Sample records for comprehensive point mutants

  1. Structural variability of E. coli thioredoxin captured in the crystal structures of single-point mutants

    PubMed Central

    Noguera, Martín E.; Vazquez, Diego S.; Ferrer-Sueta, Gerardo; Agudelo, William A.; Howard, Eduardo; Rasia, Rodolfo M.; Manta, Bruno; Cousido-Siah, Alexandra; Mitschler, André; Podjarny, Alberto; Santos, Javier

    2017-01-01

    Thioredoxin is a ubiquitous small protein that catalyzes redox reactions of protein thiols. Additionally, thioredoxin from E. coli (EcTRX) is a widely-used model for structure-function studies. In a previous paper, we characterized several single-point mutants of the C-terminal helix (CTH) that alter global stability of EcTRX. However, spectroscopic signatures and enzymatic activity for some of these mutants were found essentially unaffected. A comprehensive structural characterization at the atomic level of these near-invariant mutants can provide detailed information about structural variability of EcTRX. We address this point through the determination of the crystal structures of four point-mutants, whose mutations occurs within or near the CTH, namely L94A, E101G, N106A and L107A. These structures are mostly unaffected compared with the wild-type variant. Notably, the E101G mutant presents a large region with two alternative traces for the backbone of the same chain. It represents a significant shift in backbone positions. Enzymatic activity measurements and conformational dynamics studies monitored by NMR and molecular dynamic simulations show that E101G mutation results in a small effect in the structural features of the protein. We hypothesize that these alternative conformations represent samples of the native-state ensemble of EcTRX, specifically the magnitude and location of conformational heterogeneity. PMID:28181556

  2. Structural variability of E. coli thioredoxin captured in the crystal structures of single-point mutants

    NASA Astrophysics Data System (ADS)

    Noguera, Martín E.; Vazquez, Diego S.; Ferrer-Sueta, Gerardo; Agudelo, William A.; Howard, Eduardo; Rasia, Rodolfo M.; Manta, Bruno; Cousido-Siah, Alexandra; Mitschler, André; Podjarny, Alberto; Santos, Javier

    2017-02-01

    Thioredoxin is a ubiquitous small protein that catalyzes redox reactions of protein thiols. Additionally, thioredoxin from E. coli (EcTRX) is a widely-used model for structure-function studies. In a previous paper, we characterized several single-point mutants of the C-terminal helix (CTH) that alter global stability of EcTRX. However, spectroscopic signatures and enzymatic activity for some of these mutants were found essentially unaffected. A comprehensive structural characterization at the atomic level of these near-invariant mutants can provide detailed information about structural variability of EcTRX. We address this point through the determination of the crystal structures of four point-mutants, whose mutations occurs within or near the CTH, namely L94A, E101G, N106A and L107A. These structures are mostly unaffected compared with the wild-type variant. Notably, the E101G mutant presents a large region with two alternative traces for the backbone of the same chain. It represents a significant shift in backbone positions. Enzymatic activity measurements and conformational dynamics studies monitored by NMR and molecular dynamic simulations show that E101G mutation results in a small effect in the structural features of the protein. We hypothesize that these alternative conformations represent samples of the native-state ensemble of EcTRX, specifically the magnitude and location of conformational heterogeneity.

  3. Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Liu, Xiangyong; Zhang, Xiaohua; Zhang, Zhaojie

    2014-10-10

    The molecular mechanism of acetic acid tolerance in yeast remains unclear despite of its importance for efficient cellulosic ethanol production. In this study, we examined the effects of histone H3/H4 point mutations on yeast acetic acid tolerance by comprehensively screening a histone H3/H4 mutant library. A total of 24 histone H3/H4 mutants (six acetic acid resistant and 18 sensitive) were identified. Compared to the wild-type strain, the histone acetic acid-resistant mutants exhibited improved ethanol fermentation performance under acetic acid stress. Genome-wide transcriptome analysis revealed that changes in the gene expression in the acetic acid-resistant mutants H3 K37A and H4 K16Q were mainly related to energy production, antioxidative stress. Our results provide novel insights into yeast acetic acid tolerance on the basis of histone, and suggest a novel approach to improve ethanol production by altering the histone H3/H4 sequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity

    NASA Astrophysics Data System (ADS)

    Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit

    2016-10-01

    Molecular level understanding of mutational effects on stability and activity of enzymes is challenging particularly when several point mutations are incorporated during the directed evolution experiments. In our earlier study, we have suggested the lack of consistency in the effect of point mutations incorporated during the initial generations of directed evolution experiments, towards conformational stabilization of B. subtilis lipase mutants of later generations. Here, we report that the cumulative point mutations incorporated in mutants 2M (with two point mutations) to 6M (with six point mutations) possibly do not retain their original stabilizing nature in the most thermostable 12M mutant (with 12 point mutations). We have carried out MD simulations using structures incorporating reversal of different sets of point mutations to assess their effect on the conformational stability and activity of 12M. Our analysis has revealed that reversal of certain point mutations in 12M had little effect on its conformational stability, suggesting that these mutations were probably inconsequential towards the thermostability of the 12M mutant. Interestingly these mutations involved evolutionarily conserved residues. On the other hand, some of the other point mutations incorporated in nonconserved regions, appeared to contribute significantly towards the conformational stability and/or activity of 12M. Based on the analysis of dynamics of in silico mutants generated using the consensus sequence, we identified experimentally verifiable residue positions to further increase the conformational stability and activity of the 12M mutant.

  5. Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity.

    PubMed

    Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit

    2016-10-01

    Molecular level understanding of mutational effects on stability and activity of enzymes is challenging particularly when several point mutations are incorporated during the directed evolution experiments. In our earlier study, we have suggested the lack of consistency in the effect of point mutations incorporated during the initial generations of directed evolution experiments, towards conformational stabilization of B. subtilis lipase mutants of later generations. Here, we report that the cumulative point mutations incorporated in mutants 2M (with two point mutations) to 6M (with six point mutations) possibly do not retain their original stabilizing nature in the most thermostable 12M mutant (with 12 point mutations). We have carried out MD simulations using structures incorporating reversal of different sets of point mutations to assess their effect on the conformational stability and activity of 12M. Our analysis has revealed that reversal of certain point mutations in 12M had little effect on its conformational stability, suggesting that these mutations were probably inconsequential towards the thermostability of the 12M mutant. Interestingly these mutations involved evolutionarily conserved residues. On the other hand, some of the other point mutations incorporated in nonconserved regions, appeared to contribute significantly towards the conformational stability and/or activity of 12M. Based on the analysis of dynamics of in silico mutants generated using the consensus sequence, we identified experimentally verifiable residue positions to further increase the conformational stability and activity of the 12M mutant.

  6. Analysis of Mycobacterium avium subsp. paratuberculosis mutant libraries reveals loci-dependent transcription biases and strategies to novel mutant discovery

    USDA-ARS?s Scientific Manuscript database

    Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne’s disease in ruminants and it has been implicated as a cause of Crohn’s disease in humans. The generation of comprehensive random mutant banks by transposon mutagenesis is a fundamental wide genomic technology utilized...

  7. A competent catalytic active site is necessary for substrate induced dimer assembly in triosephosphate isomerase.

    PubMed

    Jimenez-Sandoval, Pedro; Vique-Sanchez, Jose Luis; Hidalgo, Marisol López; Velazquez-Juarez, Gilberto; Diaz-Quezada, Corina; Arroyo-Navarro, Luis Fernando; Moran, Gabriela Montero; Fattori, Juliana; Jessica Diaz-Salazar, A; Rudiño-Pinera, Enrique; Sotelo-Mundo, Rogerio; Figueira, Ana Carolina Migliorini; Lara-Gonzalez, Samuel; Benítez-Cardoza, Claudia G; Brieba, Luis G

    2017-11-01

    The protozoan parasite Trichomonas vaginalis contains two nearly identical triosephosphate isomerases (TvTIMs) that dissociate into stable monomers and dimerize upon substrate binding. Herein, we compare the role of the "ball and socket" and loop 3 interactions in substrate assisted dimer assembly in both TvTIMs. We found that point mutants at the "ball" are only 39 and 29-fold less catalytically active than their corresponding wild-type counterparts, whereas Δloop 3 deletions are 1502 and 9400-fold less active. Point and deletion mutants dissociate into stable monomers. However, point mutants assemble as catalytic competent dimers upon binding of the transition state substrate analog PGH, whereas loop 3 deletions remain monomeric. A comparison between crystal structures of point and loop 3 deletion monomeric mutants illustrates that the catalytic residues in point mutants and wild-type TvTIMs are maintained in the same orientation, whereas the catalytic residues in deletion mutants show an increase in thermal mobility and present structural disorder that may hamper their catalytic role. The high enzymatic activity present in monomeric point mutants correlates with the formation of dimeric TvTIMs upon substrate binding. In contrast, the low activity and lack of dimer assembly in deletion mutants suggests a role of loop 3 in promoting the formation of the active site as well as dimer assembly. Our results suggest that in TvTIMs the active site is assembled during dimerization and that the integrity of loop 3 and ball and socket residues is crucial to stabilize the dimer. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Structural Analysis of Single-Point Mutations Given an RNA Sequence: A Case Study with RNAMute

    NASA Astrophysics Data System (ADS)

    Churkin, Alexander; Barash, Danny

    2006-12-01

    We introduce here for the first time the RNAMute package, a pattern-recognition-based utility to perform mutational analysis and detect vulnerable spots within an RNA sequence that affect structure. Mutations in these spots may lead to a structural change that directly relates to a change in functionality. Previously, the concept was tried on RNA genetic control elements called "riboswitches" and other known RNA switches, without an organized utility that analyzes all single-point mutations and can be further expanded. The RNAMute package allows a comprehensive categorization, given an RNA sequence that has functional relevance, by exploring the patterns of all single-point mutants. For illustration, we apply the RNAMute package on an RNA transcript for which individual point mutations were shown experimentally to inactivate spectinomycin resistance in Escherichia coli. Functional analysis of mutations on this case study was performed experimentally by creating a library of point mutations using PCR and screening to locate those mutations. With the availability of RNAMute, preanalysis can be performed computationally before conducting an experiment.

  9. Mouse phenotyping.

    PubMed

    Fuchs, Helmut; Gailus-Durner, Valérie; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Calzada-Wack, Julia; Da Silva-Buttkus, Patricia; Neff, Frauke; Götz, Alexander; Hans, Wolfgang; Hölter, Sabine M; Horsch, Marion; Kastenmüller, Gabi; Kemter, Elisabeth; Lengger, Christoph; Maier, Holger; Matloka, Mikolaj; Möller, Gabriele; Naton, Beatrix; Prehn, Cornelia; Puk, Oliver; Rácz, Ildikó; Rathkolb, Birgit; Römisch-Margl, Werner; Rozman, Jan; Wang-Sattler, Rui; Schrewe, Anja; Stöger, Claudia; Tost, Monica; Adamski, Jerzy; Aigner, Bernhard; Beckers, Johannes; Behrendt, Heidrun; Busch, Dirk H; Esposito, Irene; Graw, Jochen; Illig, Thomas; Ivandic, Boris; Klingenspor, Martin; Klopstock, Thomas; Kremmer, Elisabeth; Mempel, Martin; Neschen, Susanne; Ollert, Markus; Schulz, Holger; Suhre, Karsten; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Hrabě de Angelis, Martin

    2011-02-01

    Model organisms like the mouse are important tools to learn more about gene function in man. Within the last 20 years many mutant mouse lines have been generated by different methods such as ENU mutagenesis, constitutive and conditional knock-out approaches, knock-down, introduction of human genes, and knock-in techniques, thus creating models which mimic human conditions. Due to pleiotropic effects, one gene may have different functions in different organ systems or time points during development. Therefore mutant mouse lines have to be phenotyped comprehensively in a highly standardized manner to enable the detection of phenotypes which might otherwise remain hidden. The German Mouse Clinic (GMC) has been established at the Helmholtz Zentrum München as a phenotyping platform with open access to the scientific community (www.mousclinic.de; [1]). The GMC is a member of the EUMODIC consortium which created the European standard workflow EMPReSSslim for the systemic phenotyping of mouse models (http://www.eumodic.org/[2]). Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Sharing mutants and experimental information prepublication using FgMutantDb (https://scabusa.org/FgMutantDb).

    PubMed

    Baldwin, Thomas T; Basenko, Evelina; Harb, Omar; Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E; Bregitzer, Phil P

    2018-06-01

    There is no comprehensive storage for generated mutants of Fusarium graminearum or data associated with these mutants. Instead, researchers relied on several independent and non-integrated databases. FgMutantDb was designed as a simple spreadsheet that is accessible globally on the web that will function as a centralized source of information on F. graminearum mutants. FgMutantDb aids in the maintenance and sharing of mutants within a research community. It will serve also as a platform for disseminating prepublication results as well as negative results that often go unreported. Additionally, the highly curated information on mutants in FgMutantDb will be shared with other databases (FungiDB, Ensembl, PhytoPath, and PHI-base) through updating reports. Here we describe the creation and potential usefulness of FgMutantDb to the F. graminearum research community, and provide a tutorial on its use. This type of database could be easily emulated for other fungal species. Published by Elsevier Inc.

  11. Determination of binding affinity upon mutation for type I dockerin-cohesin complexes from Clostridium thermocellum and Clostridium cellulolyticum using deep sequencing.

    PubMed

    Kowalsky, Caitlin A; Whitehead, Timothy A

    2016-12-01

    The comprehensive sequence determinants of binding affinity for type I cohesin toward dockerin from Clostridium thermocellum and Clostridium cellulolyticum was evaluated using deep mutational scanning coupled to yeast surface display. We measured the relative binding affinity to dockerin for 2970 and 2778 single point mutants of C. thermocellum and C. cellulolyticum, respectively, representing over 96% of all possible single point mutants. The interface ΔΔG for each variant was reconstructed from sequencing counts and compared with the three independent experimental methods. This reconstruction results in a narrow dynamic range of -0.8-0.5 kcal/mol. The computational software packages FoldX and Rosetta were used to predict mutations that disrupt binding by more than 0.4 kcal/mol. The area under the curve of receiver operator curves was 0.82 for FoldX and 0.77 for Rosetta, showing reasonable agreements between predictions and experimental results. Destabilizing mutations to core and rim positions were predicted with higher accuracy than support positions. This benchmark dataset may be useful for developing new computational prediction tools for the prediction of the mutational effect on binding affinities for protein-protein interactions. Experimental considerations to improve precision and range of the reconstruction method are discussed. Proteins 2016; 84:1914-1928. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Computational design of thermostabilizing point mutations for G protein-coupled receptors

    PubMed Central

    Popov, Petr; Peng, Yao; Shen, Ling; Stevens, Raymond C; Cherezov, Vadim; Liu, Zhi-Jie

    2018-01-01

    Engineering of GPCR constructs with improved thermostability is a key for successful structural and biochemical studies of this transmembrane protein family, targeted by 40% of all therapeutic drugs. Here we introduce a comprehensive computational approach to effective prediction of stabilizing mutations in GPCRs, named CompoMug, which employs sequence-based analysis, structural information, and a derived machine learning predictor. Tested experimentally on the serotonin 5-HT2C receptor target, CompoMug predictions resulted in 10 new stabilizing mutations, with an apparent thermostability gain ~8.8°C for the best single mutation and ~13°C for a triple mutant. Binding of antagonists confers further stabilization for the triple mutant receptor, with total gains of ~21°C as compared to wild type apo 5-HT2C. The predicted mutations enabled crystallization and structure determination for the 5-HT2C receptor complexes in inactive and active-like states. While CompoMug already shows high 25% hit rate and utility in GPCR structural studies, further improvements are expected with accumulation of structural and mutation data. PMID:29927385

  13. Gene Amplification and Point Mutations in Pyrimidine Metabolic Genes in 5-Fluorouracil Resistant Leishmania infantum

    PubMed Central

    Ritt, Jean-François; Raymond, Frédéric; Leprohon, Philippe; Légaré, Danielle; Corbeil, Jacques; Ouellette, Marc

    2013-01-01

    Background The human protozoan parasites Leishmania are prototrophic for pyrimidines with the ability of both de novo biosynthesis and uptake of pyrimidines. Methodology/Principal Findings Five independent L. infantum mutants were selected for resistance to the pyrimidine analogue 5-fluorouracil (5-FU) in the hope to better understand the metabolism of pyrimidine in Leishmania. Analysis of the 5-FU mutants by comparative genomic hybridization and whole genome sequencing revealed in selected mutants the amplification of DHFR-TS and a deletion of part of chromosome 10. Point mutations in uracil phosphorybosyl transferase (UPRT), thymidine kinase (TK) and uridine phosphorylase (UP) were also observed in three individual resistant mutants. Transfection experiments confirmed that these point mutations were responsible for 5-FU resistance. Transport studies revealed that one resistant mutant was defective for uracil and 5-FU import. Conclusion/Significance This study provided further insights in pyrimidine metabolism in Leishmania and confirmed that multiple mutations can co-exist and lead to resistance in Leishmania. PMID:24278495

  14. A point mutation of valine-311 to methionine in Bacillus subtilis protoporphyrinogen oxidase does not greatly increase resistance to the diphenyl ether herbicide oxyfluorfen.

    PubMed

    Jeong, Eunjoo; Houn, Thavrak; Kuk, Yongin; Kim, Eun-Seon; Chandru, Hema Kumar; Baik, Myunggi; Back, Kyoungwhan; Guh, Ja-Ock; Han, Oksoo

    2003-10-01

    In an effort to asses the effect of Val311Met point mutation of Bacillus subtilis protoporphyrinogen oxidase on the resistance to diphenyl ether herbicides, a Val311Met point mutant of B. subtilis protoporphyrinogen oxidase was prepared, heterologously expressed in Escherichia coli, and the purified recombinant Val311Met mutant protoporphyrinogen oxidase was kinetically characterized. The mutant protoporphyrinogen oxidase showed very similar kinetic patterns to wild type protoporphyrinogen oxidase, with slightly decreased activity dependent on pH and the concentrations of NaCl, Tween 20, and imidazole. When oxyfluorfen was used as a competitive inhibitor, the Val311Met mutant protoporphyrinogen oxidase showed an increased inhibition constant about 1.5 times that of wild type protoporphyrinogen oxidase. The marginal increase of the inhibition constant indicates that the Val311Met point mutation in B. subtilis protoporphyrinogen oxidase may not be an important determinant in the mechanism that protects protoporphyrinogen oxidase against diphenyl ether herbicides.

  15. Deciphering the Dynamics of Non-Covalent Interactions Affecting Thermal Stability of a Protein: Molecular Dynamics Study on Point Mutant of Thermus thermophilus Isopropylmalate Dehydrogenase.

    PubMed

    Sharma, Reetu; Sastry, G Narahari

    2015-01-01

    Thermus thermophilius isopropylmalate dehydrogenase catalyzes oxidative decarboxylation and dehydrogenation of isopropylmalate. Substitution of leucine to alanine at position 172 enhances the thermal stability among the known point mutants. Exploring the dynamic properties of non-covalent interactions such as saltbridges, hydrogen bonds and hydrophobic interactions to explain thermal stability of a protein is interesting in its own right. In this study dynamic changes in the non-covalent interactions are studied to decipher the deterministic features of thermal stability of a protein considering a case study of a point mutant in Thermus thermophilus isopropylmalate dehydrogenase. A total of four molecular dynamic simulations of 0.2 μs were carried out on wild type and mutant's functional dimers at 300 K and 337 K. Higher thermal stability of the mutant as compared to wild type is revealed by root mean square deviation, root mean square fluctuations and Cα-Cα distance with an increase in temperature from 300 K to 337 K. Most of the regions of wild type fluctuate higher than the corresponding regions of mutant with an increase in temperature. Cα-Cα distance analysis suggests that long distance networks are significantly affected in wild type as compared to the mutant. Short lived contacts are higher in wild type, while long lived contacts are lost at 337 K. The mutant forms less hydrogen bonds with water as compared to wild type at 337 K. In contrast to wild type, the mutant shows significant increase in unique saltbridges, hydrogen bonds and hydrophobic contacts at 337 K. The current study indicates that there is a strong inter-dependence of thermal stability on the way in which non-covalent interactions reorganize, and it is rewarding to explore this connection in single mutant studies.

  16. Structure-guided systems-level engineering of oxidation-prone methionine residues in catalytic domain of an alkaline α-amylase from Alkalimonas amylolytica for significant improvement of both oxidative stability and catalytic efficiency.

    PubMed

    Yang, Haiquan; Liu, Long; Shin, Hyun-dong; Li, Jianghua; Du, Guocheng; Chen, Jian

    2013-01-01

    High oxidative stability and catalytic efficiency are required for the alkaline α-amylases to keep the enzymatic performance under the harsh conditions in detergent industries. In this work, we attempted to significantly improve both the oxidative stability and catalytic efficiency of an alkaline α-amylase from Alkalimonas amylolytica by engineering the five oxidation-prone methionine residues around the catalytic domain via a systematic approach. Specifically, based on the tertiary structure analysis, five methionines (Met 145, Met 214, Met 229, Met 247 and Met 317) were individually substituted with oxidation-resistant threonine, isoleucine and alaline, respectively. Among the created 15 mutants, 7 mutants M145A, M145I, M214A, M229A, M229T, M247T and M317I showed significantly enhanced oxidative stability or catalytic efficiency. In previous work, we found that the replacement of M247 with leucine could significantly improve the oxidative stability. Thus, these 8 positive mutants (M145A, M145I, M214A, M229A, M229T, M247T, M247L and M317I) were used to conduct the second round of combinational mutations. Among the constructed 85 mutants (25 two-point mutants, 36 three-point mutants, 16 four-point mutants and 8 five-point mutants), the mutant M145I-214A-229T-247T-317I showed a 5.4-fold increase in oxidative stability and a 3.0-fold increase in catalytic efficiency. Interestingly, the specific activity, alkaline stability and thermal stability of this mutant were also increased. The increase of salt bridge and hydrogen bonds around the catalytic domain contributed to the significantly improved catalytic efficiency and stability, as revealed by the three-dimensional structure model of wild-type alkaline α-amylase and its mutant M145I-214A-229T-247T-317I. With the significantly improved oxidative stability and catalytic efficiency, the mutant M145I-214A-229T-247T-317I has a great potential as a detergent additive, and this structure-guided systems engineering strategy may be useful for the protein engineering of the other microbial enzymes to fulfill industrial requirements.

  17. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.

    PubMed

    Bednar, David; Beerens, Koen; Sebestova, Eva; Bendl, Jaroslav; Khare, Sagar; Chaloupkova, Radka; Prokop, Zbynek; Brezovsky, Jan; Baker, David; Damborsky, Jiri

    2015-11-01

    There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

  18. Problem-Solving Test: Tryptophan Operon Mutants

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2010-01-01

    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  19. Generation and screening of a comprehensive Mycobacterium avium subsp. paratuberculosis transposon mutant bank.

    PubMed

    Rathnaiah, Govardhan; Lamont, Elise A; Harris, N Beth; Fenton, Robert J; Zinniel, Denise K; Liu, Xiaofei; Sotos, Josh; Feng, Zhengyu; Livneh-Kol, Ayala; Shpigel, Nahum Y; Czuprynski, Charles J; Sreevatsan, Srinand; Barletta, Raúl G

    2014-01-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's Disease in ruminants. This enteritis has significant economic impact and worldwide distribution. Vaccination is one of the most cost effective infectious disease control measures. Unfortunately, current vaccines reduce clinical disease and shedding, but are of limited efficacy and do not provide long-term protective immunity. Several strategies have been followed to mine the MAP genome for virulence determinants that could be applied to vaccine and diagnostic assay development. In this study, a comprehensive mutant bank of 13,536 MAP K-10 Tn5367 mutants (P > 95%) was constructed and screened in vitro for phenotypes related to virulence. This strategy was designated to maximize identification of genes important to MAP pathogenesis without relying on studies of other mycobacterial species that may not translate into similar effects in MAP. This bank was screened for mutants with colony morphology alterations, susceptibility to D-cycloserine, impairment in siderophore production or secretion, reduced cell association, and decreased biofilm and clump formation. Mutants with interesting phenotypes were analyzed by PCR, Southern blotting and DNA sequencing to determine transposon insertion sites. These insertion sites mapped upstream from the MAP1152-MAP1156 cluster, internal to either the Mod operon gene MAP1566 or within the coding sequence of lsr2, and several intergenic regions. Growth curves in broth cultures, invasion assays and kinetics of survival and replication in primary bovine macrophages were also determined. The ability of vectors carrying Tn5370 to generate stable MAP mutants was also investigated.

  20. Southern Analysis of Genomic Alterations in Gamma-Ray-Induced Aprt- Hamster Cell Mutants

    PubMed Central

    Grosovsky, Andrew J.; Drobetsky, Elliot A.; deJong, Pieter J.; Glickman, Barry W.

    1986-01-01

    The role of genomic alterations in mutagenesis induced by ionizing radiation has been the subject of considerable speculation. By Southern blotting analysis we show here that 9 of 55 (approximately 1/6) gamma-ray-induced mutants at the adenine phosphoribosyl transferase (aprt) locus of Chinese hamster ovary (CHO) cells have a detectable genomic rearrangement. These fall into two classes: intragenic deletions and chromosomal rearrangements. In contrast, no major genomic alterations were detected among 67 spontaneous mutants, although two restriction site loss events were observed. Three gamma-ray-induced mutants were found to be intragenic deletions; all may have identical break-points. The remaining six gamma-ray-induced mutants demonstrating a genomic alteration appear to be the result of chromosomal rearrangements, possibly translocation or inversion events. None of the remaining gamma-ray-induced mutants showed any observable alteration in blotting pattern indicating a substantial role for point mutation in gamma-ray-induced mutagenesis at the aprt locus. PMID:3013724

  1. Expression of peach sucrose transporters in heterologous systems points out their different physiological role.

    PubMed

    Zanon, Laura; Falchi, Rachele; Hackel, Aleksandra; Kühn, Christina; Vizzotto, Giannina

    2015-09-01

    Sucrose is the major phloem-translocated component in a number of economically important plant species. The comprehension of the mechanisms involved in sucrose transport in peach fruit appears particularly relevant, since the accumulation of this sugar, during ripening, is crucial for the growth and quality of the fruit. Here, we report the functional characterisation and subcellular localisation of three sucrose transporters (PpSUT1, PpSUT2, PpSUT4) in peach, and we formulate novel hypotheses about their role in accumulation of sugar. We provide evidence, about the capability of both PpSUT1 and PpSUT4, expressed in mutant yeast strains to transport sucrose. The functionality of PpSUT1 at the plasma membrane, and of PpSUT4 at the tonoplast, has been demonstrated. On the other hand, the functionality of PpSUT2 was not confirmed: this protein is unable to complement two sucrose uptake-deficient mutant yeast strains. Our results corroborate the hypotheses that PpSUT1 partakes in phloem loading in leaves, and PpSUT4 sustains cell metabolism by regulating sucrose efflux from the vacuole. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Random oligonucleotide mutagenesis: application to a large protein coding sequence of a major histocompatibility complex class I gene, H-2DP.

    PubMed Central

    Murray, R; Pederson, K; Prosser, H; Muller, D; Hutchison, C A; Frelinger, J A

    1988-01-01

    We have used random oligonucleotide mutagenesis (or saturation mutagenesis) to create a library of point mutations in the alpha 1 protein domain of a Major Histocompatibility Complex (MHC) molecule. This protein domain is critical for T cell and B cell recognition. We altered the MHC class I H-2DP gene sequence such that synthetic mutant alpha 1 exons (270 bp of coding sequence), which contain mutations identified by sequence analysis, can replace the wild type alpha 1 exon. The synthetic exons were constructed from twelve overlapping oligonucleotides which contained an average of 1.3 random point mutations per intact exon. DNA sequence analysis of mutant alpha 1 exons has shown a point mutant distribution that fits a Poisson distribution, and thus emphasizes the utility of this mutagenesis technique to "scan" a large protein sequence for important mutations. We report our use of saturation mutagenesis to scan an entire exon of the H-2DP gene, a cassette strategy to replace the wild type alpha 1 exon with individual mutant alpha 1 exons, and analysis of mutant molecules expressed on the surface of transfected mouse L cells. Images PMID:2903482

  3. Multiplex sequence analysis demonstrates the competitive growth advantage of the A-to-G mutants of clarithromycin-resistant Helicobacter pylori.

    PubMed

    Wang, G; Rahman, M S; Humayun, M Z; Taylor, D E

    1999-03-01

    Clarithromycin resistance in Helicobacter pylori is due to point mutation within the 23S rRNA. We examined the growth rates of different types of site-directed mutants and demonstrated quantitatively the competitive growth advantage of A-to-G mutants over other types of mutants by a multiplex sequencing assay. The results provide a rational explanation of why A-to-G mutants are predominantly observed among clarithromycin-resistant clinical isolates.

  4. Multiplex Sequence Analysis Demonstrates the Competitive Growth Advantage of the A-to-G Mutants of Clarithromycin-Resistant Helicobacter pylori

    PubMed Central

    Wang, Ge; Rahman, M. Sayeedur; Humayun, M. Zafri; Taylor, Diane E.

    1999-01-01

    Clarithromycin resistance in Helicobacter pylori is due to point mutation within the 23S rRNA. We examined the growth rates of different types of site-directed mutants and demonstrated quantitatively the competitive growth advantage of A-to-G mutants over other types of mutants by a multiplex sequencing assay. The results provide a rational explanation of why A-to-G mutants are predominantly observed among clarithromycin-resistant clinical isolates. PMID:10049289

  5. Influence of the R823W mutation on the interaction of the ANKS6-ANKS3: insights from molecular dynamics simulation and free energy analysis.

    PubMed

    Kan, Wei; Fang, Fengqin; Chen, Lin; Wang, Ruige; Deng, Qigang

    2016-05-01

    The sterile alpha motif (SAM) domain of the protein ANKS6, a protein-protein interaction domain, is responsible for autosomal dominant polycystic kidney disease. Although the disease is the result of the R823W point mutation in the SAM domain of the protein ANKS6, the molecular details are still unclear. We applied molecular dynamics simulations, the principal component analysis, and the molecular mechanics Poisson-Boltzmann surface area binding free energy calculation to explore the structural and dynamic effects of the R823W point mutation on the complex ANKS6-ANKS3 (PDB ID: 4NL9) in comparison to the wild proteins. The energetic analysis presents that the wild type has a more stable structure than the mutant. The R823W point mutation not only disrupts the structure of the ANKS6 SAM domain but also negatively affects the interaction of the ANKS6-ANKS3. These results further clarify the previous experiments to understand the ANKS6-ANKS3 interaction comprehensively. In summary, this study would provide useful suggestions to understand the interaction of these proteins and their fatal action on mediating kidney function.

  6. Understanding the loss-of-function in a triple missense mutant of DNA polymerase β found in prostate cancer.

    PubMed

    An, Changlong; Beard, William A; Chen, Desheng; Wilson, Samuel H; Makridakis, Nick M

    2013-10-01

    Human DNA polymerase (pol) β is essential for base excision repair. We previously reported a triple somatic mutant of pol β (p.P261L/T292A/I298T) found in an early onset prostate tumor. This mutation abolishes polymerase activity, and the wild-type allele was not present in the tumor, indicating a complete deficiency in pol β function. The effect on polymerase activity is unexpected because the point mutations that comprise the triple mutant are not part of the active site. Herein, we demonstrate the mechanism of this loss-of-function. In order to understand the effect of the individual point mutations we biochemically analyzed all single and double mutants that comprise the triple mutant. We found that the p.I298T mutation is responsible for a marked instability of the triple mutant protein at 37˚C. At room temperature the triple mutant's low efficiency is also due to a decrease in the apparent binding affinity for the dNTP substrate, which is due to the p.T292A mutation. Furthermore, the triple mutant displays lower fidelity for transversions in vitro, due to the p.T292A mutation. We conclude that distinct mutations of the triple pol β mutant are responsible for the loss of activity, lower fidelity, and instability observed in vitro.

  7. Comprehensive Gene Expression Analysis of Rice Aleurone Cells: Probing the Existence of an Alternative Gibberellin Receptor1

    PubMed Central

    Yano, Kenji; Aya, Koichiro; Hirano, Ko; Ordonio, Reynante Lacsamana; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2015-01-01

    Current gibberellin (GA) research indicates that GA must be perceived in plant nuclei by its cognate receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1). Recognition of GA by GID1 relieves the repression mediated by the DELLA protein, a model known as the GID1-DELLA GA perception system. There have been reports of potential GA-binding proteins in the plasma membrane that perceive GA and induce α-amylase expression in cereal aleurone cells, which is mechanistically different from the GID1-DELLA system. Therefore, we examined the expression of the rice (Oryza sativa) α-amylase genes in rice mutants impaired in the GA receptor (gid1) and the DELLA repressor (slender rice1; slr1) and confirmed their lack of response to GA in gid1 mutants and constitutive expression in slr1 mutants. We also examined the expression of GA-regulated genes by genome-wide microarray and quantitative reverse transcription-polymerase chain reaction analyses and confirmed that all GA-regulated genes are modulated by the GID1-DELLA system. Furthermore, we studied the regulatory network involved in GA signaling by using a set of mutants defective in genes involved in GA perception and gene expression, namely gid1, slr1, gid2 (a GA-related F-box protein mutant), and gamyb (a GA-related trans-acting factor mutant). Almost all GA up-regulated genes were regulated by the four named GA-signaling components. On the other hand, GA down-regulated genes showed different expression patterns with respect to GID2 and GAMYB (e.g. a considerable number of genes are not controlled by GAMYB or GID2 and GAMYB). Based on these observations, we present a comprehensive discussion of the intricate network of GA-regulated genes in rice aleurone cells. PMID:25511432

  8. Dissection of Symbiosis and Organ Development by Integrated Transcriptome Analysis of Lotus japonicus Mutant and Wild-Type Plants

    PubMed Central

    Høgslund, Niels; Radutoiu, Simona; Krusell, Lene; Voroshilova, Vera; Hannah, Matthew A.; Goffard, Nicolas; Sanchez, Diego H.; Lippold, Felix; Ott, Thomas; Sato, Shusei; Tabata, Satoshi; Liboriussen, Poul; Lohmann, Gitte V.; Schauser, Leif; Weiller, Georg F.; Udvardi, Michael K.; Stougaard, Jens

    2009-01-01

    Genetic analyses of plant symbiotic mutants has led to the identification of key genes involved in Rhizobium-legume communication as well as in development and function of nitrogen fixing root nodules. However, the impact of these genes in coordinating the transcriptional programs of nodule development has only been studied in limited and isolated studies. Here, we present an integrated genome-wide analysis of transcriptome landscapes in Lotus japonicus wild-type and symbiotic mutant plants. Encompassing five different organs, five stages of the sequentially developed determinate Lotus root nodules, and eight mutants impaired at different stages of the symbiotic interaction, our data set integrates an unprecedented combination of organ- or tissue-specific profiles with mutant transcript profiles. In total, 38 different conditions sampled under the same well-defined growth regimes were included. This comprehensive analysis unravelled new and unexpected patterns of transcriptional regulation during symbiosis and organ development. Contrary to expectations, none of the previously characterized nodulins were among the 37 genes specifically expressed in nodules. Another surprise was the extensive transcriptional response in whole root compared to the susceptible root zone where the cellular response is most pronounced. A large number of transcripts predicted to encode transcriptional regulators, receptors and proteins involved in signal transduction, as well as many genes with unknown function, were found to be regulated during nodule organogenesis and rhizobial infection. Combining wild type and mutant profiles of these transcripts demonstrates the activation of a complex genetic program that delineates symbiotic nitrogen fixation. The complete data set was organized into an indexed expression directory that is accessible from a resource database, and here we present selected examples of biological questions that can be addressed with this comprehensive and powerful gene expression data set. PMID:19662091

  9. A Novel Point Mutation at Position 156 of Reverse Transcriptase from Feline Immunodeficiency Virus Confers Resistance to the Combination of (−)-β-2′,3′-Dideoxy-3′-Thiacytidine and 3′-Azido-3′-Deoxythymidine

    PubMed Central

    Smith, Robert A.; Remington, Kathryn M.; Preston, Bradley D.; Schinazi, Raymond F.; North, Thomas W.

    1998-01-01

    Mutants of feline immunodeficiency virus (FIV) resistant to (−)-β-2′,3′-dideoxy-3′-thiacytidine (3TC) were selected by culturing virus in the presence of increasing stepwise concentrations of 3TC. Two plaque-purified variants were isolated from the original mutant population, and both of these mutants were resistant to 3TC. Surprisingly, these mutants were also phenotypically resistant to 3′-azido-3′-deoxythymidine (AZT) and to the combination of 3TC and AZT. Purified reverse transcriptase (RT) from one of these plaque-purified mutants was resistant to the 5′-triphosphates of 3TC and AZT. DNA sequence analysis of the RT-encoding region of the pol gene amplified from the plaque-purified mutants revealed a Pro-to-Ser mutation at position 156 of RT. A site-directed mutant of FIV engineered to contain this Pro-156-Ser mutation was resistant to 3TC, AZT, and the combination of 3TC and AZT, confirming the role of the Pro-156-Ser mutation in the resistance of FIV to these two nucleoside analogs. This represents the first report of a lentiviral mutant resistant to the combination of AZT and 3TC due to a single, unique point mutation. PMID:9499094

  10. Glucose Starvation Alters Heat Shock Response, Leading to Death of Wild Type Cells and Survival of MAP Kinase Signaling Mutant

    PubMed Central

    Higgins, LeeAnn; Markowski, Todd; Brambl, Robert

    2016-01-01

    A moderate heat shock induces Neurospora crassa to synthesize large quantities of heat shock proteins that are protective against higher, otherwise lethal temperatures. However, wild type cells do not survive when carbohydrate deprivation is added to heat shock. In contrast, a mutant strain defective in a stress-activated protein kinase does survive the combined stresses. In order to understand the basis for this difference in survival, we have determined the relative levels of detected proteins in the mutant and wild type strain during dual stress, and we have identified gene transcripts in both strains whose quantities change in response to heat shock or dual stress. These data and supportive experimental evidence point to reasons for survival of the mutant strain. By using alternative respiratory mechanisms, these cells experience less of the oxidative stress that proves damaging to wild type cells. Of central importance, mutant cells recycle limited resources during dual stress by undergoing autophagy, a process that we find utilized by both wild type and mutant cells during heat shock. Evidence points to inappropriate activation of TORC1, the central metabolic regulator, in wild type cells during dual stress, based upon behavior of an additional signaling mutant and inhibitor studies. PMID:27870869

  11. Insilico modeling and molecular dynamic simulation of claudin-1 point mutations in HCV infection.

    PubMed

    Vipperla, Bhavaniprasad; Dass, J Febin Prabhu; Jayanthi, S

    2014-01-01

    Claudin-1 (CLDN1) in association with envelope glycoprotein (CD81) mediates the fusion of HCV into the cytosol. Recent studies have indicated that point mutations in CLDN1 are important for the entry of hepatitis C virus (HCV). To validate these findings, we employed a computational platform to investigate the structural effect of two point mutations (I32M and E48K). Initially, three-dimensional co-ordinates for CLDN1 receptor sequence were generated. Then, three mutant models were built using the point mutation including a double mutant (I32M/E48K) model from the native model structure. Finally, all the four model structures including the native and three mutant models were subjected to molecular dynamics (MD) simulation for a period of 25 ns to appreciate their dynamic behavior. The MD trajectory files were analyzed using cluster and principal component method. The analysis suggested that either of the single mutation has negligible effect on the overall structure of CLDN1 compared to the double mutant form. However, the double mutant model of CLDN1 shows significant negative impact through the impairment of H-bonds and the simultaneous increase in solvent accessible surface area. Our simulation results are visibly consistent with the experimental report suggesting that the CLDN1 receptor distortion is prominent due to the double mutation with large surface accessibility. This increase in accessible surface area due to the coexistence of double mutation may be presumed as one of the key factor that results in permissive action of HCV attachment and infection.

  12. Principal component analysis of binding energies for single-point mutants of hT2R16 bound to an agonist correlate with experimental mutant cell response.

    PubMed

    Chen, Derek E; Willick, Darryl L; Ruckel, Joseph B; Floriano, Wely B

    2015-01-01

    Directed evolution is a technique that enables the identification of mutants of a particular protein that carry a desired property by successive rounds of random mutagenesis, screening, and selection. This technique has many applications, including the development of G protein-coupled receptor-based biosensors and designer drugs for personalized medicine. Although effective, directed evolution is not without challenges and can greatly benefit from the development of computational techniques to predict the functional outcome of single-point amino acid substitutions. In this article, we describe a molecular dynamics-based approach to predict the effects of single amino acid substitutions on agonist binding (salicin) to a human bitter taste receptor (hT2R16). An experimentally determined functional map of single-point amino acid substitutions was used to validate the whole-protein molecular dynamics-based predictive functions. Molecular docking was used to construct a wild-type agonist-receptor complex, providing a starting structure for single-point substitution simulations. The effects of each single amino acid substitution in the functional response of the receptor to its agonist were estimated using three binding energy schemes with increasing inclusion of solvation effects. We show that molecular docking combined with molecular mechanics simulations of single-point mutants of the agonist-receptor complex accurately predicts the functional outcome of single amino acid substitutions in a human bitter taste receptor.

  13. GenoBase: comprehensive resource database of Escherichia coli K-12

    PubMed Central

    Otsuka, Yuta; Muto, Ai; Takeuchi, Rikiya; Okada, Chihiro; Ishikawa, Motokazu; Nakamura, Koichiro; Yamamoto, Natsuko; Dose, Hitomi; Nakahigashi, Kenji; Tanishima, Shigeki; Suharnan, Sivasundaram; Nomura, Wataru; Nakayashiki, Toru; Aref, Walid G.; Bochner, Barry R.; Conway, Tyrrell; Gribskov, Michael; Kihara, Daisuke; Rudd, Kenneth E.; Tohsato, Yukako; Wanner, Barry L.; Mori, Hirotada

    2015-01-01

    Comprehensive experimental resources, such as ORFeome clone libraries and deletion mutant collections, are fundamental tools for elucidation of gene function. Data sets by omics analysis using these resources provide key information for functional analysis, modeling and simulation both in individual and systematic approaches. With the long-term goal of complete understanding of a cell, we have over the past decade created a variety of clone and mutant sets for functional genomics studies of Escherichia coli K-12. We have made these experimental resources freely available to the academic community worldwide. Accordingly, these resources have now been used in numerous investigations of a multitude of cell processes. Quality control is extremely important for evaluating results generated by these resources. Because the annotation has been changed since 2005, which we originally used for the construction, we have updated these genomic resources accordingly. Here, we describe GenoBase (http://ecoli.naist.jp/GB/), which contains key information about comprehensive experimental resources of E. coli K-12, their quality control and several omics data sets generated using these resources. PMID:25399415

  14. Genetic transformation of Neurospora tetrasperma, demonstration of repeat-induced point mutation (RIP) in self-crosses and a screen for recessive RIP-defective mutants.

    PubMed Central

    Bhat, Ashwin; Tamuli, Ranjan; Kasbekar, Durgadas P

    2004-01-01

    The pseudohomothallic fungus Neurospora tetrasperma is naturally resistant to the antibiotic hygromycin. We discovered that mutation of its erg-3 (sterol C-14 reductase) gene confers a hygromycin-sensitive phenotype that can be used to select transformants on hygromycin medium by complementation with the N. crassa erg-3+ and bacterial hph genes. Cotransformation of hph with PCR-amplified DNA of other genes enabled us to construct strains duplicated for the amplified DNA. Using transformation we constructed self-fertile strains that were homoallelic for an ectopic erg-3+ transgene and a mutant erg-3 allele at the endogenous locus. Self-crosses of these strains yielded erg-3 mutant ascospores that produced colonies with the characteristic morphology on Vogel's sorbose agar described previously for erg-3 mutants of N. crassa. The mutants were generated by repeat-induced point mutation (RIP), a genome defense process that causes numerous G:C to A:T mutations in duplicated DNA sequences. Homozygosity for novel recessive RIP-deficient mutations was signaled by self-crosses of erg-3-duplication strains that fail to produce erg-3 mutant progeny. Using this assay we isolated a UV-induced mutant with a putative partial RIP defect. RIP-induced mutants were isolated in rid-1 and sad-1, which are essential genes, respectively, for RIP and another genome defense mechanism called meiotic silencing by unpaired DNA. PMID:15280231

  15. The Effects of One Amino Acid Substitutions at the C-Terminal Region of Thermostable L2 Lipase by Computational and Experimental Approach.

    PubMed

    Sani, Hartini Ahmad; Shariff, Fairolniza Mohd; Rahman, Raja Noor Zaliha Raja Abd; Leow, Thean Chor; Salleh, Abu Bakar

    2018-01-01

    The substitutions of the amino acid at the predetermined critical point at the C-terminal of L2 lipase may increase its thermostability and enzymatic activity, or even otherwise speed up the unfolding of the protein structure. The C-terminal of most proteins is often flexible and disordered. However, some protein functions are directly related to flexibility and play significant role in enzyme reaction. The critical point for mutation of L2 lipase structure was predicted at the position 385 of the L2 sequence, and the best three mutants were determined based on I-Mutant2.0 software. The best three mutants were S385E, S385I and S385V. The effects of the substitution of the amino acids at the critical point were analysed with molecular dynamics simulation by using Yet Another Scientific Artificial Reality Application software. The predicted mutant L2 lipases were found to have lower root mean square deviation value as compared to L2 lipase. It was indicated that all the three mutants had higher compactness in the structure, consequently enhanced the stability. Root mean square fluctuation analysis showed that the flexibility of L2 lipase was reduced by mutations. Purified S385E lipase had an optimum temperature of 80 °C in Tris-HCl pH 8. The highest enzymatic activity of purified S385E lipase was obtained at 80 °C temperature in Tris-HCl pH 8, while for L2 lipase it was at 70 °C in Glycine-NaOH pH 9. The thermal stability of S385V lipase was enhanced as compared to other protein since that the melting point (T m ) value was at 85.96 °C. S385I lipase was more thermostable compared to recombinant L2 lipase and other mutants at temperature 60 °C within 16 h preincubation.

  16. Comprehensive gene expression analysis of rice aleurone cells: probing the existence of an alternative gibberellin receptor.

    PubMed

    Yano, Kenji; Aya, Koichiro; Hirano, Ko; Ordonio, Reynante Lacsamana; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2015-02-01

    Current gibberellin (GA) research indicates that GA must be perceived in plant nuclei by its cognate receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1). Recognition of GA by GID1 relieves the repression mediated by the DELLA protein, a model known as the GID1-DELLA GA perception system. There have been reports of potential GA-binding proteins in the plasma membrane that perceive GA and induce α-amylase expression in cereal aleurone cells, which is mechanistically different from the GID1-DELLA system. Therefore, we examined the expression of the rice (Oryza sativa) α-amylase genes in rice mutants impaired in the GA receptor (gid1) and the DELLA repressor (slender rice1; slr1) and confirmed their lack of response to GA in gid1 mutants and constitutive expression in slr1 mutants. We also examined the expression of GA-regulated genes by genome-wide microarray and quantitative reverse transcription-polymerase chain reaction analyses and confirmed that all GA-regulated genes are modulated by the GID1-DELLA system. Furthermore, we studied the regulatory network involved in GA signaling by using a set of mutants defective in genes involved in GA perception and gene expression, namely gid1, slr1, gid2 (a GA-related F-box protein mutant), and gamyb (a GA-related trans-acting factor mutant). Almost all GA up-regulated genes were regulated by the four named GA-signaling components. On the other hand, GA down-regulated genes showed different expression patterns with respect to GID2 and GAMYB (e.g. a considerable number of genes are not controlled by GAMYB or GID2 and GAMYB). Based on these observations, we present a comprehensive discussion of the intricate network of GA-regulated genes in rice aleurone cells. © 2015 American Society of Plant Biologists. All Rights Reserved.

  17. Mapping transiently formed and sparsely populated conformations on a complex energy landscape.

    PubMed

    Wang, Yong; Papaleo, Elena; Lindorff-Larsen, Kresten

    2016-08-23

    Determining the structures, kinetics, thermodynamics and mechanisms that underlie conformational exchange processes in proteins remains extremely difficult. Only in favourable cases is it possible to provide atomic-level descriptions of sparsely populated and transiently formed alternative conformations. Here we benchmark the ability of enhanced-sampling molecular dynamics simulations to determine the free energy landscape of the L99A cavity mutant of T4 lysozyme. We find that the simulations capture key properties previously measured by NMR relaxation dispersion methods including the structure of a minor conformation, the kinetics and thermodynamics of conformational exchange, and the effect of mutations. We discover a new tunnel that involves the transient exposure towards the solvent of an internal cavity, and show it to be relevant for ligand escape. Together, our results provide a comprehensive view of the structural landscape of a protein, and point forward to studies of conformational exchange in systems that are less characterized experimentally.

  18. Comprehensive Profiling of Ethylene Response Factor Expression Identifies Ripening-Associated ERF Genes and Their Link to Key Regulators of Fruit Ripening in Tomato1[OPEN

    PubMed Central

    Gomes, Bruna Lima; Mila, Isabelle; Frasse, Pierre; Zouine, Mohamed; Bouzayen, Mondher

    2016-01-01

    Our knowledge of the factors mediating ethylene-dependent ripening of climacteric fruit remains limited. The transcription of ethylene-regulated genes is mediated by ethylene response factors (ERFs), but mutants providing information on the specific role of the ERFs in fruit ripening are still lacking, likely due to functional redundancy among this large multigene family of transcription factors. We present here a comprehensive expression profiling of tomato (Solanum lycopersicum) ERFs in wild-type and tomato ripening-impaired tomato mutants (Never-ripe [Nr], ripening-inhibitor [rin], and non-ripening [nor]), indicating that out of the 77 ERFs present in the tomato genome, 27 show enhanced expression at the onset of ripening while 28 display a ripening-associated decrease in expression, suggesting that different ERFs may have contrasting roles in fruit ripening. Among the 19 ERFs exhibiting the most consistent up-regulation during ripening, the expression of 11 ERFs is strongly down-regulated in rin, nor, and Nr tomato ripening mutants, while only three are consistently up-regulated. Members of subclass E, SlERF.E1, SlERF.E2, and SlERF.E4, show dramatic down-regulation in the ripening mutants, suggesting that their expression might be instrumental in fruit ripening. This study illustrates the high complexity of the regulatory network connecting RIN and ERFs and identifies subclass E members as the most active ERFs in ethylene- and RIN/NOR-dependent ripening. PMID:26739234

  19. Immunohistochemical ATRX expression is not a surrogate for 1p19q codeletion.

    PubMed

    Yamamichi, Akane; Ohka, Fumiharu; Aoki, Kosuke; Suzuki, Hiromichi; Kato, Akira; Hirano, Masaki; Motomura, Kazuya; Tanahashi, Kuniaki; Chalise, Lushun; Maeda, Sachi; Wakabayashi, Toshihiko; Kato, Yukinari; Natsume, Atsushi

    2018-04-01

    The IDH-mutant and 1p/19q co-deletion (1p19q codel) provides significant diagnostic and prognostic value in lower-grade gliomas. As ATRX mutation and 1p19q codel are mutually exclusive, ATRX immunohistochemistry (IHC) may substitute for 1p19q codel, but this has not been comprehensively examined. In the current study, we performed ATRX-IHC in 78 gliomas whose ATRX statuses were comprehensively determined by whole exome sequencing. Among the 60 IHC-positive and 18 IHC-negative cases, 86.7 and 77.8% were ATRX-wildtype and ATRX-mutant, respectively. ATRX mutational patterns were not consistent with ATRX-IHC. If our cohort had only used IDH status and IHC-based ATRX expression for diagnosis, 78 tumors would have been subtyped as 48 oligodendroglial tumors, 16 IDH-mutant astrocytic tumors, and 14 IDH-wildtype astrocytic tumors. However, when the 1p19q codel test was performed following ATRX-IHC, 8 of 48 ATRX-IHC-positive tumors were classified as "1p19q non-codel" and 3 of 16 ATRX-IHC-negative tumors were classified as "1p19q codel"; a total of 11 tumors (14%) were incorrectly classified. In summary, we observed dissociation between ATRX-IHC and actual 1p19q codel in 11 of 64 IDH-mutant LGGs. In describing the complex IHC expression of ATRX somatic mutations, our results indicate the need for caution when using ATRX-IHC as a surrogate of 1p19q status.

  20. An annotated database of Arabidopsis mutants of acyl lipid metabolism

    DOE PAGES

    McGlew, Kathleen; Shaw, Vincent; Zhang, Meng; ...

    2014-12-10

    Mutants have played a fundamental role in gene discovery and in understanding the function of genes involved in plant acyl lipid metabolism. The first mutant in Arabidopsis lipid metabolism ( fad4) was described in 1985. Since that time, characterization of mutants in more than 280 genes associated with acyl lipid metabolism has been reported. This review provides a brief background and history on identification of mutants in acyl lipid metabolism, an analysis of the distribution of mutants in different areas of acyl lipid metabolism and presents an annotated database (ARALIPmutantDB) of these mutants. The database provides information on the phenotypesmore » of mutants, pathways and enzymes/proteins associated with the mutants, and allows rapid access via hyperlinks to summaries of information about each mutant and to literature that provides information on the lipid composition of the mutants. Mutants for at least 30 % of the genes in the database have multiple names, which have been compiled here to reduce ambiguities in searches for information. Furthermore, the database should also provide a tool for exploring the relationships between mutants in acyl lipid-related genes and their lipid phenotypes and point to opportunities for further research.« less

  1. Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis.

    PubMed

    Wright, Robin; Parrish, Mark L; Cadera, Emily; Larson, Lynnelle; Matson, Clinton K; Garrett-Engele, Philip; Armour, Chris; Lum, Pek Yee; Shoemaker, Daniel D

    2003-07-30

    Increased levels of HMG-CoA reductase induce cell type- and isozyme-specific proliferation of the endoplasmic reticulum. In yeast, the ER proliferations induced by Hmg1p consist of nuclear-associated stacks of smooth ER membranes known as karmellae. To identify genes required for karmellae assembly, we compared the composition of populations of homozygous diploid S. cerevisiae deletion mutants following 20 generations of growth with and without karmellae. Using an initial population of 1,557 deletion mutants, 120 potential mutants were identified as a result of three independent experiments. Each experiment produced a largely non-overlapping set of potential mutants, suggesting that differences in specific growth conditions could be used to maximize the comprehensiveness of similar parallel analysis screens. Only two genes, UBC7 and YAL011W, were identified in all three experiments. Subsequent analysis of individual mutant strains confirmed that each experiment was identifying valid mutations, based on the mutant's sensitivity to elevated HMG-CoA reductase and inability to assemble normal karmellae. The largest class of HMG-CoA reductase-sensitive mutations was a subset of genes that are involved in chromatin structure and transcriptional regulation, suggesting that karmellae assembly requires changes in transcription or that the presence of karmellae may interfere with normal transcriptional regulation. Copyright 2003 John Wiley & Sons, Ltd.

  2. Active site CP-loop dynamics modulate substrate binding, catalysis, oligomerization, stability, over-oxidation and recycling of 2-Cys Peroxiredoxins.

