafar, Hamed; van Wagenen, Jonathan; Møller, Per; Jacobsen, Charlotte

    2015-12-11

    This study aimed at investigating the potential of microalgae species grown on industrial waste water as a new source of natural antioxidants. Six microalgae from different classes, including Phaeodactylum sp. (Bacillariophyceae), Nannochloropsis sp. (Eustigmatophyceae), Chlorella sp., Dunaniella sp., and Desmodesmus sp. (Chlorophyta), were screened for their antioxidant properties using different in vitro assays. Natural antioxidants, including pigments, phenolics, and tocopherols, were measured in methanolic extracts of microalgae biomass. Highest and lowest concentrations of pigments, phenolic compounds, and tocopherols were found in Desmodesmus sp. and Phaeodactylum tricornuotom microalgae species, respectively. The results of each assay were correlated to the content of natural antioxidants in microalgae biomass. Phenolic compounds were found as major contributors to the antioxidant activity in all antioxidant tests while carotenoids were found to contribute to the 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging activity, ferrous reduction power (FRAP), and ABTS-radical scavenging capacity activity. Desmodesmus sp. biomass represented a potentially rich source of natural antioxidants, such as carotenoids (lutein), tocopherols, and phenolic compounds when cultivated on industrial waste water as the main nutrient source.

  12. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater

    PubMed Central

    Safafar, Hamed; van Wagenen, Jonathan; Møller, Per; Jacobsen, Charlotte

    2015-01-01

    This study aimed at investigating the potential of microalgae species grown on industrial waste water as a new source of natural antioxidants. Six microalgae from different classes, including Phaeodactylum sp. (Bacillariophyceae), Nannochloropsis sp. (Eustigmatophyceae), Chlorella sp., Dunaniella sp., and Desmodesmus sp. (Chlorophyta), were screened for their antioxidant properties using different in vitro assays. Natural antioxidants, including pigments, phenolics, and tocopherols, were measured in methanolic extracts of microalgae biomass. Highest and lowest concentrations of pigments, phenolic compounds, and tocopherols were found in Desmodesmus sp. and Phaeodactylum tricornuotom microalgae species, respectively. The results of each assay were correlated to the content of natural antioxidants in microalgae biomass. Phenolic compounds were found as major contributors to the antioxidant activity in all antioxidant tests while carotenoids were found to contribute to the 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging activity, ferrous reduction power (FRAP), and ABTS-radical scavenging capacity activity. Desmodesmus sp. biomass represented a potentially rich source of natural antioxidants, such as carotenoids (lutein), tocopherols, and phenolic compounds when cultivated on industrial waste water as the main nutrient source. PMID:26690454

  13. Phytochemical Characterization of an Adaptogenic Preparation from Rhodiola heterodonta

    PubMed Central

    Grace, Mary H.; Yousef, Gad G.; Kurmukov, Anvar G.; Raskin, Ilya; Lila, Mary Ann

    2013-01-01

    The phytochemical constituents of a biologically active, standardized, 80% ethanol extract of Rhodiola heterodonta were characterized. The extract was fractionated over a Sephadex LH-20 column to afford two main fractions representing two classes of secondary metabolites: phenylethanoids and proanthocyanidins. This fractionation facilitated the identification and quantification of individual compounds in the fractions and sub-fractions using HPLC, and LC-MS. The major compounds in the phenylethanoid fraction were heterodontoside, tyrosol methyl ether, salidroside, viridoside, mongrhoside, tyrosol, and the cyanogenic glucoside rhodiocyanoside A. These seven compounds comprised 17.4% of the EtOH extract. Proanthocyanidins ranged from oligomers to polymers based on epigallocatechin and gallate units. The main identified oligomeric compounds in the proanthocyanidin fraction were epigallocatechin gallate, epigallocatechin-epigallocatechin-3-O-gallate and 3-O-galloylepigallocatechin-epigallocatechin-3-O-gallate, which constituted 1.75% of the ethanol extract. Tyrosol methyl ether, mongrhoside, and the two proanthocyanidin dimers were reported for the first time from this species in this study. Intraperitoneal injection of the 80% ethanol extract increased survival time of mice under hypoxia by 192%, as an indication of adaptogenic activity. PMID:19768982

  14. Ultra‐high performance supercritical fluid chromatography of lignin‐derived phenols from alkaline cupric oxide oxidation

    PubMed Central

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta

    2016-01-01

    Traditional chromatographic methods for the analysis of lignin‐derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra‐high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin‐derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5–2.5 μM, a limit of quantification of 2.5–5.0 μM, and a dynamic range of 5.0–2.0 mM (R 2 > 0.997). The new ultra‐high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin‐derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin‐derived phenols in complex environmental samples. PMID:27452148

  15. Selection of representative emerging micropollutants for drinking water treatment studies: a systematic approach.

    PubMed

    Jin, Xiaohui; Peldszus, Sigrid

    2012-01-01

    Micropollutants remain of concern in drinking water, and there is a broad interest in the ability of different treatment processes to remove these compounds. To gain a better understanding of treatment effectiveness for structurally diverse compounds and to be cost effective, it is necessary to select a small set of representative micropollutants for experimental studies. Unlike other approaches to-date, in this research micropollutants were systematically selected based solely on their physico-chemical and structural properties that are important in individual water treatment processes. This was accomplished by linking underlying principles of treatment processes such as coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration to compound characteristics and corresponding molecular descriptors. A systematic statistical approach not commonly used in water treatment was then applied to a compound pool of 182 micropollutants (identified from the literature) and their relevant calculated molecular descriptors. Principal component analysis (PCA) was used to summarize the information residing in this large dataset. D-optimal onion design was then applied to the PCA results to select structurally representative compounds that could be used in experimental treatment studies. To demonstrate the applicability and flexibility of this selection approach, two sets of 22 representative micropollutants are presented. Compounds in the first set are representative when studying a range of water treatment processes (coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration), whereas the second set shows representative compounds for ozonation and advanced oxidation studies. Overall, selected micropollutants in both lists are structurally diverse, have wide-ranging physico-chemical properties and cover a large spectrum of applications. The systematic compound selection approach presented here can also be adjusted to fit individual research needs with respect to type of micropollutants, treatment processes and number of compounds selected. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. The Chemistry of Nitrogen Compounds in Combustion Processes.

    DTIC Science & Technology

    1984-03-02

    the A levels above v - 5 do contribute to the spectrum. Thus, we tentatively conclude that multiphoton excitation is a major process in this system...populations of these six CN( A ) levels , as shown in Figure 8. There is a strong inversion with more than half of the CN(A) formed being in the v-2 level. It...apparent that the CN( A ) levels shown in Figure 7, all for v ) 3, represent only a few percent of the total excitation. The dynamics of the dissociation

  17. GC/MS Analysis of the Essential Oil of Vernonia cinerea.

    PubMed

    Joshi, Rajesh K

    2015-07-01

    The hydro-distilled essential oil obtained from the roots of V. cinerea Less. (Asteraceae) was investigated by gas chromatography equipped with flame ionization detector (GC-FID) and gas chromatography coupled with mass spectrometry (GC/MS). Twenty-five constituents were identified, which represented 97.4% of the total oil. The major compounds were α-muurolene (30.7%), β-caryophyllene (9.6%), α-selinene (8.7%), cyperene (6.7%) and α-gurjunene (6.5%). The essential oil was dominated by sesquiterpene hydrocarbons (87.8%).

  18. The protective effect of some Thai plants and their bioactive compounds in UV light-induced skin carcinogenesis.

    PubMed

    de Silva, Madhura B; Tencomnao, Tewin

    2018-05-02

    Skin cancer, represents a major public health concern. While the vast majority is non-melanoma skin cancers, melanomas are mostly responsible for mortality. Solar UVB radiation is mutagenic and carcinogenic. It is primarily responsible for both non-melanoma and melanoma skin cancers via excessive production of reactive oxygen species (ROS), which mediate changes in inflammation and immunity, and have been implicated in all three stages of skin cancer development. Due to their regulatory role in numerous functions of cells, signaling pathways are targets for chemoprevention. The current standards in melanoma therapy are targeted and combination therapies, which, albeit prolong survival responses, are still prone to development of drug resistance. To this extent, drugs of natural origin continue to spark great interest. Thailand has a rich biodiversity of indigenous flora, which have traditionally been used to treat a variety of pathologies. The active components in plant extracts that have medicinal properties, termed 'bioactive compounds,' are efficient chemopreventive agents due to their antioxidant, antimutagenic, anticarcinogenic, and carcinogen detoxification properties. Thai plants and their bioactive compounds have shown protective effects on UV light-induced skin cancer in different experimental models. This warrants further in vivo investigations and translation to clinical studies to determine efficacy and safety, for use as lead compounds in targeted/combination therapy or adjuvant therapy with existing regimes. Coupled with a strategy for prevention, this offers a promising outlook for protection against photocarcinogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Cytotoxicity of compounds from Xylopia aethiopica towards multi-factorial drug-resistant cancer cells.

    PubMed

    Kuete, Victor; Sandjo, Louis P; Mbaveng, Armelle T; Zeino, Maen; Efferth, Thomas

    2015-12-15

    Multidrug resistance (MDR) in cancer represent a major hurdle in chemotherapy. Previously, the methanol extract of the medicinal spice Xylopia aethiopica displayed considerable cytotoxicity against multidrug resistant (MDR) cancer cell lines. The present study was designed to assess the cytotoxicity of compounds, 16α-hydroxy-ent-kauran-19-oic acid (2), 3,4',5-trihydroxy-6″,6″-dimethylpyrano[2,3-g]flavone (3), isotetrandrine (5) and trans-tiliroside (6) derived from the methanol crude extract of Xylopia aethiopica against 9 drug-sensitive and -resistant cancer cell lines. The resazurin reduction assay was used to evaluate the cytotoxicity of these compounds, whilst caspase-Glo assay was used to detect caspase activation. Cell cycle, mitochondrial membrane potential (MMP) and levels of reactive oxygen species (ROS) were all analyzed via flow cytometry. Flavonoid 3 and alkaloid 5 also displayed IC50 values ranging from 2.61 µM (towards leukemia CCRF-CEM cells) to 18.60 µM (towards gliobastoma multiforme U87MG.ΔEGFR cells) and from 1.45 µM (towards HepG2 cells) to 7.28 µM (towards MDA-MB-231-pcDNA cells), respectively. IC50 values ranged from 0.20 µM (against CCRF-CEM cells) to 195.12 µM (against CEM/ADR5000 cells) for doxorubicin. Compound 3 induced apoptosis in leukemia CCRF-CEM cells mediated by the disruption of the MMP, whilst 5 induced apoptosis mediated by ROS production. Compounds 2 and 5 represent potential cytotoxic phytochemicals that deserve more investigations to develop novel antineoplastic drugs against multifactorial drug-resistant cancers. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Anaerobic utilization of essential oils by denitrifying bacteria.

    PubMed

    Harder, J; Heyen, U; Probian, C; Foss, S

    2000-01-01

    Plant volatile organic compounds are a major carbon source in nature. We studied the degradability of these substances by anaerobic microorganisms in enrichment cultures with representative essential oils as organic substrates and nitrate as electron acceptor. Lemon and pine needle oil supported microbial growth in the presence of pure oil, whereas parsley seed, camphor, sage, fennel, and mint oil supported growth only when the essential oils were dissolved in an overlying phase of 2,2,4,4,6,8,8-heptamethylnonane. Thyme oil did not support denitrification. Analyses of the microbially degraded oils revealed the disappearance of monoterpenes, of several monoterpenoids, and of methoxy-propenyl-benzenes, including apiole and myristicin. Most-probable-number determinations for denitrifying communities in sewage sludge and forest soil yielded 10(6) to 10(7) monoterpene-utilizing cells ml(-1), representing 0.7 to 100% of the total cultivable nitrate-reducing microorganisms. The utilization of essential oils together with the common occurrence of this metabolic trait are indications for an environmentally important, but currently unexplored anaerobic turnover of plant volatile organic compounds in soil.

  1. A phenotypic screening approach to identify anticancer compounds derived from marine fungi.

    PubMed

    Ellinger, Bernhard; Silber, Johanna; Prashar, Anjali; Landskron, Johannes; Weber, Jonas; Rehermann, Sarah; Müller, Franz-Josef; Smith, Stephen; Wrigley, Stephen; Taskén, Kjetil; Gribbon, Philip; Labes, Antje; Imhoff, Johannes F

    2014-04-01

    This study covers the isolation, testing, and identification of natural products with anticancer properties. Secondary metabolites were isolated from fungal strains originating from a variety of marine habitats. Strain culture protocols were optimized with respect to growth media composition and fermentation conditions. From these producers, isolated compounds were screened for their effect on the viability and proliferation of a subset of the NCI60 panel of cancer cell lines. Active compounds of interest were identified and selected for detailed assessments and structural elucidation using nuclear magnetic resonance. This revealed the majority of fungal-derived compounds represented known anticancer chemotypes, confirming the integrity of the process and the ability to identify suitable compounds. Examination of effects of selected compounds on cancer-associated cell signaling pathways used phospho flow cytometry in combination with 3D fluorescent cell barcoding. In parallel, the study addressed the logistical aspects of maintaining multiple cancer cell lines in culture simultaneously. A potential solution involving microbead-based cell culture was investigated (BioLevitator, Hamilton). Selected cell lines were cultured in microbead and 2D methods and cell viability tests showed comparable compound inhibition in both methods (R2=0.95). In a further technology assessment, an image-based assay system was investigated for its utility as a possible complement to ATP-based detection for quantifying cell growth and viability in a label-free manner.

  2. Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery

    PubMed Central

    Gordon, Laurie J.; Wayne, Gareth J.; Almqvist, Helena; Axelsson, Hanna; Seashore-Ludlow, Brinton; Treyer, Andrea; Lundbäck, Thomas; West, Andy; Hann, Michael M.; Artursson, Per

    2017-01-01

    Inadequate target exposure is a major cause of high attrition in drug discovery. Here, we show that a label-free method for quantifying the intracellular bioavailability (Fic) of drug molecules predicts drug access to intracellular targets and hence, pharmacological effect. We determined Fic in multiple cellular assays and cell types representing different targets from a number of therapeutic areas, including cancer, inflammation, and dementia. Both cytosolic targets and targets localized in subcellular compartments were investigated. Fic gives insights on membrane-permeable compounds in terms of cellular potency and intracellular target engagement, compared with biochemical potency measurements alone. Knowledge of the amount of drug that is locally available to bind intracellular targets provides a powerful tool for compound selection in early drug discovery. PMID:28701380

  3. Emission of methyl bromide from biomass burning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manoe, S.; Andreae, M.O.

    1994-03-04

    Bromine is, per atom, far more efficient than chlorine in destroying stratospheric ozone, and methyl bromide is the single largest source of stratospheric bromine. The two main previously known sources of this compound are emissions from the ocean and from the compound's use as an agricultural pesticide. Laboratory biomass combustion experiments showed that methyl bromide was emitted in the smoke from various fuels tested. Methyl bromide was also found in smoke plumes from wildfires in savannas, chaparral, and boreal forest. Global emissions of methyl bromide from biomass burning are estimated to be in the range of 10 to 50 gigagramsmore » per year, which is comparable to the amount produced by ocean emission and pesticide use and represents a major contribution ([approximately]30 percent) to the stratospheric bromine budget.« less

  4. Distribution of agrochemicals in the lower Mississippi River and its tributaries

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.

    1990-01-01

    The Mississippi River and its tributaries drain extensive agricultural regions of the Mid-Continental United States. Millions of pounds of herbicides are applied annually in these areas to improve crop yields. Many of these compounds are transported into the river from point and nonpoint sources, and eventually are discharged into the Gulf of Mexico. Studies being conducted by the U.S. Geological Survey along the lower Mississippi River and its major tributaries, representing a 2000 km river reach, have confirmed that several triazine and acetanilide herbicides and their degradation products are ubiquitous in this riverine system. These compounds include atrazine and its degradation products desethyl and desisopropylatrazine, cyanazine, simazine, metolachlor, and alachlor and its degradation products 2-chloro-2',6'-diethylacetanilide, 2-hydroxy-2',6-diethylacetanilide and 2,6-diethylaniline. Loads of these compounds were determined at 16 different sampling stations. Stream-load calculations provided information concerning (a) conservative or nonconservative behavior of herbicides; (b) point sources or nonpoint sources; (c) validation of sampling techniques; and (d) transport past each sampling station.

  5. Strategies for the inhibition of gingipains for the potential treatment of periodontitis and associated systemic diseases

    PubMed Central

    Olsen, Ingar; Potempa, Jan

    2014-01-01

    Gingipains are the major virulence factors of Porphyromonas gingivalis, the main periodontopathogen. It is expected that inhibition of gingipain activity in vivo could prevent or slow down the progression of adult periodontitis. To date, several classes of gingipain inhibitors have been recognized. These include gingipain N-terminal prodomains, synthetic compounds, inhibitors from natural sources, antibiotics, antiseptics, antibodies, and bacteria. Several synthetic compounds are potent gingipain inhibitors but inhibit a broad spectrum of host proteases and have undesirable side effects. Synthetic compounds with high specificity for gingipains have unknown toxicity effects, making natural inhibitors more promising as therapeutic gingipain blockers. Cranberry and rice extracts interfere with gingipain activity and prevent the growth and biofilm formation of periodontopathogens. Although the ideal gingipain inhibitor has yet to be discovered, gingipain inhibition represents a novel approach to treat and prevent periodontitis. Gingipain inhibitors may also help treat systemic disorders that are associated with periodontitis, including cardiovascular disease, rheumatoid arthritis, aspiration pneumonia, pre-term birth, and low birth weight. PMID:25206939

  6. G protein-coupled receptor internalization assays in the high-content screening format.

    PubMed

    Haasen, Dorothea; Schnapp, Andreas; Valler, Martin J; Heilker, Ralf

    2006-01-01

    High-content screening (HCS), a combination of fluorescence microscopic imaging and automated image analysis, has become a frequently applied tool to study test compound effects in cellular disease-modeling systems. This chapter describes the measurement of G protein-coupled receptor (GPCR) internalization in the HCS format using a high-throughput, confocal cellular imaging device. GPCRs are the most successful group of therapeutic targets on the pharmaceutical market. Accordingly, the search for compounds that interfere with GPCR function in a specific and selective way is a major focus of the pharmaceutical industry today. This chapter describes methods for the ligand-induced internalization of GPCRs labeled previously with either a fluorophore-conjugated ligand or an antibody directed against an N-terminal tag of the GPCR. Both labeling techniques produce robust assay formats. Complementary to other functional GPCR drug discovery assays, internalization assays enable a pharmacological analysis of test compounds. We conclude that GPCR internalization assays represent a valuable medium/high-throughput screening format to determine the cellular activity of GPCR ligands.

  7. Chromatographic test methods for characterizing alkylsiloxane-bonded silica columns for reversed-phase liquid chromatography.

    PubMed

    Poole, Colin F

    2018-06-07

    Major obstacles to formulating a simple retention mechanism for reversed-phase liquid chromatography have a direct impact on the development of experimental methods for column characterization as they limit our capability to understand observed differences in retention at a system level. These problems arise from the heterogeneous composition of the stationary phase, the difficulty of providing a working definition for the phase ratio, and uncertainty as to whether the distribution mechanism for varied compounds is a partition, adsorption or mixed (combination) of these models. Retention factor and separation factor measurements offer little guidance as they represent an average of various and variable contributing factors that can only be interpreted by assuming a specific model. Column characterization methods have tended to ignore these difficulties by inventing a series of terms to describe column properties, such as hydrophobicity, hydrophilicity, silanol activity, steric resistance, etc., without proper definition. This has allowed multiple scales to be proposed for the same property which generally are only weakly correlated. Against this background we review the major approaches for the characterization of alkylsiloxane-bonded silica stationary phases employing prototypical compounds, the hydrophobic-subtraction model and the solvation parameter model. Those methods using prototypical compounds are limited by the lack of compounds with a singular dominant interaction. The multivariate approaches that extract column characteristic properties from the retention of varied compounds are more hopeful but it is important to be more precise in defining the characteristic column properties and cognizant that general interpretation of these properties for varied columns cannot escape the problem of a poor understanding of the distribution mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Critical evaluation of the efficacy and tolerability of azilsartan.

    PubMed

    De Caterina, Alberto R; Harper, Andrew R; Cuculi, Florim

    2012-01-01

    Appropriate control of blood pressure (BP) in hypertensive patients still represents the major therapeutic goal in the treatment of hypertension. Despite the growing attention and wide range of antihypertensive agents available in the clinical scenario, the target of BP below the advised thresholds of 140/90 mmHg is, unfortunately, often unreached. For this reason, the search for new antihypertensive agents is still ongoing. Azilsartan medoxomil, a new angiotensin receptor blocker that has been recently introduced in the clinical arena, represents the eighth angiotensin receptor blocker currently available for BP control. The aim of this paper is to describe the efficacy and safety profile of this new compound, reviewing available data obtained from both pre-clinical and clinical studies.

  9. Critical evaluation of the efficacy and tolerability of azilsartan

    PubMed Central

    De Caterina, Alberto R; Harper, Andrew R; Cuculi, Florim

    2012-01-01

    Appropriate control of blood pressure (BP) in hypertensive patients still represents the major therapeutic goal in the treatment of hypertension. Despite the growing attention and wide range of antihypertensive agents available in the clinical scenario, the target of BP below the advised thresholds of 140/90 mmHg is, unfortunately, often unreached. For this reason, the search for new antihypertensive agents is still ongoing. Azilsartan medoxomil, a new angiotensin receptor blocker that has been recently introduced in the clinical arena, represents the eighth angiotensin receptor blocker currently available for BP control. The aim of this paper is to describe the efficacy and safety profile of this new compound, reviewing available data obtained from both pre-clinical and clinical studies. PMID:22661897

  10. Polypharmacological profile of 1,2-dihydro-2-oxo-pyridine-3-carboxamides in the endocannabinoid system.

    PubMed

    Chicca, Andrea; Arena, Chiara; Bertini, Simone; Gado, Francesca; Ciaglia, Elena; Abate, Mario; Digiacomo, Maria; Lapillo, Margherita; Poli, Giulio; Bifulco, Maurizio; Macchia, Marco; Tuccinardi, Tiziano; Gertsch, Jürg; Manera, Clementina

    2018-05-14

    The endocannabinoid system (ECS) represents one of the major neuromodulatory systems involved in different physiological and pathological processes. Multi-target compounds exert their activities by acting via multiple mechanisms of action and represent a promising pharmacological modulation of the ECS. In this work we report 4-substituted and 4,5-disubstituted 1,2-dihydro-2-oxo-pyridine-3-carboxamide derivatives with a broad spectrum of affinity and functional activity towards both cannabinoid receptors and additional effects on the main components of the ECS. In particular compound B3 showed high affinity for CB1R (K i  = 23.1 nM, partial agonist) and CB2R (K i  = 6.9 nM, inverse agonist) and also significant inhibitory activity (IC 50  = 70 nM) on FAAH with moderate inhibition of ABHD12 (IC 50  = 2.5 μΜ). Compounds B4, B5 and B6 that act as full agonists at CB1R and as partial agonists (B5 and B6) or antagonist (B4) at CB2R, exhibited an additional multi-target property by inhibiting anandamide uptake with sub-micromolar IC 50 values (0.28-0.62 μΜ). The best derivatives showed cytotoxic activity on U937 lymphoblastoid cells. Finally, molecular docking analysis carried out on the three-dimensional structures of CB1R and CB2R and of FAAH allowed to rationalize the structure-activity relationships of this series of compounds. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. ProTox: a web server for the in silico prediction of rodent oral toxicity.

    PubMed

    Drwal, Malgorzata N; Banerjee, Priyanka; Dunkel, Mathias; Wettig, Martin R; Preissner, Robert

    2014-07-01

    Animal trials are currently the major method for determining the possible toxic effects of drug candidates and cosmetics. In silico prediction methods represent an alternative approach and aim to rationalize the preclinical drug development, thus enabling the reduction of the associated time, costs and animal experiments. Here, we present ProTox, a web server for the prediction of rodent oral toxicity. The prediction method is based on the analysis of the similarity of compounds with known median lethal doses (LD50) and incorporates the identification of toxic fragments, therefore representing a novel approach in toxicity prediction. In addition, the web server includes an indication of possible toxicity targets which is based on an in-house collection of protein-ligand-based pharmacophore models ('toxicophores') for targets associated with adverse drug reactions. The ProTox web server is open to all users and can be accessed without registration at: http://tox.charite.de/tox. The only requirement for the prediction is the two-dimensional structure of the input compounds. All ProTox methods have been evaluated based on a diverse external validation set and displayed strong performance (sensitivity, specificity and precision of 76, 95 and 75%, respectively) and superiority over other toxicity prediction tools, indicating their possible applicability for other compound classes. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Lipophilic extracts from banana fruit residues: a source of valuable phytosterols.

    PubMed

    Oliveira, Lúcia; Freire, Carmen S R; Silvestre, Armando J D; Cordeiro, Nereida

    2008-10-22

    The chemical composition of the lipophilic extracts of unripe pulp and peel of banana fruit 'Dwarf Cavendish' was studied by gas chromatography-mass spectrometry. Fatty acids, sterols, and steryl esters are the major families of lipophilic components present in banana tissues, followed by diacylglycerols, steryl glucosides, long chain fatty alcohols, and aromatic compounds. Fatty acids are more abundant in the banana pulp (29-90% of the total amount of lipophilic extract), with linoleic, linolenic, and oleic acids as the major compounds of this family. In banana peel, sterols represent about 49-71% of the lipophilic extract with two triterpenic ketones (31-norcyclolaudenone and cycloeucalenone) as the major components. The detection of high amounts of steryl esters (469-24405 mg/kg) and diacylglycerols (119-878 mg/kg), mainly present in the banana peel extract, explains the increase in the abundance of fatty acids and sterols after alkaline hydrolysis. Several steryl glucosides were also found in significative amounts (273-888 mg/kg), particularly in banana pulp (888 mg/kg). The high content of sterols (and their derivatives) in the 'Dwarf Cavendish' fruit can open new strategies for the valorization of the banana residues as a potential source of high-value phytochemicals with nutraceutical and functional food additive applications.

  13. Pistachio oil (Pistacia vera L. cv. Uzun): Characterization of key odorants in a representative aromatic extract by GC-MS-olfactometry and phenolic profile by LC-ESI-MS/MS.

    PubMed

    Sonmezdag, Ahmet Salih; Kelebek, Hasim; Selli, Serkan

    2018-02-01

    Volatile, aroma-active, and phenolic compounds of pistachio oil obtained from cv. Uzun were investigated in the current study. To obtain a representative aromatic extract, three of the most widely used extraction methods were compared using a representative test; the solvent-assisted flavour extraction (SAFE) aromatic extract from pistachio oil was found to be the most representative. A total of 50 aroma compounds were determined in pistachio oil and it was found that terpenes, aldehydes, and alcohols were the most abundant volatile compounds. Applying GC-MS-olfactometry and aroma extract dilution analysis (AEDA) resulted in a total of 14 aroma-active areas being detected in the extract of pistachio oil. In the phenolic fraction obtained by the LC-ESI-MS/MS method, a total of 12 phenolic compounds was found in the pistachio oil, of which seven compounds were reported for the first time. Eriodictyol-7-O-glucoside and protocatechuic acid were the most dominant phenolic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. New target prediction and visualization tools incorporating open source molecular fingerprints for TB Mobile 2.0

    PubMed Central

    2014-01-01

    Background We recently developed a freely available mobile app (TB Mobile) for both iOS and Android platforms that displays Mycobacterium tuberculosis (Mtb) active molecule structures and their targets with links to associated data. The app was developed to make target information available to as large an audience as possible. Results We now report a major update of the iOS version of the app. This includes enhancements that use an implementation of ECFP_6 fingerprints that we have made open source. Using these fingerprints, the user can propose compounds with possible anti-TB activity, and view the compounds within a cluster landscape. Proposed compounds can also be compared to existing target data, using a näive Bayesian scoring system to rank probable targets. We have curated an additional 60 new compounds and their targets for Mtb and added these to the original set of 745 compounds. We have also curated 20 further compounds (many without targets in TB Mobile) to evaluate this version of the app with 805 compounds and associated targets. Conclusions TB Mobile can now manage a small collection of compounds that can be imported from external sources, or exported by various means such as email or app-to-app inter-process communication. This means that TB Mobile can be used as a node within a growing ecosystem of mobile apps for cheminformatics. It can also cluster compounds and use internal algorithms to help identify potential targets based on molecular similarity. TB Mobile represents a valuable dataset, data-visualization aid and target prediction tool. PMID:25302078

  15. New target prediction and visualization tools incorporating open source molecular fingerprints for TB Mobile 2.0.

    PubMed

    Clark, Alex M; Sarker, Malabika; Ekins, Sean

    2014-01-01

    We recently developed a freely available mobile app (TB Mobile) for both iOS and Android platforms that displays Mycobacterium tuberculosis (Mtb) active molecule structures and their targets with links to associated data. The app was developed to make target information available to as large an audience as possible. We now report a major update of the iOS version of the app. This includes enhancements that use an implementation of ECFP_6 fingerprints that we have made open source. Using these fingerprints, the user can propose compounds with possible anti-TB activity, and view the compounds within a cluster landscape. Proposed compounds can also be compared to existing target data, using a näive Bayesian scoring system to rank probable targets. We have curated an additional 60 new compounds and their targets for Mtb and added these to the original set of 745 compounds. We have also curated 20 further compounds (many without targets in TB Mobile) to evaluate this version of the app with 805 compounds and associated targets. TB Mobile can now manage a small collection of compounds that can be imported from external sources, or exported by various means such as email or app-to-app inter-process communication. This means that TB Mobile can be used as a node within a growing ecosystem of mobile apps for cheminformatics. It can also cluster compounds and use internal algorithms to help identify potential targets based on molecular similarity. TB Mobile represents a valuable dataset, data-visualization aid and target prediction tool.

  16. Trace element, semivolatile organic, and chlorinated organic compound concentrations in bed sediments of selected streams at Fort Gordon, Georgia, February-April 2010

    USGS Publications Warehouse

    Thomas, Lashun K.; Journey, Celeste A.; Stringfield, Whitney J.; Clark, Jimmy M.; Bradley, Paul M.; Wellborn, John B.; Ratliff, Hagan; Abrahamsen, Thomas A.

    2011-01-01

    A spatial survey of streams was conducted from February to April 2010 to assess the concentrations of major ions, selected trace elements, semivolatile organic compounds, organochlorine pesticides, and polychlorinated biphenyls associated with the bed sediments of surface waters at Fort Gordon military installation near Augusta, Georgia. This investigation expanded a previous study conducted in May 1998 by the U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, that evaluated the streambed sediment quality of selected surface waters at Fort Gordon. The data presented in this report are intended to help evaluate bed sediment quality in relation to guidelines for the protection of aquatic life, and identify temporal trends in trace elements and semivolatile organic compound concentrations at streambed sites previously sampled. Concentrations of 34 major ions and trace elements and 102 semivolatile organic, organochlorine pesticide, and polychlorinated biphenyl compounds were determined in the fine-grained fraction of bed sediment samples collected from 13 of the original 29 sites in the previous study, and 22 additional sites at Fort Gordon. Three of the sites were considered reference sites as they were presumed to be located away from potential sources of contaminants and were selected to represent surface waters flowing onto the fort, and the remaining 32 nonreference sites were presumed to be located within the contamination area at the fort. Temporal trends in trace elements and semivolatile organic compound concentrations also were evaluated at 13 of the 32 nonreference sites to provide an assessment of the variability in the number of detections and concentrations of constituents in bed sediment associated with potential sources, accumulation, and attenuation processes. Major ion and trace element concentrations in fine-grained bed sediment samples from most nonreference sites exceeded concentrations in samples from reference sites at Fort Gordon. Bed sediments from one of the nonreference sites sampled contained the highest concentrations of copper and lead with elevated levels of zinc and chromium relative to reference sites. The percentage change of major ions, trace elements, and total organic carbon that had been detected at sites previously sampled in May 1998 and current bed sediment sites ranged from -4 to 8 percent with an average percentage change of less than 1 percent. Concentrations of major ions and trace elements in bed sediments exceeded probable effect levels for aquatic life (based on the amphipod Hyalella azteca) established by the U.S. Environmental Protection Agency at 46 and 69 percent of the current and previously sampled locations, respectively. The greatest frequency of exceedances for major ions and trace elements in bed sediments was observed for lead. Concentrations of semivolatile organic compounds, organochlorine pesticides, and polychlorinated biphenyls were detected in bed sediment samples at 94 percent of the sites currently sampled. Detections of these organic compounds were reported with greater frequency in bed sediments at upstream sampling locations, when compared to downstream locations. The greatest number of detections of these compounds was reported for bed sediment samples collected from two creeks above a lake. The percentage change of semivolatile organic compounds detected at previously sampled and current bed sediment sites ranged from -68 to 100 percent with the greatest percentage increase reported for one of the creeks above the lake. Concentrations of semivolatile organic compounds and polychlorinated biphenyls in bed sediments exceeded aquatic life criteria established by the U.S. Environmental Protection Agency at three sites. Contaminant compounds exceeding aquatic life criteria included fluoranthene, phenanthrene, anthracene, benzo(a)anthracene

  17. Nanofiltration and Tight Ultrafiltration Membranes for the Recovery of Polyphenols from Agro-Food By-Products.

    PubMed

    Cassano, Alfredo; Conidi, Carmela; Ruby-Figueroa, René; Castro-Muñoz, Roberto

    2018-01-24

    Pressure-driven membrane-based technologies represent a valid approach to reduce the environmental pollution of several agro-food by-products. Recently, in relation to the major interest for natural compounds with biological activities, their use has been also addressed to the recovery, separation and fractionation of phenolic compounds from such by-products. In particular, tight ultrafiltration (UF) and nanolfiltration (NF) membranes have been recognized for their capability to recover phenolic compounds from several types of agro-food by-products. The separation capability of these membranes, as well as their productivity, depends on multiple factors such as membrane material, molecular weight cut-off (MWCO) and operating conditions (e.g., pressure, temperature, feed flow rate, volume reduction factor, etc.). This paper aims at providing a critical overview of the influence of these parameters on the recovery of phenolic compounds from agro-food by-products by using tight UF and NF membranes. The literature data are analyzed and discussed in relation to separation processes, molecule properties, membrane characteristics and other phenomena occurring in the process. Current extraction methodologies of phenolic compounds from raw materials are also introduced in order to drive the implementation of integrated systems for the production of actractive phenolic formulations of potential interest as food antioxidants.

  18. DEVELOPMENT AND VALIDATION OF AN AIR-TO-BEEF ...

    EPA Pesticide Factsheets

    A model for predicting concentrations of dioxin-like compounds in beef is developed and tested. The key premise of the model is that concentrations of these compounds in air are the source term, or starting point, for estimating beef concentrations. Vapor-phase concentrations transfer to vegetations cattle consume, and particle-bound concentrations deposit onto soils and these vegetations as well. Congener-specific bioconcentration parameters, coupled with assumptions on cattle diet, transform soil and vegetative concentrations into beef fat concentrations. The premise of the validation exercise is that a profile of typical air concentrations of dioxin-like compounds in a United States rural environment is an appropriate observed independent data set, and that a representative profile of United States beef concentrations of dioxin-like compounds is an appropriate observed dependent result. These data were developed for the validation exercise. An observed concentration of dioxin toxic equivalents in whole beef of 0.48 ng/kg is compared with a predicted 0.36 ng/kg. Principal uncertainties in the approach are identified and discussed. A major finding of this exercise was that vapor phase transfers of dioxin-like compounds to vegetations that cattle consume dominate the estimation of final beef concentrations: over 80% of the modeled beef concentration was attributed to such transfers. journal article

  19. Nanofiltration and Tight Ultrafiltration Membranes for the Recovery of Polyphenols from Agro-Food By-Products

    PubMed Central

    Conidi, Carmela; Ruby-Figueroa, René; Castro-Muñoz, Roberto

    2018-01-01

    Pressure-driven membrane-based technologies represent a valid approach to reduce the environmental pollution of several agro-food by-products. Recently, in relation to the major interest for natural compounds with biological activities, their use has been also addressed to the recovery, separation and fractionation of phenolic compounds from such by-products. In particular, tight ultrafiltration (UF) and nanolfiltration (NF) membranes have been recognized for their capability to recover phenolic compounds from several types of agro-food by-products. The separation capability of these membranes, as well as their productivity, depends on multiple factors such as membrane material, molecular weight cut-off (MWCO) and operating conditions (e.g., pressure, temperature, feed flow rate, volume reduction factor, etc.). This paper aims at providing a critical overview of the influence of these parameters on the recovery of phenolic compounds from agro-food by-products by using tight UF and NF membranes. The literature data are analyzed and discussed in relation to separation processes, molecule properties, membrane characteristics and other phenomena occurring in the process. Current extraction methodologies of phenolic compounds from raw materials are also introduced in order to drive the implementation of integrated systems for the production of actractive phenolic formulations of potential interest as food antioxidants. PMID:29364859

  20. Classifying compound mechanism of action for linking whole cell phenotypes to molecular targets

    PubMed Central

    Bourne, Christina R.; Wakeham, Nancy; Bunce, Richard A.; Berlin, K. Darrell; Barrow, William W.

    2013-01-01

    Drug development programs have proven successful when performed at a whole cell level, thus incorporating solubility and permeability into the primary screen. However, linking those results to the target within the cell has been a major set-back. The Phenotype Microarray system, marketed and sold by Biolog, seeks to address this need by assessing the phenotype in combination with a variety of chemicals with known mechanism of action (MOA). We have evaluated this system for usefulness in deducing the MOA for three test compounds. To achieve this, we constructed a database with 21 known antimicrobials, which served as a comparison for grouping our unknown MOA compounds. Pearson correlation and Ward linkage calculations were used to generate a dendrogram that produced clustering largely by known MOA, although there were exceptions. Of the three unknown compounds, one was definitively placed as an anti-folate. The second and third compounds’ MOA were not clearly identified, likely due to unique MOA not represented within the commercial database. The availability of the database generated in this report for S. aureus ATCC 29213 will increase the accessibility of this technique to other investigators. From our analysis, the Phenotype Microarray system can group compounds with clear MOA, but distinction of unique or broadly acting MOA at this time is less clear. PMID:22434711

  1. Primary Fatty Alcohols Are Major Components of Suberized Root Tissues of Arabidopsis in the Form of Alkyl Hydroxycinnamates1[OPEN

    PubMed Central

    Delude, Camille; Fouillen, Laetitia; Bhar, Palash; Cardinal, Marie-Josée; Pascal, Stephanie; Kosma, Dylan K.; Joubès, Jérôme

    2016-01-01

    Suberin is a complex hydrophobic polymer that acts as a barrier controlling water and solute fluxes and restricting pathogen infections. Suberin is deposited immediately outside of the plasmalemma in the cell wall of certain tissues such as endodermis of roots, aerial and underground periderms, and seed coats. Suberin consists of a variety of fatty acid derivatives polymerized with glycerol and phenolics. In this study, we show using liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry techniques that most of the fatty alcohols not covalently linked to the suberin polymer are in the form of alkyl hydroxycinnamates (AHCs), with alkyl caffeates predominating. Such compounds are not restricted to the periderm of mature roots but also are present in the endodermis of younger roots, where they are not extracted by rapid dipping in chloroform. Analysis of several mutants affected in key enzymes involved in the biosynthesis and export of suberin monomers suggests that the formation of the suberin polymer and associated waxes involves common pathways and occurs concomitantly in Arabidopsis (Arabidopsis thaliana) roots. Although fatty alcohols represent only minor components of the suberin polymer in Arabidopsis roots, this study demonstrates that they constitute the major aliphatics of suberin-associated waxes in the form of AHCs. Therefore, our results indicate that esterified fatty alcohols, both soluble and polymerized forms, represent major constituents of Arabidopsis root suberized barriers, being as abundant as α,ω-dicarboxylic and unsubstituted fatty acids. In addition, our results show that suberized layers represent a major sink for acyl-lipid metabolism in Arabidopsis roots. PMID:27231100

  2. Ultra-high performance supercritical fluid chromatography of lignin-derived phenols from alkaline cupric oxide oxidation.

    PubMed

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta; Turner, Charlotta

    2016-08-01

    Traditional chromatographic methods for the analysis of lignin-derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra-high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin-derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5-2.5 μM, a limit of quantification of 2.5-5.0 μM, and a dynamic range of 5.0-2.0 mM (R(2) > 0.997). The new ultra-high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin-derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin-derived phenols in complex environmental samples. © 2016 The Authors, Journal of Separation Science Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration.

    PubMed

    Zwetsloot, Marie J; Kessler, André; Bauerle, Taryn L

    2018-04-01

    Root-soil interactions fundamentally affect the terrestrial carbon (C) cycle and thereby ecosystem feedbacks to climate change. This study addressed the question of whether the secondary metabolism of different temperate forest tree species can affect soil microbial respiration. We hypothesized that phenolics can both increase and decrease respiration depending on their function as food source, mobilizer of other soil resources, signaling compound, or toxin. We analyzed the phenolic compounds from root exudates and root tissue extracts of six tree species grown in a glasshouse using high-performance liquid chromatography. We then tested the effect of individual phenolic compounds, representing the major identified phenylpropanoid compound classes, on microbial respiration through a 5-d soil incubation. Phenolic root profiles were highly species-specific. Of the eight classes identified, flavonoids were the most abundant, with flavanols being the predominating sub-class. Phenolic effects on microbial respiration ranged from a 26% decrease to a 46% increase, with reduced respiration occurring in the presence of compounds possessing a catechol ring. Tree species variation in root phenolic composition influences the magnitude and direction of root effects on microbial respiration. Our data support the hypothesis that functional group rather than biosynthetic class determines the root phenolic effect on soil C cycling. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  4. Discovery of Novel Nonactive Site Inhibitors of the Prothrombinase Enzyme Complex.

    PubMed

    Kapoor, Karan; McGill, Nicole; Peterson, Cynthia B; Meyers, Harold V; Blackburn, Michael N; Baudry, Jerome

    2016-03-28

    The risk of serious bleeding is a major liability of anticoagulant drugs that are active-site competitive inhibitors targeting the Factor Xa (FXa) prothrombin (PT) binding site. The present work identifies several new classes of small molecule anticoagulants that can act as nonactive site inhibitors of the prothrombinase (PTase) complex composed of FXa and Factor Va (FVa). These new classes of anticoagulants were identified, using a novel agnostic computational approach to identify previously unrecognized binding pockets at the FXa-FVa interface. From about three million docking calculations of 281,128 compounds in a conformational ensemble of FXa heavy chains identified by molecular dynamics (MD) simulations, 97 compounds and their structural analogues were selected for experimental validation, through a series of inhibition assays. The compound selection was based on their predicted binding affinities to FXa and their ability to successfully bind to multiple protein conformations while showing selectivity for particular binding sites at the FXa/FVa interface. From these, thirty-one (31) compounds were experimentally identified as nonactive site inhibitors. Concentration-based assays further identified 10 compounds represented by four small-molecule families of inhibitors that achieve dose-independent partial inhibition of PTase activity in a nonactive site-dependent and self-limiting mechanism. Several compounds were identified for their ability to bind to protein conformations only seen during MD, highlighting the importance of accounting for protein flexibility in structure-based drug discovery approaches.

  5. Large-Scale Chemical Similarity Networks for Target Profiling of Compounds Identified in Cell-Based Chemical Screens

    PubMed Central

    Lo, Yu-Chen; Senese, Silvia; Li, Chien-Ming; Hu, Qiyang; Huang, Yong; Damoiseaux, Robert; Torres, Jorge Z.

    2015-01-01

    Target identification is one of the most critical steps following cell-based phenotypic chemical screens aimed at identifying compounds with potential uses in cell biology and for developing novel disease therapies. Current in silico target identification methods, including chemical similarity database searches, are limited to single or sequential ligand analysis that have limited capabilities for accurate deconvolution of a large number of compounds with diverse chemical structures. Here, we present CSNAP (Chemical Similarity Network Analysis Pulldown), a new computational target identification method that utilizes chemical similarity networks for large-scale chemotype (consensus chemical pattern) recognition and drug target profiling. Our benchmark study showed that CSNAP can achieve an overall higher accuracy (>80%) of target prediction with respect to representative chemotypes in large (>200) compound sets, in comparison to the SEA approach (60–70%). Additionally, CSNAP is capable of integrating with biological knowledge-based databases (Uniprot, GO) and high-throughput biology platforms (proteomic, genetic, etc) for system-wise drug target validation. To demonstrate the utility of the CSNAP approach, we combined CSNAP's target prediction with experimental ligand evaluation to identify the major mitotic targets of hit compounds from a cell-based chemical screen and we highlight novel compounds targeting microtubules, an important cancer therapeutic target. The CSNAP method is freely available and can be accessed from the CSNAP web server (http://services.mbi.ucla.edu/CSNAP/). PMID:25826798

  6. Organic Nitrogen in Atmospheric Drops and Particles: Concentrations, (Limited) Speciation, and Chemical Transformations

    NASA Astrophysics Data System (ADS)

    Anastasio, C.; Zhang, Q.

    2003-12-01

    While quite a bit is known of the concentrations, speciation, and chemistry of inorganic forms of nitrogen in the atmosphere, the same cannot be said for organic forms. Despite this, there is growing evidence that organic N (ON) is ubiquitous in the atmosphere, especially in atmospheric condensed phases such as fog/cloud drops and aerosol particles. Although the major compounds that make up organic N are generally unknown, as are the sources of these compounds, it is clear that there are significant fluxes of ON between the atmosphere and ecosystems. It also appears that organic N can have significant effects in both spheres. The goal of our recent work in this area has been to better describe the atmospheric component of the biogeochemistry of organic nitrogen. Based on particle, gas, and fogwater samples from Northern California we have made three major findings: 1) Organic N represents a significant component, approximately 20%, of the total atmospheric N loading in these samples. This is broadly consistent with studies from other locations. 2) Amino compounds, primarily as combined amino acids, account for approximately 20% of the measured ON in our condensed phase samples. Given the properties of amino acids, these compounds could significantly affect the chemical and physical properties of atmospheric particles. 3) Organic nitrogen in atmospheric particles and drops is transformed to inorganic forms - primarily ammonium, nitrate, and nitrogen oxides (NOx) - during exposure to sunlight and/or ozone. These chemical reactions likely increase the bioavailability of the condensed phase nitrogen pool and enhance its biological effects after deposition to ecosystems.

  7. Anthropogenic organic compounds in source water of selected community water systems that use groundwater, 2002-05

    USGS Publications Warehouse

    Hopple, Jessica A.; Delzer, Gregory C.; Kingsbury, James A.

    2009-01-01

    Source water, defined as groundwater collected from a community water system well prior to water treatment, was sampled from 221 wells during October 2002 to July 2005 and analyzed for 258 anthropogenic organic compounds. Most of these compounds are unregulated in drinking water and include pesticides and pesticide degradates, gasoline hydrocarbons, personal-care and domestic-use products, and solvents. The laboratory analytical methods used in the study have detection levels that commonly are 100 to 1,000 times lower than State and Federal standards and guidelines for protecting water quality. Detections of anthropogenic organic compounds do not necessarily indicate a concern to human health but rather help to identify emerging issues and track changes in occurrence and concentrations over time. Less than one-half (120) of the 258 compounds were detected in at least one source-water sample. Chloroform, in 36 percent of samples, was the most commonly detected of the 12 compounds that were in about 10 percent or more of source-water samples. The herbicides atrazine, metolachlor, prometon, and simazine also were among the commonly detected compounds. The commonly detected degradates of atrazine - deethylatrazine and deisopropylatrazine - as well as degradates of acetochlor and alachlor, generally were detected at concentrations similar to or greater than concentrations of the parent herbicide. The compounds perchloroethene, trichloroethene, 1,1,1-trichloroethane, methyl tert-butyl ether, and cis-1,2-dichloroethene also were detected commonly. The most commonly detected compounds in source-water samples generally were among those detected commonly across the country and reported in previous studies by the U.S. Geological Survey's National Water-Quality Assessment Program. Relatively few compounds were detected at concentrations greater than human-health benchmarks, and 84 percent of the concentrations were two or more orders of magnitude less than benchmarks. Five compounds (perchloroethene, trichloroethene, 1,2-dibromoethane, acrylonitrile, and dieldrin) were detected at concentrations greater than their human-health benchmark. The human-health benchmarks used for comparison were U.S. Environmental Protection Agency Maximum Contaminant Levels (MCLs) for regulated compounds and Health-Based Screening Levels developed by the U.S. Geological Survey in collaboration with the U.S. Environmental Protection Agency and other agencies for unregulated compounds. About one-half of all detected compounds do not have human-health benchmarks or adequate toxicity information to evaluate results in a human-health context. Ninety-four source-water and finished-water (water that has passed through all the treatment processes but prior to distribution) sites were sampled at selected community water systems during June 2004 to September 2005. Most of the samples were analyzed for compounds that were detected commonly or at relatively high concentrations during the initial source-water sampling. The majority of the finished-water samples represented water blended with water from one or more other wells. Thirty-four samples were from water systems that did not blend water from sampled wells with water from other wells prior to distribution. The comparison of source- and finished-water samples represents an initial assessment of whether compounds present in source water also are present in finished water and is not intended as an evaluation of water-treatment efficacy. The treatment used at the majority of the community water systems sampled is disinfection, which, in general, is not designed to remove the compounds monitored in this study. Concentrations of all compounds detected in finished water were less than their human-health benchmarks. Two detections of perchloroethene and one detection of trichloroethene in finished water had concentrations within an order of magnitude of the MCL. Concentrations of disinfection by-products were

  8. Seasonal variation of organic aerosol in PM2.5 at Anmyeondo, a background site in Korea

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, E. S.; Kim, Y. P.; Jung, C. H.; Lee, J.

    2016-12-01

    Routine measurements of PM2.5 and chemical speciation for 100 individual organic compounds were carried out to understand seasonal variation of organic compounds at a background area in Korea between 2015 and 2016. Organic compounds analyzed in this study were classified into five groups, n-alkanes, polycyclic aromatic hydrocarbons (PAHs), fatty acids (FA), dicarboxylic acids (DCAs), and sugar. Further, organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC) and Humic Like Substance-Carbon (HULIS-C) in PM2.5 were simultaneously analyzed to make mass balance of carbonaceous aerosol in PM2.5 at a background site in Korea. PAHs concentrations at this site was lower than that at Seoul, a representative urban site in Korea. PAHs and n-Alkanes concentrations showed clear seasonal variation with summer minimum and winter maximum, while, seasonal variation of DCAs and Sugars were different with PAHs and n-Alkanes.WSOC concentrations were highly correlated with SOC (Secondary Organic Carbon) concentrations which were estimated by the EC tracer method. The results indicate the formation of secondary organic aerosol (SOA) is major factor for the determination of WSOC concentrations in this region. HULIS-C as known one of brown carbon was major component of WSOC which accounts for 39 to 99% in WSOC. The average concentrations of HULIS-C was 2.02±1.42 and the highest concentration was observed in fall.

  9. Metabolism and excretion of 2-ethoxyethanol in the adult male rat.

    PubMed Central

    Cheever, K L; Plotnick, H B; Richards, D E; Weigel, W W

    1984-01-01

    The routes of 14C excretion following the administration of a single oral 230 mg/kg body weight dose of 2-ethoxyethanol [ethanol-1,2-14C] or 2-ethoxyethanol [ethoxy-1-14C] to male Sprague-Dawley rats were investigated. Elimination of the 14C by the urinary route accounted for 76 to 80% of the dose within 96 hr. The main pathway of biotransformation is oxidation to the corresponding acid, with some subsequent conjugation of the acid metabolite with glycine. The major metabolites, ethoxyacetic acid and N-ethoxy-acetyl glycine, representing 73 to 76% of the administered dose, were eliminated in the urine. The major difference in the metabolic profiles of the two radiochemicals was in the rate and amount of 14CO2 expired via the lung. Of the administered 14C, 11.7% of the ethoxy-labeled and 4.6% of the ethanol-labeled compounds were eliminated as CO2. The biological half-time was 9.9 +/- 1.5 hr for the ethoxy-labeled compound and 12.5 +/- 1.9 hr for the ethanol label. After administration of the ethanol-labeled compound, the only radiolabeled component found in the rat testes was identified as ethoxyacetic acid. Results of this study suggest that the reported testicular effects in the rat may be a result of tissue levels of ethoxyacetic acid. PMID:6437805

  10. Genome-wide association study unravels the genetic control of the apple volatilome and its interplay with fruit texture.

    PubMed

    Farneti, Brian; Di Guardo, Mario; Khomenko, Iuliia; Cappellin, Luca; Biasioli, Franco; Velasco, Riccardo; Costa, Fabrizio

    2017-03-01

    Fruit quality represents a fundamental factor guiding consumers' preferences. Among apple quality traits, volatile organic compounds and texture features play a major role. Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS), coupled with an artificial chewing device, was used to profile the entire apple volatilome of 162 apple accessions, while the fruit texture was dissected with a TAXT-AED texture analyzer. The array of volatile compounds was classed into seven major groups and used in a genome-wide association analysis carried out with 9142 single nucleotide polymorphisms (SNPs). Marker-trait associations were identified on seven chromosomes co-locating with important candidate genes for aroma, such as MdAAT1 and MdIGS. The integration of volatilome and fruit texture data conducted with a multiple factor analysis unraveled contrasting behavior, underlying opposite regulation of the two fruit quality aspects. The association analysis using the first two principal components identified two QTLs located on chromosomes 10 and 2, respectively. The distinction of the apple accessions on the basis of the allelic configuration of two functional markers, MdPG1 and MdACO1, shed light on the type of interplay existing between fruit texture and the production of volatile organic compounds. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Therapeutic and nutraceutical potential of bioactive compounds extracted from fruit residues.

    PubMed

    Babbar, Neha; Oberoi, Harinder Singh; Sandhu, Simranjeet Kaur

    2015-01-01

    The growing interest in the substitution of synthetic food antioxidants by natural ones has fostered research in identifying new low-cost antioxidants having commercial potential. Fruits such as mango, banana, and those belonging to the citrus family leave behind a substantial amount of residues in the form of peels, pulp, seeds, and stones. Due to lack of infrastructure to handle a huge quantity of available biomass, lack of processing facilities, and high processing cost, these residues represent a major disposal problem, especially in developing countries. Because of the presence of phenolic compounds, which impart nutraceutical properties to fruit residues, such residues hold tremendous potential in food, pharmaceutical, and cosmetic industries. The biological properties such as anticarcinogenicity, antimutagenicity, antiallergenicity, and antiageing activity have been reported for both natural as well as synthetic antioxidants. Special attention is focused on extraction of bioactive compounds from inexpensive or residual sources. The purpose of this review is to characterize different phenolics present in the fruit residues, discuss the antioxidant potential of such residues and the assays used in determination of antioxidant properties, discuss various methods for efficient extraction of the bioactive compounds, and highlight the importance of fruit residues as potential nutraceutical resources and biopreservatives.

  12. Structural basis of binding and rationale for the potent urease inhibitory activity of biscoumarins.

    PubMed

    Lodhi, Muhammad Arif; Shams, Sulaiman; Choudhary, Muhammad Iqbal; Lodhi, Atif; Ul-Haq, Zaheer; Jalil, Saima; Nawaz, Sarfraz Ahmad; Khan, Khalid Mohammed; Iqbal, Sajid; Rahman, Atta-ur

    2014-01-01

    Urease belongs to a family of highly conserved urea-hydrolyzing enzymes. A common feature of these enzymes is the presence of two Lewis acid nickel ions and reactive cysteine residue in the active sites. In the current study we examined a series of biscoumarins 1-10 for their mechanisms of inhibition with the nickel containing active sites of Jack bean and Bacillus pasteurii ureases. All these compounds competitively inhibited Jack bean urease through interaction with the nickel metallocentre, as deduced from Michaelis-Menten kinetics, UV-visible absorbance spectroscopic, and molecular docking simulation studies. Some of the compounds behaved differently in case of Bacillus pasteurii urease. We conducted the enzyme kinetics, UV-visible spectroscopy, and molecular docking results in terms of the known protein structure of the enzyme. We also evaluated possible molecular interpretations for the site of biscoumarins binding and found that phenyl ring is the major active pharmacophore. The excellent in vitro potency and selectivity profile of the several compounds described combined with their nontoxicity against the human cells and plants suggest that these compounds may represent a viable lead series for the treatment of urease associated problems.

  13. Structural Basis of Binding and Rationale for the Potent Urease Inhibitory Activity of Biscoumarins

    PubMed Central

    Lodhi, Muhammad Arif; Choudhary, Muhammad Iqbal; Lodhi, Atif; Ul-Haq, Zaheer; Jalil, Saima; Nawaz, Sarfraz Ahmad; Khan, Khalid Mohammed; Iqbal, Sajid; Rahman, Atta-ur

    2014-01-01

    Urease belongs to a family of highly conserved urea-hydrolyzing enzymes. A common feature of these enzymes is the presence of two Lewis acid nickel ions and reactive cysteine residue in the active sites. In the current study we examined a series of biscoumarins 1–10 for their mechanisms of inhibition with the nickel containing active sites of Jack bean and Bacillus pasteurii ureases. All these compounds competitively inhibited Jack bean urease through interaction with the nickel metallocentre, as deduced from Michaelis-Menten kinetics, UV-visible absorbance spectroscopic, and molecular docking simulation studies. Some of the compounds behaved differently in case of Bacillus pasteurii urease. We conducted the enzyme kinetics, UV-visible spectroscopy, and molecular docking results in terms of the known protein structure of the enzyme. We also evaluated possible molecular interpretations for the site of biscoumarins binding and found that phenyl ring is the major active pharmacophore. The excellent in vitro potency and selectivity profile of the several compounds described combined with their nontoxicity against the human cells and plants suggest that these compounds may represent a viable lead series for the treatment of urease associated problems. PMID:25295281

  14. Chemical and Biological Investigation of Olive Mill Waste Water - OMWW Secoiridoid Lactones.

    PubMed

    Vougogiannopoulou, Konstantina; Angelopoulou, Maria T; Pratsinis, Harris; Grougnet, Raphaël; Halabalaki, Maria; Kletsas, Dimitris; Deguin, Brigitte; Skaltsounis, Leandros A

    2015-08-01

    Olive mill waste water is the major byproduct of the olive oil industry containing a range of compounds related to Olea europaea and olive oil constituents. Olive mill waste water comprises an important environmental problem in olive oil producing countries, but it is also a valuable material for the isolation of high added value compounds. In this study, an attempt to investigate the secoiridoid content of olive mill waste water is described with the aid of ultrahigh-performance liquid chromatography-electrospray ionization (±)-high-resolution mass spectrometry and centrifugal partition chromatography methods. In total, seven secoiridoid lactones were isolated, four of which are new natural products. This is the first time that a conjugate of hydroxytyrosol and a secoiridoid lactone has been isolated from olive mill waste water and structurally characterized. Furthermore, the range of isolated compounds allowed for the proposal of a hypothesis for the biotransformation of olive secoiridoids during the production of olive mill waste water. Finally, the ability of the representative compounds to reduce the intracellular reactive oxygen species was assessed with the dichlorofluorescein assay in conjunction with the known antioxidant agent hydroxytyrosol. Georg Thieme Verlag KG Stuttgart · New York.

  15. Compound-specific 15N analysis of amino acids in 15N tracer experiments provide an estimate of newly synthesised soil protein from inorganic and organic substrates

    NASA Astrophysics Data System (ADS)

    Charteris, Alice; Michaelides, Katerina; Evershed, Richard

    2015-04-01

    Organic N concentrations far exceed those of inorganic N in most soils and despite much investigation, the composition and cycling of this complex pool of SOM remains poorly understood. A particular problem has been separating more recalcitrant soil organic N from that actively cycling through the soil system; an important consideration in N cycling studies and for the soil's nutrient supplying capacity. The use of 15N-labelled substrates as stable isotope tracers has contributed much to our understanding of the soil system, but the complexity and heterogeneity of soil organic N prevents thorough compound-specific 15N analyses of organic N compounds and makes it difficult to examine any 15N-labelled organic products in any detail. As a result, a significant proportion of previous work has either simply assumed that since the majority of soil N is organic, all of the 15N retained in the soil is organic N (e.g. Sebilo et al., 2013) or subtracted 15N-labelled inorganic compounds from bulk values (e.g. Pilbeam et al., 1997). While the latter approach is more accurate, these methods only provide an estimate of the bulk 15N value of an extremely complex and non-uniformly labelled organic pool. A more detailed approach has been to use microbial biomass extraction (Brookes et al., 1985) and subsequent N isotopic analysis to determine the 15N value of biomass-N, representing the fraction of 15N assimilated by microbes or the 15N cycling through the 'living' or 'active' portion of soil organic N. However, this extraction method can only generate estimates and some lack of confidence in its validity and reliability remains. Here, we present an alternative technique to obtain a measure of the assimilation of an applied 15N substrate by the soil microbial biomass and an estimate of the newly synthesized soil protein, which is representative of the magnitude of the active soil microbial biomass. The technique uses a stable isotope tracer and compound-specific 15N analysis, but unlike previous works analyses for amino acids (representing organic products) rather than ammonium (NH4+) and nitrate (NO3-). Amino acids are commonly referred to as 'the building blocks of life' as they form the proteins which regulate life's essential biochemical reactions. Proteinaceous matter generally comprises 20-40% of total soil N and is ubiquitous in living organisms, so is a likely 'organic product' of microbial activity/assimilation. Hence, we consider it likely that amino acids represent the major organic nitrogenous products and a reasonable 'proxy' for/measure of the assimilation of an applied 15N substrate by the soil microbial biomass and an estimate of the newly synthesized soil protein. Brookes, P. C. et al. Soil Biol Biochem. 1985, 17, 837-842. Jenkinson, D. S. et al. Soil Biol Biochem. 2004, 36, 5-7. Nannipieri, P. et al. Plant Soil. 1999, 208, 43-56. Pilbeam, C. J. et al. J Agr Sci. 1997, 128, 415-424. Sebilo, M. et al. PNAS. 2013, 110, 18185-18189.

  16. Recognition of Bread Key Odorants by Using Polymer Coated QCMs

    NASA Astrophysics Data System (ADS)

    Nakai, Takashi; Kouno, Shinji; Hiruma, Naoya; Shuzo, Masaki; Delaunay, Jean-Jacques; Yamada, Ichiro

    Polyisobutylene (PIB) polymer and methylphenylsiloxane (25%) diphenylsiloxane (75%) copolymer (OV25) were coated on Quartz Crystal Microbalance (QCM) sensors and used in recognition of bread key odorants. Representative compounds of key roasty odorants of bread were taken as 3-acetylpyridine and benzaldehyde, and representative key fatty odorants were hexanal and (E)-2-nonenal. Both OV25- and PIB-coated QCM fabricated sensors could detect concentration as low as 0.9 ppm of 3-acetylpyridine and 1.2 ppm of (E)-2-nonenal. The sensitivity to 3-acetylpyridine of the OV25-coated QCM was about 1000 times higher than that of ethanol, the major interference compound in bread key odorant analysis. Further, the OV25-coated QCM response was 5-6 times and 2-3 times larger than that of the PIB-coated QCM when exposed to roasty odorants and to fatty odorants, respectively. The difference in sensitivity of the OV25- and PIB-coated QCMs we fabricated made possible to discriminate roasty from fatty odorants as was evidenced by the odor recognition map representing the frequency shifts of the OV25-coated QCM against the frequency shift of the PIB-coated QCM. In conclusion, we found that the combination of an OV25-coated QCM and a PIB-coated QCM was successful in discriminating roasty odorants from fatty odorants at the ppm level.

  17. QSAR modeling of GPCR ligands: methodologies and examples of applications.

    PubMed

    Tropsha, A; Wang, S X

    2006-01-01

    GPCR ligands represent not only one of the major classes of current drugs but the major continuing source of novel potent pharmaceutical agents. Because 3D structures of GPCRs as determined by experimental techniques are still unavailable, ligand-based drug discovery methods remain the major computational molecular modeling approaches to the analysis of growing data sets of tested GPCR ligands. This paper presents an overview of modern Quantitative Structure Activity Relationship (QSAR) modeling. We discuss the critical issue of model validation and the strategy for applying the successfully validated QSAR models to virtual screening of available chemical databases. We present several examples of applications of validated QSAR modeling approaches to GPCR ligands. We conclude with the comments on exciting developments in the QSAR modeling of GPCR ligands that focus on the study of emerging data sets of compounds with dual or even multiple activities against two or more of GPCRs.

  18. Using FT-IR Spectroscopy to Measure Charge Organization in Ionic Liquids

    PubMed Central

    Burba, Christopher M.; Janzen, Jonathan; Butson, Eric D.; Coltrain, Gage L.

    2013-01-01

    A major goal in the field of ionic liquids is correlating transport property trends with the underlying liquid structure of the compounds, such as the degree of charge organization among the constituent ions. Traditional techniques for experimentally assessing charge organization are specialized and not readily available for routine measurements. This represents a significant roadblock in elucidating these correlations. We use a combination of transmission and polarized-ATR infrared spectroscopy to measure the degree of charge organization for ionic liquids. The technique is illustrated with a family of 1-alkyl-3-methylimidazolium trifluoromethansulfonate ionic liquids at 30°C. As expected, the amount of charge organization decreases as the alkyl side chain is lengthened, highlighting the important role of short-range repulsive interactions in defining quasilattice structure. Inherent limitations of the method are identified and discussed. The quantitative measurements of charge organization are then correlated with trends in the transport properties of the compounds to highlight the relationship between charge and momentum transport and the underlying liquid structure. Most research laboratories possess infrared spectrometers capable of conducting these measurements, thus, the proposed method may represent a cost-effective solution for routinely measuring charge organization in ionic liquids. PMID:23781877

  19. Investigation on the phenolic constituents in Hamamelis virginiana leaves by HPLC-DAD and LC-MS/MS.

    PubMed

    Duckstein, Sarina M; Stintzing, Florian C

    2011-08-01

    Aqueous and acetone/water extracts from Hamamelis virginiana leaves were investigated to obtain a thorough insight into their phenolic composition. To secure compound integrity, a gentle extraction method including the exclusion of light was used. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses yielded a fingerprint including 27 phenolic constituents. Quantification of the key compounds on an equivalent basis by high-performance liquid chromatography diode-array detection (HPLC-DAD) showed that gallotannins consisting of six to 11 galloyl units constitute the main fraction, whereas procyanidins and catechin represented only a minor part. Closer inspection revealed that both extracts possess virtually the same galloyl hexose distribution, and the octagalloyl hexose represents the major tannin constituent. Additionally, eight flavonol glycosides and their corresponding aglycones quercetin and kaempferol, as well as three chlorogenic acid isomers and other hydroxycinnamic acids, were identified. Moreover, stability studies on the aqueous extract (5 °C, dark; room temperature, dark; room temperature, light) revealed that the phenolic profile underwent changes when exposed to light. Especially the gallotannins proved to be considerably unstable which may result in phytochemically altered Hamamelis leaf extracts upon transport and storage.

  20. Predicting the extent of metabolism using in vitro permeability rate measurements and in silico permeability rate predictions

    PubMed Central

    Hosey, Chelsea M; Benet, Leslie Z

    2015-01-01

    The Biopharmaceutics Drug Disposition Classification System (BDDCS) can be utilized to predict drug disposition, including interactions with other drugs and transporter or metabolizing enzyme effects based on the extent of metabolism and solubility of a drug. However, defining the extent of metabolism relies upon clinical data. Drugs exhibiting high passive intestinal permeability rates are extensively metabolized. Therefore, we aimed to determine if in vitro measures of permeability rate or in silico permeability rate predictions could predict the extent of metabolism, to determine a reference compound representing the permeability rate above which compounds would be expected to be extensively metabolized, and to predict the major route of elimination of compounds in a two-tier approach utilizing permeability rate and a previously published model predicting the major route of elimination of parent drug. Twenty-two in vitro permeability rate measurement data sets in Caco-2 and MDCK cell lines and PAMPA were collected from the literature, while in silico permeability rate predictions were calculated using ADMET Predictor™ or VolSurf+. The potential for permeability rate to differentiate between extensively and poorly metabolized compounds was analyzed with receiver operating characteristic curves. Compounds that yielded the highest sensitivity-specificity average were selected as permeability rate reference standards. The major route of elimination of poorly permeable drugs was predicted by our previously published model and the accuracies and predictive values were calculated. The areas under the receiver operating curves were >0.90 for in vitro measures of permeability rate and >0.80 for the VolSurf+ model of permeability rate, indicating they were able to predict the extent of metabolism of compounds. Labetalol and zidovudine predicted greater than 80% of extensively metabolized drugs correctly and greater than 80% of poorly metabolized drugs correctly in Caco-2 and MDCK, respectively, while theophylline predicted greater than 80% of extensively and poorly metabolized drugs correctly in PAMPA. A two-tier approach predicting elimination route predicts 72±9%, 49±10%, and 66±7% of extensively metabolized, biliarily eliminated, and renally eliminated parent drugs correctly when the permeability rate is predicted in silico and 74±7%, 85±2%, and 73±8% of extensively metabolized, biliarily eliminated, and renally eliminated parent drugs correctly, respectively when the permeability rate is determined in vitro. PMID:25816851

  1. Emerging Estrogenic Pollutants in the Aquatic Environment and Breast Cancer

    PubMed Central

    Lecomte, Sylvain; Charlier, Thierry D.; Pakdel, Farzad

    2017-01-01

    The number and amount of man-made chemicals present in the aquatic environment has increased considerably over the past 50 years. Among these contaminants, endocrine-disrupting chemicals (EDCs) represent a significant proportion. This family of compounds interferes with normal hormonal processes through multiple molecular pathways. They represent a potential risk for human and wildlife as they are suspected to be involved in the development of diseases including, but not limited to, reprotoxicity, metabolic disorders, and cancers. More precisely, several studies have suggested that the increase of breast cancers in industrialized countries is linked to exposure to EDCs, particularly estrogen-like compounds. Estrogen receptors alpha (ERα) and beta (ERβ) are the two main transducers of estrogen action and therefore important targets for these estrogen-like endocrine disrupters. More than 70% of human breast cancers are ERα-positive and estrogen-dependent, and their development and growth are not only influenced by endogenous estrogens but also likely by environmental estrogen-like endocrine disrupters. It is, therefore, of major importance to characterize the potential estrogenic activity from contaminated surface water and identify the molecules responsible for the hormonal effects. This information will help us understand how environmental contaminants can potentially impact the development of breast cancer and allow us to fix a maximal limit to the concentration of estrogen-like compounds that should be found in the environment. The aim of this review is to provide an overview of emerging estrogen-like compounds in the environment, sum up studies demonstrating their direct or indirect interactions with ERs, and link their presence to the development of breast cancer. Finally, we emphasize the use of in vitro and in vivo methods based on the zebrafish model to identify and characterize environmental estrogens. PMID:28914763

  2. Disposition, metabolism and mass balance of [14C]apremilast following oral administration

    PubMed Central

    Hoffmann, Matthew; Kumar, Gondi; Schafer, Peter; Cedzik, Dorota; Capone, Lori; Kei-Fong, Lai; Gu, Zheming; Heller, Dennis; Feng, Hao; Surapaneni, Sekhar; Laskin, Oscar; Wu, Anfan

    2011-01-01

    Apremilast is a novel, orally available small molecule that specifically inhibits PDE4and thus modulates multiple pro- and anti-inflammatory mediators, and is currently under clinical development for the treatment of psoriasis and psoriatic arthritis.The pharmacokinetics and disposition of [14C]apremilastwas investigated following a single oral dose (20 mg, 100 uCi) to healthy male subjects. Approximately 58% of the radioactive dose was excreted in urine, while faeces contained 39%. Mean Cmax, AUC0 and tmax values for apremilast in plasma were 333 ng/mL, 1970 ng*h/mL and 1.5 h. Apremilast was extensively metabolized via multiple pathways, with unchanged drug representing 45% of the circulating radioactivity and <7% of the excreted radioactivity. The predominant metabolite was O-desmethyl apremilast glucuronide, representing 39% of plasma radioactivity and 34% of excreted radioactivity. The only other radioactive components that represented >4%of the excreted radioactivity were O-demethylated apremilast and its hydrolysis product. Additional minor circulating and excreted compounds were formed via O-demethylation, O-deethylation, N-deacetylation, hydroxylation, glucuronidation and/or hydrolysis. The major metabolites were at least 50-fold less pharmacologically active than apremilast. Metabolic clearance of apremilast was the major route of elimination, while non-enzymatic hydrolysis and excretion of unchanged drug were involved to a lesser extent. PMID:21859393

  3. [Alkylating agents].

