Science.gov

Sample records for compounds xvi calorimetric

  1. Patterson-function direct methods for structure determination of organic compounds from powder diffraction data. XVI.

    PubMed

    Rius, Jordi

    2011-01-01

    A new type of direct methods (DM) called Patterson-function DM are presented that directly explore the Patterson instead of the modulus function. Since they work with the experimental intensities, they are particularly well suited for handling powder diffraction data. These methods are based on the maximization of the sum function S(P) ∝ ∑H(I(H)-)G(-H)(Φ) in terms of the Φ phases of the structure factors. The quantity accessible from the experiment is I(H), the equidistributed multiplet intensity of reflection H, and is the average intensity taken over all non-systematically absent reflections. G(-H)(Φ) is the calculated structure-factor amplitude of the squared structure that includes the positivity and the atomicity of the density function in its definition. The S(P) sum function can be optimized with the Patterson-function tangent formula (TF) using a variant of the S-FFT algorithm [Rius et al. (2007), Acta Cryst. A63, 131-134]. It is important that overlapped reflections also participate in the phase refinement, so that not only the resolved reflections but the whole pattern contribute decisively to the refinement. The increase in effective data resolution minimizes Fourier series termination effects and improves the accuracy of G(Φ). The Patterson-function TF has been applied to synchrotron powder data of various organic compounds. In all cases the molecules were easily identified in the respective Fourier maps. By way of illustration the method is applied to synchrotron powder data of a dimer formed by 30 symmetry-independent non-H atoms. Since single-crystal data may be regarded as overlap-free powder data, it is clear that Patterson-function DM can cope with powder and single-crystal data.

  2. Device for calorimetric measurement

    DOEpatents

    King, William P; Lee, Jungchul

    2015-01-13

    In one aspect, provided herein is a single crystal silicon microcalorimeter, for example useful for high temperature operation and long-term stability of calorimetric measurements. Microcalorimeters described herein include microcalorimeter embodiments having a suspended structure and comprising single crystal silicon. Also provided herein are methods for making calorimetric measurements, for example, on small quantities of materials or for determining the energy content of combustible material having an unknown composition.

  3. Electronic calorimetric computer

    NASA Technical Reports Server (NTRS)

    Heckelman, J. D.

    1968-01-01

    Electronic calorimetric computer calculates nuclear reactor thermal power output to a nominal accuracy of 1 percent. Heat balance is determined by an electronic approach. The thermal power is calculated using the inlet and outlet temperatures and the volume of cooling water and is displayed by a digital readout system.

  4. Temperature-dependent interactions and disorder in the spin-transition compound [Fe(II)(L)2][ClO4]2.C7H8 through structural, calorimetric, magnetic, photomagnetic, and diffuse reflectance investigations.

    PubMed

    Mishra, Vibha; Mukherjee, Rabindranath; Linares, Jorge; Balde, Chérif; Desplanches, Cédric; Létard, Jean-François; Collet, Eric; Toupet, Loic; Castro, Miguel; Varret, François

    2008-09-01

    The title compound [Fe (II)(L) 2][ClO 4] 2.C 7H 8 (L = 2-[3-(2'-pyridyl)pyrazol-1-ylmethyl]pyridine) has been isolated while attempting to grow single crystals of the spin-transition (continuous-type) compound [Fe (II)(L) 2][ClO 4] 2, published earlier ( Dalton Trans. 2003, 3392-3397). Magnetic susceptibility measurements, as well as Mossbauer and calorimetric investigations on polycrystalline samples of [Fe(L) 2][ClO 4] 2.C 7H 8 revealed the occurrence of an abrupt HS ( (5) T 2) <--> LS ( (1) A 1) transition with steep and narrow (2 K) hysteresis at approximately 232 K. The photomagnetic properties exhibit features typical for a broad distribution of activation energies, with relaxation curves in the shape of stretched exponentials. We performed a crystal structure determination of the compound at 120, 240, and 270 K. A noteworthy temperature-dependent behavior of the structural parameters was observed, in terms of disorder of both the anions and solvent molecules, leading to a strong thermal dependence of the strength and dimensionality of the interaction network. Additional data were obtained by diffuse reflectance measurements. We model and discuss the antagonistic effects of interactions and disorder by using a two-level cooperative mean-field approach which includes a distribution of barrier energies at the microscopic scale.

  5. Calorimetric gas sensor

    DOEpatents

    Ricco, Antonio J.; Hughes, Robert C.; Smith, James H.; Moreno, Daniel J.; Manginell, Ronald P.; Senturia, Stephen D.; Huber, Robert J.

    1998-01-01

    A combustible gas sensor that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 .mu.m thick.times.10 .mu.m wide.times.100, 250, 500, or 1000 .mu.m-long polycrystalline Si; some are overcoated with a 0.25 .mu.m-thick protective CVD Si.sub.3 N.sub.4 layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac).sub.2 onto microfilaments resistively heated to approximately 500.degree. C.; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300.degree. C. (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H.sub.2 concentrations between 100 ppm and 1% in an 80/20 N.sub.2 /O.sub.2 mixture. Other catalytic materials can also be used.

  6. Calorimetric gas sensor

    DOEpatents

    Ricco, A.J.; Hughes, R.C.; Smith, J.H.; Moreno, D.J.; Manginell, R.P.; Senturia, S.D.; Huber, R.J.

    1998-11-10

    A combustible gas sensor is described that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 {micro}m thick {times} 10{micro}m wide {times} 100, 250, 500, or 1000 {micro}m-long polycrystalline Si; some are overcoated with a 0.25 {micro}m-thick protective CVD Si{sub 3}N{sub 4} layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac){sub 2} onto microfilaments resistively heated to approximately 500 C; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300 C (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H{sub 2} concentrations between 100 ppm and 1% in an 80/20 N{sub 2}/O{sub 2} mixture. Other catalytic materials can also be used. 11 figs.

  7. PREFACE: Symmetries in Science XVI

    NASA Astrophysics Data System (ADS)

    2014-10-01

    This volume of the proceedings ''Symmetries in Science XVI'' is dedicated to the memory of Miguel Lorente and Allan Solomon who both participated several times in these Symposia. We lost not only two great scientists and colleagues, but also two wonderful persons of high esteem whom we will always remember. Dieter Schuch, Michael Ramek There is a German saying ''all good things come in threes'' and ''Symmetries in Science XVI'', convened July 20-26, 2013 at the Mehrerau Monastery, was our third in the sequel of these symposia since taking it over from founder Bruno Gruber who instigated it in 1988 (then in Lochau). Not only the time seemed to have been perfect (one week of beautiful sunshine), but also the medley of participants could hardly have been better. This time, 34 scientists from 16 countries (more than half outside the European Union) came together to report and discuss their latest results in various fields of science, all related to symmetries. The now customary grouping of renowned experts and talented newcomers was very rewarding and stimulating for all. The informal, yet intense, discussions at ''Gasthof Lamm'' occurred (progressively later) each evening till well after midnight and finally till almost daybreak! However, prior to the opening ceremony and during the conference, respectively, we were informed that Miguel Lorente and Allan Solomon had recently passed away. Both attended the SIS Symposia several times and had many friends among present and former participants. Professor Peter Kramer, himself a long-standing participant and whose 80th birthday commemoration prevented him from attending SIS XVI, kindly agreed to write the obituary for Miguel Lorente. Professors Richard Kerner and Carol Penson (both also former attendees) penned, at very short notice, the tribute to Allan Solomon. The obituaries are included in these Proceedings and further tributes have been posted to our conference website. In 28 lectures and an evening poster

  8. Thermal Analysis of Calorimetric Systems

    NASA Astrophysics Data System (ADS)

    D'Aulerio, L.; Violante, V.; Castagna, E.; Fiore, R.; Capobianco, L.; Del Prete, Pr.; Tanzella, F.; McKubre, M.

    Calorimetric analysis has been carried out for both electrochemical and gas loading experiment. A finite element modeling for steady state and transient gave a satisfactory agreement with the experimental results. For electrochemical cells modeling was applied for isoperibolic and flow calorimeters with the main goal to optimize the system. For high-temperature gas loading experiments the modeling was applied to translate the temperature field (steady state and transient three-dimensional analysis), then, in such a case calculations allowed to perform the calorimetry. This experiment was a replication of the MATRIX experiment performed at SRI by some of the authors.1,2 A correlation between 4He production and excess of power during gas loading of deuterium in palladium was observed. Excess of power was estimated by means of the temperature measurements and by comparing experimental data with both the calibration data and the modeling results. Also the effect of the room temperature evolution was considered in the mathematical model of the experiment. 4He tights stainless steel cell have been filled first with a Pd-based catalyst then loaded with deuterium or hydrogen (blank). After filling cells with gas we observed a different thermal behavior of the cells C1 and C2 containing deuterium, compared to the cell C4 containing hydrogen. The temperature increasing in cells C1 and C2 was estimated to be produced by an additional power source of 0.1 W. The measured excess of helium was consistent with expected value obtained by assuming that the excess of energy was produced by a D+D reaction giving 4He+heat (24 MeV). The slope of the temperature increasing was larger in cells C1 and C2, and after achieving a stationary condition for the system the temperature of cells C1 and C2 increased again. During the thermal effect an analysis of the gas was done for the cells C1 and C2. An increasing of the helium content was revealed for both the cells. The He concentration

  9. Calorimetric thermobarometry of experimentally shocked quartz

    NASA Technical Reports Server (NTRS)

    Ocker, Katherine D.; Gooding, James L.; Hoerz, Friedrich

    1994-01-01

    Structural damage in experimentally shock-metamorphosed, granular quartz is quantitatively measurable by differential scanning calorimetry (DSC). Shock-induced loss of crystallinity is witnessed by disappearance of the alpha/beta phase transformation and evolution of a broad endoenthalpic strain peak at 650-900 K. The strain-energy peak grows rapidly at less than 10 GPa but declines with increasing shock pressure; it approaches zero at 32 GPa where vitrification is extensive. Effects of grain size and post-shock thermal history must be better understood before calorimetric thermobarometry of naturally shocked samples becomes possible.

  10. Comparison and qualification of FFTF calorimetric methods

    SciTech Connect

    McCall, T.B.; Nutt, W.T.; Zimmerman, B.D.

    1981-01-01

    The Fast Flux Test Facility achieved full power operation on December 21, 1981. During the power ascent, the reactor thermal power (calorimetric) was computed by three methods as follows: the plant main data handling computer, Plant Data System (PDS); a second computer, the Experimenter's Data System (EDS); and a manual method requiring human operator activities and a programmable calculator. It is the purpose of this paper to explain the rationale for employing the three methods, describe how each works in a schematic fashion, compare the results, and demonstrate that all methods have met stringent goals based on a statistical analysis of the results.

  11. Ultra-Responsive Thermal Sensors for the Detection of Explosives Using Calorimetric Spectroscopy (CalSpec)

    SciTech Connect

    Datskos, P.G.; Datskou, I.; Marlar, T.A.; Rajic, S.

    1999-04-05

    We have developed a novel chemical detection technique based on infrared micro-calorimetric spectroscopy that can be used to identify the presence of trace amounts of very low vapor pressure target compounds. Unlike numerous recently developed low-cost sensor approaches, the selectivity is derived from the unique differential temperature spectrum and does not require the questionable reliability of highly selective coatings to achieve the required specificity. This is accomplished by obtaining the infrared micro-calorimetric absorption spectrum of a small number of molecules absorbed on the surface of a thermal detector after illumination through a scanning monochromator. We have obtained infrared micro-calorimetric spectra for explosives such as TNT over the wavelength region 2.5 to 14.5 Mu-m. Thus both sophisticated and relatively crude explosive compounds and components are detectable with these ultra-sensitive thermal-mechanical micro-structures. In addition to the above mentioned spectroscopy technique and associated data, the development of these advanced thermal detectors is also presented in detail.

  12. Radiation beam calorimetric power measurement system

    DOEpatents

    Baker, John; Collins, Leland F.; Kuklo, Thomas C.; Micali, James V.

    1992-01-01

    A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.

  13. Calorimetric sensors for energy deposition measurements

    SciTech Connect

    Langenbrunner, J.; Cooper, R.; Morgan, G.

    1998-12-31

    A calorimetric sensor with several novel design features has been developed. These sensors will provide an accurate sampling of thermal power density and energy deposition from proton beams incident on target components of accelerator-based systems, such as the Accelerator Production of Tritium Project (APT) and the Spallation Neutron Source (SNS). A small, solid slug (volume = 0.347 cc) of target material is suspended by kevlar fibers and surrounded by an adiabatic enclosure in an insulating vacuum canister of stainless steel construction. The slug is in thermal contact with a low-mass, calibrated, 100-k{Omega} thermistor. Power deposition caused by the passage of radiation through the slug is calculated from the rate of temperature rise of the slug. The authors have chosen slugs composed of Pb, Al, and LiAl.

  14. A calorimetric method to determine water activity

    NASA Astrophysics Data System (ADS)

    Björklund, Sebastian; Wadsö, Lars

    2011-11-01

    A calorimetric method to determine water activity covering the full range of the water activity scale is presented. A dry stream of nitrogen gas is passed either over the solution whose activity should be determined or left dry before it is saturated by bubbling through water in an isothermal calorimeter. The unknown activity is in principle determined by comparing the thermal power of vaporization related to the gas stream with unknown activity to that with zero activity. Except for three minor corrections (for pressure drop, non-perfect humidification, and evaporative cooling) the unknown water activity is calculated solely based on the water activity end-points zero and unity. Thus, there is no need for calibration with references with known water activities. The method has been evaluated at 30 °C by measuring the water activity of seven aqueous sodium chloride solutions ranging from 0.1 mol kg-1 to 3 mol kg-1 and seven saturated aqueous salt solutions (LiCl, MgCl2, NaBr, NaCl, KCl, KNO3, and K2SO4) with known water activities. The performance of the method was adequate over the complete water activity scale. At high water activities the performance was excellent, which is encouraging as many other methods used for water activity determination have limited performance at high water activities.

  15. Adaptive measurement control for calorimetric assay

    SciTech Connect

    Glosup, J.G.; Axelrod, M.C.

    1994-10-01

    The performance of a calorimeter is usually evaluated by constructing a Shewhart control chart of its measurement errors for a collection of reference standards. However, Shewhart control charts were developed in a manufacturing setting where observations occur in batches. Additionally, the Shewhart control chart expects the variance of the charted variable to be known or at least well estimated from previous experimentation. For calorimetric assay, observations are collected singly in a time sequence with a (possibly) changing mean, and extensive experimentation to calculate the variance of the measurement errors is seldom feasible. These facts pose problems in constructing a control chart. In this paper, the authors propose using the mean squared successive difference to estimate the variance of measurement errors based solely on prior observations. This procedure reduces or eliminates estimation bias due to a changing mean. However, the use of this estimator requires an adjustment to the definition of the alarm and warning limits for the Shewhart control chart. The authors propose adjusted limits based on an approximate Student`s t-distribution for the measurement errors and discuss the limitations of this approximation. Suggestions for the practical implementation of this method are provided also.

  16. Calorimetric study of peroxycarboxylic ester synthesis.

    PubMed

    Fritzsche, L; Knorr, A

    2009-04-30

    Exothermic reactions involving organic peroxides carry a high potential hazard and must be considered with care. A safe handling requires, among others, the assessment of thermal process safety, for which safety characteristics like overall heat production and the resulting adiabatic temperature rise are essential. The article presents the results of the calorimetric investigation of the synthesis of four peroxycarboxylic esters, three tert-Butyl and one tert-Amyl peroxycarboxylic ester. In the two-step synthesis the second one clearly shows the higher exothermic potential. The overall heat production lies in the range of 126-135 kJ/mol and is nearly independent of the carboxylic acid residual in the tert-Butyl peroxycarboxylic ester. The calculated adiabatic temperature rise is 70-80K. Influence of temperature and feed rate on the heat generation is discussed for one species. A grading of the synthesis with respect to temperature levels according to the criticality classes by Stoessel leads to the most critical for an exothermic reaction.

  17. Polymer principles of protein calorimetric two-state cooperativity.

    PubMed

    Kaya, H; Chan, H S

    2000-09-01

    The experimental calorimetric two-state criterion requires the van't Hoff enthalpy DeltaH(vH) around the folding/unfolding transition midpoint to be equal or very close to the calorimetric enthalpy DeltaH(cal) of the entire transition. We use an analytical model with experimental parameters from chymotrypsin inhibitor 2 to elucidate the relationship among several different van't Hoff enthalpies used in calorimetric analyses. Under reasonable assumptions, the implications of these DeltaH(vH)'s being approximately equal to DeltaH(cal) are equivalent: Enthalpic variations among denatured conformations in real proteins are much narrower than some previous lattice-model estimates, suggesting that the energy landscape theory "folding to glass transition temperature ratio" T(f) /T(g) may exceed 6.0 for real calorimetrically two-state proteins. Several popular three-dimensional lattice protein models, with different numbers of residue types in their alphabets, are found to fall short of the high experimental standard for being calorimetrically two-state. Some models postulate a multiple-conformation native state with substantial pre-denaturational energetic fluctuations well below the unfolding transition temperature, or predict a significant post-denaturational continuous conformational expansion of the denatured ensemble at temperatures well above the transition point, or both. These scenarios either disagree with experiments on protein size and dynamics, or are inconsistent with conventional interpretation of calorimetric data. However, when empirical linear baseline subtractions are employed, the resulting DeltaH(vH)/DeltaH(cal)'s for some models can be increased to values closer to unity, and baseline subtractions are found to correspond roughly to an operational definition of native-state conformational diversity. These results necessitate a re-assessment of theoretical models and experimental interpretations.

  18. Calorimetric method for determination of 51Cr neutrino source activity

    NASA Astrophysics Data System (ADS)

    Veretenkin, E. P.; Gavrin, V. N.; Danshin, S. N.; Ibragimova, T. V.; Kozlova, Yu. P.; Mirmov, I. N.

    2015-12-01

    Experimental study of nonstandard neutrino properties using high-intensity artificial neutrino sources requires the activity of the sources to be determined with high accuracy. In the BEST project, a calorimetric system for measurement of the activity of high-intensity (a few MCi) neutrino sources based on 51Cr with an accuracy of 0.5-1% is created. In the paper, the main factors affecting the accuracy of determining the neutrino source activity are discussed. The calorimetric system design and the calibration results using a thermal simulator of the source are presented.

  19. 25 CFR 36.43 - Standard XVI-Student activities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... activities that include special interest clubs, physical activities, student government, and cultural affairs... 25 Indians 1 2013-04-01 2013-04-01 false Standard XVI-Student activities. 36.43 Section 36.43... § 36.43 Standard XVI—Student activities. All schools shall provide and maintain a well-balanced...

  20. 25 CFR 36.43 - Standard XVI-Student activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... activities that include special interest clubs, physical activities, student government, and cultural affairs... 25 Indians 1 2010-04-01 2010-04-01 false Standard XVI-Student activities. 36.43 Section 36.43... § 36.43 Standard XVI—Student activities. All schools shall provide and maintain a well-balanced...

  1. 25 CFR 36.43 - Standard XVI-Student activities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... activities that include special interest clubs, physical activities, student government, and cultural affairs... 25 Indians 1 2012-04-01 2011-04-01 true Standard XVI-Student activities. 36.43 Section 36.43... § 36.43 Standard XVI—Student activities. All schools shall provide and maintain a well-balanced...

  2. 25 CFR 36.43 - Standard XVI-Student activities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... activities that include special interest clubs, physical activities, student government, and cultural affairs... 25 Indians 1 2014-04-01 2014-04-01 false Standard XVI-Student activities. 36.43 Section 36.43... § 36.43 Standard XVI—Student activities. All schools shall provide and maintain a well-balanced...

  3. 25 CFR 36.43 - Standard XVI-Student activities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... activities that include special interest clubs, physical activities, student government, and cultural affairs... 25 Indians 1 2011-04-01 2011-04-01 false Standard XVI-Student activities. 36.43 Section 36.43... § 36.43 Standard XVI—Student activities. All schools shall provide and maintain a well-balanced...

  4. Calorimetric Thermometry of Meteoritic Troilite: Early Reconnaissance

    NASA Astrophysics Data System (ADS)

    Allton, J. H.; Wentworth, S. J.; Gooding, J. L.

    1993-07-01

    are the consequence of different thermal histories. Multiple samples of Del Norte troilite were used to determine the influence of laboratory-scale thermal histories on DSC signatures by heating and cooling each sample under different programmed conditions. In reconnaissance experiments, maximum temperature achieved during heat treatment appears to be more influential than does either the time maintained at temperature or the heating/cooling rate. The experimentally measured alpha/beta onset temperature shows a systematic decline with maximum temperature achieved during prior heating, suggesting that high onset temperatures are indicative of low maximum temperatures in the natural histories of the troilite samples. That trend is at least qualitatively consistent with the petrologic rankings of the meteorites in which troilite from the relatively unmetamorphosed L3 chondrite shows a higher onset temperature than does troilite from either the highly metamorphosed L7 chondrite or the octahedrite. Additional work should define the limits of a quantitative calibration that might ultimately permit derivation of meteorite thermal histories by calorimetric thermometry of troilite. Samples were kindly provided by E. R. D. Scott (Mundrabilla), C. B. Moore (Del Norte), and the Meteorite Working Group (PAT91501; EET83213 powder from E. Jarosewich). References: [1] Chase M. W. Jr. et al. (1985) JANAF Thermochemical Tables, 3rd ed., 1194. [2] Robie R. A. et al. (1979) Geol. Surv. Bull. 1452, 125. [3] Allton J. H. and Gooding J. L. (1993) LPS XXIV, 21-22. Fig. 1, which appears here in the hard copy, shows the thermodynamics of troilite alpha/beta phase transformations measured by DSC during first-heat cycles.

  5. Calorimetric Measurements of Laser Energy and Power- 1975 Supplement

    DTIC Science & Technology

    1975-07-30

    Bolometer Volume Absorption Partial Reflectance Absorptance Measurement Test Comparison Pages: 00021 Cataloged Date: Dec 07,1992 Document Type: HC...Hollow-Sphere Calorimeters 4 Bolometer Calorimeters 5 Volume- Absorption Calorimeters 5 Partial- Absorption Calorimeters 7 Reflectance and... Absorptance Measurements 7 Test and Comparison Procedures 7 Miscellany 7 References 14 -in- CALORIMETRIC MEASUREMENTS OF LASER ENERGY AND

  6. Compound

    NASA Astrophysics Data System (ADS)

    Suzumura, Akitoshi; Watanabe, Masaki; Nagasako, Naoyuki; Asahi, Ryoji

    2014-06-01

    Recently, Cu-based chalcogenides such as Cu3SbSe4, Cu2Se, and Cu2SnSe3 have attracted much attention because of their high thermoelectric performance and their common feature of very low thermal conductivity. However, for practical use, materials without toxic elements such as selenium are preferable. In this paper, we report Se-free Cu3SbS4 thermoelectric material and improvement of its figure of merit ( ZT) by chemical substitutions. Substitutions of 3 at.% Ag for Cu and 2 at.% Ge for Sb lead to significant reductions in the thermal conductivity by 37% and 22%, respectively. These substitutions do not sacrifice the power factor, thus resulting in enhancement of the ZT value. The sensitivity of the thermal conductivity to chemical substitutions in these compounds is discussed in terms of the calculated phonon dispersion and previously proposed models for Cu-based chalcogenides. To improve the power factor, we optimize the hole carrier concentration by substitution of Ge for Sb, achieving a power factor of 16 μW/cm K2 at 573 K, which is better than the best reported for Se-based Cu3SbSe4 compounds.

  7. Calorimetric Measurements of Liquid Al-Zn Alloys

    NASA Astrophysics Data System (ADS)

    Dębski, Adam; Gąsior, Władysław; Szmit, Katarzyna

    2016-10-01

    The integral molar enthalpies of mixing were determined by the drop calorimetric method for binary AL-Zn liquid solutions and compared with the Miedema model as well as the earlier experimental data. The measurements were conducted at two temperatures: 957 K and 1001 K (684 °C and 728 °C), in the entire concentration range. Based on the experimental calorimetric data of this study as well as those available in the literature and the results of the activity studies, the interaction parameters of the Redlich-Kister equation for the liquid Al-Zn phase were worked out with the use of the least square method. The partial and integral Gibbs energies, entropies and enthalpies were calculated and presented in tables and figures. Additionally, the concentration-concentration partial structure factors for the ideal and real Al-Zn solutions were calculated and graphically presented.

  8. Biodegradable composites filled with halloysite nanonotubes: Calorimetric investigations and structural issues

    NASA Astrophysics Data System (ADS)

    Russo, Pietro; Vetrano, Barbara; Acierno, Domenico

    2012-07-01

    Halloysite nanotubes were dispersed in a commercially biodegradable blends by melt compounding. Bionanocomposites based on a film-grade commercial blend of poly(hydroxybutirate)-co-valerate PHBV and poly(butylene adipate-co-therephthalate) PBAT and containg up to 10% by weigth of tubular clays (HNTs) were prepared by using a twin-screw lab extruder and filmed by a film-blowing equipment. Film samples were subjected to thermal and structural investigations. Calorimetric analysis showed that signals shape is clearly affected by the heating and cooling rate, respectively. Structural investigations performed by X-Ray diffraction tests satisfactorily allowed to interpret thermal behavior highlighting the occurrence of different crystalline modifications, depending on the scanning thermal rate, the inclusion of filler and its chemical functionalization.

  9. EDITORIAL: Special issue: CAMOP MOLEC XVI

    NASA Astrophysics Data System (ADS)

    Ascenzi, Daniela; Franceschi, Pietro; Tosi, Paolo

    2007-09-01

    In this special issue of CAMOP/Physica Scripta we would like to present a picture of the state-of-the-art in the field of the dynamics of molecular systems. It contains a collection of papers submitted in association with the most recent MOLEC meeting (MOLEC XVI), which was held in September 2006 in Levico Terme (Italy) to celebrate the 30th anniversary of the MOLEC conference series. The series of biennial European Conferences on the Dynamics of Molecular Systems (MOLEC) started in 1976, when the first meeting was held in Trento (Italy). Successive conferences were organized in Brandbjerg Højskole (Denmark, 1978), Oxford (UK, 1980), Nijmegen (The Netherlands, 1982), Jerusalem (Israel, 1984), Aussois (France, 1986), Assisi (Italy, 1988), Bernkastel-Kues (Germany, 1990), Prague (Czech Republic, 1992), Salamanca (Spain, 1994), Nyborg Strand (Denmark, 1996), Bristol (UK, 1998), Jerusalem (Israel, 2000), Istanbul (Turkey, 2002) and Nunspeet (The Netherlands, 2004). This is the second time that Physica Scripta has hosted a special issue dedicated to MOLEC. The previous issue ( Physica Scripta (2006) 73 C1-C89) was edited by Steven Stolte and Harold Linnartz following the MOLEC 2004 conference. Following the philosophy of CAMOP, we have asked invited speakers to summarize important problems in their research area, with the objective of setting forth the current thinking of leading researchers in atomic, molecular and optical physics. This comprises discussions of open questions, important new applications, new theoretical and experimental approaches and also predictions of where the field is heading. In addition to being authoritative contributions of acknowledged experts, we hope that the papers also appeal to non-specialists as each work contains a clear and broad introduction and references to the accessible literature. The present special issue comprises 17 papers, which are arranged according to the following topics: theoretical and experimental studies of

  10. Measurement of the calorimetric energy scale in MINOS

    SciTech Connect

    Hartnell, Jeffrey J.

    2005-01-01

    MINOS is a long-baseline neutrino oscillation experiment. A neutrino beam is created at the Fermi National Accelerator Laboratory in Illinois and fired down through the Earth. Measurements of the energy spectra and composition of the neutrino beam are made both at the source using the Near detector and 735 km away at the Soudan Underground Laboratory in Minnesota using the Far detector. By comparing the spectrum and flavour composition of the neutrino beam between the two detectors neutrino oscillations can be observed. Such a comparison depends on the accuracy of the relative calorimetric energy scale. This thesis details a precise measurement of the calorimetric energy scale of the MINOS Far detector and Calibration detector using stopping muons with a new ''track window'' technique. These measurements are used to perform the relative calibration between the two detectors. This calibration has been accomplished to 1.7% in data and to significantly better than 2% in the Monte Carlo simulation, thus achieving the MINOS relative calibration target of 2%. A number of cross-checks have been performed to ensure the robustness of the calorimetric energy scale measurements. At the Calibration detector the test-beam energy between run periods is found to be consistent with the detector response to better than 2% after the relative calibration is applied. The muon energy loss in the MINOS detectors determined from Bethe-Bloch predictions, data and Monte Carlo are compared and understood. To estimate the systematic error on the measurement of the neutrino oscillation parameters caused by a relative miscalibration a study is performed. A 2% relative miscalibration is shown to cause a 0.6% bias in the values of Δm2 and sin2(2θ).

  11. Calorimetric measurement of work for a driven harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Sampaio, Rui; Suomela, Samu; Ala-Nissila, Tapio

    2016-12-01

    A calorimetric measurement has recently been proposed as a promising technique to measure thermodynamic quantities in a dissipative superconducting qubit. These measurements rely on the fact that the system is projected into energy eigenstates whenever energy is exchanged with the environment. This requirement imposes a restriction on the class of systems that can be measured in this way. Here we extend the calorimetric protocol to the measurement of work in a driven quantum harmonic oscillator. We employ a scheme based on a two-level approximation that makes use of an experimentally accessible quantity and show how it relates to the work obtained through the standard two-measurement protocol. We find that the average work is well approximated in the underdamped regime for short driving times and, in the overdamped regime, for any driving time. However, this approximation fails for the variance and higher moments of work at finite temperatures. Furthermore, we show how to relate the work statistics obtained through this scheme to the work statistics given by the two-measurement protocol.

  12. Adiabatic calorimetric decomposition studies of 50 wt.% hydroxylamine/water.

    PubMed

    Cisneros, L O; Rogers, W J; Mannan, M S

    2001-03-19

    Calorimetric data can provide a basis for determining potential hazards in reactions, storage, and transportation of process chemicals. This work provides calorimetric data for the thermal decomposition behavior in air of 50wt.% hydroxylamine/water (HA), both with and without added stabilizers, which was measured in closed cells with an automatic pressure tracking adiabatic calorimeter (APTAC). Among the data provided are onset temperatures, reaction order, activation energies, pressures of noncondensable products, thermal stability at 100 degrees C, and the effect of HA storage time. Discussed also are the catalytic effects of carbon steel, stainless steel, stainless steel with silica coating, inconel, titanium, and titanium with silica coating on the reaction self-heat rates and onset temperatures. In borosilicate glass cells, HA was relatively stable at temperatures up to 133 degrees C, where the HA decomposition self-heat rate reached 0.05 degrees C/min. The added stabilizers appeared to reduce HA decomposition rates in glass cells and at ambient temperatures. The tested metals and metal surfaces coated with silica acted as catalysts to lower the onset temperatures and increase the self-heat rates.

  13. ASIC for calorimetric measurements in the astrophysical experiment NUCLEON

    NASA Astrophysics Data System (ADS)

    Atkin, E.; Voronin, A.; Karmanov, D.; Kudryashov, I.; Kovalev, I.; Shumikhin, V.

    2016-02-01

    A satellite with the NUCLEON apparatus was launched in Dec. 2014. The space NUCLEON project of ROSCOSMOS is designed to investigate cosmic ray nuclei energy spectra from 100 GeV to 1000 TeV as well as cosmic ray electron spectra from 20 GeV to 3 TeV. The method of energy determination by means of a silicon instrument for measuring the particle charge of cosmic rays and the calorimetric system were developed. The main parameters, that determine the quality of calorimetric systems are linearity of transfer characteristic and the dynamic range of input signals, which should reach 30 000 MIPs (minimum ionizing particles). The ASIC, satisfying these requirements, consisting of 32 channels with a unique dynamic range from 1 to 40000 MIPs, signal to noise ratio not less than 2.5 at a shaper peaking time of 2 μs and a low power consumption of 1.5 mW/channel has been designed. The first results of the ASIC functionality in space are presented.

  14. Metal carbon bond energies for adsorbed hydrocarbons from calorimetric data

    NASA Astrophysics Data System (ADS)

    Gross, Heike; Campbell, Charles T.; King, David A.

    2004-11-01

    Single crystal adsorption calorimetry (SCAC) is a powerful new method for measuring adsorption and reaction energies. Particularly for hydrocarbons, where little or no information is available from either experiment or theory on well-defined surfaces, this method can provide crucially needed information. Assignment of the measured calorimetric heats to the appropriate surface reaction yields directly reaction heats and heats of formation of surface species. An important extension using these results is to derive values for metal-carbon bond energies in adsorbed hydrocarbon species. In this paper we review the definition of the bond dissociation energy for a surface species and discuss methodologies and limitations for calculating accurate values of this quantity from measured calorimetric data. As a step in establishing benchmark data for adsorbed hydrocarbons, we calculate a Pt-C σ bond strength, < D(Pt-C)>, of about 245 kJ/mol from data for ethylidyne on Pt{1 1 1}. Two independent methods, the quasiempirical valence bond (QVB) method and an average bond energy (ABE) method, were used to obtain this value, and the two values derived from these two approaches agree quite well. We also discuss the implications and applicability of this value of D(Pt-C) for other adsorbed hydrocarbons and on other Pt surfaces, and estimates of how this bond energy should differ when the C atom's ligands are different.

  15. Novel micro-calorimetric spectroscopy for mine detection

    SciTech Connect

    Datskos, P.G. |; Rajic, S.; Egert, C.M.; Datskou, I.

    1998-03-01

    The authors have developed a novel micro-calorimetric spectroscopy technique that can be used in mine detection applications. In this technique target molecules are allowed to adsorb on the surface of sub-femtojoule sensitive micromechanical thermal detectors. The adsorption of molecules on the thermal detector surface causes a differential surface stress resulting in an initial trigger. By exposing each element in an array of thermal detectors to different photon wavelengths, an extremely sensitive and unique photothermal signature response can be obtained. The authors present their results on target chemicals adsorbed on the detector surface at sub-monolayer coverage levels. They will present infrared photothermal spectra for trace concentrations of diisopropyl methylphosphonate (DIMP), and trinitrotoluene (TNT) over the wavelength region 2.5 to 14.5 microns. They found that in the wavelength region 2.5 to 14.5 microns the photothermal spectra of DIMP and TNT exhibit a number of peaks and are in excellent agreement with infrared absorption spectra found in the literature. Chemical detectors based on micro-calorimetric spectroscopy can be used to sensitively sense small number of molecules adsorbed on a thermal detector surface. The photothermal signature resulting from photon irradiation can be used for improved chemical characterization.

  16. Calorimetric measurement of work for a driven harmonic oscillator.

    PubMed

    Sampaio, Rui; Suomela, Samu; Ala-Nissila, Tapio

    2016-12-01

    A calorimetric measurement has recently been proposed as a promising technique to measure thermodynamic quantities in a dissipative superconducting qubit. These measurements rely on the fact that the system is projected into energy eigenstates whenever energy is exchanged with the environment. This requirement imposes a restriction on the class of systems that can be measured in this way. Here we extend the calorimetric protocol to the measurement of work in a driven quantum harmonic oscillator. We employ a scheme based on a two-level approximation that makes use of an experimentally accessible quantity and show how it relates to the work obtained through the standard two-measurement protocol. We find that the average work is well approximated in the underdamped regime for short driving times and, in the overdamped regime, for any driving time. However, this approximation fails for the variance and higher moments of work at finite temperatures. Furthermore, we show how to relate the work statistics obtained through this scheme to the work statistics given by the two-measurement protocol.

  17. Calorimetric Aerogel Collectors/Detectors of Hypervelocity Dust Grains

    NASA Astrophysics Data System (ADS)

    Dominguez, G.; Westphal, A. J.; Phillips, M. L. F.; Jones, S. M.

    Distinguishing between lower velocity (<8 km/s) orbital debris impacts and higher velocity extraterrestrial particles collected in aerogels was the primary driver behind our development of calorimetric aerogels. While low-density aerogels have been shown to be superior at maximizing the survival of captured hypervelocity projectiles, reconstructing the impact velocity has not been possible. We have previously demonstrated that the shock heating experienced by Gd:Tb doped alumina aerogels results in the production of permanently fluorescent impact cavities. In addition, we have shown that the amount of induced (with UV illumination) fluorescence correlates with the kinetic energy of the captured projectile. Improvements in our production capabilities have recently allowed us to measure, using a Ti-doped Si/Al aerogel, the intrinsic resolution of using this technique to reconstruct the velocity of captured hypervelocity projectiles. We are currently exploring composition space in order to optimize the sensitivity and mechanical properties of these collector/detectors. We report on the results from our latest round of hypervelocity tests as well as the expected collection statistics of deploying a 3 square meter array of calorimetric aerogels in low-Earth-orbit (LEO).

  18. Synthesis of nitrate sodalite: An in situ scanning calorimetric study

    NASA Astrophysics Data System (ADS)

    Liu, Qingyuan; Navrotsky, Alexandra

    2007-04-01

    The formation of nitrate sodalite, an important constituent of the resilient heels at DOE nuclear waste storage sites, was closely followed by oven synthesis, in situ calorimetry as a function of heating rate from 0.01 to 0.1 °C/min and X-ray diffraction. A transition sequence of amorphous-zeolite A-sodalite-cancrinite was confirmed. For in situ synthesis calorimetry, the heat flow peaks related to zeolite A formation are shifted to higher temperatures as heating rate increases. Although the end products are mostly nitrate sodalite, no calorimetric signals associated with zeolite A to sodalite conversion are detected. This suggests that the enthalpy of formation of zeolite A and sodalite are very similar and the zeolite A to sodalite conversion enthalpy is small. This conclusion is in accord with previous measurements by oxide melt solution calorimetry.

  19. Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals

    NASA Astrophysics Data System (ADS)

    Kozlov, M. E.; Murthy, N. S.; Udod, I.; Khayrullin, I. I.; Baughman, R. H.; Zakhidov, A. A.

    2007-03-01

    We report preparation and characterization of novel bicomponent metal-based photonic crystals having submicron three-dimensional (3D) periodicity. Fabricated photonic crystals include SiO2 sphere lattices infiltrated interstitially with metals, carbon inverse lattices filled with metal or metal alloy spheres, Sb inverse lattices, and Sb inverse lattices filled with Bi spheres. Starting from a face centered SiO2 lattice template, these materials were obtained by sequences of either templating and template extraction or templating, template extraction, and retemplating. Surprising high fidelity was obtained for all templating and template extraction steps. Scanning electron microscopy (SEM), small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) were used to characterize the structure and the effects of the structure on calorimetric properties. To the best of our knowledge, SAXS data on metallic photonic crystals were collected for first time.

  20. Calorimetric study of tellurium rich Se-Te-Sn glasses

    NASA Astrophysics Data System (ADS)

    Heera, Pawan; Kumar, Anup; Jharwal, Manish; Sharma, Raman

    2016-05-01

    We report the calorimetric study of amorphous Se30Te70-x Snx alloys for x= 0, 1.5, 2.5, 4.5 in terms of kinetic parameters. The DSC curves recorded at four different heating rates are analyzed to determine the transition temperatures, activation energy, thermal stability, glass forming ability. The crystallization process has been investigated using Kissinger, Matusita, Augis and Bennett, and Gao and Wang models. Various kinetic parameters have been calculated for a better understanding of the growth mechanism. The glass transition temperatures Tg, onset crystallization Tc, peak crystallization Tp, and melting temperature Tm are found to increase with the increase in Sn content. The system under investigation is found to be thermally stable for at lower at% of Sn. The values of parameters HR, Hw, and S indicate that Glass forming ability (GFA) decays with an increase in Sn content.

  1. Calorimetric measurement and modelling of the equivalent series of capacitors

    NASA Astrophysics Data System (ADS)

    Seguin, B.; Gosse, J. P.; Ferrieux, J. P.

    1999-12-01

    The equivalent series resistance of polypropylene capacitors has been determined under rated voltage, in the range 1 kHz 1 MHz, between 220 K and 370 K by a calorimetric technique. The original feature of this determination of capacitor losses lies in the use of the isothermal calorimetry and in the measurement of an electrical power and not of a temperature increase. The frequency dependence of the equivalent series resistance, at various temperatures, enables to separate the losses in the conducting material from those in the dielectric and to get their respective variations as a function of frequency and temperature. These variations of the equivalent series resistance with frequency at a given temperature have been reproduced by using an equivalent circuit composed of resistors, inductors and capacitors. This model has been verified for non-sinusoidal waveforms such as those met with in a filtering circuit and is used to evaluate by simulation the losses of the capacitor.

  2. Calorimetric determination of the enthalpy of 1-butyl-3-methylimidazolium bromide synthesis: a key quantity in thermodynamics of ionic liquids.

    PubMed

    Paulechka, Yauheni U; Kabo, Andrey G; Blokhin, Andrey V

    2009-11-05

    The enthalpy of the 1-butyl-3-methylimidazolium bromide [C(4)mim]Br ionic liquid synthesis reaction 1-methylimidazole (liq) + 1-bromobutane (liq) --> [C(4)mim]Br (liq) was determined in a homemade small-volume isoperibol calorimeter to be Delta(r)H degrees (298) = -87.7 +/- 1.6 kJ x mol(-1). The activation energy for this reaction in a homogeneous system E(A) = 73 +/- 4 kJ x mol(-1) was found from the results of calorimetric measurements. The formation enthalpies for the crystalline and liquid [C(4)mim]Br were determined from the calorimetric data: Delta(f)H degrees (298)(cr) = -178 +/- 5 kJ x mol(-1) and Delta(f)H degrees (298)(liq) = -158 +/- 5 kJ x mol(-1). The ideal-gas formation enthalpy of this compound Delta(f)H degrees (298)(g) = 16 +/- 7 kJ x mol(-1) was calculated using the methods of quantum chemistry and statistical thermodynamics. The vaporization enthalpy of [C(4)mim]Br, Delta(vap)H degrees (298) = 174 +/- 9 kJ x mol(-1), was estimated from the experimental and calculated formation enthalpies. It was demonstrated that vapor pressure of this ionic liquid cannot be experimentally determined.

  3. Remote calorimetric detection of urea via flow injection analysis.

    PubMed

    Gaddes, David E; Demirel, Melik C; Reeves, W Brian; Tadigadapa, Srinivas

    2015-12-07

    The design and development of a calorimetric biosensing system enabling relatively high throughput sample analysis are reported. The calorimetric biosensor system consists of a thin (∼20 μm) micromachined Y-cut quartz crystal resonator (QCR) as a temperature sensor placed in close proximity to a fluidic chamber packed with an immobilized enzyme. Layer by layer enzyme immobilization of urease is demonstrated and its activity as a function of the number of layers, pH, and time has been evaluated. This configuration enables a sensing system where a transducer element is physically separated from the analyte solution of interest and is thereby free from fouling effects typically associated with biochemical reactions occuring on the sensor surface. The performance of this biosensing system is demonstrated by detection of 1-200 mM urea in phosphate buffer via a flow injection analysis (FIA) technique. Miniaturized fluidic systems were used to provide continuous flow through a reaction column. Under this configuration the biosensor has an ultimate resolution of less than 1 mM urea and showed a linear response between 0-50 mM. This work demonstrates a sensing modality in which the sensor itself is not fouled or contaminated by the solution of interest and the enzyme immobilized Kapton® fluidic reaction column can be used as a disposable cartridge. Such a system enables reuse and reliability for long term sampling measurements. Based on this concept a biosensing system is envisioned which can perform rapid measurements to detect biomarkers such as glucose, creatinine, cholesterol, urea and lactate in urine and blood continuously over extended periods of time.

  4. Unilateral NMR study of a XVI century wall painted

    NASA Astrophysics Data System (ADS)

    Proietti, N.; Capitani, D.; Rossi, E.; Cozzolino, S.; Segre, A. L.

    2007-06-01

    Wall paintings in the XVI century Serra Chapel in the "Chiesa di Nostra Signora del Sacro Cuore" Rome, have been studied using unilateral NMR. In order to map the distribution of moisture content in the wall painted, a large number of Hahn echo measurements, covering large areas of the wall painting were performed. Because the intensity of the Hahn echo is proportional to the amount of moisture in the area under study, the experimental data were transformed into 2D gradient colour maps which allowed an easy visualization of the moisture content of the wall. The state of conservation of the wall painting was monitored using T2 measurements specially with regards to outcropping salt.

  5. Acyclic diterpene glycosides, capsianosides VIII, IX, X, XIII, XV and XVI from the fruits of Paprika Capsicum annuum L. var. grossum BAILEY and Jalapeño Capsicum annuum L. var. annuum.

    PubMed

    Lee, Jong-Hyun; Kiyota, Naoko; Ikeda, Tsuyoshi; Nohara, Toshihiro

    2006-10-01

    Paprika and Jalapeño are used as vegetables and spices. We have obtained six new acyclic diterpene glycosides, called capsianosides XIII (2), XV (3), IX (4), XVI (5), X (6) and VIII (7) together with known capsianoside II (1) from the fruits of the Paprika and Jalapeño. The structures of these compounds have been elucidated by the (1)H- and (13)C-NMR spectra and two-dimensional NMR methods.

  6. 3D modeling and characterization of a calorimetric flow rate sensor for sweat rate sensing applications

    NASA Astrophysics Data System (ADS)

    Iftekhar, Ahmed Tashfin; Ho, Jenny Che-Ting; Mellinger, Axel; Kaya, Tolga

    2017-03-01

    Sweat-based physiological monitoring has been intensively explored in the last decade with the hopes of developing real-time hydration monitoring devices. Although the content of sweat (electrolytes, lactate, urea, etc.) provides significant information about the physiology, it is also very important to know the rate of sweat at the time of sweat content measurements because the sweat rate is known to alter the concentrations of sweat compounds. We developed a calorimetric based flow rate sensor using PolydimethylSiloxane that is suitable for sweat rate applications. Our simple approach on using temperature-based flow rate detection can easily be adapted to multiple sweat collection and analysis devices. Moreover, we have developed a 3D finite element analysis model of the device using COMSOL Multiphysics™ and verified the flow rate measurements. The experiment investigated flow rate values from 0.3 μl/min up to 2.1 ml/min, which covers the human sweat rate range (0.5 μl/min-10 μl/min). The 3D model simulations and analytical model calculations covered an even wider range in order to understand the main physical mechanisms of the device. With a verified 3D model, different environmental heat conditions could be further studied to shed light on the physiology of the sweat rate.

  7. Calorimetric studies of the ammonia-water system with application to the outer solar system

    NASA Astrophysics Data System (ADS)

    Yarger, J.; Lunine, J. I.; Burke, M.

    1993-07-01

    A series of heating experiments was performed on the condensed ammonia-water system using a differential scanning calorimeter (DSC). The water-rich samples were cooled quickly to below 130 K, then heated at a variety of rates. Rather than a single peritectic melt at 176 K, expected for the equilibrium system of water ice and ammonia dihydrate, four enthalpic transitions were repeatedly seen in the temperature range 150-176 K. These transitions are generally consistent with the earlier calorimetric results of Van Kasteren (1973), who interpreted the lowest temperature exotherm as crystallization of an amorphous ammonia-water compound formed during cooling. We propose that both sets of experiments are seeing the crystallization of ammonia monohydrate, which is metastable relative to the dihydrate, followed by partial remelting and crystallization of dihydrate upon further heating. The apparent stability of the monohydrate in the dihydrate equilibrium field implies a potentially complex behavior of ammonia-water ices in satellites. Possible self-heating of the mixture by several tens of degrees up to the 170 K eutectic could make mobilization of ammonia-water liquids in icy satellite interiors energetically easier than previously thought.

  8. Calorimetric and relaxation properties of xylitol-water mixtures

    NASA Astrophysics Data System (ADS)

    Elamin, Khalid; Sjöström, Johan; Jansson, Helén; Swenson, Jan

    2012-03-01

    We present the first broadband dielectric spectroscopy (BDS) and differential scanning calorimetry study of supercooled xylitol-water mixtures in the whole concentration range and in wide frequency (10-2-106 Hz) and temperature (120-365 K) ranges. The calorimetric glass transition, Tg, decreases from 247 K for pure xylitol to about 181 K at a water concentration of approximately 37 wt. %. At water concentrations in the range 29-35 wt. % a plentiful calorimetric behaviour is observed. In addition to the glass transition, almost simultaneous crystallization and melting events occurring around 230-240 K. At higher water concentrations ice is formed during cooling and the glass transition temperature increases to a steady value of about 200 K for all higher water concentrations. This Tg corresponds to an unfrozen xylitol-water solution containing 20 wt. % water. In addition to the true glass transition we also observed a glass transition-like feature at 220 K for all the ice containing samples. However, this feature is more likely due to ice dissolution [A. Inaba and O. Andersson, Thermochim. Acta, 461, 44 (2007)]. In the case of the BDS measurements the presence of water clearly has an effect on both the cooperative α-relaxation and the secondary β-relaxation. The α-relaxation shows a non-Arrhenius temperature dependence and becomes faster with increasing concentration of water. The fragility of the solutions, determined by the temperature dependence of the α-relaxation close to the dynamic glass transition, decreases with increasing water content up to about 26 wt. % water, where ice starts to form. This decrease in fragility with increasing water content is most likely caused by the increasing density of hydrogen bonds, forming a network-like structure in the deeply supercooled regime. The intensity of the secondary β-relaxation of xylitol decreases noticeably already at a water content of 2 wt. %, and at a water content above 5 wt. % it has been replaced by a

  9. Adsorption of methylene blue on raw and MTZ/imogolite hybrid surfaces: effect of concentration and calorimetric investigation.

    PubMed

    Guerra, Denis L; Batista, Adriano C; Viana, Rúbia R; Airoldi, Claudio

    2010-11-15

    The synthetic imogolite sample was used for organofunctionalization process with 2-mercaptothiazoline (MTZ). The compound 2-mercaptothiazoline was anchored onto imogolite surface by heterogeneous route. Due to the increment of basic centers attached to the pendant chains the dye adsorption capability of the final chelating material, was found to be higher than is precursor. The ability of these materials to remove methylene blue from aqueous solution was followed by a series of adsorption isotherms at room temperature and pH 4.0. The maximum number of moles adsorbed was determined to be 40.32×10(-2) and 65.13×10(-2) mmol g(-1) for IMO and IMO(MTZ), respectively. The energetic effects caused by dye cations adsorption were determined through calorimetric titrations. Thermodynamics indicated the existence of favorable conditions for such methylene blue-nitrogen and sulfur interactions.

  10. Four-core optical fiber as a calorimetric gauge.

    PubMed

    Güvenç, Sema; Gökbulut, Belkıs; Kösoğlu, Gülşen; Yüksel, Heba; Inci, Mehmet Naci

    2016-11-10

    A four-core optical fiber is demonstrated as a calorimetric gauge for investigation of one-dimensional heat transfer measurements. Transient heat pulses from a Nd:YAG laser of 600 ms duration with a repetition rate of the order of 10 s are delivered onto the cleaved distal end face of the four-core fiber, aiming at one of the single cores only, which cause an optical path length difference between four guiding cores due to the temperature-induced change in the index of refraction and physical length of the targeted fiber core of concern. This results in a shift in the fringe pattern, which is operated in the reflection scheme. A phase shift of 0.43±0.015  rad is measured with a CMOS camera for 40 mW pulses. The thermal heat diffusion length in the selected fiber core is determined to be 2.8 mm, which contains 10.9±0.38  kJ/m2s heat, causing a temperature rise of 1.43±0.05  K.

  11. Calorimetric measurements of energetics of defect interactions in fluorite oxides.

    PubMed

    Navrotsky, Alexandra; Simoncic, Petra; Yokokawa, Harumi; Chen, Weiqun; Lee, Theresa

    2007-01-01

    Direct measurement by oxide melt solution calorimetry of energetics of mixing in rare earth and yttrium doped zirconia, hafnia, and ceria systems provides support for spectroscopic and computational studies of the location and clustering of vacancies in these systems. Strongly negative heats of mixing are seen when the vacancy is transferred from being nearest neighbor to Y or RE in the sesquioxide to being nearest neighbor to Zr or Hf in the cubic solid solution. In the absence of such redistribution, small positive enthalpies of mixing are seen in CeO2-YO1.5 and CeO2-REO.15 systems. Strongly positive enthalpies of mixing are seen in CeO2-ZrO2, which has a large difference in cation sizes and no vacancy formation. The system Ce0.8Y0.2O1.9-Zr0.8Y0.2O1.9 shows small positive heats of formation with less destabilization in the Ce-rich region, suggestive of "scavenging" of oxygen vacancies by Zr. The calorimetric data obtained in these studies offer direct comparison with the results of computations on defect clusters and their binding energies.

  12. Adiabatic Heat of Hydration Calorimetric Measurements for Reference Saltstone Waste

    SciTech Connect

    Bollinger, James

    2006-01-12

    The production of nuclear materials for weapons, medical, and space applications from the mid-1950's through the late-1980's at the Savannah River Site (SRS) generated approximately 35 million gallons of liquid high-level radioactive waste, which is currently being processed into vitrified glass for long-term storage. Upstream of the vitrification process, the waste is separated into three components: high activity insoluble sludge, high activity insoluble salt, and very low activity soluble salts. The soluble salt represents 90% of the 35 million gallons of overall waste and is processed at the SRS Saltstone Facility, where it mixed with cement, blast furnace slag, and flyash, creating a grout-like mixture. The resulting grout is pumped into aboveground storage vaults, where it hydrates into concrete monoliths, called saltstone, thus immobilizing the low-level radioactive salt waste. As the saltstone hydrates, it generates heat that slowly diffuses out of the poured material. To ensure acceptable grout properties for disposal and immobilization of the salt waste, the grout temperature must not exceed 95 C during hydration. Adiabatic calorimetric measurements of the heat generated for a representative sample of saltstone were made to determine the time-dependent heat source term. These measurements subsequently were utilized as input to a numerical conjugate heat transfer model to determine the expected peak temperatures for the saltstone vaults.

  13. Calorimetric studies on the phenolic glycoside D(-)-salicin.

    PubMed

    Pinto, Susana S; Diogo, Hermínio P

    2008-12-01

    A pure orthorhombic phase sample of D(-)-salicin was purified and characterized for calorimetric measurements. From differential scanning calorimetry (DSC) measurements it was found that the onset and maximum temperatures of the fusion peak were T(on) = (473.30 +/- 0.05) K and T(max) = (474.74 +/- 0.05) K, respectively, and that the corresponding standard enthalpy of fusion was Delta(cr)(l) H(m)(o) = (55.5 +/- 0.4) kJ mol(-1). From the last two values the standard entropy of fusion is calculated as Delta(cr)(l) S(m)(o) = (116.9 +/- 0.4) J mol(-1) K(-1). The standard molar enthalpy of formation of orthorhombic D(-)-salicin at T = 298.15 K, was determined as Delta(f) H(m)(o) (C(13)H(18)O(7), cr, orthorhombic) = -(1366.9 +/- 3.2) kJ mol(-1), by combustion calorimetry. From the results of solution calorimetry obtained in this work and some auxiliary values taken from the literature the enthalpy of reaction of hydrolysis of D(-)-salicin to produce beta-glucose and o-hydroxybenzyl alcohol was found marginally thermoneutral, if the uncertainty interval was considered. Additionally, specific heat capacity measurements on the orthorhombic phase, glass and liquid-quenched glass obtained by DSC was reported.

  14. Neutron induced capture and fission discrimination using calorimetric shape decomposition

    NASA Astrophysics Data System (ADS)

    Carrapiço, C.; Berthoumieux, E.; Dridi, W.; Gonçalves, I. F.; Gunsing, F.; Lampoudis, C.; Vaz, P.; n TOF Collaboration

    2013-03-01

    The neutron capture and fission cross-sections of 233U have been measured at the neutron time-of-flight facility n_TOF at CERN in the energy range from 1 eV to 1 keV using a high performance 4π BaF2 Total Absorption Calorimeter (TAC) as a detection device. In order to separate the contributions of neutron capture and neutron induced fission in the TAC, a methodology called Calorimetric Shape Decomposition (CSD) was developed. The CSD methodology is based on the study of the TAC's energy response for all competing reactions, allowing to discriminate between γ s originating from neutron induced fission and those from neutron capture reactions without the need for fission tagging or any additional detection system. In this article, the concept behind the CSD is explained in detail together with the necessary analysis to obtain the TAC's response to neutron capture and neutron induced fission. The discrimination between capture and fission contributions is shown for several neutron energies. A comparison between the 233U neutron capture and fission yield extraction with ENDF/B-VII v1. library data is also provided.

  15. F-actin has a very high calorimetric unfolding enthalpy.

    PubMed

    Gicquaud, C R; Aubin, P H; Heppell, B; St-Gelais, F

    2005-08-19

    The thermal unfolding of F-actin was studied using differential scanning calorimetry. Heat denatures F-actin in two steps. The first is endothermic and corresponds to the unfolding of the peptide chain, while the second is exothermic and is due to the aggregation of the unfolded molecules. The aspect of the thermogram is influenced by the concentration of the protein. For concentrations around 1mg/ml, the steps are superimposed, while the two steps are separated at very low concentrations. It thus becomes possible to estimate the calorimetric enthalpy for the unfolding step. The enthalpy of unfolding is 64 MJ/mol, or 1400 J/g. This value is considerably higher than those mentioned in the literature for the denaturation of actin and other proteins, which are in the range of 25-30 J/g. The large amount of energy required to unfold the molecule of F-actin could be an adaptation of its role as a protein that transmits forces, and consequently must be very resistant to mechanical constraints.

  16. Thermodynamic model for calorimetric and phase coexistence properties of coal derived fluids. Final technical report

    SciTech Connect

    Kabadi, V.N.