    PubMed

    Kamariah, Neelagandan; Eisenhaber, Birgit; Eisenhaber, Frank; Grüber, Gerhard

    2018-04-01

    Peroxiredoxins (Prxs) catalyse the rapid reduction of hydrogen peroxide, organic hydroperoxide and peroxynitrite, using a fully conserved peroxidatic cysteine (C P ) located in a conserved sequence Pxxx(T/S)xxC P motif known as C P -loop. In addition, Prxs are involved in cellular signaling pathways and regulate several redox-dependent process related disease. The effective catalysis of Prxs is associated with alterations in the C P -loop between reduced, Fully Folded (FF), and oxidized, Locally Unfolded (LU) conformations, which are linked to dramatic changes in the oligomeric structure. Despite many studies, little is known about the precise structural and dynamic roles of the C P -loop on Prxs functions. Herein, the comprehensive biochemical and biophysical studies on Escherichia coli alkyl hydroperoxide reductase subunit C (EcAhpC) and the C P -loop mutants, EcAhpC-F45A and EcAhpC-F45P reveal that the reduced form of the C P -loop adopts conformational dynamics, which is essential for effective peroxide reduction. Furthermore, the point mutants alter the structure and dynamics of the reduced form of the C P -loop and, thereby, affect substrate binding, catalysis, oligomerization, stability and overoxidiation. In the oxidized form, due to restricted C P -loop dynamics, the EcAhpC-F45P mutant favours a decamer formation, which enhances the effective recycling by physiological reductases compared to wild-type EcAhpC. In addition, the study reveals that residue F45 increases the specificity of Prxs-reductase interactions. Based on these studies, we propose an evolution of the C P -loop with confined sequence conservation within Prxs subfamilies that might optimize the functional adaptation of Prxs into various physiological roles. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. The flexibility of two tropomyosin mutants, D175N and E180G, that cause hypertrophic cardiomyopathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaochuan; Suphamungmee, Worawit; Janco, Miro

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Well-known tropomyosin mutants, D175N and E180G are linked to cardiomyopathies. Black-Right-Pointing-Pointer The structural mechanics of D175N and E180G tropomyosins have been investigated. Black-Right-Pointing-Pointer D175N and E180G mutations increase both local and global tropomyosin flexibility. Black-Right-Pointing-Pointer In muscle, this increased flexibility will enhance myosin interactions on actin. Black-Right-Pointing-Pointer Extra myosin interaction can alter cardiac Ca{sup 2+}-switching, leading to dysfunction. -- Abstract: Point mutations targeting muscle thin filament proteins are the cause of a number of cardiomyopathies. In many cases, biological effects of the mutations are well-documented, whereas their structural and mechanical impact on filament assembly and regulatory function ismore » lacking. In order to elucidate molecular defects leading to cardiac dysfunction, we have examined the structural mechanics of two tropomyosin mutants, E180G and D175N, which are associated with hypertrophic cardiomyopathy (HCM). Tropomyosin is an {alpha}-helical coiled-coil dimer which polymerizes end-to-end to create an elongated superhelix that wraps around F-actin filaments of muscle and non-muscle cells, thus modulating the binding of other actin-binding proteins. Here, we study how flexibility changes in the E180G and D175N mutants might affect tropomyosin binding and regulatory motion on F-actin. Electron microscopy and Molecular Dynamics simulations show that E180G and D175N mutations cause an increase in bending flexibility of tropomyosin both locally and globally. This excess flexibility is likely to increase accessibility of the myosin-binding sites on F-actin, thus destabilizing the low-Ca{sup 2+} relaxed-state of cardiac muscle. The resulting imbalance in the on-off switching mechanism of the mutants will shift the regulatory equilibrium towards Ca{sup 2+}-activation of cardiac muscle, as is observed in affected muscle, accompanied by enhanced systolic activity, diastolic dysfunction, and cardiac compensations associated with HCM and heart failure.« less

  4. Identification of conserved regions and residues within Hedgehog acyltransferase critical for palmitoylation of Sonic Hedgehog.

    PubMed

    Buglino, John A; Resh, Marilyn D

    2010-06-23

    Sonic hedgehog (Shh) is a palmitoylated protein that plays key roles in mammalian development and human cancers. Palmitoylation of Shh is required for effective long and short range Shh-mediated signaling. Attachment of palmitate to Shh is catalyzed by Hedgehog acyltransferase (Hhat), a member of the membrane bound O-acyl transferase (MBOAT) family of multipass membrane proteins. The extremely hydrophobic composition of MBOAT proteins has limited their biochemical characterization. Except for mutagenesis of two conserved residues, there has been no structure-function analysis of Hhat, and the regions of the protein required for Shh palmitoylation are unknown. Here we undertake a systematic approach to identify residues within Hhat that are required for protein stability and/or enzymatic activity. We also identify a second, novel MBOAT homology region (residues 196-234) that is required for Hhat activity. In total, ten deletion mutants and eleven point mutants were generated and analyzed. Truncations at the N- and C-termini of Hhat yielded inactive proteins with reduced stability. Four Hhat mutants with deletions within predicted loop regions and five point mutants retained stability but lost palmitoylation activity. We purified two point mutants, W378A and H379A, with defective Hhat activity. Kinetic analyses revealed alterations in apparent K(m) and V(max) for Shh and/or palmitoyl CoA, changes that likely explain the catalytic defects observed for these mutants. This study has pinpointed specific regions and multiple residues that regulate Hhat stability and catalysis. Our findings should be applicable to other MBOAT proteins that mediate lipid modification of Wnt proteins and ghrelin, and should serve as a model for understanding how secreted morphogens are modified by palmitoyl acyltransferases.

  5. NF-{kappa}B signaling is activated and confers resistance to apoptosis in three-dimensionally cultured EGFR-mutant lung adenocarcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakuma, Yuji, E-mail: ysakuma@gancen.asahi.yokohama.jp; Yamazaki, Yukiko; Nakamura, Yoshiyasu

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer EGFR-mutant cells in 3D culture resist EGFR inhibition compared with suspended cells. Black-Right-Pointing-Pointer Degradation of I{kappa}B and activation of NF-{kappa}B are observed in 3D-cultured cells. Black-Right-Pointing-Pointer Inhibiting NF-{kappa}B enhances the efficacy of the EGFR inhibitor in 3D-cultured cells. -- Abstract: Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells in suspension undergo apoptosis to a greater extent than adherent cells in a monolayer when EGFR autophosphorylation is inhibited by EGFR tyrosine kinase inhibitors (TKIs). This suggests that cell adhesion to a culture dish may activate an anti-apoptotic signaling pathway other than the EGFR pathway. Since the microenvironment of cellsmore » cultured in a monolayer are substantially different to that of cells existing in three-dimension (3D) in vivo, we assessed whether two EGFR-mutant lung adenocarcinoma cell lines, HCC827 and H1975, were more resistant to EGFR TKI-induced apoptosis when cultured in a 3D extracellular matrix (ECM) as compared with in suspension. The ECM-adherent EGFR-mutant cells in 3D were significantly less sensitive to treatment with WZ4002, an EGFR TKI, than the suspended cells. Further, a marked degradation of I{kappa}B{alpha}, the inhibitor of nuclear factor (NF)-{kappa}B, was observed only in the 3D-cultured cells, leading to an increase in the activation of NF-{kappa}B. Moreover, the inhibition of NF-{kappa}B with pharmacological inhibitors enhanced EGFR TKI-induced apoptosis in 3D-cultured EGFR-mutant cells. These results suggest that inhibition of NF-{kappa}B signaling would render ECM-adherent EGFR-mutant lung adenocarcinoma cells in vivo more susceptible to EGFR TKI-induced cell death.« less

  6. Point Mutations in Membrane Proteins Reshape Energy Landscape and Populate Different Unfolding Pathways

    PubMed Central

    Sapra, K. Tanuj; Balasubramanian, G. Prakash; Labudde, Dirk; Bowie, James U.; Muller, Daniel J.

    2009-01-01

    Using single-molecule force spectroscopy, we investigated the effect of single point mutations on the energy landscape and unfolding pathways of the transmembrane protein bacteriorhodopsin. We show that the unfolding energy barriers in the energy landscape of the membrane protein followed a simple two-state behavior and represent a manifestation of many converging unfolding pathways. Although the unfolding pathways of wild-type and mutant bacteriorhodopsin did not change, indicating the presence of same ensemble of structural unfolding intermediates, the free energies of the rate-limiting transition states of the bacteriorhodopsin mutants decreased as the distance of those transition states to the folded intermediate states decreased. Thus, all mutants exhibited Hammond behavior and a change in the free energies of the intermediates along the unfolding reaction coordinate and, consequently, their relative occupancies. This is the first experimental proof showing that point mutations can reshape the free energy landscape of a membrane protein and force single proteins to populate certain unfolding pathways over others. PMID:18191146

  7. Rapid and Programmable Protein Mutagenesis Using Plasmid Recombineering.

    PubMed

    Higgins, Sean A; Ouonkap, Sorel V Y; Savage, David F

    2017-10-20

    Comprehensive and programmable protein mutagenesis is critical for understanding structure-function relationships and improving protein function. There is thus a need for robust and unbiased molecular biological approaches for the construction of the requisite comprehensive protein libraries. Here we demonstrate that plasmid recombineering is a simple and robust in vivo method for the generation of protein mutants for both comprehensive library generation as well as programmable targeting of sequence space. Using the fluorescent protein iLOV as a model target, we build a complete mutagenesis library and find it to be specific and comprehensive, detecting 99.8% of our intended mutations. We then develop a thermostability screen and utilize our comprehensive mutation data to rapidly construct a targeted and multiplexed library that identifies significantly improved variants, thus demonstrating rapid protein engineering in a simple protocol.

  8. Differentially expressed genes in the ovary of the sixth day of pupal "Ming" lethal egg mutant of silkworm, Bombyx mori.

    PubMed

    Gao, Peng; Chen, An-Li; Zhao, Qiao-Ling; Shen, Xing-Jia; Qiu, Zhi-Yong; Xia, Ding-Guo; Tang, Shun-Ming; Zhang, Guo-Zheng

    2013-09-15

    The "Ming" lethal egg mutant (l-em) is a vitelline membrane mutant in silkworm, Bombyx mori. The eggs laid by the l-em mutant lose water, ultimately causing death within an hour. Previous studies have shown that the deletion of BmEP80 is responsible for the l-em mutation in silkworm, B. mori. In the current study, digital gene expression (DGE) was performed to investigate the difference of gene expression in ovaries between wild type and l-em mutant on the sixth day of the pupal stage to obtain a global view of gene expression profiles using the ovaries of three l-em mutants and three wild types. The results showed a total of 3,463,495 and 3,607,936 clean tags in the wild type and the l-em mutant libraries, respectively. Compared with those of wild type, 239 differentially expressed genes were detected in the l-em mutant, wherein 181 genes are up-regulated and 58 genes are down-regulated in the mutant strain. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis results showed that no pathway was significantly enriched and three pathways are tightly related to protein synthesis among the five leading pathways. Moreover, the expression profiles of eight important differentially expressed genes related to oogenesis changed. These results provide a comprehensive gene expression analysis of oogenesis and vitellogenesis in B. mori which facilitates understanding of both the specific molecular mechanism of the 1-em mutant and Lepidopteran oogenesis in general. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. GenoBase: comprehensive resource database of Escherichia coli K-12.

    PubMed

    Otsuka, Yuta; Muto, Ai; Takeuchi, Rikiya; Okada, Chihiro; Ishikawa, Motokazu; Nakamura, Koichiro; Yamamoto, Natsuko; Dose, Hitomi; Nakahigashi, Kenji; Tanishima, Shigeki; Suharnan, Sivasundaram; Nomura, Wataru; Nakayashiki, Toru; Aref, Walid G; Bochner, Barry R; Conway, Tyrrell; Gribskov, Michael; Kihara, Daisuke; Rudd, Kenneth E; Tohsato, Yukako; Wanner, Barry L; Mori, Hirotada

    2015-01-01

    Comprehensive experimental resources, such as ORFeome clone libraries and deletion mutant collections, are fundamental tools for elucidation of gene function. Data sets by omics analysis using these resources provide key information for functional analysis, modeling and simulation both in individual and systematic approaches. With the long-term goal of complete understanding of a cell, we have over the past decade created a variety of clone and mutant sets for functional genomics studies of Escherichia coli K-12. We have made these experimental resources freely available to the academic community worldwide. Accordingly, these resources have now been used in numerous investigations of a multitude of cell processes. Quality control is extremely important for evaluating results generated by these resources. Because the annotation has been changed since 2005, which we originally used for the construction, we have updated these genomic resources accordingly. Here, we describe GenoBase (http://ecoli.naist.jp/GB/), which contains key information about comprehensive experimental resources of E. coli K-12, their quality control and several omics data sets generated using these resources. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandova, Jana; Janda, Jaroslav; Sligh, James E, E-mail: jsligh@azcc.arizona.edu

    We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarraymore » analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-{kappa}B (NF-{kappa}B) is a key transcription factor for production of MMPs. An inhibitor of NF-{kappa}B activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-{kappa}B in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids. -- Highlights: Black-Right-Pointing-Pointer Cybrids are useful models to study the role of mtDNA changes in cancer development. Black-Right-Pointing-Pointer mtDNA changes affect the expression of nuclear genes associated with tumorigenesis. Black-Right-Pointing-Pointer MMP-9 is up-regulated and Col1a1 is down-regulated in mutant cybrids. Black-Right-Pointing-Pointer GM6001 reduced the enhanced motility of mutant cybrids caused by up-regulated MMP-9. Black-Right-Pointing-Pointer The MMP-9 expression and invasiveness of mutant cybrids were reduced by Bay 11-7802.« less

  11. Genetic Characterization of Escherichia coli Type 1 Pilus Adhesin Mutants and Identification of a Novel Binding Phenotype

    PubMed Central

    Hamrick, Terri S.; Harris, Sandra L.; Spears, Patricia A.; Havell, Edward A.; Horton, John R.; Russell, Perry W.; Orndorff, Paul E.

    2000-01-01

    Five Escherichia coli type 1 pilus mutants that had point mutations in fimH, the gene encoding the type 1 pilus adhesin FimH, were characterized. FimH is a minor component of type 1 pili that is required for the pili to bind and agglutinate guinea pig erythrocytes in a mannose-inhibitable manner. Point mutations were located by DNA sequencing and deletion mapping. All mutations mapped within the signal sequence or in the first 28% of the predicted mature protein. All mutations were missense mutations except for one, a frameshift lesion that was predicted to cause the loss of approximately 60% of the mature FimH protein. Bacterial agglutination tests with polyclonal antiserum raised to a LacZ-FimH fusion protein failed to confirm that parental amounts of FimH cross-reacting material were expressed in four of the five mutants. The remaining mutant, a temperature-sensitive (ts) fimH mutant that agglutinated guinea pig erythrocytes after growth at 31°C but not at 42°C, reacted with antiserum at both temperatures in a manner similar to the parent. Consequently, this mutant was chosen for further study. Temperature shift experiments revealed that new FimH biosynthesis was required for the phenotypic change. Guinea pig erythrocyte and mouse macrophage binding experiments using the ts mutant grown at the restrictive and permissive temperatures revealed that whereas erythrocyte binding was reduced to a level comparable to that of a fimH insertion mutant at the restrictive temperature, mouse peritoneal macrophages were bound with parental efficiency at both the permissive and restrictive temperatures. Also, macrophage binding by the ts mutant was insensitive to mannose inhibition after growth at 42°C but sensitive after growth at 31°C. The ts mutant thus binds macrophages with one receptor specificity at 31°C and another at 42°C. PMID:10869080

  12. Molecular characterization of baculovirus Bombyx mori nucleopolyhedrovirus polyhedron mutants.

    PubMed

    Katsuma, S; Noguchi, Y; Shimada, T; Nagata, M; Kobayashi, M; Maeda, S

    1999-01-01

    Four newly isolated and two previously isolated polyhedron mutants of Bombyx mori nucleopolyhedrovirus (BmNPV) were studied. Two polyhedron deficient mutants, #126 and #136, produced small uncrystallized particles of polyhedrin in the nuclei and cytoplasm of infected cells. Mutant #211 produced a large number of variably sized polyhedra in the nucleus and #220 produced a few large cuboidal polyhedra in the nucleus. Mutant #24 and #128 were previously isolated BmNPV mutants. Mutant #24 could not produce polyhedrin mRNA and polyhedra produced by mutant #128 lacked oral infectivity. Nucleotide sequence analysis indicated that five mutants (#126, #136, #211, #220 and #128) had amino acid substitutions in polyhedrin and mutant #24 had a point mutation only in the promoter region of the polyhedrin gene. Cotransfection experiments showed that the altered phenotypes were due to the mutations found in the polyhedrin gene regions. In mutants #126 and #136, amino acid sequences of the nuclear localization signal of polyhedrin were identical to those of wild-type BmNPV, suggesting that this sequence was necessary but not sufficient for nuclear localization of polyhedrin. Electron microscopic observation revealed that fewer occluded virions were contained in polyhedra of #128 and #220.

  13. 'W' mutant forms of the Fms receptor tyrosine kinase act in a dominant manner to suppress CSF-1 dependent cellular transformation.

    PubMed

    Reith, A D; Ellis, C; Maroc, N; Pawson, T; Bernstein, A; Dubreuil, P

    1993-01-01

    Point mutations in highly conserved amino acid residues in the catalytic domain of the Kit receptor tyrosine kinase (RTK) are responsible for the coat color, fertility and hematopoietic defects of mice bearing mutant alleles at the dominant white-spotting (W) locus. The dominant nature of structural Kit mutations suggests that expression of other kinase-defective RTKs might also specifically interfere with signal transduction by normal receptors. To test this possibility, we have investigated the functional consequences of introducing analogous mutations into the RTK encoded by the c-fms proto-oncogene. Both Fms37 (glu582-->lys) and Fms42 (asp776-->asn) mutant proteins, corresponding to the strongly dominant-negative W37 and W42 mutant c-kit alleles, had undetectable in vitro kinase activity and were unable to transform Rat-2 fibroblasts in the presence of exogenous CSF-1. Moreover, expression of Fms37 or Fms42 proteins in Rat-2 cells specifically inhibited anchorage-independent growth mediated by the normal Fms receptor in the presence of exogenous CSF-1 and conferred a dominant loss of Fms-associated PI3-kinase activity on CSF-1 stimulation. Mutant RTKs, bearing point substitutions identical to those present in mild or severe W mutants, may provide a generally applicable strategy for inducing dominant loss of function defects in RTK-mediated signalling pathways.

  14. Comparative transcriptome analysis during early fruit development between three seedy citrus genotypes and their seedless mutants

    USDA-ARS?s Scientific Manuscript database

    Identification of genes with differential transcript abundance (GDTA) in seedless mutants may enhance understanding of seedless citrus development. Transcriptome analysis was conducted at three time points during early fruit development (Phase 1) of three seedy citrus genotypes: Fallglo [Bower citru...

  15. Cellular and molecular mechanisms of autosomal dominant form of progressive hearing loss, DFNA2.

    PubMed

    Kim, Hyo Jeong; Lv, Ping; Sihn, Choong-Ryoul; Yamoah, Ebenezer N

    2011-01-14

    Despite advances in identifying deafness genes, determination of the underlying cellular and functional mechanisms for auditory diseases remains a challenge. Mutations of the human K(+) channel hKv7.4 lead to post-lingual progressive hearing loss (DFNA2), which affects world-wide population with diverse racial backgrounds. Here, we have generated the spectrum of point mutations in the hKv7.4 that have been identified as diseased mutants. We report that expression of five point mutations in the pore region, namely L274H, W276S, L281S, G285C, and G296S, as well as the C-terminal mutant G321S in the heterologous expression system, yielded non-functional channels because of endoplasmic reticulum retention of the mutant channels. We mimicked the dominant diseased conditions by co-expressing the wild-type and mutant channels. As compared with expression of wild-type channel alone, the blend of wild-type and mutant channel subunits resulted in reduced currents. Moreover, the combinatorial ratios of wild type:mutant and the ensuing current magnitude could not be explained by the predictions of a tetrameric channel and a dominant negative effect of the mutant subunits. The results can be explained by the dependence of cell surface expression of the mutant on the wild-type subunit. Surprisingly, a transmembrane mutation F182L, which has been identified in a pre-lingual progressive hearing loss patient in Taiwan, yielded cell surface expression and functional features that were similar to that of the wild type, suggesting that this mutation may represent redundant polymorphism. Collectively, these findings provide traces of the cellular mechanisms for DFNA2.

  16. Effects of Point Mutations in the Major Capsid Protein of Beet Western Yellows Virus on Capsid Formation, Virus Accumulation, and Aphid Transmission

    PubMed Central

    Brault, V.; Bergdoll, M.; Mutterer, J.; Prasad, V.; Pfeffer, S.; Erdinger, M.; Richards, K. E.; Ziegler-Graff, V.

    2003-01-01

    Point mutations were introduced into the major capsid protein (P3) of cloned infectious cDNA of the polerovirus beet western yellows virus (BWYV) by manipulation of cloned infectious cDNA. Seven mutations targeted sites on the S domain predicted to lie on the capsid surface. An eighth mutation eliminated two arginine residues in the R domain, which is thought to extend into the capsid interior. The effects of the mutations on virus capsid formation, virus accumulation in protoplasts and plants, and aphid transmission were tested. All of the mutants replicated in protoplasts. The S-domain mutant W166R failed to protect viral RNA from RNase attack, suggesting that this particular mutation interfered with stable capsid formation. The R-domain mutant R7A/R8A protected ∼90% of the viral RNA strand from RNase, suggesting that lower positive-charge density in the mutant capsid interior interfered with stable packaging of the complete strand into virions. Neither of these mutants systemically infected plants. The six remaining mutants properly packaged viral RNA and could invade Nicotiana clevelandii systemically following agroinfection. Mutant Q121E/N122D was poorly transmitted by aphids, implicating one or both targeted residues in virus-vector interactions. Successful transmission of mutant D172N was accompanied either by reversion to the wild type or by appearance of a second-site mutation, N137D. This finding indicates that D172 is also important for transmission but that the D172N transmission defect can be compensated for by a “reverse” substitution at another site. The results have been used to evaluate possible structural models for the BWYV capsid. PMID:12584348

  17. Single point mutations distributed in 10 soluble and membrane regions of the Nicotiana plumbaginifolia plasma membrane PMA2 H+-ATPase activate the enzyme and modify the structure of the C-terminal region.

    PubMed

    Morsomme, P; Dambly, S; Maudoux, O; Boutry, M

    1998-12-25

    The Nicotiana plumbaginifolia pma2 (plasma membrane H+-ATPase) gene is capable of functionally replacing the H+-ATPase genes of the yeast Saccharomyces cerevisiae, provided that the external pH is kept above 5.0. Single point mutations within the pma2 gene were previously identified that improved H+-ATPase activity and allowed yeast growth at pH 4.0. The aim of the present study was to identify most of the PMA2 positions, the mutation of which would lead to improved growth and to determine whether all these mutations result in similar enzymatic and structural modifications. We selected additional mutants in total 42 distinct point mutations localized in 30 codons. They were distributed in 10 soluble and membrane regions of the enzyme. Most mutant PMA2 H+-ATPases were characterized by a higher specific activity, lower inhibition by ADP, and lower stimulation by lysophosphatidylcholine than wild-type PMA2. The mutants thus seem to be constitutively activated. Partial tryptic digestion and immunodetection showed that the PMA2 mutants had a conformational change making the C-terminal region more accessible. These data therefore support the hypothesis that point mutations in various H+-ATPase parts displace the inhibitory C-terminal region, resulting in enzyme activation. The high density of mutations within the first half of the C-terminal region suggests that this part is involved in the interaction between the inhibitory C-terminal region and the rest of the enzyme.

  18. Sdt97: A Point Mutation in the 5′ Untranslated Region Confers Semidwarfism in Rice

    PubMed Central

    Tong, Jiping; Han, Zhengshu; Han, Aonan; Liu, Xuejun; Zhang, Shiyong; Fu, Binying; Hu, Jun; Su, Jingping; Li, Shaoqing; Wang, Shengjun; Zhu, Yingguo

    2016-01-01

    Semidwarfism is an important agronomic trait in rice breeding programs. The semidwarf mutant gene Sdt97 was previously described. However, the molecular mechanism underlying the mutant is yet to be elucidated. In this study, we identified the mutant gene by a map-based cloning method. Using a residual heterozygous line (RHL) population, Sdt97 was mapped to the long arm of chromosome 6 in the interval of nearly 60 kb between STS marker N6 and SNP marker N16 within the PAC clone P0453H04. Sequencing of the candidate genes in the target region revealed that a base transversion from G to C occurred in the 5′ untranslated region of Sdt97. qRT-PCR results confirmed that the transversion induced an obvious change in the expression pattern of Sdt97 at different growth and developmental stages. Plants transgenic for Sdt97 resulted in the restoration of semidwarfism of the mutant phenotype, or displayed a greater dwarf phenotype than the mutant. Our results indicate that a point mutation in the 5′ untranslated region of Sdt97 confers semidwarfism in rice. Functional analysis of Sdt97 will open a new field of study for rice semidwarfism, and also expand our knowledge of the molecular mechanism of semidwarfism in rice. PMID:27172200

  19. Pressure Points in Reading Comprehension: A Quantile Multiple Regression Analysis

    ERIC Educational Resources Information Center

    Logan, Jessica

    2017-01-01

    The goal of this study was to examine how selected pressure points or areas of vulnerability are related to individual differences in reading comprehension and whether the importance of these pressure points varies as a function of the level of children's reading comprehension. A sample of 245 third-grade children were given an assessment battery…

  20. Structural determinants of arrestin functions.

    PubMed

    Gurevich, Vsevolod V; Gurevich, Eugenia V

    2013-01-01

    Arrestins are a small protein family with only four members in mammals. Arrestins demonstrate an amazing versatility, interacting with hundreds of different G protein-coupled receptor (GPCR) subtypes, numerous nonreceptor signaling proteins, and components of the internalization machinery, as well as cytoskeletal elements, including regular microtubules and centrosomes. Here, we focus on the structural determinants that mediate various arrestin functions. The receptor-binding elements in arrestins were mapped fairly comprehensively, which set the stage for the construction of mutants targeting particular GPCRs. The elements engaged by other binding partners are only now being elucidated and in most cases we have more questions than answers. Interestingly, even very limited and imprecise identification of structural requirements for the interaction with very few other proteins has enabled the development of signaling-biased arrestin mutants. More comprehensive understanding of the structural underpinning of different arrestin functions will pave the way for the construction of arrestins that can link the receptor we want to the signaling pathway of our choosing. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Structural Determinants of Arrestin Functions

    PubMed Central

    Gurevich, Vsevolod V.; Gurevich, Eugenia V.

    2015-01-01

    Arrestins are a small protein family with only four members in mammals. Arrestins demonstrate an amazing versatility, interacting with hundreds of different G protein-coupled receptor (GPCR) subtypes, numerous nonreceptor signaling proteins, and components of the internalization machinery, as well as cytoskeletal elements, including regular microtubules and centrosomes. Here, we focus on the structural determinants that mediate various arrestin functions. The receptor-binding elements in arrestins were mapped fairly comprehensively, which set the stage for the construction of mutants targeting particular GPCRs. The elements engaged by other binding partners are only now being elucidated and in most cases we have more questions than answers. Interestingly, even very limited and imprecise identification of structural requirements for the interaction with very few other proteins has enabled the development of signaling-biased arrestin mutants. More comprehensive understanding of the structural underpinning of different arrestin functions will pave the way for the construction of arrestins that can link the receptor we want to the signaling pathway of our choosing. PMID:23764050

  2. Modification of SR-PSOX functions by multi-point mutations of basic amino acid residues.

    PubMed

    Liu, Weiwei; Yin, Lan; Dai, Yalei

    2013-02-01

    SR-PSOX can function as a scavenger receptor, a chemokine and an adhesion molecule, and it could be an interesting player in the formation of atherosclerotic lesions. Our previous studies demonstrated that basic amino acid residues in the chemokine domain of SR-PSOX are critical for its functions. In this study the combinations of the key basic amino acids in the chemokine domain of SR-PSOX have been identified. Five combinations of basic amino acid residues that may form conformational motif for SR-PSOX functions were selected for multi-point mutants. The double mutants of K61AR62A, R76AK79A, R82AH85A, and treble mutants of R76AR78AK79A, R78AR82AH85A were successfully constructed by replacing the combinations of two or three basic amino acid residues with alanine. After successful expression of these mutants on the cells, the functional studies showed that the cells expressing R76AK79A and R82AH85A mutants significantly increased the activity of oxLDL uptake compared with that of wild-type SR-PSOX. Meanwhile, the cells expressing R76AK79A mutant also dramatically enhanced the phagocytotic activity of SR-PSOX. However, the cells expressing the construct of combination of R78A mutation in R76AK79A or R82AH85A could abolish these effects. More interestingly, the adhesive activities were remarkably down regulated in the cells expressing the multi-point mutants respectively. This study revealed that some conformational motifs of basic amino acid residues, especially R76 with K79 in SR-PSOX, may form a common functional motif for its critical functions. R78 in SR-PSOX has the potential action to stabilize the function of oxLDL uptake and bacterial phagocytosis. The results obtained may provide new insight for the development of drug target of atherosclerosis. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  3. Functional census of mutation sequence spaces: The example of p53 cancer rescue mutants

    PubMed Central

    Danziger, Samuel A.; Swamidass, S. Joshua; Zeng, Jue; Dearth, Lawrence R.; Lu, Qiang; Chen, Jonathan H.; Cheng, Jainlin; Hoang, Vinh P.; Saigo, Hiroto; Luo, Ray; Baldi, Pierre; Brachmann, Rainer K.; Lathrop, Richard H.

    2009-01-01

    Many biomedical problems relate to mutant functional properties across a sequence space of interest, e.g., flu, cancer, and HIV. Detailed knowledge of mutant properties and function improves medical treatment and prevention. A functional census of p53 cancer rescue mutants would aid the search for cancer treatments from p53 rescue. We devised a general methodology for conducting a functional census of a mutation sequence space, and conducted a double-blind predictive test on the functional rescue property of 71 novel putative p53 cancer rescue mutants iteratively predicted in sets of 3. Double-blind predictive accuracy (15-point moving window) rose from 47% to 86% over the trial (r = 0.74). Code and data are available upon request1. PMID:17048398

  4. Phenotypic Modulation of the Virulent Bvg Phase Is Not Required for Pathogenesis and Transmission of Bordetella bronchiseptica in Swine

    PubMed Central

    Brockmeier, Susan L.; Loving, Crystal L.; Register, Karen B.; Kehrli, Marcus E.; Stibitz, Scott E.; Shore, Sarah M.

    2012-01-01

    The majority of virulence gene expression in Bordetella is regulated by a two-component sensory transduction system encoded by the bvg locus. In response to environmental cues, the BvgAS regulatory system controls expression of a spectrum of phenotypic phases, transitioning between a virulent (Bvg+) phase and a nonvirulent (Bvg−) phase, a process referred to as phenotypic modulation. We hypothesized that the ability of Bordetella bronchiseptica to undergo phenotypic modulation is required at one or more points during the infectious cycle in swine. To investigate the Bvg phase-dependent contribution to pathogenesis of B. bronchiseptica in swine, we constructed a series of isogenic mutants in a virulent B. bronchiseptica swine isolate and compared each mutant to the wild-type isolate for its ability to colonize and cause disease. We additionally tested whether a BvgAS system capable of modulation is required for direct or indirect transmission. The Bvg− phase-locked mutant was never recovered from any respiratory tract site at any time point examined. An intermediate phase-locked mutant (Bvgi) was found in numbers lower than the wild type at all respiratory tract sites and time points examined and caused limited to no disease. In contrast, colonization of the respiratory tract and disease caused by the Bvg+ phase-locked mutant and the wild-type strain were indistinguishable. The Bvg+ phase-locked mutant transmitted to naïve pigs by both direct and indirect contact with efficiency equal to that of the wild-type isolate. These results indicate that while full activation of the BvgAS regulatory system is required for colonization and severe disease, it is not deleterious to direct and indirect transmission. Overall, our results demonstrate that the Bvg+ phase is sufficient for respiratory infection and host-to-host transmission of B. bronchiseptica in swine. PMID:22158743

  5. Computational Modelling of Dapsone Interaction With Dihydropteroate Synthase in Mycobacterium leprae; Insights Into Molecular Basis of Dapsone Resistance in Leprosy.

    PubMed

    Chaitanya V, Sundeep; Das, Madhusmita; Bhat, Pritesh; Ebenezer, Mannam

    2015-10-01

    The molecular basis for determination of resistance to anti-leprosy drugs is the presence of point mutations within the genes of Mycobacterium leprae (M. leprae) that encode active drug targets. The downstream structural and functional implications of these point mutations on drug targets were scarcely studied. In this study, we utilized computational tools to develop native and mutant protein models for 5 point mutations at codon positions 53 and 55 in 6-hydroxymethyl-7, 8-dihydropteroate synthase (DHPS) of M. leprae, an active target for dapsone encoded by folp1 gene, that confer resistance to dapsone. Molecular docking was performed to identify variations in dapsone interaction with mutant DHPS in terms of hydrogen bonding, hydrophobic interactions, and energy changes. Schrodinger Suite 2014-3 was used to build homology models and in performing molecular docking. An increase in volume of the binding cavities of mutant structures was noted when compared to native form indicating a weakening in interaction (60.7 Å(3) in native vs. 233.6 Å(3) in Thr53Ala, 659.9 Å(3) in Thr53Ile, 400 Å(3) for Thr53Val, 385 Å(3) for Pro55Arg, and 210 Å(3) for Pro55Leu). This was also reflected by changes in hydrogen bonds and decrease in hydrophobic interactions in the mutant models. The total binding energy (ΔG) decreased significantly in mutant forms when compared to the native form (-51.92 Kcal/mol for native vs. -35.64, -35.24, -46.47, -47.69, and -41.36 Kcal/mol for mutations Thr53Ala, Thr53Ile, Thr53Val, Pro55Arg, and Pro55Leu, respectively. In brief, this analysis provided structural and mechanistic insights to the degree of dapsone resistance contributed by each of these DHPS mutants in leprosy. © 2015 Wiley Periodicals, Inc.

  6. Pofut1 point-mutations that disrupt O-fucosyltransferase activity destabilize the protein and abolish Notch1 signaling during mouse somitogenesis

    PubMed Central

    Suzuki, Emiko; Saga, Yumiko

    2017-01-01

    The segmental pattern of the vertebrate body is established via the periodic formation of somites from the presomitic mesoderm (PSM). This periodical process is controlled by the cyclic and synchronized activation of Notch signaling in the PSM. Protein O-fucosyltransferase1 (Pofut1), which transfers O-fucose to the EGF domains of the Notch1 receptor, is indispensable for Notch signaling activation. The Drosophila homologue Ofut1 was reported to control Notch localization via two different mechanisms, working as a chaperone for Notch or as a regulator of Notch endocytosis. However, these were found to be independent of O-fucosyltransferase activity because the phenotypes were rescued by Ofut1 mutants lacking O-fucosyltransferase activity. Pofut1 may also be involved in the Notch receptor localization in mice. However, the contribution of enzymatic activity of Pofut1 to the Notch receptor dynamics remains to be elucidated. In order to clarify the importance of the O-fucosyltransferase activity of Pofut1 for Notch signaling activation and the protein localization in the PSM, we established mice carrying point mutations at the 245th a.a. or 370-372th a.a., highly conserved amino-acid sequences whose mutations disrupt the O-fucosyltransferase activity of both Drosophila Ofut1 and mammalian Pofut1, with the CRISPR/Cas9 mediated genome-engineering technique. Both mutants displayed the same severely perturbed somite formation and Notch1 subcellular localization defects as the Pofut1 null mutants. In the mutants, Pofut1 protein, but not RNA, became undetectable by E9.5. Furthermore, both wild-type and mutant Pofut1 proteins were degraded through lysosome dependent machinery. Pofut1 protein loss in the point mutant embryos caused the same phenotypes as those observed in Pofut1 null embryos. PMID:29095923

  7. Phospholamban mutants compete with wild type for SERCA binding in living cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruber, Simon J.; Haydon, Suzanne; Thomas, David D., E-mail: ddt@umn.edu

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer PLB phosphorylation in HEK cells increased FRET between YFP-PLB and CFP-SERCA. Black-Right-Pointing-Pointer Competition: Expressing loss-of-function PLB mutants in the system decreased FRET. Black-Right-Pointing-Pointer The FRET assay could screen potential therapeutic PLB mutants to activate SERCA. -- Abstract: We have used fluorescent fusion proteins stably expressed in HEK cells to detect directly the interaction between the sarcoplasmic reticulum Ca-ATPase (SERCA) and phospholamban (PLB) in living cells, in order to design PLB mutants for gene therapy. Ca{sup 2+} cycling in muscle cells depends strongly on SERCA. Heart failure (HF), which contributes to 12% of US deaths, typically exhibits decreased SERCAmore » activity, and several potential therapies for HF aim to increase SERCA activity. We are investigating the use of LOF-PLB mutants (PLB{sub M}) as gene therapy vectors to increase SERCA activity. Active SERCA1a and WT-PLB, tagged at their N termini with fluorescent proteins (CFP and YFP), were coexpressed in stable HEK cell lines, and fluorescence resonance energy transfer (FRET) was used to detect their interaction directly. Phosphorylation of PLB, induced by forskolin, caused an increase in FRET from CFP-SERCA to YFP-PLB, indicating that SERCA inhibition can be relieved without dissociation of the complex. This suggests that a LOF mutant might bind to SERCA with sufficient affinity to complete effectively with WT-PLB, thus relieving SERCA inhibition. Therefore, we transiently expressed a series of PLB{sub M} in the CFP-SERCA/YFP-PLB cell line, and found decreased FRET, implying competition between PLB{sub M} and WT-PLB for binding to SERCA. These results establish this FRET assay as a rapid and quantitative means of screening PLB{sub M} for optimization of gene therapy to activate SERCA, as needed for gene therapy in HF.« less

  8. Computational design of variants for cephalosporin C acylase from Pseudomonas strain N176 with improved stability and activity.

    PubMed

    Tian, Ye; Huang, Xiaoqiang; Li, Qing; Zhu, Yushan

    2017-01-01

    In this report, redesigning cephalosporin C acylase from the Pseudomonas strain N176 revealed that the loss of stability owing to the introduced mutations at the active site can be recovered by repacking the nearby hydrophobic core regions. Starting from a quadruple mutant M31βF/H57βS/V68βA/H70βS, whose decrease in stability is largely owing to the mutation V68βA at the active site, we employed a computational enzyme design strategy that integrated design both at hydrophobic core regions for stability enhancement and at the active site for activity improvement. Single-point mutations L154βF, Y167βF, L180βF and their combinations L154βF/L180βF and L154βF/Y167βF/L180βF were found to display improved stability and activity. The two-point mutant L154βF/L180βF increased the protein melting temperature (T m ) by 11.7 °C and the catalytic efficiency V max /K m by 57 % compared with the values of the starting quadruple mutant. The catalytic efficiency of the resulting sixfold mutant M31βF/H57βS/V68βA/H70βS/L154βF/L180βF is recovered to become comparable to that of the triple mutant M31βF/H57βS/H70βS, but with a higher T m . Further experiments showed that single-point mutations L154βF, L180βF, and their combination contribute no stability enhancement to the triple mutant M31βF/H57βS/H70βS. These results verify that the lost stability because of mutation V68βA at the active site was recovered by introducing mutations L154βF and L180βF at hydrophobic core regions. Importantly, mutation V68βA in the six-residue mutant provides more space to accommodate the bulky side chain of cephalosporin C, which could help in designing cephalosporin C acylase mutants with higher activities and the practical one-step enzymatic route to prepare 7-aminocephalosporanic acid at industrial-scale levels.

  9. FLP recombinase-mediated site-specific recombination in silkworm, Bombyx mori

    USDA-ARS?s Scientific Manuscript database

    A comprehensive understanding of gene function and the production of site-specific genetically modified mutants are two major goals of genetic engineering in the post-genomic era. Although site-specific recombination systems have been powerful tools for genome manipulation of many organisms, they h...

  10. Improving thermostability of phosphatidylinositol-synthesizing Streptomyces phospholipase D.

    PubMed

    Damnjanović, Jasmina; Takahashi, Rie; Suzuki, Atsuo; Nakano, Hideo; Iwasaki, Yugo

    2012-08-01

    Aimed to produce thermostable phosphatidylinositol (PI)-synthesizing phospholipase D (PLD), we initiated site-directed combinatorial mutagenesis followed by high-throughput screening. Previous site-directed combinatorial mutagenesis of wild-type Streptomyces PLD produced a mutant, DYR (W187D/Y191Y/Y385R) with PI-synthesizing ability. Deriving PI as a product of transphosphatidylation between phosphatidylcholine and myo-inositol, with myo-inositol in excess at high-temperature reaction conditions can increase yield due to enhanced solubility of this substrate. Thus, we improved DYR's thermostability by introduction of random mutations into selected amino acid positions having high B-factor. Screening of the libraries under restricted conditions yielded single-point mutants, specifically D40H, T291Y and R329G. Combinations of these point mutations yielded double (D40H/T291Y, D40H/R329G and T291Y/R329G) and triple (D40H/T291Y/R329G) mutants. PI synthesis at elevated temperatures pointed at D40H/T291Y as the most efficient enzyme. Circular dichroism analysis revealed D40H/T291Y to have increased melting temperature and postponed onset of thermal unfolding compared with DYR. Thermal tolerance study at 65°C confirmed D40H/T291Y's thermostability as its half-inactivation time was 8.7 min longer compared with DYR. This mutant had significantly less root-mean-square deviation change compared with DYR and showed no change in root-mean-square fluctuation when temperature shifts from 40 to 60°C, as determined by molecular dynamics analysis. Acquired different degrees of thermostability were also observed for several other DYR mutants.

  11. Division-induced DNA double strand breaks in the chromosome terminus region of Escherichia coli lacking RecBCD DNA repair enzyme

    PubMed Central

    Durand, Adeline; Desfontaines, Jean-Michel; Iurchenko, Ielyzaveta; Auger, Hélène; Leach, David R. F.

    2017-01-01

    Marker frequency analysis of the Escherichia coli recB mutant chromosome has revealed a deficit of DNA in a specific zone of the terminus, centred on the dif/TerC region. Using fluorescence microscopy of a marked chromosomal site, we show that the dif region is lost after replication completion, at the time of cell division, in one daughter cell only, and that the phenomenon is transmitted to progeny. Analysis by marker frequency and microscopy shows that the position of DNA loss is not defined by the replication fork merging point since it still occurs in the dif/TerC region when the replication fork trap is displaced in strains harbouring ectopic Ter sites. Terminus DNA loss in the recB mutant is also independent of dimer resolution by XerCD at dif and of Topo IV action close to dif. It occurs in the terminus region, at the point of inversion of the GC skew, which is also the point of convergence of specific sequence motifs like KOPS and Chi sites, regardless of whether the convergence of GC skew is at dif (wild-type) or a newly created sequence. In the absence of FtsK-driven DNA translocation, terminus DNA loss is less precisely targeted to the KOPS convergence sequence, but occurs at a similar frequency and follows the same pattern as in FtsK+ cells. Importantly, using ftsIts, ftsAts division mutants and cephalexin treated cells, we show that DNA loss of the dif region in the recB mutant is decreased by the inactivation of cell division. We propose that it results from septum-induced chromosome breakage, and largely contributes to the low viability of the recB mutant. PMID:28968392

  12. Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities

    PubMed Central

    Kerr, Emma; Gaude, Edoardo; Turrell, Frances; Frezza, Christian; Martins, Carla P

    2016-01-01

    Summary The RAS/MAPK-signalling pathway is frequently deregulated in non-small cell lung cancer (NSCLC), often through KRAS activating mutations1-3. A single endogenous mutant Kras allele is sufficient to promote lung tumour formation in mice but malignant progression requires additional genetic alterations4-7. We recently showed that advanced lung tumours from KrasG12D/+;p53-null mice frequently exhibit KrasG12D allelic enrichment (KrasG12D/Kraswild-type>1)7, implying that mutant Kras copy gains are positively selected during progression. Through a comprehensive analysis of mutant Kras homozygous and heterozygous MEFs and lung cancer cells we now show that these genotypes are phenotypically distinct. In particular, KrasG12D/G12D cells exhibit a glycolytic switch coupled to increased channelling of glucose-derived metabolites into the TCA cycle and glutathione biosynthesis, resulting in enhanced glutathione-mediated detoxification. This metabolic rewiring is recapitulated in mutant KRAS homozygous NSCLC cells and in vivo, in spontaneous advanced murine lung tumours (which display a high frequency of KrasG12D copy gain), but not in the corresponding early tumours (KrasG12D heterozygous). Finally, we demonstrate that mutant Kras copy gain creates unique metabolic dependences that can be exploited to selectively target these aggressive mutant Kras tumours. Our data demonstrate that mutant Kras lung tumours are not a single disease but rather a heterogeneous group comprised of two classes of tumours with distinct metabolic profiles, prognosis and therapeutic susceptibility, which can be discriminated based on their relative mutant allelic content. We also provide the first in vivo evidence of metabolic rewiring during lung cancer malignant progression. PMID:26909577

  13. Effects of hypo-O-GlcNAcylation on Drosophila development.

    PubMed

    Mariappa, Daniel; Ferenbach, Andrew T; van Aalten, Daan M F

    2018-05-11

    Post-translational modification of serine/threonine residues in nucleocytoplasmic proteins with GlcNAc ( O -GlcNAcylation) is an essential regulatory mechanism in many cellular processes. In Drosophila , null mutants of the Polycomb gene O -GlcNAc transferase ( OGT ; also known as super sex combs ( sxc )) display homeotic phenotypes. To dissect the requirement for O -GlcNAc signaling in Drosophila development, we used CRISPR/Cas9 gene editing to generate rationally designed sxc catalytically hypomorphic or null point mutants. Of the fertile males derived from embryos injected with the CRISPR/Cas9 reagents, 25% produced progeny carrying precise point mutations with no detectable off-target effects. One of these mutants, the catalytically inactive sxc K872M , was recessive lethal, whereas a second mutant, the hypomorphic sxc H537A , was homozygous viable. We observed that reduced total protein O -GlcNAcylation in the sxc H537A mutant is associated with a wing vein phenotype and temperature-dependent lethality. Genetic interaction between sxc H537A and a null allele of Drosophila host cell factor ( dHcf ), encoding an extensively O -GlcNAcylated transcriptional coactivator, resulted in abnormal scutellar bristle numbers. A similar phenotype was also observed in sxc H537A flies lacking a copy of skuld ( skd ), a Mediator complex gene known to affect scutellar bristle formation. Interestingly, this phenotype was independent of OGT Polycomb function or dHcf downstream targets. In conclusion, the generation of the endogenous OGT hypomorphic mutant sxc H537A enabled us to identify pleiotropic effects of globally reduced protein O -GlcNAc during Drosophila development. The mutants generated and phenotypes observed in this study provide a platform for discovery of OGT substrates that are critical for Drosophila development. © 2018 Mariappa et al.

  14. Experimentally Dissecting the Origins of Peroxiredoxin Catalysis.

    PubMed

    Nelson, Kimberly J; Perkins, Arden; Van Swearingen, Amanda E D; Hartman, Steven; Brereton, Andrew E; Parsonage, Derek; Salsbury, Freddie R; Karplus, P Andrew; Poole, Leslie B

    2018-03-01

    Peroxiredoxins (Prxs) are ubiquitous cysteine-based peroxidases involved in oxidant defense and signal transduction. Despite much study, the precise roles of conserved residues remain poorly defined. In this study, we carried out extensive functional and structural characterization of 10 variants of such residues in a model decameric bacterial Prx. Three active site proximal mutations of Salmonella typhimurium AhpC, T43V, R119A, and E49Q, lowered catalytic efficiency with hydrogen peroxide by 4-5 orders of magnitude, but did not affect reactivity toward their reductant, AhpF. pK a values of the peroxidatic cysteine were also shifted up by 1-1.3 pH units for these and a decamer disruption mutant, T77I. Except for the decamer-stabilizing T77V, all mutations destabilized decamers in the reduced form. In the oxidized form, three mutants-T77V, T43A, and T43S-exhibited stabilized decamers and were more efficiently reduced by AhpF than wild-type AhpC. Crystal structures of most mutants were solved and many showed alterations in stability of the fully folded active site loop. This is the first study of Prx mutants to comprehensively assess the effects of mutations on catalytic activities, the active site cysteine pK a , and the protein structure and oligomeric status. The Arg119 side chain must be properly situated for efficient catalysis, but for other debilitating variants, the functional defects could be explained by structural perturbations and/or associated decamer destabilization rather than direct effects. This underscores the importance of our comprehensive approach. A remarkable new finding was the preference of the reductant for decamers. Antioxid. Redox Signal. 28, 521-536.

  15. Comprehensive identification of mutations induced by heavy-ion beam irradiation in Arabidopsis thaliana.

    PubMed

    Hirano, Tomonari; Kazama, Yusuke; Ishii, Kotaro; Ohbu, Sumie; Shirakawa, Yuki; Abe, Tomoko

    2015-04-01

    Heavy-ion beams are widely used for mutation breeding and molecular biology. Although the mutagenic effects of heavy-ion beam irradiation have been characterized by sequence analysis of some restricted chromosomal regions or loci, there have been no evaluations at the whole-genome level or of the detailed genomic rearrangements in the mutant genomes. In this study, using array comparative genomic hybridization (array-CGH) and resequencing, we comprehensively characterized the mutations in Arabidopsis thaliana genomes irradiated with Ar or Fe ions. We subsequently used this information to investigate the mutagenic effects of the heavy-ion beams. Array-CGH demonstrated that the average number of deleted areas per genome were 1.9 and 3.7 following Ar-ion and Fe-ion irradiation, respectively, with deletion sizes ranging from 149 to 602,180 bp; 81% of the deletions were accompanied by genomic rearrangements. To provide a further detailed analysis, the genomes of the mutants induced by Ar-ion beam irradiation were resequenced, and total mutations, including base substitutions, duplications, in/dels, inversions, and translocations, were detected using three algorithms. All three resequenced mutants had genomic rearrangements. Of the 22 DNA fragments that contributed to the rearrangements, 19 fragments were responsible for the intrachromosomal rearrangements, and multiple rearrangements were formed in the localized regions of the chromosomes. The interchromosomal rearrangements were detected in the multiply rearranged regions. These results indicate that the heavy-ion beams led to clustered DNA damage in the chromosome, and that they have great potential to induce complicated intrachromosomal rearrangements. Heavy-ion beams will prove useful as unique mutagens for plant breeding and the establishment of mutant lines. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  16. A chitinase is required for Xylella fastidiosa colonization of its insect and plant hosts.

    PubMed

    Labroussaa, Fabien; Ionescu, Michael; Zeilinger, Adam R; Lindow, Steven E; Almeida, Rodrigo P P

    2017-04-01

    Xylella fastidiosa colonizes the xylem network of host plant species as well as the foregut of its required insect vectors to ensure efficient propagation. Disease management strategies remain inefficient due to a limited comprehension of the mechanisms governing both insect and plant colonization. It was previously shown that X. fastidiosa has a functional chitinase (ChiA), and that chitin likely serves as a carbon source for this bacterium. We expand on that research, showing that a chiA mutant strain is unable to grow on chitin as the sole carbon source. Quantitative PCR assays allowed us to detect bacterial cells in the foregut of vectors after pathogen acquisition; populations of the wild-type and complemented mutant strain were both significantly larger than the chiA mutant strain 10 days, but not 3 days, post acquisition. These results indicate that adhesion of the chiA mutant strain to vectors may not be impaired, but that cell multiplication is limited. The mutant was also affected in its transmission by vectors to plants. In addition, the chiA mutant strain was unable to colonize host plants, suggesting that the enzyme has other substrates associated with plant colonization. Lastly, ChiA requires other X. fastidiosa protein(s) for its in vitro chitinolytic activity. The observation that the chiA mutant strain is not able to colonize plants warrants future attention to be paid to the substrates for this enzyme.

  17. Genetic interaction analysis of point mutations enables interrogation of gene function at a residue-level resolution

    PubMed Central

    Braberg, Hannes; Moehle, Erica A.; Shales, Michael; Guthrie, Christine; Krogan, Nevan J.

    2014-01-01

    We have achieved a residue-level resolution of genetic interaction mapping – a technique that measures how the function of one gene is affected by the alteration of a second gene – by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine. PMID:24842270

  18. Comprehensive sequence-flux mapping of a levoglucosan utilization pathway in E. coli

    DOE PAGES

    Klesmith, Justin R.; Bacik, John -Paul; Michalczyk, Ryszard; ...

    2015-09-14

    Synthetic metabolic pathways often suffer from low specific productivity, and new methods that quickly assess pathway functionality for many thousands of variants are urgently needed. Here we present an approach that enables the rapid and parallel determination of sequence effects on flux for complete gene-encoding sequences. We show that this method can be used to determine the effects of over 8000 single point mutants of a pyrolysis oil catabolic pathway implanted in Escherichia coli. Experimental sequence-function data sets predicted whether fitness-enhancing mutations to the enzyme levoglucosan kinase resulted from enhanced catalytic efficiency or enzyme stability. A structure of one designmore » incorporating 38 mutations elucidated the structural basis of high fitness mutations. One design incorporating 15 beneficial mutations supported a 15-fold improvement in growth rate and greater than 24-fold improvement in enzyme activity relative to the starting pathway. Lastly, this technique can be extended to improve a wide variety of designed pathways.« less

  19. Mapping transiently formed and sparsely populated conformations on a complex energy landscape

    PubMed Central

    Wang, Yong; Papaleo, Elena; Lindorff-Larsen, Kresten

    2016-01-01

    Determining the structures, kinetics, thermodynamics and mechanisms that underlie conformational exchange processes in proteins remains extremely difficult. Only in favourable cases is it possible to provide atomic-level descriptions of sparsely populated and transiently formed alternative conformations. Here we benchmark the ability of enhanced-sampling molecular dynamics simulations to determine the free energy landscape of the L99A cavity mutant of T4 lysozyme. We find that the simulations capture key properties previously measured by NMR relaxation dispersion methods including the structure of a minor conformation, the kinetics and thermodynamics of conformational exchange, and the effect of mutations. We discover a new tunnel that involves the transient exposure towards the solvent of an internal cavity, and show it to be relevant for ligand escape. Together, our results provide a comprehensive view of the structural landscape of a protein, and point forward to studies of conformational exchange in systems that are less characterized experimentally. DOI: http://dx.doi.org/10.7554/eLife.17505.001 PMID:27552057

  20. A comprehensive study of the harmful effects of ZnO nanoparticles using Drosophila melanogaster as an in vivo model.

    PubMed

    Alaraby, Mohamed; Annangi, Balasubramanyam; Hernández, Alba; Creus, Amadeu; Marcos, Ricard

    2015-10-15

    This study planned to determine the range of biological effects associated with ZnO-NP exposure using Drosophila melanogaster as an in vivo model. In addition, ZnCl2 was used to determine the potential role of Zn ions alone. Toxicity, internalization through the intestinal barrier, gene expression changes, ROS production, and genotoxicity were the end-points evaluated. No toxicity or oxidative stress induction was observed in D. melanogaster larvae, whether using ZnO-NPs or ZnCl2. Internalization of ZnO-NPs through the intestinal barrier was observed. No significant changes in the frequency of mutant clones (wing-spot test) or percentage of DNA in tail (comet assay) were observed although significant changes in Hsp70 and p53 gene expression were detected. Our study shows that ZnO-NPs do not induce toxicity or genotoxicity in D. melanogaster, although uptake occurs and altered gene expression is observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation and stabilizes microtubules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iimori, Makoto; Ozaki, Kanako; Chikashige, Yuji

    2012-02-01

    Mal3 is a fission yeast homolog of EB1, a plus-end tracking protein (+ TIP). We have generated a mutation (89R) replacing glutamine with arginine in the calponin homology (CH) domain of Mal3. Analysis of the 89R mutant in vitro has revealed that the mutation confers a higher affinity to microtubules and enhances the intrinsic activity to promote the microtubule-assembly. The mutant Mal3 is no longer a + TIP, but binds strongly the microtubule lattice. Live cell imaging has revealed that while the wild type Mal3 proteins dissociate from the tip of the growing microtubules before the onset of shrinkage, themore » mutant Mal3 proteins persist on microtubules and reduces a rate of shrinkage after a longer pausing period. Consequently, the mutant Mal3 proteins cause abnormal elongation of microtubules composing the spindle and aster. Mal3 is phosphorylated at a cluster of serine/threonine residues in the linker connecting the CH and EB1-like C-terminal motif domains. The phosphorylation occurs in a microtubule-dependent manner and reduces the affinity of Mal3 to microtubules. We propose that because the 89R mutation is resistant to the effect of phosphorylation, it can associate persistently with microtubules and confers a stronger stability of microtubules likely by reinforcing the cylindrical structure. -- Highlights: Black-Right-Pointing-Pointer We characterize a mutation (mal3-89R) in fission yeast homolog of EB1. Black-Right-Pointing-Pointer The mutation enhances the activity to assemble microtubules. Black-Right-Pointing-Pointer Mal3 is phosphorylated in a microtubule-dependent manner. Black-Right-Pointing-Pointer The phosphorylation negatively regulates the Mal3 activity.« less

  2. Modulation of Global Transcriptional Regulatory Networks as a Strategy for Increasing Kanamycin Resistance of the Translational Elongation Factor-G Mutants in Escherichia coli

    PubMed Central

    Mogre, Aalap; Veetil, Reshma T.; Seshasayee, Aswin Sai Narain

    2017-01-01

    Evolve and resequence experiments have provided us a tool to understand bacterial adaptation to antibiotics. In our previous work, we used short-term evolution to isolate mutants resistant to the ribosome targeting antibiotic kanamycin, and reported that Escherichia coli develops low cost resistance to kanamycin via different point mutations in the translation Elongation Factor-G (EF-G). Furthermore, we had shown that the resistance of EF-G mutants could be increased by second site mutations in the genes rpoD/cpxA/topA/cyaA. Mutations in three of these genes had been discovered in earlier screens for aminoglycoside resistance. In this work, we expand our understanding of these second site mutations, the goal being to understand how these mutations affect the activities of the mutated gene products to confer resistance. We show that the mutation in cpxA most likely results in an active Cpx stress response. Further evolution of an EF-G mutant in a higher concentration of kanamycin than what was used in our previous experiments identified the cpxA locus as a primary target for a significant increase in resistance. The mutation in cyaA results in a loss of catalytic activity and probably results in resistance via altered CRP function. Despite a reduction in cAMP levels, the CyaAN600Y mutant has a transcriptome indicative of increased CRP activity, pointing to an unknown role for CyaA and / or cAMP in gene expression. From the transcriptomes of double and single mutants, we describe the epistasis between the mutation in EF-G and these second site mutations. We show that the large scale transcriptomic changes in the topoisomerase I (FusAA608E-TopAS180L) mutant likely result from increased negative supercoiling in the cell. Finally, genes with known roles in aminoglycoside resistance were present among the misregulated genes in the mutants. PMID:29046437

  3. Effect of single-point mutations on the stability and immunogenicity of a recombinant ricin A chain subunit vaccine antigen.