    PubMed

    Pourquier, Philippe

    2011-11-01

    With the approval of mechlorethamine by the FDA in 1949 for the treatment of hematologic malignancies, alkylating agents are the oldest class of anticancer agents. Even though their clinical use is far beyond the use of new targeted therapies, they still occupy a major place in specific indications and sometimes represent the unique option for the treatment of refractory diseases. Here, we are reviewing the major classes of alkylating agents and their mechanism of action, with a particular emphasis for the new generations of alkylating agents. As for most of the chemotherapeutic agents used in the clinic, these compounds are derived from natural sources. With a complex but original mechanism of action, they represent new interesting alternatives for the clinicians, especially for tumors that are resistant to conventional DNA damaging agents. We also briefly describe the different strategies that have been or are currently developed to potentiate the use of classical alkylating agents, especially the inhibition of pathways that are involved in the repair of DNA lesions induced by these agents. In this line, the development of PARP inhibitors is a striking example of the recent regain of interest towards the "old" alkylating agents.

  4. Chemotaxonomic analysis of the aroma compounds in essential oils of two different Ocimum basilicum L. varieties from Iran.

    PubMed

    Pirmoradi, Mohammad Reza; Moghaddam, Mohammad; Farhadi, Nasrin

    2013-07-01

    Hydrodistilled essential oils of 21 accessions of Ocimum basilicum L. belonging to two different varieties (var. purpurascens and var. dianatnejadii) from Iran were characterized by GC-FID and GC/MS analyses. The oil yield was found to be between 0.6 and 1.1% (v/w). In total, 49 compounds, accounting for 96.6-99.7% of the oil compositions, were identified. Aromatic compounds, represented mainly by methyl chavicol (33.6-49.1%), and oxygenated monoterpenes, represented by linalool (14.4-39.3%), were the main components in all essential oils. Monoterpene hydrocarbons were present in the essential oils of all accessions of the purpurascens variety, whereas they were completely absent in those of the dianatnejadii variety, indicating that monoterpene hydrocarbons might be considered as marker constituents of the purpurascens variety. The chemotaxonomic value of the essential-oil compositions was discussed according to the results of the cluster analysis (CA). The CA showed a clear separation of the O. basilicum var. purpurascens accessions and the O. basilicum var. dianatnejadii accessions, although the data showed no major chemotype variation between the studied varieties. Indeed, the CA revealed only one principal chemotype (methyl chavicol/linalool) for both varieties. In conclusion, GC/MS analyses in combination with CA showed to be a flexible and reliable method for the characterization of the chemical profiles of different varieties of Ocimum basilicum L. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  5. Ground-water-quality data in Pennsylvania: A compilation of computerized [electronic] databases, 1979-2004

    USGS Publications Warehouse

    Low, Dennis J.; Chichester, Douglas C.

    2006-01-01

    This study, by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Environmental Protection (PADEP), provides a compilation of ground-water-quality data for a 25-year period (January 1, 1979, through August 11, 2004) based on water samples from wells. The data are from eight source agencies唯orough of Carroll Valley, Chester County Health Department, Pennsylvania Department of Environmental Protection-Ambient and Fixed Station Network, Montgomery County Health Department, Pennsylvania Drinking Water Information System, Pennsylvania Department of Agriculture, Susquehanna River Basin Commission, and the U.S. Geological Survey. The ground-water-quality data from the different source agencies varied in type and number of analyses; however, the analyses are represented by 12 major analyte groups:biological (bacteria and viruses), fungicides, herbicides, insecticides, major ions, minor ions (including trace elements), nutrients (dominantly nitrate and nitrite as nitrogen), pesticides, radiochemicals (dominantly radon or radium), volatile organic compounds, wastewater compounds, and water characteristics (dominantly field pH, field specific conductance, and hardness).A summary map shows the areal distribution of wells with ground-water-quality data statewide and by major watersheds and source agency. Maps of 35 watersheds within Pennsylvania are used to display the areal distribution of water-quality information. Additional maps emphasize the areal distribution with respect to 13 major geolithologic units in Pennsylvania and concentration ranges of nitrate (as nitrogen). Summary data tables by source agency provide information on the number of wells and samples collected for each of the 35 watersheds and analyte groups. The number of wells sampled for ground-water-quality data varies considerably across Pennsylvania. Of the 8,012 wells sampled, the greatest concentration of wells are in the southeast (Berks, Bucks, Chester, Delaware, Lancaster, Montgomery, and Philadelphia Counties), in the vicinity of Pittsburgh, and in the northwest (Erie County). The number of wells sampled is relatively sparse in south-central (Adams, Cambria, Cumberland, and Franklin Counties), central (Centre, Indiana, and Snyder Counties), and north-central (Bradford, Potter, and Tioga Counties) Pennsylvania. Little to no data are available for approximately one-third of the state. Water characteristics and nutrients were the most frequently sampled major analyte groups; approximately 21,000 samples were collected for each group. Major and minor ions were the next most-frequently sampled major analyte groups; approximately 17,000 and 12,000 samples were collected, respectively. For the remaining eight major analyte groups, the number of samples collected ranged from a low of 307 samples (wastewater compounds) to a high of approximately 3,000 samples (biological).The number of samples that exceeded a maximum contaminant level (MCL) or secondary maximum contaminant level (SMCL) by major analyte group also varied. Of the 2,988 samples in the biological analyte group, 53 percent had water that exceeded an MCL. Almost 2,500 samples were collected and analyzed for volatile organic compounds; 14 percent exceeded an MCL. Other major analyte groups that frequently exceeded MCLs or SMCLs included major ions (17,465 samples and a 33.9 percent exceedence), minor ions (11,905 samples and a 17.1 percent exceedence), and water characteristics (21,183 samples and a 20.3 percent exceedence). Samples collected and analyzed for fungicides, herbicides, insecticides, and pesticides (4,062 samples), radiochemicals (1,628 samples), wastewater compounds (307 samples), and nutrients (20,822 samples) had the lowest exceedences of 0.3, 8.4, 0.0, and 8.8 percent, respectively.

  6. Chlorogenic acid, anthocyanin and flavan-3-ol biosynthesis in flesh and skin of Andean potato tubers (Solanum tuberosum subsp. andigena).

    PubMed

    Valiñas, Matías Ariel; Lanteri, María Luciana; Ten Have, Arjen; Andreu, Adriana Balbina

    2017-08-15

    Natural variation of Andean potato was used to study the biosynthesis of phenolic compounds. Levels of phenolic compounds and corresponding structural gene transcripts were examined in flesh and skin of tubers. Phenolic acids, mainly chlorogenic acid (CGA), represent the major compounds, followed by anthocyanins and flavan-3-ols. High-anthocyanin varieties have high levels of CGA. Both metabolite and transcript levels were higher in skin than in flesh and showed a good correspondence. Two hydroxycinnamoyl-CoA transferases (HCT/HQT) have been involved in CGA production, of which HCT reflects CGA levels. Catechin was found in pigmented tissues whereas epicatechin was restricted to tuber skin. Transcripts of leucoanthocyanidin reductase (LCR), which generates catechin, could not be detected. Anthocyanidin reductase (ANR) transcripts, the enzyme responsible for epicatechin production, showed similar levels among samples. These data suggest that the biosynthesis of flavan-3-ols in potato tuber would require ANR but not LCR and that an epimerization process is involved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Chemical Ecology of Stingless Bees.

    PubMed

    Leonhardt, Sara Diana

    2017-04-01

    Stingless bees (Hymenoptera, Apidae: Meliponini) represent a highly diverse group of social bees confined to the world's tropics and subtropics. They show a striking diversity of structural and behavioral adaptations and are important pollinators of tropical plants. Despite their diversity and functional importance, their ecology, and especially chemical ecology, has received relatively little attention, particularly compared to their relative the honeybee, Apis mellifera. Here, I review various aspects of the chemical ecology of stingless bees, from communication over resource allocation to defense. I list examples in which functions of specific compounds (or compound groups) have been demonstrated by behavioral experiments, and show that many aspects (e.g., queen-worker interactions, host-parasite interactions, neuronal processing etc.) remain little studied. This review further reveals that the vast majority of studies on the chemical ecology of stingless bees have been conducted in the New World, whereas studies on Old World stingless bees are still comparatively rare. Given the diversity of species, behaviors and, apparently, chemical compounds used, I suggest that stingless bees provide an ideal subject for studying how functional context and the need for species specificity may interact to shape pheromone diversification in social insects.

  8. Harmane and harmalan are bioactive components of classical clonidine-displacing substance.

    PubMed

    Parker, Christine A; Anderson, Neil J; Robinson, Emma S J; Price, Rhiannon; Tyacke, Robin J; Husbands, Stephen M; Dillon, Michael P; Eglen, Richard M; Hudson, Alan L; Nutt, David J; Crump, Matthew P; Crosby, John

    2004-12-28

    Elucidation of the structure of the endogenous ligand(s) for imidazoline binding sites, clonidine-displacing substance (CDS), has been a major goal for many years. Crude CDS from bovine lung was purified by reverse-phase high-pressure liquid chromatography. Electrospray mass spectrometry (ESMS) and nuclear magnetic resonance ((1)H NMR) analysis revealed the presence of L-tryptophan and 1-carboxy-1-methyltetrahydro-beta-carboline in the active CDS extract. Competition radioligand binding studies, however, failed to show displacement of specific [(3)H]clonidine binding to rat brain membranes for either compound. Further purification of the bovine lung extract allowed the isolation of the beta-carbolines harmane and harmalan as confirmed by ESMS, (1)H NMR, and comparison with synthetic standards. Both compounds exhibited a high (nanomolar) affinity for both type 1 and type 2 imidazoline binding sites, and the synthetic standards were shown to coelute with the active classical CDS extracts. We therefore propose that the beta-carbolines harmane and harmalan represent active components of classical CDS. The identification of these compounds will allow us to establish clear physiological roles for CDS.

  9. Determination of Volatiles by Odor Activity Value and Phenolics of cv. Ayvalik Early-Harvest Olive Oil

    PubMed Central

    Guclu, Gamze; Sevindik, Onur; Kelebek, Hasim; Selli, Serkan

    2016-01-01

    Ayvalik is an important olive cultivar producing high quality oils in Turkey. In the present study, volatile and phenolic compositions of early-harvest extra virgin olive oil (cv. Ayvalik) were determined. The solvent-assisted flavor evaporation (SAFE) technique was used for the extraction of volatile components. The aromatic extract obtained by SAFE was representative of the olive oil odor. A total of 32 aroma compounds, including alcohols, aldehydes, terpenes, esters, and an acid, were identified in the olive oil. Aldehydes and alcohols were qualitatively and quantitatively the most dominant volatiles in the oil sample. Of these, six volatile components presented odor activity values (OAVs) greater than one, with (Z)-3-hexenal (green), hexanal (green-sweet) and nonanal (fatty-pungent) being those with the highest OAVs in olive oil. A total of 14 phenolic compounds were identified and quantified by liquid chromatography combined with a diode array detector and ion spray mass spectrometry. The major phenolic compounds were found as 3,4-DHPEA-EDA, 3,4-DHPEA-EA and p-HPEA-EDA. PMID:28231141

  10. Mass spectrometric dereplication of nitrogen-containing constituents of black cohosh (Cimicifuga racemosa L.)

    PubMed Central

    Nikolić, Dejan; Gödecke, Tanja; Chen, Shao-Nong; White, Jerry; Lankin, David C.; Pauli, Guido F.; van Breemen, Richard B.

    2011-01-01

    Black cohosh preparations are popular dietary supplements among women seeking alternative treatments for menopausal complaints. For decades, triterpene glycosides and phenolic acids have dominated the phytochemical and biomedical research on this plant. In this study, we provide evidence that black cohosh contains an unexpected and highly diverse group of secondary nitrogenous metabolites previously unknown to exist in this plant. Using a dereplication approach that combines accurate mass measurements, database searches and general knowledge of biosynthetic pathways of natural products, we identified or tentatively identified 73 nitrogen-containing metabolites, many of which are new natural products. The identified compounds belong to several structural groups including alkaloids, amides or esters of hydroxycinnamic acids and betains. Among the alkaloids, several classes such as guanidino alkaloids, isoquinolines and β-carbolines were identified. Fragmentation patterns for major compound classes are discussed, which provides a framework for the discovery of these compounds from other sources. Identification of alkaloids as a well-known group of bioactive natural products represents an important advance in better understanding of the pharmacological profile of black cohosh. PMID:22178683

  11. Small-molecule-biased formyl peptide receptor agonist compound 17b protects against myocardial ischaemia-reperfusion injury in mice

    PubMed Central

    Qin, Cheng Xue; May, Lauren T.; Li, Renming; Cao, Nga; Rosli, Sarah; Deo, Minh; Alexander, Amy E.; Horlock, Duncan; Bourke, Jane E.; Yang, Yuan H.; Stewart, Alastair G.; Kaye, David M.; Du, Xiao-Jun; Sexton, Patrick M.; Christopoulos, Arthur; Gao, Xiao-Ming; Ritchie, Rebecca H.

    2017-01-01

    Effective treatment for managing myocardial infarction (MI) remains an urgent, unmet clinical need. Formyl peptide receptors (FPR) regulate inflammation, a major contributing mechanism to cardiac injury following MI. Here we demonstrate that FPR1/FPR2-biased agonism may represent a novel therapeutic strategy for the treatment of MI. The small-molecule FPR1/FPR2 agonist, Compound 17b (Cmpd17b), exhibits a distinct signalling fingerprint to the conventional FPR1/FPR2 agonist, Compound-43 (Cmpd43). In Chinese hamster ovary (CHO) cells stably transfected with human FPR1 or FPR2, Compd17b is biased away from potentially detrimental FPR1/2-mediated calcium mobilization, but retains the pro-survival signalling, ERK1/2 and Akt phosphorylation, relative to Compd43. The pathological importance of the biased agonism of Cmpd17b is demonstrable as superior cardioprotection in both in vitro (cardiomyocytes and cardiofibroblasts) and MI injury in mice in vivo. These findings reveal new insights for development of small molecule FPR agonists with an improved cardioprotective profile for treating MI. PMID:28169296

  12. Cytochrome P450 humanised mice

    PubMed Central

    2004-01-01

    Humans are exposed to countless foreign compounds, typically referred to as xenobiotics. These can include clinically used drugs, environmental pollutants, food additives, pesticides, herbicides and even natural plant compounds. Xenobiotics are metabolised primarily in the liver, but also in the gut and other organs, to derivatives that are more easily eliminated from the body. In some cases, however, a compound is converted to an electrophile that can cause cell toxicity and transformation leading to cancer. Among the most important xenobiotic-metabolising enzymes are the cytochromes P450 (P450s). These enzymes represent a superfamily of multiple forms that exhibit marked species differences in their expression and catalytic activities. To predict how humans will metabolise xenobiotics, including drugs, human liver extracts and recombinant P450s have been used. New humanised mouse models are being developed which will be of great value in the study of drug metabolism, pharmacokinetics and pharmacodynamics in vivo, and in carrying out human risk assessment of xenobiotics. Humanised mice expressing CYP2D6 and CYP3A4, two major drug-metabolising P450s, have revealed the feasibility of this approach. PMID:15588489

  13. Monitoring of 45 pesticides in Lebanese surface water using Polar Organic Chemical Integrative Sampler (POCIS)

    NASA Astrophysics Data System (ADS)

    Aisha, Al Ashi; Hneine, Wael; Mokh, Samia; Devier, Marie-Hélène; Budzinski, Hélèn; Jaber, Farouk

    2017-09-01

    The aim of this study is to assess the dissolved concentration of 45 pesticides in the surface waters of the Lebanese Republic using Polar Organic Chemical Integrative Sampler "POCIS". All of the sampling sites are located in the major agricultural land areas in Lebanon. POCIS (n = 3) were deployed at Ibrahim River, Qaraoun Lake and Hasbani River for a duration of 14 days. The total concentration of pesticides ranged from not detected (nd) to 137.66 ng.L-1. Chlorpyrifos, DDE-pp, diazinon and Fenpropathrin were the most abundant compounds. Qaraoun Lake and Hasbani River were found to be more polluted than Ibrahim River, since they receive large amounts of waste water derived from nearby agricultural lands and they had the lowest dilution factor. The aqueous average concentration of the target compounds were estimated using sampling rates obtained from the literature. Comparison between Time Weighed Average concentrations "TWA" using POCIS and spot sampling is presented. Results showed that POCIS TWA concentrations are in agreement with spot sampling concentrations for Ibrahim and Hasbani Rivers. The toxicity of the major detected pesticides on three representative aquatic species ( Daphnia magna, Scenedesmus quadricauda and Oncorhynchus mykiss) is also reported.

  14. Molecular Marker Study of Particulate Organic Matter in Southern Ontario Air

    PubMed Central

    Stupak, Jacek; Gong, Xueping; Chan, Tak-Wai; Cox, Michelle; McLaren, Robert; Rudolph, Jochen

    2017-01-01

    To study the origins of airborne particulate organic matter in southern Ontario, molecular marker concentrations were studied at Hamilton, Simcoe, and York Gateway Tunnel, representing industrial, rural, and heavy traffic sites, respectively. Airborne particulate matter smaller than 10 μm in aerodynamic diameter was collected on quartz filters, and the collected samples were analyzed for total carbons, 5-6 ring PAHs, hopanes, n-alkanes (C20 to C34), and oxygenated aromatic compounds. Results showed that PAH concentrations at all three sites were highly correlated, indicating vehicular emissions as the major source. Meanwhile, in the scatter plots of α,β-hopane and trisnorhopane, concentrations displayed different trends for Hamilton and Simcoe. The slopes of the linear regressions for Hamilton and the tunnel were statistically the same, while the slope for Simcoe was significantly different from those. Comparison with literature values revealed that the trend observed at Simcoe was explained by the influence from coal combustion. We also found that the majority of oxygenated aromatic compounds at both sites were in the similar level, possibly implying secondary products contained in the southern Ontario air. Regardless of some discrepancies, absolute principal component analysis applied to the datasets could reproduce those findings. PMID:29075550

  15. Triterpene derivatives as inhibitors of protein involved in the inflammatory process: molecules interfering with phospholipase A2, cycloxygenase, and lipoxygenase.

    PubMed

    Braca, Alessandra; Dal Piaz, Fabrizio; Marzocco, Stefania; Autore, Giuseppina; Vassallo, Antonio; De Tommasi, Nunziatina

    2011-03-01

    Over the past years, there was an explosion in the knowledge of the protein target and molecular mechanism associated with various disease types and in the new research of drugs of natural origin. The key idea is to evaluate bioactive natural products interacting with protein domains of different genetic origin but structurally preserved to develop libraries of compounds biologically validated and selected from an evolutionistic point of view. Compared with synthetic compounds, natural products have a major number of unused scaffolds and not comparable to the libraries of synthetic compounds, and could represent a promising starting points for the discovery of new bioactive compounds. Many natural products are reported to interact with proteins involved in serious diseases, such as inflammation and cancer. Recently various chemical classes of plant secondary metabolites have emerged as potential therapeutic compounds in several inflammatory diseases. Owing to the findings that triterpenoids, a common class of plant secondary metabolites, have anti-inflammatory and anti-cancer effects on humans, the interest in their potential application in human health and disease is increasing. The present review describes anti-inflammatory triterpenes derivatives from plant and fungi reported during the last two decades in order to provide an account of this field of investigation, sorting compounds according to their targets, phospholipase A(2) (PLA(2)), cycloxygenase (COX), and lipoxygenase (LOX). The attempt is also being made to enumerate the possible leads for further synthetic and drug discovery program development.

  16. Essential oil from the leaves of Annona vepretorum: chemical composition and bioactivity.

    PubMed

    Costa, Emmanoel Vilaça; Dutra, Lívia Macedo; Nogueira, Paulo Cesar de Lima; Moraes, Valéria Regina de Souza; Salvador, Marcos José; Ribeiro, Luis Henrique Gonzaga; Gadelha, Fernanda Ramos

    2012-02-01

    The essential oil from the leaves of Annona vepretorun was obtained by hydrodistillation using a Clevenger-type apparatus and analyzed by GC-MS and GC-FID. Eighteen compounds representing 98.1% of the crude essential oil were identified. The major compounds identified were bicyclogermacrene (43.7%), spathulenol (11.4%), alpha-felandrene (10.0%), alpha-pinene (7.1%), (E)-beta-ocimene (6.8%), germacrene D (5.8%), and p-cymene (4.2%). The trypanocidal activity against Trypanosoma cruzi epimastigote forms, as well as, the antimicrobial and antioxidant proprieties was investigated. The essential oil showed a potent trypanocidal activity with IC50 value of 31.9 +/-1.3 microg x mL(-1). For antimicrobial activity, the best result was observed against Candida tropicalis with a MIC value of 100 microg x mL(-1). For antioxidant capacity the essential oil showed weak activity.

  17. Volatile components of horsetail (Hippuris vulgaris L.) growing in central Italy.

    PubMed

    Cianfaglione, Kevin; Papa, Fabrizio; Maggi, Filippo

    2017-10-01

    Hippuris vulgaris, also known as horsetail or marestail, is a freshwater macrophyte occurring in lakes, rivers, ponds and marshes. According to 'The IUCN Red List of Threatened Species', H. vulgaris is at a high risk of extinction in Italy in the medium-term future. In the present study, we analysed for the first time the volatile composition of H. vulgaris growing in central Italy. For the purpose, the essential oil was obtained by hydrodistillation and analysed by GC-MS. The chemical composition was dominated by aliphatic compounds such as fatty acids (26.0%), ketones (18.7%) and alkanes (11.4%), whereas terpenoids were poorer and mostly represented by diterpenes (7.4%). n-Hexadecanoic acid (25.5%), hexahydrofarnesyl acetone (17.5%) and trans-phytol (7.4%) were the major volatile constituents. These compounds are here proposed as chemotaxonomic markers of the species.

  18. Characterization of primaquine imidazolidin-4-ones with antimalarial activity by electrospray ionization-ion trap mass spectrometry

    NASA Astrophysics Data System (ADS)

    Vale, Nuno; Moreira, Rui; Gomes, Paula

    2008-02-01

    The extensive characterization by electrospray ionization-ion trap mass spectrometry (ESI-MSn) of 20 imidazolidin-4-ones derived from the antimalarial primaquine was well obtained. These compounds are being under investigation as potential antimalarials, as they have been previously found to be active against rodent P. berghei malaria and to be highly stable under physiological conditions. Experiments by collision-induced dissociation (CID) in the nozzle-skimmer region or by tandem-MS have shown the title compounds to be remarkably stable. Mechanisms are proposed to explain the major fragmentations observed in ESI-MSn experiments. Overall, this work represents an unprecedented contribution to a deeper insight into imidazolidin-4-one antimalarials based on a classic 8-aminoquinolinic scaffold. Data herein reported and discussed may be an useful guide for future studies on therapeutically relevant molecules possessing either the 8-aminoquinoline or the imidazolidin-4-one motifs.

  19. Molecular processes from the AGB to the PN stage

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. Anibal

    2012-08-01

    Many complex organic molecules and inorganic solid-state compounds have been observed in the circumstellar shell of stars (both C-rich and O-rich) in the transition phase between Asymptotic Giant Branch (AGB) stars and Planetary Nebulae (PNe). This short (~102-104 years) phase of stellar evolution represents a wonderful laboratory for astrochemistry and provides severe constraints on any model of gas-phase and solid-state chemistry. One of the major challenges of present day astrophysics and astrochemistry is to understand the formation pathways of these complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene in the case of a C-rich chemistry and oxides and crystalline silicates in O-rich environments) in space. In this review, I present an observational review of the molecular processes in the late stages of stellar evolution with a special emphasis on the first detections of fullerenes and graphene in PNe.

  20. Production of Gentisyl Alcohol from Phoma herbarum Endophytic in Curcuma longa L. and Its Antagonistic Activity Towards Leaf Spot Pathogen Colletotrichum gloeosporioides.

    PubMed

    Gupta, Suruchi; Kaul, Sanjana; Singh, Baljinder; Vishwakarma, Ram A; Dhar, Manoj K

    2016-11-01

    Endophytes from medicinal plants represent a potential source of bioactive compounds. During the present investigation, fungal endophytes were isolated from turmeric (Curcuma longa), an important medicinal plant. A total of 207 endophytic fungal isolates were obtained from the rhizome of C. longa L. They were grouped into seven genera based on morphological and molecular data. The fungal endophytes of C. longa were evaluated for antifungal activity against Colletotrichum gloeosporioides, the causal organism of leaf spot of turmeric. The disease is a major cause for economic loss in turmeric cultivation. Endophytic Phoma herbarum showed significant activity against C. gloeosporioides and was therefore selected for further studies. A compound gentisyl alcohol was isolated from P. herbarum which showed effective antagonism against C. gloeosporioides. The organism could therefore be used as a biocontrol agent against C. gloeosporioides.

  1. Between heaven and Earth: the exploration of Titan.

    PubMed

    Owen, Tobias C; Niemann, Hasso; Atreya, Sushil; Zolotov, Mikhail Y

    2006-01-01

    The atmosphere of Titan represents a bridge between the early solar nebula and atmospheres like ours. The low abundances of primordial noble gases in Titan's atmosphere relative to N2 suggest that the icy planetesimals that formed the satellite must have originated at temperatures higher than 75-100 K. Under these conditions, N2 would also be very poorly trapped and thus Titan's nitrogen, like ours, must have arrived as nitrogen compounds, of which ammonia was likely the major component. This temperature constraint also argues against the trapping of methane. Production of this gas on the satellite after formation appears reasonable based on terrestrial examples of serpentinization, disproportionation and reduction of carbon. These processes require rocks, water, suitable catalysts and the variety of primordial carbon compounds that were plausibly trapped in Titan's ices. Application of this same general scenario to Ganymede, Callisto, KBOs and conditions on the very early Earth seems promising.

  2. Natural Product Libraries to Accelerate the High Throughput Discovery of Therapeutic Leads±

    PubMed Central

    Johnson, Tyler A.; Sohn, Johann; Inman, Wayne D.; Estee, Samarkand A.; Loveridge, Steven T.; Vervoort, Helene C.; Tenney, Karen; Liu, Junke; Ang, Kenny Kean-Hooi; Ratnam, Joseline; Bray, Walter M.; Gassner, Nadine C.; Shen, Young Y.; Lokey, R. Scott; McKerrow, James H.; Boundy-Mills, Kyria; Nukanto, Arif; Kanti, Atit; Julistiono, Heddy; Kardono, Leonardus B. S.; Bjeldanes, Leonard F.; Crews, Phillip

    2011-01-01

    A high throughput (HT) paradigm generating LC-MS-UV-ELSD based natural product libraries to discover compounds with new bioactivities and or molecular structures is presented. To validate this methodology an extract of the Indo Pacific marine sponge Cacospongia mycofijiensis was evaluated using assays involving cytoskeletal profiling, tumor cell lines, and parasites. Twelve known compounds were identified including the latrunculins (1–4, 10), fijianolides (5, 8–9), mycothiazole (11), the aignopsanes (6–7) and sacrotride A (13). Compounds 1–4, 5, 8–11 exhibited bioactivity not previously reported against the parasite T. brucei, while 11 showed selectivity for lymphoma (U937) tumor cell lines. Four new compounds were also discovered including: aignopsanoic acid B (13), apo latrunculin T (14), 20-methoxy-fijianolide A (15) and aignopsane ketal (16). Compounds 13 and 16 represent important derivatives of the aignopsane class, 14 exhibited inhibition of T. brucei without disrupting microfilament assembly and 15 demonstrated modest microtubule stabilizing effects. The use of removable well plate libraries to avoid false positives from extracts enriched with only 1–2 major metabolites is also discussed. Overall, these results highlight the advantages of applying modern methods in natural products-based research to accelerate the HT discovery of therapeutic leads and or new molecular structures using LC-MS-UV-ELSD based libraries. PMID:22129061

  3. Contact toxicity and repellency of the essential oil from Mentha haplocalyx Briq. against Lasioderma serricorne.

    PubMed

    Zhang, Wen-Juan; Yang, Kai; You, Chun-Xue; Wang, Cheng-Fang; Geng, Zhu-Feng; Su, Yang; Wang, Ying; Du, Shu-Shan; Deng, Zhi-Wei

    2015-05-01

    The chemical composition of the essential oil obtained by hydrodistillation from the aerial parts of Mentha haplocalyx was investigated by GC-FID and GC/MS analyses. In sum, 23 components, representing 92.88% of the total oil composition, were identified, and the main compounds were found to be menthol (59.71%), menthyl acetate (7.83%), limonene (6.98%), and menthone (4.44%). By bioassay-guided fractionation (contact toxicity), three compounds were obtained from the essential oil and identified as menthol, menthyl acetate, and limonene. The essential oil and the three isolated compounds exhibited potent contact toxicity against Lasioderma serricorne adults, with LD50 values of 16.5, 7.91, 5.96, and 13.7 μg/adult, respectively. Moreover, the oil and its isolated compounds also exhibited strong repellency against L. serricorne adults. At the lower concentrations tested and at 2 h after exposure, menthol showed even significantly stronger repellency than the positive control DEET. The study revealed that the bioactivity properties of the essential oil can be attributed to the synergistic effects of its diverse major and minor components, which indicates that the M. haplocalyx oil and its isolated compounds have potential for the development as natural insecticides and/or repellents to control insects in stored grains and traditional Chinese medicinal materials. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  4. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.

    PubMed

    Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D

    2016-03-10

    Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (± 0.5) × 10(9) and 3.1 (± 0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation.

  5. Small-Molecule “BRCA1-Mimetics” Are Antagonists of Estrogen Receptor-α

    PubMed Central

    Ma, Yongxian; Tomita, York; Preet, Anju; Clarke, Robert; Englund, Erikah; Grindrod, Scott; Nathan, Shyam; De Oliveira, Eliseu; Brown, Milton L.

    2014-01-01

    Context: Resistance to conventional antiestrogens is a major cause of treatment failure and, ultimately, death in breast cancer. Objective: The objective of the study was to identify small-molecule estrogen receptor (ER)-α antagonists that work differently from tamoxifen and other selective estrogen receptor modulators. Design: Based on in silico screening of a pharmacophore database using a computed model of the BRCA1-ER-α complex (with ER-α liganded to 17β-estradiol), we identified a candidate group of small-molecule compounds predicted to bind to a BRCA1-binding interface separate from the ligand-binding pocket and the coactivator binding site of ER-α. Among 40 candidate compounds, six inhibited estradiol-stimulated ER-α activity by at least 50% in breast carcinoma cells, with IC50 values ranging between 3 and 50 μM. These ER-α inhibitory compounds were further studied by molecular and cell biological techniques. Results: The compounds strongly inhibited ER-α activity at concentrations that yielded little or no nonspecific toxicity, but they produced only a modest inhibition of progesterone receptor activity. Importantly, the compounds blocked proliferation and inhibited ER-α activity about equally well in antiestrogen-sensitive and antiestrogen-resistant breast cancer cells. Representative compounds disrupted the interaction of BRCA1 and ER-α in the cultured cells and blocked the interaction of ER-α with the estrogen response element. However, the compounds had no effect on the total cellular ER-α levels. Conclusions: These findings suggest that we have identified a new class of ER-α antagonists that work differently from conventional antiestrogens (eg, tamoxifen and fulvestrant). PMID:25264941

  6. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids.

    PubMed

    Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R

    2013-10-01

    Lignin comprises 15-25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP-binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute-binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. Copyright © 2013 Wiley Periodicals, Inc.

  7. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids

    PubMed Central

    Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C.; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R.

    2013-01-01

    Lignin comprises 15.25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP.binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute.binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. PMID:23606130

  8. Proton transfer mass spectrometry at 11 hPa with a circular glow discharge: Sensitivities and applications

    NASA Astrophysics Data System (ADS)

    Hanson, D. R.; Koppes, M.; Stoffers, A.; Harsdorf, R.; Edelen, K.

    2009-04-01

    The design and testing of a circular glow discharge ion source on a custom built proton transfer mass spectrometer are described. Also, issues important for quantitative measurements of volatile organic compounds using this instrument were investigated. Detailed calibration procedures based on gravimetry are presented, and representative outdoor air data are shown. Calibrations yield a good sensitivity, up to a few Hz/pptv for some compounds, and the detection limit (S/N = 3) is ~100 pptv or better for methanol, acetaldehyde and acetone (5 s sampling time with a 5 s zero). Detection limits are much lower for most other compounds due to high sensitivity and low background. For ions with m/z > ~90 the background signals are very low and species that appear efficiently at these m/z can be detected at the 10 pptv level in a few seconds. Ion breakup processes for alcohols show that a major product ion of mono-functional alcohols is at 57 u, presumably C4H9+. Oxalic acid is an interesting case in that a major product ion appears on an even mass, 46 u, presumably CO2H2+. The circular glow discharge source is easy to construct and deploy in proton transfer mass spectrometry studies at ~11 hPa. Continuous use of the system over time periods of many days and stable operation over time periods of months to years between disassembly and cleaning demonstrates its robustness.

  9. Development and evaluation of an immunochromatographic strip for rapid screening of sildenafil-type compounds as illegal additives in functional foods.

    PubMed

    Guo, Jiebiao; Liu, Wangpei; Lan, Xianquan; Chen, Hualong; Xiao, Zijun

    2016-07-01

    Sildenafil is a phosphodiesterase-5 inhibitor (PDE-5) for the treatment of erectile dysfunction. Undeclared sildenafil and related analogues adulterated in functional foods are a threat to public health. To screen these illegal drugs rapidly in herbal samples, an immunochromatographic (IC) assay was developed based on polyclonal antibodies specific to both sildenafil and its analogues. A group that is pharmacological necessary for sildenafil and its analogues was employed as a representative hapten for the generation antibodies against the target compounds. The desired antisera showed satisfactory specificities to sildenafil and major analogues with IC50 values ranging from 19.3 to 34.6 ng ml(-1) in a referring enzyme-linked immunosorbent assay (ELISA). The optimised IC assay showed detection thresholds in the range 5.0-20 μg g(-1) for sildenafil and major analogues in herbal samples. Sixty herbal food supplements were screened and six were found to be positive using the IC strip. It was confirmed by ELISA and UPLC-PDA-MS/MS that positive samples contain target illegal additives in levels of 10-40 mg g(-1) (1-4%). In this range, sensitivity of the IC strip is adequate to screen sildenafil-type compounds in herbal commodities under a dilution ratio of 1:10(3). Thus, the current IC assay is a suitable tool for screening sildenafil and its analogues as illegal additives in herbal food supplements.

  10. Analysis of in vitro bioactivity data extracted from drug discovery literature and patents: Ranking 1654 human protein targets by assayed compounds and molecular scaffolds

    PubMed Central

    2011-01-01

    Background Since the classic Hopkins and Groom druggable genome review in 2002, there have been a number of publications updating both the hypothetical and successful human drug target statistics. However, listings of research targets that define the area between these two extremes are sparse because of the challenges of collating published information at the necessary scale. We have addressed this by interrogating databases, populated by expert curation, of bioactivity data extracted from patents and journal papers over the last 30 years. Results From a subset of just over 27,000 documents we have extracted a set of compound-to-target relationships for biochemical in vitro binding-type assay data for 1,736 human proteins and 1,654 gene identifiers. These are linked to 1,671,951 compound records derived from 823,179 unique chemical structures. The distribution showed a compounds-per-target average of 964 with a maximum of 42,869 (Factor Xa). The list includes non-targets, failed targets and cross-screening targets. The top-278 most actively pursued targets cover 90% of the compounds. We further investigated target ranking by determining the number of molecular frameworks and scaffolds. These were compared to the compound counts as alternative measures of chemical diversity on a per-target basis. Conclusions The compounds-per-protein listing generated in this work (provided as a supplementary file) represents the major proportion of the human drug target landscape defined by published data. We supplemented the simple ranking by the number of compounds assayed with additional rankings by molecular topology. These showed significant differences and provide complementary assessments of chemical tractability. PMID:21569515

  11. A two-dimensional proteome map of the aflatoxigenic fungus Aspergillus flavus.

    PubMed

    Pechanova, Olga; Pechan, Tibor; Rodriguez, Jose M; Williams, W Paul; Brown, Ashli E

    2013-05-01

    The filamentous fungus Aspergillus flavus is an opportunistic soil-borne pathogen that produces aflatoxins, the most potent naturally occurring carcinogenic compounds known. This work represents the first gel-based profiling analysis of A. flavus proteome and establishes a 2D proteome map. Using 2DE and MALDI-TOF-MS/MS, we identified 538 mycelial proteins of the aflatoxigenic strain NRRL 3357, the majority of which were functionally annotated as related to various cellular metabolic and biosynthetic processes. Additionally, a few enzymes from the aflatoxin synthesis pathway were also identified. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids.

    PubMed

    Viira, Birgit; Gendron, Thibault; Lanfranchi, Don Antoine; Cojean, Sandrine; Horvath, Dragos; Marcou, Gilles; Varnek, Alexandre; Maes, Louis; Maran, Uko; Loiseau, Philippe M; Davioud-Charvet, Elisabeth

    2016-06-29

    Malaria is a parasitic tropical disease that kills around 600,000 patients every year. The emergence of resistant Plasmodium falciparum parasites to artemisinin-based combination therapies (ACTs) represents a significant public health threat, indicating the urgent need for new effective compounds to reverse ACT resistance and cure the disease. For this, extensive curation and homogenization of experimental anti-Plasmodium screening data from both in-house and ChEMBL sources were conducted. As a result, a coherent strategy was established that allowed compiling coherent training sets that associate compound structures to the respective antimalarial activity measurements. Seventeen of these training sets led to the successful generation of classification models discriminating whether a compound has a significant probability to be active under the specific conditions of the antimalarial test associated with each set. These models were used in consensus prediction of the most likely active from a series of curcuminoids available in-house. Positive predictions together with a few predicted as inactive were then submitted to experimental in vitro antimalarial testing. A large majority from predicted compounds showed antimalarial activity, but not those predicted as inactive, thus experimentally validating the in silico screening approach. The herein proposed consensus machine learning approach showed its potential to reduce the cost and duration of antimalarial drug discovery.

  13. Nutritional value and volatile compounds of black cherry (Prunus serotina) seeds.

    PubMed

    García-Aguilar, Leticia; Rojas-Molina, Alejandra; Ibarra-Alvarado, César; Rojas-Molina, Juana I; Vázquez-Landaverde, Pedro A; Luna-Vázquez, Francisco J; Zavala-Sánchez, Miguel A

    2015-02-17

    Prunus serotina (black cherry), commonly known in Mexico as capulín, is used in Mexican traditional medicine for the treatment of cardiovascular, respiratory, and gastrointestinal diseases. Particularly, P. serotina seeds, consumed in Mexico as snacks, are used for treating cough. In the present study, nutritional and volatile analyses of black cherry seeds were carried out to determine their nutraceutical potential. Proximate analysis indicated that P. serotina raw and toasted seeds contain mostly fat, followed by protein, fiber, carbohydrates, and ash. The potassium content in black cherry raw and toasted seeds is high, and their protein digestibility-corrected amino acid scores suggest that they might represent a complementary source of proteins. Solid phase microextraction and gas chromatography/flame ionization detection/mass spectrometry analysis allowed identification of 59 and 99 volatile compounds in the raw and toasted seeds, respectively. The major volatile compounds identified in raw and toasted seeds were 2,3-butanediol and benzaldehyde, which contribute to the flavor and odor of the toasted seeds. Moreover, it has been previously demonstrated that benzaldehyde possesses a significant vasodilator effect, therefore, the presence of this compound along with oleic, linoleic, and α-eleostearic fatty acids indicate that black cherry seeds consumption might have beneficial effects on the cardiovascular system.

  14. Metabolic PathFinding: inferring relevant pathways in biochemical networks.

    PubMed

    Croes, Didier; Couche, Fabian; Wodak, Shoshana J; van Helden, Jacques

    2005-07-01

    Our knowledge of metabolism can be represented as a network comprising several thousands of nodes (compounds and reactions). Several groups applied graph theory to analyse the topological properties of this network and to infer metabolic pathways by path finding. This is, however, not straightforward, with a major problem caused by traversing irrelevant shortcuts through highly connected nodes, which correspond to pool metabolites and co-factors (e.g. H2O, NADP and H+). In this study, we present a web server implementing two simple approaches, which circumvent this problem, thereby improving the relevance of the inferred pathways. In the simplest approach, the shortest path is computed, while filtering out the selection of highly connected compounds. In the second approach, the shortest path is computed on the weighted metabolic graph where each compound is assigned a weight equal to its connectivity in the network. This approach significantly increases the accuracy of the inferred pathways, enabling the correct inference of relatively long pathways (e.g. with as many as eight intermediate reactions). Available options include the calculation of the k-shortest paths between two specified seed nodes (either compounds or reactions). Multiple requests can be submitted in a queue. Results are returned by email, in textual as well as graphical formats (available in http://www.scmbb.ulb.ac.be/pathfinding/).

  15. Compound-Specific Radiocarbon Dating Reveals the Age Distribution of Plant-Wax Biomarkers Exported to the Bengal Fan

    NASA Astrophysics Data System (ADS)

    Galy, V.; French, K. L.; Hein, C. J.; Haghipour, N.; Wacker, L.; Kudrass, H.; Eglinton, T. I.

    2017-12-01

    The stable isotope composition of leaf-wax compounds preserved in lacustrine and marine sediments has been widely used to reconstruct terrestrial paleo-environments. However, the timescales of plant-wax storage in continental reservoirs before riverine export are not well known, representing a key uncertainty in paleo-environment studies. We couple numerical models with bulk and leaf-wax fatty acid organic 13C and 14C signatures hosted in a high-deposition-rate sediment core from the Bengal shelf canyon in order to estimate storage timescales within the Ganges-Brahmaputra catchment area. The fatty acid 14C record reveals a muted nuclear weapons bomb spike, requiring that the Ganges-Brahmaputra river system exports a mixture of young and old (pre-aged) leaf-wax compounds. According to numerical simulations, 79-83% of the leaf-wax fatty acids in this core are sourced from continental reservoirs that store organic carbon on an average of 1000-1200 calendar years, while the remainder has an average age of 15 years. These results demonstrate that a majority of the leaf-wax compounds produced in the Ganges-Brahmaputra river basin was stored in soils, floodplains, and wetlands prior to its export to the Bengal Fan. We will discuss the implications of these findings for plant-wax based paleoenvironmental records.

  16. Volatile profile analysis and quality prediction of Longjing tea (Camellia sinensis) by HS-SPME/GC-MS

    PubMed Central

    Lin, Jie; Dai, Yi; Guo, Ya-nan; Xu, Hai-rong; Wang, Xiao-chang

    2012-01-01

    This study aimed to analyze the volatile chemical profile of Longjing tea, and further develop a prediction model for aroma quality of Longjing tea based on potent odorants. A total of 21 Longjing samples were analyzed by headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Pearson’s linear correlation analysis and partial least square (PLS) regression were applied to investigate the relationship between sensory aroma scores and the volatile compounds. Results showed that 60 volatile compounds could be commonly detected in this famous green tea. Terpenes and esters were two major groups characterized, representing 33.89% and 15.53% of the total peak area respectively. Ten compounds were determined to contribute significantly to the perceived aroma quality of Longjing tea, especially linalool (0.701), nonanal (0.738), (Z)-3-hexenyl hexanoate (−0.785), and β-ionone (−0.763). On the basis of these 10 compounds, a model (correlation coefficient of 89.4% and cross-validated correlation coefficient of 80.4%) was constructed to predict the aroma quality of Longjing tea. Summarily, this study has provided a novel option for quality prediction of green tea based on HS-SPME/GC-MS technique. PMID:23225852

  17. Chemical Characterization and Release of Polyphenols from Pecan Nut Shell [Carya illinoinensis (Wangenh) C. Koch] in Zein Microparticles for Bioactive Applications.

    PubMed

    Kureck, Itamara; Policarpi, Priscila de Brito; Toaldo, Isabela Maia; Maciel, Matheus Vinícius de Oliveira Brisola; Bordignon-Luiz, Marilde T; Barreto, Pedro Luiz Manique; Block, Jane Mara

    2018-05-03

    The pecan nut [Carya illinoinensis (Wangenh) C. Koch] is a natural source of polyphenols with antioxidant properties. In this study, the encapsulation of aqueous and hydroalcoholic extracts of pecan nut shell were evaluated for the release of bioactive compounds and antioxidant potential in order to explore food applications using zein as encapsulating agent. The extracts showed high contents of total phenolics, condensed tannins and high antioxidant activity. Concentrations of proanthocyanidins were 9-fold higher in hydroalcoholic extracts. The LC-DAD analysis showed that catechins were the major phenolic compounds in samples, with epigallocatechin levels up to 138.62 mg mL -1 . Zein microparticles loaded with aqueous extract released 2.3 times more phenolic compounds than the hydroalcoholic extracts and the DSC thermograms showed that extracts of pecan nut shell remained thermally stable up to 240 °C. The zein microcapsules obtained in this study were efficiently encapsulated and represent an interesting additive due its high antioxidant capacity, physicochemical characteristics and morphology. The use of zein microparticles combined with natural extracts constitute a step forward in the improvement of current technology for delivering phenolic compounds with applications in functional foods and nutraceuticals.

  18. The Biological Diversity and Production of Volatile Organic Compounds by Stem-Inhabiting Endophytic Fungi of Ecuador

    PubMed Central

    Rundell, Susan M.; Spakowicz, Daniel J.; Narváez-Trujillo, Alexandra; Strobel, Scott A.

    2015-01-01

    Fungal endophytes colonize every major lineage of land plants without causing apparent harm to their hosts. Despite their production of interesting and potentially novel compounds, endophytes—particularly those inhabiting stem tissues—are still a vastly underexplored component of microbial diversity. In this study, we explored the diversity of over 1500 fungal endophyte isolates collected from three Ecuadorian ecosystems: lowland tropical forest, cloud forest, and coastal dry forest. We sought to determine whether Ecuador’s fungal endophytes are hyperdiverse, and whether that biological diversity is reflected in the endophytes’ chemical diversity. To assess this chemical diversity, we analyzed a subset of isolates for their production of volatile organic compounds (VOCs), a representative class of natural products. This study yielded a total of 1526 fungal ITS sequences comprising some 315 operational taxonomic units (OTUs), resulting in a non-asymptotic OTU accumulation curve and characterized by a Fisher’s α of 120 and a Shannon Diversity score of 7.56. These figures suggest that the Ecuadorian endophytes are hyperdiverse. Furthermore, the 113 isolates screened for VOCs produced more than 140 unique compounds. These results present a mere snapshot of the remarkable biological and chemical diversity of stem-inhabiting endophytic fungi from a single neotropical country. PMID:29376917

  19. Chemical composition of the Lippia origanoides essential oils and their antigenotoxicity against bleomycin-induced DNA damage.

    PubMed

    Vicuña, Gloria Carolina; Stashenko, Elena E; Fuentes, Jorge Luis

    2010-07-01

    The present work evaluated the chemical composition of the essential oils (EO) obtained from Lippia origanoides and their DNA protective effect against bleomycin-induced genotoxicity. L. origanoides EO chemical composition was determined by gas chromatography-mass spectrometry (GC-MS). The major compounds of the L. origanoides EOs were thymol (34-58%) and carvacrol (26%). The antigenotoxic effects of the EOs, major compounds and standard compound (epigallocatechin gallate) were assayed in co-incubation procedures using the SOS chromotest in Escherichia coli. Both EOs and their major compounds protected bacterial cells against bleomycin-induced genotoxicity indicating that these two compounds were principally responsible for the antigenotoxicity detected in the oils. Thymol and carvacrol antigenotoxicity was lower than those observed with epigallocatechin gallate. The results were discussed in relation to the chemopreventive potential of L. origanoides EOs and their major components, carvacrol and thymol. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Predicting the emission of volatile organic compounds from silage systems

    USDA-ARS?s Scientific Manuscript database

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major VOC emission source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols wit...

  1. Volatile organic compound emissions from silage systems

    USDA-ARS?s Scientific Manuscript database

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols with other impor...

  2. Systematic assessment of scaffold hopping versus activity cliff formation across bioactive compound classes following a molecular hierarchy.

    PubMed

    Stumpfe, Dagmar; Dimova, Dilyana; Bajorath, Jürgen

    2015-07-01

    Scaffold hopping and activity cliff formation define opposite ends of the activity landscape feature spectrum. To rationalize these events at the level of scaffolds, active compounds involved in scaffold hopping were required to contain topologically distinct scaffolds but have only limited differences in potency, whereas compounds involved in activity cliffs were required to share the same scaffold but have large differences in potency. A systematic search was carried out for compounds involved in scaffold hopping and/or activity cliff formation. Results obtained for compound data sets covering more than 300 human targets revealed clear trends. If scaffolds represented multiple but fewer than 10 active compounds, nearly 90% of all scaffolds were exclusively involved in hopping events. With increasing compound coverage, the fraction of scaffolds involved in both scaffold hopping and activity cliff formation significantly increased to more than 50%. However, ∼40% of the scaffolds representing large numbers of active compounds continued to be exclusively involved in scaffold hopping. More than 200 scaffolds with broad target coverage were identified that consistently represented potent compounds and yielded an abundance of scaffold hops in the low-nanomolar range. These and other subsets of scaffolds we characterized are of prime interest for structure-activity relationship (SAR) exploration and compound design. Therefore, the complete scaffold classification generated in the course of our analysis is made freely available. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Actinomyces weissii sp. nov., isolated from dogs.

    PubMed

    Hijazin, Muaz; Alber, Jörg; Lämmler, Christoph; Kämpfer, Peter; Glaeser, Stefanie P; Busse, Hans-Jürgen; Kassmannhuber, Johannes; Prenger-Berninghoff, Ellen; Förnges, Thorsten; Hassan, Abdulwahed Ahmed; Abdulmawjood, Amir; Zschöck, Michael

    2012-08-01

    Two Gram-positive, rod-shaped, non-spore-forming bacteria were isolated from the oral cavities of two dogs. On the basis of 16S rRNA gene sequence similarities both strains were shown to belong to the genus Actinomyces and were most closely related to Actinomyces bovis (97.3% and 97.5%, respectively). The polyamine profile of the two isolates and Actinomyces bovis DSM 43014(T) was composed of spermidine and spermine as the major components. Menaquinone MK-9 was the major compound in the quinone system of the two strains and Actinomyces bovis. The polar lipid profiles of strains 2298(T) and 4321 were almost identical, containing diphosphatidylglycerol as the major compound, and moderate to trace amounts of phosphatidylcholine, phosphatidylinositol, phosphatidylinositol-mannoside, phosphatidylglycerol and several unidentified lipids. A highly similar polar lipid profile was detected in Actinomyces bovis DSM 43014(T) supporting the affiliation of strains 2298(T) and 4321 to the genus Actinomyces. The typical major fatty acids were C(16:0), C(18:0) and C(18:1)ω9c. Fatty acids C(14:0) and C(18:2)ω6,9c were found in minor amounts. The results of physiological and biochemical analyses revealed clear differences between both strains and the most closely related species of the genus Actinomyces. Thus, strains 2298(T) and 4321 represent a novel species, for which the name Actinomyces weissii sp. nov., is proposed, with strain 2298(T) ( = CIP 110333(T) = LMG 26472(T) = CCM 7951(T) = CCUG 61299(T)) as the type strain.

  4. Cyclohexa-2,5-diene-1,4-dione-based antiproliferative agents: design, synthesis, and cytotoxic evaluation.

    PubMed

    Petronzi, Carmen; Festa, Michela; Peduto, Antonella; Castellano, Maria; Marinello, Jessica; Massa, Antonio; Capasso, Anna; Capranico, Giovanni; La Gatta, Annalisa; De Rosa, Mario; Caraglia, Michele; Filosa, Rosanna

    2013-04-30

    Tumors are diseases characterized by uncontrolled cell growth and, in spite of the progress of medicine over the years, continue to represent a major threat to the health, requiring new therapies. Several synthetic compounds, such as those derived from natural sources, have been identified as anticancer drugs; among these compounds quinone represent the second largest class of anticancer agents in use. Several studies have shown that these act on tumor cells through several mechanisms. An important objective of this work is to develop quinoidscompounds showing antitumor activity, but with fewer side effects. The parachinone cannabinol HU-331, is a small molecule that with its core 4-hydroxy-1,4-benzoquinone, exhibits a potent and selective cytotoxic activity on different tumor cell lines. A series of derivatives 3-hydroxy-1,4-benzochinoni were thus developed through HU-331 chemical modifications. The purpose of the work is to test the ability of the compounds to induce proliferative inhibition and study the mechanisms of cell death. The antitumor activities were evaluated in vitro by examining their cytotoxic effects against different human cancer cell lines. All cell lines tested were plated in 96-multiwell and treated with HU-100-V at different concentrations and cell viability was evaluated byMTT assay. Subsequently via flow cytometry (FACS) it was possible to assess apoptosis by the system of double labeling with PI and Annexin-V, and the effect of the compounds on ROS formation by measuring the dichlorofluorescein fluorescence. The substitution by n-hexyl chain considerably enhanced the bioactivity of the compounds. In details, 2-hexyl-5-hydroxycyclohexa-2,5-diene-1,4-dione (V), 2,5-Dimethoxy-3-hexyl-2,5-cyclohexadiene-1,4-dione (XII) and 2-hydroxy-5-methoxy-3-hexyl-cyclohexa-2,5-diene-1,4-dione (XIII) showed most prominent cytotoxicity against almost human tumour cell lines. Compound V was further subjected to downstream apoptotic analysis, demostrating a time-dependent pro-apoptotic activity on human melanoma M14 cell line mediated by caspases activation and poly-(ADP-ribose)-polymerase (PARP) protein cleavage. These findings indicate that 2-hexyl-5-idrossicicloesa-2,5-diene-1,4-dione can be a promising compound for the design of a new class of antineoplastic derivatives.Carmen Petronzi, Michela Festa, Antonella Peduto and Maria Castellano: equally contributed equally to this work.

  5. Phenols in hydrothermal petroleums and sediment bitumen from Guaymas Basin, Gulf of California

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R.; Leif, R. N.; Ishiwatari, R.

    1996-01-01

    The aliphatic, aromatic and polar (NSO) fractions of seabed petroleums and sediment bitumen extracts from the Guaymas Basin hydrothermal system have been analyzed by gas chromatography and gas chromatography-mass spectrometry (free and silylated). The oils were collected from the interiors and exteriors of high temperature hydrothermal vents and represent hydrothermal pyrolyzates that have migrated to the seafloor by hydrothermal fluid circulation. The downcore sediments are representative of both thermally unaltered and thermally altered sediments. The survey has revealed the presence of oxygenated compounds in samples with a high degree of thermal maturity. Phenols are one class of oxygenated compounds found in these samples. A group of methyl-, dimethyl- and trimethyl-isoprenoidyl phenols (C27-C29) is present in all of the seabed NSO fractions, with the methyl- and dimethyl-isoprenoidyl phenols occurring as major components, and a trimethyl-isoprenoidyl phenol as a minor component. A homologous series of n-alkylphenols (C13-C33) has also been found in the seabed petroleums. These phenols are most likely derived from the hydrothermal alteration of sedimentary organic matter. The n-alkylphenols are probably synthesized under hydrothermal conditions, but the isoprenoidyl phenols are probably hydrothermal alteration products of natural product precursors. The suites of phenols do not appear to be useful tracers of high temperature hydrothermal processes.

  6. Development of a pharmacophore for cruzain using oxadiazoles as virtual molecular probes: quantitative structure-activity relationship studies

    NASA Astrophysics Data System (ADS)

    de Souza, Anacleto S.; de Oliveira, Marcelo T.; Andricopulo, Adriano D.

    2017-09-01

    Chagas's is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. According to the World Health Organization, 7 million people are infected worldwide leading to 7000 deaths per year. Drugs available, nifurtimox and benzimidazole, are limited due to low efficacy and high toxicity. As a validated target, cruzain represents a major front in drug discovery attempts for Chagas disease. Herein, we describe the development of 2D QSAR (r_{{{pred}}}2 = 0.81) and a 3D-QSAR-based pharmacophore (r_{{{pred}}}2 = 0.82) from a series of non-covalent cruzain inhibitors represented mostly by oxadiazoles (lead compound, IC50 = 200 nM). Both models allowed us to map key intermolecular interactions in S1', S2 and S3 cruzain sub-sites (including halogen bond and C‒H/π). To probe the predictive capacity of obtained models, inhibitors available in the literature from different classes displaying a range of scaffolds were evaluate achieving mean absolute deviation of 0.33 and 0.51 for 2D and 3D models, respectively. CoMFA revealed an unexplored region where addition of bulky substituents to produce new compounds in the series could be beneficial to improve biological activity.

  7. Aqueous solubility of Cr(VI) compounds in ferrochrome bag filter dust and the implications thereof

    DOE PAGES

    Du Preez, S. P.; Beukes, J. P.; Van Dalen, W. P. J.; ...

    2017-04-21

    The production of ferrochrome (FeCr) is a reducing process. However, it is impossible to completely exclude oxygen from all of the high-temperature production process steps, which may lead to unintentional formation of small amounts of Cr(VI). The majority of Cr(VI) is associated with particles found in the off-gas of the high-temperature processes, which are cleaned by means of venturi scrubbers or bag filter dust (BFD) systems. BFD contains the highest concentration of Cr(VI) of all FeCr wastes. In this study, the solubility of Cr(VI) present in BFD was determined by evaluating four different BFD samples. The results indicate that themore » currently applied Cr(VI) treatment strategies of the FeCr producer (with process water pH ≤ 9) only effectively extract and treat the water-soluble Cr(VI) compounds, which merely represented approximately 31% of the total Cr(VI) present in the BFD samples evaluated. Extended extraction time, within the afore-mentioned pH range, proved futile in extracting sparingly-soluble and water-insoluble Cr(VI) species, which represented approximately 34% and 35% of the total Cr(VI), respectively. Due to the deficiencies of the current treatment strategies, it is highly likely that sparingly water-soluble Cr(VI) compounds will leach from waste storage facilities (e.g. slimes dams) over time. Therefore, it is critical that improved Cr(VI) treatment strategies be formulated, which should be an important future perspective for FeCr producers and researchers alike.« less

  8. Thiazolides inhibit growth and induce glutathione-S-transferase Pi (GSTP1)-dependent cell death in human colon cancer cells.

    PubMed

    Müller, Joachim; Sidler, Daniel; Nachbur, Ueli; Wastling, Jonathan; Brunner, Thomas; Hemphill, Andrew

    2008-10-15

    Thiazolides are a novel class of broad-spectrum anti-infective drugs with promising in vitro and in vivo activities against intracellular and extracellular protozoan parasites. The nitrothiazole-analogue nitazoxanide (NTZ; 2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide) represents the thiazolide parent compound, and a number of bromo- and carboxy-derivatives with differing activities have been synthesized. Here we report that NTZ and the bromo-thiazolide RM4819, but not the carboxy-thiazolide RM4825, inhibited proliferation of the colon cancer cell line Caco2 and nontransformed human foreskin fibroblasts (HFF) at or below concentrations the compounds normally exhibit anti-parasitic activity. Thiazolides induced typical signs of apoptosis, such as nuclear condensation, DNA fragmentation and phosphatidylserine exposure. Interestingly, the apoptosis-inducing effect of thiazolides appeared to be cell cycle-dependent and induction of cell cycle arrest substantially inhibited the cell death-inducing activity of these compounds. Using affinity chromatography and mass spectrometry glutathione-S-transferase P1 (GSTP1) from the GST class Pi was identified as a major thiazolide-binding protein. GSTP1 expression was more than 10 times higher in the thiazolide-sensitive Caco2 cells than in the less sensitive HFF cells. The enzymatic activity of recombinant GSTP1 was strongly inhibited by thiazolides. Silencing of GSTP1 using siRNA rendered cells insensitive to RM4819, while overexpression of GSTP1 increased sensitivity to RM4819-induced cell death. Thiazolides may thus represent an interesting novel class of future cancer therapeutics.

  9. Consumer palatability scores and volatile beef flavor compounds of five USDA quality grades and four muscles.

    PubMed

    Legako, J F; Brooks, J C; O'Quinn, T G; Hagan, T D J; Polkinghorne, R; Farmer, L J; Miller, M F

    2015-02-01

    Proximate data, consumer palatability scores and volatile compounds were investigated for four beef muscles (Longissimus lumborum, Psoas major, Semimembranosus and Gluteus medius) and five USDA quality grades(Prime, Upper 2/3 Choice, Low Choice, Select, and Standard). Quality grade did not directly affect consumer scores or volatiles but interactions (P < 0.05) between muscle and grade were determined. Consumer scores and volatiles differed (P < 0.05) between muscles. Consumers scored Psoas major highest for tenderness, juiciness, flavor liking and overall liking, followed by Longissimus lumborum, Gluteus medius, and Semimembranosus (P < 0.05). Principal component analysis revealed clustering of compound classes, formed by related mechanisms. Volatile n-aldehydes were inversely related to percent fat. Increases in lipid oxidation compounds were associated with Gluteus medius and Semimembranosus, while greater quantities of sulfur-containing compounds were associated with Psoas major. Relationships between palatability scores and volatile compound classes suggest that differences in the pattern of volatile compounds may play a valuable role in explaining consumer liking.

  10. Chronic bioassays of rainbow trout fry with compounds representative of contaminants in Great Lakes fish

    USGS Publications Warehouse

    Passino-Reader, Dora R.; Berlin, William H.; Hickey, James P.

    1995-01-01

    To evaluate the hazard of organic compounds detected in Great Lakes fish by gas chromatography/mass spectrometry, we tested compounds representative of heterocyclic nitrogen compounds, polycyclic aromatic hydrocarbons, and cyclic alkanes and alkenes. Sixty-day bioassays on the effects of nicotine, phenanthrene, pinane, and pinene on the behavior, growth, and survival of rainbow trout fry, Oncorhynchus mykiss, were conducted in a large, constant-flow, temperature-controlled water system. The following 60-day LCSO's were determined (mg/L): nicotine 5.0, phenanthrene 0.2, pinane 0.8, and pinene 1.2. Values of lowest observed effects level (LOEL) and no observed effects level (NOEL) showed that growth was generally as sensitive an endpoint as behavior and was more sensitive than time of swim-up. The 60-day LC50 values for rainbow trout were compared with earlier acute bioassays with Daphnia pulexand rainbow trout and chronic bioassays with D.pulex conducted at the Great Lakes Science Center. Rainbow trout fry were less sensitive than daphnids in all tests, indicating that toxicity tests with daphnids should be protective of salmonid fry for these types of compounds. The results for representative compounds indicate that these classes of compounds should be included in aquatic risk assessments at sites in the Great Lakes.

  11. Extracellular compounds produced by fungi associated with Botryosphaeria dieback induce differential defence gene expression patterns and necrosis in Vitis vinifera cv. Chardonnay cells.

    PubMed

    Ramírez-Suero, M; Bénard-Gellon, M; Chong, J; Laloue, H; Stempien, E; Abou-Mansour, E; Fontaine, F; Larignon, P; Mazet-Kieffer, F; Farine, S; Bertsch, C

    2014-11-01

    Three major grapevine trunk diseases, esca, botryosphaeria dieback and eutypa dieback, pose important economic problems for vineyards worldwide, and currently, no efficient treatment is available to control these diseases. The different fungi associated with grapevine trunk diseases can be isolated in the necrotic wood, but not in the symptomatic leaves. Other factors seem to be responsible for the foliar symptoms and may represent the link between wood and foliar symptoms. One hypothesis is that the extracellular compounds produced by the fungi associated with grapevine trunk diseases are responsible for pathogenicity.In the present work, we used Vitis vinifera cv. Chardonnay cells to test the aggressiveness of total extracellular compounds produced by Diplodia seriata and Neofusicoccum parvum, two causal agents associated with botryosphaeria dieback. Additionally, the toxicity of purified mellein, a characteristic toxin present in the extracellular compounds of Botryosphaeriaceae, was assessed.Our results show that the total extracellular compounds produced by N. parvum induce more necrosis on Chardonnay calli and induce a different defence gene expression pattern than those of D. seriata. Mellein was produced by both fungi in amounts proportional to its aggressiveness. However, when purified mellein was added to the culture medium of calli, only a delayed necrosis and a lower-level expression of defence genes were observed. Extracellular compounds seem to be involved in the pathogenicity of the fungi associated with botryosphaeria dieback. However, the doses of mellein used in this study are 100 times higher than those found in the liquid fungal cultures: therefore, the possible function of this toxin is discussed.

  12. Catalytic Upgrading of Biomass Pyrolysis Oxygenates with Vacuum Gas Oil Using a Davison Circulating Riser Reactor

    DOE PAGES

    Jarvis, Mark W.; Olstad, Jessica; Parent, Yves; ...

    2018-01-02

    We investigate and quantitate the changes in hydrocarbon product composition while evaluating the performance and operability of the National Renewable Energy Laboratory's Davison Circulating Riser (DCR) reactor system when biomass model compounds are cofed with traditional fluid catalyst cracking (FCC) feeds and catalyst: vacuum gas oil (VGO) and equilibrium zeolite catalyst (E-Cat). Three compounds (acetic acid, guaiacol, and sorbitan monooleate) were selected to represent the major classes of oxygenates present in biomass pyrolysis vapors. These vapors can contain 30-50% oxygen as oxygenates, which create conversion complications (increased reactivity and coking) when integrating biomass vapors and liquids into fuel and chemicalmore » processes long dominated by petroleum feedstocks. We used these model compounds to determine the appropriate conditions for coprocessing with petroleum and ultimately pure pyrolysis vapors only as compared with standard baseline conditions obtained with VGO and E-Cat only in the DCR. Model compound addition decreased the DCR catalyst circulation rate, which controls reactor temperature and measures reaction heat demand, while increasing catalyst coking rates. Liquid product analyses included 2-dimensional gas chromatography time-of-flight mass spectroscopy (2D GCxGC TOFS), simulated distillation (SIM DIST), 13C NMR, and carbonyl content. Aggregated results indicated that the model compounds were converted during reaction, and despite functional group differences, product distributions for each model compound were very similar. In addition, we determined that adding model compounds to the VGO feed did not significantly affect the DCR's operability or performance. Future work will assess catalytic upgrading of biomass pyrolysis vapor to fungible hydrocarbon products using upgrading catalysts currently being developed at NREL and at Johnson Matthey.« less

  13. Catalytic Upgrading of Biomass Pyrolysis Oxygenates with Vacuum Gas Oil Using a Davison Circulating Riser Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvis, Mark W.; Olstad, Jessica; Parent, Yves

    We investigate and quantitate the changes in hydrocarbon product composition while evaluating the performance and operability of the National Renewable Energy Laboratory's Davison Circulating Riser (DCR) reactor system when biomass model compounds are cofed with traditional fluid catalyst cracking (FCC) feeds and catalyst: vacuum gas oil (VGO) and equilibrium zeolite catalyst (E-Cat). Three compounds (acetic acid, guaiacol, and sorbitan monooleate) were selected to represent the major classes of oxygenates present in biomass pyrolysis vapors. These vapors can contain 30-50% oxygen as oxygenates, which create conversion complications (increased reactivity and coking) when integrating biomass vapors and liquids into fuel and chemicalmore » processes long dominated by petroleum feedstocks. We used these model compounds to determine the appropriate conditions for coprocessing with petroleum and ultimately pure pyrolysis vapors only as compared with standard baseline conditions obtained with VGO and E-Cat only in the DCR. Model compound addition decreased the DCR catalyst circulation rate, which controls reactor temperature and measures reaction heat demand, while increasing catalyst coking rates. Liquid product analyses included 2-dimensional gas chromatography time-of-flight mass spectroscopy (2D GCxGC TOFS), simulated distillation (SIM DIST), 13C NMR, and carbonyl content. Aggregated results indicated that the model compounds were converted during reaction, and despite functional group differences, product distributions for each model compound were very similar. In addition, we determined that adding model compounds to the VGO feed did not significantly affect the DCR's operability or performance. Future work will assess catalytic upgrading of biomass pyrolysis vapor to fungible hydrocarbon products using upgrading catalysts currently being developed at NREL and at Johnson Matthey.« less

  14. Where does the toxicity come from in saponin extract?

    PubMed

    Jiang, Xiaogang; Cao, Yi; Jørgensen, Louise von Gersdorff; Strobel, Bjarne W; Hansen, Hans Chr Bruun; Cedergreen, Nina

    2018-08-01

    Saponin-rich plant extracts contain bioactive natural compounds and have many applications, e.g. as biopesticides and biosurfactants. The composition of saponin-rich plant extracts is very diverse, making environmental monitoring difficult. In this study various ecotoxicity data as well as exposure data have been collected to explore which compounds in the plant extract are relevant as plant protection agents and furthermore to clarify which compounds may cause undesired side-effects due to their toxicity. Hence, we quantified the toxicity of different fractions (saponins/non-saponins) in the plant extracts on the aquatic crustacean Daphnia magna and zebrafish (Danio rerio) embryos. In addition, we tested the toxicity changes during saponin degradation as well. The results confirm that saponins are responsible for the majority of toxicity (85.1-93.6%) of Quillaja saponaria extract. We, therefore, suggest saponins to be the main target of saponin-rich plant extracts, for instance in the saponin-based biopesticide regulation. Furthermore, we suggest that an abundant saponin fraction, QS-18 from Q. saponaria, can be a key monitoring target to represent the environmental concentration of the saponins, as it contributes with 26% and 61% of the joint toxicity to D. magna and D. rerio, respectively out of the total saponins. The degradation products of saponins are 3-7 times less toxic than the parent compound; therefore the focus should be mainly on the parent compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Sex-pairing pheromone of Ancistrotermes dimorphus (Isoptera: Macrotermitinae).