    1992-10-01

    The work on this project was initiated on September 1, 1989. The project consisted of three different tasks. 1. A thermodynamic model to predict VLE and calorimetric properties of coal liquids. 2. VLE measurements at high temperature and high pressure for coal model compounds and 3. Chromatographic characterization of coal liquids for distribution of heteroatoms. The thermodynamic model developed is an extension of the previous model developed for VLE of coal derived fluids (DOE Grant no. FG22-86PC90541). The model uses the modified UNIFAC correlation for the liquid phase. Some unavailable UNIFAC interactions parameters have been regressed from experimental VLE and excess enthalpy data. The model is successful in predicting binary VLE and excess enthalpy data. Further refinements of the model are suggested. An apparatus for the high pressure high temperature VLE data measurements has been built and tested. Tetralin-Quinoline is the first binary system selected for data measurements. The equipment was tested by measuring 325{degree}C isotherm for this system and comparing it with literature data. Additional isotherms at 350{degree}C and 370{degree}C have been measured. The framework for a characterization procedure for coal derived liquids has been developed. A coal liquid is defined by a true molecular weight distribution and distribution of heteroatoms as a function of molecular weights. Size exclusions liquid chromatography, elemental analysis and FTIR spectroscopy methods are used to obtain the molecular weight and hetroatom distributions. Further work in this area should include refinements of the characterization procedure, high temperature high pressure VLE data measurements for selective model compound binary systems, and improvement of the thermodynamic model using the new measured data and consistent with the developments in the characterization procedure.

  17. PIXE analysis of Italian ink drawings of the XVI century

    NASA Astrophysics Data System (ADS)

    Zucchiatti, A.; Climent-Font, A.; Enguita, O.; Fernandez-Jimenez, M. T.; Finaldi, G.; Garrido, C.; Matillas, J. M.

    2005-10-01

    The composition of inks in a group of 24 drawings of ten XVI century Italian painters, has been determined by PIXE at the external micro-beam line of the Centro de Micro Análisis de Materiales of the Universidad Autónoma de Madrid. Ink elemental thicknesses have been determined by comparison with a set of certified thin standards. A comprehensive comparison of inks has also been performed by renormalisation of spectra and definition of an ink-to-ink distance. The elemental compositions and the ink-to-ink distances give consistent results that are generally in line with the appearance of the drawings and add relevant instrumental information to the stylistic observation, revealing for example the presence of retouches and additions in different parts of a drawing. Cluster analysis performed on a subgroup of 13 artefacts from the Genoese painter Luca Cambiaso and his school has revealed a partition that separates neatly the work of the master from that of his followers.

  18. 77 FR 43640 - Social Security Ruling, SSR 12-2p; Titles II and XVI: Evaluation of Fibromyalgia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... ADMINISTRATION Social Security Ruling, SSR 12-2p; Titles II and XVI: Evaluation of Fibromyalgia AGENCY: Social... determinable impairment of fibromyalgia, and how we evaluate fibromyalgia in disability claims and continuing... Interpretation Ruling Titles II and XVI: Evaluation of Fibromyalgia Purpose: This Social Security Ruling...

  19. Absolute calorimetric calibration of low energy brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Stump, Kurt E.

    In the past decade there has been a dramatic increase in the use of permanent radioactive source implants in the treatment of prostate cancer. A small radioactive source encapsulated in a titanium shell is used in this type of treatment. The radioisotopes used are generally 125I or 103Pd. Both of these isotopes have relatively short half-lives, 59.4 days and 16.99 days, respectively, and have low-energy emissions and a low dose rate. These factors make these sources well suited for this application, but the calibration of these sources poses significant metrological challenges. The current standard calibration technique involves the measurement of ionization in air to determine the source air-kerma strength. While this has proved to be an improvement over previous techniques, the method has been shown to be metrologically impure and may not be the ideal means of calbrating these sources. Calorimetric methods have long been viewed to be the most fundamental means of determining source strength for a radiation source. This is because calorimetry provides a direct measurement of source energy. However, due to the low energy and low power of the sources described above, current calorimetric methods are inadequate. This thesis presents work oriented toward developing novel methods to provide direct and absolute measurements of source power for low-energy low dose rate brachytherapy sources. The method is the first use of an actively temperature-controlled radiation absorber using the electrical substitution method to determine total contained source power of these sources. The instrument described operates at cryogenic temperatures. The method employed provides a direct measurement of source power. The work presented here is focused upon building a metrological foundation upon which to establish power-based calibrations of clinical-strength sources. To that end instrument performance has been assessed for these source strengths. The intent is to establish the limits of

  20. Neutron detection by measuring capture gammas in a calorimetric approach

    NASA Astrophysics Data System (ADS)

    Pausch, Guntram; Herbach, Claus-Michael; Kong, Yong; Lentering, Ralf; Plettner, Cristina; Roemer, Katja; Scherwinski, Falko; Stein, Juergen; Schotanus, Paul; Wilpert, Thomas

    2011-10-01

    The neutron capture detector (NCD) is introduced as a novel detection scheme for thermal and epithermal neutrons that could provide large-area neutron counters by using common detector materials and proven technologies. The NCD is based on the fact that neutron captures are usually followed by prompt gamma cascades, where the sum energy of the gammas equals to the total excitation energy of typically 6-9 MeV. This large sum energy is measured in a calorimetric approach and taken as the signature of a neutron capture event. An NCD consists of a neutron converter, comprising of constituents with large elemental neutron capture cross-section like cadmium or gadolinium, which is embedded in common scintillator material. The scintillator must be large and dense enough to absorb with reasonable probability a portion of the sum energy that exceeds the energy of gammas emitted by common (natural, medical, industrial) radiation sources. An energy window, advantageously complemented with a multiplicity filter, then discriminates neutron capture signals against background. The paper presents experimental results obtained at the cold-neutron beam of the BER II research reactor, Helmholtz-Zentrum Berlin, and at other neutron sources with a prototype NCD, consisting of four BGO crystals with embedded cadmium sheets, and with a benchmark configuration consisting of two separate NaI(Tl) detectors. The detector responses are in excellent agreement with predictions of a simulation model developed for optimizing NCD configurations. NCDs could be deployed as neutron detectors in radiation portal monitors (RPMs). Advanced modular scintillation detector systems could even combine neutron and gamma sensitivity with excellent background suppression at minimum overall expense.

  1. Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate

    NASA Astrophysics Data System (ADS)

    Falenty, Andrzej; Hansen, Thomas C.; Kuhs, Werner F.

    2014-12-01

    Gas hydrates are ice-like solids, in which guest molecules or atoms are trapped inside cages formed within a crystalline host framework (clathrate) of hydrogen-bonded water molecules. They are naturally present in large quantities on the deep ocean floor and as permafrost, can form in and block gas pipelines, and are thought to occur widely on Earth and beyond. A natural point of reference for this large and ubiquitous family of inclusion compounds is the empty hydrate lattice, which is usually regarded as experimentally inaccessible because the guest species stabilize the host framework. However, it has been suggested that sufficiently small guests may be removed to leave behind metastable empty clathrates, and guest-free Si- and Ge-clathrates have indeed been obtained. Here we show that this strategy can also be applied to water-based clathrates: five days of continuous vacuum pumping on small particles of neon hydrate (of structure sII) removes all guests, allowing us to determine the crystal structure, thermal expansivity and limit of metastability of the empty hydrate. It is the seventeenth experimentally established crystalline ice phase, ice XVI according to the current ice nomenclature, has a density of 0.81 grams per cubic centimetre (making it the least dense of all known crystalline water phases) and is expected to be the stable low-temperature phase of water at negative pressures (that is, under tension). We find that the empty hydrate structure exhibits negative thermal expansion below about 55 kelvin, and that it is mechanically more stable and has at low temperatures larger lattice constants than the filled hydrate. These observations attest to the importance of kinetic effects and host-guest interactions in clathrate hydrates, with further characterization of the empty hydrate expected to improve our understanding of the structure, properties and behaviour of these unique materials.

  2. Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate.

    PubMed

    Falenty, Andrzej; Hansen, Thomas C; Kuhs, Werner F

    2014-12-11

    Gas hydrates are ice-like solids, in which guest molecules or atoms are trapped inside cages formed within a crystalline host framework (clathrate) of hydrogen-bonded water molecules. They are naturally present in large quantities on the deep ocean floor and as permafrost, can form in and block gas pipelines, and are thought to occur widely on Earth and beyond. A natural point of reference for this large and ubiquitous family of inclusion compounds is the empty hydrate lattice, which is usually regarded as experimentally inaccessible because the guest species stabilize the host framework. However, it has been suggested that sufficiently small guests may be removed to leave behind metastable empty clathrates, and guest-free Si- and Ge-clathrates have indeed been obtained. Here we show that this strategy can also be applied to water-based clathrates: five days of continuous vacuum pumping on small particles of neon hydrate (of structure sII) removes all guests, allowing us to determine the crystal structure, thermal expansivity and limit of metastability of the empty hydrate. It is the seventeenth experimentally established crystalline ice phase, ice XVI according to the current ice nomenclature, has a density of 0.81 grams per cubic centimetre (making it the least dense of all known crystalline water phases) and is expected to be the stable low-temperature phase of water at negative pressures (that is, under tension). We find that the empty hydrate structure exhibits negative thermal expansion below about 55 kelvin, and that it is mechanically more stable and has at low temperatures larger lattice constants than the filled hydrate. These observations attest to the importance of kinetic effects and host-guest interactions in clathrate hydrates, with further characterization of the empty hydrate expected to improve our understanding of the structure, properties and behaviour of these unique materials.

  3. Molecular Determinants of Antibiotic Recognition and Resistance by Aminoglycoside Phosphotransferase (3′)-IIIa: A Calorimetric and Mutational Analysis

    PubMed Central

    Kaul, Malvika; Barbieri, Christopher M.; Srinivasan, Annankoil R.; Pilch, Daniel S.

    2007-01-01

    Summary The growing threat from the emergence of multidrug resistant pathogens highlight a critical need to expand our currently available arsenal of broad-spectrum antibiotics. In this connection, new antibiotics must be developed that exhibit the abilities to circumvent known resistance pathways. An important step toward achieving this goal is to define the key molecular interactions that govern antibiotic resistance. Here, we use site-specific mutagenesis, coupled with calorimetric, NMR, and enzymological techniques, to define the key interactions that govern the binding of the aminoglycoside antibiotics neomycin and kanamycin B to APH(3′)-IIIa (an antibiotic phosphorylating enzyme that produces resistance). Our mutational analyses identify the D261, E262, and C-terminal F264 residues of the enzyme as being critical for recognition of the two drugs as well as the manifestation of the resistance phenotype. In addition, the E160 residue is more important for recognition of kanamycin B than neomycin, with mutation of this residue partially restoring sensitivity to kanamycin B but not to neomycin. By contrast, the D193 residue partially restores sensitivity to neomycin but not to kanamycin B, with the origins of this differential effect being due to the importance of D193 for catalyzing the phosphorylation of neomycin. These collective mutational results, coupled with 15N NMR-derived pKa and calorimetrically-derived binding-linked drug protonation data, identify the 1-, 3-, and 2′-amino groups of both neomycin and kanamycin B as being critical functionalities for binding to APH(3′)-IIIa. These drug amino functionalities represent potential sites of modification in the design of next-generation compounds that can overcome APH(3′)-IIIa-induced resistance. PMID:17418235

  4. Molecular determinants of antibiotic recognition and resistance by aminoglycoside phosphotransferase (3')-IIIa: a calorimetric and mutational analysis.

    PubMed

    Kaul, Malvika; Barbieri, Christopher M; Srinivasan, Annankoil R; Pilch, Daniel S

    2007-05-25

    The growing threat from the emergence of multidrug resistant pathogens highlights a critical need to expand our currently available arsenal of broad-spectrum antibiotics. In this connection, new antibiotics must be developed that exhibit the abilities to circumvent known resistance pathways. An important step toward achieving this goal is to define the key molecular interactions that govern antibiotic resistance. Here, we use site-specific mutagenesis, coupled with calorimetric, NMR, and enzymological techniques, to define the key interactions that govern the binding of the aminoglycoside antibiotics neomycin and kanamycin B to APH(3')-IIIa (an antibiotic phosphorylating enzyme that confers resistance). Our mutational analyses identify the D261, E262, and C-terminal F264 residues of the enzyme as being critical for recognition of the two drugs as well as for the manifestation of the resistance phenotype. In addition, the E160 residue is more important for recognition of kanamycin B than neomycin, with mutation of this residue partially restoring sensitivity to kanamycin B but not to neomycin. By contrast, the D193 residue partially restores sensitivity to neomycin but not to kanamycin B, with the origins of this differential effect being due to the importance of D193 for catalyzing the phosphorylation of neomycin. These collective mutational results, coupled with (15)N NMR-derived pK(a) and calorimetrically derived binding-linked drug protonation data, identify the 1-, 3-, and 2'-amino groups of both neomycin and kanamycin B as being critical functionalities for binding to APH(3')-IIIa. These drug amino functionalities represent potential sites of modification in the design of next-generation compounds that can overcome APH(3')-IIIa-induced resistance.

  5. Finite size effects on calorimetric cooperativity of two-state proteins

    NASA Astrophysics Data System (ADS)

    Li, Mai Suan; Klimov, D. K.; Thirumalai, D.

    2005-05-01

    Finite size effects on the calorimetric cooperatity of the folding-unfolding transition in two-state proteins are considered using the Go lattice models with and without side chains. We show that for models without side chains a dimensionless measure of calorimetric cooperativity κ2 defined as the ratio of the van’t Hoff to calorimetric enthalpy does not depend on the number of amino acids N. The average value κ2bar≈{3}/{4} is lower than the experimental value κ2≈1. For models with side chains κ2 approaches unity as κ2∼Nμ, where μ≈0.17. Above the critical chain length Nc≈135 these models can mimic the truly all-or-non folding-unfolding transition.

  6. Calorimetric method for determination of {sup 51}Cr neutrino source activity

    SciTech Connect

    Veretenkin, E. P. Gavrin, V. N.; Danshin, S. N.; Ibragimova, T. V.; Kozlova, Yu. P.; Mirmov, I. N.

    2015-12-15

    Experimental study of nonstandard neutrino properties using high-intensity artificial neutrino sources requires the activity of the sources to be determined with high accuracy. In the BEST project, a calorimetric system for measurement of the activity of high-intensity (a few MCi) neutrino sources based on {sup 51}Cr with an accuracy of 0.5–1% is created. In the paper, the main factors affecting the accuracy of determining the neutrino source activity are discussed. The calorimetric system design and the calibration results using a thermal simulator of the source are presented.

  7. 20 CFR 416.1535 - Services in a proceeding under title XVI of the Act.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Services in a proceeding under title XVI of the Act. 416.1535 Section 416.1535 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY INCOME FOR THE AGED, BLIND, AND DISABLED Representation of Parties § 416.1535 Services in...

  8. American Press Coverage of the Execution of Louis XVI: A Lesson Strategy for Gauging Opinion.

    ERIC Educational Resources Information Center

    Lankiewicz, Donald

    1985-01-01

    In this unit of study high school students read and discuss U.S. newspaper articles reporting the trial and execution of the French king Louis XVI. Students look for key words and phrases that might indicate a subtle favorable or unfavorable opinion. (RM)

  9. A TEMPORAL MAP IN GEOSTATIONARY ORBIT: THE COVER ETCHING ON THE EchoStar XVI ARTIFACT

    SciTech Connect

    Weisberg, Joel M.; Paglen, Trevor

    2012-10-01

    Geostationary satellites are unique among orbital spacecraft in that they experience no appreciable atmospheric drag. After concluding their respective missions, geostationary spacecraft remain in orbit virtually in perpetuity. As such, they represent some of human civilization's longest lasting artifacts. With this in mind, the EchoStar XVI satellite, to be launched in fall 2012, will play host to a time capsule intended as a message for the deep future. Inspired in part by the Pioneer Plaque and Voyager Golden Records, the EchoStar XVI Artifact is a pair of gold-plated aluminum jackets housing a small silicon disk containing 100 photographs. The Cover Etching, the subject of this paper, is etched onto one of the two jackets. It is a temporal map consisting of a star chart, pulsar timings, and other information describing the epoch from which EchoStar XVI came. The pulsar sample consists of 13 rapidly rotating objects, 5 of which are especially stable, having spin periods <10 ms and extremely small spin-down rates. In this paper, we discuss our approach to the time map etched onto the cover and the scientific data shown on it, and we speculate on the uses that future scientists may have for its data. The other portions of the EchoStar XVI Artifact will be discussed elsewhere.

  10. [Could phimosis have been the cause of sexual difficulties and delayed fertility of Louis XVI (1754-1793)?].

    PubMed

    Androutsos, Georges

    2002-02-01

    The great majority of historians agree that the marriage of Louis XVI and Marie-Antoinette was only consumated seven years after the official ceremony. This delay could have been due to a genital malformation (phimosis) of Louis XVI, a strict religious education, a traumatic childhood and the young age of the two spouses, factors that may have inhibited their sexuality. In this article, the authors try to determine whether Louis XVI was able to overcome his sexual difficulties following an operation (circumcision) or as a result of spontaneous cure.

  11. THE ISLANDS PROJECT. I. ANDROMEDA XVI, AN EXTREMELY LOW MASS GALAXY NOT QUENCHED BY REIONIZATION

    SciTech Connect

    Monelli, Matteo; Martínez-Vázquez, Clara E.; Gallart, Carme; Hidalgo, Sebastian L.; Aparicio, Antonio; Bernard, Edouard J.; Skillman, Evan D.; McQuinn, Kristen B. W.; Weisz, Daniel R.; Dolphin, Andrew E.; Cole, Andrew A.; Martin, Nicolas F.; Cassisi, Santi; Boylan-Kolchin, Michael; Mayer, Lucio; McConnachie, Alan; Navarro, Julio F.

    2016-03-10

    Based on data aquired in 13 orbits of Hubble Space Telescope time, we present a detailed evolutionary history of the M31 dSph satellite Andromeda XVI, including its lifetime star formation history (SFH), the spatial distribution of its stellar populations, and the properties of its variable stars. And XVI is characterized by prolonged star formation activity from the oldest epochs until star formation was quenched ∼6 Gyr ago, and, notably, only half of the mass in stars of And XVI was in place 10 Gyr ago. And XVI appears to be a low-mass galaxy for which the early quenching by either reionization or starburst feedback seems highly unlikely, and thus it is most likely due to an environmental effect (e.g., an interaction), possibly connected to a late infall in the densest regions of the Local Group. Studying the SFH as a function of galactocentric radius, we detect a mild gradient in the SFH: the star formation activity between 6 and 8 Gyr ago is significantly stronger in the central regions than in the external regions, although the quenching age appears to be the same, within 1 Gyr. We also report the discovery of nine RR Lyrae (RRL) stars, eight of which belong to And XVI. The RRL stars allow a new estimate of the distance, (m − M){sub 0} = 23.72 ± 0.09 mag, which is marginally larger than previous estimates based on the tip of the red giant branch.

  12. The ISLANDS Project. I. Andromeda XVI, An Extremely Low Mass Galaxy Not Quenched by Reionization

    NASA Astrophysics Data System (ADS)

    Monelli, Matteo; Martínez-Vázquez, Clara E.; Bernard, Edouard J.; Gallart, Carme; Skillman, Evan D.; Weisz, Daniel R.; Dolphin, Andrew E.; Hidalgo, Sebastian L.; Cole, Andrew A.; Martin, Nicolas F.; Aparicio, Antonio; Cassisi, Santi; Boylan-Kolchin, Michael; Mayer, Lucio; McConnachie, Alan; McQuinn, Kristen B. W.; Navarro, Julio F.

    2016-03-01

    Based on data aquired in 13 orbits of Hubble Space Telescope time, we present a detailed evolutionary history of the M31 dSph satellite Andromeda XVI, including its lifetime star formation history (SFH), the spatial distribution of its stellar populations, and the properties of its variable stars. And XVI is characterized by prolonged star formation activity from the oldest epochs until star formation was quenched ˜6 Gyr ago, and, notably, only half of the mass in stars of And XVI was in place 10 Gyr ago. And XVI appears to be a low-mass galaxy for which the early quenching by either reionization or starburst feedback seems highly unlikely, and thus it is most likely due to an environmental effect (e.g., an interaction), possibly connected to a late infall in the densest regions of the Local Group. Studying the SFH as a function of galactocentric radius, we detect a mild gradient in the SFH: the star formation activity between 6 and 8 Gyr ago is significantly stronger in the central regions than in the external regions, although the quenching age appears to be the same, within 1 Gyr. We also report the discovery of nine RR Lyrae (RRL) stars, eight of which belong to And XVI. The RRL stars allow a new estimate of the distance, (m - M)0 = 23.72 ± 0.09 mag, which is marginally larger than previous estimates based on the tip of the red giant branch. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13028.

  13. Heat capacty, relative enthalpy, and calorimetric entropy of silicate minerals: an empirical method of prediction.

    USGS Publications Warehouse

    Robinson, G.R.; Haas, J.L.

    1983-01-01

    Through the evaluation of experimental calorimetric data and estimates of the molar isobaric heat capacities, relative enthalpies and entropies of constituent oxides, a procedure for predicting the thermodynamic properties of silicates is developed. Estimates of the accuracy and precision of the technique and examples of its application are also presented. -J.A.Z.

  14. Systematic uncertainties on Delta m2 from neutrino physics, using calorimetric energy reconstruction

    SciTech Connect

    Deborah A. Harris

    2003-08-13

    This report describes how uncertainties in neutrino interactions, particularly at neutrino energies of a few GeV, can contribute to uncertainties in measurements of neutrino oscillation parameters for experiments using calorimetric devices. Uncertainties studied include those on final state multiplicities, cross sections, electron-hadron calorimeter differences, and nuclear rescattering.

  15. 78 FR 22361 - Social Security Ruling, SSR 13-1p; Titles II and XVI: Agency Processes for Addressing Allegations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... From the Federal Register Online via the Government Publishing Office SOCIAL SECURITY ADMINISTRATION Social Security Ruling, SSR 13-1p; Titles II and XVI: Agency Processes for Addressing Allegations of Unfairness, Prejudice, Partiality, Bias, Misconduct, or Discrimination by Administrative...

  16. 78 FR 9987 - Social Security Ruling, SSR 13-1p; Titles II and XVI: Agency Processes for Addressing Allegations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... From the Federal Register Online via the Government Publishing Office SOCIAL SECURITY ADMINISTRATION Social Security Ruling, SSR 13-1p; Titles II and XVI: Agency Processes for Addressing Allegations of Unfairness, Prejudice, Partiality, Bias, Misconduct, or Discrimination by Administrative...

  17. 78 FR 8217 - Social Security Ruling, SSR 13-1p; Titles II and XVI: Agency Processes for Addressing Allegations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... From the Federal Register Online via the Government Publishing Office SOCIAL SECURITY ADMINISTRATION Social Security Ruling, SSR 13-1p; Titles II and XVI: Agency Processes for Addressing Allegations of Unfairness, Prejudice, Partiality, Bias, Misconduct, or Discrimination by Administrative...

  18. Thermodynamic properties for polycyclic systems by non-calorimetric methods

    SciTech Connect

    Steele, W.V.; Chirico, R.D.; Klots, T.D.

    1993-03-01

    A detailed vibrational spectroscopic study of furan, pyrrole, and thiophene has been completed. These compounds form part of the base of five-membered ring systems on which the rest of the research program will be built Several methyl-substituted derivatives were also studied. The results will be used to confirm the model for alkyl- substitution in the ring systems. Gas-phase spectra and fundamental- frequency assignments were completed for 2,3- and 2,5-dihydrofuran. Those compounds initiate work on ring-puckering within the research program. A paper describing the need for third virial estimation, when using the virial equation of state to derive thermodynamic properties at pressures greater than 1 bar was completed.

  19. Adsorption of arsenic ions on Brazilian sepiolite: effect of contact time, pH, concentration, and calorimetric investigation.

    PubMed

    Guerra, Denis L; Batista, Adriano C; da Costa, Paulo C Corrêa; Viana, Rúbia R; Airoldi, Claudio

    2010-06-01

    The original sepiolite clay mineral has been collected from Amazon region, Brazil. The compound 2-aminomethylpyridine (AMP) was anchored onto Amazon sepiolite surface by heterogeneous route. The natural (SPT) and modified (SPT(AMP)) sepiolite samples were characterized by elemental analysis, SEM, N(2) adsorption, and nuclear magnetic nuclei of (29)Si and (13)C. The well-defined peaks obtained in the (13)C NMR spectrum in the 0-160 ppm region confirmed the attachment of organic functional groups as pendant chains bonded into the porous clay. The ability of these materials to remove As(V) from aqueous solution was followed by a series of adsorption isotherms at room temperature and pH 4.0. The maximum number of moles adsorbed was determined to be 7.26×10(-2) and 11.70×10(-2) mmol g(-1) for SPT and SPT(AMP), respectively. In order to evaluate the clay samples as adsorbents in dynamic system, a glass column was fulfilled with clay samples (1.0 g) and it was fed with 2.0×10(-2) mmol dm(-3) As(V) at pH 4.0. The energetic effects caused by metal cations adsorption were determined through calorimetric titrations. Thermodynamics indicated the existence of favorable conditions for such As(V)-nitrogen interactions.

  20. Genomic analysis of the blood attributed to Louis XVI (1754-1793), king of France.

    PubMed

    Olalde, Iñigo; Sánchez-Quinto, Federico; Datta, Debayan; Marigorta, Urko M; Chiang, Charleston W K; Rodríguez, Juan Antonio; Fernández-Callejo, Marcos; González, Irene; Montfort, Magda; Matas-Lalueza, Laura; Civit, Sergi; Luiselli, Donata; Charlier, Philippe; Pettener, Davide; Ramírez, Oscar; Navarro, Arcadi; Himmelbauer, Heinz; Marquès-Bonet, Tomàs; Lalueza-Fox, Carles

    2014-04-24

    A pyrographically decorated gourd, dated to the French Revolution period, has been alleged to contain a handkerchief dipped into the blood of the French king Louis XVI (1754-1793) after his beheading but recent analyses of living males from two Bourbon branches cast doubts on its authenticity. We sequenced the complete genome of the DNA contained in the gourd at low coverage (~2.5×) with coding sequences enriched at a higher ~7.3× coverage. We found that the ancestry of the gourd's genome does not seem compatible with Louis XVI's known ancestry. From a functional perspective, we did not find an excess of alleles contributing to height despite being described as the tallest person in Court. In addition, the eye colour prediction supported brown eyes, while Louis XVI had blue eyes. This is the first draft genome generated from a person who lived in a recent historical period; however, our results suggest that this sample may not correspond to the alleged king.

  1. Comparing calorimetric and dielectric polarization modes in viscous 2-ethyl-1-hexanol.

    PubMed

    Huth, Heiko; Wang, Li-Min; Schick, Christoph; Richert, Ranko

    2007-03-14

    Dielectric relaxation and dynamic heat capacity measurements are compared for 2-ethyl-1-hexanol near its glass transition temperature Tg in order to further clarify the origin of the prominent Debye-type loss peak observed in many monohydroxy alcohols and other hydrogen-bonding liquids. While the dielectric spectrum epsilon" displays two distinct polarization processes that are separated by a factor of 2000 in terms of the peak frequency, the heat capacity cp" shows only a single peak. The dielectric process with lower amplitude and higher peak frequency coincides with the calorimetric signal, whereas the large dielectric Debye signal is not associated with calorimetric modes. The authors conclude that the Debye process corresponds to a transition among states which differ in energy only in the case of an external electric field.

  2. Calorimetric thermal-vacuum performance characterization of the BAe 80 K space cryocooler

    NASA Technical Reports Server (NTRS)

    Kotsubo, V. Y.; Johnson, D. L.; Ross, R. G., Jr.

    1992-01-01

    A comprehensive characterization program is underway at JPL to generate test data on long-life, miniature Stirling-cycle cryocoolers for space application. The key focus of this paper is on the thermal performance of the British Aerospace (BAe) 80 K split-Stirling-cycle cryocooler as measured in a unique calorimetric thermal-vacuum test chamber that accurately simulates the heat-transfer interfaces of space. Two separate cooling fluid loops provide precise individual control of the compressor and displacer heatsink temperatures. In addition, heatflow transducers enable calorimetric measurements of the heat rejected separately by the compressor and displacer. Cooler thermal performance has been mapped for coldtip temperatures ranging from below 45 K to above 150 K, for heatsink temperatures ranging from 280 K to 320 K, and for a wide variety of operational variables including compressor-displacer phase, compressor-displacer stroke, drive frequency, and piston-displacer dc offset.

  3. Constrained Methods in the Understanding of the Calorimetric Glass Transition in Simple Liquids.

    NASA Astrophysics Data System (ADS)

    Gonzalez Padilla, Francisco; Harrowell, Peter R.

    2001-03-01

    In spite of the intensive work and the important improvements in understanding the glass transition, the detailed microcopical behaviour and its thermodynamical implications are not understood yet. We will focus in the calorimetric glass transition, namely the non-monotonic variation of the specific heat with temperature. We will also be interested in recent suggestions that try to deal with the definition of an ideal glassy phase. We use different types of constrains to understand which degrees of freedom are important in understanding the calorimetric glass transition. We deal with geometrical constrain and with constrains obtain from the study of the hessian matrix. Indication on the importance of the anharmonicities to obtain a non-monotonic behaviour of the specific heat are obtained.

  4. GYROTRON POWER BALANCE BASED ON CALORIMETRIC MEASUREMENTS IN THE DIII-D ECH SYSTEM

    SciTech Connect

    GORELOV,I.A; LOHR,J.M; BAITY,JR.,F.W; CAHALAN,P; CALLIS,R.W; PONCE,D; CHIU,H.K

    2003-10-01

    OAK-B135 A powerful microwave system operating at the second harmonic of the electron cyclotron frequency on the DIII-D tokamak was upgraded up to six assemblies of 110 GHz gyrotrons in 2003. three Gycom gyrotrons nominally generate 750 kW for 2 s pulses, with the pulse length limit resulting from the peak temperature allowed on the boron nitride rf output window. Three Communications and Power Industries (CPI) gyrotrons with diamond windows have been recently installed and have been tested to 0.9-1.0 MW for 5 s pulses. Heat loading on internal parts of the gyrotrons, the matching optics unit and the dummy loads is measured calorimetrically. This paper discusses the calorimetry system and calorimetric measurements of gyrotron performance.

  5. On the Stressing of Annealed NITINOL: The Electrical Resistance and Calorimetric Effects

    DTIC Science & Technology

    1987-04-01

    Security Classification) On the Stressing of Annealed NITINOL : The Electrical Resistance and Calorimetric Effects 12 PERSONAL AUTHOR(S) Goldstein, David...COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by blck numbher) FIELD GROUP SUB-GROUP NITINOL 06 Shape Memory Alloy 13 o i...calorimetry curves of NITINOL during its phase transformation are substantial. The generation of a peak occurs in the resistance curve, and an additional

  6. Use of calorimetric assay for operational and accountability measurements of pure plutonium metal

    SciTech Connect

    Cremers, Teresa L; Sampson, Thomas E

    2010-01-01

    Plutonium pure metal products (PMP) are high purity plutonium metal items produced by electrorefining. The plutonium metal is produced as an approximately 3-kg ring. Accountability measurements for the electro-refining runs are typically balance/weight factor (incoming impure metal), chemistry (pure metal rings), and calorimetric assay or neutron counting of the crucibles and other wastes. The PMP items are qualified for their end use by extensive chemical assay. After PMP materials are made they are often sent to the vault for storage before being sent to the casting process, the next step in the production chain. The chemical assay of PMP items often takes a few weeks; however, before the metal items are allowed into the vault they must be measured. Non-destructive assay personnel measure the metals either by multiplicity neutron counting or calorimetric assay, depending on which instrument is available, thus generating comparisons between non-destructive assay and chemical assay. The suite of measurements, calorimetric assay, chemical assay, and neutron mUltiplicity counting is compared for a large group of PMP items.

  7. Calorimetric investigation of triazole-bridged Fe(II) spin-crossover one-dimensional materials: measuring the cooperativity.

    PubMed

    Roubeau, Olivier; Castro, Miguel; Burriel, Ramón; Haasnoot, Jaap G; Reedijk, Jan

    2011-03-31

    The relevance of abrupt magnetic and optical transitions exhibiting bistability in spin-crossover solids has been pointed out for their potential applications in optical or memory devices. In this respect, triazole-based one-dimensional coordination polymers are widely recognized as one of the most interesting systems. The measure of the interaction among spin-crossover centers at the origin of such cooperative behavior is of paramount importance and has so far been realized through modeling of spin-crossover curves derived mostly from magnetic measurements. Here, a new series of triazole-based one-dimensional coordination polymers of formula [Fe(Rtrz)(3)](A)(2)·xH(2)O with R = methoxyethyl and A = monovalent anion has been prepared that show complete and abrupt spin-crossover phenomenon as shown by magnetic measurements. The spin-crossover transition in these and related compounds is studied by differential scanning calorimetry, and the thermodynamic excess enthalpies and entropies associated with the phenomenon are derived systematically. Then the cooperative character of the spin-crossover in these materials is quantified by use of two widely used models, so-called Slichter and Drickamer and domain models. The same procedure is applied to spin-crossover curves of similar compounds available in the literature and for which calorimetric studies have been reported. The experimental thermodynamic figures, in particular the excess enthalpies, are shown to be clearly correlated to the output parameters of both models, thus providing a direct, experimental, quantitative measure of the cooperative character of the spin-crossover phenomenon.

  8. Calorimetric determinations and theoretical calculations of polymorphs of thalidomide

    NASA Astrophysics Data System (ADS)

    Lara-Ochoa, F.; Pérez, G. Espinosa; Mijangos-Santiago, F.

    2007-09-01

    The analysis of the thermograms of thalidomide obtained for the two reported polymorphs α and β by differential scanning calorimetry (DSC) shows some inconsistencies that are discussed in the present work. The conception of a new polymorph form, named β ∗, allowed us to explain the observed thermal behavior more satisfactorily. This new polymorph shows enantiotropy with both α and β polymorphs, reflected in the unique endotherm obtained in the DSC-thermograms, when a heating rate of 10 °C/min is applied. Several additional experiments, such as re-melting of both polymorph forms, showed that there is indeed a new polymorph with an endotherm located between the endotherms of α and β. IR, Raman, and powder X-ray permit us to characterize the isolated compound, resulting from the re-melting of both polymorph forms. Mechanical calculations were performed to elucidate the conformations of each polymorph, and ab initio quantum chemical calculations were performed to determine the energy of the more stable conformers and the spatial cell energy for both polymorphs α and β. These results suggested a possible conformation for the newly discovered polymorph β ∗.

  9. Comparing M31 and Milky Way satellites: The extended star formation histories of Andromeda II and Andromeda XVI

    SciTech Connect

    Weisz, Daniel R.; Skillman, Evan D.; McQuinn, Kristen B. W.; Hidalgo, Sebastian L.; Monelli, Matteo; Gallart, Carme; Aparicio, Antonio; McConnachie, Alan; Stetson, Peter B.; Bernard, Edouard J.; Boylan-Kolchin, Michael; Cassisi, Santi; Cole, Andrew A.; Ferguson, Henry C.; Irwin, Mike; Martin, Nicolas F.; Mayer, Lucio; Navarro, Julio F.

    2014-07-01

    We present the first comparison between the lifetime star formation histories (SFHs) of M31 and Milky Way (MW) satellites. Using the Advanced Camera for Surveys on board the Hubble Space Telescope, we obtained deep optical imaging of Andromeda II (And II; M{sub V} = –12.0; log(M {sub *}/M {sub ☉}) ∼ 6.7) and Andromeda XVI (And XVI; M{sub V} = –7.5; log(M {sub *}/M {sub ☉}) ∼ 4.9) yielding color-magnitude diagrams that extend at least 1 mag below the oldest main-sequence turnoff, and are similar in quality to those available for the MW companions. And II and And XVI show strikingly similar SFHs: both formed 50%-70% of their total stellar mass between 12.5 and 5 Gyr ago (z ∼ 5-0.5) and both were abruptly quenched ∼5 Gyr ago (z ∼ 0.5). The predominance of intermediate age populations in And XVI makes it qualitatively different from faint companions of the MW and clearly not a pre-reionization fossil. Neither And II nor And XVI appears to have a clear analog among MW companions, and the degree of similarity in the SFHs of And II and And XVI is not seen among comparably faint-luminous pairs of MW satellites. These findings provide hints that satellite galaxy evolution may vary substantially among hosts of similar stellar mass. Although comparably deep observations of more M31 satellites are needed to further explore this hypothesis, our results underline the need for caution when interpreting satellite galaxies of an individual system in a broader cosmological context.

  10. Relativistic electron precipitation at International Space Station: Space weather monitoring by Calorimetric Electron Telescope

    NASA Astrophysics Data System (ADS)

    Kataoka, Ryuho; Asaoka, Yoichi; Torii, Shoji; Terasawa, Toshio; Ozawa, Shunsuke; Tamura, Tadahisa; Shimizu, Yuki; Akaike, Yosui; Mori, Masaki

    2016-05-01

    The charge detector (CHD) of the Calorimetric Electron Telescope (CALET) on board the International Space Station (ISS) has a huge geometric factor for detecting MeV electrons and is sensitive to relativistic electron precipitation (REP) events. During the first 4 months, CALET CHD observed REP events mainly at the dusk to midnight sector near the plasmapause, where the trapped radiation belt electrons can be efficiently scattered by electromagnetic ion cyclotron (EMIC) waves. Here we show that interesting 5-20 s periodicity regularly exists during the REP events at ISS, which is useful to diagnose the wave-particle interactions associated with the nonlinear wave growth of EMIC-triggered emissions.

  11. Calorimetric measurement of the interaction of propylene, acetylene, and methane with dysprosium films at room temperature

    SciTech Connect

    Cerny, S.; Smutek, M. )

    1990-05-01

    Rare earth metals and their intermetallics have found applications in heterogeneous catalysis, including cracking, hydrogenation, and other reactions of hydrocarbons, yet little has been published on chemisorption of hydrocarbons by rare earths. In the present communication the authors report on exploratory calorimetric experiments with the adsorption of initial doses of C{sub 3}H{sub 6}, C{sub 2}H{sub 2}, and CH{sub 4} admitted to polycrystalline dysprosium films at room temperature. The obtained data are interpreted in terms of thermochemical cycles utilizing data of their previous thermochemical and XPS measurements of the interaction of hydrogen, carbon monoxide, and oxygen with films of rare earths.

  12. Method for measurement of diffusivity: Calorimetric studies of Fe/Ni multilayer thin films

    SciTech Connect

    Liu, JX; Barmak, K

    2015-07-15

    A calorimetric method for the measurement of diffusivity in thin film multilayers is introduced and applied to the Fe Ni system. Using this method, the diffusivity in [Fe (25 nm)/Ni (25 nm)](20) multilayer thin films is measured as 4 x 10(-3)exp(-1.6 +/- 0.1 eV/ k(B)T) cm(2)/s, respectively. The diffusion mechanism in the multilayers and its relevance to laboratory synthesis of L1(0) ordered FeNi are discussed. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Genetic analysis of the presumptive blood from Louis XVI, King of France.

    PubMed

    Lalueza-Fox, Carles; Gigli, Elena; Bini, Carla; Calafell, Francesc; Luiselli, Donata; Pelotti, Susi; Pettener, Davide

    2011-11-01

    A text on a pyrographically decorated gourd dated to 1793 explains that it contains a handkerchief dipped with the blood of Louis XVI, king of France, after his execution. Biochemical analyses confirmed that the material contained within the gourd was blood. The mitochondrial DNA (mtDNA) hypervariable region 1 (HVR1) and 2 (HVR2), the Y-chromosome STR profile, some autosomal STR markers and a SNP in HERC2 gene associated to blue eyes, were retrieved, and some results independently replicated in two different laboratories. The uncommon mtDNA sequence retrieved can be attributed to a N1b haplotype, while the novel Y-chromosome haplotype belongs to haplogroup G2a. The HERC2 gene showed that the subject analyzed was a heterozygote, which is compatible with a blue-eyed person, as king Louis XVI was. To confirm the identity of the subject, an analysis of the dried heart of his son, Louis XVII, could be undertaken.

  14. Thermodynamic Properties of Liquid Silver-Antimony-Tin Alloys Determined from Electrochemical and Calorimetric Measurements

    NASA Astrophysics Data System (ADS)

    Łapsa, Joanna; Onderka, Bogusław

    2016-08-01

    The thermodynamic properties of liquid Ag-Sb-Sn alloys were obtained through use of the drop solution calorimetric method and electromotive force (emf) measurements of galvanic cells with a yttria stabilized zirconia (YSZ) solid electrolyte. The experiments were carried out along Ag0.25Sb0.75, Ag0.5Sb0.5 and Ag0.75Sb0.25 sections of the ternary system in the temperature range from 973 K to 1223 K. From the measured emf, the tin activity in liquid solutions of Ag-Sb-Sn was determined for the first time. The partial and integral enthalpy of mixing were determined from calorimetric measurements at two temperatures. These measurements were performed along two cross-sections: Sb0.5Sn0.5 at 912 K and 1075 K, and Ag0.75Sb0.25 at 1075 K. Both experimental data sets were used to find ternary interaction parameters by applying the Redlich-Kister-Muggianu model of the substitutional solution. Consequently, the set of parameters describing the thermodynamic properties of the liquid phase was derived.

  15. Calorimetric Thermoelectric Gas Sensor for the Detection of Hydrogen, Methane and Mixed Gases

    PubMed Central

    Park, Nam-Hee; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck

    2014-01-01

    A novel miniaturized calorimeter-type sensor device with a dual-catalyst structure was fabricated by integrating different catalysts on the hot (Pd/θ-Al2O3) and cold (Pt/α-Al2O3) ends of the device. The device comprises a calorimeter with a thermoelectric gas sensor (calorimetric-TGS), combining catalytic combustion and thermoelectric technologies. Its response for a model fuel gas of hydrogen and methane was investigated with various combustor catalyst compositions. The calorimetric-TGS devices detected H2, CH4, and a mixture of the two with concentrations ranging between 200 and 2000 ppm at temperatures of 100–400 °C, in terms of the calorie content of the gases. It was necessary to reduce the much higher response voltage of the TGS to H2 compared to CH4. We enhanced the H2 combustion on the cold side so that the temperature differences and response voltages to H2 were reduced. The device response to H2 combustion was reduced by 50% by controlling the Pt concentration in the Pt/α-Al2O3 catalyst on the cold side to 3 wt%. PMID:24818660

  16. A Multichannel Calorimetric Simultaneous Assay Platform Using a Microampere Constant-Current Looped Enthalpy Sensor Array

    PubMed Central

    Wei, Hsien-Chin; Huang, Su-Hua; Jiang, Joe-Air; Lee, Yeun-Chung

    2017-01-01

    Calorimetric biochemical measurements offer various advantages such as low waste, low cost, low sample consumption, short operating time, and labor-savings. Multichannel calorimeters can enhance the possibility of performing higher-throughput biochemical measurements. An enthalpy sensor (ES) array is a key device in multichannel calorimeters. Most ES arrays use Wheatstone bridge amplifiers to condition the sensor signals, but such an approach is only suitable for null detection and low resistance sensors. To overcome these limitations, we have developed a multichannel calorimetric simultaneous assay (MCSA) platform. An adjustable microampere constant-current (AMCC) source was designed for exciting the ES array using a microampere current loop measurement circuit topology. The MCSA platform comprises a measurement unit, which contains a multichannel calorimeter and an automatic simultaneous injector, and a signal processing unit, which contains multiple ES signal conditioners and a data processor. This study focused on the construction of the MCSA platform; in particular, construction of the measurement circuit and calorimeter array in a single block. The performance of the platform, including current stability, temperature sensitivity and heat sensitivity, was evaluated. The sensor response time and calorimeter constants were given. The capability of the platform to detect relative enzyme activity was also demonstrated. The experimental results show that the proposed MCSA is a flexible and powerful biochemical measurement device with higher throughput than existing alternatives. PMID:28165412

  17. A Multichannel Calorimetric Simultaneous Assay Platform Using a Microampere Constant-Current Looped Enthalpy Sensor Array.

    PubMed

    Wei, Hsien-Chin; Huang, Su-Hua; Jiang, Joe-Air; Lee, Yeun-Chung

    2017-02-04

    Calorimetric biochemical measurements offer various advantages such as low waste, low cost, low sample consumption, short operating time, and labor-savings. Multichannel calorimeters can enhance the possibility of performing higher-throughput biochemical measurements. An enthalpy sensor (ES) array is a key device in multichannel calorimeters. Most ES arrays use Wheatstone bridge amplifiers to condition the sensor signals, but such an approach is only suitable for null detection and low resistance sensors. To overcome these limitations, we have developed a multichannel calorimetric simultaneous assay (MCSA) platform. An adjustable microampere constant-current (AMCC) source was designed for exciting the ES array using a microampere current loop measurement circuit topology. The MCSA platform comprises a measurement unit, which contains a multichannel calorimeter and an automatic simultaneous injector, and a signal processing unit, which contains multiple ES signal conditioners and a data processor. This study focused on the construction of the MCSA platform; in particular, construction of the measurement circuit and calorimeter array in a single block. The performance of the platform, including current stability, temperature sensitivity and heat sensitivity, was evaluated. The sensor response time and calorimeter constants were given. The capability of the platform to detect relative enzyme activity was also demonstrated. The experimental results show that the proposed MCSA is a flexible and powerful biochemical measurement device with higher throughput than existing alternatives.

  18. Calorimetric method of ac loss measurement in a rotating magnetic field.

    PubMed

    Ghoshal, P K; Coombs, T A; Campbell, A M

    2010-07-01

    A method is described for calorimetric ac-loss measurements of high-T(c) superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  19. Calorimetric method of ac loss measurement in a rotating magnetic field

    SciTech Connect

    Ghoshal, P. K.; Coombs, T. A.; Campbell, A. M.

    2010-07-15

    A method is described for calorimetric ac-loss measurements of high-T{sub c} superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  20. Calorimetric method of ac loss measurement in a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Ghoshal, P. K.; Coombs, T. A.; Campbell, A. M.

    2010-07-01

    A method is described for calorimetric ac-loss measurements of high-Tc superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  1. Stabilization of Cu(I) for binding and calorimetric measurements in aqueous solution†

    PubMed Central

    Johnson, Destinee K.; Stevenson, Michael J.; Almadidy, Zayed A.; Jenkins, Sharon E.; Wilcox, Dean. E.; Grossoehme, Nicholas E.

    2015-01-01

    Conditions have been developed for the comproportionation reaction of Cu2+ and copper metal to prepare aqueous solutions of Cu+ that are stabilized from disproportionation by MeCN and other Cu+-stabilizing ligands. These solutions were then used in ITC measurements to quantify the thermodynamics of formation of a set of Cu+ complexes (CuI(MeCN)3+, CuIMe6Trien+, CuI(BCA)23−, CuI(BCS)23−), which have stabilities ranging over 15 orders of magnitude, for their use in binding and calorimetric measurements of Cu+ interaction with proteins and other biological macromolecules. These complexes were then used to determine the stability and thermodynamics of formation of a 1 : 1 complex of Cu+ with the biologically important tri-peptide glutathione, GSH. These results identify Me6Trien as an attractive Cu+-stabilizing ligand for calorimetric experiments, and suggest that caution should be used with MeCN to stabilize Cu+ due to its potential for participating in unquantifiable ternary interactions. PMID:26327397

  2. Calorimetric thermoelectric gas sensor for the detection of hydrogen, methane and mixed gases.

    PubMed

    Park, Nam-Hee; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck

    2014-05-09

    A novel miniaturized calorimeter-type sensor device with a dual-catalyst structure was fabricated by integrating different catalysts on the hot (Pd/θ-Al2O3) and cold (Pt/α-Al2O3) ends of the device. The device comprises a calorimeter with a thermoelectric gas sensor (calorimetric-TGS), combining catalytic combustion and thermoelectric technologies. Its response for a model fuel gas of hydrogen and methane was investigated with various combustor catalyst compositions. The calorimetric-TGS devices detected H2, CH4, and a mixture of the two with concentrations ranging between 200 and 2000 ppm at temperatures of 100-400 °C, in terms of the calorie content of the gases. It was necessary to reduce the much higher response voltage of the TGS to H2 compared to CH4. We enhanced the H2 combustion on the cold side so that the temperature differences and response voltages to H2 were reduced. The device response to H2 combustion was reduced by 50% by controlling the Pt concentration in the Pt/α-Al2O3 catalyst on the cold side to 3 wt%.

  3. Magnetic fluid hyperthermia probed by both calorimetric and dynamic hysteresis measurements

    NASA Astrophysics Data System (ADS)

    Guibert, Clément; Fresnais, Jérôme; Peyre, Véronique; Dupuis, Vincent

    2017-01-01

    In this paper, we report an investigation of magnetic fluid hyperthermia (MFH) using combined calorimetric and newly implemented dynamic hysteresis measurements for two sets of well characterized size-sorted maghemite nanoparticles (with diameters of about 10 nm and 20 nm) dispersed in water and in glycerol. Our primary goal was to assess the influence of viscosity on the heating efficiency of magnetic nanoparticles described in terms of specific loss power (SLP or specific absorption rate, SAR) and dynamic hysteresis. In particular, we aimed to investigate how this SLP depends on the transition from Néelian to Brownian behavior of nanoparticles expected to occur between 10 nm and 20 nm (for maghemite) and dependent on the viscosity. While we observed a good agreement between calorimetric and dynamic hysteresis measurements, we found that the SLP measured for the different systems do not depend noticeably on the viscosity of solvent. Calculations performed according to Rosensweig's linear model [1] allow us to quantitatively reproduce our results at low field intensities, provided we use a value for the magnetic anisotropy constant much smaller than the one commonly used in the literature. This raises the question of the temperature dependance of the magnetic anisotropy constant and its relevance for a quantitative description of MFH.

  4. Comparison of the calorimetric and kinematic methods of neutrino energy reconstruction in disappearance experiments

    DOE PAGES

    Ankowski, Artur M.; Benhar, Omar; Coloma, Pilar; ...

    2015-10-22

    To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection capabilities, such as energy resolutions, efficiencies, and thresholds. This allows us to estimate how well the detector performance needs to be determined a priori in order to avoid a sizable bias in the measurement of the relevant oscillation parameters. We compare the kinematic and calorimetric methods of energy reconstruction in the context of two νμ → νμ disappearance experiments operating in different energymore » regimes. For the calorimetric reconstruction method, we find that the detector performance has to be estimated with an O(10%) accuracy to avoid a significant bias in the extracted oscillation parameters. Thus, in the case of kinematic energy reconstruction, we observe that the results exhibit less sensitivity to an overestimation of the detector capabilities.« less

  5. Comparison of the calorimetric and kinematic methods of neutrino energy reconstruction in disappearance experiments

    SciTech Connect

    Ankowski, Artur M.; Benhar, Omar; Coloma, Pilar; Huber, Patrick; Jen, Chun -Min; Mariani, Camillo; Meloni, Davide; Vagnoni, Erica

    2015-10-22

    To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection capabilities, such as energy resolutions, efficiencies, and thresholds. This allows us to estimate how well the detector performance needs to be determined a priori in order to avoid a sizable bias in the measurement of the relevant oscillation parameters. We compare the kinematic and calorimetric methods of energy reconstruction in the context of two νμ → νμ disappearance experiments operating in different energy regimes. For the calorimetric reconstruction method, we find that the detector performance has to be estimated with an O(10%) accuracy to avoid a significant bias in the extracted oscillation parameters. Thus, in the case of kinematic energy reconstruction, we observe that the results exhibit less sensitivity to an overestimation of the detector capabilities.

  6. 78 FR 17744 - Social Security Ruling, SSR 13-2p; Titles II and XVI: Evaluating Cases Involving Drug Addiction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... From the Federal Register Online via the Government Publishing Office SOCIAL SECURITY ADMINISTRATION Social Security Ruling, SSR 13-2p; Titles II and XVI: Evaluating Cases Involving Drug Addiction and Alcoholism (DAA); Correction AGENCY: Social Security Administration. ACTION: Notice of...

  7. 76 FR 45309 - Social Security Ruling 11-1p; Titles II and XVI: Procedures for Handling Requests To File...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... From the Federal Register Online via the Government Publishing Office SOCIAL SECURITY ADMINISTRATION Social Security Ruling 11-1p; Titles II and XVI: Procedures for Handling Requests To File Subsequent Applications for Disability Benefits AGENCY: Social Security Administration. ACTION: Notice...

  8. Calorimetric Observation of Single {He}_2^* Excimers in a 100-mK He Bath

    NASA Astrophysics Data System (ADS)

    Carter, F. W.; Hertel, S. A.; Rooks, M. J.; McClintock, P. V. E.; McKinsey, D. N.; Prober, D. E.

    2017-02-01

    We report the first calorimetric detection of individual {He}_2^* excimers within a bath of superfluid ^4{He}. The detector used in this work is a single superconducting titanium transition edge sensor (TES) with an energy resolution of {˜ }1 {eV}, immersed directly in the helium bath. {He}_2^* excimers are produced in the surrounding bath using an external gamma-ray source. These excimers exist either as short-lived singlet or long-lived triplet states. We demonstrate detection (and discrimination) of both states: In the singlet case the calorimeter records the absorption of a prompt {≈ }15 {eV} photon, and in the triplet case the calorimeter records a direct interaction of the molecule with the TES surface, which deposits a distinct fraction of the {≈ }15 {eV}, released upon decay, into the surface. We also briefly discuss the detector fabrication and characterization.

  9. Calorimetric Determinations of the Heat and Products of Detonation for Explosives: October 1961 to April 1982

    NASA Astrophysics Data System (ADS)

    Ornellas, D. L.

    1982-04-01

    This report is a compilation of heat-of-detonation and product-composition data obtained at Lawrence Livermore National Laboratory during the last 21 years. In each determination, a 25-g high-explosive charge was detonated in a bomb calorimeter; a complete calorimetric measurement was made in 1 to 2 h with a precision of 0.3%. Data were interpreted using thermodynamic and hydrodynamic computer calculations. For unconfined or lightly confined charges, the released energy is largely retained in the products, which are subsequently shocked considerably off the Chapman-Jouguet isentrope by reflections from the bomb wall. For heavily confined charges, the detonation energy is largely converted to kinetic and internal energy of the confining case, and the products expand with minimal reshock along the Chapman-Jouguet isentrope.

  10. Evidence of secondary electron emission during PIII pulses as measured by calorimetric probe

    NASA Astrophysics Data System (ADS)

    Haase, Fabian; Manova, Darina; Mändl, Stephan; Kersten, Holger

    2016-09-01

    Secondary electrons are an ubiquitous nuisance during plasma immersion ion implantation (PIII) necessitating excessive current supplies and shielding for X-rays generated by them. However, additional effects - especially at low pulse voltages - can include interactions with the plasma and transient increases in the plasma density. Here, it is shown that the transient thermal flux associated with secondary electrons emitted from the pulsed substrate can be directly measured using a passive calorimetric probe mounted near the chamber wall away from the pulsed substrate holder. A small increase of a directed energy flux from the substrate towards the probe is consistently observed on top of the isotropic flux from the plasma surrounding the probe, scaling with pulse frequency, pulse voltage, pulse length - as well as depending on gas and substrate material. A strong correlation between voltage and substrate-probe distance is observed, which should allow further investigation of low energy electrons with the plasma itself.

  11. Total hemispherical emittance measured at high temperatures by the calorimetric method

    SciTech Connect

    DiFilippo, F.; Mirtich, M.J.; Banks, B.A.; Stidham, C.; Kussmaul, M.

    1994-09-01

    A calorimetric vacuum emissometer (CVE) capable of measuring total hemispherical emittance of surfaces at elevated temperatures was designed, built, and tested. Several materials with a wide range of emittances were measured in the CVE between 773 to 923 K. These results were compared to values calculated from spectral emittance curves measured in a room temperature Hohlraum reflectometer and in an open-air elevated temperature emissometer. The results differed by as much as 0.2 for some materials but were in closer agreement for the more highly-emitting, diffuse-reflecting samples. The differences were attributed to temperature, atmospheric, and directional effects, and errors in the Hohlraum and emissometer measurements ({+-} 5 percent). The probable error of the CVE measurements was typically less than 1 percent.

  12. Rapid discrimination of DNA strands using an opto-calorimetric microcantilever sensor.

    PubMed

    Lee, Dongkyu; Hwang, Kyo Seon; Kim, Seonghwan; Thundat, Thomas

    2014-12-21

    A rapid technique for quantitative detection and discrimination of DNA strands without using immobilized probe molecules is demonstrated using an opto-calorimetric, self-powered sensor based on a Pb(Zr(0.52)Ti(0.48))O3 (PZT) microcantilever. Microcalorimetric infrared (IR) spectroscopy provides excellent chemical selectivity based on the unique molecular vibrational characteristics of each nucleotide in the mid IR region. The piezoelectric and pyroelectric properties of the PZT microcantilever were exploited in the quantitative detection and discrimination of adsorbed DNA strands with their spectral characteristics. We report the unique spectral characteristics of different DNA nucleotides that are monitored by wavelength-dependent temperature variations for different relative molar ratio of each nucleotide. This approach offers a fast, label-free technique which is highly sensitive and selective for the detection of single nucleotide differences in DNA strands and has the potential to be used as a rapid prescreening biosensor for various biomolecules.

  13. Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites

    PubMed Central

    Nagabhushana, G. P.; Shivaramaiah, Radha; Navrotsky, Alexandra

    2016-01-01

    Hybrid perovskites, especially methylammonium lead iodide (MAPbI3), exhibit excellent solar power conversion efficiencies. However, their application is plagued by poor chemical and structural stability. Using direct calorimetric measurement of heats of formation, MAPbI3 is shown to be thermodynamically unstable with respect to decomposition to lead iodide and methylammonium iodide, even in the absence of ambient air or light or heat-induced defects, thus limiting its long-term use in devices. The formation enthalpy from binary halide components becomes less favorable in the order MAPbCl3, MAPbBr3, MAPbI3, with only the chloride having a negative heat of formation. Optimizing the geometric match of constituents as measured by the Goldschmidt tolerance factor provides a potentially quantifiable thermodynamic guide for seeking chemical substitutions to enhance stability. PMID:27357677

  14. Emittance characterization of thermal control paints, coatings and surfaces using a calorimetric technique

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    1994-01-01

    Thermal control surfaces are used in every spacecraft thermal management system to dissipate heat through radiant heat transfer. This paper describes the thermal performance of several thermal control paints, coatings, and surfaces, as characterized by a calorimetric vacuum emissometer. The emissometer is designed to measure the functional emittance of a surface based on heat transfer from an underlying substrate to the surface and from the surface or near surface to a surrounding cold wall. Emittance measurements were made between 200 and 350 K. Polished aluminum, used here as a standard, was found to have a total hemispherical emittance of 0.06, as expected. A velvet black paint, also used here as a standard, was found to have an emittance of 0.94 at room temperature. Other surfaces of interest included a polyurethane-based black paint designated Z-306, a highly polished 316L stainless steel, and an atomic oxygen beam-textured carbon-carbon composite.