    PubMed

    Thomas, Justin C; O'Hara, Joanne M; Hu, Lei; Gao, Fei P; Joshi, Sangeeta B; Volkin, David B; Brey, Robert N; Fang, Jianwen; Karanicolas, John; Mantis, Nicholas J; Middaugh, C Russell

    2013-04-01

    There is great interest in the design and development of highly thermostable and immunogenic protein subunit vaccines for biodefense. In this study, we used two orthogonal and complementary computational protein design approaches to generate a series of single-point mutants of RiVax, an attenuated recombinant ricin A chain (RTA) protein subunit vaccine antigen. As assessed by differential scanning calorimetry, the conformational stabilities of the designed mutants ranged from 4°C less stable to 4.5°C more stable than RiVax, depending on solution pH. Two more thermostable (V18P, C171L) and two less thermostable (T13V, S89T) mutants that displayed native-like secondary and tertiary structures (as determined by circular dichroism and fluorescence spectral analysis, respectively) were tested for their capacity to elicit RTA-specific antibodies and toxin-neutralizing activity. Following a prime-boost regimen, we found qualitative differences with respect to specific antibody titers and toxin neutralizing antibody levels induced by the different mutants. Upon a second boost with the more thermostable mutant C171L, a statistically significant increase in RTA-specific antibody titers was observed when compared with RiVax-immunized mice. Notably, the results indicate that single residue changes can be made to the RiVax antigen that increase its thermal stability without adversely impacting the efficacy of the vaccine.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Honglin; Peng, Xiaohui; Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230026

    This study examined recombinant wild-type human phosphoribosylpyrophosphate synthetase 1 (wt-PRS1, EC 2.7.6.1) and the point mutant Asn114Ser PRS1 (N114S-Mutant) in cells of a patient with primary gout. Dynamic light-scattering and sedimentation velocity experiments indicated that the monomeric wt-PRS1 in solution was assembled into hexamers after adding the substrate ATP. However, this ATP-induced aggregation effect was not observed with N114S-Mutant, which has a 50% higher enzymatic activity than that of wt-PRS1. Synchrotron radiation circular dichroism spectroscopy revealed that the point mutation causes an increase of {alpha}-helix content and a decrease of turn content. Examination of the crystal structure of wt-PRS1 indicatedmore » that 12 hydrogen bonds formed by 6 pairs of N114 and D139 have an important role in stabilizing the hexamer. We suggest that the substitution of S114 for N114 in N114S-Mutant leads to the rupture of 12 hydrogen bonds and breakage of the PO{sub 4}{sup 3-} allosteric site where PO{sub 4}{sup 3-} functions as a fixer of the ATP-binding loop. Therefore, we consider that formation of the hexamer as the structural basis of the ADP allosteric inhibition is greatly weakened by the N114S mutation, and that alteration of the ATP-binding loop conformation is the key factor in the increased activity of N114S-Mutant. These two factors could be responsible for the high level of activity of N114S-Mutant in this patient.« less

  5. Effect of point substitutions within the minimal DNA-binding domain of xeroderma pigmentosum group A protein on interaction with DNA intermediates of nucleotide excision repair.

    PubMed

    Maltseva, E A; Krasikova, Y S; Naegeli, H; Lavrik, O I; Rechkunova, N I

    2014-06-01

    Xeroderma pigmentosum factor A (XPA) is one of the key proteins in the nucleotide excision repair (NER) process. The effects of point substitutions in the DNA-binding domain of XPA (positively charged lysine residues replaced by negatively charged glutamate residues: XPA K204E, K179E, K141E, and tandem mutant K141E/K179E) on the interaction of the protein with DNA structures modeling intermediates of the damage recognition and pre-incision stages in NER were analyzed. All these mutations decreased the affinity of the protein to DNA, the effect depending on the substitution and the DNA structure. The mutant as well as wild-type proteins bind with highest efficiency partly open damaged DNA duplex, and the affinity of the mutants to this DNA is reduced in the order: K204E > K179E > K141E = K141/179E. For all the mutants, decrease in DNA binding efficiency was more pronounced in the case of full duplex and single-stranded DNA than with bubble-DNA structure, the difference between protein affinities to different DNA structures increasing as DNA binding activity of the mutant decreased. No effect of the studied XPA mutations on the location of the protein on the partially open DNA duplex was observed using photoinduced crosslinking with 5-I-dUMP in different positions of the damaged DNA strand. These results combined with earlier published data suggest no direct correlation between DNA binding and activity in NER for these XPA mutants.

  6. Melanopsin Polymorphisms in Seasonal Affective Disorder

    DTIC Science & Technology

    2005-01-01

    Affective Disorder and Melanopsin Pigmentosa (RP), which is a disease characterized by retinal degeneration. Melanopsin is structurally similar to all...abnormal intradiscal disulfide bond in misfolded retinitis pigmentosa mutants. Proceedings of the National Academy of Science U S A, 98(9), p4872-4876...in rhodopsin: correct folding and misfolding in two point mutants in the intradiscal domain of rhodopsin identified in retinitis pigmentosa

  7. GALT protein database, a bioinformatics resource for the management and analysis of structural features of a galactosemia-related protein and its mutants.

    PubMed

    d'Acierno, Antonio; Facchiano, Angelo; Marabotti, Anna

    2009-06-01

    We describe the GALT-Prot database and its related web-based application that have been developed to collect information about the structural and functional effects of mutations on the human enzyme galactose-1-phosphate uridyltransferase (GALT) involved in the genetic disease named galactosemia type I. Besides a list of missense mutations at gene and protein sequence levels, GALT-Prot reports the analysis results of mutant GALT structures. In addition to the structural information about the wild-type enzyme, the database also includes structures of over 100 single point mutants simulated by means of a computational procedure, and the analysis to each mutant was made with several bioinformatics programs in order to investigate the effect of the mutations. The web-based interface allows querying of the database, and several links are also provided in order to guarantee a high integration with other resources already present on the web. Moreover, the architecture of the database and the web application is flexible and can be easily adapted to store data related to other proteins with point mutations. GALT-Prot is freely available at http://bioinformatica.isa.cnr.it/GALT/.

  8. Convergent mechanisms favor fast amyloid formation in two lambda 6a Ig light chain mutants.

    PubMed

    Valdés-García, Gilberto; Millán-Pacheco, César; Pastor, Nina

    2017-08-01

    Extracellular deposition as amyloids of immunoglobulin light chains causes light chain amyloidosis. Among the light chain families, lambda 6a is one of the most frequent in light chain amyloidosis patients. Its germline protein, 6aJL2, and point mutants, R24G and P7S, are good models to study fibrillogenesis, because their stability and fibril formation characteristics have been described. Both mutations make the germline protein unstable and speed up its ability to aggregate. To date, there is no molecular mechanism that explains how these differences in amyloidogenesis can arise from a single mutation. To look into the structural and dynamical differences in the native state of these proteins, we carried out molecular dynamics simulations at room temperature. Despite the structural similarity of the germline protein and the mutants, we found differences in their dynamical signatures that explain the mutants' increased tendency to form amyloids. The contact network alterations caused by the mutations, though different, converge in affecting two anti-aggregation motifs present in light chain variable domains, suggesting a different starting point for aggregation in lambda chains compared to kappa chains. © 2017 Wiley Periodicals, Inc.

  9. Binding affinity and adhesion force of organophosphate hydrolase enzyme with soil particles related to the isoelectric point of the enzyme.

    PubMed

    Islam, Shah Md Asraful; Yeasmin, Shabina; Islam, Md Saiful; Islam, Md Shariful

    2017-07-01

    The binding affinity of organophosphate hydrolase enzyme (OphB) with soil particles in relation to the isoelectric point (pI) was studied. Immobilization of OphB with soil particles was observed by confocal microscopy, Fourier transform infrared spectroscopy (FT-IR), and Atomic force microscopy (AFM). The calculated pI of OphB enzyme was increased from 8.69 to 8.89, 9.04 and 9.16 by the single, double and triple mutant of OphB enzyme, respectively through the replacement of negatively charged aspartate with positively charged histidine. Practically, the binding affinity was increased to 5.30%, 11.50%, and 16.80% for single, double and triple mutants, respectively. In contrast, enzyme activity of OphB did not change by the mutation of the enzyme. On the other hand, adhesion forces were gradually increased for wild type OphB enzyme (90 pN) to 96, 100 and 104 pN for single, double and triple mutants of OphB enzyme, respectively. There was an increasing trend of binding affinity and adhesion force by the increase of isoelectric point (pI) of OphB enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Molecular basis for the interplay of apoptosis and proliferation mediated by Bcl-xL:Bim interactions in pancreatic cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrol, Ravinder, E-mail: abrol@wag.caltech.edu; Edderkaoui, Mouad; Goddard, William A.

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Direct role of Bcl-2 protein interactions in cell proliferation is not clear. Black-Right-Pointing-Pointer Designed Bcl-xL mutants show opposite effects on apoptosis and proliferation. Black-Right-Pointing-Pointer Disrupting Bcl-xL:Bim interaction increased apoptosis in pancreatic cancer. Black-Right-Pointing-Pointer Disrupting Bcl-xL:Bim interaction decreased proliferation in pancreatic cancer. Black-Right-Pointing-Pointer Bcl-xL:Bim interaction can control both apoptosis and proliferation. -- Abstract: A major mechanism through which cancer cells avoid apoptosis is by promoting the association of anti-apoptotic members of the pro-survival Bcl-2 protein family (like Bcl-2 and Bcl-xL) with BH{sub 3} domain-only proteins (like Bim and Bid). Apoptosis and cell proliferation have been shown to be linkedmore » for many cancers but the molecular basis for this link is far from understood. We have identified the Bcl-xL:Bim protein-protein interface as a direct regulator of proliferation and apoptosis in pancreatic cancer cells. We were able to predict and subsequently verify experimentally the effect of various Bcl-xL single-point mutants (at the position A142) on binding to Bim by structural analysis and computational modeling of the inter-residue interactions at the Bcl-xL:Bim protein-protein interface. The mutants A142N, A142Q, and A142Y decreased binding of Bim to Bcl-xL and A142S increased this binding. The Bcl-xL mutants, with decreased affinity for Bim, caused an increase in apoptosis and a corresponding decrease in cell proliferation. However, we could prevent these effects by introducing a small interfering RNA (siRNA) targeted at Bim. These results show a novel role played by the Bcl-xL:Bim interaction in regulating proliferation of pancreatic cancer cells at the expense of apoptosis. This study presents a physiologically relevant model of the Bcl-xL:Bim interface that can be used for rational therapeutic design for the inhibition of proliferation and cancer cell resistance to apoptosis.« less

  11. Molecular characterization of HIV-1 Nef and ACOT8 interaction: insights from in silico structural predictions and in vitro functional assays

    NASA Astrophysics Data System (ADS)

    Serena, Michela; Giorgetti, Alejandro; Busato, Mirko; Gasparini, Francesca; Diani, Erica; Romanelli, Maria Grazia; Zipeto, Donato

    2016-03-01

    HIV-1 Nef interacts with several cellular proteins, among which the human peroxisomal thioesterase 8 (ACOT8). This interaction may be involved in the endocytosis regulation of membrane proteins and might modulate lipid composition in membrane rafts. Nef regions involved in the interaction have been experimentally characterized, whereas structural details of the ACOT8 protein are unknown. The lack of structural information hampers the comprehension of the functional consequences of the complex formation during HIV-1 infection. We modelled, through in silico predictions, the ACOT8 structure and we observed a high charge complementarity between Nef and ACOT8 surfaces, which allowed the identification of the ACOT8 putative contact points involved in the interaction. The predictions were validated by in vitro assays through the development of ACOT8 deletion mutants. Coimmunoprecipitation and immunofluorescence analyses showed that ACOT8 Arg45-Phe55 and Arg86-Pro93 regions are involved in Nef association. In addition, K91S mutation abrogated the interaction with Nef, indicating that Lys91 plays a key role in the interaction. Finally, when associated with ACOT8, Nef may be preserved from degradation. These findings improve the comprehension of the association between HIV-1 Nef and ACOT8, helping elucidating the biological effect of their interaction.

  12. Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes.

    PubMed

    Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich

    2012-02-01

    The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information.

  13. Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes

    PubMed Central

    Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich

    2012-01-01

    The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information. PMID:22384404

  14. Quantification of birefringence readily measures the level of muscle damage in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Joachim, E-mail: Joachim.Berger@Monash.edu; Sztal, Tamar; Currie, Peter D.

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Report of an unbiased quantification of the birefringence of muscle of fish larvae. Black-Right-Pointing-Pointer Quantification method readily identifies level of overall muscle damage. Black-Right-Pointing-Pointer Compare zebrafish muscle mutants for level of phenotype severity. Black-Right-Pointing-Pointer Proposed tool to survey treatments that aim to ameliorate muscular dystrophy. -- Abstract: Muscular dystrophies are a group of genetic disorders that progressively weaken and degenerate muscle. Many zebrafish models for human muscular dystrophies have been generated and analysed, including dystrophin-deficient zebrafish mutants dmd that model Duchenne Muscular Dystrophy. Under polarised light the zebrafish muscle can be detected as a bright area in anmore » otherwise dark background. This light effect, called birefringence, results from the diffraction of polarised light through the pseudo-crystalline array of the muscle sarcomeres. Muscle damage, as seen in zebrafish models for muscular dystrophies, can readily be detected by a reduction in the birefringence. Therefore, birefringence is a very sensitive indicator of overall muscle integrity within larval zebrafish. Unbiased documentation of the birefringence followed by densitometric measurement enables the quantification of the birefringence of zebrafish larvae. Thereby, the overall level of muscle integrity can be detected, allowing the identification and categorisation of zebrafish muscle mutants. In addition, we propose that the establish protocol can be used to analyse treatments aimed at ameliorating dystrophic zebrafish models.« less

  15. Characterization and classification of zebrafish brain morphology mutants

    PubMed Central

    Lowery, Laura Anne; De Rienzo, Gianluca; Gutzman, Jennifer H.; Sive, Hazel

    2010-01-01

    The mechanisms by which the vertebrate brain achieves its three-dimensional structure are clearly complex, requiring the functions of many genes. Using the zebrafish as a model, we have begun to define genes required for brain morphogenesis, including brain ventricle formation, by studying 16 mutants previously identified as having embryonic brain morphology defects. We report the phenotypic characterization of these mutants at several time-points, using brain ventricle dye injection, imaging, and immunohistochemistry with neuronal markers. Most of these mutants display early phenotypes, affecting initial brain shaping, while others show later phenotypes, affecting brain ventricle expansion. In the early phenotype group, we further define four phenotypic classes and corresponding functions required for brain morphogenesis. Although we did not use known genotypes for this classification, basing it solely on phenotypes, many mutants with defects in functionally related genes clustered in a single class. In particular, class 1 mutants show midline separation defects, corresponding to epithelial junction defects; class 2 mutants show reduced brain ventricle size; class 3 mutants show midbrain-hindbrain abnormalities, corresponding to basement membrane defects; and class 4 mutants show absence of ventricle lumen inflation, corresponding to defective ion pumping. Later brain ventricle expansion requires the extracellular matrix, cardiovascular circulation, and transcription/splicing-dependent events. We suggest that these mutants define processes likely to be used during brain morphogenesis throughout the vertebrates. PMID:19051268

  16. Systematic, multiparametric analysis of Mycobacterium tuberculosis intracellular infection offers insight into coordinated virulence.

    PubMed

    Barczak, Amy K; Avraham, Roi; Singh, Shantanu; Luo, Samantha S; Zhang, Wei Ran; Bray, Mark-Anthony; Hinman, Amelia E; Thompson, Matthew; Nietupski, Raymond M; Golas, Aaron; Montgomery, Paul; Fitzgerald, Michael; Smith, Roger S; White, Dylan W; Tischler, Anna D; Carpenter, Anne E; Hung, Deborah T

    2017-05-01

    A key to the pathogenic success of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the capacity to survive within host macrophages. Although several factors required for this survival have been identified, a comprehensive knowledge of such factors and how they work together to manipulate the host environment to benefit bacterial survival are not well understood. To systematically identify Mtb factors required for intracellular growth, we screened an arrayed, non-redundant Mtb transposon mutant library by high-content imaging to characterize the mutant-macrophage interaction. Based on a combination of imaging features, we identified mutants impaired for intracellular survival. We then characterized the phenotype of infection with each mutant by profiling the induced macrophage cytokine response. Taking a systems-level approach to understanding the biology of identified mutants, we performed a multiparametric analysis combining pathogen and host phenotypes to predict functional relationships between mutants based on clustering. Strikingly, mutants defective in two well-known virulence factors, the ESX-1 protein secretion system and the virulence lipid phthiocerol dimycocerosate (PDIM), clustered together. Building upon the shared phenotype of loss of the macrophage type I interferon (IFN) response to infection, we found that PDIM production and export are required for coordinated secretion of ESX-1-substrates, for phagosomal permeabilization, and for downstream induction of the type I IFN response. Multiparametric clustering also identified two novel genes that are required for PDIM production and induction of the type I IFN response. Thus, multiparametric analysis combining host and pathogen infection phenotypes can be used to identify novel functional relationships between genes that play a role in infection.

  17. Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing.

    PubMed

    Tang, Qin; Iyer, Sowmya; Lobbardi, Riadh; Moore, John C; Chen, Huidong; Lareau, Caleb; Hebert, Christine; Shaw, McKenzie L; Neftel, Cyril; Suva, Mario L; Ceol, Craig J; Bernards, Andre; Aryee, Martin; Pinello, Luca; Drummond, Iain A; Langenau, David M

    2017-10-02

    Recent advances in single-cell, transcriptomic profiling have provided unprecedented access to investigate cell heterogeneity during tissue and organ development. In this study, we used massively parallel, single-cell RNA sequencing to define cell heterogeneity within the zebrafish kidney marrow, constructing a comprehensive molecular atlas of definitive hematopoiesis and functionally distinct renal cells found in adult zebrafish. Because our method analyzed blood and kidney cells in an unbiased manner, our approach was useful in characterizing immune-cell deficiencies within DNA-protein kinase catalytic subunit ( prkdc ), interleukin-2 receptor γ a ( il2rga ), and double-homozygous-mutant fish, identifying blood cell losses in T, B, and natural killer cells within specific genetic mutants. Our analysis also uncovered novel cell types, including two classes of natural killer immune cells, classically defined and erythroid-primed hematopoietic stem and progenitor cells, mucin-secreting kidney cells, and kidney stem/progenitor cells. In total, our work provides the first, comprehensive, single-cell, transcriptomic analysis of kidney and marrow cells in the adult zebrafish. © 2017 Tang et al.

  18. Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing

    PubMed Central

    Iyer, Sowmya; Lobbardi, Riadh; Chen, Huidong; Hebert, Christine; Shaw, McKenzie L.; Neftel, Cyril; Suva, Mario L.; Bernards, Andre; Aryee, Martin; Drummond, Iain A.

    2017-01-01

    Recent advances in single-cell, transcriptomic profiling have provided unprecedented access to investigate cell heterogeneity during tissue and organ development. In this study, we used massively parallel, single-cell RNA sequencing to define cell heterogeneity within the zebrafish kidney marrow, constructing a comprehensive molecular atlas of definitive hematopoiesis and functionally distinct renal cells found in adult zebrafish. Because our method analyzed blood and kidney cells in an unbiased manner, our approach was useful in characterizing immune-cell deficiencies within DNA–protein kinase catalytic subunit (prkdc), interleukin-2 receptor γ a (il2rga), and double-homozygous–mutant fish, identifying blood cell losses in T, B, and natural killer cells within specific genetic mutants. Our analysis also uncovered novel cell types, including two classes of natural killer immune cells, classically defined and erythroid-primed hematopoietic stem and progenitor cells, mucin-secreting kidney cells, and kidney stem/progenitor cells. In total, our work provides the first, comprehensive, single-cell, transcriptomic analysis of kidney and marrow cells in the adult zebrafish. PMID:28878000

  19. Characterization of a point mutation in the parC gene of Mycoplasma bovirhinis associated with fluoroquinolone resistance.

    PubMed

    Hirose, K; Kawasaki, Y; Kotani, K; Abiko, K; Sato, H

    2004-05-01

    Quinolone-resistant (QR) mutants of Mycoplasma bovirhinis strain PG43 (type strain) were generated by stepwise selection in increasing concentrations of enrofloxacin (ENR). An alteration was found in the quinolone resistance-determining region (QRDR) of the parC gene coding for the ParC subunit of topoisomerase IV from these mutants, but not in the gyrA, gyrB, and parE gene coding for the GyrA and GyrB subunits of DNA gyrase and the ParE subunit of topoisomerase IV. Similarly, such an alteration in QRDR of parC was found in the field isolates of M. bovirhinis, which possessed various levels of QR. The substitution of leucine (Leu) by serine (Ser) at position 80 of QRDR of ParC was observed in both QR-mutants and QR-isolates. This is the first report of QR based on a point mutation of the parC gene in M. bovirhinis.

  20. Towards trans-diagnostic mechanisms in psychiatry: neurobehavioral profile of rats with a loss-of-function point mutation in the dopamine transporter gene

    PubMed Central

    Vengeliene, Valentina; Bespalov, Anton; Roßmanith, Martin; Horschitz, Sandra; Berger, Stefan; Relo, Ana L.; Noori, Hamid R.; Schneider, Peggy; Enkel, Thomas; Bartsch, Dusan; Schneider, Miriam; Behl, Berthold; Hansson, Anita C.; Schloss, Patrick

    2017-01-01

    ABSTRACT The research domain criteria (RDoC) matrix has been developed to reorient psychiatric research towards measurable behavioral dimensions and underlying mechanisms. Here, we used a new genetic rat model with a loss-of-function point mutation in the dopamine transporter (DAT) gene (Slc6a3_N157K) to systematically study the RDoC matrix. First, we examined the impact of the Slc6a3_N157K mutation on monoaminergic signaling. We then performed behavioral tests representing each of the five RDoC domains: negative and positive valence systems, cognitive, social and arousal/regulatory systems. The use of RDoC may be particularly helpful for drug development. We studied the effects of a novel pharmacological approach metabotropic glutamate receptor mGluR2/3 antagonism, in DAT mutants in a comparative way with standard medications. Loss of DAT functionality in mutant rats not only elevated subcortical extracellular dopamine concentration but also altered the balance of monoaminergic transmission. DAT mutant rats showed deficits in all five RDoC domains. Thus, mutant rats failed to show conditioned fear responses, were anhedonic, were unable to learn stimulus-reward associations, showed impaired cognition and social behavior, and were hyperactive. Hyperactivity in mutant rats was reduced by amphetamine and atomoxetine, which are well-established medications to reduce hyperactivity in humans. The mGluR2/3 antagonist LY341495 also normalized hyperactivity in DAT mutant rats without affecting extracellular dopamine levels. We systematically characterized an altered dopamine system within the context of the RDoC matrix and studied mGluR2/3 antagonism as a new pharmacological strategy to treat mental disorders with underlying subcortical dopaminergic hyperactivity. PMID:28167616

  1. [Radiation biology of structurally different Drosophila melanogaster genes. Report I. The vestigial gene: molecular characteristic of "point" mutations].

    PubMed

    Aleksandrov, I D; Afanas'eva, K P; Aleksandrova, M V; Lapidus, I L

    2012-01-01

    The screening of PCR-detected DNA alterations in 9 spontaneous and 59 gamma-ray-, neutron - or neutron + gamma-ray-induced Drosophila vestigial (vg) gene/"point" mutations was carried out. The detected patterns of existence or absence of either of 16 overlapping fragments into which vg gene (15.1 kb, 8 exons, 7 introns) was divided enable us to subdivide all mutants into 4 classes: (i) PCR+ (40.7%) without the detected changes; (ii) "single-site" (33.9%) with the loss of a single fragment; (iii) partial detections (15.2%) as a loss of 2-9 adjacent fragments and (iv) "cluster" mutants (10.2%) having 2-3 independent changes of(ii) and/or (iii) classes. All spontaneous mutants except one were found to be classified as (ii) whereas radiation-induced mutants are represented by all 4 classes whose interrelation is determined by the dose and radiation quality. In particular, the efficacy of neutrons was found to be nine times as large as that of gamma-rays under the "cluster" mutant induction. Essentially, the distribution of DNA changes along the gene is uneven. CSGE-assay of PCR+-exon 3 revealed DNA heteroduplexes in 5 out of 17 PCR+-mutants studied, 2 of which had small deletions (5 and 11 b) and 3 others made transitions (A --> G) as shown by the sequencing. Therefore, gamma-rays and neutrons seem to be significant environmental agents increasing the SNP risk for the population through their action on the germ cells. The results obtained are also discussed within the framework of the track structure theory and the notion of quite different chromatin organization in somatic and germ cells.

  2. Towards trans-diagnostic mechanisms in psychiatry: neurobehavioral profile of rats with a loss-of-function point mutation in the dopamine transporter gene.

    PubMed

    Vengeliene, Valentina; Bespalov, Anton; Roßmanith, Martin; Horschitz, Sandra; Berger, Stefan; Relo, Ana L; Noori, Hamid R; Schneider, Peggy; Enkel, Thomas; Bartsch, Dusan; Schneider, Miriam; Behl, Berthold; Hansson, Anita C; Schloss, Patrick; Spanagel, Rainer

    2017-04-01

    The research domain criteria (RDoC) matrix has been developed to reorient psychiatric research towards measurable behavioral dimensions and underlying mechanisms. Here, we used a new genetic rat model with a loss-of-function point mutation in the dopamine transporter (DAT) gene ( Slc6a3 _N157K) to systematically study the RDoC matrix. First, we examined the impact of the Slc6a3 _N157K mutation on monoaminergic signaling. We then performed behavioral tests representing each of the five RDoC domains: negative and positive valence systems, cognitive, social and arousal/regulatory systems. The use of RDoC may be particularly helpful for drug development. We studied the effects of a novel pharmacological approach metabotropic glutamate receptor mGluR2/3 antagonism, in DAT mutants in a comparative way with standard medications. Loss of DAT functionality in mutant rats not only elevated subcortical extracellular dopamine concentration but also altered the balance of monoaminergic transmission. DAT mutant rats showed deficits in all five RDoC domains. Thus, mutant rats failed to show conditioned fear responses, were anhedonic, were unable to learn stimulus-reward associations, showed impaired cognition and social behavior, and were hyperactive. Hyperactivity in mutant rats was reduced by amphetamine and atomoxetine, which are well-established medications to reduce hyperactivity in humans. The mGluR2/3 antagonist LY341495 also normalized hyperactivity in DAT mutant rats without affecting extracellular dopamine levels. We systematically characterized an altered dopamine system within the context of the RDoC matrix and studied mGluR2/3 antagonism as a new pharmacological strategy to treat mental disorders with underlying subcortical dopaminergic hyperactivity. © 2017. Published by The Company of Biologists Ltd.

  3. Computational Analysis of Epidermal Growth Factor Receptor Mutations Predicts Differential Drug Sensitivity Profiles toward Kinase Inhibitors.

    PubMed

    Akula, Sravani; Kamasani, Swapna; Sivan, Sree Kanth; Manga, Vijjulatha; Vudem, Dashavantha Reddy; Kancha, Rama Krishna

    2018-05-01

    A significant proportion of patients with lung cancer carry mutations in the EGFR kinase domain. The presence of a deletion mutation in exon 19 or L858R point mutation in the EGFR kinase domain has been shown to cause enhanced efficacy of inhibitor treatment in patients with NSCLC. Several less frequent (uncommon) mutations in the EGFR kinase domain with potential implications in treatment response have also been reported. The role of a limited number of uncommon mutations in drug sensitivity was experimentally verified. However, a huge number of these mutations remain uncharacterized for inhibitor sensitivity or resistance. A large-scale computational analysis of clinically reported 298 point mutants of EGFR kinase domain has been performed, and drug sensitivity profiles for each mutant toward seven kinase inhibitors has been determined by molecular docking. In addition, the relative inhibitor binding affinity toward each drug as compared with that of adenosine triphosphate was calculated for each mutant. The inhibitor sensitivity profiles predicted in this study for a set of previously characterized mutants correlated well with the published clinical, experimental, and computational data. Both the single and compound mutations displayed differential inhibitor sensitivity toward first- and next-generation kinase inhibitors. The present study provides predicted drug sensitivity profiles for a large panel of uncommon EGFR mutations toward multiple inhibitors, which may help clinicians in deciding mutant-specific treatment strategies. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  4. Involvement of multiple stressors induced by non-thermal plasma-charged aerosols during inactivation of airborne bacteria

    PubMed Central

    Vaze, Nachiket D.; Park, Sin; Brooks, Ari D.; Fridman, Alexander; Joshi, Suresh G.

    2017-01-01

    A lab-scale, tunable, single-filament, point-to-point nonthermal dieletric-barrier discharge (DBD) plasma device was built to study the mechanisms of inactivation of aerosolized bacterial pathogens. The system inactivates airborne antibiotic-resistant pathogens efficiently. Nebulization mediated pre-optimized (4 log and 7 log) bacterial loads were challenged to plasma-charged aerosols, and lethal and sublethal doses determined using colony assay, and cell viability assay; and the loss of membrane potential and cellular respiration were determined using cell membrane potential assay and XTT assay. Using the strategies of Escherichia coli wildtype, over-expression mutant, deletion mutants, and peroxide and heat stress scavenging, we analyzed activation of intracellular reactive oxygen species (ROS) and heat shock protein (hsp) chaperons. Superoxide dismutase deletion mutants (ΔsodA, ΔsodB, ΔsodAΔsodB) and catalase mutants ΔkatG and ΔkatEΔkatG did not show significant difference from wildtype strain, and ΔkatE and ΔahpC was found significantly more susceptible to cell death than wildtype. The oxyR regulon was found to mediate plasma-charged aerosol-induced oxidative stress in bacteria. Hsp deficient E. coli (ΔhtpG, ΔgroEL, ΔclpX, ΔgrpE) showed complete inactivation of cells at ambient temperature, and the treatment at cold temperature (4°C) significantly protected hsp deletion mutants and wildtype cells, and indicate a direct involvement of hsp in plasma-charged aerosol mediated E. coli cell death. PMID:28166240

  5. Mutations in Prickle Orthologs Cause Seizures in Flies, Mice, and Humans

    PubMed Central

    Tao, Hirotaka; Manak, J. Robert; Sowers, Levi; Mei, Xue; Kiyonari, Hiroshi; Abe, Takaya; Dahdaleh, Nader S.; Yang, Tian; Wu, Shu; Chen, Shan; Fox, Mark H.; Gurnett, Christina; Montine, Thomas; Bird, Thomas; Shaffer, Lisa G.; Rosenfeld, Jill A.; McConnell, Juliann; Madan-Khetarpal, Suneeta; Berry-Kravis, Elizabeth; Griesbach, Hilary; Saneto, Russell P.; Scott, Matthew P.; Antic, Dragana; Reed, Jordan; Boland, Riley; Ehaideb, Salleh N.; El-Shanti, Hatem; Mahajan, Vinit B.; Ferguson, Polly J.; Axelrod, Jeffrey D.; Lehesjoki, Anna-Elina; Fritzsch, Bernd; Slusarski, Diane C.; Wemmie, John; Ueno, Naoto; Bassuk, Alexander G.

    2011-01-01

    Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution. PMID:21276947

  6. E3 Ubiquitin Ligase CHIP and NBR1-Mediated Selective Autophagy Protect Additively against Proteotoxicity in Plant Stress Responses

    PubMed Central

    Qi, Jingxia; Chi, Yingjin; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2014-01-01

    Plant stress responses require both protective measures that reduce or restore stress-inflicted damage to cellular structures and mechanisms that efficiently remove damaged and toxic macromolecules, such as misfolded and damaged proteins. We have recently reported that NBR1, the first identified plant autophagy adaptor with a ubiquitin-association domain, plays a critical role in plant stress tolerance by targeting stress-induced, ubiquitinated protein aggregates for degradation by autophagy. Here we report a comprehensive genetic analysis of CHIP, a chaperone-associated E3 ubiquitin ligase from Arabidopsis thaliana implicated in mediating degradation of nonnative proteins by 26S proteasomes. We isolated two chip knockout mutants and discovered that they had the same phenotypes as the nbr1 mutants with compromised tolerance to heat, oxidative and salt stresses and increased accumulation of insoluble proteins under heat stress. To determine their functional interactions, we generated chip nbr1 double mutants and found them to be further compromised in stress tolerance and in clearance of stress-induced protein aggregates, indicating additive roles of CHIP and NBR1. Furthermore, stress-induced protein aggregates were still ubiquitinated in the chip mutants. Through proteomic profiling, we systemically identified heat-induced protein aggregates in the chip and nbr1 single and double mutants. These experiments revealed that highly aggregate-prone proteins such as Rubisco activase and catalases preferentially accumulated in the nbr1 mutant while a number of light-harvesting complex proteins accumulated at high levels in the chip mutant after a relatively short period of heat stress. With extended heat stress, aggregates for a large number of intracellular proteins accumulated in both chip and nbr1 mutants and, to a greater extent, in the chip nbr1 double mutant. Based on these results, we propose that CHIP and NBR1 mediate two distinct but complementary anti-proteotoxic pathways and protein's propensity to aggregate under stress conditions is one of the critical factors for pathway selection of protein degradation. PMID:24497840

  7. An integrated "omics" approach to the characterization of maize (Zea mays L.) mutants deficient in the expression of two genes encoding cytosolic glutamine synthetase.

    PubMed

    Amiour, Nardjis; Imbaud, Sandrine; Clément, Gilles; Agier, Nicolas; Zivy, Michel; Valot, Benoît; Balliau, Thierry; Quilleré, Isabelle; Tercé-Laforgue, Thérèse; Dargel-Graffin, Céline; Hirel, Bertrand

    2014-11-20

    To identify the key elements controlling grain production in maize, it is essential to have an integrated view of the responses to alterations in the main steps of nitrogen assimilation by modification of gene expression. Two maize mutant lines (gln1.3 and gln1.4), deficient in two genes encoding cytosolic glutamine synthetase, a key enzyme involved in nitrogen assimilation, were previously characterized by a reduction of kernel size in the gln1.4 mutant and by a reduction of kernel number in the gln1.3 mutant. In this work, the differences in leaf gene transcripts, proteins and metabolite accumulation in gln1.3 and gln1.4 mutants were studied at two key stages of plant development, in order to identify putative candidate genes, proteins and metabolic pathways contributing on one hand to the control of plant development and on the other to grain production. The most interesting finding in this study is that a number of key plant processes were altered in the gln1.3 and gln1.4 mutants, including a number of major biological processes such as carbon metabolism and transport, cell wall metabolism, and several metabolic pathways and stress responsive and regulatory elements. We also found that the two mutants share common or specific characteristics across at least two or even three of the "omics" considered at the vegetative stage of plant development, or during the grain filling period. This is the first comprehensive molecular and physiological characterization of two cytosolic glutamine synthetase maize mutants using a combined transcriptomic, proteomic and metabolomic approach. We find that the integration of the three "omics" procedures is not straight forward, since developmental and mutant-specific levels of regulation seem to occur from gene expression to metabolite accumulation. However, their potential use is discussed with a view to improving our understanding of nitrogen assimilation and partitioning and its impact on grain production.

  8. Understanding the thermostability and activity of Bacillus subtilis lipase mutants: insights from molecular dynamics simulations.

    PubMed

    Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit

    2015-01-15

    Improving the thermostability of industrial enzymes is an important protein engineering challenge. Point mutations, induced to increase thermostability, affect the structure and dynamics of the target protein in several ways and thus can also affect its activity. There appears to be no general rules for improving the thermostabilty of enzymes without adversely affecting their enzymatic activity. We report MD simulations, of wild type Bacillus subtilis lipase (WT) and its six progressively thermostable mutants (2M, 3M, 4M, 6M, 9M, and 12M), performed at different temperatures, to address this issue. Less thermostable mutants (LTMs), 2M to 6M, show WT-like dynamics at all simulation temperatures. However, the two more thermostable mutants (MTMs) show the required flexibility at appropriate temperature ranges and maintain conformational stability at high temperature. They show a deep and rugged free-energy landscape, confining them within a near-native conformational space by conserving noncovalent interactions, and thus protecting them from possible aggregation. In contrast, the LTMs having marginally higher thermostabilities than WT show greater probabilities of accessing non-native conformations, which, due to aggregation, have reduced possibilities of reverting to their respective native states under refolding conditions. Our analysis indicates the possibility of nonadditive effects of point mutations on the conformational stability of LTMs.

  9. The resistance mechanisms and treatment strategies for EGFR-mutant advanced non-small-cell lung cancer

    PubMed Central

    Zhong, Wen-Zhao; Zhou, Qing; Wu, Yi-Long

    2017-01-01

    Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) have been established as the standard therapy for EGFR-sensitizing mutant advanced non-small-cell lung cancer (NSCLC). However, patients ultimately develop resistance to these drugs. There are several mechanisms of both primary and secondary resistance to EGFR-TKIs. The primary resistance mechanisms include point mutations in exon 18, deletions or insertions in exon 19, insertions, duplications and point mutations in exon 20 and point mutation in exon 21 of EGFR gene. Secondary resistance to EGFR-TKIs is due to emergence of T790M mutation, activation of alternative signaling pathways, bypassing downstream signaling pathways and histological transformation. Strategies to overcome these intrinsic and acquired resistance mechanisms are complex. With the development of the precision medicine for advanced NSCLC, available systemic and local treatment options have expanded, requiring new clinical algorithms that take into account resistance mechanism. Though combination therapy is emerging as the standard of to overcome resistance mechanisms. Personalized treatment modalities based on molecular diagnosis and monitoring is essential for disease management. Emerging data from the ongoing clinical trials on combination therapy of third generation TKIs and antibodies in EGFR mutant NSCLC are promising for better survival outcomes. PMID:29050366

  10. Comprehensive analysis of titin protein isoform and alternative splicing in normal and mutant rats.

    PubMed

    Li, Shijun; Guo, Wei; Schmitt, Benjamin M; Greaser, Marion L

    2012-04-01

    Titin is a giant protein with multiple functions in cardiac and skeletal muscles. Rat cardiac titin undergoes developmental isoform transition from the neonatal 3.7 MDa N2BA isoform to primarily the adult 2.97 MDa N2B isoform. An autosomal dominant mutation dramatically altered this transformation. Titins from eight skeletal muscles: Tibialis Anterior (TA), Longissimus Dorsi (LD) and Gastrocnemius (GA), Extensor Digitorum Longus (ED), Soleus (SO), Psoas (PS), Extensor Oblique (EO), and Diaphram (DI) were characterized in wild type and in homozygous mutant (Hm) rats with a titin splicing defect. Results showed that the developmental reduction in titin size is eliminated in the mutant rat so that the titins in all investigated skeletal muscles remain large in the adult. The alternative splicing of titin mRNA was found repressed by this mutation, a result consistent with the large titin isoform in the mutant. The developmental pattern of titin mRNA alternative splicing differs between heart and skeletal muscles. The retention of intron 49 reveals a possible mechanism for the absence of the N2B unique region in the expressed titin protein of skeletal muscle. © 2011 Wiley Periodicals, Inc.

  11. Mutational analysis of microbial hydroxycinnamoyl-CoA hydratase-lyase (HCHL) towards enhancement of binding affinity: A computational approach.

    PubMed

    Kumar, Pravin; Ghosh Sachan, Shashwati; Poddar, Raju

    2017-10-01

    Improving the industrial enzyme for better yield of the product is important and a challenging task. One of such important industrial enzymes is microbial Hydroxycinnamoyl-CoA hydratase-lyase (HCHL). It converts feruloyl-CoA to vanillin. We place our efforts towards the improvement of its catalytic activity with comprehensive computational investigation. Catalytic core of the HCHL was explored with molecular modeling and docking approaches. Site-directed mutations were introduced in the catalytic site of HCHL in a sequential manner to generate different mutants of HCHL. Basis of mutation is to increase the interaction between HCHL and substrate feruloyl-CoA through interatomic forces and hydrogen bond formation. A rigorous molecular dynamics (MD) simulation was performed to check the stability of mutant's structure. Root mean square deviation (RMSD), root mean square fluctuation (RMSF), dynamic cross correlation (DCCM) and principal component analysis (PCA) were also performed to analyze flexibility and stability of structures. Docking studies were carried out between different mutants of HCHL and feruloyl-CoA. Investigation of the different binding sites and the interactions with mutant HCHLs and substrate allowed us to highlight the improved performance of mutants than wild type HCHL. This was further validated with MD simulation of complex consisting of different mutants and substrate. It further confirms all the structures are stable. However, mutant-2 showed better affinity towards substrate by forming hydrogen bond between active site and feruloyl-CoA. We propose that increase in hydrogen bond formation might facilitate in dissociation of vanillin from feruloyl-CoA. The current work may be useful for the future development of 'tailor-made' enzymes for better yield of vanillin. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. p53 Mutation suppresses adult neurogenesis in medaka fish (Oryzias latipes)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isoe, Yasuko; Okuyama, Teruhiro; Taniguchi, Yoshihito

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Progenitor migration is accompanied by an increase in their numbers in the adult brain. Black-Right-Pointing-Pointer p53 Mutation suppressed an increase in the number of the migrated progenitors. Black-Right-Pointing-Pointer The decreased progenitor number is not due to enhanced cell death. Black-Right-Pointing-Pointer p53 Mutation did not affect proliferation of stem cells. -- Abstract: Tumor suppressor p53 negatively regulates self-renewal of neural stem cells in the adult murine brain. Here, we report that the p53 null mutation in medaka fish (Oryzias latipes) suppressed neurogenesis in the telencephalon, independent of cell death. By using 5-bromo-29-deoxyuridine (BrdU) immunohistochemistry, we identified 18 proliferation zonesmore » in the brains of young medaka fish; in situ hybridization showed that p53 was expressed selectively in at least 12 proliferation zones. We also compared the number of BrdU-positive cells present in the whole telencephalon of wild-type (WT) and p53 mutant fish. Immediately after BrdU exposure, the number of BrdU-positive cells did not differ significantly between them. One week after BrdU-exposure, the BrdU-positive cells migrated from the proliferation zone, which was accompanied by an increased number in the WT brain. In contrast, no significant increase was observed in the p53 mutant brain. Terminal deoxynucleotidyl transferase (dUTP) nick end-labeling revealed that there was no significant difference in the number of apoptotic cells in the telencephalon of p53 mutant and WT medaka, suggesting that the decreased number of BrdU-positive cells in the mutant may be due to the suppression of proliferation rather than the enhancement of neural cell death. These results suggest that p53 positively regulates neurogenesis via cell proliferation.« less

  13. Induction and characterization of morphologic mutants in a natural Saccharomyces cerevisiae strain.

    PubMed

    Barberio, Claudia; Bianchi, Lucia; Pinzauti, Francesca; Lodi, Tiziana; Ferrero, Iliana; Polsinelli, Mario; Casalone, Enrico

    2007-02-01

    Saccharomyces cerevisiae is a good model with which to study the effects of morphologic differentiation on the ecological behaviour of fungi. In this work, 33 morphologic mutants of a natural strain of S. cerevisiae, obtained with UV mutagenesis, were selected for their streak shape and cell shape on rich medium. Two of them, showing both high sporulation proficiency and constitutive pseudohyphal growth, were analysed from a genetic and physiologic point of view. Each mutant carries a recessive monogenic mutation, and the two mutations reside in unlinked genes. Flocculation ability and responsiveness to different stimuli distinguished the two mutants. Growth at 37 degrees C affected the cell but not the colony morphology, suggesting that these two phenotypes are regulated differently. The effect of ethidium bromide, which affects mitochondrial DNA replication, suggested a possible "retrograde action" of mitochondria in pseudohyphal growth.

  14. ESR1 ligand binding domain mutations in hormone-resistant breast cancer

    PubMed Central

    Toy, Weiyi; Shen, Yang; Won, Helen; Green, Bradley; Sakr, Rita A.; Will, Marie; Li, Zhiqiang; Gala, Kinisha; Fanning, Sean; King, Tari A.; Hudis, Clifford; Chen, David; Taran, Tetiana; Hortobagyi, Gabriel; Greene, Geoffrey; Berger, Michael; Baselga, Jose; Chandarlapaty, Sarat

    2013-01-01

    Seventy percent of breast cancers express estrogen receptor (ER) and most of these are sensitive to ER inhibition. However, many such tumors become refractory to inhibition of estrogen action in the metastatic setting for unknown reasons. We conducted a comprehensive genetic analysis of two independent cohorts of metastatic ER+ breast tumors and identified mutations in the ligand binding domain (LBD) of ESR1 in 14/80 cases. These included highly recurrent mutations p.Tyr537Ser/Asn and p.Asp538Gly. Molecular dynamics simulations suggest the Tyr537Ser and Asp538Gly structures lead to hydrogen bonding of the mutant amino acid with Asp351, thus favoring the receptor’s agonist conformation. Consistent with this model, mutant receptors drive ER-dependent transcription and proliferation in the absence of hormone and reduce the efficacy of ER antagonists. These data implicate LBD mutant forms of ER in mediating clinical resistance to hormonal therapy and suggest that more potent ER antagonists may have significant therapeutic benefit. PMID:24185512

  15. Impact of distal mutations on the network of coupled motions correlated to hydride transfer in dihydrofolate reductase.

    PubMed

    Wong, Kim F; Selzer, Tzvia; Benkovic, Stephen J; Hammes-Schiffer, Sharon

    2005-05-10

    A comprehensive analysis of the network of coupled motions correlated to hydride transfer in dihydrofolate reductase is presented. Hybrid quantum/classical molecular dynamics simulations are combined with a rank correlation analysis method to extract thermally averaged properties that vary along the collective reaction coordinate according to a prescribed target model. Coupled motions correlated to hydride transfer are identified throughout the enzyme. Calculations for wild-type dihydrofolate reductase and a triple mutant, along with the associated single and double mutants, indicate that each enzyme system samples a unique distribution of coupled motions correlated to hydride transfer. These coupled motions provide an explanation for the experimentally measured nonadditivity effects in the hydride transfer rates for these mutants. This analysis illustrates that mutations distal to the active site can introduce nonlocal structural perturbations and significantly impact the catalytic rate by altering the conformational motions of the entire enzyme and the probability of sampling conformations conducive to the catalyzed reaction.

  16. The symbiotic role of O-antigen of Burkholderia symbiont in association with host Riptortus pedestris.

    PubMed

    Kim, Jiyeun Kate; Park, Ha Young; Lee, Bok Luel

    2016-07-01

    Riptortus pedestris harboring Burkholderia symbiont is a useful symbiosis model to study the molecular interactions between insects and bacteria. We recently reported that the lipopolysaccharide O-antigen is absent in the Burkholderia symbionts isolated from Riptortus guts. Here, we investigated the symbiotic role of O-antigen comprehensively in the Riptortus-Burkholderia model. Firstly, Burkholderia mutant strains deficient of O-antigen biosynthesis genes were generated and confirmed for their different patterns of the lipopolysaccharide by electrophoretic analysis. The O-antigen-deficient mutant strains initially exhibited a reduction of infectivity, having significantly lower level of symbiont population at the second-instar stage. However, both the wild-type and O-antigen mutant symbionts exhibited a similar level of symbiont population from the third-instar stage, indicating that the O-antigen deficiency did not affect the bacterial persistence in the host midgut. Taken together, we showed that the lipopolysaccharide O-antigen of gut symbiont plays an exclusive role in the initial symbiotic association. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A molecular mechanism of azoxystrobin resistance in Penicillium digitatum UV mutants and a PCR-based assay for detection of azoxystrobin-resistant strains in packing- or store-house isolates.

    PubMed

    Zhang, Zhifang; Zhu, Zengrong; Ma, Zhonghua; Li, Hongye

    2009-05-31

    Sixty-five isolates of Pencillium digitatum (Pers.:Fr) Sacc., a causative agent of green mold of postharvest citrus, were collected from various locations in Zhejiang province in 2000, 2005 and 2006, and assayed for their sensitivity to the quinone outside inhibitor (QoI) fungicide azoxystrobin. The results showed that azoxystrobin is highly effective against P. digitatum, in vitro, and that the effective concentrations resulting in reduction of conidial germination and mycelial growth by 50% (EC(50)) averaged 0.0426 microg/ml and 0.0250 microg/ml, respectively. Twenty-eight azoxystrobin-resistant mutants were obtained by UV mutagenesis and subsequent selection on medium amended with azoxystrobin (12 microg/ml) and salicylhydroxamic acid. All obtained mutants were highly resistant to azoxystrobin and their resistance was genetically stable. Analysis of the cytochrome b gene structure of P. digitatum (Pdcyt b) showed the absence of type I intron in the first hot spot region of mutation. These results indicate that P. digitatum is likely to evolve high levels of resistance to azoxystrobin after its application. Analysis of partial sequences of Pdcyt b from both the azoxystrobin-sensitive parental isolate and the 28 azoxystrobin-resistant mutants revealed that a point mutation, which leads to the substitution at code 143 of alanine for glycine (G143A), is responsible for the observed azoxystrobin resistance in the laboratory mutants. Based on this point mutation, two allele-specific PCR primers were designed and optimized for allele-specific PCR detection of azoxystrobin-resistant isolates of P. digitatum.

  18. Effect of Power Point Enhanced Teaching (Visual Input) on Iranian Intermediate EFL Learners' Listening Comprehension Ability

    ERIC Educational Resources Information Center

    Sehati, Samira; Khodabandehlou, Morteza

    2017-01-01

    The present investigation was an attempt to study on the effect of power point enhanced teaching (visual input) on Iranian Intermediate EFL learners' listening comprehension ability. To that end, a null hypothesis was formulated as power point enhanced teaching (visual input) has no effect on Iranian Intermediate EFL learners' listening…

  19. Comprehensive MALDI-TOF biotyping of the non-redundant Harvard Pseudomonas aeruginosa PA14 transposon insertion mutant library.

    PubMed

    Oumeraci, Tonio; Jensen, Vanessa; Talbot, Steven R; Hofmann, Winfried; Kostrzewa, Markus; Schlegelberger, Brigitte; von Neuhoff, Nils; Häussler, Susanne

    2015-01-01

    Pseudomonas aeruginosa is a gram-negative bacterium that is ubiquitously present in the aerobic biosphere. As an antibiotic-resistant facultative pathogen, it is a major cause of hospital-acquired infections. Its rapid and accurate identification is crucial in clinical and therapeutic environments. In a large-scale MALDI-TOF mass spectrometry-based screen of the Harvard transposon insertion mutant library of P. aeruginosa strain PA14, intact-cell proteome profile spectra of 5547 PA14 transposon mutants exhibiting a plethora of different phenotypes were acquired and analyzed. Of all P. aeruginosa PA14 mutant profiles 99.7% were correctly identified as P. aeruginosa with the Biotyper software on the species level. On the strain level, 99.99% of the profiles were mapped to five different individual P. aeruginosa Biotyper database entries. A principal component analysis-based approach was used to determine the most important discriminatory mass features between these Biotyper groups. Although technical replicas were consistently categorized to specific Biotyper groups in 94.2% of the mutant profiles, biological replicas were not, indicating that the distinct proteotypes are affected by growth conditions. The PA14 mutant profile collection presented here constitutes the largest coherent P. aeruginosa MALDI-TOF spectral dataset publicly available today. Transposon insertions in thousands of different P. aeruginosa genes did not affect species identification from MALDI-TOF mass spectra, clearly demonstrating the robustness of the approach. However, the assignment of the individual spectra to sub-groups proved to be non-consistent in biological replicas, indicating that the differentiation between biotyper groups in this nosocomial pathogen is unassured.

  20. Catalytic efficiency and thermostability improvement of Suc2 invertase through rational site-directed mutagenesis.

    PubMed

    Mohandesi, Nooshin; Haghbeen, Kamahldin; Ranaei, Omid; Arab, Seyed Shahriar; Hassani, Sorour

    2017-01-01

    Engineering of invertases has come to attention because of increasing demand for possible applications of invertases in various industrial processes. Due to the known physicochemical properties, invertases from micro-organisms such as Saccharomyces cerevisiae carrying SUC2 gene are considered as primary models. To improve thermostability and catalytic efficiency of SUC2 invertase (SInv), six influential residues with Relative Solvent Accessibility<5% were selected through multiple-sequence alignments, molecular modelling, structural and computational analyses. Consequently, SInv and 5 mutants including three mutants with single point substitution [Mut1=P152V, Mut2=S85V and Mut3=K153F)], one mutant with two points [Mut4=S305V-N463V] and one mutant with three points [Mut5=S85V-K153F-T271V] were developed via site-directed mutagenesis and produced using Pichia pastoris as the host. Physicochemical studies on these enzymes indicated that the selected amino acids which were located in the active site region mainly influenced catalytic efficiency. The best improvement belonged to Mut1 (54% increase in K cat /K m ) and Mut3 exhibited the worst effect (90% increase in K m ). These results suggest that Pro152 and Lys153 play key role in preparation of the right substrate lodging in the active site of SInv. The best thermostability improvement (16%) was observed for Mut4 in which two hydrophilic residues located on the loops, far from the active site, were replaced by Valines. These results suggest that tactful simultaneous substitution of influential hydrophilic residues in both active site region and peripheral loops with hydrophobic amino acids could result in more thermostable invertases with enhanced catalytic efficiency. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Mutants of feline immunodeficiency virus resistant to 2',3'-dideoxy-2',3'-didehydrothymidine.

    PubMed Central

    Zhu, Y Q; Remington, K M; North, T W

    1996-01-01

    We selected mutants of feline immunodeficiency virus (FIV) that are resistant to 2',3'-dideoxy-2',3'-didehydrothymidine (d4T). Two mutants were selected in cultured cells with a stepwise increase in d4T concentration, resulting in mutants able to replicate in 100 microM d4T. These mutants were three- to sixfold more resistant to d4T than wild-type FIV. They were also cross-resistant to 3'-azido-3'-deoxythymidine (AZT), 3'-fluoro-2',3'-dideoxythymidine, 2',3'-dideoxycytidine, 2',3'-dideoxyinosine, and 9-(2-phosphonylmethoxyethyl)adenine, and they were highly resistant to phosphonoformic acid (PFA). Plaque-purified mutants were isolated from each of the mutant populations. The mutant phenotype was stable, because both of the plaque-purified mutants remained d4T resistant even after three passages in the absence of d4T. One of the plaque-purified mutants, designated D4R-3c, was further characterized. Compared with wild-type reverse transcriptase (RT), RT purified from D4R-3c was 3-fold resistant to inhibition by the 5'-triphosphate of d4T, 10-fold resistant to inhibition by the 5'-triphosphate of AZT, and 6-fold resistant to PFA. D4R-3c had a single point mutation in the RT-encoding region of the pol gene at position 2474, resulting in a Val to Ile mutation at codon 47 of the FIV RT. The role of this mutation in d4T resistance was confirmed by site-directed mutagenesis. PMID:8878567

  2. A De Novo Floral Transcriptome Reveals Clues into Phalaenopsis Orchid Flower Development

    PubMed Central

    Huang, Jian-Zhi; Lin, Chih-Peng; Cheng, Ting-Chi; Chang, Bill Chia-Han; Cheng, Shu-Yu; Chen, Yi-Wen; Lee, Chen-Yu; Chin, Shih-Wen; Chen, Fure-Chyi

    2015-01-01

    Phalaenopsis has a zygomorphic floral structure, including three outer tepals, two lateral inner tepals and a highly modified inner median tepal called labellum or lip; however, the regulation of its organ development remains unelucidated. We generated RNA-seq reads with the Illumina platform for floral organs of the Phalaenopsis wild-type and peloric mutant with a lip-like petal. A total of 43,552 contigs were obtained after de novo assembly. We used differentially expressed gene profiling to compare the transcriptional changes in floral organs for both the wild-type and peloric mutant. Pair-wise comparison of sepals, petals and labellum between peloric mutant and its wild-type revealed 1,838, 758 and 1,147 contigs, respectively, with significant differential expression. PhAGL6a (CUFF.17763), PhAGL6b (CUFF.17763.1), PhMADS1 (CUFF.36625.1), PhMADS4 (CUFF.25909) and PhMADS5 (CUFF.39479.1) were significantly upregulated in the lip-like petal of the peloric mutant. We used real-time PCR analysis of lip-like petals, lip-like sepals and the big lip of peloric mutants to confirm the five genes’ expression patterns. PhAGL6a, PhAGL6b and PhMADS4 were strongly expressed in the labellum and significantly upregulated in lip-like petals and lip-like sepals of peloric-mutant flowers. In addition, PhAGL6b was significantly downregulated in the labellum of the big lip mutant, with no change in expression of PhAGL6a. We provide a comprehensive transcript profile and functional analysis of Phalaenopsis floral organs. PhAGL6a PhAGL6b, and PhMADS4 might play crucial roles in the development of the labellum in Phalaenopsis. Our study provides new insights into how the orchid labellum differs and why the petal or sepal converts to a labellum in Phalaenopsis floral mutants. PMID:25970572

  3. Isolation and characterization of mutants with lesions affecting pellicle formation and erythrocyte agglutination by type 1 piliated Escherichia coli.