    PubMed

    Wen, Ping; Mo, Jianchu; Lu, Chunwen; Tan, Ken; Šobotník, Jan; Sillam-Dussès, David

    2015-12-01

    Ancistrotermes dimorphus is a common Macrotermitinae representative, facultative inquiline by its life-style, occurring in South-East China. Sex pheromone is used for couple formation and maintenance, and it is produced by and released from the female sternal gland and is highly attractive to males. Based on our combined behavioral, chemical and electrophysiological analyses, we identified (3Z,6Z)-dodeca-3,6-dien-1-ol as the female sex pheromone of A. dimorphus as it evoked the tandem behavior at short distance, and the active quantities ranged from 0.01ng to 10ng. Interestingly, GC-MS analyses of SPME extracts showed another compound specific to the female sternal gland, (3Z)-dodec-3-en-1-ol, which showed a clear GC-EAD response. However, this compound has no behavioral function in natural concentrations (0.1ng), while higher amounts (1ng) inhibit the attraction achieved by (3Z,6Z)-dodeca-3,6-dien-1-ol. The function of (3Z)-dodec-3-en-1-ol is not fully understood, but might be linked to recognition from sympatric species using the same major compound, enhancing the long-distance attraction, or informing about presence of other colonies using the compound as a trail-following pheromone. The sternal gland secretion of Ancistrotermes females contains additional candidate compounds, namely (3E,6Z)-dodeca-3,6-dien-1-ol and (6Z)-dodec-6-en-1-ol, which are not perceived by males' antennae in biologically relevant amounts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Potent Antifouling Marine Dihydroquinolin-2(1H)-one-Containing Alkaloids from the Gorgonian Coral-Derived Fungus Scopulariopsis sp.

    PubMed

    Shao, Chang-Lun; Xu, Ru-Fang; Wang, Chang-Yun; Qian, Pei-Yuan; Wang, Kai-Ling; Wei, Mei-Yan

    2015-08-01

    Marine biofouling has a major economic impact, especially when it occurs on ship hulls or aquaculture facilities. Since the International Maritime Organization (IMO) treaty to ban the application of organotin-based paints to ships went into effect in 2008, there is an urgent demand for the development of efficient and environmentally friendly antifouling agents. Marine microorganisms have proved to be a potential source of antifouling natural compounds. In this study, six dihydroquinolin-2-one-containing alkaloids, three monoterpenoids combined with a 4-phenyl-3,4-dihydroquinolin-2(1H)-one (1-3) and three 4-phenyl-3,4-dihydroquinolin-2(1H)-one alkaloids (4-6), were isolated from the gorgonian coral-derived fungus Scopulariopsis sp. collected in the South China Sea. These dihydroquinolin-2-one-containing alkaloids were evaluated against the larval settlement of barnacle Balanus amphitrite, and antifouling activity was detected for the first time for this class of metabolites. All of them except 6 showed strong antifouling activity. Compounds 1 and 2 were discovered to be the most promising non-toxic antilarval settlement candidates. Especially, compound 1 is the strongest antifouling compound in nature until now which showed highly potent activity with picomolar level (EC50 17.5 pM) and a very safety and high therapeutic ratio (LC50/EC50 1200). This represents an effective non-toxic, anti-larval settlement structural class of promising antifouling lead compound.

  17. The BioGRID interaction database: 2017 update

    PubMed Central

    Chatr-aryamontri, Andrew; Oughtred, Rose; Boucher, Lorrie; Rust, Jennifer; Chang, Christie; Kolas, Nadine K.; O'Donnell, Lara; Oster, Sara; Theesfeld, Chandra; Sellam, Adnane; Stark, Chris; Breitkreutz, Bobby-Joe; Dolinski, Kara; Tyers, Mike

    2017-01-01

    The Biological General Repository for Interaction Datasets (BioGRID: https://thebiogrid.org) is an open access database dedicated to the annotation and archival of protein, genetic and chemical interactions for all major model organism species and humans. As of September 2016 (build 3.4.140), the BioGRID contains 1 072 173 genetic and protein interactions, and 38 559 post-translational modifications, as manually annotated from 48 114 publications. This dataset represents interaction records for 66 model organisms and represents a 30% increase compared to the previous 2015 BioGRID update. BioGRID curates the biomedical literature for major model organism species, including humans, with a recent emphasis on central biological processes and specific human diseases. To facilitate network-based approaches to drug discovery, BioGRID now incorporates 27 501 chemical–protein interactions for human drug targets, as drawn from the DrugBank database. A new dynamic interaction network viewer allows the easy navigation and filtering of all genetic and protein interaction data, as well as for bioactive compounds and their established targets. BioGRID data are directly downloadable without restriction in a variety of standardized formats and are freely distributed through partner model organism databases and meta-databases. PMID:27980099

  18. Chemical composition and antigenotoxic properties of Lippia alba essential oils

    PubMed Central

    López, Molkary Andrea; Stashenko, Elena E.; Fuentes, Jorge Luis

    2011-01-01

    The present work evaluated the chemical composition and the DNA protective effect of the essential oils (EOs) from Lippia alba against bleomycin-induced genotoxicity. EO constituents were determined by Gas Chromatography/Mass Spectrometric (GC-MS) analysis. The major compounds encountered being citral (33% geranial and 25% neral), geraniol (7%) and trans-β-caryophyllene (7%) for L. alba specimen COL512077, and carvone (38%), limonene (33%) and bicyclosesquiphellandrene (8%) for the other, COL512078. The genotoxicity and antigenotoxicity of EO and the compounds citral, carvone and limonene, were assayed using the SOS Chromotest in Escherichia coli. The EOs were not genotoxic in the SOS chromotest, but one of the major compound (limonene) showed genotoxicity at doses between 97 and 1549 mM. Both EOs protected bacterial cells against bleomycin-induced genotoxicity. Antigenotoxicity in the two L. alba chemotypes was related to the major compounds, citral and carvone, respectively. The results were discussed in relation to the chemopreventive potential of L. alba EOs and its major compounds. PMID:21931523

  19. Chemical composition and antigenotoxic properties of Lippia alba essential oils.

    PubMed

    López, Molkary Andrea; Stashenko, Elena E; Fuentes, Jorge Luis

    2011-07-01

    The present work evaluated the chemical composition and the DNA protective effect of the essential oils (EOs) from Lippia alba against bleomycin-induced genotoxicity. EO constituents were determined by Gas Chromatography/Mass Spectrometric (GC-MS) analysis. The major compounds encountered being citral (33% geranial and 25% neral), geraniol (7%) and trans-β-caryophyllene (7%) for L. alba specimen COL512077, and carvone (38%), limonene (33%) and bicyclosesquiphellandrene (8%) for the other, COL512078. The genotoxicity and antigenotoxicity of EO and the compounds citral, carvone and limonene, were assayed using the SOS Chromotest in Escherichia coli. The EOs were not genotoxic in the SOS chromotest, but one of the major compound (limonene) showed genotoxicity at doses between 97 and 1549 mM. Both EOs protected bacterial cells against bleomycin-induced genotoxicity. Antigenotoxicity in the two L. alba chemotypes was related to the major compounds, citral and carvone, respectively. The results were discussed in relation to the chemopreventive potential of L. alba EOs and its major compounds.

  20. Radio frequency analog electronics based on carbon nanotube transistors

    PubMed Central

    Kocabas, Coskun; Kim, Hoon-sik; Banks, Tony; Rogers, John A.; Pesetski, Aaron A.; Baumgardner, James E.; Krishnaswamy, S. V.; Zhang, Hong

    2008-01-01

    The potential to exploit single-walled carbon nanotubes (SWNTs) in advanced electronics represents a continuing, major source of interest in these materials. However, scalable integration of SWNTs into circuits is challenging because of difficulties in controlling the geometries, spatial positions, and electronic properties of individual tubes. We have implemented solutions to some of these challenges to yield radio frequency (RF) SWNT analog electronic devices, such as narrow band amplifiers operating in the VHF frequency band with power gains as high as 14 dB. As a demonstration, we fabricated nanotube transistor radios, in which SWNT devices provide all of the key functions, including resonant antennas, fixed RF amplifiers, RF mixers, and audio amplifiers. These results represent important first steps to practical implementation of SWNTs in high-speed analog circuits. Comparison studies indicate certain performance advantages over silicon and capabilities that complement those in existing compound semiconductor technologies. PMID:18227509

  1. Relation between chemical composition or antioxidant activity and antihypertensive activity for six essential oils.

    PubMed

    Yvon, Yan; Raoelison, Emmanuel Guy; Razafindrazaka, René; Randriantsoa, Adolphe; Romdhane, Mehrez; Chabir, Naziha; Mkaddem, Mounira Guedri; Bouajila, Jalloul

    2012-08-01

    Six essential oils (EOs), Juniperus phoenicea (leaves and berries), Thymus capitatus, Lauris nobilis, Melaleuca armillaris, and Eucalyptus gracilis, were screened for their antioxidant and antihypertensive activity as well as their chemical compositions. We identified and quantified 24 compounds (representing 99.8% of total oil) for J. phoenicea leaves, 14 compounds (representing 98.8% of total oil) for J. phoenicea berries, 11 compounds (representing 99.6% of total oil) for T. capitatus, 32 compounds (representing 98.9% of total oil) for L. nobilis, 32 compounds (representing 98.7% of total oil) for M. armillaris, and 26 compounds (representing 99.3% of total oil) for E. gracilis. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, the antioxidant activity was in the range of 0.59 to 2183.6 mg/L, whereas T. capitatus (1.24 ± 0.05 mg/L) gave the best activity in the 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonate assay. Antihypertensive activity was evaluated by testing the vasorelaxing capacity of EOs on rat aorta precontracted by phenylephrine (10(-6) M). T. capitatus and L. nobilis were most active for an antihypertensive activity (29 ± 3 and 59 ± 2 mg/L, respectively). Correlations between chemical composition or antioxidant activity and/or antihypertensive activity were studied. Significant correlation has been found for antihypertensive activity and p-cymene (R(2) = 0.86), β-elemene (R(2) = 0.90), and β-myrcene (R(2) = 0.76). A good correlation has been found between antihypertensive activity and antioxidant activity by DPPH assay (R(2) = 0.98). Antioxidant activity can contribute to the prevention of the increase of the blood pressure. According to the literature, no study has been reported until now of correlation between antihypertensive activity and antioxidant activity. Natural EOs can find its interest and application in a medicinal area. © 2012 Institute of Food Technologists®

  2. Biogenic volatile organic compound emissions from vegetation fires

    PubMed Central

    CICCIOLI, PAOLO; CENTRITTO, MAURO; LORETO, FRANCESCO

    2014-01-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. PMID:24689733

  3. Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrickson, Jim K.; Balkwill, David L.; Romine, Margaret F.

    Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteriamore » cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.« less

  4. Isolation, purification and chemical characterization of a new angucyclinone compound produced by a new halotolerant Nocardiopsis sp. HR-4 strain.

    PubMed

    Hadj Rabia-Boukhalfa, Yamina; Eveno, Yannick; Karama, Solange; Selama, Okba; Lauga, Béatrice; Duran, Robert; Hacène, Hocine; Eparvier, Véronique

    2017-06-01

    A halotolerant Actinobacteria strain HR-4 was isolated from a salt lake soil sample in Algerian Sahara. Analysis of 16S rDNA gene sequence showed that strain HR-4 belonged to the genus Nocardiopsis. The similarity level ranges between 97.45 and 99.20% with Nocardiopsis species and Nocardiopsis rosea being the most closely related one. Morphological, physiological and phylogenetic characteristics comparisons showed significant differences with the nearest species. These data strongly suggest that strain HR-4 represents novel species. The antimicrobial activity of strain HR-4 showed an antibacterial activity against Gram-positive bacteria as well as an antifungal one. Two major natural products including a new one were isolated from the culture broth using various separation and purification procedures. The chemical structure established on the basis of spectroscopic studies NMR and by comparing with spectroscopic data from the literature of the two compounds affirm that they are classified in the group of Angucyclinones. This is the first report of a production of this type of molecules by the genus Nocardiopsis. The new natural compound was established as (-)-7-deoxy-8-O-methyltetrangomycin with a new configuration.

  5. Nε-Acryloyllysine Piperazides as Irreversible Inhibitors of Transglutaminase 2: Synthesis, Structure-Activity Relationships, and Pharmacokinetic Profiling.

    PubMed

    Wodtke, Robert; Hauser, Christoph; Ruiz-Gómez, Gloria; Jäckel, Elisabeth; Bauer, David; Lohse, Martin; Wong, Alan; Pufe, Johanna; Ludwig, Friedrich-Alexander; Fischer, Steffen; Hauser, Sandra; Greif, Dieter; Pisabarro, M Teresa; Pietzsch, Jens; Pietsch, Markus; Löser, Reik

    2018-05-24

    Transglutaminase 2 (TGase 2)-catalyzed transamidation represents an important post-translational mechanism for protein modification with implications in physiological and pathophysiological conditions, including fibrotic and neoplastic processes. Consequently, this enzyme is considered a promising target for the diagnosis of and therapy for these diseases. In this study, we report on the synthesis and kinetic characterization of N ε -acryloyllysine piperazides as irreversible inhibitors of TGase 2. Systematic structural modifications on 54 new compounds were performed with a major focus on fluorine-bearing substituents due to the potential of such compounds to serve as radiotracer candidates for positron emission tomography. The determined inhibitory activities ranged from 100 to 10 000 M -1 s -1 , which resulted in comprehensive structure-activity relationships. Structure-activity correlations using various substituent parameters accompanied by covalent docking studies provide an advanced understanding of the molecular recognition for this inhibitor class within the active site of TGase 2. Selectivity profiling of selected compounds for other transglutaminases demonstrated an excellent selectivity toward transglutaminase 2. Furthermore, an initial pharmacokinetic profiling of selected inhibitors was performed, including the assessment of potential membrane permeability and liver microsomal stability.

  6. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen

    PubMed Central

    Plouffe, David; Brinker, Achim; McNamara, Case; Henson, Kerstin; Kato, Nobutaka; Kuhen, Kelli; Nagle, Advait; Adrián, Francisco; Matzen, Jason T.; Anderson, Paul; Nam, Tae-gyu; Gray, Nathanael S.; Chatterjee, Arnab; Janes, Jeff; Yan, S. Frank; Trager, Richard; Caldwell, Jeremy S.; Schultz, Peter G.; Zhou, Yingyao; Winzeler, Elizabeth A.

    2008-01-01

    The growing resistance to current first-line antimalarial drugs represents a major health challenge. To facilitate the discovery of new antimalarials, we have implemented an efficient and robust high-throughput cell-based screen (1,536-well format) based on proliferation of Plasmodium falciparum (Pf) in erythrocytes. From a screen of ≈1.7 million compounds, we identified a diverse collection of ≈6,000 small molecules comprised of >530 distinct scaffolds, all of which show potent antimalarial activity (<1.25 μM). Most known antimalarials were identified in this screen, thus validating our approach. In addition, we identified many novel chemical scaffolds, which likely act through both known and novel pathways. We further show that in some cases the mechanism of action of these antimalarials can be determined by in silico compound activity profiling. This method uses large datasets from unrelated cellular and biochemical screens and the guilt-by-association principle to predict which cellular pathway and/or protein target is being inhibited by select compounds. In addition, the screening method has the potential to provide the malaria community with many new starting points for the development of biological probes and drugs with novel antiparasitic activities. PMID:18579783

  7. Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.

    PubMed

    Fredrickson, J K; Balkwill, D L; Romine, M F; Shi, T

    1999-10-01

    Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteria cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.

  8. Inhibitor of streptokinase gene expression improves survival after group A streptococcus infection in mice.

    PubMed

    Sun, Hongmin; Xu, Yuanxi; Sitkiewicz, Izabela; Ma, Yibao; Wang, Xixi; Yestrepsky, Bryan D; Huang, Yuping; Lapadatescu, Martian C; Larsen, Martha J; Larsen, Scott D; Musser, James M; Ginsburg, David

    2012-02-28

    The widespread occurrence of antibiotic resistance among human pathogens is a major public health problem. Conventional antibiotics typically target bacterial killing or growth inhibition, resulting in strong selection for the development of antibiotic resistance. Alternative therapeutic approaches targeting microbial pathogenicity without inhibiting growth might minimize selection for resistant organisms. Compounds inhibiting gene expression of streptokinase (SK), a critical group A streptococcal (GAS) virulence factor, were identified through a high-throughput, growth-based screen on a library of 55,000 small molecules. The lead compound [Center for Chemical Genomics 2979 (CCG-2979)] and an analog (CCG-102487) were confirmed to also inhibit the production of active SK protein. Microarray analysis of GAS grown in the presence of CCG-102487 showed down-regulation of a number of important virulence factors in addition to SK, suggesting disruption of a general virulence gene regulatory network. CCG-2979 and CCG-102487 both enhanced granulocyte phagocytosis and killing of GAS in an in vitro assay, and CCG-2979 also protected mice from GAS-induced mortality in vivo. These data suggest that the class of compounds represented by CCG-2979 may be of therapeutic value for the treatment of GAS and potentially other gram-positive infections in humans.

  9. Fungal Unspecific Peroxygenases Oxidize the Majority of Organic EPA Priority Pollutants

    PubMed Central

    Karich, Alexander; Ullrich, René; Scheibner, Katrin; Hofrichter, Martin

    2017-01-01

    Unspecific peroxygenases (UPOs) are secreted fungal enzymes with promiscuity for oxygen transfer and oxidation reactions. Functionally, they represent hybrids of P450 monooxygenases and heme peroxidases; phylogenetically they belong to the family of heme-thiolate peroxidases. Two UPOs from the basidiomycetous fungi Agrocybe aegerita (AaeUPO) and Marasmius rotula (MroUPO) converted 35 out of 40 compounds listed as EPA priority pollutants, including chlorinated benzenes and their derivatives, halogenated biphenyl ethers, nitroaromatic compounds, polycyclic aromatic hydrocarbons (PAHs) and phthalic acid derivatives. These oxygenations and oxidations resulted in diverse products and—if at all—were limited for three reasons: (i) steric hindrance caused by multiple substitutions or bulkiness of the compound as such (e.g., hexachlorobenzene or large PAHs), (ii) strong inactivation of aromatic rings (e.g., nitrobenzene), and (iii) low water solubility (e.g., complex arenes). The general outcome of our study is that UPOs can be considered as extracellular counterparts of intracellular monooxygenases, both with respect to catalyzed reactions and catalytic versatility. Therefore, they should be taken into consideration as a relevant biocatalytic detoxification and biodegradation tool used by fungi when confronted with toxins, xenobiotics and pollutants in their natural environments. PMID:28848501

  10. Global Synthesis and Critical Evaluation of Pharmaceutical Data Sets Collected from River Systems

    PubMed Central

    2012-01-01

    Pharmaceuticals have emerged as a major group of environmental contaminants over the past decade but relatively little is known about their occurrence in freshwaters compared to other pollutants. We present a global-scale analysis of the presence of 203 pharmaceuticals across 41 countries and show that contamination is extensive due to widespread consumption and subsequent disposal to rivers. There are clear regional biases in current understanding with little work outside North America, Europe, and China, and no work within Africa. Within individual countries, research is biased around a small number of populated provinces/states and the majority of research effort has focused upon just 14 compounds. Most research has adopted sampling techniques that are unlikely to provide reliable and representative data. This analysis highlights locations where concentrations of antibiotics, cardiovascular drugs, painkillers, contrast media, and antiepileptic drugs have been recorded well above thresholds known to cause toxic effects in aquatic biota. Studies of pharmaceutical occurrence and effects need to be seen as a global research priority due to increasing consumption, particularly among societies with aging populations. Researchers in all fields of environmental management need to work together more effectively to identify high risk compounds, improve the reliability and coverage of future monitoring studies, and develop new mitigation measures. PMID:23227929

  11. Mentha suaveolens Ehrh. Chemotypes in Eastern Iberian Peninsula: Essential Oil Variation and Relation with Ecological Factors.

    PubMed

    Llorens-Molina, Juan Antonio; Rivera Seclén, Cynthia Fiorella; Vacas Gonzalez, Sandra; Boira Tortajada, Herminio

    2017-12-01

    Essential oil (EO) extracts coming from two representative populations of Mentha suaveolens Ehrh. subesp. suaveolens in Eastern Iberian Peninsula were analyzed by gas chromatography coupled with mass spectrometry and flame ion detector. Plant sampling was carried out in the morning and evening in order to study diurnal variation in EO profiles. Likewise, leaves and inflorescences were analyzed separately. Two chemotypes corresponding to each one of the populations were identified, with piperitenone oxide (35.2 - 74.3%) and piperitone oxide (83.9 - 91.3%), respectively, as major compounds. Once different chemotypes were identified, canonical correspondence analysis was employed to evaluate the effect of the bioclimatic and edaphic factors recorded in each location on the observed differences. Statistical analysis suggested that these chemotypes were closely related to specific environmental factors, mainly the bioclimatic ones. Concretely, piperitenone oxide chemotype can be associated to supramediterranean bioclimatic conditions and soils with major salinity and water field capacity. On the other hand, the most volatile fraction (hydrocarbon monoterpenes) reached its higher level in the morning; specifically, a noticeable amount of limonene was found in morning samples of flowers (4.8 - 10.6%). This fact can be related to ecological role of volatile compounds in order to attract pollinator insects. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  12. Isolation and Characterization of Bacteria Colonizing Acartia tonsa Copepod Eggs and Displaying Antagonist Effects against Vibrio anguillarum, Vibrio alginolyticus and Other Pathogenic Strains

    PubMed Central

    Zidour, Mahammed; Chevalier, Mickaël; Belguesmia, Yanath; Cudennec, Benoit; Grard, Thierry; Drider, Djamel; Souissi, Sami; Flahaut, Christophe

    2017-01-01

    Copepods represent a major source of food for many aquatic species of commercial interest for aquaculture such as mysis shrimp and early stages of fishes. For the purpose of this study, the culturable mesophilic bacterial flora colonizing Acartia tonsa copepod eggs was isolated and identified. A total of 175 isolates were characterized based on their morphological and biochemical traits. The majority of these isolates (70%) were Gram-negative bacteria. Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) was used for rapid identification of bacterial isolates. Here, 58% of isolates were successfully identified at the genus level and among them, 54% were identified at the species level. These isolates belong to 12 different genera and 29 species. Five strains, identified as Bacillus pumilus, named 18 COPS, 35A COPS, 35R COPS, 38 COPS, and 40A COPS, showed strong antagonisms against several potential fish pathogens including Vibrio alginolyticus, V. anguillarum, Listeria monocytogenes, and Staphylococcus aureus. Furthermore, using a differential approach, we show that the antimicrobial activity of the 35R COPS strain is linked primarily to the production of antimicrobial compounds of the amicoumacin family, as demonstrated by the specific UV-absorbance and the MS/MS fragmentation patterns of these compounds. PMID:29085344

  13. A chemical proteomics approach reveals Hsp27 as a target for proapoptotic clerodane diterpenes.

    PubMed

    Faiella, Laura; Piaz, Fabrizio Dal; Bisio, Angela; Tosco, Alessandra; De Tommasi, Nunziatina

    2012-10-01

    Clerodane diterpenoids are a class of naturally occurring molecules widely distributed in the Lamiaceae family. Neo-clerodane diterpenoids from Salvia ssp were recently described as compounds inhibiting the proliferation of human cancer cell lines. To gain new insights into molecular mechanism(s) underlying the antitumor potential of this class of compounds, we used a chemical proteomics approach to analyse the cellular interactome of hardwickiic acid (HAA) selected as a representative molecule. HAA was linked to an opportune 1,1'-carbonyldiimidazole modified by 1,12-dodecanediamine and then immobilized on a matrix support. The modified beads were then used as bait for fishing the potential partners of HAA in a U937 cell lysate. We identified heat shock protein 27 (Hsp27), an ATP-independent antiapoptotic chaperone characterized for its tumorigenic and metastatic properties and now referenced as a major therapeutic target in many types of cancer, as a major HAA partner. Here, we also report the study of HAA-Hsp27 interaction by means of a panel of chemical and biological approaches, including surface plasmon resonance measurements limited proteolysis, and biochemical assays. Our data suggest that HAA could provide a potential tool to develop strategies for the discovery of Hsp27 chemical inhibitors.

  14. A survey of dioxin-like contaminants in fish from recreational fishing.

    PubMed

    Heimstad, Eldbjørg Sofie; Grønstøl, Gaute; Hetland, Karl Torstein; Alarcon, Javier Martinez; Rylander, Charlotta; Mariussen, Espen

    2015-08-01

    The dioxin and dioxin-like compounds are regarded as one of the most toxic group of environmental contaminants. Food for the commercial market is regularly monitored for their dioxin levels and the concentration allowed in food is strictly regulated. Less is known about locally caught fish from recreational fishing, which is often brought home for consumption. This can be fish caught from nearby lakes or streams or fish with marine origin close to industrial areas or harbours that are not regularly monitored for their dioxin levels. In this study, we established collaboration with schools in 13 countries. We received 203 samples of 29 different fish species of which Atlantic cod was the most abundant followed by brown trout and pollock. In general, the majority of samples from the participating countries had low concentrations (between 0.1 and 0.2 pg/g chemical-activated luciferase gene expression toxic equivalency wet weight (CALUX TEQ w.w.)) of dioxins and dioxin-like PCBs. Only 18 samples had concentrations above 1 pg/g CALUX TEQ w.w., and only 2 dab samples had concentration above maximum levels set by the European Commission. The Atlantic cod samples showed a significant reduction in the concentrations of dioxins with increasing latitude indicating less contamination of dioxin and dioxin-like compounds in the north of Norway. The results indicate that a moderate consumption of self-caught fish at presumed non-contaminated sites does not represent a major risk for exposure to dioxins or dioxin-like compounds at concentrations associated with adverse health effects. Recreational fishermen should, however, obtain knowledge about local fish consumption advice.

  15. A novel carbohydrate derived compound FCP5 causes DNA strand breaks and oxidative modifications of DNA bases in cancer cells.

    PubMed

    Czubatka, Anna; Sarnik, Joanna; Lucent, Del; Blasiak, Janusz; Witczak, Zbigniew J; Poplawski, Tomasz

    2015-02-05

    1,5-Anhydro-6-deoxy-methane-sulfamido-D-glucitol (FCP5) is a functionalized carbohydrate containing functional groups that render it potentially therapeutically useful. According to our concept of 'functional carb-pharmacophores' (FCPs) incorporation of the methanesulfonamido pharmacophore to 1,5 glucitol could create a therapeutically useful compound. Our previous studies revealed that FCP5 was cytotoxic to cancer cells. Therefore, in this work we assessed the cytotoxic mechanisms of FCP5 in four cancer cell lines - HeLa, LoVo, A549 and MCF-7, with particular focus on DNA damage and repair. A broad spectrum of methods, including comet assay with modifications, DNA repair enzyme assay, plasmid relaxation assay, and DNA fragmentation assay, were used. We also checked the potential for FCP5 to induce apoptosis. The results show that FCP5 can induce DNA strand breaks as well as oxidative modifications of DNA bases. DNA lesions induced by FCP5 were not entirely repaired in HeLa cells and DNA repair kinetics differs from other cell lines. Results from molecular docking and plasmid relaxation assay suggest that FCP5 binds to the major groove of DNA with a preference for adenosine-thymine base pair sequences and directly induces DNA strand breaks. Thus, FCP5 may represent a novel lead for the design of new major groove-binding compounds. The results also confirmed the validity of functional carb-pharmacophores as a new source of innovative drugs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Synthesis of Artemisinin-Derived Dimers, Trimers and Dendrimers: Investigation of Their Antimalarial and Antiviral Activities Including Putative Mechanisms of Action.

    PubMed

    Fröhlich, Tony; Hahn, Friedrich; Belmudes, Lucid; Leidenberger, Maria; Friedrich, Oliver; Kappes, Barbara; Couté, Yohann; Marschall, Manfred; Tsogoeva, Svetlana B

    2018-06-07

    Generation of dimers, trimers and dendrimers of bioactive compounds is an approach that has recently been developed for the discovery of new potent drug candidates. Herein, we present the synthesis of new artemisinin-derived dimers and dendrimers and investigate their action against malaria parasite Plasmodium falciparum 3D7 strain and human cytomegalovirus (HCMV). Dimer 7 was the most active compound (EC 50 1.4 nm) in terms of antimalarial efficacy and was even more effective than the standard drugs dihydroartemisinin (EC 50 2.4 nm), artesunic acid (EC 50 8.9 nm) and chloroquine (EC 50 9.8 nm). Trimer 4 stood out as the most active agent against HCMV in vitro replication and exerted an EC 50 value of 0.026 μm, representing an even higher activity than the two reference drugs ganciclovir (EC 50 2.60 μm) and artesunic acid (EC 50 5.41 μm). In addition, artemisinin-derived dimer 13 and trimer 15 were for the first time both immobilized on TOYOPEARL AF-Amino-650M beads and used for mass spectrometry-based target identification experiments using total lysates of HCMV-infected primary human fibroblasts. Two major groups of novel target candidates, namely cytoskeletal and mitochondrial proteins were obtained. Two putatively compound-binding viral proteins, namely major capsid protein (MCP) and envelope glycoprotein pUL132, which are both essential for HCMV replication, were identified. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mobilization and Transport of Organic Compounds from Reservoir Rock and Caprock in Geological Carbon Sequestration Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lirong; Cantrell, Kirk J.; Mitroshkov, Alexandre V.

    2014-05-06

    Supercritical CO2 (scCO2) is an excellent solvent for organic compounds, including benzene, toluene, ethyl-benzene, and xylene (BTEX), phenols, and polycyclic aromatic hydrocarbons (PAHs). Monitoring results from geological carbon sequestration (GCS) field tests has shown that organic compounds are mobilized following CO2 injection. Such results have raised concerns regarding the potential for groundwater contamination by toxic organic compounds mobilized during GCS. Knowledge of the mobilization mechanism of organic compounds and their transport and fate in the subsurface is essential for assessing risks associated with GCS. Extraction tests using scCO2 and methylene chloride (CH2Cl2) were conducted to study the mobilization of volatilemore » organic compounds (VOCs, including BTEX), the PAH naphthalene, and n-alkanes (n-C20 – n-C30) by scCO2 from representative reservoir rock and caprock obtained from depleted oil reservoirs and coal from an enhanced coal-bed methane recovery site. More VOCs and naphthalene were extractable by scCO2 compared to the CH2Cl2 extractions, while scCO2 extractable alkane concentrations were much lower than concentrations extractable by CH2Cl2. In addition, dry scCO2 was found to extract more VOCs than water saturated scCO2, but water saturated scCO2 mobilized more naphthalene than dry scCO2. In sand column experiments, moisture content was found to have an important influence on the transport of the organic compounds. In dry sand columns the majority of the compounds were retained in the column except benzene and toluene. In wet sand columns the mobility of the BTEX was much higher than that of naphthalene. Based upon results determined for the reservoir rock, caprock, and coal samples studied here, the risk to aquifers from contamination by organic compounds appears to be relatively low; however, further work is necessary to fully evaluate risks from depleted oil reservoirs.« less

  18. Synthetic organic agrochemicals in the lower Mississippi River and its major tributaries: Distribution, transport and fate

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.; ,

    1992-01-01

    The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2',6'-diethylacetanilide, 2-hydroxy-2',6'-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987-1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be < 2% of the annual application of each herbicide in the Midwest.The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2???,6???-diethylacetanilide, 2-hydroxy-2???,6???-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987-1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be <2% of the annual application of each herbicide in the Midwest.

  19. Metabolomic Studies in Drosophila.

    PubMed

    Cox, James E; Thummel, Carl S; Tennessen, Jason M

    2017-07-01

    Metabolomic analysis provides a powerful new tool for studies of Drosophila physiology. This approach allows investigators to detect thousands of chemical compounds in a single sample, representing the combined contributions of gene expression, enzyme activity, and environmental context. Metabolomics has been used for a wide range of studies in Drosophila , often providing new insights into gene function and metabolic state that could not be obtained using any other approach. In this review, we survey the uses of metabolomic analysis since its entry into the field. We also cover the major methods used for metabolomic studies in Drosophila and highlight new directions for future research. Copyright © 2017 by the Genetics Society of America.

  20. The antioxidant activitives of mango peel among different cultivars

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Ge; Zhang, Xiu-Mei; Ma, Fei-Yue; Fu, Qiong

    2017-04-01

    In this paper, the contents of total phenol and total flavonoid of 8 mango cultivars were determined. Their antioxidant abilities were also evaluated by 1,1-diphenyl-2-pireyhydrazyl (DPPH) radical scavenging, trolox equivalent antioxidant capacity (TEAC) and ferric reducing antioxidant power (FRAP). Correlations between total phenol, total flavonoid and FRAP as well as TEAC were also analyzed. Results showed that mango peels were rich in natural antioxidant compounds the antioxidant abilities were different among different cultivars. The correlations between total phenol, total flavonoid and FRAP indicated phenolics represent a major part of antioxidant capacity in mango peels. This was also useful in the utilization of mango processing waste.

  1. 1H NMR study of fermented cocoa (Theobroma cacao L.) beans.

    PubMed

    Caligiani, Augusta; Acquotti, Domenico; Cirlini, Martina; Palla, Gerardo

    2010-12-08

    This study reports for the first time the metabolic profile of cocoa (Theobroma cacao L.) beans using the (1)H NMR technique applied to polar extracts of fermented cocoa beans. The simultaneous detection and quantification of amino acids, polyalcohols, organic acids, sugars, methylxanthines, catechins, and phenols were obtained by assigning the major signals of the spectra for different varieties of cocoa beans (Forastero, Criollo, and Trinitario) from different countries (Ecuador, Ghana, Grenada, and Trinidad). The data set obtained, representative of all classes of soluble compounds of cocoa, was useful to characterize the fermented cocoa beans as a function of the variety and geographic origin.

  2. Design of a fragment library that maximally represents available chemical space.

    PubMed

    Schulz, M N; Landström, J; Bright, K; Hubbard, R E

    2011-07-01

    Cheminformatics protocols have been developed and assessed that identify a small set of fragments which can represent the compounds in a chemical library for use in fragment-based ligand discovery. Six different methods have been implemented and tested on Input Libraries of compounds from three suppliers. The resulting Fragment Sets have been characterised on the basis of computed physico-chemical properties and their similarity to the Input Libraries. A method that iteratively identifies fragments with the maximum number of similar compounds in the Input Library (Nearest Neighbours) produces the most diverse library. This approach could increase the success of experimental ligand discovery projects, by providing fragments that can be progressed rapidly to larger compounds through access to available similar compounds (known as SAR by Catalog).

  3. ACUTE TOXICITY OF SELECTED ORGANIC COMPOUNDS TO FATHEAD MINNOWS

    EPA Science Inventory

    Static nonrenewal laboratory bioassays were conducted with 26 organic compounds commonly used by industry. The selected compounds represented the five following chemical classes: acids, alcohols, hydrocarbons, ketones and aldehydes, and phenols. Juvenile fathead minnows (Pimephal...

  4. Identification and quantification of a major anti-oxidant and anti-inflammatory phenolic compound found in basil, lemon, thyme, mint, oregano, rosemary, sage, and thyme

    USDA-ARS?s Scientific Manuscript database

    Basil, lemon thyme, mint, oregano, rosemary, sage, and thyme are in the mint family of plants that are used as culinary herbs world-wide. These herbs contain phenolic compounds that are believed to have strong antioxidant and anti-inflammatory activities. Therefore, the major phenolic compounds fr...

  5. Chemical composition of essential oils and in vitro antioxidant activity of fresh and dry leaves crude extracts of medicinal plant of Lactuca Sativa L. native to Sultanate of Oman.

    PubMed

    Al Nomaani, Rahma Said Salim; Hossain, Mohammad Amzad; Weli, Afaf Mohammed; Al-Riyami, Qasim; Al-Sabahi, Jamal Nasser

    2013-05-01

    To isolate and analyse the chemical composition in the essential oils and free radical scavenging activity of different crude extracts from the fresh and dry leaves of vegetable plants of Lactuca sativa L. (L. sativa). The essential oils and volatile chemical constituents were isolated from the fresh and dry leaves of L. sativa (lettuce) grown in Sultanate of Oman by hydro distillation method. The antioxidant activity of the crude extracts was carried out by well established free radical scavenging activity (DPPH) method. About 20 chemical compounds of different concentration representing 83.07% and 79.88% respectively were isolated and identified by gas chromatography-mass spectroscopy in the essential oils isolated from the fresh and dry leaves as α-pinene (5.11% and 4.05%), γ-cymene (2.07% and 1.92%), thymol (11.55% and 10.73%), durenol (52.00% and 49.79%), α-terpinene (1.66% and 1.34%), thymol acetate (0.99% and 0.67%), caryophyllene (2.11% and 1.98%), spathulenol (3.09% and 2.98%), camphene (4.11% and 3.65%), limonene (1.28% and 1.11%) representing these major chemical compounds. However, some other minor chemical constituents were also isolated and identified from the essential oil of lettuce including β-pinene, α-terpinolene, linalool, 4-terpineol, α-terpineol, o-methylthymol, L-alloaromadendrene and viridiflorene. The chemical constituents in the essential oils from the locally grown lettuce were identified in the following classes or groups of chemical compounds such as monoterpenes, sesquiterpenes volatile organic compounds and their oxygenated hydrocarbons. Therefore, the essential oils and the crude extracts from Omani vegetable species of lettuce are active candidates which would be used as antioxidant, antifungal or antimicrobial agents in new drugs preparation for therapy of infectious diseases.

  6. Chemical composition of essential oils and in vitro antioxidant activity of fresh and dry leaves crude extracts of medicinal plant of Lactuca Sativa L. native to Sultanate of Oman

    PubMed Central

    Al Nomaani, Rahma Said Salim; Hossain, Mohammad Amzad; Weli, Afaf Mohammed; Al-Riyami, Qasim; Al-Sabahi, Jamal Nasser

    2013-01-01

    Objective To isolate and analyse the chemical composition in the essential oils and free radical scavenging activity of different crude extracts from the fresh and dry leaves of vegetable plants of Lactuca sativa L. (L. sativa). Methods The essential oils and volatile chemical constituents were isolated from the fresh and dry leaves of L. sativa (lettuce) grown in Sultanate of Oman by hydro distillation method. The antioxidant activity of the crude extracts was carried out by well established free radical scavenging activity (DPPH) method. Results About 20 chemical compounds of different concentration representing 83.07% and 79.88% respectively were isolated and identified by gas chromatography-mass spectroscopy in the essential oils isolated from the fresh and dry leaves as α-pinene (5.11% and 4.05%), γ-cymene (2.07% and 1.92%), thymol (11.55% and 10.73%), durenol (52.00% and 49.79%), α-terpinene (1.66% and 1.34%), thymol acetate (0.99% and 0.67%), caryophyllene (2.11% and 1.98%), spathulenol (3.09% and 2.98%), camphene (4.11% and 3.65%), limonene (1.28% and 1.11%) representing these major chemical compounds. However, some other minor chemical constituents were also isolated and identified from the essential oil of lettuce including β-pinene, α-terpinolene, linalool, 4-terpineol, α-terpineol, o-methylthymol, L-alloaromadendrene and viridiflorene. Conclusions The chemical constituents in the essential oils from the locally grown lettuce were identified in the following classes or groups of chemical compounds such as monoterpenes, sesquiterpenes volatile organic compounds and their oxygenated hydrocarbons. Therefore, the essential oils and the crude extracts from Omani vegetable species of lettuce are active candidates which would be used as antioxidant, antifungal or antimicrobial agents in new drugs preparation for therapy of infectious diseases. PMID:23646297

  7. Identification of compounds in an anti-fibrosis Chinese medicine (Fufang Biejia Ruangan Pill) and its absorbed components in rat biofluids and liver by UPLC-MS.

    PubMed

    Dong, Qin; Qiu, Ling-Ling; Zhang, Cong-En; Chen, Long-Hu; Feng, Wu-Wen; Ma, Li-Na; Yan, Dan; Niu, Ming; Wang, Jia-Bo; Xiao, Xiao-He

    2016-07-15

    Liver fibrosis represents a major public health problem worldwide. To date, antifibrotic treatment of fibrosis still remains an unconquered area for western medicine. Fufang Biejia Ruangan Pill (FFBJ) is the first anti-fibrosis drug approved by the China State Food and Drug Administration, and has been demonstrated to have a good antifibrotic efficacy in China. However, the chemical constituents of FFBJ and the absorption and distribution of it in vivo remain unclear, which restricts its research on bioactive components identification and mechanisms of action. In this study, ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) combined with ultra-performance liquid chromatography/triple quadrupole mass spectrometry (UPLC/QqQ-MS) was applied to identify compounds in FFBJ and its absorbed components in rat serum, liver and urine samples after intragastric administration of FFBJ. As a result, a total of 32 Chinese material medica components including organic acids, terpenoids, flavonoids, phenylpropanoids and alkaloids, were identified or tentatively characterized, while the distribution of 10 prototype compounds in rat serum, liver and urine were discovered. The identified constituents in FFBJ and the distribution of prototype compounds in rat serum, liver and urine are help for understanding the material bases of its therapeutic effects. Copyright © 2016. Published by Elsevier B.V.

  8. Rebelling against the (Insulin) Resistance: A Review of the Proposed Insulin-Sensitizing Actions of Soybeans, Chickpeas, and Their Bioactive Compounds

    PubMed Central

    Zahradka, Peter

    2018-01-01

    Insulin resistance is a major risk factor for diseases such as type 2 diabetes and metabolic syndrome. Current methods for management of insulin resistance include pharmacological therapies and lifestyle modifications. Several clinical studies have shown that leguminous plants such as soybeans and pulses (dried beans, dried peas, chickpeas, lentils) are able to reduce insulin resistance and related type 2 diabetes parameters. However, to date, no one has summarized the evidence supporting a mechanism of action for soybeans and pulses that explains their ability to lower insulin resistance. While it is commonly assumed that the biological activities of soybeans and pulses are due to their antioxidant activities, these bioactive compounds may operate independent of their antioxidant properties and, thus, their ability to potentially improve insulin sensitivity via alternative mechanisms needs to be acknowledged. Based on published studies using in vivo and in vitro models representing insulin resistant states, the proposed mechanisms of action for insulin-sensitizing actions of soybeans, chickpeas, and their bioactive compounds include increasing glucose transporter-4 levels, inhibiting adipogenesis by down-regulating peroxisome proliferator-activated receptor-γ, reducing adiposity, positively affecting adipokines, and increasing short-chain fatty acid-producing bacteria in the gut. Therefore, this review will discuss the current evidence surrounding the proposed mechanisms of action for soybeans and certain pulses, and their bioactive compounds, to effectively reduce insulin resistance. PMID:29601521

  9. Experimental basis for a role for sulfhydryls and dopamine in ulcerogenesis: a primer for cytoprotection--organoprotection.

    PubMed

    Szabo, S

    1986-01-01

    This brief review presents the evolution of the concept of cytoprotection which was originally described by Robert (1979) to represent prevention of chemically induced hemorrhagic gastric erosions without inhibiting acid secretion. Prostaglandins (PG) and sulfhydryls (SH) protect only against deep hemorrhagic necrosis in the mucosa without altering the initial damage to surface epithelial cells. Organ integrity and function are thus maintained (i.e., organoprotection) despite the loss of several layers of mucosal cells. While both PG and SH are natural products it must be stressed that only SH compounds can enter directly into protective reactions (e.g., free radical scavenging, modification of receptor SH groups, oxidation of certain structural and enzyme proteins). In addition, SH compounds also stimulate PG synthesis. A major target of gastroprotection by either PG or SH is the preservation of mucosal microvasculature to maintain blood flow for rapid restitution and cell proliferation. Dopamine-related compounds are reviewed because of their possible role in duodenal ulceration. Dopamine and dopamine agonists are antiulcerogens in duodenal ulcer models. Dopamine antagonists are proulcerogens and the dopamine neurotoxin MPTP causes duodenal ulcer in experimental animals. The mechanism of duodenal antiulcerogenic effect involves inhibition of gastric acid and pepsin secretion, stimulation of duodenal bicarbonate secretion, correction of duodenal dysmotility, and maybe increased blood flow. Because of their multiple beneficial effects, SH compounds and dopamine drugs are good models for gastroenteroprotection.

  10. ATP-sulfurylase, sulfur-compounds, and plant stress tolerance

    PubMed Central

    Anjum, Naser A.; Gill, Ritu; Kaushik, Manjeri; Hasanuzzaman, Mirza; Pereira, Eduarda; Ahmad, Iqbal; Tuteja, Narendra; Gill, Sarvajeet S.

    2015-01-01

    Sulfur (S) stands fourth in the list of major plant nutrients after N, P, and K. Sulfate (SO42-), a form of soil-S taken up by plant roots is metabolically inert. As the first committed step of S-assimilation, ATP-sulfurylase (ATP-S) catalyzes SO42--activation and yields activated high-energy compound adenosine-5′-phosphosulfate that is reduced to sulfide (S2-) and incorporated into cysteine (Cys). In turn, Cys acts as a precursor or donor of reduced S for a range of S-compounds such as methionine (Met), glutathione (GSH), homo-GSH (h-GSH), and phytochelatins (PCs). Among S-compounds, GSH, h-GSH, and PCs are known for their involvement in plant tolerance to varied abiotic stresses, Cys is a major component of GSH, h-GSH, and PCs; whereas, several key stress-metabolites such as ethylene, are controlled by Met through its first metabolite S-adenosylmethionine. With the major aim of briefly highlighting S-compound-mediated role of ATP-S in plant stress tolerance, this paper: (a) overviews ATP-S structure/chemistry and occurrence, (b) appraises recent literature available on ATP-S roles and regulations, and underlying mechanisms in plant abiotic and biotic stress tolerance, (c) summarizes ATP-S-intrinsic regulation by major S-compounds, and (d) highlights major open-questions in the present context. Future research in the current direction can be devised based on the discussion outcomes. PMID:25904923

  11. Taxonomic and phytogeographic implications from ITS phylogeny in Berberis (Berberidaceae).

    PubMed

    Kim, Young-Dong; Kim, Sung-Hee; Landrum, Leslie R

    2004-06-01

    A phylogeny based on the internal transcribed spacer (ITS) sequences from 79 taxa representing much of the diversity of Berberis L. (four major groups and 22 sections) was constructed for the first time. The phylogeny was basically congruent with the previous classification schemes at higher taxonomic levels, such as groups and subgroups. A notable exception is the non-monophyly of the group Occidentales of compound-leaved Berberis (previously separated as Mahonia). At lower levels, however, most of previous sections and subsections were not evident especially in simple-leaved Berberis. Possible relationship between section Horridae (group Occidentales) and the simple-leaved Berberis clade implies paraphyly of the compound-leaved Berberis. A well-known South America-Old World (mainly Asia) disjunctive distribution pattern of the simple-leaved Berberis is explained by a vicariance event occurring in the Cretaceous period. The ITS phylogeny also suggests that a possible connection between the Asian and South American groups through the North American species ( Berberis canadensis or B. fendleri) is highly unlikely.

  12. Three-way principal component analysis of the volatile fraction by HS-SPME/GC of aceto balsamico tradizionale of modena.

    PubMed

    Cocchi, Marina; Durante, Caterina; Grandi, Margherita; Manzini, Daniela; Marchetti, Andrea

    2008-01-15

    The present research is aimed at monitoring the evolution of the volatile organic compounds of different samples of aceto balsamico tradizionale of modena (ABTM) during ageing. The flavouring compounds, headspace fraction, of the vinegars of four batterie were sampled by solid phase microextraction technique (SPME), and successively analysed by gas chromatography. Obtaining a data set characterized by different sources of variability such as, different producers, samples of different age and chromatographic profile. The gas chromatographic signals were processed by a three-way data analysis method (Tucker3), which allows an easy visualisation of the data by furnishing a distinct set of graphs for each source of variability. The obtained results indicate that the samples can be separated according to their age highlighting the chemical constituents, which play a major role for their differentiation. The present study represents an example of how the application of Tucker3 models, on gas chromatographic signals may help to follow the transformation processes of food products.

  13. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis.

    PubMed

    Mei, Feng; Fancy, Stephen P J; Shen, Yun-An A; Niu, Jianqin; Zhao, Chao; Presley, Bryan; Miao, Edna; Lee, Seonok; Mayoral, Sonia R; Redmond, Stephanie A; Etxeberria, Ainhoa; Xiao, Lan; Franklin, Robin J M; Green, Ari; Hauser, Stephen L; Chan, Jonah R

    2014-08-01

    Functional screening for compounds that promote remyelination represents a major hurdle in the development of rational therapeutics for multiple sclerosis. Screening for remyelination is problematic, as myelination requires the presence of axons. Standard methods do not resolve cell-autonomous effects and are not suited for high-throughput formats. Here we describe a binary indicant for myelination using micropillar arrays (BIMA). Engineered with conical dimensions, micropillars permit resolution of the extent and length of membrane wrapping from a single two-dimensional image. Confocal imaging acquired from the base to the tip of the pillars allows for detection of concentric wrapping observed as 'rings' of myelin. The platform is formatted in 96-well plates, amenable to semiautomated random acquisition and automated detection and quantification. Upon screening 1,000 bioactive molecules, we identified a cluster of antimuscarinic compounds that enhance oligodendrocyte differentiation and remyelination. Our findings demonstrate a new high-throughput screening platform for potential regenerative therapeutics in multiple sclerosis.

  14. New isoxazolidinone and 3,4-dehydro-β-proline derivatives as antibacterial agents and MAO-inhibitors: A complex balance between two activities.

    PubMed

    Ferrazzano, Lucia; Viola, Angelo; Lonati, Elena; Bulbarelli, Alessandra; Musumeci, Rosario; Cocuzza, Clementina; Lombardo, Marco; Tolomelli, Alessandra

    2016-11-29

    Among the different classes of antibiotics, oxazolidinone derivatives represent important drugs, since their unique mechanism of action overcomes commonly diffused multidrug-resistant bacteria. Anyway, the structural similarity of these molecules to monoamino oxidase (MAO) inhibitors, like toloxatone and blefoxatone, induces in many cases loss of selectivity as a major concern. A small library of compounds based on isoxazolidinone and dehydro-β-proline scaffold was designed with the aim to obtain antibacterial agents, evaluating at the same time the potential effects of structural features on MAO inhibitory behaviour. The structural modification introduced in the backbone, starting from Linezolid model, lead to a significant loss in antibiotic activity, while a promising inhibitory effect could be observed on monoamino oxidases. These interesting results are also in agreement with docking experiments suggesting a good binding pose of the synthesized compounds into the pocket of the oxidase enzymes, in particular of MAO-B. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Endophytic Fungi—Alternative Sources of Cytotoxic Compounds: A Review

    PubMed Central

    Uzma, Fazilath; Mohan, Chakrabhavi D.; Hashem, Abeer; Konappa, Narasimha M.; Rangappa, Shobith; Kamath, Praveen V.; Singh, Bhim P.; Mudili, Venkataramana; Gupta, Vijai K.; Siddaiah, Chandra N.; Chowdappa, Srinivas; Alqarawi, Abdulaziz A.; Abd_Allah, Elsayed F.

    2018-01-01

    Cancer is a major cause of death worldwide, with an increasing number of cases being reported annually. The elevated rate of mortality necessitates a global challenge to explore newer sources of anticancer drugs. Recent advancements in cancer treatment involve the discovery and development of new and improved chemotherapeutics derived from natural or synthetic sources. Natural sources offer the potential of finding new structural classes with unique bioactivities for cancer therapy. Endophytic fungi represent a rich source of bioactive metabolites that can be manipulated to produce desirable novel analogs for chemotherapy. This review offers a current and integrative account of clinically used anticancer drugs such as taxol, podophyllotoxin, camptothecin, and vinca alkaloids in terms of their mechanism of action, isolation from endophytic fungi and their characterization, yield obtained, and fungal strain improvement strategies. It also covers recent literature on endophytic fungal metabolites from terrestrial, mangrove, and marine sources as potential anticancer agents and emphasizes the findings for cytotoxic bioactive compounds tested against specific cancer cell lines. PMID:29755344

  16. GC-MS and GC-IR Analyses of the Methoxy-1-n-pentyl-3-(1-naphthoyl)-indoles: Regioisomeric Designer Cannabinoids.

    PubMed

    Thaxton-Weissenfluh, Amber; Belal, Tarek S; DeRuiter, Jack; Smith, Forrest; Abiedalla, Younis; Neel, Logan; Abdel-Hay, Karim M; Clark, C Randall

    2018-06-16

    The indole ring regioisomeric methoxy-1-n-pentyl-3-(1-naphthoyl)-indoles represent indole ring-substituted analogs of the synthetic cannabinoid JWH-018. The electron ionization mass spectra show equivalent regioisomeric major fragments resulting from cleavage of the groups attached to the central indole nucleus. The characteristic (M-17)+ fragment ion at m/z 354 resulting from the loss of OH group is significant in the mass spectra of all four compounds. Fragmentation of the naphthoyl and/or pentyl groups yields the cations at m/z 314, 300, 244 and 216. The vapor-phase infrared spectra provide a number of characteristic absorption bands to identify the individual isomers. Gas chromatographic separations on a capillary column containing a film of trifluoropropylmethyl polysiloxane (Rtx-200) provided excellent resolution of these compounds, their precursor indoles and intermediate pentylindoles. The elution order appears related to the degree of crowding of indole ring substituents.

  17. Investigation of CO2 precursors in roasted coffee.

    PubMed

    Wang, Xiuju; Lim, Loong-Tak

    2017-03-15

    Two CO 2 formation pathways (chlorogenic acid (CGA) degradation and Maillard reaction) during coffee roasting were investigated. CGA is shown not a major contributor to CO 2 formation, as heating of this compound under typical roasting conditions did not release a large quantity of CO 2 . However, heating of a CGA moiety, caffeic acid, resulted in high yield of CO 2 (>98%), suggesting that CGA hydrolysis could be the rate limiting step for CO 2 formation from CGA. A large amount of CO 2 was detected from glycine-sucrose model system under coffee roasting conditions, implying the importance of Maillard reactions in CO 2 formation. Further studies on the heating of various components isolated from green coffee beans showed that CO 2 was generated from various green coffee components, including water insoluble proteins and polysaccharides. Around 50% of CO 2 was formed from thermal reactions of lower molecular weight compounds that represent ∼25% by weight in green coffee. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The Organic Composition of Carbonaceous Meteorites: The Evolutionary Story Ahead of Biochemistry

    PubMed Central

    Pizzarello, Sandra; Shock, Everett

    2010-01-01

    Carbon-containing meteorites provide a natural sample of the extraterrestrial organic chemistry that occurred in the solar system ahead of life's origin on the Earth. Analyses of 40 years have shown the organic content of these meteorites to be materials as diverse as kerogen-like macromolecules and simpler soluble compounds such as amino acids and polyols. Many meteoritic molecules have identical counterpart in the biosphere and, in a primitive group of meteorites, represent the majority of their carbon. Most of the compounds in meteorites have isotopic compositions that date their formation to presolar environments and reveal a long and active cosmochemical evolution of the biogenic elements. Whether this evolution resumed on the Earth to foster biogenesis after exogenous delivery of meteoritic and cometary materials is not known, yet, the selective abundance of biomolecule precursors evident in some cosmic environments and the unique L-asymmetry of some meteoritic amino acids are suggestive of their possible contribution to terrestrial molecular evolution. PMID:20300213

  19. Organotins in fish muscle and liver from the Polish coast of the Baltic Sea: Is the total ban successful?

    PubMed

    Filipkowska, Anna; Złoch, Ilona; Wawrzyniak-Wydrowska, Brygida; Kowalewska, Grażyna

    2016-10-15

    Muscle and liver tissues of nine fish species were analyzed to assess butyltin and phenyltin contamination. The samples were collected from three basins located in the Southern Baltic Sea coastal zone that each represent different potential for organotin pollution. Maximum total concentrations of butyltin compounds (BTs) in the fish muscles and livers were 715 and 1132ng Sn g(-1) d.w., respectively, whereas triphenyltin (TPhT) was not detected. In the muscle samples, the predominant compound in the sum of butyltins was tributyltin (TBT), while in the liver samples, tributyltin degradation products were found in the majority. The results demonstrate that 6-7years after the implementation of the total ban on harmful organotin use in antifouling paints, butyltins remain present in fishes from the Polish coast of the Baltic Sea. According to the HELCOM recommendation, eight samples exceeded the good environmental status boundary for tributyltin in seafood. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Augmented multivariate image analysis applied to quantitative structure-activity relationship modeling of the phytotoxicities of benzoxazinone herbicides and related compounds on problematic weeds.

    PubMed

    Freitas, Mirlaine R; Matias, Stella V B G; Macedo, Renato L G; Freitas, Matheus P; Venturin, Nelson

    2013-09-11

    Two of major weeds affecting cereal crops worldwide are Avena fatua L. (wild oat) and Lolium rigidum Gaud. (rigid ryegrass). Thus, development of new herbicides against these weeds is required; in line with this, benzoxazinones, their degradation products, and analogues have been shown to be important allelochemicals and natural herbicides. Despite earlier structure-activity studies demonstrating that hydrophobicity (log P) of aminophenoxazines correlates to phytotoxicity, our findings for a series of benzoxazinone derivatives do not show any relationship between phytotoxicity and log P nor with other two usual molecular descriptors. On the other hand, a quantitative structure-activity relationship (QSAR) analysis based on molecular graphs representing structural shape, atomic sizes, and colors to encode other atomic properties performed very accurately for the prediction of phytotoxicities of these compounds against wild oat and rigid ryegrass. Therefore, these QSAR models can be used to estimate the phytotoxicity of new congeners of benzoxazinone herbicides toward A. fatua L. and L. rigidum Gaud.

  1. Beneficial effects of cinnamon proanthocyanidins on the formation of specific advanced glycation endproducts and methylglyoxal-induced impairment on glucose consumption.

    PubMed

    Peng, Xiaofang; Ma, Jinyu; Chao, Jianfei; Sun, Zheng; Chang, Raymond Chuen-Chung; Tse, Iris; Li, Edmund T S; Chen, Feng; Wang, Mingfu

    2010-06-09

    Advanced glycation endproducts (AGEs) are a group of complex and heterogeneous compounds formed from nonenzymatic reactions. The accumulation of AGEs in vivo has been implicated as a major pathogenic process in diabetic complications and other health disorders, such as atherosclerosis and Alzheimer's disease, and normal aging. In this study, we investigate the inhibitory effects of cinnamon bark proanthocyanidins, catechin, epicatechin, and procyanidin B2 on the formation of specific AGE representatives including pentosidine, N(epsilon)-(carboxymethyl)lysine (CML), and methylglyoxal (MGO) derived AGEs. These compounds displayed obvious inhibitory effects on these specific AGEs, which are largely attributed to both their antioxidant activities and carbonyl scavenging capacities. Meanwhile, in terms of their potent MGO scavenging capacities, effects of these proanthocyanidins on insulin signaling pathways interfered by MGO were evaluated in 3T3-L1 adipocytes. According to the results, proanthocyanidins exerted protective effects on glucose consumption impaired by MGO in 3T3-L1 fat cells.

  2. Possible complex organic compounds on Mars.

    PubMed

    Kobayashi, K; Sato, T; Kajishima, S; Kaneko, T; Ishikawa, Y; Saito, T

    1997-01-01

    It is suggested that primitive Mars had somehow similar environments as primitive Earth. If life was born on the primitive earth using organic compounds which were produced from the early Earth environment, the same types of organic compounds were also formed on primitive Mars. Such organic compounds might have been preserved on Mars still now. We are studying possible organic formation on primitive and present Mars. A gaseous mixture of CO2, CO, N2 and H2O with various mixing ratios were irradiated with high energy protons (major components of cosmic rays). Hydrogen cyanide and formaldehyde were detected among volatile products, and yellow-brown-colored water-soluble non-volatile substances were produced, which gave amino acids after acid-hydrolysis. Major part of "amino acid precursors" were not simple molecules like aminonitriles, but complex compounds which eluted earlier than free amino acids in cation-exchange HPLC. These organic compounds should be major targets in the future Mars mission. Strategy for the detection of the complex organics on Mars will be discussed.

  3. SNRB{trademark} air toxics monitoring. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-01

    Babcock & Wilcox (B&W) is currently conducting a project under the DOE`s Clean Coal Technology (CCT II) Program to demonstrate its SO{sub x}NO{sub x}-Rox Box{trademark} (SNRB{trademark}) process in a 5 MWe Field Demonstration Unit at Ohio Edison`s R. E. Burger Plant near Shadyside, Ohio. The objective of the SNRB{trademark} Air Toxics Monitoring Project was to provide data on SNRB{trademark} air toxics emissions control performance to B&W and to add to the DOE/EPRI/EPA data base by quantifying the flow rates of selected hazardous substances (or air toxics) in all of the major input and output streams of the SNRB{trademark} process asmore » well as the power plant. Work under the project included the collection and analysis of representative samples of all major input and output streams of the SNRB{trademark} demonstration unit and the power plant, and the subsequent laboratory analysis of these samples to determine the partitioning of the hazardous substances between the various process streams. Material balances for selected air toxics were subsequently calculated around the SNRB{trademark} and host boiler systems, including the removal efficiencies across each of the major air pollution control devices. This report presents results of the SNRB{trademark} Air Toxics Monitoring Project. In addition to the Introduction, a brief description of the test site, including the Boiler No. 8 and the SNRB{trademark} process, is included in Section H. The concentrations of air toxic emissions are presented in Section II according to compound class. Material balances are included in Section IV for three major systems: boiler, electrostatic precipitator, and SNRB{trademark}. Emission factors and removal efficiencies are also presented according to compound class in Sections V and VI, respectively. A data evaluation is provided in Section VII.« less

  4. ADHD-associated dopamine transporter, latrophilin and neurofibromin share a dopamine-related locomotor signature in Drosophila

    PubMed Central

    van der Voet, M; Harich, B; Franke, B; Schenck, A

    2016-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neuropsychiatric disorder with hyperactivity as one of the hallmarks. Aberrant dopamine signaling is thought to be a major theme in ADHD, but how this relates to the vast majority of ADHD candidate genes is illusive. Here we report a Drosophila dopamine-related locomotor endophenotype that is shared by pan-neuronal knockdown of orthologs of the ADHD-associated genes Dopamine transporter (DAT1) and Latrophilin (LPHN3), and of a gene causing a monogenic disorder with frequent ADHD comorbidity: Neurofibromin (NF1). The locomotor signature was not found in control models and could be ameliorated by methylphenidate, validating its relevance to symptoms of the disorder. The Drosophila ADHD endophenotype can be further exploited in high throughput to characterize the growing number of candidate genes. It represents an equally useful outcome measure for testing chemical compounds to define novel treatment options. PMID:25962619

  5. Octanoic acid confers to royal jelly varroa-repellent properties

    NASA Astrophysics Data System (ADS)

    Nazzi, Francesco; Bortolomeazzi, Renzo; Della Vedova, Giorgio; Del Piccolo, Fabio; Annoscia, Desiderato; Milani, Norberto

    2009-02-01

    The mite Varroa destructor Anderson & Trueman is a parasite of the honeybee Apis mellifera L. and represents a major threat for apiculture in the Western world. Reproduction takes place only inside bee brood cells that are invaded just before sealing; drone cells are preferred over worker cells, whereas queen cells are not normally invaded. Lower incidence of mites in queen cells is at least partly due to the deterrent activity of royal jelly. In this study, the repellent properties of royal jelly were investigated using a lab bioassay. Chemical analysis showed that octanoic acid is a major volatile component of royal jelly; by contrast, the concentration is much lower in drone and worker larval food. Bioassays, carried out under lab conditions, demonstrated that octanoic acid is repellent to the mite. Field studies in bee colonies confirmed that the compound may interfere with the process of cell invasion by the mite.

  6. Oxidative stress and adipocyte biology: focus on the role of AGEs.

    PubMed

    Boyer, Florence; Vidot, Jennifer Baraka; Dubourg, Alexis Guerin; Rondeau, Philippe; Essop, M Faadiel; Bourdon, Emmanuel

    2015-01-01

    Diabetes is a major health problem that is usually associated with obesity, together with hyperglycemia and increased advanced glycation endproducts (AGEs) formation. Elevated AGEs elicit severe downstream consequences via their binding to receptors of AGEs (RAGE). This includes oxidative stress and oxidative modifications of biological compounds together with heightened inflammation. For example, albumin (major circulating protein) undergoes increased glycoxidation with diabetes and may represent an important biomarker for monitoring diabetic pathophysiology. Despite the central role of adipose tissue in many physiologic/pathologic processes, recognition of the effects of greater AGEs formation in this tissue is quite recent within the obesity/diabetes context. This review provides a brief background of AGEs formation and adipose tissue biology and thereafter discusses the impact of AGEs-adipocyte interactions in pathology progression. Novel data are included showing how AGEs (especially glycated albumin) may be involved in hyperglycemia-induced oxidative damage in adipocytes and its potential links to diabetes progression.

  7. Mn K-Edge XANES and Kβ XES Studies of Two Mn–Oxo Binuclear Complexes: Investigation of Three Different Oxidation States Relevant to the Oxygen-Evolving Complex of Photosystem II

    PubMed Central

    Visser, Hendrik; Anxolabéhère-Mallart, Elodie; Bergmann, Uwe; Glatzel, Pieter; Robblee, John H.; Cramer, Stephen P.; Girerd, Jean-Jacques; Sauer, Kenneth; Klein, Melvin P.; Yachandra, Vittal K.

    2014-01-01

    Two structurally homologous Mn compounds in different oxidation states were studied to investigate the relative influence of oxidation state and ligand environment on Mn K-edge X-ray absorption near-edge structure (XANES) and Mn Kβ X-ray emission spectroscopy (Kβ XES). The two manganese compounds are the di-μ-oxo compound [L′2MnIIIO2MnIVL′2](ClO4)3, where L′ is 1,10-phenanthroline (Cooper, S. R.; Calvin, M. J. Am. Chem. Soc. 1977, 99, 6623–6630) and the linear mono-μ-oxo compound [LMnIIIOMnIIIL](ClO4)2, where L− is the monoanionic N,N-bis(2-pyridylmethyl)-N′-salicylidene-1,2-diaminoethane ligand (Horner, O.; Anxolabéhère-Mallart, E.; Charlot, M. F.; Tchertanov, L.; Guilhem, J.; Mattioli, T. A.; Boussac, A.; Girerd, J.-J. Inorg. Chem. 1999, 38, 1222–1232). Preparative bulk electrolysis in acetonitrile was used to obtain higher oxidation states of the compounds: the MnIVMnIV species for the di-μ-oxo compound and the MnIIIMnIV and MnIVMnIV species for the mono-μ-oxo compound. IR, UV/vis, EPR, and EXAFS spectra were used to determine the purity and integrity of the various sample solutions. The Mn K-edge XANES spectra shift to higher energy upon oxidation when the ligand environment remains similar. However, shifts in energy are also observed when only the ligand environment is altered. This is achieved by comparing the di-μ-oxo and linear mono-μ-oxo Mn–Mn moieties in equivalent oxidation states, which represent major structural changes. The magnitude of an energy shift due to major changes in ligand environment can be as large as that of an oxidation-state change. Therefore, care must be exercised when correlating the Mn K-edge energies to manganese oxidation states without taking into account the nature of the ligand environment and the overall structure of the compound. In contrast to Mn K-edge XANES, Kβ XES spectra show less dependence on ligand environment. The Kβ1,3 peak energies are comparable for the di-μ-oxo and mono-μ-oxo compounds in equivalent oxidation states. The energy shifts observed due to oxidation are also similar for the two different compounds. The study of the different behavior of the XANES pre-edge and main-edge features in conjunction with Kβ XES provides significant information about the oxidation state and character of the ligand environment of manganese atoms. PMID:11459481

  8. Analysis of volatile organic compounds of ‘Fuji’ apples following electron beam irradiation and storage

    NASA Astrophysics Data System (ADS)

    Song, Hyun-Pa; Shim, Sung-Lye; Lee, Sun-Im; Kim, Dong-Ho; Kwon, Joong-Ho; Kim, Kyong-Su

    2012-08-01

    The volatile organic compounds of non-irradiated and electron-beam irradiated 'Fuji' apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph-mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated 'Fuji' apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of 'Fuji' apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds.