  15. Calorimetric study on the effect of 60Co γ-rays on the growth of microorganisms

    NASA Astrophysics Data System (ADS)

    Wirkner, Sandra; Takahashi, Katsutada; Furuta, Masakazu; Hayashi, Toshio

    2002-03-01

    Using a calorimeter equipped with 24 sample units, the heat evolution from growing Saccharomyces cerevisiae, Escherichia coli and spores of Bacillus pumilus and Bacillus stearothermophilus was detected in the form of growth thermograms. Irradiation with 60Co γ-rays affected the growth pattern, which was used for a quantitative analysis of the effect on microorganisms. Irradiation of B. pumilus and B. stearothermophilus spores led to dose-dependent delays in growth, indicating a bactericidal effect. In case of 60Co γ-irradiated S. cerevisiae, a dose-dependent reduction of the growth rate constant was observed together with the retardation in growth, indicating a combination of bactericidal and bacteriostatic effects. An equation to determine the number of survivors on the basis of the retardation in growth tα and the growth rate constant μ was developed, which proved the opportunity to use the calorimetric technique in predictive microbiology.

  16. Emittance characterization of thermal control paints, coatings and surfaces using a calorimetric technique

    NASA Astrophysics Data System (ADS)

    Jaworske, Donald A.

    1994-12-01

    Thermal control surfaces are used in every spacecraft thermal management system to dissipate heat through radiant heat transfer. This paper describes the thermal performance of several thermal control paints, coatings, and surfaces, as characterized by a calorimetric vacuum emissometer. The emissometer is designed to measure the functional emittance of a surface based on heat transfer from an underlying substrate to the surface and from the surface or near surface to a surrounding cold wall. Emittance measurements were made between 200 and 350 K. Polished aluminum, used here as a standard, was found to have a total hemispherical emittance of 0.06, as expected. A velvet black paint, also used here as a standard, was found to have an emittance of 0.94 at room temperature. Other surfaces of interest included a polyurethane-based black paint designated Z-306, a highly polished 316L stainless steel, and an atomic oxygen beam-textured carbon-carbon composite.

  17. Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites.

    PubMed

    Nagabhushana, G P; Shivaramaiah, Radha; Navrotsky, Alexandra

    2016-07-12

    Hybrid perovskites, especially methylammonium lead iodide (MAPbI3), exhibit excellent solar power conversion efficiencies. However, their application is plagued by poor chemical and structural stability. Using direct calorimetric measurement of heats of formation, MAPbI3 is shown to be thermodynamically unstable with respect to decomposition to lead iodide and methylammonium iodide, even in the absence of ambient air or light or heat-induced defects, thus limiting its long-term use in devices. The formation enthalpy from binary halide components becomes less favorable in the order MAPbCl3, MAPbBr3, MAPbI3, with only the chloride having a negative heat of formation. Optimizing the geometric match of constituents as measured by the Goldschmidt tolerance factor provides a potentially quantifiable thermodynamic guide for seeking chemical substitutions to enhance stability.

  18. PREFACE: XVI International Youth Scientific School 'Actual Problems of Magnetic Resonance and its Applications'

    NASA Astrophysics Data System (ADS)

    Salakhov, M. Kh; Tagirov, M. S.; Dooglav, A. V.

    2013-12-01

    In 1997, A S Borovik-Romanov, the Academician of RAS, and A V Aganov, the head of the Physics Department of Kazan State University, suggested that the 'School of Magnetic Resonance', well known in the Soviet Union, should recommence and be regularly held in Kazan. This school was created in 1968 by G V Scrotskii, the prominent scientist in the field of magnetic resonance and the editor of many famous books on magnetic resonance (authored by A Abragam, B. Bleaney, C. Slichter, and many others) translated and edited in the Soviet Union. In 1991 the last, the 12th School, was held under the supervision of G V Scrotskii. Since 1997, more than 600 young scientists, 'schoolboys', have taken part in the School meetings, made their oral reports and participated in heated discussions. Every year a competition among the young scientist takes place and the Program Committee members name the best reports, the authors of which are invited to prepare full-scale scientific papers. The XVI International Youth Scientific School 'Actual problems of the magnetic resonance and its application' in its themes is slightly different from previous ones. A new section has been opened this year: Coherent Optics and Optical Spectroscopy. Many young people have submitted interesting reports on optical research, many of the reports are devoted to the implementation of nanotechnology in optical studies. The XVI International Youth Scientific School has been supported by the Program of development of Kazan Federal University. It is a pleasure to thank the sponsors (BRUKER Ltd, Moscow, the Russian Academy of Science, the Dynasty foundation of Dmitrii Zimin, Russia, Russian Foundation for Basic Research) and all the participants and contributors for making the International School meeting possible and interesting. A V Dooglav, M Kh Salakhov and M S Tagirov The Editors

  19. Calorimetric quantification of linked equilibria in cyclodextrin/lipid/detergent mixtures for membrane-protein reconstitution.

    PubMed

    Textor, Martin; Vargas, Carolyn; Keller, Sandro

    2015-04-01

    Reconstitution from detergent micelles into lipid bilayer membranes is a prerequisite for many in vitro studies on purified membrane proteins. Complexation by cyclodextrins offers an efficient and tightly controllable way of removing detergents for membrane-protein reconstitution, since cyclodextrins sequester detergents at defined stoichiometries and with tuneable affinities. To fully exploit the potential advantages of cyclodextrin for membrane-protein reconstitution, we establish a quantitative model for predicting the supramolecular transition from mixed micelles to vesicles during cyclodextrin-mediated detergent extraction. The model is based on a set of linked equilibria among all pseudophases present in the course of the reconstitution process. Various isothermal titration-calorimetric protocols are used for quantifying a detergent's self-association as well as its colloidal and stoichiometric interactions with lipid and cyclodextrin, respectively. The detergent's critical micellar concentration, the phase boundaries in the lipid/detergent phase diagram, and the dissociation constant of the cyclodextrin/detergent complex thus obtained provide all thermodynamic parameters necessary for a quantitative prediction of the transition from micelles to bilayer membranes during cyclodextrin-driven reconstitution. This is exemplified and validated by stepwise complexation of the detergent lauryldimethylamine N-oxide in mixtures with the phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine upon titration with 2-hydroxypropyl-β-cyclodextrin, both in the presence and in the absence of the membrane protein Mistic. The calorimetric approach presented herein quantitatively predicts the onset and completion of the reconstitution process, thus obviating cumbersome trial-and-error efforts and facilitating the rational optimisation of reconstitution protocols, and can be adapted to different cyclodextrin/lipid/detergent combinations.

  20. 45 CFR 233.145 - Expiration of medical assistance programs under titles I, IV-A, X, XIV and XVI of the Social...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... titles I, IV-A, X, XIV and XVI of the Social Security Act. 233.145 Section 233.145 Public Welfare... FINANCIAL ASSISTANCE PROGRAMS § 233.145 Expiration of medical assistance programs under titles I, IV-A, X..., enacted July 30, 1965, no payment may be made to any State under title I, IV-A, X, XIV or XVI of...

  1. 45 CFR 233.145 - Expiration of medical assistance programs under titles I, IV-A, X, XIV and XVI of the Social...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... titles I, IV-A, X, XIV and XVI of the Social Security Act. 233.145 Section 233.145 Public Welfare... FINANCIAL ASSISTANCE PROGRAMS § 233.145 Expiration of medical assistance programs under titles I, IV-A, X..., enacted July 30, 1965, no payment may be made to any State under title I, IV-A, X, XIV or XVI of...

  2. 45 CFR 233.145 - Expiration of medical assistance programs under titles I, IV-A, X, XIV and XVI of the Social...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... titles I, IV-A, X, XIV and XVI of the Social Security Act. 233.145 Section 233.145 Public Welfare... FINANCIAL ASSISTANCE PROGRAMS § 233.145 Expiration of medical assistance programs under titles I, IV-A, X..., enacted July 30, 1965, no payment may be made to any State under title I, IV-A, X, XIV or XVI of...

  3. Calorimetric and spectroscopic studies of the thermotropic phase behavior of lipid bilayer model membranes composed of a homologous series of linear saturated phosphatidylserines.

    PubMed Central

    Lewis, R N; McElhaney, R N

    2000-01-01

    The thermotropic phase behavior of lipid bilayer model membranes composed of the even-numbered, N-saturated 1,2-diacyl phosphatidylserines was studied by differential scanning calorimetry and by Fourier-transform infrared and (31)P-nuclear magnetic resonance spectroscopy. At pH 7.0, 0.1 M NaCl and in the absence of divalent cations, aqueous dispersions of these lipids, which have not been incubated at low temperature, exhibit a single calorimetrically detectable phase transition that is fully reversible, highly cooperative, and relatively energetic, and the transition temperatures and enthalpies increase progressively with increases in hydrocarbon chain length. Our spectroscopic observations confirm that this thermal event is a lamellar gel (L(beta))-to-lamellar liquid crystalline (L(alpha)) phase transition. However, after low temperature incubation, the L(beta)/L(alpha) phase transition of dilauroyl phosphatidylserine is replaced by a higher temperature, more enthalpic, and less cooperative phase transition, and an additional lower temperature, less enthalpic, and less cooperative phase transition appears in the longer chain phosphatidylserines. Our spectroscopic results indicate that this change in thermotropic phase behavior when incubated at low temperatures results from the conversion of the L(beta) phase to a highly ordered lamellar crystalline (L(c)) phase. Upon heating, the L(c) phase of dilauroyl phosphatidylserine converts directly to the L(alpha) phase at a temperature slightly higher than that of its original L(beta)/L(alpha) phase transition. Calorimetrically, this process is manifested by a less cooperative but considerably more energetic, higher-temperature phase transition, which replaces the weaker L(beta)/L(alpha) phase transition alluded to above. However, with the longer chain compounds, the L(c) phase first converts to the L(beta) phase at temperatures some 10-25 degrees C below that at which the L(beta) phase converts to the L(alpha) phase

  4. Genetic comparison of the head of Henri IV and the presumptive blood from Louis XVI (both Kings of France).

    PubMed

    Charlier, Philippe; Olalde, Iñigo; Solé, Neus; Ramírez, Oscar; Babelon, Jean-Pierre; Galland, Bruno; Calafell, Francesc; Lalueza-Fox, Carles

    2013-03-10

    A mummified head was identified in 2010 as belonging to Henri IV, King of France. A putative blood sample from the King Louis XVI preserved into a pyrographically decorated gourd was analyzed in 2011. Both kings are in a direct male-line descent, separated by seven generations. We have retrieved the hypervariable region 1 of the mitochondrial DNA as well as a partial Y-chromosome profile from Henri IV. Five STR loci match the alleles found in Louis XVI, while another locus shows an allele that is just one mutation step apart. Taking into consideration that the partial Y-chromosome profile is extremely rare in modern human databases, we concluded that both males could be paternally related. The likelihood ratio of the two samples belonging to males separated by seven generations (as opposed to unrelated males) was estimated as 246.3, with a 95% confidence interval between 44.2 and 9729. Historically speaking, this forensic DNA data would confirm the identity of the previous Louis XVI sample, and give another positive argument for the authenticity of the head of Henri IV.

  5. Reaction of hydroxy and carbonyl compounds with sulfur tetrafluoride. XVI. Reactions of vicinal dihydric alcohols with sulfur tetrafluoride

    SciTech Connect

    Burmakov, A.I.; Hassanein, S.M.; Kunshenko, B.V.; Alekseeva, L.A.; Yagupol'skii, L.M.

    1986-11-20

    During the action of sulfur tetrafluoride on ethanediol, d,l-1,2-propanediol, d,l-3,3,3-trifluoro-1,2-propanediol regioselective substitution of one of the hydroxyl groups by a fluorine atom occurs, depending on the electronic nature of the groups present in the molecule. The second hydroxy group in converted into a fluorosulfite group.

  6. Effect of Temperature on Xylanase II from Trichoderma reesei QM 9414: A Calorimetric, Catalytic, and Conformational Study

    PubMed Central

    López, Gloria

    2014-01-01

    The secondary structure of xylanase II from Trichoderma reesei is lost in an apparent irreversible cooperative process as temperature is increased with a midpoint transition of 58.8 ± 0.1°C. The shift of the spectral centre of mass above 50°C is also apparently cooperative with midpoint transition of 56.3 ± 0.2°C, but the existence of two isofluorescent points in the fluorescence emission spectra suggests a non-two-state process. Further corroboration comes from differential scanning calorimetry experiments. At protein concentrations ≤0.56 mg·mL−1 the calorimetric transition is reversible and the data were fitted to a non-two-state model and deconvoluted into six transitions, whereas at concentrations greater than 0.56 mg·mL−1 the calorimetric transition is irreversible with an exothermic contribution to the thermogram. The apparent Tm increased linearly with the scan rate according to first order inactivation kinetics. The effect of additives on the calorimetric transition of xylanase is dependent on their nature. The addition of sorbitol transforms reversible transitions into irreversible transitions while stabilizing the protein as the apparent Tm increases linearly with sorbitol concentration. d-Glucono-1,5-lactone, a noncompetitive inhibitor in xylanase kinetics, and soluble xylan change irreversible processes into reversible processes at high protein concentration. PMID:25276420

  7. Calorimetric low temperature detectors for low-energetic heavy ions and their application in accelerator mass spectrometry.

    PubMed

    Kraft-Bermuth, S; Andrianov, V A; Bleile, A; Echler, A; Egelhof, P; Kiseleva, A; Kiselev, O; Meier, H J; Meier, J P; Shrivastava, A; Weber, M; Golser, R; Kutschera, W; Priller, A; Steier, P; Vockenhuber, C

    2009-10-01

    The energy-sensitive detection of heavy ions with calorimetric low temperature detectors was investigated in the energy range of E=0.1-1 MeV/amu, commonly used for accelerator mass spectrometry (AMS). The detectors used consist of sapphire absorbers and superconducting aluminum transition edge thermometers operated at T approximately 1.5 K. They were irradiated with various ion beams (13C, 197Au, 238U) provided by the VERA tandem accelerator in Vienna, Austria. The relative energy resolution obtained was DeltaE/E=(5-9) x 10(-3), even for the heaviest ions such as 238U. In addition, no evidence for a pulse height defect was observed. This performance allowed for the first time to apply a calorimetric low temperature detector in an AMS experiment. The aim was to precisely determine the isotope ratio of 236U/238U for several samples of natural uranium, 236U being known as a sensitive monitor for neutron fluxes. Replacing a conventionally used detection system at VERA by the calorimetric detector enabled to substantially reduce background from neighboring isotopes and to increase the detection efficiency. Due to the high sensitivity achieved, a value of 236U/238U=6.1 x 10(-12) could be obtained, representing the smallest 236U/238U ratio measured at the time. In addition, we contributed to establishing an improved material standard of 236U/238U, which can be used as a reference for future AMS measurements.

  8. Differential scanning calorimetric evaluation of human meibomian gland secretions and model lipid mixtures: transition temperatures and cooperativity of melting

    PubMed Central

    Lu, Hua; Wojtowicz, Jadwiga C.; Butovich, Igor A.

    2013-01-01

    Meibomian gland secretions (or meibum) are produced by holocrine meibomian glands and are secreted in melted form onto the ocular surface of humans and animals to form a protective tear film lipid layer (TFLL). Its protective effect strongly depends on the composition and, hence, thermotropic behavior of meibum. The goal of our study was to quantitatively evaluate the melting characteristics of human meibum and model lipid mixtures using differential scanning microcalorimetry. Standard calorimetric parameters, e.g. changes in calorimetric enthalpy, transition temperatures T(m), cooperativity of melting etc. were assessed. We found that thermotropic behavior of meibum resembled that of relatively simple mixtures of unsaturated wax esters, but showed a lower change in calorimetric enthalpy, which can be indicative of a looser packing of lipids in meibum compared with pure standards and their simple mixtures. The cooperativity of melting of meibomian lipids was comparable to that of an equimolar mixture of four oleic-acid based wax esters. We demonstrated that the phase transitions in meibum start at about 10 to 15 °C and end at 35-36 °C, with T(m) being about 30 °C. The highly asymmetrical shape of the thermotropic peak of meibum is important for the physiology and biophysics of TFLL. PMID:23578711

  9. Calorimetric studies on the thermal hazard of methyl ethyl ketone peroxide with incompatible substances.

    PubMed

    Chang, Ron-Hsin; Shu, Chi-Min; Duh, Yih-Shing; Jehng, Jih-Mirn

    2007-03-22

    In Taiwan, Japan, and China, methyl ethyl ketone peroxide (MEKPO) has caused many severe thermal explosions owing to its thermal instability and reactivity originating from the complexity of its structure. This study focused on the incompatible features of MEKPO as detected by calorimetry. The thermal decomposition and runaway behaviors of MEKPO with about 10wt.% incompatibilities, such as H(2)SO(4), HCl, NaOH, KOH, FeCl(3), and FeSO(4), were analyzed by dynamic calorimeter, differential scanning calorimetry (DSC) and adiabatic calorimeter, vent sizing package 2 (VSP2). Thermokinetic data, such as onset temperature, heat of decomposition, adiabatic temperature rise, and self-heat rate, were obtained and assessed. Experimental data were used for determining the incompatibility rating on hazards. From the thermal curves of MEKPO with assumed incompatible substances detected by DSC, all the onset temperatures in the other tests occurring earlier advanced, especially with alkaline or ferric materials. In some tests, significant incompatible reactions were found. Adiabatic runaway behaviors for simulating the worst case scenario were performed by using VSP2. These calorimetric data led to the same results that the alkaline or ferric solution was the most incompatible with MEKPO.

  10. Thermal explosion analysis of methyl ethyl ketone peroxide by non-isothermal and isothermal calorimetric applications.

    PubMed

    Chi, Jen-Hao; Wu, Sheng-Hung; Shu, Chi-Min

    2009-11-15

    In the past, process incidents attributed to organic peroxides (OPs) that involved near misses, over-pressures, runaway reactions, and thermal explosions occurred because of poor training, human error, incorrect kinetic assumptions, insufficient change management, and inadequate chemical knowledge in the manufacturing process. Calorimetric applications were employed broadly to test organic peroxides on a small-scale because of their thermal hazards, such as exothermic behavior and self-accelerating decomposition in the laboratory. In essence, methyl ethyl ketone peroxide (MEKPO) is highly reactive and exothermically unstable. In recent years, it has undergone many thermal explosions and runaway reaction incidents in the manufacturing process. Differential scanning calorimetry (DSC), vent sizing package 2 (VSP2), and thermal activity monitor (TAM) were employed to analyze thermokinetic parameters and safety index. The intent of the analyses was to facilitate the use of various auto-alarm equipments to detect over-pressure, over-temperature, and hazardous materials leaks for a wide spectrum of operations. Results indicated that MEKPO decomposition is detected at low temperatures (30-40 degrees C), and the rate of decomposition was shown to exponentially increase with temperature and pressure. Determining time to maximum rate (TMR), self-accelerating decomposition temperature (SADT), maximum temperature (T(max)), exothermic onset temperature (T(0)), and heat of decomposition (DeltaH(d)) was essential for identifying early-stage runaway reactions effectively for industries.

  11. Calorimetric measurement of electron energy deposition in extended media. Theory vs experiment

    SciTech Connect

    Lockwood, G.J.; Ruggles, L.E.; Miller, G.H.; Halbleib, J.A.

    1980-01-01

    A new calorimetric technique has been developed for measuring electron energy deposition profiles in one dimension. The experimental procedures and theoretical analyses required in the application of the new method are reviewed. Extensive results are presented for electron energy deposition profiles in semi-infinite homogeneous and multilayer configurations. These data cover a range of elements from beryllium through uranium at source energies from 0.3 to 1.0 MeV (selected data at 0.5 and 0.1 MeV) and at incident angles from 0/sup 0/ to 60/sup 0/. In every case, the experimental profiles are compared with the predictions of a coupled electron/photon Monte Carlo transport code. Overall agreement between theory and experiment is very good. However, there appears to be a tendency for the theoretical profiles to be higher near the peaks and lower near the tails, especially in high-Z materials. There is also a discrepancy between theory and experiment in low-Z materials near high-Z/low-Z interfaces.

  12. Optical and Calorimetric Studies of Cholesterol-Rich Filamentous, Helical Ribbon and Crystal Microstructures

    SciTech Connect

    Miroshnikova, Y. A.; Elsenbeck, M.; Zastavker, Y. V.; Kashuri, K; Iannacchione, G. S.

    2009-04-19

    Formation of biological self-assemblies at all scales is a focus of studies in fields ranging from biology to physics to biomimetics. Understanding the physico-chemical properties of these self-assemblies may lead to the design of bio-inspired structures and technological applications. Here we examine self-assembled filamentous, helical ribbon, and crystal microstructures formed in chemically defined lipid concentrate (CDLC), a model system for cholesterol crystallization in gallbladder bile. CDLC consists of cholesterol, bilayer-forming amphiphiles, micelle-forming amphiphiles, and water. Phase contrast and differential interference contrast (DIC) microscopy indicate the presence of three microstructure types in all samples studied, and allow for an investigation of the structures' unique geometries. Additionally, confocal microscopy is used for qualitative assessment of surface and internal composition. To complement optical observations, calorimetric (differential-scanning and modulation) experiments, provide the basis for an in-depth understanding of collective and individual thermal behavior. Observed ''transition'' features indicate clustering and ''straightening'' of helical ribbons into short, increasingly thickening, filaments that dissolve with increasing temperature. These results suggest that all microstructures formed in CDLC may coexist in a metastable chemical equilibrium. Further investigation of the CDLC thermal profile should uncover the process of cholesterol crystallization as well as the unique design and function of microstructures formed in this system.

  13. Calorimetric measurement of heat load in full non-inductive LHCD plasmas on TRIAM-1M

    NASA Astrophysics Data System (ADS)

    Hanada, K.; Shinoda, N.; Sugata, T.; Sasaki, K.; Zushi, H.; Nakamura, K.; Sato, K. N.; Sakamoto, M.; Idei, H.; Hasegawa, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Triam Group

    2007-06-01

    Calorimetric measurements using the temperature increment of cooling-water were carried out to estimate the heat load distribution on the plasma facing components (PFCs) in the limiter discharges on TRIAM-1M. Line averaged electron density, ne, and LH power, PLH, dependences of the heat load on PFCs were measured. The heat load on the limiters was proportional to ne1.5 in the range of ne = 0.2-1.0 × 1019 m-3 and PLH1 in the range of PLH = 0.005-0.09 MW. For PLH > 0.1 MW, the plasma transition to an enhanced current drive (ECD) mode appeared and the ne dependences on the heat load on the limiter moderated. This indicates that the heat flux to scrape-off layer (SOL) region was reduced due to the improvement of the plasma confinement. The up-down asymmetry of the heat load on the vacuum vessel was enhanced in the ECD mode, which may be caused by the increasing of the direct loss of energetic electrons.

  14. A calorimetric investigation of the growth of the luminescent bacteria Beneckea harveyi and Photobacterium leiognathi.

    PubMed

    McIlvaine, P; Langerman, N

    1977-01-01

    Direct calorimetric determinations of the rate of heat production along with simultaneous determinations of the rate of photon emission and the number of viable cells have provided insight into the growth of Beneckea harveyi and Photobacterium leiognathi. These experiments were performed with a Tronac isothermal microcalorimeter modified with a fiber optic light guide to allow in situ detection of light. Escherichia coli and a dark variant of P. leiognathi were also examined to provide points of reference. It is demonstrated that B. harveyi seems to pause in the rate of metabolic heat production at the same point in time that the enzyme luciferase begins to be synthesized. This effect is not removed if B. harveyi is grown in conditioned medium. The thermograms for all species are correlated with cell generation time. The heat production per cell indicates that uncrowded cultures produce more heat than older, more crowded cultures, supporting the original observation of Bayne-Jones and Rhees (1929). These observations reopen for examination the suggestion that living systems tend toward a state of minimum metabolism per unit mass.

  15. Electron energy and charge albedos - calorimetric measurement vs Monte Carlo theory

    SciTech Connect

    Lockwood, G.J.; Ruggles, L.E.; Miller, G.H.; Halbleib, J.A.

    1981-11-01

    A new calorimetric method has been employed to obtain saturated electron energy albedos for Be, C, Al, Ti, Mo, Ta, U, and UO/sub 2/ over the range of incident energies from 0.1 to 1.0 MeV. The technique was so designed to permit the simultaneous measurement of saturated charge albedos. In the cases of C, Al, Ta, and U the measurements were extended down to about 0.025 MeV. The angle of incidence was varied from 0/sup 0/ (normal) to 75/sup 0/ in steps of 15/sup 0/, with selected measurements at 82.5/sup 0/ in Be and C. In each case, state-of-the-art predictions were obtained from a Monte Carlo model. The generally good agreement between theory and experiment over this extensive parameter space represents a strong validation of both the theoretical model and the new experimental method. Nevertheless, certain discrepancies at low incident energies, especially in high-atomic-number materials, and at all energies in the case of the U energy albedos are not completely understood.

  16. Optical and Calorimetric Studies of Cholesterol-Rich Filamentous, Helical Ribbon and Crystal Microstructures (abstract)

    NASA Astrophysics Data System (ADS)

    Miroshnikova, Y. A.; Elsenbeck, M.; Kashuri, K.; Iannacchione, G. S.; Zastavker, Y. V.

    2009-04-01

    Formation of biological self-assemblies at all scales is a focus of studies in fields ranging from biology to physics to biomimetics. Understanding the physico-chemical properties of these self-assemblies may lead to the design of bio-inspired structures and technological applications. Here we examine self-assembled filamentous, helical ribbon, and crystal microstructures formed in chemically defined lipid concentrate (CDLC), a model system for cholesterol crystallization in gallbladder bile. CDLC consists of cholesterol, bilayer-forming amphiphiles, micelle-forming amphiphiles, and water. Phase contrast and differential interference contrast (DIC) microscopy indicate the presence of three microstructure types in all samples studied, and allow for an investigation of the structures' unique geometries. Additionally, confocal microscopy is used for qualitative assessment of surface and internal composition. To complement optical observations, calorimetric (differential-scanning and modulation) experiments, provide the basis for an in-depth understanding of collective and individual thermal behavior. Observed ``transition'' features indicate clustering and ``straightening'' of helical ribbons into short, increasingly thickening, filaments that dissolve with increasing temperature. These results suggest that all microstructures formed in CDLC may coexist in a metastable chemical equilibrium. Further investigation of the CDLC thermal profile should uncover the process of cholesterol crystallization as well as the unique design and function of microstructures formed in this system.

  17. Minor groove binding of the food colorant carmoisine to DNA: spectroscopic and calorimetric characterization studies.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2014-01-08

    The interaction of the food additive carmoisine with herring testes DNA was studied by multifaceted biophysical techniques. Carmoisine exhibited hypochromic effects in absorbance, whereas in fluorescence the intensity enhanced upon complexation with DNA. Energy transfer from the DNA base pairs to carmoisine molecules occurred upon complexation. A groove binding model of interaction was envisaged for carmoisine-DNA complexation from 4',6-diamidino-2-phenylindole (DAPI) and Hoechst displacement studies. The binding of carmoisine stabilized the DNA structure against thermal denaturation. The binding induced moderate conformational perturbations in the B-form structure of DNA. The binding affinity (10(4) M(-1)) values, calculated from absorbance and fluorescence data, and calorimetry titrations were in close agreement with each other. The binding was characterized to be exothermic and favored by small negative enthalpic and large positive entropic contributions. Salt-dependent calorimetric studies revealed that the binding reaction was dominated by nonpolyelectrolytic forces. The negative heat capacity value suggested the role of hydrophobic effect in the interaction.

  18. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO.

    PubMed

    Hsu, Jing-Ming; Su, Mao-Sheng; Huang, Chiao-Ying; Duh, Yih-Shing

    2012-05-30

    Cumene hydroperoxide (CHP) has been used in producing phenol, dicumyl peroxide (DCPO) and as an initiator for synthesizing acrylonitrile-butadiene-styrene (ABS) resin by copolymerization in Taiwan. Four incidents of fire and explosion induced by thermal runaway reactions were occurred in a same plant producing CHP, DCPO and bis-(tert-butylperoxy isopropyl) benzene peroxide (BIBP). The fourth fire and explosion occurred in the CHP reactor that resulted in a catastrophic damage in reaction region and even spread throughout storage area. Descriptions on the occurrences of these incidents were assessed by the features of processes, reaction schemes and unexpected side reactions. Calorimetric data on thermokinetics and pressure were used for explaining the practical consequences or which the worst cases encountered in this kind of plant. Acceptable risk associated with emergency relief system design is vital for a plant producing organic peroxide. These basic data for designing an inherently safer plant can be conducted from adiabatic calorimetry. An encouraging deduction has been drawn here, these incidents may be avoided by the implementation of API RP 520, API RP 521, DIERS technology, OSHA 1910.119 and AIChE's CCPS recommended PSM elements.

  19. Short-pulse Calorimetric Load for High Power Millimeter-wave Beams

    NASA Astrophysics Data System (ADS)

    Gandini, F.; Bruschi, A.; Cirant, S.; Gittini, G.; Granucci, G.; Muzzini, V.; Sozzi, C.; Spinicchia, N.

    2007-02-01

    A spherical compact matched load, for high vacuum operation suited for short pulses (2 MW, 0.1 s) precise measurement has been designed to test high power gyrotrons Bruschi, Gandini, Muzzini, Spinicchia, Cirant, Gittini, Granucci, Mellera, Nardone, Simonetto, and Sozzi (Fusion Eng. Des. 56 57:649 654, 2001); Bruschi, Cirant, Gandini, Granucci, Mellera, Muzzini, Nardone, Simonetto, Sozzi, and Spinicchia (Nucl. Fusion 43:1513 1519, 2003); Bruschi, Cirant, Gandini, Gittini, Granucci, Mellera, Muzzini, Nardone, Simonetto, Sozzi, Spinicchia, Angella, and Signorelli (Development of CW and short-pulse calorimetric loads for high power millimeter-wave Beams, 23rd Symposium on Fusion Technology, September 20 24, 2004, Venice, Italy). In order to enhance the power handling capability of the load and to reduce the operation problems that may arise from an excessive reflection from the load, a ray tracing code has been written to model the power distribution on the inner surface and the pattern of the reflected radiation. The outcome of this code has been used to select a more convenient profile for the spreading mirror of the load and to optimize a pre-load specially conceived to minimize the power reflected fraction.

  20. Status and performance of the CALorimetric Electron Telescope (CALET) on the International Space Station

    NASA Astrophysics Data System (ADS)

    Adriani, O.; Akaike, Y.; Asaoka, Y.; Asano, K.; Bagliesi, M. G.; Bigongiari, G.; Binns, W. R.; Bongi, M.; Buckley, J. H.; Cassese, A.; Castellini, G.; Cherry, M. L.; Collazuol, G.; Ebisawa, K.; Di Felice, V.; Fuke, H.; Guzik, T. G.; Hams, T.; Hasebe, N.; Hareyama, M.; Hibino, K.; Ichimura, M.; Ioka, K.; Israel, M. H.; Javaid, A.; Kamioka, E.; Kasahara, K.; Katayose, Y.; Kataoka, J.; Kataoka, R.; Kawanaka, N.; Kitamura, H.; Kotani, T.; Krawczynski, H. S.; Krizmanic, J. F.; Kubota, A.; Kuramata, S.; Lomtadze, T.; Maestro, P.; Marcelli, L.; Marrocchesi, P. S.; Mitchell, J. W.; Miyake, S.; Mizutani, K.; Motz, H. M.; Moiseev, A. A.; Mori, K.; Mori, M.; Mori, N.; Munakata, K.; Murakami, H.; Nakagawa, Y. E.; Nakahira, S.; Nishimura, J.; Okuno, S.; Ormes, J. F.; Ozawa, S.; Palma, F.; Papini, P.; Rauch, B. F.; Ricciarini, S.; Sakamoto, T.; Sasaki, M.; Shibata, M.; Shimizu, Y.; Shiomi, A.; Sparvoli, R.; Spillantini, P.; Takahashi, I.; Takayanagi, M.; Takita, M.; Tamura, T.; Tateyama, N.; Terasawa, T.; Tomida, H.; Torii, S.; Tunesada, Y.; Uchihori, Y.; Ueno, S.; Vannuccini, E.; Wefel, J. P.; Yamaoka, K.; Yanagita, S.; Yoshida, A.; Yoshida, K.; Yuda, T.

    2014-11-01

    The CALorimetric Electron Telescope (CALET) space experiment, currently under development by Japan in collaboration with Italy and the United States, will measure the flux of cosmic-ray electrons (including positrons) to 20 TeV, gamma rays to 10 TeV and nuclei with Z=1 to 40 up to 1,000 TeV during a two-year mission on the International Space Station (ISS), extendable to five years. These measurements are essential to search for dark matter signatures, investigate the mechanism of cosmic-ray acceleration and propagation in the Galaxy and discover possible astrophysical sources of high-energy electrons nearby the Earth. The instrument consists of two layers of segmented plastic scintillators for the cosmic-ray charge identification (CHD), a 3 radiation length thick tungsten-scintillating fiber imaging calorimeter (IMC) and a 27 radiation length thick lead-tungstate calorimeter (TASC). CALET has sufficient depth, imaging capabilities and excellent energy resolution to allow for a clear separation between hadrons and electrons and between charged particles and gamma rays. The instrument will be launched to the ISS within 2014 Japanese Fiscal Year (by the end of March 2015) and installed on the Japanese Experiment Module-Exposed Facility (JEM-EF). In this paper, we will review the status and main science goals of the mission and describe the instrument configuration and performance.

  1. The Calorimetric Electron Telescope (CALET) for High Energy Astroparticle Physics on the International Space Station

    NASA Astrophysics Data System (ADS)

    Torii, Shoji

    The Calorimetric Electron Telescope, CALET, space experiment, currently under development by Japan in collaboration with Italy and the United States, will measure the flux of Cosmic Ray electrons (and positrons) t o 20 TeV, gamma rays to 10 TeV , nuclei with Z=1 to 40 up to 1,000 TeV, and Gamma-ray bursts in the 7 keV- 10 MeV energy range during a five year mission. These measurements are essential to investigate possible nearby astrophysical sources of high energy electrons, study the details of galactic particle propagation and search for dark matter signatures. The main detector of Calet, the Calorimeter, consists of a module to identify the particle charge, followed by a thin imaging calorimeter (3 radiation lengths) with tungsten plates interleaving scintillating fiber planes, and a thick energy measuring calorimeter (27 radiation lengths) composed of lead tungstate logs. The Calorimeter has the depth, imaging capabilities and energy resolution necessary for excellent separation between hadrons, electrons and gamma rays. The instrument is currently being prepared for launch, during the Japan Fiscal Year (April, 2014- March, 2015) time frame, to the International Space Station (ISS) for installation on the Japanese Experiment Module - Exposure Facility (JEM-EF).

  2. Calorimetric studies of the role of magnesium ions in yeast enolase catalysis.

    PubMed

    Faller, L D; Johnson, A M

    1974-04-01

    The binding of magnesium ions and of the competitive inhibitor 3-phospho-D-glyceric acid to yeast enolase (2-phospho-D-glycerate hydrolyase, EC 4.2.1.11) has been studied calorimetrically. Thermal titration of the apoprotein with magnesium ions provides evidence that two magnesium ions bind immeasurably tightly to the dimeric enzyme, either anticooperatively to interacting sites or to two independent, nonidentical sites. Measurements of the saturation heat in buffers with different enthalpies of protonation are consistent with the release of two protons when the metal-binding sites are filled at pH 7.5. The enthalpy of binding of the two magnesium ions, corrected for the release of two protons, is +11.7 kcal (+49.0 kJ) per mole of dimeric protein. Thermal titration of the magnesium-saturated enzyme with 3-phosphoglyceric acid corroborates the conclusion of Spring and Wold [Biochemistry (1971) 10, 4655-4660] that the enolase dimer possesses two equivalent and independent substrate-binding sites. The dissociation constant for the enzyme-inhibitor complex calculated from the thermal data is 2 mM. The thermal studies of 3-phosphoglyceric acid binding also confirm that metal ions are required for substrate binding and that substrate binds at the two specific metal-binding sites on the apoprotein. Experiments in buffers with different enthalpies of ionization provide evidence for proton uptake when 3-phosphoglyceric acid is bound.

  3. The CALorimetric Electron Telescope (CALET) for high-energy astroparticle physics on the International Space Station

    NASA Astrophysics Data System (ADS)

    Adriani, O.; Akaike, Y.; Asano, K.; Asaoka, Y.; Bagliesi, M. G.; Bigongiari, G.; Binns, W. R.; Bonechi, S.; Bongi, M.; Buckley, J. H.; Castellini, G.; Cherry, M. L.; Collazuol, G.; Ebisawa, K.; Di Felice, V.; Fuke, H.; Guzik, T. G.; Hams, T.; Hareyama, M.; Hasebe, N.; Hibino, K.; Ichimura, M.; Ioka, K.; Israel, M. H.; Javaid, A.; Kamioka, E.; Kasahara, K.; Kataoka, J.; Kataoka, R.; Katayose, Y.; Kawanaka, N.; Kitamura, H.; Kotani, T.; Krawczynski, H. S.; Krizmanic, J. F.; Kubota, A.; Kuramata, S.; Lomtadze, T.; Maestro, P.; Marcelli, L.; Marrocchesi, P. S.; Mitchell, J. W.; Miyake, S.; Mizutani, K.; Moiseev, A. A.; Mori, K.; Mori, M.; Mori, N.; Motz, H. M.; Munakata, K.; Murakami, H.; Nakagawa, Y. E.; Nakahira, S.; Nishimura, J.; Okuno, S.; Ormes, J. F.; Ozawa, S.; Palma, F.; Papini, P.; Rauch, B. F.; Ricciarini, S. B.; Sakamoto, T.; Sasaki, M.; Shibata, M.; Shimizu, Y.; Shiomi, A.; Sparvoli, R.; Spillantini, P.; Takahashi, I.; Takayanagi, M.; Takita, M.; Tamura, T.; Tateyama, N.; Terasawa, T.; Tomida, H.; Torii, S.; Tunesada, Y.; Uchihori, Y.; Ueno, S.; Vannuccini, E.; Wefel, J. P.; Yamaoka, K.; Yanagita, S.; Yoshida, A.; Yoshida, K.; Yuda, T.

    2015-08-01

    The CALorimetric Electron Telescope (CALET) is a space experiment, currently under development by Japan in collaboration with Italy and the United States, which will measure the flux of cosmic-ray electrons (and positrons) up to 20 TeV energy, of gamma rays up to 10 TeV, of nuclei with Z from 1 to 40 up to 1 PeV energy, and will detect gamma-ray bursts in the 7 keV to 20 MeV energy range during a 5 year mission. These measurements are essential to investigate possible nearby astrophysical sources of high energy electrons, study the details of galactic particle propagation and search for dark matter signatures. The main detector of CALET, the Calorimeter, consists of a module to identify the particle charge, followed by a thin imaging calorimeter (3 radiation lengths) with tungsten plates interleaving scintillating fibre planes, and a thick energy measuring calorimeter (27 radiation lengths) composed of lead tungstate logs. The Calorimeter has the depth, imaging capabilities and energy resolution necessary for excellent separation between hadrons, electrons and gamma rays. The instrument is currently being prepared for launch (expected in 2015) to the International Space Station ISS, for installation on the Japanese Experiment Module - Exposure Facility (JEM-EF).

  4. The CALorimetric Electron Telescope (CALET) for high-energy astroparticle physics on the International Space Station

    NASA Astrophysics Data System (ADS)

    Adriani, O.; Akaike, Y.; Asano, K.; Asaoka, Y.; Bagliesi, M. G.; Bigongiari, G.; Binns, W. R.; Bonechi, S.; Bongi, M.; Buckley, J. H.; Castellini, G.; Cherry, M. L.; Collazuol, G.; Ebisawa, K.; Di Felice, V.; Fuke, H.; Guzik, T. G.; Hams, T.; Hareyama, M.; Hasebe, N.; Hibino, K.; Ichimura, M.; Ioka, K.; Israel, M. H.; Javaid, A.; Kamioka, E.; Kasahara, K.; Kataoka, J.; Kataoka, R.; Katayose, Y.; Kawanaka, N.; Kitamura, H.; Kotani, T.; Krawczynski, H. S.; Krizmanic, J. F.; Kubota, A.; Kuramata, S.; Lomtadze, T.; Maestro, P.; Marcelli, L.; Marrocchesi, P. S.; Mitchell, J. W.; Miyake, S.; Mizutani, K.; Moiseev, A. A.; Mori, K.; Mori, M.; Mori, N.; Motz, H. M.; Munakata, K.; Murakami, H.; Nakagawa, Y. E.; Nakahira, S.; Nishimura, J.; Okuno, S.; Ormes, J. F.; Ozawa, S.; Palma, F.; Papini, P.; Rauch, B. F.; Ricciarini, S. B.; Sakamoto, T.; Sasaki, M.; Shibata, M.; Shimizu, Y.; Shiomi, A.; Sparvoli, R.; Spillantini, P.; Takahashi, I.; Takayanagi, M.; Takita, M.; Tamura, T.; Tateyama, N.; Terasawa, T.; Tomida, H.; Torii, S.; Tunesada, Y.; Uchihori, Y.; Ueno, S.; Vannuccini, E.; Wefel, J. P.; Yamaoka, K.; Yanagita, S.; Yoshida, A.; Yoshida, K.; Yuda, T.

    2015-05-01

    The CALorimetric Electron Telescope (CALET) is a space experiment, currently under development by Japan in collaboration with Italy and the United States, which will measure the flux of cosmic-ray electrons (and positrons) up to 20 TeV energy, of gamma rays up to 10 TeV, of nuclei with Z from 1 to 40 up to 1 PeV energy, and will detect gamma-ray bursts in the 7 keV to 20 MeV energy range during a 5 year mission. These measurements are essential to investigate possible nearby astrophysical sources of high energy electrons, study the details of galactic particle propagation and search for dark matter signatures. The main detector of CALET, the Calorimeter, consists of a module to identify the particle charge, followed by a thin imaging calorimeter (3 radiation lengths) with tungsten plates interleaving scintillating fibre planes, and a thick energy measuring calorimeter (27 radiation lengths) composed of lead tungstate logs. The Calorimeter has the depth, imaging capabilities and energy resolution necessary for excellent separation between hadrons, electrons and gamma rays. The instrument is currently being prepared for launch (expected in 2015) to the International Space Station ISS, for installation on the Japanese Experiment Module - Exposure Facility (JEM-EF).

  5. First calorimetric determination of heat of extraction of 248Cm in a bi-phasic system

    SciTech Connect

    Leigh R. Martin; Peter R. Zalupski

    2011-06-01

    This report presents a summary of the work performed to meet FCR&D level 2 milestone M21SW050201, 'Complete the first calorimetric determination of heat of extraction of 248Cm in a bi-phasic system'. This work was carried out under the auspices of the Thermodynamics and Kinetics FCR&D work package. To complement previous work undertaken under this work package we have extended out heat of extraction studies by di-2-ethyl-hexyl-phosphoric acid to curium. This report also details the heat of extraction of samarium in the same system. This work was performed to not only test the methodology but also to check for consistency with the heats of extraction obtained with those in the prior literature. The heat of extraction for samarium that was obtained in this study was -9.6 kJ mol-1, which is in reasonable agreement with the previously obtained value of -10.9 kJ mol-1. The curium heat of extraction was performed under two sets of conditions and the obtained heats of extraction were in reasonable agreement with each other at -16.0 {+-} 1.1 and -16.8 {+-} 1.5 kJ mol-1.

  6. XVI European Charcot Foundation Lecture: Nutrition and environment, can MS be prevented?

    PubMed Central

    Simon, Kelly Claire; Munger, Kassandra L; Ascherio, Alberto

    2012-01-01

    Multiple sclerosis is a relatively common debilitating neurologic disease that affects people in early adulthood. While the characteristic pathology of MS has been well described, the etiology of the disease is not well understood, despite decades of research and the identification of strong genetic and environmental candidates for susceptibility. A question central to all diseases, but posed specifically for MS at the XVI European Charcot Foundation Lecture, was ‘Can MS be prevented?’ To address this question, we have evaluated the available data regarding nutritional and environmental factors that may be related to MS susceptibility and suggest the extent to which a potential intervention may reduce disease burden. It is our opinion that intervention, particularly supplementation with vitamin D, could have a dramatic impact on disease prevalence. Understanding that any intervention or behavioral modification will surely act in the context of genetic susceptibility and unidentified stochastic events, it is likely that not all MS is ‘preventable’. Epidemiologic observation has provided key insights into environmental and nutritional factors that may alter one’s susceptibility to MS, however, there are still many questions in unraveling the etiology of this complex disease. PMID:21975017

  7. Energetics of carbohydrate binding to Momordica charantia (bitter gourd) lectin: an isothermal titration calorimetric study.

    PubMed

    Sultan, Nabil Ali Mohammed; Swamy, Musti J

    2005-05-01

    Physico-chemical and carbohydrate binding studies have been carried out on the Momordica charantia (bitter gourd) seed lectin (MCL). The lectin activity is maximal in the pH range 7.4-11.0, but decreases steeply below pH 7.0. The lectin activity is mostly unaffected in the temperature range 4-50 degrees C, but a sharp decrease is seen between 50 and 60 degrees C, which could be correlated to changes in the structure of the protein as seen by circular dichroism and fluorescence spectroscopy. Isothermal titration calorimetric studies show that the tetrameric MCL binds two sugar molecules and the binding constants (Kb), determined at 288.15 K, for various saccharides were found to vary between 7.3 x 10(3) and 1.52 x 10(4)M(-1). The binding reactions for all the saccharides investigated were essentially enthalpy driven, with the binding enthalpies (DeltaHb) at 288.15 K being in the range of -50.99 and -43.39 kJ mol(-1), whereas the contribution to the binding reaction from the entropy of binding was negative, with values of binding entropy (DeltaSb) ranging between -99.2 and -72.0 J mol(-1)K(-1) at 288.15 K. Changes in heat capacity (DeltaCp) for the binding of disaccharides, lactose and lactulose, were significantly larger in magnitude than those obtained for the monosaccharides, methyl-beta-D-galactopyranoside, and methyl-alpha-D-galactopyranoside, and could be correlated reasonably well with the surface areas of these ligands. Enthalpy-entropy compensation was observed for all the sugars studied, suggesting that water structure plays an important role in the overall binding reaction. CD spectroscopy indicates that carbohydrate binding does not lead to significant changes in the secondary and tertiary structures of MCL, suggesting that the carbohydrate binding sites on this lectin are mostly preformed.

  8. Seasonal Variability in Calorimetric Energy Content of Two Caribbean Mesophotic Corals

    PubMed Central

    Brandtneris, Viktor W.; Brandt, Marilyn E.; Glynn, Peter W.; Gyory, Joanna; Smith, Tyler B.

    2016-01-01

    Energetic responses of zooxanthellate reef corals along depth gradients have relevance to the refugia potential of mesophotic coral ecosystems (MCEs). Previous observations suggested that MCEs in the Caribbean are thermally buffered during the warmest parts of the year and occur within or just below the chlorophyll maximum, suggesting abundant trophic resources. However, it is not known if mesophotic corals can maintain constant energy needs throughout the year with changing environmental and biological conditions. The energetic content of tissues from the stony coral species Orbicella faveolata and Agaricia lamarcki was measured on the southern insular shelf of St. Thomas, US Virgin Islands (USVI), using micro-bomb calorimetry. Three sites for each species, at depths of 6m, 25m, 38m and 63m, were selected to capture energetic differences across the major vertical range extent of both species in the USVI—and sampled over five periods from April 2013 to April 2014. Mesophotic colonies of O. faveolata exhibited a significant reduction in energetic content during the month of September 2013 compared to mid-depth and shallow colonies (p = 0.032), whereas A. lamarcki experienced similar energetic variability, but with a significant reduction in energy content that occurred in July 2013 for colonies at sites deeper than 25m (p = 0.014). The results of calorimetric analyses indicate that O. faveolata may be at risk during late summer stress events, possibly due to the timing of reproductive activities. The low-point of A. lamarcki energy content, which may also coincide with reproduction, occurs prior to seasonal stress events, indicating contrasting, species-specific responses to environmental variability on MCEs. PMID:27050430

  9. High-resolution differential scanning calorimetric analysis of the subunits of Escherichia coli aspartate transcarbamoylase.

    PubMed

    Edge, V; Allewell, N M; Sturtevant, J M

    1985-10-08

    The thermal denaturation of the catalytic (c3) and regulatory (r2) subunits of Escherichia coli aspartate transcarbamoylase (c6r6) in the absence and presence of various ligands has been studied by means of highly sensitive differential scanning calorimetry. The denaturation of both types of subunit is irreversible as judged by the facts that the proteins coagulate when heated and that no endotherm is observed when previously scanned protein is rescanned. Despite this apparent irreversibility, there is empirical justification for analyzing the calorimetric data in terms of equilibrium thermodynamics as embodied in the van't Hoff equation. The observed curves of excess apparent specific heat vs. temperature are asymmetric and can be expressed within experimental uncertainty as the sums of sequential two-state steps, a minimum of two steps being required for r2 and three for c3. As previously reported [Vickers, K. P., Donovan, J. W., & Schachman, H. K. (1978) J. Biol. Chem. 253, 8493-8498], the addition of the effectors ATP and CTP raises the denaturation temperature of r2 and lowers that of c3 while the addition of the bisubstrate analogue N-(phosphonoacetyl)-L-aspartate raises the denaturation temperature of c3 and lowers that of r2. These effects vary with ligand concentration in the manner expected from the van't Hoff equation, indicating that they are simply manifestations of Le Chatelier's principle rather than being due to "stabilization" or "destabilization" of the proteins. The denaturational enthalpy is increased in those cases of ligand binding in which the denaturation temperature is increased, because of the contribution from the enthalpy of dissociation of the ligand.

  10. Combined online spectroscopic, calorimetric, and chemometric analysis: reaction enthalpy determinations in single and parallel reactions.

    PubMed

    Tjahjono, Martin; Widjaja, Effendi; Garland, Marc

    2009-06-02

    Calorimetry and signal processing: Vibrational spectroscopies, heat-flow microcalorimetry, and multivariate analysis are combined to decouple the reaction enthalpies of parallel reactions [picture: see text]. This methodology allows the evaluation of reaction enthalpy from complex systems without recourse to conventional kinetic modeling. Simultaneous in situ/online spectroscopy and heat-flow measurements as well as multivariate analyses are performed, apparently for the first time, to determine heats of reaction for single and parallel reactions. Two different vibrational spectroscopy techniques, namely Raman and FTIR spectroscopy, are used in conjunction with flow-through TAM III microcalorimetry. With respect to the spectroscopic analysis, the reaction spectra are first analyzed to determine the pure-component spectra and the corresponding concentrations without recourse to external calibration. With respect to the calorimetric analysis, a soft modeling approach is employed to determine the heats of reaction without recourse to any conventional kinetic models. This combined approach is implemented to determine the extents of reaction as well as the corresponding heats of reaction at 298.15 K and 0.1 MPa for a) the hydrolysis of acetic anhydride (single reaction) and b) the hydrolysis of methyl paraben and ethyl paraben in alkaline solution (both single and parallel reactions). In the latter case, the heat-flow contributions from the two simultaneous reactions are successfully decoupled. Taken together, these results demonstrate proof of concept for the present approach. The newly developed methodology appears to be quite general and particularly useful for investigating complex reaction systems. This is particularly true for multiple simultaneous reactions and reactions where the detailed kinetic expressions are not available, or cannot be easily determined. The use of extents of reaction is also very helpful where there is high variability in reaction rates

  11. Calorimetric studies of the kinetic unfreezing of molecular motions in hydrated lysozyme, hemoglobin, and myoglobin.

    PubMed Central

    Sartor, G; Mayer, E; Johari, G P

    1994-01-01

    Differential scanning calorimetric (DSC) studies of the glassy states of as-received and hydrated lysozyme, hemoglobin, and myoglobin powders, with water contents of < or = 0.25, < or = 0.30, and < or = 0.29 g/g of protein, show that their heat capacity slowly increases with increasing temperature, without showing an abrupt increase characteristic of glass-->liquid transition. Annealing (also referred to as physical aging) of the hydrated proteins causes their DSC scans to show an endothermic region, similar to an overshoot, immediately above the annealing temperature. This annealing effect appears at all temperatures between approximately 150 and 300 K. The area under these peaks increases with increasing annealing time at a fixed temperature. The effects are attributed to the presence of a large number of local structures in which macromolecular segments diffuse at different time scales over a broad range. The lowest time scale corresponds to the > N-H and -O-H group motions which become kinetically unfrozen at approximately 150-170 K on heating at a rate of 30 K min-1 and which have a relaxation time of 5-10 s in this temperature range. The annealing effects confirm that the individual glass transition of the relaxing local regions is spread over a temperature range up to the denaturation temperature region of the proteins. The interpretation is supported by simulation of DSC scans in which the distribution of relaxation times is assumed to be exceptionally broad and in which annealing done at several temperatures over a wide range produces endothermic effects (or regions of DSC scans) qualitatively similar to those observed for the hydrated proteins. PMID:8130342

  12. Religion and the Catholic church's view on (heart) transplantation: a recent statement of Pope Benedict XVI and its practical impact.

    PubMed

    Schwarz, Ernst R; Rosanio, Salvatore

    2011-09-01

    Heart transplantation is performed on approximately 4,000 patients per year worldwide and is considered the last resort for treatment of end-stage heart diseases. Due to persistent organ shortage, resources are limited, waiting periods are extensive, and patients still die while being on a waiting list for transplantation. The role of all churches and the support of the representatives of the churches are critical for the spiritual wellbeing of patients awaiting heart transplantation as well as for prospective individual organ donors and their families. The supportive role of the Roman Catholic Church and the recent statement of Pope Benedict XVI on organ donation are discussed.

  13. Investigation of ferroelectric phase transitions of water in nanoporous silicates in simultaneous electrical noise and calorimetric measurements

    NASA Astrophysics Data System (ADS)

    Bordonskiy, G. S.; Orlov, A. O.

    2014-08-01

    The phase transitions of water in the nanoporous silicate materials SBA-15 and MCM-41 with an ordered system of cylindrical pores have been investigated. Measurements of low-frequency electrical noises (Barkhausen noises) in the frequency range of 1-100 Hz have been performed simultaneously with relative calorimetric measurements. It has been found that the voltage of electrical fluctuations increases approximately 100 times in the temperature range from -30 to -50°C, which is associated with the first-order and second-order ferroelectric phase transitions. It has been assumed that the ferroelectric ice XI can be formed in capillary pores of the materials under investigations.

  14. Calorimetric system for high-precision determination of activity of the 51Cr neutrino source in the BEST experiment

    NASA Astrophysics Data System (ADS)

    Veretenkin, E. P.; Gavrin, V. N.; Danshin, S. N.; Ibragimova, T. V.; Kalashnikova, A. A.; Kozlova, J. P.; Martynov, A. A.

    2017-01-01

    The calorimetric system based on mass-flow calorimeter for high-precision determination of neutrino flux from 51Cr source with activity 3MCi and higher is created for experiment BEST. The achieved heat release uncertainties are less than 0.25% in the whole range of the heat power and less than 0.1% in the range of 250-500 W. Total value the uncertainty considering the uncertainty of the energy release in the 51Cr decay (0.23%) shows that the activity of 3MCi 51Cr neutrino source can be determined with accuracy better than 0.5%.

  15. Host-guest interaction of 3-hydroxyflavone and 7-hydroxyflavone with cucurbit [7]uril: A spectroscopic and calorimetric approach.

    PubMed

    Ahmed, Sayeed Ashique; Maity, Banibrata; Duley, Soma Seth; Seth, Debabrata

    2017-03-01

    The modulation of photophysical behaviour of small organic molecules in the presence of macrocycles is one of the most interesting areas of research. In this work we reported the interaction of two biologically active molecules 3-hydroxyflavone and 7-hydroxyflavone with macrocyclic host cucurbit [7]uril in aqueous medium. To investigate the change of photophysical properties of these two flavones, we have used steady state absorption, fluorescence, time resolved fluorescence emission spectroscopy and isothermal titration calorimetric technique. It is observed that on complexation with cucurbit [7]uril, the excited state proton transfer processes in both flavones have been facilitated. Isothermal titration calorimetric method was used in order to investigate the involvement of thermodynamic parameters in complexation between flavone with cucurbit [7]uril. The changes in thermodynamic properties due to the complexation of the flavones molecules with cucurbit [7]urils help to understand about the governing parameters involved in this complexation. The inclusion of flavone molecules inside the cavity of cucurbit [7]uril molecules was studied theoretically to decipher the molecular orientation of flavones in the presence of cucurbit [7]uril. The structure of HOMO and LUMO of the complexes between cucurbit [7]uril with flavones was reported. This study will be helpful to get the knowledge about the modulation of photophysical properties of the flavones molecules on addition of macrocyclic host cucurbit [7]uril. This study will be helpful for the use of cucurbit [7]uril as a potential drug delivery system.

  16. Development of Metallic Magnetic Calorimeters for High Precision Measurements of Calorimetric Re-187 and Ho-163 Spectra

    NASA Technical Reports Server (NTRS)

    Ranitzsch, P. C.-O.; Porst, J.-P.; Kempf, S.; Pies, C.; Schafer, S.; Hengstler, D.; Fleischmann, A.; Enss, C.; Gastaldo, L.