    PubMed Central

    Harris, S L; Elliott, D A; Blake, M C; Must, L M; Messenger, M; Orndorff, P E

    1990-01-01

    The product of the pilE (also called fimH) gene is a minor component of type 1 pili in Escherichia coli. Mutants that have insertions in the pilE gene are fully piliated but unable to bind to and agglutinate guinea pig erythrocytes, a characteristic of wild-type type 1 piliated E. coli. In this paper we describe the isolation of 48 mutants with point lesions that map to the pilE gene. Such mutants were isolated by using mutT mutagenesis and an enrichment procedure devised to favor the growth of individuals that could form a pellicle in static broth containing alpha-methylmannoside, an inhibitor of erythrocyte binding and pellicle formation. Results indicated that the enrichment favored mutants expressing pilE gene products that were defective in mediating erythrocyte binding. Characterization of 12 of the mutants in greater detail revealed that certain lesions affected pilus number and length. In addition, a mutant that was temperature sensitive for erythrocyte binding was isolated and used to provide evidence that pellicle formation relies on the intercellular interaction of pilE gene products. Our results suggest a molecular explanation for the old and paradoxical observations connecting pellicle formation and erythrocyte agglutination by type 1 piliated E. coli. Images PMID:1977736

  4. The Greening after Extended Darkness1 Is an N-End Rule Pathway Mutant with High Tolerance to Submergence and Starvation1[OPEN

    PubMed Central

    Riber, Willi; Müller, Jana T.; Visser, Eric J.W.; Sasidharan, Rashmi; Voesenek, Laurentius A.C.J.; Mustroph, Angelika

    2015-01-01

    Plants respond to reductions in internal oxygen concentrations with adaptive mechanisms (for example, modifications of metabolism to cope with reduced supply of ATP). These responses are, at the transcriptional level, mediated by the group VII Ethylene Response Factor transcription factors, which have stability that is regulated by the N-end rule pathway of protein degradation. N-end rule pathway mutants are characterized by a constitutive expression of hypoxia response genes and abscisic acid hypersensitivity. Here, we identify a novel proteolysis6 (prt6) mutant allele, named greening after extended darkness1 (ged1), which was previously discovered in a screen for genomes uncoupled-like mutants and shows the ability to withstand long periods of darkness at the seedling stage. Interestingly, this ethyl methanesulfonate-derived mutant shows unusual chromosomal rearrangement instead of a point mutation. Furthermore, the sensitivity of N-end rule pathway mutants ged1 and prt6-1 to submergence was studied in more detail to understand previously contradicting experiments on this topic. Finally, it was shown that mutants for the N-end rule pathway are generally more tolerant to starvation conditions, such as prolonged darkness or submergence, which was partially associated with carbohydrate conservation. PMID:25667318

  5. Starch Biosynthesis in Guard Cells But Not in Mesophyll Cells Is Involved in CO2-Induced Stomatal Closing1[OPEN

    PubMed Central

    Stephan, Aaron B.; Schroeder, Julian I.

    2016-01-01

    Starch metabolism is involved in stomatal movement regulation. However, it remains unknown whether starch-deficient mutants affect CO2-induced stomatal closing and whether starch biosynthesis in guard cells and/or mesophyll cells is rate limiting for high CO2-induced stomatal closing. Stomatal responses to [CO2] shifts and CO2 assimilation rates were compared in Arabidopsis (Arabidopsis thaliana) mutants that were either starch deficient in all plant tissues (ADP-Glc-pyrophosphorylase [ADGase]) or retain starch accumulation in guard cells but are starch deficient in mesophyll cells (plastidial phosphoglucose isomerase [pPGI]). ADGase mutants exhibited impaired CO2-induced stomatal closure, but pPGI mutants did not, showing that starch biosynthesis in guard cells but not mesophyll functions in CO2-induced stomatal closing. Nevertheless, starch-deficient ADGase mutant alleles exhibited partial CO2 responses, pointing toward a starch biosynthesis-independent component of the response that is likely mediated by anion channels. Furthermore, whole-leaf CO2 assimilation rates of both ADGase and pPGI mutants were lower upon shifts to high [CO2], but only ADGase mutants caused impairments in CO2-induced stomatal closing. These genetic analyses determine the roles of starch biosynthesis for high CO2-induced stomatal closing. PMID:27208296

  6. Commonalities and differences in plants deficient in autophagy and alternative pathways of respiration on response to extended darkness.

    PubMed

    Barros, Jessica A S; Cavalcanti, João Henrique F; Medeiros, David B; Nunes-Nesi, Adriano; Avin-Wittenberg, Tamar; Fernie, Alisdair R; Araújo, Wagner L

    2017-11-02

    Autophagy is a highly conserved cellular mechanism in eukaryotes allowing the degradation of cell constituents. It is of crucial significance in both cellular homeostasis and nutrient recycling. During energy limited conditions plant cells can metabolize alternative respiratory substrates, such as amino acids, providing electrons to the mitochondrial metabolism via the tricarboxylic acid (TCA) cycle or electron transfer flavoprotein/ electron transfer flavoprotein ubiquinone oxidoreductase (ETF/ETFQO) system. Our recent study reveals the importance of autophagy in the supply of amino acids to provide energy through alternative pathways of respiration during carbon starvation. This fact apart, autophagy seems to have more generalized effects related not only to amino acid catabolism but also to metabolism in general. By further comparing the metabolic data obtained with atg mutants with those of mutants involved in the alternative pathways of respiration, we observed clear differences between these mutants, pointing out additional effects of the autophagy deficiency on metabolism of Arabidopsis leaves. Collectively, our data point to an interdependence between mitochondrial metabolism and autophagy and suggest an exquisite regulation of primary metabolism under low energetic conditions.

  7. Arabidopsis Hormone Database: a comprehensive genetic and phenotypic information database for plant hormone research in Arabidopsis

    PubMed Central

    Peng, Zhi-yu; Zhou, Xin; Li, Linchuan; Yu, Xiangchun; Li, Hongjiang; Jiang, Zhiqiang; Cao, Guangyu; Bai, Mingyi; Wang, Xingchun; Jiang, Caifu; Lu, Haibin; Hou, Xianhui; Qu, Lijia; Wang, Zhiyong; Zuo, Jianru; Fu, Xiangdong; Su, Zhen; Li, Songgang; Guo, Hongwei

    2009-01-01

    Plant hormones are small organic molecules that influence almost every aspect of plant growth and development. Genetic and molecular studies have revealed a large number of genes that are involved in responses to numerous plant hormones, including auxin, gibberellin, cytokinin, abscisic acid, ethylene, jasmonic acid, salicylic acid, and brassinosteroid. Here, we develop an Arabidopsis hormone database, which aims to provide a systematic and comprehensive view of genes participating in plant hormonal regulation, as well as morphological phenotypes controlled by plant hormones. Based on data from mutant studies, transgenic analysis and gene ontology (GO) annotation, we have identified a total of 1026 genes in the Arabidopsis genome that participate in plant hormone functions. Meanwhile, a phenotype ontology is developed to precisely describe myriad hormone-regulated morphological processes with standardized vocabularies. A web interface (http://ahd.cbi.pku.edu.cn) would allow users to quickly get access to information about these hormone-related genes, including sequences, functional category, mutant information, phenotypic description, microarray data and linked publications. Several applications of this database in studying plant hormonal regulation and hormone cross-talk will be presented and discussed. PMID:19015126

  8. Arabidopsis Hormone Database: a comprehensive genetic and phenotypic information database for plant hormone research in Arabidopsis.

    PubMed

    Peng, Zhi-yu; Zhou, Xin; Li, Linchuan; Yu, Xiangchun; Li, Hongjiang; Jiang, Zhiqiang; Cao, Guangyu; Bai, Mingyi; Wang, Xingchun; Jiang, Caifu; Lu, Haibin; Hou, Xianhui; Qu, Lijia; Wang, Zhiyong; Zuo, Jianru; Fu, Xiangdong; Su, Zhen; Li, Songgang; Guo, Hongwei

    2009-01-01

    Plant hormones are small organic molecules that influence almost every aspect of plant growth and development. Genetic and molecular studies have revealed a large number of genes that are involved in responses to numerous plant hormones, including auxin, gibberellin, cytokinin, abscisic acid, ethylene, jasmonic acid, salicylic acid, and brassinosteroid. Here, we develop an Arabidopsis hormone database, which aims to provide a systematic and comprehensive view of genes participating in plant hormonal regulation, as well as morphological phenotypes controlled by plant hormones. Based on data from mutant studies, transgenic analysis and gene ontology (GO) annotation, we have identified a total of 1026 genes in the Arabidopsis genome that participate in plant hormone functions. Meanwhile, a phenotype ontology is developed to precisely describe myriad hormone-regulated morphological processes with standardized vocabularies. A web interface (http://ahd.cbi.pku.edu.cn) would allow users to quickly get access to information about these hormone-related genes, including sequences, functional category, mutant information, phenotypic description, microarray data and linked publications. Several applications of this database in studying plant hormonal regulation and hormone cross-talk will be presented and discussed.

  9. Identification of Mutant Genes and Introgressed Tiger Salamander DNA in the Laboratory Axolotl, Ambystoma mexicanum.

    PubMed

    Woodcock, M Ryan; Vaughn-Wolfe, Jennifer; Elias, Alexandra; Kump, D Kevin; Kendall, Katharina Denise; Timoshevskaya, Nataliya; Timoshevskiy, Vladimir; Perry, Dustin W; Smith, Jeramiah J; Spiewak, Jessica E; Parichy, David M; Voss, S Randal

    2017-01-31

    The molecular genetic toolkit of the Mexican axolotl, a classic model organism, has matured to the point where it is now possible to identify genes for mutant phenotypes. We used a positional cloning-candidate gene approach to identify molecular bases for two historic axolotl pigment phenotypes: white and albino. White (d/d) mutants have defects in pigment cell morphogenesis and differentiation, whereas albino (a/a) mutants lack melanin. We identified in white mutants a transcriptional defect in endothelin 3 (edn3), encoding a peptide factor that promotes pigment cell migration and differentiation in other vertebrates. Transgenic restoration of Edn3 expression rescued the homozygous white mutant phenotype. We mapped the albino locus to tyrosinase (tyr) and identified polymorphisms shared between the albino allele (tyr a ) and tyr alleles in a Minnesota population of tiger salamanders from which the albino trait was introgressed. tyr a has a 142 bp deletion and similar engineered alleles recapitulated the albino phenotype. Finally, we show that historical introgression of tyr a significantly altered genomic composition of the laboratory axolotl, yielding a distinct, hybrid strain of ambystomatid salamander. Our results demonstrate the feasibility of identifying genes for traits in the laboratory Mexican axolotl.

  10. Lack of hormone binding in COS-7 cells expressing a mutated growth hormone receptor found in Laron dwarfism.

    PubMed Central

    Edery, M; Rozakis-Adcock, M; Goujon, L; Finidori, J; Lévi-Meyrueis, C; Paly, J; Djiane, J; Postel-Vinay, M C; Kelly, P A

    1993-01-01

    A single point mutation in the growth hormone (GH) receptor gene generating a Phe-->Ser substitution in the extracellular binding domain of the receptor has been identified in one family with Laron type dwarfism. The mutation was introduced by site-directed mutagenesis into cDNAs encoding the full-length rabbit GH receptor and the extracellular domain or binding protein (BP) of the human and rabbit GH receptor, and also in cDNAs encoding the full length and the extracellular domain of the related rabbit prolactin (PRL) receptor. All constructs were transiently expressed in COS-7 cells. Both wild type and mutant full-length rabbit GH and PRL receptors, as well as GH and prolactin BPs (wild type and mutant), were detected by Western blot in cell membranes and concentrated culture media, respectively. Immunofluorescence studies showed that wild type and mutant full-length GH receptors had the same cell surface and intracellular distribution and were expressed with comparable intensities. In contrast, all mutant forms (full-length receptors or BPs), completely lost their modify the synthesis ligand. These results clearly demonstrate that this point mutation (patients with Laron syndrome) does not modify the synthesis or the intracellular pathway of receptor proteins, but rather abolishes ability of the receptor or BP to bind GH and is thus responsible for the extreme GH resistance in these patients. Images PMID:8450064

  11. Tumor DNA in cerebral spinal fluid reflects clinical course in a patient with melanoma leptomeningeal brain metastases

    PubMed Central

    Li, Yingmei; Pan, Wenying; Connolly, Ian D.; Reddy, Sunil; Nagpal, Seema

    2017-01-01

    Cerebral spinal fluid (CSF) from brain tumor patients contains tumor cellular and cell-free DNA (cfDNA), which provides a less-invasive and routinely accessible method to obtain tumor genomic information. In this report, we used droplet digital PCR to test mutant tumor DNA in CSF of a patient to monitor the treatment response of metastatic melanoma leptomeningeal disease (LMD). The primary melanoma was known to have a BRAFV600E mutation, and the patient was treated with whole brain radiotherapy and BRAF inhibitors. We collected 9 CSF samples over 6 months. The mutant cfDNA fraction gradually decreased from 53 % (time of diagnosis) to 0 (time of symptom alleviation) over the first 6 time points. Three months after clinical improvement, the patient returned with severe symptoms and the mutant cfDNA was again detected in CSF at high levels. The mutant DNA fraction corresponded well with the patient’s clinical response. We used whole exome sequencing to examine the mutation profiles of the LMD tumor DNA in CSF before therapeutic response and after disease relapse, and discovered a canonical cancer mutation PTENR130* at both time points. The cellular and cfDNA revealed similar mutation profiles, suggesting cfDNA is representative of LMD cells. This study demonstrates the potential of using cellular or cfDNA in CSF to monitor treatment response for LMD. PMID:26961773

  12. Point mutations in the post-M2 region of human alpha-ENaC regulate cation selectivity.

    PubMed

    Ji, H L; Parker, S; Langloh, A L; Fuller, C M; Benos, D J

    2001-07-01

    We tested the hypothesis that an arginine-rich region immediately following the second transmembrane domain may constitute part of the inner mouth of the epithelial Na+ channel (ENaC) pore and, hence, influence conduction and/or selectivity properties of the channel by expressing double point mutants in Xenopus oocytes. Double point mutations of arginines in this post-M2 region of the human alpha-ENaC (alpha-hENaC) led to a decrease and increase in the macroscopic conductance of alphaR586E,R587Ebetagamma- and alphaR589E,R591Ebetagamma-hENaC, respectively, but had no effect on the single-channel conductance of either double point mutant. However, the apparent equilibrium dissociation constant for Na+ was decreased for both alphaR586E,R587Ebetagamma- and alphaR589E,R591Ebetagamma-hENaC, and the maximum amiloride-sensitive Na+ current was decreased for alphaR586E,R587Ebetagamma-hENaC and increased for alphaR589E,R591Ebetagamma-hENaC. The relative permeabilities of Li+ and K+ vs. Na+ were increased 11.25- to 27.57-fold for alphaR586E,R587Ebetagamma-hENaC compared with wild type. The relative ion permeability of these double mutants and wild-type ENaC was inversely related to the crystal diameter of the permeant ions. Thus the region of positive charge is important for the ion permeation properties of the channel and may form part of the pore itself.

  13. Production and Comprehension of Gestures between Orang-Utans (Pongo pygmaeus) in a Referential Communication Game.

    PubMed

    Moore, Richard; Call, Josep; Tomasello, Michael

    2015-01-01

    Orang-utans played a communication game in two studies testing their ability to produce and comprehend requestive pointing. While the 'communicator' could see but not obtain hidden food, the 'donor' could release the food to the communicator, but could not see its location for herself. They could coordinate successfully if the communicator pointed to the food, and if the donor comprehended his communicative goal and responded pro-socially. In Study 1, one orang-utan pointed regularly and accurately for peers. However, they responded only rarely. In Study 2, a human experimenter played the communicator's role in three conditions, testing the apes' comprehension of points of different heights and different degrees of ostension. There was no effect of condition. However, across conditions one donor performed well individually, and as a group orang-utans' comprehension performance tended towards significance. We explain this on the grounds that comprehension required inferences that they found difficult - but not impossible. The finding has valuable implications for our thinking about the development of pointing in phylogeny.

  14. Production and Comprehension of Gestures between Orang-Utans (Pongo pygmaeus) in a Referential Communication Game

    PubMed Central

    Moore, Richard; Call, Josep; Tomasello, Michael

    2015-01-01

    Orang-utans played a communication game in two studies testing their ability to produce and comprehend requestive pointing. While the ‘communicator’ could see but not obtain hidden food, the ‘donor’ could release the food to the communicator, but could not see its location for herself. They could coordinate successfully if the communicator pointed to the food, and if the donor comprehended his communicative goal and responded pro-socially. In Study 1, one orang-utan pointed regularly and accurately for peers. However, they responded only rarely. In Study 2, a human experimenter played the communicator’s role in three conditions, testing the apes’ comprehension of points of different heights and different degrees of ostension. There was no effect of condition. However, across conditions one donor performed well individually, and as a group orang-utans’ comprehension performance tended towards significance. We explain this on the grounds that comprehension required inferences that they found difficult – but not impossible. The finding has valuable implications for our thinking about the development of pointing in phylogeny. PMID:26091358

  15. A Transformation-Defective Polyomavirus Middle T Antigen with a Novel Defect in PI3 Kinase Signaling.

    PubMed

    Denis, Deborah; Rouleau, Cecile; Schaffhausen, Brian S

    2017-01-15

    Middle T antigen (MT), the principal oncoprotein of murine polyomavirus, transforms by association with cellular proteins. Protein phosphatase 2A (PP2A), YAP, Src family tyrosine kinases, Shc, phosphatidylinositol 3-kinase (PI3K), and phospholipase C-γ1 (PLCγ1) have all been implicated in MT transformation. Mutant dl1015, with deletion of residues 338 to 347 in the C-terminal region, has been an enigma, because the basis for its transformation defect has not been apparent. This work probes the dl1015 region of MT. Because the region is proline rich, the hypothesis that it targets Src homology domain 3 (SH3) domains was tested, but mutation of the putative SH3 binding motif did not affect transformation. During this work, two point mutants, W348R and E349K, were identified as transformation defective. Extensive analysis of the E349K mutant is described here. Similar to wild-type MT, the E349K mutant associates with PP2A, YAP, tyrosine kinases, Shc, PI3 kinase, and PLCγ1. The E349K mutant was examined to determine the mechanism for its transformation defect. Assays of cell localization and membrane targeting showed no obvious difference in localization. Src association was normal as assayed by in vitro kinase and MT phosphopeptide mapping. Shc activation was confirmed by its tyrosine phosphorylation. Association of type 1 PI3K with MT was demonstrated by coimmunoprecipitation, showing both PI3K subunits and in vitro activity. Nonetheless, expression of the mutants failed to lead to the activation of two known downstream targets of PI3K, Akt and Rac-1. Strikingly, despite normal association of the E349K mutant with PI3K, cells expressing the mutant failed to elevate phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in mutant-expressing cells. These results indicate a novel unsuspected aspect to PI3K control. The gene coding for middle T antigen (MT) is the murine polyomavirus oncogene most responsible for tumor formation. Its study has a history of uncovering novel aspects of mammalian cell regulation. The importance of PI3K activity and tyrosine phosphorylation are two examples of insights coming from MT. This study describes new mutants unable to transform like the wild type that point to novel regulation of PI3K signaling. Previous mutants were defective in PI3K because they failed to bind the enzyme and bring the activity to the membrane. These mutants recruit PI3K activity like the wild type, but fail to elevate the cellular level of PIP3, the product used to signal downstream of PI3K. As a result, they fail to activate either Akt or Rac1, explaining the transformation defect. Copyright © 2017 American Society for Microbiology.

  16. Cell-to-cell signaling in Xylella fastidiosa suppresses movement and xylem vessel colonization in grape.

    PubMed

    Chatterjee, Subhadeep; Newman, Karyn L; Lindow, Steven E

    2008-10-01

    Cell-to-cell signaling mediated by a fatty acid diffusible signaling factor (DSF) is central to the regulation of the virulence of Xylella fastidiosa. DSF production by X. fastidiosa is dependent on rpfF and, although required for insect colonization, appears to reduce its virulence to grape. To understand what aspects of colonization of grape are controlled by DSF in X. fastidiosa and, thus, those factors that contribute to virulence, we assessed the colonization of grape by a green fluorescent protein-marked rpfF-deficient mutant. The rpfF-deficient mutant was detected at a greater distance from the point of inoculation than the wild-type strain at a given sampling time, and also attained a population size that was up to 100-fold larger than that of the wild-type strain at a given distance from the point of inoculation. Confocal laser-scanning microscopy revealed that approximately 10-fold more vessels in petioles of symptomatic leaves harbored at least some cells of either the wild type or rpfF mutant when compared with asymptomatic leaves and, thus, that disease symptoms were associated with the extent of vessel colonization. Importantly, the rpfF mutant colonized approximately threefold more vessels than the wild-type strain. Although a wide range of colony sizes were observed in vessels colonized by both the wild type and rpfF mutant, the proportion of colonized vessels harboring large numbers of cells was significantly higher in plants inoculated with the rpfF mutant than with the wild-type strain. These studies indicated that the hypervirulence phenotype of the rpfF mutant is due to both a more extensive spread of the pathogen to xylem vessels and unrestrained multiplication within vessels leading to blockage. These results suggest that movement and multiplication of X. fastidiosa in plants are linked, perhaps because cell wall degradation products are a major source of nutrients. Thus, DSF-mediated cell-to-cell signaling, which restricts movement and colonization of X. fastidiosa, may be an adaptation to endophytic growth of the pathogen that prevents the excessive growth of cells in vessels.

  17. Identification and Characterization of an Arabidopsis thaliana Mutant lbt With High Tolerance to Boron Deficiency

    PubMed Central

    Huai, Zexun; Peng, Lishun; Wang, Sheliang; Zhao, Hua; Shi, Lei; Xu, Fangsen

    2018-01-01

    Boron (B) is an essential micronutrient of plants. In the present study, we characterized an Arabidopsis mutant lbt with significant low-boron tolerance that was identified based on our previous mapping of QTL for B efficiency in Arabidopsis. Multiple nutrient-deficiency analyses point out that lbt mutant is insensitive to only B-limitation stress. Compared with wild-type Col-0, the fresh weight, leaf area, root length and root elongation rate of lbt mutant were significantly improved under B deficiency during vegetative growth. lbt mutant also showed the improvements in plant height, branches and inflorescences compared with Col-0 during the reproductive stage under B limitation. Ultrastructure analysis of the leaves showed that starch accumulation in lbt mutant was significantly diminished compared with Col-0. Furthermore, there were no significant differences in the expression of transporter-related genes and B concentrations between Col-0 and lbt mutant under both normal B and low-B conditions. These results suggest that lbt mutant has a lower B demand than Col-0. Genetic analysis suggests that the low-B tolerant phenotype of lbt mutant is under the control of a monogenic recessive gene. Based on the high-density SNP linkage genetic map, only one QTL for low-B tolerance was mapped on chromosome 4 between 10.4 and 14.8 Mb. No any reported B-relative genes exist in the QTL interval, suggesting that a gene with unknown function controls the tolerance of lbt to B limitation. Taken together, lbt is a low-B tolerant mutant that does not depend on the uptake or transport of B and is controlled by a monogenic recessive gene mapped on chromosome 4, and cloning and functional analysis of LBT gene are expected to reveal novel mechanisms for plant resistance to B deficiency.

  18. Phage-Encoded Colanic Acid-Degrading Enzyme Permits Lytic Phage Infection of a Capsule-Forming Resistant Mutant Escherichia coli Strain

    PubMed Central

    Kim, Min Soo; Kim, Young Deuk; Hong, Sung Sik; Park, Kwangseo; Ko, Kwan Soo

    2014-01-01

    In this study, we isolated a bacteriophage T7-resistant mutant strain of Escherichia coli (named S3) and then proceeded to characterize it. The mutant bacterial colonies appeared to be mucoid. Microarray analysis revealed that genes related to colanic acid production were upregulated in the mutant. Increases in colanic acid production by the mutant bacteria were observed when l-fucose was measured biochemically, and protective capsule formation was observed under an electron microscope. We found a point mutation in the lon gene promoter in S3, the mutant bacterium. Overproduction of colanic acid was observed in some phage-resistant mutant bacteria after infection with other bacteriophages, T4 and lambda. Colanic acid overproduction was also observed in clinical isolates of E. coli upon phage infection. The overproduction of colanic acid resulted in the inhibition of bacteriophage adsorption to the host. Biofilm formation initially decreased shortly after infection but eventually increased after 48 h of incubation due to the emergence of the mutant bacteria. Bacteriophage PBECO4 was shown to infect the colanic acid-overproducing mutant strains of E. coli. We confirmed that the gene product of open reading frame 547 (ORF547) of PBECO4 harbored colanic acid-degrading enzymatic (CAE) activity. Treatment of the T7-resistant bacteria with both T7 and PBECO4 or its purified enzyme (CAE) led to successful T7 infection. Biofilm formation decreased with the mixed infection, too. This procedure, using a phage cocktail different from those exploiting solely receptor differences, represents a novel strategy for overcoming phage resistance in mutant bacteria. PMID:25416767

  19. Importance of individual amino acids in the Switch I region in eEF2 studied by functional complementation in S. cerevisiae.

    PubMed

    Bartish, Galyna; Nygård, Odd

    2008-05-01

    Elongation factor 2 (eEF2) is a member of the G-protein super family. G-proteins undergo conformational changes associated with binding of the guanosine nucleotide and hydrolysis of the bound GTP. These structural rearrangements affects the Switch I region (also known as the Effector loop). We have studied the role of individual amino acids in the Switch I region (amino acids 25-73) of S. cerevisiae eEF2 using functional complementation in yeast. 21 point mutations in the Switch I region were created by site-directed mutagenesis. Mutants K49R, E52Q, A53G, F55Y, K60R, Q63A, T68S, I69M and A73G were functional while mutants R54H, F55N, D57A, D57E, D57S, R59K, R59M, Q63E, R65A, R65N, T68A and T68M were inactive. Expression of mutants K49R, A53G, Q63A, I69M and A73G was associated with markedly decreased growth rates and yeast cells expressing mutants A53G and I69M became temperature sensitive. The functional capacity of eEF2 in which the major part Switch I (amino acids T56 to I69) was converted into the homologous sequence found in EF-G from E. coli was also studied. This protein chimera could functionally replace yeast eEF2 in vivo. Yeast cells expressing this mutant grew extremely slowly, showed increased cell death and became temperature sensitive. The ability of the mutant to replace authentic eEF2 in vivo indicates that the structural rearrangement of Switch I necessary for eEF2 function is similar in eukaryotes and bacteria. The effect of two point mutations in the P-loop was also studied. Mutant A25G but not A25V could functionally replace yeast eEF2 even if cells expressing the mutant grew slowly. The A25G mutation converted the consensus sequences AXXXXGK[T/S] in eEF2 to the corresponding motif GXXXXGK[T/S] found in all other G-proteins, suggesting that the alanine found in the P-loop of peptidyltranslocases are not essential for function.

  20. Molecular Mechanism of Terbinafine Resistance in Saccharomyces cerevisiae

    PubMed Central

    Leber, Regina; Fuchsbichler, Sandra; Klobučníková, Vlasta; Schweighofer, Natascha; Pitters, Eva; Wohlfarter, Kathrin; Lederer, Mojca; Landl, Karina; Ruckenstuhl, Christoph; Hapala, Ivan; Turnowsky, Friederike

    2003-01-01

    Ten mutants of the yeast Saccharomyces cerevisiae resistant to the antimycotic terbinafine were isolated after chemical or UV mutagenesis. Molecular analysis of these mutants revealed single base pair exchanges in the ERG1 gene coding for squalene epoxidase, the target of terbinafine. The mutants did not show cross-resistance to any of the substrates of various pleiotropic drug resistance efflux pumps tested. The ERG1 mRNA levels in the mutants did not differ from those in the wild-type parent strains. Terbinafine resistance was transmitted with the mutated alleles in gene replacement experiments, proving that single amino acid substitutions in the Erg1 protein were sufficient to confer the resistance phenotype. The amino acid changes caused by the point mutations were clustered in two regions of the Erg1 protein. Seven mutants carried the amino acid substitutions F402L (one mutant), F420L (one mutant), and P430S (five mutants) in the C-terminal part of the protein; and three mutants carried an L251F exchange in the central part of the protein. Interestingly, all exchanges identified involved amino acids which are conserved in the squalene epoxidases of yeasts and mammals. Two mutations that were generated by PCR mutagenesis of the ERG1 gene and that conferred terbinafine resistance mapped in the same regions of the Erg1 protein, with one resulting in an L251F exchange and the other resulting in an F433S exchange. The results strongly indicate that these regions are responsible for the interaction of yeast squalene epoxidase with terbinafine. PMID:14638499

  1. Role of the hydrophilic channels of simian virus 40 T-antigen helicase in DNA replication.

    PubMed

    Wang, Weiping; Manna, David; Simmons, Daniel T

    2007-05-01

    The simian virus 40 (SV40) hexameric helicase consists of a central channel and six hydrophilic channels located between adjacent large tier domains within each hexamer. To study the function of the hydrophilic channels in SV40 DNA replication, a series of single-point substitutions were introduced at sites not directly involved in protein-protein contacts. The mutants were characterized biochemically in various ways. All mutants oligomerized normally in the absence of DNA. Interestingly, 8 of the 10 mutants failed to unwind an origin-containing DNA fragment and nine of them were totally unable to support SV40 DNA replication in vitro. The mutants fell into four classes based on their biochemical properties. Class A mutants bound DNA normally and had normal ATPase and helicase activities but failed to unwind origin DNA and support SV40 DNA replication. Class B mutants were compromised in single-stranded DNA and origin DNA binding at low protein concentrations. They were defective in helicase activity and unwinding of the origin and in supporting DNA replication. Class C and D mutants possessed higher-than-normal single-stranded DNA binding activity at low protein concentrations. The class C mutants failed to separate origin DNA and support DNA replication. The class D mutants unwound origin DNA normally but were compromised in their ability to support DNA replication. Taken together, these results suggest that the hydrophilic channels have an active role in the unwinding of SV40 DNA from the origin and the placement of the resulting single strands within the helicase.

  2. Impact of metal ion homeostasis of genetically modified Escherichia coli Nissle 1917 and K12 (W3110) strains on colonization properties in the murine intestinal tract.

    PubMed

    Kupz, Andreas; Fischer, André; Nies, Dietrich H; Grass, Gregor; Göbel, Ulf B; Bereswill, Stefan; Heimesaat, Markus M

    2013-09-01

    Metal ions are integral parts of pro- as well as eukaryotic cell homeostasis. Escherichia coli proved a valuable in vitro model organism to elucidate essential mechanisms involved in uptake, storage, and export of metal ions. Given that E. coli Nissle 1917 is able to overcome murine colonization resistance, we generated several E. coli Nissle 1917 mutants with defects in zinc, iron, copper, nickel, manganese homeostasis and performed a comprehensive survey of the impact of metal ion transport and homeostasis for E. coli colonization capacities within the murine intestinal tract. Seven days following peroral infection of conventional mice with E. coli Nissle 1917 strains exhibiting defined defects in zinc or iron uptake, the respective mutant and parental strains could be cultured at comparable, but low levels from the colonic lumen. We next reassociated gnotobiotic mice in which the microbiota responsible for colonization resistance was abrogated by broad-spectrum antibiotics with six different E. coli K12 (W3110) mutants. Seven days following peroral challenge, each mutant and parental strain stably colonized duodenum, ileum, and colon at comparable levels. Taken together, defects in zinc, iron, copper, nickel, and manganese homeostasis do not compromise colonization capacities of E. coli in the murine intestinal tract.

  3. Metabolomic signature associated with reproduction-regulated aging in Caenorhabditis elegans.

    PubMed

    Wan, Qin-Li; Shi, Xiaohuo; Liu, Jiangxin; Ding, Ai-Jun; Pu, Yuan-Zhu; Li, Zhigang; Wu, Gui-Sheng; Luo, Huai-Rong

    2017-02-06

    In Caenorhabditis elegans (C. elegans) , ablation of germline stem cells (GSCs) leads to infertility, which extends lifespan. It has been reported that aging and reproduction are both inextricably associated with metabolism. However, few studies have investigated the roles of polar small molecules metabolism in regulating longevity by reproduction. In this work, we combined the nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) to profile the water-soluble metabolome in C. elegans . Comparing the metabolic fingerprint between two physiological ages among different mutants, our results demonstrate that aging is characterized by metabolome remodeling and metabolic decline. In addition, by analyzing the metabolic profiles of long-lived germline-less glp-1 mutants, we discovered that glp-1 mutants regulate the levels of many age-variant metabolites to attenuate aging, including elevated concentrations of the pyrimidine and purine metabolism intermediates and decreased concentrations of the citric acid cycle intermediates. Interestingly, by analyzing the metabolome of daf-16;glp-1 double mutants, our results revealed that some metabolic exchange contributing to germline-mediated longevity was mediated by transcription factor FOXO/DAF-16, including pyrimidine metabolism and the TCA cycle. Based on a comprehensive metabolic analysis, we provide novel insight into the relationship between longevity and metabolism regulated by germline signals in C. elegans .

  4. Metabolomic signature associated with reproduction-regulated aging in Caenorhabditis elegans

    PubMed Central

    Wan, Qin-Li; Shi, Xiaohuo; Liu, Jiangxin; Ding, Ai-Jun; Pu, Yuan-Zhu; Li, Zhigang; Wu, Gui-Sheng; Luo, Huai-Rong

    2017-01-01

    In Caenorhabditis elegans (C. elegans), ablation of germline stem cells (GSCs) leads to infertility, which extends lifespan. It has been reported that aging and reproduction are both inextricably associated with metabolism. However, few studies have investigated the roles of polar small molecules metabolism in regulating longevity by reproduction. In this work, we combined the nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) to profile the water-soluble metabolome in C. elegans. Comparing the metabolic fingerprint between two physiological ages among different mutants, our results demonstrate that aging is characterized by metabolome remodeling and metabolic decline. In addition, by analyzing the metabolic profiles of long-lived germline-less glp-1 mutants, we discovered that glp-1 mutants regulate the levels of many age-variant metabolites to attenuate aging, including elevated concentrations of the pyrimidine and purine metabolism intermediates and decreased concentrations of the citric acid cycle intermediates. Interestingly, by analyzing the metabolome of daf-16;glp-1 double mutants, our results revealed that some metabolic exchange contributing to germline-mediated longevity was mediated by transcription factor FOXO/DAF-16, including pyrimidine metabolism and the TCA cycle. Based on a comprehensive metabolic analysis, we provide novel insight into the relationship between longevity and metabolism regulated by germline signals in C. elegans PMID:28177875

  5. Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice

    PubMed Central

    Wilson, Robert; Geyer, Stefan H.; Reissig, Lukas; Rose, Julia; Szumska, Dorota; Hardman, Emily; Prin, Fabrice; McGuire, Christina; Ramirez-Solis, Ramiro; White, Jacqui; Galli, Antonella; Tudor, Catherine; Tuck, Elizabeth; Mazzeo, Cecilia Icoresi; Smith, James C.; Robertson, Elizabeth; Adams, David J.; Mohun, Timothy; Weninger, Wolfgang J.

    2017-01-01

    Background: Identifying genes that are essential for mouse embryonic development and survival through term is a powerful and unbiased way to discover possible genetic determinants of human developmental disorders. Characterising the changes in mouse embryos that result from ablation of lethal genes is a necessary first step towards uncovering their role in normal embryonic development and establishing any correlates amongst human congenital abnormalities. Methods: Here we present results gathered to date in the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme, cataloguing the morphological defects identified from comprehensive imaging of 220 homozygous mutant and 114 wild type embryos from 42 lethal and subviable lines, analysed at E14.5. Results: Virtually all mutant embryos show multiple abnormal phenotypes and amongst the 42 lines these affect most organ systems. Within each mutant line, the phenotypes of individual embryos form distinct but overlapping sets. Subcutaneous edema, malformations of the heart or great vessels, abnormalities in forebrain morphology and the musculature of the eyes are all prevalent phenotypes, as is loss or abnormal size of the hypoglossal nerve. Conclusions: Overall, the most striking finding is that no matter how profound the malformation, each phenotype shows highly variable penetrance within a mutant line. These findings have challenging implications for efforts to identify human disease correlates. PMID:27996060

  6. Disruption of N terminus long range non covalent interactions shifted temp.opt 25°C to cold: Evolution of point mutant Bacillus lipase by error prone PCR.

    PubMed

    Goomber, Shelly; Kumar, Arbind; Kaur, Jagdeep

    2016-01-15

    Cold adapted enzymes have applications in detergent, textile, food, bioremediation and biotechnology processes. Bacillus lipases are 'generally recognized as safe' (GRAS) and hence are industrially attractive. Bacillus lipase of 1.4 subfamily are of lowest molecular weight and are reversibly unfolded due to absence of disulphide bonds. Therefore these are largely used to study energetic of protein stability that represents unfolding of native protein to fully unfolded state. In present study, metagenomically isolated Bacillus LipJ was laboratory evolved for cold adaptation by error Prone PCR. Library of variants were screened for high relative activity at low temperature of 10°C compared to native protein LipJ. Point mutant sequenced as Phe19→Leu was determined to be active at cold and was selected for extensive biochemical, biophysical characterization. Variant F19L showed its maximum activity at 10°C where parent protein LipJ had 20% relative activity. Psychrophilic nature of F19L was established with about 50% relative active at 5°C where native protein was frozen to act. Variant F19L showed no activity at temperature 40°C and above, establishing its thermolabile nature. Thermostability studies determined mutant to be unstable above 20°C and three fold decrease in its half life at 30°C compared to native protein. Far UV-CD and intrinsic fluorescence study demonstrated unstable tertiary structure of point variant F19L leading to its unfolding at low temperature of 20°C. Cold adaptation of mutant F19L is accompanied with increased specific activity. Mutant was catalytically more efficient with 1.3 fold increase in kcat. Homologue structure modelling predicted disruption of intersecondary hydrophobic core formed by aromatic ring of Phe19 with non polar residues placed at β3, β4, β5, β6, αF. Increased local flexibility of variant F19L explains molecular basis of its psychrophilic nature. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. RNA interference-mediated silencing of mutant superoxide dismutase rescues cyclosporin A-induced death in cultured neuroblastoma cells

    PubMed Central

    Maxwell, Michele M.; Pasinelli, Piera; Kazantsev, Aleksey G.; Brown, Robert H.

    2004-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disorder resulting from selective death of motor neurons in the brain and spinal cord. In ≈25% of familial ALS cases, the disease is caused by dominantly acting point mutations in the gene encoding cytosolic Cu,Zn superoxide dismutase (SOD1). In cell culture and in rodent models of ALS, mutant SOD1 proteins exhibit dose-dependent toxicity; thus, agents that reduce mutant protein expression would be powerful therapeutic tools. A wealth of recent evidence has demonstrated that the mechanism of RNA-mediated interference (RNAi) can be exploited to achieve potent and specific gene silencing in vitro and in vivo. We have evaluated the utility of RNAi for selective silencing of mutant SOD1 expression in cultured cells and have identified small interfering RNAs capable of specifically inhibiting expression of ALS-linked mutant, but not wild-type, SOD1. We have investigated the functional effects of RNAi-mediated silencing of mutant SOD1 in cultured murine neuroblastoma cells. In this model, stable expression of mutant, but not wild-type, human SOD1 sensitizes cells to cytotoxic stimuli. We find that silencing of mutant SOD1 protects these cells against cyclosporin A-induced cell death. These results demonstrate a positive physiological effect caused by RNAi-mediated silencing of a dominant disease allele. The present study further supports the therapeutic potential of RNAi-based methods for the treatment of inherited human diseases, including ALS. PMID:14981234

  8. Analysis of mutational spectra by denaturant capillary electrophoresis

    PubMed Central

    Ekstrøm, Per O.; Khrapko, Konstantin; Li-Sucholeiki, Xiao-Cheng; Hunter, Ian W.; Thilly, William G.

    2009-01-01

    Numbers and kinds of point mutant within DNA from cells, tissues and human population may be discovered for nearly any 75–250bp DNA sequence. High fidelity DNA amplification incorporating a thermally stable DNA “clamp” is followed by separation by denaturing capillary electrophoresis (DCE). DCE allows for peak collection and verification sequencing. DCE in a mode of cycling temperature, e.g.+/− 5°C, CyDCE, permits high resolution of mutant sequences using computer defined analytes without preliminary optimization experiments. DNA sequencers have been modified to permit higher throughput CyDCE and a massively parallel,~25,000 capillary system, has been designed for pangenomic scans in large human populations. DCE has been used to define quantitative point mutational spectra for study a wide variety of genetic phenomena: errors of DNA polymerases, mutations induced in human cells by chemicals and irradiation, testing of human gene-common disease associations and the discovery of origins of point mutations in human development and carcinogenesis. PMID:18600220

  9. A single point mutation in Tomato spotted wilt virus NSs protein is sufficient to overcome Tsw-gene-mediated resistance in pepper.

    PubMed

    Almási, Asztéria; Nemes, Katalin; Csömör, Zsófia; Tóbiás, István; Palkovics, László; Salánki, Katalin

    2017-06-01

    The nonstructural protein (NSs) of Tomato spotted wilt virus (TSWV) was previously identified as an avirulence determinant for Tsw-based resistance on pepper. The NSs of wild-type (WT) and resistance-breaking (RB) TSWV strains isolated in Hungary had only two amino acid substitutions (104, 461). We have analysed the ability of the NSs and their point mutant variants to trigger Tsw-mediated hypersensitive responses and RNA silencing suppressor (RSS) activity in patch assays. We identified a single amino acid change at position 104 (T-A) that was responsible for the necrosis induction or loss, while a significant difference was not detected in the RSS activity of the two parental strains. We have successfully complemented the infection of the WT strain on resistant pepper cultivar with the infectious S RNA transcript of the RB strain and the WT-T104A point mutant. Our work provides direct evidence that a single amino acid change can induce an RB phenotype.

  10. Analysis of mutations in oral poliovirus vaccine by hybridization with generic oligonucleotide microchips.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proudnikov, D.; Kirillov, E.; Chumakov, K.

    2000-01-01

    This paper describes use of a new technology of hybridization with a micro-array of immobilized oligonucleotides for detection and quantification of neurovirulent mutants in Oral Poliovirus Vaccine (OPV). We used a micro-array consisting of three-dimensional gel-elements containing all possible hexamers (total of 4096 probes). Hybridization of fluorescently labelled viral cDNA samples with such microchips resulted in a pattern of spots that was registered and quantified by a computer-linked CCD camera, so that the sequence of the original cDNA could be deduced. The method could reliably identify single point mutations, since each of them affected fluorescence intensity of 12 micro-array elements.more » Micro-array hybridization of DNA mixtures with varying contents of point mutants demonstrated that the method can detect as little as 10% of revertants in a population of vaccine virus. This new technology should be useful for quality control of live viral vaccines, as well as for other applications requiring identification and quantification of point mutations.« less

  11. Mechanisms responsible for imipenem resistance among Pseudomonas aeruginosa clinical isolates exposed to imipenem concentrations within the mutant selection window.

    PubMed

    Vassilara, Foula; Galani, Irene; Souli, Maria; Papanikolaou, Konstantinos; Giamarellou, Helen; Papadopoulos, Antonios

    2017-07-01

    The aim of this study was to determine the propensities of imipenem to select for resistant Pseudomonas aeruginosa mutants by determining the mutant prevention concentrations (MPCs) for 9 unrelated clinical isolates and the accession of any relationship with mechanisms of resistance development. The MPC/MIC ratios ranged from 4 to 16. Detection of resistance mechanisms in the mutant derivatives of the nine isolates mainly revealed inactivating mutations in the gene coding for outer membrane protein OprD. Point mutations leading to premature stop codons or amino acid substitution S278P, ≥1bp deletion leading to frameshift mutations and interruption of the oprD by an insertion sequence, were observed. MPC and mutant selection window (MSW) are unique parameters that may guide the implementation of antimicrobial treatment, providing useful information about the necessary imipenem concentration needed in the infection area, in order to avoid the emergence of resistance, especially in clinical situations with high bacterial load. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Enhancement of hypermutation frequency in the chicken B cell line DT40 for efficient diversification of the antibody repertoire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magari, Masaki; Kanehiro, Yuichi; Todo, Kagefumi

    Chicken B cell line DT40 continuously accumulates mutations in the immunoglobulin variable region (IgV) gene by gene conversion and point mutation, both of which are mediated by activation-induced cytidine deaminase (AID), thereby producing an antibody (Ab) library that is useful for screening monoclonal Abs (mAbs) in vitro. We previously generated an engineered DT40 line named DT40-SW, whose AID expression can be reversibly switched on or off, and developed an in vitro Ab generation system using DT40-SW cells. To efficiently create an Ab library with sufficient diversity, higher hypermutation frequency is advantageous. To this end, we generated a novel cell linemore » DT40-SW{Delta}C, which conditionally expresses a C-terminus-truncated AID mutant lacking the nuclear export signal. The transcription level of the mutant AID gene in DT40-SW{Delta}C cells was similar to that of the wild-type gene in DT40-SW cells. However, the protein level of the truncated AID mutant was less than that of the wild type. The mutant protein was enriched in the nuclei of DT40-SW{Delta}C cells, although the protein might be highly susceptible to degradation. In DT40-SW{Delta}C cells, both gene conversion and point mutation occurred in the IgV gene with over threefold higher frequency than in DT40-SW cells, suggesting that a lower level of the mutant AID protein was sufficient to increase mutation frequency. Thus, DT40-SW{Delta}C cells may be useful for constructing Ab libraries for efficient screening of mAbs in vitro.« less

  13. Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex

    PubMed Central

    Fromm, Steffanie; Senkler, Jennifer; Eubel, Holger; Peterhänsel, Christoph; Braun, Hans-Peter

    2016-01-01

    The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific ‘carbonic anhydrase domain’ of mitochondrial complex I. The mutant lacks complex I completely. Here we report extended analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respiratory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosynthesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much induced. These together with previously reported insights into the function of plant complex I, which were obtained by analysing other complex I mutants, are integrated in order to comprehensively describe ‘life without complex I’. PMID:27122571

  14. Leaf phenomics: a systematic reverse genetic screen for Arabidopsis leaf mutants.

    PubMed

    Wilson-Sánchez, David; Rubio-Díaz, Silvia; Muñoz-Viana, Rafael; Pérez-Pérez, José Manuel; Jover-Gil, Sara; Ponce, María Rosa; Micol, José Luis

    2014-09-01

    The study and eventual manipulation of leaf development in plants requires a thorough understanding of the genetic basis of leaf organogenesis. Forward genetic screens have identified hundreds of Arabidopsis mutants with altered leaf development, but the genome has not yet been saturated. To identify genes required for leaf development we are screening the Arabidopsis Salk Unimutant collection. We have identified 608 lines that exhibit a leaf phenotype with full penetrance and almost constant expressivity and 98 additional lines with segregating mutant phenotypes. To allow indexing and integration with other mutants, the mutant phenotypes were described using a custom leaf phenotype ontology. We found that the indexed mutation is present in the annotated locus for 78% of the 553 mutants genotyped, and that in half of these the annotated T-DNA is responsible for the phenotype. To quickly map non-annotated T-DNA insertions, we developed a reliable, cost-effective and easy method based on whole-genome sequencing. To enable comprehensive access to our data, we implemented a public web application named PhenoLeaf (http://genetics.umh.es/phenoleaf) that allows researchers to query the results of our screen, including text and visual phenotype information. We demonstrated how this new resource can facilitate gene function discovery by identifying and characterizing At1g77600, which we found to be required for proximal-distal cell cycle-driven leaf growth, and At3g62870, which encodes a ribosomal protein needed for cell proliferation and chloroplast function. This collection provides a valuable tool for the study of leaf development, characterization of biomass feedstocks and examination of other traits in this fundamental photosynthetic organ. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  15. A Cold-Inducible DEAD-Box RNA Helicase from Arabidopsis thaliana Regulates Plant Growth and Development under Low Temperature.

    PubMed

    Liu, Yuelin; Tabata, Daisuke; Imai, Ryozo

    2016-01-01

    DEAD-box RNA helicases comprise a large family and are involved in a range of RNA processing events. Here, we identified one of the Arabidopsis thaliana DEAD-box RNA helicases, AtRH7, as an interactor of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 (AtCSP3), which is an RNA chaperone involved in cold adaptation. Promoter:GUS transgenic plants revealed that AtRH7 is expressed ubiquitously and that its levels of the expression are higher in rapidly growing tissues. Knockout mutant lines displayed several morphological alterations such as disturbed vein pattern, pointed first true leaves, and short roots, which resemble ribosome-related mutants of Arabidopsis. In addition, aberrant floral development was also observed in rh7 mutants. When the mutants were germinated at low temperature (12°C), both radicle and first leaf emergence were severely delayed; after exposure of seedlings to a long period of cold, the mutants developed aberrant, fewer, and smaller leaves. RNA blots and circular RT-PCR revealed that 35S and 18S rRNA precursors accumulated to higher levels in the mutants than in WT under both normal and cold conditions, suggesting the mutants are partially impaired in pre-rRNA processing. Taken together, the results suggest that AtRH7 affects rRNA biogenesis and plays an important role in plant growth under cold.

  16. Mutation in Rice Abscisic Acid2 Results in Cell Death, Enhanced Disease-Resistance, Altered Seed Dormancy and Development

    PubMed Central

    Liao, Yongxiang; Bai, Que; Xu, Peizhou; Wu, Tingkai; Guo, Daiming; Peng, Yongbin; Zhang, Hongyu; Deng, Xiaoshu; Chen, Xiaoqiong; Luo, Ming; Ali, Asif; Wang, Wenming; Wu, Xianjun

    2018-01-01

    Lesion mimic mutants display spontaneous cell death, and thus are valuable for understanding the molecular mechanism of cell death and disease resistance. Although a lot of such mutants have been characterized in rice, the relationship between lesion formation and abscisic acid (ABA) synthesis pathway is not reported. In the present study, we identified a rice mutant, lesion mimic mutant 9150 (lmm9150), exhibiting spontaneous cell death, pre-harvest sprouting, enhanced growth, and resistance to rice bacterial and blast diseases. Cell death in the mutant was accompanied with excessive accumulation of H2O2. Enhanced disease resistance was associated with cell death and upregulation of defense-related genes. Map-based cloning identified a G-to-A point mutation resulting in a D-to-N substitution at the amino acid position 110 of OsABA2 (LOC_Os03g59610) in lmm9150. Knock-out of OsABA2 through CRISPR/Cas9 led to phenotypes similar to those of lmm9150. Consistent with the function of OsABA2 in ABA biosynthesis, ABA level in the lmm9150 mutant was significantly reduced. Moreover, exogenous application of ABA could rescue all the mutant phenotypes of lmm9150. Taken together, our data linked ABA deficiency to cell death and provided insight into the role of ABA in rice disease resistance. PMID:29643863

  17. Formin homology 1 (OsFH1) regulates root-hair elongation in rice (Oryza sativa).

    PubMed

    Huang, Jin; Kim, Chul Min; Xuan, Yuan-hu; Liu, Jingmiao; Kim, Tae Ho; Kim, Bo-Kyeong; Han, Chang-deok

    2013-05-01

    The outgrowth of root hairs from the epidermal cell layer is regulated by a strict genetic regulatory system and external growth conditions. Rice plants cultivated in water-logged paddy land are exposed to a soil ecology that differs from the environment surrounding upland plants, such as Arabidopsis and maize. To identify genes that play important roles in root-hair growth, a forward genetics approach was used to screen for short-root-hair mutants. A short-root-hair mutant was identified, and the gene was isolated using map-based cloning and sequencing. The mutant harbored a point mutation at a splicing acceptor site, which led to truncation of OsFH1 (rice formin homology 1). Subsequent analysis of two additional T-DNA mutants verified that OsFH1 is important for root-hair elongation. Further studies revealed that the action of OsFH1 on root-hair growth is dependent on growth conditions. The mutant Osfh1 exhibited root-hair defects when roots were grown submerged in solution, and mutant roots produced normal root hairs in the air. However, root-hair phenotypes of mutants were not influenced by the external supply of hormones or carbohydrates, a deficiency of nutrients, such as Fe or P i , or aeration. This study shows that OsFH1 plays a significant role in root-hair elongation in a growth condition-dependent manner.

  18. Mutation in Rice Abscisic Acid2 Results in Cell Death, Enhanced Disease-Resistance, Altered Seed Dormancy and Development.

    PubMed

    Liao, Yongxiang; Bai, Que; Xu, Peizhou; Wu, Tingkai; Guo, Daiming; Peng, Yongbin; Zhang, Hongyu; Deng, Xiaoshu; Chen, Xiaoqiong; Luo, Ming; Ali, Asif; Wang, Wenming; Wu, Xianjun

    2018-01-01

    Lesion mimic mutants display spontaneous cell death, and thus are valuable for understanding the molecular mechanism of cell death and disease resistance. Although a lot of such mutants have been characterized in rice, the relationship between lesion formation and abscisic acid (ABA) synthesis pathway is not reported. In the present study, we identified a rice mutant, lesion mimic mutant 9150 ( lmm9150 ), exhibiting spontaneous cell death, pre-harvest sprouting, enhanced growth, and resistance to rice bacterial and blast diseases. Cell death in the mutant was accompanied with excessive accumulation of H 2 O 2 . Enhanced disease resistance was associated with cell death and upregulation of defense-related genes. Map-based cloning identified a G-to-A point mutation resulting in a D-to-N substitution at the amino acid position 110 of OsABA2 (LOC_Os03g59610) in lmm9150 . Knock-out of OsABA2 through CRISPR/Cas9 led to phenotypes similar to those of lmm9150 . Consistent with the function of OsABA2 in ABA biosynthesis, ABA level in the lmm9150 mutant was significantly reduced. Moreover, exogenous application of ABA could rescue all the mutant phenotypes of lmm9150 . Taken together, our data linked ABA deficiency to cell death and provided insight into the role of ABA in rice disease resistance.