  9. Synthesis and bioactivities of halogen bearing phenolic chalcones and their corresponding bis Mannich bases.

    PubMed

    Yamali, Cem; Gul, Halise Inci; Sakagami, Hiroshi; Supuran, Claudiu T

    2016-01-01

    Phenolic bis Mannich bases having the chemical structure of 1-[3,5-bis-aminomethyl-4-hydroxyphenyl]-3-(4-halogenophenyl)-2-propen-1-ones (1a-c, 2a-c, 3a-c) were synthesized (Numbers 1, 2, and 3 represent fluorine, chlorine, and bromine bearing compounds, respectively, while a, b, and c letters represent the compounds having piperidine, morpholine, and N-methyl piperazine) and their cytotoxic and carbonic anhydrase (CA, EC 4.2.1.1) enzyme inhibitory effects were evaluated. Lead compounds should possess both marked cytotoxic potencies and selective toxicity for tumors. To reflect this potency, PSE values of the compounds were calculated. According to PSE values, the compounds 2b and 3b may serve as lead molecules for further anticancer drug candidate developments. Although the compounds showed a low inhibition potency toward hCA I (25-43%) and hCA II (6-25%) isoforms at 10 μM concentration of inhibitor, the compounds were more selective (1.5-5.2 times) toward hCA I isoenzyme. It seems that the compounds need molecular modifications for the development of better CA inhibitors.

  10. Surgical Management of Compound Odontoma Associated with Unerupted Tooth

    PubMed Central

    Marini, Roberta; Pacifici, Luciano

    2015-01-01

    Odontomas represent the most common type of odontogenic benign jaws tumors among patients younger than 20 years of age. These tumors are composed of enamel, dentine, cementum, and pulp tissue. According to the World Health Organization classification, two distinct types of odontomas are acknowledged: complex and compound odontoma. In complex odontomas, all dental tissues are formed, but appeared without an organized structure. In compound odontomas, all dental tissues are arranged in numerous tooth-like structures known as denticles. Compound odontomas are often associated with impacted adjacent permanent teeth and their surgical removal represents the best therapeutic option. A case of a 20-year-old male patient with a compound odontoma-associated of impacted maxillary canine is presented. A minimally invasive surgical technique is adopted to remove the least amount of bone tissue as far as possible. PMID:26199762

  11. Antileishmanial compounds from Cordia fragrantissima collected in Burma (Myanmar).

    PubMed

    Mori, Kanami; Kawano, Marii; Fuchino, Hiroyuki; Ooi, Takashi; Satake, Motoyoshi; Agatsuma, Yutaka; Kusumi, Takenori; Sekita, Setsuko

    2008-01-01

    A methanol extract of the wood of Cordia fragrantissima, collected in Burma (Myanmar), was found to exhibit significant activity against Leishmania major. Bioassay-guided fractionation of this extract using several chromatographic techniques afforded three new compounds (1-3) and five known compounds (4-8). The structures of the new compounds were revealed on the basis of spectroscopic data interpretation and by X-ray crystallographic analysis. Interestingly, the new compounds, despite the presence of asymmetric carbons, were found to be racemates. The activities of the isolates from C. fragrantissima and several derivatives were evaluated against the promastigote forms of Leishmania major, L. panamensis, and L. guyanensis.

  12. Identification of the anti‐mycobacterial functional properties of piperidinol derivatives

    PubMed Central

    Guy, Collette S; Tichauer, Esther; Kay, Gemma L; Phillips, Daniel J; Bailey, Trisha L; Harrison, James; Furze, Christopher M; Millard, Andrew D; Gibson, Matthew I; Pallen, Mark J

    2017-01-01

    Background and Purpose Tuberculosis (TB) remains a major global health threat and is now the leading cause of death from a single infectious agent worldwide. The current TB drug regimen is inadequate, and new anti‐tubercular agents are urgently required to be able to successfully combat the increasing prevalence of drug‐resistant TB. The purpose of this study was to investigate a piperidinol compound derivative that is highly active against the Mycobacterium tuberculosis bacillus. Experimental Approach The antibacterial properties of the piperidinol compound and its corresponding bis‐Mannich base analogue were evaluated against M. smegmatis and Gram‐negative organisms. Cytotoxicity studies were undertaken in order to determine the selectivity index for these compounds. Spontaneous resistant mutants of M. smegmatis were generated against the piperidinol and corresponding bis‐Mannich base lead derivatives and whole genome sequencing employed to determine the genetic modifications that lead to selection pressure in the presence of these compounds. Key Results The piperidinol and the bis‐Mannich base analogue were found to be selective for mycobacteria and rapidly kill this organism with a cytotoxicity selectivity index for mycobacteria of >30‐fold. Whole genome sequencing of M. smegmatis strains resistant to the lead compounds led to the identification of a number of single nucleotide polymorphisms indicating multiple targets. Conclusion and Implications Our results indicate that the piperidinol moiety represents an attractive compound class in the pursuit of novel anti‐tubercular agents. Linked Articles This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro‐organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc PMID:28195652

  13. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.

    PubMed

    Ventura, Cristina; Latino, Diogo A R S; Martins, Filomena

    2013-01-01

    The performance of two QSAR methodologies, namely Multiple Linear Regressions (MLR) and Neural Networks (NN), towards the modeling and prediction of antitubercular activity was evaluated and compared. A data set of 173 potentially active compounds belonging to the hydrazide family and represented by 96 descriptors was analyzed. Models were built with Multiple Linear Regressions (MLR), single Feed-Forward Neural Networks (FFNNs), ensembles of FFNNs and Associative Neural Networks (AsNNs) using four different data sets and different types of descriptors. The predictive ability of the different techniques used were assessed and discussed on the basis of different validation criteria and results show in general a better performance of AsNNs in terms of learning ability and prediction of antitubercular behaviors when compared with all other methods. MLR have, however, the advantage of pinpointing the most relevant molecular characteristics responsible for the behavior of these compounds against Mycobacterium tuberculosis. The best results for the larger data set (94 compounds in training set and 18 in test set) were obtained with AsNNs using seven descriptors (R(2) of 0.874 and RMSE of 0.437 against R(2) of 0.845 and RMSE of 0.472 in MLRs, for test set). Counter-Propagation Neural Networks (CPNNs) were trained with the same data sets and descriptors. From the scrutiny of the weight levels in each CPNN and the information retrieved from MLRs, a rational design of potentially active compounds was attempted. Two new compounds were synthesized and tested against M. tuberculosis showing an activity close to that predicted by the majority of the models. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. Sensory and chemical investigations on the effect of oven cooking on warmed-over flavour development in chicken meat.

    PubMed

    Byrne, D V; Bredie, W L P; Mottram, D S; Martens, M

    2002-06-01

    Descriptive sensory profiling was carried out to evaluate the effect of oven-cooking temperature (160, 170, 180, 190 °C) on warmed-over flavour (WOF) development in cooked, chill-stored (at 4 °C for 0, 1, 2 and 4 days) and reheated chicken patties, derived from M. pectoralis major. In addition, gas chromatography-mass spectrometry (GC-MS) was carried out on a representative sub-set (160, 180, 190(o)C, stored at 4 °C for 0, 1, 4 days) of the meat samples used in sensory profiling. The effects of cooking and WOF in the sensory and chemical data were analysed using multivariate ANOVA-Partial Least Squares Regression (APLSR). Descriptive profiling indicated that WOF development was described by an increase of 'rancid' and 'sulphur/rubber' sensory notes and a concurrent decrease of chicken 'meaty' characteristics. Increasing cooking temperature resulted in meat samples with a more 'roasted', 'toasted' and 'bitter' sensory nature. Moreover, the 'roasted' character of the meat samples was also related to WOF development. Analysis of the volatile compounds from the chicken patties showed a rapid development of lipid oxidation derived compounds with chill-storage. Such compounds most likely contributed to the 'rancid' aspect of WOF development. Moreover, changes in sulphur-containing compounds were also related to WOF development and were proposed as additional participants in the lipid oxidation reactions. The sensory effects of these compounds were mainly described by the 'sulphur/rubber' note associated with WOF development. Overall, cooking temperature was found to increase the formation of Maillard-derived compounds, however, these did not appear to inhibit WOF development in the chicken patties.

  15. Chinese herbal medicine-derived compounds for cancer therapy: a focus on hepatocellular carcinoma.

    PubMed

    Hu, Yangyang; Wang, Shengpeng; Wu, Xu; Zhang, Jinming; Chen, Ruie; Chen, Meiwan; Wang, Yitao

    2013-10-07

    Hepatocellular carcinoma (HCC) as the major histological subtype of primary liver cancer remains one of the most common malignancies worldwide. Due to the complicated molecular pathogenesis of HCC, the option for effective systemic treatment is quite limited. There exists a critical need to explore and evaluate possible alternative strategies for effective control of HCC. With a long history of clinical use, Chinese herbal medicine (CHM) is emerging as a noticeable choice for its multi-level, multi-target and coordinated intervention effects against HCC. With the aids of phytochemistry and molecular biological approaches, in the past decades many CHM-derived compounds have been carefully studied through both preclinical and clinical researches and have shown great potential in novel anti-HCC natural product development. The present review aimed at providing the most recent developments on anti-HCC compounds derived from CHM, especially their underlying pharmacological mechanisms. A systematic search of anti-HCC compounds from CHM was carried out focusing on literatures published both in English (PubMed, Scopus, Web of Science and Medline) and in Chinese academic databases (Wanfang and CNKI database). In this review, we tried to give a timely and comprehensive update about the anti-HCC effects and targets of several representative CHM-derived compounds, namely curcumin, resveratrol, silibinin, berberine, quercetin, tanshinone II-A and celastrol. Their mechanisms of anti-HCC behaviors, potential side effects or toxicity and future research directions were discussed. Herbal compounds derived from CHM are of much significance in devising new drugs and providing unique ideas for the war against HCC. We propose that these breakthrough findings may have important implications for targeted-HCC therapy and modernization of CHM. Copyright © 2013. Published by Elsevier Ireland Ltd.

  16. Exploration of the anti-enterovirus activity of a series of pleconaril/pirodavir-like compounds.

    PubMed

    Bernard, Angela; Lacroix, Céline; Cabiddu, Maria G; Neyts, Johan; Leyssen, Pieter; Pompei, Raffaello

    2015-04-01

    The Enterovirus genus of the Picornaviridae is represented by several viral pathogens that are associated with human disease, namely Poliovirus 1, Enterovirus 71 and Rhinoviruses. Enterovirus 71 has been associated with encephalitis, while Rhinoviruses are a major cause of asthma exacerbations and chronic obstructive pulmonary disease. Based on the structure of both pleconaril and pirodavir, we previously synthesized some original compounds as potential inhibitors of Rhinovirus replication. These compounds were explored for in vitro antiviral potential on other human pathogenic Enteroviruses, namely Enterovirus 71 on rhabdo-myosarcoma cells, Coxsackievirus B3 on Vero cells, Poliovirus 1 and Echovirus 11 on BGM cells. Activity was confirmed for compound against Rhinovirus 14. Furthermore, few compounds showed a cell-protective effect on Enterovirus 71, presented a marked improvement as compared to the reference drug pleconaril for inhibitory activity on both Enterovirus 71 and Poliovirus 1. The most striking observation was the clear cell protective effect for the set of analogues in a virus-cell-based assay for Echovirus 11 with an effective concentration (EC50) as low as 0.3 µM (Selectivity index or SI = 483), and selectivity indexes greater than 857 (EC50 = 0.6 µM) and 1524 (EC50 = 0.33 µM). Some of the evaluated compounds showed potent and selective antiviral activity against several enterovirus species, such as Enterovirus 71 (EV-A), Echovirus 11 (EV-B), and Poliovirus 1 (EV-C). This could be used as a starting point for the development of other pleconaril/pirodavir-like enterovirus inhibitors with broad-spectrum activity and improved effects as compared to the reference drugs. © The Author(s) 2015.

  17. Volatile compound in cut and un-cut flowers of tetraploid Freesia hybrida.

    PubMed

    Ao, Man; Liu, Baofeng; Wang, Li

    2013-01-01

    The flower volatile compounds (FVCs) of two tetraploid Freesia hybrida (pink-yellow and yellow) cultivars and their cut flowers were analysed by headspace solid-phase microextraction combined with gas chromatography-mass spectrometry. Twelve FVCs were identified in the pink-yellow cultivar, with linalool as the major compound; 30 FVCs were identified in the yellow cultivar, with linalool and terpineol as the two major compounds. The FVCs (>1%) of the two cut flower cultivars were very similar to that of the un-cut flowers, and no significant difference was observed.

  18. Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea.

    PubMed

    Baek, Sung-Ok; Suvarapu, Lakshmi Narayana; Seo, Young-Kyo

    2015-08-05

    This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs) including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. Two field monitoring campaigns were conducted for a one year period in 2003/2004 and 2010/2011 at several sampling sites in the city, representing industrial, residential and commercial areas. More than 80 individual compounds were determined in this study, and important compounds were then identified according to their abundance, ubiquity and toxicity. The monitoring data revealed toluene, trichloroethylene and acetaldehyde to be the most significant air toxics in the city, and their major sources were mainly industrial activities. On the other hand, there was no clear evidence of an industrial impact on the concentrations of benzene and formaldehyde in the ambient air of the city. Overall, seasonal variations were not as distinct as locational variations in the VOCs concentrations, whereas the within-day variations showed a typical pattern of urban air pollution, i.e., increase in the morning, decrease in the afternoon, and an increase again in the evening. Considerable decreases in the concentrations of VOCs from 2003 to 2011 were observed. The reductions in the ambient concentrations were confirmed further by the Korean PRTR data in industrial emissions within the city. Significant decreases in the concentrations of benzene and acetaldehyde were also noted, whereas formaldehyde appeared to be almost constant between the both campaigns. The decreased trends in the ambient levels were attributed not only to the stricter regulations for VOCs in Korea, but also to the voluntary agreement of major companies to reduce the use of organic solvents. In addition, a site planning project for an eco-friendly industrial complex is believed to play a contributory role in improving the air quality of the city.

  19. Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea

    PubMed Central

    Baek, Sung-Ok; Suvarapu, Lakshmi Narayana; Seo, Young-Kyo

    2015-01-01

    This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs) including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. Two field monitoring campaigns were conducted for a one year period in 2003/2004 and 2010/2011 at several sampling sites in the city, representing industrial, residential and commercial areas. More than 80 individual compounds were determined in this study, and important compounds were then identified according to their abundance, ubiquity and toxicity. The monitoring data revealed toluene, trichloroethylene and acetaldehyde to be the most significant air toxics in the city, and their major sources were mainly industrial activities. On the other hand, there was no clear evidence of an industrial impact on the concentrations of benzene and formaldehyde in the ambient air of the city. Overall, seasonal variations were not as distinct as locational variations in the VOCs concentrations, whereas the within-day variations showed a typical pattern of urban air pollution, i.e., increase in the morning, decrease in the afternoon, and an increase again in the evening. Considerable decreases in the concentrations of VOCs from 2003 to 2011 were observed. The reductions in the ambient concentrations were confirmed further by the Korean PRTR data in industrial emissions within the city. Significant decreases in the concentrations of benzene and acetaldehyde were also noted, whereas formaldehyde appeared to be almost constant between the both campaigns. The decreased trends in the ambient levels were attributed not only to the stricter regulations for VOCs in Korea, but also to the voluntary agreement of major companies to reduce the use of organic solvents. In addition, a site planning project for an eco-friendly industrial complex is believed to play a contributory role in improving the air quality of the city. PMID:26251905

  20. Continuous non-marine inputs of per- and polyfluoroalkyl substances to the High Arctic: a multi-decadal temporal record

    NASA Astrophysics Data System (ADS)

    Pickard, Heidi M.; Criscitiello, Alison S.; Spencer, Christine; Sharp, Martin J.; Muir, Derek C. G.; De Silva, Amila O.; Young, Cora J.

    2018-04-01

    Perfluoroalkyl acids (PFAAs) are persistent, in some cases, bioaccumulative compounds found ubiquitously within the environment. They can be formed from the atmospheric oxidation of volatile precursor compounds and undergo long-range transport (LRT) through the atmosphere and ocean to remote locations. Ice caps preserve a temporal record of PFAA deposition making them useful in studying the atmospheric trends in LRT of PFAAs in polar or mountainous regions, as well as in understanding major pollutant sources and production changes over time. A 15 m ice core representing 38 years of deposition (1977-2015) was collected from the Devon Ice Cap in Nunavut, providing us with the first multi-decadal temporal ice record in PFAA deposition to the Arctic. Ice core samples were concentrated using solid phase extraction and analyzed by liquid and ion chromatography methods. Both perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) were detected in the samples, with fluxes ranging from < LOD to 141 ng m-2 yr-1. Our results demonstrate that the PFCAs and perfluorooctane sulfonate (PFOS) have continuous and increasing deposition on the Devon Ice Cap, despite recent North American and international regulations and phase-outs. We propose that this is the result of on-going manufacture, use and emissions of these compounds, their precursors and other newly unidentified compounds in regions outside of North America. By modelling air mass transport densities, and comparing temporal trends in deposition with production changes of possible sources, we find that Eurasian sources, particularly from Continental Asia, are large contributors to the global pollutants impacting the Devon Ice Cap. Comparison of PFAAs to their precursors and correlations of PFCA pairs showed that deposition of PFAAs is dominated by atmospheric formation from volatile precursor sources. Major ion analysis confirmed that marine aerosol inputs are unimportant to the long-range transport mechanisms of these compounds. Assessments of deposition, homologue profiles, ion tracers, air mass transport models, and production and regulation trends allow us to characterize the PFAA depositional profile on the Devon Ice Cap and further understand the LRT mechanisms of these persistent pollutants.

  1. Is drinking water a major route of human exposure to alkylphenol and bisphenol contaminants in France?

    PubMed

    Colin, Adeline; Bach, Cristina; Rosin, Christophe; Munoz, Jean-François; Dauchy, Xavier

    2014-01-01

    The main objective of this study was to evaluate potential exposure of a significant part of the French population to alkylphenol and bisphenol contaminants due to water consumption. The occurrence of 11 alkylphenols and bisphenols was studied in raw water and treated water samples from public water systems. One sampling campaign was performed from October 2011 to May 2012. Sampling was equally distributed across 100 French departments. In total, 291 raw water samples and 291 treated water samples were analyzed in this study, representing approximately 20 % of the national water supply flow. The occurrence of the target compounds was also determined for 29 brands of bottled water (polyethylene terephthalate [PET] bottles, polycarbonate [PC] reusable containers, and aluminum cans [ACs]) and in 5 drinking water networks where epoxy resin has been used as coating for pipes. In raw water samples, the highest individual concentration was 1,430 ng/L for bisphenol A (BPA). Of the investigated compounds, nonylphenol (NP), nonylphenol 1-carboxylic acid (NP1EC), BPA, and nonylphenol 2-ethoxylate (NP2EO) predominated (detected in 18.6, 18.6, 14.4, and 10 % of samples, respectively). Geographical variability was observed with departments crossed by major rivers or with high population densities being more affected by contamination. In treated water samples, the highest individual concentration was 505 ng/L for NP. Compared with raw water, target compounds were found in lower amounts in treated water. This difference suggests a relative effectiveness of certain water treatments for the elimination of these pollutants; however, there is also their possible transformation by reaction with chlorine. No target compounds were found in drinking water pipes coated with epoxy resin, in PET bottled water, or in water from ACs. However, levels of BPA in PC bottled water ranged from 70 to 4,210 ng/L with greater level observed in newly manufactured bottles. 4-Tert-butylphenol was only detected in recently manufactured bottles. The values observed for the monitored compounds indicate that drinking water is most likely not the main source of exposure.

  2. Volatile composition of some Brazilian fruits: umbu-caja (Spondias citherea), camu-camu (Myrciaria dubia), Araça-boi (Eugenia stipitata), and Cupuaçu (Theobroma grandiflorum).

    PubMed

    Franco, M R; Shibamoto, T

    2000-04-01

    Twenty-one volatile compounds were identified for the first time by GC-MS in umbu-caja and in camu-camu, plus 30 volatile compounds were identified in araça-boi samples. Terpenic compounds predominated among the volatile compounds in these fruit samples, with the major compounds being identified as cis-beta-ocimene and caryophyllene in the northeastern fruit; alpha-pinene and d-limonene were the most abundant volatile compounds in the headspace of the Amazonian fruit camu-camu. Sesquiterpenes were the most abundant compounds in the araça-boi sample, with germacrene D presenting a higher relative percentage. The chemical class of esters predominated in the cupuaçu sample. Ethyl butyrate and hexanoate were the major compounds in the headspace of this Amazonian fruit.

  3. Essential Oils of Hyptis pectinata Chemotypes: Isolation, Binary Mixtures and Acute Toxicity on Leaf-Cutting Ants.

    PubMed

    Feitosa-Alcantara, Rosana B; Bacci, Leandro; Blank, Arie F; Alves, Péricles B; Silva, Indira Morgana de A; Soares, Caroline A; Sampaio, Taís S; Nogueira, Paulo Cesar de L; Arrigoni-Blank, Maria de Fátima

    2017-04-12

    Leaf-cutting ants are pests of great economic importance due to the damage they cause to agricultural and forest crops. The use of organosynthetic insecticides is the main form of control of these insects. In order to develop safer technology, the objective of this work was to evaluate the formicidal activity of the essential oils of two Hyptis pectinata genotypes (chemotypes) and their major compounds on the leaf-cutting ants Acromyrmex balzani Emery and Atta sexdens rubropilosa Forel. Bioassays of exposure pathways (contact and fumigation) and binary mixtures of the major compounds were performed. The major compounds identified in the essential oils of H. pectinata were β-caryophyllene, caryophyllene oxide and calamusenone. The essential oils of H. pectinata were toxic to the ants in both exposure pathways. Essential oils were more toxic than their major compounds alone. The chemotype calamusenone was more toxic to A. balzani in both exposure pathways. A. sexdens rubropilosa was more susceptible to the essential oil of the chemotype β-caryophyllene in both exposure pathways. In general, the binary mixtures of the major compounds resulted in additive effect of toxicity. The essential oils of H. pectinata is a raw material of great potential for the development of new insecticides.

  4. Identification of compound-protein interactions through the analysis of gene ontology, KEGG enrichment for proteins and molecular fragments of compounds.

    PubMed

    Chen, Lei; Zhang, Yu-Hang; Zheng, Mingyue; Huang, Tao; Cai, Yu-Dong

    2016-12-01

    Compound-protein interactions play important roles in every cell via the recognition and regulation of specific functional proteins. The correct identification of compound-protein interactions can lead to a good comprehension of this complicated system and provide useful input for the investigation of various attributes of compounds and proteins. In this study, we attempted to understand this system by extracting properties from both proteins and compounds, in which proteins were represented by gene ontology and KEGG pathway enrichment scores and compounds were represented by molecular fragments. Advanced feature selection methods, including minimum redundancy maximum relevance, incremental feature selection, and the basic machine learning algorithm random forest, were used to analyze these properties and extract core factors for the determination of actual compound-protein interactions. Compound-protein interactions reported in The Binding Databases were used as positive samples. To improve the reliability of the results, the analytic procedure was executed five times using different negative samples. Simultaneously, five optimal prediction methods based on a random forest and yielding maximum MCCs of approximately 77.55 % were constructed and may be useful tools for the prediction of compound-protein interactions. This work provides new clues to understanding the system of compound-protein interactions by analyzing extracted core features. Our results indicate that compound-protein interactions are related to biological processes involving immune, developmental and hormone-associated pathways.

  5. ROMK inhibitor actions in the nephron probed with diuretics

    PubMed Central

    Kharade, Sujay V.; Flores, Daniel; Lindsley, Craig W.; Satlin, Lisa M.

    2015-01-01

    Diuretics acting on specific nephron segments to inhibit Na+ reabsorption have been used clinically for decades; however, drug interactions, tolerance, and derangements in serum K+ complicate their use to achieve target blood pressure. ROMK is an attractive diuretic target, in part, because its inhibition is postulated to indirectly inhibit the bumetanide-sensitive Na+-K+-2Cl− cotransporter (NKCC2) and the amiloride- and benzamil-sensitive epithelial Na+ channel (ENaC). The development of small-molecule ROMK inhibitors has created opportunities for exploring the physiological responses to ROMK inhibition. The present study evaluated how inhibition of ROMK alone or in combination with NKCC2, ENaC, or the hydrochlorothiazide (HCTZ) target NCC alter fluid and electrolyte transport in the nephron. The ROMK inhibitor VU591 failed to induce diuresis when administered orally to rats. However, another ROMK inhibitor, termed compound A, induced a robust natriuretic diuresis without kaliuresis. Compound A produced additive effects on urine output and Na+ excretion when combined with HCTZ, amiloride, or benzamil, but not when coadministered with bumetanide, suggesting that the major diuretic target site is the thick ascending limb (TAL). Interestingly, compound A inhibited the kaliuretic response induced by bumetanide and HCTZ, an effect we attribute to inhibition of ROMK-mediated K+ secretion in the TAL and CD. Compound A had no effect on heterologously expressed flow-sensitive large-conductance Ca2+-activated K+ channels (Slo1/β1). In conclusion, compound A represents an important new pharmacological tool for investigating the renal consequences of ROMK inhibition and therapeutic potential of ROMK as a diuretic target. PMID:26661652

  6. ROMK inhibitor actions in the nephron probed with diuretics.

    PubMed

    Kharade, Sujay V; Flores, Daniel; Lindsley, Craig W; Satlin, Lisa M; Denton, Jerod S

    2016-04-15

    Diuretics acting on specific nephron segments to inhibit Na + reabsorption have been used clinically for decades; however, drug interactions, tolerance, and derangements in serum K + complicate their use to achieve target blood pressure. ROMK is an attractive diuretic target, in part, because its inhibition is postulated to indirectly inhibit the bumetanide-sensitive Na + -K + -2Cl - cotransporter (NKCC2) and the amiloride- and benzamil-sensitive epithelial Na + channel (ENaC). The development of small-molecule ROMK inhibitors has created opportunities for exploring the physiological responses to ROMK inhibition. The present study evaluated how inhibition of ROMK alone or in combination with NKCC2, ENaC, or the hydrochlorothiazide (HCTZ) target NCC alter fluid and electrolyte transport in the nephron. The ROMK inhibitor VU591 failed to induce diuresis when administered orally to rats. However, another ROMK inhibitor, termed compound A, induced a robust natriuretic diuresis without kaliuresis. Compound A produced additive effects on urine output and Na + excretion when combined with HCTZ, amiloride, or benzamil, but not when coadministered with bumetanide, suggesting that the major diuretic target site is the thick ascending limb (TAL). Interestingly, compound A inhibited the kaliuretic response induced by bumetanide and HCTZ, an effect we attribute to inhibition of ROMK-mediated K + secretion in the TAL and CD. Compound A had no effect on heterologously expressed flow-sensitive large-conductance Ca 2+ -activated K + channels (Slo1/β1). In conclusion, compound A represents an important new pharmacological tool for investigating the renal consequences of ROMK inhibition and therapeutic potential of ROMK as a diuretic target. Copyright © 2016 the American Physiological Society.

  7. Click Chemistry-Facilitated Structural Diversification of Nitrothiazoles, Nitrofurans, and Nitropyrroles Enhances Antimicrobial Activity against Giardia lamblia

    PubMed Central

    Kim, Wan Jung; Korthals, Keith A.; Li, Suhua; Le, Christine; Kalisiak, Jarosław; Sharpless, K. Barry; Fokin, Valery V.; Miyamoto, Yukiko

    2017-01-01

    ABSTRACT Giardia lamblia is an important and ubiquitous cause of diarrheal disease. The primary agents in the treatment of giardiasis are nitroheterocyclic drugs, particularly the imidazoles metronidazole and tinidazole and the thiazole nitazoxanide. Although these drugs are generally effective, treatment failures occur in up to 20% of cases, and resistance has been demonstrated in vivo and in vitro. Prior work had suggested that side chain modifications of the imidazole core can lead to new effective 5-nitroimidazole drugs that can combat nitro drug resistance, but the full potential of nitroheterocycles other than imidazole to yield effective new antigiardial agents has not been explored. Here, we generated derivatives of two clinically utilized nitroheterocycles, nitrothiazole and nitrofuran, as well as a third heterocycle, nitropyrrole, which is related to nitroimidazole but has not been systematically investigated as an antimicrobial drug scaffold. Click chemistry was employed to synthesize 442 novel nitroheterocyclic compounds with extensive side chain modifications. Screening of this library against representative G. lamblia strains showed a wide spectrum of in vitro activities, with many of the compounds exhibiting superior activity relative to reference drugs and several showing >100-fold increase in potency and the ability to overcome existing forms of metronidazole resistance. The majority of new compounds displayed no cytotoxicity against human cells, and several compounds were orally active against murine giardiasis in vivo. These findings provide additional impetus for the systematic development of nitroheterocyclic compounds with nonimidazole cores as alternative and improved agents for the treatment of giardiasis and potentially other infectious agents. PMID:28396548

  8. Drosophila melanogaster as a model system for the evaluation of anti-aging compounds.

    PubMed

    Jafari, Mahtab

    2010-01-01

    Understanding the causes of aging is a complex problem due to the multiple factors that influence aging, which include genetics, environment, metabolism and reproduction, among others. These multiple factors create logistical difficulties in the evaluation of anti-aging agents. There is a need for good model systems to evaluate potential anti-aging compounds. The model systems used should represent the complexities of aging in humans, so that the findings may be extrapolated to human studies, but they should also present an opportunity to minimize the variables so that the experimental results can be accurately interpreted. In addition to positively affecting lifespan, the impact of the compound on the physiologic confounders of aging, including fecundity and the health span--the period of life where an organism is generally healthy and free from serious or chronic illness--of the model organism needs to be evaluated. Fecundity is considered a major confounder of aging in fruit flies. It is well established that female flies that are exposed to toxic substances typically reduce their dietary intake and their reproductive output and display an artifactual lifespan extension. As a result, drugs that achieve longevity benefits by reducing fecundity as a result of diminished food intake are probably not useful candidates for eventual treatment of aging in humans and should be eliminated during the screening process. Drosophila melanogaster provides a suitable model system for the screening of anti-aging compounds as D. melanogaster and humans have many conserved physiological and biological pathways. In this paper, I propose an algorithm to screen anti-aging compounds using Drosophila melanogaster as a model system.

  9. Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality.

    PubMed

    Bertrand, B; Boulanger, R; Dussert, S; Ribeyre, F; Berthiot, L; Descroix, F; Joët, T

    2012-12-15

    Coffee grown at high elevations fetches a better price than that grown in lowland regions. This study was aimed at determining whether climatic conditions during bean development affected sensory perception of the coffee beverage and combinations of volatile compounds in green coffee. Green coffee samples from 16 plots representative of the broad range of climatic variations in Réunion Island were compared by sensory analysis. Volatiles were extracted by solid phase micro-extraction and the volatile compounds were analysed by GC-MS. The results revealed that, among the climatic factors, the mean air temperature during seed development greatly influenced the sensory profile. Positive quality attributes such as acidity, fruity character and flavour quality were correlated and typical of coffees produced at cool climates. Two volatile compounds (ethanal and acetone) were identified as indicators of these cool temperatures. Among detected volatiles, most of the alcohols, aldehydes, hydrocarbons and ketones appeared to be positively linked to elevated temperatures and high solar radiation, while the sensory profiles displayed major defects (i.e. green, earthy flavour). Two alcohols (butan-1,3-diol and butan-2,3-diol) were closely correlated with a reduction in aromatic quality, acidity and an increase in earthy and green flavours. We assumed that high temperatures induce accumulation of these compounds in green coffee, and would be detected as off-flavours, even after roasting. Climate change, which generally involves a substantial increase in average temperatures in mountainous tropical regions, could be expected to have a negative impact on coffee quality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Effects of rehydration nutrients on H2S metabolism and formation of volatile sulfur compounds by the wine yeast VL3.

    PubMed

    Winter, Gal; Henschke, Paul A; Higgins, Vincent J; Ugliano, Maurizio; Curtin, Chris D

    2011-11-02

    In winemaking, nutrient supplementation is a common practice for optimising fermentation and producing quality wine. Nutritionally suboptimal grape juices are often enriched with nutrients in order to manipulate the production of yeast aroma compounds. Nutrients are also added to active dry yeast (ADY) rehydration media to enhance subsequent fermentation performance. In this study we demonstrate that nutrient supplementation at rehydration also has a significant effect on the formation of volatile sulfur compounds during wine fermentations. The concentration of the 'fruity' aroma compounds, the polyfunctional thiols 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA), was increased while the concentration of the 'rotten egg' aroma compound, hydrogen sulfide (H2S), was decreased. Nutrient supplementation of the rehydration media also changed the kinetics of H2S production during fermentation by advancing onset of H2S production. Microarray analysis revealed that this was not due to expression changes within the sulfate assimilation pathway, which is known to be a major contributor to H2S production. To gain insight into possible mechanisms responsible for this effect, a component of the rehydration nutrient mix, the tri-peptide glutathione (GSH) was added at rehydration and studied for its subsequent effects on H2S formation. GSH was found to be taken up during rehydration and to act as a source for H2S during the following fermentation. These findings represent a potential approach for managing sulfur aroma production through the use of rehydration nutrients.

  11. Compound mutations in BCR-ABL1 are not major drivers of primary or secondary resistance to ponatinib in CP-CML patients

    PubMed Central

    Hodgson, J. Graeme; Shah, Neil P.; Cortes, Jorge E.; Kim, Dong-Wook; Nicolini, Franck E.; Talpaz, Moshe; Baccarani, Michele; Müller, Martin C.; Li, Jin; Parker, Wendy T.; Lustgarten, Stephanie; Clackson, Tim; Haluska, Frank G.; Guilhot, Francois; Kantarjian, Hagop M.; Soverini, Simona; Hochhaus, Andreas; Hughes, Timothy P.; Rivera, Victor M.; Branford, Susan

    2016-01-01

    BCR-ABL1 kinase domain mutations can confer resistance to first- and second-generation tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML). In preclinical studies, clinically achievable concentrations of the third-generation BCR-ABL1 TKI ponatinib inhibit T315I and all other single BCR-ABL1 mutants except T315M, which generates a single amino acid exchange, but requires 2 sequential nucleotide exchanges. In addition, certain compound mutants (containing ≥2 mutations in cis) confer resistance. Initial analyses based largely on conventional Sanger sequencing (SS) have suggested that the preclinical relationship between BCR-ABL1 mutation status and ponatinib efficacy is generally recapitulated in patients receiving therapy. Thus far, however, such analyses have been limited by the inability of SS to definitively identify compound mutations or mutations representing less than ∼20% of total alleles (referred to as “low-level mutations”), as well as limited patient follow-up. Here we used next-generation sequencing (NGS) to define the baseline BCR-ABL1 mutation status of 267 heavily pretreated chronic phase (CP)-CML patients from the PACE trial, and used SS to identify clonally dominant mutants that may have developed on ponatinib therapy (30.1 months median follow-up). Durable cytogenetic and molecular responses were observed irrespective of baseline mutation status and included patients with compound mutations. No single or compound mutation was identified that consistently conferred primary and/or secondary resistance to ponatinib in CP-CML patients. Ponatinib is effective in CP-CML irrespective of baseline mutation status. PMID:26603839

  12. Indoles induce metamorphosis in a broad diversity of jellyfish, but not in a crown jelly (Coronatae).

    PubMed

    Helm, Rebecca R; Dunn, Casey W

    2017-01-01

    Many animals go through one or more metamorphoses during their lives, however, the molecular underpinnings of metamorphosis across diverse species are not well understood. Medusozoa (Cnidaria) is a clade of animals with complex life cycles, these life cycles can include a polyp stage that metamorphoses into a medusa (jellyfish). Medusae are produced through a variety of different developmental mechanisms-in some species polyps bud medusae (Hydrozoa), in others medusae are formed through polyp fission (Scyphozoa), while in others medusae are formed through direct transformation of the polyp (Cubozoa). To better understand the molecular mechanisms that may coordinate these different forms of metamorphosis, we tested two compounds first identified to induce metamorphosis in the moon jellyfish Aurelia aurita (indomethacin and 5-methoxy-2-methylindole) on a broad diversity of medusozoan polyps. We discovered that indole-containing compounds trigger metamorphosis across a broad diversity of species. All tested discomedusan polyps metamorphosed in the presence of both compounds, including species representatives of several major lineages within the clade (Pelagiidae, Cyaneidae, both clades of Rhizostomeae). In a cubozoan, low levels of 5-methoxy-2-methylindole reliably induced complete and healthy metamorphosis. In contrast, neither compound induced medusa metamorphosis in a coronate scyphozoan, or medusa production in either hydrozoan tested. Our results support the hypothesis that metamorphosis is mediated by a conserved induction pathway within discomedusan scyphozoans, and possibly cubozoans. However, failure of these compounds to induce metamorphosis in a coronate suggests this induction mechanism may have been lost in this clade, or is convergent between Scyphozoa and Cubozoa.

  13. Indoles induce metamorphosis in a broad diversity of jellyfish, but not in a crown jelly (Coronatae)

    PubMed Central

    Dunn, Casey W.

    2017-01-01

    Many animals go through one or more metamorphoses during their lives, however, the molecular underpinnings of metamorphosis across diverse species are not well understood. Medusozoa (Cnidaria) is a clade of animals with complex life cycles, these life cycles can include a polyp stage that metamorphoses into a medusa (jellyfish). Medusae are produced through a variety of different developmental mechanisms—in some species polyps bud medusae (Hydrozoa), in others medusae are formed through polyp fission (Scyphozoa), while in others medusae are formed through direct transformation of the polyp (Cubozoa). To better understand the molecular mechanisms that may coordinate these different forms of metamorphosis, we tested two compounds first identified to induce metamorphosis in the moon jellyfish Aurelia aurita (indomethacin and 5-methoxy-2-methylindole) on a broad diversity of medusozoan polyps. We discovered that indole-containing compounds trigger metamorphosis across a broad diversity of species. All tested discomedusan polyps metamorphosed in the presence of both compounds, including species representatives of several major lineages within the clade (Pelagiidae, Cyaneidae, both clades of Rhizostomeae). In a cubozoan, low levels of 5-methoxy-2-methylindole reliably induced complete and healthy metamorphosis. In contrast, neither compound induced medusa metamorphosis in a coronate scyphozoan, or medusa production in either hydrozoan tested. Our results support the hypothesis that metamorphosis is mediated by a conserved induction pathway within discomedusan scyphozoans, and possibly cubozoans. However, failure of these compounds to induce metamorphosis in a coronate suggests this induction mechanism may have been lost in this clade, or is convergent between Scyphozoa and Cubozoa. PMID:29281657

  14. Click Chemistry-Facilitated Structural Diversification of Nitrothiazoles, Nitrofurans, and Nitropyrroles Enhances Antimicrobial Activity against Giardia lamblia.

    PubMed

    Kim, Wan Jung; Korthals, Keith A; Li, Suhua; Le, Christine; Kalisiak, Jarosław; Sharpless, K Barry; Fokin, Valery V; Miyamoto, Yukiko; Eckmann, Lars

    2017-06-01

    Giardia lamblia is an important and ubiquitous cause of diarrheal disease. The primary agents in the treatment of giardiasis are nitroheterocyclic drugs, particularly the imidazoles metronidazole and tinidazole and the thiazole nitazoxanide. Although these drugs are generally effective, treatment failures occur in up to 20% of cases, and resistance has been demonstrated in vivo and in vitro Prior work had suggested that side chain modifications of the imidazole core can lead to new effective 5-nitroimidazole drugs that can combat nitro drug resistance, but the full potential of nitroheterocycles other than imidazole to yield effective new antigiardial agents has not been explored. Here, we generated derivatives of two clinically utilized nitroheterocycles, nitrothiazole and nitrofuran, as well as a third heterocycle, nitropyrrole, which is related to nitroimidazole but has not been systematically investigated as an antimicrobial drug scaffold. Click chemistry was employed to synthesize 442 novel nitroheterocyclic compounds with extensive side chain modifications. Screening of this library against representative G. lamblia strains showed a wide spectrum of in vitro activities, with many of the compounds exhibiting superior activity relative to reference drugs and several showing >100-fold increase in potency and the ability to overcome existing forms of metronidazole resistance. The majority of new compounds displayed no cytotoxicity against human cells, and several compounds were orally active against murine giardiasis in vivo These findings provide additional impetus for the systematic development of nitroheterocyclic compounds with nonimidazole cores as alternative and improved agents for the treatment of giardiasis and potentially other infectious agents. Copyright © 2017 American Society for Microbiology.

  15. Corynebacterium tapiri sp. nov. and Corynebacterium nasicanis sp. nov., isolated from a tapir and a dog, respectively.

    PubMed

    Baumgardt, Sandra; Loncaric, Igor; Kämpfer, Peter; Busse, Hans-Jürgen

    2015-11-01

    Two Gram-stain-positive bacterial isolates, strain 2385/12T and strain 2673/12T were isolated from a tapir and a dog's nose, respectively. The two strains were rod to coccoid-shaped, catalase-positive and oxidase-negative. The highest 16S rRNA gene sequence similarity identified Corynebacterium singulare CCUG 37330T (96.3% similarity) as the nearest relative of strain 2385/12T and suggested the isolate represented a novel species. Corynebacterium humireducens DSM 45392T (98.7% 16S rRNA gene sequence similarity) was identified as the nearest relative of strain 2673/12T. Results from DNA-DNA hybridization with the type strain of C. humireducens demonstrated that strain 2673/12T also represented a novel species. Strain 2385/12T showed a quinone system consisting predominantly of menaquinones MK-8(H2) and MK-9(H2) whereas strain 2673/12T contained only MK-8(H2) as predominant quinone. The polar lipid profiles of the two strains showed the major compounds phosphatidylglycerol, diphosphatidylglycerol and an unidentified glycolipid. Phosphatidylinositol was identified as another major lipid in 2673/12T whereas it was only found in moderate amounts in strain 2385/12T. Furthermore, moderate to minor amounts of phosphatidylinositol-mannoside, β-gentiobiosyl diacylglycerol and variable counts of several unidentified lipids were detected in the two strains. Both strains contained corynemycolic acids. The polyamine patterns were characterized by the major compound putrescine in strain 2385/12T and spermidine in strain 2673/12T. In the fatty acid profiles, predominantly C18:1ω9c and C16:0 were detected. The two strains are distinguishable from each other and the nearest related established species of the genus Corynebacterium phylogenetically and phenotypically. In conclusion, two novel species of the genus Corynebacterium are proposed, namely Corynebacterium tapiri sp. nov. (type strain, 2385/12T = CCUG 65456T = LMG 28165T) and Corynebacterium nasicanis sp. nov. (type strain, 2673/12T = CCUG 65455T = LMG 28166T).

  16. Acute bioassays and hazard evaluation of representative contaminants detected in Great Lakes fish

    USGS Publications Warehouse

    Passino, Dora R. May; Smith, Stephen B.

    1987-01-01

    We have provided a hazard ranking for 19 classes of compounds representing many of the nearly 500 organic compounds identified by gas chromatography-mass spectrometry in lake trout (Salvelinus namaycush) and walleye (Stizostedion vitreum vitreum) from the Great Lakes and Lake St. Clair. We initially made a provisional hazard ranking based on available published and unpublished information on aquatic toxicity, bioaccumulation, occurrence and sources. Acute toxicity tests with Daphnia pulex at 17A°C in reconstituted hard water were performed with 30 compounds representative of the 19 classes that were highest in the provisional ranking. The resulting toxicity data, along with information on the compounds' occurrence in Great Lakes fish and their sources, were ranked and weighted and then used in calculating the revised hazard ranking. The 10 most hazardous classes, in descending order, are as follows (values shown are mean 48-h EC50s, in μ/ml): arene halides (e.g., polychlorinated biphenyls, DDT), 0.0011; phthalate esters, 0.133; chlorinated camphenes (toxaphene), 0.0082; polyaromatic hydrocarbons (PAHs; e.g., dimethylnaphthalene) and reduced derivatives, 1.01; chlorinated fused polycyclics (e.g., trans-nonachlor), 0.022; nitrogen-containing compounds (e.g., O-methylhydroxyl-amine), 1.35; alkyl halides (e.g., (bromomethyl)cyclohexene), 10.1; cyclic alkanes (e.g., cyclododecane), 20.9; silicon-containing compounds (e.g., dimethyldiethoxy silane), 1.25; and heterocyclic nitrogen compounds (e.g., nicotine), 2.48. We recommend that chronic bioassays be conducted with fish and invertebrates to determine the sublethal effects of the following classes of compounds, for which few toxicity data are available: PAHs, heterocyclic nitrogen compounds, other nitrogen-containing compounds, alkyl halides, cyclic alkanes and silicon-containing compounds. Information from these types of studies will aid researchers in determining the possible causal role these contaminants play in the decline and reproductive impairment of Great Lakes fish.

  17. Comamonas aquatilis sp. nov., isolated from a garden pond.

    PubMed

    Kämpfer, Peter; Busse, Hans-Jürgen; Baars, Sophie; Wilharm, Gottfried; Glaeser, Stefanie P

    2018-04-01

    A beige-pigmented bacterial strain, SB30-Chr27-3 T , isolated from a garden pond, was studied for its taxonomic position. Cells of the isolate were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequence with the sequences of the type strains of the most closely related species showed that the strain belongs to the genus Comamonas and showed highest sequence similarities to the type strains of Comamonas jiangduensis (97.5 %), Comamonas aquatica (97.4 %) and Comamonas phosphati (97.3 %). The 16S rRNA gene sequence similarities to all other Comamonas species were below 97.0 %. The fatty acid profile of strain SB30-Chr27-3 T consisted of the major fatty acids C16 : 0, C15 : 0iso 2-OH/ C16 : 1ω7c, C18 : 1ω7c/C18 : 1ω9c and, in a minor amount, C10 : 0 3-OH. Major compounds in the polar lipid profile were phosphatidylethanolamine, phosphatidylglycerol, phosphatidylserine and diphosphatidylglycerol. The quinone system was exclusively composed of ubiquinone Q-8. The polyamine pattern contained the major compounds putrescine, cadaverine and 2-hydroxyputrescine. These data and the differentiating biochemical properties indicated that isolate SB30-CHR27-3 T represents a novel species of the genus Comamonas, for which we propose the name >Comamonas aquatilis sp. nov. with the type strain SB30-Chr27-3 T (=CIP 111491 T =CCM 8815 T ).

  18. Monoterpenic aldehydes as potential anti-Leishmania agents: activity of Cymbopogon citratus and citral on L. infantum, L. tropica and L. major.

    PubMed

    Machado, M; Pires, P; Dinis, A M; Santos-Rosa, M; Alves, V; Salgueiro, L; Cavaleiro, C; Sousa, M C

    2012-03-01

    In order to contribute for the search of new drugs for leishmaniasis, we study the susceptibility of Leishmania infantum, Leishmania tropica and Leishmania major to Cymbopogon citratus essential oil and major compounds, mrycene and citral. C. citratus and citral were the most active inhibiting L. infantum, L. tropica and L. major growth at IC(50) concentrations ranging from 25 to 52 μg/ml and from 34 to 42 μg/ml, respectively. L. infantum promastigotes exposed to essential oil and citral underwent considerable ultrastructural alterations, namely mitochondrial and kinetoplast swelling, autophagosomal structures, disruption of nuclear membrane and nuclear chromatin condensation. C. citratus essential oil and citral promoted the leishmanicidal effect by triggering a programmed cell death. In fact, the leishmanicidal activity was mediated via apoptosis as evidenced by externalization of phosphatidylserine, loss of mitochondrial membrane potential, and cell-cycle arrest at the G(0)/G(1) phase. Taken together, ours findings lead us to propose that citral was responsible for anti-Leishmania activity of the C. citratus and both may represent a valuable source for therapeutic control of leishmaniasis. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Assessing Hypervalency in Iodanes.

    PubMed

    Stirling, András

    2018-02-01

    The so-called hypervalent iodane compounds are very useful and versatile reactants and oxidizing agents in modern organic chemistry. The hypercoordinated central iodine in these compounds hints at a hypervalent state, which is often stressed to justify their reactivity. In this study a theoretical analysis of the electronic structure of a large, representative set of hypercoordinated iodane compounds has been carried out. We observed that the iodonium is not hypervalent in these compounds. In contrast, the analysis reveals a variation of the iodine valence state from a normal octet state to hypovalent depending on the ligands, but irrespective of the coordination number. On the basis of the calculations the reactivity of these compounds can be ascribed to the strong unquenched charge separation present in these molecules which represents a compromise between Coulomb interaction and the resistance of iodonium toward hypervalency. In extreme cases this leads to hypovalency and enhanced reactivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthetic organic agrochemicals in the lower Mississippi River and its major tributaries--Distribution, transport and fate

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.

    1992-01-01

    The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2′,6′-diethylacetanilide 2-hydroxy-2′,6′-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987–1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be < 2% of the annual application of each herbicide in the Midwest.

  1. Composition of the essential oil constituents from leaves and stems of Korean Coriandrum sativum and their immunotoxicity activity on the Aedes aegypti L.

    PubMed

    Chung, Ill-Min; Ahmad, Ateeque; Kim, Sun-Jin; Naik, Poornanand Madhava; Nagella, Praveen

    2012-02-01

    The leaves and stems of Coriandrum sativum were extracted and the essential oil composition and immunotoxicity effects were studied. The analyses were conducted by gas chromatography-mass spectroscopy (GC-MS), which revealed the essential oils of C. sativum leaves and stems. Thirty-nine components representing 99.62% of the total oil were identified from the leaves. The major components are cyclododecanol (23.11%), tetradecanal (17.86%), 2-dodecenal (9.93%), 1-decanol (7.24%), 13-tetradecenal (6.85%), 1-dodecanol (6.54%), dodecanal (5.16%), 1-undecanol (2.28%), and decanal (2.33%). Thirty-eight components representing 98.46% of the total oil were identified from the stems of the coriander. The major components are phytol (61.86%), 15-methyltricyclo[6.5.2(13,14),0(7,15)]-pentadeca-1,3,5,7,9,11,13-heptene (7.01%), dodecanal (3.18%), and 1-dodecanol (2.47%). The leaf oil had significant toxic effects against the larvae of Aedes aegypti with an LC₅₀ value of 26.93 ppm and an LC₉₀ value of 37.69 ppm and the stem oil has toxic effects against the larvae of A. aegypti with an LC₅₀ value of 29.39 ppm and an LC₉₀ value of 39.95 ppm. Also, the above data indicate that the major compounds may play an important role in the toxicity of essential oils.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldridge, Sandy R.; Covey, Joseph; Morris, Joel

    NSC-743380 (1-[(3-chlorophenyl)-methyl]-1H-indole-3-carbinol) is in early stages of development as an anticancer agent. Two metabolites reflect sequential conversion of the carbinol functionality to a carboxaldehyde and the major metabolite, 1-[(3-chlorophenyl)-methyl]-1H-indole-3-carboxylic acid. In an exploratory toxicity study in rats, NSC-743380 induced elevations in liver-associated serum enzymes and biliary hyperplasia. Biliary hyperplasia was observed 2 days after dosing orally for 2 consecutive days at 100 mg/kg/day. Notably, hepatotoxicity and biliary hyperplasia were observed after oral administration of the parent compound, but not when major metabolites were administered. The toxicities of a structurally similar but pharmacologically inactive molecule and a structurally diverse molecule withmore » a similar efficacy profile in killing cancer cells in vitro were compared to NSC-743380 to explore scaffold versus target-mediated toxicity. Following two oral doses of 100 mg/kg/day given once daily on two consecutive days, the structurally unrelated active compound produced hepatic toxicity similar to NSC-743380. The structurally similar inactive compound did not, but, lower exposures were achieved. The weight of evidence implies that the hepatotoxicity associated with NSC-743380 is related to the anticancer activity of the parent molecule. Furthermore, because biliary hyperplasia represents an unmanageable and non-monitorable adverse effect in clinical settings, this model may provide an opportunity for investigators to use a short-duration study design to explore biomarkers of biliary hyperplasia. - Highlights: • NSC-743380 induced biliary hyperplasia in rats. • Toxicity of NSC-743380 appears to be related to its anticancer activity. • The model provides an opportunity to explore biomarkers of biliary hyperplasia.« less

  3. Chemopreventive effects of Korean Angelica vs. its major pyranocoumarins on two lineages of transgenic adenocarcinoma of mouse prostate carcinogenesis

    PubMed Central

    Tang, Su-Ni; Zhang, Jinhui; Wu, Wei; Jiang, Peixin; Puppala, Manohar; Zhang, Yong; Xing, Chengguo; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan

    2015-01-01

    We showed previously that daily gavage of Angelica gigas Nakai (AGN) root ethanolic extract starting 8 weeks of age inhibited growth of prostate epithelium and neuroendocrine carcinomas (NE-Ca) in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Since decursin (D) and its isomer decursinol angelate (DA) are major pyranocoumarins in AGN extract, we tested the hypothesis that D/DA represented active/prodrug compounds against TRAMP carcinogenesis. Three groups of male C57BL/6 TRAMP mice were gavage-treated daily with excipient vehicle, AGN (5 mg per mouse) or equimolar D/DA (3 mg per mouse) from 8 weeks to 16 or 28 weeks of age. Measurement of plasma and NE-Ca D, DA and their common metabolite decursinol indicated similar retention from AGN vs. D/DA dosing. The growth of TRAMP dorsolateral prostate (DLP) in AGN-and D/DA-treated mice was inhibited by 66% and 61% at 16 weeks and by 67% and 72% at 28 weeks, respectively. Survival of mice bearing NE-Ca to 28 weeks was improved by AGN, but not by D/DA. Nevertheless, AGN-and D/DA-treated mice had lower NE-Ca burden. Immunohistochemical and mRNA analyses of DLP showed AGN and D/DA exerted similar inhibition of TRAMP epithelial lesion progression and key cell cycle genes. Profiling of NE-Ca mRNA showed a greater scope of modulating angiogenesis, epithelial-mesenchymal-transition, invasion-metastasis and inflammation genes by AGN than D/DA. The data therefore support D/DA as probable active/prodrug compounds against TRAMP epithelial lesions, and they cooperate with non-pyranocoumarin compounds to fully express AGN efficacy against NE-Ca. PMID:26116406

  4. Chemopreventive Effects of Korean Angelica versus Its Major Pyranocoumarins on Two Lineages of Transgenic Adenocarcinoma of Mouse Prostate Carcinogenesis.

    PubMed

    Tang, Su-Ni; Zhang, Jinhui; Wu, Wei; Jiang, Peixin; Puppala, Manohar; Zhang, Yong; Xing, Chengguo; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan

    2015-09-01

    We showed previously that daily gavage of Angelica gigas Nakai (AGN) root ethanolic extract starting 8 weeks of age inhibited growth of prostate epithelium and neuroendocrine carcinomas (NE-Ca) in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Because decursin (D) and its isomer decursinol angelate (DA) are major pyranocoumarins in AGN extract, we tested the hypothesis that D/DA represented active/prodrug compounds against TRAMP carcinogenesis. Three groups of male C57BL/6 TRAMP mice were gavage treated daily with excipient vehicle, AGN (5 mg per mouse), or equimolar D/DA (3 mg per mouse) from 8 weeks to 16 or 28 weeks of age. Measurement of plasma and NE-Ca D, DA, and their common metabolite decursinol indicated similar retention from AGN versus D/DA dosing. The growth of TRAMP dorsolateral prostate (DLP) in AGN- and D/DA-treated mice was inhibited by 66% and 61% at 16 weeks and by 67% and 72% at 28 weeks, respectively. Survival of mice bearing NE-Ca to 28 weeks was improved by AGN, but not by D/DA. Nevertheless, AGN- and D/DA-treated mice had lower NE-Ca burden. Immunohistochemical and mRNA analyses of DLP showed that AGN and D/DA exerted similar inhibition of TRAMP epithelial lesion progression and key cell-cycle genes. Profiling of NE-Ca mRNA showed a greater scope of modulating angiogenesis, epithelial-mesenchymal transition, invasion-metastasis, and inflammation genes by AGN than D/DA. The data therefore support D/DA as probable active/prodrug compounds against TRAMP epithelial lesions, and they cooperate with non-pyranocoumarin compounds to fully express AGN efficacy against NE-Ca. ©2015 American Association for Cancer Research.

  5. Safety and clinical effectiveness of a compounded sustained-release formulation of buprenorphine for postoperative analgesia in New Zealand White rabbits.

    PubMed

    DiVincenti, Louis; Meirelles, Luiz A D; Westcott, Robin A

    2016-04-01

    To determine the clinical effectiveness and safety of a compounded sustained-release formulation of buprenorphine, compared with effects of regular buprenorphine, for postoperative analgesia in rabbits. Blinded randomized controlled clinical trial. 24 purpose-bred adult male New Zealand White rabbits. Rabbits received titanium implants in each tibia as part of another study. Immediately prior to surgery, each rabbit received regular buprenorphine hydrochloride (0.02 mg/kg [0.009 mg/lb], SC, q 12 h for 3 days) or 1 dose of a compounded sustained-release formulation of buprenorphine (0.12 mg/kg [0.055 mg/lb], SC) followed by an equal volume of saline (0.9% NaCl) solution (SC, q 12 h for 3 days) after surgery. For 7 days after surgery, rabbits were evaluated for signs of pain by means of rabbit grimace and activity scoring and for adverse effects. No significant differences were identified between treatment groups in grimace and activity scores at any point. No major adverse effects were detected for either drug. However, 3 rabbits that received regular buprenorphine had pain scores suggestive of moderate to severe pain by the time dose administration was due (ie, within the 12-hour administration interval). No clinically important differences were detected in intraoperative anesthetic or postoperative recovery variables. Sustained-release buprenorphine administered SC at 0.12 mg/kg was at least as effective as regular buprenorphine in providing analgesia for rabbits following orthopedic surgery without any major adverse effects. This sustained-release formulation represents an important alternative for rabbit analgesia with potential to improve rabbit welfare over existing analgesic standards.

  6. Removal of trace organic contaminants from domestic wastewater: A meta-analysis comparison of sewage treatment technologies.

    PubMed

    Melvin, Steven D; Leusch, Frederic D L

    2016-01-01

    Trace organic contaminants (TrOCs), such as endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs), represent global threats to aquatic animals and ecosystems. A major source of TrOCs in the aquatic environment is via the discharge of treated sewage, so there is an urgent need to evaluate the comparative efficiencies of the most widely used sewage treatment technologies as regards elimination of these compounds from wastewater. To address this need, 976 published articles were compiled focusing on estimates of removal (%) for 20 common environmental TrOCs, from five major sewage treatment technologies: conventional activated sludge (CAS), oxidation ditch (OD), membrane bioreactor (MBR), ponds and constructed wetlands (PCW), and trickling biological filters (TBF). A quantitative meta-analysis was performed to compare standardized relative removal efficiencies (SREs) of the compounds amongst these technologies, and where possible potential sources of heterogeneity were considered (e.g., flow rates and chemical sorption potential). The results indicate that the most widely used CAS treatment and the less common TBF provide comparatively poor overall removal of common organic micropollutants. Membrane bioreactors appear to be capable of achieving the greatest overall removal efficiencies, but the sustainability and economic viability of this option has been questioned. Treatment with OD systems may be more economical while still achieving comparatively high removal efficiencies, and the analysis revealed OD to be the best option for targeting highly potent estrogenic EDCs. This study offers a unique global assessment of TrOC removal via leading sewage treatment technologies, and is an important step in the identification of effective options for treating municipal sewage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The Multiple-Lemma Representation of Italian Compound Nouns: A Single Case Study of Deep Dyslexia

    ERIC Educational Resources Information Center

    Marelli, Marco; Aggujaro, Silvia; Molteni, Franco; Luzzatti, Claudio

    2012-01-01

    It is not clear how compound words are represented within the influential framework of the lemma-lexeme theory. Theoretically, compounds could be structured through a multiple lemma architecture, in which the lemma nodes of both the compound and its constituents are involved in lexical processing. If this were the case, syntactic properties of…

  8. Atmospheric halocarbons - A discussion with emphasis on chloroform

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.; Mcelroy, M. B.; Wofsy, S. C.

    1975-01-01

    Bleaching of paper pulp represents a major industrial use of chlorine and could provide an environmentally significant source of atmospheric halocarbons. The related global production of chloroform is estimated at 300,000 ton per year and there could be additional production associated with atmospheric decomposition of perchloroethylene. Estimates are given for the production of methyl chloride, methyl bromide and methyl iodide, 5.2 million, 77 thousand, and 740 thousand ton per year respectively. The relative yields of CH3Cl, CH3Br and CH3I are consistent with the hypothesis of a marine biological source for these compounds. Concentrations of other halocarbons observed in the atmosphere appear to indicate industrial sources.

  9. Chemical composition and antibacterial activity of the essential oil from Pyrrosia tonkinensis (Giesenhagen) Ching.

    PubMed

    Xin, Xiaowei; Liu, Qingshen; Zhang, Yingying; Gao, Demin

    2016-01-01

    The present study aimed to analyse the chemical components of the essential oil from Pyrrosia tonkinensis by GC-MS and evaluate the in vitro antibacterial activity. Twenty-eight compounds, representing 88.1% of the total essential oil, were identified and the major volatile components were trans-2-hexenal (22.1%), followed by nonanal (12.8%), limonene (9.6%), phytol (8.4%), 1-hexanol (3.8%), 2-furancarboxaldehyde (3.5%) and heptanal (3.1%). The antibacterial assays showed that the essential oil of P. tonkinensis had good antibacterial activities against all the tested microorganisms. This paper first reported the chemical composition and antimicrobial activity of the essential oil from P. tonkinensis.

  10. The enigmatic SAR202 cluster up close: shedding light on a globally distributed dark ocean lineage involved in sulfur cycling.

    PubMed

    Mehrshad, Maliheh; Rodriguez-Valera, Francisco; Amoozegar, Mohammad Ali; López-García, Purificación; Ghai, Rohit

    2018-03-01

    The dark ocean microbiota represents the unknown majority in the global ocean waters. The SAR202 cluster belonging to the phylum Chloroflexi was the first microbial lineage discovered to specifically inhabit the aphotic realm, where they are abundant and globally distributed. The absence of SAR202 cultured representatives is a significant bottleneck towards understanding their metabolic capacities and role in the marine environment. In this work, we use a combination of metagenome-assembled genomes from deep-sea datasets and publicly available single-cell genomes to construct a genomic perspective of SAR202 phylogeny, metabolism and biogeography. Our results suggest that SAR202 cluster members are medium sized, free-living cells with a heterotrophic lifestyle, broadly divided into two distinct clades. We present the first evidence of vertical stratification of these microbes along the meso- and bathypelagic ocean layers. Remarkably, two distinct species of SAR202 cluster are highly abundant in nearly all deep bathypelagic metagenomic datasets available so far. SAR202 members metabolize multiple organosulfur compounds, many appear to be sulfite-oxidizers and are predicted to play a major role in sulfur turnover in the dark water column. This concomitantly suggests an unsuspected availability of these nutrient sources to allow for the high abundance of these microbes in the deep sea.

  11. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato

    PubMed Central

    Liu, Yongsheng; Roof, Sherry; Ye, Zhibiao; Barry, Cornelius; van Tuinen, Ageeth; Vrebalov, Julia; Bowler, Chris; Giovannoni, Jim

    2004-01-01

    Fruit constitutes a major component of human diets, providing fiber, vitamins, and phytonutrients. Carotenoids are a major class of compounds found in many fruits, providing nutritional benefits as precursors to essential vitamins and as antioxidants. Although recent gene isolation efforts and metabolic engineering have primarily targeted genes involved in carotenoid biosynthesis, factors that regulate flux through the carotenoid pathway remain largely unknown. Characterization of the tomato high-pigment mutations (hp1 and hp2) suggests the manipulation of light signal transduction machinery may be an effective approach toward practical manipulation of plant carotenoids. We demonstrate here that hp1 alleles represent mutations in a tomato UV-DAMAGED DNA-BINDING PROTEIN 1 (DDB1) homolog. We further demonstrate that two tomato light signal transduction genes, LeHY5 and LeCOP1LIKE, are positive and negative regulators of fruit pigmentation, respectively. Down-regulated LeHY5 plants exhibit defects in light responses, including inhibited seedling photomorphogenesis, loss of thylakoid organization, and reduced carotenoid accumulation. In contrast, repression of LeCOP1LIKE expression results in plants with exaggerated photomorphogenesis, dark green leaves, and elevated fruit carotenoid levels. These results suggest genes encoding components of light signal transduction machinery also influence fruit pigmentation and represent genetic tools for manipulation of fruit quality and nutritional value. PMID:15178762

  12. Constituents of Cajanus cajan (L.) Millsp., Moringa oleifera Lam., Heliotropium indicum L. and Bidens pilosa L. from Nigeria.

    PubMed

    Ogunbinu, Akinola O; Flamini, Guido; Cioni, Pier L; Adebayo, Muritala A; Ogunwande, Isiaka A

    2009-04-01

    The essential oils of four plant species from Nigeria have been extracted by hydrodistillation and analyzed by GC and GC-MS. The oils of Cajanus cajan were comprised of sesquiterpenes (92.5%, 81.2% and 94.3% respectively in the leaves, stem and seeds). The major compounds identified were alpha-himachalene (9.0-11.5%), beta-himachalene (8.0-11.0%), gamma-himachalene (6.9-8.1%), alpha-humulene (7.1-8.7%) and alpha-copaene (4.5-5.6%). However, monoterpenoid compounds (81.8%) dominated the oil of Moringa oleifera with an abundance of alpha-phellandrene (25.2%) and p-cymene (24.9%). On the other hand, aldehydes (52.8%) occurred in the highest amount in Heliotropium indicum, represented by phenylacetaldehyde (22.2%), (E)-2-nonenal (8.3%) and (E, Z)-2-nonadienal (6.1%), with a significant quantity of hexahydrofarnesylacetone (8.4%). The leaf and stem oils of Bidens pilosa were dominated by sesquiterpenes (82.3% and 59.3%, respectively). The main compounds in the leaf oil were caryophyllene oxide (37.0%), beta-caryophyllene (10.5%) and humulene oxide (6.0%), while the stem oils had an abundance of hexahydrofarnesyl acetone (13.4%), delta-cadinene (12.0%) and caryophyllene oxide (11.0%). The observed chemical patterns differ considerably from previous investigations.

  13. HPLC-Based Activity Profiling for GABAA Receptor Modulators in Extracts: Validation of an Approach Utilizing a Larval Zebrafish Locomotor Assay.

    PubMed

    Moradi-Afrapoli, Fahimeh; Ebrahimi, Samad Nejad; Smiesko, Martin; Hamburger, Matthias

    2017-05-26

    Gamma-aminobutyric acid type A (GABA A ) receptors are major inhibitory neurotransmitter receptors in the central nervous system and a target for numerous clinically important drugs used to treat anxiety, insomnia, and epilepsy. A series of allosteric GABA A receptor agonists was identified previously with the aid of HPLC-based activity profiling, whereby activity was tracked with an electrophysiological assay in Xenopus laevis oocytes. To accelerate the discovery process, an approach has been established for HPLC-based profiling using a larval zebrafish (Danio rerio) seizure model induced by pentylenetetrazol (PTZ), a pro-convulsant GABA A receptor antagonist. The assay was validated with the aid of representative GABAergic plant compounds and extracts. Various parameters that are relevant for the quality of results obtained, including PTZ concentration, the number of larvae, the incubation time, and the data analysis protocol, were optimized. The assay was then translated into an HPLC profiling protocol, and active compounds were tracked in extracts of Valeriana officinalis and Magnolia officinalis. For selected compounds the effects in the zebrafish larvae model were compared with data from in silico blood-brain barrier (BBB) permeability predictions, to validate the use for discovery of BBB-permeable natural products.

  14. Resolving biodegradation patterns of persistent saturated hydrocarbons in weathered oil samples from the Deepwater Horizon disaster.

    PubMed

    Gros, Jonas; Reddy, Christopher M; Aeppli, Christoph; Nelson, Robert K; Carmichael, Catherine A; Arey, J Samuel

    2014-01-01

    Biodegradation plays a major role in the natural attenuation of oil spills. However, limited information is available about biodegradation of different saturated hydrocarbon classes in surface environments, despite that oils are composed mostly of saturates, due to the limited ability of conventional gas chromatography (GC) to resolve this compound group. We studied eight weathered oil samples collected from four Gulf of Mexico beaches 12-19 months after the Deepwater Horizon disaster. Using comprehensive two-dimensional gas chromatography (GC × GC), we successfully separated, identified, and quantified several distinct saturates classes in these samples. We find that saturated hydrocarbons eluting after n-C22 dominate the GC-amenable fraction of these weathered samples. This compound group represented 8-10%, or 38-68 thousand metric tons, of the oil originally released from Macondo well. Saturates in the n-C22 to n-C29 elution range were found to be partly biodegraded, but to different relative extents, with ease of biodegradation decreasing in the following order: n-alkanes > methylalkanes and alkylcyclopentanes+alkylcyclohexanes > cyclic and acyclic isoprenoids. We developed a new quantitative index designed to characterize biodegradation of >n-C22 saturates. These results shed new light onto the environmental fate of these persistent, hydrophobic, and mostly overlooked compounds in the unresolved complex mixtures (UCM) of weathered oils.

  15. Acute effects of ethanol on the transfer of nicotine and two dietary carcinogens in human placental perfusion.

    PubMed

    Veid, Jenni; Karttunen, Vesa; Myöhänen, Kirsi; Myllynen, Päivi; Auriola, Seppo; Halonen, Toivo; Vähäkangas, Kirsi

    2011-09-10

    Many mothers use, against instructions, alcohol during pregnancy. Simultaneously mothers are exposed to a wide range of other environmental chemicals. These chemicals may also harm the developing fetus, because almost all toxic compounds can go through human placenta. Toxicokinetic effects of ethanol on the transfer of other environmental compounds through human placenta have not been studied before. It is known that ethanol has lytic properties and increases the permeability and fluidity of cell membranes. We studied the effects of ethanol on the transfer of three different environmental toxins: nicotine, PhIP (2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine) and NDMA (N-nitrosodimethylamine) in placental perfusion. We tested in human breast cancer adenocarcinoma cell line MCF-7 whether ethanol affects ABCG2/BCRP, which is also the major transporter in human placenta. We found that the transfer of ethanol is comparable to that of antipyrine, which points to passive diffusion as the transfer mechanism. Unexpectedly, ethanol had no statistically significant effect on the transfer of the other studied compounds. Neither did ethanol inhibit the function of ABCG2/BCRP. These experiments represent only the effects of acute exposure to ethanol and chronic exposure remains to be studied. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Caatinga plants: Natural and semi-synthetic compounds potentially active against Trichomonas vaginalis.