    2012-01-01

    The measurement of calorimetric spectra following atomic weak decays, beta (b) and electron capture (EC), of nuclides having a very low Q-value, can provide an impressively high sensitivity to a non-vanishing neutrino mass. The achievable sensitivity in this kind of experiments is directly connected to the performance of the used detectors. In particular an energy resolution of a few eV and a pulse formation time well below 1 microsecond are required. Low temperature Metallic Magnetic Calorimeters (MMCs) for soft X-rays have already shown an energy resolution of 2.0 eV FWHM and a pulse rise-time of about 90 ns for fully micro-fabricated detectors. We present the use of MMCs for high precision measurements of calorimetric spectra following the beta-decay of Re-187 and the EC of Ho-163. We show results obtained with detectors optimized for Re-187 and for Ho-163 experiments respectively. While the detectors equipped with superconducting Re absorbers have not yet reached the aimed performance, a first detector prototype with a Au absorber having implanted Ho-163 ions already shows excellent results. An energy resolution of 12 eV FWHM and a rise time of 90 ns were measured.

  17. The Bayer Facts of Science Education XVI: "US STEM Workforce Shortage--Myth or Reality? Fortune 1000 Talent Recruiters on the Debate"

    ERIC Educational Resources Information Center

    Journal of Science Education and Technology, 2014

    2014-01-01

    A major debate is currently underway in the USA about whether there is, in fact, a science, technology, engineering and mathematics (STEM) workforce shortage in the country or not. This is the subject of the "Bayer Facts of Science Education XVI: US STEM Workforce Shortage--Myth or Reality? Fortune 1000 Talent Recruiters on the Debate."…

  18. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components.

    PubMed

    Ansah, Emmanuel; Wang, Lijun; Shahbazi, Abolghasem

    2016-10-01

    The thermogravimetric and calorimetric characteristics during pyrolysis of wood, paper, textile and polyethylene terephthalate (PET) plastic in municipal solid wastes (MSW), and co-pyrolysis of biomass-derived and plastic components with and without torrefaction were investigated. The active pyrolysis of the PET plastic occurred at a much higher temperature range between 360°C and 480°C than 220-380°C for the biomass derived components. The plastic pyrolyzed at a heating rate of 10°C/min had the highest maximum weight loss rate of 18.5wt%/min occurred at 420°C, followed by 10.8wt%/min at 340°C for both paper and textile, and 9.9wt%/min at 360°C for wood. At the end of the active pyrolysis stage, the final mass of paper, wood, textile and PET was 28.77%, 26.78%, 21.62% and 18.31%, respectively. During pyrolysis of individual MSW components at 500°C, the wood required the least amount of heat at 665.2J/g, compared to 2483.2J/g for textile, 2059.4J/g for paper and 2256.1J/g for PET plastic. The PET plastic had much higher activation energy of 181.86kJ/mol, compared to 41.47kJ/mol for wood, 50.01kJ/mol for paper and 36.65kJ/mol for textile during pyrolysis at a heating rate of 10°C/min. H2O and H2 peaks were observed on the MS curves for the pyrolysis of three biomass-derived materials but there was no obvious H2O and H2 peaks on the MS curves of PET plastic. There was a significant interaction between biomass and PET plastic during co-pyrolysis if the biomass fraction was dominant. The amount of heat required for the co-pyrolysis of the biomass and plastic mixture increased with the increase of plastic mass fraction in the mixture. Torrefaction at a proper temperature and time could improve the grindability of PET plastic. The increase of torrefaction temperature and time did not affect the temperature where the maximum pyrolytic rates occurred for both biomass and plastic but decreased the maximum pyrolysis rate of biomass and increased the maximum pyrolysis

  19. Mitochondrial DNA analysis on remains of a putative son of Louis XVI, King of France and Marie-Antoinette.

    PubMed

    Jehaes, E; Decorte, R; Peneau, A; Petrie, J H; Boiry, P A; Gilissen, A; Moisan, J P; Van den Berghe, H; Pascal, O; Cassiman, J J

    1998-01-01

    Carl Wilhelm Naundorff was buried in 1845 in Delft as Louis Charles, Duc de Normandie, 'Louis XVII'. However, the son of Louis XVI and Marie-Antoinette-Louis XVII--officially died in the Temple of Paris in 1795. In order to resolve the identity of Naundorff, mitochondrial DNA (mtDNA) D-loop sequences of his remains were compared with the sequences obtained from the hairs of two sisters of Marie-Antoinette, Marie-Antoinette herself, and with the sequences obtained from DNA samples of two living maternal relatives. The mtDNA sequence of a bone sample from Naundorff showed two nucleotide differences from the sequences of the three sisters and four differences from the sequences of living maternal relatives. Based on this evidence it becomes very unlikely that Naundroff is the son of Marie-Antoinette.

  20. TRIFLUOROMETHYL COMPOUNDS OF GERMANIUM

    DTIC Science & Technology

    FLUORIDES, *GERMANIUM COMPOUNDS, *HALIDES, *ORGANOMETALLIC COMPOUNDS, ALKYL RADICALS, ARSENIC COMPOUNDS, CHEMICAL BONDS, CHEMICAL REACTIONS ...CHLORIDES, CHLORINE COMPOUNDS, HYDROLYSIS, IODIDES, METHYL RADICALS, POTASSIUM COMPOUNDS, PYROLYSIS, STABILITY, SYNTHESIS, TIN COMPOUNDS.

  1. Thermodynamic study of rhodamine 123-calf thymus DNA interaction: determination of calorimetric enthalpy by optical melting study.

    PubMed

    Masum, Abdulla Al; Chakraborty, Maharudra; Pandya, Prateek; Halder, Umesh Chandra; Islam, Md Maidul; Mukhopadhyay, Subrata

    2014-11-20

    In this paper, the interaction of rhodamine123 (R123) with calf thymus DNA has been studied using molecular modeling and other biophysical methods like UV-vis spectroscopy, fluoremetry, optical melting, isothermal titration calorimetry, and circular dichroic studies. Results showed that the binding energy is about -6 to -8 kcal/mol, and the binding process is favored by both negative enthalpy change and positive entropy change. A new method to determine different thermodynamic properties like calorimetric enthalpy and heat capacity change has been introduced in this paper. The obtained data has been crossed-checked by other methods. After dissecting the free-energy contribution, it was observed that the binding was favored by both negative hydrophobic free energy and negative molecular free energy which compensated for the positive free energies due to the conformational change loss of rotational and transitional freedom of the DNA helix.

  2. A micromachined calorimetric gas sensor: an application of electrodeposited nanostructured palladium for the detection of combustible gases.

    PubMed

    Bartlett, Philip N; Guerin, Samuel

    2003-01-01

    Palladium films with regular nanoarchitectures were electrochemically deposited from the hexagonal (H1) lyotropic liquid crystalline phase of the nonionic surfactant octaethyleneglycol monohexadecyl ether (C16EO8) onto micromachined silicon hotplate structures. The H1-e Pd films were shown to have high surface areas (approximately 28 m2 g(-1)) and to act as effective and stable catalysts for the detection of methane in air on heating to 500 degrees C. The response of the H1-e Pd-coated planar pellistors was found to be linearly proportional to the concentration of methane between 0 and 2.5% in air with a detection limit below 0.125%. Our results show that the electrochemical deposition of nanostructured metal films offers a promising approach to the fabrication of micromachined calorimetric gas sensors for combustible gases.

  3. SEM observations and differential scanning calorimetric studies of new and sterilized nickel-titanium rotary endodontic instruments.

    PubMed

    Alexandrou, Georgia B; Chrissafis, Konstantinos; Vasiliadis, Leonidas P; Pavlidou, Eleni; Polychroniadis, E K

    2006-07-01

    Scanning electron microscopy (SEM) and differential scanning calorimetric (DSC) studies were utilized to investigate surface and microstructure of two brands of rotary nickel-titanium (NiTi) endodontic instruments, in the as-received condition and after subjection to 1, 6, and 11 sterilization cycles. A total of 66 ProFile (n = 33) and Flexmaster (n = 33) files were examined. SEM observations indicated the presence of surface imperfections and adherent material in all new and sterilized instruments and an increase in surface roughness of the instruments that underwent multiple sterilizations. DSC measurements showed that the specimens of both brands, in the as-received condition and after 11 sterilizations, were completely austenite in the oral environment temperature, suggesting that they are capable of superelastic behavior in appropriate clinical conditions.

  4. A structural and calorimetric study of the transformations in sputtered Al-Mn and Al-Mn-Si films

    SciTech Connect

    Chen, L.C.; Spaepen, F. ); Robertson, J.L.; Moss, S.C. ); Hiraga, K. )

    1990-09-01

    Scanning and isothermal calorimetry, together with x-ray diffraction and high resolution transmission electron microscopy (TEM), have been used to characterize Al-Mn and Al-Mn-Si films sputtered onto substrates at 60 {degree}C, 45 {degree}C, and {minus}100 {degree}C. In the case of Al{sub 0.83}Mn{sub 0.17}, the monotonically decreasing isothermal calorimetric signal, characteristic of a grain growth process, has proved decisive in identifying the as-sputtered amorphous'' state as microquasicrystalline, with an average grain size of {similar to}20 A in agreement with an estimate of correlation range from the x-ray pattern. The TEM at 400 keV reveals well-defined atomic or lattice images in annealed films but only barely resolved grains (ordered clusters) in the as-sputtered films. The relation between the metallic glass and the microquasicrystalline state in these alloys is discussed.

  5. Spectroscopic and calorimetric studies on the interaction between PAMAM G4-OH and 5-fluorouracil in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Buczkowski, Adam; Urbaniak, Pawel; Piekarski, Henryk; Palecz, Bartlomiej

    2017-01-01

    The results of spectroscopic measurements (an increase in solubility, equilibrium dialysis, 1H NMR titration) and calorimetric measurements (isothermal titration ITC) indicate spontaneous (ΔG < 0) binding of 5-fluorouracil molecules by PAMAM G4-OH dendrimer with terminal hydroxyl groups in an aqueous solution. PAMAM G4-OH dendrimer bonds about n = 8 ± 1 molecules of the drug with an equilibrium constant of K = 70 ± 10. The process of saturating the dendrimer active sites by the drug molecules is exothermal (ΔH < 0) and is accompanied by an advantageous change in entropy (ΔS > 0). The parameters of binding 5-fluorouracil by PAMAM G4-OH dendrimer were compared with those of binding this drug by the macromolecules of PAMAM G3-OH and G5-OH.

  6. Temperature-dependent infrared and calorimetric studies on arsenicals adsorption from solution to hematite nanoparticles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To address the lack of systematic and surface sensitive studies on the adsorption energetics of arsenic compounds on metal (oxyhydr)oxides, we conducted temperature-dependent ATR-FTIR studies for the adsorption of arsenate, monomethylarsonic acid, and dimethylarsinic acid on hematite nanoparticles a...

  7. Absorption of organic compounds and organometallics on ceramic substrates for wear reduction

    SciTech Connect

    Kennedy, P.J.; Agarwala, V.S.

    1996-12-31

    The concept of employing thermally stable compounds (that is, metal oxides) as high temperature vapor phase ceramic lubricants was investigated. A major part of this study was devoted to the development of various calorimetric and tribological techniques that could be used to determine interfacial reactions between thermally stable compounds and ceramic substrates such as zirconia and alumina. This interaction is pivotal in understanding the mechanism of high temperature lubricity. The approach consisted of selecting low sublimation temperature materials and measuring their thermodynamic interactions as vapors with the ceramic substrates. The materials studied included two easily sublimable organic compounds (that is, naphthalene and salicylic acid) and several organometallics (for example, copper phthalocyanine). Thermodynamic data such as heat of adsorption, packing density, and reversibility of the adsorption were obtained on some of these compounds and were related to wear characteristics. All of these compounds provided effective lubrication at room temperature. Copper phthalocyanine was an effective lubricant at temperatures up to 400 C.

  8. A Calorimetric Study of Almandine: Are the Thermodynamic Properties of the End-Member Aluminosilicate Garnets Finally Known Quantitatively?

    NASA Astrophysics Data System (ADS)

    Dachs, E.; Geiger, C. A.; Benisek, A.

    2012-12-01

    The aluminosilicate garnets (E3Al2Si3O12 with E = Fe2+, Mn2+, Ca, Mg) form an important rock-forming mineral group. Much study has been directed toward determining their thermodynamic properties. The iron end-member almandine (Fe3Al2Si3O12) is a key phase in many petrologic investigations. As part of an ongoing calorimetric and thermodynamic study of the aluminosilicate garnets, the heat capacity of three synthetic well-characterized polycrystalline almandine garnets and one natural almandine-rich single crystal was measured. The various garnets were characterized by optical microscopy, electron-microprobe analysis, X-ray powder diffraction and 57Fe Mössbauer spectroscopy. Heat capacity measurements were performed in the temperature range 3 to 300 K using relaxation calorimetry and between 282 and 764 K using DSC methods. From the former, So values between 336.7 ± 0.8 and 337.8 ± 0.8 J/molK are calculated for the different samples. The smaller value is considered the best So for end-member stoichiometric almandine, because it derives from the "best" Fe3+-free synthetic sample. The Cp behavior for almandine at T > 298 K is given by the polynomial (in J/molK): Cp = 649.06(±4) - 3837.57(±122)T-0.5 - 1.44682(±0.06)107T-2 + 1.94834(±0.09)109T-3, which is calculated using DSC data together with one published heat-content datum determined by transposed-drop calorimetry along with a new determination that gives H1181K - H302K = 415.0 ± 3.2 kJ/mole. Almandine shows a λ-type heat-capacity anomaly at low temperatures resulting from a paramagnetic-antiferromagnetic phase transition at about 9 K. The lattice heat capacity was calculated using the single-parameter phonon dispersion model of Komada and Westrum (1997), which allows the non-lattice heat capacity (Cex) behavior to be modelled. An analysis shows the presence of an electronic heat-capacity contribution (Cel - Schottky anomaly) around 17 K that is superimposed on a larger magnetic heat-capacity effect (Cmag

  9. Polybenzimidazole compounds

    DOEpatents

    Klaehn, John R [Idaho Falls, ID; Peterson, Eric S [Idaho Falls, ID; Orme, Christopher J [Shelley, ID; Jones, Michael G [Chubbuck, ID; Wertsching, Alan K [Idaho Falls, ID; Luther, Thomas A [Idaho Falls, ID; Trowbridge, Tammy L [Idaho Falls, ID

    2011-11-22

    A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO--, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.

  10. Polybenzimidazole compounds

    DOEpatents

    Klaehn, John R.; Peterson, Eric S.; Wertsching, Alan K.; Orme, Christopher J.; Luther, Thomas A.; Jones, Michael G.

    2010-08-10

    A PBI compound that includes imidazole nitrogens, at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2--, where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least five equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about fifteen equivalents.

  11. New methodology for simultaneous volumetric and calorimetric measurements: Direct determination of {alpha}{sub p} and C{sub p} for liquids under pressure

    SciTech Connect

    Casas, L. M.

    2009-12-15

    A new batch cell has been developed to measure simultaneously both isobaric thermal expansion and isobaric heat capacity from calorimetric measurements. The isobaric thermal expansion is directly proportional to the linear displacement of an inner flexible below and the heat capacity is calculated from the calorimetric signal. The apparatus used was a commercial Setaram C-80 calorimeter and together with this type of vessels can be operated up to 20 MPa and in the temperature range of 303.15-523.15 K, In this work, calibration was carried out using 1-hexanol and subsequently both thermophysical properties were determined for 3-pentanol, 3-ethyl-3-pentanol, and 1-octanol at atmospheric pressure, 5 and 10 MPa, and from 303.15 to 423.15 K in temperature. Finally experimental values were compared with the literature in order to validate this new methodology, which allows a very accurate determination of isobaric thermal expansion and isobaric heat capacity.

  12. Examination of the calorimetric spectrum to determine the neutrino mass in low-energy electron capture decay

    NASA Astrophysics Data System (ADS)

    Robertson, R. G. H.

    2015-03-01

    Background: The standard kinematic method for determining neutrino mass from the β decay of tritium or other isotope is to measure the shape of the electron spectrum near the endpoint. A similar distortion of the "visible energy" remaining after electron capture is caused by neutrino mass. There has been a resurgence of interest in using this method with 163Ho, driven by technological advances in microcalorimetry. Recent theoretical analyses offer reassurance that there are no significant theoretical uncertainties. Purpose: The theoretical analyses consider only single vacancy states in the daughter 163Dy atom. It is necessary to consider configurations with more than one vacancy that can be populated owing to the change in nuclear charge. Method: The shakeup and shake-off theory of Carlson and Nestor is used as a basis for estimating the population of double-vacancy states. Results: A spectrum of satellites associated with each primary vacancy created by electron capture is presented. Conclusions: The theory of the calorimetric spectrum is more complicated than has been described heretofore. There are numerous shakeup and shake-off satellites present across the spectrum, and some may be very near the endpoint. The spectrum shape is presently not understood well enough to permit a sensitive determination of the neutrino mass in this way.

  13. Surfactants induced release of a red emitting dye from the nanocavity of a molecular container: A spectroscopic and calorimetric study.

    PubMed

    Ahmed, Sayeed Ashique; Chatterjee, Aninda; Maity, Banibrata; Seth, Debabrata

    2016-08-01

    Supramolecular interaction of a red emitting dye Nile blue A (NBA) with Cucurbit[7]uril (CB7) in aqueous solution was studied and the release of the dye from the hydrophobic cavity of CB7 was reported. To investigate the supramolecular host-guest complex formation and release of dye, we have used the steady state absorption, fluorescence and time resolved fluorescence emission spectroscopy, (1)H NMR spectroscopy and isothermal titration calorimetry (ITC). The spectral properties of NBA were changed in the presence of CB7. The change in spectral features of NBA in presence of CB7 indicates the formation of supramolecular host-guest complexes. By using the SED equation the diameter of the complex was estimated. The complex formation further affirmed by the (1)H NMR study. Upfield and downfield shifts of the protons of NBA was observed in both the aliphatic and aromatic region. From the ITC measurement, we have drawn up the forces involved for the complexation of NBA with CB7. We have studied the release of NBA from the hydrophobic cavity of CB7 by using ionic, neutral surfactants and ionic liquid with the help of spectroscopic and calorimetric techniques. It is observed that on addition of SDS and ionic liquid (

  14. Determination of Nuclear Charge Distributions of Fission Fragments from ^{235}U (n_th, f) with Calorimetric Low Temperature Detectors

    NASA Astrophysics Data System (ADS)

    Grabitz, P.; Andrianov, V.; Bishop, S.; Blanc, A.; Dubey, S.; Echler, A.; Egelhof, P.; Faust, H.; Gönnenwein, F.; Gomez-Guzman, J. M.; Köster, U.; Kraft-Bermuth, S.; Mutterer, M.; Scholz, P.; Stolte, S.

    2016-08-01

    Calorimetric low temperature detectors (CLTD's) for heavy-ion detection have been combined with the LOHENGRIN recoil separator at the ILL Grenoble for the determination of nuclear charge distributions of fission fragments produced by thermal neutron-induced fission of ^{235}U. The LOHENGRIN spectrometer separates fission fragments according to their mass-to-ionic-charge ratio and their kinetic energy, but has no selectivity with respect to nuclear charges Z. For the separation of the nuclear charges, one can exploit the nuclear charge-dependent energy loss of the fragments passing through an energy degrader foil (absorber method). This separation requires detector systems with high energy resolution and negligible pulse height defect, as well as degrader foils which are optimized with respect to thickness, homogeneity, and energy loss straggling. In the present, contribution results of test measurements at the Maier Leibnitz tandem accelerator facility in Munich with ^{109}Ag and ^{127}I beams with the aim to determine the most suitable degrader material, as well as measurements at the Institut Laue-Langevin will be presented. These include a systematic study of the quality of Z-separation of fission fragments in the mass range 82le A le 132 and a systematic measurement of ^{92}Rb fission yields, as well as investigations of fission yields toward the symmetry region.

  15. Thermodynamics of H in disordered Pd-Ag alloys from calorimetric and equilibrium pressure-composition-temperature measurements.

    PubMed

    Flanagan, Ted B; Wang, Da; Luo, S

    2007-09-13

    In this research, the thermodynamics of H2 solution and hydride formation in a series of disordered Pd-Ag alloys has been determined using both reaction calorimetry and equilibrium PH2-composition-T data. Trends of DeltaHH and DeltaSH with both H and Ag concentration have been determined. For the Pd0.76Ag0.24 alloy, which does not form a hydride phase, DeltaHH and DeltaSH both exhibit minima with H/(Pd0.76Ag0.24) followed by a linear increase of the former. A linear increase of DeltaHH is found for all of the alloys in the high H content region beyond the two-phase region or, if, there is no two-phase region, in the high H content region. DeltaHH degrees at infinite dilution of H decreases with atom fraction Ag, XAg, up to about 0.40 and then increases. Enthalpies for hydride formation/decomposition, 1/2H2(g) + dilute <--> hydride, have been determined calorimetrically for alloys which form two phases (303 K). The enthalpies for hydride formation become more exothermic with XAg while the corresponding entropy magnitudes are nearly constant, 46 +/- 2 J/K mol H.

  16. Calorimetric AC loss measurement of MgB2 superconducting tape in an alternating transport current and direct magnetic field

    NASA Astrophysics Data System (ADS)

    See, K. W.; Xu, X.; Horvat, J.; Cook, C. D.; Dou, S. X.

    2012-11-01

    Applications of MgB2 superconductors in electrical engineering have been widely reported, and various studies have been made to define their alternating current (AC) losses. However, studies on the transport losses with an applied transverse DC magnetic field have not been conducted, even though this is one of the favored conditions in applications of practical MgB2 tapes. Methods and techniques used to characterize and measure these losses have so far been grouped into ‘electrical’ and ‘calorimetric’ approaches with external conditions set to resemble the application conditions. In this paper, we present a new approach to mounting the sample and employ the calorimetric method to accurately determine the losses in the concurrent application of AC transport current and DC magnetic fields that are likely to be experienced in practical devices such as generators and motors. This technique provides great simplification compared to the pickup coil and lock-in amplifier methods and is applied to a long length (˜10 cm) superconducting tape. The AC loss data at 20 and 30 K will be presented in an applied transport current of 50 Hz under external DC magnetic fields. The results are found to be higher than the theoretical predictions because of the metallic fraction of the tape that contributes quite significantly to the total losses. The data, however, will allow minimization of losses in practical MgB2 coils and will be used in the verification of numerical coil models.

  17. Calorimetric Low-Temperature Detectors for X-Ray Spectroscopy on Trapped Highly-Charged Heavy Ions

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline; Kraft-Bermuth, S.; Andrianov, V.; Bleile, A.; Echler, A.; Egelhof, P.; Ilieva, S.; Kilbourne, C.; McCammon, D.

    2012-01-01

    The application of Calorimetric Low-Temperature Detectors (CLTDs) has been proposed at the Heavy-Ion TRAP facility HITRAP which is currently being installed at the Helmholtz Research Center for Heavy Ion Research GSI. This cold ion trap setup will allow the investigation of X-rays from ions practically at rest, for which the excellent energy resolution of CLTDs can be used to its full advantage. However, the relatively low intensities at HITRAP demand larger solid angles and an optimized cryogenic setup. The influence of external magnetic fields has to be taken into account. CLTDs will also be a substantial part of the instrumental equipment at the future Facility for Antiproton and Heavy Ion Research (FAIR), for which a wide variety of high-precision X-ray spectroscopy experiments has been proposed. This contribution will give an overview on the chances and challenges for the application of CLTDs at HITRAP as well as perspectives for future experiments at the FAIR facility.

  18. Photophysical and calorimetric investigation on the structural reorganization of poly(A) by phenothiazinium dyes azure A and azure B.

    PubMed

    Paul, Puja; Kumar, Gopinatha Suresh

    2014-08-01

    Poly(A) has significant relevance to mRNA stability, protein synthesis and cancer biology. The ability of two phenothiazinium dyes azure A (AA) and azure B (AB) to bind single-stranded poly(A) was studied by spectroscopic and calorimetric techniques. Strong binding of the dyes and the higher affinity of AA over AB were ascertained from absorbance and fluorescence experiments. Significant perturbation of the circular dichroism spectrum of poly(A) in the presence of these molecules with formation of induced CD bands in the 300-700 nm region was observed. Strong emission polarization of the bound dyes and strong energy transfer from the adenine base pairs of poly(A) suggested intercalative binding to poly(A). Intercalative binding was confirmed from fluorescence quenching experiments and was predominantly entropy driven as evidenced from isothermal titration calorimetry data. The negative values of heat capacity indicated involvement of hydrophobic forces and enthalpy-entropy compensation suggested noncovalent interactions in the complexation for both the dyes. Poly(A) formed a self-assembled structure on the binding of both the dyes that was more favored under higher salt conditions. New insights in terms of spectroscopic and thermodynamic aspects into the self-structure formation of poly(A) by two new phenothiazinium dyes that may lead to structural and functional damage of mRNA are revealed from these studies.

  19. Refractive-index-based calorimetric studies of RNAse T1 unfolding in small volumes using microinterferometric backscatter

    NASA Astrophysics Data System (ADS)

    Houlne, Michael P.; Hubbard, Darren S.; Makhatadze, George I.; Bornhop, Darryl J.

    1997-05-01

    Micro-interferometry, a novel technique developed by the authors, employs a linearly polarized laser, a fused silica capillary tube housing for the sample and a charged coupled device as a detector. A back scattered interference pattern, observed as a high contrast fringes, is produced when the laser is directed onto the capillary containing the sample. The positional change of the fringe pattern is a function of the refractive index of the media in the capillary. In the present work, the RNA enzyme RNase T1 is heated in the sample cell over a temperature range of 30 degrees C to 60 degrees C. Over this temperature range the molecule unfolds form the quaternary to the tertiary structure. This structure change is manifested as a refractive index change and is observed by monitoring the fringe position while ramping the cell temperature in a controlled fashion. From the refractive index response over the temperature range, the Gibbs free energy associated with unfolding is calculated. The authors show milli-degree temperature stability with a 0.1 micro-liter probe volume, thus demonstrating the application of this device in micro- calorimetric investigations.

  20. The Explorer XVI Micrometeoroid Satellite Description and Preliminary Results for the Period December 16, 1962 Through January 13, 1963

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.

    1963-01-01

    Explorer XVI (1962 Beta Chi l) data that have been analyzed for the period between December 16, 1962 (launch date), and January 13, 1963, indicate that the orbit achieved was close to the predicted orbit. Ten punctures of annealed 0.001-inch-thick beryllium-copper have been used to determine a puncture rate of 0.035 per square foot per day in this material. One puncture of a 0.002-inch-thick sample has also occurred in this period. A tentative evaluation of the puncture rate for the 0.001-inch beryllium-copper in terms of the rate for an equivalent thickness of aluminum has been attempted, and the result has been compared with two different puncture rate estimates. The three micrometeoroid impact detecting systems are operating. Counting rates for the high- and low-sensitivity systems were close to anticipated values near the end of one week. Two of the 0.001-inch-steel-covered grid detectors have been punctured, but none of the 0.003- or 0.006-inch-steel-covered grid detectors have indicated punctures. One of the cadmium sulfide cells indicates three punctures of the 0.00025-inch Mylar cover. None of the 0.002- or 0.003-inch-copper-wire cards have indicated a break in the period covered. Telemetry temperatures were initially higher than expected although they remained well within operating limits. Sensor temperatures have remained within the expected bounds.

  1. X-ray fluorescence analysis of yellow pigments in altarpieces by Valencian artists of the XV and XVI centuries

    NASA Astrophysics Data System (ADS)

    Ferrero, J. L.; Roldán, C.; Ardid, M.; Navarro, E.

    1999-02-01

    XRF analysis has allowed a quick and precise detection and identification of the inorganic elements that compose the yellow pigments in altarpieces of the XV and XVI centuries painted by the Valencian artists Miguel Alcañiz, Vicente Macip, Juan de Juanes, Hernando Yáñez de la Almedina and Hernando Llanos. The analyses have been carried out with an XRF portable system that consists of a tube of X-rays and detectors of Si(Li) and cadmium zinc telluride. This system has enabled a non-aggressive and non-destructive analysis of many pieces at the Museo de Bellas Artes of Valencia (Spain). Among the yellow pigments we have identified a pigment composed by lead and tin oxides named lead-tin yellow (Pb 2SnO 4), frequently used in European paintings from the XIV century until the first half of the XVIII century. This fact demonstrates the influence of elements and pictorial techniques from Europe to the region of Valencia.

  2. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing cis-monounsaturated acyl chain homologues of oleic acid: differential scanning calorimetric and /sup 31/P NMR spectroscopic studies

    SciTech Connect

    Lewis, R.N.A.H.; Sykes, B.D.; McElhaney, R.N.

    1988-02-09

    The thermotropic phase behavior of dioleoylphosphatidylcholine and six of its longer chain homologues was studied by differential scanning calorimetry and /sup 31/P nuclear magnetic resonance (NMR) spectroscopy. Aqueous dispersions of these compounds all exhibit a single endotherm upon heating but upon cooling exhibit at least two exotherms, both of which occur at temperatures lower than those of their heating endotherm. The single transition observed upon heating was shown by /sup 31/P NMR spectroscopy to be a net conversion from a condensed, subgel-like phase (L/sub c/ phase) to the liquid-crystalline state. Aqueous ethylene glycol dispersions of these compounds also exhibit single endotherms upon heating and cooling exotherms centered at temperatures lower than those of their corresponding heating endotherm. However, the behavior of the aqueous ethylene glycol dispersions differs with respect to their transition temperatures and enthalpies as well as the extent of undercooling observed, and there is some evidence of discontinuities in the cooling behavior of the odd- and even-numbered members of the homologous series. Like the aqueous dispersions, /sup 31/P NMR spectroscopy also shows that the calorimetric events observed in aqueous ethylene glycol involve net interconversions between an L/sub c/-like phase and the liquid-crystalline state. These results demonstrate that although the presence of a cis double bond can perturb the solid-state packing of the acyl chains, its presence does not preclude the formation of highly ordered subgel-like phases in lipid bilayers. In the particular case of these unsaturated phosphatidylcholines, the formation of the subgel phases is more kinetically favorable than is the case with their saturated n-acyl counterparts.

  3. Multipurpose Compound

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Specially formulated derivatives of an unusual basic compound known as Alcide may be the answer to effective treatment and prevention of the disease bovine mastitis, a bacterial inflammation of a cow's mammary gland that results in loss of milk production and in extreme cases, death. Manufactured by Alcide Corporation the Alcide compound has killed all tested bacteria, virus and fungi, shortly after contact, with minimal toxic effects on humans or animals. Alcide Corporation credits the existence of the mastitis treatment/prevention products to assistance provided the company by NERAC, Inc.

  4. Thermodynamic model for calorimetric and phase coexistence properties of coal derived fluids. Annual report

    SciTech Connect

    Kabadi, V.N.

    1991-10-01

    On September 1, 1989 work was initiated on a project to extend the available vapor-liquid equilibrium (VLE) model for coal fluids to allow satisfactory predictions of excess enthalpies of coal liquids at high pressures. The available vapor liquid equilibrium model was developed with support from previous grant from DOE-PETC (Grant no. DE-FG22-89PC90541). The current project also involves measurement of some model compound VLE data and chromatographic characterization of coal liquids for distribution of heteroatoms. A computational thermodynamic model for VLE, excess enthalpies and heat capacities of coal derived liquids has been developed. The model uses the modified UNIFAC correlation for the liquid phase. Some unavailable UNIFAC interactions parameters have been regressed from experimental VLE and excess enthalpy data. The computations are carried out using the method of continuous thermodynamics. Mode is used to derive interesting conclusions on the effect of oxygen, nitrogen, and sulfur heteroatoms on the thermodynamic properties of coal liquids. When compared with limited experimental data available for coal liquids the model shows good agreement. Some progress has been made on binary VLE measurements and size exclusion chromatography of coal liquids.

  5. Thermodynamic model for calorimetric and phase coexistence properties of coal derived fluids

    SciTech Connect

    Kabadi, V.N.

    1991-10-01

    On September 1, 1989 work was initiated on a project to extend the available vapor-liquid equilibrium (VLE) model for coal fluids to allow satisfactory predictions of excess enthalpies of coal liquids at high pressures. The available vapor liquid equilibrium model was developed with support from previous grant from DOE-PETC (Grant no. DE-FG22-89PC90541). The current project also involves measurement of some model compound VLE data and chromatographic characterization of coal liquids for distribution of heteroatoms. A computational thermodynamic model for VLE, excess enthalpies and heat capacities of coal derived liquids has been developed. The model uses the modified UNIFAC correlation for the liquid phase. Some unavailable UNIFAC interactions parameters have been regressed from experimental VLE and excess enthalpy data. The computations are carried out using the method of continuous thermodynamics. Mode is used to derive interesting conclusions on the effect of oxygen, nitrogen, and sulfur heteroatoms on the thermodynamic properties of coal liquids. When compared with limited experimental data available for coal liquids the model shows good agreement. Some progress has been made on binary VLE measurements and size exclusion chromatography of coal liquids.

  6. Perfluorinated Compounds

    EPA Science Inventory

    Perfluorinated compounds such as the perfluoroalkyl acids (PFAAs) and their derivatives are important man-made chemicals that have wide consumer and industrial applications. They are relatively contemporary chemicals, being in use only since the 1950s, and until recently, have be...

  7. Raman spectra of gases. XVI - Torsional transitions in ethanol and ethanethiol

    NASA Technical Reports Server (NTRS)

    Durig, J. R.; Bucy, W. E.; Wurrey, C. J.; Carreira, L. A.

    1975-01-01

    The Raman spectra of gaseous ethanol and ethanethiol have been investigated. Thiol torsional fundamentals for the gauche conformer of EtSH and EtSD have been observed and the asymmetric potential function for this vibration has been calculated. Methyl torsional transitions and overtones have also been observed for both of these molecules. Barriers to internal rotation for the methyl top are calculated to be 3.77 and 3.84 kcal/mol for the EtSH and EtSD compounds, respectively. Hydroxyl torsional fundamentals were observed at 207 and 170 per cm in the EtOH and EtOD spectra, respectively. Overtones of the methyl torsion in both molecules yield a barrier to internal rotation of 3.62 kcal/mol for the gauche conformer.

  8. The Path of Carbon in Photosynthesis XVI. Kinetic Relationships of the Intermediates in Steady State Photosynthesis

    DOE R&D Accomplishments Database

    Benson, A. A.; Kawaguchi, S.; Hayes, P.; Calvin, M.

    1952-06-05

    A kinetic study of the accumulation of C{sup 14} in the intermediates of steady state photosynthesis in C{sup 14}O{sub 2} provides information regarding the sequence of reactions involved. The work described applied the radio-chromatographic technique for analysis of the labeled early products. The simultaneous carboxylation reaction resulting in malic acid as well as phosphoglycerate is demonstrated in experiments at high light intensity. A comparison of radioactivities in a number of phosphorylated sugars as a function of time reveals concurrent synthesis of fructose and sedoheptulose phosphates followed by that of ribulose phosphates and later by that of glucose phosphates. The possibility that the cleavage of C{sub 4} compounds to C{sub 2} carbon dioxide acceptors may involve C{sub 7} and C{sub 5} sugars and evidence for this mechanism is presented.

  9. Energetics of hydrogen bonding in proteins: a model compound study.

    PubMed Central

    Habermann, S. M.; Murphy, K. P.

    1996-01-01

    Differences in the energetics of amide-amide and amide-hydroxyl hydrogen bonds in proteins have been explored from the effect of hydroxyl groups on the structure and dissolution energetics of a series of crystalline cyclic dipeptides. The calorimetrically determined energetics are interpreted in light of the crystal structures of the studied compounds. Our results indicate that the amide-amide and amide-hydroxyl hydrogen bonds both provide considerable enthalpic stability, but that the amide-amide hydrogen bond is about twice that of the amide-hydroxyl. Additionally, the interaction of the hydroxyl group with water is seen most readily in its contributions to entropy and heat capacity changes. Surprisingly, the hydroxyl group shows weakly hydrophobic behavior in terms of these contributions. These results can be used to understand the effects of mutations on the stability of globular proteins. PMID:8819156

  10. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs)

    PubMed Central

    Kang, Seok-Won; Fragala, Joe; Banerjee, Debjyoti

    2015-01-01

    Bi-layer (Au-Si3N4) microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever) with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a designated combustible species. Experiments were performed to determine the signature response of this nano-calorimeter platform for each explosive material considered for this study. Numerical modeling was performed to predict the bending response of the microcantilevers for various explosive materials, species concentrations, and actuation currents. The experimental validation of the numerical predictions demonstrated that in the presence of different explosive or combustible materials, the microcantilevers exhibited unique trends in their bending responses with increasing values of the actuation current. PMID:26334276

  11. A calorimetrically based method to convert toxic compounds into poly-3-hydroxybutyrate and to determine the efficiency and velocity of conversion.

    PubMed

    Maskow, T; Babel, W

    2001-03-01

    A fed-batch method for converting toxic substrates into poly-3-hydroxybutyrate is presented. The method involves a series of batch-growth processes, regulated by adding small amounts of carbon substrate, during the course of which the concentration of the nitrogen source decreases and controls the distribution of the substrate-carbon assimilated. The addition of carbon substrate is controlled, and the small changes that occur in the growth pattern are interpreted using high-resolution reaction calorimetry. The method was tested with Ralstonia eutropha DSM 4058 growing on phenol, and Variovorax paradoxus DSM 4065 growing on sodium benzoate. The maximum carbon conversion efficiencies (CCEs) obtained, 23% and 27% respectively, were compared with the theoretically possible values.

  12. Localized Recrystallization in Cast Al-Si-Mg Alloy during Solution Heat Treatment: Dilatometric and Calorimetric Studies

    NASA Astrophysics Data System (ADS)

    Chaudhury, S. K.; Warke, V.; Shankar, S.; Apelian, D.

    2011-10-01

    During heat treatment, the work piece experiences a range of heating rates depending upon the sizes and types of furnace. When the Al-Si-Mg cast alloy is heated to the solutionizing temperature, recrystallization takes place during the ramp-up stage. The effect of heating rate on recrystallization in the A356 (Al-Si-Mg) alloy was studied using dilatometric and calorimetric methods. Recrystallization in as-cast Al-Si alloys is a localized event and is confined to the elasto-plastic zone surrounding the eutectic Si phase; there is no evidence of recrystallization in the center of the primary Al dendritic region. The size of the elasto-plastic zone is of the same order of magnitude as the Si particles, and recrystallized grains are observed in the elasto-plastic region near the Si particles. The coefficient of thermal expansion of Al is an order of magnitude greater than Si, and thermal stresses are generated due to the thermal mismatch between the Al phase and Si particles providing the driving force for recrystallization. In contrast, recrystallization in Al wrought alloy (7075) occurs uniformly throughout the matrix, stored energy due to cold work being the driving force for recrystallization in wrought alloys. The activation energy for recrystallization in as-cast A356 alloy is 127 KJ/mole. At a slow heating rate of 4.3 K/min, creep occurs during the heating stage of solution heat treatment. However, creep does not occur in samples heated at higher heating rates, namely, 520, 130, and 17.3 K/min.

  13. Energetics of the binding of phototoxic and cytotoxic plant alkaloid sanguinarine to DNA: Isothermal titration calorimetric studies

    NASA Astrophysics Data System (ADS)

    Adhikari, Anupam; Hossain, Maidul; Maiti, Motilal; Suresh Kumar, Gopinatha

    2008-10-01

    Sanguinarine is a medically important plant alkaloid with remarkable pharmacological and biological activities. DNA binding is considered to be an important aspect in its mode of action. Isothermal titration calorimetric technique was used for the first time to derive the thermodynamic aspects of the interaction of the phototoxic and cytotoxic plant alkaloid sanguinarine with natural calf thymus DNA and four synthetic DNAs of differing base pair sequences under various environmental conditions The affinity of binding of sanguinarine (iminium form) was found to be in the order of 10 5 M -1 to calf thymus DNA. The binding affinity to calf thymus DNA decreased with increase of ionic strength and temperature. The salt dependence of the binding data showed that release of 0.55 U of the cations per bound alkaloid. The binding of the iminium form was exothermic under all conditions, but the uncharged alkanolamine form showed no binding to DNA. The heat capacity changes obtained from the temperature dependence of enthalpy indicated a value of -140 cal/mol K. Sanguinarine showed high specificity to alternating purine-pyrimidine sequences with affinity of the order 10 6 M -1 and the affinity to the polynucleotides varied in the order poly(dG-dC)·poly(dG-dC) > poly(dA-dT)·poly(dA-dT) > poly(dA)·poly(dT) > poly(dG)·poly(dC). The binding to alternating GC polymer was exothermic and enthalpy driven, to the homo GC polymer was exothermic and favoured by both negative enthalpy and positive entropy changes, to the alternating AT polymer was exothermic and enthalpy driven while to the homo AT polymer was endothermic and entropy driven.

  14. Preliminary study on heat load using calorimetric measurement during long-pulse high-performance discharges on EAST

    NASA Astrophysics Data System (ADS)

    Liu, Y. K.; Hamada, N.; Hanada, K.; Gao, X.; Liu, H. Q.; Yu, Y. W.; Qian, J. P.; Yang, L.; Xu, T. J.; Jie, Y. X.; Yao, Y.; Wang, S. S.; Xu, J. C.; Yang, Z. D.; Li, G. S.; EAST Team

    2017-04-01

    Experimental Advanced Superconducting Tokamak (EAST) aims to demonstrate steady-state advanced high-performance H-mode plasmas with an ITER-like configuration, plasma control and heating schemes. The plasma-facing components in EAST are actively cooled, providing good conditions for researching long-pulse and high-energy discharges. A long-pulse high-performance plasma discharge (#59892 discharge) of up to 103 s with a core electron temperature of up to 4.5 keV was sustained with an injected energy exceeding 0.22 GJ in the 2015–2016 experimental campaign. A calorimetric measurement utilizing the temperature increment of cooling water is carried out to calculate the heat load on the strike point region of the lower divertor during long-pulse discharges in EAST. For the long-pulse and high-energy discharges, the comparison of the measurement results for the heat load measured by divertor Langmuir probes and the calorimetry diagnostic indicates that most of the heat load is delivered to the divertor panels as plasma, not radiation, and charge exchange neutrals. The ratio of the heat load on the strike point region of the lower divertor to the total injected energy is on average 42.5% per discharge with the lower single null divertor configuration. If the radiated energy loss measured by the fast bolometer diagnostic is taken into consideration, the ratio is found to be 61.6%. The experimental results and the analysis of the physics involved in these discharges are reported and discussed.

  15. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2003-01-01

    Seawater and natural brines accounted for about 60 percent of U.S. magnesium compounds production during 2002. Dead-burned and caustic-calcined magnesias were recovered from seawater by Premier Chemicals in Florida. They were also recovered from well brines in Michigan by Dow Chemical, Martin Marietta Magnesia Specialties and Rohm & Haas. And they were recovered from magnesite in Nevada by Premier Chemicals.

  16. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, seawater and natural brines accounted for 51% of US magnesium compounds production. World magnesia production was estimated to be 14.5 Mt. Most of the production came from China, North Korea, Russia and Turkey. Although no specific production figures are available, Japan and the United States are estimated to account for almost one-half of the world's capacity from seawater and brines.

  17. Measurement of the Fe VIII-Fe XVI 3-3 Emission in the Extreme Ultraviolet and Comparison with CHIANTI

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Lepson, J. K.

    2012-08-01

    Laboratory measurements of the n = 3 to n = 3 emission from M-shell iron ions are presented and compared to synthetic spectra from the CHIANTI spectral model. The measurements cover the range 170-290 Å and are made at an electron density of about 1011 cm-3. Emission from Fe VIII through Fe XVI has been identified. Excellent agreement with CHIANTI predictions is found for most lines. Twenty weaker features are noted in the laboratory data that are either absent in CHIANTI or have recently been added and correspond to lines that have not been verified by experimental measurements. A few of these lines may have already been observed (but not yet identified) in the Sun. The features are attributed to emission from various charge states of iron, notably Fe IX and Fe XIII, and two features have been identified as transitions in Fe VIII, i.e., the 3p 63d 2 D 5/2-3p 53d 2 2 P 3/2 and the 3p 63d 2 D 3/2-3p 53d 2 2 P 1/2 transitions at 225.25 ± 0.12 and 226.35 ± 0.10 Å, respectively. Seven lines in Fe XI, Fe XII, and Fe XIII between 200 and 205 Å are noted for which the wavelengths in the CHIANTI database disagree with those in the current database of the National Institute of Standards and Technology. Our measurements of five of these lines appear to agree with the assignments used in CHIANTI.

  18. Investigation of the accuracy of MV radiation isocentre calculations in the Elekta cone-beam CT software XVI.

    PubMed

    Riis, Hans L; Moltke, Lars N; Zimmermann, Sune J; Ebert, Martin A; Rowshanfarzad, Pejman

    2016-06-07

    Accurate determination of the megavoltage (MV) radiation isocentre of a linear accelerator (linac) is an important task in radiotherapy. The localization of the MV radiation isocentre is crucial for correct calibration of the in-room lasers and the cone-beam CT scanner used for patient positioning prior to treatment. Linac manufacturers offer tools for MV radiation isocentre localization. As a user, there is no access to the documentation for the underlying method and calculation algorithm used in the commercial software. The idea of this work was to evaluate the accuracy of the software tool for MV radiation isocentre calculation as delivered by Elekta using independent software. The image acquisition was based on the scheme designed by the manufacturer. Eight MV images were acquired in each series of a ball-bearing (BB) phantom attached to the treatment couch. The images were recorded at cardinal angles of the gantry using the electronic portal imaging device (EPID). Eight Elekta linacs with three different types of multileaf collimators (MLCs) were included in the test. The influence of MLC orientation, x-ray energy, and phantom modifications were examined. The acquired images were analysed using the Elekta x-ray volume imaging (XVI) software and in-house developed (IHD) MATLAB code. Results from the two different software were compared. A discrepancy in the longitudinal direction of the isocentre localization was found averaging 0.23 mm up to a maximum of 0.75 mm. The MLC orientation or the phantom asymmetry in the longitudinal direction do not appear to cause the discrepancy. The main cause of the differences could not be clearly identified. However, it is our opinion that the commercial software delivered by the linac manufacturer should be improved to reach better stability and precise results in the MV radiation isocentre calculations.

  19. Investigation of the accuracy of MV radiation isocentre calculations in the Elekta cone-beam CT software XVI

    NASA Astrophysics Data System (ADS)

    Riis, Hans L.; Moltke, Lars N.; Zimmermann, Sune J.; Ebert, Martin A.; Rowshanfarzad, Pejman

    2016-06-01

    Accurate determination of the megavoltage (MV) radiation isocentre of a linear accelerator (linac) is an important task in radiotherapy. The localization of the MV radiation isocentre is crucial for correct calibration of the in-room lasers and the cone-beam CT scanner used for patient positioning prior to treatment. Linac manufacturers offer tools for MV radiation isocentre localization. As a user, there is no access to the documentation for the underlying method and calculation algorithm used in the commercial software. The idea of this work was to evaluate the accuracy of the software tool for MV radiation isocentre calculation as delivered by Elekta using independent software. The image acquisition was based on the scheme designed by the manufacturer. Eight MV images were acquired in each series of a ball-bearing (BB) phantom attached to the treatment couch. The images were recorded at cardinal angles of the gantry using the electronic portal imaging device (EPID). Eight Elekta linacs with three different types of multileaf collimators (MLCs) were included in the test. The influence of MLC orientation, x-ray energy, and phantom modifications were examined. The acquired images were analysed using the Elekta x-ray volume imaging (XVI) software and in-house developed (IHD) MATLAB code. Results from the two different software were compared. A discrepancy in the longitudinal direction of the isocentre localization was found averaging 0.23 mm up to a maximum of 0.75 mm. The MLC orientation or the phantom asymmetry in the longitudinal direction do not appear to cause the discrepancy. The main cause of the differences could not be clearly identified. However, it is our opinion that the commercial software delivered by the linac manufacturer should be improved to reach better stability and precise results in the MV radiation isocentre calculations.

  20. Geant4 simulation of the Elekta XVI kV CBCT unit for accurate description of potential late toxicity effects of image-guided radiotherapy.

    PubMed

    Brochu, F M; Burnet, N G; Jena, R; Plaistow, R; Parker, M A; Thomas, S J

    2014-12-21

    This paper describes the modelisation of the Elekta XVI Cone Beam Computed Tomography (CBCT) machine components with Geant4 and its validation against calibration data taken for two commonly used machine setups. Preliminary dose maps of simulated CBCTs coming from this modelisation work are presented. This study is the first step of a research project, GHOST, aiming to improve the understanding of late toxicity risk in external beam radiotherapy patients by simulating dose depositions integrated from different sources (imaging, treatment beam) over the entire treatment plan. The second cancer risk will then be derived from different models relating irradiation dose and second cancer risk.

  1. Geant4 simulation of the Elekta XVI kV CBCT unit for accurate description of potential late toxicity effects of image-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Brochu, F. M.; Burnet, N. G.; Jena, R.; Plaistow, R.; Parker, M. A.; Thomas, S. J.

    2014-12-01

    This paper describes the modelisation of the Elekta XVI Cone Beam Computed Tomography (CBCT) machine components with Geant4 and its validation against calibration data taken for two commonly used machine setups. Preliminary dose maps of simulated CBCTs coming from this modelisation work are presented. This study is the first step of a research project, GHOST, aiming to improve the understanding of late toxicity risk in external beam radiotherapy patients by simulating dose depositions integrated from different sources (imaging, treatment beam) over the entire treatment plan. The second cancer risk will then be derived from different models relating irradiation dose and second cancer risk.

  2. Exploring the comparative binding aspects of benzophenanthridine plant alkaloid chelerythrine with RNA triple and double helices: a spectroscopic and calorimetric approach.

    PubMed

    Haque, Lucy; Pradhan, Ankur Bikash; Bhuiya, Sutanwi; Das, Suman

    2015-07-14

    A comparative study on the interaction of a benzophenanthridine alkaloid chelerythrine (CHL) with RNA triplex poly(U).poly(A)*poly(U) (hereafter U.A*U, .(dot) and *(asterisk) represent Watson-Crick and Hoogsteen base pairing respectively) and its parent duplex poly(A).poly(U) (A.U) was carried out by using a combination of various spectroscopic, viscometric and calorimetric techniques. The interaction was characterized by hypochromic and bathochromic effects in the absorption spectrum, the increase of thermal melting temperature, enhancement in solution viscosity, and perturbation in the circular dichroic spectrum. The binding constant calculated by using spectrophotometric data was in the order of 10(5) for both forms of RNA, but it was greater for triplex RNA (30.2 × 10(5) M(-1)) than duplex RNA (3.6 × 10(5) M(-1)). Isothermal titration calorimetric data are in good agreement with the spectrophotometric data. The data indicated stronger binding of CHL to the triplex structure of RNA compared to the native duplex structure. Thermal melting studies indicated greater stabilization of the Hoogsteen base paired third strand of the RNA triplex compared to its Watson-Crick strands. The mode of binding of CHL to both U.A*U and A.U was intercalation as revealed from fluorescence quenching, viscosity measurements and sensitization of the fluorescence experiment. Thermodynamic data obtained from isothermal calorimetric measurements revealed that association was favoured by both a negative enthalpy change and a positive entropy change. Taken together, our results suggest that chelerythrine binds and stabilizes the RNA triplex more strongly than its respective parent duplex. The results presented here may be useful for formulating effective antigene strategies involving benzophenanthridine alkaloids and the RNA triplex.

  3. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2002-01-01

    Seawater and natural brines accounted for about 60% of US magnesium compounds production in 2001. Dead-burned and caustic-calcined magnesias were recovered from seawater in Florida by Premier Chemicals. They were also recovered from Michigan well brines by Dow Chemical, Martin Marietta Magnesia Specialties and Rohm & Haas. And Premier Chemicals recovered dead-burned and caustic-calcined magnesias from magnesite in Nevada. Reilly Industries and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah.

  4. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2011-01-01

    Seawater and natural brines accounted for about 54 percent of U.S. magnesium compounds production in 2010. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash-Wendover and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its operation mentioned above.

  5. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2010-01-01

    Seawater and natural brines accounted for about 40 percent of U.S. magnesium compounds production in 2009. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Chemicals in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover, and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta from its operation mentioned above.

  6. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

  7. Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Takagiwa, Y.; Matsuura, Y.; Kimura, K.

    2014-06-01

    We have focused on the binary narrow-bandgap intermetallic compounds FeGa3 and RuGa3 as thermoelectric materials. Their crystal structure is FeGa3-type (tetragonal, P42/ mnm) with 16 atoms per unit cell. Despite their simple crystal structure, their room temperature thermal conductivity is in the range 4-5-W-m-1-K-1. Both compounds have narrow-bandgaps of approximately 0.3-eV near the Fermi level. Because their Seebeck coefficients are quite large negative values in the range 350-<-| S 373K|-<-550- μV-K-1 for undoped samples, it should be possible to obtain highly efficient thermoelectric materials both by adjusting the carrier concentration and by reducing the thermal conductivity. Here, we report the effects of doping on the thermoelectric properties of FeGa3 and RuGa3 as n and p-type materials. The dimensionless figure of merit, ZT, was significantly improved by substitution of Sn for Ga in FeGa3 (electron-doping) and by substitution of Zn for Ga in RuGa3 (hole-doping), mainly as a result of optimization of the electronic part, S 2 σ.

  8. Trophic relay and prey switching - A stomach contents and calorimetric investigation of an ambassid fish and their saltmarsh prey

    NASA Astrophysics Data System (ADS)

    McPhee, Jack J.; Platell, Margaret E.; Schreider, Maria J.

    2015-12-01

    Trophic relay is an ecological model that involves the movement of biomass and energy from vegetation, such as saltmarshes, within estuaries to the open sea via a series of predator-prey relationships. Any potential for trophic relay is therefore affected by water movements within an estuary and by the ability of a predator to "switch" prey in response to fluctuating abundances of those prey. Saltmarsh-dwelling grapsid crabs, which feed on saltmarsh-derived detritus and microphytobenthos, release zoeae into ebbing tides that inundate saltmarshes during spring-tide cycles within tidally-dominated estuaries, such as Brisbane Water Estuary, therefore providing an opportunity to examine whether prey-switching and/or trophic relay may occur in fish that feed on those zoeae (such as the highly abundant estuarine ambassid, Ambassis jacksoniensis). This model was examined by sampling A. jacksoniensis near saltmarshes in a large, temperate south-eastern Australian estuary during flood and ebb tides on days of saltmarsh inundation and non-inundation over four spring-tide events in 2012. Stomach fullnesses of A. jacksoniensis were generally highest during ebb tides on days of saltmarsh inundation, implying that feeding was most marked at these times. Caridean decapods dominated diets during flood tides and on days of no saltmarsh inundation, while crab zoeae dominated diets during ebb tides and on days of inundation, suggesting that, when saltmarsh-derived zoeae became abundant, A. jacksoniensis switched to feeding on those prey. Three potential zooplankton prey (calanoid copepods, caridean decapods and crab zoeae) did not differ calorimetrically, indicating that switching of prey by A. jacksoniensis is not directly related to their preying on energetically greater prey, but reflects opportunistic feeding on more abundant and/or less elusive prey. As A. jacksoniensis is able to switch prey from estuarine caridean decapods to saltmarsh-derived crab zoeae, this very abundant

  9. Calorimetric and acoustic emission study of martensitic transformation in single-crystalline Ni2MnGa alloys

    NASA Astrophysics Data System (ADS)

    Tóth, László Z.; Szabó, Sándor; Daróczi, Lajos; Beke, Dezső L.

    2014-12-01

    The jerky character of austenite-martensite phase transformation in Ni2MnGa single crystals (with 10M martensite structure) has been investigated by thermal cycling using a differential scanning calorimeter (DSC) and by detection of acoustic emissions (AEs) at low cooling and heating rates (0.1 K/min and below). It is illustrated that, besides the low cooling and heating rate, mass and surface roughness are also important parameters in optimizing the best signal/noise ratio in order to obtain individual peaks suitable for statistical analysis. Three types of samples, differing in the twin structure and twin boundary behavior, were investigated with and without surface roughening made by electro-erosion. The statistical analysis, carried out for both (thermal and acoustic) types of signals, provided power-law behavior. In calorimetric measurements the energy exponents, obtained in cooling, were the same within the experimental errors (ɛ =1.7 ±0.2 ) for the three samples investigated. In acoustic emission experiments the energy and amplitude, α , exponents were determined both for cooling and heating. The exponents for cooling and heating runs are slightly different. They are larger for heating for both α and ɛ , in accordance with the asymmetric acoustic activity: we observed higher acoustic activity (higher number of hits) during cooling. The effect of the surface roughness is negligible in the exponents (but higher acoustic activity corresponds to higher roughness) and the following values were obtained: ɛ =1.5 ±0.1 and α =2.1 ±0.1 for cooling as well as ɛ =1.8 ±0.1 and α =2.6 ±0.1 for heating. Our results are in accordance with the results of Gallardo et al. [Phys. Rev. B 81, 174102 (2010), 10.1103/PhysRevB.81.174102] obtained in Cu based alloys: the exponents of the energy distributions, for both DSC and AE signals, were the same within the experimental errors. Furthermore, our exponents obtained from the AE measurements are close to the values

  10. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  11. Bismaleimide compounds

    DOEpatents

    Adams, Johnnie E.; Jamieson, Donald R.

    1986-01-14

    Bismaleimides of the formula ##STR1## wherein R.sub.1 and R.sub.2 each independently is H, C.sub.1-4 -alkyl, C.sub.1-4 -alkoxy, C1 or Br, or R.sub.1 and R.sub.2 together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R.sub.1 and R.sub.2 are not t-butyl or t-butoxy; X is O, S or Se; n is 1-3; and the alkylene bridging group, optionally, is substituted by 1-3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

  12. Bismaleimide compounds

    DOEpatents

    Adams, J.E.; Jamieson, D.R.