  19. Enhanced tolerance to NaCl and LiCl stresses by over-expressing Caragana korshinskii sodium/proton exchanger 1 (CkNHX1) and the hydrophilic C terminus is required for the activity of CkNHX1 in Atsos3-1 mutant and yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Da-Hai, E-mail: gresea_young@hotmail.com; Department of Plant Physiology, Institute of General Botany and Plant Physiology, Friedrich-Schiller-University, Dornburger Strasse 159, 07743 Jena; Song, Li-Ying, E-mail: lysong@genetics.ac.cn

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer CkNHX1 was isolated from Caragana korshinskii. Black-Right-Pointing-Pointer CkNHX1 was expressed mainly in roots, and significantly induced by NaCl in stems. Black-Right-Pointing-Pointer Expression of CkNHX1 enhanced the resistance to NaCl and LiCl in yeast and Atsos3-1. Black-Right-Pointing-Pointer Expression of CkNHX1-{Delta}C had little effect on NaCl/LiCl tolerance in Atsos3-1. Black-Right-Pointing-Pointer C-terminal region of CkNHX1 is required for its Na{sup +} and Li{sup +} transporting activity. -- Abstract: Sodium/proton exchangers (NHX antiporters) play important roles in plant responses to salt stress. Previous research showed that hydrophilic C-terminal region of Arabidopsis AtNHX1 negatively regulates the Na{sup +}/H{sup +} transporting activity. In thismore » study, CkNHX1 were isolated from Caragana korshinskii, a pea shrub with high tolerance to salt, drought, and cold stresses. Transcripts of CkNHX1 were detected predominantly in roots, and were significantly induced by NaCl stress in stems. Transgenic yeast and Arabidopsisthalianasos3-1 (Atsos3-1) mutant over-expressing CkNHX1 and its hydrophilic C terminus-truncated derivative, CkNHX1-{Delta}C, were generated and subjected to NaCl and LiCl stresses. Expression of CkNHX1 significantly enhanced the resistance to NaCl and LiCl stresses in yeast and Atsos3-1 mutant. Whereas, compared with expression of CkNHX1, the expression of CkNHX1-{Delta}C had much less effect on NaCl tolerance in Atsos3-1 and LiCl tolerance in yeast and Atsos3-1. All together, these results suggest that the predominant expression of CkNHX1 in roots might contribute to keep C. korshinskii adapting to the high salt condition in this plant's living environment; CkNHX1 could recover the phenotype of Atsos3-1 mutant; and the hydrophilic C-terminal region of CkNHX1 should be required for Na{sup +}/H{sup +} and Li{sup +}/H{sup +} exchanging activity of CkNHX1.« less

  20. Functional genomics of fuzzless-lintless mutant of Gossypium hirsutum L. cv. MCU5 reveal key genes and pathways involved in cotton fibre initiation and elongation

    PubMed Central

    2012-01-01

    Background Fuzzless-lintless cotton mutants are considered to be the ideal material to understand the molecular mechanisms involved in fibre cell development. Although there are few reports on transcriptome and proteome analyses in cotton at fibre initiation and elongation stages, there is no comprehensive comparative transcriptome analysis of fibre-bearing and fuzzless-lintless cotton ovules covering fibre initiation to secondary cell wall (SCW) synthesis stages. In the present study, a comparative transcriptome analysis was carried out using G. hirsutum L. cv. MCU5 wild-type (WT) and it’s near isogenic fuzzless-lintless (fl) mutant at fibre initiation (0 dpa/days post anthesis), elongation (5, 10 and 15 dpa) and SCW synthesis (20 dpa) stages. Results Scanning electron microscopy study revealed the delay in the initiation of fibre cells and lack of any further development after 2 dpa in the fl mutant. Transcriptome analysis showed major down regulation of transcripts (90%) at fibre initiation and early elongation (5 dpa) stages in the fl mutant. Majority of the down regulated transcripts at fibre initiation stage in the fl mutant represent calcium and phytohormone mediated signal transduction pathways, biosynthesis of auxin and ethylene and stress responsive transcription factors (TFs). Further, transcripts involved in carbohydrate and lipid metabolisms, mitochondrial electron transport system (mETS) and cell wall loosening and elongation were highly down-regulated at fibre elongation stage (5–15 dpa) in the fl mutant. In addition, cellulose synthases and sucrose synthase C were down-regulated at SCW biosynthesis stage (15–20 dpa). Interestingly, some of the transcripts (~50%) involved in phytohormone signalling and stress responsive transcription factors that were up-regulated at fibre initiation stage in the WT were found to be up-regulated at much later stage (15 dpa) in fl mutant. Conclusions Comparative transcriptome analysis of WT and its near isogenic fl mutant revealed key genes and pathways involved at various stages of fibre development. Our data implicated the significant role of mitochondria mediated energy metabolism during fibre elongation process. The delayed expression of genes involved in phytohormone signalling and stress responsive TFs in the fl mutant suggests the need for a coordinated expression of regulatory mechanisms in fibre cell initiation and differentiation. PMID:23151214

  1. Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice

    PubMed Central

    Michaud, Edward J; Culiat, Cymbeline T; Klebig, Mitchell L; Barker, Paul E; Cain, KT; Carpenter, Debra J; Easter, Lori L; Foster, Carmen M; Gardner, Alysyn W; Guo, ZY; Houser, Kay J; Hughes, Lori A; Kerley, Marilyn K; Liu, Zhaowei; Olszewski, Robert E; Pinn, Irina; Shaw, Ginger D; Shinpock, Sarah G; Wymore, Ann M; Rinchik, Eugene M; Johnson, Dabney K

    2005-01-01

    Background Analysis of an allelic series of point mutations in a gene, generated by N-ethyl-N-nitrosourea (ENU) mutagenesis, is a valuable method for discovering the full scope of its biological function. Here we present an efficient gene-driven approach for identifying ENU-induced point mutations in any gene in C57BL/6J mice. The advantage of such an approach is that it allows one to select any gene of interest in the mouse genome and to go directly from DNA sequence to mutant mice. Results We produced the Cryopreserved Mutant Mouse Bank (CMMB), which is an archive of DNA, cDNA, tissues, and sperm from 4,000 G1 male offspring of ENU-treated C57BL/6J males mated to untreated C57BL/6J females. Each mouse in the CMMB carries a large number of random heterozygous point mutations throughout the genome. High-throughput Temperature Gradient Capillary Electrophoresis (TGCE) was employed to perform a 32-Mbp sequence-driven screen for mutations in 38 PCR amplicons from 11 genes in DNA and/or cDNA from the CMMB mice. DNA sequence analysis of heteroduplex-forming amplicons identified by TGCE revealed 22 mutations in 10 genes for an overall mutation frequency of 1 in 1.45 Mbp. All 22 mutations are single base pair substitutions, and nine of them (41%) result in nonconservative amino acid substitutions. Intracytoplasmic sperm injection (ICSI) of cryopreserved spermatozoa into B6D2F1 or C57BL/6J ova was used to recover mutant mice for nine of the mutations to date. Conclusions The inbred C57BL/6J CMMB, together with TGCE mutation screening and ICSI for the recovery of mutant mice, represents a valuable gene-driven approach for the functional annotation of the mammalian genome and for the generation of mouse models of human genetic diseases. The ability of ENU to induce mutations that cause various types of changes in proteins will provide additional insights into the functions of mammalian proteins that may not be detectable by knockout mutations. PMID:16300676

  2. Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana.

    PubMed

    Havlová, Kateřina; Dvořáčková, Martina; Peiro, Ramon; Abia, David; Mozgová, Iva; Vansáčová, Lenka; Gutierrez, Crisanto; Fajkus, Jiří

    2016-11-01

    Approximately seven hundred 45S rRNA genes (rDNA) in the Arabidopsis thaliana genome are organised in two 4 Mbp-long arrays of tandem repeats arranged in head-to-tail fashion separated by an intergenic spacer (IGS). These arrays make up 5 % of the A. thaliana genome. IGS are rapidly evolving sequences and frequent rearrangements inside the rDNA loci have generated considerable interspecific and even intra-individual variability which allows to distinguish among otherwise highly conserved rRNA genes. The IGS has not been comprehensively described despite its potential importance in regulation of rDNA transcription and replication. Here we describe the detailed sequence variation in the complete IGS of A. thaliana WT plants and provide the reference/consensus IGS sequence, as well as genomic DNA analysis. We further investigate mutants dysfunctional in chromatin assembly factor-1 (CAF-1) (fas1 and fas2 mutants), which are known to have a reduced number of rDNA copies, and plant lines with restored CAF-1 function (segregated from a fas1xfas2 genetic background) showing major rDNA rearrangements. The systematic rDNA loss in CAF-1 mutants leads to the decreased variability of the IGS and to the occurrence of distinct IGS variants. We present for the first time a comprehensive and representative set of complete IGS sequences, obtained by conventional cloning and by Pacific Biosciences sequencing. Our data expands the knowledge of the A. thaliana IGS sequence arrangement and variability, which has not been available in full and in detail until now. This is also the first study combining IGS sequencing data with RFLP analysis of genomic DNA.

  3. Context-specific function of the LIM homeobox 1 transcription factor in head formation of the mouse embryo.

    PubMed

    Fossat, Nicolas; Ip, Chi Kin; Jones, Vanessa J; Studdert, Joshua B; Khoo, Poh-Lynn; Lewis, Samara L; Power, Melinda; Tourle, Karin; Loebel, David A F; Kwan, Kin Ming; Behringer, Richard R; Tam, Patrick P L

    2015-06-01

    Lhx1 encodes a LIM homeobox transcription factor that is expressed in the primitive streak, mesoderm and anterior mesendoderm of the mouse embryo. Using a conditional Lhx1 flox mutation and three different Cre deleters, we demonstrated that LHX1 is required in the anterior mesendoderm, but not in the mesoderm, for formation of the head. LHX1 enables the morphogenetic movement of cells that accompanies the formation of the anterior mesendoderm, in part through regulation of Pcdh7 expression. LHX1 also regulates, in the anterior mesendoderm, the transcription of genes encoding negative regulators of WNT signalling, such as Dkk1, Hesx1, Cer1 and Gsc. Embryos carrying mutations in Pcdh7, generated using CRISPR-Cas9 technology, and embryos without Lhx1 function specifically in the anterior mesendoderm displayed head defects that partially phenocopied the truncation defects of Lhx1-null mutants. Therefore, disruption of Lhx1-dependent movement of the anterior mesendoderm cells and failure to modulate WNT signalling both resulted in the truncation of head structures. Compound mutants of Lhx1, Dkk1 and Ctnnb1 show an enhanced head truncation phenotype, pointing to a functional link between LHX1 transcriptional activity and the regulation of WNT signalling. Collectively, these results provide comprehensive insight into the context-specific function of LHX1 in head formation: LHX1 enables the formation of the anterior mesendoderm that is instrumental for mediating the inductive interaction with the anterior neuroectoderm and LHX1 also regulates the expression of factors in the signalling cascade that modulate the level of WNT activity. © 2015. Published by The Company of Biologists Ltd.

  4. Comprehensive mutational profiling of core binding factor acute myeloid leukemia

    PubMed Central

    Duployez, Nicolas; Marceau-Renaut, Alice; Boissel, Nicolas; Petit, Arnaud; Bucci, Maxime; Geffroy, Sandrine; Lapillonne, Hélène; Renneville, Aline; Ragu, Christine; Figeac, Martin; Celli-Lebras, Karine; Lacombe, Catherine; Micol, Jean-Baptiste; Abdel-Wahab, Omar; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric

    2016-01-01

    Acute myeloid leukemia (AML) with t(8;21) or inv(16) have been recognized as unique entities within AML and are usually reported together as core binding factor AML (CBF-AML). However, there is considerable clinical and biological heterogeneity within this group of diseases, and relapse incidence reaches up to 40%. Moreover, translocations involving CBFs are not sufficient to induce AML on its own and the full spectrum of mutations coexisting with CBF translocations has not been elucidated. To address these issues, we performed extensive mutational analysis by high-throughput sequencing in 215 patients with CBF-AML enrolled in the Phase 3 Trial of Systematic Versus Response-adapted Timed-Sequential Induction in Patients With Core Binding Factor Acute Myeloid Leukemia and Treating Patients with Childhood Acute Myeloid Leukemia with Interleukin-2 trials (age, 1-60 years). Mutations in genes activating tyrosine kinase signaling (including KIT, N/KRAS, and FLT3) were frequent in both subtypes of CBF-AML. In contrast, mutations in genes that regulate chromatin conformation or encode members of the cohesin complex were observed with high frequencies in t(8;21) AML (42% and 18%, respectively), whereas they were nearly absent in inv(16) AML. High KIT mutant allele ratios defined a group of t(8;21) AML patients with poor prognosis, whereas high N/KRAS mutant allele ratios were associated with the lack of KIT or FLT3 mutations and a favorable outcome. In addition, mutations in epigenetic modifying or cohesin genes were associated with a poor prognosis in patients with tyrosine kinase pathway mutations, suggesting synergic cooperation between these events. These data suggest that diverse cooperating mutations may influence CBF-AML pathophysiology as well as clinical behavior and point to potential unique pathogenesis of t(8;21) vs inv(16) AML. PMID:26980726

  5. Dynamic autophosphorylation of mps1 kinase is required for faithful mitotic progression.

    PubMed

    Wang, Xinghui; Yu, Huijuan; Xu, Leilei; Zhu, Tongge; Zheng, Fan; Fu, Chuanhai; Wang, Zhiyong; Dou, Zhen

    2014-01-01

    The spindle assembly checkpoint (SAC) is a surveillance mechanism monitoring cell cycle progression, thus ensuring accurate chromosome segregation. The conserved mitotic kinase Mps1 is a key component of the SAC. The human Mps1 exhibits comprehensive phosphorylation during mitosis. However, the related biological relevance is largely unknown. Here, we demonstrate that 8 autophosphorylation sites within the N-terminus of Mps1, outside of the catalytic domain, are involved in regulating Mps1 kinetochore localization. The phospho-mimicking mutant of the 8 autophosphorylation sites impairs Mps1 localization to kinetochore and also affects the kinetochore recruitment of BubR1 and Mad2, two key SAC effectors, subsequently leading to chromosome segregation errors. Interestingly, the non-phosphorylatable mutant of the 8 autophosphorylation sites enhances Mps1 kinetochore localization and delays anaphase onset. We further show that the Mps1 phospho-mimicking and non-phosphorylatable mutants do not affect metaphase chromosome congression. Thus, our results highlight the importance of dynamic autophosphorylation of Mps1 in regulating accurate chromosome segregation and ensuring proper mitotic progression.

  6. Dynamic Autophosphorylation of Mps1 Kinase Is Required for Faithful Mitotic Progression

    PubMed Central

    Wang, Xinghui; Yu, Huijuan; Xu, Leilei; Zhu, Tongge; Zheng, Fan; Fu, Chuanhai; Wang, Zhiyong; Dou, Zhen

    2014-01-01

    The spindle assembly checkpoint (SAC) is a surveillance mechanism monitoring cell cycle progression, thus ensuring accurate chromosome segregation. The conserved mitotic kinase Mps1 is a key component of the SAC. The human Mps1 exhibits comprehensive phosphorylation during mitosis. However, the related biological relevance is largely unknown. Here, we demonstrate that 8 autophosphorylation sites within the N-terminus of Mps1, outside of the catalytic domain, are involved in regulating Mps1 kinetochore localization. The phospho-mimicking mutant of the 8 autophosphorylation sites impairs Mps1 localization to kinetochore and also affects the kinetochore recruitment of BubR1 and Mad2, two key SAC effectors, subsequently leading to chromosome segregation errors. Interestingly, the non-phosphorylatable mutant of the 8 autophosphorylation sites enhances Mps1 kinetochore localization and delays anaphase onset. We further show that the Mps1 phospho-mimicking and non-phosphorylatable mutants do not affect metaphase chromosome congression. Thus, our results highlight the importance of dynamic autophosphorylation of Mps1 in regulating accurate chromosome segregation and ensuring proper mitotic progression. PMID:25265012

  7. Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks.

    PubMed

    Liu, Kun-Hsiang; Niu, Yajie; Konishi, Mineko; Wu, Yue; Du, Hao; Sun Chung, Hoo; Li, Lei; Boudsocq, Marie; McCormack, Matthew; Maekawa, Shugo; Ishida, Tetsuya; Zhang, Chao; Shokat, Kevan; Yanagisawa, Shuichi; Sheen, Jen

    2017-05-18

    Nutrient signalling integrates and coordinates gene expression, metabolism and growth. However, its primary molecular mechanisms remain incompletely understood in plants and animals. Here we report unique Ca 2+ signalling triggered by nitrate with live imaging of an ultrasensitive biosensor in Arabidopsis leaves and roots. A nitrate-sensitized and targeted functional genomic screen identifies subgroup III Ca 2+ -sensor protein kinases (CPKs) as master regulators that orchestrate primary nitrate responses. A chemical switch with the engineered mutant CPK10(M141G) circumvents embryo lethality and enables conditional analyses of cpk10 cpk30 cpk32 triple mutants to define comprehensive nitrate-associated regulatory and developmental programs. Nitrate-coupled CPK signalling phosphorylates conserved NIN-LIKE PROTEIN (NLP) transcription factors to specify the reprogramming of gene sets for downstream transcription factors, transporters, nitrogen assimilation, carbon/nitrogen metabolism, redox, signalling, hormones and proliferation. Conditional cpk10 cpk30 cpk32 and nlp7 mutants similarly impair nitrate-stimulated system-wide shoot growth and root establishment. The nutrient-coupled Ca 2+ signalling network integrates transcriptome and cellular metabolism with shoot-root coordination and developmental plasticity in shaping organ biomass and architecture.

  8. Inactivation of Cellobiose Dehydrogenases Modifies the Cellulose Degradation Mechanism of Podospora anserina.

    PubMed

    Tangthirasunun, Narumon; Navarro, David; Garajova, Sona; Chevret, Didier; Tong, Laetitia Chan Ho; Gautier, Valérie; Hyde, Kevin D; Silar, Philippe; Berrin, Jean-Guy

    2017-01-15

    Conversion of biomass into high-value products, including biofuels, is of great interest to developing sustainable biorefineries. Fungi are an inexhaustible source of enzymes to degrade plant biomass. Cellobiose dehydrogenases (CDHs) play an important role in the breakdown through synergistic action with fungal lytic polysaccharide monooxygenases (LPMOs). The three CDH genes of the model fungus Podospora anserina were inactivated, resulting in single and multiple CDH mutants. We detected almost no difference in growth and fertility of the mutants on various lignocellulose sources, except on crystalline cellulose, on which a 2-fold decrease in fertility of the mutants lacking P. anserina CDH1 (PaCDH1) and PaCDH2 was observed. A striking difference between wild-type and mutant secretomes was observed. The secretome of the mutant lacking all CDHs contained five beta-glucosidases, whereas the wild type had only one. P. anserina seems to compensate for the lack of CDH with secretion of beta-glucosidases. The addition of P. anserina LPMO to either the wild-type or mutant secretome resulted in improvement of cellulose degradation in both cases, suggesting that other redox partners present in the mutant secretome provided electrons to LPMOs. Overall, the data showed that oxidative degradation of cellulosic biomass relies on different types of mechanisms in fungi. Plant biomass degradation by fungi is a complex process involving dozens of enzymes. The roles of each enzyme or enzyme class are not fully understood, and utilization of a model amenable to genetic analysis should increase the comprehension of how fungi cope with highly recalcitrant biomass. Here, we report that the cellobiose dehydrogenases of the model fungus Podospora anserina enable it to consume crystalline cellulose yet seem to play a minor role on actual substrates, such as wood shavings or miscanthus. Analysis of secreted proteins suggests that Podospora anserina compensates for the lack of cellobiose dehydrogenase by increasing beta-glucosidase expression and using an alternate electron donor for LPMO. Copyright © 2016 American Society for Microbiology.

  9. Inactivation of Cellobiose Dehydrogenases Modifies the Cellulose Degradation Mechanism of Podospora anserina

    PubMed Central

    Tangthirasunun, Narumon; Navarro, David; Garajova, Sona; Chevret, Didier; Tong, Laetitia Chan Ho; Gautier, Valérie; Hyde, Kevin D.

    2016-01-01

    ABSTRACT Conversion of biomass into high-value products, including biofuels, is of great interest to developing sustainable biorefineries. Fungi are an inexhaustible source of enzymes to degrade plant biomass. Cellobiose dehydrogenases (CDHs) play an important role in the breakdown through synergistic action with fungal lytic polysaccharide monooxygenases (LPMOs). The three CDH genes of the model fungus Podospora anserina were inactivated, resulting in single and multiple CDH mutants. We detected almost no difference in growth and fertility of the mutants on various lignocellulose sources, except on crystalline cellulose, on which a 2-fold decrease in fertility of the mutants lacking P. anserina CDH1 (PaCDH1) and PaCDH2 was observed. A striking difference between wild-type and mutant secretomes was observed. The secretome of the mutant lacking all CDHs contained five beta-glucosidases, whereas the wild type had only one. P. anserina seems to compensate for the lack of CDH with secretion of beta-glucosidases. The addition of P. anserina LPMO to either the wild-type or mutant secretome resulted in improvement of cellulose degradation in both cases, suggesting that other redox partners present in the mutant secretome provided electrons to LPMOs. Overall, the data showed that oxidative degradation of cellulosic biomass relies on different types of mechanisms in fungi. IMPORTANCE Plant biomass degradation by fungi is a complex process involving dozens of enzymes. The roles of each enzyme or enzyme class are not fully understood, and utilization of a model amenable to genetic analysis should increase the comprehension of how fungi cope with highly recalcitrant biomass. Here, we report that the cellobiose dehydrogenases of the model fungus Podospora anserina enable it to consume crystalline cellulose yet seem to play a minor role on actual substrates, such as wood shavings or miscanthus. Analysis of secreted proteins suggests that Podospora anserina compensates for the lack of cellobiose dehydrogenase by increasing beta-glucosidase expression and using an alternate electron donor for LPMO. PMID:27836848

  10. An Erwinia amylovora yjeK mutant exhibits reduced virulence, increased chemical sensitivity and numerous environmentally dependent proteomic alterations.

    PubMed

    Klee, Sara M; Mostafa, Islam; Chen, Sixue; Dufresne, Craig; Lehman, Brian L; Sinn, Judith P; Peter, Kari A; McNellis, Timothy W

    2018-07-01

    The Gram-negative bacterium Erwinia amylovora causes fire blight, an economically important disease of apples and pears. Elongation factor P (EF-P) is a highly conserved protein that stimulates the formation of the first peptide bond of certain proteins and facilitates the translation of certain proteins, including those with polyproline motifs. YjeK and YjeA are two enzymes involved in the essential post-translational β-lysylation of EF-P at a conserved lysine residue, K34. EF-P, YjeA and YjeK have been shown to be essential for the full virulence of Escherichia coli, Salmonella species and Agrobacterium tumefaciens, with efp, yjeA and yjeK mutants having highly similar phenotypes. Here, we identified an E. amylovora yjeK::Tn5 transposon mutant with decreased virulence in apple fruit and trees. The yjeK::Tn5 mutant also showed pleiotropic phenotypes, including reduced growth in rich medium, lower extracellular polysaccharide production, reduced swimming motility and increased chemical sensitivity compared with the wild-type, whilst maintaining wild-type level growth in minimal medium. All yjeK::Tn5 mutant phenotypes were complemented in trans with a plasmid bearing a wild-type copy of yjeK. Comprehensive, quantitative proteomics analyses revealed numerous, environmentally dependent changes in the prevalence of a wide range of proteins, in higher abundance and lower abundance, in yjeK::Tn5 compared with the wild-type, and many of these alterations could be linked to yjeK::Tn5 mutant phenotypes. The environmental dependence of the yjeK::Tn5 mutant proteomic alterations suggests that YjeK could be required for aspects of the environmentally dependent regulation of protein translation. YjeK activity may be critical to overcoming stress, including the challenging host environment faced by invading pathogenic bacteria. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  11. Barcode Sequencing Screen Identifies SUB1 as a Regulator of Yeast Pheromone Inducible Genes

    PubMed Central

    Sliva, Anna; Kuang, Zheng; Meluh, Pamela B.; Boeke, Jef D.

    2016-01-01

    The yeast pheromone response pathway serves as a valuable model of eukaryotic mitogen-activated protein kinase (MAPK) pathways, and transcription of their downstream targets. Here, we describe application of a screening method combining two technologies: fluorescence-activated cell sorting (FACS), and barcode analysis by sequencing (Bar-Seq). Using this screening method, and pFUS1-GFP as a reporter for MAPK pathway activation, we readily identified mutants in known mating pathway components. In this study, we also include a comprehensive analysis of the FUS1 induction properties of known mating pathway mutants by flow cytometry, featuring single cell analysis of each mutant population. We also characterized a new source of false positives resulting from the design of this screen. Additionally, we identified a deletion mutant, sub1Δ, with increased basal expression of pFUS1-GFP. Here, in the first ChIP-Seq of Sub1, our data shows that Sub1 binds to the promoters of about half the genes in the genome (tripling the 991 loci previously reported), including the promoters of several pheromone-inducible genes, some of which show an increase upon pheromone induction. Here, we also present the first RNA-Seq of a sub1Δ mutant; the majority of genes have no change in RNA, but, of the small subset that do, most show decreased expression, consistent with biochemical studies implicating Sub1 as a positive transcriptional regulator. The RNA-Seq data also show that certain pheromone-inducible genes are induced less in the sub1Δ mutant relative to the wild type, supporting a role for Sub1 in regulation of mating pathway genes. The sub1Δ mutant has increased basal levels of a small subset of other genes besides FUS1, including IMD2 and FIG1, a gene encoding an integral membrane protein necessary for efficient mating. PMID:26837954

  12. Disoxaril mutants of Coxsackievirus B1: phenotypic characteristics and analysis of the target VP1 gene.

    PubMed

    Nikolova, Ivanka; Galabov, Angel S; Petkova, Rumena; Chakarov, Stoyan; Atanasov, Boris

    2011-01-01

    Disoxaril inhibits enterovirus replication by binding to the hydrophobic pocket within the VP1 coat protein, thus stabilizing the virion and blocking its uncoating. Disoxaril-resistant (RES) mutants of the Coxsackievirus B1 (CVB1/RES) were derived from the wild disoxaril-sensitive (SOF) strain (CVB1/SOF) using a selection approach. A disoxaril-dependent (DEP) mutant (CVB1/DEP) was obtained following nine consecutive passages of the disoxaril-resistant mutant in the presence of disoxaril. Phenotypic characteristics of the disoxaril mutants were investigated. A timing-of-addition study of the CVB1/DEP replication demonstrated that in the absence of disoxaril the virus particle assembly stopped. VP1 RNA sequences of disoxaril mutants were compared with the existing Gen Bank CVB1 reference structure. The amino acid sequence of a large VP1 196-258 peptide (disoxaril-binding region) of CVB1/RES was significantly different from that of the CVB1/SOF. Crucially important changes in CVB1/RES were two point mutations, M213H and F237L, both in the ligand-binding pocket. The sequence analysis of the CVB1/DEP showed some reversion to CVB1/SOF. The amino acid sequences of the three VP1 proteins are presented.

  13. Modification of nitrogen remobilization, grain fill and leaf senescence in maize (Zea mays) by transposon insertional mutagenesis in a protease gene.

    PubMed

    Donnison, Iain S; Gay, Alan P; Thomas, Howard; Edwards, Keith J; Edwards, David; James, Caron L; Thomas, Ann M; Ougham, Helen J

    2007-01-01

    A maize (Zea mays) senescence-associated legumain gene, See2beta, was characterized at the physiological and molecular levels to determine its role in senescence and resource allocation. A reverse-genetics screen of a maize Mutator (Mu) population identified a Mu insertion in See2beta. Maize plants homozygous for the insertion were produced. These See2 mutant and sibling wild-type plants were grown under high or low quantities of nitrogen (N). The early development of both genotypes was similar; however, tassel tip and collar emergence occurred earlier in the mutant. Senescence of the mutant leaves followed a similar pattern to that of wild-type leaves, but at later sampling points mutant plants contained more chlorophyll than wild-type plants and showed a small extension in photosynthetic activity. Total plant weight was higher in the wild-type than in the mutant, and there was a genotype x N interaction. Mutant plants under low N maintained cob weight, in contrast to wild-type plants under the same treatment. It is concluded, on the basis of transposon mutagenesis, that See2beta has an important role in N-use and resource allocation under N-limited conditions, and a minor but significant function in the later stages of senescence.

  14. Spontaneous mutation during the sexual cycle of Neurospora crassa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watters, M.K.; Stadler, D.R.

    The DNA sequences of 42 spontaneous mutations of the mtr gene in Neurospora crassa have been determined. The mutants were selected among sexual spores to represent mutations arising in the sexual cycle. Three sexual-cycle-specific mutational classes are described: hotspot mutants, spontaneous repeat-induced point mutation (RIPs) and mutations occurring during a mutagenic phase of the sexual cycle. Together, these three sexual-cycle-specific mutational classes account for 50% of the mutations in the sexual-cycle mutational spectrum. One third of all mutations occurred at one of two mutational hotspots that predominantly produced tandem duplications of varying lengths with short repeats at their end-points. Neithermore » of the two hotspots are present in the vegetative spectrum, suggesting that sexual-cycle-specific mutational pathways are responsible for their presence in the spectrum. One mutant was observed that appeared to have been RIPed precociously. The usual prerequisite for RIP, a duplication of the affected region, was not present in the parent stocks and was not detected in this mutant. Finally, there is a phase early in the premeiotic sexual cycle that is overrepresented in the generation of mutations. This {open_quotes}peak{close_quotes} appears to represent a phase during which the mutation rate rises significantly. This phase produces a disproportionally high fraction of frame shift mutations. In divisions subsequent to this, the mutation rate appears to be constant. 26 refs., 6 figs., 2 tabs.« less

  15. MOLECULAR SURVEILLANCE OF Plasmodium vivax AND Plasmodium falciparum DHFR MUTATIONS IN ISOLATES FROM SOUTHERN IRAN

    PubMed Central

    SHARIFI-SARASIABI, Khojasteh; HAGHIGHI, Ali; KAZEMI, Bahram; TAGHIPOUR, Niloofar; MOJARAD, Ehsan Nazemalhosseini; GACHKAR, Latif

    2016-01-01

    In Iran, both Plasmodium vivax and P. falciparum malaria have been detected, but P. vivax is the predominant species. Point mutations in dihydrofolate reductase (dhfr) gene in both Plasmodia are the major mechanisms of pyrimethamine resistance. From April 2007 to June 2009, a total of 134 blood samples in two endemic areas of southern Iran were collected from patients infected with P. vivax and P. falciparum. The isolates were analyzed for P. vivax dihydrofolate reductase (pvdhfr) and P. falciparum dihydrofolate reductase (pfdhfr) point mutations using various PCR-based methods. The majority of the isolates (72.9%) had wild type amino acids at five codons of pvdhfr. Amongst mutant isolates, the most common pvdhfr alleles were double mutant in 58 and 117 amino acids (58R-117N). Triple mutation in 57, 58, and 117 amino acids (57L/58R/117N) was identified for the first time in the pvdhfr gene of Iranian P. vivax isolates. All the P. falciparumsamples analyzed (n = 16) possessed a double mutant pfdhfrallele (59R/108N) and retained a wild-type mutation at position 51. This may be attributed to the fact that the falciparum malaria patients were treated using sulfadoxine-pyrimethamine (SP) in Iran. The presence of mutant haplotypes in P. vivax is worrying, but has not yet reached an alarming threshold regarding drugs such as SP. The results of this study reinforce the importance of performing a molecular surveillance by means of a continuous chemoresistance assessment. PMID:27007559

  16. Liver tumor formation by a mutant retinoblastoma protein in the transgenic mice is caused by an upregulation of c-Myc target genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bo; Hikosaka, Keisuke; Sultana, Nishat

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fifty percent of the mutant Rb transgenic mice produced liver tumors. Black-Right-Pointing-Pointer In the tumor, Foxm1, Skp2, Bmi1 and AP-1 mRNAs were up-regulated. Black-Right-Pointing-Pointer No increase in expression of the Myc-target genes was observed in the non-tumorous liver. Black-Right-Pointing-Pointer Tumor formation depends on up-regulation of the Myc-target genes. -- Abstract: The retinoblastoma (Rb) tumor suppressor encodes a nuclear phosphoprotein that regulates cellular proliferation, apoptosis and differentiation. In order to adapt itself to these biological functions, Rb is subjected to modification cycle, phosphorylation and dephosphorylation. To directly determine the effect of phosphorylation-resistant Rb on liver development and function, wemore » generated transgenic mice expressing phosphorylation-resistant human mutant Rb (mt-Rb) under the control of the rat hepatocyte nuclear factor-1 gene promoter/enhancer. Expression of mt-Rb in the liver resulted in macroscopic neoplastic nodules (adenomas) with {approx}50% incidence within 15 months old. Interestingly, quantitative reverse transcriptase-PCR analysis showed that c-Myc was up-regulated in the liver of mt-Rb transgenic mice irrespective of having tumor tissues or no tumor. In tumor tissues, several c-Myc target genes, Foxm1, c-Jun, c-Fos, Bmi1 and Skp2, were also up-regulated dramatically. We determined whether mt-Rb activated the Myc promoter in the HTP9 cells and demonstrated that mt-Rb acted as an inhibitor of wild-type Rb-induced repression on the Myc promoter. Our results suggest that continued upregulation of c-Myc target genes promotes the liver tumor formation after about 1 year of age.« less

  17. Sodium 4-phenylbutyrate acts as a chemical chaperone on misfolded myocilin to rescue cells from endoplasmic reticulum stress and apoptosis.

    PubMed

    Yam, Gary Hin-Fai; Gaplovska-Kysela, Katarina; Zuber, Christian; Roth, Jürgen

    2007-04-01

    To evaluate the effect of chemical chaperones on the trafficking of secretion-incompetent primary open-angle glaucoma-associated mutant myocilin and the possibility to rescue cells coexpressing mutant and wild-type myocilin from endoplasmic reticulum (ER) stress and apoptosis. CHO-K1, HEK293 and human trabecular meshwork cells were transfected to express wild-type or mutant (C245Y, G364V, P370L, Y437H) myocilin-green fluorescent protein fusion protein and were treated or not with various chemical chaperones (glycerol, dimethylsulfoxide, or sodium 4-phenylbutyrate) for different time periods. The secretion, Triton X-100 solubility, and intracellular distribution of wild-type and mutant myocilin were analyzed by immunoprecipitation, Western blotting, and confocal double immunofluorescence. The effect of sodium 4-phenylbutyrate on ER stress proteins and apoptosis was examined in cells coexpressing mutant and wild-type myocilin. Treatment with sodium 4-phenylbutyrate, but not with glycerol or dimethylsulfoxide, reduced the amount of detergent-insoluble myocilin aggregates, diminished myocilin interaction with calreticulin, and restored the secretion of mutant myocilin. Heteromeric complexes formed by mutant and wild-type myocilin induced the ER stress-associated phosphorylated form of ER-localized eukaryotic initiation factor (eIF)-2alpha kinase and the active form of caspase 3, which resulted in an increased rate of apoptosis. Sodium 4-phenylbutyrate treatment of cells coexpressing mutant and wild-type myocilin relieved ER stress and significantly reduced the rate of apoptosis. These findings indicate that sodium 4-phenylbutyrate protects cells from the deleterious effects of ER-retained aggregated mutant myocilin. These data point to the possibility of a chemical chaperone treatment for myocilin-caused primary open-angle glaucoma.

  18. Sensitive detection of point mutation by electrochemiluminescence and DNA ligase-based assay

    NASA Astrophysics Data System (ADS)

    Zhou, Huijuan; Wu, Baoyan

    2008-12-01

    The technology of single-base mutation detection plays an increasingly important role in diagnosis and prognosis of genetic-based diseases. Here we reported a new method for the analysis of point mutations in genomic DNA through the integration of allele-specific oligonucleotide ligation assay (OLA) with magnetic beads-based electrochemiluminescence (ECL) detection scheme. In this assay the tris(bipyridine) ruthenium (TBR) labeled probe and the biotinylated probe are designed to perfectly complementary to the mutant target, thus a ligation can be generated between those two probes by Taq DNA Ligase in the presence of mutant target. If there is an allele mismatch, the ligation does not take place. The ligation products are then captured onto streptavidin-coated paramagnetic beads, and detected by measuring the ECL signal of the TBR label. Results showed that the new method held a low detection limit down to 10 fmol and was successfully applied in the identification of point mutations from ASTC-α-1, PANC-1 and normal cell lines in codon 273 of TP53 oncogene. In summary, this method provides a sensitive, cost-effective and easy operation approach for point mutation detection.

  19. Effect of Aldehyde Dehydrogenase 2 Gene Polymorphism on Hemodynamics After Nitroglycerin Intervention in Northern Chinese Han Population

    PubMed Central

    Xia, Jia-Qi; Song, Jie; Zhang, Yi; An, Ni-Na; Ding, Lei; Zhang, Zheng

    2015-01-01

    Background: Nitroglycerin (NTG) is one of the few immediate treatments for acute angina. Aldehyde dehydrogenase 2 (ALDH2) is a key enzyme in the human body that facilitates the biological metabolism of NTG. The biological mechanism of NTG serves an important function in NTG efficacy. Some reports still contradict the results that the correlation between ALDH2 gene polymorphisms and NTG and its clinical efficacy is different. However, data on NTG measurement by pain relief are subjective. This study aimed to investigate the influence of ALDH2 gene polymorphism on intervention with sublingual NTG using noninvasive hemodynamic parameters of cardiac output (CO) and systemic vascular resistance (SVR) in Northern Chinese Han population. Methods: This study selected 559 patients from the Affiliated Hospital of Qingdao University. A total of 203 patients presented with coronary heart disease (CHD) and 356 had non-CHD (NCHD) cases. All patient ALDH2 genotypes (G504A) were detected and divided into two types: Wild (GG) and mutant (GA/AA). Among the CHD group, 103 were wild-type cases, and 100 were mutant-type cases. Moreover, 196 cases were wild-type, and 160 cases were mutant type among the NCHD volunteers. A noninvasive hemodynamic detector was used to monitor the CO and the SVR at the 0, 5, and 15 minute time points after medication with 0.5 mg sublingual NTG. Two CO and SVR indicators were used for a comparative analysis of all case genotypes. Results: Both CO and SVR indicators significantly differed between the wild and mutant genotypes at various time points after intervention with sublingual NTG at 5 and 15 minutes in the NCHD (F = 16.460, 15.003, P = 0.000, 0.000) and CHD groups (F = 194.482, 60.582, P = 0.000, 0.000). All CO values in the wild-type case of both NCHD and CHD groups increased, whereas those in the mutant type decreased. The CO and ΔCO differences were statistically significant (P < 0.05; P < 0.05). The SVR and ΔSVR changed between the wild- and mutant-type cases at all-time points in both NCHD and CHD groups had statistically significant differences (P < 0.05; P < 0.05). Conclusion: ALDH2 (G504A) gene polymorphism is associated with changes in noninvasive hemodynamic parameters (i.e. CO and SVR) after intervention with sublingual NTG. This gene polymorphism may influence the effect of NTG intervention on Northern Chinese Han population. PMID:25591559

  20. Collaborative Model for Acceleration of Individualized Therapy of Colon Cancer

    DTIC Science & Technology

    2012-10-01

    will be analyzed by one of two methods. The human CRC explants will be assessed (in our CLIA-certified UCCC Pathology Core) using the DxS Scorpion ...also developing ways to select patients for those treatments. Unfortunately the lack of such strategies is what led to thousands of CRC patients with...individualized therapy for patients with KRAS mutant colorectal cancer (CRC) using a comprehensive bioinformatics approach and novel preclinical

  1. Improving the affinity of an antibody for its antigen via long-range electrostatic interactions.

    PubMed

    Fukunaga, Atsushi; Tsumoto, Kouhei

    2013-12-01

    To address how long-range electrostatic force can affect antibody-antigen binding, we focused on the interactions between human cardiac troponin I and its specific single-chain antibodies (scFvs). We first isolated two scFvs against two linear epitopes with distinct isoelectric points. For the scFv against the acidic epitope (A1scFv), we mutated five residues of framework region 3 of the light chain to Lys or Arg, designated as the K- or R-mutant, respectively. For the scFv against the basic epitope (A2scFv), we mutated four or three residues in framework region 3 of the light or heavy chain to Asp, to generate the VL- and VH-mutant, respectively. Surface plasmon resonance analyses showed that the kon values of all of the mutants were greater than that of wild type, even though framework region 3 does not make direct contact with the epitope. The affinity of the K-mutant was pM range, and that of the R-mutant improved further by more than two orders of magnitude due to a decrease in the dissociation rate constant. For the A2scFv mutants, the affinity of the VL-mutant for its target improved through an increase in the kon value without a decrease in the koff value. The stability slightly decreased in all mutants. These results suggest that introducing electrostatic interaction can improve the affinity of an antibody for its target, even if the mutation reduces stability of the antibody.

  2. Understanding the Basis of Drug Resistance of the Mutants of αβ-Tubulin Dimer via Molecular Dynamics Simulations

    PubMed Central

    Natarajan, Kathiresan; Senapati, Sanjib

    2012-01-01

    The vital role of tubulin dimer in cell division makes it an attractive drug target. Drugs that target tubulin showed significant clinical success in treating various cancers. However, the efficacy of these drugs is attenuated by the emergence of tubulin mutants that are unsusceptible to several classes of tubulin binding drugs. The molecular basis of drug resistance of the tubulin mutants is yet to be unraveled. Here, we employ molecular dynamics simulations, protein-ligand docking, and MMPB(GB)SA analyses to examine the binding of anticancer drugs, taxol and epothilone to the reported point mutants of tubulin - T274I, R282Q, and Q292E. Results suggest that the mutations significantly alter the tubulin structure and dynamics, thereby weaken the interactions and binding of the drugs, primarily by modifying the M loop conformation and enlarging the pocket volume. Interestingly, these mutations also affect the tubulin distal sites that are associated with microtubule building processes. PMID:22879949

  3. Differential effects on enzyme stability and kinetic parameters of mutants related to human triosephosphate isomerase deficiency.

    PubMed

    Cabrera, Nallely; Torres-Larios, Alfredo; García-Torres, Itzhel; Enríquez-Flores, Sergio; Perez-Montfort, Ruy

    2018-06-01

    Human triosephosphate isomerase (TIM) deficiency is a very rare disease, but there are several mutations reported to be causing the illness. In this work, we produced nine recombinant human triosephosphate isomerases which have the mutations reported to produce TIM deficiency. These enzymes were characterized biophysically and biochemically to determine their kinetic and stability parameters, and also to substitute TIM activity in supporting the growth of an Escherichia coli strain lacking the tim gene. Our results allowed us to rate the deleteriousness of the human TIM mutants based on the type and severity of the alterations observed, to classify four "unknown severity mutants" with altered residues in positions 62, 72, 122 and 154 and to explain in structural terms the mutation V231M, the most affected mutant from the kinetic point of view and the only homozygous mutation reported besides E104D. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies

    PubMed Central

    Bratic, Ana; Kauppila, Timo E. S.; Macao, Bertil; Grönke, Sebastian; Siibak, Triinu; Stewart, James B.; Baggio, Francesca; Dols, Jacqueline; Partridge, Linda; Falkenberg, Maria; Wredenberg, Anna; Larsson, Nils-Göran

    2015-01-01

    Replication errors are the main cause of mitochondrial DNA (mtDNA) mutations and a compelling approach to decrease mutation levels would therefore be to increase the fidelity of the catalytic subunit (POLγA) of the mtDNA polymerase. Here we genomically engineer the tamas locus, encoding fly POLγA, and introduce alleles expressing exonuclease- (exo−) and polymerase-deficient (pol−) POLγA versions. The exo− mutant leads to accumulation of point mutations and linear deletions of mtDNA, whereas pol− mutants cause mtDNA depletion. The mutant tamas alleles are developmentally lethal but can complement each other in trans resulting in viable flies with clonally expanded mtDNA mutations. Reconstitution of human mtDNA replication in vitro confirms that replication is a highly dynamic process where POLγA goes on and off the template to allow complementation during proofreading and elongation. The created fly models are valuable tools to study germ line transmission of mtDNA and the pathophysiology of POLγA mutation disease. PMID:26554610

  5. Ergothioneine Is a Secreted Antioxidant in Mycobacterium smegmatis

    PubMed Central

    Williams, Monique J.; Wiid, Ian J.; Hiten, Nicholas F.; Viljoen, Albertus J.; Pietersen, Ray-Dean D.; van Helden, Paul D.

    2013-01-01

    Ergothioneine (ERG) and mycothiol (MSH) are two low-molecular-weight thiols synthesized by mycobacteria. The role of MSH has been extensively investigated in mycobacteria; however, little is known about the role of ERG in mycobacterial physiology. In this study, quantification of ERG at various points in the growth cycle of Mycobacterium smegmatis revealed that a significant portion of ERG is found in the culture media, suggesting that it is actively secreted. A mutant of M. smegmatis lacking egtD (MSMEG_6247) was unable to synthesize ERG, confirming its role in ERG biosynthesis. Deletion of egtD from wild-type M. smegmatis and an MSH-deficient mutant did not affect their susceptibility to antibiotics tested in this study. The ERG- and MSH-deficient double mutant was significantly more sensitive to peroxide than either of the single mutants lacking either ERG or MSH, suggesting that both thiols play a role in protecting M. smegmatis against oxidative stress and that ERG is able to partly compensate for the loss of MSH. PMID:23629716

  6. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durand, Fabien; Stines-Chaumeil, Claire; Flexer, Victoria

    2010-11-26

    Research highlights: {yields} A new mutant of PQQ-GDH designed for glucose biosensors application. {yields} First mutant of PQQ-GDH with higher activity for D-glucose than the Wild type. {yields} Position N428 is a key point to increase the enzyme activity. {yields} Molecular modeling shows that the N428 C mutant displays a better interaction for PQQ than the WT. -- Abstract: We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to amore » better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells.« less

  7. Arabidopsis myrosinases link the glucosinolate-myrosinase system and the cuticle

    PubMed Central

    Ahuja, Ishita; de Vos, Ric C. H.; Rohloff, Jens; Stoopen, Geert M.; Halle, Kari K.; Ahmad, Samina Jam Nazeer; Hoang, Linh; Hall, Robert D.; Bones, Atle M.

    2016-01-01

    Both physical barriers and reactive phytochemicals represent two important components of a plant’s defence system against environmental stress. However, these two defence systems have generally been studied independently. Here, we have taken an exclusive opportunity to investigate the connection between a chemical-based plant defence system, represented by the glucosinolate-myrosinase system, and a physical barrier, represented by the cuticle, using Arabidopsis myrosinase (thioglucosidase; TGG) mutants. The tgg1, single and tgg1 tgg2 double mutants showed morphological changes compared to wild-type plants visible as changes in pavement cells, stomatal cells and the ultrastructure of the cuticle. Extensive metabolite analyses of leaves from tgg mutants and wild-type Arabidopsis plants showed altered levels of cuticular fatty acids, fatty acid phytyl esters, glucosinolates, and indole compounds in tgg single and double mutants as compared to wild-type plants. These results point to a close and novel association between chemical defence systems and physical defence barriers. PMID:27976683

  8. Discovery of 8-Membered Ring Sulfonamides as Inhibitors of Oncogenic Mutant Isocitrate Dehydrogenase 1.

    PubMed

    Law, Jason M; Stark, Sebastian C; Liu, Ke; Liang, Norah E; Hussain, Mahmud M; Leiendecker, Matthias; Ito, Daisuke; Verho, Oscar; Stern, Andrew M; Johnston, Stephen E; Zhang, Yan-Ling; Dunn, Gavin P; Shamji, Alykhan F; Schreiber, Stuart L

    2016-10-13

    Evidence suggests that specific mutations of isocitrate dehydrogenases 1 and 2 (IDH1/2) are critical for the initiation and maintenance of certain tumor types and that inhibiting these mutant enzymes with small molecules may be therapeutically beneficial. In order to discover mutant allele-selective IDH1 inhibitors with chemical features distinct from existing probes, we screened a collection of small molecules derived from diversity-oriented synthesis. The assay identified compounds that inhibit the IDH1-R132H mutant allele commonly found in glioma. Here, we report the discovery of a potent (IC 50 = 50 nM) series of IDH1-R132H inhibitors having 8-membered ring sulfonamides as exemplified by the compound BRD2879. The inhibitors suppress ( R )-2-hydroxyglutarate production in cells without apparent toxicity. Although the solubility and pharmacokinetic properties of the specific inhibitor BRD2879 prevent its use in vivo , the scaffold presents a validated starting point for the synthesis of future IDH1-R132H inhibitors having improved pharmacological properties.

  9. Exosomes and Homeostatic Synaptic Plasticity Are Linked to Each other and to Huntington's, Parkinson's, and Other Neurodegenerative Diseases by Database-Enabled Analyses of Comprehensively Curated Datasets

    PubMed Central

    Wang, James K. T.; Langfelder, Peter; Horvath, Steve; Palazzolo, Michael J.

    2017-01-01

    Huntington's disease (HD) is a progressive and autosomal dominant neurodegeneration caused by CAG expansion in the huntingtin gene (HTT), but the pathophysiological mechanism of mutant HTT (mHTT) remains unclear. To study HD using systems biological methodologies on all published data, we undertook the first comprehensive curation of two key PubMed HD datasets: perturbation genes that impact mHTT-driven endpoints and therefore are putatively linked causally to pathogenic mechanisms, and the protein interactome of HTT that reflects its biology. We perused PubMed articles containing co-citation of gene IDs and MeSH terms of interest to generate mechanistic gene sets for iterative enrichment analyses and rank ordering. The HD Perturbation database of 1,218 genes highly overlaps the HTT Interactome of 1,619 genes, suggesting links between normal HTT biology and mHTT pathology. These two HD datasets are enriched for protein networks of key genes underlying two mechanisms not previously implicated in HD nor in each other: exosome synaptic functions and homeostatic synaptic plasticity. Moreover, proteins, possibly including HTT, and miRNA detected in exosomes from a wide variety of sources also highly overlap the HD datasets, suggesting both mechanistic and biomarker links. Finally, the HTT Interactome highly intersects protein networks of pathogenic genes underlying Parkinson's, Alzheimer's and eight non-HD polyglutamine diseases, ALS, and spinal muscular atrophy. These protein networks in turn highly overlap the exosome and homeostatic synaptic plasticity gene sets. Thus, we hypothesize that HTT and other neurodegeneration pathogenic genes form a large interlocking protein network involved in exosome and homeostatic synaptic functions, particularly where the two mechanisms intersect. Mutant pathogenic proteins cause dysfunctions at distinct points in this network, each altering the two mechanisms in specific fashion that contributes to distinct disease pathologies, depending on the gene mutation and the cellular and biological context. This protein network is rich with drug targets, and exosomes may provide disease biomarkers, thus enabling drug discovery. All the curated datasets are made available for other investigators. Elucidating the roles of pathogenic neurodegeneration genes in exosome and homeostatic synaptic functions may provide a unifying framework for the age-dependent, progressive and tissue selective nature of multiple neurodegenerative diseases. PMID:28611571

  10. Exosomes and Homeostatic Synaptic Plasticity Are Linked to Each other and to Huntington's, Parkinson's, and Other Neurodegenerative Diseases by Database-Enabled Analyses of Comprehensively Curated Datasets.

    PubMed

    Wang, James K T; Langfelder, Peter; Horvath, Steve; Palazzolo, Michael J

    2017-01-01

    Huntington's disease (HD) is a progressive and autosomal dominant neurodegeneration caused by CAG expansion in the huntingtin gene ( HTT ), but the pathophysiological mechanism of mutant HTT (mHTT) remains unclear. To study HD using systems biological methodologies on all published data, we undertook the first comprehensive curation of two key PubMed HD datasets: perturbation genes that impact mHTT-driven endpoints and therefore are putatively linked causally to pathogenic mechanisms, and the protein interactome of HTT that reflects its biology. We perused PubMed articles containing co-citation of gene IDs and MeSH terms of interest to generate mechanistic gene sets for iterative enrichment analyses and rank ordering. The HD Perturbation database of 1,218 genes highly overlaps the HTT Interactome of 1,619 genes, suggesting links between normal HTT biology and mHTT pathology. These two HD datasets are enriched for protein networks of key genes underlying two mechanisms not previously implicated in HD nor in each other: exosome synaptic functions and homeostatic synaptic plasticity. Moreover, proteins, possibly including HTT, and miRNA detected in exosomes from a wide variety of sources also highly overlap the HD datasets, suggesting both mechanistic and biomarker links. Finally, the HTT Interactome highly intersects protein networks of pathogenic genes underlying Parkinson's, Alzheimer's and eight non-HD polyglutamine diseases, ALS, and spinal muscular atrophy. These protein networks in turn highly overlap the exosome and homeostatic synaptic plasticity gene sets. Thus, we hypothesize that HTT and other neurodegeneration pathogenic genes form a large interlocking protein network involved in exosome and homeostatic synaptic functions, particularly where the two mechanisms intersect. Mutant pathogenic proteins cause dysfunctions at distinct points in this network, each altering the two mechanisms in specific fashion that contributes to distinct disease pathologies, depending on the gene mutation and the cellular and biological context. This protein network is rich with drug targets, and exosomes may provide disease biomarkers, thus enabling drug discovery. All the curated datasets are made available for other investigators. Elucidating the roles of pathogenic neurodegeneration genes in exosome and homeostatic synaptic functions may provide a unifying framework for the age-dependent, progressive and tissue selective nature of multiple neurodegenerative diseases.

  11. A single-point mutation in the extreme heat- and pressure-resistant sso7d protein from sulfolobus solfataricus leads to a major rearrangement of the hydrophobic core.

    PubMed

    Consonni, R; Santomo, L; Fusi, P; Tortora, P; Zetta, L

    1999-09-28

    Sso7d is a basic 7-kDa DNA-binding protein from Sulfolobus solfataricus, also endowed with ribonuclease activity. The protein consists of a double-stranded antiparallel beta-sheet, onto which an orthogonal triple-stranded antiparallel beta-sheet is packed, and of a small helical stretch at the C-terminus. Furthermore, the two beta-sheets enclose an aromatic cluster displaying a fishbone geometry. We previously cloned the Sso7d-encoding gene, expressed it in Escherichia coli, and produced several single-point mutants, either of residues located in the hydrophobic core or of Trp23, which is exposed to the solvent and plays a major role in DNA binding. The mutation F31A was dramatically destabilizing, with a loss in thermo- and piezostabilities by at least 27 K and 10 kbar, respectively. Here, we report the solution structure of the F31A mutant, which was determined by NMR spectroscopy using 744 distance constraints obtained from analysis of multidimensional spectra in conjunction with simulated annealing protocols. The most remarkable finding is the change in orientation of the Trp23 side chain, which in the wild type is completely exposed to the solvent, whereas in the mutant is largely buried in the aromatic cluster. This prevents the formation of a cavity in the hydrophobic core of the mutant, which would arise in the absence of structural rearrangements. We found additional changes produced by the mutation, notably a strong distortion in the beta-sheets with loss in several hydrogen bonds, increased flexibility of some stretches of the backbone, and some local strains. On one hand, these features may justify the dramatic destabilization provoked by the mutation; on the other hand, they highlight the crucial role of the hydrophobic core in protein stability. To the best of our knowledge, no similar rearrangement has been so far described as a result of a single-point mutation.

  12. Tilting the balance between canonical and noncanonical conformations for the H1 hypervariable loop of a llama VHH through point mutations.

    PubMed

    Mahajan, Sai Pooja; Velez-Vega, Camilo; Escobedo, Fernando A

    2013-01-10

    Nanobodies are single-domain antibodies found in camelids. These are the smallest naturally occurring binding domains and derive functionality via three hypervariable loops (H1-H3) that form the binding surface. They are excellent candidates for antibody engineering because of their favorable characteristics like small size, high solubility, and stability. To rationally engineer antibodies with affinity for a specific target, the hypervariable loops can be tailored to obtain the desired binding surface. As a first step toward such a goal, we consider the design of loops with a desired conformation. In this study, we focus on the H1 loop of the anti-hCG llama nanobody that exhibits a noncanonical conformation. We aim to "tilt" the stability of the H1 loop structure from a noncanonical conformation to a (humanized) type 1 canonical conformation by studying the effect of selected mutations to the amino acid sequence of the H1, H2, and proximal residues. We use all-atomistic, explicit-solvent, biased molecular dynamic simulations to simulate the wild-type and mutant loops in a prefolded framework. We thus find mutants with increasing propensity to form a stable type 1 canonical conformation of the H1 loop. Free energy landscapes reveal the existence of conformational isomers of the canonical conformation that may play a role in binding different antigenic surfaces. We also elucidate the approximate mechanism and kinetics of transitions between such conformational isomers by using a Markovian model. We find that a particular three-point mutant has the strongest thermodynamic propensity to form the H1 type 1 canonical structure but also to exhibit transitions between conformational isomers, while a different, more rigid three-point mutant has the strongest propensity to be kinetically trapped in such a canonical structure.