    PubMed

    Vieira, Patrícia de Brum; Silva, Nícolas Luiz Feijó; da Silva, Gloria Narjara Santos; Silva, Denise Brentan; Lopes, Norberto Peporine; Gnoatto, Simone Cristina Baggio; da Silva, Márcia Vanusa; Macedo, Alexandre José; Bastida, Jaume; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis causes trichomoniasis; the most common but overlooked non-viral sexually transmitted disease worldwide. The treatment is based at 5'-nitroimidazoles, however, failure are related to resistance of T. vaginalis to chemotherapy. Caatinga is a uniquely Brazilian region representing a biome with type desert vegetation and plants present diverse biological activity, however, with few studies. The aim of this study was to investigate the activity against T. vaginalis of different plants from Caatinga and identify the compounds responsible by the activity. A bioguided fractionation of Manilkara rufula was performed and four major compounds were identified: caproate of α-amyrin (1b), acetate of β-amyrin (2a), caproate of β-amyrin (2b), and acetate of lupeol (3a). In addition, six derivatives of α-amyrin (1), β-amyrin (2) and lupeol (3) were synthesized and tested against the parasite. Ursolic acid (5) reduced about 98% of parasite viability after 2h of incubation and drastic ultrastructural alterations were observed by scanning electron microscopy. Moreover, 5 presented high cytotoxicity to HMVII and HeLa cell line and low cytotoxicity against Vero line at 50 μM (MIC against the parasite). Metronidazole effect against T. vaginalis resistant isolate was improved when in association with 5. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Organic Chemical Characterization and Mass Balance of a Hydraulically Fractured Well: From Fracturing Fluid to Produced Water over 405 Days.

    PubMed

    Rosenblum, James; Thurman, E Michael; Ferrer, Imma; Aiken, George; Linden, Karl G

    2017-12-05

    A long-term field study (405 days) of a hydraulically fractured well from the Niobrara Formation in the Denver-Julesburg Basin was completed. Characterization of organic chemicals used in hydraulic fracturing and their changes through time, from the preinjected fracturing fluid to the produced water, was conducted. The characterization consisted of a mass balance by dissolved organic carbon (DOC), volatile organic analysis by gas chromatography/mass spectrometry, and nonvolatile organic analysis by liquid chromatography/mass spectrometry. DOC decreased from 1500 mg/L in initial flowback to 200 mg/L in the final produced water. Only ∼11% of the injected DOC returned by the end of the study, with this 11% representing a maximum fraction returned since the formation itself contributes DOC. Furthermore, the majority of returning DOC was of the hydrophilic fraction (60-85%). Volatile organic compound analysis revealed substantial concentrations of individual BTEX compounds (0.1-11 mg/L) over the 405-day study. Nonvolatile organic compounds identified were polyethylene glycols (PEGs), polypropylene glycols (PPG), linear alkyl-ethoxylates, and triisopropanolamine (TIPA). The distribution of PEGs, PPGs, and TIPA and their ubiquitous presence in our samples and the literature illustrate their potential as organic tracers for treatment operations or in the event of an environmental spill.

  18. Chemical compositions and antimicrobial and antioxidant activities of the essential oils from Magnolia grandiflora, Chrysactinia mexicana, and Schinus molle found in northeast Mexico.

    PubMed

    Guerra-Boone, Laura; Alvarez-Román, Rocío; Salazar-Aranda, Ricardo; Torres-Cirio, Anabel; Rivas-Galindo, Verónica Mayela; Waksman de Torres, Noemí; González González, Gloria María; Pérez-López, Luis Alejandro

    2013-01-01

    The essential oils from Magnolia grandiflora and Chrysactinia mexicana leaves, and from Schinus molle leaves and fruit, were characterized by gas chromatography/flame-ionization detection and gas chromatography/mass spectrometry. Twenty-eight compounds from M. grandiflora leaves were identified (representing 93.6% of the total area of the gas chromatogram), with the major component being bornyl acetate (20.9%). Colorless and yellow oils were obtained from the C. mexicana leaves with 18 (86.7%) and 11 (100%) compounds identified, respectively. In both fractions, the principal component was sylvestrene (36.8% and 41.1%, respectively). The essential oils ofS. molle leaves and fruit were each separated into colorless and yellow fractions, in which 14 (98.2) and 20 (99.8%) compounds were identified. The main component was alpha-phellandrene in all fractions (between 32.8% and 45.0%). The M. grandiflora oil displayed antifungal activity against five dermatophyte strains. The oils from S. molle and M. grandiflora leaves had antimicrobial activity against Staphylococcus aureus and Streptococcus pyogenes, which cause skin infections that potentially may lead to sepsis. However, the antioxidant activities of all oils were small (half maximal effective concentration values >250 microg/mL).

  19. The Need for Development of New HIV-1 Reverse Transcriptase and Integrase Inhibitors in the Aftermath of Antiviral Drug Resistance

    PubMed Central

    Wainberg, Mark A.

    2012-01-01

    The use of highly active antiretroviral therapy (HAART) involves combinations of drugs to achieve maximal virological response and reduce the potential for the emergence of antiviral resistance. There are two broad classes of reverse transcriptase inhibitors, the nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs). Since the first classes of such compounds were developed, viral resistance against them has necessitated the continuous development of novel compounds within each class. This paper considers the NRTIs and NNRTIs currently in both preclinical and clinical development or approved for second line therapy and describes the patterns of resistance associated with their use, as well as the underlying mechanisms that have been described. Due to reasons of both affordability and availability, some reverse transcriptase inhibitors with low genetic barrier are more commonly used in resource-limited settings. Their use results to the emergence of specific patterns of antiviral resistance and so may require specific actions to preserve therapeutic options for patients in such settings. More recently, the advent of integrase strand transfer inhibitors represents another major step forward toward control of HIV infection, but these compounds are also susceptible to problems of HIV drug resistance. PMID:24278679

  20. Exploring the transferase activity of Ffase from Schwanniomyces occidentalis, a β-fructofuranosidase showing high fructosyl-acceptor promiscuity.

    PubMed

    Piedrabuena, David; Míguez, Noa; Poveda, Ana; Plou, Francisco J; Fernández-Lobato, María

    2016-10-01

    The β-fructofuranosidase from the yeast Schwanniomyces occidentalis (Ffase) produces the prebiotic sugars 6-kestose and 1-kestose by transfructosylation of sucrose, which makes it of biotechnological interest. In this study, the hydrolase and transferase activity of this enzyme was kinetically characterized and its potential to synthesize new fructosylated products explored. A total of 40 hydroxylated compounds were used as potential fructosyl-acceptor alternatives to sucrose. Only 17 of them, including some monosaccharides, disaccharides, and oligosaccharides as well as alditols and glycosides were fructosylated. The best alternative acceptors were the alditols. The major transfer product of the reaction including mannitol was purified and characterized as 1-O-β-D-fructofuranosyl-D-mannitol, whose maximum concentration reached 44 g/L, representing about 7.3 % of total compounds in the mixture and 89 % of all products generated by transfructosylation. The reactions including erythritol produced 35 g/L of an isomer mixture comprising 1- and 4-O-β-D-fructofuranosyl-D-erythritol. In addition, Ffase produced 24 g/L of the disaccharide blastose by direct fructosylation of glucose, which makes it the first enzyme characterized from yeast showing this ability. Thus, novel fructosylated compounds with potential applications in food and pharmaceutical industries can be obtained due to the Ffase fructosyl-acceptor promiscuity.

  1. Standardized UV-vis spectra as the foundation for a threshold-based, integrated photosafety evaluation.

    PubMed

    Bauer, Daniel; Averett, Lacey A; De Smedt, Ann; Kleinman, Mark H; Muster, Wolfgang; Pettersen, Betty A; Robles, Catherine

    2014-02-01

    Phototoxicity is a relatively common phenomenon and is an adverse effect of some systemic drugs. The fundamental initial step of photochemical reactivity is absorption of a photon; however, little guidance has been provided thus far regarding how ultraviolet-visible (UV-vis) light absorption spectra may be used to inform testing strategies for investigational drugs. Here we report the results of an inter-laboratory study comparing the data from harmonized UV-vis light absorption spectra obtained in methanol with data from the in vitro 3T3 Neutral Red Uptake Phototoxicity Test. Six pharmaceutical companies submitted data according to predefined quality criteria for 76 compounds covering a wide range of chemical classes showing a diverse but "positive"-enhanced distribution of photo irritation factors (22%: PIF<2, 12%: PIF 2-5, 66%: PIF>5). For compounds being formally positive (PIF value above 5) the lowest reported molar extinction coefficient (MEC) was 1700 L mol⁻¹ cm⁻¹ in methanol. However, the majority of these formally positive compounds showed MEC values being significantly higher (up to almost 40,000 L mol⁻¹ cm⁻¹). In conclusion, an MEC value of 1000 L mol⁻¹ cm⁻¹ may represent a reasonable and pragmatic threshold warranting further experimental photosafety evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Phylogenetic and chemical diversity of fungal endophytes isolated from Silybum marianum (L) Gaertn. (milk thistle)

    PubMed Central

    Raja, Huzefa A.; Kaur, Amninder; El-Elimat, Tamam; Figueroa, Mario; Kumar, Rahul; Deep, Gagan; Agarwal, Rajesh; Faeth, Stanley H.; Cech, Nadja B.; Oberlies, Nicholas H.

    2015-01-01

    Use of the herb milk thistle (Silybum marianum) is widespread, and its chemistry has been studied for over 50 years. However, milk thistle endophytes have not been studied previously for their fungal and chemical diversity. We examined the fungal endophytes inhabiting this medicinal herb to determine: (1) species composition and phylogenetic diversity of fungal endophytes; (2) chemical diversity of secondary metabolites produced by these organisms; and (3) cytotoxicity of the pure compounds against the human prostate carcinoma (PC-3) cell line. Forty-one fungal isolates were identified from milk thistle comprising 25 operational taxonomic units based on BLAST search via GenBank using published authentic sequences from nuclear ribosomal internal transcribed spacer sequence data. Maximum likelihood analyses of partial 28S rRNA gene showed that these endophytes had phylogenetic affinities to four major classes of Ascomycota, the Dothideomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes. Chemical studies of solid–substrate fermentation cultures led to the isolation of four new natural products. In addition, 58 known secondary metabolites, representing diverse biosynthetic classes, were isolated and characterized using a suite of nuclear magnetic resonance and mass spectrometry techniques. Selected pure compounds were tested against the PC-3 cell line, where six compounds displayed cytotoxicity. PMID:26000195

  3. Indole-based novel small molecules for the modulation of bacterial signalling pathways.

    PubMed

    Biswas, Nripendra Nath; Kutty, Samuel K; Barraud, Nicolas; Iskander, George M; Griffith, Renate; Rice, Scott A; Willcox, Mark; Black, David StC; Kumar, Naresh

    2015-01-21

    Gram-negative bacteria such as Pseudomonas aeruginosa use N-acylated L-homoserine lactones (AHLs) as autoinducers (AIs) for quorum sensing (QS), a major regulatory and cell-to-cell communication system for social adaptation, virulence factor production, biofilm formation and antibiotic resistance. Some bacteria use indole moieties for intercellular signaling and as regulators of various bacterial phenotypes important for evading the innate host immune response and antimicrobial resistance. A range of natural and synthetic indole derivatives have been found to act as inhibitors of QS-dependent bacterial phenotypes, complementing the bactericidal ability of traditional antibiotics. In this work, various indole-based AHL mimics were designed and synthesized via the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC·HCl) and N,N'-dicyclohexylcarbodiimide (DCC) mediated coupling reactions of a variety of substituted or unsubstituted aminoindoles with different alkanoic acids. All synthesized compounds were tested for QS inhibition using a P. aeruginosa QS reporter strain by measuring the amount of green fluorescent protein (GFP) production. Docking studies were performed to examine their potential to bind and therefore inhibit the target QS receptor protein. The most potent compounds 11a, 11d and 16a showed 44 to 65% inhibition of QS activity at 250 μM concentration, and represent promising drug leads for the further development of anti-QS antimicrobial compounds.

  4. Radiosynthesis and radiopharmacological evaluation of [N-methyl-11C]Org 34850 as a glucocorticoid receptor (GR)-binding radiotracer.

    PubMed

    Wuest, Frank; Kniess, Torsten; Henry, Brian; Peeters, Bernardus W M M; Wiegerinck, Peter H G; Pietzsch, Jens; Bergmann, Ralf

    2009-02-01

    The radiosynthesis of [N-methyl-(11)C]Org 34850 as a potential brain glucocorticoid receptor (GR)-binding radiotracer is described. The radiosynthesis was accomplished via N-methylation of the corresponding desmethyl precursor with [(11)C]methyl triflate in a remotely controlled synthesis module to give the desired compound in a radiochemical yield of 23+/-5% (decay-corrected, based upon [(11)C]CO(2)) at a specific activity of 47+/-12 GBq/micromol (n=15) at the end-of-synthesis (EOS). The radiochemical purity after semi-preparative HPLC purification exceeded 95%. The total synthesis time was 35-40 min after end-of-bombardment (EOB). The radiotracer is rapidly metabolized in rat plasma leading to the formation of two more hydrophilic metabolites as the major metabolites. Radiopharmacological evaluation involving biodistribution and small animal PET imaging in normal Wistar rats showed that the compound [N-methyl-(11)C]Org 34850 is not able to sufficiently penetrate the blood-brain barrier. Therefore, compound [N-methyl-(11)C]Org 34850 seems not to be a suitable PET radiotracer for imaging rat brain GRs. However, involvement of Pgp or species differences requires further clarification to establish whether the radiotracer [N-methyl-(11)C]Org 34850 may still represent a suitable candidate for imaging GRs in humans.

  5. Biogenic volatile organic compound emissions from vegetation fires.

    PubMed

    Ciccioli, Paolo; Centritto, Mauro; Loreto, Francesco

    2014-08-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  6. Hydroxytyrosol and its complex forms (secoiridoids) modulate aorta and heart proteome in healthy rats: Potential cardio-protective effects.

    PubMed

    Catalán, Úrsula; Rubió, Laura; López de Las Hazas, Maria-Carmen; Herrero, Pol; Nadal, Pedro; Canela, Núria; Pedret, Anna; Motilva, Maria-José; Solà, Rosa

    2016-10-01

    Hydroxytyrosol (HT) is the major phenolic compound in virgin olive oil (VOO) in both free and complex forms (secoiridoids; SEC). Proteomics of cardiovascular tissues such as aorta or heart represents a promising tool to uncover the mechanisms of action of phenolic compounds in healthy animals. Twelve female Wistar rats were separated into three groups: a standard diet and two diets supplemented in phenolic compounds (HT and SEC) adjusted to 5 mg/kg/day during 21 days. Proteomic analyses of aorta and heart tissues were performed by nano-LC and MS. Ingenuity Pathway Analysis was used to generate interaction networks. HT or SEC modulated aorta and heart proteome compared to the standard diet. The top-scored networks were related to Cardiovascular System. HT and SEC downregulated proteins related to proliferation and migration of endothelial cells and occlusion of blood vessels in aorta and proteins related to heart failure in heart tissue. SEC showed higher fold change values compared to HT, attributed to higher concentration of HT detected in heart tissue. Changes at proteomic level in cardiovascular tissues may partially account for the underlying mechanisms of VOO phenols cardiovascular protection being the SEC effects higher than free HT. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Phylogenetic and chemical diversity of fungal endophytes isolated from Silybum marianum (L) Gaertn. (milk thistle).

    PubMed

    Raja, Huzefa A; Kaur, Amninder; El-Elimat, Tamam; Figueroa, Mario; Kumar, Rahul; Deep, Gagan; Agarwal, Rajesh; Faeth, Stanley H; Cech, Nadja B; Oberlies, Nicholas H

    2015-01-02

    Use of the herb milk thistle ( Silybum marianum ) is widespread, and its chemistry has been studied for over 50 years. However, milk thistle endophytes have not been studied previously for their fungal and chemical diversity. We examined the fungal endophytes inhabiting this medicinal herb to determine: (1) species composition and phylogenetic diversity of fungal endophytes; (2) chemical diversity of secondary metabolites produced by these organisms; and (3) cytotoxicity of the pure compounds against the human prostate carcinoma (PC-3) cell line. Forty-one fungal isolates were identified from milk thistle comprising 25 operational taxonomic units based on BLAST search via GenBank using published authentic sequences from nuclear ribosomal internal transcribed spacer sequence data. Maximum likelihood analyses of partial 28S rRNA gene showed that these endophytes had phylogenetic affinities to four major classes of Ascomycota, the Dothideomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes. Chemical studies of solid-substrate fermentation cultures led to the isolation of four new natural products. In addition, 58 known secondary metabolites, representing diverse biosynthetic classes, were isolated and characterized using a suite of nuclear magnetic resonance and mass spectrometry techniques. Selected pure compounds were tested against the PC-3 cell line, where six compounds displayed cytotoxicity.

  8. Escaping compound eye ancestry: the evolution of single-chamber eyes in holometabolous larvae.

    PubMed

    Buschbeck, Elke K

    2014-08-15

    Stemmata, the eyes of holometabolous insect larvae, have gained little attention, even though they exhibit remarkably different optical solutions, ranging from compound eyes with upright images, to sophisticated single-chamber eyes with inverted images. Such optical differences raise the question of how major transitions may have occurred. Stemmata evolved from compound eye ancestry, and optical differences are apparent even in some of the simplest systems that share strong cellular homology with adult ommatidia. The transition to sophisticated single-chamber eyes occurred many times independently, and in at least two different ways: through the fusion of many ommatidia [as in the sawfly (Hymenoptera)], and through the expansion of single ommatidia [as in tiger beetles (Coleoptera), antlions (Neuroptera) and dobsonflies (Megaloptera)]. Although ommatidia-like units frequently have multiple photoreceptor layers (tiers), sophisticated image-forming stemmata tend to only have one photoreceptor tier, presumably a consequence of the lens only being able to efficiently focus light on to one photoreceptor layer. An interesting exception is found in some diving beetles [Dytiscidae (Coleoptera)], in which two retinas receive sharp images from a bifocal lens. Taken together, stemmata represent a great model system to study an impressive set of optical solutions that evolved from a relatively simple ancestral organization. © 2014. Published by The Company of Biologists Ltd.

  9. Organic chemical characterization and mass balance of a hydraulically fractured well: From fracturing fluid to produced water over 405 days

    USGS Publications Warehouse

    Rosenblum, James; Thurman, E. Michael; Ferrer, Imma; Aiken, George R.; Linden, Karl G.

    2017-01-01

    A long-term field study (405 days) of a hydraulically fractured well from the Niobrara Formation in the Denver-Julesburg Basin was completed. Characterization of organic chemicals used in hydraulic fracturing and their changes through time, from the preinjected fracturing fluid to the produced water, was conducted. The characterization consisted of a mass balance by dissolved organic carbon (DOC), volatile organic analysis by gas chromatography/mass spectrometry, and nonvolatile organic analysis by liquid chromatography/mass spectrometry. DOC decreased from 1500 mg/L in initial flowback to 200 mg/L in the final produced water. Only ∼11% of the injected DOC returned by the end of the study, with this 11% representing a maximum fraction returned since the formation itself contributes DOC. Furthermore, the majority of returning DOC was of the hydrophilic fraction (60–85%). Volatile organic compound analysis revealed substantial concentrations of individual BTEX compounds (0.1–11 mg/L) over the 405-day study. Nonvolatile organic compounds identified were polyethylene glycols (PEGs), polypropylene glycols (PPG), linear alkyl-ethoxylates, and triisopropanolamine (TIPA). The distribution of PEGs, PPGs, and TIPA and their ubiquitous presence in our samples and the literature illustrate their potential as organic tracers for treatment operations or in the event of an environmental spill.

  10. GC and GC/MS Analysis of Essential Oil Composition of the Endemic Soqotraen Leucas virgata Balf.f. and Its Antimicrobial and Antioxidant Activities

    PubMed Central

    Mothana, Ramzi A.; Al-Said, Mansour S.; Al-Yahya, Mohammed A.; Al-Rehaily, Adnan J.; Khaled, Jamal M.

    2013-01-01

    Leucas virgata Balf.f. (Lamiaceae) was collected from the Island Soqotra (Yemen) and its essential oil was obtained by hydrodistillation. The chemical composition of the oil was investigated by GC and GC-MS. Moreover, the essential oil was evaluated for its antimicrobial activity against two Gram-positive bacteria, two Gram-negative bacteria, and one yeast species by using broth micro-dilution assay for minimum inhibitory concentrations (MIC) and antioxidant activity by measuring the scavenging activity of the DPPH radical. The investigation led to the identification of 43 constituents, representing 93.9% of the total oil. The essential oil of L. virgata was characterized by a high content of oxygenated monoterpenes (50.8%). Camphor (20.5%) exo-fenchol (3.4%), fenchon (5.4%), and borneol (3.1%) were identified as the main components. Oxygenated sesquiterpenes were found as the second major group of compounds (21.0%). β-Eudesmol (6.1%) and caryophyllene oxide (5.1%) were the major compounds among oxygenated sesquiterpenes. The results of the antimicrobial assay showed that the oil exhibited a great antibacterial activity against the tested S. aureus, B. subtilis, and E. coli. No activity was found against P. aeruginosa and C. albicans. Moreover, the DPPH-radical scavenging assay exhibited only a moderate antioxidant activity (31%) for the oil at the highest concentration tested (1 mg/mL). PMID:24284402

  11. Bisphenol A and its structural analogues in household waste paper.

    PubMed

    Pivnenko, K; Pedersen, G A; Eriksson, E; Astrup, T F

    2015-10-01

    Bisphenol A (BPA) is an industrial chemical produced in large volumes. Its main use is associated with polycarbonate plastic, epoxy resins and thermal paper. In contrast to other applications, thermal paper contains BPA in its un-reacted form as an additive, which is subjected to migration. Receiving a significant amount of attention from the scientific community and beyond, due to its controversial endocrine-disrupting effects, the industry is attempting to substitute BPA in variety of applications. Alternative phenolic compounds have been proposed for use in thermal paper; however, information to what extent BPA alternatives have been used in paper is sparse. The aim of the present work was to quantify BPA and its alternatives (bisphenol S (BPS), bisphenol E (BPE), bisphenol B (BPB), 4-cumylphenol (HPP) and bisphenol F (BPF)) in waste paper and board from Danish households, thermal paper receipts, non-carbon copy paper and conventional printer paper. BPA was found in all waste paper samples analysed, while BPS was identified in 73% of them. Only BPB was not identified in any of the samples. BPA and BPS were found in the majority of the receipts, which contained no measurable concentrations of the remaining alternatives. Although receipts showed the highest concentrations of BPA and BPS, office paper, flyers and corrugated boxes, together with receipts, represented the major flux of the two compounds in waste paper streams. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Characterization of aroma-active compounds in raw and cooked pine-mushrooms (Tricholoma matsutake Sing.).

    PubMed

    Cho, In Hee; Kim, Se Young; Choi, Hyung-Kyoon; Kim, Young-Suk

    2006-08-23

    The characteristic aroma-active compounds in raw and cooked pine-mushrooms (Tricholoma matsutake Sing.) were investigated by gas chromatography-olfactometry using aroma extract dilution analysis. 1-Octen-3-one (mushroom-like) was the major aroma-active compound in raw pine-mushrooms; this compound had the highest flavor dilution factor, followed by ethyl 2-methylbutyrate (floral and sweet), linalool (citrus-like), methional (boiled potato-like), 3-octanol (mushroom-like and buttery), 1-octen-3-ol (mushroom-like), (E)-2-octen-1-ol (mushroom-like), and 3-octanone (mushroom-like and buttery). By contrast, methional, 2-acetylthiazole (roasted), an unknown compound (chocolate-like), 3-hydroxy-2-butanone (buttery), and phenylacetaldehyde (floral and sweet), which could be formed by diverse thermal reactions during the cooking process, together with C8 compounds, were identified as the major aroma-active compounds in cooked pine-mushrooms.

  13. Solid state electrochemical current source

    DOEpatents

    Potanin, Alexander Arkadyevich; Vedeneev, Nikolai Ivanovich

    2002-04-30

    A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

  14. Phenolic Compounds of Pomegranate Byproducts (Outer Skin, Mesocarp, Divider Membrane) and Their Antioxidant Activities.

    PubMed

    Ambigaipalan, Priyatharini; de Camargo, Adriano Costa; Shahidi, Fereidoon

    2016-08-31

    Pomegranate peel was separated into outer leathery skin (PS), mesocarp (PM), and divider membrane (PD), and its phenolic compounds were extracted as free (F), esterified (E), and insoluble-bound (B) forms for the first time. The total phenolic content followed the order PD > PM > PS. ABTS(•+), DPPH, and hydroxyl radical scavenging activities and metal chelation were evaluated. In addition, pomegranate peel extracts showed inhibitory effects against α-glucosidase activity, lipase activity, and cupric ion-induced LDL-cholesterol oxidation as well as peroxyl and hydroxyl radical-induced DNA scission. Seventy-nine phenolic compounds were identified using HPLC-DAD-ESI-MS(n) mainly in the form of insoluble-bound. Thirty compounds were identified for the first time. Gallic acid was the major phenolic compound in pomegranate peel, whereas kaempferol 3-O-glucoside was the major flavonoid. Moreover, ellagic acid and monogalloyl-hexoside were the major hydrolyzable tannins, whereas the dominant proanthocyanidin was procyanidin dimers. Proanthocyanidins were detected for the first time.

  15. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto

    2015-06-09

    Extremely low volatility organic compounds (ELVOC) are suggested to promote aerosol particle formation and cloud condensation nuclei (CCN) production in the atmosphere. We show that the capability of biogenic VOC (BVOC) to produce ELVOC depends strongly on their chemical structure and relative oxidant levels. BVOC with an endocyclic double bond, representative emissions from, e.g., boreal forests, efficiently produce ELVOC from ozonolysis. Compounds with exocyclic double bonds or acyclic compounds including isoprene, emission representative of the tropics, produce minor quantities of ELVOC, and the role of OH radical oxidation is relatively larger. Implementing these findings into a global modeling framework showsmore » that detailed assessment of ELVOC production pathways is crucial for understanding biogenic secondary organic aerosol and atmospheric CCN formation.« less

  16. Purity and adulterant analysis of crack seizures in Brazil.

    PubMed

    Fukushima, André R; Carvalho, Virginia M; Carvalho, Débora G; Diaz, Ernesto; Bustillos, Jose Oscar William Vega; Spinosa, Helenice de S; Chasin, Alice A M

    2014-10-01

    Cocaine represents a serious problem to society. Smoked cocaine is very addictive and it is frequently associated with violence and health issues. Knowledge of the purity and adulterants present in seized cocaine, as well as variations in drug characteristics are useful to identify drug source and estimate health impact. No data are available regarding smoked cocaine composition in most countries, and the smoked form is increasing in the Brazilian market. The purpose of the present study is to contribute to the current knowledge on the status of crack cocaine seized samples on the illicit market by the police of São Paulo. Thus, 404 samples obtained from street seizures conducted by the police were examined. The specimens were macroscopically characterized by color, form, odor, purity, and adulterant type, as well as smoke composition. Samples were screened for cocaine using modified Scott test and thin-layer chromatographic (TLC) technique. Analyses of purity and adulterants were performed with gas chromatography equipped with flame ionization detector (GC-FID). Additionally, smoke composition was analyzed by GC-mass spectrometry (MS), after samples burning. Samples showed different colors and forms, the majority of which is yellow (74.0%) or white (20.0%). Samples free of adulterants represented 76.3% of the total. Mean purity of the analyzed drug was 71.3%. Crack cocaine presented no correlations between macroscopic characteristics and purity. Smoke analysis showed compounds found also in the degradation of diesel and gasoline. Therefore, the drug marketed as crack cocaine in São Paulo has similar characteristics to coca paste. High purity can represent a greater risk of dependency and smoke compounds are possibly worsening drug health impact. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. National review of ambient air toxics observations.

    PubMed

    Strum, Madeleine; Scheffe, Richard

    2016-02-01

    Ambient air observations of hazardous air pollutant (HAPs), also known as air toxics, derived from routine monitoring networks operated by states, local agencies, and tribes (SLTs), are analyzed to characterize national concentrations and risk across the nation for a representative subset of the 187 designated HAPs. Observations from the National Air Toxics Trend Sites (NATTS) network of 27 stations located in most major urban areas of the contiguous United States have provided a consistent record of HAPs that have been identified as posing the greatest risk since 2003 and have also captured similar concentration patterns of nearly 300 sites operated by SLTs. Relatively high concentration volatile organic compounds (VOCs) such as benzene, formaldehyde, and toluene exhibit the highest annual average concentration levels, typically ranging from 1 to 5 µg/m(3). Halogenated (except for methylene chloride) and semivolatile organic compounds (SVOCs) and metals exhibit concentrations typically 2-3 orders of magnitude lower. Formaldehyde is the highest national risk driver based on estimated cancer risk and, nationally, has not exhibited significant changes in concentration, likely associated with the large pool of natural isoprene and formaldehyde emissions. Benzene, toluene, ethylbenzene, and 1,3-butadiene are ubiquitous VOC HAPs with large mobile source contributions that continue to exhibit declining concentrations over the last decade. Common chlorinated organic compounds such as ethylene dichloride and methylene chloride exhibit increasing concentrations. The variety of physical and chemical attributes and measurement technologies across 187 HAPs result in a broad range of method detection limits (MDLs) and cancer risk thresholds that challenge confidence in risk results for low concentration HAPs with MDLs near or greater than risk thresholds. From a national monitoring network perspective, the ability of the HAPs observational database to characterize the multiple pollutant and spatial scale patterns influencing exposure is severely limited and positioned to benefit by leveraging a variety of emerging measurement technologies. Ambient air toxics observation networks have limited ability to characterize the broad suite of hazardous air pollutants (HAPs) that affect exposures across multiple spatial scales. While our networks are best suited to capture major urban-scale signals of ubiquitous volatile organic compound HAPs, incorporation of sensing technologies that address regional and local-scale exposures should be pursued to address major gaps in spatial resolution. Caution should be exercised in interpreting HAPs observations based on data proximity to minimum detection limit and risk thresholds.

  18. Selected ground-water-quality data in Pennsylvania - 1979-2006

    USGS Publications Warehouse

    Low, Dennis J.; Chichester, Douglas C.; Zarr, Linda F.

    2009-01-01

    This study, by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Environmental Protection (PADEP), provides a compilation of ground-water-quality data for a 28-year period (January 1, 1979, through December 31, 2006) based on water samples from wells and springs. The data are from 14 source agencies or programs—Borough of Carroll Valley, Chester County Health Department, Montgomery County Health Department, Pennsylvania Department of Agriculture, Pennsylvania Department of Environmental Protection 2002 Pennsylvania Water-Quality Assessment, Pennsylvania Department of Environmental Protection Agency Act 537 Sewage Facilities Program, Pennsylvania Department of Environmental Protection-Ambient and Fixed Station Network, Pennsylvania Department of Environmental Protection–North-Central Region, Pennsylvania Department of Environmental Protection–South-Central Region, Pennsylvania Drinking Water Information System, Pennsylvania Topographic and Geologic Survey, Susquehanna River Basin Commission, U.S. Environmental Protection Agency, and the U.S. Geological Survey. The ground-water-quality data from the different source agencies or programs varied in type and number of analyses; however, the analyses are represented by 11 major analyte groups: antibiotics, major ions, microorganisms (bacteria, viruses, and other microorganisms), minor ions (including trace elements), nutrients (predominantly nitrate and nitrite as nitrogen), pesticides, pharmaceuticals, radiochemicals (predominantly radon or radium), volatiles (volatile organic compounds), wastewater compounds, and water characteristics (field measurements, predominantly field pH, field specific conductance, and hardness). For the USGS and the PADEP–North-Central Region, the pesticide analyte group was broken down into fungicides, herbicides, and insecticides. Summary maps show the areal distribution of wells and springs with ground-water-quality data statewide by source agency or program. Summary data tables by source agency or program provide information on the number of wells and springs and samples collected for each of the 35 watersheds and analyte groups.The number of wells and springs sampled for ground-water-quality data varies considerably across Pennsylvania. Of the 24,772 wells and springs sampled, the greatest concentration of wells and springs is in the southeast (Berks, Bucks, Chester, Delaware, Lancaster, Montgomery, and Philadelphia Counties) and in the northwest (Erie County). The number of wells and springs sampled is relatively sparse in north-central (Cameron, Elk, Forest, McKean, Potter, and Warren Counties) Pennsylvania. Little to no data are available for approximately one-fourth of the state. Nutrients and water characteristics were the most frequently sampled major analyte groups—43,025 and 30,583 samples, respectively. Minor ions and major ions were the next most frequently sampled major analyte groups–26,972 and 13,115 samples, respectively. For the remaining 10 major analyte groups, the number of samples collected ranged from a low of 24 samples (antibiotic compounds) to a high of approximately 4,674 samples (microorganisms).The number of samples that exceeded a maximum contaminant level (MCL) or secondary maximum contaminant level (SMCL) by major analyte group also varied. Of the 4,674 samples in the microorganism analyte group, 50.2 percent had water that exceeded an MCL. Of the 4,528 samples collected and analyzed for volatile organic compounds, 23.5 percent exceeded an MCL. Other major analyte groups that frequently exceeded MCLs or SMCLs included major ions (18,343 samples and a 27.7 percent exceedence), minor ions (26,972 samples, 44.7 percent exceedence), pesticides (4,868 samples, 0.7 percent exceedence), water characteristics (30,583 samples, 19.3 percent exceedence), and radiochemicals (1,866 samples, 9.6 percent exceedence). Samples collected and analyzed for antibiotics (24 samples), fungicides (1,273 samples), herbicides (1,470 samples), insecticides (1,424 samples), nutrients (43,025 samples), pharmaceuticals (28 samples), and wastewater compounds (328 samples) had the lowest exceedences of 0.0, 2.4, 1.2, <1.0, 8.3, 0.0, and <1.0 percent, respectively.

  19. High-performance liquid chromatography-diode array detection-electrospray ionization multi-stage mass spectrometric screening of an insect/plant system: the case of Spodoptera littoralis/Lycopersicon esculentum phenolics and alkaloids.

    PubMed

    Ferreres, Federico; Taveira, Marcos; Gil-Izquierdo, Angel; Oliveira, Luísa; Teixeira, Tânia; Valentão, Patrícia; Simões, Nelson; Andrade, Paula B

    2011-07-30

    High-performance liquid chromatography-diode array detection-electrospray ionization multi-stage mass spectrometry (HPLC-DAD-ESI-MS(n)) is considered to be a very valuable tool for the characterization of compounds found in trace amounts in natural matrices, as their previous isolation and clean-up steps can be avoided. Micro-scale separation increases the potential of this analytical technique, allowing the determination of compounds in reduced samples. Spodoptera littoralis represents a major challenge to Solanaceae plants, as it is one of the most deleterious pests. The S. littoralis/Lycopersicon esculentum system was studied for the first time concerning glycoalkaloids and phenolics. Using HPLC-DAD-ESI-MS(n) we were able to characterize 15 phenolic compounds in L. esculentum leaves. Nine of them are reported for the first time. Some differences were found between leaves of cerasiforme and 'Bull's heart' varieties. However, in the materials of S. littoralis (larvae, adults, exuviae and excrements) reared in both L. esculentum leaves no phenolics were identified. α-Tomatine was the main glycoalkaloid in the host plant. The glycoalkaloid composition of the different S. littoralis materials was distinct, with α-tomatine and dehydrotomatine being the main detected compounds in larvae and excrements. These results add knowledge to the ecological interaction in this insect/plant duo, for which it is hard to obtain considerable sample amounts. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Biocatalytic Desulfurization Capabilities of a Mixed Culture during Non-Destructive Utilization of Recalcitrant Organosulfur Compounds

    PubMed Central

    Ismail, Wael; El-Sayed, Wael S.; Abdul Raheem, Abdul Salam; Mohamed, Magdy E.; El Nayal, Ashraf M.

    2016-01-01

    We investigated the biodesulfurization potential of a mixed culture AK6 enriched from petroleum hydrocarbons-polluted soil with dibenzothiophene (DBT) as a sulfur source. In addition to DBT, AK6 utilized the following compounds as sulfur sources: 4-methyldibenzothiophene (4-MDBT), benzothiophene (BT), and 4,6- dimethyldibenzothiophene (4,6-DM-DBT). None of these compounds supported the growth of AK6 as the sole carbon and sulfur source. AK6 could not grow on dibenzylsulfide (DBS) as a sulfur source. The AK6 community structure changed according to the provided sulfur source. The major DGGE bands represented members of the genera Sphingobacterium, Klebsiella, Pseudomonas, Stenotrophomonas, Arthrobacter, Mycobacterium, and Rhodococcus. Sphingobacterium sp. and Pseudomonas sp. were abundant across all cultures utilizing any of the tested thiophenic S-compounds. Mycobacterium/Rhodococcus spp. were restricted to the 4-MDBT culture. The 4-MDBT culture had the highest species richness and diversity. Biodesulfurization of DBT by resting cells of AK6 produced 2-hydroxybiphenyl (2-HBP) in addition to trace amounts of phenylacetate. AK6 transformed DBT to 2-hydroxybiphenyl with a specific activity of 9 ± 0.6 μM 2-HBP g dry cell weight−1 h−1. PCR confirmed the presence in the AK6 community of the sulfur-specific (4S) pathway genes dszB and dszC. Mixed cultures hold a better potential than axenic ones for the development of a biodesulfurization technology. PMID:26973637

  1. Fulvic acid like organic compounds control nucleation of marine calcite under suboxic conditions

    NASA Astrophysics Data System (ADS)

    Neuweiler, Fritz; D'Orazio, Valeria; Immenhauser, Adrian; Geipel, Gerhard; Heise, Karl-Heinz; Cocozza, Claudio; Miano, Teodoro M.

    2003-08-01

    Intracrystalline organic compounds, enclosed within in situ precipitated marine microcrystalline calcite (automicrite), might represent either an inclusion or the catalyst of such precipitation. We use evidence from a Lower Cretaceous deep-water carbonate mound to show (1) the original source, (2) the degree of condensation, (3) the redox conditions involved, and (4) the catalytic role of natural organic matter for the precipitation of automicrite. Fluorescence spectrometry of the intracrystalline organic fraction extracted from these carbonates identifies a marine fulvic acid like organic compound with a low degree of polycondensation. This finding points to a temporal correlation of the initial stage of geopolymer formation with the precipitation of automicrite. Furthermore, the rare earth element (REE) distribution patterns in the mineral show a consistent positive Ce anomaly, suggesting an episode of reductive dissolution of iron-manganese oxyhydroxides during automicrite formation. In general, a relative enrichment of middle-weight REEs is observed, resulting in a convex distribution pattern typical for, e.g., phosphate concretions or humic acid material. By merging the results of spectrometry and REE geochemistry we thus conclude that the marine calcite precipitation was catalyzed by marine fulvic acid like compounds during the early stages of humification under suboxic conditions. This indicates that humification, driven by the presence of a benthic biomass, is more important for calcite authigenesis than any site-specific microbial metabolism. The Neoproterozoic rise of carbonate mounds supports this hypothesis; there is molecular evidence for early metazoan divergence then, but not for a major evolutionary episode of microorganisms.

  2. Active Cytokinins

    PubMed Central

    Mornet, René; Theiler, Jane B.; Leonard, Nelson J.; Schmitz, Ruth Y.; Moore, F. Hardy; Skoog, Folke

    1979-01-01

    Four series of azidopurines have been synthesized and tested for cytokinin activity in the tobacco callus bioassay: 2- and 8-azido-N6-benzyladenines, -N6-(Δ2-isopentenyl)adenines, and -zeatins, and N6-(2- and 4-azidobenzyl)adenines. The compounds having 2-azido substitution on the adenine ring are as active as the corresponding parent compounds, while those with 8-azido substitution are about 10 or more times as active. The 8-azidozeatin, which is the most active cytokinin observed, exhibited higher than minimal detectable activity at 1.2 × 10−5 micromolar, the lowest concentration tested. The shape of the growth curve indicates that even a concentration as low as 5 × 10−6 micromolar would probably be effective. By comparison, the lowest active concentration ever reported for zeatin has been 5 × 10−5 micromolar, representing a sensitivity rarely attained. All of the azido compounds have been submitted to photolysis in aqueous ethanol, and the photoproducts have been detected and identified by low and high resolution mass spectrometry. They are rationalized as products of abstraction and insertion reactions of the intermediate nitrenes. The potential of the major released products as cytokinins was also assessed by bioassay. 2-Azido-N6-(Δ2-isopentenyl)adenine competed with [14C]kinetin for the cytokinin-binding protein isolated from wheat germ. When the azido compound was photolysed in the presence of this protein, its attachment effectively blocked the binding of [14C]kinetin. PMID:16661017

  3. Biofiltration for control of volatile organic compounds (VOCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, D.F.; Govind, R.

    1995-10-01

    Air biofiltration is a promising technology for control of air emissions of biodegradable volatile organic compounds (VOCs). In conjunction with vacuum extraction of soils or air stripping of ground water, it can be used to mineralize VOCs removed from contaminated soil or groundwater. The literature describes three major biological systems for treating contaminated air bioscrubbers, biotrickling filters and biofilters. Filter media can be classified as: bioactive fine or irregular particulates, such as soil, peat, compost or mixtures of these materials; pelletized, which are randomly packed in a bed; and structured, such as monoliths with defined or variable passage size andmore » geometry. The media can be made of sorbing and non-absorbing materials. Non-bioactive pelletized and structured media require recycled solutions of nutrients and buffer for efficient microbial activity and are thus called biotrickling filters. Extensive work has been conducted to improve biofiltration by EPA`s Risk Reduction Engineering Laboratory and the University of Cincinnati in biofilters using pelletized and structured media and improved operational approaches. Representative VOCs in these studies included compounds with a range of aqueous solubilities and octanol-water partition coefficients. The compounds include iso-pentane, toluene, methylene chloride, trichloroethylene (TCE), ethyl benzene, chlorobenzene and perchloroethylene (PCE) and alpha ({alpha}-) pinene. Comparative studies were conducted with peat/compost biofilters using isopentane and {alpha}-pinene. Control studies were also conducted to investigate adsorption/desorption of contaminants on various media using mercuric chloride solution to insure the absence of bioactivity.« less

  4. A toxicological review of the propylene glycols.

    PubMed

    Fowles, Jeff R; Banton, Marcy I; Pottenger, Lynn H

    2013-04-01

    The toxicological profiles of monopropylene glycol (MPG), dipropylene glycol (DPG), tripropylene glycol (TPG) and polypropylene glycols (PPG; including tetra-rich oligomers) are collectively reviewed, and assessed considering regulatory toxicology endpoints. The review confirms a rich data set for these compounds, covering all of the major toxicological endpoints of interest. The metabolism of these compounds share common pathways, and a consistent profile of toxicity is observed. The common metabolism provides scientific justification for adopting a read-across approach to describing expected hazard potential from data gaps that may exist for specific oligomers. None of the glycols reviewed presented evidence of carcinogenic, mutagenic or reproductive/developmental toxicity potential to humans. The pathologies reported in some animal studies either occurred at doses that exceeded experimental guidelines, or involved mechanisms that are likely irrelevant to human physiology and therefore are not pertinent to the exposures experienced by consumers or workers. At very high chronic doses, MPG causes a transient, slight decrease in hemoglobin in dogs and at somewhat lower doses causes Heinz bodies to form in cats in the absence of any clinical signs of anemia. Some evidence for rare, idiosyncratic skin reactions exists for MPG. However, the larger data set indicates that these compounds have low sensitization potential in animal studies, and therefore are unlikely to represent human allergens. The existing safety evaluations of the FDA, USEPA, NTP and ATSDR for these compounds are consistent and point to the conclusion that the propylene glycols present a very low risk to human health.

  5. Identification of the absorbed components and metabolites of modified Huo Luo Xiao Ling Dan in rat plasma by UHPLC-Q-TOF/MS/MS.

    PubMed

    Wang, Nannan; Zhao, Xiaoning; Li, Yiran; Cheng, Congcong; Huai, Jiaxin; Bi, Kaishun; Dai, Ronghua

    2018-06-01

    To reveal the material basis of Huo Luo Xiao Ling Dan (HLXLD), a sensitive and selective ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) method was developed to identify the absorbed components and metabolites in rat plasma after oral administration of HLXLD. The plasma samples were pretreated by liquid-liquid extraction and separated on a Shim-pack XR-ODS C 18 column (75 × 3.0 mm, 2.2 μm) using a gradient elution program. With the optimized conditions and single sample injection of each positive or negative ion mode, a total of 109 compounds, including 78 prototype compounds and 31 metabolites, were identified or tentatively characterized. The fragmentation patterns of representative compounds were illustrated as well. The results indicated that aromatization and hydration were the main metabolic pathways of lactones and tanshinone-related metabolites; demethylation and oxidation were the major metabolic pathways of alkaloid-related compounds; methylation and sulfation were the main metabolic pathways of phenolic acid-related metabolites. It is concluded the developed UHPLC-Q-TOF/MS method with high sensitivity and resolution is suitable for identifying and characterizing the absorbed components and metabolites of HLXLD, and the results will provide essential data for further studying the relationship between the chemical components and pharmacological activity of HLXLD. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Rapid profiling of antimicrobial compounds characterising B. subtilis TR50 cell-free filtrate by high-performance liquid chromatography coupled to high-resolution Orbitrap™ mass spectrometry.

    PubMed

    Monaci, Linda; Quintieri, Laura; Caputo, Leonardo; Visconti, Angelo; Baruzzi, Federico

    2016-01-15

    Several Bacillus strains, typically isolated from different food sources, represent renowned producers of a multitude of low and high molecular weight compounds, including lipopeptides and macrolactones, with an importance for their antimicrobial activity. The high homology shared by many of these compounds also occurring as closely related isoforms poses a challenge in their prompt detection. Identification and structural elucidation is generally achieved by matrix-assisted laser desorption/ionization (MALDI) or liquid chromatography (LC) coupled to mass spectrometry (MS) after a pre-fractionation and/or purification step of the extract. In this paper we report the application of a method based on LC separation and high-resolution Orbitrap™-based MS for the rapid screening of raw filtrate of the strain Bacillus subtilis TR50 endowed with antimicrobial activity, without requiring any sample pre-treatment. Upon direct analysis of the cell-free filtrate of Bacillus subtilis TR50 by high-resolution mass spectrometry (HRMS), different compounds families, that proved to exert a remarked antimicrobial activity against several foodborne pathogens, can be readily displayed along the chromatographic run. Among them, three different classes were identified and characterized belonging to the iturin, fengycin and surfactin groups. The high resolving power and accurate mass accuracy provided by the HRMS system in use ensured an enhanced selectivity compared to other mass spectrometers. In addition, after activation of the HCD cell, the HR-MS/MS spectra can provide insights in the structural elucidation of several compounds. The acquisition of HRMS spectra of raw filtrates of subtilis strains allows untargeted analysis of the major classes of compounds produced to be performed, thus facilitating identification of other unknown bioactive molecules after retrospective analysis. These features make this approach a fast tool applicable to the rapid screening and further identification of antimicrobial compounds released by Bacillus strains in raw filtrates. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Targeting radiosensitizers to DNA by attachment of an intercalating group: Nitroimidazole-linked phenanthridines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, D.S.; Panicucci, R.; McClelland, R.A.

    The nitroimidazole-linked phenanthridine series of compounds (NLP-1, 2, and 3) were synthesized under the assumption that it should be possible to enhance the molar efficiency of 2-nitroimidazoles as hypoxic cell radiosensitizers and cytotoxins by targeting them to their likely site of action, DNA. The targeting group chosen was the phenanthridine moiety, the major component of the classical DNA intercalating compound, ethidium bromide. The sole difference between the compounds is the length of the hydrocarbon chain linking the nitroimidazole to the phenanthridine. The phenanthridine group with a three-carbon side chain, P-1, was also synthesized to allow studies on the effect ofmore » the targeting group by itself. The ability of the compounds to bind to DNA is inversely proportional to their linker chain length with binding constant values ranging from approximately 1 {times} 10(5) mol-1 for NLP-2 to 6 {times} 10(5) mol-1 for NLP-3. The NLP compounds show selective toxicity to hypoxic cells at 37 degrees C at external drug concentrations 10-40 times lower than would be required for untargeted 2-nitroimidazoles such as misonidazole in vitro. Toxicity to both hypoxic and aerobic cells is dependent on the linker chain: the shorter the chain, the greater the toxicity. In addition, the NLP compounds radiosensitize hypoxic cells at external drug concentrations as low as 0.05 mM with almost the full oxygen effect being observed at a concentration of 0.5 mM. These concentrations are 10-100 times lower than would be required for similar radiosensitization using misonidazole. Radiosensitizing ability is independent of linker chain length. The present compounds represent prototypes for further studies of the efficacy and mechanism of action of 2-nitroimidazoles targeted to DNA by linkage to an intercalating group.« less

  8. Direct Phenotypic Screening in Mice: Identification of Individual, Novel Antinociceptive Compounds from a Library of 734,821 Pyrrolidine Bis-piperazines.

    PubMed

    Houghten, Richard A; Ganno, Michelle L; McLaughlin, Jay P; Dooley, Colette T; Eans, Shainnel O; Santos, Radleigh G; LaVoi, Travis; Nefzi, Adel; Welmaker, Greg; Giulianotti, Marc A; Toll, Lawrence

    2016-01-11

    The hypothesis in the current study is that the simultaneous direct in vivo testing of thousands to millions of systematically arranged mixture-based libraries will facilitate the identification of enhanced individual compounds. Individual compounds identified from such libraries may have increased specificity and decreased side effects early in the discovery phase. Testing began by screening ten diverse scaffolds as single mixtures (ranging from 17,340 to 4,879,681 compounds) for analgesia directly in the mouse tail withdrawal model. The "all X" mixture representing the library TPI-1954 was found to produce significant antinociception and lacked respiratory depression and hyperlocomotor effects using the Comprehensive Laboratory Animal Monitoring System (CLAMS). The TPI-1954 library is a pyrrolidine bis-piperazine and totals 738,192 compounds. This library has 26 functionalities at the first three positions of diversity made up of 28,392 compounds each (26 × 26 × 42) and 42 functionalities at the fourth made up of 19,915 compounds each (26 × 26 × 26). The 120 resulting mixtures representing each of the variable four positions were screened directly in vivo in the mouse 55 °C warm-water tail-withdrawal assay (ip administration). The 120 samples were then ranked in terms of their antinociceptive activity. The synthesis of 54 individual compounds was then carried out. Nine of the individual compounds produced dose-dependent antinociception equivalent to morphine. In practical terms what this means is that one would not expect multiexponential increases in activity as we move from the all-X mixture, to the positional scanning libraries, to the individual compounds. Actually because of the systematic formatting one would typically anticipate steady increases in activity as the complexity of the mixtures is reduced. This is in fact what we see in the current study. One of the final individual compounds identified, TPI 2213-17, lacked significant respiratory depression, locomotor impairment, or sedation. Our results represent an example of this unique approach for screening large mixture-based libraries directly in vivo to rapidly identify individual compounds.

  9. Understanding the tolerance of the industrial yeast Saccharomyces cerevisiae against a major class of toxic aldehyde compounds

    USDA-ARS?s Scientific Manuscript database

    Development of the next-generation biocatalyst is vital for fermentation-based industrial applications and a sustainable bio-based economy. Overcoming the major class of toxic compounds associated with lignocellulose-to-biofuels conversion is one of the significant challenges for new strain developm...

  10. Phosphodiesterases regulate airway smooth muscle function in health and disease.

    PubMed

    Krymskaya, Vera P; Panettieri, Reynold A

    2007-01-01

    On the basis of structure, regulation, and kinetic properties, phosphodiesterases (PDEs) represent a superfamily of enzymes divided into 11 subfamilies that catalyze cytosolic levels of 3',5'-cyclic adenosine monophosphate (cAMP) or 3',5'-cyclic guanosine monophosphate (cGMP) to 5'-AMP or 5'-GMP, respectively. PDE4 represents the major PDE expressed in inflammatory cells as well as airway smooth muscle (ASM), and selective PDE4 inhibitors provide a broad spectrum of anti-inflammatory effects such as abrogating cytokine and chemokine release from inflammatory cells and inhibiting inflammatory cell trafficking. Due to cell- and tissue-specific gene expression and regulation, PDEs modulate unique organ-based functions. New tools or compounds that selectively inhibit PDE subfamilies and genetically engineered mice deficient in selective isoforms have greatly enhanced our understanding of PDE function in airway inflammation and resident cell function. This chapter will focus on recent advances in our understanding of the role of PDE in regulating ASM function.

  11. Selective oxidation of aliphatic C-H bonds in alkylphenols by a chemomimetic biocatalytic system.

    PubMed

    Du, Lei; Dong, Sheng; Zhang, Xingwang; Jiang, Chengying; Chen, Jingfei; Yao, Lishan; Wang, Xiao; Wan, Xiaobo; Liu, Xi; Wang, Xinquan; Huang, Shaohua; Cui, Qiu; Feng, Yingang; Liu, Shuang-Jiang; Li, Shengying

    2017-06-27

    Selective oxidation of aliphatic C-H bonds in alkylphenols serves significant roles not only in generation of functionalized intermediates that can be used to synthesize diverse downstream chemical products, but also in biological degradation of these environmentally hazardous compounds. Chemo-, regio-, and stereoselectivity; controllability; and environmental impact represent the major challenges for chemical oxidation of alkylphenols. Here, we report the development of a unique chemomimetic biocatalytic system originated from the Gram-positive bacterium Corynebacterium glutamicum The system consisting of CreHI (for installation of a phosphate directing/anchoring group), CreJEF/CreG/CreC (for oxidation of alkylphenols), and CreD (for directing/anchoring group offloading) is able to selectively oxidize the aliphatic C-H bonds of p - and m -alkylated phenols in a controllable manner. Moreover, the crystal structures of the central P450 biocatalyst CreJ in complex with two representative substrates provide significant structural insights into its substrate flexibility and reaction selectivity.

  12. Selective oxidation of aliphatic C–H bonds in alkylphenols by a chemomimetic biocatalytic system

    PubMed Central

    Du, Lei; Dong, Sheng; Zhang, Xingwang; Jiang, Chengying; Chen, Jingfei; Yao, Lishan; Wang, Xiao; Wan, Xiaobo; Liu, Xi; Wang, Xinquan; Huang, Shaohua; Cui, Qiu; Liu, Shuang-Jiang; Li, Shengying

    2017-01-01

    Selective oxidation of aliphatic C–H bonds in alkylphenols serves significant roles not only in generation of functionalized intermediates that can be used to synthesize diverse downstream chemical products, but also in biological degradation of these environmentally hazardous compounds. Chemo-, regio-, and stereoselectivity; controllability; and environmental impact represent the major challenges for chemical oxidation of alkylphenols. Here, we report the development of a unique chemomimetic biocatalytic system originated from the Gram-positive bacterium Corynebacterium glutamicum. The system consisting of CreHI (for installation of a phosphate directing/anchoring group), CreJEF/CreG/CreC (for oxidation of alkylphenols), and CreD (for directing/anchoring group offloading) is able to selectively oxidize the aliphatic C–H bonds of p- and m-alkylated phenols in a controllable manner. Moreover, the crystal structures of the central P450 biocatalyst CreJ in complex with two representative substrates provide significant structural insights into its substrate flexibility and reaction selectivity. PMID:28607077

  13. Microarray Analysis of Tomato Plants Exposed to the Nonviruliferous or Viruliferous Whitefly Vector Harboring Pepper golden mosaic virus

    PubMed Central

    Musser, Richard O.; Hum-Musser, Sue M.; Gallucci, Matthew; DesRochers, Brittany; Brown, Judith K.

    2014-01-01

    Abstract Plants are routinely exposed to biotic and abiotic stresses to which they have evolved by synthesizing constitutive and induced defense compounds. Induced defense compounds are usually made, initially, at low levels; however, following further stimulation by specific kinds of biotic and abiotic stresses, they can be synthesized in relatively large amounts to abate the particular stress. cDNA microarray hybridization was used to identify an array of genes that were differentially expressed in tomato plants 15 d after they were exposed to feeding by nonviruliferous whiteflies or by viruliferous whiteflies carrying Pepper golden mosaic virus (PepGMV) ( Begomovirus, Geminiviridae ). Tomato plants inoculated by viruliferous whiteflies developed symptoms characteristic of PepGMV, whereas plants exposed to nonviruliferous whitefly feeding or nonwounded (negative) control plants exhibited no disease symptoms. The microarray analysis yielded over 290 spotted probes, with significantly altered expression of 161 putative annotated gene targets, and 129 spotted probes of unknown identities. The majority of the differentially regulated “known” genes were associated with the plants exposed to viruliferous compared with nonviruliferous whitefly feeding. Overall, significant differences in gene expression were represented by major physiological functions including defense-, pathogen-, photosynthesis-, and signaling-related responses and were similar to genes identified for other insect–plant systems. Viruliferous whitefly-stimulated gene expression was validated by real-time quantitative polymerase chain reaction of selected, representative candidate genes (messenger RNA): arginase, dehydrin, pathogenesis-related proteins 1 and -4, polyphenol oxidase, and several protease inhibitors. This is the first comparative profiling of the expression of tomato plants portraying different responses to biotic stress induced by viruliferous whitefly feeding (with resultant virus infection) compared with whitefly feeding only and negative control nonwounded plants exposed to neither. These results may be applicable to many other plant–insect–pathogen system interactions. PMID:25525099

  14. Antioxidant synergistic effects of Osmanthus fragrans flowers with green tea and their major contributed antioxidant compounds.

    PubMed

    Mao, Shuqin; Wang, Kaidi; Lei, Yukun; Yao, Shuting; Lu, Baiyi; Huang, Weisu

    2017-04-19

    The antioxidant synergistic effects of Osmanthus fragrans flowers with green tea were evaluated, and their major antioxidant compounds contributed to the total amount of synergy were determined. The antioxidant compounds in O. fragrans flowers with green tea were identified by LC-MS and quantified by UPLC-PDA. The synergistic antioxidant interactions between O. fragrans flowers with green tea and their antioxidant compounds were tested using the Prieto's model after the simulated digestion. The main antioxidant compounds in O. fragrans flowers were acteoside and salideroside, whereas the main antioxidant compounds in green tea were caffeine, gallic acid, and L-epicatechin. The significant synergistic effect between O. fragrans flowers and green tea was observed and among nearly all of the combinations of their antioxidant compounds. Among the combinations, acteoside and gallic acid contributed most to the antioxidant synergy between O. fragrans flowers and green tea. However, the simulated digestion decreased this antioxidant synergy because it reduced the contents and the antioxidant capacities of their compounds, as well as the antioxidant synergy among the compounds.

  15. Analysis of volatile organic compound from Elaeis guineensis inflorescences planted on different soil types in Malaysia

    NASA Astrophysics Data System (ADS)

    Muhamad Fahmi, M. H.; Ahmad Bukhary, A. K.; Norma, H.; Idris, A. B.

    2016-11-01

    The main attractant compound for Eleidobius kamerunicus to male spikelet Elaeis guineensis (oil palm) were determined by analyzing volatile organic compound extracted from E. guineenses inflorescences planted on different soil types namely peat soil, clay soil and sandy soil. Anthesizing male oil palm inflorescences were randomly choosen from palm aged between 4-5 years old age. Extraction of the volatiles from the oil palm inflorescences were performed by Accelerated Solvent Extraction method (ASE). The extracted volatile compound were determined by using gas chromatography-mass spectrometry. Out of ten identified compound, estragole was found to be a major compound in sandy soil (37.49%), clay soil (30.71%) and peat soil (27.79%). Other compound such as 9,12-octadecadieonic acid and n-hexadecanoic acid were found as major compound in peat soil (27.18%) and (7.45%); sandy soil (14.15 %) and (9.31%); and clay soil (30.23%) and (4.99%). This study shows that estragole was the predominant volatile compound detected in oil palm inflorescences with highly concentrated in palm planted in sandy soil type.

  16. Antioxidant and neurosedative properties of polyphenols and iridoids from Lippia alba.

    PubMed

    Hennebelle, Thierry; Sahpaz, Sevser; Gressier, Bernard; Joseph, Henry; Bailleul, François

    2008-02-01

    The neurosedative and antioxidative properties of some major compounds isolated from a citral chemotype of Lippia alba were investigated. Binding assays were performed on two CNS inhibitory targets: benzodiazepine and GABA(A) receptors. The most active compound was luteolin-7-diglucuronide, with half maximal inhibitory concentrations (IC(50)) of 101 and 40 microm, respectively. Fifteen compounds isolated from Lippia alba were tested for their radical scavenging capacities against DPPH. Four of the major compounds (verbascoside, calceolarioside E, luteolin-7-diglucuronide and theveside) were also tested for their antioxidant activity against superoxide radical-anion in cell-free (hypoxanthine-xanthine oxidase) and cellular (PMA-stimulated neutrophil granulocytes) systems.

  17. Moving beyond the van Krevelen Diagram: A New Stoichiometric Approach for Compound Classification in Organisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivas-Ubach, Albert; Liu, Yina; Bianchi, Thomas S.

    van Krevelen diagrams (O:C vs H:C ratios of elemental formulas) have been widely used in studies to obtain an estimation of the main compound categories present in environmental samples. However, the limits defining a specific compound category based solely on O:C and H:C ratios of elemental formulas have never been accurately listed or proposed to classify metabolites in biological samples. Furthermore, while O:C vs. H:C ratios of elemental formulas can provide an overview of the compound categories, such classification is inefficient because of the large overlap among different compound categories along both axes. We propose a more accurate compound classificationmore » for biological samples analyzed by high-resolution mass spectrometry-based on an assessment of the C:H:O:N:P stoichiometric ratios of over 130,000 elemental formulas of compounds classified in 6 main categories: lipids, peptides, amino-sugars, carbohydrates, nucleotides and phytochemical compounds (oxy-aromatic compounds). Our multidimensional stoichiometric compound classification (MSCC) constraints showed a highly accurate categorization of elemental formulas to the main compound categories in biological samples with over 98% of accuracy representing a substantial improvement over any classification based on the classic van Krevelen diagram. This method represents a significant step forward in environmental research, especially ecological stoichiometry and eco-metabolomics studies, by providing a novel and robust tool to further our understanding the ecosystem structure and function through the chemical characterization of different biological samples.« less

  18. Field guide for collecting samples for analysis of volatile organic compounds in stream water for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Shelton, Larry R.

    1997-01-01

    For many years, stream samples for analysis of volatile organic compounds have been collected without specific guidelines or a sampler designed to avoid analyte loss. In 1996, the U.S. Geological Survey's National Water-Quality Assessment Program began aggressively monitoring urban stream-water for volatile organic compounds. To assure representative samples and consistency in collection procedures, a specific sampler was designed to collect samples for analysis of volatile organic compounds in stream water. This sampler, and the collection procedures, were tested in the laboratory and in the field for compound loss, contamination, sample reproducibility, and functional capabilities. This report describes that sampler and its use, and outlines field procedures specifically designed to provide contaminant-free, reproducible volatile organic compound data from stream-water samples. These guidelines and the equipment described represent a significant change in U.S. Geological Survey instructions for collecting and processing stream-water samples for analysis of volatile organic compounds. They are intended to produce data that are both defensible and interpretable, particularly for concentrations below the microgram-per-liter level. The guidelines also contain detailed recommendations for quality-control samples.

  19. Influence of rearing conditions on the volatile compounds of cooked fillets of Silurus glanis (European catfish).

    PubMed

    Hallier, Arnaud; Prost, Carole; Serot, Thierry

    2005-09-07

    Volatile compounds of cooked fillets of Silurus glanis reared under two conditions occurring in France were studied. They were extracted by dynamic headspace, identified by gas chromatography/mass spectrometry, and quantified by gas chromatography-flame ionization detection. Odor active volatile compounds were characterized by gas chromatography-olfactometry. Sixty volatile compounds were detected in dynamic headspace extracts, among which 33 were odor active. Rearing conditions affected their estimated concentrations and their odor intensities, but very few qualitative differences were exhibited (only seven volatile compounds were concerned). A good correlation between quantitative and olfactometric results is shown. 2-Methylisoborneol and (E)-2-hexenal were less represented in OUTDOOR extracts, while 2-butanone was less represented in INDOOR extracts. In addition, olfactometric results can be closely related to those previously obtained by sensory analysis. Boiled potato sensory odor of the silurus cooked fillets can be related to (Z)-4-heptenal and methional, and buttery odor can be related to 2,3-butanedione, an unknown compound (RI = 1010), and 2,3-pentadione.

  20. A generic biokinetic model for carbon-14 labelled compounds

    NASA Astrophysics Data System (ADS)

    Manger, Ryan Paul

    Carbon-14, a radioactive nuclide, is used in many industrial applications. Due to its wide range of uses in industry, many workers are at risk of accidental internal exposure to 14C. Being a low energy beta emitter, 14C is not a significant external radiation hazard, but the internal consequences posed by 14C are important, especially because of its long half life of 5730 years [46]. The current biokinetic model recommended by the International Commission on Radiological Protection (ICRP) is a conservative estimate of how radiocarbon is treated by the human body. The ICRP generic radiocarbon model consists of a single compartment representing the entire human body. This compartment has a biological half life of 40 days yielding an effective dose coefficient of 5.8x10-10 Sv B q-1 [44, 45, 49, 53, 54]. This overestimates the dose of all radiocarbon compounds that have been studied [96]. An improved model has been developed that includes and alimentary tract, a urinary bladder, CO2 model, and an "Other" compartment used to model systemic tissues. The model can be adapted to replicate any excretion curve and excretion pattern. In addition, the effective dose coefficient produced by the updated model is near the mean effective dose coefficient of carbon compounds that have been considered in this research. The major areas of improvement are: more anatomically significant, a less conservative dose coefficient, and the ability to manipulate the model for known excretion data. Due to the wide variety of carbon compounds, it is suggested that specific biokinetic models be implemented for known radiocarbon substances. If the source of radiocarbon is dietary, then the physiologically based model proposed by Whillans [102] that splits all ingested radiocarbon compounds into carbohydrates, fats, and proteins should be used.

  1. IDENTIFICATION OF A NOVEL CLASS OF ANTI-INFLAMMATORY COMPOUNDS WITH ANTI-TUMOR ACTIVITY IN COLORECTAL AND LUNG CANCERS

    PubMed Central

    Chang, Hui-Hua; Song, Zuohe; Wisner, Lee; Tripp, Tina; Gokhale, Vijay

    2011-01-01

    Summary Chronic inflammation is associated with 25% of all cancers. In the inflammation-cancer axis, prostaglandin E2 (PGE2) is one of the major players. PGE2 synthases (PGES) are the enzymes downstream of the cyclooxygenases (COXs) in the PGE2 biosynthesis pathway. Microsomal prostaglandin E2 synthase 1 (mPGES-1) is inducible by pro-inflammatory stimuli and constitutively expressed in a variety of cancers. The potential role for this enzyme in tumorigenesis has been reported and mPGES-1 represents a novel therapeutic target for cancers. In order to identify novel small molecule inhibitors of mPGES-1, we screened the ChemBridge library and identified 13 compounds as potential hits. These compounds were tested for their ability to bind directly to the enzyme using surface plasmon resonance spectroscopy and to decrease cytokine-stimulated PGE2 production in various cancer cell lines. We demonstrate that the compound PGE0001 (ChemBridge ID number 5654455) binds to human mPGES-1 recombinant protein with good affinity (KD = 21.3 ± 7.8 μM). PGE0001 reduces IL-1β-induced PGE2 release in human HCA-7 colon and A549 lung cancer cell lines with EC50 in the submicromolar range. Although PGE0001 may have alternative targets based on the results from in vitro assays, it shows promising effects in vivo. PGE0001 exhibits significant anti-tumor activity in SW837 rectum and A549 lung cancer xenografts in SCID mice. Single injection i.p. of PGE0001 at 100 mg/kg decreases serum PGE2 levels in mice within 5 h. In summary, our data suggest that the identified compound PGE0001 exerts anti-tumor activity via the inhibition of the PGE2 synthesis pathway. PMID:21931968

  2. Qualitative screening of undesirable compounds from feeds to fish by liquid chromatography coupled to mass spectrometry.

    PubMed

    Nácher-Mestre, Jaime; Ibáñez, María; Serrano, Roque; Pérez-Sánchez, Jaume; Hernández, Félix

    2013-03-06

    This paper describes the development, validation, and application of a rapid screening method for the detection and identification of undesirable organic compounds in aquaculture products. A generic sample treatment was applied without any purification or preconcentration step. After extraction of the samples with acetonitrile/water 80:20 (0.1% formic acid), the extracts were centrifuged and directly injected in the LC-HRMS system, consisting of ultra-high performance liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). A qualitative validation was carried out for over 70 representative compounds, including antibiotics, pesticides, and mycotoxins, in fish feed and fish fillets spiked at 20 and 100 μg/kg. At the highest level, the great majority of compounds were detected (using the most abundant ion, typically the protonated molecule) and unequivocally identified (on the basis of the presence of two accurate-mass measured ions). At the 20 μg/kg level, many contaminants could already be detected, although identification using two ions was not fully reached for some of them, mainly in fish feed due to the complexity of this matrix. Subsequent application of this screening methodology to aquaculture samples made it possible to find several compounds from the target list, such as the antibiotic ciprofloxacin, the insecticide pirimiphos-methyl, and the mycotoxins fumonisin B2 and zearalenone. A retrospective analysis of accurate-mass full-spectrum acquisition data provided by QTOF MS was also made, without either reprocessing or injecting the samples. This allowed the detection and tentative identification of other organic undesirables different from those included in the validated list.

  3. Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis.