    1986-01-14

    Bismaleimides of the formula shown in the diagram wherein R[sub 1] and R[sub 2] each independently is H, C[sub 1-4]-alkyl, C[sub 1-4]-alkoxy, Cl or Br, or R[sub 1] and R[sub 2] together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R[sub 1] and R[sub 2] are not t-butyl or t-butoxy; X is O, S or Se; n is 1--3; and the alkylene bridging group, optionally, is substituted by 1--3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

  13. Comparative dose evaluations between XVI and OBI cone beam CT systems using Gafchromic XRQA2 film and nanoDot optical stimulated luminescence dosimeters

    SciTech Connect

    Giaddui, Tawfik; Cui Yunfeng; Galvin, James; Yu Yan; Xiao Ying

    2013-06-15

    Purpose: To investigate the effect of energy (kVp) and filters (no filter, half Bowtie, and full Bowtie) on the dose response curves of the Gafchromic XRQA2 film and nanoDot optical stimulated luminescence dosimeters (OSLDs) in CBCT dose fields. To measure surface and internal doses received during x-ray volume imager (XVI) (Version R4.5) and on board imager (OBI) (Version 1.5) CBCT imaging protocols using these two types of dosimeters. Methods: Gafchromic XRQA2 film and nanoDot OSLD dose response curves were generated at different kV imaging settings used by XVI (software version R4.5) and OBI (software version 1.5) CBCT systems. The settings for the XVI system were: 100 kVp/F0 (no filter), 120 kVp/F0, and 120 kVp/F1 (Bowtie filter), and for the OBI system were: 100 kVp/full fan, 125 kVp/full fan, and 125 kVp/half fan. XRQA2 film was calibrated in air to air kerma levels between 0 and 11 cGy and scanned using reflection scanning mode with the Epson Expression 10000 XL flat-bed document scanner. NanoDot OSLDs were calibrated on phantom to surface dose levels between 0 and 14 cGy and read using the inLight{sup TM} MicroStar reader. Both dosimeters were used to measure in field surface and internal doses in a male Alderson Rando Phantom. Results: Dose response curves of XRQA2 film and nanoDot OSLDs at different XVI and OBI CBCT settings were reported. For XVI system, the surface dose ranged between 0.02 cGy in head region during fast head and neck scan and 4.99 cGy in the chest region during symmetry scan. On the other hand, the internal dose ranged between 0.02 cGy in the head region during fast head and neck scan and 3.17 cGy in the chest region during chest M20 scan. The average (internal and external) dose ranged between 0.05 cGy in the head region during fast head and neck scan and 2.41 cGy in the chest region during chest M20 scan. For OBI system, the surface dose ranged between 0.19 cGy in head region during head scan and 4.55 cGy in the pelvis region during

  14. Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal-organic framework.

    PubMed

    Wu, Di; Gassensmith, Jeremiah J; Gouvêa, Douglas; Ushakov, Sergey; Stoddart, J Fraser; Navrotsky, Alexandra

    2013-05-08

    The enthalpy of adsorption of CO2 on an environmentally friendly metal-organic framework, CD-MOF-2, has been determined directly for the first time using adsorption calorimetry at 25 °C. This calorimetric methodology provides a much more accurate and model-independent measurement of adsorption enthalpy than that obtained by calculation from the adsorption isotherms, especially for systems showing complex and strongly exothermic adsorption behavior. The differential enthalpy of CO2 adsorption shows enthalpy values in line with chemisorption behavior. At near-zero coverage, an irreversible binding event with an enthalpy of -113.5 kJ/mol CO2 is observed, which is followed by a reversible -65.4 kJ/mol binding event. These enthalpies are assigned to adsorption on more and less reactive hydroxyl groups, respectively. Further, a second plateau shows an enthalpy of -40.1 kJ/mol and is indicative of physisorbed CO2. The calorimetric data confirm the presence of at least two energetically distinct binding sites for chemisorbed CO2 on CD-MOF-2.

  15. Identifying the critical point of the weakly first-order itinerant magnet DyCo2 with complementary magnetization and calorimetric measurements

    NASA Astrophysics Data System (ADS)

    Morrison, K.; Dupas, A.; Mudryk, Y.; Pecharsky, V. K.; Gschneidner, K. A.; Caplin, A. D.; Cohen, L. F.

    2013-04-01

    We examine the character of the itinerant magnetic transition of DyCo2 by different calorimetric methods, thereby separating the heat capacity and latent heat contributions to the entropy—allowing direct comparison to other itinerant electron metamagnetic systems. The heat capacity exhibits a large λ-like peak at the ferrimagnetic ordering phase transition, a signature that is remarkably similar to La(Fe,Si)13, where it is attributed to giant spin fluctuations. Using calorimetric measurements, we also determine the point at which the phase transition ceases to be first order: the critical magnetic field, μ0Hcrit = 0.4 ± 0.1 T and temperature Tcrit = 138.5 ± 0.5 K, and we compare these values to those obtained from analysis of magnetization by application of the Shimizu inequality for itinerant electron metamagnetism. Good agreement is found between these independent measurements, thus establishing the phase diagram and critical point with some confidence. In addition, we find that the often-used Banerjee criterion may not be suitable for determination of first order behavior in itinerant magnet systems.

  16. Calorimetric system and method

    DOEpatents

    Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.; Moorman, Jack O.

    1998-09-15

    Apparatus for measuring heat capacity of a sample where a series of measurements are taken in succession comprises a sample holder in which a sample to be measured is disposed, a temperature sensor and sample heater for providing a heat pulse thermally connected to the sample, and an adiabatic heat shield in which the sample holder is positioned and including an electrical heater. An electrical power supply device provides an electrical power output to the sample heater to generate a heat pulse. The electrical power from a power source to the heat shield heater is adjusted by a control device, if necessary, from one measurement to the next in response to a sample temperature-versus-time change determined before and after a previous heat pulse to provide a subsequent sample temperature-versus-time change that is substantially linear before and after the subsequent heat pulse. A temperature sensor is used and operable over a range of temperatures ranging from approximately 3K to 350K depending upon the refrigerant used. The sample optionally can be subjected to dc magnetic fields such as from 0 to 12 Tesla (0 to 120 kOe).

  17. Micromechanical calorimetric sensor

    DOEpatents

    Thundat, Thomas G.; Doktycz, Mitchel J.

    2000-01-01

    A calorimeter sensor apparatus is developed utilizing microcantilevered spring elements for detecting thermal changes within a sample containing biomolecules which undergo chemical and biochemical reactions. The spring element includes a bimaterial layer of chemicals on a coated region on at least one surface of the microcantilever. The chemicals generate a differential thermal stress across the surface upon reaction of the chemicals with an analyte or biomolecules within the sample due to the heat of chemical reactions in the sample placed on the coated region. The thermal stress across the spring element surface creates mechanical bending of the microcantilever. The spring element has a low thermal mass to allow detection and measuring of heat transfers associated with chemical and biochemical reactions within a sample placed on or near the coated region. A second surface may have a different material, or the second surface and body of microcantilever may be of an inert composition. The differential thermal stress between the surfaces of the microcantilever create bending of the cantilever. Deflections of the cantilever are detected by a variety of detection techniques. The microcantilever may be approximately 1 to 200 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. A sensitivity for detection of deflections is in the range of 0.01 nanometers. The microcantilever is extremely sensitive to thermal changes in samples as small as 30 microliters.

  18. Calorimetric system and method

    DOEpatents

    Gschneidner, K.A. Jr.; Pecharsky, V.K.; Moorman, J.O.

    1998-09-15

    Apparatus is described for measuring heat capacity of a sample where a series of measurements are taken in succession comprises a sample holder in which a sample to be measured is disposed, a temperature sensor and sample heater for providing a heat pulse thermally connected to the sample, and an adiabatic heat shield in which the sample holder is positioned and including an electrical heater. An electrical power supply device provides an electrical power output to the sample heater to generate a heat pulse. The electrical power from a power source to the heat shield heater is adjusted by a control device, if necessary, from one measurement to the next in response to a sample temperature-versus-time change determined before and after a previous heat pulse to provide a subsequent sample temperature-versus-time change that is substantially linear before and after the subsequent heat pulse. A temperature sensor is used and operable over a range of temperatures ranging from approximately 3K to 350K depending upon the refrigerant used. The sample optionally can be subjected to dc magnetic fields such as from 0 to 12 Tesla (0 to 120 kOe). 18 figs.

  19. SU-E-J-50: An Evaluation of the Stability of Image Quality Parameters of the Elekta XVI and IView Imaging Systems

    SciTech Connect

    Stanley, D; Papanikolaou, N; Gutierrez, A

    2015-06-15

    Introduction Quality assurance of the image quality for image guided localization systems is crucial to ensure accurate visualization and localization of target volumes. In this study, the long term stability of selected image parameters was assessed and evaluated for CBCT mode, planar radiographic kV mode and MV mode. Methods and Materials: The CATPHAN, QckV-1 and QC-3 phantoms were used to evaluate the image quality parameters. The planar radiographic images were analyzed in PIPSpro™ with spatial resolution (f30, f40, f50) being recorded. For XVI CBCT, Head and Neck Small20 (S20) and Pelvis Medium20 (M20) standard acquisition modes were evaluated for Uniformity, Noise, Spatial Resolution and HU constancy. Dose and kVp for the XVI were recorded using the Unfors RaySafe Xi system with the R/F Low Detector for the kV planar radiographic mode. Results A total of 20 and 10 measurements were acquired for the planar radiographic and CBCT systems respectively over a two month period. Values were normalized to the mean and the standard deviations (STD) were recorded. For the planar radiographic spatial resolution, the STD for f30, f40, f50 were 0.004, 0.002, 0.002 and 0.005, 0.007, 0.008 for the kV and MV, respectively. The average recorded dose for kV was 38.7±2.7 μGy. The STD of the evaluated metrics for the S20 acquisition were: 0.444(f30), 0.067(f40), 0.062(f50), 0.018(Water/poly-HU constancy), 0.028(uniformity) and 0.106(noise). The standard deviations for the M20 acquisition were: 0.108(f30), 0.073(f40), 0.091(f50), 0.008(Water/poly-HU constancy), 0.005(uniformity) and 0.005(noise). Using these, tolerances can be reported as a warning and action threshold of 1σ and 2σ. Conclusion A study was performed to assess the stability of the basic image quality parameters recommended by TG-142 for the Elekta XVI and iView imaging systems. Consistent imaging and dosimetric properties over the evaluated time frame were noted. This work was funded in part by the Cancer

  20. Introduction: Invertebrate Neuropeptides XVI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the sixteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide seque...

  1. Ferroelectric properties of the [N(CH3)4]2CoCl2Br2 compound

    NASA Astrophysics Data System (ADS)

    Ben Rhaiem, Abdallah; Jomni, Fathi; Karoui, Karim; Guidara, Kamel

    2013-03-01

    Synthesis, X-ray powder and Raman description are reported for [N(CH3)4]2CoCl2Br2 compound. The calorimetric study shows three endothermic peaks at 289 K, 323 K and 408 K. The compound crystallizes in the orthorhombic system, space group Pnma with a = 12.384 Å, b = 9.058 Å and c = 15.647 Å. The dielectric spectra were measured in the frequency range 10-1-106 Hz and temperature interval from 200 to 305 K. The dielectric permittivity shows that this compound exhibits a ferroelectric-paraelectric phase transition at 290 K. The frequency dependent permittivity is interpreted in the non-Debye model. The temperature dependence of the low frequency limit of the bulk AC conductivity σdc is well described by the Arrhenius equation: σdc = σ0 exp(-Ea/kT).

  2. Calorimetric determination of the magnetic phase diagram of underdoped ortho II YBa2Cu3O6.54 single crystals

    PubMed Central

    Marcenat, C.; Demuer, A.; Beauvois, K.; Michon, B.; Grockowiak, A.; Liang, R.; Hardy, W.; Bonn, D. A.; Klein, T.

    2015-01-01

    The recent discovery of a charge order in underdoped YBa2Cu3Oy raised the question of the interplay between superconductivity and this competing phase. Understanding the normal state of high-temperature superconductors is now an essential step towards the description of the pairing mechanism in those materials and determining the upper critical field is therefore of fundamental importance. We present here a calorimetric determination of the field–temperature phase diagram in underdoped YBa2Cu3Oy single crystals. We show that the specific heat saturates in high magnetic fields. This saturation is consistent with a normal state without any significant superconducting contribution and a total Sommerfeld coefficient γN∼6.5±1.5 mJ mol−1 K−2 putting strong constraints on the theoretical models for the Fermi surface reconstruction. PMID:26294047

  3. Magnetic and calorimetric investigations of inverse magnetocaloric effect in Pr0.46Sr0.54MnO3

    NASA Astrophysics Data System (ADS)

    Naik, V. B.; Barik, S. K.; Mahendiran, R.; Raveau, B.

    2011-03-01

    We investigated magnetic entropy change (ΔSm) in the A-type antiferromagnet Pr0.46Sr0.54MnO3 by magnetic and differential scanning calorimetry (DSC) methods. The field-induced antiferromagnetic to ferromagnetic transition is first-order in nature and is accompanied by a large change in the latent heat as evidenced by the DSC data. The ΔSm shows an inverse magnetocaloric effect (ΔSm=+9 J kg-1 K-1 for ΔH =7 T) around the Neel temperature (TN=210±2 K) by magnetic measurement, which closely agrees with the calorimetric results. It is suggested that the large positive ΔSm results from a field-induced structural transition that accompanies the destruction of antiferromagnetism.

  4. Development of a new type of high pressure calorimetric cell, mechanically agitated and equipped with a dynamic pressure control system: Application to the characterization of gas hydrates

    SciTech Connect

    Plantier, F. Missima, D.; Torré, J.-P.; Marlin, L.

    2013-12-15

    A novel prototype of calorimetric cell has been developed allowing experiments under pressure with an in situ agitation system and a dynamic control of the pressure inside the cell. The use of such a system opens a wide range of potential practical applications for determining properties of complex fluids in both pressurized and agitated conditions. The technical details of this prototype and its calibration procedure are described, and an application devoted to the determination of phase equilibrium and phase change enthalpy of gas hydrates is presented. Our results, obtained with a good precision and reproducibility, were found in fairly good agreement with those found in literature, illustrate the various interests to use this novel apparatus.

  5. Determination of the Temperature Change by Means of an Outcoming Signal of Electric Resistance in an Isoperibolic Calorimetric Cell. Obtainment of Heat Solution

    PubMed Central

    Giraldo-Gutierréz, Liliana; Moreno-Piraján, Juan Carlos

    2005-01-01

    An isoperibolic calorimetric cell is built with glass surrounded by plastic insulation. The cell has a lid on which a thermistor thermometer, an electric resistance to provide the cell with definite quantities of electric work and a container for a glass ampoule, are placed. For measuring the thermal changes, an NTC thermistor, which provides an electric resistance signal that varies with temperature, is used. Calibration curves of the thermistor and of the stabilization of the system signal in thermal equilibrium are shown, which enable the observation of a good insulation. The calorific capacity of the system with water, with a value of 206.7 ±0.7 J °C-1 is determined; the solution enthalpy for propanol-water and KCl-water systems is obtained, which shows the behavior of the cell before exothermic and endothermic effects, respectively.

  6. Search for low-mass weakly interacting massive particles using voltage-assisted calorimetric ionization detection in the SuperCDMS experiment.

    PubMed

    Agnese, R; Anderson, A J; Asai, M; Balakishiyeva, D; Basu Thakur, R; Bauer, D A; Billard, J; Borgland, A; Bowles, M A; Brandt, D; Brink, P L; Bunker, R; Cabrera, B; Caldwell, D O; Cerdeno, D G; Chagani, H; Cooley, J; Cornell, B; Crewdson, C H; Cushman, P; Daal, M; Di Stefano, P C F; Doughty, T; Esteban, L; Fallows, S; Figueroa-Feliciano, E; Godfrey, G L; Golwala, S R; Hall, J; Harris, H R; Hertel, S A; Hofer, T; Holmgren, D; Hsu, L; Huber, M E; Jastram, A; Kamaev, O; Kara, B; Kelsey, M H; Kennedy, A; Kiveni, M; Koch, K; Loer, B; Lopez Asamar, E; Mahapatra, R; Mandic, V; Martinez, C; McCarthy, K A; Mirabolfathi, N; Moffatt, R A; Moore, D C; Nadeau, P; Nelson, R H; Page, K; Partridge, R; Pepin, M; Phipps, A; Prasad, K; Pyle, M; Qiu, H; Rau, W; Redl, P; Reisetter, A; Ricci, Y; Saab, T; Sadoulet, B; Sander, J; Schneck, K; Schnee, R W; Scorza, S; Serfass, B; Shank, B; Speller, D; Villano, A N; Welliver, B; Wright, D H; Yellin, S; Yen, J J; Young, B A; Zhang, J

    2014-01-31

    SuperCDMS is an experiment designed to directly detect weakly interacting massive particles (WIMPs), a favored candidate for dark matter ubiquitous in the Universe. In this Letter, we present WIMP-search results using a calorimetric technique we call CDMSlite, which relies on voltage-assisted Luke-Neganov amplification of the ionization energy deposited by particle interactions. The data were collected with a single 0.6 kg germanium detector running for ten live days at the Soudan Underground Laboratory. A low energy threshold of 170  eVee (electron equivalent) was obtained, which allows us to constrain new WIMP-nucleon spin-independent parameter space for WIMP masses below 6  GeV/c2.

  7. A Search for Low-Mass Weakly Interacting Massive Particles Using Voltage-Assisted Calorimetric Ionization Detection in the SuperCDMS Experiment

    SciTech Connect

    Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Bowles, M. A.; Brandt, D.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Cerdeno, D. G.; Chagani, H.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, Priscilla B.; Daal, M.; Di Stefano, P. C.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, Jeter C.; Harris, H. R.; Hertel, S. A.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Kiveni, M.; Koch, K.; Loer, B.; Lopez Asamar, E.; Mahapatra, R.; Mandic, V.; Martinez, C.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Moore, D. C.; Nadeau, P.; Nelson, R. H.; Page, K.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redi, P.; Reisetter, A.; Ricci, Y.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, Richard; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Villano, A. N.; Welliver, B.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2014-01-27

    SuperCDMS is an experiment designed to directly detect weakly interacting massive particles (WIMPs), a favored candidate for dark matter ubiquitous in the Universe. In this Letter, we present WIMP-search results using a calorimetric technique we call CDMSlite, which relies on voltage-assisted Luke-Neganov amplification of the ionization energy deposited by particle interactions. The data were collected with a single 0.6 kg germanium detector running for ten live days at the Soudan Underground Laboratory. A low energy threshold of (electron equivalent) was obtained, which allows us to constrain new WIMP-nucleon spin-independent parameter space for WIMP masses below 6 GeV/c2.

  8. Search for Low-Mass Weakly Interacting Massive Particles Using Voltage-Assisted Calorimetric Ionization Detection in the SuperCDMS Experiment

    SciTech Connect

    Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Bowles, M. A.; Brandt, D.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Cerdeno, D. G.; Chagani, H.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hertel, S. A.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Kiveni, M.; Koch, K.; Loer, B.; Lopez Asamar, E.; Mahapatra, R.; Mandic, V.; Martinez, C.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Moore, D. C.; Nadeau, P.; Nelson, R. H.; Page, K.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Villano, A. N.; Welliver, B.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2014-01-01

    SuperCDMS is an experiment designed to directly detect Weakly Interacting Massive Particles (WIMPs), a favored candidate for dark matter ubiquitous in the Universe. In this paper, we present WIMP-search results using a calorimetric technique we call CDMSlite, which relies on voltage- assisted Luke-Neganov amplification of the ionization energy deposited by particle interactions. The data were collected with a single 0.6 kg germanium detector running for 10 live days at the Soudan Underground Laboratory. A low energy threshold of 170 eVee (electron equivalent) was obtained, which allows us to constrain new WIMP-nucleon spin-independent parameter space for WIMP masses below 6 GeV/c2.

  9. Thermodynamic properties for polycyclic systems by non-calorimetric methods. Progress report, August 1, 1992--September 30, 1993

    SciTech Connect

    Steele, W.V.; Chirico, R.D.; Klots, T.D.

    1993-03-01

    A detailed vibrational spectroscopic study of furan, pyrrole, and thiophene has been completed. These compounds form part of the base of five-membered ring systems on which the rest of the research program will be built Several methyl-substituted derivatives were also studied. The results will be used to confirm the model for alkyl- substitution in the ring systems. Gas-phase spectra and fundamental- frequency assignments were completed for 2,3- and 2,5-dihydrofuran. Those compounds initiate work on ring-puckering within the research program. A paper describing the need for third virial estimation, when using the virial equation of state to derive thermodynamic properties at pressures greater than 1 bar was completed.

  10. Effects of methoxy and formyl substituents on the energetics and reactivity of α-naphthalenes: a calorimetric and computational study.

    PubMed

    Silva, Ana L R; Freitas, Vera L S; Ribeiro da Silva, Maria D M C

    2014-07-01

    A combined experimental and computational study was developed to evaluate and understand the energetics and reactivity of formyl and methoxy α-naphthalene derivatives. Static bomb combustion calorimetry and the Calvet microcalorimetry were the experimental techniques used to determine the standard (p(o)=0.1 MPa) molar enthalpies of formation, in the liquid phase, ΔfHm(o)(l), and of vaporization, Δl(g)Hm(o), at T=298.15K, respectively, of the two liquid naphthalene derivatives. Those experimental values were used to derive the values of the experimental standard molar enthalpies of formation, in the gaseous phase, ΔfHm(o)(g), of 1-methoxynaphthalene, (-3.0 ± 3.1)kJmol(-1), and of 1-formylnaphthalene, (36.3 ± 4.1)kJ mol(-1). High-level quantum chemical calculations at the composite G3(MP2)//B3LYP level were performed to estimate the values of the ΔfHm(o)(g) of the two compounds studied resulting in values in very good agreement with experimental ones. Natural bond orbital (NBO) calculations were also performed to determine more about the structure and reactivity of this class of compounds.

  11. THE IRON PROJECT AND THE RMAX PROJECT: Radiative and CollisionalProcesses of Iron Ions - Fe I, Fe II, Fe XVI, Fe XVII

    NASA Astrophysics Data System (ADS)

    Montenegro, Maximiliano; Nahar, Sultana; Pradhan, Anil; Sur, Chiranjib

    2008-05-01

    Results from work in progress under the Iron Project and Rmax Project on electron impact excitation and radiative processes of photo-excitations, photoionization and electron-ion recombination will be reported. Whereas the Iron Project is involved in scattering and radiative atomic processes of iron and iron-peak elements, and the Rmax Project aims particularly at the X-ray spectroscopy of astrophysical objects. We will present (i) collision strengths of Fe II at low energies using an accurate wavefunction needed for spectral analysis of infrared region, (ii) oscillator strengths and radiative decay rates for allowed and forbidden transitions in Fe I and Fe II, (iii) photoionization and electron-ion recombination of ground state of Fe XVI for over a large energy/temperature range up to and including K-shell ionization and core excitations as observed in X-ray spectra, and (iv) photoionization cross sections of large number fine structure levels (n<=10 and 0 <= 10) needed for astrophysical and modeling work. Relativistic approach in the Breit-Pauli approximation is being employed to study these atomic processes.

  12. Formation and emission of volatile polonium compound by microbial activity and polonium methylation with methylcobalamin.

    PubMed

    Momoshima, N; Song, L X; Osaki, S; Maeda, Y

    2001-07-15

    We observed biologically mediated emission of Po from culture solution inoculated sea sediment extract and incubated under natural light/dark cycle condition or dark condition the emitted Po compound would be lipophilic because of effective collection in organic solvent. Sterilization of the culture medium with antibiotics or CuSO4 completely suppressed growth of microorganisms and resulted in no emission of Po, indicating biological activity of microorganisms is responsible for formation and emission of volatile Po compound. Po emission also occurred when seawater was used as a culture medium. Our finding indicates a possibility of biotic source for atmospheric Po in the environment, which has been believed to be originated from abiotic sources. We compared emission behavior of Po and S in the culture experiments, the elements belong to XVI group in the Periodical Table, and consider that their emission mechanisms involved would be different though the emission of both elements is supported by biological activity of microorganisms. One of the chemical forms of S emitted was confirmed to be dimethyl sulfide (DMS) but that of Po is not known. Methylation experiments of Po with methylcobalamin demonstrated a formation and emission of volatile Po compound. The methylation of Po with methylcobalamin might be related to the observed Po emission in the culture experiments.

  13. Thioglycolic acid grafted onto silica gel and its properties in relation to extracting cations from ethanolic solution determined by calorimetric technique.

    PubMed

    Arakaki, Luiza N H; Espínola, José G P; da Fonseca, Maria G; de Oliveira, Severino F; de Sousa, Antonio N; Arakaki, Tomaz; Airoldi, Claudio

    2004-05-01

    Thioglycolic acid was immobilized onto silica gel surface using 3-aminopropyltrimethoxysilane as precursor silylating agent to yield silica. The amount of thioglycolic acid immobilized was 1.03 mmol per gram of silica. This new surface displayed a chelating moiety containing nitrogen, sulfur, and oxygen basic centers which are potentially capable of extracting cations from ethanolic solution, such as MCl3 ( M=Fe, Cr, and Mo). This process of extraction was carried out by the batch method when similar chemisorption isotherms were observed for all cations. The data were adjusted to a modified Langmuir equation. The sequence of the maximum retention capacity was Cr(III) > Mo(III) > Fe(III). The same adsorption was determined by calorimetric titration and the enthalpic values of -35.75 +/- 0.02, 32.90 +/- 0.15, and -84.08 +/- 0.12 kJmol(-1) for chromium, molybdenum, and iron, respectively, were obtained. From the calculated Gibbs free energy -23.4 +/- 0.2, -27.2 +/- 0.2, and -32.7 +/- 0.3 kJmol(-1), the variations in entropy obtained were 42 +/- 1, 201 +/- 1, 172 +/- 1 JK(-1)mol(-1) for the same sequence. All thermodynamic values are in agreement with the spontaneity of the proposed cation-basic center interactions for these chelating processes.

  14. A chip-calorimetric approach to the analysis of Ag nanoparticle caused inhibition and inactivation of beads-grown bacterial biofilms.

    PubMed

    Hartmann, Tom; Mühling, Martin; Wolf, Antje; Mariana, Frida; Maskow, Thomas; Mertens, Florian; Neu, Thomas R; Lerchner, Johannes

    2013-11-01

    With the increasing complexity of model systems for the investigation of antibacterial effects of nanoparticles, the demands on appropriate analysis methods are rising. In case of biofilms grown on small particles, the high inhomogeneity of the samples represents a major challenge for traditional biofilm analysis. For this purpose, we developed a new calorimetric method which allows non-invasive and real-time investigation of the effects of nanoparticles on beads-grown biofilms which meets the requirements for an increased sample throughput. The method employs a newly developed chip calorimeter that is able to detect changes in the metabolic activity of biofilm samples within minutes. Using this novel device, the antibacterial effect of silver nanoparticles on Pseudomonas putida biofilms grown on agarose beads was investigated. The superparamagnetic properties of the embedded particles within the agarose beads allow an automated sample throughput. Growth inhibition and inactivation effects of silver nanoparticles (AgNPs) on biofilm bacteria were quantified by analyzing the metabolic heat production rate. As a result, a concentration dependent manner of growth inhibition and inactivation was found demonstrating the suitability and sensitivity of the methodology.

  15. Notable Stabilization of α-Chymotrypsin by the Protic Ionic Additive, [ch][dhp]: Calorimetric Evidence for a Fine Enthalpy/Entropy Balance

    PubMed Central

    Makharadze, Maya; van Eldik, Rudi; Khoshtariya, Dimitri E.

    2014-01-01

    An impact of 0.5 to 3 M choline dihydrogen phosphate, [ch][dhp], the biotechnologically relevant ionic substance, on the thermal stability of a model globular protein, α-chymotrypsin (α-CT), has been studied exploiting the highly sensitive differential scanning calorimetry (DSC) technique. The notable overall stabilizing effect of 11 ± 2 K regarding the thermal transition (melting) temperature, Tm, has been detected. For this kind of series, for the first time, the calorimetric melting enthalpy (ΔHcal) and transition entropy (ΔSm) parameters have been determined simultaneously throughout. The first analysis indicated a two-phase impact implying (a) the initial, dramatic drop in both ΔHcal and ΔSm, obviously connected to specific, direct interaction between the [ch][dhp] components and α-CT's charged groups (within 0 to 1 mol/L [ch][dhp]), leading to the essential rearrangement of the interfacial hydrogen-bonded (HB) network; and (b) the follow-up (within 1 to 3.0 mol/L [ch][dhp]), modest changes in ΔHcal and lack of changes in ΔSm, seemingly connected with a subsequent steady strengthening of already reformed HB network, respectively. These changes, presumably, are primarily facilitated by Coulombic interactions between the [dhp] anions and solvent-exposed positively charged amino groups of α-CT. PMID:27437474

  16. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  17. Dinitroso and polynitroso compounds

    PubMed Central

    Gowenlock, Brian G.; Richter-Addo, George B.

    2005-01-01

    The growing interest in the chemistry of C-nitroso compounds (RN=O; R = alkyl or aryl group) is due in part to the recognition of their participation in various metabolic processes of nitrogen-containing compounds. C-Nitroso compounds have a rich organic chemistry in their own right, displaying interesting intra- and intermolecular dimerization processes and addition reactions with unsaturated compounds. In addition, they have a fascinating coordination chemistry. While most of the attention has been directed towards C-nitroso compounds containing a single –NO moiety, there is an emerging area of research dealing with dinitroso and polynitroso compounds. In this critical review, we present and discuss the synthetic routes and properties of these relatively unexplored dinitroso and polynitroso compounds, and suggest areas of further development involving these compounds. (126 references.) PMID:16100619

  18. Transport capabilities of environmental Pseudomonads for sulfur compounds.

    PubMed

    Zerbs, Sarah; Korajczyk, Peter J; Noirot, Philippe H; Collart, Frank R

    2017-04-01

    Sulfur is an essential element in plant rhizospheres and microbial activity plays a key role in increasing the biological availability of sulfur in soil environments. To better understand the mechanisms facilitating the exchange of sulfur-containing molecules in soil, we profiled the binding specificities of eight previously uncharacterized ABC transporter solute-binding proteins from plant-associated Pseudomonads. A high-throughput screening procedure indicated eighteen significant organosulfur binding ligands, with at least one high-quality screening hit for each protein target. Calorimetric and spectroscopic methods were used to validate the best ligand assignments and catalog the thermodynamic properties of the protein-ligand interactions. Two novel high-affinity ligand-binding activities were identified and quantified in this set of solute-binding proteins. Bacteria were cultured in minimal media with screening library components supplied as the sole sulfur sources, demonstrating that these organosulfur compounds can be metabolized and confirming the relevance of ligand assignments. These results expand the set of experimentally validated ligands amenable to transport by this ABC transporter family and demonstrate the complex range of protein-ligand interactions that can be accomplished by solute-binding proteins. Characterizing new nutrient import pathways provides insight into Pseudomonad metabolic capabilities which can be used to further interrogate bacterial survival and participation in soil and rhizosphere communities.

  19. Study of the influence of heat sources on the out-of-pile calibration curve of calorimetric cells used for nuclear energy deposition quantification

    SciTech Connect

    De Vita, C.; Brun, J.; Reynard-Carette, C.; Carette, M.; Amharrak, H.; Lyoussi, A.; Fourmentel, D.; Villard, J.F.

    2015-07-01

    calorimeter cell head. This discrepancy is higher than in previous experiments because the calorimeter owns a high sensitivity. Consequently, a new prototype was created and instrumented by other heat sources in order to impose an energy deposition on the calorimetric cell structure (in particular in the base) and to improve the calibration step in out-of-pile conditions. In this paper, on the first part a detailed description of the new calorimetric sensor will be given. On the second part, the experimental response of the sensor obtained for several internal heating conditions will be shown. The influence of these conditions on the calibration curve will be discussed. Then the response of this prototype will be also presented for different external cooling fluid conditions (in particular flow temperature). In this part, the comparison between the in-pile and out-of-pile experimental results will be performed. On the last part, these out-of-pile experiments will be completed by 2D axisymmetrical thermal simulations with the CEA code CAST3M using Finite Elements Method. After a comparison between experimental and numerical works, improvements of the sensor prototype will be studied (new heat sources). (authors)

  20. In vitro activity of gallium maltolate against Staphylococci in logarithmic, stationary, and biofilm growth phases: comparison of conventional and calorimetric susceptibility testing methods.

    PubMed

    Baldoni, Daniela; Steinhuber, Andrea; Zimmerli, Werner; Trampuz, Andrej

    2010-01-01

    Ga(3+) is a semimetal element that competes for the iron-binding sites of transporters and enzymes. We investigated the activity of gallium maltolate (GaM), an organic gallium salt with high solubility, against laboratory and clinical strains of methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), methicillin-susceptible Staphylococcus epidermidis (MSSE), and methicillin-resistant S. epidermidis (MRSE) in logarithmic or stationary phase and in biofilms. The MICs of GaM were higher for S. aureus (375 to 2000 microg/ml) than S. epidermidis (94 to 200 microg/ml). Minimal biofilm inhibitory concentrations were 3,000 to >or=6,000 microg/ml (S. aureus) and 94 to 3,000 microg/ml (S. epidermidis). In time-kill studies, GaM exhibited a slow and dose-dependent killing, with maximal action at 24 h against S. aureus of 1.9 log(10) CFU/ml (MSSA) and 3.3 log(10) CFU/ml (MRSA) at 3x MIC and 2.9 log(10) CFU/ml (MSSE) and 4.0 log(10) CFU/ml (MRSE) against S. epidermidis at 10x MIC. In calorimetric studies, growth-related heat production was inhibited by GaM at subinhibitory concentrations; and the minimal heat inhibition concentrations were 188 to 4,500 microg/ml (MSSA), 94 to 1,500 microg/ml (MRSA), and 94 to 375 microg/ml (MSSE and MRSE), which correlated well with the MICs. Thus, calorimetry was a fast, accurate, and simple method useful for investigation of antimicrobial activity at subinhibitory concentrations. In conclusion, GaM exhibited activity against staphylococci in different growth phases, including in stationary phase and biofilms, but high concentrations were required. These data support the potential topical use of GaM, including its use for the treatment of wound infections, MRSA decolonization, and coating of implants.

  1. The Bayer Facts of Science Education XVI: US STEM Workforce Shortage— Myth or Reality? Fortune 1000 Talent Recruiters on the Debate

    NASA Astrophysics Data System (ADS)

    Bayer Corporation

    2014-10-01

    A major debate is currently underway in the USA about whether there is, in fact, a science, technology, engineering and mathematics (STEM) workforce shortage in the country or not. This is the subject of the Bayer Facts of Science Education XVI: US STEM Workforce Shortage—Myth or Reality? Fortune 1000 Talent Recruiters on the Debate. An ongoing public opinion research project commissioned by Bayer Corporation, the Bayer Facts surveys examine US STEM education, diversity and workforce issues. The 16th in the series, the newest survey asks talent recruiters at some of the country's largest employers—those included in the Fortune 1000—to weigh in on current and future demand for new hires with 2- and 4-year STEM degrees. As professionals responsible for scouting, recruiting and hiring talent at Fortune 1000 companies, both STEM and non-STEM alike, these individuals are on the frontlines, tasked with assessing and filling their companies' workforce needs. The survey asks the recruiters whether new hires with 2- and 4-year STEM degrees are as, more or less in demand than their peers without STEM degrees? Are more new STEM jobs being created at their companies than non-STEM jobs? Can they find adequate numbers of qualified candidates in a timely manner and how fierce is the competition for STEM degree holders? To answer these and other questions, the survey polled 150 talent recruiters at Fortune 1000 companies, both STEM and non-STEM alike. The survey also asks the recruiters about diversion in STEM, workforce diversity in the pipeline, the role of community colleges in developing the STEM pipeline and the desired skills and competencies of new hires.

  2. A XANES study of the structural role of lead in glazes from decorated tiles, XVI to XVIII century manufacture

    NASA Astrophysics Data System (ADS)

    Figueiredo, M. O.; Silva, T. P.; Veiga, J. P.

    2006-05-01

    Aged lead-rich, tin-opacified glazes from polychrome tiles manufactured in the 16th 18th century were studied to ascertain the structural role of lead. Glaze fragments with white, blue, yellow, brown and green colouring were analysed using non-destructive X-ray techniques, both laboratorial X-ray diffraction to identify crystalline components and synchrotron-based. Elemental analyses by synchrotron radiation X-ray fluorescence were performed at the former LURE photon microprobe (line D15A at DCI, in Orsay). The instrumental set-up of beamline BM29 at the ESRF, in Grenoble, was applied to collect X-ray absorption spectra at the Pb L3-edge. Natural minerals and synthetics with known crystal structure were used as model oxy-compounds to configure different formal valences and coordinations of lead ions by oxygen anions, and to interpret the effects upon details of X-ray absorption near-edge spectroscopy (XANES) spectra. Experimental evidence supports the general conclusion that lead is hosted by the glassy matrix, irrespective of the glaze colour. Furthermore, it was concluded that lead ions assume coordinations higher than usual for silica glasses, acting as network modifiers in the silica-lime-alkali glasses of ancient tile glazes.

  3. Combinatorial materials research applied to the development of new surface coatings XVI: fouling-release properties of amphiphilic polysiloxane coatings.

    PubMed

    Stafslien, Shane J; Christianson, David; Daniels, Justin; VanderWal, Lyndsi; Chernykh, Andrey; Chisholm, Bret J

    2015-01-01

    High-throughput methods were used to prepare and characterize the fouling-release (FR) properties of an array of amphiphilic polysiloxane-based coatings possessing systematic variations in composition. The coatings were derived from a silanol-terminated polydimethylsiloxane, a silanol-terminated polytrifluorpropylmethylsiloxane (CF3-PDMS), 2-[methoxy(polyethyleneoxy)propyl]-trimethoxysilane (TMS-PEG), methyltriacetoxysilane and hexamethyldisilazane-treated fumed silica. The variables investigated were the concentration of TMS-PEG and the concentration of CF3-PDMS. In general, it was found that the TMS-PEG and the CF3-PDMS had a synergist effect on FR properties with these properties being enhanced by combining both compounds into the coating formulations. In addition, reattached adult barnacles removed from coatings possessing both TMS-PEG and relatively high levels of CF3-PDMS displayed atypical base-plate morphologies. The majority of the barnacles removed from these coatings exhibited a cupped or domed base-plate as compared to the flat base-plate observed for the control coating that did not contain TMS-PEG or CF3-PDMS. Coating surface analysis using water contact angle measurements indicated that the presence of CF3-PDMS facilitated migration of TMS-PEG to the coating/air interface during the film formation/curing process. In general, coatings containing both TMS-PEG and relatively high levels of CF3-PDMS possessed excellent FR properties.

  4. XAFS Model Compound Library

    DOE Data Explorer

    Newville, Matthew

    The XAFS Model Compound Library contains XAFS data on model compounds. The term "model" compounds refers to compounds of homogeneous and well-known crystallographic or molecular structure. Each data file in this library has an associated atoms.inp file that can be converted to a feff.inp file using the program ATOMS. (See the related Searchable Atoms.inp Archive at http://cars9.uchicago.edu/~newville/adb/) This Library exists because XAFS data on model compounds is useful for several reasons, including comparing to unknown data for "fingerprinting" and testing calculations and analysis methods. The collection here is currently limited, but is growing. The focus to date has been on inorganic compounds and minerals of interest to the geochemical community. [Copied, with editing, from http://cars9.uchicago.edu/~newville/ModelLib/

  5. Preparation of uranium compounds

    DOEpatents

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  6. Nitrodifluoraminoterphenyl compounds and processes

    DOEpatents

    Lerom, M.W.; Peters, H.M.

    1975-07-08

    This patent relates to the nitrodifluoraminoterphenyl compounds: 3,3''-bis (difluoramino)-2,2'' 4,4', 4'',6,6',6''-octanitro-m-terphenyl (DDONT) and 3,3''-bis(difluoramino)-2,2',2''4,4',4'',6,6',6''-nonanitro-m-terphenyl (DDNONA). Procedures are described wherein diamino precursors of the indicated compounds are prepared and the final compounds are obtained by a fluorination operation. The compounds are highly energetic and suitable for use as explosives and particularly in exploding bridge wire (EBW) detonators. (auth)

  7. In Vitro Activity of Gallium Maltolate against Staphylococci in Logarithmic, Stationary, and Biofilm Growth Phases: Comparison of Conventional and Calorimetric Susceptibility Testing Methods▿

    PubMed Central

    Baldoni, Daniela; Steinhuber, Andrea; Zimmerli, Werner; Trampuz, Andrej

    2010-01-01

    Ga3+ is a semimetal element that competes for the iron-binding sites of transporters and enzymes. We investigated the activity of gallium maltolate (GaM), an organic gallium salt with high solubility, against laboratory and clinical strains of methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), methicillin-susceptible Staphylococcus epidermidis (MSSE), and methicillin-resistant S. epidermidis (MRSE) in logarithmic or stationary phase and in biofilms. The MICs of GaM were higher for S. aureus (375 to 2000 μg/ml) than S. epidermidis (94 to 200 μg/ml). Minimal biofilm inhibitory concentrations were 3,000 to ≥6,000 μg/ml (S. aureus) and 94 to 3,000 μg/ml (S. epidermidis). In time-kill studies, GaM exhibited a slow and dose-dependent killing, with maximal action at 24 h against S. aureus of 1.9 log10 CFU/ml (MSSA) and 3.3 log10 CFU/ml (MRSA) at 3× MIC and 2.9 log10 CFU/ml (MSSE) and 4.0 log10 CFU/ml (MRSE) against S. epidermidis at 10× MIC. In calorimetric studies, growth-related heat production was inhibited by GaM at subinhibitory concentrations; and the minimal heat inhibition concentrations were 188 to 4,500 μg/ml (MSSA), 94 to 1,500 μg/ml (MRSA), and 94 to 375 μg/ml (MSSE and MRSE), which correlated well with the MICs. Thus, calorimetry was a fast, accurate, and simple method useful for investigation of antimicrobial activity at subinhibitory concentrations. In conclusion, GaM exhibited activity against staphylococci in different growth phases, including in stationary phase and biofilms, but high concentrations were required. These data support the potential topical use of GaM, including its use for the treatment of wound infections, MRSA decolonization, and coating of implants. PMID:19805560

  8. Mössbauer studies of the peculiar magnetism in parent compounds of the iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Jasek, A. K.; Komędera, K.; Błachowski, A.; Ruebenbauer, K.; Żukrowski, J.; Bukowski, Z.; Karpinski, J.

    2015-02-01

    A review of the magnetism in the parent compounds of the iron-based superconductors is given based on the transmission Mössbauer spectroscopy of 57Fe and 151Eu. It was found that the 3d magnetism is of the itinerant character with varying admixture of the spin-polarized covalent bonds. For the '122' compounds, a longitudinal spin density wave (SDW) develops. In the case of the EuFe2As2, a divalent europium arranges in an anti-ferromagnetical order at a much lower temperature as compared with the onset of SDW. These two magnetic systems remain almost uncoupled one to another. For the non-stoichiometric Fe1+xTe parent of the '11' family, one has a transversal SDW and magnetic order of the interstitial iron with relatively high and localized magnetic moments. These two systems are strongly coupled one to another. For the 'grand parent' of the iron-based superconductors FeAs, one observes two mutually orthogonal phase-related transversal SDW on the iron sites. There are two sets of such spin arrangements due to two crystallographic iron sites. The FeAs exhibits the highest covalency among the compounds studied, but it has still a metallic character. A contribution to XVI National Conference on Superconductivity, Zakopane, Poland, 7-12 October 2013.

  9. Electrical properties, phase transitions and conduction mechanisms of the [(C2H5)NH3]2CdCl4 compound

    NASA Astrophysics Data System (ADS)

    Mohamed, C. Ben; Karoui, K.; Saidi, S.; Guidara, K.; Rhaiem, A. Ben

    2014-10-01

    The [(C2H5)NH3]2CdCl4 hybrid material was prepared and its calorimetric study and electric properties were investigated at low temperature. The X-ray powder diffractogram has shown that the compound is crystallized in the orthorhombic system with Abma space group, and the refined unit cell parameters are a=7.546 Å, b=7.443 Å, and c=21.831 Å. The calorimetric study has revealed two endothermic peaks at 216 K and 357 K, which are confirmed by the variation of fp and σdc as a function of temperature. The equivalent circuit based on the Z-View-software was proposed and the conduction mechanisms were determined. The obtained results have been discussed in terms of the correlated barrier hopping model (CBH) in phase I (low temperature (OLT)), non-overlapping small polaron tunneling model (NSPT) in phase II (room temperature (ORT)) and the overlapping large polaron tunneling model in phase III (high temperature (OHT)). The density of localized states NF(E) at the Fermi level and the binding energy Wm were calculated. The variation of the dielectric loss log(εʺ) with log(ω) was found to follow the empirical law, ε″=B ωm(T).

  10. Volatile Organic Compounds (VOCs)

    MedlinePlus

    ... United States Environmental Protection Agency Search Search Indoor Air Quality (IAQ) Share Facebook Twitter Google+ Pinterest Contact Us Volatile Organic Compounds' Impact on Indoor Air Quality On this page: Introduction Sources Health Effects Levels ...

  11. Heart testing compound

    DOEpatents

    Knapp, Jr., Furn F.; Goodman, Mark M.

    1985-01-01

    The compound 15-(p-[.sup.125 I]-iodophenyl)-6-tellurapentadecanoic acid is disclosed as a myocardial imaging agent having rapid and pronounced uptake, prolonged myocardial retention, and low in vivo deiodination.

  12. [Laboratory of Biopolymer Compounds].

    PubMed

    Ostapchuk, A M

    2008-01-01

    General information is presented concerning the Laboratory of Biological Polymeric Compounds at the Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine; equipment, analytical and biophysical methods applied in the laboratory are listed.

  13. Heart testing compound

    DOEpatents

    Knapp, F.F. Jr.; Goodman, M.M.

    1983-06-29

    The compound 15-(p-(/sup 125/I)-iodophenyl)-6-tellurapentadecanoic acid is disclosed as a myocardial imaging agent having rapid and pronounced uptake, prolonged myocardial retention, and low in vivo deiodination.

  14. Micro-machined calorimetric biosensors

    DOEpatents

    Doktycz, Mitchel J.; Britton, Jr., Charles L.; Smith, Stephen F.; Oden, Patrick I.; Bryan, William L.; Moore, James A.; Thundat, Thomas G.; Warmack, Robert J.

    2002-01-01

    A method and apparatus are provided for detecting and monitoring micro-volumetric enthalpic changes caused by molecular reactions. Micro-machining techniques are used to create very small thermally isolated masses incorporating temperature-sensitive circuitry. The thermally isolated masses are provided with a molecular layer or coating, and the temperature-sensitive circuitry provides an indication when the molecules of the coating are involved in an enthalpic reaction. The thermally isolated masses may be provided singly or in arrays and, in the latter case, the molecular coatings may differ to provide qualitative and/or quantitative assays of a substance.

  15. Chemistry of peroxide compounds

    NASA Technical Reports Server (NTRS)

    Volnov, I. I.

    1981-01-01

    The history of Soviet research from 1866 to 1967 on peroxide compounds is reviewed. This research dealt mainly with peroxide kinetics, reactivity and characteristics, peroxide production processes, and more recently with superoxides and ozonides and emphasis on the higher oxides of group 1 and 2 elements. Solid state fluidized bed synthesis and production of high purity products based on the relative solubilities of the initial, intermediate, and final compounds and elements in liquid ammonia are discussed.

  16. Compound composite odontoma

    PubMed Central

    Girish, G; Bavle, Radhika M; Singh, Manish Kumar; Prasad, Sahana N

    2016-01-01

    The term odontoma has been used as a descriptor for any tumor of odontogenic origin. It is a growth in which both epithelial and mesenchymal cells exhibits complete differentiation. Odontomas are considered as hamartomas rather than true neoplasm. They are usually discovered on routine radiographic examination. Odontomas, according to the World Health Organization, are classified into complex odontoma and compound odontomas. The present paper reports a case of compound composite odontomas. PMID:27194882

  17. Compound composite odontoma.

    PubMed

    Girish, G; Bavle, Radhika M; Singh, Manish Kumar; Prasad, Sahana N

    2016-01-01

    The term odontoma has been used as a descriptor for any tumor of odontogenic origin. It is a growth in which both epithelial and mesenchymal cells exhibits complete differentiation. Odontomas are considered as hamartomas rather than true neoplasm. They are usually discovered on routine radiographic examination. Odontomas, according to the World Health Organization, are classified into complex odontoma and compound odontomas. The present paper reports a case of compound composite odontomas.

  18. Phenolic Molding Compounds

    NASA Astrophysics Data System (ADS)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  19. Biodegradation of nitroaromatic compounds.

    PubMed

    Spain, J C

    1995-01-01

    Nitroaromatic compounds are released into the biosphere almost exclusively from anthropogenic sources. Some compounds are produced by incomplete combustion of fossil fuels; others are used as synthetic intermediates, dyes, pesticides, and explosives. Recent research revealed a number of microbial systems capable of transforming or biodegrading nitroaromatic compounds. Anaerobic bacteria can reduce the nitro group via nitroso and hydroxylamino intermediates to the corresponding amines. Isolates of Desulfovibrio spp. can use nitroaromatic compounds as their source of nitrogen. They can also reduce 2,4,6-trinitrotoluene to 2,4,6-triaminotoluene. Several strains of Clostridium can catalyze a similar reduction and also seem to be able to degrade the molecule to small aliphatic acids. Anaerobic systems have been demonstrated to destroy munitions and pesticides in soil. Fungi can extensively degrade or mineralize a variety of nitroaromatic compounds. For example, Phanerochaete chrysosporium mineralizes 2,4-dinitrotoluene and 2,4,6-trinitrotoluene and shows promise as the basis for bioremediation strategies. The anaerobic bacteria and the fungi mentioned above mostly transform nitroaromatic compounds via fortuitous reactions. In contrast, a number of nitroaromatic compounds can serve as growth substrates for aerobic bacteria. Removal or productive metabolism of nitro groups can be accomplished by four different strategies. (a) Some bacteria can reduce the aromatic ring of dinitro and trinitro compounds by the addition of a hydride ion to form a hydride-Meisenheimer complex, which subsequently rearomatizes with the elimination of nitrite. (b) Monooxygenase enzymes can add a single oxygen atom and eliminate the nitro group from nitrophenols. (c) Dioxygenase enzymes can insert two hydroxyl groups into the aromatic ring and precipitate the spontaneous elimination of the nitro group from a variety of nitroaromatic compounds. (d) Reduction of the nitro group to the corresponding

  20. Electrical properties and phase transition of [(CH3)3NH]CdCl3 compound

    NASA Astrophysics Data System (ADS)

    Kchaou, H.; Ben Rhaiem, A.; Karoui, K.; jomni, F.; Guidara, K.

    2016-02-01

    The [(CH3)3NH]CdCl3 compound was obtained by slow evaporation at room temperature and characterized by X-ray powder diffraction patterns, differential scanning calorimetry, and impedance spectroscopy. This compound was found to crystallize in the orthorhombic system with Pbnm space group and was characterized by four phase transitions ( T 1 = 355 K, T 2 = 372 K, T 3 = 415 K, and T 4 = 446 K). The analysis of Nyquist plots has revealed the contribution of two electrically active regions corresponding to the bulk mechanism and distribution of grain boundaries. The modulus plots were characterized by the presence of two peaks associated with the grain and grain boundaries. Thermodynamic parameters such as the free energy for dipole relaxation Δ F, the enthalpy Δ H, and the change in entropy Δ S h ave been determined with the help of the Eyring theory. The temperature dependence of the electrical conductivity (σ g ), σ dc , and f p confirms the observed transitions in the calorimetric study.

  1. Elaboration, structural, spectroscopy, DSC investigations and Hirshfeld surface analysis of a one-dimensional self-assembled organic-inorganic hybrid compound

    NASA Astrophysics Data System (ADS)

    Mesbeh, Radhia; Hamdi, Besma; Zouari, Ridha

    2017-01-01

    The new organic-inorganic hybrid of the formula [H2mela]Cu2Cl6, where mela = 1,3,5-triazine-2,4,6-triamine, has been synthesized by the reaction of 1,3,5-triazine-2,4,6-triamine and copper(II) chloride dihydrate in the presence of hydrochloric acid. This compound has been determined by X-ray diffraction analysis and characterized by FT-IR, Raman, NMR characterization, differential scanning calorimetric (DSC) analysis, dielectric measurements and Hirshfeld surface. 1,3,5-triazinidium-2,4,6-triamine hexachlorodicuprate(II) crystallizes in the monoclinic system with space group P21/c. The final refinement of the structure of the program led to the reliability factors unweighted R1 = 3.53% and weighted WR2 = 8.87%. The observed internal C3sbnd N31sbnd C1 and C3sbnd N23sbnd C2 angle (121.5 and 121.4°) at protanated N-atom are significantly greater the other ring angle C1sbnd N12sbnd C2 (117.1°). The titled compound crystallizes as an organic-inorganic one-dimensional (1D) structure. The crystal structure was stabilized by two types of hydrogen bonding Nsbnd H⋯Cl and Nsbnd H⋯N. The infrared spectra was recorded in the 4000-400 cm-1 frequency region and the Raman spectra was recorded in the external region of the anionic sublattice vibration 4000-50 cm-1 at room temperature. Solid-state 13C and 63Cu MAS-NMR spectroscopies are in agreement with the X-ray structure. The differential scanning calorimetric (DSC) show the presence of a structural phase transition of the title compound at 338 K. Hirshfeld surface analyses for visually analyzing intermolecular interactions in crystal structures employing molecular surface contours and 2D fingerprint plots have been used to examine molecular shapes.

  2. Sulfur compounds in coal

    NASA Technical Reports Server (NTRS)

    Attar, A.; Corcoran, W. H.

    1977-01-01

    The literature on the chemical structure of the organic sulfur compounds (or functional groups) in coal is reviewed. Four methods were applied in the literature to study the sulfur compounds in coal: direct spectrometric and chemical analysis, depolymerization in drastic conditions, depolymerization in mild conditions, and studies on simulated coal. The data suggest that most of the organic sulfur in coal is in the form of thiophenic structures and aromatic and aliphatic sulfides. The relative abundance of the sulfur groups in bituminous coal is estimated as 50:30:20%, respectively. The ratio changes during processing and during the chemical analysis. The main effects are the transformation during processing of sulfides to the more stable thiophenic compounds and the elimination of hydrogen sulfide.

  3. Compound management beyond efficiency.

    PubMed

    Burr, Ian; Winchester, Toby; Keighley, Wilma; Sewing, Andreas

    2009-06-01

    Codeveloping alongside chemistry and in vitro screening, compound management was one of the first areas in research recognizing the need for efficient processes and workflows. Material management groups have centralized, automated, miniaturized and, importantly, found out what not to do with compounds. While driving down cost and improving quality in storage and processing, researchers still face the challenge of interfacing optimally with changing business processes, in screening groups, and with external vendors and focusing on biologicals in many companies. Here we review our strategy to provide a seamless link between compound acquisition and screening operations and the impact of material management on quality of the downstream processes. Although this is driven in part by new technologies and improved quality control within material management, redefining team structures and roles also drives job satisfaction and motivation in our teams with a subsequent positive impact on cycle times and customer feedback.

  4. Metalloid compounds as drugs

    PubMed Central

    Sekhon, B. S.

    2013-01-01

    The six elements commonly known as metalloids are boron, silicon, germanium, arsenic, antimony, and tellurium. Metalloid containing compounds have been used as antiprotozoal drugs. Boron-based drugs, the benzoxaboroles have been exploited as potential treatments for neglected tropical diseases. Arsenic has been used as a medicinal agent and arsphenamine was the main drug used to treat syphilis. Arsenic trioxide has been approved for the treatment of acute promyelocytic leukemia. Pentavalent antimonials have been the recommended drug for visceral leishmaniasis and cutaneous leishmaniasis. Tellurium (IV) compounds may have important roles in thiol redox biological activity in the human body, and ammonium trichloro (dioxoethylene-O, O’-)tellurate (AS101) may be a promising agent for the treatment of Parkinson’s disease. Organosilicon compounds have been shown to be effective in vitro multidrug-resistance reverting agents. PMID:24019824

  5. Organic compounds in meteorites

    NASA Technical Reports Server (NTRS)

    Anders, E.; Hayatsu, R.; Studier, M. H.

    1973-01-01

    The problem of whether organic compounds originated in meteorites as a primary condensate from a solar gas or whether they were introduced as a secondary product into the meteorite during its residence in a parent body is examined by initially attempting to reconstruct the physical conditions during condensation (temperature, pressure, time) from clues in the inorganic matrix of the meteorite. The condensation behavior of carbon under these conditions is then analyzed on the basis of thermodynamic calculations, and compounds synthesized in model experiments on the condensation of carbon are compared with those actually found in meteorites. Organic compounds in meteorites seem to have formed by catalytic reactions of carbon monoxide, hydrogen, and ammonia in the solar nebula at 360 to 400 K temperature and about 3 to 7.6 microtorr pressure. The onset of these reactions was triggered by the formation of suitable catalysts (magnetite, hydrated silicates) at these temperatures.