  13. Of the Nine Cytidine Deaminase-Like Genes in Arabidopsis, Eight Are Pseudogenes and Only One Is Required to Maintain Pyrimidine Homeostasis in Vivo1

    PubMed Central

    2016-01-01

    CYTIDINE DEAMINASE (CDA) catalyzes the deamination of cytidine to uridine and ammonia in the catabolic route of C nucleotides. The Arabidopsis (Arabidopsis thaliana) CDA gene family comprises nine members, one of which (AtCDA) was shown previously in vitro to encode an active CDA. A possible role in C-to-U RNA editing or in antiviral defense has been discussed for other members. A comprehensive bioinformatic analysis of plant CDA sequences, combined with biochemical functionality tests, strongly suggests that all Arabidopsis CDA family members except AtCDA are pseudogenes and that most plants only require a single CDA gene. Soybean (Glycine max) possesses three CDA genes, but only two encode functional enzymes and just one has very high catalytic efficiency. AtCDA and soybean CDAs are located in the cytosol. The functionality of AtCDA in vivo was demonstrated with loss-of-function mutants accumulating high amounts of cytidine but also CMP, cytosine, and some uridine in seeds. Cytidine hydrolysis in cda mutants is likely caused by NUCLEOSIDE HYDROLASE1 (NSH1) because cytosine accumulation is strongly reduced in a cda nsh1 double mutant. Altered responses of the cda mutants to fluorocytidine and fluorouridine indicate that a dual specific nucleoside kinase is involved in cytidine as well as uridine salvage. CDA mutants display a reduction in rosette size and have fewer leaves compared with the wild type, which is probably not caused by defective pyrimidine catabolism but by the accumulation of pyrimidine catabolism intermediates reaching toxic concentrations. PMID:27208239

  14. Cofactor engineering of ketol-acid reductoisomerase (IlvC) and alcohol dehydrogenase (YqhD) improves the fusel alcohol yield in algal protein anaerobic fermentation

    DOE PAGES

    Wu, Weihua; Tran-Gyamfi, Mary Bao; Jaryenneh, James Dekontee; ...

    2016-08-24

    Recently the feasibility of conversion of algal protein to mixed alcohols has been demonstrated with an engineered E.coli strain, enabling comprehensive utilization of the biomass for biofuel applications. However, the yield and titers of mixed alcohol production must be improved for market adoption. A major limiting factor for achieving the necessary yield and titer improvements is cofactor imbalance during the fermentation of algal protein. To resolve this problem, a directed evolution approach was applied to modify the cofactor specificity of two key enzymes (IlvC and YqhD) from NADPH to NADH in the mixed alcohol metabolic pathway. Using high throughput screening,more » more than 20 YqhD mutants were identified to show activity on NADH as a cofactor. Of these 20 mutants, the top five of YqhD mutants were selected for combination with two IlvC mutants with NADH as a cofactor for the modification of the protein conversion strain. The combination of the IlvC and YqhD mutants yielded a refined E.coli strain, subtype AY3, with increased fusel alcohol yield of ~60% compared to wild type under anaerobic fermentation on amino acid mixtures. When applied to real algal protein hydrolysates, the strain AY3 produced 100% and 38% more total mixed alcohols than the wild type strain on two different algal hydrolysates, respectively. The results indicate that cofactor engineering is a promising approach to improve the feasibility of bioconversion of algal protein into mixed alcohols as advanced biofuels.« less

  15. Cofactor engineering of ketol-acid reductoisomerase (IlvC) and alcohol dehydrogenase (YqhD) improves the fusel alcohol yield in algal protein anaerobic fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weihua; Tran-Gyamfi, Mary Bao; Jaryenneh, James Dekontee

    Recently the feasibility of conversion of algal protein to mixed alcohols has been demonstrated with an engineered E.coli strain, enabling comprehensive utilization of the biomass for biofuel applications. However, the yield and titers of mixed alcohol production must be improved for market adoption. A major limiting factor for achieving the necessary yield and titer improvements is cofactor imbalance during the fermentation of algal protein. To resolve this problem, a directed evolution approach was applied to modify the cofactor specificity of two key enzymes (IlvC and YqhD) from NADPH to NADH in the mixed alcohol metabolic pathway. Using high throughput screening,more » more than 20 YqhD mutants were identified to show activity on NADH as a cofactor. Of these 20 mutants, the top five of YqhD mutants were selected for combination with two IlvC mutants with NADH as a cofactor for the modification of the protein conversion strain. The combination of the IlvC and YqhD mutants yielded a refined E.coli strain, subtype AY3, with increased fusel alcohol yield of ~60% compared to wild type under anaerobic fermentation on amino acid mixtures. When applied to real algal protein hydrolysates, the strain AY3 produced 100% and 38% more total mixed alcohols than the wild type strain on two different algal hydrolysates, respectively. The results indicate that cofactor engineering is a promising approach to improve the feasibility of bioconversion of algal protein into mixed alcohols as advanced biofuels.« less

  16. Concurrent Targeting of KRAS and AKT by MiR-4689 Is a Novel Treatment Against Mutant KRAS Colorectal Cancer

    PubMed Central

    Hiraki, Masayuki; Nishimura, Junichi; Takahashi, Hidekazu; Wu, Xin; Takahashi, Yusuke; Miyo, Masaaki; Nishida, Naohiro; Uemura, Mamoru; Hata, Taishi; Takemasa, Ichiro; Mizushima, Tsunekazu; Soh, Jae-Won; Doki, Yuichiro; Mori, Masaki; Yamamoto, Hirofumi

    2015-01-01

    KRAS mutations are a major cause of drug resistance to molecular-targeted therapies. Aberrant epidermal growth factor receptor (EGFR) signaling may cause dysregulation of microRNA (miRNA) and gene regulatory networks, which leads to cancer initiation and progression. To address the functional relevance of miRNAs in mutant KRAS cancers, we transfected exogenous KRASG12V into human embryonic kidney 293 and MRC5 cells with wild-type KRAS and BRAF genes, and we comprehensively profiled the dysregulated miRNAs. The result showed that mature miRNA oligonucleotide (miR)-4689, one of the significantly down-regulated miRNAs in KRASG12V overexpressed cells, was found to exhibit a potent growth-inhibitory and proapoptotic effect both in vitro and in vivo. miR-4689 expression was significantly down-regulated in cancer tissues compared to normal mucosa, and it was particularly decreased in mutant KRAS CRC tissues. miR-4689 directly targets v-ki-ras2 kirsten rat sarcoma viral oncogene homolog (KRAS) and v-akt murine thymoma viral oncogene homolog 1(AKT1), key components of two major branches in EGFR pathway, suggesting KRAS overdrives this signaling pathway through inhibition of miR-4689. Overall, this study provided additional evidence that mutant KRAS functions as a broad regulator of the EGFR signaling cascade by inhibiting miR-4689, which negatively regulates both RAS/mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT pathways. These activities indicated that miR-4689 may be a promising therapeutic agent in mutant KRAS CRC. PMID:25756961

  17. Acute hepatitis B caused by a vaccine-escape HBV strain in vaccinated subject: sequence analysis and therapeutic strategy.

    PubMed

    Luongo, Monica; Critelli, Rosina; Grottola, Antonella; Gitto, Stefano; Bernabucci, Veronica; Bevini, Mirco; Vecchi, Chiara; Montagnani, Giuliano; Villa, Erica

    2015-01-01

    HBV vaccine contains the 'a' determinant region, the major immune-target of antibodies (anti-HBs). Failure of immunization may be caused by vaccine-induced or spontaneous 'a' determinant surface gene mutants. Here, we evaluate the possible lack of protection by HBV vaccine, describing the case of an acute hepatitis B diagnosed in a 55-year-old Caucasian male unpaid blood donor, vaccinated against HBV. Sequencing data for preS-S region revealed multiple point mutations. Of all the substitutions found, Q129H, located in the "a" determinant region of HBsAg, can alter antigenicity, leading to mutants. This mutant may cause vaccine failure especially when associated with high viremia of infecting source. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The Priority of Listening Comprehension over Speaking in the Language Acquisition Process

    ERIC Educational Resources Information Center

    Xu, Fang

    2011-01-01

    By elaborating the definition of listening comprehension, the characteristic of spoken discourse, the relationship between STM and LTM and Krashen's comprehensible input, the paper puts forward the point that the priority of listening comprehension over speaking in the language acquisition process is very necessary.

  19. Functional Accumulation of Antenna Proteins in Chlorophyll b-Less Mutants of Chlamydomonas reinhardtii.

    PubMed

    Bujaldon, Sandrine; Kodama, Natsumi; Rappaport, Fabrice; Subramanyam, Rajagopal; de Vitry, Catherine; Takahashi, Yuichiro; Wollman, Francis-André

    2017-01-09

    The green alga Chlamydomonas reinhardtii contains several light-harvesting chlorophyll a/b complexes (LHC): four major LHCIIs, two minor LHCIIs, and nine LHCIs. We characterized three chlorophyll b-less mutants to assess the effect of chlorophyll b deficiency on the function, assembly, and stability of these chlorophyll a/b binding proteins. We identified point mutations in two mutants that inactivate the CAO gene responsible for chlorophyll a to chlorophyll b conversion. All LHCIIs accumulated to wild-type levels in a CAO mutant but their light-harvesting function for photosystem II was impaired. In contrast, most LHCIs accumulated to wild-type levels in the mutant and their light-harvesting capability for photosystem I remained unaltered. Unexpectedly, LHCI accumulation and the photosystem I functional antenna size increased in the mutant compared with in the wild type when grown in dim light. When the CAO mutation was placed in a yellow-in-the-dark background (yid-BF3), in which chlorophyll a synthesis remains limited in dim light, accumulation of the major LHCIIs and of most LHCIs was markedly reduced, indicating that sustained synthesis of chlorophyll a is required to preserve the proteolytic resistance of antenna proteins. Indeed, after crossing yid-BF3 with a mutant defective for the thylakoid FtsH protease activity, yid-BF3-ftsh1 restored wild-type levels of LHCI, which defines LHCI as a new substrate for the FtsH protease. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  20. Ensemble-Based Computational Approach Discriminates Functional Activity of p53 Cancer and Rescue Mutants

    PubMed Central

    Demir, Özlem; Baronio, Roberta; Salehi, Faezeh; Wassman, Christopher D.; Hall, Linda; Hatfield, G. Wesley; Chamberlin, Richard; Kaiser, Peter; Lathrop, Richard H.; Amaro, Rommie E.

    2011-01-01

    The tumor suppressor protein p53 can lose its function upon single-point missense mutations in the core DNA-binding domain (“cancer mutants”). Activity can be restored by second-site suppressor mutations (“rescue mutants”). This paper relates the functional activity of p53 cancer and rescue mutants to their overall molecular dynamics (MD), without focusing on local structural details. A novel global measure of protein flexibility for the p53 core DNA-binding domain, the number of clusters at a certain RMSD cutoff, was computed by clustering over 0.7 µs of explicitly solvated all-atom MD simulations. For wild-type p53 and a sample of p53 cancer or rescue mutants, the number of clusters was a good predictor of in vivo p53 functional activity in cell-based assays. This number-of-clusters (NOC) metric was strongly correlated (r2 = 0.77) with reported values of experimentally measured ΔΔG protein thermodynamic stability. Interpreting the number of clusters as a measure of protein flexibility: (i) p53 cancer mutants were more flexible than wild-type protein, (ii) second-site rescue mutations decreased the flexibility of cancer mutants, and (iii) negative controls of non-rescue second-site mutants did not. This new method reflects the overall stability of the p53 core domain and can discriminate which second-site mutations restore activity to p53 cancer mutants. PMID:22028641

  1. Effect of single point mutations of the human tachykinin NK1 receptor on antagonist affinity.

    PubMed

    Lundstrom, K; Hawcock, A B; Vargas, A; Ward, P; Thomas, P; Naylor, A

    1997-10-15

    Molecular modelling and site-directed mutagenesis were used to identify eleven amino acid residues which may be involved in antagonist binding of the human tachykinin NK1 receptor. Recombinant receptors were expressed in mammalian cells using the Semliki Forest virus system. Wild type and mutant receptors showed similar expression levels in BHK and CHO cells, verified by metabolic labelling. Binding affinities were determined for a variety of tachykinin NK1 receptor antagonists in SFV-infected CHO cells. The binding affinity for GR203040, CP 99,994 and CP 96,345 was significantly reduced by mutant Q165A. The mutant F268A significantly reduced the affinity for GR203040 and CP 99,994 and the mutant H197A had reduced affinity for CP 96,345. All antagonists seemed to bind in a similar region of the receptor, but do not all rely on the same binding site interactions. Functional coupling to G-proteins was assayed by intracellular Ca2+ release in SFV-infected CHO cells. The wild type receptor and all mutants except A162L and F268A responded to substance P stimulation.

  2. A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1.

    PubMed

    Li, Huapeng; Wang, Yun; Li, Xiaocheng; Gao, Yong; Wang, Zhijun; Zhao, Yun; Wang, Maolin

    2011-01-01

    A dwarf mutant from Brassica napus, namely NDF-1, which was derived from a high doubled haploid (DH) line '3529'(Brassica napus L.) of which seeds were jointly treated with chemical inducers and fast neutron bombardment, was revealed that dwarfism is under the control of a major gene(designated as ndf1) with a mainly additive effect and non-significant dominance effect. The germination and hypocotyls elongation response of dwarf mutants after exogenous GA and uniconazol application showed NDF-1 was a gibberellin insensitive dwarf. We cloned the Brassica napus GID1 gene, named BnGID1, and found it was the ortholog of AtGID1a. The sequence blasting of the BnGID1 genes from NDF-1 and wild type showed there was no mutant in the gene. But the quantitative RT-PCR analysis of GID1 EST pointed out the mutation was caused by the low-level expression of BnGID1 gene. After sequenced the BnGID1 gene's upstream, we found three bases mutated in the pyrimidine box (P-box) of the BnGID1 promoter, which is linkage with the dwarf mutant.

  3. Human Cytomegalovirus UL99-Encoded pp28 Is Required for the Cytoplasmic Envelopment of Tegument-Associated Capsids

    PubMed Central

    Silva, Maria C.; Yu, Qian-Chun; Enquist, Lynn; Shenk, Thomas

    2003-01-01

    The human cytomegalovirus UL99-encoded pp28 is a myristylated phosphoprotein that is a constituent of the virion. The pp28 protein is positioned within the tegument of the virus particle, a protein structure that resides between the capsid and envelope. In the infected cell, pp28 is found in a cytoplasmic compartment derived from the Golgi apparatus, where the virus buds into vesicles to acquire its final membrane. We have constructed two mutants of human cytomegalovirus that fail to produce the pp28 protein, a substitution mutant (BADsubUL99) and a point mutant (BADpmUL99), and we have propagated them by complementation in pp28-expressing fibroblasts. Both mutant viruses are profoundly defective for growth in normal fibroblasts; no infectious virus could be detected after infection. Whereas normal levels of viral DNA and late proteins were observed in mutant virus-infected cells, large numbers of tegument-associated capsids accumulated in the cytoplasm that failed to acquire an envelope. We conclude that pp28 is required for the final envelopment of the human cytomegalovirus virion in the cytoplasm. PMID:12970444

  4. Mutant power: using mutant allele collections for yeast functional genomics.

    PubMed

    Norman, Kaitlyn L; Kumar, Anuj

    2016-03-01

    The budding yeast has long served as a model eukaryote for the functional genomic analysis of highly conserved signaling pathways, cellular processes and mechanisms underlying human disease. The collection of reagents available for genomics in yeast is extensive, encompassing a growing diversity of mutant collections beyond gene deletion sets in the standard wild-type S288C genetic background. We review here three main types of mutant allele collections: transposon mutagen collections, essential gene collections and overexpression libraries. Each collection provides unique and identifiable alleles that can be utilized in genome-wide, high-throughput studies. These genomic reagents are particularly informative in identifying synthetic phenotypes and functions associated with essential genes, including those modeled most effectively in complex genetic backgrounds. Several examples of genomic studies in filamentous/pseudohyphal backgrounds are provided here to illustrate this point. Additionally, the limitations of each approach are examined. Collectively, these mutant allele collections in Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans promise insights toward an advanced understanding of eukaryotic molecular and cellular biology. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Engineered disulfide bonds restore chaperone-like function of DJ-1 mutants linked to familial Parkinson's disease.

    PubMed

    Logan, Todd; Clark, Lindsay; Ray, Soumya S

    2010-07-13

    Loss-of-function mutations such as L166P, A104T, and M26I in the DJ-1 gene (PARK7) have been linked to autosomal-recessive early onset Parkinson's disease (PD). Cellular and structural studies of the familial mutants suggest that these mutations may destabilize the dimeric structure. To look for common dynamical signatures among the DJ-1 mutants, short MD simulations of up to 1000 ps were conducted to identify the weakest region of the protein (residues 38-70). In an attempt to stabilize the protein, we mutated residue Val 51 to cysteine (V51C) to make a symmetry-related disulfide bridge with the preexisting Cys 53 on the opposite subunit. We found that the introduction of this disulfide linkage stabilized the mutants A104T and M26I against thermal denaturation, improved their ability to scavenge reactive oxygen species (ROS), and restored a chaperone-like function of blocking alpha-synuclein aggregation. The L166P mutant was far too unstable to be rescued by introduction of the V51C mutation. The results presented here point to the possible development of pharmacological chaperones, which may eventually lead to PD therapeutics.

  6. Drosophila Polypyrimidine Tract-Binding Protein (DmPTB) Regulates Dorso-Ventral Patterning Genes in Embryos

    PubMed Central

    Huntley, Jim; Wesley, Cedric S.; Singh, Ravinder

    2014-01-01

    The Drosophila polypyrimidine tract-binding protein (dmPTB or hephaestus) plays an important role during embryogenesis. A loss of function mutation, heph03429, results in varied defects in embryonic developmental processes, leading to embryonic lethality. However, the suite of molecular functions that are disrupted in the mutant remains unknown. We have used an unbiased high throughput sequencing approach to identify transcripts that are misregulated in this mutant. Misregulated transcripts show evidence of significantly altered patterns of splicing (exon skipping, 5′ and 3′ splice site switching), alternative 5′ ends, and mRNA level changes (up and down regulation). These findings are independently supported by reverse-transcription-polymerase chain reaction (RT-PCR) analysis and in situ hybridization. We show that a group of genes, such as Zerknüllt, z600 and screw are among the most upregulated in the mutant and have been functionally linked to dorso-ventral patterning and/or dorsal closure processes. Thus, loss of dmPTB function results in specific misregulated transcripts, including those that provide the missing link between the loss of dmPTB function and observed developmental defects in embryogenesis. This study provides the first comprehensive repertoire of genes affected in vivo in the heph mutant in Drosophila and offers insight into the role of dmPTB during embryonic development. PMID:25014769

  7. Elevated Fibroblast Growth Factor Signaling Is Critical for the Pathogenesis of the Dwarfism in Evc2/Limbin Mutant Mice.

    PubMed

    Zhang, Honghao; Kamiya, Nobuhiro; Tsuji, Takehito; Takeda, Haruko; Scott, Greg; Rajderkar, Sudha; Ray, Manas K; Mochida, Yoshiyuki; Allen, Benjamin; Lefebvre, Veronique; Hung, Irene H; Ornitz, David M; Kunieda, Tetsuo; Mishina, Yuji

    2016-12-01

    Ellis-van Creveld (EvC) syndrome is a skeletal dysplasia, characterized by short limbs, postaxial polydactyly, and dental abnormalities. EvC syndrome is also categorized as a ciliopathy because of ciliary localization of proteins encoded by the two causative genes, EVC and EVC2 (aka LIMBIN). While recent studies demonstrated important roles for EVC/EVC2 in Hedgehog signaling, there is still little known about the pathophysiological mechanisms underlying the skeletal dysplasia features of EvC patients, and in particular why limb development is affected, but not other aspects of organogenesis that also require Hedgehog signaling. In this report, we comprehensively analyze limb skeletogenesis in Evc2 mutant mice and in cell and tissue cultures derived from these mice. Both in vivo and in vitro data demonstrate elevated Fibroblast Growth Factor (FGF) signaling in Evc2 mutant growth plates, in addition to compromised but not abrogated Hedgehog-PTHrP feedback loop. Elevation of FGF signaling, mainly due to increased Fgf18 expression upon inactivation of Evc2 in the perichondrium, critically contributes to the pathogenesis of limb dwarfism. The limb dwarfism phenotype is partially rescued by inactivation of one allele of Fgf18 in the Evc2 mutant mice. Taken together, our data uncover a novel pathogenic mechanism to understand limb dwarfism in patients with Ellis-van Creveld syndrome.

  8. High Throughput Sequencing Identifies Misregulated Genes in the Drosophila Polypyrimidine Tract-Binding Protein (hephaestus) Mutant Defective in Spermatogenesis.

    PubMed

    Sridharan, Vinod; Heimiller, Joseph; Robida, Mark D; Singh, Ravinder

    2016-01-01

    The Drosophila polypyrimidine tract-binding protein (dmPTB or hephaestus) plays an important role during spermatogenesis. The heph2 mutation in this gene results in a specific defect in spermatogenesis, causing aberrant spermatid individualization and male sterility. However, the array of molecular defects in the mutant remains uncharacterized. Using an unbiased high throughput sequencing approach, we have identified transcripts that are misregulated in this mutant. Aberrant transcripts show altered expression levels, exon skipping, and alternative 5' ends. We independently verified these findings by reverse-transcription and polymerase chain reaction (RT-PCR) analysis. Our analysis shows misregulation of transcripts that have been connected to spermatogenesis, including components of the actomyosin cytoskeletal apparatus. We show, for example, that the Myosin light chain 1 (Mlc1) transcript is aberrantly spliced. Furthermore, bioinformatics analysis reveals that Mlc1 contains a high affinity binding site(s) for dmPTB and that the site is conserved in many Drosophila species. We discuss that Mlc1 and other components of the actomyosin cytoskeletal apparatus offer important molecular links between the loss of dmPTB function and the observed developmental defect in spermatogenesis. This study provides the first comprehensive list of genes misregulated in vivo in the heph2 mutant in Drosophila and offers insight into the role of dmPTB during spermatogenesis.

  9. Elevated Fibroblast Growth Factor Signaling Is Critical for the Pathogenesis of the Dwarfism in Evc2/Limbin Mutant Mice

    PubMed Central

    Zhang, Honghao; Kamiya, Nobuhiro; Tsuji, Takehito; Takeda, Haruko; Scott, Greg; Ray, Manas K.; Mochida, Yoshiyuki; Lefebvre, Veronique; Hung, Irene H.; Kunieda, Tetsuo; Mishina, Yuji

    2016-01-01

    Ellis-van Creveld (EvC) syndrome is a skeletal dysplasia, characterized by short limbs, postaxial polydactyly, and dental abnormalities. EvC syndrome is also categorized as a ciliopathy because of ciliary localization of proteins encoded by the two causative genes, EVC and EVC2 (aka LIMBIN). While recent studies demonstrated important roles for EVC/EVC2 in Hedgehog signaling, there is still little known about the pathophysiological mechanisms underlying the skeletal dysplasia features of EvC patients, and in particular why limb development is affected, but not other aspects of organogenesis that also require Hedgehog signaling. In this report, we comprehensively analyze limb skeletogenesis in Evc2 mutant mice and in cell and tissue cultures derived from these mice. Both in vivo and in vitro data demonstrate elevated Fibroblast Growth Factor (FGF) signaling in Evc2 mutant growth plates, in addition to compromised but not abrogated Hedgehog-PTHrP feedback loop. Elevation of FGF signaling, mainly due to increased Fgf18 expression upon inactivation of Evc2 in the perichondrium, critically contributes to the pathogenesis of limb dwarfism. The limb dwarfism phenotype is partially rescued by inactivation of one allele of Fgf18 in the Evc2 mutant mice. Taken together, our data uncover a novel pathogenic mechanism to understand limb dwarfism in patients with Ellis-van Creveld syndrome. PMID:28027321

  10. Single-point ACT2 gene mutation in the Arabidopsis root hair mutant der1-3 affects overall actin organization, root growth and plant development.

    PubMed

    Vaškebová, L; Šamaj, J; Ovecka, M

    2017-12-27

    The actin cytoskeleton forms a dynamic network in plant cells. A single-point mutation in the DER1 (deformed root hairs1) locus located in the sequence of ACTIN2, a gene for major actin in vegetative tissues of Arabidopsis thaliana, leads to impaired root hair development (Ringli C, Baumberger N, Diet A, Frey B, Keller B. 2002. ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiology129: 1464-1472). Only root hair phenotypes have been described so far in der1 mutants, but here we demonstrate obvious aberrations in the organization of the actin cytoskeleton and overall plant development. Organization of the actin cytoskeleton in epidermal cells of cotyledons, hypocotyls and roots was studied qualitatively and quantitatively by live-cell imaging of transgenic lines carrying the GFP-FABD2 fusion protein and in fixed cells after phalloidin labelling. Patterns of root growth were characterized by FM4-64 vital staining, light-sheet microscopy imaging and microtubule immunolabelling. Plant phenotyping included analyses of germination, root growth and plant biomass. Speed of germination, plant fresh weight and total leaf area were significantly reduced in the der1-3 mutant in comparison with the C24 wild-type. Actin filaments in root, hypocotyl and cotyledon epidermal cells of the der1-3 mutant were shorter, thinner and arranged in more random orientations, while actin bundles were shorter and had altered orientations. The wavy pattern of root growth in der1-3 mutant was connected with higher frequencies of shifted cell division planes (CDPs) in root cells, which was consistent with the shifted positioning of microtubule-based preprophase bands and phragmoplasts. The organization of cortical microtubules in the root cells of the der1-3 mutant, however, was not altered. Root growth rate of the der1-3 mutant is not reduced, but changes in the actin cytoskeleton organization can induce a wavy root growth pattern through deregulation of CDP orientation. The results suggest that the der1-3 mutation in the ACT2 gene does not influence solely root hair formation process, but also has more general effects on the actin cytoskeleton, plant growth and development. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.

  11. Novel mutants of Erwinia carotovora subsp. carotovora defective in the production of plant cell wall degrading enzymes generated by Mu transpososome-mediated insertion mutagenesis.

    PubMed

    Laasik, Eve; Ojarand, Merli; Pajunen, Maria; Savilahti, Harri; Mäe, Andres

    2005-02-01

    As in Erwinia carotovora subsp. carotovora the regulation details of the main virulence factors, encoding extracellular enzymes that degrade the plant cell wall, is only rudimentally understood, we performed a genetic screen to identify novel candidate genes involved in the process. Initially, we used Mu transpososome-mediated mutagenesis approach to generate a comprehensive transposon insertion mutant library of ca. 10000 clones and screened the clones for the loss of extracellular enzyme production. Extracellular enzymes production was abolished by mutations in the chromosomal helEcc, trkAEcc yheLEcc, glsEcc, igaAEcc and cysQEcc genes. The findings reported here demonstrate that we have isolated six new representatives that belong to the pool of genes modulating the production of virulence factors in E. carotovora.

  12. Some properties of three αB-crystallin mutants carrying point substitutions in the C-terminal domain and associated with congenital diseases.

    PubMed

    Gerasimovich, Evgeniia S; Strelkov, Sergei V; Gusev, Nikolai B

    2017-11-01

    Physico-chemical properties of G154S, R157H and A171T mutants of αB-crystallin (HspB5) associated with congenital human diseases including certain myopathies and cataract were investigated. Oligomers formed by G154S and A171T mutants have the size and apparent molecular weight indistinguishable from those of the wild-type HspB5, whereas the size of oligomers formed by R157H mutant is slightly smaller. All mutants are less thermostable and start to aggregate at a lower temperature than the wild-type protein. All mutants effectively interact with a triple phosphomimicking mutant of HspB1 and form large heterooligomeric complexes of similar composition. All mutants interact with HspB6 forming heterooligomeric complexes with size and composition dependent on the molar ratio of two proteins. The wild-type HspB5 and its G154S and A171T mutants form only high molecular weight (300-450 kDa) heterooligomeric complexes with HspB6, whereas the R157H mutant forms both high and low (∼120 kDa) molecular weight complexes. The wild-type HspB5 and its G154S and A171T mutants form two types of heterooligomers with HspB4, whereas R157H mutant effectively forms only one type of heterooligomers with HspB4. G154S and A171T mutants have lower chaperone-like activity than the wild-type protein when subfragment S1 of myosin or β L -crystallin are used as a model substrates. With these substrates, the R157H mutant shows equal or higher chaperone activity than the wild-type HspB5. We hypothesize that the mutations in the C-terminal region modulate the binding of the IP(I/V) motif to the core α-crystallin domain. The R157H mutation is located in the immediate proximity of this motif. Such modulation could cause altered interaction of HspB5 with partners and substrates and eventually lead to pathological processes. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  13. Structure-activity relations of successful pharmacologic chaperones for rescue of naturally occurring and manufactured mutants of the gonadotropin-releasing hormone receptor.

    PubMed

    Janovick, Jo Ann; Goulet, Mark; Bush, Eugene; Greer, Jonathan; Wettlaufer, David G; Conn, P Michael

    2003-05-01

    We expressed a test system of wild-type (WT) rat (r) and human (h) gonadotropin-releasing hormone (GnRH) receptors (GnRHRs), including naturally occurring (13) and manufactured (five) "loss-of-function" mutants of the GnRHR. These were used to assess the ability of different GnRH peptidomimetics to rescue defective GnRHR mutants and determine their effect on the level of membrane expression of the WT receptors. Among the manufactured mutants were the shortest rGnRHR C-terminal truncation mutant that resulted in receptor loss-of-function (des(325-327)-rGnRHR), two nonfunctional deletion mutants (des(237-241)-rGnRHR and des(260-265)-rGnRHR), two nonfunctional Cys mutants (C(229)A-rGnRHR and C(278)A-rGnRHR); the naturally occurring mutants included all 13 full-length GnRHR point mutations reported to date that result in full or partial human hypogonadotropic hypogonadism. The 10 peptidomimetics assessed as potential rescue molecules ("pharmacoperones") are from three differing chemical pedigrees (indoles, quinolones, and erythromycin-derived macrolides) and were originally developed as GnRH peptidomimetic antagonists. These structures were selected for this study because of their predicted ability to permeate the cell membrane and interact with a defined affinity with the GnRH receptor. All peptidomimetics studied with an IC(50) value (for hGnRHR)

  14. Linkage of interactions in sickle hemoglobin fiber assembly: inhibitory effect emanating from mutations in the AB region of the alpha-chain is annulled by a mutation at its EF corner.

    PubMed

    Sudha, Rajamani; Anantharaman, Lavanya; Sivaram, Mylavarapu V S; Mirsamadi, Neda; Choudhury, Devapriya; Lohiya, Nirmal K; Gupta, Rasik B; Roy, Rajendra P

    2004-05-07

    The AB and GH regions of the alpha-chain are located in spatial proximity and contain a cluster of intermolecular contact residues of the sickle hemoglobin (HbS) fiber. We have examined the role of dynamics of AB/GH region on HbS polymerization through simultaneous replacement of non-contact Ala(19) and Ala(21) of the AB corner with more flexible Gly or rigid alpha-aminoisobutyric acid (Aib) residues. The polymerization behavior of HbS with Aib substitutions was similar to the native HbS. In contrast, Gly substitutions inhibited HbS polymerization. Molecular dynamics simulation studies of alpha-chains indicated that coordinated motion of AB and GH region residues present in native (Ala) as well as in Aib mutant was disrupted in the Gly mutant. The inhibitory effect due to Gly substitutions was further explored in triple mutants that included mutation of an inter-doublestrand contact (alphaAsn(78) --> His or Gln) at the EF corner. Although the inhibitory effect of Gly substitutions in the triple mutant was unaffected in the presence of alphaGln(78), His at this site almost abrogated its inhibitory potential. The polymerization studies of point mutants (alphaGln(78) --> His) indicated that the inhibitory effect due to Gly substitutions in the triple mutant was synergistically compensated for by the polymerization-enhancing activity of His(78). Similar synergistic coupling, between alphaHis(78) and an intra-double-strand contact point (alpha16) mutation located in the AB region, was also observed. Thus, two conclusions are made: (i) Gly mutations at the AB corner inhibit HbS polymerization by perturbing the dynamics of the AB/GH region, and (ii) perturbations of AB region (through changes in dynamics of the AB/GH region or abolition of a specific fiber contact site) that influence HbS polymerization do so in concert with alpha78 site at the EF corner. The overall results provide insights about the interaction-linkage between distant regions of the HbS tetramer in fiber assembly.

  15. Testing and Refining the Direct and Inferential Mediation Model of Reading Comprehension

    ERIC Educational Resources Information Center

    Cromley, Jennifer G.; Azevedo, Roger

    2007-01-01

    A significant proportion of American high school students struggle with reading comprehension. Theoretical models of reading comprehension might help researchers understand these difficulties, because they can point to variables that make the largest contributions to comprehension. On the basis of an extensive review of the literature, we created…

  16. Collaborative Model for Acceleration of Individualized Therapy of Colon Cancer

    DTIC Science & Technology

    2012-10-01

    human CRC explants will be assessed (in our CLIA-certified UCCC Pathology Core) using the DxS Scorpion method (DxS, Manchester, UK) according to the...for those treatments. Unfortunately the lack of such strategies is what led to thousands of CRC patients with KRAS mutations being treated with...KRAS mutant colorectal cancer (CRC) using a comprehensive bioinformatics approach and novel preclinical models of human CRC. This proposal has the

  17. FireProt: web server for automated design of thermostable proteins

    PubMed Central

    Musil, Milos; Stourac, Jan; Brezovsky, Jan; Prokop, Zbynek; Zendulka, Jaroslav; Martinek, Tomas

    2017-01-01

    Abstract There is a continuous interest in increasing proteins stability to enhance their usability in numerous biomedical and biotechnological applications. A number of in silico tools for the prediction of the effect of mutations on protein stability have been developed recently. However, only single-point mutations with a small effect on protein stability are typically predicted with the existing tools and have to be followed by laborious protein expression, purification, and characterization. Here, we present FireProt, a web server for the automated design of multiple-point thermostable mutant proteins that combines structural and evolutionary information in its calculation core. FireProt utilizes sixteen tools and three protein engineering strategies for making reliable protein designs. The server is complemented with interactive, easy-to-use interface that allows users to directly analyze and optionally modify designed thermostable mutants. FireProt is freely available at http://loschmidt.chemi.muni.cz/fireprot. PMID:28449074

  18. Clinical Application of Picodroplet Digital PCR Technology for Rapid Detection of EGFR T790M in Next-Generation Sequencing Libraries and DNA from Limited Tumor Samples.

    PubMed

    Borsu, Laetitia; Intrieri, Julie; Thampi, Linta; Yu, Helena; Riely, Gregory; Nafa, Khedoudja; Chandramohan, Raghu; Ladanyi, Marc; Arcila, Maria E

    2016-11-01

    Although next-generation sequencing (NGS) is a robust technology for comprehensive assessment of EGFR-mutant lung adenocarcinomas with acquired resistance to tyrosine kinase inhibitors, it may not provide sufficiently rapid and sensitive detection of the EGFR T790M mutation, the most clinically relevant resistance biomarker. Here, we describe a digital PCR (dPCR) assay for rapid T790M detection on aliquots of NGS libraries prepared for comprehensive profiling, fully maximizing broad genomic analysis on limited samples. Tumor DNAs from patients with EGFR-mutant lung adenocarcinomas and acquired resistance to epidermal growth factor receptor inhibitors were prepared for Memorial Sloan-Kettering-Integrated Mutation Profiling of Actionable Cancer Targets sequencing, a hybrid capture-based assay interrogating 410 cancer-related genes. Precapture library aliquots were used for rapid EGFR T790M testing by dPCR, and results were compared with NGS and locked nucleic acid-PCR Sanger sequencing (reference high sensitivity method). Seventy resistance samples showed 99% concordance with the reference high sensitivity method in accuracy studies. Input as low as 2.5 ng provided a sensitivity of 1% and improved further with increasing DNA input. dPCR on libraries required less DNA and showed better performance than direct genomic DNA. dPCR on NGS libraries is a robust and rapid approach to EGFR T790M testing, allowing most economical utilization of limited material for comprehensive assessment. The same assay can also be performed directly on any limited DNA source and cell-free DNA. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  19. Photosynthesis, Light Use Efficiency, and Yield of Reduced-Chlorophyll Soybean Mutants in Field Conditions.

    PubMed

    Slattery, Rebecca A; VanLoocke, Andy; Bernacchi, Carl J; Zhu, Xin-Guang; Ort, Donald R

    2017-01-01

    Reducing chlorophyll (chl) content may improve the conversion efficiency of absorbed photosynthetically active radiation into biomass and therefore yield in dense monoculture crops by improving light penetration and distribution within the canopy. The effects of reduced chl on leaf and canopy photosynthesis and photosynthetic efficiency were studied in two reportedly robust reduced-chl soybean mutants, Y11y11 and y9y9 , in comparison to the wild-type (WT) "Clark" cultivar. Both mutants were characterized during the 2012 growing season whereas only the Y11y11 mutant was characterized during the 2013 growing season. Chl deficiency led to greater rates of leaf-level photosynthesis per absorbed photon early in the growing season when mutant chl content was ∼35% of the WT, but there was no effect on photosynthesis later in the season when mutant leaf chl approached 50% of the WT. Transient benefits of reduced chl at the leaf level did not translate to improvements in canopy-level processes. Reduced pigmentation in these mutants was linked to lower water use efficiency, which may have dampened any photosynthetic benefits of reduced chl, especially since both growing seasons experienced significant drought conditions. These results, while not confirming our hypothesis or an earlier published study in which the Y11y11 mutant significantly outyielded the WT, do demonstrate that soybean significantly overinvests in chl. Despite a >50% chl reduction, there was little negative impact on biomass accumulation or yield, and the small negative effects present were likely due to pleiotropic effects of the mutation. This outcome points to an opportunity to reinvest nitrogen and energy resources that would otherwise be used in pigment-proteins into increasing biochemical photosynthetic capacity, thereby improving canopy photosynthesis and biomass production.

  20. A Point Mutation in the Gene for Asparagine-Linked Glycosylation 10B (Alg10b) Causes Nonsyndromic Hearing Impairment in Mice (Mus musculus)

    PubMed Central

    Probst, Frank J.; Corrigan, Rebecca R.; del Gaudio, Daniela; Salinger, Andrew P.; Lorenzo, Isabel; Gao, Simon S.; Chiu, Ilene; Xia, Anping

    2013-01-01

    The study of mouse hearing impairment mutants has led to the identification of a number of human hearing impairment genes and has greatly furthered our understanding of the physiology of hearing. The novel mouse mutant neurological/sensory 5 (nse5) demonstrates a significantly reduced or absent startle response to sound and is therefore a potential murine model of human hearing impairment. Genetic analysis of 500 intercross progeny localized the mutant locus to a 524 kilobase (kb) interval on mouse chromosome 15. A missense mutation in a highly-conserved amino acid was found in the asparagine-linked glycosylation 10B gene (Alg10b), which is within the critical interval for the nse5 mutation. A 20.4 kb transgene containing a wildtype copy of the Alg10b gene rescued the mutant phenotype in nse5/nse5 homozygous animals, confirming that the mutation in Alg10b is responsible for the nse5/nse5 mutant phenotype. Homozygous nse5/nse5 mutants had abnormal auditory brainstem responses (ABRs), distortion product otoacoustic emissions (DPOAEs), and cochlear microphonics (CMs). Endocochlear potentials (EPs), on the other hand, were normal. ABRs and DPOAEs also confirmed the rescue of the mutant nse5/nse5 phenotype by the wildtype Alg10b transgene. These results suggested a defect in the outer hair cells of mutant animals, which was confirmed by histologic analysis. This is the first report of mutation in a gene involved in the asparagine (N)-linked glycosylation pathway causing nonsyndromic hearing impairment, and it suggests that the hearing apparatus, and the outer hair cells in particular, are exquisitely sensitive to perturbations of the N-linked glycosylation pathway. PMID:24303013

  1. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hsu-Pin; Hsu, Shu-Yuan; Wu, Wen-Ai

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB{sup +/−} mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species.more » The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity.« less

  2. Isolation and characterisation of a dwarf rice mutant exhibiting defective gibberellins biosynthesis.

    PubMed

    Ji, S H; Gururani, M A; Lee, J W; Ahn, B-O; Chun, S-C

    2014-03-01

    We have isolated a severe dwarf mutant derived from a Ds (Dissociation) insertion mutant rice (Oryza sativa var. japonica c.v. Dongjin). This severe dwarf phenotype, has short and dark green leaves, reduced shoot growth early in the seedling stage, and later severe dwarfism with failure to initiate flowering. When treated with bioactive GA3 , mutants are restored to the normal wild-type phenotype. Reverse transcription PCR analyses of 22 candidate genes related to the gibberellin (GA) biosynthesis pathway revealed that among 22 candidate genes tested, a dwarf mutant transcript was not expressed only in one OsKS2 gene. Genetic analysis revealed that the severe dwarf phenotype was controlled by recessive mutation of a single nuclear gene. The putative OsKS2 gene was a chromosome 4-located ent-kaurene synthase (KS), encoding the enzyme that catalyses an early step of the GA biosynthesis pathway. Sequence analysis revealed that osks2 carried a 1-bp deletion in the ORF region of OsKS2, which led to a loss-of-function mutation. The expression pattern of OsKS2 in wild-type cv Dongjin, showed that it is expressed in all organs, most prominently in the stem and floral organs. Morphological characteristics of the dwarf mutant showed dramatic modifications in internal structure and external morphology. We propose that dwarfism in this mutant is caused by a point mutation in OsKS2, which plays a significant role in growth and development of higher plants. Further investigation on OsKS2 and other OsKS-like proteins is underway and may yield better understanding of the putative role of OsKS in severe dwarf mutants. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Photosynthesis, Light Use Efficiency, and Yield of Reduced-Chlorophyll Soybean Mutants in Field Conditions

    PubMed Central

    Slattery, Rebecca A.; VanLoocke, Andy; Bernacchi, Carl J.; Zhu, Xin-Guang; Ort, Donald R.

    2017-01-01

    Reducing chlorophyll (chl) content may improve the conversion efficiency of absorbed photosynthetically active radiation into biomass and therefore yield in dense monoculture crops by improving light penetration and distribution within the canopy. The effects of reduced chl on leaf and canopy photosynthesis and photosynthetic efficiency were studied in two reportedly robust reduced-chl soybean mutants, Y11y11 and y9y9, in comparison to the wild-type (WT) “Clark” cultivar. Both mutants were characterized during the 2012 growing season whereas only the Y11y11 mutant was characterized during the 2013 growing season. Chl deficiency led to greater rates of leaf-level photosynthesis per absorbed photon early in the growing season when mutant chl content was ∼35% of the WT, but there was no effect on photosynthesis later in the season when mutant leaf chl approached 50% of the WT. Transient benefits of reduced chl at the leaf level did not translate to improvements in canopy-level processes. Reduced pigmentation in these mutants was linked to lower water use efficiency, which may have dampened any photosynthetic benefits of reduced chl, especially since both growing seasons experienced significant drought conditions. These results, while not confirming our hypothesis or an earlier published study in which the Y11y11 mutant significantly outyielded the WT, do demonstrate that soybean significantly overinvests in chl. Despite a >50% chl reduction, there was little negative impact on biomass accumulation or yield, and the small negative effects present were likely due to pleiotropic effects of the mutation. This outcome points to an opportunity to reinvest nitrogen and energy resources that would otherwise be used in pigment-proteins into increasing biochemical photosynthetic capacity, thereby improving canopy photosynthesis and biomass production. PMID:28458677

  4. Novel, improved grading system(s) for IDH-mutant astrocytic gliomas.

    PubMed

    Shirahata, Mitsuaki; Ono, Takahiro; Stichel, Damian; Schrimpf, Daniel; Reuss, David E; Sahm, Felix; Koelsche, Christian; Wefers, Annika; Reinhardt, Annekathrin; Huang, Kristin; Sievers, Philipp; Shimizu, Hiroaki; Nanjo, Hiroshi; Kobayashi, Yusuke; Miyake, Yohei; Suzuki, Tomonari; Adachi, Jun-Ichi; Mishima, Kazuhiko; Sasaki, Atsushi; Nishikawa, Ryo; Bewerunge-Hudler, Melanie; Ryzhova, Marina; Absalyamova, Oksana; Golanov, Andrey; Sinn, Peter; Platten, Michael; Jungk, Christine; Winkler, Frank; Wick, Antje; Hänggi, Daniel; Unterberg, Andreas; Pfister, Stefan M; Jones, David T W; van den Bent, Martin; Hegi, Monika; French, Pim; Baumert, Brigitta G; Stupp, Roger; Gorlia, Thierry; Weller, Michael; Capper, David; Korshunov, Andrey; Herold-Mende, Christel; Wick, Wolfgang; Louis, David N; von Deimling, Andreas

    2018-04-23

    According to the 2016 World Health Organization Classification of Tumors of the Central Nervous System (2016 CNS WHO), IDH-mutant astrocytic gliomas comprised WHO grade II diffuse astrocytoma, IDH-mutant (AII IDHmut ), WHO grade III anaplastic astrocytoma, IDH-mutant (AAIII IDHmut ), and WHO grade IV glioblastoma, IDH-mutant (GBM IDHmut ). Notably, IDH gene status has been made the major criterion for classification while the manner of grading has remained unchanged: it is based on histological criteria that arose from studies which antedated knowledge of the importance of IDH status in diffuse astrocytic tumor prognostic assessment. Several studies have now demonstrated that the anticipated differences in survival between the newly defined AII IDHmut and AAIII IDHmut have lost their significance. In contrast, GBM IDHmut still exhibits a significantly worse outcome than its lower grade IDH-mutant counterparts. To address the problem of establishing prognostically significant grading for IDH-mutant astrocytic gliomas in the IDH era, we undertook a comprehensive study that included assessment of histological and genetic approaches to prognosis in these tumors. A discovery cohort of 211 IDH-mutant astrocytic gliomas with an extended observation was subjected to histological review, image analysis, and DNA methylation studies. Tumor group-specific methylation profiles and copy number variation (CNV) profiles were established for all gliomas. Algorithms for automated CNV analysis were developed. All tumors exhibiting 1p/19q codeletion were excluded from the series. We developed algorithms for grading, based on molecular, morphological and clinical data. Performance of these algorithms was compared with that of WHO grading. Three independent cohorts of 108, 154 and 224 IDH-mutant astrocytic gliomas were used to validate this approach. In the discovery cohort several molecular and clinical parameters were of prognostic relevance. Most relevant for overall survival (OS) was CDKN2A/B homozygous deletion. Other parameters with major influence were necrosis and the total number of CNV. Proliferation as assessed by mitotic count, which is a key parameter in 2016 CNS WHO grading, was of only minor influence. Employing the parameters most relevant for OS in our discovery set, we developed two models for grading these tumors. These models performed significantly better than WHO grading in both the discovery and the validation sets. Our novel algorithms for grading IDH-mutant astrocytic gliomas overcome the challenges caused by introduction of IDH status into the WHO classification of diffuse astrocytic tumors. We propose that these revised approaches be used for grading of these tumors and incorporated into future WHO criteria.

  5. Evidence-Based Practice Point-of-Care Resources: A Quantitative Evaluation of Quality, Rigor, and Content.

    PubMed

    Campbell, Jared M; Umapathysivam, Kandiah; Xue, Yifan; Lockwood, Craig

    2015-12-01

    Clinicians and other healthcare professionals need access to summaries of evidence-based information in order to provide effective care to their patients at the point-of-care. Evidence-based practice (EBP) point-of-care resources have been developed and are available online to meet this need. This study aimed to develop a comprehensive list of available EBP point-of-care resources and evaluate their processes and policies for the development of content, in order to provide a critical analysis based upon rigor, transparency and measures of editorial quality to inform healthcare providers and promote quality improvement amongst publishers of EBP resources. A comprehensive and systematic search (Pubmed, CINAHL, and Cochrane Central) was undertaken to identify available EBP point-of-care resources, defined as "web-based medical compendia specifically designed to deliver predigested, rapidly accessible, comprehensive, periodically updated, and evidence-based information (and possibly also guidance) to clinicians." A pair of investigators independently extracted information on general characteristics, content presentation, editorial quality, evidence-based methodology, and breadth and volume. Twenty-seven summary resources were identified, of which 22 met the predefined inclusion criteria for EBP point-of-care resources, and 20 could be accessed for description and assessment. Overall, the upper quartile of EBP point-of-care providers was assessed to be UpToDate, Nursing Reference Centre, Mosby's Nursing Consult, BMJ Best Practice, and JBI COnNECT+. The choice of which EBP point-of-care resources are suitable for an organization is a decision that depends heavily on the unique requirements of that organization and the resources it has available. However, the results presented in this study should enable healthcare providers to make that assessment in a clear, evidence-based manner, and provide a comprehensive list of the available options. © 2015 Sigma Theta Tau International.

  6. A mechanistic model of tau amyloid aggregation based on direct observation of oligomers

    NASA Astrophysics Data System (ADS)

    Shammas, Sarah L.; Garcia, Gonzalo A.; Kumar, Satish; Kjaergaard, Magnus; Horrocks, Mathew H.; Shivji, Nadia; Mandelkow, Eva; Knowles, Tuomas P. J.; Mandelkow, Eckhard; Klenerman, David

    2015-04-01

    Protein aggregation plays a key role in neurodegenerative disease, giving rise to small oligomers that may become cytotoxic to cells. The fundamental microscopic reactions taking place during aggregation, and their rate constants, have been difficult to determine due to lack of suitable methods to identify and follow the low concentration of oligomers over time. Here we use single-molecule fluorescence to study the aggregation of the repeat domain of tau (K18), and two mutant forms linked with familial frontotemporal dementia, the deletion mutant ΔK280 and the point mutant P301L. Our kinetic analysis reveals that aggregation proceeds via monomeric assembly into small oligomers, and a subsequent slow structural conversion step before fibril formation. Using this approach, we have been able to quantitatively determine how these mutations alter the aggregation energy landscape.

  7. Line-Tension Controlled Mechanism for Influenza Fusion

    PubMed Central

    Risselada, Herre Jelger; Smirnova, Yuliya G.; Grubmüller, Helmut; Marrink, Siewert Jan; Müller, Marcus

    2012-01-01

    Our molecular simulations reveal that wild-type influenza fusion peptides are able to stabilize a highly fusogenic pre-fusion structure, i.e. a peptide bundle formed by four or more trans-membrane arranged fusion peptides. We rationalize that the lipid rim around such bundle has a non-vanishing rim energy (line-tension), which is essential to (i) stabilize the initial contact point between the fusing bilayers, i.e. the stalk, and (ii) drive its subsequent evolution. Such line-tension controlled fusion event does not proceed along the hypothesized standard stalk-hemifusion pathway. In modeled influenza fusion, single point mutations in the influenza fusion peptide either completely inhibit fusion (mutants G1V and W14A) or, intriguingly, specifically arrest fusion at a hemifusion state (mutant G1S). Our simulations demonstrate that, within a line-tension controlled fusion mechanism, these known point mutations either completely inhibit fusion by impairing the peptide’s ability to stabilize the required peptide bundle (G1V and W14A) or stabilize a persistent bundle that leads to a kinetically trapped hemifusion state (G1S). In addition, our results further suggest that the recently discovered leaky fusion mutant G13A, which is known to facilitate a pronounced leakage of the target membrane prior to lipid mixing, reduces the membrane integrity by forming a ‘super’ bundle. Our simulations offer a new interpretation for a number of experimentally observed features of the fusion reaction mediated by the prototypical fusion protein, influenza hemagglutinin, and might bring new insights into mechanisms of other viral fusion reactions. PMID:22761674

  8. The Effect of a Token Reinforcement Program on the Reading Comprehension of a Learning Disabled Student.

    ERIC Educational Resources Information Center

    Galbreath, Joy; Feldman, David

    The relationship of reading comprehension accuracy and a contingently administered token reinforcement program used with an elementary level learning disabled student in the classroom was examined. The S earned points for each correct answer made after oral reading sessions. At the conclusion of the class he could exchange his points for rewards.…

  9. Inhalation toxicity of indoor air pollutants in Drosophila melanogaster using integrated transcriptomics and computational behavior analyses

    NASA Astrophysics Data System (ADS)

    Eom, Hyun-Jeong; Liu, Yuedan; Kwak, Gyu-Suk; Heo, Muyoung; Song, Kyung Seuk; Chung, Yun Doo; Chon, Tae-Soo; Choi, Jinhee

    2017-06-01

    We conducted an inhalation toxicity test on the alternative animal model, Drosophila melanogaster, to investigate potential hazards of indoor air pollution. The inhalation toxicity of toluene and formaldehyde was investigated using comprehensive transcriptomics and computational behavior analyses. The ingenuity pathway analysis (IPA) based on microarray data suggests the involvement of pathways related to immune response, stress response, and metabolism in formaldehyde and toluene exposure based on hub molecules. We conducted a toxicity test using mutants of the representative genes in these pathways to explore the toxicological consequences of alterations of these pathways. Furthermore, extensive computational behavior analysis showed that exposure to either toluene or formaldehyde reduced most of the behavioral parameters of both wild-type and mutants. Interestingly, behavioral alteration caused by toluene or formaldehyde exposure was most severe in the p38b mutant, suggesting that the defects in the p38 pathway underlie behavioral alteration. Overall, the results indicate that exposure to toluene and formaldehyde via inhalation causes severe toxicity in Drosophila, by inducing significant alterations in gene expression and behavior, suggesting that Drosophila can be used as a potential alternative model in inhalation toxicity screening.

  10. Inhalation toxicity of indoor air pollutants in Drosophila melanogaster using integrated transcriptomics and computational behavior analyses

    PubMed Central

    Eom, Hyun-Jeong; Liu, Yuedan; Kwak, Gyu-Suk; Heo, Muyoung; Song, Kyung Seuk; Chung, Yun Doo; Chon, Tae-Soo; Choi, Jinhee

    2017-01-01

    We conducted an inhalation toxicity test on the alternative animal model, Drosophila melanogaster, to investigate potential hazards of indoor air pollution. The inhalation toxicity of toluene and formaldehyde was investigated using comprehensive transcriptomics and computational behavior analyses. The ingenuity pathway analysis (IPA) based on microarray data suggests the involvement of pathways related to immune response, stress response, and metabolism in formaldehyde and toluene exposure based on hub molecules. We conducted a toxicity test using mutants of the representative genes in these pathways to explore the toxicological consequences of alterations of these pathways. Furthermore, extensive computational behavior analysis showed that exposure to either toluene or formaldehyde reduced most of the behavioral parameters of both wild-type and mutants. Interestingly, behavioral alteration caused by toluene or formaldehyde exposure was most severe in the p38b mutant, suggesting that the defects in the p38 pathway underlie behavioral alteration. Overall, the results indicate that exposure to toluene and formaldehyde via inhalation causes severe toxicity in Drosophila, by inducing significant alterations in gene expression and behavior, suggesting that Drosophila can be used as a potential alternative model in inhalation toxicity screening. PMID:28621308

  11. Selective Inhibition of Mutant Isocitrate Dehydrogenase 1 (IDH1) via Disruption of a Metal Binding Network by an Allosteric Small Molecule

    PubMed Central

    Deng, Gejing; Shen, Junqing; Yin, Ming; McManus, Jessica; Mathieu, Magali; Gee, Patricia; He, Timothy; Shi, Chaomei; Bedel, Olivier; McLean, Larry R.; Le-Strat, Frank; Zhang, Ying; Marquette, Jean-Pierre; Gao, Qiang; Zhang, Bailin; Rak, Alexey; Hoffmann, Dietmar; Rooney, Eamonn; Vassort, Aurelie; Englaro, Walter; Li, Yi; Patel, Vinod; Adrian, Francisco; Gross, Stefan; Wiederschain, Dmitri; Cheng, Hong; Licht, Stuart

    2015-01-01

    Cancer-associated point mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) confer a neomorphic enzymatic activity: the reduction of α-ketoglutarate to d-2-hydroxyglutaric acid, which is proposed to act as an oncogenic metabolite by inducing hypermethylation of histones and DNA. Although selective inhibitors of mutant IDH1 and IDH2 have been identified and are currently under investigation as potential cancer therapeutics, the mechanistic basis for their selectivity is not yet well understood. A high throughput screen for selective inhibitors of IDH1 bearing the oncogenic mutation R132H identified compound 1, a bis-imidazole phenol that inhibits d-2-hydroxyglutaric acid production in cells. We investigated the mode of inhibition of compound 1 and a previously published IDH1 mutant inhibitor with a different chemical scaffold. Steady-state kinetics and biophysical studies show that both of these compounds selectively inhibit mutant IDH1 by binding to an allosteric site and that inhibition is competitive with respect to Mg2+. A crystal structure of compound 1 complexed with R132H IDH1 indicates that the inhibitor binds at the dimer interface and makes direct contact with a residue involved in binding of the catalytically essential divalent cation. These results show that targeting a divalent cation binding residue can enable selective inhibition of mutant IDH1 and suggest that differences in magnesium binding between wild-type and mutant enzymes may contribute to the inhibitors' selectivity for the mutant enzyme. PMID:25391653

  12. The LacI–Family Transcription Factor, RbsR, Is a Pleiotropic Regulator of Motility, Virulence, Siderophore and Antibiotic Production, Gas Vesicle Morphogenesis and Flotation in Serratia

    PubMed Central

    Lee, Chin M.; Monson, Rita E.; Adams, Rachel M.; Salmond, George P. C.