    PubMed

    Greiner, Birgit; Ribi, Willi A; Warrant, Eric J

    2004-06-01

    The apposition compound eye of a nocturnal bee, the halictid Megalopta genalis, is described for the first time. Compared to the compound eye of the worker honeybee Apis mellifera and the diurnal halictid bee Lasioglossum leucozonium, the eye of M. genalis shows specific retinal and optical adaptations for vision in dim light. The major anatomical adaptations within the eye of the nocturnal bee are (1) nearly twofold larger ommatidial facets and (2) a 4-5 times wider rhabdom diameter than found in the diurnal bees studied. Optically, the apposition eye of M. genalis is 27 times more sensitive to light than the eyes of the diurnal bees. This increased optical sensitivity represents a clear optical adaptation to low light intensities. Although this unique nocturnal apposition eye has a greatly improved ability to catch light, a 27-fold increase in sensitivity alone cannot account for nocturnal vision at light intensities that are 8 log units dimmer than during daytime. New evidence suggests that additional neuronal spatial summation within the first optic ganglion, the lamina, is involved.

  4. Volatiles from a rare Acer spp. honey sample from Croatia.

    PubMed

    Jerković, Igor; Marijanović, Zvonimir; Malenica-Staver, Mladenka; Lusić, Drazen

    2010-06-24

    A rare sample of maple (Acer spp.) honey from Croatia was analysed. Ultrasonic solvent extraction (USE) using: 1) pentane, 2) diethyl ether, 3) a mixture of pentane and diethyl ether (1:2 v/v) and 4) dichloromethane as solvents was applied. All the extracts were analysed by GC and GC/MS. The most representative extracts were 3) and 4). Syringaldehyde was the most striking compound, being dominant in the extracts 2), 3) and 4) with percentages 34.5%, 33.1% and 35.9%, respectively. In comparison to USE results of other single Croatian tree honey samples (Robinia pseudoacacia L. nectar honey, Salix spp. nectar and honeydew honeys, Quercus frainetto Ten. honeydew as well as Abies alba Mill. and Picea abies L. honeydew) and literature data the presence of syringaldehyde, previously identified in maple sap and syrup, can be pointed out as a distinct characteristic of the Acer spp. honey sample. Headspace solid-phase microextraction (HS-SPME) combined with GC and GC/MS identified benzaldehyde (16.5%), trans-linalool oxide (20.5%) and 2-phenylethanol (14.9%) as the major compounds that are common in different honey headspace compositions.

  5. Characterization of carotenoids and carotenoid esters in red pepper pods (Capsicum annuum L.) by high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Schweiggert, Ute; Kammerer, Dietmar R; Carle, Reinhold; Schieber, Andreas

    2005-01-01

    Carotenoids and carotenoid esters were extracted from red pepper pods (Capsicum annuum L.) without saponification. Among the 42 compounds detected, 4 non-esterified, 11 mono- and 17 diesters were characterized based on their retention times, UV/Vis spectra and their fragmentation patterns in collision-induced dissociation experiments in atmospheric pressure chemical ionization mass spectrometry (APCI-MS). Positive and negative ion mode measurements were used for the characterization of major and minor carotenoids and their esters. Capsanthin esterified with lauric, palmitic and myristic acids represented the predominant compounds in the red pepper extracts. Additionally, three beta-cryptoxanthin and one zeaxanthin monoester were tentatively identified in red pepper pods for the first time. Furthermore, the specific fragmentation patterns of capsanthin-laurate-myristate and capsanthin-myristate-palmitate were used for the distinction of both regioisomers. The results obtained from LC-DAD-APCI-MSn experiments demonstrated that the carotenoid profile of red pepper pods is considerably more complex than considered hitherto. Copyright (c) 2005 John Wiley & Sons, Ltd.

  6. Marine Algicolous Endophytic Fungi - A Promising Drug Resource of the Era.

    PubMed

    Sarasan, Manomi; Puthumana, Jayesh; Job, Neema; Han, Jeonghoon; Lee, Jae-Seong; Philip, Rosamma

    2017-06-28

    Endophytic fungi have currently been acknowledged as the most promising source of bioactive compounds for drug discovery, and considerable progress has been made in exploring their diversity, species richness, and bioprospecting. Fungal endophytes from unique environmental settings offer a pool of potentially useful medicinal entities. Owing to the constant stresses imposed on macroalgae by marine environments, it is believed that algae and their associated endophytic symbionts represent a good source of structurally diverse bioactive secondary metabolites. Despite the proven significance of active metabolites of algal endophytes, little have been exploited. This review highlights the latest discoveries in algicolous endophytic research, with particular focus on the bioactive metabolites from algal endophytes. Compounds are classified according to their reported biological activities, like anticancer, antibacterial, antifungal, and antioxidant properties. Present experimental evidence suggests that a majority of the bioactive metabolites were reported from Phaeophyceae followed by Rhodophyceae and Chlorophyceae. An intensive search for newer and more effective bioactive metabolites has generated a treasure trove of publications, and this review partially covers the literature published up to 2016.

  7. Chemical composition and antibacterial activity of essential oil from fruit of Micromelum integerrimum (Buch.-Ham. ex DC.) Wight & Arn. ex M. Roem.

    PubMed

    Kotoky, Rumi; Bordoloi, Manobjyoti; Yadav, Archana; Tamuli, Kashyap J; Saikia, Surovi; Dutta, Partha P; Khound, Prodip P; Saikia, Siddhartha P

    2018-06-13

    The essential oil extracted from fruit of Micromelum integrrimum were evaluated through gas chromatography and gas chromatography-mass spectroscopy. 52 compounds were identified from the fruit oil representing 99.98% of the oil. The major components of the total fruit oil are monoterpene hydrocarbons (72.23%), oxygenated monoterpenes (14.78%) and sesquiterpene (11.54%) which were predominated by terpinolene (32.21%), α-pinene (17.24%), β-pinene (17.24%), and camphene (4.05%). Moreover, other components that present in 1.45% were aromatic compounds, fatty acid, etc. The essential oil exhibited broad spectrum antimicrobial activity which is concentration dependent and 100 μL of the fruit oil showed the inhibition zones ranging from 7-16 mm. Fruit oil exhibited strong inhibition activity compared to standard anti-bacterial drug neomycin B (22 mm) against Bacillus subtilis MTCC 441 and Bacillus spizizenii ATCC 6633. This is the first hand report on the chemical profiles and promising anti-microbial activity of Micromelum integrrimum fruit essential oil towards Basillus Sp.

  8. Enumeration of Ring–Chain Tautomers Based on SMIRKS Rules

    PubMed Central

    2015-01-01

    A compound exhibits (prototropic) tautomerism if it can be represented by two or more structures that are related by a formal intramolecular movement of a hydrogen atom from one heavy atom position to another. When the movement of the proton is accompanied by the opening or closing of a ring it is called ring–chain tautomerism. This type of tautomerism is well observed in carbohydrates, but it also occurs in other molecules such as warfarin. In this work, we present an approach that allows for the generation of all ring–chain tautomers of a given chemical structure. Based on Baldwin’s Rules estimating the likelihood of ring closure reactions to occur, we have defined a set of transform rules covering the majority of ring–chain tautomerism cases. The rules automatically detect substructures in a given compound that can undergo a ring–chain tautomeric transformation. Each transformation is encoded in SMIRKS line notation. All work was implemented in the chemoinformatics toolkit CACTVS. We report on the application of our ring–chain tautomerism rules to a large database of commercially available screening samples in order to identify ring–chain tautomers. PMID:25158156

  9. Discovery of potent and selective inhibitors of human aminopeptidases ERAP1 and ERAP2 by screening libraries of phosphorus-containing amino acid and dipeptide analogues.

    PubMed

    Węglarz-Tomczak, Ewelina; Vassiliou, Stamatia; Mucha, Artur

    2016-08-15

    A collection of fifty phosphonic and phosphinic acids was screened for inhibition of ERAP1 and ERAP2, the human endoplasmic reticulum aminopeptidases. The cooperative action of these enzymes is manifested by trimming a variety of antigenic precursors to be presented on the cell surface by major histocompatibility class I. The SAR studies revealed several potent compounds, particularly among the phosphinic dipeptide analogues, that were strong inhibitors of ERAP2 (Ki=100-350nM). A wide structural diversity of the applied organophosphorus compounds, predominantly non-proteinogenic analogues, allowed identification of representatives selective toward only one form of ERAP. For example, N'-substituted α,β-diaminophosphonates and phosphinates exhibited potency only toward ERAP2, which is in agreement with the P1 basic substrate-oriented specificity. Such discriminating ligands are invaluable tools for elucidating the precise role of a particular aminopeptidase in the concerted function of antigen processing and in human diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Particulate sulfur-containing lipids: Production and cycling from the epipelagic to the abyssopelagic zone

    NASA Astrophysics Data System (ADS)

    Gašparović, Blaženka; Penezić, Abra; Frka, Sanja; Kazazić, Saša; Lampitt, Richard S.; Holguin, F. Omar; Sudasinghe, Nilusha; Schaub, Tanner

    2018-04-01

    There are major gaps in our understanding of the distribution and role of lipids in the open ocean especially with regard to sulfur-containing lipids (S-lipids). Here, we employ a powerful analytical approach based on high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to elucidate depth-related S-lipid production and molecular transformations in suspended particulate matter from the Northeast Atlantic Ocean in this depth range. We show that within the open-ocean environment S-lipids contribute up to 4.2% of the particulate organic carbon, and that up to 95% of these compounds have elemental compositions that do not match those found in the Nature Lipidomics Gateway database (termed "novel"). Among the remaining 5% of lipids that match the database, we find that sulphoquinovosyldiacylglycerol (SQDG) are efficiently removed while sinking through the mesopelagic zone. The relative abundance of other assigned lipids (sulphoquinovosylmonoacylglycerol (SQMG), sulfite and sulfate lipids, Vitamin D2 and D3 derivatives, and sphingolipids) did not change substantially with depth. The novel S-lipids, represented by hundreds of distinct elemental compositions (160-300 molecules at any one depth), contribute increasingly to the lipid and particulate organic matter pools with increased depth. Depth-related transformations cause (i) incomplete degradation/transformation of unsaturated S-lipids which leads to the depth-related accumulation of the refractory saturated compounds with reduced molecular weight (average 455 Da) and (ii) formation of highly unsaturated S-lipids (average abyssopelagic molecular double bond equivalents, DBE=7.8) with lower molecular weight (average 567 Da) than surface S-lipids (average 592 Da). A depth-related increase in molecular oxygen content is observed for all novel S-lipids and indicates that oxidation has a significant role in their transformation while (bio)hydrogenation possibly impacts the formation of saturated compounds. The instrumentation approach applied here represents a step change in our comprehension of marine S-lipid diversity and the potential role of these compounds in the oceanic carbon cycle. We describe a very much higher number of compounds than previously reported, albeit at the level of elemental composition and fold-change quantitation with depth, rather than isomeric confirmation and absolute quantitation of individual lipids. We emphasize that saturated S-lipids have the potential to transfer carbon from the upper ocean to depth and hence are significant vectors for carbon sequestration.

  11. Discovery of a Novel Series of CRTH2 (DP2) Receptor Antagonists Devoid of Carboxylic Acids

    PubMed Central

    2011-01-01

    Antagonism of the CRTH2 receptor represents a very attractive target for a variety of allergic diseases. Most CRTH2 antagonists known to date possess a carboxylic acid moiety, which is essential for binding. However, potential acid metabolites O-acyl glucuronides might be linked to idiosynchratic toxicity in humans. In this communication, we describe a new series of compounds that lack the carboxylic acid moiety. Compounds with high affinity (Ki < 10 nM) for the receptor have been identified. Subsequent optimization succeeded in reducing the high metabolic clearance of the first compounds in human and rat liver microsomes. At the same time, inhibition of the CYP isoforms was optimized, giving rise to stable compounds with an acceptable CYP inhibition profile (IC50 CYP2C9 and 2C19 > 1 μM). Taken together, these data show that compounds devoid of carboxylic acid groups could represent an interesting alternative to current CRTH2 antagonists in development. PMID:24900284

  12. Identification of Terpenoid Chemotypes Among High (-)-trans-Δ9- Tetrahydrocannabinol-Producing Cannabis sativa L. Cultivars.

    PubMed

    Fischedick, Justin T

    2017-01-01

    Introduction: With laws changing around the world regarding the legal status of Cannabis sativa (cannabis) it is important to develop objective classification systems that help explain the chemical variation found among various cultivars. Currently cannabis cultivars are named using obscure and inconsistent nomenclature. Terpenoids, responsible for the aroma of cannabis, are a useful group of compounds for distinguishing cannabis cultivars with similar cannabinoid content. Methods: In this study we analyzed terpenoid content of cannabis samples obtained from a single medical cannabis dispensary in California over the course of a year. Terpenoids were quantified by gas chromatography with flame ionization detection and peak identification was confirmed with gas chromatography mass spectrometry. Quantitative data from 16 major terpenoids were analyzed using hierarchical clustering analysis (HCA), principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). Results: A total of 233 samples representing 30 cultivars were used to develop a classification scheme based on quantitative data, HCA, PCA, and OPLS-DA. Initially cultivars were divided into five major groups, which were subdivided into 13 classes based on differences in terpenoid profile. Different classification models were compared with PLS-DA and found to perform best when many representative samples of a particular class were included. Conclusion: A hierarchy of terpenoid chemotypes was observed in the data set. Some cultivars fit into distinct chemotypes, whereas others seemed to represent a continuum of chemotypes. This study has demonstrated an approach to classifying cannabis cultivars based on terpenoid profile.

  13. Chemical Profiling of the Essential Oils of Syzygium aqueum, Syzygium samarangense and Eugenia uniflora and Their Discrimination Using Chemometric Analysis.

    PubMed

    Sobeh, Mansour; Braun, Markus Santhosh; Krstin, Sonja; Youssef, Fadia S; Ashour, Mohamed L; Wink, Michael

    2016-11-01

    The essential oil compositions of the leaves of three related Myrtaceae species, namely Syzygium aqueum, Syzygium samarangense and Eugenia uniflora, were investigated using GLC/MS and GLC/FID. Altogether, 125 compounds were identified: α-Selinene (13.85%), β-caryophyllene (12.72%) and β-selinene constitute the most abundant constituents in S. aqueum. Germacrene D (21.62%) represents the major compound in S. samarangense whereas in E. uniflora, spathulenol (15.80%) represents the predominant component. Multivariate chemometric analyses were used to discriminate the essential oils using hierarchical cluster analysis (HCA) and principal component analysis (PCA) based on the chromatographic results. The antimicrobial activity of the popularly used E. uniflora essential oil was assessed using broth microdilution method against six Gram-positive, three Gram-negative bacteria and two fungi. The oil showed moderate antimicrobial activity against Bacillus licheniformis exhibiting MIC and MMC of 0.63 mg/ml. The cytotoxic activity of E. uniflora essential oil was investigated against Trypanosoma brucei brucei (T. b. brucei) and MCF-7 cancer cell line using MTT assay. It showed moderate activity against MCF-7 cells with an IC 50 value of 76.40 μg/ml. On the other hand, T. brucei was highly susceptible to E. uniflora essential oil with IC 50 of 11.20 μg/ml, and a selectivity index of 6.82. © 2016 Wiley-VHCA AG, Zurich, Switzerland.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du Preez, S. P.; Beukes, J. P.; Van Dalen, W. P. J.

    The production of ferrochrome (FeCr) is a reducing process. However, it is impossible to completely exclude oxygen from all of the high-temperature production process steps, which may lead to unintentional formation of small amounts of Cr(VI). The majority of Cr(VI) is associated with particles found in the off-gas of the high-temperature processes, which are cleaned by means of venturi scrubbers or bag filter dust (BFD) systems. BFD contains the highest concentration of Cr(VI) of all FeCr wastes. In this study, the solubility of Cr(VI) present in BFD was determined by evaluating four different BFD samples. The results indicate that themore » currently applied Cr(VI) treatment strategies of the FeCr producer (with process water pH ≤ 9) only effectively extract and treat the water-soluble Cr(VI) compounds, which merely represented approximately 31% of the total Cr(VI) present in the BFD samples evaluated. Extended extraction time, within the afore-mentioned pH range, proved futile in extracting sparingly-soluble and water-insoluble Cr(VI) species, which represented approximately 34% and 35% of the total Cr(VI), respectively. Due to the deficiencies of the current treatment strategies, it is highly likely that sparingly water-soluble Cr(VI) compounds will leach from waste storage facilities (e.g. slimes dams) over time. Therefore, it is critical that improved Cr(VI) treatment strategies be formulated, which should be an important future perspective for FeCr producers and researchers alike.« less

  15. Pharmacology and toxicology of pahayokolide A, a bioactive metabolite from a freshwater species of Lyngbya isolated from the Florida Everglades

    PubMed Central

    Berry, John P.; Gantar, Miroslav; Gawley, Robert E.; Wang, Minglei; Rein, Kathleen S.

    2008-01-01

    The genus of filamentous cyanobacteria, Lyngbya, has been found to be a rich source of bioactive metabolites. However, identification of such compounds from Lyngbya has largely focused on a few marine representatives. Here, we report on the pharmacology and toxicology of pahayokolide A from a freshwater isolate, Lyngbya sp. strain 15−2, from the Florida Everglades. Specifically, we investigated inhibition of microbial representatives and mammalian cell lines, as well as toxicity of the compound to both invertebrate and vertebrate models. Pahayokolide A inhibited representatives of Bacillus, as well as the yeast, Saccharomyces cerevisiae. Interestingly, the compound also inhibited several representatives of green algae that were also isolated from the Everglades. Pahayokolide A was shown to inhibit a number of cancer cell lines over a range of concentrations (IC50 varied from 2.13 to 44.57 μM) depending on the cell-type. When tested against brine shrimp, pahayokolide was only marginally toxic at the highest concentrations tested (1 mg/mL). The compound was, however, acutely toxic to zebrafish embryos (LC50=2.15 μM). Possible biomedical and environmental health aspects of the pahayokolides remain to be investigated; however, the identification of bioactive metabolites such as these demonstrates the potential of the Florida Everglades as source of new toxins and drugs. PMID:15683832

  16. In vitro antifungal potentials of bioactive compound oleic acid, 3-(octadecyloxy) propyl ester isolated from Lepidagathis cristata Willd. (Acanthaceae) inflorescence.

    PubMed

    Abubacker, Maghdu Nainamohamed; Devi, Palaniyappan Kamala

    2014-09-01

    To identify bioactive compound oleic acid, 3-(octadecyloxy) propyl ester from Lepidagathis cristata Willd. (L. cristata) and to assess antifungal potentials of the isolated compound. Aqueous extracts of L. cristata inflorescence were used for this study. The major bioactive compound isolated was tested for antifungal activities. The major bioactive compound oleic acid, 3-(octadecyloxy) propyl ester was isolated from the inflorescence of L. cristata. The bioactive compound was tested for antifungal potentials and found to be highly effective to plant pathogenic fungi Colletotrichum fulcatum NCBT 146, Fusarium oxysporum NCBT 156 and Rhizoctonia solani NCBT 196 as well as for the human pathogenic fungi Curvularia lunata MTCC 2030 and Microsporum canis MTCC 2820. The results justify the antifungal potentials of both plant and human pathogenic fungi. The plant bioactive compound will be helpful in herbal antifungal formulations. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  17. Water-quality assessment of the Delmarva Peninsula, Delaware, Maryland, and Virginia; results of investigations, 1987-91

    USGS Publications Warehouse

    Shedlock, Robert J.; Denver, J.M.; Hayes, M.A.; Hamilton, P.A.; Koterba, M.T.; Bachman, L.J.; Phillips, P.J.; Banks, W.S.

    1999-01-01

    A regional ground-water-quality assessment of the Delmarva Peninsula was conducted as a pilot study for the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. The study focused on the surficial aquifer and used both existing data and new data collected between 1988 and 1991. The new water samples were analyzed for major ions, nutrients, radon, volatile organic compounds, and a suite of herbicides and insecticides commonly used on corn, soybeans, and small grains. Samples also were collected from wells completed in deeper, confined aquifers and from selected streams, and analyzed for most of these constituents. The study employed a multi-scale network design. Regional networks were chosen to provide broad geographic coverage of the study area and to ensure that the major hydrogeologic settings of the surficial aquifer were adequately represented. Both the existing data and the data from samples collected during the study showed that agricultural activities had affected the quality of water in the surficial aquifer over most of the Peninsula.

  18. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae.

    PubMed

    Eichenberger, Michael; Hansson, Anders; Fischer, David; Dürr, Lara; Naesby, Michael

    2018-06-01

    Anthocyanins (ACNs) are plant secondary metabolites responsible for most of the red, purple and blue colors of flowers, fruits and vegetables. They are increasingly used in the food and beverage industry as natural alternative to artificial colorants. Production of these compounds by fermentation of microorganisms would provide an attractive alternative. In this study, Saccharomyces cerevisiae was engineered for de novo production of the three basic anthocyanins, as well as the three main trans-flavan-3-ols. Enzymes from different plant sources were screened and efficient variants found for most steps of the biosynthetic pathway. However, the anthocyanidin synthase was identified as a major obstacle to efficient production. In yeast, this enzyme converts the majority of its natural substrates leucoanthocyanidins into the off-pathway flavonols. Nonetheless, de novo biosynthesis of ACNs was shown for the first time in yeast and for the first time in a single microorganism. It provides a framework for optimizing the activity of anthocyanidin synthase and represents an important step towards sustainable industrial production of these highly relevant molecules in yeast.

  19. Systematic evaluation of matrix effects in hydrophilic interaction chromatography versus reversed phase liquid chromatography coupled to mass spectrometry.

    PubMed

    Periat, Aurélie; Kohler, Isabelle; Thomas, Aurélien; Nicoli, Raul; Boccard, Julien; Veuthey, Jean-Luc; Schappler, Julie; Guillarme, Davy

    2016-03-25

    Reversed phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) is the gold standard technique in bioanalysis. However, hydrophilic interaction chromatography (HILIC) could represent a viable alternative to RPLC for the analysis of polar and/or ionizable compounds, as it often provides higher MS sensitivity and alternative selectivity. Nevertheless, this technique can be also prone to matrix effects (ME). ME are one of the major issues in quantitative LC-MS bioanalysis. To ensure acceptable method performance (i.e., trueness and precision), a careful evaluation and minimization of ME is required. In the present study, the incidence of ME in HILIC-MS/MS and RPLC-MS/MS was compared for plasma and urine samples using two representative sets of 38 pharmaceutical compounds and 40 doping agents, respectively. The optimal generic chromatographic conditions in terms of selectivity with respect to interfering compounds were established in both chromatographic modes by testing three different stationary phases in each mode with different mobile phase pH. A second step involved the assessment of ME in RPLC and HILIC under the best generic conditions, using the post-extraction addition method. Biological samples were prepared using two different sample pre-treatments, i.e., a non-selective sample clean-up procedure (protein precipitation and simple dilution for plasma and urine samples, respectively) and a selective sample preparation, i.e., solid phase extraction for both matrices. The non-selective pretreatments led to significantly less ME in RPLC vs. HILIC conditions regardless of the matrix. On the contrary, HILIC appeared as a valuable alternative to RPLC for plasma and urine samples treated by a selective sample preparation. Indeed, in the case of selective sample preparation, the compounds influenced by ME were different in HILIC and RPLC, and lower and similar ME occurrence was generally observed in RPLC vs. HILIC for urine and plasma samples, respectively. The complementary of both chromatographic modes was also demonstrated, as ME was observed only scarcely for urine and plasma samples when selecting the most appropriate chromatographic mode. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Chemical characterization of fine organic aerosol for source apportionment at Monterrey, Mexico

    NASA Astrophysics Data System (ADS)

    Mancilla, Y.; Mendoza, A.; Fraser, M. P.; Herckes, P.

    2015-07-01

    Primary emissions from anthropogenic and biogenic sources as well as secondary formation are responsible for the pollution levels of ambient air in major urban areas. These sources release fine particles into the air that negatively impact human health and the environment. Organic molecular markers, which are compounds that are unique to specific PM2.5 sources, can be utilized to identify the major emission sources in urban areas. In this study, 43 representative PM2.5 samples, for both daytime and nighttime periods, were built from individual samples collected in an urban site of the Monterrey Metropolitan Area (MMA) during the spring and fall of 2011 and 2012. The samples were analyzed for organic carbon, elemental carbon, and organic molecular markers. Several diagnostic tools were employed for the preliminary identification of emission sources. Organic compounds for eight compound classes were quantified. The n-alkanoic acids were the most abundant, followed by n-alkanes, wood smoke markers, and levoglucosan/alkenoic acids. Polycyclic aromatic hydrocarbons (PAHs) and hopanes were less abundant. The carbon preference index (0.7-2.6) for n-alkanes indicate a major contribution of anthropogenic and mixed sources during the fall and the spring, respectively. Hopanes levels confirmed the contribution from gasoline and diesel engines. In addition, the contribution of gasoline and diesel vehicle exhaust was confirmed and identified by the PAH concentrations in PM2.5. Diagnostic ratios of PAH showed emissions from burning coal, wood, biomass, and other fossil fuels. The total PAH and elemental carbon (EC) were correlated (r2 = 0.39-0.70) across the monitoring periods, reinforcing that motor vehicles are the major contributors of PAH. Cholesterol levels remained constant during the spring and fall, showing evidence of the contribution of meat cooking operations, while the isolated concentrations of levoglucosan suggested occasional biomass burning events. Finally, source attribution results obtained using the CMB model indicate that emissions from motor vehicle exhausts are the most important, accounting for the 64 % of the PM2.5. The vegetative detritus and biomass burning had the smallest contribution (2.2 % of the PM2.5). To our knowledge, this is the second study to explore the broad chemical characterization of fine organic aerosol in Mexico and the first for the MMA.

  1. Number of Sense Effects of Chinese Disyllabic Compounds in the Two Hemispheres

    ERIC Educational Resources Information Center

    Huang, Chih-Ying; Lee, Chia-Ying; Huang, Hsu-Wen; Chou, Chia-Ju

    2011-01-01

    The current study manipulated the visual field and the number of senses of the first character in Chinese disyllabic compounds to investigate how the related senses (polysemy) of the constituted character in the compounds were represented and processed in the two hemispheres. The ERP results in experiment 1 revealed crossover patterns in the left…

  2. Elucidating compound mechanism of action by network perturbation analysis | Office of Cancer Genomics

    Cancer.gov

    Genome-wide identification of the mechanism of action (MoA) of small-molecule compounds characterizing their targets, effectors, and activity modulators represents a highly relevant yet elusive goal, with critical implications for assessment of compound efficacy and toxicity. Current approaches are labor intensive and mostly limited to elucidating high-affinity binding target proteins.

  3. Melissopalynological and volatile analysis of honeys from Corsican Arbutus unedo habitat.

    PubMed

    Yang, Yin; Battesti, Marie-José; Costa, Jean; Paolini, Julien

    2014-10-01

    Thirty Corsican "autumn maquis" honeys were characterized by the typical combination of autumnal taxa: Arbutus unedo, Hedera helix, Smilax aspera, Rosmarinus officinalis, and two Asteraceae pollen forms. Corsican origin was characterized by the diversity of the taxa's biogeographical origins and significant presence of Castanea sativa and Quercus sp. Volatile fractions of "autumn maquis" honeys were dominated by isophorone and 3,4,5-trimethylphenol. The latter is reported in A. unedo honey for the first time. Otherwise, both A. unedo flower and "autumn maquis" honeys exhibited high contents of isophorone derivatives. H. helix honey exhibited phenylacetaldehyde, benzyl nitrile, 3-hydroxy-4-phenylbutan-2-one and nonanal as major compounds, which were scarcely represented in the studied "autumn maquis" honey samples.

  4. Fruit Antioxidants during Vinegar Processing: Changes in Content and in Vitro Bio-Accessibility

    PubMed Central

    Bakir, Sena; Toydemir, Gamze; Boyacioglu, Dilek; Beekwilder, Jules; Capanoglu, Esra

    2016-01-01

    Background: Vinegars based on fruit juices could conserve part of the health-associated compounds present in the fruits. However, in general very limited knowledge exists on the consequences of vinegar-making on different antioxidant compounds from fruit. In this study vinegars derived from apple and grape are studied. Methods: A number of steps, starting from the fermentation of the fruit juices to the formation of the final vinegars, were studied from an industrial vinegar process. The effect of each of the vinegar processing steps on content of antioxidants, phenolic compounds and flavonoids was studied, by spectroscopic methods and by high-performance liquid chromatography (HPLC). Results: The major observation was that spectrophotometric methods indicate a strong loss of antioxidant phenolic compounds during the transition from fruit wine to fruit vinegar. A targeted HPLC analysis indicates that metabolites such as gallic acid are lost in later stages of the vinegar process. Conclusion: The major conclusion of this work is that major changes occur in phenolic compounds during vinegar making. An untargeted metabolite analysis should be used to reveal these changes in more detail. In addition, the effect of vinegar processing on bio-accessibility of phenolic compounds was investigated by mimicking the digestive tract in an in vitro set up. This study is meant to provide insight into the potential of vinegar as a source of health-related compounds from fruit. PMID:27690020

  5. Water-quality assessment of the Rio Grande Valley, Colorado, New Mexico and Texas; organic compounds and trace elements in bed sediment and fish tissue, 1992-93

    USGS Publications Warehouse

    Carter, L.F.; Anderholm, S.K.

    1997-01-01

    The occurrence and distribution of contaminants in aquatic systems are major components of the National Water-Quality Assessment (NAWQA) Program. Bed-sediment samples were collected at 18 sites in the Rio Grande Valley study unit between September 1992 and March 1993 to characterize the geographic distribution of organic compounds, including chlorinated insecticides, polychlorinated biphenyls (PCB's), and other chlorinated hydrocarbons, and also trace elements. Two-millimeter-size- fraction sediment was analyzed for organic compounds and less than 63-micron-size-fraction sediment was analyzed for trace elements. Concentrations of p,p'-DDE were detected in 33 percent of the bed-sediment samples. With the exception of DDT-related compounds, no other organochlorine insecticides or polychlorinated biphenyls were detected in samples of bed sediment. Whole-body fish samples were collected at 11 of the bed- sediment sites and analyzed for organic compounds. Organic compounds were reported more frequently in samples of fish, and more types of organic compounds were found in whole-body fish samples than in bed-sediment samples. Concentrations of p,p'-DDE were detected in 91 percent of whole-body fish samples. Polychlorinated biphenyls, cis-chlordane, trans-chlordane, trans- nonachlor, and hexachlorobenzene were other organic compounds detected in whole-body samples of fish from at least one site. Because of the extent of mineralized areas in the Rio Grande Basin arsenic, cadmium, copper, lead, mercury, selenium, and zinc concentrations in bed-sediment samples could represent natural conditions at most sites. However, a combination of natural conditions and human activities appears to be associated with elevated trace-element concentrations in the bed-sediment sample from the site Rio Grande near Creede, Colorado, because this sample exceeded the background trace-element concentrations calculated for this study. Fish-liver samples were collected at 12 of the bed-sediment sites and analyzed for trace elements. Certain trace elements were detected at higher concentrations in fish-liver samples than in bed-sediment samples from the same site. Both bed-sediment and fish-tissue samples are necessary for a complete environmental assessment of the occurrence and distribution of trace elements.

  6. Age-dependent changes from allylphenol to prenylated benzoic acid production in Piper gaudichaudianum Kunth.

    PubMed

    Gaia, Anderson M; Yamaguchi, Lydia F; Jeffrey, Christopher S; Kato, Massuo J

    2014-10-01

    HPLC-DAD and principal component analysis (PCA) of the (1)H NMR spectrum of crude plant extracts showed high chemical variability among seedlings and adult organs of Piper gaudichaudianum. While gaudichaudianic acid was the major compound in the adult leaves, apiole and dillapiole were the major compounds in their seedling leaves. By the 15th month of seedling growth, the levels of apiole and dillapiole decreased and gaudichaudianic acid appeared along with two compounds, biosynthetically related to gaudichaudianic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Laboratory study of high performance curing compounds for concrete pavements : phase I.

    DOT National Transportation Integrated Search

    2012-06-01

    Three emulsion-type and two sealing-type curing compounds were evaluated for their ability to impart freezethaw : scaling resistance, and restrict evaporation, carbonation and chloride penetration to concrete specimens : prepared to represent common ...

  8. Ultrasound mediated catalyst free synthesis of 6H-1-benzopyrano[4,3-b]quinolin-6-ones leading to novel quinoline derivatives: their evaluation as potential anti-cancer agents.

    PubMed

    Mulakayala, Naveen; Rambabu, D; Raja, Mohan Rao; M, Chaitanya; Kumar, Chitta Suresh; Kalle, Arunasree M; Rama Krishna, G; Malla Reddy, C; Basaveswara Rao, M V; Pal, Manojit

    2012-01-15

    A facile and catalyst free synthesis of 6H-1-benzopyrano[4,3-b]quinolin-6-ones has been accomplished via the reaction of 4-chloro-2-oxo-2H-chromene-3-carbaldehyde with various aromatic amines in the presence of ultrasound. Some of these compounds were converted to the corresponding 2-(3-(hydroxymethyl)quinolin-2-yl)phenols and further structure elaboration of a representative quinoline derivative is presented. Molecular structure of two representative compounds was confirmed by single crystal X-ray diffraction study. Many of these compounds were evaluated for their anti-proliferative properties in vitro against four cancer cell lines and several compounds were found to be active. Further in vitro studies indicated that inhibition of sirtuins could be the possible mechanism of action of these molecules. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. A knockout mutation in the lignin biosynthesis gene CCR1 explains a major QTL for acid detergent lignin content in Brassica napus seeds.

    PubMed

    Liu, Liezhao; Stein, Anna; Wittkop, Benjamin; Sarvari, Pouya; Li, Jiana; Yan, Xingying; Dreyer, Felix; Frauen, Martin; Friedt, Wolfgang; Snowdon, Rod J

    2012-05-01

    Seed coat phenolic compounds represent important antinutritive fibre components that cause a considerable reduction in value of seed meals from oilseed rape (Brassica napus). The nutritionally most important fibre compound is acid detergent lignin (ADL), to which a significant contribution is made by phenylpropanoid-derived lignin precursors. In this study, we used bulked-segregant analysis in a population of recombinant inbred lines (RILs) from a cross of the Chinese oilseed rape lines GH06 (yellow seed, low ADL) and P174 (black seed, high ADL) to identify markers with tight linkage to a major quantitative trait locus (QTL) for seed ADL content. Fine mapping of the QTL was performed in a backcross population comprising 872 BC(1)F(2) plants from a cross of an F(7) RIL from the above-mentioned population, which was heterozygous for this major QTL and P174. A 3:1 phenotypic segregation for seed ADL content indicated that a single, dominant, major locus causes a substantial reduction in ADL. This locus was successively narrowed to 0.75 cM using in silico markers derived from a homologous Brassica rapa sequence contig spanning the QTL. Subsequently, we located a B. rapa orthologue of the key lignin biosynthesis gene CINNAMOYL CO-A REDUCTASE 1 (CCR1) only 600 kbp (0.75 cM) upstream of the nearest linked marker. Sequencing of PCR amplicons, covering the full-length coding sequences of Bna.CCR1 homologues, revealed a locus in P174 whose sequence corresponds to the Brassica oleracea wild-type allele from chromosome C8. In GH06, however, this allele is replaced by a homologue derived from chromosome A9 that contains a loss-of-function frameshift mutation in exon 1. Genetic and physical map data infer that this loss-of-function allele has replaced a functional Bna.CCR1 locus on chromosome C8 in GH06 by homoeologous non-reciprocal translocation.

  10. Volcanic Stratigraphy of the Quaternary Rhyolite Plateau in Yellowstone National Park

    USGS Publications Warehouse

    Christiansen, Robert L.; Blank, H. Richard

    1972-01-01

    The volcanic sequence of the Quaternary Yellowstone plateau consists of rhyolites and basalts representing three volcanic cycles. The major events of each cycle were eruption of a voluminous ash-flow sheet and formation of a large collapse caldera. Lesser events of each cycle were eruption of precaldera and postcaldera rhyolitic lava flows and marginal basaltic lavas. The three major ash-flow sheets are named and designated in this report as formations within the Yellowstone Group. The lavas are assigned to newly named formations organized around the three ash-flow sheets of the Yellowstone Group to represent the volcanic cycles. Rocks of the first volcanic cycle comprise the precaldera Junction Butte Basalt and rhyolite of Broad Creek; the Huckleberry Ridge Tuff of the Yellowstone Group; and the postcaldera Lewis Canyon Rhyolite and basalt of The Narrows. Rocks of the second volcanic cycle do not crop out within Yellowstone National Park, and only the major unit, the Mesa Falls Tuff of the Yellowstone Group, is named here. The third volcanic cycle is represented by the precaldera Mount Jackson Rhyolite and Undine Falls Basalt; the Lava Creek Tuff of the Yellowstone Group; and the postcaldera Plateau Rhyolite and five post-Lava Creek basaltic sequences. Collapse to form the compound and resurgent Yellowstone caldera was related to eruption of the Lava Creek Tuff. The Plateau Rhyolite is divided into six members - the Mallard Lake, Upper Basin, Obsidian Creek, Central Plateau, Shoshone Lake Tuff, and Roaring Mountain Members; all but the Mallard Lake postdate resurgent doming of the caldera. The basalts are divided into the Swan Lake Flat Basalt, Falls River Basalt, basalt of Mariposa Lake, Madison River Basalt, and Osprey Basalt. Sediments are intercalated in the volcanic section below the Huckleberry Ridge and Mesa Falls Tuffs and within the Junction Butte Basalt, sediments and basalts of The Narrows, Undine Falls Basalt, Plateau Rhyolite, and Osprey Basalt.

  11. Seasonal variation of the essential oil from two Brazilian native Aldama La Llave (Asteraceae) species.

    PubMed

    Oliveira, Tuane S DE; Bombo, Aline B; Oliveira, Adriana S S DE; Garcia, Vera L; Appezzato-DA-Glória, Beatriz

    2016-01-01

    Aldama arenaria and A. robusta are morphologically similar aromatic species that have seasonal development. The yield and chemical composition of essential oils from aerial and underground vegetative organs of these species were compared to verify the production of volatile metabolites in flowering and dormant phases of development and to identify if there are unique compounds for either species. The major compound in the essential oils from A. arenaria leaves was palustrol (16.22%) and for aerial stems was limonene (15.3%), whereas limonene (11.16%) and α-pinene (19.64%) were the major compounds for leaves and aerial stems from A. robusta, respectively. The major compound for the underground organs was α-pinene, in both species and phenological stages. High amounts of diterpenes were found especially for A. arenaria essential oils. Each analyzed species presented unique compounds, which can provide a characteristic chemical profile for both species helping to solve their taxonomic problems. This study characterized for the first time the yield and essential oil composition of A. arenaria and A. robusta, which have medicinal potential, and some of the compounds in their essential oils are unique to each one and may be useful in helping the correct identification of them.

  12. Basics of compounding: Tips and hints: powders, capsules, tablets, suppositories, and sticks, part 1.

    PubMed

    Allen, Loyd V

    2014-01-01

    No matter the profession, professionals should never stop learning. This is especially true and important in the profession of compounding pharmacy. Compounding pharmacists are continuously faced with the challenge of finding new and inventive ways to assist patients with their individual and specific drug requirements. As compounding pharmacists learn, be it through formal continuing education or experience, they should be willing to share their knowledge with other compounders. In our goal of providing compounding pharmacists with additional knowledge to improve their skills in the art and practice of compounding, this article, which provides tips and hits on compounding with powders, capsules, tablets, suppositories, and sticks, represents the first in a series of articles to assist compounding pharmacists in the preparation of compounded medications.

  13. Identification of novel drugs to target dormant micrometastases.

    PubMed

    Hurst, Robert E; Hauser, Paul J; You, Youngjae; Bailey-Downs, Lora C; Bastian, Anja; Matthews, Stephen M; Thorpe, Jessica; Earle, Christine; Bourguignon, Lilly Y W; Ihnat, Michael A

    2015-05-14

    Cancer-specific survival has changed remarkably little over the past half century, mainly because metastases that are occult at diagnosis and generally resistant to chemotherapy subsequently develop months, years or even decades following definitive therapy. Targeting the dormant micrometastases responsible for these delayed or occult metastases would represent a major new tool in cancer patient management. Our hypothesis is that these metastases develop from micrometastatic cells that are suppressed by normal extracellular matrix (ECM). A new screening method was developed that compared the effect of drugs on the proliferation of cells grown on a normal ECM gel (small intestine submucosa, SISgel) to cells grown on plastic cell culture plates. The desired endpoint was that cells on SISgel were more sensitive than the same cells grown as monolayers. Known cancer chemotherapeutic agents show the opposite pattern. Screening 13,000 compounds identified two leads with low toxicity in mice and EC50 values in the range of 3-30 μM, depending on the cell line, and another two leads that were too toxic to mice to be useful. In a novel flank xenograft method of suppressed/dormant cells co-injected with SISgel into the flank, the lead compounds significantly eliminated the suppressed cells, whereas conventional chemotherapeutics were ineffective. Using a 4T1 triple negative breast cancer model, modified for physiological metastatic progression, as predicted, both lead compounds reduced the number of large micrometastases/macrometastases in the lung. One of the compounds also targeted cancer stem cells (CSC) isolated from the parental line. The CSC also retained their stemness on SISgel. Mechanistic studies showed a mild, late apoptotic response and depending on the compound, a mild arrest either at S or G2/M in the cell cycle. In summary we describe a novel, first in class set of compounds that target micrometastatic cells and prevent their reactivation to form recurrent tumors/macrometastases.

  14. Determination of volatile organic compounds from biowaste and co-fermentation biogas plants by single-sorbent adsorption.

    PubMed

    Salazar Gómez, J I; Lohmann, H; Krassowski, J

    2016-06-01

    Characterisation of biogases is normally dedicated to the online monitoring of the major components methane and carbon dioxide and, to a lesser extent, to the determination of ammonia and hydrogen sulphide. For the case of Volatile Organic Compounds (VOCs), much less attention is usually paid, since such compounds are normally removed during gas conditioning and with exception of sulphur compounds and siloxanes represent a rather low risk to conventional downstream devices but could be a hindrance for fuel cells. However, there is very little information in the literature about the type of substances found in biogases generated from biowaste or co-fermentation plants and their concentration fluctuations. The main aim of this study was to provide information about the time dependencies of the VOCs in three biogas plants spread out through Germany from autumn until summer, which have different process control, in order to assess their potential as biofuels. Additionally, this study was an attempt to establish a correlation between the nature of the substrates used in the biogas plants and the composition of the VOCs present in the gas phase. Significant time-dependent variations in concentration were observed for most VOCs but only small changes in composition were observed. In general, terpenes and ketones appeared as the predominant VOCs in biogas. Although for substances such as esters, sulphur-organic compounds and siloxanes the average concentrations observed were rather low, they exhibited significant concentration peaks. The second biogas plant which operates with dry fermentation was found to contain the highest levels of VOCs. The amount of total volatile organic compounds (TVOCs) for the first, second and third biogas plants ranged from 35 to 259 mg Nm(-3), 291-1731 mg Nm(-3) and 84-528 mg Nm(-3), respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Diazo compounds and N-tosylhydrazones: novel cross-coupling partners in transition-metal-catalyzed reactions.

    PubMed

    Xiao, Qing; Zhang, Yan; Wang, Jianbo

    2013-02-19

    Transition-metal-catalyzed carbene transformations and cross-couplings represent two major reaction types in organometallic chemistry and organic synthesis. However, for a long period of time, these two important areas have evolved separately, with essentially no overlap or integration. Thus, an intriguing question has emerged: can cross-coupling and metal carbene transformations be merged into a single reaction cycle? Such a combination could facilitate the development of novel carbon-carbon bond-forming methodologies. Although this concept was first explored about 10 years ago, rapid developments inthis area have been achieved recently. Palladium catalysts can be used to couple diazo compounds with a wide variety of organic halides. Under oxidative coupling conditions, diazo compounds can also react with arylboronic acids and terminal alkynes. Both of these coupling reactions form carbon-carbon double bonds. As the key step in these catalytic processes, Pd carbene migratory insertion plays a vital role in merging the elementary steps of Pd intermediates, leading to novel carbon-carbon bond formations. Because the diazo substrates can be generated in situ from N-tosylhydrazones in the presence of base, the N-tosylhydrazones can be used as reaction partners, making this type of cross-coupling reaction practical in organic synthesis. N-Tosylhydrazones are easily derived from the corresponding aldehydes or ketones. The Pd-catalyzed cross-coupling of N-tosylhydrazones is considered a complementary reaction to the classic Shapiro reaction for converting carbonyl functionalities into carbon-carbon double bonds. It can also serve as an alternative approach for the Pd-catalyzed cross-coupling of carbonyl compounds, which is usually achieved via triflates. The combination of carbene formation and cross-coupling in a single catalytic cycle is not limited to Pd-catalyzed reactions. Recent studies of Cu-, Rh-, Ni-, and Co-catalyzed cross-coupling reactions with diazo compounds or N-tosylhydrazones show that these transformations also work with other transition metals, demonstrating the generality of the diazo compounds as new cross-coupling partners in transition-metal-catalyzed coupling reactions.

  16. Re-Creation of Historical Chrysotile-Containing Joint Compounds

    PubMed Central

    Brorby, G. P.; Sheehan, P. J.; Berman, D. W.; Greene, J. F.; Holm, S. E.

    2008-01-01

    Chrysotile-containing joint compound was commonly used in construction of residential and commercial buildings through the mid 1970s; however, these products have not been manufactured in the United States for more than 30 years. Little is known about actual human exposures to chrysotile fibers that may have resulted from use of chrysotile-containing joint compounds, because few exposure and no health-effects studies have been conducted specifically with these products. Because limited amounts of historical joint compounds are available (and the stability or representativeness of aged products is suspect), it is currently impossible to conduct meaningful studies to better understand the nature and magnitude of potential exposures to chrysotile that may have been associated with historical use of these products. Therefore, to support specific exposure and toxicology research activities, two types of chrysotile-containing joint compounds were produced according to original formulations from the late 1960s. To the extent possible, ingredients were the same as those used originally, with many obtained from the original suppliers. The chrysotile used historically in these products was primarily Grade 7RF9 from the Philip Carey mine. Because this mine is closed, a suitable alternate was identified by comparing the sizes and mineral composition of asbestos structures in a sample of what has been represented to be historical joint compound (all of which were chrysotile) to those in samples of three currently commercially available Grade 7 chrysotile products. The re-created materials generally conformed to original product specifications (e.g. viscosity, workability, crack resistance), indicating that these materials are sufficiently representative of the original products to support research activities. PMID:18788019

  17. Transformation of Contaminant Candidate List (CCL3) compounds during ozonation and advanced oxidation processes in drinking water: Assessment of biological effects.

    PubMed

    Mestankova, Hana; Parker, Austa M; Bramaz, Nadine; Canonica, Silvio; Schirmer, Kristin; von Gunten, Urs; Linden, Karl G

    2016-04-15

    The removal of emerging contaminants during water treatment is a current issue and various technologies are being explored. These include UV- and ozone-based advanced oxidation processes (AOPs). In this study, AOPs were explored for their degradation capabilities of 25 chemical contaminants on the US Environmental Protection Agency's Contaminant Candidate List 3 (CCL3) in drinking water. Twenty-three of these were found to be amenable to hydroxyl radical-based treatment, with second-order rate constants for their reactions with hydroxyl radicals (OH) in the range of 3-8 × 10(9) M(-1) s(-1). The development of biological activity of the contaminants, focusing on mutagenicity and estrogenicity, was followed in parallel with their degradation using the Ames and YES bioassays to detect potential changes in biological effects during oxidative treatment. The majority of treatment cases resulted in a loss of biological activity upon oxidation of the parent compounds without generation of any form of estrogenicity or mutagenicity. However, an increase in mutagenic activity was detected by oxidative transformation of the following CCL3 parent compounds: nitrobenzene (OH, UV photolysis), quinoline (OH, ozone), methamidophos (OH), N-nitrosopyrolidine (OH), N-nitrosodi-n-propylamine (OH), aniline (UV photolysis), and N-nitrosodiphenylamine (UV photolysis). Only one case of formation of estrogenic activity was observed, namely, for the oxidation of quinoline by OH. Overall, this study provides fundamental and practical information on AOP-based treatment of specific compounds of concern and represents a framework for evaluating the performance of transformation-based treatment processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Chemical characterization of freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Abegglen, Manuel; Brem, B. T.; Ellenrieder, M.; Durdina, L.; Rindlisbacher, T.; Wang, J.; Lohmann, U.; Sierau, B.

    2016-06-01

    Non-volatile aircraft engine emissions are an important anthropogenic source of soot particles in the upper troposphere and in the vicinity of airports. They influence climate and contribute to global warming. In addition, they impact air quality and thus human health and the environment. The chemical composition of non-volatile particulate matter emission from aircraft engines was investigated using single particle time-of-flight mass spectrometry. The exhaust from three different aircraft engines was sampled and analyzed. The soot particulate matter was sampled directly behind the turbine in a test cell at Zurich Airport. Single particle analyses will focus on metallic compounds. The particles analyzed herein represent a subset of the emissions composed of the largest particles with a mobility diameter >100 nm due to instrumental restrictions. A vast majority of the analyzed particles was shown to contain elemental carbon, and depending on the engine and the applied thrust the elemental carbon to total carbon ratio ranged from 83% to 99%. The detected metallic compounds were all internally mixed with the soot particles. The most abundant metals in the exhaust were Cr, Fe, Mo, Na, Ca and Al; V, Ba, Co, Cu, Ni, Pb, Mg, Mn, Si, Ti and Zr were also detected. We further investigated potential sources of the ATOFMS-detected metallic compounds using Inductively Coupled Plasma Mass Spectrometry. The potential sources considered were kerosene, engine lubrication oil and abrasion from engine wearing components. An unambiguous source apportionment was not possible because most metallic compounds were detected in several of the analyzed sources.

  19. The Natural cAMP Elevating Compound Forskolin in Cancer Therapy: Is It Time?

    PubMed

    Sapio, Luigi; Gallo, Monica; Illiano, Michela; Chiosi, Emilio; Naviglio, Daniele; Spina, Annamaria; Naviglio, Silvio

    2017-05-01

    Cancer is a major public health problem and the second leading cause of mortality around the world. Although continuous advances in the science of oncology and cancer research are now leading to improved outcomes for many cancer patients, novel cancer treatment options are strongly demanded. Naturally occurring compounds from a variety of vegetables, fruits, and medicinal plants have been shown to exhibit various anticancer properties in a number of in vitro and in vivo studies and represent an attractive research area for the development of new therapeutic strategies to fight cancer. Forskolin is a diterpene produced by the roots of the Indian plant Coleus forskohlii. The natural compound forskolin has been used for centuries in traditional medicine and its safety has also been documented in conventional modern medicine. Forskolin directly activates the adenylate cyclase enzyme, that generates cAMP from ATP, thus, raising intracellular cAMP levels. Notably, cAMP signaling, through the PKA-dependent and/or -independent pathways, is very relevant to cancer and its targeting has shown a number of antitumor effects, including the induction of mesenchymal-to-epithelial transition, inhibition of cell growth and migration and enhancement of sensitivity to conventional antitumor drugs in cancer cells. Here, we describe some features of cAMP signaling that are relevant to cancer biology and address the state of the art concerning the natural cAMP elevating compound forskolin and its perspectives as an effective anticancer agent. J. Cell. Physiol. 232: 922-927, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Have we underestimated the role of short-lived chlorine compounds in ozone depletion?

    NASA Astrophysics Data System (ADS)

    Oram, David; Laube, Johannes; Sturges, Bill; Gooch, Lauren; Leedham, Emma; Ashfold, Matthew; Pyle, John; Abu Samah, Azizan; Moi Phang, Siew; Ou-Yang, Chang-Feng; Lin, Neng-Huei; Wang, Jia-Lin; Brenninkmeijer, Carl

    2015-04-01

    In recent years much attention has been focussed on the potential of bromine-containing VSLS (very short lived substances) to contribute to stratospheric ozone depletion. This is primarily due to the large observed discrepancy between the measured inorganic bromine in the stratosphere and the amount of bromine available from known, longer lived sources gases (halons and CH3Br). In contrast, the role of very short-lived chlorine compounds (VSLS-CL) has been considered trivial because they contribute only a few percent to the total organic chlorine in the troposphere, the majority of which is supplied by long-lived compounds such as the CFCs, HCFCs, methyl chloroform and carbon tetrachloride. However recent evidence shows that one VSLS-Cl, dichloromethane (CH2Cl2) has increased by 60% over the past decade (WMO, 2014) and has already begun to offset the long-term decline in stratospheric chlorine loading caused by the reduction in emissions of substances controlled by the Montreal Protocol. We will present new VSLS-Cl measurements from recent ground-based and aircraft campaigns in SE Asia where we have observed dramatic enhancements in a number of VSLS-Cl, including CH2Cl2. Furthermore we will demonstrate how pollution from China and the surrounding region can rapidly, and regularly, be transported across the South China Sea and subsequently uplifted to altitudes of 11-12 km, the region close to the lower TTL. This process occurs frequently during the winter monsoon season and could represent a fast and efficient mechanism for transporting short-lived compounds, and other pollutants, to the lower stratosphere.

  1. Evaluation of the performance of a tandem mass spectral library with mass spectral data extracted from literature.

    PubMed

    Würtinger, Philipp; Oberacher, Herbert

    2012-01-01

    MSforID represents a database of tandem mass spectral data obtained from (quasi-)molecular ions produced by atmospheric pressure ionization methods. At the current stage of development the library contains 12 122 spectra of 1208 small (bio-)organic molecules. The present work was aimed to evaluate the performance of the MSforID library in terms of accuracy and transferability with a collection of fragment ion mass spectra from various compounds acquired on multiple instruments. A literature survey was conducted to collect the set of sample spectra. A total number of 554 spectra covering 291 compounds were extracted from 109 publications. The majority of spectra originated from publications on applications of LC/MS/MS in drug monitoring, pharmacokinetics, environmental analysis, forensic analysis as well as food analysis. Almost all types of tandem mass spectrometric instruments distributed by the five most important instrument vendors were included in the study. The overall sensitivity of library search was found to be 96.4%, which clearly proves that the MSforID library can successfully handle data from a huge variety of mass spectrometric instruments to allow accurate compound identification. Only for spectra containing three or more fragment ions, however, the rate of classified matches (= matches with a relative average match probability (ramp) score > 40.0) was 95%. Ambiguous or unclassified results were mainly obtained for searches with single precursor-to-fragment ion transitions due to the insufficient specificity of such a low amount of structural information to unequivocally define a single compound. Copyright © 2011 John Wiley & Sons, Ltd.

  2. [Studies for the development of novel anti-MRSA/VRE drugs].

    PubMed

    Hashizume, Hideki

    2012-01-01

    The widespread emergence of multidrug-resistant Gram-positive pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) is a high threat for human health. In the course of screening for active compounds against the above drug-resistant bacteria from microbial metabolites, we discovered three kinds of novel compounds designated tripropeptins, pargamicin, and amycolamicin. Tripropeptin C (TPPC), major component of tripropeptins, is the most promising compound because it is efficacious against MRSA and VRE both in vitro and in a mouse septicemia model, and shows no cross-resistance to available drugs including vancomycin. Studies of incorporation of radioactive macromolecular precursors and accumulation of UDP-MurNAc-pentapeptide in the cytoplasm in S. aureus Smith revealed that TPPC is a cell wall synthesis inhibitor. Antimicrobial activity of TPPC was weakened by addition of prenylpyrophosphates but not with prenylphosphates, UDP-linked sugars, or the pentapeptide of peptidoglycan. Direct interaction between TPPC and undecaprenyl pyrophosphate (C(55)-PP) was observed by mass spectrometry and thin layer chromatography, and TPPC inhibits C(55)-PP phosphatase, which plays a crucial role in peptidoglycan synthesis at an IC(50) of 0.03-0.1 µM in vitro. From the analysis of accumulation of lipid carrier-related compounds, TPPC caused accumulation of C(55)-PP in situ, leading to the accumulation of a glycine-added lipid intermediate, suggesting a distinct mode of action from that of clinically important drugs such as vancomycin, daptomycin, and bacitracin. TPPC might represent a promising novel class of antibiotic against MRSA and VRE infections.

  3. Targeting RORs nuclear receptors by novel synthetic steroidal inverse agonists for autoimmune disorders.

    PubMed

    Dal Prà, Matteo; Carta, Davide; Szabadkai, Gyorgy; Suman, Matteo; Frión-Herrera, Yahima; Paccagnella, Nicola; Castellani, Giulia; De Martin, Sara; Ferlin, Maria Grazia

    2018-05-01

    Designing novel inverse agonists of NR RORγt still represents a challenge for the pharmaceutical community to develop therapeutics for treating immune diseases. By exploring the structure of NRs natural ligands, the representative arotenoid ligands and RORs specific ligands share some chemical homologies which can be exploited to design a novel molecular structure characterized by a polycyclic core bearing a polar head and a hydrophobic tail. Compound MG 2778 (8), a cyclopenta[a]phenantrene derivative, was identified as lead compound which was chemically modified at position 2 in order to obtain a small library for preliminary SARs. Cell viability and estrogenic activity of compounds 7, 8, 19a, 30, 31 and 32 were evaluated to attest selectivity. The selected 7, 8, 19a and 31 compounds were assayed in a Gal4 UAS-Luc co-transfection system in order to determine their ability to modulate RORγt activity in a cellular environment. They were evaluated as inverse agonists taken ursolic acid as reference compound. The potency of compounds was lower than that of ursolic acid, but their efficacy was similar. Compound 19a was the most active, significantly reducing RORγt activity at low micromolar concentrations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Meta-Analysis of Mass Balances Examining Chemical Fate during Wastewater Treatment

    PubMed Central

    2008-01-01

    Mass balances are an instructive means for investigating the fate of chemicals during wastewater treatment. In addition to the aqueous-phase removal efficiency (Φ), they can inform on chemical partitioning, transformation, and persistence, as well as on the chemical loading to streams and soils receiving, respectively, treated effluent and digested sewage sludge (biosolids). Release rates computed on a per-capita basis can serve to extrapolate findings to a larger scale. This review examines over a dozen mass balances conducted for various organic wastewater contaminants, including prescription drugs, estrogens, fragrances, antimicrobials, and surfactants of differing sorption potential (hydrophobicity), here expressed as the 1-octanol−water partition coefficient (KOW) and the organic carbon normalized sorption coefficient (KOC). Major challenges to mass balances are the collection of representative samples and accurate quantification of chemicals in sludge. A meta-analysis of peer-reviewed data identified sorption potential as the principal determinant governing chemical persistence in biosolids. Occurrence data for organic wastewater compounds detected in digested sludge followed a simple nonlinear model that required only KOW or KOC as the input and yielded a correlation coefficient of 0.9 in both instances. The model predicted persistence in biosolids for the majority (>50%) of the input load of organic wastewater compounds featuring a log10KOW value of greater than 5.2 (log10KOC > 4.4). In contrast, hydrophobicity had no or only limited value for estimating, respectively, Φ and the overall persistence of a chemical during conventional wastewater treatment. PMID:18800497

  5. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research.

    PubMed

    Van Leeuwen, Thomas; Tirry, Luc; Yamamoto, Atsushi; Nauen, Ralf; Dermauw, Wannes

    2015-06-01

    Acaricides are one of the cornerstones of an efficient control program for phytophagous mites. An analysis of the global acaricide market reveals that spider mites such as Tetranychus urticae, Panonychus citri and Panonychus ulmi are by far the most economically important species, representing more than 80% of the market. Other relevant mite groups are false spider mites (mainly Brevipalpus), rust and gall mites and tarsonemid mites. Acaricides are most frequently used in vegetables and fruits (74% of the market), including grape vines and citrus. However, their use is increasing in major crops where spider mites are becoming more important, such as soybean, cotton and corn. As revealed by a detailed case study of the Japanese market, major shifts in acaricide use are partially driven by resistance development and the commercial availability of compounds with novel mode of action. The importance of the latter cannot be underestimated, although some compounds are successfully used for more than 30 years. A review of recent developments in mode of action research is presented, as such knowledge is important for devising resistance management programs. This includes spirocyclic keto-enols as inhibitors of acetyl-CoA carboxylase, the carbazate bifenazate as a mitochondrial complex III inhibitor, a novel class of complex II inhibitors, and the mite growth inhibitors hexythiazox, clofentezine and etoxazole that interact with chitin synthase I. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Genomic hardwiring and phenotypic plasticity of terpenoid-based defenses in conifers.

    PubMed

    Huber, Dezene P W; Ralph, Steven; Bohlmann, Jörg

    2004-12-01

    Over evolutionary history, conifers have faced a myriad of threats from phloem- and xylem-feeding insects, defoliating insects, and fungal pathogens. Among the trees' defenses, terpenoids appear to play a major role by harming, disabling, deterring, repelling, or otherwise reducing the fitness of potential invaders. Each of the three classes of terpenoids in conifers, monoterpenes, sesquiterpenes, and diterpenes, are composed of a large number of representative compounds. In most cases, the presence of a particular terpenoid compound in the oleoresin or volatile emissions from a specific conifer can be accounted for by the expression of one of many committed terpene synthase (TPS) genes. However, while each TPS may produce one or a few major products, many produce a variety of minor products with relatively constant component ratios in the product blends. TPS genes exist in conifers in large and functionally diverse, yet monophyletic, gene families. Within these gene families, new biochemical functions of TPS appear to have evolved by gene duplication and changes in the amino acid sequence of the enzyme's active site. In addition, TPS genes may be differentially expressed prior to, during, and following attack by insects or pathogens. Thus, while the production of any particular terpenoid is hardwired into a conifer's genome, these trees have the capacity to change the mixture of terpenoids in oleoresin secretions and volatile emissions. Anatomical changes may also accompany induced terpenoid production, supplementing the plasticity of the molecular and biochemical events.

  7. Natural Polyphenol Disposition via Coupled Metabolic Pathways

    PubMed Central

    Liu, Zhongqiu; Hu, Ming

    2009-01-01

    A major challenge associated with the development of chemopreventive polyphenols is the lack of bioavailability in vivo, which are primarily the result of coupled metabolic activities of conjugating enzymes and efflux transporters. These coupling processes are present in most of tissues and organs in mammals and are efficient for the purposes of drug metabolism, elimination and detoxification. Therefore, it was expected that these coupling processes represent a significant barrier to the oral bioavailabilities of polyphenols. In various studies of this coupling process, it was identified that various conjugating enzymes such as UGT and SULT are capable of producing very hydrophilic metabolites of polyphenols, which cannot diffuse out of the cells and needs the action of efflux transporters to pump them out of the cells. Additional studies have shown that efflux transporters such as MRP2, BCRP and OAT appear to serve as the gate keeper when there is an excess capacity to metabolize the compounds. These efflux transporters may also act as the facilitator of metabolism when there is a product/metabolite inhibition. For polyphenols, these coupled processes enable a duo recycling scheme of enteric and enterohepatic recycling, which allows the polyphenols to be reabsorbed and results in longer than expected apparent plasma half-lives for these compounds and their conjugates. Since the vast majority of polyphenols in plasma are hydrophilic conjugates, more research is needed to determine if the metabolites are active or reactive, which will help explain their mechanism of actions. PMID:17539746

  8. Chemical composition and antimicrobial activity of the essential oil from the edible aromatic plant Aristolochia delavayi.

    PubMed

    Li, Zhi-Jian; Njateng, Guy S S; He, Wen-Jia; Zhang, Hong-Xia; Gu, Jian-Long; Chen, Shan-Na; Du, Zhi-Zhi

    2013-11-01

    The essential oil obtained by hydrodistillation from the aerial parts of Aristolochia delavayi Franch. (Aristolochiaceae), a unique edible aromatic plant consumed by the Nakhi (Naxi) people in Yunnan, China, was investigated using GC/MS analysis. In total, 95 components, representing more than 95% of the oil composition, were identified, and the main constituents found were (E)-dec-2-enal (52.0%), (E)-dodec-2-enal (6.8%), dodecanal (3.35%), heptanal (2.88%), and decanal (2.63%). The essential oil showed strong inhibitory activity (96% reduction) of the production of bacterial volatile sulfide compounds (VSC) by Klebsiella pneumoniae, an effect that was comparable with that of the reference compound citral (91% reduction). Moreover, the antimicrobial activity of the essential oil and the isolated major compound against eight bacterial and six fungal strains were evaluated. The essential oil showed significant antibacterial activity against Providencia stuartii and Escherichia coli, with minimal inhibitory concentrations (MIC) ranging from 3.9 to 62.5 μg/ml. The oil also showed strong inhibitory activity against the fungal strains Trichophyton ajelloi, Trichophyton terrestre, Candida glabrata, Candida guilliermondii, and Cryptococcus neoformans, with MIC values ranging from 3.9 to 31.25 μg/ml, while (E)-dec-2-enal presented a lower antifungal activity than the essential oil. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  9. Evaluating the impact of sprouting conditions on the glucosinolate content of Brassica oleracea sprouts.

    PubMed

    Vale, A P; Santos, J; Brito, N V; Fernandes, D; Rosa, E; Oliveira, M Beatriz P P

    2015-07-01

    The glucosinolates content of brassica plants is a distinctive characteristic, representing a healthy advantage as many of these compounds are associated to antioxidant and anti-carcinogenic properties. Brassica sprouts are still an underutilized source of these bioactive compounds. In this work, four varieties of brassica sprouts (red cabbage, broccoli, Galega kale and Penca cabbage), including two local varieties from the North of Portugal, were grown to evaluate the glucosinolate profile and myrosinase activity during the sprouting. Also the influence of light/darkness exposure during sprouting on the glucosinolate content was assessed. Glucosinolate content and myrosinase activity of the sprouts was evaluated by HPLC methods. All sprouts revealed a higher content of aliphatic glucosinolates than of indole glucosinolates, contrary to the profile described for most of brassica mature plants. Galega kale sprouts had the highest glucosinolate content, mainly sinigrin and glucoiberin, which are recognized for their beneficial health effects. Penca cabbage sprouts were particularly richer in glucoraphanin, who was also one of the major compounds in broccoli sprouts. Red cabbage showed a higher content of progoitrin. Regarding myrosinase activity, Galega kale sprouts showed the highest values, revealing that the use of light/dark cycles and a sprouting phase of 7-9 days could be beneficial to preserve the glucosinolate content of this variety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Assessing the Impact of Chlorinated-Solvent Sites on Metropolitan Groundwater Resources

    PubMed Central

    Brusseau, Mark L.; Narter, Matthew

    2014-01-01

    Chlorinated-solvent compounds are among the most common groundwater contaminants in the U.S.A. The majority of the many sites contaminated by chlorinated-solvent compounds are located in metropolitan areas, and most such areas have one or more chlorinated-solvent contaminated sites. Thus, contamination of groundwater by chlorinated-solvent compounds may pose a potential risk to the sustainability of potable water supplies for many metropolitan areas. The impact of chlorinated-solvent sites on metropolitan water resources was assessed for Tucson, AZ, by comparing the aggregate volume of extracted groundwater for all pump-and-treat systems associated with contaminated sites in the region to the total regional groundwater withdrawal. The analysis revealed that the aggregate volume of groundwater withdrawn for the pump-and-treat systems operating in Tucson, all of which are located at chlorinated-solvent contaminated sites, was 20% of the total groundwater withdrawal in the city for the study period. The treated groundwater was used primarily for direct delivery to local water supply systems or for reinjection as part of the pump-and-treat system. The volume of the treated groundwater used for potable water represented approximately 13% of the total potable water supply sourced from groundwater, and approximately 6% of the total potable water supply. This case study illustrates the significant impact chlorinated-solvent contaminated sites can have on groundwater resources and regional potable-water supplies. PMID:24116872

  11. A stable isotope approach for source apportionment of chlorinated ethene plumes at a complex multi-contamination events urban site

    NASA Astrophysics Data System (ADS)

    Nijenhuis, Ivonne; Schmidt, Marie; Pellegatti, Eleonora; Paramatti, Enrico; Richnow, Hans Hermann; Gargini, Alessandro

    2013-10-01

    The stable carbon isotope composition of chlorinated aliphatic compounds such as chlorinated methanes, ethanes and ethenes was examined as an intrinsic fingerprint for apportionment of sources. A complex field site located in Ferrara (Italy), with more than 50 years history of use of chlorinated aliphatic compounds, was investigated in order to assess contamination sources. Several contamination plumes were found in a complex alluvial sandy multi-aquifer system close to the river Po; sources are represented by uncontained former industrial and municipal dump sites as well as by spills at industrial areas. The carbon stable isotope signature allowed distinguishing 2 major sources of contaminants. One source of chlorinated aliphatic contaminants was strongly depleted in 13C (<-60‰) suggesting production lines which have used depleted methane for synthesis. The other source had typical carbon isotope compositions of >-40‰ which is commonly observed in recent production of chlorinated solvents. The degradation processes in the plumes could be traced interpreting the isotope enrichment and depletion of parent and daughter compounds, respectively. We demonstrate that, under specific production conditions, namely when highly chlorinated ethenes are produced as by-product during chloromethanes production, 13C depleted fingerprinting of contaminants can be obtained and this can be used to track sources and address the responsible party of the pollution in urban areas.

  12. A stable isotope approach for source apportionment of chlorinated ethene plumes at a complex multi-contamination events urban site.

    PubMed

    Nijenhuis, Ivonne; Schmidt, Marie; Pellegatti, Eleonora; Paramatti, Enrico; Richnow, Hans Hermann; Gargini, Alessandro

    2013-10-01

    The stable carbon isotope composition of chlorinated aliphatic compounds such as chlorinated methanes, ethanes and ethenes was examined as an intrinsic fingerprint for apportionment of sources. A complex field site located in Ferrara (Italy), with more than 50years history of use of chlorinated aliphatic compounds, was investigated in order to assess contamination sources. Several contamination plumes were found in a complex alluvial sandy multi-aquifer system close to the river Po; sources are represented by uncontained former industrial and municipal dump sites as well as by spills at industrial areas. The carbon stable isotope signature allowed distinguishing 2 major sources of contaminants. One source of chlorinated aliphatic contaminants was strongly depleted in ¹³C (<-60‰) suggesting production lines which have used depleted methane for synthesis. The other source had typical carbon isotope compositions of >-40‰ which is commonly observed in recent production of chlorinated solvents. The degradation processes in the plumes could be traced interpreting the isotope enrichment and depletion of parent and daughter compounds, respectively. We demonstrate that, under specific production conditions, namely when highly chlorinated ethenes are produced as by-product during chloromethanes production, ¹³C depleted fingerprinting of contaminants can be obtained and this can be used to track sources and address the responsible party of the pollution in urban areas. © 2013 Elsevier B.V. All rights reserved.