  6. PREFACE: Sensors & their Applications XVI

    NASA Astrophysics Data System (ADS)

    Kyriacou, Panicos; O'Riordan, Alan

    2011-08-01

    This volume records the Proceedings of the sixteenth conference in the biennial Sensors and Their Applications series which took place at the Clarion Hotel, Cork, Ireland between 12-14 September 2011. The conference is organized by the Instrument Science and Technology Group of the Institute of Physics. On this occasion, the conference was hosted by Tyndall National Institute at University College Cork. This year the conference returns to Ireland, having last been held in Limerick in 2003. The conference proceedings record the continuing growth of the sensors community nationally and internationally. The conferences bring together contributions from scientists and engineers from academia, research institutes and industrial establishments, and therefore provide an excellent opportunity for these communities to present and discuss the latest results in the field of sensors, instrumentation and measurement. Amongst the more traditional themes, such as optical sensing, there is growth in new areas such as biomedical sensing and instrumentation, and nanosensing, which is reflected in this volume. Similarly the contribution of modelling and simulation techniques in sensor and instrumentation design and their applications is acknowledged by a session in this area. The sessions across the conference are supported by notable contributions from invited speakers. We would like to thank all of our colleagues in the sensor and instrumentation community who have supported this event by contributing manuscripts. Our thanks also go to Tyndall National Institute for hosting this conference and all the sponsors who, with their generous financial and in-kind contributions, enabled the better organization of this conference. We would also like to thank all the members of the Instrument Science and Technology Group for their support, and in particular for refereeing the submitted manuscripts. We are also pleased to express our thanks to the Conference Department of the Institute of Physics for their invaluable support in organising this event. We are especially grateful to Dawn Stewart for her responsive and efficient day-to-day handling of this event, as well as to Claire Garland for her planning and management of this event. We hope that the conference authors, participants and a wider audience will find these proceedings to be of interest and to serve as a useful reference text. Panicos KyriacouConference ChairmanAlan O'RiordanConference Local Chairman

  7. Fluoroalkylation of organic compounds

    NASA Astrophysics Data System (ADS)

    Mikhaylov, D. Yu; Budnikova, Yu H.

    2013-09-01

    Data on fluoroalkylation and perfluoroalkylation methods in organic synthesis are analyzed, summarized and described systematically. The most practically important properties of compounds with fluoroalkyl substituents are illustrated. The key trends and the potential of this field of organic chemistry are considered. Electrochemical syntheses of perfluoroalkyl derivatives that are inaccessible or experimentally difficult to prepare by regular chemical techniques are presented. Particular attention is paid to processes involving organometallic compounds as well as to prospects for the development of this field of research. The bibliography includes 226 references.

  8. Microoptical compound lens

    DOEpatents

    Sweatt, William C.; Gill, David D.

    2007-10-23

    An apposition microoptical compound lens comprises a plurality of lenslets arrayed around a segment of a hollow, three-dimensional optical shell. The lenslets collect light from an object and focus the light rays onto the concentric, curved front surface of a coherent fiber bundle. The fiber bundle transports the light rays to a planar detector, forming a plurality of sub-images that can be reconstructed as a full image. The microoptical compound lens can have a small size (millimeters), wide field of view (up to 180.degree.), and adequate resolution for object recognition and tracking.

  9. High temperature high pressure thermodynamic measurements for coal model compounds. Semiannual technical progress report, September 1, 1995--February 29, 1996

    SciTech Connect

    Kabadi, V.N.; Chen, J.C.

    1996-10-01

    The overall objective of this project is to develop a better thermodynamic model for predicting properties of high-boiling coal derived liquids, especially the phase equilibria of different fractions at elevated temperatures and pressures. The development of such a model requires data on vapor-liquid equilibria (VLE), enthalpy, and heat capacity which would be experimentally determined for binary systems of coal model compounds and compiled into a database. The data will be used to refine existing models such as UNIQUAC and UNIFAC. A M.S. graduate student Mr. Ahmad Al-Ghamdi has been recruited to work on this project. The flow VLE apparatus designed and built for a previous project has been upgraded and recalibrated for data measurements for this project. The modifications include better and more accurate sampling technique and addition of a digital recorder to monitor temperature, pressure and liquid level inside the VLE cell. VLE data measurements for system benzene-ethylbenzene have begun. The vapor and liquid compositions will be measured using the Perkin-Elmer Auto-system gas chromatograph. A capillary column made by Supelco has been purchased for the analysis. For enthalpy and heat capacity measurements, SETARAM C-80 calorimeter has been purchased and installed. The instrument can be used for calorimetric property measurements at temperatures up to 300{degree}C and pressures up to 1500 psi. Enthalpy measurements for the system benzene-ethylbenzene have begun. Simultaneously, we have undertaken the design of a calorimetric cell that will allow enthalpy measurements at pressures up to 10000 psi. In this report the VLE apparatus and the preliminary work completed for the VLE measurements for the benzene-ethylbenzene system are described. A description of the calorimeter and the measured enthalpy data for the benzene-ethylbenzene system will be included in the next report. 3 figs., 5 tabs.

  10. Aminopropyl thiophene compounds

    DOEpatents

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1990-01-01

    Radiopharmaceuticals useful in brain imaging comprising radiohalogenated thienylethylamine derivatives. The compounds are 5-halo-thiophene-2-isopropyl amines able to cross the blood-brain barrier and be retained for a sufficient length of time to allow the evaluation of regional blood flow by radioimaging of the brain.

  11. PERSISTENT PERFLUORINATED ORGANIC COMPOUNDS

    EPA Science Inventory

    Perfluorinated compounds (PFCs) have gained notoriety in the recent past. Global distribution of PFCs in wildlife, environmental samples and humans has sparked a recent increase in new investigations concerning PFCs. Historically PFCs have been used in a wide variety of consume...

  12. Compound floating pivot micromechanisms

    DOEpatents

    Garcia, Ernest J.

    2001-04-24

    A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use compound floating pivot structures to attain far greater tilt angles than are practical using other micromechanical techniques. The new mechanisms are also capable of bi-directional tilt about multiple axes.

  13. Selenium and Compounds

    Integrated Risk Information System (IRIS)

    Selenium and Compounds ; CASRN 7782 - 49 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  14. Boron and Compounds

    Integrated Risk Information System (IRIS)

    EPA 635 / 04 / 052 www.epa.gov / iris TOXICOLOGICAL REVIEW OF BORON AND COMPOUNDS ( CAS No . 7440 - 42 - 8 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) June 2004 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been reviewed

  15. Zinc and Compounds

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 05 / 002 TOXICOLOGICAL REVIEW OF ZINC AND COMPOUNDS ( CAS No . 7440 - 66 - 6 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) July 2005 U.S . Environmental Protection Agency Washington D.C . DISCLAIMER This document has been reviewed in accordanc

  16. 8-fluoropurine compounds

    SciTech Connect

    Barrio, Jorge R.; Satyamurthy, Nagichettiar; Namavari, Mohammad; Phelps, Michael E.

    2001-01-01

    An efficient, regiocontrolled approach to the synthesis of 8-fluoropurines by direct fluorination of purines with dilute elemental fluorine, or acetyl hypofluorite, is provided. In a preferred embodiment, a purine compound is dissolved in a polar solvent and reacted with a dilute mixture of F.sub.2 in He or other inert gas.

  17. Barium and Compounds

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 05 / 001 www.epa.gov / iris TOXICOLOGICAL REVIEW OF BARIUM AND COMPOUNDS ( CAS No . 7440 - 39 - 3 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) March 1998 Minor revisions January 1999 Reference dose revised June 2005 U.S . Environmental Protec

  18. Beryllium and compounds

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 98 / 008 TOXICOLOGICAL REVIEW OF BERYLLIUM AND COMPOUNDS ( CAS No . 7440 - 41 - 7 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) April 1998 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been reviewed in acco

  19. Urinary Compounds in Autism

    ERIC Educational Resources Information Center

    Alcorn, A.; Berney, T.; Bretherton, K.; Mills, M.; Savery, D.; Shattock, P.

    2004-01-01

    Although earlier claims to identify specific compounds in the urine of people with autism had been discredited, it was subsequently suggested that there might be biochemical characteristics that were specific to early childhood, particularly in those who also did not have a severe degree of intellectual disability This study was to establish…

  20. Lead and compounds (inorganic)

    Integrated Risk Information System (IRIS)

    Lead and compounds ( inorganic ) ; CASRN 7439 - 92 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  1. Fun with Ionic Compounds

    ERIC Educational Resources Information Center

    Logerwell, Mollianne G.; Sterling, Donna R.

    2007-01-01

    Ionic bonding is a fundamental topic in high school chemistry, yet it continues to be a concept that students struggle to understand. Even if they understand atomic structure and ion formation, it can be difficult for students to visualize how ions fit together to form compounds. This article describes several engaging activities that help…

  2. Structures and standard molar enthalpies of formation of a series of Ln(III)-Cu(II) heteronuclear compounds with pyrazine-2,3-dicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Xie, Gang; Wei, Qing; Chen, Sanping; Gao, Shengli

    2014-07-01

    Fifteen lanthanide-copper heteronuclear compounds, formulated as [CuLn2(pzdc)4(H2O)6]·xH2O (1-6(x=2), 8(x=3), 9-10(x=4); [CuLn2(pzdc)4(H2O)4]·xH2O (7, 12-13, 15(x=4), 14(x=5), 11(x=8) (Ln(III)=La(1); Ce(2); Pr(3); Nd(4); Sm(5); Eu(6); Gd(7); Tb(8); Dy(9); Ho(10); Er(11); Tm(12); Yb(13); Lu(14); Y(15); H2pzdc (C6H4N2O4)=pyrazine-2,3-dicarboxylic acid) have been hydrothermally synthesized. All compounds were characterized by element analysis, IR spectroscopy, single-crystal X-ray diffraction and thermal analysis. X-ray diffraction analyses confirm that all compounds are isostructural and feature a 3D brick-like framework structure with {4.62}2{42.62.82}{63}2{65.8}2 topology. Using 1 mol cm-3 HCl(aq) as calorimetric solvent, with an isoperibol solution-reaction calorimeter, the standard molar enthalpies of formation of all compounds were determined by a designed thermochemical cycle. In addition, solid state luminescence properties of compounds 5, 6, 8 and 9 were studied in the solid state.

  3. Toxicity of dipyridyl compounds and related compounds.

    PubMed

    Li, Shenggang; Crooks, Peter A; Wei, Xiaochen; de Leon, Jose

    2004-01-01

    Five dipyridyl isomers, 2,2'-, 2,3'-, 2,4'-, 3,3'-, and 4,4'-dipyridyl, are products resulting from the pyrolytic degradation of tobacco products and degradation of the herbicide paraquat, and therefore may be present in the environment. In this article, the toxicological properties of these dipyridyl isomers in humans and animals are reviewed. Epidemiological studies suggest that cancerous skin lesions in workers involved in the manufacturing of paraquat may be associated with exposure to dipyridyl compounds. Experimental animal studies suggest that dipyridyl isomers may have several toxicological effects. Three of the dipyridyl isomers (the 2,2', 2,4', and 4,4' isomers) appear to be inducers of some metabolic enzymes. The 2,2'-dipyridyl isomer, an iron chelator, appears to influence vasospasm in primate models of stroke. The cytotoxic effects of 2,2'-dipyridyl on several leukemia cell lines have been reported, and a potent teratogenic effect of 2,2'-dipyridyl has been observed in rats. Based on the results of paraquat studies in experimental animal models, it has been proposed that paraquat may have deleterious effects on dopaminergic neurons. These findings support the epidemiological evidence that paraquat exposure may be associated with the development of Parkinson's disease. Studies designed to determine an association between paraquat exposure and Parkinson's disease are complicated by the possibility that metabolic changes may influence the neurotoxicity of paraquat and/or its metabolites. Preliminary unpublished data in mice show that 300-mg/kg doses of 2,2'-dipyridyl are neurotoxic, and 300-mg/kg doses of 2,4'- and 4,4'-dipyridyls are lethal. These results are consistent with earlier studies in Sherman rats using high 2,2'- and 4,4'-dipyridyl doses. New studies are needed to further explore the toxicological properties of dipyridyls and their potential public health impact.

  4. Using Raman spectroscopy to understand the origin of the phase transitions observed in [(C₃H₇)₄N]₂Zn₂Cl₆ compound.

    PubMed

    Ben Gzaiel, M; Oueslati, A; Chaabane, I; Bulou, A; Hlel, F; Gargouri, M

    2015-06-15

    Phase transitions of the centrosymmetric compound, [(C3H7)4N]2Zn2Cl6, were studied by differential scanning calorimetry (DSC), X-ray diffraction, Raman spectroscopy and dielectric measurements. Two reversible order-disorder and displacive phase transitions are observed at T1=327K and T2=347K with 3K and 4K hysteresis respectively, indicating a first order character. The evolution of Raman line shifts, "ν", and the half-width, "Δν", versus temperature show some singularities associated with the transitions, suggesting that they are governed by the reorientational and the displacement of the organic part. Besides the results of the dielectric permittivity study confirms the conclusion drawn from the calorimetric and Raman measurements that the phase transition located in the vicinity of the temperature of the dielectric proprieties is characterized by change of dynamical state of cation.

  5. Low-temperature heat capacity of diopside glass (CaMgSi2O6): A calorimetric test of the configurational-entropy theory applied to the viscosity of liquid silicates

    USGS Publications Warehouse

    Richet, P.; Robie, R.A.; Hemingway, B.S.

    1986-01-01

    Heat-capacity measurements have been made between 8 and 370 K on an annealed and a rapidly quenched diopside glass. Between 15 and 200 K, Cp does not depend significantly on the thermal history of the glass. Below 15 K Cp is larger for the quenched than for the annealed specimen. The opposite is true above 200 K as a result of what is interpreted as a secondary relaxation around room temperature. The magnitude of these effects, however, is small enough that the relative entropies S(298)-S(0) of the glasses differ by only 0.5 J/mol K, i.e., a figure within the combined experimental uncertainties. The insensitivity of relative entropies to thermal history supports the assumption that the configurational heat capacity of the liquid may be taken as the heat capacity difference between the liquid and the glass (??Cp). Furthermore, this insensitivity allows calculation of the residual entropies at 0 K of diopside glasses as a function of the fictive temperature from the entropy of fusion of diopside and the heat capacities of the crystalline, glassy and liquid phases. For a glass with a fictive temperature of 1005 K, for example, this calorimetric residual entropy is 24.3 ?? 3 J/mol K, in agreement with the prediction made by RICHET (1984) from an analysis of the viscosity data with the configurational-entropy theory of relaxation processes of Adam and Gibbs (1965). In turn, all the viscosity measurements for liquid diopside, which span the range 0.5-4?? 1013 poise, can be quantitatively reproduced through this theory with the calorimetrically determined entropies and ??Cp data. Finally, the unclear significance of "activation energies" for structural interpretations of viscosity data is emphasized, and the importance of ??Cp and glass-transition temperature systematics for determining the composition and temperature dependences of the viscosity is pointed out. ?? 1986.

  6. Thermodynamic data of lawsonite and zoisite in the system CaO-Al2O3-SiO2-H2O based on experimental phase equilibria and calorimetric work

    NASA Astrophysics Data System (ADS)

    Grevel, Klaus-Dieter; Schoenitz, Mirko; Skrok, Volker; Navrotsky, Alexandra; Schreyer, Werner

    2001-08-01

    The enthalpy of drop-solution in molten 2PbO.B2O3 of synthetic and natural lawsonite, CaAl2(Si2O7)(OH)2.H2O, was measured by high-temperature oxide melt calorimetry. The enthalpy of formation determined for the synthetic material is ΔfHOxides=-168.7+/-3.4 kJ mol-1, or ΔfH0298=-4,872.5+/-4.0 kJ mol-1. These values are in reasonable agreement with previously published data, although previous calorimetric work yielded slightly more exothermic data and optimisation methods resulted in slightly less exothermic values. The equilibrium conditions for the dehydration of lawsonite to zoisite, kyanite and quartz/coesite at pressures and temperatures up to 5 GPa and 850 °C were determined by piston cylinder experiments. These results, other recent phase equilibrium data, and new calorimetric and thermophysical data for lawsonite and zoisite, Ca2Al3(SiO4)(Si2O7)O(OH), were used to constrain a mathematical programming analysis of the thermodynamic data for these two minerals in the chemical system CaO-Al2O3-SiO2-H2O (CASH). The following data for lawsonite and zoisite were obtained: ΔfH0298 (lawsonite)=-4,865.68 kJ mol-1 , S0298 (lawsonite)=229.27 J K-1 mol-1 , ΔfH0298 (zoisite)=-6,888.99 kJ mol-1 , S0298 (zoisite)=297.71 J K-1 mol-1 . Additionally, a recalculation of the bulk modulus of lawsonite yielded K=120.7 GPa, which is in good agreement with recent experimental work.

  7. Organic compounds in meteorites

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.

    1980-01-01

    Recent studies of carbonaceous chondrites provide evidence that certain organic compounds are indigenous and the result of an abiotic, chemical synthesis. The results of several investigators have established the presence of amino acids and precursors, mono- and dicarboxylic acids, N-heterocycles, and hydrocarbons as well as other compounds. For example, studies of the Murchison and Murray meteorites have revealed the presence of at least 40 amino acids with nearly equal abundances of D and L isomers. The population consists of both protein and nonprotein amino acids including a wide variety of linear, cyclic, and polyfunctional types. Results show a trend of decreasing concentration with increasing carbon number, with the most abundant being glycine (41 n Moles/g). These and other results to be reviewed provide persuasive support for the theory of chemical evolution and provide the only natural evidence for the protobiological subset of molecules from which life on earth may have arisen.

  8. Oral compound nevus.

    PubMed

    Cardoso, Lyzete Berriel; Consalaro, Alberto; da Silva Santos, Paulo Sérgio; da Silva Sampieri, Marcelo Bonifácio; Tinoco-Araújo, José Endrigo

    2014-02-18

    The melanocytic nevus is a benign and focal proliferation of nevus cells that can be congenital or acquired. Intraoral lesions are uncommon, and the etiology and pathogenesis are poorly understood. The occurrence rate of oral compound nevus is about 5.9% to 16.5% of all oral melanocytic nevi. A 22-year-old male patient presented with a dark brown macule on the buccal mucosa of the maxilla in the region of tooth 26. The lesion was elliptical, 0.7 x 0.5 cm, well circumscribed, asymptomatic, and the evolution time was unknown. An excisional biopsy was performed and microscopic analysis revealed nests of nevus cells in the epithelium and underlying connective tissue that were compatible with melanocytic compound nevus. Owing to the clinical similarity between oral melanocytic nevus and oral melanoma, a histopathological analysis is mandatory for definitive diagnosis.

  9. Antifungal compounds from cyanobacteria.

    PubMed

    Shishido, Tânia K; Humisto, Anu; Jokela, Jouni; Liu, Liwei; Wahlsten, Matti; Tamrakar, Anisha; Fewer, David P; Permi, Perttu; Andreote, Ana P D; Fiore, Marli F; Sivonen, Kaarina

    2015-04-13

    Cyanobacteria are photosynthetic prokaryotes found in a range of environments. They are infamous for the production of toxins, as well as bioactive compounds, which exhibit anticancer, antimicrobial and protease inhibition activities. Cyanobacteria produce a broad range of antifungals belonging to structural classes, such as peptides, polyketides and alkaloids. Here, we tested cyanobacteria from a wide variety of environments for antifungal activity. The potent antifungal macrolide scytophycin was detected in Anabaena sp. HAN21/1, Anabaena cf. cylindrica PH133, Nostoc sp. HAN11/1 and Scytonema sp. HAN3/2. To our knowledge, this is the first description of Anabaena strains that produce scytophycins. We detected antifungal glycolipopeptide hassallidin production in Anabaena spp. BIR JV1 and HAN7/1 and in Nostoc spp. 6sf Calc and CENA 219. These strains were isolated from brackish and freshwater samples collected in Brazil, the Czech Republic and Finland. In addition, three cyanobacterial strains, Fischerella sp. CENA 298, Scytonema hofmanni PCC 7110 and Nostoc sp. N107.3, produced unidentified antifungal compounds that warrant further characterization. Interestingly, all of the strains shown to produce antifungal compounds in this study belong to Nostocales or Stigonematales cyanobacterial orders.

  10. Toxicity of platinum compounds.

    PubMed

    Hartmann, Jörg Thomas; Lipp, Hans-Peter

    2003-06-01

    Since the introduction of platinum-based combination chemotherapy, particularly cisplatin, the outcome of the treatment of many solid tumours has changed. The leading platinum compounds in cancer chemotherapy are cisplatin, carboplatin and oxaliplatin. They share some structural similarities; however, there are marked differences between them in therapeutic use, pharmacokinetics and adverse effects profiles [1-4]. Compared to cisplatin, carboplatin has inferior efficacy in germ-cell tumour, head and neck cancer and bladder and oesophageal carcinoma, whereas both drugs seem to have comparable efficacy in advanced non-small cell and small cell lung cancer as well as ovarian cancer [5-7]. Oxaliplatin belongs to the group of diaminocyclohexane platinum compounds. It is the first platinum-based drug that has marked efficacy in colorectal cancer when given in combination with 5-fluorouracil and folinic acid [8,9]. Other platinum compounds such as oral JM216, ZD0473, BBR3464 and SPI-77, which is a pegylated liposomal formulation of cisplatin, are still under investigation [10-13], whereas nedaplatin has been approved in Japan for the treatment of non-small cell lung cancer and other solid tumours. This review focuses on cisplatin, carboplatin and oxaliplatin.

  11. Toxic compounds in honey.

    PubMed

    Islam, Md Nazmul; Khalil, Md Ibrahim; Islam, Md Asiful; Gan, Siew Hua

    2014-07-01

    There is a wealth of information about the nutritional and medicinal properties of honey. However, honey may contain compounds that may lead to toxicity. A compound not naturally present in honey, named 5-hydroxymethylfurfural (HMF), may be formed during the heating or preservation processes of honey. HMF has gained much interest, as it is commonly detected in honey samples, especially samples that have been stored for a long time. HMF is a compound that may be mutagenic, carcinogenic and cytotoxic. It has also been reported that honey can be contaminated with heavy metals such as lead, arsenic, mercury and cadmium. Honey produced from the nectar of Rhododendron ponticum contains alkaloids that can be poisonous to humans, while honey collected from Andromeda flowers contains grayanotoxins, which can cause paralysis of limbs in humans and eventually leads to death. In addition, Melicope ternata and Coriaria arborea from New Zealand produce toxic honey that can be fatal. There are reports that honey is not safe to be consumed when it is collected from Datura plants (from Mexico and Hungary), belladonna flowers and Hyoscamus niger plants (from Hungary), Serjania lethalis (from Brazil), Gelsemium sempervirens (from the American Southwest), Kalmia latifolia, Tripetalia paniculata and Ledum palustre. Although the symptoms of poisoning due to honey consumption may differ depending on the source of toxins, most common symptoms generally include dizziness, nausea, vomiting, convulsions, headache, palpitations or even death. It has been suggested that honey should not be considered a completely safe food.

  12. Compound chondrules fused cold

    NASA Astrophysics Data System (ADS)

    Hubbard, Alexander

    2015-07-01

    About 4-5% of chondrules are compound: two separate chondrules stuck together. This is commonly believed to be the result of the two component chondrules having collided shortly after forming, while still molten. This allows high velocity impacts to result in sticking. However, at T ∼ 1100 K, the temperature below which chondrules collide as solids (and hence usually bounce), coalescence times for droplets of appropriate composition are measured in tens of seconds. Even at 1025 K, at which temperature theory predicts that the chondrules must have collided extremely slowly to have stuck together, the coalescence time scale is still less than an hour. These coalescence time scales are too short for the collision of molten chondrules to explain the observed frequency of compound chondrules. We suggest instead a scenario where chondrules stuck together in slow collisions while fully solid; and the resulting chondrule pair was subsequently briefly heated to a temperature in the range of 900-1025 K. In that temperature window the coalescence time is finite but long, covering a span of hours to a decade. This is particularly interesting because those temperatures are precisely the critical window for thermally ionized MRI activity, so compound chondrules provide a possible probe into that vital regime.

  13. Compound cycle engine program

    NASA Technical Reports Server (NTRS)

    Bobula, G. A.; Wintucky, W. T.; Castor, J. G.

    1986-01-01

    The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded power plant which combines the lightweight pressure rise capability of a gas turbine with the high efficiency of a diesel. When optimized for a rotorcraft, the CCE will reduce fuel burned for a typical 2 hr (plus 30 min reserve) mission by 30 to 40 percent when compared to a conventional advanced technology gas turbine. The CCE can provide a 50 percent increase in range-payload product on this mission. A program to establish the technology base for a Compound Cycle Engine is presented. The goal of this program is to research and develop those technologies which are barriers to demonstrating a multicylinder diesel core in the early 1990's. The major activity underway is a three-phased contract with the Garrett Turbine Engine Company to perform: (1) a light helicopter feasibility study, (2) component technology development, and (3) lubricant and material research and development. Other related activities are also presented.

  14. Offset Compound Gear Drive

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.

    2010-01-01

    The Offset Compound Gear Drive is an in-line, discrete, two-speed device utilizing a special offset compound gear that has both an internal tooth configuration on the input end and external tooth configuration on the output end, thus allowing it to mesh in series, simultaneously, with both a smaller external tooth input gear and a larger internal tooth output gear. This unique geometry and offset axis permits the compound gear to mesh with the smaller diameter input gear and the larger diameter output gear, both of which are on the same central, or primary, centerline. This configuration results in a compact in-line reduction gear set consisting of fewer gears and bearings than a conventional planetary gear train. Switching between the two output ratios is accomplished through a main control clutch and sprag. Power flow to the above is transmitted through concentric power paths. Low-speed operation is accomplished in two meshes. For the purpose of illustrating the low-speed output operation, the following example pitch diameters are given. A 5.0 pitch diameter (PD) input gear to 7.50 PD (internal tooth) intermediate gear (0.667 reduction mesh), and a 7.50 PD (external tooth) intermediate gear to a 10.00 PD output gear (0.750 reduction mesh). Note that it is not required that the intermediate gears on the offset axis be of the same diameter. For this example, the resultant low-speed ratio is 2:1 (output speed = 0.500; product of stage one 0.667 reduction and stage two 0.750 stage reduction). The design is not restricted to the example pitch diameters, or output ratio. From the output gear, power is transmitted through a hollow drive shaft, which, in turn, drives a sprag during which time the main clutch is disengaged.

  15. Neurotoxicity of organomercurial compounds.

    PubMed

    Sanfeliu, Coral; Sebastià, Jordi; Cristòfol, Rosa; Rodríguez-Farré, Eduard

    2003-01-01

    Mercury is a ubiquitous contaminant, and a range of chemical species is generated by human activity and natural environmental change. Elemental mercury and its inorganic and organic compounds have different toxic properties, but all them are considered hazardous in human exposure. In an equimolecular exposure basis, organomercurials with a short aliphatic chain are the most harmful compounds and they may cause irreversible damage to the nervous system. Methylmercury (CH(3)Hg(+)) is the most studied following the neurotoxic outbreaks identified as Minamata disease and the Iraq poisoning. The first description of the CNS pathology dates from 1954. Since then, the clinical neurology, the neuropathology and the mechanisms of neurotoxicity of organomercurials have been widely studied. The high thiol reactivity of CH(3)Hg(+), as well as all mercury compounds, has been suggested to be the basis of their harmful biological effects. However, there is clear selectivity of CH(3)Hg(+) for specific cell types and brain structures, which is not yet fully understood. The main mechanisms involved are inhibition of protein synthesis, microtubule disruption, increase of intracellular Ca(2+) with disturbance of neurotransmitter function, oxidative stress and triggering of excitotoxicity mechanisms. The effects are more damaging during CNS development, leading to alterations of the structure and functionality of the nervous system. The major source of CH(3)Hg(+) exposure is the consumption of fish and, therefore, its intake is practically unavoidable. The present concern is on the study of the effects of low level exposure to CH(3)Hg(+) on human neurodevelopment, with a view to establishing a safe daily intake. Recommendations are 0.4 micro g/kg body weight/day by the WHO and US FDA and, recently, 0.1 micro g/kg body weight/day by the US EPA. Unfortunately, these levels are easily attained with few meals of fish per week, depending on the source of the fish and its position in the

  16. Oligosilanylated Antimony Compounds

    PubMed Central

    2015-01-01

    By reactions of magnesium oligosilanides with SbCl3, a number of oligosilanylated antimony compounds were obtained. When oligosilanyl dianions were used, either the expected cyclic disilylated halostibine was obtained or alternatively the formation of a distibine was observed. Deliberate formation of the distibine from the disilylated halostibine was achieved by reductive coupling with C8K. Computational studies of Sb–Sb bond energies, barriers of pyramidal inversion at Sb, and the conformational behavior of distibines provided insight for the understanding of the spectroscopic properties. PMID:25937691

  17. Superconductivity in plutonium compounds

    NASA Astrophysics Data System (ADS)

    Sarrao, J. L.; Bauer, E. D.; Mitchell, J. N.; Tobash, P. H.; Thompson, J. D.

    2015-07-01

    Although the family of plutonium-based superconductors is relatively small, consisting of four compounds all of which crystallize in the tetragonal HoCoGa5 structure, these materials serve as an important bridge between the known Ce- and U-based heavy fermion superconductors and the high-temperature cuprate superconductors. Further, the partial localization of 5f electrons that characterizes the novel electronic properties of elemental plutonium appears to be central to the relatively high superconducting transition temperatures that are observed in PuCoGa5, PuRhGa5, PuCoIn5, and PuRhIn5.

  18. Titanium alkoxide compound

    DOEpatents

    Boyle, Timothy J.

    2007-08-14

    A titanium alkoxide composition is provided, as represented by the chemical formula (OC.sub.6H.sub.5N).sub.2Ti(OC.sub.6H.sub.5NH.sub.2).sub.2. As prepared, the compound is a crystalline substance with a hexavalent titanium atom bonded to two OC.sub.6H.sub.5NH.sub.2 groups and two OC.sub.6H.sub.5N groups with a theoretical molecular weight of 480.38, comprising 60.01% C, 5.04% H and 11.66% N.

  19. Immunomodulating compounds in Basidiomycetes

    PubMed Central

    Mizuno, Masashi; Nishitani, Yosuke

    2013-01-01

    Mushrooms are distinguished as important food containing immunomodulating and anticancer agents. These compounds belong mostly to polysaccharides especially β-d-glucans. Among them, β-1,3-glucan with side chain β-1,6-glucose residues have more important roles in immunomodulating and antitumor activities. In this review, we have introduced polysaccharide mainly from Lentinula edodes and Agaricus blazei Murill with immunomodulating and antitumor activities. In addition, the mechanism of activation of immune response and signal cascade are also reviewed. PMID:23704809

  20. Boronated porphyrin compounds

    DOEpatents

    Kahl, Stephen B.; Koo, Myoung-Seo

    1992-01-01

    A compound is described having the structure ##STR1## where R preferably is ##STR2## and most preferably R.sup.3 is a closo-carborane and R.sup.2 is --H, an alkyl or aryl having 1 to about 7 carbon atoms, This invention was made with Government support under NIH Grant No. CA-37961 awarded by the Department of Health and Human Services and under the Associated Universities Inc. Contract No. De-AC02-76CH00016 with the U.S. Department of Energy. The Government has rights in this invention.

  1. Boronated porphyrin compounds

    DOEpatents

    Kahl, S.B.; Koo, M.S.

    1992-09-22

    A compound is described having the structure ##STR1## where R preferably is ##STR2## and most preferably R.sup.3 is a closo-carborane and R.sup.2 is --H, an alkyl or aryl having 1 to about 7 carbon atoms, This invention was made with Government support under NIH Grant No. CA-37961 awarded by the Department of Health and Human Services and under the Associated Universities Inc. Contract No. De-AC02-76CH00016 with the U.S. Department of Energy. The Government has rights in this invention.

  2. Color Classification of Coordination Compounds.

    ERIC Educational Resources Information Center

    Poncini, Laurence; Wimmer, Franz L.

    1987-01-01

    Proposes that colored compounds be classified by reference to a standard color-order system incorporating a color dictionary. Argues that the colors of new compounds could be incorporated into the characterization process and into computer storage systems. (TW)

  3. Special Risks of Pharmacy Compounding

    MedlinePlus

    ... Consumer Updates RSS Feed The Special Risks of Pharmacy Compounding Get Consumer Updates by E-mail Consumer ... page: A Troubling Trend What You Can Do Pharmacy compounding is a practice in which a licensed ...

  4. FLUOROCARBON N-F COMPOUNDS

    DTIC Science & Technology

    FLUORIDES, *FLUORINATED HYDROCARBONS, ALKYL RADICALS, CARBOXYLIC ACIDS, CATALYSTS , CESIUM COMPOUNDS, CHEMICAL EQUILIBRIUM, IMIDES, IMINES, MOLECULAR...STRUCTURE, NITRILES, NUCLEAR MAGNETIC RESONANCE, PROPENES, REACTION KINETICS, SUBSTITUTION REACTIONS , SULFUR COMPOUNDS, SYNTHESIS.

  5. Probe Beam Detection of Laser-Induced Breakdown for Measuring Solubility of Actinide Compounds

    NASA Astrophysics Data System (ADS)

    Cho, Hye-Ryun; Jung, Euo Chang; Jee, Kwang Yong

    2008-05-01

    A nondestructive laser-induced breakdown detection technique is developed, which entails measuring the deflection of a probe laser beam due to a shock wave generated by a laser-induced breakdown of colloidal nanoparticles in liquids. Comparing this optical method with a previously developed acoustic detection method using a piezoelectric transducer, it enables remote measurement and therefore facilitates the in situ measurement of samples in a radiation-shielded glove box. The probe beam detection of a shock wave shows a sufficiently high sensitivity for monitoring the initial colloid formation when the uranium ion concentration exceeds the solubility limit of uranium hydrolysis compounds at a certain pH. The mean solubility product log Ksp° = -23.23 ±0.04 at an ionic strength of zero determined in this work agrees well with the previously reported result, log Ksp° = -23.19 ±0.43, measured by a calorimetric experiment on UO3·2H2O(cr).

  6. High temperature superconducting compounds

    NASA Astrophysics Data System (ADS)

    Goldman, Allen M.

    1992-11-01

    The major accomplishment of this grant has been to develop techniques for the in situ preparation of high-Tc superconducting films involving the use of ozone-assisted molecular beam epitaxy. The techniques are generalizable to the growth of trilayer and multilayer structures. Films of both the DyBa2Cu3O(7-x) and YBa2Cu3O(7-x) compounds as well as the La(2-x)Sr(x)CuO4 compound have been grown on the usual substrates, SrTiO3, YSZ, MgO, and LaAlO3, as well as on Si substrates without any buffer layer. A bolometer has been fabricated on a thermally isolated SiN substrate coated with YSZ, an effort carried out in collaboration with Honeywell Inc. The deposition process facilitates the fabrication of very thin and transparent films creating new opportunities for the study of superconductor-insulator transitions and the investigation of photo-doping with carriers of high temperature superconductors. In addition to a thin film technology, a patterning technology has been developed. Trilayer structures have been developed for FET devices and tunneling junctions. Other work includes the measurement of the magnetic properties of bulk single crystal high temperature superconductors, and in collaboration with Argonne National Laboratory, measurement of electric transport properties of T1-based high-Tc films.

  7. Intracranial compound odontome.

    PubMed

    de Faria, Paulo Rogério; Cardoso, Sérgio Vitorino; Rocha, Ademir; Gomes, Débora Cristiane; de Castro, Samuel Caputo; Loyola, Adriano Mota

    2009-10-01

    An exceedingly rare case of an extragnathic odontome is described arising within the brain. A 10-year-old boy complained of progressive frontal headache for 5 years. Axial computerized tomography the head revealed a solid, calcified lesion with well-defined borders localized in the sellar and suprasellar region composed of multiple calcified structures resembling teeth. The diagnosis was compound odontome. Physical examination and blood analysis revealed hypopituitarism. The patient was submitted for radical tumour resection. He developed persistent diabetes insipidus, hypothyroidism and adrenal insufficiency for which appropriate replacement therapy has been necessary. This case demonstrates that an odontogenic lesion may arise in brain tissues due to the embryological relationship between primordial stomodeum and Rathke's pouch. Its development could be associated with endocrine disturbances.

  8. Compound power plant

    SciTech Connect

    Smith, R.R.

    1991-02-05

    This patent describes a compound motor for a vehicle. It comprises: an engine defining therein a chamber for the combustion of fuel, an intake passage leading to the combustion chamber and an exhaust passage leading from the combustion chamber; a drive shaft extending from the engine; means in the engine for rotating the drive shaft in response to the combustion of fuel in the chamber; a rotary compressor at the entry end of the intake passage; a turbine at the exit end of the exhaust passage, the turbine being drivable by exhaust gases from the combustion chamber; means for selectively transferring rotational motion of the turbine to the compressor, the transferring means including a clutch for mechanically connecting or disconnecting the compressor from the turbine; a planetary gear set having a sun gear member, a ring gear member surrounding the sun gear member, a planet gear member rotatable about its own axis and meshed between the sun gear member and the ring gear member, and a planet carrier member upon which the planet gear member is mounted for revolution about the sun gear member; a gear train between one of the members of the planetary gear set and the turbine; another one of the members of the planetary gear set being driven by the shaft extending from the engine; and a final output shaft driven by a third member of the planetary gear set.

  9. Public chemical compound databases.

    PubMed

    Williams, Anthony J

    2008-05-01

    The internet has rapidly become the first port of call for all information searches. The increasing array of chemistry-related resources that are now available provides chemists with a direct path to the information that was previously accessed via library services and was limited by commercial and costly resources. The diversity of the information that can be accessed online is expanding at a dramatic rate, and the support for publicly available resources offers significant opportunities in terms of the benefits to science and society. While the data online do not generally meet the quality standards of manually curated sources, there are efforts underway to gather scientists together and 'crowdsource' an improvement in the quality of the available data. This review discusses the types of public compound databases that are available online and provides a series of examples. Focus is also given to the benefits and disruptions associated with the increased availability of such data and the integration of technologies to data mine this information.

  10. Compounding with Silicones.

    PubMed

    Allen, Loyd V

    2015-01-01

    Since the 1940s, methylchlorosilanes have been used to treat glassware to prevent blood from clotting. The use of silicones in pharmaceutical and medical applications has grown to where today they are used in many life-saving devices (pacemakers, hydrocephalic shunts) and pharmaceutical applications from tubing, to excipients in topical formulations, to adhesives to affix transdermal drug delivery systems, and are also being used in products as active pharmaceutical ingredients, such as antiflatulents. About 60% of today's skin-care products now contain some type of silicone where they are considered safe and are known to provide a pleasant "silky-touch," non-greasy, and non-staining feel. Silicones exhibit many useful characteristics, and the safety of these agents supports their numerous applications; their biocompatibility is partially due to their low-chemical reactivity displayed by silicones, low-surface energy, and their hydrophobicity. Silicones are used both as active ingredients and as excipients. In addition is their use for "siliconization," or surface treatment, of many parenteral packaging components. Dimethicone and silicone oil are used as lubricants on stoppers to aid machineability, in syringes to aid piston movement, or on syringe needles to reduce pain upon injection. Silicones are also useful in pharmaceutical compounding as is discussed in this artiele included with this article are in developing formulations with silicones.

  11. Pluto's Nonvolatile Chemical Compounds

    NASA Astrophysics Data System (ADS)

    Grundy, William M.; Binzel, Richard; Cook, Jason C.; Cruikshank, Dale P.; Dalle Ore, Cristina M.; Earle, Alissa M.; Ennico, Kimberly; Jennings, Donald; Howett, Carly; Kaiser, Ralf-Ingo; Linscott, Ivan; Lunsford, A. W.; Olkin, Catherine B.; Parker, Alex Harrison; Parker, Joel Wm.; Philippe, Sylvain; Protopapa, Silvia; Quirico, Eric; Reuter, D. C.; Schmitt, Bernard; Singer, Kelsi N.; Spencer, John R.; Stansberry, John A.; Stern, S. Alan; Tsang, Constantine; Verbiscer, Anne J.; Weaver, Harold A.; Weigle, G. E.; Young, Leslie

    2016-10-01

    Despite the migration of Pluto's volatile ices (N2, CO, and CH4) around the surface on seasonal timescales, the planet's non-volatile materials are not completely hidden from view. They occur in a variety of provinces formed over a wide range of timescales, including rugged mountains and chasms, the floors of mid-latitude craters, and an equatorial belt of especially dark and reddish material typified by the informally named Cthulhu Regio. NASA's New Horizons probe observed several of these regions at spatial resolutions as fine as 3 km/pixel with its LEISA imaging spectrometer, covering wavelengths from 1.25 to 2.5 microns. Various compounds that are much lighter than the tholin-like macromolecules responsible for the reddish coloration, but that are not volatile at Pluto surface temperatures such as methanol (CH3OH) and ethane (C2H6) have characteristic absorption bands within LEISA's wavelength range. This presentation will describe their geographic distributions and attempt to constrain their origins. Possibilities include an inheritance from Pluto's primordial composition (the likely source of H2O ice seen on Pluto's surface) or ongoing production from volatile precursors through photochemistry in Pluto's atmosphere or through radiolysis on Pluto's surface. New laboratory data inform the analysis.This work was supported by NASA's New Horizons project.

  12. Method of preparing metallocene compounds

    DOEpatents

    Rosenblum, Myron; Matchett, Stephen A.

    1992-01-01

    This invention describes a novel method of preparing metallocene compounds. The invention is based on synthesis of novel bis cyclopentadienides that, under appropriate conditions, will either encapsulate a transition metal to produce a metallocene such as ferrocene, or ferrocene derivative, or will yield a polymeric metallocene. Compounds produced by this process are useful as catalysts in propulsion systems, or as anti-knock compounds in gasolines.

  13. Biomedical Compounds from Marine organisms

    PubMed Central

    Jha, Rajeev Kumar; Zi-rong, Xu

    2004-01-01

    The Ocean, which is called the ‘mother of origin of life’, is also the source of structurally unique natural products that are mainly accumulated in living organisms. Several of these compounds show pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immuno-deficiency syndrome (AIDS), arthritis, etc., while other compounds have been developed as analgesics or to treat inflammation, etc. The life-saving drugs are mainly found abundantly in microorganisms, algae and invertebrates, while they are scarce in vertebrates. Modern technologies have opened vast areas of research for the extraction of biomedical compounds from oceans and seas.

  14. Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, Grorge

    2001-01-01

    Carbonaceous meteorites are relatively enriched in soluble organic compounds. To date, these compounds provide the only record available to study a range of organic chemical processes in the early Solar System chemistry. The Murchison meteorite is the best-characterized carbonaceous meteorite with respect to organic chemistry. The study of its organic compounds has related principally to aqueous meteorite parent body chemistry and compounds of potential importance for the origin of life. Among the classes of organic compounds found in Murchison are amino acids, amides, carboxylic acids, hydroxy acids, sulfonic acids, phosphonic acids, purines and pyrimidines (Table 1). Compounds such as these were quite likely delivered to the early Earth in asteroids and comets. Until now, polyhydroxylated compounds (polyols), including sugars (polyhydroxy aldehydes or ketones), sugar alcohols, sugar acids, etc., had not been identified in Murchison. Ribose and deoxyribose, five-carbon sugars, are central to the role of contemporary nucleic acids, DNA and RNA. Glycerol, a three-carbon sugar alcohol, is a constituent of all known biological membranes. Due to the relative lability of sugars, some researchers have questioned the lifetime of sugars under the presumed conditions on the early Earth and postulated other (more stable) compounds as constituents of the first replicating molecules. The identification of potential sources and/or formation mechanisms of pre-biotic polyols would add to the understanding of what organic compounds were available, and for what length of time, on the ancient Earth.

  15. Determination of electronic stopping powers of 0.05-1 MeV/u 131Xe ions in C-, Ni- and Au-absorbers with calorimetric low temperature detectors

    NASA Astrophysics Data System (ADS)

    Echler, A.; Egelhof, P.; Grabitz, P.; Kettunen, H.; Kraft-Bermuth, S.; Laitinen, M.; Müller, K.; Rossi, M.; Trzaska, W. H.; Virtanen, A.

    2017-01-01

    A new experimental system for precise determination of electronic stopping powers of heavy ions has been set up at the accelerator laboratory of the University of Jyväskylä. The new setup, combining an established B-ToF system and an array of calorimetric low temperature detectors (CLTDs), has been used for the determination of electronic stopping powers of 0.05-1 MeV/u 131Xe ions in carbon, nickel and gold. Thereby advantage of the improved linearity and energy resolution of CLTDs as compared to the previously used ionization detector was taken to reduce energy calibration errors and to increase sensitivity for the energy loss determination, in particular at very low energies. The total uncertainties of 3-4% for C- and Ni-targets, and 5-7% for Au-targets, respectively, are dominated by the target properties, i.e. thickness determination and inhomogeneities. The results are compared to data from literature and to predictions of different theoretical computer codes. In the high energy part of the examined energy range the results are in good agreement with previously published data, while new stopping power data for very heavy ions in different Z2-materials have been obtained at lower energies. Moreover, unexpectedly strong channeling effects for the transmission of the 131Xe ions in thin, partly polycrystalline nickel and gold target foils have been observed and investigated.

  16. Saturn's Stratospheric Oxygen Compounds

    NASA Astrophysics Data System (ADS)

    Romani, Paul N.; Delgado Díaz, Héctor E.; Bjoraker, Gordon; Hesman, Brigette; Achterberg, Richard

    2016-10-01

    There are three known oxygenated species present in Saturn's upper atmosphere: H2O, CO and CO2. The ultimate source of the water must be external to Saturn as Saturn's cold tropopause effectively prevents any internal water from reaching the upper atmosphere. The carbon monoxide and dioxide source(s) could be internal, external, produced by the photochemical interaction of water with Saturn's stratospheric hydrocarbons or some combination of all of these. At this point it is not clear what the external source(s) are.Cassini's Composite InfraRed Spectrometer (CIRS) has detected emission lines of H2O and CO2 (Hesman et al., DPS 2015, 311.16 & Abbas et al. 2013, Ap. J. doi:10.1088/0004-637X/776/2/73) on Saturn. CIRS also retrieves the temperature of the stratosphere using CH4 lines at 7.7 microns. Using CIRS retrieved temperatures, the mole fraction of H2O at the 0.5-5 mbar level can be retrieved and the CO2 mole fraction at ~1-10 mbar. Coupled with ground based observations of CO (Cavalié et al., 2010, A&A, DOI: 10.1051/0004-6361/200912909) these observations provide a complete oxygen compound data set to test photochemical models.Preliminary results will be presented with an emphasis on upper limit analysis to determine the percentage of stratospheric CO and CO2 that can be produced photochemically from CIRS observational constraints on the H2O profile.

  17. Antimicrobial Compounds in Tears

    PubMed Central

    McDermott, Alison M.

    2013-01-01

    The tear film coats the cornea and conjunctiva and serves several important functions. It provides lubrication, prevents drying of the ocular surface epithelia, helps provide a smooth surface for refracting light, supplies oxygen and is an important component of the innate defense system of the eye providing protection against a range of potential pathogens. This review describes both classic antimicrobial compounds found in tears such as lysozyme and some more recently identified such as members of the cationic antimicrobial peptide family and surfactant protein-D as well as potential new candidate molecules that may contribute to antimicrobial protection. As is readily evident from the literature review herein, tears, like all mucosal fluids, contain a plethora of molecules with known antimicrobial effects. That all of these are active in vivo is debatable as many are present in low concentrations, may be influenced by other tear components such as the ionic environment, and antimicrobial action may be only one of several activities ascribed to the molecule. However, there are many studies showing synergistic/additive interactions between several of the tear antimicrobials and it is highly likely that cooperativity between molecules is the primary way tears are able to afford significant antimicrobial protection to the ocular surface in vivo. In addition to effects on pathogen growth and survival some tear components prevent epithelial cell invasion and promote the epithelial expression of innate defense molecules. Given the protective role of tears a number of scenarios can be envisaged that may affect the amount and/or activity of tear antimicrobials and hence compromise tear immunity. Two such situations, dry eye disease and contact lens wear, are discussed here. PMID:23880529

  18. Structural and calorimetric studies demonstrate that the hepatocyte nuclear factor 1β (HNF1β) transcription factor is imported into the nucleus via a monopartite NLS sequence.

    PubMed

    Wiedmann, Mareike M; Aibara, Shintaro; Spring, David R; Stewart, Murray; Brenton, James D

    2016-09-01

    The transcription factor hepatocyte nuclear factor 1β (HNF1β) is ubiquitously overexpressed in ovarian clear cell carcinoma (CCC) and is a potential therapeutic target. To explore potential approaches that block HNF1β transcription we have identified and characterised extensively the nuclear localisation signal (NLS) for HNF1β and its interactions with the nuclear protein import receptor, Importin-α. Pull-down assays demonstrated that the DNA binding domain of HNF1β interacted with a spectrum of Importin-α isoforms and deletion constructs tagged with eGFP confirmed that the HNF1β (229)KKMRRNR(235) sequence was essential for nuclear localisation. We further characterised the interaction between the NLS and Importin-α using complementary biophysical techniques and have determined the 2.4Å resolution crystal structure of the HNF1β NLS peptide bound to Importin-α. The functional, biochemical, and structural characterisation of the nuclear localisation signal present on HNF1β and its interaction with the nuclear import protein Importin-α provide the basis for the development of compounds targeting transcription factor HNF1β via its nuclear import pathway.

  19. Magnetic and calorimetric studies of magnetocaloric effect in La0.7-xPrxCa0.3MnO3

    NASA Astrophysics Data System (ADS)

    Barik, S. K.; Aparnadevi, M.; Rebello, A.; Naik, V. B.; Mahendiran, R.

    2012-04-01

    We report magnetocaloric effect in La0.7-xPrxCa0.3MnO3 (x = 0, 0.2, 0.3, and 0.4). All these compounds undergo first-order paramagnetic to ferromagnetic transition upon cooling and show field-induced metamagnetic transition (FIMMT) in the paramagnetic state. The FIMMT is accompanied by a release of latent heat and change in temperature of the sample as evidenced from differential scanning calorimetry and thermal analysis data for x = 0.3. The magnetic entropy decreases (-ΔSm = 8.23, 8.1, 7, and 5.38 Jkg-1 K-1 for a field change of ΔH = 5 T, for x = 0, 0.2, 0.3, and 0.4, respectively) and refrigeration capacity (RC) increases with increasing x (RC = 197, 215, 240, and 259 J/kg for x = 0, 0.2, 0.3, and 0.4, respectively). We suggest that collapse of magnetic polarons in the paramagnetic state and magnetovolume effect are responsible for the observed FIMMT and large -ΔSm values.

  20. Calorimetric and spectroscopic evidence of chain-melting in smectic E and smectic A phases of 4-alkyl-4'-isothiocyanatobiphenyl (nTCB).

    PubMed

    Yamamura, Yasuhisa; Adachi, Takuya; Miyazawa, Takahito; Horiuchi, Katsuya; Sumita, Masato; Massalska-Arodź, Maria; Urban, Stanisław; Saito, Kazuya

    2012-08-02

    To confirm the molten state of the alkyl chain in soft crystalline phase, smectic E (SmE) phase, thermodynamic and spectroscopic analyses were performed on 4-n-alkyl-4'-isothiocyanatobiphenyl (nTCB, n: the number of carbon atoms in the alkyl group). DSC results of 11TCB and 12TCB, having extra smectic A phase besides smectic E phase, show that their chain-length dependence of entropies of transition (Δ(trs)S) from the ordered crystalline (OC) phase to the SmE phase matches the trend found for nTCB (n = 4-10), while no chain-length dependence is observed in Δ(trs)S at the SmE-to-SmA and SmA-to-isotropic liquid (IL) phase transitions in 11TCB and 12TCB. Temperature dependences of FT-IR spectra of six compounds (n = 2, 3, 5, 8, 10, and 12) were recorded. The CH stretching modes of the chain exhibited more pronounced change at the transition from the OC to the SmE phase than at the transition from the SmE phase to the IL or SmA phase. These results indicate that the alkyl chain is molten in the SmE phase as in IL. The disordering process of nTCB molecules from the OC to IL via anisotropic mesophases is discussed in terms of entropy.

  1. Testing of Experimental Antileishmanial Compounds.

    DTIC Science & Technology

    1994-10-19

    administrative and clerical assistance and Ms. Barbara L. Harris, Laboratory Technician II, for technical assistance with this study. Their efforts are appreciated...braziliensis) leishmaniasis . Although several new compounds have been identified with activity against L. (V.) braziliensis, none have shown adequate promise...to warrant initiation of clinical trials. However, among the most promising active compounds found against visceral leishmaniasis during these

  2. Bilingual Reading of Compound Words

    ERIC Educational Resources Information Center

    Ko, In Yeong; Wang, Min; Kim, Say Young

    2011-01-01

    The present study investigated whether bilingual readers activate constituents of compound words in one language while processing compound words in the other language via decomposition. Two experiments using a lexical decision task were conducted with adult Korean-English bilingual readers. In Experiment 1, the lexical decision of real English…

  3. METHOD OF REDUCING PLUTONIUM COMPOUNDS

    DOEpatents

    Johns, I.B.

    1958-06-01

    A method is described for reducing plutonium compounds in aqueous solution from a higher to a lower valence state. This reduction of valence is achieved by treating the aqueous solution of higher valence plutonium compounds with hydrogen in contact with an activated platinum catalyst.

  4. Morphological Dynamics in Compound Processing

    ERIC Educational Resources Information Center

    Kuperman, Victor; Bertram, Raymond; Baayen, R. Harald

    2008-01-01

    This paper explores the time-course of morphological processing of trimorphemic Finnish compounds. We find evidence for the parallel access to full-forms and morphological constituents diagnosed by the early effects of compound frequency, as well as early effects of left constituent frequency and family size. We also observe an interaction between…

  5. Bismuth compounds in medicinal chemistry.

    PubMed

    Salvador, Jorge A R; Figueiredo, Sandra A C; Pinto, Rui M A; Silvestre, Samuel M

    2012-07-01

    In recent years, the chemical potential of bismuth and bismuth compounds has been actively exploited. Bismuth salts are known for their low toxicity, making them potential valuable reagents for large-scale synthesis, which becomes more obvious when dealing with products such as active pharmaceutical ingredients or synthetic intermediates. Conversely, bismuth compounds have been widely used in medicine. After extensive use in the treatments of syphilis and other bacterial infections before the advent of modern antibiotics, bismuth compounds remain important for the treatment of several gastrointestinal disorders and also exhibit antimicrobial properties and cytotoxic activity, among others. This review updates relevant advances in the past few years, concerning the application of bismuth reagents and catalysts in innovative synthetic processes for the preparation of compounds of medicinal interest, as well as the preparation, biological evaluation and potential medicinal uses of bismuth compounds.

  6. Current Research on Antiepileptic Compounds.

    PubMed

    Wei, Cheng-Xi; Bian, Ming; Gong, Guo-Hua

    2015-11-20

    Epilepsy affects about 1% of the world's population. Due to the fact all antiepileptic drugs (AEDs) have some undesirable side effects and about 30% of epileptic patients are not seizure-free with the existing AEDs, there is still an urgent need for the development of more effective and safer AEDs. Based on our research work on antiepileptic compounds and other references in recent years, this review covers the reported work on antiepileptic compounds which are classified according to their structures. This review summarized 244 significant anticonvulsant compounds which are classified by functional groups according to the animal model data, although there are some limitations in the data. This review highlights the properties of new compounds endowed with promising antiepileptic properties, which may be proven to be more effective and selective, and possibly free of unwanted side effects. The reviewed compounds represent an interesting possibility to overcome refractory seizures and to reduce the percentage of patients with a poor response to drug therapy.

  7. Complex chemistry with complex compounds

    NASA Astrophysics Data System (ADS)

    Eichler, Robert; Asai, M.; Brand, H.; Chiera, N. M.; Di Nitto, A.; Dressler, R.; Düllmann, Ch. E.; Even, J.; Fangli, F.; Goetz, M.; Haba, H.; Hartmann, W.; Jäger, E.; Kaji, D.; Kanaya, J.; Kaneya, Y.; Khuyagbaatar, J.; Kindler, B.; Komori, Y.; Kraus, B.; Kratz, J. V.; Krier, J.; Kudou, Y.; Kurz, N.; Miyashita, S.; Morimoto, K.; Morita, K.; Murakami, M.; Nagame, Y.; Ooe, K.; Piguet, D.; Sato, N.; Sato, T. K.; Steiner, J.; Steinegger, P.; Sumita, T.; Takeyama, M.; Tanaka, K.; Tomitsuka, T.; Toyoshima, A.; Tsukada, K.; Türler, A.; Usoltsev, I.; Wakabayashi, Y.; Wang, Y.; Wiehl, N.; Wittwer, Y.; Yakushev, A.; Yamaki, S.; Yano, S.; Yamaki, S.; Qin, Z.

    2016-12-01

    In recent years gas-phase chemical studies assisted by physical pre-separation allowed for the investigation of fragile single molecular species by gas-phase chromatography. The latest success with the heaviest group 6 transactinide seaborgium is highlighted. The formation of a very volatile hexacarbonyl compound Sg(CO)6 was observed similarly to its lighter homologues molybdenum and tungsten. The interactions of these gaseous carbonyl complex compounds with quartz surfaces were investigated by thermochromatography. Second-generation experiments are under way to investigate the intramolecular bond between the central metal atom of the complexes and the ligands addressing the influence of relativistic effects in the heaviest compounds. Our contribution comprises some aspects of the ongoing challenging experiments as well as an outlook towards other interesting compounds related to volatile complex compounds in the gas phase.

  8. Assimilation of Unusual Carbon Compounds

    NASA Astrophysics Data System (ADS)

    Middelhoven, Wouter J.

    Yeast taxa traditionally are distinguished by growth tests on several sugars and organic acids. During the last decades it became apparent that many yeast species assimilate a much greater variety of naturally occurring carbon compounds as sole source of carbon and energy. These abilities are indicative of a greater role of yeasts in the carbon cycle than previously assumed. Especially in acidic soils and other habitats, yeasts may play a role in the degradation of carbon compounds. Such compounds include purines like uric acid and adenine, aliphatic amines, diamines and hydroxyamines, phenolics and other benzene compounds and polysaccharides. Assimilation of purines and amines is a feature of many ascomycetes and basidiomycetes. However, benzene compounds are degraded by only a few ascomycetous yeasts (e.g. the Stephanoascus/ Blastobotrys clade and black yeastlike fungi) but by many basidiomycetes, e.g. Filobasidiales, Trichosporonales, red yeasts producing ballistoconidia and related species, but not by Tremellales. Assimilation of polysaccharides is wide-spread among basidiomycetes

  9. Devices for collecting chemical compounds

    DOEpatents

    Scott, Jill R; Groenewold, Gary S

    2013-12-24

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  10. Novel bioactive compounds from actinomycetes.