    2017-01-01

    Gas vesicles (GVs) are proteinaceous, gas-filled organelles used by some bacteria to enable upward movement into favorable air/liquid interfaces in aquatic environments. Serratia sp. ATCC39006 (S39006) was the first enterobacterium discovered to produce GVs naturally. The regulation of GV assembly in this host is complex and part of a wider regulatory network affecting various phenotypes, including antibiotic biosynthesis. To identify new regulators of GVs, a comprehensive mutant library containing 71,000 insertion mutants was generated by random transposon mutagenesis and 311 putative GV-defective mutants identified. Three of these mutants were found to have a transposon inserted in a LacI family transcription regulator gene (rbsR) of the putative ribose operon. Each of these rbsR mutants was GV-defective; no GVs were visible by phase contrast microscopy (PCM) or transmission electron microscopy (TEM). GV deficiency was caused by the reduction of gvpA1 and gvrA transcription (the first genes of the two contiguous operons in the GV gene locus). Our results also showed that a mutation in rbsR was highly pleiotropic; the production of two secondary metabolites (carbapenem and prodigiosin antibiotics) was abolished. Interestingly, the intrinsic resistance to the carbapenem antibiotic was not affected by the rbsR mutation. In addition, the production of a siderophore, cellulase and plant virulence was reduced in the mutant, whereas it exhibited increased swimming and swarming motility. The RbsR protein was predicted to bind to regions upstream of at least 18 genes in S39006 including rbsD (the first gene of the ribose operon) and gvrA. Electrophoretic mobility shift assays (EMSA) confirmed that RbsR bound to DNA sequences upstream of rbsD, but not gvrA. The results of this study indicate that RbsR is a global regulator that affects the modulation of GV biogenesis, but also with complex pleiotropic physiological impacts in S39006. PMID:28955306

  13. Molecular Basis of Gain-of-Function LEOPARD Syndrome-Associated SHP2 Mutations

    PubMed Central

    2015-01-01

    The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 2 (SHP2) is a critical signal transducer downstream of growth factors that promotes the activation of the RAS-ERK1/2 cascade. In its basal state, SHP2 exists in an autoinhibited closed conformation because of an intramolecular interaction between its N-SH2 and protein tyrosine phosphatase (PTP) domains. Binding to pTyr ligands present on growth factor receptors and adaptor proteins with its N-SH2 domain localizes SHP2 to its substrates and frees the active site from allosteric inhibition. Germline mutations in SHP2 are known to cause both Noonan syndrome (NS) and LEOPARD syndrome (LS), two clinically similar autosomal dominant developmental disorders. NS-associated SHP2 mutants display elevated phosphatase activity, while LS-associated SHP2 mutants exhibit reduced catalytic activity. A conundrum in how clinically similar diseases result from mutations to SHP2 that have opposite effects on this enzyme’s catalytic functionality exists. Here we report a comprehensive investigation of the kinetic, structural, dynamic, and biochemical signaling properties of the wild type as well as all reported LS-associated SHP2 mutants. The results reveal that LS-causing mutations not only affect SHP2 phosphatase activity but also induce a weakening of the intramolecular interaction between the N-SH2 and PTP domains, leading to mutants that are more readily activated by competing pTyr ligands. Our data also indicate that the residual phosphatase activity associated with the LS SHP2 mutant is required for enhanced ERK1/2 activation. Consequently, catalytically impaired SHP2 mutants could display gain-of-function properties because of their ability to localize to the vicinity of substrates for longer periods of time, thereby affording the opportunity for prolonged substrate turnover and sustained RAS-ERK1/2 activation. PMID:24935154

  14. Transcriptome Analysis of Neonatal Larvae after Hyperthermia-Induced Seizures in the Contractile Silkworm, Bombyx mori

    PubMed Central

    Nie, Hongyi; Liu, Chun; Zhang, Yinxia; Zhou, Mengting; Huang, Xiaofeng; Peng, Li; Xia, Qingyou

    2014-01-01

    The ability to respond quickly and efficiently to transient extreme environmental conditions is an important property of all biota. However, the physiological basis of thermotolerance in different species is still unclear. Here, we found that the cot mutant showed a seizure phenotype including contraction of the body, rolling, vomiting gut juice and a momentary cessation of movement, and the heartbeat rhythm of the dorsal vessel significantly increases after hyperthermia. To comprehensively understand this process at the molecular level, the transcriptomic profile of cot mutant, which is a behavior mutant that exhibits a seizure phenotype, was investigated after hyperthermia (42°C) that was induced for 5 min. By digital gene expression profiling, we determined the gene expression profile of three strains (cot/cot ok/ok, +/+ ok/ok and +/+ +/+) under hyperthermia (42°C) and normal (25°C) conditions. A Venn diagram showed that the most common differentially expressed genes (DEGs, FDR<0.01 and log2 Ratio≥1) were up-regulated and annotated with the heat shock proteins (HSPs) in 3 strains after treatment with hyperthermia, suggesting that HSPs rapidly increased in response to high temperature; 110 unique DEGs, could be identified in the cot mutant after inducing hyperthermia when compared to the control strains. Of these 110 unique DEGs, 98.18% (108 genes) were up-regulated and 1.82% (two genes) were down-regulated in the cot mutant. KEGG pathways analysis of these unique DEGs suggested that the top three KEGG pathways were “Biotin metabolism,” “Fatty acid biosynthesis” and “Purine metabolism,” implying that diverse metabolic processes are active in cot mutant induced-hyperthermia. Unique DEGs of interest were mainly involved in the ubiquitin system, nicotinic acetylcholine receptor genes, cardiac excitation–contraction coupling or the Notch signaling pathway. Insights into hyperthermia-induced alterations in gene expression and related pathways could yield hints for understanding the relationship between behaviors and environmental stimuli (hyperthermia) in insects. PMID:25423472

  15. Myosin storage myopathy mutations yield defective myosin filament assembly in vitro and disrupted myofibrillar structure and function in vivo.

    PubMed

    Viswanathan, Meera C; Tham, Rick C; Kronert, William A; Sarsoza, Floyd; Trujillo, Adriana S; Cammarato, Anthony; Bernstein, Sanford I

    2017-12-15

    Myosin storage myopathy (MSM) is a congenital skeletal muscle disorder caused by missense mutations in the β-cardiac/slow skeletal muscle myosin heavy chain rod. It is characterized by subsarcolemmal accumulations of myosin that have a hyaline appearance. MSM mutations map near or within the assembly competence domain known to be crucial for thick filament formation. Drosophila MSM models were generated for comprehensive physiological, structural, and biochemical assessment of the mutations' consequences on muscle and myosin structure and function. L1793P, R1845W, and E1883K MSM mutant myosins were expressed in an indirect flight (IFM) and jump muscle myosin null background to study the effects of these variants without confounding influences from wild-type myosin. Mutant animals displayed highly compromised jump and flight ability, disrupted muscle proteostasis, and severely perturbed IFM structure. Electron microscopy revealed myofibrillar disarray and degeneration with hyaline-like inclusions. In vitro assembly assays demonstrated a decreased ability of mutant myosin to polymerize, with L1793P filaments exhibiting shorter lengths. In addition, limited proteolysis experiments showed a reduced stability of L1793P and E1883K filaments. We conclude that the disrupted hydropathy or charge of residues in the heptad repeat of the mutant myosin rods likely alters interactions that stabilize coiled-coil dimers and thick filaments, causing disruption in ordered myofibrillogenesis and/or myofibrillar integrity, and the consequent myosin aggregation. Our Drosophila models are the first to recapitulate the human MSM phenotype with ultrastructural inclusions, suggesting that the diminished ability of the mutant myosin to form stable thick filaments contributes to the dystrophic phenotype observed in afflicted subjects. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Upregulation of IRS1 Enhances IGF1 Response in Y537S and D538G ESR1 Mutant Breast Cancer Cells.

    PubMed

    Li, Zheqi; Levine, Kevin M; Bahreini, Amir; Wang, Peilu; Chu, David; Park, Ben Ho; Oesterreich, Steffi; Lee, Adrian V

    2018-01-01

    Increased evidence suggests that somatic mutations in the ligand-binding domain of estrogen receptor [ER (ERα/ESR1)] are critical mediators of endocrine-resistant breast cancer progression. Insulinlike growth factor-1 (IGF1) is an essential regulator of breast development and tumorigenesis and also has a role in endocrine resistance. A recent study showed enhanced crosstalk between IGF1 and ERα in ESR1 mutant cells, but detailed mechanisms are incompletely understood. Using genome-edited MCF-7 and T47D cell lines harboring Y537S and D538G ESR1 mutations, we characterized altered IGF1 signaling. RNA sequencing revealed upregulation of multiple genes in the IGF1 pathway, including insulin receptor substrate-1 (IRS1), consistent in both Y537S and D538G ESR1 mutant cell line models. Higher IRS1 expression was confirmed by quantitative reverse transcription polymerase chain reaction and immunoblotting. ESR1 mutant cells also showed increased levels of IGF-regulated genes, reflected by activation of an IGF signature. IGF1 showed increased sensitivity and potency in growth stimulation of ESR1 mutant cells. Analysis of downstream signaling revealed the phosphoinositide 3-kinase (PI3K)-Akt axis as a major pathway mediating the enhanced IGF1 response in ESR1 mutant cells. Decreasing IRS1 expression by small interfering RNA diminished the increased sensitivity to IGF1. Combination treatment with inhibitors against IGF1 receptor (IGF1R; OSI-906) and ER (fulvestrant) showed synergistic growth inhibition in ESR1 mutant cells, particularly at lower effective concentrations. Our study supports a critical role of enhanced IGF1 signaling in ESR1 mutant cell lines, pointing toward a potential for cotargeting IGF1R and ERα in endocrine-resistant breast tumors with mutant ESR1. Copyright © 2018 Endocrine Society.

  17. The RNA silencing enzyme RNA polymerase v is required for plant immunity.

    PubMed

    López, Ana; Ramírez, Vicente; García-Andrade, Javier; Flors, Victor; Vera, Pablo

    2011-12-01

    RNA-directed DNA methylation (RdDM) is an epigenetic control mechanism driven by small interfering RNAs (siRNAs) that influence gene function. In plants, little is known of the involvement of the RdDM pathway in regulating traits related to immune responses. In a genetic screen designed to reveal factors regulating immunity in Arabidopsis thaliana, we identified NRPD2 as the OVEREXPRESSOR OF CATIONIC PEROXIDASE 1 (OCP1). NRPD2 encodes the second largest subunit of the plant-specific RNA Polymerases IV and V (Pol IV and Pol V), which are crucial for the RdDM pathway. The ocp1 and nrpd2 mutants showed increases in disease susceptibility when confronted with the necrotrophic fungal pathogens Botrytis cinerea and Plectosphaerella cucumerina. Studies were extended to other mutants affected in different steps of the RdDM pathway, such as nrpd1, nrpe1, ago4, drd1, rdr2, and drm1drm2 mutants. Our results indicate that all the mutants studied, with the exception of nrpd1, phenocopy the nrpd2 mutants; and they suggest that, while Pol V complex is required for plant immunity, Pol IV appears dispensable. Moreover, Pol V defective mutants, but not Pol IV mutants, show enhanced disease resistance towards the bacterial pathogen Pseudomonas syringae DC3000. Interestingly, salicylic acid (SA)-mediated defenses effective against PsDC3000 are enhanced in Pol V defective mutants, whereas jasmonic acid (JA)-mediated defenses that protect against fungi are reduced. Chromatin immunoprecipitation analysis revealed that, through differential histone modifications, SA-related defense genes are poised for enhanced activation in Pol V defective mutants and provide clues for understanding the regulation of gene priming during defense. Our results highlight the importance of epigenetic control as an additional layer of complexity in the regulation of plant immunity and point towards multiple components of the RdDM pathway being involved in plant immunity based on genetic evidence, but whether this is a direct or indirect effect on disease-related genes is unclear.

  18. PDF receptor signaling in Caenorhabditis elegans modulates locomotion and egg-laying.

    PubMed

    Meelkop, Ellen; Temmerman, Liesbet; Janssen, Tom; Suetens, Nick; Beets, Isabel; Van Rompay, Liesbeth; Shanmugam, Nilesh; Husson, Steven J; Schoofs, Liliane

    2012-09-25

    In Caenorhabditis elegans, pdfr-1 encodes three receptors of the secretin receptor family. These G protein-coupled receptors are activated by three neuropeptides, pigment dispersing factors 1a, 1b and 2, which are encoded by pdf-1 and pdf-2. We isolated a PDF receptor loss-of-function allele (lst34) by means of a mutagenesis screen and show that the PDF signaling system is involved in locomotion and egg-laying. We demonstrate that the pdfr-1 mutant phenocopies the defective locomotor behavior of the pdf-1 mutant and that pdf-1 and pdf-2 behave antagonistically. All three PDF receptor splice variants are involved in the regulation of locomotor behavior. Cell specific rescue experiments show that this pdf mediated behavior is regulated by neurons rather than body wall muscles. We also show that egg-laying patterns of pdf-1 and pdf-2 mutants are affected, but not those of pdfr-1 mutants, pointing to a novel role for the PDF-system in the regulation of egg-laying. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Analysis of galactosemia-linked mutations of GALT enzyme using a computational biology approach.

    PubMed

    Facchiano, A; Marabotti, A

    2010-02-01

    We describe the prediction of the structural and functional effects of mutations on the enzyme galactose-1-phosphate uridyltransferase related to the genetic disease galactosemia, using a fully computational approach. One hundred and seven single-point mutants were simulated starting from the structural model of the enzyme obtained by homology modeling methods. Several bioinformatics programs were then applied to each resulting mutant protein to analyze the effect of the mutations. The mutations have a direct effect on the active site, or on the dimer assembly and stability, or on the monomer stability. We describe how mutations may exert their effect at a molecular level by altering H-bonds, salt bridges, secondary structure or surface features. The alteration of protein stability, at level of monomer and/or dimer, is the main effect observed. We found an agreement between our results and the functional experimental data available in literature for some mutants. The data and analyses for all the mutants are fully available in the web-accessible database hosted at http://bioinformatica.isa.cnr.it/GALT.

  20. Revealing impaired pathways in the an11 mutant by high-throughput characterization of Petunia axillaris and Petunia inflata transcriptomes.

    PubMed

    Zenoni, Sara; D'Agostino, Nunzio; Tornielli, Giovanni B; Quattrocchio, Francesca; Chiusano, Maria L; Koes, Ronald; Zethof, Jan; Guzzo, Flavia; Delledonne, Massimo; Frusciante, Luigi; Gerats, Tom; Pezzotti, Mario

    2011-10-01

    Petunia is an excellent model system, especially for genetic, physiological and molecular studies. Thus far, however, genome-wide expression analysis has been applied rarely because of the lack of sequence information. We applied next-generation sequencing to generate, through de novo read assembly, a large catalogue of transcripts for Petunia axillaris and Petunia inflata. On the basis of both transcriptomes, comprehensive microarray chips for gene expression analysis were established and used for the analysis of global- and organ-specific gene expression in Petunia axillaris and Petunia inflata and to explore the molecular basis of the seed coat defects in a Petunia hybrida mutant, anthocyanin 11 (an11), lacking a WD40-repeat (WDR) transcription regulator. Among the transcripts differentially expressed in an11 seeds compared with wild type, many expected targets of AN11 were found but also several interesting new candidates that might play a role in morphogenesis of the seed coat. Our results validate the combination of next-generation sequencing with microarray analyses strategies to identify the transcriptome of two petunia species without previous knowledge of their genome, and to develop comprehensive chips as useful tools for the analysis of gene expression in P. axillaris, P. inflata and P. hybrida. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  1. Citrate Accumulation-Related Gene Expression and/or Enzyme Activity Analysis Combined With Metabolomics Provide a Novel Insight for an Orange Mutant

    PubMed Central

    Guo, Ling-Xia; Shi, Cai-Yun; Liu, Xiao; Ning, Dong-Yuan; Jing, Long-Fei; Yang, Huan; Liu, Yong-Zhong

    2016-01-01

    ‘Hong Anliu’ (HAL, Citrus sinensis cv. Hong Anliu) is a bud mutant of ‘Anliu’ (AL), characterized by a comprehensive metabolite alteration, such as lower accumulation of citrate, high accumulation of lycopene and soluble sugars in fruit juice sacs. Due to carboxylic acid metabolism connects other metabolite biosynthesis and/or catabolism networks, we therefore focused analyzing citrate accumulation-related gene expression profiles and/or enzyme activities, along with metabolic fingerprinting between ‘HAL’ and ‘AL’. Compared with ‘AL’, the transcript levels of citrate biosynthesis- and utilization-related genes and/or the activities of their respective enzymes such as citrate synthase, cytosol aconitase and ATP-citrate lyase were significantly higher in ‘HAL’. Nevertheless, the mitochondrial aconitase activity, the gene transcript levels of proton pumps, including vacuolar H+-ATPase, vacuolar H+-PPase, and the juice sac-predominant p-type proton pump gene (CsPH8) were significantly lower in ‘HAL’. These results implied that ‘HAL’ has higher abilities for citrate biosynthesis and utilization, but lower ability for the citrate uptake into vacuole compared with ‘AL’. Combined with the metabolites-analyzing results, a model was then established and suggested that the reduction in proton pump activity is the key factor for the low citrate accumulation and the comprehensive metabolite alterations as well in ‘HAL’. PMID:27385485

  2. Fertilization-independent seed development in Arabidopsis thaliana

    PubMed Central

    Chaudhury, Abdul M.; Ming, Luo; Miller, Celia; Craig, Stuart; Dennis, Elizabeth S.; Peacock, W. James

    1997-01-01

    We report mutants in Arabidopsis thaliana (fertilization-independent seed: fis) in which certain processes of seed development are uncoupled from the double fertilization event that occurs after pollination. These mutants were isolated as ethyl methanesulfonate-induced pseudo-revertants of the pistillata phenotype. Although the pistillata (pi) mutant has short siliques devoid of seed, the fis mutants in the pi background have long siliques containing developing seeds, even though the flowers remain free of pollen. The three fis mutations map to loci on three different chromosomes. In fis1 and fis2 seeds, the autonomous endosperm nuclei are diploid and the endosperm develops to the point of cellularization; the partially developed seeds then atrophy. In these two mutants, proembryos are formed in a low proportion of seeds and do not develop beyond the globular stage. When FIS/fis plants are pollinated by pollen from FIS/FIS plants, ≈50% of the resulting seeds contain fully developed embryos; these seeds germinate and form viable seedlings (FIS/FIS). The other 50% of seeds shrivel and do not germinate; they contain embryos arrested at the torpedo stage (FIS/fis). In normal sexual reproduction, the products of the FIS genes are likely to play important regulatory roles in the development of seed after fertilization. PMID:9108133

  3. Fertilization-independent seed development in Arabidopsis thaliana.

    PubMed

    Chaudhury, A M; Ming, L; Miller, C; Craig, S; Dennis, E S; Peacock, W J

    1997-04-15

    We report mutants in Arabidopsis thaliana (fertilization-independent seed:fis) in which certain processes of seed development are uncoupled from the double fertilization event that occurs after pollination. These mutants were isolated as ethyl methanesulfonate-induced pseudo-revertants of the pistillata phenotype. Although the pistillata (pi) mutant has short siliques devoid of seed, the fis mutants in the pi background have long siliques containing developing seeds, even though the flowers remain free of pollen. The three fis mutations map to loci on three different chromosomes. In fis1 and fis2 seeds, the autonomous endosperm nuclei are diploid and the endosperm develops to the point of cellularization; the partially developed seeds then atrophy. In these two mutants, proembryos are formed in a low proportion of seeds and do not develop beyond the globular stage. When FIS/fis plants are pollinated by pollen from FIS/FIS plants, approximately 50% of the resulting seeds contain fully developed embryos; these seeds germinate and form viable seedlings (FIS/FIS). The other 50% of seeds shrivel and do not germinate; they contain embryos arrested at the torpedo stage (FIS/fis). In normal sexual reproduction, the products of the FIS genes are likely to play important regulatory roles in the development of seed after fertilization.

  4. Both structural and non-structural forms of the readthrough protein of cucurbit aphid-borne yellows virus are essential for efficient systemic infection of plants.

    PubMed

    Boissinot, Sylvaine; Erdinger, Monique; Monsion, Baptiste; Ziegler-Graff, Véronique; Brault, Véronique

    2014-01-01

    Cucurbit aphid-borne yellows virus (CABYV) is a polerovirus (Luteoviridae family) with a capsid composed of the major coat protein and a minor component referred to as the readthrough protein (RT). Two forms of the RT were reported: a full-length protein of 74 kDa detected in infected plants and a truncated form of 55 kDa (RT*) incorporated into virions. Both forms were detected in CABYV-infected plants. To clarify the specific roles of each protein in the viral cycle, we generated by deletion a polerovirus mutant able to synthesize only the RT* which is incorporated into the particle. This mutant was unable to move systemically from inoculated leaves inferring that the C-terminal half of the RT is required for efficient long-distance transport of CABYV. Among a collection of CABYV mutants bearing point mutations in the central domain of the RT, we obtained a mutant impaired in the correct processing of the RT which does not produce the RT*. This mutant accumulated very poorly in upper non-inoculated leaves, suggesting that the RT* has a functional role in long-distance movement of CABYV. Taken together, these results infer that both RT proteins are required for an efficient CABYV movement.

  5. Both Structural and Non-Structural Forms of the Readthrough Protein of Cucurbit aphid-borne yellows virus Are Essential for Efficient Systemic Infection of Plants

    PubMed Central

    Boissinot, Sylvaine; Erdinger, Monique; Monsion, Baptiste; Ziegler-Graff, Véronique; Brault, Véronique

    2014-01-01

    Cucurbit aphid-borne yellows virus (CABYV) is a polerovirus (Luteoviridae family) with a capsid composed of the major coat protein and a minor component referred to as the readthrough protein (RT). Two forms of the RT were reported: a full-length protein of 74 kDa detected in infected plants and a truncated form of 55 kDa (RT*) incorporated into virions. Both forms were detected in CABYV-infected plants. To clarify the specific roles of each protein in the viral cycle, we generated by deletion a polerovirus mutant able to synthesize only the RT* which is incorporated into the particle. This mutant was unable to move systemically from inoculated leaves inferring that the C-terminal half of the RT is required for efficient long-distance transport of CABYV. Among a collection of CABYV mutants bearing point mutations in the central domain of the RT, we obtained a mutant impaired in the correct processing of the RT which does not produce the RT*. This mutant accumulated very poorly in upper non-inoculated leaves, suggesting that the RT* has a functional role in long-distance movement of CABYV. Taken together, these results infer that both RT proteins are required for an efficient CABYV movement. PMID:24691251

  6. Spoken language development in children following cochlear implantation.

    PubMed

    Niparko, John K; Tobey, Emily A; Thal, Donna J; Eisenberg, Laurie S; Wang, Nae-Yuh; Quittner, Alexandra L; Fink, Nancy E

    2010-04-21

    Cochlear implantation is a surgical alternative to traditional amplification (hearing aids) that can facilitate spoken language development in young children with severe to profound sensorineural hearing loss (SNHL). To prospectively assess spoken language acquisition following cochlear implantation in young children. Prospective, longitudinal, and multidimensional assessment of spoken language development over a 3-year period in children who underwent cochlear implantation before 5 years of age (n = 188) from 6 US centers and hearing children of similar ages (n = 97) from 2 preschools recruited between November 2002 and December 2004. Follow-up completed between November 2005 and May 2008. Performance on measures of spoken language comprehension and expression (Reynell Developmental Language Scales). Children undergoing cochlear implantation showed greater improvement in spoken language performance (10.4; 95% confidence interval [CI], 9.6-11.2 points per year in comprehension; 8.4; 95% CI, 7.8-9.0 in expression) than would be predicted by their preimplantation baseline scores (5.4; 95% CI, 4.1-6.7, comprehension; 5.8; 95% CI, 4.6-7.0, expression), although mean scores were not restored to age-appropriate levels after 3 years. Younger age at cochlear implantation was associated with significantly steeper rate increases in comprehension (1.1; 95% CI, 0.5-1.7 points per year younger) and expression (1.0; 95% CI, 0.6-1.5 points per year younger). Similarly, each 1-year shorter history of hearing deficit was associated with steeper rate increases in comprehension (0.8; 95% CI, 0.2-1.2 points per year shorter) and expression (0.6; 95% CI, 0.2-1.0 points per year shorter). In multivariable analyses, greater residual hearing prior to cochlear implantation, higher ratings of parent-child interactions, and higher socioeconomic status were associated with greater rates of improvement in comprehension and expression. The use of cochlear implants in young children was associated with better spoken language learning than would be predicted from their preimplantation scores.

  7. A novel mutation in TFL1 homolog affecting determinacy in cowpea (Vigna unguiculata).

    PubMed

    Dhanasekar, P; Reddy, K S

    2015-02-01

    Mutations in the widely conserved Arabidopsis Terminal Flower 1 (TFL1) gene and its homologs have been demonstrated to result in determinacy across genera, the knowledge of which is lacking in cowpea. Understanding the molecular events leading to determinacy of apical meristems could hasten development of cowpea varieties with suitable ideotypes. Isolation and characterization of a novel mutation in cowpea TFL1 homolog (VuTFL1) affecting determinacy is reported here for the first time. Cowpea TFL1 homolog was amplified using primers designed based on conserved sequences in related genera and sequence variation was analysed in three gamma ray-induced determinate mutants, their indeterminate parent "EC394763" and two indeterminate varieties. The analyses of sequence variation exposed a novel SNP distinguishing the determinate mutants from the indeterminate types. The non-synonymous point mutation in exon 4 at position 1,176 resulted from transversion of cytosine (C) to adenine (A) leading to an amino acid change (Pro-136 to His) in determinate mutants. The effect of the mutation on protein function and stability was predicted to be detrimental using different bioinformatics/computational tools. The functionally significant novel substitution mutation is hypothesized to affect determinacy in the cowpea mutants. Development of suitable regeneration protocols in this hitherto recalcitrant crop and subsequent complementation assay in mutants or over-expressing assay in parents could decisively conclude the role of the SNP in regulating determinacy in these cowpea mutants.

  8. Mutation of zebrafish dihydrolipoamide branched-chain transacylase E2 results in motor dysfunction and models maple syrup urine disease

    PubMed Central

    Friedrich, Timo; Lambert, Aaron M.; Masino, Mark A.; Downes, Gerald B.

    2012-01-01

    SUMMARY Analysis of zebrafish mutants that demonstrate abnormal locomotive behavior can elucidate the molecular requirements for neural network function and provide new models of human disease. Here, we show that zebrafish quetschkommode (que) mutant larvae exhibit a progressive locomotor defect that culminates in unusual nose-to-tail compressions and an inability to swim. Correspondingly, extracellular peripheral nerve recordings show that que mutants demonstrate abnormal locomotor output to the axial muscles used for swimming. Using positional cloning and candidate gene analysis, we reveal that a point mutation disrupts the gene encoding dihydrolipoamide branched-chain transacylase E2 (Dbt), a component of a mitochondrial enzyme complex, to generate the que phenotype. In humans, mutation of the DBT gene causes maple syrup urine disease (MSUD), a disorder of branched-chain amino acid metabolism that can result in mental retardation, severe dystonia, profound neurological damage and death. que mutants harbor abnormal amino acid levels, similar to MSUD patients and consistent with an error in branched-chain amino acid metabolism. que mutants also contain markedly reduced levels of the neurotransmitter glutamate within the brain and spinal cord, which probably contributes to their abnormal spinal cord locomotor output and aberrant motility behavior, a trait that probably represents severe dystonia in larval zebrafish. Taken together, these data illustrate how defects in branched-chain amino acid metabolism can disrupt nervous system development and/or function, and establish zebrafish que mutants as a model to better understand MSUD. PMID:22046030

  9. Alleviation of proton toxicity by nitrate uptake specifically depends on nitrate transporter 1.1 in Arabidopsis.

    PubMed

    Fang, Xian Zhi; Tian, Wen Hao; Liu, Xing Xing; Lin, Xian Yong; Jin, Chong Wei; Zheng, Shao Jian

    2016-07-01

    Protons in acid soil are highly rhizotoxic to plants, but the mechanism of tolerance of plants to protons is largely unknown. Nitrate uptake by root cells is accompanied by the uptake of protons. Therefore, nitrate uptake transporters (NRTs) may be involved in plant tolerance to proton toxicity. We investigated the root nitrate uptake response to proton stress in Arabidopsis and its association with proton tolerance using NRT-related mutants and pharmacological methods. Lack of NRT1.1 in knockout nrt1.1 mutants led to impaired proton tolerance in nitrate-sufficient growth medium, whereas no difference was seen between wild-type plants and NRT1.2-, NRT2.1-, NRT2.2-, and NRT2.4-null mutants. Another nrt1.1 point mutant, which is defective in nitrate uptake but has a normal nitrate-sensing function, also had impaired proton tolerance compared with the wild-type plant. Furthermore, proton stress induced NRT1.1-mediated nitrate uptake. These results indicate that NRT1.1-conferred proton tolerance depends on nitrate uptake activity. In addition, the rooting medium was alkalified by wild-type plants, but not by knockout nrt1.1 mutants, and in pH-buffered medium, there were no differences in proton tolerance between wild-type plants and knockout nrt1.1 mutants. We conclude that NRT1.1-mediated nitrate uptake plays a crucial role in plant proton tolerance by alkalifying the rhizosphere. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walpen, Thomas; Kalus, Ina; Schwaller, Juerg

    Highlights: Black-Right-Pointing-Pointer Pim1{sup -/-} endothelial cell proliferation displays increased sensitivity to rapamycin. Black-Right-Pointing-Pointer mTOR inhibition by rapamycin enhances PIM1 cytosolic and nuclear protein levels. Black-Right-Pointing-Pointer Truncation of Pim1 beyond serine 276 results in nuclear localization of the kinase. Black-Right-Pointing-Pointer Nuclear PIM1 increases endothelial proliferation independent of rapamycin. -- Abstract: The PIM serine/threonine kinases and the mTOR/AKT pathway integrate growth factor signaling and promote cell proliferation and survival. They both share phosphorylation targets and have overlapping functions, which can partially substitute for each other. In cancer cells PIM kinases have been reported to produce resistance to mTOR inhibition by rapamycin. Tumormore » growth depends highly on blood vessel infiltration into the malignant tissue and therefore on endothelial cell proliferation. We therefore investigated how the PIM1 kinase modulates growth inhibitory effects of rapamycin in mouse aortic endothelial cells (MAEC). We found that proliferation of MAEC lacking Pim1 was significantly more sensitive to rapamycin inhibition, compared to wildtype cells. Inhibition of mTOR and AKT in normal MAEC resulted in significantly elevated PIM1 protein levels in the cytosol and in the nucleus. We observed that truncation of the C-terminal part of Pim1 beyond Ser 276 resulted in almost exclusive nuclear localization of the protein. Re-expression of this Pim1 deletion mutant significantly increased the proliferation of Pim1{sup -/-} cells when compared to expression of the wildtype Pim1 cDNA. Finally, overexpression of the nuclear localization mutant and the wildtype Pim1 resulted in complete resistance to growth inhibition by rapamycin. Thus, mTOR inhibition-induced nuclear accumulation of PIM1 or expression of a nuclear C-terminal PIM1 truncation mutant is sufficient to increase endothelial cell proliferation, suggesting that nuclear localization of PIM1 is important for resistance of MAEC to rapamycin-mediated inhibition of proliferation.« less

  11. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    DOEpatents

    Somerville, Chris R [Portola Valley, CA; Scheible, Wolf [Golm, DE

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  12. AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate.

    PubMed

    Partin, K M; Fleck, M W; Mayer, M L

    1996-11-01

    AMPA receptor GluRA subunits with mutations at position 750, a residue shown previously to control allosteric regulation by cyclothiazide, were analyzed for modulation of deactivation and desensitization by cyclothiazide, aniracetam, and thiocyanate. Point mutations from Ser to Asn, Ala, Asp, Gly, Gln, Met, Cys, Thr, Leu, Val, and Tyr were constructed in GluRAflip. The last four of these mutants were not functional; S750D was active only in the presence of cyclothiazide, and the remaining mutants exhibited altered rates of deactivation and desensitization for control responses to glutamate, and showed differential modulation by cyclothiazide and aniracetam. Results from kinetic analysis are consistent with aniracetam and cyclothiazide acting via distinct mechanisms. Our experiments demonstrate for the first time the functional importance of residue 750 in regulating intrinsic channel-gating kinetics and emphasize the biological significance of alternative splicing in the M3-M4 extracellular loop.

  13. Calmodulin point mutations affect Drosophila development and behavior.

    PubMed

    Nelson, H B; Heiman, R G; Bolduc, C; Kovalick, G E; Whitley, P; Stern, M; Beckingham, K

    1997-12-01

    Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations.

  14. Calmodulin Point Mutations Affect Drosophila Development and Behavior

    PubMed Central

    Nelson, H. B.; Heiman, R. G.; Bolduc, C.; Kovalick, G. E.; Whitley, P.; Stern, M.; Beckingham, K.

    1997-01-01

    Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations. PMID:9409836

  15. Discovery of AG-120 (Ivosidenib): A First-in-Class Mutant IDH1 Inhibitor for the Treatment of IDH1 Mutant Cancers.

    PubMed

    Popovici-Muller, Janeta; Lemieux, René M; Artin, Erin; Saunders, Jeffrey O; Salituro, Francesco G; Travins, Jeremy; Cianchetta, Giovanni; Cai, Zhenwei; Zhou, Ding; Cui, Dawei; Chen, Ping; Straley, Kimberly; Tobin, Erica; Wang, Fang; David, Muriel D; Penard-Lacronique, Virginie; Quivoron, Cyril; Saada, Véronique; de Botton, Stéphane; Gross, Stefan; Dang, Lenny; Yang, Hua; Utley, Luke; Chen, Yue; Kim, Hyeryun; Jin, Shengfang; Gu, Zhiwei; Yao, Gui; Luo, Zhiyong; Lv, Xiaobing; Fang, Cheng; Yan, Liping; Olaharski, Andrew; Silverman, Lee; Biller, Scott; Su, Shin-San M; Yen, Katharine

    2018-04-12

    Somatic point mutations at a key arginine residue (R132) within the active site of the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) confer a novel gain of function in cancer cells, resulting in the production of d-2-hydroxyglutarate (2-HG), an oncometabolite. Elevated 2-HG levels are implicated in epigenetic alterations and impaired cellular differentiation. IDH1 mutations have been described in an array of hematologic malignancies and solid tumors. Here, we report the discovery of AG-120 (ivosidenib), an inhibitor of the IDH1 mutant enzyme that exhibits profound 2-HG lowering in tumor models and the ability to effect differentiation of primary patient AML samples ex vivo. Preliminary data from phase 1 clinical trials enrolling patients with cancers harboring an IDH1 mutation indicate that AG-120 has an acceptable safety profile and clinical activity.

  16. Discovery of AG-120 (Ivosidenib): A First-in-Class Mutant IDH1 Inhibitor for the Treatment of IDH1 Mutant Cancers

    PubMed Central

    2018-01-01

    Somatic point mutations at a key arginine residue (R132) within the active site of the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) confer a novel gain of function in cancer cells, resulting in the production of d-2-hydroxyglutarate (2-HG), an oncometabolite. Elevated 2-HG levels are implicated in epigenetic alterations and impaired cellular differentiation. IDH1 mutations have been described in an array of hematologic malignancies and solid tumors. Here, we report the discovery of AG-120 (ivosidenib), an inhibitor of the IDH1 mutant enzyme that exhibits profound 2-HG lowering in tumor models and the ability to effect differentiation of primary patient AML samples ex vivo. Preliminary data from phase 1 clinical trials enrolling patients with cancers harboring an IDH1 mutation indicate that AG-120 has an acceptable safety profile and clinical activity. PMID:29670690

  17. Initial characterization of 17 viruses harboring mutant forms of the immediate-early gene of equine herpesvirus 1.

    PubMed

    Buczynski, Kimberly A; Kim, Seong K; O'Callaghan, Dennis J

    2005-10-01

    The sole immediate-early (IE) gene of equine herpesvirus 1 (EHV-1) encodes a major regulatory protein of 1487 amino acids (aa) capable of modulating gene expression from both early and late promoters and also of trans-repressing its own promoter. Using a specially designed recombination system and a library of IE linker-insertion, deletion, point, and nonsense mutant constructs that encode forms of the IE protein (IEP) harboring mutations within all five regions, 17 mutant viruses were generated and characterized. Ribonuclease protection analyses revealed that all 17 mutants synthesize the IE mRNA in RK-13 cells, whereas those that failed to replicate on non-complementing RK-13 cells displayed a defect in the transcription of either an important early gene (EICP0) and/or an essential late gene (glycoprotein D). Western blot analyses showed that the IEP was synthesized and detectable in cells infected with each mutant virus, including those mutants that failed to replicate on non-complementing RK-13 cells. Eleven of the 17 mutants were capable of growth on non-complementing RK-13 cells, whereas mutant viruses with deletions within the serine-rich tract (SRT), nucleus localization signal (NLS), or DNA-binding domain (DBD) were capable of growth only on the IEP-producing cell line (IE13.1). Lastly, temperature shift experiments revealed that mutant viruses containing deletions within the C-terminus (KyAn1029 and KyAn1411) or within the SRT (KyADeltaSRT2) of the IEP exhibited a temperature-sensitive phenotype in that these viruses, in contrast to the parent KyA, failed to replicate at 39 degrees C. Overall, these results indicate that the C-terminus of the IEP is not essential for IEP function in cell culture, but this region contains elements that enhance the function(s) of the IEP. The initial characterization of these 17 EHV-1 mutants has shown that sequences totaling at least 43% of the IEP are not essential for virus replication in cell culture.

  18. Membrane-bound oxygen reductases of the anaerobic sulfate-reducing Desulfovibrio vulgaris Hildenborough: roles in oxygen defence and electron link with periplasmic hydrogen oxidation.

    PubMed

    Ramel, F; Amrani, A; Pieulle, L; Lamrabet, O; Voordouw, G; Seddiki, N; Brèthes, D; Company, M; Dolla, A; Brasseur, G

    2013-12-01

    Cytoplasmic membranes of the strictly anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough contain two terminal oxygen reductases, a bd quinol oxidase and a cc(b/o)o3 cytochrome oxidase (Cox). Viability assays pointed out that single Δbd, Δcox and double ΔbdΔcox deletion mutant strains were more sensitive to oxygen exposure than the WT strain, showing the involvement of these oxygen reductases in the detoxification of oxygen. The Δcox strain was slightly more sensitive than the Δbd strain, pointing to the importance of the cc(b/o)o3 cytochrome oxidase in oxygen protection. Decreased O2 reduction rates were measured in mutant cells and membranes using lactate, NADH, ubiquinol and menadiol as substrates. The affinity for oxygen measured with the bd quinol oxidase (Km, 300 nM) was higher than that of the cc(b/o)o3 cytochrome oxidase (Km, 620 nM). The total membrane activity of the bd quinol oxidase was higher than that of the cytochrome oxidase activity in line with the higher expression of the bd oxidase genes. In addition, analysis of the ΔbdΔcox mutant strain indicated the presence of at least one O2-scavenging membrane-bound system able to reduce O2 with menaquinol as electron donor with an O2 affinity that was two orders of magnitude lower than that of the bd quinol oxidase. The lower O2 reductase activity in mutant cells with hydrogen as electron donor and the use of specific inhibitors indicated an electron transfer link between periplasmic H2 oxidation and membrane-bound oxygen reduction via the menaquinol pool. This linkage is crucial in defence of the strictly anaerobic bacterium Desulfovibrio against oxygen stress.

  19. A Buoyancy-Based Screen of Drosophila Larvae for Fat-Storage Mutants Reveals a Role for Sir2 in Coupling Fat Storage to Nutrient Availability

    PubMed Central

    Reis, Tânia; Van Gilst, Marc R.; Hariharan, Iswar K.

    2010-01-01

    Obesity has a strong genetic component, but few of the genes that predispose to obesity are known. Genetic screens in invertebrates have the potential to identify genes and pathways that regulate the levels of stored fat, many of which are likely to be conserved in humans. To facilitate such screens, we have developed a simple buoyancy-based screening method for identifying mutant Drosophila larvae with increased levels of stored fat. Using this approach, we have identified 66 genes that when mutated increase organismal fat levels. Among these was a sirtuin family member, Sir2. Sirtuins regulate the storage and metabolism of carbohydrates and lipids by deacetylating key regulatory proteins. However, since mammalian sirtuins function in many tissues in different ways, it has been difficult to define their role in energy homeostasis accurately under normal feeding conditions. We show that knockdown of Sir2 in the larval fat body results in increased fat levels. Moreover, using genetic mosaics, we demonstrate that Sir2 restricts fat accumulation in individual cells of the fat body in a cell-autonomous manner. Consistent with this function, changes in the expression of metabolic enzymes in Sir2 mutants point to a shift away from catabolism. Surprisingly, although Sir2 is typically upregulated under conditions of starvation, Sir2 mutant larvae survive better than wild type under conditions of amino-acid starvation as long as sugars are provided. Our findings point to a Sir2-mediated pathway that activates a catabolic response to amino-acid starvation irrespective of the sugar content of the diet. PMID:21085633

  20. Therapeutic Antibody Engineering To Improve Viscosity and Phase Separation Guided by Crystal Structure.

    PubMed

    Chow, Chi-Kin; Allan, Barrett W; Chai, Qing; Atwell, Shane; Lu, Jirong

    2016-03-07

    Antibodies at high concentrations often reveal unanticipated biophysical properties suboptimal for therapeutic development. The purpose of this work was to explore the use of point mutations based on crystal structure information to improve antibody physical properties such as viscosity and phase separation (LLPS) at high concentrations. An IgG4 monoclonal antibody (Mab4) that exhibited high viscosity and phase separation at high concentration was used as a model system. Guided by the crystal structure, four CDR point mutants were made to evaluate the role of hydrophobic and charge interactions on solution behavior. Surprisingly and unpredictably, two of the charge mutants, R33G and N35E, showed a reduction in viscosity and a lower propensity to form LLPS at high concentration compared to the wild-type (WT), while a third charge mutant S28K showed an increased propensity to form LLPS compared to the WT. A fourth mutant, F102H, had reduced hydrophobicity, but unchanged viscosity and phase separation behavior. We further evaluated the correlation of various biophysical measurements including second virial coefficient (A2), interaction parameter (kD), weight-average molecular weight (WAMW), and hydrodynamic diameters (DH), at relatively low protein concentration (4 to 15 mg/mL) to physical properties, such as viscosity and liquid-liquid phase separation (LLPS), at high concentration. Surprisingly, kD measured using dynamic light scattering (DLS) at low antibody concentration correlated better with viscosity and phase separation than did A2 for Mab4. Our results suggest that the high viscosity and phase separation observed at high concentration for Mab4 are mainly driven by charge and not hydrophobicity.

  1. CHARACTERIZING THE ROLE OF THE NELL1 GENE IN CARDIOVASCULAR DEVELOPMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, L. Y.; Culiat, C.

    Nell1{sup 6R} is a chemically-induced point mutation in a novel cell-signaling gene, Nell1, which results in truncation of the protein and degradation of the Nell16R transcript. Earlier studies revealed that loss of Nell1 function reduces expression of numerous extracellular matrix (ECM) proteins required for differentiation of bone and cartilage precursor cells, thereby causing severe skull and spinal defects. Since skeletal and cardiovascular development are closely linked biological processes, this research focused on: a) examining Nell16R mutant mice for cardiovascular defects, b) determining Nell1 expression in fetal and adult hearts, and c) establishing how ECM genes affected by Nell1 infl uencemore » heart development. Structural heart defects in Nell16R mutant fetuses were analyzed by heart length and width measurements and standard histological methods (haematoxylin and eosin staining). Nell1 expression was assayed in fetal and adult hearts using reverse transcription polymerase chain reaction (RT-PCR). A comprehensive bioinformatics analysis using public databases (Stanford SOURCE Search, Integrated Cartilage Gene Database, Mouse Genome Informatics, and NCBI UniGene) was undertaken to investigate the relationship between cardiovascular development and each of twentyeight genes affected by Nell1. Nell1-defi cient mice have signifi cantly enlarged hearts (particularly the heart width), dramatically reduced blood fl ow out of the heart and unexpanded lungs. Isolation of total RNAs from hearts of adult (control and heterozygote) and fetal (control and homozygous mutant) mice have been completed and RT-PCR assays are in progress. The bioinformatics analysis showed that the majority of genes with reduced expression in Nell1-defi cient mice are normally expressed in the heart (79%; 22/28), blood vessels (71%; 20/28) and bone marrow (61%; 17/28). Moreover, mouse mutations in seven of these genes (Col15a1, Osf-2, Bmpr1a, Pkd1, Mfge8, Ptger4, Col5a1) manifest abnormalities in cardiovascular development. These data demonstrate for the fi rst time that Nell1 has a role in early mammalian cardiovascular development, mediated by its regulation of ECM proteins necessary for normal cell growth and differentiation. In addition, understanding the mechanisms by which Nell1 and its associated ECM genes affect the cardiovascular system can provide future strategies for the treatment of heart and blood vessel defects.« less

  2. The Cerebro-oculo-facio-skeletal Syndrome Point Mutation F231L in the ERCC1 DNA Repair Protein Causes Dissociation of the ERCC1-XPF Complex*

    PubMed Central

    Faridounnia, Maryam; Wienk, Hans; Kovačič, Lidija; Folkers, Gert E.; Jaspers, Nicolaas G. J.; Kaptein, Robert; Hoeijmakers, Jan H. J.; Boelens, Rolf

    2015-01-01

    The ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and XPF (xeroderma pigmentosum complementation group F), leads to severe NER pathway deficiencies. Here, we analyze biophysical properties and report the NMR structure of the complex of the C-terminal tandem helix-hairpin-helix domains of ERCC1-XPF that contains this mutation. The structures of wild type and the F231L mutant are very similar. The F231L mutation results in only a small disturbance of the ERCC1-XPF interface, where, in contrast to Phe231, Leu231 lacks interactions stabilizing the ERCC1-XPF complex. One of the two anchor points is severely distorted, and this results in a more dynamic complex, causing reduced stability and an increased dissociation rate of the mutant complex as compared with wild type. These data provide a biophysical explanation for the severe NER deficiencies caused by this mutation. PMID:26085086

  3. Peptide Nucleic Acid Array for Detection of Point Mutations in Hepatitis B Virus Associated with Antiviral Resistance ▿ †

    PubMed Central

    Jang, Hyunjung; Kim, Jihyun; Choi, Jae-jin; Son, Yeojin; Park, Heekyung

    2010-01-01

    The detection of antiviral-resistant hepatitis B virus (HBV) mutations is important for monitoring the response to treatment and for effective treatment decisions. We have developed an array using peptide nucleic acid (PNA) probes to detect point mutations in HBV associated with antiviral resistance. PNA probes were designed to detect mutations associated with resistance to lamivudine, adefovir, and entecavir. The PNA array assay was sensitive enough to detect 102 copies/ml. The PNA array assay was able to detect mutants present in more than 5% of the virus population when the total HBV DNA concentration was greater than 104 copies/ml. We analyzed a total of 68 clinical samples by this assay and validated its usefulness by comparing results to those of the sequencing method. The PNA array correctly identified viral mutants and has high concordance (98.3%) with direct sequencing in detecting antiviral-resistant mutations. Our results showed that the PNA array is a rapid, sensitive, and easily applicable assay for the detection of antiviral-resistant mutation in HBV. Thus, the PNA array is a useful and powerful diagnostic tool for the detection of point mutations or polymorphisms. PMID:20573874

  4. Impact of resistance mutations on inhibitor binding to HIV-1 integrase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qi; Buolamwini, John K.; Smith, Jeremy C.

    2013-11-08

    Here, HIV-1 integrase (IN) is essential for HIV-1 replication, catalyzing two key reaction steps termed 3' processing and strand transfer. Therefore, IN has become an important target for antiviral drug discovery. However, mutants have emerged, such as E92Q/N155H and G140S/Q148H, which confer resistance to raltegravir (RAL), the first IN strand transfer inhibitor (INSTI) approved by the FDA, and to the recently approved elvitegravir (EVG). To gain insights into the molecular mechanisms of ligand binding and drug resistance, we performed molecular dynamics (MD) simulations of homology models of the HIV-1 IN and four relevant mutants complexed with viral DNA and RAL.more » The results show that the structure and dynamics of the 140s loop, comprising residues 140 to 149, are strongly influenced by the IN mutations. In the simulation of the G140S/Q148H double mutant, we observe spontaneous dissociation of RAL from the active site, followed by an intrahelical swing-back of the 3' -OH group of nucleotide A17, consistent with the experimental observation that the G140S/Q148H mutant exhibits the highest resistance to RAL compared to other IN mutants. An important hydrogen bond between residues 145 and 148 is present in the wild-type IN but not in the G140S/Q148H mutant, accounting for the structural and dynamical differences of the 140s' loop and ultimately impairing RAL binding in the double mutant. End-point free energy calculations that broadly capture the experimentally known RAL binding profiles elucidate the contributions of the 140s' loop to RAL binding free energies and suggest possible approaches to overcoming drug resistance.« less

  5. Zebrafish pit1 mutants lack three pituitary cell types and develop severe dwarfism.

    PubMed

    Nica, Gabriela; Herzog, Wiebke; Sonntag, Carmen; Hammerschmidt, Matthias

    2004-05-01

    The Pou domain transcription factor Pit-1 is required for lineage determination and cellular commitment processes during mammalian adenohypophysis development. Here we report the cloning and mutational analysis of a pit1 homolog from zebrafish. Compared with mouse, zebrafish pit1 starts to be expressed at a much earlier stage of adenohypophysis development. However, as in the mouse, expression is restricted to a subset of pituitary cell types, excluding proopiomelanocortin (pomc)-expressing cells (corticotropes, melanotropes) and possibly gonadotropes. We could identify two N-ethyl-N-nitrosourea-induced zebrafish pit1 null mutants. Most mutants die during larval stages, whereas survivors develop severe dwarfism. Mutant larvae lack lactotropes, somatotropes, and thyrotropes, although the adenohypophysis is of normal size, without any sign of increased apoptosis rates. Instead, mutant embryos initiate ectopic expression of pomc in pit1-positive cells, leading to an expansion of the Pomc lineage. Similarly, the number of gonadotropes seems increased, as indicated by the expression of gsualpha, a marker for thyrotropes and gonadotropes. In pit1 mutants, the total number of gsualpha-positive cells is normal despite the loss of gsualpha and tshbeta coexpressing cells. Together, these data suggest a transfating of the Pit1 lineage to the Pomc and possibly the gonadotroph lineages in the mutant, and a pomc- and gonadotropin-repressive role of Pit1 during normal zebrafish development. This is different from mouse, for which a repressive role of Pit-1 has only been reported for the gonadotropin Lhbeta, but not for Pomc. In sum, our data point to both conserved and class-specific aspects of Pit1 function during pituitary development in different vertebrate species.

  6. A Phex Mutation in a Murine Model of X-linked Hypophosphatemia Alters Phosphate Responsiveness of Bone Cells

    PubMed Central

    Ichikawa, Shoji; Austin, Anthony M.; Gray, Amie K.; Econs, Michael J.

    2011-01-01

    Mutations in the PHEX gene cause X-linked hypophosphatemia (XLH). Hypophosphatemia in XLH results from increased circulating levels of a phosphaturic hormone, fibroblast growth factor 23 (FGF23), which inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D (calcitriol) synthesis. The current standard therapy for XLH – high dose phosphate and calcitriol – further increases FGF23 concentrations, suggesting that patients with XLH may have an altered response to extracellular phosphate. To test for the presence of abnormal phosphate responsiveness, we compared serum biochemistries and femoral Fgf23 mRNA expression between wild-type mice, murine models of XLH (PhexK496X) and hyperphosphatemic tumoral calcinosis (Galnt3 -/-), and Galnt3/Phex double mutant mice. Phex mutant mice had not only increased Fgf23 expression, but also reduced proteolytic cleavage of intact Fgf23 protein, resulting in markedly elevated intact Fgf23 levels and consequent hypophosphatemia. In contrast, despite markedly increased Fgf23 expression, Galnt3 knockout mice had significantly high proteolytic cleavage of Fgf23 protein, leading to low intact Fgf23 concentrations and hyperphosphatemia. Galnt3/Phex double mutant mice had an intermediate biochemical phenotype between wild-type and Phex mutant mice, including slightly elevated intact Fgf23 concentrations with milder hypophosphatemia. Despite the hypophosphatemia, double mutant mice attempted to reduce serum phosphate back to the level of Phex mutant mice by up-regulating Fgf23 expression as much as 24 fold higher than Phex mutant mice. These data suggest that Phex mutations alter the responsiveness of bone cells to extracellular phosphate concentrations and may create a lower set point for “normal” phosphate levels. PMID:22006791

  7. A Phex mutation in a murine model of X-linked hypophosphatemia alters phosphate responsiveness of bone cells.

    PubMed

    Ichikawa, Shoji; Austin, Anthony M; Gray, Amie K; Econs, Michael J

    2012-02-01

    Mutations in the PHEX gene cause X-linked hypophosphatemia (XLH). Hypophosphatemia in XLH results from increased circulating levels of a phosphaturic hormone, fibroblast growth factor 23 (FGF23), which inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D (calcitriol) synthesis. The current standard therapy for XLH--high-dose phosphate and calcitriol--further increases FGF23 concentrations, suggesting that patients with XLH may have an altered response to extracellular phosphate. To test for the presence of abnormal phosphate responsiveness, we compared serum biochemistries and femoral Fgf23 mRNA expression between wild-type mice, murine models of XLH (Phex(K496X)) and hyperphosphatemic tumoral calcinosis (Galnt3(-/-)), and Galnt3/Phex double-mutant mice. Phex mutant mice had not only increased Fgf23 expression but also reduced proteolytic cleavage of intact Fgf23 protein, resulting in markedly elevated intact Fgf23 levels and consequent hypophosphatemia. In contrast, despite markedly increased Fgf23 expression, Galnt3 knockout mice had significantly high proteolytic cleavage of Fgf23 protein, leading to low intact Fgf23 concentrations and hyperphosphatemia. Galnt3/Phex double-mutant mice had an intermediate biochemical phenotype between wild-type and Phex mutant mice, including slightly elevated intact Fgf23 concentrations with milder hypophosphatemia. Despite the hypophosphatemia, double-mutant mice attempted to reduce serum phosphate back to the level of Phex mutant mice by upregulating Fgf23 expression as much as 24-fold higher than Phex mutant mice. These data suggest that Phex mutations alter the responsiveness of bone cells to extracellular phosphate concentrations and may create a lower set point for "normal" phosphate levels.

  8. Interaction of metronidazole with DNA repair mutants of Escherichia coli.

    PubMed

    Yeung, T C; Beaulieu, B B; McLafferty, M A; Goldman, P

    1984-01-01

    It has been proposed that one of metronidazole's partially reduced intermediates interacts either with DNA to exert a bactericidal effect or with water to form acetamide. To test this hypothesis we have examined the effect of metronidazole on several mutants of Escherichia coli that are defective in DNA repair. UV-susceptible RecA- and UvrB- point mutants have an increased susceptibility to metronidazole as manifested by both a decreased minimal inhibitory concentration and a greater bactericidal response to metronidazole in resting cultures. By these criteria, however, we find that UvrB- deletion mutants, which lack the ability to reduce nitrate and chlorate, are no more susceptible to metronidazole than is the wild type. We find, however, that these deletion mutants also lack the ability to reduce metronidazole and thus possibly to form its reactive species. When metronidazole's bactericidal effect is expressed in terms of the concurrent accumulation of acetamide derived from metronidazole, then all RecA- and UvrB- mutants are killed more efficiently than their wild types. The data are consistent, therefore, with metronidazole's lethal effect being mediated by a partially reduced intermediate on the metabolic pathway between metronidazole and acetamide. Defects in other aspects of the DNA repair system do not confer this increased susceptibility to the proposed intermediate. A Tag- mutant, for example, which is defective in 3-methyl-adenine-DNA glycosylase, does not have this increased susceptibility to the presumed precursor of acetamide. Thus, these results provide further support for the hypothesis that the bactericidal effect of metronidazole is mediated by a partially reduced intermediate in the metabolic conversion of metronidazole to acetamide and suggest that this intermediate interacts with DNA to produce a lesion similar to that caused by UV light.