  13. Modulation of T-type Ca2+ channels by Lavender and Rosemary extracts

    PubMed Central

    El Alaoui, Chaymae; Chemin, Jean; Fechtali, Taoufiq

    2017-01-01

    Medicinal plants represent a significant reservoir of unexplored substances for early-stage drug discovery. Of interest, two flowering Mediterranean plants have been used for thousands of years for their beneficial effects on nervous disorders, including anxiety and mood. However, the therapeutic potential of these plants regarding their ability to target ion channels and neuronal excitability remains largely unknown. Towards this goal, we have investigated the ability of Lavender and Rosemary to modulate T-type calcium channels (TTCCs). TTCCs play important roles in neuronal excitability, neuroprotection, sensory processes and sleep. These channels are also involved in epilepsy and pain. Using the whole-cell patch-clamp technique, we have characterized how Lavender and Rosemary extracts, as well as their major active compounds Linalool and Rosmarinic acid, modulate the electrophysiological properties of recombinant TTCCs (CaV3.2) expressed in HEK-293T cells. Both the methanolic and essential oil extracts as well as the active compounds of these plants inhibit Cav3.2 current in a concentration-dependent manner. In addition, these products also induce a negative shift of the steady-state inactivation of CaV3.2 current with no change in the activation properties. Taken together, our findings reveal that TTCCs are a molecular target of the Lavender and Rosemary compounds, suggesting that inhibition of TTCCs could contribute to the anxiolytic and the neuroprotective effects of these plants. PMID:29073181

  14. Newly Identified DDT-Related Compounds Accumulating in Southern California Bottlenose Dolphins.

    PubMed

    Mackintosh, Susan A; Dodder, Nathan G; Shaul, Nellie J; Aluwihare, Lihini I; Maruya, Keith A; Chivers, Susan J; Danil, Kerri; Weller, David W; Hoh, Eunha

    2016-11-15

    Nontargeted GC×GC-TOF/MS analysis of blubber from 8 common bottlenose dolphins (Tursiops truncatus) inhabiting the Southern California Bight was performed to identify novel, bioaccumulative DDT-related compounds and to determine their abundance relative to the commonly studied DDT-related compounds. We identified 45 bioaccumulative DDT-related compounds of which the majority (80%) is not typically monitored in environmental media. Identified compounds include transformation products, technical mixture impurities such as tris(chlorophenyl)methane (TCPM), the presumed TCPM metabolite tris(chlorophenyl)methanol (TCPMOH), and structurally related compounds with unknown sources, such as hexa- to octachlorinated diphenylethene. To investigate impurities in pesticide mixtures as possible sources of these compounds, we analyzed technical DDT, the primary source of historical contamination in the region, and technical Dicofol, a current use pesticide that contains DDT-related compounds. The technical mixtures contained only 33% of the compounds identified in the blubber, suggesting that transformation products contribute to the majority of the load of DDT-related contaminants in these sentinels of ocean health. Quantitative analysis revealed that TCPM was the second most abundant compound class detected in the blubber, following DDE, and TCPMOH loads were greater than DDT. QSPR estimates verified 4,4',4″-TCPM and 4,4'4,″-TCPMOH are persistent and bioaccumulative.

  15. Metabolomics and Cheminformatics Analysis of Antifungal Function of Plant Metabolites

    PubMed Central

    Cuperlovic-Culf, Miroslava; Rajagopalan, NandhaKishore; Tulpan, Dan; Loewen, Michele C.

    2016-01-01

    Fusarium head blight (FHB), primarily caused by Fusarium graminearum, is a devastating disease of wheat. Partial resistance to FHB of several wheat cultivars includes specific metabolic responses to inoculation. Previously published studies have determined major metabolic changes induced by pathogens in resistant and susceptible plants. Functionality of the majority of these metabolites in resistance remains unknown. In this work we have made a compilation of all metabolites determined as selectively accumulated following FHB inoculation in resistant plants. Characteristics, as well as possible functions and targets of these metabolites, are investigated using cheminformatics approaches with focus on the likelihood of these metabolites acting as drug-like molecules against fungal pathogens. Results of computational analyses of binding properties of several representative metabolites to homology models of fungal proteins are presented. Theoretical analysis highlights the possibility for strong inhibitory activity of several metabolites against some major proteins in Fusarium graminearum, such as carbonic anhydrases and cytochrome P450s. Activity of several of these compounds has been experimentally confirmed in fungal growth inhibition assays. Analysis of anti-fungal properties of plant metabolites can lead to the development of more resistant wheat varieties while showing novel application of cheminformatics approaches in the analysis of plant/pathogen interactions. PMID:27706030

  16. Exploration of geo-mineral compounds in granite mining soils using XRD pattern data analysis

    NASA Astrophysics Data System (ADS)

    Koteswara Reddy, G.; Yarakkula, Kiran

    2017-11-01

    The purpose of the study was to investigate the major minerals present in granite mining waste and agricultural soils near and away from mining areas. The mineral exploration of representative sub-soil samples are identified by X-Ray Diffractometer (XRD) pattern data analysis. The morphological features and quantitative elementary analysis was performed by Scanning Electron Microscopy-Energy Dispersed Spectroscopy (SEM-EDS).The XRD pattern data revealed that the major minerals are identified as Quartz, Albite, Anorthite, K-Feldspars, Muscovite, Annite, Lepidolite, Illite, Enstatite and Ferrosilite in granite waste. However, in case of agricultural farm soils the major minerals are identified as Gypsum, Calcite, Magnetite, Hematite, Muscovite, K-Feldspars and Quartz. Moreover, the agricultural soils neighbouring mining areas, the minerals are found that, the enriched Mica group minerals (Lepidolite and Illite) the enriched Orthopyroxene group minerals (Ferrosilite and Enstatite). It is observed that the Mica and Orthopyroxene group minerals are present in agricultural farm soils neighbouring mining areas and absent in agricultural farm soils away from mining areas. The study demonstrated that the chemical migration takes place at agricultural farm lands in the vicinity of the granite mining areas.

  17. Contamination levels of human pharmaceutical compounds in French surface and drinking water.

    PubMed

    Mompelat, S; Thomas, O; Le Bot, B

    2011-10-01

    The occurrence of 20 human pharmaceutical compounds and metabolites from 10 representative therapeutic classes was analysed from resource and drinking water in two catchment basins located in north-west France. 98 samples were analysed from 63 stations (surface water and drinking water produced from surface water). Of the 20 human pharmaceutical compounds selected, 16 were quantified in both the surface water and drinking water, with 22% of the values above the limit of quantification for surface water and 14% for drinking water). Psychostimulants, non-steroidal anti-inflammatory drugs, iodinated contrast media and anxiolytic drugs were the main therapeutic classes of human pharmaceutical compounds detected in the surface water and drinking water. The results for surface water were close to results from previous studies in spite of differences in prescription rates of human pharmaceutical compounds in different countries. The removal rate of human pharmaceutical compounds at 11 water treatment units was also determined. Only caffeine proved to be resistant to drinking water treatment processes (with a minimum rate of 5%). Other human pharmaceutical compounds seemed to be removed more efficiently (average elimination rate of over 50%) by adsorption onto activated carbon and oxidation/disinfection with ozone or chlorine (not taking account of the disinfection by-products). These results add to the increasing evidence of the occurrence of human pharmaceutical compounds in drinking water that may represent a threat to human beings exposed to a cocktail of human pharmaceutical compounds and related metabolites and by-products in drinking water.

  18. The Vertex Version of Weighted Wiener Number for Bicyclic Molecular Structures

    PubMed Central

    Gao, Wei

    2015-01-01

    Graphs are used to model chemical compounds and drugs. In the graphs, each vertex represents an atom of molecule and edges between the corresponding vertices are used to represent covalent bounds between atoms. We call such a graph, which is derived from a chemical compound, a molecular graph. Evidence shows that the vertex-weighted Wiener number, which is defined over this molecular graph, is strongly correlated to both the melting point and boiling point of the compounds. In this paper, we report the extremal vertex-weighted Wiener number of bicyclic molecular graph in terms of molecular structural analysis and graph transformations. The promising prospects of the application for the chemical and pharmacy engineering are illustrated by theoretical results achieved in this paper. PMID:26640513

  19. Volatile compounds of dry beans (Phaseolus vulgaris L.).

    PubMed

    Oomah, B Dave; Liang, Lisa S Y; Balasubramanian, Parthiba

    2007-12-01

    Volatile compounds of uncooked dry bean (Phaseolus vulgaris L.) cultivars representing three market classes (black, dark red kidney and pinto) grown in 2005 were isolated with headspace solid phase microextraction (HS-SPME), and analyzed with gas chromatography mass spectrometry (GC-MS). A total of 62 volatiles consisting of aromatic hydrocarbons, aldehydes, alkanes, alcohols and ketones represented on average 62, 38, 21, 12, and 9 x 10(6) total area counts, respectively. Bean cultivars differed in abundance and profile of volatiles. The combination of 18 compounds comprising a common profile explained 79% of the variance among cultivars based on principal component analysis (PCA). The SPME technique proved to be a rapid and effective method for routine evaluation of dry bean volatile profile.

  20. Influence of extraction methodologies on the analysis of five major volatile aromatic compounds of citronella grass (Cymbopogon nardus) and lemongrass (Cymbopogon citratus) grown in Thailand

    USDA-ARS?s Scientific Manuscript database

    Infusions of citronella grass (Cymbopogon nardus) and lemongrass (Cymbopogon citratus) have been commonly used in folk medicine in Thailand and other Asian countries. This study focuses on a systematic comparison of two extraction methods for major volatile aromatic compounds (VACs) of citronella g...

  1. The relationships between chemical and genetic differentiation and environmental factors across the distribution of Erigeron breviscapus (Asteraceae).

    PubMed

    Li, Xiang; Peng, Li-yan; Zhang, Shu-dong; Zhao, Qin-shi; Yi, Ting-shuang

    2013-01-01

    Erigeron breviscapus (Vant.) Hand.-Mazz. is an important, widely used Chinese herb with scutellarin, 1,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and erigoster B being its major active compounds. We aimed to resolve the influence of biotic and abiotic factors on the concentrations of these compounds and to determine appropriate cultivation methods to improve the yields of the four compounds in this herb. In order to detect the major genetic and natural environmental factors affecting the yields of these four compounds, we applied AFLP markers to investigate the population genetic differentiation and HPLC to measure the concentrations of four major active compounds among 23 wild populations which were located across almost the entire distribution of this species in China. The meteorological data including annual average temperature, annual average precipitation and annual average hours of sunshine were collected. The relationships among the concentrations of four compounds and environmental factors and genetic differentiation were studied. Low intraspecific genetic differentiation is detected, and there is no obvious correlation between the genetic differentiation and the contents of the chemical compounds. We investigated the correlation between the concentrationsof four compounds (scutellarin, 1,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and erigoster B) and environmental factors. Concentrations of two compounds (1,5-dicaffeoylquinic acid and 3,5-dicaffeoylquinic acid) were correlated with environmental factors. The concentration of 1,5-dicaffeoylquinic acid is positively correlated with latitude, and is negatively correlated with the annual average temperature. The concentration of 3,5-dicaffeoylquinic acid is positively correlated with annual average precipitation. Therefore, changing cultivation conditions may significantly improve the yields of these two compounds. We found the concentration of scutellarin positively correlated with that of erigoster B and 3,5-dicaffeoylquinic acid, respectively. We inferred that the synthesis of these two pairs of compounds may share similar triggering mechanism as they synthesized in a common pathway.

  2. Literature-based compound profiling: application to toxicogenomics.

    PubMed

    Frijters, Raoul; Verhoeven, Stefan; Alkema, Wynand; van Schaik, René; Polman, Jan

    2007-11-01

    To reduce continuously increasing costs in drug development, adverse effects of drugs need to be detected as early as possible in the process. In recent years, compound-induced gene expression profiling methodologies have been developed to assess compound toxicity, including Gene Ontology term and pathway over-representation analyses. The objective of this study was to introduce an additional approach, in which literature information is used for compound profiling to evaluate compound toxicity and mode of toxicity. Gene annotations were built by text mining in Medline abstracts for retrieval of co-publications between genes, pathology terms, biological processes and pathways. This literature information was used to generate compound-specific keyword fingerprints, representing over-represented keywords calculated in a set of regulated genes after compound administration. To see whether keyword fingerprints can be used for assessment of compound toxicity, we analyzed microarray data sets of rat liver treated with 11 hepatotoxicants. Analysis of keyword fingerprints of two genotoxic carcinogens, two nongenotoxic carcinogens, two peroxisome proliferators and two randomly generated gene sets, showed that each compound produced a specific keyword fingerprint that correlated with the experimentally observed histopathological events induced by the individual compounds. By contrast, the random sets produced a flat aspecific keyword profile, indicating that the fingerprints induced by the compounds reflect biological events rather than random noise. A more detailed analysis of the keyword profiles of diethylhexylphthalate, dimethylnitrosamine and methapyrilene (MPy) showed that the differences in the keyword fingerprints of these three compounds are based upon known distinct modes of action. Visualization of MPy-linked keywords and MPy-induced genes in a literature network enabled us to construct a mode of toxicity proposal for MPy, which is in agreement with known effects of MPy in literature. Compound keyword fingerprinting based on information retrieved from literature is a powerful approach for compound profiling, allowing evaluation of compound toxicity and analysis of the mode of action.

  3. NATURAL EMISSIONS OF NON-METHANE VOLATILE ORGANIC COMPOUNDS, CARBON MONOXIDE, AND OXIDES OF NITROGEN FROM NORTH AMERICA

    EPA Science Inventory

    The magnitudes, distributions, controlling processes and uncertainties associated with North American natural emissions of oxidant precursors are reviewed. Natural emissions are repsonsible for a major portion of the compounds, including non-methane volatile organic compounds (N...

  4. Analysis of Lipophilic and Hydrophilic Bioactive Compounds Content in Sea Buckthorn (Hippophaë rhamnoides L.) Berries.

    PubMed

    Teleszko, Mirosława; Wojdyło, Aneta; Rudzińska, Magdalena; Oszmiański, Jan; Golis, Tomasz

    2015-04-29

    The aim of this study was to determine selected phytochemicals in berries of eight sea buckthorn (Hippophaë rhamnoides subsp. mongolica) cultivars, including lipophilic and hydrophilic compounds. In the experiment chromatographic analyses, GC (phytosterols and fatty acids), UPLC-PDA-FL, LC-MS (polyphenols), and HPLC (L-ascorbic acid), as well spectrophotometric method (total carotenoids) were used. The lipid fraction isolated from whole fruit contained 14 phytosterols (major compounds β-sitosterol > 24-methylenecykloartanol > squalene) and 11 fatty acids in the order MUFAs > SFAs > PUFAs. Carotenoids occurred in concentrations between 6.19 and 23.91 mg/100 g fresh weight (fw) (p < 0.05). The major polyphenol group identified in berries was flavonols (mean content of 311.55 mg/100 g fw), with the structures of isorhamnetin (six compounds), quercetin (four compounds), and kaempferol (one compound) glycosides. Examined sea buckthorn cultivars were characterized also by a high content of L-ascorbic acid in a range from 52.86 to 130.97 mg/100 g fw (p < 0.05).

  5. Composition and major sources of organic compounds in urban aerosols

    NASA Astrophysics Data System (ADS)

    Bi, Xinhui; Simoneit, Bernd R. T.; Sheng, Guoying; Ma, Shexia; Fu, Jiamo

    Total suspended particles (TSP), collected during June 2002 to July 2003 in Guangzhou, a typical economically developed city in South China, were analyzed for the organic compound compositions using gas chromatography-mass spectrometry (GC/MS). Over 140 organic compounds were detected in the aerosols and grouped into different classes including n-alkanes, hopanoids, polycyclic aromatic hydrocarbons, alkanols, fatty acids, dicarboxylic acids excluding oxalic acid, polyols/polyacids, lignin products, phytosterols, phthalates and water-soluble sugars. The total amounts of the identified organic compounds including unresolved complex mixture (UCM) ranged from 3112 ng/m 3 in spring to 5116 ng/m 3 in winter, comprising on seasonal average 2.8% of TSP. Primary organic compounds peaked in winter although there are no heating systems burning fuels in Guangzhou. The highest saccharide levels occurred in fall due to agricultural activities. This study demonstrated that utilization of fossil fuels, biomass burning, soil resuspension and plastic/refuse burning are the major contributors to the identified organic compounds in the urban atmosphere of South China.

  6. Preliminary Evaluation of a Turbine/Rotary Combustion Compound Engine for a Subsonic Transport. [fuel consumption and engine tests of turbofan engines

    NASA Technical Reports Server (NTRS)

    Civinskas, K. C.; Kraft, G. A.

    1976-01-01

    The fuel consumption of a modern compound engine with that of an advanced high pressure ratio turbofan was compared. The compound engine was derived from a turbofan engine by replacing the combustor with a rotary combustion (RC) engine. A number of boost pressure ratios and compression ratios were examined. Cooling of the RC engine was accomplished by heat exchanging to the fan duct. Performance was estimated with an Otto-cycle for two levels of energy lost to cooling. The effects of added complexity on cost and maintainability were not examined and the comparison was solely in terms of cruise performance and weight. Assuming a 25 percent Otto-cycle cooling loss (representative of current experience), the best compound engine gave a 1.2 percent improvement in cruise. Engine weight increased by 23 percent. For a 10 percent Otto-cycle cooling loss (representing advanced insulation/high temperature materials technology), a compound engine with a boost PR of 10 and a compression ratio of 10 gave an 8.1 percent lower cruise than the reference turbofan.

  7. Qualitative and quantitative analysis of nine major compounds in the Bozhougyiqi-Tang using a high-performance liquid chromatography coupled with a diode array detector and electrospray ionization mass spectrometer

    PubMed Central

    Weon, Jin Bae; Ma, Jin Yeul; Yang, Hye Jin; Lee, Bohyoung; Yun, Bo-Ra; Ma, Choong Je

    2013-01-01

    Background: Bozhougyiqi-Tang (BZYQT) is of traditional herbal medicine used for enhancement of digestive capacity. Objective: An accurate and reliable simultaneous determination using a HPLC-DAD and ESI-MS was developed and validated for the qualitative and quantitative analysis of 9 major compounds, ferulic acid (1), naringin (2), hesperidin (3), decursinol (4), glycyrrhizin (5), saikosaponin A (6), 6-gingerol (7), ginsenoside Rg3 (8), decursin (9), in traditional herbal medicine ‘Bozhougyiqi-Tang.’ Materials and Methods: The chromatographic separation of 9 compounds was performed on a SHISEIDO C18 column (250 mm × 4.6 mm i.d., S-5 μm) using gradient elution with 0.1% trifluoroacetic acid and acetonitrile at a flow rate of 1.0 ml/min. The 9 compounds were identified based on peak retention time and UV spectrum and MS data of these compounds. Results: This developed method showed good linearity (R2 > 0.999). The LOD and LOQ of the major compounds were less than 0.09 and 0.28 μg/ml, respectively. The intra - day and inter - day RSD values were within 2.06% and 1.64%, respectively. The mean recoveries were from 92.10% to 108.56% with less than 1.88%. The results indicated that established method had good precision and accuracy. Conclusion: The new method was successfully applied to the simultaneous analysis of 9 compounds in Bozhougyiqi-Tangs samples. PMID:23930013

  8. Cinnamoyl compounds as simple molecules that inhibit p300 histone acetyltransferase.

    PubMed

    Costi, Roberta; Di Santo, Roberto; Artico, Marino; Miele, Gaetano; Valentini, Paola; Novellino, Ettore; Cereseto, Anna

    2007-04-19

    Cinnamoly compounds 1a-c and 2a-d were designed, synthesized, and in vitro tested as p300 inhibitors. At different degrees, all tested compounds were proven to inactivate p300, particularly, derivative 2c was the most active inhibitor, also showing high specificity for p300 as compared to other histone acetyltransferases. Most notably, 2c showed anti-acetylase activity in mammalian cells. These compounds represent a new class of synthetic inhibitors of p300, characterized by simple chemical structures.

  9. Basics of Compounding: 3D Printing: Pharmacy Applications, Part 3: Compounding, Formulation Considerations, and the Future.

    PubMed

    Allen, Loyd V

    2017-01-01

    3D printing is a standard tool in the automotive, aerospace, and consumer goods in industry and is gaining traction in pharmaceutical manufacturing, which has introduced a new element into dosage form development. This article, which represents part 3 of a 3-part article on the topic of 3D printing, discusses the compounding, formulation considerations, and the future of 3D printing. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  10. High-resolution mass spectrometry of nitrogenous compounds of the Colorado Green River formation oil shale.

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R.; Schnoes, H. K.; Haug, P.; Burlingame, A. L.

    1971-01-01

    Basic nitrogenous compounds isolated from extracts of Green River Formation oil shale were analyzed. The major homologous constituents found were the compositional types - namely, quinolines, tetrahydrequinolines with minor amounts of pyridines and indoles series and traces of more aromatized nitrogen compounds. These results are correlated with nitrogen compounds isolated from Green River Formation retort oil and are a survey of the unaltered nitrogen compounds indigeneous to the shale.

  11. Optimization of headspace solid phase micro-extraction of volatile compounds from papaya fruit assisted by GC-olfactometry.

    PubMed

    da Rocha, Renier Felinto Julião; da Silva Araújo, Ídila Maria; de Freitas, Sílvia Maria; Dos Santos Garruti, Deborah

    2017-11-01

    Optimization of the extraction conditions to investigate the volatile composition of papaya fruit involving headspace solid phase micro-extraction was carried out using multivariate strategies such as factorial design and response surface methodology. The performance of different combinations of time for reaching the equilibrium in the headspace and time for maximum extraction of volatiles was evaluated by GC-olfactometry of the extract (intensity of papaya characteristic aroma), number of peaks and total area in the chromatogram. Thirty-two compounds were identified by GC-MS under the optimized extraction conditions, the majority of which were aldehydes, both in number of compounds and area. Major compounds were δ-octalactone, β-citral, benzaldehyde, heptanal, benzyl isothiocyanate, isoamyl acetate, γ-octalactone, (E)-linalool oxide and benzyl alcohol. Seven aldehydes and two other compounds are reported for the first time in papaya's volatile profile.

  12. Botanical Compounds: Effects on Major Eye Diseases

    PubMed Central

    Huynh, Tuan-Phat; Mann, Shivani N.; Mandal, Nawajes A.

    2013-01-01

    Botanical compounds have been widely used throughout history as cures for various diseases and ailments. Many of these compounds exhibit strong antioxidative, anti-inflammatory, and antiapoptotic properties. These are also common damaging mechanisms apparent in several ocular diseases, including age-related macular degeneration (AMD), glaucoma, diabetic retinopathy, cataract, and retinitis pigmentosa. In recent years, there have been many epidemiological and clinical studies that have demonstrated the beneficial effects of plant-derived compounds, such as curcumin, lutein and zeaxanthin, danshen, ginseng, and many more, on these ocular pathologies. Studies in cell cultures and animal models showed promising results for their uses in eye diseases. While there are many apparent significant correlations, further investigation is needed to uncover the mechanistic pathways of these botanical compounds in order to reach widespread pharmaceutical use and provide noninvasive alternatives for prevention and treatments of the major eye diseases. PMID:23843879

  13. Investigating secondary aerosol formation from agricultural amines and reduced sulfur compounds

    USDA-ARS?s Scientific Manuscript database

    Gas phase amines and reduced sulfur compounds are often co-emitted from agricultural processes. Amines have been recently recognized as potentially major sources of agricultural aerosol formation, while the reduced sulfur compounds are largely ignored. There is a severe lack of knowledge and under...

  14. Complex compound polyvinyl alcohol-titanic acid/titanium dioxide

    NASA Astrophysics Data System (ADS)

    Prosanov, I. Yu.

    2013-02-01

    A complex compound polyvinyl alcohol-titanic acid has been produced and investigated by means of IR and Raman spectroscopy, X-ray diffraction, and synchronous thermal analysis. It is claimed that it represents an interpolymeric complex of polyvinyl alcohol and hydrated titanium oxide.

  15. Pupicidal and repellent activities of Pogostemon cablin essential oil chemical compounds against medically important human vector mosquitoes

    PubMed Central

    Gokulakrishnan, J; Kuppusamy, Elumalai; Shanmugam, Dhanasekaran; Appavu, Anandan; Kaliyamoorthi, Krishnappa

    2013-01-01

    Objective To determine the repellent and pupicidal activities of Pogostemon cablin (P. cablin) chemical compositions were assayed for their toxicity against selected important vector mosquitoes, viz., Aedes aegypti (Ae. aegypti), Anopheles stephensi (An. stephensi) and Culex quinquefasciatus (Cx. quinquefasciatus) (Diptera: Culicidae). Methods The plants dry aerial parts were subjected to hydrodistillation using a modified Clevenger-type apparatus. The composition of the essential oil was analyzed by Gas Chromatography (GC) and GC mass spectrophotometry. Evaluation was carried out in a net cage (45 cm×30 cm×45 cm) containing 100 blood starved female mosquitoes and were assayed in the laboratory condition by using the protocol of WHO 2010. The repellent activity of P. cablin chemical compositions at concentration of 2mg/cm2were applied on skin of fore arm in man and exposed against adult female mosquitoes. The pupicidal activity was determined against selected important vector mosquitoes to concentration of 100 mg/L and mortality of each pupa was recorded after 24 h of exposure to the compounds. Results Chemical constituents of 15 compounds were identified in the oil of P.cablin compounds representing to 98.96%. The major components in essential oil were â-patchoulene, á-guaiene, ã-patchoulene, á-bulnesene and patchouli alcohol. The repellent activity of patchouli alcohol compound was found to be most effective for repellent activity and 2 mg/cm2 concentration provided 100% protection up to 280 min against Ae. aegypti, An. stephensi and Cx. quinquefasciatus, respectively. Similarly, pupae exposed to 100 mg/L concentrations of P. cablin chemical compositions. Among five compounds tested patchouli alcoholwas found to be most effective for pupicidal activity provided 28.44, 26.28 and 25.36 against Ae.aegypti, An.stephensi and Cx. quinquefasciatus, respectively. The percent adult emergence was inversely proportional to the concentration of compounds and directly proportional to the pupal mortality. Conclusion These results suggest that the P. cablin chemical compositions have the potential to be used as an ideal eco-friendly approach for the control of mosquitoes. This is the first report on the mosquito repellent and pupicidal activities of the reported P. cablin chemical compositions.

  16. Identification of the sex pheromone of the tree infesting Cossid Moth Coryphodema tristis (Lepidoptera: Cossidae).

    PubMed

    Bouwer, Marc Clement; Slippers, Bernard; Degefu, Dawit; Wingfield, Michael John; Lawson, Simon; Rohwer, Egmont Richard

    2015-01-01

    The cossid moth (Coryphodema tristis) has a broad range of native tree hosts in South Africa. The moth recently moved into non-native Eucalyptus plantations in South Africa, on which it now causes significant damage. Here we investigate the chemicals involved in pheromone communication between the sexes of this moth in order to better understand its ecology, and with a view to potentially develop management tools for it. In particular, we characterize female gland extracts and headspace samples through coupled gas chromatography electro-antennographic detection (GC-EAD) and two dimensional gas chromatography mass spectrometry (GCxGC-MS). Tentative identities of the potential pheromone compounds were confirmed by comparing both retention time and mass spectra with authentic standards. Two electrophysiologically active pheromone compounds, tetradecyl acetate (14:OAc) and Z9-tetradecenyl acetate (Z9-14:OAc) were identified from pheromone gland extracts, and an additional compound (Z9-14:OH) from headspace samples. We further determined dose response curves for the identified compounds and six other structurally similar compounds that are common to the order Cossidae. Male antennae showed superior sensitivity toward Z9-14:OAc, Z7-tetradecenyl acetate (Z7-14:OAc), E9-tetradecenyl acetate (E9-14:OAc), Z9-tetradecenol (Z9-14:OH) and Z9-tetradecenal (Z9-14:Ald) when compared to female antennae. While we could show electrophysiological responses to single pheromone compounds, behavioral attraction of males was dependent on the synergistic effect of at least two of these compounds. Signal specificity is shown to be gained through pheromone blends. A field trial showed that a significant number of males were caught only in traps baited with a combination of Z9-14:OAc (circa 95% of the ratio) and Z9-14:OH. Addition of 14:OAc to this mixture also improved the number of males caught, although not significantly. This study represents a major step towards developing a useful attractant to be used in management tools for C. tristis and contributes to the understanding of chemical communication and biology of this group of insects.

  17. Identification of the Sex Pheromone of the Tree Infesting Cossid Moth Coryphodema tristis (Lepidoptera: Cossidae)

    PubMed Central

    Bouwer, Marc Clement; Slippers, Bernard; Degefu, Dawit; Wingfield, Michael John; Lawson, Simon; Rohwer, Egmont Richard

    2015-01-01

    The cossid moth (Coryphodema tristis) has a broad range of native tree hosts in South Africa. The moth recently moved into non-native Eucalyptus plantations in South Africa, on which it now causes significant damage. Here we investigate the chemicals involved in pheromone communication between the sexes of this moth in order to better understand its ecology, and with a view to potentially develop management tools for it. In particular, we characterize female gland extracts and headspace samples through coupled gas chromatography electro-antennographic detection (GC-EAD) and two dimensional gas chromatography mass spectrometry (GCxGC-MS). Tentative identities of the potential pheromone compounds were confirmed by comparing both retention time and mass spectra with authentic standards. Two electrophysiologically active pheromone compounds, tetradecyl acetate (14:OAc) and Z9-tetradecenyl acetate (Z9-14:OAc) were identified from pheromone gland extracts, and an additional compound (Z9-14:OH) from headspace samples. We further determined dose response curves for the identified compounds and six other structurally similar compounds that are common to the order Cossidae. Male antennae showed superior sensitivity toward Z9-14:OAc, Z7-tetradecenyl acetate (Z7-14:OAc), E9-tetradecenyl acetate (E9-14:OAc), Z9-tetradecenol (Z9-14:OH) and Z9-tetradecenal (Z9-14:Ald) when compared to female antennae. While we could show electrophysiological responses to single pheromone compounds, behavioral attraction of males was dependent on the synergistic effect of at least two of these compounds. Signal specificity is shown to be gained through pheromone blends. A field trial showed that a significant number of males were caught only in traps baited with a combination of Z9-14:OAc (circa 95% of the ratio) and Z9-14:OH. Addition of 14:OAc to this mixture also improved the number of males caught, although not significantly. This study represents a major step towards developing a useful attractant to be used in management tools for C. tristis and contributes to the understanding of chemical communication and biology of this group of insects. PMID:25826254

  18. The seasonal changes and spatial trends of particle-associated polycyclic aromatic hydrocarbons in the summer and autumn in Changsha city

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Zhai, YunBo; Chen, Lin; Li, CaiTing; Zeng, GuangMing; He, YiDe; Fu, ZongMin; Peng, WenFeng

    2010-04-01

    16 Polycyclic aromatic hydrocarbons (PAHs) in TSP were identified and quantified in samples collected during May and September of 2008, in Changsha, on three different sites: the city environmental protection agency of Changsha (A), the Middle School Attached to Hunan Normal University (B) and Yuhua district (C). The filters contained the particulate matter were extracted with dichloromethane in ultrasonic bath and then analyzed by gas chromatography/mass spectrometry (GC/MS). The total of 16 PAHs mean concentrations of summer at site A, B, C were 32.503 ng/m 3 , 19.360 ng/m 3 and 26.784 ng/m 3, respectively; while the values for autumn at site A, B, C were 24.982 ng/m 3, 17.088 ng/m 3 and 15.465 ng/m 3, respectively. The mean concentrations of PAHs of all samples in A site were 0.57 times higher than those measured at B site, and 0.38 times higher than at C site. The analysis of their distribution amongst the main emission sources was done through the diagnosis of concentration ratios of PAHs, as well as using statistical methods like principal component analysis. The diagnosis results of concentration ratios of PAHs suggested that the major polluting sources in the Changsha region during the studied period were the combustion of fuels, such as diesel oil, gasoline, wood and coal. The statistical analysis separated the 16 compounds studied into 3 and 4 factors for summer and autumn, separately. Factor 1 in summer represents vehicular emissions. Factor 2 represents emissions from the nature gas. Factor 3 represents emissions from combustion. In autumn, vehicle emissions, combustion sources, natural gas and coke oven were the major emissions.

  19. Characteristics of organic compounds in PM2.5 at urban and remote areas in Korea

    NASA Astrophysics Data System (ADS)

    Choi, A.; Lee, J.; Shin, H. J.; Lee, M.; Jin seok, H.; Lim, J.

    2016-12-01

    Organic aerosols contain thousands of organic compounds and contribute to 20%-90% of the total fine aerosol mass (Kanakidou et al., 2005). These organic aerosols originate from anthropogenic and natural (biogenic and geologic) sources and alter physical and chemical properties in the atmosphere depending on the atmospheric and meteorological conditions. About one hundred individual organic compounds in PM2.5 at Seoul (urban area) and Baengnyeong Island (remote area) were identified and quantified using gas chromatography/mass spectrometry (GC/MS) in order to understand the characteristics of organic compounds in PM2.5 at these areas. Further, major factors to determine their concentrations in the atmosphere were investigated. Organic compounds analyzed in this study were classified into six groups, n-alkanes, polycyclic aromatic hydrocarbons (PAHs), hopanes, fatty acids (FA), dicarboxylic acids (DCAs), and sugars. Daily variation of organic compounds concentrations at Seoul were not high, while, the concentrations of organic compounds at Baengnyeong Island showed high daily variation. This is might due to frequent change of source strength and/or SOA formation in this region. Through correlations of organic compounds with other air pollutants and factor analysis at both sites, it found that major factors (or source) for the determination of organic compounds concentrations at Seoul and Baengnyeong Island were different. The major sources at Seoul were anthropogenic sources such as vehicular emission and coal combustions, while, SOA formation and biomass burning were more attributed more to the organic compounds concentrations at Baengnyeong Island.References Kanakidou, M., Seinfeld, J.H., Pandis, S.N., Barnes, I., Dentener, F.J., Facchini, M.C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C.J., Swietlicki, E., Putaud, J.P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G.K., Winterhalter, R., Myhre, C.E.L., Tsigaridis, K., Vignati, E., Stephanou, E.G., Wilson, J., 2005. Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys. 5, 1053e1123.

  20. Novel Bifunctional Quinolonyl Diketo Acid Derivatives as HIV-1 Integrase Inhibitors: Design, Synthesis, Biological Activities and Mechanism of Action

    PubMed Central

    Di Santo, Roberto; Costi, Roberta; Roux, Alessandra; Artico, Marino; Lavecchia, Antonio; Marinelli, Luciana; Novellino, Ettore; Palmisano, Lucia; Andreotti, Mauro; Amici, Roberta; Galluzzo, Clementina Maria; Nencioni, Lucia; Palamara, Anna Teresa; Pommier, Yves; Marchand, Christophe

    2008-01-01

    The virally encoded integrase protein is an essential enzyme in the life cycle of the HIV-1 virus and represents an attractive and validated target in the development of therapeutics against HIV infection. Drugs that selectively inhibit this enzyme, when used in combination with inhibitors of reverse transcriptase and protease, are believed to be highly effective in suppressing the viral replication. Among the HIV-1 integrase inhibitors, the β-diketo acids (DKAs) represent a major lead for anti-HIV-1drug development. In this study, novel bifunctional quinolonyl diketo acid derivatives were designed, synthesized and tested for their inhibitory ability against HIV-1 integrase. The compounds are potent inhibitors of integrase activity. Particularly, derivative 8 is a potent IN inhibitor for both steps of the reaction (3′-processing and strand transfer) and exhibits both high antiviral activity against HIV-1 infected cells and low cytotoxicity. Molecular modeling studies provide a plausible mechanism of action, which is consistent with ligand SARs and enzyme photo-crosslinking experiments. PMID:16539381

  1. Heterologous Production of Curcuminoids

    PubMed Central

    Rodrigues, J. L.; Prather, K. L. J.

    2015-01-01

    SUMMARY Curcuminoids, components of the rhizome of turmeric, show several beneficial biological activities, including anticarcinogenic, antioxidant, anti-inflammatory, and antitumor activities. Despite their numerous pharmaceutically important properties, the low natural abundance of curcuminoids represents a major drawback for their use as therapeutic agents. Therefore, they represent attractive targets for heterologous production and metabolic engineering. The understanding of biosynthesis of curcuminoids in turmeric made remarkable advances in the last decade, and as a result, several efforts to produce them in heterologous organisms have been reported. The artificial biosynthetic pathway (e.g., in Escherichia coli) can start with the supplementation of the amino acid tyrosine or phenylalanine or of carboxylic acids and lead to the production of several natural curcuminoids. Unnatural carboxylic acids can also be supplemented as precursors and lead to the production of unnatural compounds with possibly novel therapeutic properties. In this paper, we review the natural conversion of curcuminoids in turmeric and their production by E. coli using an artificial biosynthetic pathway. We also explore the potential of other enzymes discovered recently or already used in other similar biosynthetic pathways, such as flavonoids and stilbenoids, to increase curcuminoid yield and activity. PMID:25631288

  2. Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy

    PubMed Central

    Mukhopadhyay, Partha; Horváth, Béla; Zsengellér, Zsuzsanna; Zielonka, Jacek; Tanchian, Galin; Holovac, Eileen; Kechrid, Malek; Patel, Vivek; Stillman, Isaac E.; Parikh, Samir M.; Joseph, Joy; Kalyanaraman, Balaraman; Pacher, Pál

    2011-01-01

    Cisplatin is a widely used anti-neoplastic agent; however, its major limitation is the development of dose-dependent nephrotoxicity whose precise mechanisms are poorly understood. Here we show that mitochondrial dysfunction is not only a feature of cisplatin nephrotoxicity, but that targeted delivery of superoxide dismutase mimetics to mitochondria largely prevents the renal effects of cisplatin. Cisplatin induced renal oxidative stress, deterioration of mitochondrial structure and function, an intense inflammatory response, histopathological injury, and renal dysfunction. A single systemic dose of mitochondrially-targeted antioxidants, MitoQ or Mito-CP, dose-dependently prevented cisplatin-induced renal dysfunction. Mito-CP also prevented mitochondrial injury and dysfunction, renal inflammation, and tubular injury and apoptosis. Despite being broadly renoprotective against cisplatin, Mito-CP did not diminish cisplatin’s anti-neoplastic effect in a human bladder cancer cell line. Our results highlight the central role of mitochondrially generated oxidants in the pathogenesis of cisplatin nephrotoxicity. Since similar compounds appear to be safe in humans, mitochondrially-targeted antioxidants may represent a novel therapeutic approach against cisplatin nephrotoxicity. PMID:22120494

  3. Differential protective effects of red wine polyphenol extracts (RWEs) on colon carcinogenesis.

    PubMed

    Mazué, Frédéric; Delmas, Dominique; Murillo, Genoveva; Saleiro, Diana; Limagne, Emeric; Latruffe, Norbert

    2014-04-01

    Various epidemiological studies have shown that a regular and moderate consumption of red wine is correlated with a decreased relative risk of developing coronary heart disease and cancer. These health benefits are commonly attributed to high contents of polyphenols, particularly resveratrol, representing important sources of antioxidants. However, resveratrol does not seem to be the only bioactive compound present in the wine which contains numerous other polyphenols. The present study investigates the efficiency of red wine extracts (RWEs), containing different polyphenols, on colon cancer cell proliferation in vitro and on colonic aberrant crypt foci (ACF) in vivo. Proliferation, cell cycle analysis and incidence of ACF were monitored to examine the effects of RWEs. RWEs derived from a long vinification process exhibit superior anti-proliferative activity in colon cancer cells and prevent the appearance of ACF in mice. Interestingly, quercetin and resveratrol, representing two major bio-active polyphenols, exhibit synergistic anti-proliferative effects. These data suggest that the efficacy of RWEs on colon carcinogenesis may depend on the polyphenolic content, synergistic interaction of bio-active polyphenols and modulation of cellular uptake of polyphenols.

  4. Estimation of costs for control of Salmonella in high-risk feed materials and compound feed

    PubMed Central

    Wierup, Martin; Widell, Stig

    2014-01-01

    Introduction Feed is a potential and major source for introducing Salmonella into the animal-derived food chain. This is given special attention in the European Union (EU) efforts to minimize human food-borne Salmonella infections from animal-derived food. The objective of this study was to estimate the total extra cost for preventing Salmonella contamination of feed above those measures required to produce commercial feed according to EU regulation (EC) No 183/2005. The study was carried out in Sweden, a country where Salmonella infections in food-producing animals from feed have largely been eliminated. Methods On the initiative and leadership of the competent authority, the different steps of feed production associated with control of Salmonella contamination were identified. Representatives for the major feed producers operating in the Swedish market then independently estimated the annual mean costs during the years 2009 and 2010. The feed producers had no known incentives to underestimate the costs. Results and discussion The total cost for achieving a Salmonella-safe compound feed, when such a control is established, was estimated at 1.8–2.3 € per tonne of feed. Of that cost, 25% relates to the prevention of Salmonella contaminated high-risk vegetable feed materials (mainly soybean meal and rapeseed meal) from entering feed mills, and 75% for measures within the feed mills. Based on the feed formulations applied, those costs in relation to the farmers’ 2012 price for compound feed were almost equal for broilers and dairy cows (0.7%). Due to less use of protein concentrate to fatten pigs, the costs were lower (0.6%). These limited costs suggest that previous recommendations to enforce a Salmonella-negative policy for animal feed are realistic and economically feasible to prevent a dissemination of the pathogen to animal herds, their environment, and potentially to human food products. PMID:24959328

  5. Plant biomass degrading ability of the coprophilic ascomycete fungus Podospora anserina.

    PubMed

    Couturier, Marie; Tangthirasunun, Narumon; Ning, Xie; Brun, Sylvain; Gautier, Valérie; Bennati-Granier, Chloé; Silar, Philippe; Berrin, Jean-Guy

    2016-01-01

    The degradation of plant biomass is a major challenge towards the production of bio-based compounds and materials. As key lignocellulolytic enzyme producers, filamentous fungi represent a promising reservoir to tackle this challenge. Among them, the coprophilous ascomycete Podospora anserina has been used as a model organism to study various biological mechanisms because its genetics are well understood and controlled. In 2008, the sequencing of its genome revealed a great diversity of enzymes targeting plant carbohydrates and lignin. Since then, a large array of lignocellulose-acting enzymes has been characterized and genetic analyses have enabled the understanding of P. anserina metabolism and development on plant biomass. Overall, these research efforts shed light on P. anserina strategy to unlock recalcitrant lignocellulose deconstruction. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Total Environmental Impact of Three Main Dietary Patterns in Relation to the Content of Animal and Plant Food.

    PubMed

    Baroni, Luciana; Berati, Marina; Candilera, Maurizio; Tettamanti, Massimo

    2014-07-25

    Based on a review of the most recent available scientific evidence, the new Dietary Guidelines for Americans 2010 (USDA DG) provide information and advice for choosing a healthy diet. To compare the environmental impacts of, respectively, omnivorous (OMN), lacto-ovo-vegetarian (LOV) and vegan (VEG) dietary patterns as suggested in the USDA DG, we analyzed the three patterns by Life Cycle Assessment (LCA) methodology. The presence of animal food in the diet was the main determinant of environmental impact. The major impact always stemmed from land and water use. The second largest impact came from energy use. Emission of toxic inorganic compounds into the atmosphere was the third cause of impact. Climate change and acidification/eutrophication represented other substantial impacts.

  7. Hot flushes in women with breast cancer: state of the art and future perspectives.

    PubMed

    Barba, Maddalena; Pizzuti, Laura; Sergi, Domenico; Maugeri-Saccà, Marcello; Vincenzoni, Cristina; Conti, Francesca; Tomao, Federica; Vizza, Enrico; Di Lauro, Luigi; Di Filippo, Franco; Carpano, Silvia; Mariani, Luciano; Vici, Patrizia

    2014-02-01

    Although not life-threatening, vasomotor symptoms might have a detrimental effect on quality of life and represent a major determinant of poor therapeutic compliance in breast cancer patients. Limitations of hormonal therapies have fostered the use of non-estrogenic pharmacological agents, which mainly include centrally acting compounds, antidepressant drugs, serotonin-norepinephrine reuptake inhibitors and serotonin reuptake inhibitors. Integrating therapeutic tools have recently come from a wide range of heterogeneous approaches varying from phytoestrogens use to ganglion block. We herein critically review the most updated evidence on the available treatment options for management of vasomotor symptoms. The need for a patient-oriented approach following systematic evaluation of the presence and degree of vasomotor disturbances is also discussed and future perspectives in therapeutics are summarized.

  8. Saccharide antifreeze compositions

    DOEpatents

    Walters, Kent; Duman, John G; Serianni, Anthony S

    2013-12-10

    The invention provides an antifreeze glycolipid compounds and composition comprising a polysaccharide moiety of Formula I; ##STR00001## wherein D-Manp represents a D-mannopyranose moiety, D-Xylp represents a D-xylopyranose moiety, and n is about 5 to about 70; and one or more lipid moieties covalently linked to the polysaccharide moiety of Formula I or electrostatically associated with the polysaccaride moiety for Formula I. The antifreeze glycolipid compounds and compositions can be used for a variety of industrial, agricultural, medical, and cosmetic applications where recrystallization-inhibition, cyroprotection, or cryopreservation is desired. The antifreeze glycolipid compounds or compositions can be used as, for example, as cryoprotectants for tissue preservation and transplantation, improving the texture of processed frozen food and frozen meats, frostbit protection, crop protection, and green alternatives for land vehicle antifreeze and aircraft de-icing.

  9. New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate.

    PubMed

    Cui, Jihong; Hollmén, Maija; Li, Lina; Chen, Yong; Proulx, Steven T; Reker, Daniel; Schneider, Gisbert; Detmar, Michael

    2017-01-03

    Cancer stem cells (CSCs) play major roles in cancer initiation, metastasis, recurrence and therapeutic resistance. Targeting CSCs represents a promising strategy for cancer treatment. The purpose of this study was to identify selective inhibitors of breast CSCs (BCSCs). We carried out a cell-based phenotypic screening with cell viability as a primary endpoint, using a collection of 2,546 FDA-approved drugs and drug-like molecules in spheres formed by malignant human breast gland-derived cells (HMLER-shEcad cells, representing BCSCs) and control immortalized non-tumorigenic human mammary cells (HMLE cells, representing normal stem cells). 19 compounds were identified from screening. The chemically related molecules benztropine mesylate and deptropine citrate were selected for further validation and both potently inhibited sphere formation and self-renewal of BCSCs in vitro. Benztropine mesylate treatment decreased cell subpopulations with high ALDH activity and with a CD44+/CD24- phenotype. In vivo, benztropine mesylate inhibited tumor-initiating potential in a 4T1 mouse model. Functional studies indicated that benztropine mesylate inhibits functions of CSCs via the acetylcholine receptors, dopamine transporters/receptors, and/or histamine receptors. In summary, our findings identify benztropine mesylate as an inhibitor of BCSCs in vitro and in vivo. This study also provides a screening platform for identification of additional anti-CSC agents.

  10. The diversity and antibiotic properties of actinobacteria associated with endemic deepwater amphipods of Lake Baikal.

    PubMed

    Protasov, Eugenii S; Axenov-Gribanov, Denis V; Rebets, Yuriy V; Voytsekhovskaya, Irina V; Tokovenko, Bogdan T; Shatilina, Zhanna M; Luzhetskyy, Andriy N; Timofeyev, Maxim A

    2017-12-01

    The emergence of pathogenic bacteria resistant to antibiotics increases the need for discovery of new effective antimicrobials. Unique habitats such as marine deposits, wetlands and caves or unexplored biological communities are promising sources for the isolation of actinobacteria, which are among the major antibiotic producers. The present study aimed at examining cultivated actinobacteria strains associated with endemic Lake Baikal deepwater amphipods and estimating their antibiotic activity. We isolated 42 actinobacterial strains from crustaceans belonging to Ommatogammarus albinus and Ommatogammarus flavus. To our knowledge, this is the first report describing the isolation and initial characterization of representatives of Micromonospora and Pseudonocardia genera from Baikal deepwater invertebrates. Also, as expected, representatives of the genus Streptomyces were the dominant group among the isolated species. Some correlations could be observed between the number of actinobacterial isolates, the depth of sampling and the source of the strains. Nevertheless, >70% of isolated strains demonstrated antifungal activity. The dereplication analysis of extract of one of the isolated strains resulted in annotation of several known compounds that can help to explain the observed biological activities. The characteristics of ecological niche and lifestyle of deepwater amphipods suggests that the observed associations between crustaceans and isolated actinobacteria are not random and might represent long-term symbiotic interactions.

  11. Mid-Infrared Spectroscopy of Polycyclic Aromatic Nitrogen Heterocycles (PANHS) and their Ions

    NASA Technical Reports Server (NTRS)

    Mattioda, Andrew L.; Hudgin, Douglas; Bauschlicher, Charles W.; Alamandola, Louis J.

    2003-01-01

    In recent years, polycyclic aromatic nitrogen heterocycles (PANHs) have attracted a good deal of attention because of their potent carcinogenic and mutagenic properties, and their prevalence in our environment. Such species also play a prominent role in the chemistry of life up to and including the very nucleobases from which our DNA is constructed. Surprisingly, these compounds may even be common outside of our terrestrial environment. To wit, it is now widely accepted that polycyclic aromatic materials are abundant in space and represent a major reservoir of organic carbon in the interstellar medium and developing planetary systems. Given that nitrogen is the fourth most abundant chemically reactive element in space (surpassed only by hydrogen, carbon, and oxygen), it is entirely reasonable to suspect that PANHs may represent an important component of that organic reservoir. Motivated by their intrinsic merit and with special attention toward evaluating their exobiological significance, we have initiated a program to study the spectroscopic and chemical properties of P A " s under conditions relevant to extraterrestrial environments. Here we present the first results of that program-infrared spectroscopic measurements on a series of PANH"s in neutral and cationic forms, isolated in inert matrices at cryogenic temperatures.temperatures. The species studied include: 1 -, and 2-azabenz[a]anthracene, 1-, 2-, and 4- azachrysene, dibenz[a,h]acridine, and dibenz[a,J)acridine. The experimental measurements are also compared with theoretical spectra calculated using density functional theory. General spectroscopic trends observed in this series of compounds are discussed and the implications of these results for Astrophysics and Exobiology are considered.

  12. Fig volatile compounds--a first comparative study.

    PubMed

    Grison-Pigé, Laure; Hossaert-McKey, Martine; Greeff, Jaco M; Bessière, Jean-Marie

    2002-09-01

    We analysed the compounds of volatile blends released by receptive figs of twenty Ficus species to attract their specific pollinating wasps. In all, 99 different compounds were identified. The compounds are mainly terpenoids, aliphatic compounds and products from the shikimic acid pathway. In each species blend, there are few major compounds, which are generally common among floral fragrances. Most species blends also include rare compounds, but generally their proportion in the blend is low. A possible basis for species-specificity of Ficus-wasp interactions is discussed in relation to the patterns of volatiles found in this interspecies comparison. Copyright 2002 Elsevier Science Ltd.

  13. Correct Representation of Conformational Equilibria.

    ERIC Educational Resources Information Center

    Fulop, F.; And Others

    1983-01-01

    In representing conformational equilibria of compounds having only one chiral center, erroneous formulas showing different antipodes on the two sides of the equilibrium are rare. In contrast, with compounds having two or more chiral centers especially with saturated heterocycles, this erroneous representation occurs frequently in the chemical…

  14. Rapid volatile metabolomics and genomics in large strawberry populations segregating for aroma

    USDA-ARS?s Scientific Manuscript database

    Volatile organic compounds (VOCs) in strawberry (Fragaria spp.) represent a large portion of the fruit secondary metabolome, and contribute significantly to aroma, flavor, disease resistance, pest resistance and overall fruit quality. Understanding the basis for volatile compound biosynthesis and it...

  15. 75 FR 22118 - Notice of Invention Available for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... represented by the Department of Commerce. The Department of Commerce's interest in the invention is available... microfluidic apparatus and method for performing electrophoretic separation of compounds. The apparatus... mm. By the foregoing, compounds can be sequentially detected and quantified. Dated: April 21, 2010...

  16. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol

    EPA Science Inventory

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 d...

  17. The nature of compounds: a psychocentric perspective.

    PubMed

    Libben, Gary

    2014-01-01

    Although compound words often seem to be words that themselves contain words, this paper argues that this is not the case for the vast majority of lexicalized compounds. Rather, it is claimed that as a result of acts of lexical processing, the constituents of compound words develop into new lexical representations. These representations are bound to specific morphological roles and positions (e.g., head, modifier) within a compound word. The development of these positionally bound compound constituents creates a rich network of lexical knowledge that facilitates compound processing and also creates some of the well-documented patterns in the psycholinguistic and neurolinguistic study of compounding.

  18. Comprehensive comparative analysis of volatile compounds in citrus fruits of different species.

    PubMed

    Zhang, Haipeng; Xie, Yunxia; Liu, Cuihua; Chen, Shilin; Hu, Shuangshuang; Xie, Zongzhou; Deng, Xiuxin; Xu, Juan

    2017-09-01

    The volatile profiles of fruit peels and juice sacs from 108 citrus accessions representing seven species were analyzed. Using GC-MS 162 and 107 compounds were determined in the peels and juice sacs, respectively. In the peels, monoterpene alcohols were accumulated in loose-skin mandarins; clementine tangerines and papedas were rich in sesquiterpene alcohols, sesquiterpenes, monoterpene alcohols and monoterpene aldehydes. β-pinene and sabinene were specifically accumulated in 4 of 5 lemon germplasms. Furthermore, concentrations of 34 distinctive compounds were selected to best represent the volatile profiles of seven species for HCA analysis, and the clustering results were in agreement with classic citrus taxonomy. Comparison of profiles from different growing seasons and production areas indicated that environmental factors play important roles in volatile metabolism. In addition, a few citrus germplasms that accumulated certain compounds were determined as promising breeding materials. Notably, volatile biosynthesis via MVA pathway in C. ichangensis 'Huaihua' was enhanced. Copyright © 2017. Published by Elsevier Ltd.

  19. Fatty acid composition and volatile compounds of caviar from farmed white sturgeon (Acipenser transmontanus).

    PubMed

    Caprino, Fabio; Moretti, Vittorio Maria; Bellagamba, Federica; Turchini, Giovanni Mario; Busetto, Maria Letizia; Giani, Ivan; Paleari, Maria Antonietta; Pazzaglia, Mario

    2008-06-09

    The present study was conducted to characterize caviar obtained from farmed white sturgeons (Acipenser transmontanus) subjected to different dietary treatments. Twenty caviar samples from fish fed two experimental diets containing different dietary lipid sources have been analysed for chemical composition, fatty acids and flavour volatile compounds. Fatty acid make up of caviar was only minimally influenced by dietary fatty acid composition. Irrespective of dietary treatments, palmitic acid (16:0) and oleic acid (OA, 18:1 n-9) were the most abundant fatty acid followed by docosahexaenoic acid (DHA, 22:6 n-3) and eicopentaenoic (EPA, 20:5 n-3). Thirty-three volatile compounds were isolated using simultaneous distillation-extraction (SDE) and identified by GC-MS. The largest group of volatiles were represented by aldehydes with 20 compounds, representing the 60% of the total volatiles. n-Alkanals, 2-alkenals and 2,4-alkadienals are largely the main responsible for a wide range of flavours in caviar from farmed white surgeon.

  20. Discovery and Optimization of Indolyl-Containing 4-Hydroxy-2-Pyridone Type II DNA Topoisomerase Inhibitors Active against Multidrug Resistant Gram-negative Bacteria.

    PubMed

    Gerasyuto, Aleksey I; Arnold, Michael A; Wang, Jiashi; Chen, Guangming; Zhang, Xiaoyan; Smith, Sean; Woll, Matthew G; Baird, John; Zhang, Nanjing; Almstead, Neil G; Narasimhan, Jana; Peddi, Srinivasa; Dumble, Melissa; Sheedy, Josephine; Weetall, Marla; Branstrom, Arthur A; Prasad, J V N; Karp, Gary M

    2018-05-14

    There exists an urgent medical need to identify new chemical entities (NCEs) targeting multidrug resistant (MDR) bacterial infections, particularly those caused by Gram-negative pathogens. 4-Hydroxy-2-pyridones represent a novel class of nonfluoroquinolone inhibitors of bacterial type II topoisomerases active against MDR Gram-negative bacteria. Herein, we report on the discovery and structure-activity relationships of a series of fused indolyl-containing 4-hydroxy-2-pyridones with improved in vitro antibacterial activity against fluoroquinolone resistant strains. Compounds 6o and 6v are representative of this class, targeting both bacterial DNA gyrase and topoisomerase IV (Topo IV). In an abbreviated susceptibility screen, compounds 6o and 6v showed improved MIC 90 values against Escherichia coli (0.5-1 μg/mL) and Acinetobacter baumannii (8-16 μg/mL) compared to the precursor compounds. In a murine septicemia model, both compounds showed complete protection in mice infected with a lethal dose of E. coli.

  1. Drug-likeness analysis of traditional Chinese medicines: 2. Characterization of scaffold architectures for drug-like compounds, non-drug-like compounds, and natural compounds from traditional Chinese medicines.

    PubMed

    Tian, Sheng; Li, Youyong; Wang, Junmei; Xu, Xiaojie; Xu, Lei; Wang, Xiaohong; Chen, Lei; Hou, Tingjun

    2013-01-21

    In order to better understand the structural features of natural compounds from traditional Chinese medicines, the scaffold architectures of drug-like compounds in MACCS-II Drug Data Report (MDDR), non-drug-like compounds in Available Chemical Directory (ACD), and natural compounds in Traditional Chinese Medicine Compound Database (TCMCD) were explored and compared. First, the different scaffolds were extracted from ACD, MDDR and TCMCD by using three scaffold representations, including Murcko frameworks, Scaffold Tree, and ring systems with different complexity and side chains. Then, by examining the accumulative frequency of the scaffolds in each dataset, we observed that the Level 1 scaffolds of the Scaffold Tree offer advantages over the other scaffold architectures to represent the scaffold diversity of the compound libraries. By comparing the similarity of the scaffold architectures presented in MDDR, ACD and TCMCD, structural overlaps were observed not only between MDDR and TCMCD but also between MDDR and ACD. Finally, Tree Maps were used to cluster the Level 1 scaffolds of the Scaffold Tree and visualize the scaffold space of the three datasets. The analysis of the scaffold architectures of MDDR, ACD and TCMCD shows that, on average, drug-like molecules in MDDR have the highest diversity while natural compounds in TCMCD have the highest complexity. According to the Tree Maps, it can be observed that the Level 1 scaffolds present in MDDR have higher diversity than those presented in TCMCD and ACD. However, some representative scaffolds in MDDR with high frequency show structural similarities to those in TCMCD and ACD, suggesting that some scaffolds in TCMCD and ACD may be potentially drug-like fragments for fragment-based and de novo drug design.

  2. Drug-likeness analysis of traditional Chinese medicines: 2. Characterization of scaffold architectures for drug-like compounds, non-drug-like compounds, and natural compounds from traditional Chinese medicines

    PubMed Central

    2013-01-01

    Background In order to better understand the structural features of natural compounds from traditional Chinese medicines, the scaffold architectures of drug-like compounds in MACCS-II Drug Data Report (MDDR), non-drug-like compounds in Available Chemical Directory (ACD), and natural compounds in Traditional Chinese Medicine Compound Database (TCMCD) were explored and compared. Results First, the different scaffolds were extracted from ACD, MDDR and TCMCD by using three scaffold representations, including Murcko frameworks, Scaffold Tree, and ring systems with different complexity and side chains. Then, by examining the accumulative frequency of the scaffolds in each dataset, we observed that the Level 1 scaffolds of the Scaffold Tree offer advantages over the other scaffold architectures to represent the scaffold diversity of the compound libraries. By comparing the similarity of the scaffold architectures presented in MDDR, ACD and TCMCD, structural overlaps were observed not only between MDDR and TCMCD but also between MDDR and ACD. Finally, Tree Maps were used to cluster the Level 1 scaffolds of the Scaffold Tree and visualize the scaffold space of the three datasets. Conclusion The analysis of the scaffold architectures of MDDR, ACD and TCMCD shows that, on average, drug-like molecules in MDDR have the highest diversity while natural compounds in TCMCD have the highest complexity. According to the Tree Maps, it can be observed that the Level 1 scaffolds present in MDDR have higher diversity than those presented in TCMCD and ACD. However, some representative scaffolds in MDDR with high frequency show structural similarities to those in TCMCD and ACD, suggesting that some scaffolds in TCMCD and ACD may be potentially drug-like fragments for fragment-based and de novo drug design. PMID:23336706

  3. Uncovering the Mechanisms of Chinese Herbal Medicine (MaZiRenWan) for Functional Constipation by Focused Network Pharmacology Approach.

    PubMed

    Huang, Tao; Ning, Ziwan; Hu, Dongdong; Zhang, Man; Zhao, Ling; Lin, Chengyuan; Zhong, Linda L D; Yang, Zhijun; Xu, Hongxi; Bian, Zhaoxiang

    2018-01-01

    MaZiRenWan (MZRW, also known as Hemp Seed Pill) is a Chinese Herbal Medicine which has been demonstrated to safely and effectively alleviate functional constipation (FC) in a randomized, placebo-controlled clinical study with 120 subjects. However, the underlying pharmacological actions of MZRW for FC, are still largely unknown. We systematically analyzed the bioactive compounds of MZRW and mechanism-of-action biological targets through a novel approach called "focused network pharmacology." Among the 97 compounds identified by UPLC-QTOF-MS/MS in MZRW extract, 34 were found in rat plasma, while 10 were found in rat feces. Hierarchical clustering analysis suggest that these compounds can be classified into component groups, in which compounds are highly similar to each other and most of them are from the same herb. Emodin, amygdalin, albiflorin, honokiol, and naringin were selected as representative compounds of corresponding component groups. All of them were shown to induce spontaneous contractions of rat colonic smooth muscle in vitro . Network analysis revealed that biological targets in acetylcholine-, estrogen-, prostaglandin-, cannabinoid-, and purine signaling pathways are able to explain the prokinetic effects of representative compounds and corresponding component groups. In conclusion, MZRW active components enhance colonic motility, possibly by acting on multiple targets and pathways.

  4. Uncovering the Mechanisms of Chinese Herbal Medicine (MaZiRenWan) for Functional Constipation by Focused Network Pharmacology Approach

    PubMed Central

    Huang, Tao; Ning, Ziwan; Hu, Dongdong; Zhang, Man; Zhao, Ling; Lin, Chengyuan; Zhong, Linda L. D.; Yang, Zhijun; Xu, Hongxi; Bian, Zhaoxiang

    2018-01-01

    MaZiRenWan (MZRW, also known as Hemp Seed Pill) is a Chinese Herbal Medicine which has been demonstrated to safely and effectively alleviate functional constipation (FC) in a randomized, placebo-controlled clinical study with 120 subjects. However, the underlying pharmacological actions of MZRW for FC, are still largely unknown. We systematically analyzed the bioactive compounds of MZRW and mechanism-of-action biological targets through a novel approach called “focused network pharmacology.” Among the 97 compounds identified by UPLC-QTOF-MS/MS in MZRW extract, 34 were found in rat plasma, while 10 were found in rat feces. Hierarchical clustering analysis suggest that these compounds can be classified into component groups, in which compounds are highly similar to each other and most of them are from the same herb. Emodin, amygdalin, albiflorin, honokiol, and naringin were selected as representative compounds of corresponding component groups. All of them were shown to induce spontaneous contractions of rat colonic smooth muscle in vitro. Network analysis revealed that biological targets in acetylcholine-, estrogen-, prostaglandin-, cannabinoid-, and purine signaling pathways are able to explain the prokinetic effects of representative compounds and corresponding component groups. In conclusion, MZRW active components enhance colonic motility, possibly by acting on multiple targets and pathways. PMID:29632490

  5. The major bioactive components of seaweeds and their mosquitocidal potential.

    PubMed

    Yu, Ke-Xin; Jantan, Ibrahim; Ahmad, Rohani; Wong, Ching-Lee

    2014-09-01

    Seaweeds are one of the most widely studied natural resources for their biological activities. Novel seaweed compounds with unique chemical structures have been reported for their pharmacological properties. The urge to search for novel insecticidal compound with a new mode of action for development of botanical insecticides supports the relevant scientific research on discovering the bioactive compounds in seaweeds. The mosquitocidal potential of seaweed extracts and their isolated compounds are documented in this review paper, along with the discussion on bioactivities of the major components of seaweeds such as polysaccharides, phenolics, proteins, terpenes, lipids, and halogenated compounds. The effects of seaweed extracts and compounds toward different life stages of mosquito (egg, larva, pupa, and adult), its growth, development, and reproduction are elaborated. The structure-activity relationships of mosquitocidal compounds are discussed to extrapolate the possible chemical characteristics of seaweed compounds responsible for insecticidal properties. Furthermore, the possible target sites and mode of actions of the mosquitocidal seaweed compounds are included in this paper. The potential synergistic effects between seaweeds and commercial insecticides as well as the toxic effects of seaweed extracts and compounds toward other insects and non-target organisms in the same habitat are also described. On top of that, various factors that influence the mosquitocidal potential of seaweeds, such as abiotic and biotic variables, sample preparation, test procedures, and considerations for a precise experimental design are discussed. The potential of active seaweed extracts and compounds in the development of effective bioinsecticide are also discussed.

  6. Synthesis, QSAR and calcium channel modulator activity of new hexahydroquinoline derivatives containing nitroimidazole.

    PubMed

    Miri, Ramin; Javidnia, Katayoun; Mirkhani, Hossein; Hemmateenejad, Bahram; Sepeher, Zahra; Zalpour, Masomeh; Behzad, Taherh; Khoshneviszadeh, Mehdi; Edraki, Najmeh; Mehdipour, Ahmad R

    2007-10-01

    The discovery that 1,4-dihydropyridine class of calcium channel antagonists inhibit Ca2+ influx represented a major therapeutic advance in the treatment of cardiovascular disease. In contrast to the effects of known calcium channel blockers of the Nifedipine-type, the so-called calcium channel agonists, such as Bay K8644 and CGP 28392, increase calcium influx by binding at the same receptor regions. Our goal was to discover a dual cardioselective Ca2+-channel agonist/vascular selective smooth muscle Ca2+ channel antagonist third-generation 1,4-dihydropyridine drug which would have a suitable therapeutic profile for treating congestive heart failure (CHF) patients. A series of unsymmetrical alkyl, cycloalkyl and aryl ester analogues of 2-methyl-4-(1-methyl)-5-nitro-2-imidazolyl-5-oxo-1,4,5,6,7, 8-hexahydroquinolin-3-arboxylate were synthesized using modified Hantzsch reaction. All compounds show calcium antagonist activity on guinea-pig ileum longitudinal smooth muscle and some of them show agonist effect activity on guinea-pig auricle. Effect of structural parameters on the Ca2+ channel agonist/antagonist was evaluated by quantitative structure-activity relationship analysis. These compounds could be considered as a synthon for developing a suitable drug for treating CHF patients.

  7. Chemical constituents from Tribulus terrestris and screening of their antioxidant activity.

    PubMed

    Hammoda, Hala M; Ghazy, Nabila M; Harraz, Fathalla M; Radwan, Mohamed M; ElSohly, Mahmoud A; Abdallah, Ingy I

    2013-08-01

    Two oligosaccharides (1,2) and a stereoisomer of di-p-coumaroylquinic acid (3) were isolated from the aerial parts of Tribulus terrestris along with five known compounds (4-8). The structures of the compounds were established as O-β-D-fructofuranosyl-(2→6)-α-D-glucopyranosyl-(1→6)-β-D-fructofuranosyl-(2→6)-β-D-fructofuranosyl-(2→1)-α-D-glucopyranosyl-(6→2)-β-D-fructofuranoside (1), O-α-D-glucopyranosyl-(1→4)-α-D-glucopyranosyl-(1→4)-α-D-glucopyranosyl-(1→2)-β-D-fructofuranoside (2), 4,5-di-p-cis-coumaroylquinic acid (3) by different spectroscopic methods including 1D NMR ((1)H, (13)C and DEPT) and 2D NMR (COSY, TOCSY, HMQC and HMBC) experiments as well as ESI-MS analysis. This is the first report for the complete NMR spectral data of the known 4,5-di-p-trans-coumaroylquinic acid (4). The antioxidant activity represented as DPPH free radical scavenging activity was investigated revealing that the di-p-coumaroylquinic acid derivatives possess potent antioxidant activity so considered the major constituents contributing to the antioxidant effect of the plant. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Chemical investigation of the essential oil from berries and needles of common juniper (Juniperus communis L.) growing wild in Estonia.

    PubMed

    Orav, Anne; Kailas, Tiiu; Muurisepp, Mati

    2010-11-01

    The essential oils obtained by simultaneous distillation and extraction (SDE) from the fresh and dried needles and dried berries of Juniperus communis L. of Estonian origin were subjected to GC-FID and GC-MS analyses. The yields of the oils ranged between 0.2% and 0.6% from juniper berries and between 0.5% and 1.0% from needles (dried weight). A total of 87 compounds were identified, representing over 95% of the oil. The major compounds in the needle oil were monoterpenes α-pinene (33.3-45.6%), sabinene (0.2-15.4%), limonene (2.8-4.6%) and sesquiterpenes (E)-β-caryophyllene (0.8-10.3%), α-humulene (0.8-6.2%) and germacrene D (3.0-7.8%). The juniper berry oil was rich in α-pinene (53.6-62.3%), β-myrcene (6.5-6.9%) and germacrene D (4.5-6.1%). The main oxygenated terpenoids found in the needle oil were germacrene D-4-ol (0.4-4.0%) and α-cadinol (to 2.7%). The oil from fresh needles contained high amounts of (E)-2-hexenal (3.7-11.7%).