    PubMed

    Sanglier, J J; Wellington, E M; Behal, V; Fiedler, H P; Ellouz Ghorbel, R; Finance, C; Hacene, M; Kamoun, A; Kelly, C; Mercer, D K

    1993-10-01

    Actinomycetes form an enormous reservoir of secondary metabolites and enzymes. The potential for exploiting rare actinomycetes is highlighted by the discovery of novel compounds from strains of Spirillospora and Nocardioides. Novel compounds of well known classes of antibiotics, such as polyenes, continue to be discovered. For compounds containing a chromophore, the analysis by high-performance liquid chromatography coupled with a diode-array detector enables the elimination of producers of known compounds and facilitates the discovery of novel compounds or derivatives. The complexity of the regulatory mechanisms is illustrated by glutamine synthetase. The characterization of thermostable amylolytic, lignolytic, peroxidase and neuramidase activities, and the isolation of novel cellulolytic actinomycetes clearly demonstrate the potential of Actinomycetes as producers of enzymes.

  11. Role of an invariant lysine residue in folate binding on Escherichia coli thymidylate synthase: calorimetric and crystallographic analysis of the K48Q mutant.

    PubMed

    Arvizu-Flores, Aldo A; Sugich-Miranda, Rocio; Arreola, Rodrigo; Garcia-Orozco, Karina D; Velazquez-Contreras, Enrique F; Montfort, William R; Maley, Frank; Sotelo-Mundo, Rogerio R

    2008-01-01

    Thymidylate synthase (TS) catalyzes the reductive methylation of deoxyuridine monophosphate (dUMP) using methylene tetrahydrofolate (CH(2)THF) as cofactor, the glutamate tail of which forms a water-mediated hydrogen bond with an invariant lysine residue of this enzyme. To understand the role of this interaction, we studied the K48Q mutant of Escherichia coli TS using structural and biophysical methods. The k(cat) of the K48Q mutant was 430-fold lower than wild-type TS in activity, while the K(m) for the (R)-stereoisomer of CH(2)THF was 300 microM, about 30-fold larger than K(m) from the wild-type TS. Affinity constants were determined using isothermal titration calorimetry, which showed that binding was reduced by one order of magnitude for folate-like TS inhibitors, such as propargyl-dideazafolate (PDDF) or compounds that distort the TS active site like BW1843U89 (U89). The crystal structure of the K48Q-dUMP complex revealed that dUMP binding is not impaired in the mutant, and that U89 in a ternary complex of K48Q-nucleotide-U89 was bound in the active site with subtle differences relative to comparable wild-type complexes. PDDF failed to form ternary complexes with K48Q and dUMP. Thermodynamic data correlated with the structural determinations, since PDDF binding was dominated by enthalpic effects while U89 had an important entropic component. In conclusion, K48 is critical for catalysis since it leads to a productive CH(2)THF binding, while mutation at this residue does not affect much the binding of inhibitors that do not make contact with this group.

  12. Role of an invariant lysine residue in folate binding on Escherichia coli thymidylate synthase: calorimetric and crystallographic analysis of the K48Q mutant

    PubMed Central

    Arvizu-Flores, Aldo A.; Sugich-Miranda, Rocio; Arreola, Rodrigo; Garcia-Orozco, Karina D.; Velazquez-Contreras, Enrique F.; Montfort, William R.; Maley, Frank; Sotelo-Mundo, Rogerio R.

    2008-01-01

    Thymidylate synthase (TS) catalyzes the reductive methylation of deoxyuridine monophosphate (dUMP) using methylene tetrahydrofolate (CH2THF) as cofactor, the glutamate tail of which forms a water-mediated hydrogen-bond with an invariant lysine residue of this enzyme. To understand the role of this interaction, we studied the K48Q mutant of Escherichia coli TS using structural and biophysical methods. The kcat of the K48Q mutant was 430 fold lower than wild-type TS in activity, while the the Km for the (R)-stereoisomer of CH2THF was 300 µM, about 30 fold larger than Km from the wild-type TS. Affinity constants were determined using isothermal titration calorimetry, which showed that binding was reduced by one order of magnitude for folate-like TS inhibitors, such as propargyl-dideaza folate (PDDF) or compounds that distort the TS active site like BW1843U89 (U89). The crystal structure of the K48Q-dUMP complex revealed that dUMP binding is not impaired in the mutamt, and that U89 in a ternary complex of K48Q-nucleotide-U89 was bound in the active site with subtle differences relative to comparable wild type complexes. PDDF failed to form ternary complexes with K48Q and dUMP. Thermodynamic data correlated with the structural determinations, since PDDF binding was dominated by enthalpic effects while U89 had an important entropic component. In conclusion, K48 is critical for catalysis since it leads to a productive CH2THF binding, while mutation at this residue does not affect much the binding of inhibitors that do not make contact with this group. PMID:18403248

  13. Photoprotective compounds from marine organisms.

    PubMed

    Rastogi, Rajesh P; Richa; Sinha, Rajeshwar P; Singh, Shailendra P; Häder, Donat-P

    2010-06-01

    The substantial loss in the stratospheric ozone layer and consequent increase in solar ultraviolet radiation on the earth's surface have augmented the interest in searching for natural photoprotective compounds in organisms of marine as well as freshwater ecosystems. A number of photoprotective compounds such as mycosporine-like amino acids (MAAs), scytonemin, carotenoids and several other UV-absorbing substances of unknown chemical structure have been identified from different organisms. MAAs form the most common class of UV-absorbing compounds known to occur widely in various marine organisms; however, several compounds having UV-screening properties still need to be identified. The synthesis of scytonemin, a predominant UV-A-photoprotective pigment, is exclusively reported in cyanobacteria. Carotenoids are important components of the photosynthetic apparatus that serve both light-harvesting and photoprotective functions, either by direct quenching of the singlet oxygen or other toxic reactive oxygen species or by dissipating the excess energy in the photosynthetic apparatus. The production of photoprotective compounds is affected by several environmental factors such as different wavelengths of UVR, desiccation, nutrients, salt concentration, light as well as dark period, and still there is controversy about the biosynthesis of various photoprotective compounds. Recent studies have focused on marine organisms as a source of natural bioactive molecules having a photoprotective role, their biosynthesis and commercial application. However, there is a need for extensive work to explore the photoprotective role of various UV-absorbing compounds from marine habitats so that a range of biotechnological and pharmaceutical applications can be found.

  14. Membrane rejection of nitrogen compounds

    NASA Technical Reports Server (NTRS)

    Lee, S.; Lueptow, R. M.

    2001-01-01

    Rejection characteristics of nitrogen compounds were examined for reverse osmosis, nanofiltration, and low-pressure reverse osmosis membranes. The rejection of nitrogen compounds is explained by integrating experimental results with calculations using the extended Nernst-Planck model coupled with a steric hindrance model. The molecular weight and chemical structure of nitrogen compounds appear to be less important in determining rejection than electrostatic properties. The rejection is greatest when the Donnan potential exceeds 0.05 V or when the ratio of the solute radius to the pore radius is greater than 0.8. The transport of solute in the pore is dominated by diffusion, although convective transport is significant for organic nitrogen compounds. Electromigration contributes negligibly to the overall solute transport in the membrane. Urea, a small organic compound, has lower rejection than ionic compounds such as ammonium, nitrate, and nitrite, indicating the critical role of electrostatic interaction in rejection. This suggests that better treatment efficiency for organic nitrogen compounds can be obtained after ammonification of urea.

  15. MEASUREMENT OF INFRARED SPECTRA AND CHEMICAL BONDING OF INORGANIC COMPOUNDS.

    DTIC Science & Technology

    CHROMATES, SELENIUM COMPOUNDS, PERMANGANATES, FLUOBORATES , LITHIUM FLUORIDES, BELGIUM...CRYSTAL STRUCTURE, SODIUM CHLORIDE, LITHIUM COMPOUNDS, BARIUM COMPOUNDS, ALKALINE EARTH COMPOUNDS, ALKALI METAL COMPOUNDS, SULFATES, PERCHLORATES

  16. Polishing compound for plastic surfaces

    DOEpatents

    Stowell, M.S.

    1995-08-22

    A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired. 5 figs.

  17. Polishing compound for plastic surfaces

    DOEpatents

    Stowell, M.S.

    1993-01-01

    A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains colloidal silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{sup TM}, LEXAN{sup TM}, LUCITE{sup TM}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  18. Polishing compound for plastic surfaces

    DOEpatents

    Stowell, Michael S.

    1995-01-01

    A polishing compound for plastic surfaces. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS.TM., LEXAN.TM., LUCITE.TM., polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  19. Calorimetric, spectroscopic and structural investigations of phase polymorphism in [Ru(NH3)6](BF4)3. Part I

    NASA Astrophysics Data System (ADS)

    Dołęga, Diana; Mikuli, Edward; Inaba, Akira; Górska, Natalia; Hołderna-Natkaniec, Krystyna; Nitek, Wojciech

    2013-01-01

    Four crystalline phases of the coordination compound [Ru(NH3)6](BF4)3 are identified by adiabatic calorimetry. Three phase transitions, one at TC3(IV→III)=30.7 K, the second at TC2(III→II)=91.7 K (both accompanied by comparable entropy changes 3.0 and 3.1 J K-1 mol-1, respectively) and the third at TC1(II→I)=241.6 K (accompanied by an entropy change of 8.1 J K-1 mol-1) were discovered. X-ray single crystal diffraction (at 293 K) demonstrates that phase I is a highly dynamic disordered cubic phase (Fm3¯m, No. 225) with two types of BF4- anions differing in a degree of disorder. In phase II (at 170 K) the structure remains cubic (Ia3¯, No. 206), with two different types of cations and four different types of anions. Splitting of certain IR bands connected with NH3 ligands at the observed phase transitions suggests a lowering of the symmetry of the [Ru(NH3)6]3+ complex cation. Both NH3 ligands and BF4- anions perform fast reorientations (τR≈10-12 s), which are significantly slowed down below the phase transition at TC3. 1H NMR studies led to estimate the values of the activation energy of NH3 ligands reorientation in the phases II and I as equal to ˜8 kJ mol-1. In phase I the whole hexammineruthenium(III) cations reorientation as a tumbling process can be noticed. The activation energy value of this motion is ˜24 kJ mol-1. 19F NMR studies give the values of the activation energy of BF4- anions reorientation as ˜6 kJ mol-1. Above the phase transition temperature half of BF4- anions perform a tumbling motion with Ea≈8 kJ mol-1.

  20. Architectural isomerism in the three-dimensional polymeric spin crossover system [Fe(pmd)2[Ag(CN)2]2]: synthesis, structure, magnetic properties, and calorimetric studies.

    PubMed

    Galet, Ana; Muñoz, M Carmen; Gaspar, Ana B; Real, José A

    2005-11-28

    Two coordination polymers formulated [Fe(pmd)2[Ag(CN)2]2] (pmd = pyrimidine) have been synthesized and characterized. Both polymers, considered to be architectural isomers, display different crystal structures and magnetic properties. Isomer 1 crystallizes in the monoclinic C2/c space group with a = 6.9750(8) angstroms, b = 16.1700(9) angstroms, c = 14.2020(8) angstroms, beta = 97.954(2) degrees, V = 1586.37(14) angstroms3, and Z = 4. The crystal structure of isomer 2 has been studied at 250 and 150 K. At both temperatures, 2 displays the orthorhombic Pccn space group with a = 15.7700(2) [14.8950(2)] angstroms, b = 8.2980(4) [8.1580(4)] angstroms, c = 13.4180(6) [13.3480(5)] angstroms, V = 1755.87(14) [1621.96(10)] angstroms3, and Z = 4 for 250 [150] K. The iron(II) ions define distorted octahedral [FeN6] chromophores in both isomers. The equatorial positions are occupied by four [Ag(CN)2]- bridging ligands, which connect the defining layers of two iron(II) ions. Isomer 1 has two crystallographically distinct [Ag(CN)2]- groups; one is essentially linear, while the other is severely distorted [C(5)-Ag(2)-C(5i)] = 138.8(5) degrees. This fact facilitates the parallel interpenetration of two layers, which in addition show short Ag(1)....Ag(2) interactions (distance Ag(1)....Ag(2) = 2.9972(10) angstroms). Isomer 2 shows only one type of Ag atom, which is slightly bent [C-Ag-C = 161.54(12) degrees], and as a consequence, the layers defined are not interpenetrated. In both cases, the axial positions are occupied by the pmd ligands which interact with the Ag atoms of adjacent layers defining a 3D coordination polymer. Compound 1 is high spin in the whole range of temperatures, while 2 undergoes a cooperative high-spin <--> low-spin effect centered at ca. 184 K with a hysteresis loop ca. 5 K wide. The experimental enthalpy and entropy variations were 11.5 +/- 0.4 kJ mol(-1) and 64 +/- 3 J K(-1) mol(-1). Consistency between the experimental thermodynamic data and the

  1. THE FERROELECTRIC AND STRUCTURAL PROPERTIES OF HAFNIUM OXIDE COMPOUNDS,

    DTIC Science & Technology

    HAFNIUM COMPOUNDS, OXIDES), (* FERROELECTRICITY , HAFNIUM COMPOUNDS), (*CRYSTAL STRUCTURE, HAFNIUM COMPOUNDS), DIELECTRIC PROPERTIES, HYSTERESIS... FERROELECTRIC MATERIALS, SOLID SOLUTIONS, X RAY DIFFRACTION, CRYSTAL LATTICES, LOW TEMPERATURE, CALCIUM COMPOUNDS, STRONTIUM COMPOUNDS, LEAD COMPOUNDS, BARIUM COMPOUNDS

  2. A calorimetric and spectroscopic comparison of the effects of cholesterol and its sulfur-containing analogs thiocholesterol and cholesterol sulfate on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes.

    PubMed

    Benesch, Matthew G K; Lewis, Ruthven N A H; McElhaney, Ronald N

    2016-02-01

    We performed differential scanning calorimetric (DSC) and Fourier transform infrared (FTIR) spectroscopic studies of the effects of cholesterol (Chol), thiocholesterol (tChol) and cholesterol sulfate (CholS) on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine (DPPC) bilayer membranes. Our DSC results indicate that Chol and tChol incorporation produce small temperature increases in the main phase transition broad component while CholS markedly decreases it, but Chol decreases cooperativity and enthalpy more strongly than CholS and especially tChol. Hence, Chol and tChol thermally stabilize fluid DPPC bilayer sterol-rich domains while CholS markedly destabilizes them, and CholS and particularly tChol are less miscible in such domains. Our FTIR spectroscopic results indicate that Chol incorporation increases the rotational conformational order of fluid DPPC bilayers to a slightly and somewhat greater degree than tChol and CholS, respectively, consistent with our DSC findings. Also, Chol and CholS produce comparable degrees of H-bonding (hydration) of the DPPC ester carbonyls in fluid bilayers, whereas tChol increases H-bonding. At low temperatures, Chol is fully soluble in gel-state DPPC bilayers, whereas tChol and CholS are not. Thus tChol and CholS incorporation can produce considerably different effects on DPPC bilayers. In particular, the tChol thiol group markedly reduces its lateral miscibility and increases DPPC carbonyl H-bonding without significantly affecting the other characteristic effects of Chol itself, while the CholS sulfate group significantly reduces its ability to thermally stabilize and order fluid DPPC membranes. This latter result suggests that the molecular basis for the purported ability of CholS to "stabilize" various biological membranes should be re-examined.

  3. Detection of chlorinated aromatic compounds

    DOEpatents

    Ekechukwu, Amy A.

    1996-01-01

    A method for making a composition for measuring the concentration of chloated aromatic compounds in aqueous fluids, and an optical probe for use with the method. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis.

  4. Detection of chlorinated aromatic compounds

    DOEpatents

    Ekechukwu, A.A.

    1996-02-06

    A method for making a composition for measuring the concentration of chlorinated aromatic compounds in aqueous fluids, and an optical probe for use with the method are disclosed. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis. 5 figs.

  5. MECHANICAL BEHAVIOR OF INTERMETALLIC COMPOUNDS.

    DTIC Science & Technology

    AGING(MATERIALS), AGING(MATERIALS), INTERMETALLIC COMPOUNDS, VANADIUM ALLOYS, COBALT ALLOYS, NICKEL ALLOYS, MECHANICAL PROPERTIES, TEMPERATURE, TIME ... CRYSTAL STRUCTURE, MICROSTRUCTURE, HARDNESS, TRANSFORMATIONS, ELECTRICAL RESISTANCE, MEASUREMENT, MICROSCOPY, ALLOYS, METALLOGRAPHY, X RAY DIFFRACTION.

  6. Compound cueing in free recall

    PubMed Central

    Lohnas, Lynn J.; Kahana, Michael J.

    2013-01-01

    According to the retrieved context theory of episodic memory, the cue for recall of an item is a weighted sum of recently activated cognitive states, including previously recalled and studied items as well as their associations. We show that this theory predicts there should be compound cueing in free recall. Specifically, the temporal contiguity effect should be greater when the two most recently recalled items were studied in contiguous list positions. A meta-analysis of published free recall experiments demonstrates evidence for compound cueing in both conditional response probabilities and inter-response times. To help rule out a rehearsal-based account of these compound cueing effects, we conducted an experiment with immediate, delayed and continual-distractor free recall conditions. Consistent with retrieved context theory but not with a rehearsal-based account, compound cueing was present in all conditions, and was not significantly influenced by the presence of interitem distractors. PMID:23957364

  7. Phenolic compounds in Brassica vegetables.

    PubMed

    Cartea, María Elena; Francisco, Marta; Soengas, Pilar; Velasco, Pablo

    2010-12-30

    Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.

  8. Crystallographic properties of fertilizer compounds

    SciTech Connect

    Frazier, A.W.; Dillard, E.F.; Thrasher, R.D.; Waerstad, K.R.; Hunter, S.R.; Kohler, J.J.; Scheib, R.M.

    1991-02-01

    This bulletin is a compilation of crystallographic data collected at NFERC on 450 fertilizer-related compounds. In TVA's fertilizer R and D program, petrographic examination, XRD, and infrared spectroscopy are combined with conventional chemical analysis methods in identifying the individual compounds that occur in fertilizer materials. This handbook brings together the results of these characterization studies and supplemental crystallographic data from the literature. It is in one-compound-per-page, loose-leaf format, ordered alphabetically by IUPAC name. Indexes provided include IUPAC name, formula, group, alternate formula, synonyms, x-ray data, optical data. Tables are given for solids, compounds in commercial MAP and DAP, and matrix materials in phosphate rock.

  9. Polishing compound for plastic surfaces

    DOEpatents

    Stowell, M.S.

    1991-01-01

    This invention is comprised of a polishing compound for plastic materials. The compound includes approximately by approximately by weight 25 to 80 parts at least one petroleum distillate lubricant, 1 to 12 parts mineral spirits, 50 to 155 parts abrasive paste, and 15 to 60 parts water. Preferably, the compound includes approximately 37 to 42 parts at least one petroleum distillate lubricant, up to 8 parts mineral spirits, 95 to 110 parts abrasive paste, and 50 to 55 parts water. The proportions of the ingredients are varied in accordance with the particular application. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC), and similar plastic materials whenever a smooth, clear polished surface is desired.

  10. Photochemical dimerization of organic compounds

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.; Muedas, Cesar A.; Ferguson, Richard R.

    1992-01-01

    At least one of selectivity and reaction rate of photosensitized vapor phase dimerizations, including dehydrodimerizations, hydrodimerizations and cross-dimerizations of saturated and unsaturated organic compounds is improved by conducting the dimerization in the presence of hydrogen or nitrous oxide.

  11. Fourth symposium on macrocyclic compounds

    SciTech Connect

    Christensen, J. J.; Izatt, R. M.

    1980-01-01

    Both theoretical and experimental aspects of the properties and behavior of synthetic and naturally occurring macrocyclic compounds are covered in this symposium. This document contains abstracts of the papers. (DLC)

  12. Two compounds from Peucedanum dissolutum.

    PubMed

    Wu, Xian-Li; Li, Yi; Kong, Ling-Yi; Min, Zhi-Da

    2004-12-01

    A new compound, 3'(R)-O-beta-D-glucopyranosyl-3',4'-dihydroxanthyletin (1), and a known compound, prim-O-glucosylcimifugin (2), were isolated from the roots of Peucedanum dissolutum. The structure of 1 was elucidated by spectral evidence and chemical reaction. The NMR signals of carbons and protons of 2 were assigned for the first time by analysis of (1)H-(1)H COSY, HMQC and HMBC spectra.

  13. The Multilinear Compound Gaussian Distribution

    DTIC Science & Technology

    2012-05-01

    which we call the Multilinear Compound Gaussian (MCG) distribution, subsumes both GSM [1] and the previously developed MICA [3-4] distributions as...modeling various natural phenomena of interest. Index Terms— GSM, MICA , MCG, Bayesian, Nonlinear I. INTRODUCTION The compound Gaussian (CG) model—also...We will see how the MCG model developed subsumes both CG and the previously developed multilinear ICA ( MICA ) distribution [3-4] as complementary

  14. Aza compounds as anion receptors

    DOEpatents

    Lee, Hung Sui; Yang, Xiao-Qing; McBreen, James

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li.sup.+ ion in alkali metal batteries.

  15. Aza compounds as anion receptors

    DOEpatents

    Lee, H.S.; Yang, X.Q.; McBreen, J.

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li{sup +} ion in alkali metal batteries. 3 figs.

  16. Miniature curved artificial compound eyes

    PubMed Central

    Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L’Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A.; Franceschini, Nicolas

    2013-01-01

    In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories. PMID:23690574

  17. Miniature curved artificial compound eyes.

    PubMed

    Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L'Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A; Franceschini, Nicolas

    2013-06-04

    In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories.

  18. Bioaccessibility testing of cobalt compounds.

    PubMed

    Stopford, Woodhall; Turner, John; Cappellini, Danielle; Brock, Tom

    2003-08-01

    Testing of metal compounds for solubility in artificial fluids has been used for many years to assist determining human health risk from exposure to specific compounds of concern. In lieu of obtaining bioavailability data from samples of urine, blood, or other tissues, these studies measured solubility of compounds in various artificial fluids as a surrogate for bioavailability. In this context, the measurement of metal "bioaccessibility" can be used as an in vitro substitute for measuring metal bioavailability. Bioaccessibility can be defined as a value representing the availability of metal for absorption when dissolved in in vitro surrogates of body fluids or juices. The aim of this study was to measure and compare the bioaccessibility of selected cobalt compounds in artificial human tissue fluids and human serum. A second aim was to initiate studies to experimentally validate an in vitro methodology that would provide a conservative estimate of cobalt bioavailability in the assessment of dose from human exposure to various species of cobalt compounds. This study evaluated the bioaccessibility of cobalt(II) from 11 selected cobalt compounds and an alloy in 2 physical forms in 5 surrogate human tissue fluids and human serum. Four (4) separate extraction times were used up to 72 hours. The effect of variables such as pH, dissolution time, and mass-ion effect on cobalt bioaccessibility were assessed as well. We found that the species of cobalt compound as well as the physico-chemical properties of the surrogate fluids, especially pH, had a major impact on cobalt solubility. Cobalt salts such as cobalt(II) sulfate heptahydrate were highly soluble, whereas cobalt alloys used in medical implants and cobalt aluminate spinels used as pigments, showed minimal dissolution over the period of the assay.

  19. Electrical properties and conduction mechanism of [N(C2H5)4][N(CH3)4]CuCl4 compound

    NASA Astrophysics Data System (ADS)

    Drissi, N.; Karoui, K.; Jomni, F.; Rhaiem, A. Ben

    2016-09-01

    The [N(CH3)4][N(C2H5)4]CuCl4 single crystal has been synthetized in order to determinate the temperatures transition and to study the electrical properties and the conduction mechanism. At room temperature, this compound crystallizes in the tetragonal system with P-421m space group. The calorimetric study shows three anomalies at 248, 284 and 326 K. Electrical conduction and dielectrical relaxation mechanisms at various frequencies and temperatures were analyzed by impedance spectroscopy and the equivalent circuit based on the Z-View-software was proposed. The variation of fp relaxation determinate by the modulus study and σdc specific to the AC conductivity as a function of temperature and confirm the all transitions for our sample. The values of the activation energy are determined and compared by those, which are found in the similar compound. Frequencies dependence of alternative current (AC) conductivity is interpreted in terms of Jonscher's law and the conduction mechanisms for each phase are determined with the Elliot's theory.

  20. Host compounds for red phosphorescent OLEDs

    DOEpatents

    Xia, Chuanjun; Cheon, Kwang -Ohk

    2015-08-25

    Novel compounds containing a triphenylene moiety linked to an .alpha..beta. connected binaphthyl ring system are provided. These compounds have surprisingly good solubility in organic solvents and are useful as host compounds in red phosphorescent OLEDs.

  1. Method for purifying bidentate organophosphorus compounds

    DOEpatents

    Schulz, Wallace W.

    1977-01-01

    Bidentate organophosphorus compounds useful for extracting actinide elements from acidic nuclear waste solutions are purified of undesirable acidic impurities by contacting the compounds with ethylene glycol which preferentially extracts the impurities found in technical grade bidentate compounds.

  2. Cytotoxic Compounds from Brucea mollis

    PubMed Central

    Tung, Mai Hung Thanh; Đuc, Ho Viet; Huong, Tran Thu; Duong, Nguyen Thanh; Phuong, Do Thi; Thao, Do Thi; Tai, Bui Huu; Kim, Young Ho; Bach, Tran The; Cuong, Nguyen Manh

    2013-01-01

    Ten compounds, including soulameanone (1), isobruceine B (2), 9-methoxy-canthin-6-one (3), bruceolline F (4), niloticine (5), octatriacontan-1-ol (6), bombiprenone (7), α-tocopherol (8), inosine (9), and apigenin 7-O-β-D-glucopyranoside (10), were isolated from the leaves, stems, and roots of Brucea mollis Wall. ex Kurz. Their structures were determined using one-and two-dimensional NMR spectroscopy and mass spectrometry. All compounds were evaluated for their cytotoxic activity against KB (human carcinoma of the mouth), LU-1 (human lung adenocarcinoma), LNCaP (human prostate adeno-carcinoma), and HL-60 (human promyelocytic leukemia) cancer cell lines. Compound 2 showed significant cytotoxic activity against KB, LU-1, LNCaP, and HL-60 cancer cells with IC50 values of 0.39, 0.40, 0.34, and 0.23 μg/mL, respectively. In addition, compounds 3 and 5 showed significant cytotoxic activity against KB, LU-1, LNCaP, and HL-60 cancer cells with IC50 values around 1–4 μg/mL. Compounds 9-methoxycanthin-6-one (3) and niloticine (5) have been discovered for the first time from the Brucea genus. PMID:24106661

  3. Extraterrestrial Organic Compounds in Meteorites

    NASA Technical Reports Server (NTRS)

    Botta, Oliver; Bada, Jeffrey L.; Meyer, Michael (Technical Monitor)

    2003-01-01

    Many organic compounds or their precursors found in meteorites originated in the interstellar or circumstellar medium and were later incorporated into planetesimals during the formation of the solar system. There they either survived intact or underwent further processing to synthesize secondary products on the meteorite parent body. The most distinct feature of CI and CM carbonaceous chondrites, two types of stony meteorites, is their high carbon content (up to 3% of weight), either in the form of carbonates or of organic compounds. The bulk of the organic carbon consists of an insoluble macromolecular material with a complex structure. Also present is a soluble organic fraction, which has been analyzed by several separation and analytical procedures. Low detection limits can be achieved by derivatization of the organic molecules with reagents that allow for analysis by gas chromatography/mass spectroscopy and high performance liquid chromatography. The CM meteorite Murchison has been found to contain more than 70 extraterrestrial amino acids and several other classes of compounds including carboxylic acids, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar hydrocarbons, fullerenes, heterocycles as well as carbonyl compounds, alcohols, amines and amides. The organic matter was found to be enriched in deuterium, and distinct organic compounds show isotopic enrichments of carbon and nitrogen relative to terrestrial matter.

  4. Volatile compounds from Melicope obscura.

    PubMed

    Smadja, Jacqueline; Strasberg, Dominique; Legoff, Géraldine; Gauvin-Bialecki, Anne

    2010-02-01

    To evaluate the interpopulation variability of volatile compounds in Melicope obscura, four samples representing four populations were collected all over the distribution area of the species in Reunion Island (Indian Ocean). The samples were extracted by hydrodistillation, and analyzed using GC/FID and GC/MS techniques. The study revealed that, in the four essential oils obtained, oxygenated sesquiterpenes were one of the major chemical classes (9.2-35.2%), mainly consisting of a new compound, (+)-6-ethenyl-2-hydroxy-6,10-dimethylundeca-2,9-dien-4-one (1), called melicopenol (8.6-30.1%). The compound was isolated by column chromatography and identified by spectral analyses including 1D- and 2D-NMR.

  5. Gallium-containing anticancer compounds.

    PubMed

    Chitambar, Christopher R

    2012-06-01

    There is an ever pressing need to develop new drugs for the treatment of cancer. Gallium nitrate, a group IIIa metal salt, inhibits the proliferation of tumor cells in vitro and in vivo and has shown activity against non-Hodgkin's lymphoma and bladder cancer in clinical trials. Gallium can function as an iron mimetic and perturb iron-dependent proliferation and other iron-related processes in tumor cells. Gallium nitrate lacks crossresistance with conventional chemotherapeutic drugs and is not myelosuppressive; it can be used when other drugs have failed or when the blood count is low. Given the therapeutic potential of gallium, newer generations of gallium compounds are now in various phases of preclinical and clinical development. These compounds hold the promise of greater anti-tumor activity against a broader spectrum of cancers. The development of gallium compounds for cancer treatment and their mechanisms of action will be discussed.

  6. Antitumor Compounds from Marine Actinomycetes

    PubMed Central

    Olano, Carlos; Méndez, Carmen; Salas, José A.

    2009-01-01

    Chemotherapy is one of the main treatments used to combat cancer. A great number of antitumor compounds are natural products or their derivatives, mainly produced by microorganisms. In particular, actinomycetes are the producers of a large number of natural products with different biological activities, including antitumor properties. These antitumor compounds belong to several structural classes such as anthracyclines, enediynes, indolocarbazoles, isoprenoides, macrolides, non-ribosomal peptides and others, and they exert antitumor activity by inducing apoptosis through DNA cleavage mediated by topoisomerase I or II inhibition, mitochondria permeabilization, inhibition of key enzymes involved in signal transduction like proteases, or cellular metabolism and in some cases by inhibiting tumor-induced angiogenesis. Marine organisms have attracted special attention in the last years for their ability to produce interesting pharmacological lead compounds. PMID:19597582

  7. Biodegradation of halogenated organic compounds.

    PubMed Central

    Chaudhry, G R; Chapalamadugu, S

    1991-01-01

    In this review we discuss the degradation of chlorinated hydrocarbons by microorganisms, emphasizing the physiological, biochemical, and genetic basis of the biodegradation of aliphatic, aromatic, and polycyclic compounds. Many environmentally important xenobiotics are halogenated, especially chlorinated. These compounds are manufactured and used as pesticides, plasticizers, paint and printing-ink components, adhesives, flame retardants, hydraulic and heat transfer fluids, refrigerants, solvents, additives for cutting oils, and textile auxiliaries. The hazardous chemicals enter the environment through production, commercial application, and waste. As a result of bioaccumulation in the food chain and groundwater contamination, they pose public health problems because many of them are toxic, mutagenic, or carcinogenic. Although synthetic chemicals are usually recalcitrant to biodegradation, microorganisms have evolved an extensive range of enzymes, pathways, and control mechanisms that are responsible for catabolism of a wide variety of such compounds. Thus, such biological degradation can be exploited to alleviate environmental pollution problems. The pathways by which a given compound is degraded are determined by the physical, chemical, and microbiological aspects of a particular environment. By understanding the genetic basis of catabolism of xenobiotics, it is possible to improve the efficacy of naturally occurring microorganisms or construct new microorganisms capable of degrading pollutants in soil and aquatic environments more efficiently. Recently a number of genes whose enzyme products have a broader substrate specificity for the degradation of aromatic compounds have been cloned and attempts have been made to construct gene cassettes or synthetic operons comprising these degradative genes. Such gene cassettes or operons can be transferred into suitable microbial hosts for extending and custom designing the pathways for rapid degradation of recalcitrant

  8. Hydrophobic Compounds Reshape Membrane Domains

    PubMed Central

    Barnoud, Jonathan; Rossi, Giulia; Marrink, Siewert J.; Monticelli, Luca

    2014-01-01

    Cell membranes have a complex lateral organization featuring domains with distinct composition, also known as rafts, which play an essential role in cellular processes such as signal transduction and protein trafficking. In vivo, perturbations of membrane domains (e.g., by drugs or lipophilic compounds) have major effects on the activity of raft-associated proteins and on signaling pathways, but they are difficult to characterize because of the small size of the domains, typically below optical resolution. Model membranes, instead, can show macroscopic phase separation between liquid-ordered and liquid-disordered domains, and they are often used to investigate the driving forces of membrane lateral organization. Studies in model membranes have shown that some lipophilic compounds perturb membrane domains, but it is not clear which chemical and physical properties determine domain perturbation. The mechanisms of domain stabilization and destabilization are also unknown. Here we describe the effect of six simple hydrophobic compounds on the lateral organization of phase-separated model membranes consisting of saturated and unsaturated phospholipids and cholesterol. Using molecular simulations, we identify two groups of molecules with distinct behavior: aliphatic compounds promote lipid mixing by distributing at the interface between liquid-ordered and liquid-disordered domains; aromatic compounds, instead, stabilize phase separation by partitioning into liquid-disordered domains and excluding cholesterol from the disordered domains. We predict that relatively small concentrations of hydrophobic species can have a broad impact on domain stability in model systems, which suggests possible mechanisms of action for hydrophobic compounds in vivo. PMID:25299598

  9. Organosulfur compounds and cardiovascular disease.

    PubMed

    Vazquez-Prieto, Marcela A; Miatello, Roberto M

    2010-12-01

    Epidemiological studies have shown an inverse relationship between consumption of fruits and vegetables and the risk of cardiovascular disease. Phytochemicals are non-nutritional chemical compounds found in small quantities in fruits and vegetables with known health benefits. Among them, organosulfides are present mainly in garlic and onion characterized by their antioxidant and anti-inflammatory properties, and isothiocyanates in cruciferous vegetables have anticarcinogenic effects in experimental models. In this review, we are focusing on the main biological studies regarding the beneficial effect of organosulfur compounds on their protection against cardiovascular disease.

  10. Electronic Configuration of Yb Compounds

    SciTech Connect

    Temmerman, W.M.; Szotek, Z.; Svane, A.; Strange, P.; Winter, H.; Delin, A.; Johansson, B.; Eriksson, O.; Fast, L.; Wills, J.M.

    1999-11-01

    The total energy differences between divalent and trivalent configurations of Yb ions in a number of Yb compounds are studied. Two different band theoretical methods, which differ in the treatment of the localized f electrons, are used. The results show that in all Yb compounds the valence energy differences are equal to the energy needed to localize an f electron. These valence energy differences correlate with the number of f electrons hybridizing with the conduction bands in the trivalent configuration. For divalent YbS, the pressure induced f -electron delocalization implies an intermediate valency, as also indicated by experiment. {copyright} {ital 1999} {ital The American Physical Society }

  11. Basics of compounding with tars.

    PubMed

    Allen, Loyd V

    2013-01-01

    Tar has been used throughout history for numerous purposes; from sealing the hulls of ships to sealing roofs of dwellings and even for medical purposes. Produced by destructive distillation, commonly used tars are prepared from coal and wood. Coal tar, juniper tar, and pine tar are used for various medical purposes as described in the article. Also presented are the various characteristics and uses of each tar, along with commercial products and numerous compounding formulas. Techniques used to compound with tars are also presented.

  12. Halogenated Compounds from Marine Algae

    PubMed Central

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-01-01

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds. PMID:20948909

  13. Pentafluorosulfur Compounds for Naval Materials.

    DTIC Science & Technology

    1982-01-01

    Compounds The sulfamide , (t-BuNH) 2S02 , turned out to be a rich source of novel sulfur- nitrogen heterocycles. For example, treatment of (t-BuNH) 2 so2 with...planar and tetrahedral, and (b) the sulfamide adopts an anti(C2 ) conformation rather than the cis(Cs) conformation presumably due to minimization of

  14. Infrared Spectroscopy of Deuterated Compounds.

    ERIC Educational Resources Information Center

    MacCarthy, Patrick

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment (based on the potassium bromide pressed-pellet method) involving the infrared spectroscopy of deuterated compounds. Deuteration refers to deuterium-hydrogen exchange at active hydrogen sites in the molecule. (JN)

  15. Compound Cuing in Free Recall

    ERIC Educational Resources Information Center

    Lohnas, Lynn J.; Kahana, Michael J.

    2014-01-01

    According to the retrieved context theory of episodic memory, the cue for recall of an item is a weighted sum of recently activated cognitive states, including previously recalled and studied items as well as their associations. We show that this theory predicts there should be compound cuing in free recall. Specifically, the temporal contiguity…

  16. Cerium Oxide and Cerium Compounds

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 08 / 002F www.epa.gov / iris TOXICOLOGICAL REVIEW OF Cerium Oxide and Cerium Compounds ( CAS No . 1306 - 38 - 3 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) September 2009 U.S . Environmental Protection Agency Washington , DC ii DISCLAIMER Th

  17. Polymeric nanocomposites: compounding and performance.

    PubMed

    Utracki, L A

    2008-04-01

    Polymeric nanocomposites (PNC) are binary mixtures of strongly interacting, inorganic platelets dispersed in a polymeric matrix. For full exfoliation, the thermodynamic miscibility is required. There are three basic methods of organically-modified clay dispersion that might result in PNC: (1) in polymer solution (followed by solvent removal), (2) in a monomer (followed by polymerization), and (3) in molten polymer (compounding). Most commercial PNC are produced by the second method, but it is the third one that has the greatest promise for the plastics industry. Similarly as during the manufacture of polymer blends, the layered silicates must be compatibilized by intercalation with organic salts and/or addition of functionalized macromolecules. Compounding affects the kinetics of dispersion process, but rarely the miscibility. Melt compounding is carried out either in a single-screw (SSE) or a twin-screw extruder (TSE). Furthermore, an extensional flow mixer (EFM) might be attached to an extruder. Two versions of EFM were evaluated: (1) designed for polymer homogenization and blending, and (2) designed for dispersing nano-particles. In this review, the dispersion of organoclay in polystyrene (PS), polyamide-6 (PA-6) or in polypropylene (PP) is discussed. The PNC based on PS or PA-6 contained two components (polymer and organoclay), whereas those based on PP in addition had a compatibilizer mixture of two maleated polypropylenes. Better dispersion was found compounding PNC's in a SSE + EFM than in TSE with or without EFM. The mechanical performance (tensile, flexural and impact) was examined.

  18. Students' Categorizations of Organic Compounds

    ERIC Educational Resources Information Center

    Domin, Daniel S.; Al-Masum, Mohammad; Mensah, John

    2008-01-01

    Categorization is a fundamental psychological ability necessary for problem solving and many other higher-level cognitive tasks. In organic chemistry, students must establish groupings of different chemical compounds in order not only to solve problems, but also to understand course content. Classic models of categorization emphasize similarity as…

  19. Halogenated compounds from marine algae.

    PubMed

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-08-09

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds.

  20. Making Models of Chemical Compounds.

    ERIC Educational Resources Information Center

    Hoehn, Robert G.

    1992-01-01

    Describes the benefits and techniques of having students create models of chemical compounds. This hands-on approach uses colored paper and other inexpensive materials to construct the models. A step-by-step approach provides objectives, materials, an explanation on how to calculate chemical ratios, procedures, follow-up activities, and a resource…

  1. Compounding errors in 2 dogs receiving anticonvulsants.

    PubMed

    McConkey, Sandra E; Walker, Susan; Adams, Cathy

    2012-04-01

    Two cases that involve drug compounding errors are described. One dog exhibited increased seizure activity due to a compounded, flavored phenobarbital solution that deteriorated before the expiration date provided by the compounder. The other dog developed clinical signs of hyperkalemia and bromine toxicity following a 5-fold compounding error in the concentration of potassium bromide (KBr).

  2. Large Constituent Families Help Children Parse Compounds

    ERIC Educational Resources Information Center

    Krott, Andrea; Nicoladis, Elena

    2005-01-01

    The family size of the constituents of compound words, or the number of compounds sharing the constituents, has been shown to affect adults' access to compound words in the mental lexicon. The present study was designed to see if family size would affect children's segmentation of compounds. Twenty-five English-speaking children between 3;7 and…

  3. Calorimetric measurement of energy of ultrasonic cleaners

    SciTech Connect

    Harding, W.B.

    1994-11-01

    The development of a calorimeter that measured the power within an ultrasonic cleaning tank is presented. The principle involved is explained. Several types of calorimeter that were tested are described. Measurement of the power in an ultrasonic cleaner permits: (1) comparing different ultrasonic cleaners; (2) monitoring the performance of a specific cleaner; (3) measuring the distribution of power in a cleaning tank, and (4) evaluating the effects of process variables on the power.

  4. The work of walking: a calorimetric study.

    PubMed

    Webb, P; Saris, W H; Schoffelen, P F; Van Ingen Schenau, G J; Ten Hoor, F

    1988-08-01

    Experiments were designed to test the traditional assumption that during level walking all of the energy from oxidation of fuel appears as heat and no work is done. Work is force expressed through distance, or energy transferred from a man to the environment, but not as heat. While wearing a suit calorimeter in a respiration chamber, five women and five men walked for 70 to 90 min on a level treadmill at 2.5, 4.6, and 6.7 km.h-1 and pedalled a cycle ergometer for 70 to 90 min against 53 and 92 W loads. They also walked with a weighted backpack and against a horizontal load. During cycling, energy from fuel matched heat loss plus the power measured by the ergometer. During walking, however, energy from fuel exceeded that which appeared as heat, meaning that work was done. The power increased with walking speed; values were 14, 29, and 63 W, which represented 11, 12, and 13% of the incremental cost of fuel above the resting level. Vertical and horizontal loads increased the fuel cost and heat loss of walking but did not alter the power output. This work energy did not re-appear as thermal energy during 18 h of recovery. The most likely explanation of the work done is in the inter-action between the foot and the ground, such as compressing the heel of the shoe and bending the sole. We conclude that work is done in level walking.

  5. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  6. Superconductivity in graphite intercalation compounds

    DOE PAGES

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; ...

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less

  7. Superconductivity in graphite intercalation compounds

    SciTech Connect

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  8. Bacterial Degradation of Aromatic Compounds

    PubMed Central

    Seo, Jong-Su; Keum, Young-Soo; Li, Qing X.

    2009-01-01

    Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms. PMID:19440284

  9. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1994-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  10. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-09-07

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 figures.

  11. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.

    1989-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  12. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  13. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1994-06-14

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  14. Clinical pharmacology of antifungal compounds.

    PubMed

    Groll, Andreas H; Gea-Banacloche, Juan C; Glasmacher, Axel; Just-Nuebling, Gudrun; Maschmeyer, Georg; Walsh, Thomas J

    2003-03-01

    Prompted by the worldwide surge in fungal infections, the past decade has witnessed a considerable expansion in antifungal drug research. New compounds have entered the clinical arena, and major progress has been made in defining paradigms of antifungal therapies. This article provides an up-to-date review on the clinical pharmacology, indications, and dosage recommendations of approved and currently investigational therapeutics for treatment of invasive fungal infections in adult and pediatric patients.

  15. Compound semiconductor optical waveguide switch

    DOEpatents

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  16. Quantitative analysis of endogenous compounds.

    PubMed

    Thakare, Rhishikesh; Chhonker, Yashpal S; Gautam, Nagsen; Alamoudi, Jawaher Abdullah; Alnouti, Yazen

    2016-09-05

    Accurate quantitative analysis of endogenous analytes is essential for several clinical and non-clinical applications. LC-MS/MS is the technique of choice for quantitative analyses. Absolute quantification by LC/MS requires preparing standard curves in the same matrix as the study samples so that the matrix effect and the extraction efficiency for analytes are the same in both the standard and study samples. However, by definition, analyte-free biological matrices do not exist for endogenous compounds. To address the lack of blank matrices for the quantification of endogenous compounds by LC-MS/MS, four approaches are used including the standard addition, the background subtraction, the surrogate matrix, and the surrogate analyte methods. This review article presents an overview these approaches, cite and summarize their applications, and compare their advantages and disadvantages. In addition, we discuss in details, validation requirements and compatibility with FDA guidelines to ensure method reliability in quantifying endogenous compounds. The standard addition, background subtraction, and the surrogate analyte approaches allow the use of the same matrix for the calibration curve as the one to be analyzed in the test samples. However, in the surrogate matrix approach, various matrices such as artificial, stripped, and neat matrices are used as surrogate matrices for the actual matrix of study samples. For the surrogate analyte approach, it is required to demonstrate similarity in matrix effect and recovery between surrogate and authentic endogenous analytes. Similarly, for the surrogate matrix approach, it is required to demonstrate similar matrix effect and extraction recovery in both the surrogate and original matrices. All these methods represent indirect approaches to quantify endogenous compounds and regardless of what approach is followed, it has to be shown that none of the validation criteria have been compromised due to the indirect analyses.

  17. Natural Compounds Modulating Mitochondrial Functions

    PubMed Central

    Gibellini, Lara; Bianchini, Elena; De Biasi, Sara; Nasi, Milena; Cossarizza, Andrea; Pinti, Marcello

    2015-01-01

    Mitochondria are organelles responsible for several crucial cell functions, including respiration, oxidative phosphorylation, and regulation of apoptosis; they are also the main intracellular source of reactive oxygen species (ROS). In the last years, a particular interest has been devoted to studying the effects on mitochondria of natural compounds of vegetal origin, quercetin (Qu), resveratrol (RSV), and curcumin (Cur) being the most studied molecules. All these natural compounds modulate mitochondrial functions by inhibiting organelle enzymes or metabolic pathways (such as oxidative phosphorylation), by altering the production of mitochondrial ROS and by modulating the activity of transcription factors which regulate the expression of mitochondrial proteins. While Qu displays both pro- and antioxidant activities, RSV and Cur are strong antioxidant, as they efficiently scavenge mitochondrial ROS and upregulate antioxidant transcriptional programmes in cells. All the three compounds display a proapoptotic activity, mediated by the capability to directly cause the release of cytochrome c from mitochondria or indirectly by upregulating the expression of proapoptotic proteins of Bcl-2 family and downregulating antiapoptotic proteins. Interestingly, these effects are particularly evident on proliferating cancer cells and can have important therapeutic implications. PMID:26167193

  18. Butyltin compounds in Portuguese wines.

    PubMed

    Azenha, Manuel; Vasconcelos, Maria Teresa

    2002-04-24

    Butyltin compounds are widespread contaminants that have also been found in some wines. The purpose of the present work was to make a survey of butyltin compounds in Portuguese wines. Forty-three table wines and 14 Port wines were analyzed for butyltin contents by using solid-phase microextraction gas chromatography mass spectrometry (SPME-GC-MS). In 14% of the analyzed wine samples, measurable dibutyltin (DBT) was found at concentrations ranging between 0.05 and 0.15 microg/L as Sn. Monobutyltin (MBT) was also observed (0.05 microg/L as Sn) in just a single wine. A search for the possible sources of DBT residues found in the wines was carried out. Therefore, some plastics and oak wood used in the process of wine-making, which have been directly in contact with the musts or the wines, were studied to check their possible release of butyltins. The eventual presence of DBT was also tested directly along the vinification process, from the must to the finished product. The results suggest that high-density polyethylene containers used in the transfer of wine in an early stage of the vinification process may be the main sources of these contaminants. Therefore, it is recommendable that plastic materials to be used in wineries be previously tested for the release of butyltin compounds.

  19. Compound facial expressions of emotion

    PubMed Central

    Du, Shichuan; Tao, Yong; Martinez, Aleix M.

    2014-01-01

    Understanding the different categories of facial expressions of emotion regularly used by us is essential to gain insights into human cognition and affect as well as for the design of computational models and perceptual interfaces. Past research on facial expressions of emotion has focused on the study of six basic categories—happiness, surprise, anger, sadness, fear, and disgust. However, many more facial expressions of emotion exist and are used regularly by humans. This paper describes an important group of expressions, which we call compound emotion categories. Compound emotions are those that can be constructed by combining basic component categories to create new ones. For instance, happily surprised and angrily surprised are two distinct compound emotion categories. The present work defines 21 distinct emotion categories. Sample images of their facial expressions were collected from 230 human subjects. A Facial Action Coding System analysis shows the production of these 21 categories is different but consistent with the subordinate categories they represent (e.g., a happily surprised expression combines muscle movements observed in happiness and surprised). We show that these differences are sufficient to distinguish between the 21 defined categories. We then use a computational model of face perception to demonstrate that most of these categories are also visually discriminable from one another. PMID:24706770

  20. Neuroprotective compounds of Tilia amurensis

    PubMed Central

    Lee, Bohyung; Weon, Jin Bae; Eom, Min Rye; Jung, Youn Sik; Ma, Choong Je

    2015-01-01

    Background: Tilia amurensis (Tiliacese) has been used for anti-tumor and anti-inflammatory in Korea, China, and Japan. Objective: In this study, we isolated five compounds from T. amurensis and determined whether protected neuronal cells against glutamate-induced oxidative stress in HT22 cells. Materials and Methods: Compounds were isolated using chromatographic techniques including silica gel, Sephadex LH-20 open column and high performance liquid chromatography analysis, and evaluated neuroprotective effect in HT22 cells by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Results: β-D-fructofuranosyl α-D-glucopyranoside (1), (-)-epicatechin (2), nudiposide (3), lyoniside (4), and scopoletin (5) were isolated by bioactivity-guided fractionation from the ethyl acetate fraction of T. amurensis. Among them, (-)-epicatechin, nudiposide, lyoniside, and scopoletin had significant neuroprotective activities against glutamate-injured neurotoxicity in HT22 cells. Conclusion: These results demonstrated that compound two, three, four, and five have a pronounced protective effect against glutamate-induced neurotoxicity in HT22 cells. PMID:26664019

  1. Technology Roadmaps for Compound Semiconductors

    PubMed Central

    Bennett, Herbert S.

    2000-01-01

    The roles cited for compound semiconductors in public versions of existing technology roadmaps from the National Electronics Manufacturing Initiative, Inc., Optoelectronics Industry Development Association, Microelectronics Advanced Research Initiative on Optoelectronic Interconnects, and Optoelectronics Industry and Technology Development Association (OITDA) are discussed and compared within the context of trends in the Si CMOS industry. In particular, the extent to which these technology roadmaps treat compound semiconductors at the materials processing and device levels will be presented for specific applications. For example, OITDA’s Optical Communications Technology Roadmap directly connects the information demand of delivering 100 Mbit/s to the home to the requirement of producing 200 GHz heterojunction bipolar transistors with 30 nm bases and InP high electron mobility transistors with 100 nm gates. Some general actions for progress towards the proposed International Technology Roadmap for Compound Semiconductors (ITRCS) and methods for determining the value of an ITRCS will be suggested. But, in the final analysis, the value added by an ITRCS will depend on how industry leaders respond. The technical challenges and economic opportunities of delivering high quality digital video to consumers provide concrete examples of where the above actions and methods could be applied. PMID:27551615

  2. Molybdenum compounds in organic synthesis

    NASA Astrophysics Data System (ADS)

    Khusnutdinov, R. I.; Oshnyakova, T. M.; Dzhemilev, U. M.

    2017-02-01

    The review presents the first analysis and systematic discussion of data published in the last 35–40 years on the use of molybdenum compounds and complexes in organic synthesis and catalysis of various ion coordination and radical reactions. Detailed account is given of the key trends in the use of molybdenum complexes as catalysts of alkene epoxidation and oxyketonation, oxidation of sulfur, nitrogen and phosphorus compounds, hydrosilylation of 1,3-dienes, ketones and aldehydes, hydrostannylation of acetylenes and hydrogermylation of norbornadienes. Considerable attention is paid to the description of new reactions and in situ generation of highly reactive hypohalites, ROX and HOX, induced by molybdenum complexes and the use of hypohalites in oxidative transformations. Data on the application of molybdenum complexes in well-known reactions are discussed, including Kharasch and Pauson–Khand reactions, allylic alkylation of C-nucleophiles, aminocarbonylation of halo derivatives and oligomerization of cyclic dienes, trienes, alkynes and 1,3-dienes. The last Section of the review considers 'unusual' organic reactions involving molybdenum compounds and complexes. The bibliography includes 257 references.

  3. Compounding USP <797>: inspection, regulation, and oversight of sterile compounding pharmacies.

    PubMed

    Kastango, Eric S

    2012-03-01

    Using USP Chapter <797> Pharmaceutical Compounding-Sterile Preparations (CSP) is now considered the standard for sterile compounding practice and safety in the United States. This is particularly important in compounding the complex formulation of parenteral nutrition.

  4. Volatile flavor compounds in yogurt: a review.

    PubMed

    Cheng, Hefa

    2010-11-01

    Considerable knowledge has been accumulated on the volatile compounds contributing to the aroma and flavor of yogurt. This review outlines the production of the major flavor compounds in yogurt fermentation and the analysis techniques, both instrumental and sensory, for quantifying the volatile compounds in yogurt. The volatile compounds that have been identified in plain yogurt are summarized, with the few key aroma compounds described in detail. Most flavor compounds in yogurt are produced from lipolysis of milkfat and microbiological transformations of lactose and citrate. More than 100 volatiles, including carbonyl compounds, alcohols, acids, esters, hydrocarbons, aromatic compounds, sulfur-containing compounds, and heterocyclic compounds, are found in yogurt at low to trace concentrations. Besides lactic acid, acetaldehyde, diacetyl, acetoin, acetone, and 2-butanone contribute most to the typical aroma and flavor of yogurt. Extended storage of yogurt causes off-flavor development, which is mainly attributed to the production of undesired aldehydes and fatty acids during lipid oxidation. Further work on studying the volatile flavor compounds-matrix interactions, flavor release mechanisms, and the synergistic effect of flavor compounds, and on correlating the sensory properties of yogurt with the compositions of volatile flavor compounds are needed to fully elucidate yogurt aroma and flavor.

  5. Spectroscopic and calorimetric investigation of short and intermediate-range structures and energetics of amorphous SiCO, SiCN, and SiBCN polymer-derived ceramics

    NASA Astrophysics Data System (ADS)

    Widgeon, Scarlett J.

    Polymer-derived ceramics (PDCs) are a new class of amorphous ceramics in the Si-B-C-N system that are synthesized by the pyrolysis of silicon-based organic polymers. PDCs are lightweight and are resistant to creep, crystallization, and oxidation at temperatures near 1800 K making them ideal for a variety of high temperature applications. In spite of being X-ray amorphous, these materials display structural heterogeneity at the nanometer length scale. Their structure and resulting properties can be drastically altered by the utilization of preceramic polymers with differing chemistry and architectures. Fundamental understanding of the atomic structure is critical in deciphering the structure-property relationships and ultimately in controlling their properties for specific engineering applications. The short-range atomic structure has been extensively investigated using a variety of techniques, however, the structures at length scales beyond next-nearest neighbors remained highly controversial. Here we report the results of a spectroscopic and calorimetric study of short and intermediate -range structure and energetic of SiOC and SiBCN PDCs derived from a wide variety of precursors. SiOC PDCs with different carbon contents were synthesized from polysiloxane precurors and their structures were studied using high-resolution 13C and 29Si nuclear magnetic resonance (NMR) spectroscopy. The results suggest that these PDCs consists of a continuous mass fractal backbone of corner-shared SiC xO4-x tetrahedral units with "voids" occupied by sp 2-hybridized graphitic carbon. The oxygen-rich SiCxO 4-x units are located at the interior of this backbone with a mass fractal dimension of ~ 2.5, while the carbon-rich units occupy the two-dimensional interface between the backbone and the free carbon nanodomains. Such fractal topology is expected to give rise to unusual mechanical and transport properties characteristic of fractal percolation networks. For example, elastic moduli and

  6. Some statistics on intermetallic compounds.

    PubMed

    Dshemuchadse, Julia; Steurer, Walter

    2015-02-02

    It is still largely unknown why intermetallic phases show such a large variety of crystal structures, with unit cell sizes varying between 1 and more than 20 000 atoms. The goal of our study was, therefore, to get a general overview of the symmetries, unit cell sizes, stoichiometries, most frequent structure types, and their stability fields based on the Mendeleev numbers as ordering parameters. A total of 20829 structures crystallizing in 2166 structure types have been studied for this purpose. Thereby, the focus was on a subset of 6441 binary intermetallic compounds, which crystallize in 943 structure types.

  7. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.; Wong, Gregory K.

    2011-03-01

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  8. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.

    2009-02-10

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  9. Structure Determination of Compound 34

    DTIC Science & Technology

    1991-09-01

    report documents the results of this study. 3. EXPERIMENTAL SECTION 3.1 Materials. The sample of Compound 34 (a purplish- blue solid) was obtained from the...resulting blue solution was applied to the plate with a capillary tube drawn to a fine point. The methods of detection included visible light...chloroform (3 by 15 mL). The chloroform solution was dried over MgS04 , filtered, and then evaporated to yield a purple/ blue oil that solidified on standing

  10. Therapeutic phytogenic compounds for obesity and diabetes.

    PubMed

    Jung, Hee Soong; Lim, Yun; Kim, Eun-Kyoung

    2014-11-21

    Natural compounds have been used to develop drugs for many decades. Vast diversities and minimum side effects make natural compounds a good source for drug development. However, the composition and concentrations of natural compounds can vary. Despite this inconsistency, half of the Food and Drug Administration (FDA)-approved pharmaceuticals are natural compounds or their derivatives. Therefore, it is essential to continuously investigate natural compounds as sources of new pharmaceuticals. This review provides comprehensive information and analysis on natural compounds from plants (phytogenic compounds) that may serve as anti-obesity and/or anti-diabetes therapeutics. Our growing understanding and further exploration of the mechanisms of action of the phytogenic compounds may afford opportunities for development of therapeutic interventions in metabolic diseases.