  9. Anti-aging activities of extracts from Tunisian medicinal halophytes and their aromatic constituents

    PubMed Central

    Jdey, A.; Falleh, H.; Ben Jannet, S.; Mkadmini Hammi, K.; Dauvergne, X.; Magné, C.; Ksouri, R.

    2017-01-01

    Six medicinal halophytes widely represented in North Africa and commonly used in traditional medicine were screened for pharmacological properties to set out new promising sources of natural ingredients for cosmetic or nutraceutical applications. Thus, Citrullus colocynthis, Cleome arabica, Daemia cordata, Haloxylon articulatum, Pituranthos scoparius and Scorzonera undulata were examined for their in vitro antioxidant (DPPH scavenging and superoxide anion-scavenging, β-carotene bleaching inhibition and iron-reducing tests), antibacterial (microdilution method, against four human pathogenic bacteria) and anti-tyrosinase activities. Besides, their aromatic composition was determined by RP-HPLC. H. articulatum shoot extracts exhibited the strongest antioxidant activity and inhibited efficiently the growth of Salmonella enterica and Escherichia coli. P. scoparius and C. arabica inhibited slightly monophenolase, whereas H. articulatum was the most efficient inhibitor of diphenolase activity. Furthermore, H. articulatum exhibited the highest aromatic content (3.4 % DW), with dopamine as the major compound. These observations suggest that shoot extract of H. articulatum, and to a lesser extent of C. arabica, could be used as antioxidant, antibiotic as well as new natural skin lightening agents. Also, possible implication of aromatic compounds in anti-tyrosinase activity is discussed. PMID:28827992

  10. Anti-aging activities of extracts from Tunisian medicinal halophytes and their aromatic constituents.

    PubMed

    Jdey, A; Falleh, H; Ben Jannet, S; Mkadmini Hammi, K; Dauvergne, X; Magné, C; Ksouri, R

    2017-01-01

    Six medicinal halophytes widely represented in North Africa and commonly used in traditional medicine were screened for pharmacological properties to set out new promising sources of natural ingredients for cosmetic or nutraceutical applications. Thus, Citrullus colocynthis , Cleome arabica , Daemia cordata , Haloxylon articulatum , Pituranthos scoparius and Scorzonera undulata were examined for their in vitro antioxidant (DPPH scavenging and superoxide anion-scavenging, β -carotene bleaching inhibition and iron-reducing tests), antibacterial (microdilution method, against four human pathogenic bacteria) and anti-tyrosinase activities. Besides, their aromatic composition was determined by RP-HPLC. H. articulatum shoot extracts exhibited the strongest antioxidant activity and inhibited efficiently the growth of Salmonella enterica and Escherichia coli . P. scoparius and C. arabica inhibited slightly monophenolase, whereas H. articulatum was the most efficient inhibitor of diphenolase activity. Furthermore, H. articulatum exhibited the highest aromatic content (3.4 % DW), with dopamine as the major compound. These observations suggest that shoot extract of H. articulatum , and to a lesser extent of C. arabica , could be used as antioxidant, antibiotic as well as new natural skin lightening agents. Also, possible implication of aromatic compounds in anti-tyrosinase activity is discussed.

  11. Modeling nasopharyngeal carcinoma in three dimensions

    PubMed Central

    Siva Sankar, Prabu; Che Mat, Mohd Firdaus; Muniandy, Kalaivani; Xiang, Benedict Lian Shi; Ling, Phang Su; Hoe, Susan Ling Ling; Khoo, Alan Soo-Beng; Mohana-Kumaran, Nethia

    2017-01-01

    Nasopharyngeal carcinoma (NPC) is a type of cancer endemic in Asia, including Malaysia, Southern China, Hong Kong and Taiwan. Treatment resistance, particularly in recurring cases, remains a challenge. Thus, studies to develop novel therapeutic agents are important. Potential therapeutic compounds may be effectively examined using two-dimensional (2D) cell culture models, three-dimensional (3D) spheroid models or in vivo animal models. The majority of drug assessments for cancers, including for NPC, are currently performed with 2D cell culture models. This model offers economical and high-throughput screening advantages. However, 2D cell culture models cannot recapitulate the architecture and the microenvironment of a tumor. In vivo models may recapitulate certain architectural and microenvironmental conditions of a tumor, however, these are not feasible for the screening of large numbers of compounds. By contrast, 3D spheroid models may be able to recapitulate a physiological microenvironment not observed in 2D cell culture models, in addition to avoiding the impediments of in vivo animal models. Thus, the 3D spheroid model offers a more representative model for the study of NPC growth, invasion and drug response, which may be cost-effective without forgoing quality. PMID:28454359

  12. Hydroxycinnamic acids in cooked potato tubers from Solanum tuberosum group Phureja.

    PubMed

    Piñeros-Niño, Clara; Narváez-Cuenca, Carlos-Eduardo; Kushalappa, Ajjamada C; Mosquera, Teresa

    2017-05-01

    Hydroxycinnamic acids are phenolic compounds and are considered to have health promotion properties due to their antioxidant activity. Potato tubers of 113 genotypes of Solanum tuberosum group Phureja belonging to the Colombian Central Collection, landraces of potatoes, and commercial cultivars were evaluated for their hydroxycinnamic acids content. The composition of these compounds was analyzed using cooked tubers in two different agro-climatic conditions. The genotypes were analyzed for chlorogenic acid, neo -chlorogenic acid, crypto -chlorogenic acid, and caffeic acid by ultrahigh-performance liquid chromatography (UHPLC). Chlorogenic acid was the major representative and varied between 0.77 to 7.98 g kg -1  DW (dry weight) followed by crypto -chlorogenic acid (from 0.09 to 1.50 g kg -1  DW). Under moorland agro-climatic conditions even though the chlorogenic acid levels increased with respect to flatland agro-climatic conditions, the related isomer neo -chlorogenic acid decreased as compared to flatland conditions. The correlation between chlorogenic acid with the isomers, and with caffeic acid was positive. This study demonstrated that there is a wide variation in hydroxycinnamic acids contents in the germplasm studied, which can be exploited in breeding programs to contribute to human health.

  13. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata.

    PubMed

    Rajagopal, Sriram; Kumar, R Ajaya; Deevi, Dhanvanthri S; Satyanarayana, Chitkala; Rajagopalan, R

    2003-01-01

    Andrographis paniculata plant extract is known to possess a variety of pharmacological activities. Andrographolide, the major constituent of the extract is implicated towards its pharmacological activity. We studied the cellular processes and targets modulated by andrographolide treatment in human cancer and immune cells. Andrographolide treatment inhibited the in vitro proliferation of different tumor cell lines, representing various types of cancers. The compound exerts direct anticancer activity on cancer cells by cell-cycle arrest at G0/G1 phase through induction of cell-cycle inhibitory protein p27 and decreased expression of cyclin-dependent kinase 4 (CDK4). Immunostimulatory activity of andrographolide is evidenced by increased proliferation of lymphocytes and production of interleukin-2. Andrographolide also enhanced the tumor necrosis factor-alpha production and CD marker expression, resulting in increased cytotoxic activity of lymphocytes against cancer cells, which may contribute for its indirect anticancer activity. The in vivo anticancer activity of the compound is further substantiated against B16F0 melanoma syngenic and HT-29 xenograft models. These results suggest that andrographolide is an interesting pharmacophore with anticancer and immunomodulatory activities and hence has the potential for being developed as a cancer therapeutic agent.

  14. Exposure to Airborne Particles and Volatile Organic Compounds from Polyurethane Molding, Spray Painting, Lacquering, and Gluing in a Workshop

    PubMed Central

    Mølgaard, Bjarke; Viitanen, Anna-Kaisa; Kangas, Anneli; Huhtiniemi, Marika; Larsen, Søren Thor; Vanhala, Esa; Hussein, Tareq; Boor, Brandon E.; Hämeri, Kaarle; Koivisto, Antti Joonas

    2015-01-01

    Due to the health risk related to occupational air pollution exposure, we assessed concentrations and identified sources of particles and volatile organic compounds (VOCs) in a handcraft workshop producing fishing lures. The work processes in the site included polyurethane molding, spray painting, lacquering, and gluing. We measured total VOC (TVOC) concentrations and particle size distributions at three locations representing the various phases of the manufacturing and assembly process. The mean working-hour TVOC concentrations in three locations studied were 41, 37, and 24 ppm according to photo-ionization detector measurements. The mean working-hour particle number concentration varied between locations from 3000 to 36,000 cm−3. Analysis of temporal and spatial variations of TVOC concentrations revealed that there were at least four substantial VOC sources: spray gluing, mold-release agent spraying, continuous evaporation from various lacquer and paint containers, and either spray painting or lacquering (probably both). The mold-release agent spray was indirectly also a major source of ultrafine particles. The workers’ exposure can be reduced by improving the local exhaust ventilation at the known sources and by increasing the ventilation rate in the area with the continuous source. PMID:25849539

  15. Protective effects of essential oil of Citrus limon against aspirin-induced toxicity in IEC-6 cells.

    PubMed

    Bouzenna, Hafsia; Hfaiedh, Najla; Giroux-Metges, Marie-Agnès; Elfeki, Abdelfattah; Talarmin, Hélène

    2017-05-01

    Aspirin, one of the widely used nonsteroidal anti-inflammatory drugs, is the most highly consumed pharmaceutical product in the world. However, it has several side effects in cells. This study was designed to investigate the antioxidative activity and cytoprotective effects of essential oil of Citrus limon (EOC) extracted from leaves against aspirin-induced damages in the rat small intestine epithelial cells (IEC-6). Biochemical indicators were used to assess cytotoxicity and oxidative damages caused by aspirin treatment on IEC-6. Our results showed that the chemical characterization of EOC identified 25 compounds representing 98.19% of the total oil. The major compounds from this oil were z-citral (53.21%), neryl acetate (13.06%), geranyl acetate (10.33%), and limonene (4.23%). Aspirin induced a decrease in cell viability as well as an increase in superoxide dismutase (SOD) and catalase (CAT) activities. Contrariwise, the co-exposure of cells to aspirin and EOC alleviated every above syndrome by an increase in cell survival and decrease in SOD and CAT activities. In conclusion, the essential oil of C. limon has a potent cytoprotective effect against aspirin-induced toxicity in IEC-6 cells.

  16. An urban photochemistry study in Santiago de Chile

    NASA Astrophysics Data System (ADS)

    Rappenglück, B.; Schmitz, R.; Bauerfeind, M.; Cereceda-Balic, F.; von Baer, D.; Jorquera, H.; Silva, Y.; Oyola, P.

    During spring time 2002 a field experiment was carried out in the Metropolitan Area of Santiago de Chile at three monitoring sites located along a SW-NE transect that represents upwind, downtown and downwind conditions, respectively. Three consecutive days (30 October-01 November 2002) reflecting different photochemical and meteorological conditions were selected. These days included two workdays and one holiday and thus the effect of different primary emissions could be investigated. A variety of trace gas measurements (O 3, NO x, CO, volatile organic compounds (VOC)) were obtained at these sites. Alkanes represent the largest VOC fraction at all sites, followed by aromatics and alkenes, the smallest fractions are represented by the alkynes or isoprene. Regarding reactivity ranking propene equivalent values show that during morning hours, alkenes are the most reactive compounds, at noon, aromatics are dominant, and in the afternoon isoprene becomes important. Alkanes do not contribute more than 20% to the total air mass reactivity despite being present at the higher concentration levels. Regarding liquefied petroleum gas (LPG) impacts, we find a threefold decrease of concentrations at the eastern side of the city—and no significant trend at Downtown Santiago—which we ascribe to a switch to natural gas in the higher income eastern side of town. The generation of ozone impacts above 50 ppbv is mainly due to anthropogenic traffic-related hydrocarbons. In addition, traffic emissions are contributing most to the formation of secondary organic aerosols (SOA). A model study was carried out, applying a Lagrange trajectory model coupled with photochemical and aerosol modules. The model results are in good agreement with the observations. Additionally, the relative contribution of the respective hydrocarbons to the ozone production in an air parcel along the trajectory was computed. The model also indicates SOA formation by means of oxidation of higher alkanes, alkenes, and aromatics, the latter being the major contributors to those secondary pollutants.

  17. Vibrational Markovian modelling of footprints after the interaction of antibiotics with the packaging region of HIV type 1.

    PubMed

    Díaz, Humberto González; de Armas, Ronal Ramos; Molina, Reinaldo

    2003-11-01

    The design of novel anti-HIV compounds has now become a crucial area for scientists working in numerous interrelated fields of science such as molecular biology, medicinal chemistry, mathematical biology, molecular modelling and bioinformatics. In this context, the development of simple but physically meaningful mathematical models to represent the interaction between anti-HIV drugs and their biological targets is of major interest. One such area currently under investigation involves the targets in the HIV-RNA-packaging region. In the work described here, we applied Markov chain theory in an attempt to describe the interaction between the antibiotic paromomycin and the packaging region of the RNA in Type-1 HIV. In this model, a nucleic acid squeezed graph is used. The vertices of the graph represent the nucleotides while the edges are the phosphodiester bonds. A stochastic (Markovian) matrix was subsequently defined on this graph, an operation that codifies the probabilities of interaction between specific nucleotides of HIV-RNA and the antibiotic. The strength of these local interactions can be calculated through an inelastic vibrational model. The successive power of this matrix codifies the probabilities with which the vibrations after drug-RNA interactions vanish along the polynucleotide main chain. The sums of self-return probabilities in the k-vicinity of each nucleotide represent physically meaningful descriptors. A linear discriminant function was developed and gave rise to excellent discrimination in 80.8% of interacting and footprinted nucleotides. The Jackknife method was employed to assess the stability and predictability of the model. On the other hand, a linear regression model predicted the local binding affinity constants between a specific nucleotide and the antibiotic (R(2)=0.91, Q(2)=0.86). These kinds of models could play an important role either in the discovery of new anti-HIV compounds or the study of their mode of action.

  18. Arylimidamide-Azole Combinations against Leishmaniasis

    DTIC Science & Technology

    2016-09-01

    This compound will be selected for further in vivo testing in Q1 of Year 3. 3. Accomplishments: The efficacy of 3 arylimidamide compounds was...of this compound will take place in Q1 of Year 3. 4. IMPACT: The search for an orally bioavailable arylimidamide analogue with efficacy against...macrophage assay2 against L. major. One of the 4 compounds tested, AA2- 160, showed potency in this assay. This compound will be selected for toxicity testing and in vivo efficacy testing in Q1 of Year 3.

  19. METHOD OF LIQUID-LIQUID EXTRACTION OF BLOOD SURROGATES FOR ASSESSING HUMAN EXPOSURE TO JET FUEL

    EPA Science Inventory

    A baseline method of liquid?liquid extraction for assessing human exposure to JP-8 jet fuel was established by extracting several representative compounds ranging from very volatile to semi-volatile organic compounds, including benzene, toluene, nonane, decane, undecane, tridec...

  20. US EPA Base Study Standard Operating Procedure for Sampling Volatile Organic Compounds in Indoor Air using Multisorbent Samplers

    EPA Pesticide Factsheets

    The objective of this procedure is to collect representative samples of volatile organic compound (VOC) contaminants present in indoor and outdoor environments using multisorbent samplers, and to subsequently analyze the concentration of VOCs, as selected by EPA.

  1. Deciphering the underlying mechanisms of Diesun Miaofang in traumatic injury from a systems pharmacology perspective

    PubMed Central

    ZHENG, CHUN-SONG; FU, CHANG-LONG; PAN, CAI-BIN; BAO, HONG-JUAN; CHEN, XING-QIANG; YE, HONG-ZHI; YE, JIN-XIA; WU, GUANG-WEN; LI, XI-HAI; XU, HUI-FENG; XU, XIAO-JIE; LIU, XIAN-XIANG

    2015-01-01

    Diesun Miaofang (DSMF) is a traditional herbal formula, which has been reported to activate blood, remove stasis, promote qi circulation and relieve pain. DSMF holds a great promise for the treatment of traumatic injury in an integrative and holistic manner. However, its underlying mechanisms remain to be elucidated. In the present study, a systems pharmacology model, which integrated cluster ligands, human intestinal absorption and aqueous solution prediction, chemical space mapping, molecular docking and network pharmacology techniques were used. The compounds from DSMF were diverse in the clusters and chemical space. The majority of the compounds exhibited drug-like properties. A total of 59 compounds were identified to interact with 16 potential targets. In the herb-compound-target network, the majority of compounds acted on only one target; however, a small number of compounds acted on a large number of targets, up to a maximum of 12. The comparison of key topological properties in compound-target networks associated with the above efficacy intuitively demonstrated that potential active compounds possessed diverse functions. These results successfully explained the polypharmcological mechanism underlying the efficiency of DSMF for the treatment of traumatic injury as well as provided insight into potential novel therapeutic strategies for traumatic injury from herbal medicine. PMID:25891262

  2. QSAR studies of macrocyclic diterpenes with P-glycoprotein inhibitory activity.

    PubMed

    Sousa, Inês J; Ferreira, Maria-José U; Molnár, Joseph; Fernandes, Miguel X

    2013-02-14

    Multidrug resistance (MDR) represents a major limitation for cancer chemotherapy. There are several mechanisms of MDR but the most important is associated with P-glycoprotein (P-gp) overexpression. The development of modulators of P-gp that are able to re-establish drug sensitivity of resistant cells has been considered a promising approach for overcoming MDR. Macrocyclic lathyrane and jatrophane-type diterpenes from Euphorbia species were found to be strong MDR reversing agents. In this study we applied quantitative structure-activity relationship (QSAR) methodology in order to identify the most relevant molecular features of macrocyclic diterpenes with P-gp inhibitory activity and to determine which structural modifications can be performed to improve their activity. Using experimental biological data at two concentrations (4 and 40 μg/ml), we developed a QSAR model for a set of 51 bioactive diterpenic compounds which includes lathyrane and jatrophane-type diterpenes and another model just for jatrophanes. The cross-validation correlation values for all diterpenes QSAR models developed for biological activities at compound concentrations of 4 and 40 μg/ml were 0.758 and 0.729, respectively. Regarding the prediction ability, we get R²(pred) values of 0.765 and 0.534 for biological activities at compound concentrations of 4 and 40 μg/ml, respectively. Applying the cross-validation test to jatrophanes QSAR models, we obtained 0.680 and 0.787 for biological activities at compound concentrations of 4 and 40 μg/ml concentrations, respectively. For the same concentrations, the obtained R²(pred) values for jatrophanes models were 0.541 and 0.534, respectively. The obtained models were statistically valid and showed high prediction ability. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Differential agonist and inverse agonist profile of antipsychotics at D2L receptors coupled to GIRK potassium channels.

    PubMed

    Heusler, Peter; Newman-Tancredi, Adrian; Castro-Fernandez, Annabelle; Cussac, Didier

    2007-03-01

    The D(2) dopaminergic receptor represents a major target of antipsychotic drugs. Using the coupling of the human D(2long) (hD(2L)) receptor to G protein-coupled inward rectifier potassium (GIRK) channels in Xenopus laevis oocytes, we examined the activity of antipsychotic agents of different classes - typical, atypical, and a "new generation" of compounds, exhibiting a preferential D(2) and 5-HT(1A) receptor profile. When the hD(2L) receptor was coexpressed with GIRK channels, a series of reference compounds exhibited full agonist (dopamine, and quinpirole), partial agonist (apomorphine, (-)3-PPP, and (+)-UH232) or inverse agonist (raclopride, and L741626) properties. Sarizotan exhibited only very weak partial agonist action. At higher levels of receptor cRNA injected per oocyte, both partial agonist activity and inverse agonist properties were generally more pronounced. The inverse agonist action of L741626 was reversed by interaction with sarizotan, thus confirming the constitutive activity of wild-type hD(2L) receptors in the oocyte expression system. When antipsychotic agents were tested for their actions at the hD(2L) receptor, typical (haloperidol) as well as atypical (nemonapride, ziprasidone, and clozapine) compounds acted as inverse agonists. In contrast, among D(2)/5-HT(1A) antipsychotics, only SLV313 and F15063 behaved as inverse agonists, whilst the other members of this group (bifeprunox, SSR181507 and the recently marketed antipsychotic, aripiprazole) exhibited partial agonist properties. Thus, the X. laevis oocyte expression system highlights markedly different activity of antipsychotics at the hD(2L) receptor. These differential properties may translate to distinct therapeutic potential of these compounds.

  4. Melatonin and hydroxytyrosol-rich wines influence the generation of DNA oxidation catabolites linked to mutagenesis after the ingestion of three types of wine by healthy volunteers.

    PubMed

    Marhuenda, Javier; Medina, Sonia; Martínez-Hernández, Pedro; Arina, Simón; Zafrilla, Pilar; Mulero, Juana; Genieser, Hans-Gottfried; Ferreres, Federico; Gil-Izquierdo, Ángel

    2016-12-07

    The Mediterranean Diet (MD) has been proved to exert benefits with respect to the maintenance of the redox balance, and wine is a representative component. Bioactive compounds such as polyphenols, melatonin and hydroxytyrosol act as radical scavengers and regulate the oxidation status of organisms. Oxidative damage to DNA yields a large range of end products. The repair of oxidized DNA entails the removal of the useless bases and/or nucleotides as well as the release of circulating nucleotides and nucleosides. The current research aims to elucidate, for the first time, the DNA protection against oxidative stress provided by three types of red wine - relating it to the intake of bioactive compounds - after the intake of a serving of red wine/must by 18 healthy female volunteers during a short term double-blind, crossover and placebo-controlled study. The novelty of our work is to describe the importance of melatonin and hydroxytyrosol and its metabolites (from gut microflora) in comparison with polyphenols in a red wine matrix (excluding colon derivatives). The results show that the intake of red wine and must secondarily reduces oxidative stress and carcinogenesis due to their content of homovanillic acid, as measured by decreases in the plasmatic concentration of 8-hydroxy-2'deoxyguanosine, 8-hydroxyguanine, and 8-nitroguanosine. Moreover, the intake of wine appears to exert vasodilatory effects, mediated by the action of nitric oxide and increased plasma guanosine-3'-5'-cyclic monophosphate plasmatic levels, owing to the intake of wines higher in melatonin and homovanillic acid. Therefore, the results obtained in the present study revealed that polyphenols, despite being the major compounds in the red wine matrix, are not the most effective compounds protecting DNA from oxidative attack.

  5. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds.

    PubMed

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F; Furling, Denis

    2017-04-01

    Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. © 2017. Published by The Company of Biologists Ltd.

  6. Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: variation in health-related compounds and implications for breeding.

    PubMed

    Wahyuni, Yuni; Ballester, Ana-Rosa; Sudarmonowati, Enny; Bino, Raoul J; Bovy, Arnaud G

    2011-08-01

    A comprehensive study on morphology and biochemical compounds of 32 Capsicum spp. accessions has been performed. Accessions represented four pepper species, Capsicum annuum, Capsicum frutescens, Capsicum chinense and Capsicum baccatum which were selected by their variation in morphological characters such as fruit color, pungency and origin. Major metabolites in fruits of pepper, carotenoids, capsaicinoids (pungency), flavonoid glycosides, and vitamins C and E were analyzed and quantified by high performance liquid chromatography. The results showed that composition and level of metabolites in fruits varied greatly between accessions and was independent of species and geographical location. Fruit color was determined by the accumulation of specific carotenoids leading to salmon, yellow, orange, red and brown colored fruits. Levels of both O- and C-glycosides of quercetin, luteolin and apigenin varied strongly between accessions. All non-pungent accessions were devoid of capsaicins, whereas capsaicinoid levels ranged from 0.07 up to 80 mg/100g fr. wt. in fruit pericarp. In general, pungent accessions accumulated the highest capsaicinoid levels in placenta plus seed tissue compared to pericarp. The non-pungent capsaicinoid analogs, capsiates, could be detected at low levels in some pungent accessions. All accessions accumulated high levels of vitamin C, up to 200 mg/100g fr. wt. The highest vitamin E concentration found was 16 mg/100g fr. wt. Based on these metabolic data, five accessions were selected for further metabolic and molecular analysis, in order to isolate key genes involved in the production of these compounds and to assist future breeding programs aimed at optimizing the levels of health-related compounds in pepper fruit. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model: Model development and its application to 2007 Cyclone Sidr in Bangladesh

    NASA Astrophysics Data System (ADS)

    Ikeuchi, Hiroaki; Hirabayashi, Yukiko; Yamazaki, Dai; Muis, Sanne; Ward, Philip J.; Winsemius, Hessel C.; Verlaan, Martin; Kanae, Shinjiro

    2017-08-01

    Water-related disasters, such as fluvial floods and cyclonic storm surges, are a major concern in the world's mega-delta regions. Furthermore, the simultaneous occurrence of extreme discharges from rivers and storm surges could exacerbate flood risk, compared to when they occur separately. Hence, it is of great importance to assess the compound risks of fluvial and coastal floods at a large scale, including mega-deltas. However, most studies on compound fluvial and coastal flooding have been limited to relatively small scales, and global-scale or large-scale studies have not yet addressed both of them. The objectives of this study are twofold: to develop a global coupled river-coast flood model; and to conduct a simulation of compound fluvial flooding and storm surges in Asian mega-delta regions. A state-of-the-art global river routing model was modified to represent the influence of dynamic sea surface levels on river discharges and water levels. We conducted the experiments by coupling a river model with a global tide and surge reanalysis data set. Results show that water levels in deltas and estuaries are greatly affected by the interaction between river discharge, ocean tides and storm surges. The effects of storm surges on fluvial flooding are further examined from a regional perspective, focusing on the case of Cyclone Sidr in the Ganges-Brahmaputra-Meghna Delta in 2007. Modeled results demonstrate that a >3 m storm surge propagated more than 200 km inland along rivers. We show that the performance of global river routing models can be improved by including sea level dynamics.

  8. 2,4-Diaminopyrimidines as potent inhibitors of Trypanosoma brucei and identification of molecular targets by a chemical proteomics approach.

    PubMed

    Mercer, Luke; Bowling, Tana; Perales, Joe; Freeman, Jennifer; Nguyen, Tien; Bacchi, Cyrus; Yarlett, Nigel; Don, Robert; Jacobs, Robert; Nare, Bakela

    2011-02-08

    There is an urgent need to develop new, safe and effective treatments for human African trypanosomiasis (HAT) because current drugs have extremely poor safety profiles and are difficult to administer. Here we report the discovery of 2,4-diaminopyrimidines, exemplified by 4-[4-amino-5-(2-methoxy-benzoyl)-pyrimidin-2-ylamino]-piperidine-1-carboxylic acid phenylamide (SCYX-5070), as potent inhibitors of Trypanosoma brucei and the related trypanosomatid protozoans Leishmania spp. In this work we show that loss of T. brucei viability following SCYX-5070 exposure was dependent on compound concentration and incubation time. Pulse incubation of T. brucei with SCYX-5070 demonstrates that a short period of exposure (10-12 hrs) is required to produce irreversible effects on survival or commit the parasites to death. SCYX-5070 cured an acute trypanosomiasis infection in mice without exhibiting signs of compound related acute or chronic toxicity. To identify the molecular target(s) responsible for the mechanism of action of 2,4-diaminopyrimidines against trypanosomatid protozoa, a representative analogue was immobilized on a solid matrix (sepharose) and used to isolate target proteins from parasite extracts. Mitogen-activated protein kinases (MAPKs) and cdc2-related kinases (CRKs) were identified as the major proteins specifically bound to the immobilized compound, suggesting their participation in the pharmacological effects of 2,4-diaminopyrimidines against trypanosomatid protozoan parasites. Results show that 2,4-diaminopyrimidines have a good in vitro and in vivo pharmacological profile against trypanosomatid protozoans and that MAPKs and CRKs are potential molecular targets of these compounds. The 2,4-diminipyrimidines may serve as suitable leads for the development of novel treatments for HAT.

  9. Synthetic cannabinoid JWH-018 and its halogenated derivatives JWH-018-Cl and JWH-018-Br impair Novel Object Recognition in mice: Behavioral, electrophysiological and neurochemical evidence.

    PubMed

    Barbieri, M; Ossato, A; Canazza, I; Trapella, C; Borelli, A C; Beggiato, S; Rimondo, C; Serpelloni, G; Ferraro, L; Marti, M

    2016-10-01

    It is well known that an impairment of learning and memory function is one of the major physiological effects caused by natural or synthetic cannabinoid consumption in rodents, nonhuman primates and in humans. JWH-018 and its halogenated derivatives (JWH-018-Cl and JWH-018-Br) are synthetic CB1/CB2 cannabinoid agonists, illegally marketed as "Spice" and "herbal blend" for their Cannabis-like psychoactive effects. In the present study the effects of acute exposure to JWH-018, JWH-018-Cl, JWH-018-Br (JWH-018-R compounds) and Δ(9)-THC (for comparison) on Novel Object Recognition test (NOR) has been investigated in mice. Moreover, to better characterize the effects of JWH-018-R compounds on memory function, in vitro electrophysiological and neurochemical studies in hippocampal preparations have been performed. JWH-018, JWH-018-Cl and JWH-018-Br dose-dependently impaired both short- and long-memory retention in mice (respectively 2 and 24 h after training session). Their effects resulted more potent respect to that evoked by Δ(9)-THC. Moreover, in vitro studies showed as JWH-018-R compounds negatively affected electrically evoked synaptic transmission, LTP and aminoacid (glutamate and GABA) release in hippocampal slices. Behavioral, electrophysiological and neurochemical effects were fully prevented by CB1 receptor antagonist AM251 pretreatment, suggesting a CB1 receptor involvement. These data support the hypothesis that synthetic JWH-018-R compounds, as Δ(9)-THC, impair cognitive function in mice by interfering with hippocampal synaptic transmission and memory mechanisms. This data outline the danger that the use and/or abuse of these synthetic cannabinoids may represent for the cognitive process in human consumer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    PubMed Central

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F.

    2017-01-01

    ABSTRACT Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. PMID:28188264

  11. Chemical and biological study of Manilkara zapota (L.) Van Royen leaves (Sapotaceae) cultivated in Egypt

    PubMed Central

    Fayek, Nesrin M.; Monem, Azza R. Abdel; Mossa, Mohamed Y.; Meselhy, Meselhy R.; Shazly, Amani H.

    2012-01-01

    Background: Manilkara zapota (L.) Van Royen is an evergreen tree, native to the tropical Americas and introduced to Egypt as a fruiting tree in 2002. No previous study was reported on the plant cultivated in Egypt. Materials and Methods: In this study, the leaves of the plant cultivated in Egypt were subjected to phytochemical and biological investigations. The lipoidal matter was analyzed by GLC. Five compounds were isolated from the petroleum ether and ethyl acetate fractions of the alcoholic extract of the leaves by chromatographic fractionation on silica gel and sephadex, the structures of these compounds were identified using IR, UV, MS, 1H-NMR and 13C-NMR. The LD50 of the alcoholic and aqueous extracts of the leaves was determined and their antihyperglycemic, hypocholesterolemic and antioxidant activities were tested by enzymatic colorimetric methods using specific kits. Results: Unsaturated fatty acids represent 32.32 % of the total fatty acids, oleic acid (13.95%), linoleidic acid (10.18 %) and linoleic acid (5.96 %) were the major ones. The isolated compounds were identified as lupeol acetate, oleanolic acid, apigenin-7-O-α-L-rhamnoside, myricetin-3-O-α-L-rhamnoside and caffeic acid. This is the first report about isolation of these compounds from Manilkara zapota except myricetin-3-O-α-L-rhamnoside, which was previously isolated from the plant growing abroad. The LD50 recorded 80 g/Kg b. wt. for both the tested extracts, so they could be considered to be safe. They exhibited antihyperglycemic, hypocholesterolemic and antioxidant activities. Conclusion: The observed biological activities were attributed to the different chemical constituents present in the plant mainly its phenolic constituents. PMID:22518080

  12. CO-OCCURRENCE OF METHYL- TERT-BUTYL ETHER (MTBE) AND BTEX COMPOUNDS AT MARINAS IN A LARGE RESEVOIR

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE) is released into the environment as one of some gasoline components, not as a pure compound. BTEX compounds (benzene, tolune, ethylbenzene, and xylenes) are major volatile constituents found in gasoline and are water soluble and mobile. This study...

  13. Dual role of preputial gland secretion and its major components in sex recognition of mice.

    PubMed

    Zhang, Jian-Xu; Liu, Ying-Juan; Zhang, Jin-Hua; Sun, Lixing

    2008-10-20

    This study was aimed at validating the sexual attractiveness of hexadecanol and hexadecyl acetate, two putative pheromone compounds, from preputial gland secretion of mice. These two compounds have been reported to be among the major components of preputial gland secretion in both sexes but higher in quantity in males than females. In this study, we show that castration suppressed the production of the two compounds, further suggesting their association with maleness. Adding preputial gland secretion and the synthetic analogs of the two compounds to castrated male urine at their physiological levels in intact males increased the attractiveness of castrated male urine to female mice, showing that the two compounds were indeed male pheromones. Furthermore, their sexual attractiveness disappeared upon removing the vomeronasal organs (VNOs) from female recipients. Replenishing castrated male urine with preputial gland secretion and the two compounds at their physiological levels in females increased the attractiveness of castrated male urine to males. Such a reversal of sexual attractiveness for hexadecanol and hexadecyl acetate suggests that they had opposing dual effects in sexual attractiveness in a dosage-dependent manner.

  14. Synthesis and Evaluation of Cytotoxic Activity of Some Pyrroles and Fused Pyrroles.

    PubMed

    Fatahala, Samar S; Mohamed, Mosaad S; Youns, Mahmoud; Abd-El Hameed, Rania H

    2017-01-01

    Pyrrole derivatives represent a very interesting class as biologically active compounds. The objective of our study was to investigate the cytotoxic and apoptotic effects and antioxidant activity of the newly synthesized pyrrole derivatives. A series of novel pyrroles and fused pyrroles (tetrahydroindoles, pyrrolopyrimidines, pyrrolopyridines and pyrrolotriazines) were synthesized and characterized using IR, 1H NMR, 13C NMR, MS and elemental analysis techniques. The antiproliferative activity of our synthesized compounds and their modulatory effect apoptotic pathway were investigated. The effect on cellular proliferation and viability was monitored by resazurin assay. Apoptotic effect was evaluated by caspase glo 3/7 assay. Synthesized compounds are then tested for their anticancer activities against three different cell lines representing three different tumor types, namely; the HepG-2 (Human hepatocellular liver carcinoma cell line), the human MCF-7 cell line (breast cancer) and the pancreatic resistant Panc-1 cells. Compounds Ia-e, IIe, and IXc, d showed a promising anti-cancer activity on all tested cell lines. Antioxidant and wound healing invasion assays were examined for promising anticancer candidate compounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Should Torsion Balance Technique Continue to be Taught to Pharmacy Students?

    PubMed

    Bilger, Rhonda; Chereson, Rasma; Salama, Noha Nabil

    2017-06-01

    Objective. To determine the types of balances used in compounding pharmacies: torsion or digital. Methods. A survey was mailed to the pharmacist-in-charge at 698 pharmacies, representing 47% of the pharmacies in Missouri as of July 2013. The pharmacies were randomly selected and stratified by region into eight regions to ensure a representative sample. Information was gathered regarding the type and use of balances and pharmacists' perspectives on the need to teach torsion balance technique to pharmacy students. Results. The response rate for the survey was 53.3%. Out of the total responses received, those pharmacies having a torsion balance, digital balance or both were 46.8%, 27.4% and 11.8%, respectively. About 68.3% of respondents compound prescriptions. The study showed that 52% of compounding pharmacies use torsion balances in their practice. Of those with a balance in their pharmacy, 65.6% favored continuation of torsion balance instruction. Conclusions. Digital balances have become increasingly popular and have replaced torsion balances in some pharmacies, especially those that compound a significant number of prescriptions. The results of this study indicate that torsion balances remain integral to compounding practice. Therefore, students should continue being taught torsion balance technique at the college.

  16. Should Torsion Balance Technique Continue to be Taught to Pharmacy Students?

    PubMed Central

    Bilger, Rhonda; Chereson, Rasma

    2017-01-01

    Objective. To determine the types of balances used in compounding pharmacies: torsion or digital. Methods. A survey was mailed to the pharmacist-in-charge at 698 pharmacies, representing 47% of the pharmacies in Missouri as of July 2013. The pharmacies were randomly selected and stratified by region into eight regions to ensure a representative sample. Information was gathered regarding the type and use of balances and pharmacists’ perspectives on the need to teach torsion balance technique to pharmacy students. Results. The response rate for the survey was 53.3%. Out of the total responses received, those pharmacies having a torsion balance, digital balance or both were 46.8%, 27.4% and 11.8%, respectively. About 68.3% of respondents compound prescriptions. The study showed that 52% of compounding pharmacies use torsion balances in their practice. Of those with a balance in their pharmacy, 65.6% favored continuation of torsion balance instruction. Conclusions. Digital balances have become increasingly popular and have replaced torsion balances in some pharmacies, especially those that compound a significant number of prescriptions. The results of this study indicate that torsion balances remain integral to compounding practice. Therefore, students should continue being taught torsion balance technique at the college. PMID:28720913

  17. Pristimerin overcomes adriamycin resistance in breast cancer cells through suppressing Akt signaling

    PubMed Central

    XIE, GUI'E; YU, XINPEI; LIANG, HUICHAO; CHEN, JINGSONG; TANG, XUEWEI; WU, SHAOQING; LIAO, CAN

    2016-01-01

    Breast cancer remains a major public health problem worldwide. Chemotherapy serves an important role in the treatment of breast cancer. However, resistance to chemotherapeutic agents, in particular, multi-drug resistance (MDR), is a major cause of treatment failure in cancer. Agents that can either enhance the effects of chemotherapeutics or overcome chemoresistance are urgently needed for the treatment of breast cancer. Pristimerin, a quinonemethide triterpenoid compound isolated from Celastraceae and Hippocrateaceae, has been shown to possess antitumor, anti-inflammatory, antioxidant and insecticidal properties. The aim of the present study was to investigate whether pristimerin can override chemoresistance in MCF-7/adriamycin (ADR)-resistant human breast cancer cells. The results demonstrated that pristimerin indeed displayed potent cytocidal effect on multidrug-resistant MCF-7/ADR breast cancer cells, and that these effects occurred through the suppression of Akt signaling, which in turn led to the downregulation of antiapoptotic effectors and increased apoptosis. These findings indicate that use of pristimerin may represent a potentially promising approach for the treatment of ADR-resistant breast cancer. PMID:27123073

  18. Histolocalization and physico-chemical characterization of dihydrochalcones: Insight into the role of apple major flavonoids.

    PubMed

    Gaucher, Matthieu; Dugé de Bernonville, Thomas; Lohou, David; Guyot, Sylvain; Guillemette, Thomas; Brisset, Marie-Noëlle; Dat, James F

    2013-06-01

    Flavonoids, like other metabolites synthesized via the phenylpropanoid pathway, possess a wide range of biological activities including functions in plant development and its interaction with the environment. Dihydrochalcones (mainly phloridzin, sieboldin, trilobatin, phloretin) represent the major flavonoid subgroup in apple green tissues. Although this class of phenolic compounds is found in very large amounts in some tissues (≈200mg/g of leaf DW), their physiological significance remains unclear. In the present study, we highlight their tissue-specific localization in young growing shoots suggesting a specific role in important physiological processes, most notably in response to biotic stress. Indeed, dihydrochalcones could constitute a basal defense, in particular phloretin which exhibits a strong broad-range bactericidal and fungicidal activity. Our results also indicate that sieboldin forms complexes with iron with strong affinity, reinforcing its antioxidant properties and conferring to this dihydrochalcone a potential for iron seclusion and/or storage. The importance of localization and biochemical properties of dihydrochalcones are discussed in view of the apple tree defense strategy against both biotic and abiotic stresses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Management of refractory status epilepticus in adults

    PubMed Central

    Rossetti, Andrea O.; Lowenstein, Daniel H.

    2011-01-01

    Summary Refractory status epilepticus (RSE) can be defined as status epilepticus that continues despite treatment with benzodiazepines and one antiepileptic drug. RSE should be treated promptly to prevent morbidity and mortality; however, scarce evidence is available to support the choice of specific treatments. Major independent outcome predictors are age (not modifiable) and etiology (that should be actively targeted). Recent recommendations for adults, relying upon limited evidence, suggest that RSE treatment aggressiveness should be tailored to the clinical situation: to minimize ICU-related complications, focal RSE without major consciousness impairment might initially be approached more conservatively; conversely, early induction of pharmacological coma is advisable in generalized-convulsive forms. At this stage, midazolam, propofol or barbiturates represent the most used alternatives. Several other treatments, such as additional anesthetics, other antiepileptic or immunomodulatory compounds, or non-pharmacological approaches (electroconvulsive treatment, hypothermia), have been used in protracted RSE. Treatment lasting weeks or months may sometimes result in a good outcome, as in selected cases after cerebral anoxia and encephalitis. Well-designed prospective studies of this condition are urgently needed. PMID:21939901

  20. Dimethyl sulfide in the surface ocean and the marine atmosphere: a global view.

    PubMed

    Andreae, M O; Raemdonck, H

    1983-08-19

    Dimethyl sulfide (DMS) has been identified as the major volatile sulfur compound in 628 samples of surface seawater representing most of the major oceanic ecozones. In at least three respects, its vertical distribution, its local patchiness, and its distribution in oceanic ecozones, the concentration of DMS in the sea exhibits a pattern similar to that of primary production. The global weightedaverage concentration of DMS in surface seawater is 102 nanograms of sulfur (DMS) per liter, corresponding to a global sea-to-air flux of 39 x 10(12) grams of sulfur per year. When the biogenic sulfur contributions from the land surface are added, the biogenic sulfur gas flux is approximately equal to the anthropogenic flux of sulfur dioxide. The DMS concentration in air over the equatorial Pacific varies diurnally between 120 and 200 nanograms of sulfur (DMS) per cubic meter, in agreement with the predictions of photochemical models. The estimated source flux of DMS from the oceans to the marine atmosphere is in agreement with independently obtained estimates of the removal fluxes of DMS and its oxidation products from the atmosphere.

  1. Dimethyl Sulfide in the Surface Ocean and the Marine Atmosphere: A Global View

    NASA Astrophysics Data System (ADS)

    Andreae, Meinrat O.; Raemdonck, Hans

    1983-08-01

    Dimethyl sulfide (DMS) has been identified as the major volatile sulfur compound in 628 samples of surface seawater representing most of the major oceanic ecozones. In at least three respects, its vertical distribution, its local patchiness, and its distribution in oceanic ecozones, the concentration of DMS in the sea exhibits a pattern similar to that of primary production. The global weighted-average concentration of DMS in surface seawater is 102 nanograms of sulfur (DMS) per liter, corresponding to a global sea-to-air flux of 39 × 1012 grams of sulfur per year. When the biogenic sulfur contributions from the land surface are added, the biogenic sulfur gas flux is approximately equal to the anthropogenic flux of sulfur dioxide. The DMS concentration in air over the equatorial Pacific varies diurnally between 120 and 200 nanograms of sulfur (DMS) per cubic meter, in agreement with the predictions of photochemical models. The estimated source flux of DMS from the oceans to the marine atmosphere is in agreement with independently obtained estimates of the removal fluxes of DMS and its oxidation products from the atmosphere.

  2. Organic composition and source apportionment of fine aerosol at Monterrey, Mexico, based on organic markers

    NASA Astrophysics Data System (ADS)

    Mancilla, Y.; Mendoza, A.; Fraser, M. P.; Herckes, P.

    2016-01-01

    Primary emissions from anthropogenic and biogenic sources as well as secondary formation are responsible for the pollution levels of ambient air in major urban areas. These sources release fine particles into the air that negatively impact human health and the environment. Organic molecular markers, which are compounds that are unique to specific PM2.5 sources, can be utilized to identify the major emission sources in urban areas. In this study, 43 representative PM2.5 samples, for both daytime and nighttime periods, were built from individual samples collected in an urban site of the Monterrey metropolitan area (MMA) during the spring and fall of 2011 and 2012. The samples were analyzed for organic carbon, elemental carbon, and organic molecular markers. Several diagnostic tools were employed for the preliminary identification of emission sources. Organic compounds for eight compound classes were quantified. The n-alkanoic acids were the most abundant, followed by n-alkanes, wood smoke markers, and levoglucosan/alkenoic acids. Polycyclic aromatic hydrocarbons (PAHs) and hopanes were less abundant. The carbon preference index (0.7-2.6) for n-alkanes indicates a major contribution of anthropogenic and mixed sources during the fall and the spring, respectively. Hopanes levels confirmed the contribution from gasoline and diesel engines. In addition, the contribution of gasoline and diesel vehicle exhaust was confirmed and identified by the PAH concentrations in PM2.5. Diagnostic ratios of PAHs showed emissions from burning coal, wood, biomass, and other fossil fuels. The total PAHs and elemental carbon were correlated (r2 = 0.39-0.70) across the monitoring periods, reinforcing that motor vehicles are the major contributors of PAHs. Cholesterol levels remained constant during the spring and fall, showing evidence of the contribution of meat-cooking operations, while the isolated concentrations of levoglucosan suggested occasional biomass burning events. Finally, source attribution results obtained using the CMB (chemical mass balance) model indicate that emissions from motor vehicle exhausts are the most important, accounting for the 64 % of the PM2.5, followed by meat-cooking operations with 31 % The vegetative detritus and biomass burning had the smallest contribution (2.2 % of the PM2.5). To our knowledge, this is only the second study to explore the organic composition and source apportionment of fine organic aerosol based on molecular markers in Mexico and the first for the MMA. Particularly molecular marker were quantified by solvent extraction with dichloromethane, derivatization, and gas chromatography with mass spectrometry (GC/MS).

  3. Assessment of volatile organic compound emissions from ecosystems of China

    NASA Astrophysics Data System (ADS)

    Klinger, L. F.; Li, Q.-J.; Guenther, A. B.; Greenberg, J. P.; Baker, B.; Bai, J.-H.

    2002-11-01

    Isoprene, monoterpene, and other volatile organic compound (VOC) emissions from grasslands, shrublands, forests, and peatlands in China were characterized to estimate their regional magnitudes and to compare these emissions with those from landscapes of North America, Europe, and Africa. Ecological and VOC emission sampling was conducted at 52 sites centered in and around major research stations located in seven different regions of China: Inner Mongolia (temperate), Changbai Mountain (boreal-temperate), Beijing Mountain (temperate), Dinghu Mountain (subtropical), Ailao Mountain (subtropical), Kunming (subtropical), and Xishuangbanna (tropical). Transects were used to sample plant species and growth form composition, leafy (green) biomass, and leaf area in forests representing nearly all the major forest types of China. Leafy biomass was determined using generic algorithms based on tree diameter, canopy structure, and absolute cover. Measurements of VOC emissions were made on 386 of the 541 recorded species using a portable photo-ionization detector method. For 105 species, VOC emissions were also measured using a flow-through leaf cuvette sampling/gas chromatography analysis method. Results indicate that isoprene and monoterpene emissions, as well as leafy biomass, vary systematically along gradients of ecological succession in the same manner found in previous studies in the United States, Canada, and Africa. Applying these results to a regional VOC emissions model, we arrive at a value of 21 Tg C for total annual biogenic VOC emissions from China, compared to 5 Tg C of VOCs released annually from anthropogenic sources there. The isoprene and monoterpene emissions are nearly the same as those reported for Europe, which is comparable in size to China.

  4. Traditional Chinese Medicine in Treatment of Metabolic Syndrome

    PubMed Central

    Yin, Jun; Zhang, Hanjie; Ye, Jianping

    2008-01-01

    In management of metabolic syndrome, the traditional Chinese medicine (TCM) is an excellent representative in alternative and complementary medicines with a complete theory system and substantial herb remedies. In this article, basic principle of TCM is introduced and 22 traditional Chinese herbs are reviewed for their potential activities in the treatment of metabolic syndrome. Three herbs, ginseng, rhizoma coptidis (berberine, the major active compound) and bitter melon, were discussed in detail on their therapeutic potentials. Ginseng extracts made from root, rootlet, berry and leaf of Panax quinquefolium (American ginseng) and Panax ginseng (Asian ginseng), are proved for anti-hyperglycemia, insulin sensitization, islet protection, anti-obesity and anti-oxidation in many model systems. Energy expenditure is enhanced by ginseng through thermogenesis. Ginseng-specific saponins (ginsenosides) are considered as the major bioactive compounds for the metabolic activities of ginseng. Berberine from rhizoma coptidis is an oral hypoglycemic agent. It also has anti-obesity and anti-dyslipidemia activities. The action mechanism is related to inhibition of mitochondrial function, stimulation of glycolysis, activation of AMPK pathway, suppression of adipogenesis and induction of low-density lipoprotein (LDL) receptor expression. Bitter melon or bitter gourd (Momordica charantia) is able to reduce blood glucose and lipids in both normal and diabetic animals. It may also protect β cells, enhance insulin sensitivity and reduce oxidative stress. Although evidence from animals and humans consistently supports the therapeutic activities of ginseng, berberine and bitter melon, multi-center large-scale clinical trials have not been conducted to evaluate the efficacy and safety of these herbal medicines. PMID:18537696

  5. First LC/MS determination of cyanazine amide, cyanazine acid, and cyanazine in groundwater samples

    USGS Publications Warehouse

    Ferrer, Imma; Thurman, E.M.; Barceló, Damià

    2000-01-01

    Cyanazine and two of its major metabolites, cyanazine amide and cyanazine acid, were measured at trace levels in groundwater using liquid chromatography/atmospheric pressure chemical ionization/mass spectrometry (LC/APCI/MS). Solid-phase extraction was carried out by passing 20 mL of groundwater sample through a cartridge containing a polymeric phase (PLRP-s), with recoveries ranging from 99 to 108% (n = 5). Using LC/MS detection in positive ion mode, useful structural information was obtained by increasing the fragmentor voltage, thus permitting the unequivocal identification of these compounds in groundwater samples with low sample volumes. The fragmentation of the amide, carboxylic acid, and cyano group was observed for both metabolites and cyanazine, respectively, leading to a diagnostic ion at m/z 214. Method detection limits were in the range of 0.002−0.005 μg/L for the three compounds. Finally, the newly developed method was evaluated for the analysis of groundwater samples from New York containing the compounds under study and presents evidence that the metabolites, cyanazine acid, and cyanazine amide may leach to groundwater and serve as sources for deisopropylatrazine. The combination of on-line SPE and LC/APCI/MS represents an important advance in environmental analysis of herbicide metabolites in groundwater since it demonstrates that trace amounts of polar metabolites may be determined rapidly. Furthermore, the presence of both cyanazine amide and cyanazine acid indicate that another degradation product, deisopropylatrazine, may be occurring at depth because of the subsequent degradation of cyanazine.

  6. The biodiversity of microbial cytochromes P450.

    PubMed

    Kelly, Steven L; Lamb, David C; Jackson, Colin J; Warrilow, Andrew G; Kelly, Diane E

    2003-01-01

    The cytochrome P450 (CYP) superfamily of genes and proteins are well known for their involvement in pharmacology and toxicology, but also increasingly for their importance and diversity in microbes. The extent of diversity has only recently become apparent with the emergence of data from whole genome sequencing projects and the coming years will reveal even more information on the diversity in microbial eukaryotes. This review seeks to describe the historical development of these studies and to highlight the importance of the genes and proteins. CYPs are deeply involved in the development of strategies for deterrence and attraction as well as detoxification. As such, there is intense interest in pathways of secondary metabolism that include CYPs in oxidative tailoring of antibiotics, sometimes influencing potency as bioactive compounds. Further to this is interest in CYPs in metabolism of xenobiotics for use as carbon sources for microbial growth and as biotransformation agents or in bioremediation. CYPs are also current and potential drug targets; compounds inhibiting CYP are antifungal and anti-protozoan agents, and potentially similar compounds may be useful against some bacterial diseases such as tuberculosis. Of note is the diversity of CYP requirements within an organism, ranging from Escherichia coli that has no CYPs as in many bacteria, to Mycobacterium smegmatis that has 40 representing 1% of coding genes. The basidiomycete fungus Phanerochaete chrysosporium surprised all when it was found to contain a hundred or more CYPs. The functional genomic investigation of these orphan CYPs is a major challenge for the future.

  7. Effect of biological and chemical oxidation on the removal of estrogenic compounds (NP and BPA) from wastewater: an integrated assessment procedure.

    PubMed

    Bertanza, Giorgio; Pedrazzani, Roberta; Dal Grande, Mario; Papa, Matteo; Zambarda, Valerio; Montani, Claudia; Steimberg, Nathalie; Mazzoleni, Giovanna; Di Lorenzo, Diego

    2011-04-01

    A major source of the wide presence of EDCs (Endocrine Disrupting Compounds) in water bodies is represented by direct/indirect discharge of sewage. Recent scientific literature reports data about their trace concentration in water, sediments and aquatic organisms, as well as removal efficiencies of different wastewater treatment schemes. Despite the availability of a huge amount of data, some doubts still persist due to the difficulty in evaluating synergistic effects of trace pollutants in complex matrices. In this paper, an integrated assessment procedure was used, based on chemical and biological analyses, in order to compare the performance of two full scale biological wastewater treatment plants (either equipped with conventional settling tanks or with an ultrafiltration membrane unit) and tertiary ozonation (pilot scale). Nonylphenol and bisphenol A were chosen as model EDCs, together with the parent compounds mono- and di-ethoxylated nonylphenol (quantified by means of GC-MS). Water estrogenic activity was evaluated by applying the human breast cancer MCF-7 based reporter gene assay. Process parameters (e.g., sludge age, temperature) and conventional pollutants (e.g., COD, suspended solids) were also measured during monitoring campaigns. Conventional activated sludge achieved satisfactory removal of both analytes and estrogenicity. A further reduction of biological activity was exerted by MBR (Membrane Biological Reactor) as well as ozonation; the latter contributed also to decrease EDC concentrations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Chemical Genetics Uncovers Novel Inhibitors of Lignification, Including p-Iodobenzoic Acid Targeting CINNAMATE-4-HYDROXYLASE1[OPEN

    PubMed Central

    Van de Wouwer, Dorien; Decou, Raphaël; Audenaert, Dominique; Nguyen, Long

    2016-01-01

    Plant secondary-thickened cell walls are characterized by the presence of lignin, a recalcitrant and hydrophobic polymer that provides mechanical strength and ensures long-distance water transport. Exactly the recalcitrance and hydrophobicity of lignin put a burden on the industrial processing efficiency of lignocellulosic biomass. Both forward and reverse genetic strategies have been used intensively to unravel the molecular mechanism of lignin deposition. As an alternative strategy, we introduce here a forward chemical genetic approach to find candidate inhibitors of lignification. A high-throughput assay to assess lignification in Arabidopsis (Arabidopsis thaliana) seedlings was developed and used to screen a 10-k library of structurally diverse, synthetic molecules. Of the 73 compounds that reduced lignin deposition, 39 that had a major impact were retained and classified into five clusters based on the shift they induced in the phenolic profile of Arabidopsis seedlings. One representative compound of each cluster was selected for further lignin-specific assays, leading to the identification of an aromatic compound that is processed in the plant into two fragments, both having inhibitory activity against lignification. One fragment, p-iodobenzoic acid, was further characterized as a new inhibitor of CINNAMATE 4-HYDROXYLASE, a key enzyme of the phenylpropanoid pathway synthesizing the building blocks of the lignin polymer. As such, we provide proof of concept of this chemical biology approach to screen for inhibitors of lignification and present a broad array of putative inhibitors of lignin deposition for further characterization. PMID:27485881

  9. Chemical composition and antibacterial activity of Pinus halepensis Miller growing in West Northern of Algeria

    PubMed Central

    Fekih, Nadia; Allali, Hocine; Merghache, Salima; Chaïb, Faïza; Merghache, Djamila; El Amine, Mohamed; Djabou, Nassim; Muselli, Alain; Tabti, Boufeldja; Costa, Jean

    2014-01-01

    Objective To find new bioactive natural products, the chemical composition and to sudy the antibacterial activity of essential oil components extracted from the aerial parts of the Algerian aromatic plant Pinus halepensis Miller (P. halepensis) (needles, twigs and buds). Methods The essential oil used in this study was isolated by hydrodistillation using a Clevenger-type apparatus according to the European Pharmacopoeia. The chemical composition was investigated using GC-retention indices (RI) and GC-MS. Results Forty-nine compounds, representing 97.9% of the total collective oil, were identified. Essential oil was dominated by hydrocarbon compounds (80.6%) especially monoterpenes (65.5%). The major compounds from ten oils stations were: myrcene (15.2%-32.0%), α-pinene (12.2%-24.5%), E-β-caryophyllene (7.0%-17.1%), terpinolene (1.8%-13.3%), 2-phenyl ethyl isovalerate (4.8%-10.9%), terpinene-4-ol (1.0%-8.2 %) and sabinene (1.5%-6.3%). The intra-species variations of the chemical compositions of P. halepensis aerial parts essential oils from ten Algerian sample locations were investigated using statistical analysis. Essential oil samples were clustered in 2 groups by hierarchical cluster analysis, according to their chemical composition. The essential oil revealed an interesting antimicrobial effect against Lysteria monocytogenes, Enterococcus faecalis, Pseudomonas aeruginosa, Acinetobacter baumanii, Citrobacter freundii and Klebsiella pneumoniae. Conclusions These results suggest that the essential oil from P. halepensis may be a new potential source as natural antimicrobial applied in pharmaceutical and food industries.

  10. Application of the exact exchange potential method for half metallic intermediate band alloy semiconductor.

    PubMed

    Fernández, J J; Tablero, C; Wahnón, P

    2004-06-08

    In this paper we present an analysis of the convergence of the band structure properties, particularly the influence on the modification of the bandgap and bandwidth values in half metallic compounds by the use of the exact exchange formalism. This formalism for general solids has been implemented using a localized basis set of numerical functions to represent the exchange density. The implementation has been carried out using a code which uses a linear combination of confined numerical pseudoatomic functions to represent the Kohn-Sham orbitals. The application of this exact exchange scheme to a half-metallic semiconductor compound, in particular to Ga(4)P(3)Ti, a promising material in the field of high efficiency solar cells, confirms the existence of the isolated intermediate band in this compound. (c) 2004 American Institute of Physics.

  11. Suspect Screening and Non-Targeted Analysis of Drinking Water Using Point-Of-Use Filters

    EPA Science Inventory

    Monitored contaminants in drinking water represent a small portion of the total compounds present, many of which may be relevant to human health. To understand the totality of human exposure to compounds in drinking water, broader monitoring methods are imperative. In an effort t...

  12. US EPA Base Study Standard Operating Procedure for Sampling Volatile Organic Compounds in Indoor Air Using Evacuated Canisters

    EPA Pesticide Factsheets

    The objective of this procedure is to collect a representative sample of air containing volatile organic compound (VOC) contaminants present in an indoor environment using an evacuated canister, and to subsequently analyze the concentration of VOCs, as selected by EPA.

  13. Web Thermo Tables (WTT) - Professional Edition

    National Institute of Standards and Technology Data Gateway

    SRD 203 NIST/TRC Web Thermo Tables (WTT) - Professional Edition (Online Subscription)   WTT - Professional Edition, a Web version of the TRC Thermodynamic Tables, represents a complete collection of critically evaluated thermodynamic property data primarily for pure organic compounds. As of Nov. 2011, WTT contains information on 23999 compounds.

  14. CHARACTERIZATION OF EMISSIONS OF VOLATILE ORGANIC COMPOUNDS FROM INTERIOR ALKYD PAINT

    EPA Science Inventory

    Alkyd paint continues to be used indoors for application to wood trim, cabinet surfaces, and some kitchen and bathroom walls. Paint may represent a significant source of volatile organic compounds (VOCs) indoors depending on the frequency of use and amount of surface paint. The U...

  15. Chemical identification and ethological function of soldier-specific secretion in Japanese subterranean termite Reticulitermes speratus (Rhinotermitidae).

    PubMed

    Nguyen, Tuan T; Kanaori, Kenji; Hojo, Masaru K; Kawada, Tatsuro; Yamaoka, Ryohei; Akino, Toshiharu

    2011-01-01

    We identified the soldier-specific compounds in the Japanese subterranean termite, Reticulitermes speratus, to clarify their ethological roles. Silica gel column chromatography separated one major soldier-specific compound in the hexane fraction accounting for 70-80% of the total amount of the fraction, while cuticular hydrocarbons constituted the rest. We identified the compound as β-selinene by gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy. Comparative GC analyses of the major exocrine glands detected the compound in the soldier's frontal gland. Both soldiers and workers made aggregation to the hexane fraction, as well as to the crushed heads and head extract of the soldiers. They did not aggregate to cuticular hydrocarbons, making it likely that β-selinene was the aggregation pheromone in this species. The opportunistic predator of this termite, Lasius japonicus, was also attracted to the compounds. The ant workers, therefore, would use the termite aggregation pheromone as a kairomone for hunting them.

  16. Designing focused chemical libraries enriched in protein-protein interaction inhibitors using machine-learning methods.

    PubMed

    Reynès, Christelle; Host, Hélène; Camproux, Anne-Claude; Laconde, Guillaume; Leroux, Florence; Mazars, Anne; Deprez, Benoit; Fahraeus, Robin; Villoutreix, Bruno O; Sperandio, Olivier

    2010-03-05

    Protein-protein interactions (PPIs) may represent one of the next major classes of therapeutic targets. So far, only a minute fraction of the estimated 650,000 PPIs that comprise the human interactome are known with a tiny number of complexes being drugged. Such intricate biological systems cannot be cost-efficiently tackled using conventional high-throughput screening methods. Rather, time has come for designing new strategies that will maximize the chance for hit identification through a rationalization of the PPI inhibitor chemical space and the design of PPI-focused compound libraries (global or target-specific). Here, we train machine-learning-based models, mainly decision trees, using a dataset of known PPI inhibitors and of regular drugs in order to determine a global physico-chemical profile for putative PPI inhibitors. This statistical analysis unravels two important molecular descriptors for PPI inhibitors characterizing specific molecular shapes and the presence of a privileged number of aromatic bonds. The best model has been transposed into a computer program, PPI-HitProfiler, that can output from any drug-like compound collection a focused chemical library enriched in putative PPI inhibitors. Our PPI inhibitor profiler is challenged on the experimental screening results of 11 different PPIs among which the p53/MDM2 interaction screened within our own CDithem platform, that in addition to the validation of our concept led to the identification of 4 novel p53/MDM2 inhibitors. Collectively, our tool shows a robust behavior on the 11 experimental datasets by correctly profiling 70% of the experimentally identified hits while removing 52% of the inactive compounds from the initial compound collections. We strongly believe that this new tool can be used as a global PPI inhibitor profiler prior to screening assays to reduce the size of the compound collections to be experimentally screened while keeping most of the true PPI inhibitors. PPI-HitProfiler is freely available on request from our CDithem platform website, www.CDithem.com.

  17. Designing Focused Chemical Libraries Enriched in Protein-Protein Interaction Inhibitors using Machine-Learning Methods

    PubMed Central

    Reynès, Christelle; Host, Hélène; Camproux, Anne-Claude; Laconde, Guillaume; Leroux, Florence; Mazars, Anne; Deprez, Benoit; Fahraeus, Robin; Villoutreix, Bruno O.; Sperandio, Olivier

    2010-01-01

    Protein-protein interactions (PPIs) may represent one of the next major classes of therapeutic targets. So far, only a minute fraction of the estimated 650,000 PPIs that comprise the human interactome are known with a tiny number of complexes being drugged. Such intricate biological systems cannot be cost-efficiently tackled using conventional high-throughput screening methods. Rather, time has come for designing new strategies that will maximize the chance for hit identification through a rationalization of the PPI inhibitor chemical space and the design of PPI-focused compound libraries (global or target-specific). Here, we train machine-learning-based models, mainly decision trees, using a dataset of known PPI inhibitors and of regular drugs in order to determine a global physico-chemical profile for putative PPI inhibitors. This statistical analysis unravels two important molecular descriptors for PPI inhibitors characterizing specific molecular shapes and the presence of a privileged number of aromatic bonds. The best model has been transposed into a computer program, PPI-HitProfiler, that can output from any drug-like compound collection a focused chemical library enriched in putative PPI inhibitors. Our PPI inhibitor profiler is challenged on the experimental screening results of 11 different PPIs among which the p53/MDM2 interaction screened within our own CDithem platform, that in addition to the validation of our concept led to the identification of 4 novel p53/MDM2 inhibitors. Collectively, our tool shows a robust behavior on the 11 experimental datasets by correctly profiling 70% of the experimentally identified hits while removing 52% of the inactive compounds from the initial compound collections. We strongly believe that this new tool can be used as a global PPI inhibitor profiler prior to screening assays to reduce the size of the compound collections to be experimentally screened while keeping most of the true PPI inhibitors. PPI-HitProfiler is freely available on request from our CDithem platform website, www.CDithem.com. PMID:20221258

  18. Exocyclic Deoxyadenosine Adducts of 1,2,3,4-Diepoxybutane: Synthesis, Structural Elucidation, and Mechanistic Studies

    PubMed Central

    Seneviratne, Uthpala; Antsypovich, Sergey; Goggin, Melissa; Dorr, Danae Quirk; Guza, Rebecca; Moser, Adam; Thompson, Carrie; York, Darrin M.; Tretyakova, Natalia

    2009-01-01

    1,2,3,4-Diepoxybutane (DEB)1 is considered the ultimate carcinogenic metabolite of 1,3-butadiene, an important industrial chemical and environmental pollutant present in urban air. Although it preferentially modifies guanine within DNA, DEB induces a large number of A → T transversions, suggesting that it forms strongly mispairing lesions at adenine nucleobases. We now report the discovery of three potentially mispairing exocyclic adenine lesions of DEB: N6,N6-(2,3-dihydroxybutan-1,4-diyl)-2′-deoxyadenosine (compound 2), 1,N6-(2-hydroxy-3-hydroxymethylpropan-1,3-diyl)-2′-deoxyadenosine (compound 3), and 1,N6-(1-hydroxymethyl-2-hydroxypropan-1,3-diyl)-2′-deoxyadenosine (compound 4). The structures and stereochemistry of the novel DEB-dA adducts were determined by a combination of UV and NMR spectroscopy, tandem mass spectrometry, and independent synthesis. We found that synthetic N6-(2-hydroxy-3,4-epoxybut-1-yl)-2′-deoxyadenosine (compound 1) representing the product of N6-adenine alkylation by DEB spontaneously cyclizes to form 3 under aqueous conditions or 2 under anhydrous conditions in the presence of organic base. Compound 3 can be interconverted with 4 by a reversible unimolecular pericyclic reaction favoring 4 as a more thermodynamically stable product. Both 3 and 4 are present in double stranded DNA treated with DEB in vitro and in liver DNA of laboratory mice exposed to 1,3-butadiene by inhalation. We propose that in DNA under physiological conditions, DEB alkylates the N-1 position of adenine in DNA to form N1-(2-hydroxy-3,4-epoxybut-1-yl)-adenine adducts, which undergo an SN2-type intramolecular nucleophilic substitution and rearrangement to give 3 (minor) and 4 (major). Formation of exocyclic DEB-adenine lesions following exposure to 1,3-butadiene provides a possible mechanism of mutagenesis at the A:T base pairs. PMID:19883087

  19. Multiscale predictions of aviation-attributable PM2.5 for US ...

    EPA Pesticide Factsheets

    Aviation activities represent an important and unique mode of transportation, but also impact air quality. In this study, we aim to quantify the impact of aircraft on air quality, focusing on aviation-attributable PM2.5 at scales ranging from local (a few kilometers) to continental (spanning hundreds of kilometers) using the Community Multiscale Air Quality-Advanced Plume Treatment (CMAQ-APT) model. In our CMAQ-APT simulations, a plume scale treatment is applied to aircraft emissions from 99 major U.S. airports over the contiguous U.S. in January and July 2005. In addition to the plume scale treatment, we account for the formation of non-traditional secondary organic aerosols (NTSOA) from the oxidation of semivolatile and intermediate volatility organic compounds (S/IVOCs) emitted from aircraft, and utilize alternative emission estimates from the Aerosol Dynamics Simulation Code (ADSC). ADSC is a 1-D plume scale model that estimates engine specific PM and S/IVOC emissions at ambient conditions, accounting for relative humidity and temperature. We estimated monthly and contiguous U.S. average aviation-attributable PM2.5 to be 2.7 ng m−3 in January and 2.6 ng m−3 in July using CMAQ-APT with ADSC emissions. This represents an increase of 40% and 12% in January and July, respectively, over impacts using traditional modeling approaches (traditional emissions without APT). The maximum fine scale (subgrid scale) hourly impacts at a major airport were 133.6 μg m−

  20. Protodioscin, Isolated from the Rhizome of Dioscorea tokoro Collected in Northern Japan is the Major Antiproliferative Compound to HL-60 
Leukemic Cells

    PubMed Central

    Oyama, Manami; Tokiwano, Tetsuo; Kawaii, Satoru; Yoshida, Yasunori; Mizuno, Kouichi; Oh, Keimei; Yoshizawa, Yuko

    2017-01-01

    Abstract: Background: The rhizome of Oni-dokoro (a wild yam, Dioscorea tokoro) has extremely bitter taste and is not generally regarded edible;, however, in northern part of Japan, such as Iwate and a part of Aomori, it is used as health promoting food. To clarify the reason, we examined the biologically active compounds in the rhizome collected at Iwate and compared them from the other area in literature. Methods: The acetonitrile extract from northern part of Japan was purified by bioassay-guided separation using antiproliferative activity to human leukemia HL-60 cell, and protodioscin (PD) was isolated and identified by instrumental analyses as the major active compound. Results: PD known as a saponin with four sugar moieties, an inhibitor for platelet aggregation, and a low density lipoprotein (LPL) lowering agent, displayed strong growth inhibitory effect to HL-60. The literature search suggested that the rhizome from other area contained dioscin and other saponins with three sugar moieties as their major component. We assume that the edible and health promoting effect of the rhizome in the particular area is partially derived from these different components. Conclusion: We were interested in the differences of utilization in the rhizome of wild yam Dioscorea tokoro, and examined the chemical composition in the rhizome to find protodioscin as antiproliferative compound to HL-60. In the report from other area, the rhizome exhibited dioscin as the major compound. Our study indicated that the protodioscin/dioscin composition varied regionally, although the reason is still needs to be investigated. PMID:28579930

Top