  11. Rendering of Russian Compound Terms into English.

    ERIC Educational Resources Information Center

    Pandit, Vijay

    1979-01-01

    Presents an analysis of Russian compound word structure, dividing the compound terms into four categories based on word-formation structure and showing how these four categories may be translated into English. (AM)

  12. Therapeutic Phytogenic Compounds for Obesity and Diabetes

    PubMed Central

    Jung, Hee Soong; Lim, Yun; Kim, Eun-Kyoung

    2014-01-01

    Natural compounds have been used to develop drugs for many decades. Vast diversities and minimum side effects make natural compounds a good source for drug development. However, the composition and concentrations of natural compounds can vary. Despite this inconsistency, half of the Food and Drug Administration (FDA)-approved pharmaceuticals are natural compounds or their derivatives. Therefore, it is essential to continuously investigate natural compounds as sources of new pharmaceuticals. This review provides comprehensive information and analysis on natural compounds from plants (phytogenic compounds) that may serve as anti-obesity and/or anti-diabetes therapeutics. Our growing understanding and further exploration of the mechanisms of action of the phytogenic compounds may afford opportunities for development of therapeutic interventions in metabolic diseases. PMID:25421245

  13. Hyperpolarizable compounds and devices fabricated therefrom

    DOEpatents

    Therien, Michael J.; DiMagno, Stephen G.

    1998-01-01

    Substituted compounds having relatively large molecular first order hyperpolarizabilities are provided, along with devices and materials containing them. In general, the compounds bear electron-donating and electron-withdrawing chemical substituents on a polyheterocyclic core.

  14. Hyperpolarizable compounds and devices fabricated therefrom

    DOEpatents

    Therien, M.J.; DiMagno, S.G.

    1998-07-21

    Substituted compounds having relatively large molecular first order hyperpolarizabilities are provided, along with devices and materials containing them. In general, the compounds bear electron-donating and electron-withdrawing chemical substituents on a polyheterocyclic core. 13 figs.

  15. Lipid encapsulated phenolic compounds by fluidization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic compounds exhibit antioxidant and antimicrobial activities with applications as functional food and feed additives. Ferulic acid, a phenolic compound present in grain crops and lignocellulose biomass, was encapsulated with saturated triglycerides using a laboratory fluidizer. Stability of t...

  16. Synthesis and phase transitions of oxide-ion conducting compound La{sub 2}Mo{sub 2}O{sub 9} doped with alkaline metals

    SciTech Connect

    Kolesnikova, D. S.; Kharitonova, E. P.; Voronkova, V. I.

    2011-03-15

    The specific features of synthesis, polymorthism, and electric conductivity of oxide-ion conducting compounds La{sub 2-x}Me{sub x}Mo{sub 2}O{sub 9-y}, where Me = Na, K, Rb, or Cs, have been studied. Ceramic samples were obtained by solid-state synthesis in the temperature range of 960-1100 Degree-Sign C. The regions where solid solutions exist have been found to depend on the temperature of the sample firing. According to the calorimetric and electrophysical data, the phase transition from the monoclinic phase ({alpha}) to the cubic phase ({beta}) in samples doped with potassium and rubidium disappears at x = 0.02 and 0.04, respectively. In these cases the only transition from the cubic {beta}{sub ms} phase to the high-temperature cubic {beta} phase is observed near 450 Degree-Sign C. Doping with sodium and cesium does not suppress the {alpha} {yields} {beta} phase transition.

  17. Two new acetylenic compounds from Asparagus officinalis.

    PubMed

    Li, Xue-Mei; Cai, Jin-Long; Wang, Wen-Xiang; Ai, Hong-Lian; Mao, Zi-Chao

    2016-01-01

    Two new acetylenic compounds, asparoffins A (1) and B (2), together with two known compounds, nyasol (3) and 3″-methoxynyasol (4), were isolated from stems of Asparagus officinalis. The structures of two new compounds were elucidated on the basis of detailed spectroscopic analyses (UV, IR, MS, 1D, and 2D NMR). All compounds were evaluated for their cytotoxicities against three human cancer cell lines.

  18. Compound Data Mining for Drug Discovery.

    PubMed

    Bajorath, Jürgen

    2017-01-01

    In recent years, there has been unprecedented growth in compound activity data in the public domain. These compound data provide an indispensable resource for drug discovery in academic environments as well as in the pharmaceutical industry. To handle large volumes of heterogeneous and complex compound data and extract discovery-relevant knowledge from these data, advanced computational mining approaches are required. Herein, major public compound data repositories are introduced, data confidence criteria reviewed, and selected data mining approaches discussed.

  19. Prebiotic Evolution of Nitrogen Compounds

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1999-01-01

    Support from this four year grant has funded our research on two general problems. One involves attempts to model the abiotic formation of simple source compounds for functional biomolecules, their concentration from dilute state in the hydrosphere and, in several cases, surface induced reactions to form precursor monomers for bioactive end products (refs. 1-5). Because of the pervasiveness and antiquity of phosphate based biochemistry and the catalytic activity of RNA we have exploring the hypothesis of an RNA World as an early stage in the emergence of life. This concept is now rather generally considered, but has been questioned due to the earlier lack of an experimentally demonstrated successful scheme for the spontaneous formation of ribose phosphate, the key backbone molecule in RNA. That impediment has now been removed. This has been achieved by demonstrating probable sources of activated (condensed) highly soluble and strongly sorbed phosphates in nature (Refs. 1,2) and effective condensation of aldehyde phosphates to form ribose phosphate in high yield (ref.6), thereby placing the RNA World concept on a somewhat safer experimental footing. Like all work in this field these experiments are oversimplifications that largely ignore competing side reactions with other compounds expected to be present. None the less our choice of experimental conditions aim at selective processes that eliminate interfering reactions. We have also sought to narrow the credibility gap by simulating geophysically and geochemically plausible conditions surrounding the putative prebiotic reactions.

  20. Compound prism design principles, I

    PubMed Central

    Hagen, Nathan; Tkaczyk, Tomasz S.

    2011-01-01

    Prisms have been needlessly neglected as components used in modern optical design. In optical throughput, stray light, flexibility, and in their ability to be used in direct-view geometry, they excel over gratings. Here we show that even their well-known weak dispersion relative to gratings has been overrated by designing doublet and double Amici direct-vision compound prisms that have 14° and 23° of dispersion across the visible spectrum, equivalent to 800 and 1300 lines/mm gratings. By taking advantage of the multiple degrees of freedom available in a compound prism design, we also show prisms whose angular dispersion shows improved linearity in wavelength. In order to achieve these designs, we exploit the well-behaved nature of prism design space to write customized algorithms that optimize directly in the nonlinear design space. Using these algorithms, we showcase a number of prism designs that illustrate a performance and flexibility that goes beyond what has often been considered possible with prisms. PMID:22423145

  1. Corrosion Preventive Compounds Lifetime Testing

    NASA Technical Reports Server (NTRS)

    Hale, Stephanie M.; Kammerer, Catherine C.

    2007-01-01

    Lifetime Testing of Corrosion Preventive Compounds (CPCs) was performed to quantify performance in the various environments to which the Space Shuttle Orbiter is exposed during a flight cycle. Three CPCs are approved for use on the Orbiter: HD Calcium Grease, Dinitrol AV-30, and Braycote 601 EF. These CPCs have been rigorously tested to prove that they mitigate corrosion in typical environments, but little information is available on how they perform in the unique combination of the coastal environment at the launch pad, the vacuum of low-earth orbit, and the extreme heat of reentry. Currently, there is no lifetime or reapplication schedule established for these compounds that is based on this combination of environmental conditions. Aluminum 2024 coupons were coated with the three CPCs and exposed to conditions that simulate the environments to which the Orbiter is exposed. Uncoated Aluminum 2024 coupons were exposed to the environmental conditions as a control. Visual inspection and Electro- Impedance Spectroscopy (EIS) were performed on the samples in order to determine the effectiveness of the CPCs. The samples were processed through five mission life cycles or until the visual inspection revealed the initiation of corrosion and EIS indicated severe degradation of the coating.

  2. Corrosion Preventive Compounds Lifetime Testing

    NASA Technical Reports Server (NTRS)

    Hale, Stephanie M.; Kammerer, Catherine C.; Copp, Tracy L.

    2007-01-01

    Lifetime Testing of Corrosion Preventive Compounds (CPCs) was performed to quantify performance in the various environments to which the Space Shuttle Orbiter is exposed during a flight cycle. Three CPCs are approved for use on the Orbiter: RD Calcium Grease, Dinitrol AV-30, and Braycote 601 EF. These CPCs have been rigorously tested to prove that they mitigate corrosion in typical environments, but little information is available on how they perform in the unique combination of the coastal environment at the launch pad, the vacuum of low-earth orbit, and the extreme heat of reentry. Currently, there is no lifetime or reapplication schedule established for these compounds that is based on this combination of environmental conditions. Aluminum 2024 coupons were coated with the three CPCs and exposed to conditions that simulate the environments to which the Orbiter is exposed. Uncoated Aluminum 2024 coupons were exposed to the environmental conditions as a control. Visual inspection and Electro- Impedance Spectroscopy (EIS) were performed on the samples in order to determine the effectiveness of the CPCs. The samples were processed through five mission life cycles or until the visual inspection revealed the initiation of corrosion and EIS indicated severe degradation of the coating.

  3. Thin films of mixed metal compounds

    DOEpatents

    Mickelsen, Reid A.; Chen, Wen S.

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  4. The Modification of Compounds by Attributive Adjectives

    ERIC Educational Resources Information Center

    Berg, Thomas

    2011-01-01

    This paper examines the modification of nominal compounds by attributive adjectives in English. It draws on a distinction between compound-external (i.e. syntactic) and compound-internal (i.e. morphological) modification. An analysis is presented of more than 1000 pertinent cases, which are roughly equally divided into two-, three- and four-noun…

  5. Semiconducting compounds and devices incorporating same

    DOEpatents

    Marks, Tobin J.; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki

    2016-01-19

    Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.

  6. Semiconducting compounds and devices incorporating same

    DOEpatents

    Marks, Tobin J; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki

    2014-06-17

    Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.

  7. Five new bioactive compounds from Chenopodium ambrosioides.

    PubMed

    Song, Kun; Zhang, Jian; Zhang, Peng; Wang, Hong-Qing; Liu, Chao; Li, Bao-Ming; Kang, Jie; Chen, Ruo-Yun

    2015-05-01

    Five new bioactive compounds, chenopodiumamines A-D (1-4) and chenopodiumoside A (5), were isolated from the ethanol extract of Chenopodium ambrosioides. The structures of these compounds were elucidated by various spectroscopic means (UV, IR, HR-ESI-MS, 1D and 2D NMR). Compounds 1-3 had moderate antioxidant and anti-inflammatory activities.

  8. Highly sweet compounds of plant origin.

    PubMed

    Kim, Nam-Cheol; Kinghorn, A Douglas

    2002-12-01

    The demand for new alternative "low calorie" sweeteners for dietetic and diabetic purposes has increased worldwide. Although the currently developed and commercially used highly sweet sucrose substitutes are mostly synthetic compounds, the search for such compounds from natural sources is continuing. As of mid-2002, over 100 plant-derived sweet compounds of 20 major structural types had been reported, and were isolated from more than 25 different families of green plants. Several of these highly sweet natural products are marketed as sweeteners or flavoring agents in some countries as pure compounds, compound mixtures, or refined extracts. These highly sweet natural substances are reviewed herein.

  9. Elastomer Compound Developed for High Wear Applications

    NASA Technical Reports Server (NTRS)

    Crawford, D.; Feuer, H.; Flanagan, D.; Rodriguez, G.; Teets, A.; Touchet, P.

    1993-01-01

    The U.S. Army is currently spending 300 million dollars per year replacing rubber track pads. An experimental rubber compound has been developed which exhibits 2 to 3 times greater service life than standard production pad compounds. To improve the service life of the tank track pads various aspects of rubber chemistry were explored including polymer, curing and reinforcing systems. Compounds that exhibited superior physical properties based on laboratory data were then fabricated into tank pads and field tested. This paper will discuss the compounding studies, laboratory data and field testing that led to the high wear elastomer compound.

  10. Method for purifying bidentate organophosphorous compounds

    DOEpatents

    McIsaac, Lyle D.; Krupa, Joseph F.; Schroeder, Norman C.

    1981-01-01

    Bidentate organophosphorous compounds are purified of undesirable impurities by contacting a solution of the compounds with a mercuric nitrate solution to form an insoluble mercuric bidentate compound which precipitates while the impurities remain in solution. The precipitate is washed and then contacted with a mixture of an aqueous solution of a strong mercuric ion complexing agent and an organic solvent to complex the mercuric ion away from the bidentate compound which then dissolves in the solvent. The purified bidentate compounds are useful for extracting the actinide elements from aqueous acidic nuclear waste solutions.

  11. Veterinary Compounding: Regulation, Challenges, and Resources.

    PubMed

    Davidson, Gigi

    2017-01-10

    The spectrum of therapeutic need in veterinary medicine is large, and the availability of approved drug products for all veterinary species and indications is relatively small. For this reason, extemporaneous preparation, or compounding, of drugs is commonly employed to provide veterinary medical therapies. The scope of veterinary compounding is broad and focused primarily on meeting the therapeutic needs of companion animals and not food-producing animals in order to avoid human exposure to drug residues. As beneficial as compounded medical therapies may be to animal patients, these therapies are not without risks, and serious adverse events may occur from poor quality compounds or excipients that are uniquely toxic when administered to a given species. Other challenges in extemporaneous compounding for animals include significant regulatory variation across the global veterinary community, a relative lack of validated compounding formulas for use in animals, and poor adherence by compounders to established compounding standards. The information presented in this article is intended to provide an overview of the current landscape of compounding for animals; a discussion on associated benefits, risks, and challenges; and resources to aid compounders in preparing animal compounds of the highest possible quality.

  12. Veterinary Compounding: Regulation, Challenges, and Resources

    PubMed Central

    Davidson, Gigi

    2017-01-01

    The spectrum of therapeutic need in veterinary medicine is large, and the availability of approved drug products for all veterinary species and indications is relatively small. For this reason, extemporaneous preparation, or compounding, of drugs is commonly employed to provide veterinary medical therapies. The scope of veterinary compounding is broad and focused primarily on meeting the therapeutic needs of companion animals and not food-producing animals in order to avoid human exposure to drug residues. As beneficial as compounded medical therapies may be to animal patients, these therapies are not without risks, and serious adverse events may occur from poor quality compounds or excipients that are uniquely toxic when administered to a given species. Other challenges in extemporaneous compounding for animals include significant regulatory variation across the global veterinary community, a relative lack of validated compounding formulas for use in animals, and poor adherence by compounders to established compounding standards. The information presented in this article is intended to provide an overview of the current landscape of compounding for animals; a discussion on associated benefits, risks, and challenges; and resources to aid compounders in preparing animal compounds of the highest possible quality. PMID:28075379

  13. Thin films of mixed metal compounds

    DOEpatents

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  14. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, Gregory D.; Moore, Glenn A.; Stone, Mark L.; Reagen, William K.

    1995-01-01

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.

  15. New permanent magnets; manganese compounds.

    PubMed

    Coey, J M D

    2014-02-12

    The exponential growth of maximum energy product that prevailed in the 20th century has stalled, leaving a market dominated by two permanent magnet materials, Nd2Fe14B and Ba(Sr)Fe12O19, for which the maximum theoretical energy products differ by an order of magnitude (515 kJ m(-3) and 45 kJ m(-3), respectively). Rather than seeking to improve on optimized Nd-Fe-B, it is suggested that some research efforts should be devoted to developing appropriately priced alternatives with energy products in the range 100-300 kJ m(-3). The prospects for Mn-based hard magnetic materials are discussed, based on known Mn-based compounds with the tetragonal L10 or D022 structure or the hexagonal B81 structure.

  16. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-01-05

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70 C and 500 C and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  17. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70.degree. C. and 500.degree. C. and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  18. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, G.D.; Moore, G.A.; Stone, M.L.; Reagen, W.K.

    1995-08-29

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs. 15 figs.

  19. METHOD OF RECOVERING URANIUM COMPOUNDS

    DOEpatents

    Poirier, R.H.

    1957-10-29

    S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

  20. Theoretical Studies on Cluster Compounds

    NASA Astrophysics Data System (ADS)

    Lin, Zhenyang

    interconversion of conformers of these clusters are described. In Chapter 5 Stone's Tensor Surface Harmonic methodology is applied to high nuclearity transition metal carbonyl cluster compounds with 13-44 metal atoms. Chapter 6 develops a new theoretical framework to account for the bonding in the high nuclearity ligated clusters with columnar topologies. In Chapter 7 the origin of non-bonding orbitals in molecular compounds is reviewed and analysed using general quantum mechanical considerations. (Abstract shortened by UMI.).

  1. High-Strength, Superelastic Compounds

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm; Noebe, Ronald; Dellacorte, Christopher; Bigelow, Glen; Thomas, Fransua

    2013-01-01

    In a previous disclosure, the use of 60- NiTiNOL, an ordered intermetallic compound composed of 60 weight percent nickel and 40 weight percent titanium, was investigated as a material for advanced aerospace bearings due to its unique combination of physical properties. Lessons learned during the development of applications for this material have led to the discovery that, with the addition of a ternary element, the resulting material can be thermally processed at a lower temperature to attain the same desirable hardness level as the original material. Processing at a lower temperature is beneficial, not only because it reduces processing costs from energy consumption, but because it also significantly reduces the possibility of quench cracking and thermal distortion, which have been problematic with the original material. A family of ternary substitutions has been identified, including Hf and Zr in various atomic percentages with varying concentrations of Ni and Ti. In the present innovation, a ternary intermetallic compound consisting of 57.6 weight percent Ni, 39.2 weight percent Ti, and 3.2 weight percent Hf (54Ni-45Ti-1Hf atomic percent) was prepared by casting. In this material, Hf substitutes for some of the Ti atoms in the material. In an alternate embodiment of the innovation, Zr, which is close in chemical behavior to Hf, is used as the substitutional element. With either substitution, the solvus temperature of the material is reduced, and lower temperatures can be used to obtain the necessary hardness values. The advantages of this innovation include the ability to solution-treat the material at a lower temperature and still achieve the required hardness for bearings (at least 50 Rockwell C) and superelastic behavior with recoverable strains greater than 2%. Most structural alloys will not return to their original shape after being deformed as little as 0.2% (a tenth of that possible with superelastic materials like 60 NiTiNOL). Because lower temperatures

  2. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2012-10-23

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  3. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2013-03-19

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  4. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  5. Superconducting compounds and alloys research

    NASA Technical Reports Server (NTRS)

    Otto, G.

    1975-01-01

    Resistivity measurements as a function of temperature were performed on alloys of the binary material system In sub(1-x) Bi sub x for x varying between 0 and 1. It was found that for all single-phase alloys (the pure elements, alpha-In, and the three intermetallic compounds) at temperatures sufficiently above the Debye-temperature, the resistivity p can be expressed as p = a sub o T(n), where a sub o and n are composition-dependent constants. The same exponential relationship can also be applied for the sub-system In-In2Bi, when the two phases are in compositional equilibrium. Superconductivity measurements on single and two-phase alloys can be explained with respect to the phase diagram. There occur three superconducting phases (alpha-In, In2Bi, and In5Bi3) with different transition temperatures in the alloying system. The magnitude of the transition temperatures for the various intermetallic phases of In-Bi is such that the disappearance or occurrence of a phase in two component alloys can be demonstrated easily by means of superconductivity measurements.

  6. Bioactive Compounds from Vitex leptobotrys#

    PubMed Central

    Pan, Wenhui; Liu, Kanglun; Guan, Yifu; Tan, Ghee Teng; Hung, Nguyen Van; Cuong, Nguyen Manh; Soejarto, D. Doel; Pezzuto, John M.; Fong, Harry H.S.; Zhang, Hongjie

    2014-01-01

    A new lignan, vitexkarinol (1), as well as a known lignan, neopaulownin (2), a known chalcone, 3-(4-hydroxyphenyl)-1-(2,4,6-trimethoxyphenyl)-2-propen-1-one (3), two known dehydroflavones, tsugafolin (4) and alpinetin (5), two known dipeptides, aurantiamide and aurantiamide acetate, a known sesquiterpene, vemopolyanthofuran, and five known carotenoid metabolites, vomifoliol, dihydrovomifoliol, dehydrovomifoliol, loliolide and isololiolide, were isolated from the leaves and twigs of Vitex leptobotrys through bioassay-guided fractionation. The chalcone (3) was found to inhibit HIV-1 replication by 77% at 15.9 µM, and the two dehydroflavones (4 and 5) showed weak anti-HIV activity with IC50 values of 118 and 130 µM, respectively, while being devoid of cytotoxicity at 150 µM. A chlorophyll-enriched fraction of V. leptobotrys, containing pheophorbide a, was found to inhibit the replication of HIV-1 by 80% at a concentration of 10 µg/mL. Compounds 1 and 3 were further selected to be evaluated against 21 viral targets available at NIAID (National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD). PMID:24404757

  7. Environmentally Friendly Corrosion Preventative Compounds

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Montgomery, Eliza; Kolody, Mark; Curran, Jerry; Back, Teddy; Balles, Angela

    2012-01-01

    The objective of the Ground Systems Development and Operations Program Environmentally Friendly Corrosion Protective Coatings and Corrosion Preventive Compounds (CPCs) project is to identify, test, and develop qualification criteria for the use of environmentally friendly corrosion protective coatings and CPCs for flight hardware and ground support equipment. This document is the Final Report for Phase I evaluations, which included physical property, corrosion resistance, and NASA spaceport environment compatibility testing and analysis of fifteen CPC types. The CPCs consisted of ten different oily film CPCs and five different wax or grease CPC types. Physical property testing encompassed measuring various properties of the bulk CPCs, while corrosion resistance testing directly measured the ability of each CPC material to protect various metals against corrosion. The NASA spaceport environment compatibility testing included common tests required by NASA-STD-6001, "Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion". At the end of Phase I, CPC materials were down-selected for inclusion in the next test phases. This final report includes all data and analysis of results obtained by following the experimental test plan that was developed as part of the project. Highlights of the results are summarized by test criteria type.

  8. MONITORING SYNTHETIC MUSK COMPOUNDS IN ...

    EPA Pesticide Factsheets

    Synthetic musk compounds are manufactured as fragrance materials for consumer products and are consumed in very large quantities worldwide. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than parts per billion, ppb). IAG with USGS ends in FY05. APM 20 due in FY05.Subtask 2: Coordination of interagency research and public outreach activities for PPCPs. Participate on NSTC Health and Environment subcommittee working group on PPCPs. Web site maintenance and expansion, invited technical presentations, invited articles for peer-reviewed journals, interviews for media, responding to public inquiries. Subtask 3: To apply state-of-the-art envir

  9. Heterogeneous Integration of Compound Semiconductors

    NASA Astrophysics Data System (ADS)

    Moutanabbir, Oussama; Gösele, Ulrich

    2010-08-01

    The ability to tailor compound semiconductors and to integrate them onto foreign substrates can lead to superior or novel functionalities with a potential impact on various areas in electronics, optoelectronics, spintronics, biosensing, and photovoltaics. This review provides a brief description of different approaches to achieve this heterogeneous integration, with an emphasis on the ion-cut process, also known commercially as the Smart-Cut™ process. This process combines semiconductor wafer bonding and undercutting using defect engineering by light ion implantation. Bulk-quality heterostructures frequently unattainable by direct epitaxial growth can be produced, provided that a list of technical criteria is fulfilled, thus offering an additional degree of freedom in the design and fabrication of heterogeneous and flexible devices. Ion cutting is a generic process that can be employed to split and transfer fine monocrystalline layers from various crystals. Materials and engineering issues as well as our current understanding of the underlying physics involved in its application to cleaving thin layers from freestanding GaN, InP, and GaAs wafers are presented.

  10. Two-step thermal spin transition and LIESST relaxation of the polymeric spin-crossover compounds Fe(X-py)2[Ag(CN)2]2 (X=H, 3-methyl, 4-methyl, 3,4-dimethyl, 3-Cl).

    PubMed

    Rodríguez-Velamazán, J Alberto; Carbonera, Chiara; Castro, Miguel; Palacios, Elías; Kitazawa, Takafumi; Létard, Jean-François; Burriel, Ramón

    2010-08-02

    In the series of polymeric spin-crossover compounds Fe(X-py)(2)[Ag(CN)(2))](2) (py=pyridine, X=H, 3-Cl, 3-methyl, 4-methyl, 3,4-dimethyl), magnetic and calorimetric measurements have revealed that the conversion from the high-spin (HS) to the low-spin (LS) state occurs by two-step transitions for three out of five members of the family (X=H, 4-methyl, and X=3,4-dimethyl). The two other compounds (X=3-Cl and 3-methyl) show respectively an incomplete spin transition and no transition at all, the latter remaining in the HS state in the whole temperature range. The spin-crossover behaviour of the compound undergoing two-step transitions is well described by a thermodynamic model that considers both steps. Calculations with this model show low cooperativity in this type of systems. Reflectivity and photomagnetic experiments reveal that all of the compounds except that with X=3-methyl undergo light-induced excited spin state trapping (LIESST) at low temperatures. Isothermal HS-to-LS relaxation curves at different temperatures support the low-cooperativity character by following an exponential decay law, although in the thermally activated regime and for aX=H and X=3,4-dimethyl the behaviour is well described by a double exponential function in accordance with the two-step thermal spin transition. The thermodynamic parameters determined from this isothermal analysis were used for simulation of thermal relaxation curves, which nicely reproduce the experimental data.

  11. Response of Bioluminescent Bacteria to Alkyltin Compounds.

    DTIC Science & Technology

    1987-12-01

    found in the butyltiri series of compounds; tributyltin was (’Stimes more toxic than dibutyltin and (- 50 times more toxic than (mono)butyltin. When...correlations between compounds, tributyltin was -35 tine more Kicrotxit and fish bLoessays for pure toxic than dibutyltin end -750 times More compounds and...alkyltin " trihalides. Figure 4. Mo values for butyltin tri- D~kyflS chloride, dibutyltin dichloride tributyl- tin chloride and tatrabutyltin. Figures 5, 6

  12. Complex fragment emission from hot compound nuclei

    SciTech Connect

    Moretto, L.G.

    1986-03-01

    The experimental evidence for compound nucleus emission of complex fragments at low energies is used to interpret the emission of the same fragments at higher energies. The resulting experimental picture is that of highly excited compound nuclei formed in incomplete fusion processes which decay statistically. In particular, complex fragments appear to be produced mostly through compound nucleus decay. In the appendix a geometric-kinematic theory for incomplete fusion and the associated momentum transfer is outlined. 10 refs., 19 figs.

  13. Thread-compound test procedures being developed

    SciTech Connect

    Wood, F.; Dairymple, D. ); McKown, K.; Matthews, B. )

    1990-09-10

    API is planning to issue a new bulletin that will outline standardization test procedures and set minimum performance for thread compounds used on OCTG (oil country tubular goods) connections with API thread forms. These performance standards will replace the recommended compound described in API Bulletin 5A2. This paper discusses how the proposed bulletin will detail test equipment, procedures, and performance requirements for thread compounds.

  14. Oxygen stabilized zirconium vanadium intermetallic compound

    DOEpatents

    Mendelsohn, Marshall H.; Gruen, Dieter M.

    1982-01-01

    An oxygen stabilized intermetallic compound having the formula Zr.sub.x OV.sub.y where x=0.7 to 2.0 and y=0.18 to 0.33. The compound is capable of reversibly sorbing hydrogen at temperatures from -196.degree. C. to 450.degree. C. at pressures down to 10.sup.-6 Torr. The compound is also capable of selectively sorbing hydrogen from gaseous mixtures in the presence of CO and CO.sub.2.

  15. High performance compound semiconductor SPAD arrays

    NASA Astrophysics Data System (ADS)

    Harmon, Eric S.; Naydenkov, Mikhail; Bowling, Jared

    2016-05-01

    Aggregated compound semiconductor single photon avalanche diode (SPAD) arrays are emerging as a viable alternative to the silicon photomultiplier (SiPM). Compound semiconductors have the potential to surpass SiPM performance, potentially achieving orders of magnitude lower dark count rates and improved radiation hardness. New planar processing techniques have been developed to enable compound semiconductor SPAD devices to be produced with pixel pitches of 11 - 25 microns, with thousands of SPADs per array.

  16. Antibacterial and Antifungal Compounds from Marine Fungi

    PubMed Central

    Xu, Lijian; Meng, Wei; Cao, Cong; Wang, Jian; Shan, Wenjun; Wang, Qinggui

    2015-01-01

    This paper reviews 116 new compounds with antifungal or antibacterial activities as well as 169 other known antimicrobial compounds, with a specific focus on January 2010 through March 2015. Furthermore, the phylogeny of the fungi producing these antibacterial or antifungal compounds was analyzed. The new methods used to isolate marine fungi that possess antibacterial or antifungal activities as well as the relationship between structure and activity are shown in this review. PMID:26042616

  17. Computed structures of polyimides model compounds

    NASA Technical Reports Server (NTRS)

    Tai, H.; Phillips, D. H.

    1990-01-01

    Using a semi-empirical approach, a computer study was made of 8 model compounds of polyimides. The compounds represent subunits from which NASA Langley Research Center has successfully synthesized polymers for aerospace high performance material application, including one of the most promising, LARC-TPI polymer. Three-dimensional graphic display as well as important molecular structure data pertaining to these 8 compounds are obtained.

  18. PLUTONIUM COMPOUNDS AND PROCESS FOR THEIR PREPARATION

    DOEpatents

    Wolter, F.J.; Diehl, H.C. Jr.

    1958-01-01

    This patent relates to certain new compounds of plutonium, and to the utilization of these compounds to effect purification or separation of the plutonium. The compounds are organic chelate compounds consisting of tetravalent plutonium together with a di(salicylal) alkylenediimine. These chelates are soluble in various organic solvents, but not in water. Use is made of this property in extracting the plutonium by contacting an aqueous solution thereof with an organic solution of the diimine. The plutonium is chelated, extracted and effectively separated from any impurities accompaying it in the aqueous phase.

  19. Hydrodesulfurization catalyst by Chevrel phase compounds

    DOEpatents

    McCarty, K.F.; Schrader, G.L.

    1985-05-20

    A process is disclosed for the hydrodesulfurization of sulfur-containing hydrocarbon fuel with reduced ternary molybdenum sulfides, known as Chevrel phase compounds. Chevrel phase compounds of the general composition M/sub x/Mo/sub 6/S/sub 8/, with M being Ho, Pb, Sn, Ag, In, Cu, Fe, Ni, or Co, were found to have hydrodesulfurization activities comparable to model unpromoted and cobalt-promoted MoS/sub 2/ catalysts. The most active catalysts were the ''large'' cation compounds (Ho, Pb, Sn), and the least active catalysts were the ''small'' cation compounds (Cu, Fe, Ni, Co.).

  20. Four new compounds from Imperata cylindrica.

    PubMed

    Liu, Xuan; Zhang, Bin-Feng; Yang, Li; Chou, Gui-Xin; Wang, Zheng-Tao

    2014-04-01

    Four new compounds, impecylone (1), deacetylimpecyloside (2), seguinoside K 4-methylether (3) and impecylenolide (4), were isolated from Imperata cylindrica along with two known compounds, impecyloside (5) and seguinoside K (6). Their structures were elucidated mainly by spectroscopic analyses including 1D- and 2D-NMR techniques, and the absolute configuration of 1 was confirmed by X-ray diffraction analysis. In calcium assay, the result indicated that compounds 1, 2, 4 and 5 cannot obviously inhibit the calcium peak value compared with the negative control, and suggested that the four compounds could not have anti-inflammatory activity.

  1. Antimicrobial Action of Compounds from Marine Seaweed.

    PubMed

    Pérez, María José; Falqué, Elena; Domínguez, Herminia

    2016-03-09

    Seaweed produces metabolites aiding in the protection against different environmental stresses. These compounds show antiviral, antiprotozoal, antifungal, and antibacterial properties. Macroalgae can be cultured in high volumes and would represent an attractive source of potential compounds useful for unconventional drugs able to control new diseases or multiresistant strains of pathogenic microorganisms. The substances isolated from green, brown and red algae showing potent antimicrobial activity belong to polysaccharides, fatty acids, phlorotannins, pigments, lectins, alkaloids, terpenoids and halogenated compounds. This review presents the major compounds found in macroalga showing antimicrobial activities and their most promising applications.

  2. Hydrodesulfurization catalysis by Chevrel phase compounds

    DOEpatents

    McCarty, Kevin F.; Schrader, Glenn L.

    1985-12-24

    A process is disclosed for the hydrodesulfurization of sulfur-containing hydrocarbon fuel with reduced ternary molybdenum sulfides, known as Chevrel phase compounds. Chevrel phase compounds of the general composition M.sub.x Mo.sub.6 S.sub.8, with M being Ho, Pb, Sn, Ag, In, Cu, Fe, Ni, or Co, were found to have hydrodesulfurization activities comparable to model unpromoted and cobalt-promoted MoS.sub.2 catalysts. The most active catalysts were the "large" cation compounds (Ho, Pb, Sn), and the least active catalysts were the "small" cation compounds (Cu, Fe, Ni, Co.).

  3. Marine bacterial sources of bioactive compounds.

    PubMed

    Jaiganesh, R; Sampath Kumar, N S

    2012-01-01

    Thousands of novel compounds have been isolated from various marine bacteria and tested for pharmacological properties, many of which are commercially available. Many more are being tested as potential bioactive compound at the preclinical and clinical stages. The growing interest in marine-derived antiviral compounds, along with the development of new technology in marine cultures and extraction, will significantly expedite the current exploration of the marine environment for compounds with significant pharmacological applications, which will continue to be a promising strategy and new trend for modern medicine. Marine actinomycetes and cyanobacteria are a prolific but underexploited source for the discovery of novel secondary metabolites.

  4. Antimicrobial Action of Compounds from Marine Seaweed

    PubMed Central

    Pérez, María José; Falqué, Elena; Domínguez, Herminia

    2016-01-01

    Seaweed produces metabolites aiding in the protection against different environmental stresses. These compounds show antiviral, antiprotozoal, antifungal, and antibacterial properties. Macroalgae can be cultured in high volumes and would represent an attractive source of potential compounds useful for unconventional drugs able to control new diseases or multiresistant strains of pathogenic microorganisms. The substances isolated from green, brown and red algae showing potent antimicrobial activity belong to polysaccharides, fatty acids, phlorotannins, pigments, lectins, alkaloids, terpenoids and halogenated compounds. This review presents the major compounds found in macroalga showing antimicrobial activities and their most promising applications. PMID:27005637

  5. Diazo Compounds: Versatile Tools for Chemical Biology.

    PubMed

    Mix, Kalie A; Aronoff, Matthew R; Raines, Ronald T

    2016-12-16

    Diazo groups have broad and tunable reactivity. That and other attributes endow diazo compounds with the potential to be valuable reagents for chemical biologists. The presence of diazo groups in natural products underscores their metabolic stability and anticipates their utility in a biological context. The chemoselectivity of diazo groups, even in the presence of azido groups, presents many opportunities. Already, diazo compounds have served as chemical probes and elicited novel modifications of proteins and nucleic acids. Here, we review advances that have facilitated the chemical synthesis of diazo compounds, and we highlight applications of diazo compounds in the detection and modification of biomolecules.

  6. INVESTIGATION OF A COMPOUND REPORTED AS BOTH FERRIMAGNETIC AND FERROELECTRIC,

    DTIC Science & Technology

    FERRITES , *FERROELECTRIC CRYSTALS, MAGNETIC PROPERTIES, X RAY DIFFRACTION, IMPURITIES, FERROELECTRICITY, FERROMAGNETISM, CRYSTAL STRUCTURE...DIELECTRIC PROPERTIES, MICROSCOPY, BARIUM COMPOUNDS, SAMARIUM COMPOUNDS, NIOBIUM COMPOUNDS, TITANIUM COMPOUNDS, TITANATES, PHOTOMICROGRAPHY, CRYSTAL LATTICES, OXIDES.

  7. Prioritizing pesticide compounds for analytical methods development

    USGS Publications Warehouse

    Norman, Julia E.; Kuivila, Kathryn; Nowell, Lisa H.

    2012-01-01

    The U.S. Geological Survey (USGS) has a periodic need to re-evaluate pesticide compounds in terms of priorities for inclusion in monitoring and studies and, thus, must also assess the current analytical capabilities for pesticide detection. To meet this need, a strategy has been developed to prioritize pesticides and degradates for analytical methods development. Screening procedures were developed to separately prioritize pesticide compounds in water and sediment. The procedures evaluate pesticide compounds in existing USGS analytical methods for water and sediment and compounds for which recent agricultural-use information was available. Measured occurrence (detection frequency and concentrations) in water and sediment, predicted concentrations in water and predicted likelihood of occurrence in sediment, potential toxicity to aquatic life or humans, and priorities of other agencies or organizations, regulatory or otherwise, were considered. Several existing strategies for prioritizing chemicals for various purposes were reviewed, including those that identify and prioritize persistent, bioaccumulative, and toxic compounds, and those that determine candidates for future regulation of drinking-water contaminants. The systematic procedures developed and used in this study rely on concepts common to many previously established strategies. The evaluation of pesticide compounds resulted in the classification of compounds into three groups: Tier 1 for high priority compounds, Tier 2 for moderate priority compounds, and Tier 3 for low priority compounds. For water, a total of 247 pesticide compounds were classified as Tier 1 and, thus, are high priority for inclusion in analytical methods for monitoring and studies. Of these, about three-quarters are included in some USGS analytical method; however, many of these compounds are included on research methods that are expensive and for which there are few data on environmental samples. The remaining quarter of Tier 1

  8. Analysis of phenolic compounds for poultry feeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic compounds have generated significant interest recently as feed additives that can impart bioactive characteristics such as anti-oxidant, anti-microbial, and anti-fungal properties to a feed formulation [1-2]. Such natural compounds may offer some preventive benefit to the routine administra...

  9. Exploring marine resources for bioactive compounds.

    PubMed

    Kiuru, Paula; DʼAuria, M Valeria; Muller, Christian D; Tammela, Päivi; Vuorela, Heikki; Yli-Kauhaluoma, Jari

    2014-09-01

    Biodiversity in the seas is only partly explored, although marine organisms are excellent sources for many industrial products. Through close co-operation between industrial and academic partners, it is possible to successfully collect, isolate and classify marine organisms, such as bacteria, fungi, micro- and macroalgae, cyanobacteria, and marine invertebrates from the oceans and seas globally. Extracts and purified compounds of these organisms can be studied for several therapeutically and industrially significant biological activities, including anticancer, anti-inflammatory, antiviral, antibacterial, and anticoagulant activities by applying a wide variety of screening tools, as well as for ion channel/receptor modulation and plant growth regulation. Chromatographic isolation of bioactive compounds will be followed by structural determination. Sustainable cultivation methods for promising organisms and biotechnological processes for selected compounds can be developed, as well as biosensors for monitoring the target compounds. The (semi)synthetic modification of marine-based bioactive compounds produces their new derivatives, structural analogs and mimetics that could serve as hit or lead compounds and be used to expand compound libraries based on marine natural products. The research innovations can be targeted for industrial product development in order to improve the growth and productivity of marine biotechnology. Marine research aims at a better understanding of environmentally conscious sourcing of marine biotechnology products and increased public awareness of marine biodiversity. Marine research is expected to offer novel marine-based lead compounds for industries and strengthen their product portfolios related to pharmaceutical, nutraceutical, cosmetic, agrochemical, food processing, material and biosensor applications.

  10. Ambient Air Monitoring for Sulfur Compounds

    ERIC Educational Resources Information Center

    Forrest, Joseph; Newman, Leonard

    1973-01-01

    A literature review of analytical techniques available for the study of compounds at low concentrations points up some of the areas where further research is needed. Compounds reviewed are sulfur dioxide, sulfuric acid, ammonium sulfate and bisulfate, metal sulfates, hydrogen sulfide, and organic sulfides. (BL)

  11. Nitroaromatic compounds, from synthesis to biodegradation.

    PubMed

    Ju, Kou-San; Parales, Rebecca E

    2010-06-01

    Nitroaromatic compounds are relatively rare in nature and have been introduced into the environment mainly by human activities. This important class of industrial chemicals is widely used in the synthesis of many diverse products, including dyes, polymers, pesticides, and explosives. Unfortunately, their extensive use has led to environmental contamination of soil and groundwater. The nitro group, which provides chemical and functional diversity in these molecules, also contributes to the recalcitrance of these compounds to biodegradation. The electron-withdrawing nature of the nitro group, in concert with the stability of the benzene ring, makes nitroaromatic compounds resistant to oxidative degradation. Recalcitrance is further compounded by their acute toxicity, mutagenicity, and easy reduction into carcinogenic aromatic amines. Nitroaromatic compounds are hazardous to human health and are registered on the U.S. Environmental Protection Agency's list of priority pollutants for environmental remediation. Although the majority of these compounds are synthetic in nature, microorganisms in contaminated environments have rapidly adapted to their presence by evolving new biodegradation pathways that take advantage of them as sources of carbon, nitrogen, and energy. This review provides an overview of the synthesis of both man-made and biogenic nitroaromatic compounds, the bacteria that have been identified to grow on and completely mineralize nitroaromatic compounds, and the pathways that are present in these strains. The possible evolutionary origins of the newly evolved pathways are also discussed.

  12. Amino acid modifiers in guayule rubber compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tire producers are increasingly interested in biobased materials, including rubber but also as compounding chemicals. An alternative natural rubber for tire use is produced by guayule, a woody desert shrub native to North America. Alternative compounding chemicals include naturally-occurring amino a...

  13. Three new phenolic compounds from Dalbergia odorifera.

    PubMed

    Wang, Hao; Dong, Wen-Hua; Zuo, Wen-Jian; Wang, Hui; Zhong, Hui-Min; Mei, Wen-Li; Dai, Hao-Fu

    2014-12-01

    Three new phenolic compounds (1-3) were isolated from the heartwood of Dalbergia odorifera T. Chen. (Leguminosae). Their structures were established based on spectroscopic methods including 1D and 2D NMR (HSQC, COSY, HMBC and ROESY). Compound 2 exhibited cytotoxicity against BEL-7402 tumor cell lines.

  14. Study of Compounds for Activity against Leishmania

    DTIC Science & Technology

    1994-03-27

    Comparative Antileishmanial Activity of Selected Compounds Against Leishmania Leishmania donovani and Leishmania Viannia braziliensis 7 IV. Zn vitro...Studies of Oligonucleotides Against Leishmania Leishmania donovani ............................................................ 9 Discussion...for several years in studies to identify new compounds for antileishmanial activity against both visceral (Lelshmania Leishmania donovani ) and

  15. A[subscript 2]: Element or Compound?

    ERIC Educational Resources Information Center

    Stains, Marilyne; Talanquer, Vicente

    2007-01-01

    Particulate questions were used to investigate the strength of the mental association between the concept of compound and microscopic representations of molecules in students with different levels of chemistry preparation. The results have suggested that the mental association between the concepts of compound and particulate representations of…

  16. PERFLUORINATED ORGANIC COMPOUND EXPOSURE ASSESSMENT RESEARCH

    EPA Science Inventory

    A wide range of perfluorinated organic compounds (PFCs) has been used in a variety of industrial processes and consumer products. The most commonly studied PFCs include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), but there are many more compounds in this c...

  17. (CHINA) PERFLUORINATED ORGANIC COMPOUND EXPOSURE ASSESSMENT RESEARCH

    EPA Science Inventory

    A wide range of perfluorinated organic compounds (PFCs) has been used in a variety of industrial processes and consumer products. The most commonly studied PFCs include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), but there are many more compounds in this c...

  18. Nitroaromatic Compounds, from Synthesis to Biodegradation

    PubMed Central

    Ju, Kou-San; Parales, Rebecca E.

    2010-01-01

    Summary: Nitroaromatic compounds are relatively rare in nature and have been introduced into the environment mainly by human activities. This important class of industrial chemicals is widely used in the synthesis of many diverse products, including dyes, polymers, pesticides, and explosives. Unfortunately, their extensive use has led to environmental contamination of soil and groundwater. The nitro group, which provides chemical and functional diversity in these molecules, also contributes to the recalcitrance of these compounds to biodegradation. The electron-withdrawing nature of the nitro group, in concert with the stability of the benzene ring, makes nitroaromatic compounds resistant to oxidative degradation. Recalcitrance is further compounded by their acute toxicity, mutagenicity, and easy reduction into carcinogenic aromatic amines. Nitroaromatic compounds are hazardous to human health and are registered on the U.S. Environmental Protection Agency's list of priority pollutants for environmental remediation. Although the majority of these compounds are synthetic in nature, microorganisms in contaminated environments have rapidly adapted to their presence by evolving new biodegradation pathways that take advantage of them as sources of carbon, nitrogen, and energy. This review provides an overview of the synthesis of both man-made and biogenic nitroaromatic compounds, the bacteria that have been identified to grow on and completely mineralize nitroaromatic compounds, and the pathways that are present in these strains. The possible evolutionary origins of the newly evolved pathways are also discussed. PMID:20508249

  19. Heterogeneous photocatalytic reactions of sulfur aromatic compounds.

    PubMed

    Samokhvalov, Alexander

    2011-11-18

    Sulfur aromatic compounds, such as mono-, di-, tri-, and tetraalkyl-substituted thiophene, benzothiophenes, dibenzothiophenes, are the molecular components of many fossils (petroleum, oil shale, tar sands, bitumen). Structural units of natural, cross-linked heteroaromatic polymers present in brown coals, turf, and soil are similar to those of sulfur aromatic compounds. Many sulfur aromatic compounds are found in the streams of petroleum refining and upgrading (naphthas, gas oils) and in the consumer products (gasoline, diesel, jet fuels, heating fuels). Besides fossils, the structural fragments of sulfur aromatic compounds are present in molecules of certain organic semiconductors, pesticides, small molecule drugs, and in certain biomolecules present in human body (pheomelanin pigments). Photocatalysis is the frontier area of physical chemistry that studies chemical reactions initiated by absorption of photons by photocatalysts, that is, upon electronic rather than thermal activation, under "green" ambient conditions. This review provides systematization and critical review of the fundamental chemical and physicochemical information on heterogeneous photocatalysis of sulfur aromatic compounds accumulated in the last 20-30 years. Specifically, the following topics are covered: physicochemical properties of sulfur aromatic compounds, major classes of heterogeneous photocatalysts, mechanisms and reactive intermediates of photocatalytic reactions of sulfur aromatic compounds, and the selectivity of these reactions. Quantum chemical calculations of properties and structures of sulfur aromatic compounds, their reactive intermediates, and the structure of adsorption complexes formed on the surface of the photocatalysts are also discussed.

  20. Volatile organic compound emissions from silage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols with other impor...

  1. Special applications of fluorinated organic compounds.

    PubMed

    Lewandowski, Grzegorz; Meissner, Egbert; Milchert, Eugeniusz

    2006-08-25

    The applications of fluorinated organic compounds (FOCs) as finishing agent for fabrics, components of extinguishing agents, electroplating bathes, lubricating oils, oxygen carriers in blood substitutes have been discussed. Recent achievements in methods of the fluorination and general principles of the synthesis of useful perfluorinated organic compounds are given as well.

  2. Compounds from the roots of Jasminum sambac.

    PubMed

    Zeng, Lin-Hong; Hu, Min; Yan, Yong-Ming; Lu, Qing; Cheng, Yong-Xian

    2012-01-01

    Four new compounds (+)-jasminoids A, B, C, and D, together with seven known compounds, were isolated from the roots of Jasminum sambac. Their structures were identified using spectroscopic methods. This study provides a better understanding to the chemical composition of J. sambac roots that have been thought to be one ingredient of an ancient prescription 'Ma-Fei-San'.

  3. Crystal structure analysis of intermetallic compounds

    NASA Technical Reports Server (NTRS)

    Conner, R. A., Jr.; Downey, J. W.; Dwight, A. E.

    1968-01-01

    Study concerns crystal structures and lattice parameters for a number of new intermetallic compounds. Crystal structure data have been collected on equiatomic compounds, formed between an element of the Sc, Ti, V, or Cr group and an element of the Co or Ni group. The data, obtained by conventional methods, are presented in an easily usable tabular form.

  4. VOLATILE ORGANIC COMPOUNDS (VOCS) CHAPTER 31.

    EPA Science Inventory

    The term "volatile organic compounds' (VOCs) was originally coined to refer, as a class, to carbon-containing chemicals that participate in photochemical reactions in the ambient (outdoor) are. The regulatory definition of VOCs used by the U.S. EPA is: Any compound of carbon, ex...

  5. Semantics vs Pragmatics of a Compound Word

    ERIC Educational Resources Information Center

    Smirnova, Elena A.; Biktemirova, Ella I.; Davletbaeva, Diana N.

    2016-01-01

    This paper is devoted to the study of correlation between semantic and pragmatic potential of a compound word, which functions in informal speech, and the mechanisms of secondary nomination, which realizes the potential of semantic-pragmatic features of colloquial compounds. The relevance and the choice of the research question is based on the…

  6. [Organisms producing hypolipidemic compounds with antioxidant activity].

    PubMed

    Puzhevskaia, T O; Grammatikova, N E; Bibikova, M V; Katlinskiĭ, A V

    2009-01-01

    Complex compounds produced by fungal cultures of Lecanicilium and Beauveria with both high hypolipidemic and antioxydant activities were screened. Two fractions of the hypolipipidemic compounds with antioxidant activity of 95 and 75% in a dose of 25 mcg/ml were isolated.

  7. Hybrid Compounding in New Zealand English

    ERIC Educational Resources Information Center

    Degani, Marta; Onysko, Alexander

    2010-01-01

    This study investigates hybrid compound formation of Maori and English terms in present day New Zealand English (NZE). On the background of Maori and English language contact, the phenomenon of hybrid compounding emerges as a process that, on the one hand, symbolizes the vitality of the Maori element in NZE and, on the other hand, marks the…

  8. A novel phenolic compound from Phyllanthus emblica.

    PubMed

    She, Gaimei; Cheng, Ruiyang; Sha, Lei; Xu, Yixia; Shi, Renbin; Zhang, Lanzhen; Guo, Yajian

    2013-04-01

    A new compound, mucic acid 3-O-gallate (1), was isolated from the fruit of Phyllanthus emblica L, together with 5 known compounds (2-6). Their structures were elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR techniques, and by comparison with literature data.

  9. Perfluorinated Compounds: Emerging POPs with Potential Immunotoxicity

    EPA Science Inventory

    Perfluorinated compounds (PFCs) have been recognized as an important class of environmental contaminants commonly detected in blood samples of both wildlife and humans. These compounds have been in use for more than 60 years as surface treatment chemicals, polymerization aids, an...

  10. Two new compounds from Ganoderma lucidum.

    PubMed

    Wang, Xin-Fang; Yan, Yong-Ming; Wang, Xin-Long; Ma, Xiu-Jing; Fu, Xue-Yan; Cheng, Yong-Xian

    2015-01-01

    Two pairs of new enantiomers, lucidulactones A and B (1 and 2), and two known compounds were isolated from Ganoderma lucidum. Their structures were determined by means of spectroscopic methods. The chiral HPLC was used to separate the ( - )- and (+)-antipodes of the new compounds.

  11. Herbal Compounds and Toxins Modulating TRP Channels

    PubMed Central

    Vriens, Joris; Nilius, Bernd; Vennekens, Rudi

    2008-01-01

    Although the benefits are sometimes obvious, traditional or herbal medicine is regarded with skepticism, because the mechanism through which plant compounds exert their powers are largely elusive. Recent studies have shown however that many of these plant compounds interact with specific ion channels and thereby modulate the sensing mechanism of the human body. Especially members of the Transient Receptor Potential (TRP) channels have drawn large attention lately as the receptors for plant-derived compounds such as capsaicin and menthol. TRP channels constitute a large and diverse family of channel proteins that can serve as versatile sensors that allow individual cells and entire organisms to detect changes in their environment. For this family, a striking number of empirical views have turned into mechanism-based actions of natural compounds. In this review we will give an overview of herbal compounds and toxins, which modulate TRP channels. PMID:19305789

  12. Potent acetylcholinesterase inhibitory compounds from Myristica fragrans.

    PubMed

    Cuong, To Dao; Hung, Tran Manh; Han, Hyoung Yun; Roh, Hang Sik; Seok, Ji-Hyeon; Lee, Jong Kwon; Jeong, Ja Young; Choi, Jae Sue; Kim, Jeong Ah; Min, Byung Sun

    2014-04-01

    The anti-cholinesterase activity was evaluated of the ethyl acetate fraction of the methanol extract of Myristica fragrans Houtt (Myristicaceae) seeds and of compounds isolated from it by various chromatographic techniques. The chemical structures of the compounds were determined from spectroscopic analyses (NMR data). Thirteen compounds (1-13) were isolated and identified. Compound 8 { [(7S)-8'-(4'-hydroxy-3'-methoxyphenyl)-7-hydroxypropyl]benzene-2,4-diol) showed the most effective activity with an IC50 value of 35.1 microM, followed by compounds 2 [(8R,8'S)-7'-(3',4'-methylenedioxyphenyl)-8,8'-dimethyl-7-(3,4-dihydroxyphenyl)-butane] and 11 (malabaricone C) with IC50 values of 42.1 and 44.0 pM, respectively. This is the first report of significant anticholinesterase properties of M. fragrans seeds. The findings demonstrate that M. fragrans could be used beneficially in the treatment of Alzheimer's disease.

  13. The natural production of organobromine compounds.

    PubMed

    Gribble, G W

    2000-03-01

    Organobromine chemicals are produced naturally by an array of biological and other chemical processes in our environment. Some of these compounds are identical to man-made organobromine compounds, such as methyl bromide, bromoform, and bromophenols, but many others are entirely new moleclar entities, often possessing extraordinary and important biological properties. Although only a few natural organobromine compounds had been discovered up to 1968, this number as of early 1999 is more than 1,600, and new examples are being discovered continually. Organobromine compounds are produced naturally by marine creatures (sponges, corals, sea slugs, tunicates, sea fans) and seaweed, plants, fungi, lichen, algae, bacteria, microbes, and some mammals. Many of these organobromine compounds are used in chemical defense, to facilitate food gathering, or as hormones.

  14. Retention of Compounding Skills Among Pharmacy Students

    PubMed Central

    Eley, John G.; Birnie, Christine

    2006-01-01

    Objective To evaluate the competency of second-year pharmacy students to compound capsules from a prescription 12 months after completing a compounding course. Methods Students who completed the compounding course were given the same prescription they had been given 12 months earlier to compound metoprolol capsules. No warning of the second exercise was given and they were expected to prepare capsules and package and label the finished product. Performance was evaluated in an identical manner for both exercises based on the level of professional competency of a score of 80% or above. Results Eighty-seven percent fewer students achieved a score of 90% or more on the second exercise and 81% fewer students demonstrated the required competency. Conclusions Differences in scores on the first and second exercises indicate that pharmacy students’ level of competency and retention of knowledge with respect to compounding capsules is not adequately retained after a 12-month hiatus. PMID:17332858

  15. Methods of making organic compounds by metathesis

    DOEpatents

    Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John

    2015-09-01

    Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.

  16. Use of model compounds in coal chemistry

    SciTech Connect

    Collins, C J

    1980-01-01

    The use of model compounds in coal chemistry has been summarized. Several examples from the literature, and also from work at Oak Ridge National Laboratory have been used to illustrate the main principles involved. The current controversy on the subject of model compounds is believed to stem from a semantic misunderstanding owing to different definitions of what a model compound is. The definition of a model compound from the organic chemist's point of view is that it is a substance which may possess at least one property or structural feature suspected of being present in the sample investigated. The sample may be coal itself, a maceral, a coal-derived material or a hydrogen-donor solvent. It is stressed that a recognition of the structure-reactivity relationship in organic compounds is necessary to avoid false conclusions.

  17. Thiophenic Sulfur Compounds Released During Coal Pyrolysis.

    PubMed

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-06-01

    Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography-mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ. Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis.

  18. Thiophenic Sulfur Compounds Released During Coal Pyrolysis

    PubMed Central

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-01-01

    Abstract Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography–mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ. Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis. PMID:23781126

  19. Water-soluble constituents of caraway: aromatic compound, aromatic compound glucoside and glucides.

    PubMed

    Matsumura, Tetsuko; Ishikawa, Toru; Kitajima, Junichi

    2002-10-01

    From the water-soluble portion of the methanolic extract of caraway (fruit of Carum carvi L.), an aromatic compound, an aromatic compound glucoside and a glucide were isolated together with 16 known compounds. Their structures were clarified as 2-methoxy-2-(4'-hydroxyphenyl)ethanol, junipediol A 2-O-beta-D-glucopyranoside and L-fucitol, respectively.

  20. Thermodynamic properties of organic iodine compounds

    NASA Astrophysics Data System (ADS)

    Richard, Laurent; Gaona, Xavier

    2011-11-01

    A critical evaluation has been made of the thermodynamic properties reported in the literature for 43 organic iodine compounds in the solid, liquid, or ideal gas state. These compounds include aliphatic, cyclic and aromatic iodides, iodophenols, iodocarboxylic acids, and acetyl and benzoyl iodides. The evaluation has been made on the basis of carbon number systematics and group additivity relations, which also allowed to provide estimates of the thermodynamic properties of those compounds for which no experimental data were available. Standard molal thermodynamic properties at 25 °C and 1 bar and heat capacity coefficients are reported for 13 crystalline, 29 liquid, and 39 ideal gas organic iodine compounds, which can be used to calculate the corresponding properties as a function of temperature and pressure. Values derived for the standard molal Gibbs energy of formation at 25 °C and 1 bar of these crystalline, liquid, and ideal gas organic iodine compounds have subsequently been combined with either solubility measurements or gas/water partition coefficients to obtain values for the standard partial molal Gibbs energies of formation at 25 °C and 1 bar of 32 aqueous organic iodine compounds. The thermodynamic properties of organic iodine compounds calculated in the present study can be used together with those for aqueous inorganic iodine species to predict the organic/inorganic speciation of iodine in marine sediments and petroleum systems, or in the near- and far-field of nuclear waste repositories.