  9. Interaction of metronidazole with DNA repair mutants of Escherichia coli.

    PubMed Central

    Yeung, T C; Beaulieu, B B; McLafferty, M A; Goldman, P

    1984-01-01

    It has been proposed that one of metronidazole's partially reduced intermediates interacts either with DNA to exert a bactericidal effect or with water to form acetamide. To test this hypothesis we have examined the effect of metronidazole on several mutants of Escherichia coli that are defective in DNA repair. UV-susceptible RecA- and UvrB- point mutants have an increased susceptibility to metronidazole as manifested by both a decreased minimal inhibitory concentration and a greater bactericidal response to metronidazole in resting cultures. By these criteria, however, we find that UvrB- deletion mutants, which lack the ability to reduce nitrate and chlorate, are no more susceptible to metronidazole than is the wild type. We find, however, that these deletion mutants also lack the ability to reduce metronidazole and thus possibly to form its reactive species. When metronidazole's bactericidal effect is expressed in terms of the concurrent accumulation of acetamide derived from metronidazole, then all RecA- and UvrB- mutants are killed more efficiently than their wild types. The data are consistent, therefore, with metronidazole's lethal effect being mediated by a partially reduced intermediate on the metabolic pathway between metronidazole and acetamide. Defects in other aspects of the DNA repair system do not confer this increased susceptibility to the proposed intermediate. A Tag- mutant, for example, which is defective in 3-methyl-adenine-DNA glycosylase, does not have this increased susceptibility to the presumed precursor of acetamide. Thus, these results provide further support for the hypothesis that the bactericidal effect of metronidazole is mediated by a partially reduced intermediate in the metabolic conversion of metronidazole to acetamide and suggest that this intermediate interacts with DNA to produce a lesion similar to that caused by UV light. PMID:6367636

  10. Mechanisms of Lipid Accumulation in the Bone Morphogenetic Protein Receptor Type 2 Mutant Right Ventricle

    PubMed Central

    Brittain, Evan L.; Fessel, Joshua P.; Penner, Niki; Atkinson, James; Funke, Mitch; Grueter, Carrie; Jerome, W. Gray; Freeman, Michael; Newman, John H.; West, James; Hemnes, Anna R.

    2016-01-01

    Rationale: In heritable pulmonary arterial hypertension with germline mutation in the bone morphogenetic protein receptor type 2 (BMPR2) gene, right ventricle (RV) dysfunction is associated with RV lipotoxicity; however, the underlying mechanism for lipid accumulation is not known. Objectives: We hypothesized that lipid accumulation in cardiomyocytes with BMPR2 mutation occurs owing to alterations in lipid transport and impaired fatty acid oxidation (FAO), which is exacerbated by a high-lipid (Western) diet (WD). Methods: We used a transgenic mouse model of pulmonary arterial hypertension with mutant BMPR2 and generated a cardiomyocyte cell line with BMPR2 mutation. Electron microscopy and metabolomic analysis were performed on mouse RVs. Measurements and Main Results: By metabolomics analysis, we found an increase in long-chain fatty acids in BMPR2 mutant mouse RVs compared with controls, which correlated with cardiac index. BMPR2-mutant cardiomyocytes had increased lipid compared with controls. Direct measurement of FAO in the WD-fed BMPR2-mutant RV showed impaired palmitate-linked oxygen consumption, and metabolomics analysis showed reduced indices of FAO. Using both mutant BMPR2 mouse RVs and cardiomyocytes, we found an increase in the uptake of 14C-palmitate and fatty acid transporter CD36 that was further exacerbated by WD. Conclusions: Taken together, our data suggest that impaired FAO and increased expression of the lipid transporter CD36 are key mechanisms underlying lipid deposition in the BMPR2-mutant RV, which are exacerbated in the presence of dietary lipids. These findings suggest important features leading to RV lipotoxicity in pulmonary arterial hypertension and may point to novel areas of therapeutic intervention. PMID:27077479

  11. Modified Filamentous Bacteriophage as a Scaffold for Carbon Nanofiber.

    PubMed

    Szot-Karpińska, Katarzyna; Golec, Piotr; Leśniewski, Adam; Pałys, Barbara; Marken, Frank; Niedziółka-Jönsson, Joanna; Węgrzyn, Grzegorz; Łoś, Marcin

    2016-12-21

    With the advent of nanotechnology, carbon nanomaterials such as carbon nanofibers (CNF) have aroused substantial interest in various research fields, including energy storage and sensing. Further improvement of their properties might be achieved via the application of viral particles such as bacteriophages. In this report, we present a filamentous M13 bacteriophage with a point mutation in gene VII (pVII-mutant-M13) that selectively binds to the carbon nanofibers to form 3D structures. The phage-display technique was utilized for the selection of the pVII-mutant-M13 phage from the phage display peptide library. The properties of this phage make it a prospective candidate for a scaffold material for CNFs. The results for binding of CNF by mutant phage were compared with those for maternal bacteriophage (pVII-M13). The efficiency of binding between pVII-mutant-M13 and CNF is about 2 orders of magnitude higher compared to that of the pVII-M13. Binding affinity between pVII-mutant-M13 and CNF was also characterized using atomic force microscopy, scanning electron microscopy, and transmission electron microscopy, which confirmed the specificity of the interaction of the phage pVII-mutant-M13 and the CNF; the binding occurs via the phage's ending, where the mutated pVII protein is located. No similar behavior has been observed for other carbon nanomaterials such as graphite, reduced graphene oxide, single-walled carbon nanotubes, and multiwalled carbon nanotubes. Infrared spectra confirmed differences in the interaction with CNF between the pVII-mutant-M13 and the pVII-M13. Basing on conducted research, we hypothesize that the interactions are noncovalent in nature, with π-π interactions playing the dominant role. Herein, the new bioconjugate material is introduced.

  12. [Improvement of thermostability of beta-1,3-1,4-glucanase from Bacillus amyloliquefaciens BS5582 through in vitro evolution].

    PubMed

    Qin, Jiufu; Gao, Weiwei; Li, Qi; Li, Yongxian; Zheng, Feiyun; Liu, Chunfeng; Gu, Guoxian

    2010-09-01

    In vitro evolution methods are often used to modify protein with improved characteristics. We developed a directed evolution protocol to enhance the thermostability of the beta-1,3-1,4-glucanase. The thermostability of the enzyme was significantly improved after two rounds of directed evolution. Three variants with higher thermostability were obtained. The mutant enzymes were further analyzed by their melting temperature, halftime and kinetic parameters. Comparing to intact enzyme, the T50 of mutant enzymes 2-JF-01, 2-JF-02 and 2-JF-03 were increased by 2.2 degrees C, 5.5 degrees C and 3.5 degrees C, respectively, the halftime (t1/2, 60 degrees C) of mutant enzymes 2-JF-01, 2-JF-02 and 2-JF-03 were shortened by 4,13 and 17 min, respectively, the V(max) of mutant enzymes were decreased by 8.3%, 2.6% and 10.6%, respectively, while K(m) of mutant enzymes were nearly unchanged. Sequence analysis revealed seven single amino acid mutant happened among three mutant enzymes, such as 2-JF-01 (N36S, G213R), 2-JF-02 (C86R, S115I, N150G) and 2-JF-03 (E156V, K105R). Homology-modeling showed that five of seven substituted amino acids were located on the surface of or in hole of protein. 42.8% of substituted amino acids were arginine, which indicated that arginine may play a role in the improvement of the thermostability of the beta-1,3-1,4-glucanase.This study provide some intresting results of the structural basis of the thermostability of beta-1,3-1,4-glucanase,and provide some new point of view in modifying enzyme for future industrial use.

  13. Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality.

    PubMed

    Albrecht, Verónica; Ingenfeld, Anke; Apel, Klaus

    2006-03-01

    During seedling development chloroplast formation marks the transition from heterotrophic to autotrophic growth. The development and activity of chloroplasts may differ in cotyledons that initially serve as a storage organ and true leaves whose primary function is photosynthesis. A genetic screen was used for the identification of genes that affect selectively chloroplast function in cotyledons of Arabidopsis thaliana. Several mutants exhibiting pale cotyledons and green true leaves were isolated and dubbed snowy cotyledon (sco). One of the mutants, sco1, was characterized in more detail. The mutated gene was identified using map-based cloning. The mutant contains a point mutation in a gene encoding the chloroplast elongation factor G, leading to an amino acid exchange within the predicted 70S ribosome-binding domain. The mutation results in a delay in the onset of germination. At this early developmental stage embryos still contain undifferentiated proplastids, whose proper function seems necessary for seed germination. In light-grown sco1 seedlings the greening of cotyledons is severely impaired, whereas the following true leaves develop normally as in wild-type plants. Despite this apparent similarity of chloroplast development in true leaves of mutant and wild-type plants various aspects of mature plant development are also affected by the sco1 mutation such as the onset of flowering, the growth rate, and seed production. The onset of senescence in the mutant and the wild-type plants occurs, however, at the same time, suggesting that in the mutant this particular developmental step does not seem to suffer from reduced protein translation efficiency in chloroplasts.

  14. The Glycerol-3-Phosphate Acyltransferase GPAT6 from Tomato Plays a Central Role in Fruit Cutin Biosynthesis1[OPEN

    PubMed Central

    Petit, Johann; Mauxion, Jean-Philippe; Tai, Fabienne Wong Jun; Fich, Eric A.; Joubès, Jérôme; Rothan, Christophe

    2016-01-01

    The thick cuticle covering and embedding the epidermal cells of tomato (Solanum lycopersicum) fruit acts not only as a protective barrier against pathogens and water loss but also influences quality traits such as brightness and postharvest shelf-life. In a recent study, we screened a mutant collection of the miniature tomato cultivar Micro-Tom and isolated several glossy fruit mutants in which the abundance of cutin, the polyester component of the cuticle, was strongly reduced. We employed a newly developed mapping-by-sequencing strategy to identify the causal mutation underlying the cutin deficiency in a mutant thereafter named gpat6-a (for glycerol-3-phosphate acyltransferase6). To this end, a backcross population (BC1F2) segregating for the glossy trait was phenotyped. Individuals displaying either a wild-type or a glossy fruit trait were then pooled into bulked populations and submitted to whole-genome sequencing prior to mutation frequency analysis. This revealed that the causal point mutation in the gpat6-a mutant introduces a charged amino acid adjacent to the active site of a GPAT6 enzyme. We further showed that this mutation completely abolished the GPAT activity of the recombinant protein. The gpat6-a mutant showed perturbed pollen formation but, unlike a gpat6 mutant of Arabidopsis (Arabidopsis thaliana), was not male sterile. The most striking phenotype was observed in the mutant fruit, where cuticle thickness, composition, and properties were altered. RNA sequencing analysis highlighted the main processes and pathways that were affected by the mutation at the transcriptional level, which included those associated with lipid, secondary metabolite, and cell wall biosynthesis. PMID:27208295

  15. The Glycerol-3-Phosphate Acyltransferase GPAT6 from Tomato Plays a Central Role in Fruit Cutin Biosynthesis.

    PubMed

    Petit, Johann; Bres, Cécile; Mauxion, Jean-Philippe; Tai, Fabienne Wong Jun; Martin, Laetitia B B; Fich, Eric A; Joubès, Jérôme; Rose, Jocelyn K C; Domergue, Frédéric; Rothan, Christophe

    2016-06-01

    The thick cuticle covering and embedding the epidermal cells of tomato (Solanum lycopersicum) fruit acts not only as a protective barrier against pathogens and water loss but also influences quality traits such as brightness and postharvest shelf-life. In a recent study, we screened a mutant collection of the miniature tomato cultivar Micro-Tom and isolated several glossy fruit mutants in which the abundance of cutin, the polyester component of the cuticle, was strongly reduced. We employed a newly developed mapping-by-sequencing strategy to identify the causal mutation underlying the cutin deficiency in a mutant thereafter named gpat6-a (for glycerol-3-phosphate acyltransferase6). To this end, a backcross population (BC1F2) segregating for the glossy trait was phenotyped. Individuals displaying either a wild-type or a glossy fruit trait were then pooled into bulked populations and submitted to whole-genome sequencing prior to mutation frequency analysis. This revealed that the causal point mutation in the gpat6-a mutant introduces a charged amino acid adjacent to the active site of a GPAT6 enzyme. We further showed that this mutation completely abolished the GPAT activity of the recombinant protein. The gpat6-a mutant showed perturbed pollen formation but, unlike a gpat6 mutant of Arabidopsis (Arabidopsis thaliana), was not male sterile. The most striking phenotype was observed in the mutant fruit, where cuticle thickness, composition, and properties were altered. RNA sequencing analysis highlighted the main processes and pathways that were affected by the mutation at the transcriptional level, which included those associated with lipid, secondary metabolite, and cell wall biosynthesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  16. Conformational switching between protein substates studied with 2D IR vibrational echo spectroscopy and molecular dynamics simulations.

    PubMed

    Bagchi, Sayan; Thorpe, Dayton G; Thorpe, Ian F; Voth, Gregory A; Fayer, M D

    2010-12-30

    Myoglobin is an important protein for the study of structure and dynamics. Three conformational substates have been identified for the carbonmonoxy form of myoglobin (MbCO). These are manifested as distinct peaks in the IR absorption spectrum of the CO stretching mode. Ultrafast 2D IR vibrational echo chemical exchange experiments are used to observed switching between two of these substates, A(1) and A(3), on a time scale of <100 ps for two mutants of wild-type Mb. The two mutants are a single mutation of Mb, L29I, and a double mutation, T67R/S92D. Molecular dynamics (MD) simulations are used to model the structural differences between the substates of the two MbCO mutants. The MD simulations are also employed to examine the substate switching in the two mutants as a test of the ability of MD simulations to predict protein dynamics correctly for a system in which there is a well-defined transition over a significant potential barrier between two substates. For one mutant, L29I, the simulations show that translation of the His64 backbone may differentiate the two substates. The simulations accurately reproduce the experimentally observed interconversion time for the L29I mutant. However, MD simulations exploring the same His64 backbone coordinate fail to display substate interconversion for the other mutant, T67R/S92D, thus pointing to the likely complexity of the underlying protein interactions. We anticipate that understanding conformational dynamics in MbCO via ultrafast 2D IR vibrational echo chemical exchange experiments can help to elucidate fast conformational switching processes in other proteins.

  17. Impaired Sense of Smell in a Drosophila Parkinson’s Model

    PubMed Central

    Poddighe, Simone; Bhat, Krishna Moorthi; Setzu, Maria Dolores; Solla, Paolo; Angioy, Anna Maria; Marotta, Roberto; Ruffilli, Roberta; Marrosu, Francesco; Liscia, Anna

    2013-01-01

    Parkinson’s disease (PD) is one of the most common neurodegenerative disease characterized by the clinical triad: tremor, akinesia and rigidity. Several studies have suggested that PD patients show disturbances in olfaction at the earliest onset of the disease. The fruit fly Drosophila melanogaster is becoming a powerful model organism to study neurodegenerative diseases. We sought to use this system to explore olfactory dysfunction, if any, in PINK1 mutants, which is a model for PD. PINK1 mutants display many important diagnostic symptoms of the disease such as akinetic motor behavior. In the present study, we describe for the first time, to the best of our knowledge, neurophysiological and neuroanatomical results concerning the olfactory function in PINK1 mutant flies. Electroantennograms were recorded in response to synthetic and natural volatiles (essential oils) from groups of PINK1 mutant adults at three different time points in their life cycle: one from 3–5 day-old flies, from 15–20 and from 27–30 days. The results obtained were compared with the same age-groups of wild type flies. We found that mutant adults showed a decrease in the olfactory response to 1-hexanol, α-pinene and essential oil volatiles. This olfactory response in mutant adults decreased even more as the flies aged. Immunohistological analysis of the antennal lobes in these mutants revealed structural abnormalities, especially in the expression of Bruchpilot protein, a marker for synaptic active zones. The combination of electrophysiological and morphological results suggests that the altered synaptic organization may be due to a neurodegenerative process. Our results indicate that this model can be used as a tool for understanding PD pathogensis and pathophysiology. These results help to explore the potential of using olfaction as a means of monitoring PD progression and developing new treatments. PMID:24009736

  18. Pairwise contact energy statistical potentials can help to find probability of point mutations.

    PubMed

    Saravanan, K M; Suvaithenamudhan, S; Parthasarathy, S; Selvaraj, S

    2017-01-01

    To adopt a particular fold, a protein requires several interactions between its amino acid residues. The energetic contribution of these residue-residue interactions can be approximated by extracting statistical potentials from known high resolution structures. Several methods based on statistical potentials extracted from unrelated proteins are found to make a better prediction of probability of point mutations. We postulate that the statistical potentials extracted from known structures of similar folds with varying sequence identity can be a powerful tool to examine probability of point mutation. By keeping this in mind, we have derived pairwise residue and atomic contact energy potentials for the different functional families that adopt the (α/β) 8 TIM-Barrel fold. We carried out computational point mutations at various conserved residue positions in yeast Triose phosphate isomerase enzyme for which experimental results are already reported. We have also performed molecular dynamics simulations on a subset of point mutants to make a comparative study. The difference in pairwise residue and atomic contact energy of wildtype and various point mutations reveals probability of mutations at a particular position. Interestingly, we found that our computational prediction agrees with the experimental studies of Silverman et al. (Proc Natl Acad Sci 2001;98:3092-3097) and perform better prediction than i Mutant and Cologne University Protein Stability Analysis Tool. The present work thus suggests deriving pairwise contact energy potentials and molecular dynamics simulations of functionally important folds could help us to predict probability of point mutations which may ultimately reduce the time and cost of mutation experiments. Proteins 2016; 85:54-64. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Sensitive detection of point mutation using exponential strand displacement amplification-based surface enhanced Raman spectroscopy.

    PubMed

    Huang, Si-Qiang; Hu, Juan; Zhu, Guichi; Zhang, Chun-Yang

    2015-03-15

    Accurate identification of point mutation is particularly imperative in the field of biomedical research and clinical diagnosis. Here, we develop a sensitive and specific method for point mutation assay using exponential strand displacement amplification (SDA)-based surface enhanced Raman spectroscopy (SERS). In this method, a discriminating probe and a hairpin probe are designed to specifically recognize the sequence of human K-ras gene. In the presence of K-ras mutant target (C→T), the 3'-terminal of discriminating probe and the 5'-terminal of hairpin probe can be ligated to form a SDA template. Subsequently, the 3'-terminal of hairpin probe can function as a primer to initiate the SDA reaction, producing a large amount of triggers. The resultant triggers can further hybridize with the discriminating probes to initiate new rounds of SDA reaction, leading to an exponential amplification reaction. With the addition of capture probe-modified gold nanoparticles (AuNPs) and the Rox-labeled reporter probes, the amplified triggers can be assembled on the surface of AuNPs through the formation of sandwich hybrids of capture probe-trigger-reporter probe, generating a strong Raman signal. While in the presence of K-ras wild-type target (C), neither ligation nor SDA reaction can be initiated and no Raman signal is observed. The proposed method exhibits high sensitivity with a detection limit of 1.4pM and can accurately discriminate as low as 1% variant frequency from the mixture of mutant target and wild-type target. Importantly, this method can be further applied to analyze the mutant target in the spiked HEK293T cell lysate, holding great potential for genetic analysis and disease prognosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Aggregation of Trp > Glu point mutants of human gamma-D crystallin provides a model for hereditary or UV-induced cataract.

    PubMed

    Serebryany, Eugene; Takata, Takumi; Erickson, Erika; Schafheimer, Nathaniel; Wang, Yongting; King, Jonathan A

    2016-06-01

    Numerous mutations and covalent modifications of the highly abundant, long-lived crystallins of the eye lens cause their aggregation leading to progressive opacification of the lens, cataract. The nature and biochemical mechanisms of the aggregation process are poorly understood, as neither amyloid nor native-state polymers are commonly found in opaque lenses. The βγ-crystallin fold contains four highly conserved buried tryptophans, which can be oxidized to more hydrophilic products, such as kynurenine, upon UV-B irradiation. We mimicked this class of oxidative damage using Trp→Glu point mutants of human γD-crystallin. Such substitutions may represent a model of UV-induced photodamage-introduction of a charged group into the hydrophobic core generating "denaturation from within." The effects of Trp→Glu substitutions were highly position dependent. While each was destabilizing, only the two located in the bottom of the double Greek key fold-W42E and W130E-yielded robust aggregation of partially unfolded intermediates at 37°C and pH 7. The αB-crystallin chaperone suppressed aggregation of W130E, but not W42E, indicating distinct aggregation pathways from damage in the N-terminal vs C-terminal domain. The W130E aggregates had loosely fibrillar morphology, yet were nonamyloid, noncovalent, showed little surface hydrophobicity, and formed at least 20°C below the melting temperature of the native β-sheets. These features are most consistent with domain-swapped polymerization. Aggregation of partially destabilized crystallins under physiological conditions, as occurs in this class of point mutants, could provide a simple in vitro model system for drug discovery and optimization. © 2016 The Protein Society.

  1. An Intramolecular Salt Bridge in Bacillus thuringiensis Cry4Ba Toxin Is Involved in the Stability of Helix α-3, Which Is Needed for Oligomerization and Insecticidal Activity.

    PubMed

    Pacheco, Sabino; Gómez, Isabel; Sánchez, Jorge; García-Gómez, Blanca-Ines; Soberón, Mario; Bravo, Alejandra

    2017-10-15

    Bacillus thuringiensis three-domain Cry toxins kill insects by forming pores in the apical membrane of larval midgut cells. Oligomerization of the toxin is an important step for pore formation. Domain I helix α-3 participates in toxin oligomerization. Here we identify an intramolecular salt bridge within helix α-3 of Cry4Ba (D111-K115) that is conserved in many members of the family of three-domain Cry toxins. Single point mutations such as D111K or K115D resulted in proteins severely affected in toxicity. These mutants were also altered in oligomerization, and the mutant K115D was more sensitive to protease digestion. The double point mutant with reversed charges, D111K-K115D, recovered both oligomerization and toxicity, suggesting that this salt bridge is highly important for conservation of the structure of helix α-3 and necessary to promote the correct oligomerization of the toxin. IMPORTANCE Domain I has been shown to be involved in oligomerization through helix α-3 in different Cry toxins, and mutations affecting oligomerization also elicit changes in toxicity. The three-dimensional structure of the Cry4Ba toxin reveals an intramolecular salt bridge in helix α-3 of domain I. Mutations that disrupt this salt bridge resulted in changes in Cry4Ba oligomerization and toxicity, while a double point reciprocal mutation that restored the salt bridge resulted in recovery of toxin oligomerization and toxicity. These data highlight the role of oligomer formation as a key step in Cry4Ba toxicity. Copyright © 2017 American Society for Microbiology.

  2. Effectiveness of an audience response system in teaching pharmacology to baccalaureate nursing students.

    PubMed

    Vana, Kimberly D; Silva, Graciela E; Muzyka, Diann; Hirani, Lorraine M

    2011-06-01

    It has been proposed that students' use of an audience response system, commonly called clickers, may promote comprehension and retention of didactic material. Whether this method actually improves students' grades, however, is still not determined. The purpose of this study was to evaluate whether a lecture format utilizing multiple-choice PowerPoint slides and an audience response system was more effective than a lecture format using only multiple-choice PowerPoint slides in the comprehension and retention of pharmacological knowledge in baccalaureate nursing students. The study also assessed whether the additional use of clickers positively affected students' satisfaction with their learning. Results from 78 students who attended lecture classes with multiple-choice PowerPoint slides plus clickers were compared with those of 55 students who utilized multiple-choice PowerPoint slides only. Test scores between these two groups were not significantly different. A satisfaction questionnaire showed that 72.2% of the control students did not desire the opportunity to use clickers. Of the group utilizing the clickers, 92.3% recommend the use of this system in future courses. The use of multiple-choice PowerPoint slides and an audience response system did not seem to improve the students' comprehension or retention of pharmacological knowledge as compared with those who used solely multiple-choice PowerPoint slides.

  3. Enhancement of stability of L-tryptophan dehydrogenase from Nostoc punctiforme ATCC29133 and its application to L-tryptophan assay.

    PubMed

    Matsui, Daisuke; Okazaki, Seiji; Matsuda, Motoki; Asano, Yasuhisa

    2015-02-20

    Microbial NAD(+)-dependent L-tryptophan dehydrogenase (TrpDH, EC1.4.1.19), which catalyzes the reversible oxidative deamination and the reductive amination between L-tryptophan and indole-3-pyruvic acid, was found in the scytonemin biosynthetic pathway of Nostoc punctiforme ATCC29133. The TrpDH exhibited high specificity toward L-tryptophan, but its instability was a drawback for L-tryptophan determination. The mutant enzyme TrpDH L59F/D168G/A234D/I296N with thermal stability was obtained by screening of Escherichia coli transformants harboring various mutant genes, which were generated by error-prone PCR using complementation in an L-tryptophan auxotroph of E. coli. The specific activity and stability of this mutant enzyme were higher than those of the wild type enzyme. We also revealed here that in these four mutation points, the two amino acid residues Asp168 and Ile296 contributed to increase the enzyme stability, and the Leu59, Ala234 residues to increase its specific activity. Growth of the strain harboring the gene of above 4 point mutated enzyme was accelerated by the enhanced performance. In the present study, we demonstrated that TrpDH L59F/D168G/A234D/I296N was available for determination of L-tryptophan in human plasma. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. DNA analysis of herbarium Specimens of the grass weed Alopecurus myosuroides reveals herbicide resistance pre-dated herbicides.

    PubMed

    Délye, Christophe; Deulvot, Chrystel; Chauvel, Bruno

    2013-01-01

    Acetyl-CoA carboxylase (ACCase) alleles carrying one point mutation that confers resistance to herbicides have been identified in arable grass weed populations where resistance has evolved under the selective pressure of herbicides. In an effort to determine whether herbicide resistance evolves from newly arisen mutations or from standing genetic variation in weed populations, we used herbarium specimens of the grass weed Alopecurus myosuroides to seek mutant ACCase alleles carrying an isoleucine-to-leucine substitution at codon 1781 that endows herbicide resistance. These specimens had been collected between 1788 and 1975, i.e., prior to the commercial release of herbicides inhibiting ACCase. Among the 734 specimens investigated, 685 yielded DNA suitable for PCR. Genotyping the ACCase locus using the derived Cleaved Amplified Polymorphic Sequence (dCAPS) technique identified one heterozygous mutant specimen that had been collected in 1888. Occurrence of a mutant codon encoding a leucine residue at codon 1781 at the heterozygous state was confirmed in this specimen by sequencing, clearly demonstrating that resistance to herbicides can pre-date herbicides in weeds. We conclude that point mutations endowing resistance to herbicides without having associated deleterious pleiotropic effects can be present in weed populations as part of their standing genetic variation, in frequencies higher than the mutation frequency, thereby facilitating their subsequent selection by herbicide applications.

  5. MitoTALEN: A General Approach to Reduce Mutant mtDNA Loads and Restore Oxidative Phosphorylation Function in Mitochondrial Diseases

    PubMed Central

    Hashimoto, Masami; Bacman, Sandra R; Peralta, Susana; Falk, Marni J; Chomyn, Anne; Chan, David C; Williams, Sion L; Moraes, Carlos T

    2015-01-01

    We have designed mitochondrially targeted transcription activator-like effector nucleases or mitoTALENs to cleave specific sequences in the mitochondrial DNA (mtDNA) with the goal of eliminating mtDNA carrying pathogenic point mutations. To test the generality of the approach, we designed mitoTALENs to target two relatively common pathogenic mtDNA point mutations associated with mitochondrial diseases: the m.8344A>G tRNALys gene mutation associated with myoclonic epilepsy with ragged red fibers (MERRF) and the m.13513G>A ND5 mutation associated with MELAS/Leigh syndrome. Transmitochondrial cybrid cells harbouring the respective heteroplasmic mtDNA mutations were transfected with the respective mitoTALEN and analyzed after different time periods. MitoTALENs efficiently reduced the levels of the targeted pathogenic mtDNAs in the respective cell lines. Functional assays showed that cells with heteroplasmic mutant mtDNA were able to recover respiratory capacity and oxidative phosphorylation enzymes activity after transfection with the mitoTALEN. To improve the design in the context of the low complexity of mtDNA, we designed shorter versions of the mitoTALEN specific for the MERRF m.8344A>G mutation. These shorter mitoTALENs also eliminated the mutant mtDNA. These reductions in size will improve our ability to package these large sequences into viral vectors, bringing the use of these genetic tools closer to clinical trials. PMID:26159306

  6. Yeast Cells Expressing the Human Mitochondrial DNA Polymerase Reveal Correlations between Polymerase Fidelity and Human Disease Progression*

    PubMed Central

    Qian, Yufeng; Kachroo, Aashiq H.; Yellman, Christopher M.; Marcotte, Edward M.; Johnson, Kenneth A.

    2014-01-01

    Mutations in the human mitochondrial polymerase (polymerase-γ (Pol-γ)) are associated with various mitochondrial disorders, including mitochondrial DNA (mtDNA) depletion syndrome, Alpers syndrome, and progressive external opthamalplegia. To correlate biochemically quantifiable defects resulting from point mutations in Pol-γ with their physiological consequences, we created “humanized” yeast, replacing the yeast mtDNA polymerase (MIP1) with human Pol-γ. Despite differences in the replication and repair mechanism, we show that the human polymerase efficiently complements the yeast mip1 knockouts, suggesting common fundamental mechanisms of replication and conserved interactions between the human polymerase and other components of the replisome. We also examined the effects of four disease-related point mutations (S305R, H932Y, Y951N, and Y955C) and an exonuclease-deficient mutant (D198A/E200A). In haploid cells, each mutant results in rapid mtDNA depletion, increased mutation frequency, and mitochondrial dysfunction. Mutation frequencies measured in vivo equal those measured with purified enzyme in vitro. In heterozygous diploid cells, wild-type Pol-γ suppresses mutation-associated growth defects, but continuous growth eventually leads to aerobic respiration defects, reduced mtDNA content, and depolarized mitochondrial membranes. The severity of the Pol-γ mutant phenotype in heterozygous diploid humanized yeast correlates with the approximate age of disease onset and the severity of symptoms observed in humans. PMID:24398692

  7. A vertically-stacked, polymer, microfluidic point mutation analyzer: Rapid, high accuracy detection of low-abundance K-ras mutations

    PubMed Central

    Han, Kyudong; Lee, Tae Yoon; Nikitopoulos, Dimitris E.; Soper, Steven A.; Murphy, Michael C.

    2011-01-01

    Recognition of point mutations in the K-ras gene can be used for the clinical management of several types of cancers. Unfortunately, several assay and hardware concerns must be addressed to allow users not well-trained in performing molecular analyses the opportunity to undertake these measurements. To provide for a larger user-base for these types of molecular assays, a vertically-stacked microfluidic analyzer with a modular architecture and process automation was developed. The analyzer employed a primary PCR coupled to an allele-specific ligase detection reaction (LDR). Each functional device, including continuous flow thermal reactors for the PCR and LDR, passive micromixers and ExoSAP-IT® purification, was designed and tested. Individual devices were fabricated in polycarbonate using hot embossing and assembled using adhesive bonding for system assembly. The system produced LDR products from a DNA sample in ~1 h, an 80% reduction in time compared to conventional bench-top instrumentation. Purifying the post-PCR products with the ExoSAP-IT® enzyme led to optimized LDR performance minimizing false positive signals and producing reliable results. Mutant alleles in genomic DNA were quantified to the level of 0.25 ng of mutant DNA in 50 ng of wild-type DNA for a 25 μL sample, equivalent to DNA from 42 mutant cells. PMID:21771577

  8. Probing the contribution of internal cavities to the volume change of protein unfolding under pressure.

    PubMed Central

    Frye, K. J.; Royer, C. A.

    1998-01-01

    The structural origin of the decrease in system volume upon protein denaturation by pressure has remained a puzzle for decades. This negative volume change upon unfolding is assumed to arise globally from more intimate interactions between the polypeptide chain and water, including electrostriction of buried charges that become exposed upon unfolding, hydration of the polypeptide backbone and amino acid side chains and elimination of packing defects and internal void volumes upon unfolding of the chain. However, the relative signs and magnitudes of each of these contributing factors have not been experimentally determined. Our laboratory has probed the fundamental basis for the volume change upon unfolding of staphylococcal nuclease (Snase) using variable solution conditions and point mutants of Snase (Royer CA et al., 1993, Biochemistry 32:5222-5232; Frye KJ et al., 1996, Biochemistry 35:10234-10239). Our prior results indicate that for Snase, neither electrostriction nor polar or nonpolar hydration contributes significantly to the value of the volume change of unfolding. In the present work, we investigate the pressure induced unfolding of three point mutants of Snase in which internal cavity size is altered. The experimentally determined volume changes of unfolding for the mutants suggest that loss of internal void volume upon unfolding represents the major contributing factor to the value of the volume change of Snase unfolding. PMID:9792110

  9. Leptin receptor-deficient (knockout) medaka, Oryzias latipes, show chronical up-regulated levels of orexigenic neuropeptides, elevated food intake and stage specific effects on growth and fat allocation.

    PubMed

    Chisada, Shin-ichi; Kurokawa, Tadahide; Murashita, Koji; Rønnestad, Ivar; Taniguchi, Yoshihito; Toyoda, Atsushi; Sakaki, Yoshiyuki; Takeda, Shunichi; Yoshiura, Yasutoshi

    2014-01-01

    The first studies that identified leptin and its receptor (LepR) in mammals were based on mutant animals that displayed dramatic changes in body-weight and regulation of energy homeostasis. Subsequent studies have shown that a deficiency of leptin or LepR in homoeothermic mammals results in hyperphagia, obesity, infertility and a number of other abnormalities. The physiological roles of leptin-mediated signaling in ectothermic teleosts are still being explored. Here, we produced medaka with homozygous LepR gene mutation using the targeting induced local lesions in a genome method. This knockout mutant had a point mutation of cysteine for stop codon at the 357th amino acid just before the leptin-binding domain. The evidence for loss of function of leptin-mediated signaling in the mutant is based on a lack of response to feeding in the expression of key appetite-related neuropeptides in the diencephalon. The mutant lepr−/− medaka expressed constant up-regulated levels of mRNA for the orexigenic neuropeptide Ya and agouti-related protein and a suppressed level of anorexigenic proopiomelanocortin 1 in the diencephalon independent of feeding, which suggests that the mutant did not possess functional LepR. Phenotypes of the LepR-mutant medaka were analyzed in order to understand the effects on food intake, growth, and fat accumulation in the tissues. The food intake of the mutant medaka was higher in post-juveniles and adult stages than that of wild-type (WT) fish. The hyperphagia led to a high growth rate at the post-juvenile stage, but did not to significant alterations in final adult body size. There was no additional deposition of fat in the liver and muscle in the post-juvenile and adult mutants, or in the blood plasma in the adult mutant. However, adult LepR mutants possessed large deposits of visceral fat, unlike in the WT fish, in which there were none. Our analysis confirms that LepR in medaka exert a powerful influence on the control on food intake. Further analyses using the mutant will contribute to a better understanding of the role of leptin in fish. This is the first study to produce fish with leptin receptor deficiency.

  10. ECB deacylase mutants

    DOEpatents

    Arnold, Frances H.; Shao, Zhixin; Zhao, Huimin; Giver, Lorraine J.

    2002-01-01

    A method for in vitro mutagenesis and recombination of polynucleotide sequences based on polymerase-catalyzed extension of primer oligonucleotides is disclosed. The method involves priming template polynucleotide(s) with random-sequences or defined-sequence primers to generate a pool of short DNA fragments with a low level of point mutations. The DNA fragments are subjected to denaturization followed by annealing and further enzyme-catalyzed DNA polymerization. This procedure is repeated a sufficient number of times to produce full-length genes which comprise mutants of the original template polynucleotides. These genes can be further amplified by the polymerase chain reaction and cloned into a vector for expression of the encoded proteins.

  11. Comprehension of Infrequent Subject-Verb Agreement Forms: Evidence from French-Learning Children

    ERIC Educational Resources Information Center

    Legendre, Geraldine; Barriere, Isabelle; Goyet, Louise; Nazzi, Thierry

    2010-01-01

    Two comprehension experiments were conducted to investigate whether young French-learning children (N = 76) are able to use a single number cue in subject-verb agreement contexts and match a visually dynamic scene with a corresponding verbal stimulus. Results from both preferential looking and pointing demonstrated significant comprehension in…

  12. Ectopic Mineralization and Conductive Hearing Loss in Enpp1asj Mutant Mice, a New Model for Otitis Media and Tympanosclerosis.

    PubMed

    Tian, Cong; Harris, Belinda S; Johnson, Kenneth R

    2016-01-01

    Otitis media (OM), inflammation of the middle ear, is a common cause of hearing loss in children and in patients with many different syndromic diseases. Studies of the human population and mouse models have revealed that OM is a multifactorial disease with many environmental and genetic contributing factors. Here, we report on otitis media-related hearing loss in asj (ages with stiffened joints) mutant mice, which bear a point mutation in the Enpp1 gene. Auditory-evoked brainstem response (ABR) measurements revealed that around 90% of the mutant mice (Enpp1asj/asj) tested had moderate to severe hearing impairment in at least one ear. The ABR thresholds were variable and generally elevated with age. We found otitis media with effusion (OME) in all of the hearing-impaired Enpp1asj/asj mice by anatomic and histological examinations. The volume and inflammatory cell content of the effusion varied among the asj mutant mice, but all mutants exhibited a thickened middle ear epithelium with fibrous polyps and more mucin-secreting goblet cells than controls. Other abnormalities observed in the Enpp1 mutant mice include over-ossification at the round window ridge, thickened and over-calcified stapedial artery, fusion of malleus and incus, and white patches on the inside of tympanic membrane, some of which are typical symptoms of tympanosclerosis. An excessive yellow discharge was detected in the outer ear canal of older asj mutant mice, with 100% penetrance by 5 months of age, and contributes to the progressive nature of the hearing loss. This is the first report of hearing loss and ear pathology associated with an Enpp1 mutation in mice. The Enpp1asj mutant mouse provides a new animal model for studying tympanosclerotic otitis and otitis media with effusion, and also provides a specific model for the hearing loss recently reported to be associated with human ENPP1 mutations causing generalized arterial calcification of infancy and hypophosphatemic rickets.

  13. A novel aminoacid determinant of HIV-1 restriction in the TRIM5α variable 1 region isolated in a random mutagenic screen.

    PubMed

    Pham, Quang Toan; Veillette, Maxime; Brandariz-Nuñez, Alberto; Pawlica, Paulina; Thibert-Lefebvre, Caroline; Chandonnet, Nadia; Diaz-Griffero, Felipe; Berthoux, Lionel

    2013-05-01

    Human-derived antiretroviral transgenes are of great biomedical interest and are actively pursued. HIV-1 is efficiently inhibited at post-entry, pre-integration replication stages by point mutations in the variable region 1 (v1) of the human restriction factor TRIM5α. Here we use a mutated megaprimer approach to create a mutant library of TRIM5αHu v1 and to isolate a mutation at Gly330 (G330E) that inhibits transduction of an HIV-1 vector as efficiently as the previously described mutants at positions Arg332 and Arg335. As was the case for these other mutations, modification of the local v1 charge toward increased acidity was key to inhibiting HIV-1. G330E TRIM5αHu also disrupted replication-competent HIV-1 propagation in a human T cell line. Interestingly, G330E did not enhance restriction of HIV-1 when combined with mutations at Arg332 or Arg335. Accordingly, the triple mutant G330E-R332G-R335G bound purified recombinant HIV-1 capsid tubes less efficiently than the double mutant R332G-R335G did. In a structural model of the TRIM5αHu PRYSPRY domain, the addition of G330E to the double mutant R332G-R335G caused extensive changes to the capsid-binding surface, which may explain why the triple mutant was no more restrictive than the double mutant. The HIV-1 inhibitory potential of Gly330 mutants was not predicted by examination of natural TRIM5α orthologs that are known to strongly inhibit HIV-1. This work underlines the potential of random mutagenesis to isolate novel variants of human proteins with antiviral properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Amino acids Thr56 and Thr58 are not essential for elongation factor 2 function in yeast.

    PubMed

    Bartish, Galyna; Moradi, Hossein; Nygård, Odd

    2007-10-01

    Yeast elongation factor 2 is an essential protein that contains two highly conserved threonine residues, T56 and T58, that could potentially be phosphorylated by the Rck2 kinase in response to environmental stress. The importance of residues T56 and T58 for elongation factor 2 function in yeast was studied using site directed mutagenesis and functional complementation. Mutations T56D, T56G, T56K, T56N and T56V resulted in nonfunctional elongation factor 2 whereas mutated factor carrying point mutations T56M, T56C, T56S, T58S and T58V was functional. Expression of mutants T56C, T56S and T58S was associated with reduced growth rate. The double mutants T56M/T58W and T56M/T58V were also functional but the latter mutant caused increased cell death and considerably reduced growth rate. The results suggest that the physiological role of T56 and T58 as phosphorylation targets is of little importance in yeast under standard growth conditions. Yeast cells expressing mutants T56C and T56S were less able to cope with environmental stress induced by increased growth temperatures. Similarly, cells expressing mutants T56M and T56M/T58W were less capable of adapting to increased osmolarity whereas cells expressing mutant T58V behaved normally. All mutants tested were retained their ability to bind to ribosomes in vivo. However, mutants T56D, T56G and T56K were under-represented on the ribosome, suggesting that these nonfunctional forms of elongation factor 2 were less capable of competing with wild-type elongation factor 2 in ribosome binding. The presence of nonfunctional but ribosome binding forms of elongation factor 2 did not affect the growth rate of yeast cells also expressing wild-type elongation factor 2.

  15. The mitochondrial cytochrome c peroxidase Ccp1 of Saccharomyces cerevisiae is involved in conveying an oxidative stress signal to the transcription factor Pos9 (Skn7).

    PubMed

    Charizanis, C; Juhnke, H; Krems, B; Entian, K D

    1999-10-01

    In Saccharomyces cerevisiae two transcription factors, Pos9 (Skn7) and Yap1, are involved in the response to oxidative stress. Fusion of the Pos9 response-regulator domain to the Gal4 DNA-binding domain results in a transcription factor which renders the expression of a GAL1-lacZ reporter gene dependent on oxidative stress. To identify genes which are involved in the oxygen-dependent activation of the Gal4-Pos9 hybrid protein we screened for mutants that failed to induce the heterologous test system upon oxidative stress (fap mutants for factors activating Pos9). We isolated several respiration-deficient and some respiration-competent mutants by this means. We selected for further characterization only those mutants which also displayed an oxidative-stress-sensitive phenotype. One of the respiration-deficient mutants (complementation groupfap6) could be complemented by the ISM1 gene, which encodes mitochondrial isoleucyl tRNA synthetase, suggesting that respiration competence was important for signalling of oxidative stress. In accordance with this notion a rho0 strain and a wild-type strain in which respiration had been blocked (by treatment with antimycin A or with cyanide) also failed to activate Gal4-Pos9 upon imposition of oxidative stress. Another mutant, fap24, which was respiration-competent, could be complemented by CCP1, which encodes the mitochondrial cytochrome c peroxidase. Mitochondrial cytochrome c peroxidase degrades reactive oxygen species within the mitochondria. This suggested a possible sensor function for the enzyme in the oxidative stress response. To test this we used the previously described point mutant ccp1 W191F, which is characterized by a 10(4)-fold decrease in electron flux between cytochrome c and cytochrome c peroxidase. The Ccp1W191F mutant was still capable of activating the Pos9 transcriptional activation domain, suggesting that the signalling function of Ccp1 is independent of electron flux rates.

  16. Ectopic Mineralization and Conductive Hearing Loss in Enpp1asj Mutant Mice, a New Model for Otitis Media and Tympanosclerosis

    PubMed Central

    Tian, Cong; Harris, Belinda S.; Johnson, Kenneth R.

    2016-01-01

    Otitis media (OM), inflammation of the middle ear, is a common cause of hearing loss in children and in patients with many different syndromic diseases. Studies of the human population and mouse models have revealed that OM is a multifactorial disease with many environmental and genetic contributing factors. Here, we report on otitis media-related hearing loss in asj (ages with stiffened joints) mutant mice, which bear a point mutation in the Enpp1 gene. Auditory-evoked brainstem response (ABR) measurements revealed that around 90% of the mutant mice (Enpp1asj/asj) tested had moderate to severe hearing impairment in at least one ear. The ABR thresholds were variable and generally elevated with age. We found otitis media with effusion (OME) in all of the hearing-impaired Enpp1asj/asj mice by anatomic and histological examinations. The volume and inflammatory cell content of the effusion varied among the asj mutant mice, but all mutants exhibited a thickened middle ear epithelium with fibrous polyps and more mucin-secreting goblet cells than controls. Other abnormalities observed in the Enpp1 mutant mice include over-ossification at the round window ridge, thickened and over-calcified stapedial artery, fusion of malleus and incus, and white patches on the inside of tympanic membrane, some of which are typical symptoms of tympanosclerosis. An excessive yellow discharge was detected in the outer ear canal of older asj mutant mice, with 100% penetrance by 5 months of age, and contributes to the progressive nature of the hearing loss. This is the first report of hearing loss and ear pathology associated with an Enpp1 mutation in mice. The Enpp1asj mutant mouse provides a new animal model for studying tympanosclerotic otitis and otitis media with effusion, and also provides a specific model for the hearing loss recently reported to be associated with human ENPP1 mutations causing generalized arterial calcification of infancy and hypophosphatemic rickets. PMID:27959908

  17. Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening.

    PubMed

    Minoia, Silvia; Boualem, Adnane; Marcel, Fabien; Troadec, Christelle; Quemener, Bernard; Cellini, Francesco; Petrozza, Angelo; Vigouroux, Jacqueline; Lahaye, Marc; Carriero, Filomena; Bendahmane, Abdelhafid

    2016-01-01

    Fruit ripening and softening are key traits for many fleshy fruit. Since cell walls play a key role in the softening process, expansins have been investigated to control fruit over ripening and deterioration. In tomato, expression of Expansin 1 gene, SlExp1, during fruit ripening was associated with fruit softening. To engineer tomato plants with long shelf life, we screened for mutant plants impaired in SlExp1 function. Characterization of two induced mutations, Slexp1-6_W211S, and Slexp1-7_Q213Stop, showed that SlExp1 loss of function leads to enhanced fruit firmness and delayed fruit ripening. Analysis of cell wall polysaccharide composition of Slexp1-7_Q213Stop mutant pointed out significant differences for uronic acid, neutral sugar and total sugar contents. Hemicelluloses chemistry analysis by endo-β-1,4-d-glucanase hydrolysis and MALDI-TOF spectrometry revealed that xyloglucan structures were affected in the fruit pericarp of Slexp1-7_Q213Stop mutant. Altogether, these results demonstrated that SlExp1 loss of function mutants yield firmer and late ripening fruits through modification of hemicellulose structure. These SlExp1 mutants represent good tools for breeding long shelf life tomato lines with contrasted fruit texture as well as for the understanding of the cell wall polysaccharide assembly dynamics in fleshy fruits. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Prevalence of precore-defective mutant of hepatitis B virus in HBV carriers.

    PubMed

    Niitsuma, H; Ishii, M; Saito, Y; Miura, M; Kobayashi, K; Ohori, H; Toyota, T

    1995-08-01

    Two hundred and seventy-three serum specimens from hepatitis B virus (HBV) carriers were examined for the presence of a characteristic one point mutation at nucleotide (nt) 1896 from the EcoRI site of the HBV genome in the precore region (the preC mutant) using restriction fragment length polymorphism (RFLP) analysis. This assay approach could detect preC mutants or wild-type sequences when either form constituted more than 10% of the total sample. Overall, 65.5% (76/116) of HBeAg-positive carriers had only the preC wild-type. All HBeAg-positive asymptomatic carriers (n = 14) had only the preC wild-type. In patients with chronic hepatitis B and in anti-HBe-positive asymptomatic carriers, increased prevalence of the preC mutant was associated with the development of anti-HBe antibodies and normalization of the serum alanine aminotransferase concentration. Furthermore, 27 (29.0%) of 93 HBeAg-negative carriers had unexpectedly preC wild-type sequences only. Direct sequencing of the HBV precore region of HBV specimens from 24 patients revealed no mutation at nt 1896, supporting the specificity of the RFLP analysis. These results suggest that RFLP analysis was accurate for the detection of the preC mutation and that the absence of serum HBeAg cannot be explained solely by the dominance of the preC mutant.

  19. Effect of polymyxin resistance (pmr) on biofilm formation of Cronobacter sakazakii.

    PubMed

    Bao, Xuerui; Jia, Xiangyin; Chen, Lequn; Peters, Brian M; Lin, Chii-Wann; Chen, Dingqiang; Li, Lin; Li, Bing; Li, Yanyan; Xu, Zhenbo; Shirtliff, Mark E

    2017-05-01

    Cronobacter sakazakii (C.sakazakii) has been identified as a wide-spread conditioned pathogen associated with series of serious illnesses, such as neonatal meningitis, enterocolitis, bacteremia or sepsis. As food safety is concerned, microbial biofilm has been considered to be a potential source of food contamination. The current study aims to investigate the ability of biofilm formation of two C. sakazakii strains (wild type BAA 894 and pmrA mutant). Crystal violet (CV), XTT (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino carbonyl)-2H-(tetrazolium hydroxide)] assays, and scanning electron microscopy (SEM) are performed on different time points during biofilm formation of C. sakazakii strains. Furthermore, RNA-seq strategy is utilized and the transcriptome data is analyzed to study the expression of genes related to biofilm formation along with whole genome sequencing. For biomass, in the first 24 h, pmrA mutant produced approximately 5 times than wildtype. However, the wild type exhibited more biomass than pmrA mutant during the post maturation stage (7-14 d). In addition, the wildtype showed higher viability than pmrA mutant during the whole biofilm formation. This study represents the first evidence on the biofilm formation of C. sakazakii pmrA mutant, which may further aid in the prevention and control for the food contamination caused by C. sakazakii. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Role of tryptophan 95 in substrate specificity and structural stability of Sulfolobus solfataricus alcohol dehydrogenase.

    PubMed

    Pennacchio, Angela; Esposito, Luciana; Zagari, Adriana; Rossi, Mosè; Raia, Carlo A

    2009-09-01

    A mutant of the thermostable NAD(+)-dependent (S)-stereospecific alcohol dehydrogenase from Sulfolobus solfataricus (SsADH) which has a single substitution, Trp95Leu, located at the substrate binding pocket, was fully characterized to ascertain the role of Trp95 in discriminating between chiral secondary alcohols suggested by the wild-type SsADH crystallographic structure. The Trp95Leu mutant displays no apparent activity with short-chain primary and secondary alcohols and poor activity with aromatic substrates and coenzyme. Moreover, the Trp --> Leu substitution affects the structural stability of the archaeal ADH, decreasing its thermal stability without relevant changes in secondary structure. The double mutant Trp95Leu/Asn249Tyr was also purified to assist in crystallographic analysis. This mutant exhibits higher activity but decreased affinity toward aliphatic alcohols, aldehydes as well as NAD(+) and NADH compared to the wild-type enzyme. The crystal structure of the Trp95Leu/Asn249Tyr mutant apo form, determined at 2.0 A resolution, reveals a large local rearrangement of the substrate site with dramatic consequences. The Leu95 side-chain conformation points away from the catalytic metal center and the widening of the substrate site is partially counteracted by a concomitant change of Trp117 side chain conformation. Structural changes at the active site are consistent with the reduced activity on substrates and decreased coenzyme binding.

  1. Contribution of Bordetella bronchiseptica Filamentous Hemagglutinin and Pertactin to Respiratory Disease in Swine▿ †

    PubMed Central

    Nicholson, Tracy L.; Brockmeier, Susan L.; Loving, Crystal L.

    2009-01-01

    Bordetella bronchiseptica is pervasive in swine populations and plays multiple roles in respiratory disease. Most studies addressing virulence factors of B. bronchiseptica are based on isolates derived from hosts other than pigs. Two well-studied virulence factors implicated in the adhesion process are filamentous hemagglutinin (FHA) and pertactin (PRN). We hypothesized that both FHA and PRN would serve critical roles in the adhesion process and be necessary for colonization of the swine respiratory tract. To investigate the role of FHA and PRN in Bordetella pathogenesis in swine, we constructed mutants containing an in-frame deletion of the FHA or the PRN structural gene in a virulent B. bronchiseptica swine isolate. Both mutants were compared to the wild-type swine isolate for their ability to colonize and cause disease in swine. Colonization of the FHA mutant was lower than that of the wild type at all respiratory tract sites and time points examined and caused limited to no disease. In contrast, the PRN mutant caused similar disease severity relative to the wild type; however, colonization of the PRN mutant was reduced relative to the wild type during early and late infection and induced higher anti-Bordetella antibody titers. Together, our results indicate that despite inducing different pathologies and antibody responses, both FHA and PRN are necessary for optimal colonization of the swine respiratory tract. PMID:19237531

  2. Replacement of buried cysteine from zebrafish Cu/Zn superoxide dismutase and enhancement of its stability via site-directed mutagenesis.

    PubMed

    Ken, Chuian-Fu; Lin, Chi-Tsai; Wen, Yu-Der; Wu, Jen-Leih

    2007-01-01

    Zebrafish Cu/Zn-superoxide dismutase (ZSOD1) has one free cysteine (Cys-7) in a first beta-strand with lower thermostability. We predicted the stability would be increased with single-point mutation at 70 degrees C via the I-Mutant 2.0 server, and generated a mutant SOD with replacement of the free Cys to Ala (ZSODC7A) by site-directed mutagenesis. The mutant was expressed and purified from the Escherichia coli strain AD494(DE3)pLysS and the yield was 2 mg from 0.4 L of culture. The ZSODC7A was heated at 90 degrees C. In a time-dependent assay, the time interval for 50% inactivation was 32 min, and its thermal inactivation rate constant K (d) was 2 x 10(-2) min(-1). The mutant was still activated in broad pH range (2.3-12), and had only a moderate effect under sodium dodecyl sulfate treatment. The calculated specific activity of the mutant was 3980 U/mg, twice that of wild-type ZSOD1. In addition, we soaked fish larva with equal enzyme units of either ZSOD1 or ZSODC7A for 2 h, and then stressed them with 100 ppm of paraquat to induce oxidative injury. The survival rate was significant.

  3. Interplay Between Capsule Expression and Uracil Metabolism in Streptococcus pneumoniae D39

    PubMed Central

    Carvalho, Sandra M.; Kloosterman, Tomas G.; Manzoor, Irfan; Caldas, José; Vinga, Susana; Martinussen, Jan; Saraiva, Lígia M.; Kuipers, Oscar P.; Neves, Ana R.

    2018-01-01

    Pyrimidine nucleotides play an important role in the biosynthesis of activated nucleotide sugars (NDP-sugars). NDP-sugars are the precursors of structural polysaccharides in bacteria, including capsule, which is a major virulence factor of the human pathogen S. pneumoniae. In this work, we identified a spontaneous non-reversible mutant of strain D39 that displayed a non-producing capsule phenotype. Whole-genome sequencing analysis of this mutant revealed several non-synonymous single base modifications, including in genes of the de novo synthesis of pyrimidines and in the −10 box of capsule operon promoter (Pcps). By directed mutagenesis we showed that the point mutation in Pcps was solely responsible for the drastic decrease in capsule expression. We also demonstrated that D39 subjected to uracil deprivation shows increased biomass and decreased Pcps activity and capsule amounts. Importantly, Pcps expression is further decreased by mutating the first gene of the de novo synthesis of pyrimidines, carA. In contrast, the absence of uracil from the culture medium showed no effect on the spontaneous mutant strain. Co-cultivation of the wild-type and the mutant strain indicated a competitive advantage of the spontaneous mutant (non-producing capsule) in medium devoid of uracil. We propose a model in that uracil may act as a signal for the production of different capsule amounts in S. pneumoniae. PMID:29599757

  4. Interplay Between Capsule Expression and Uracil Metabolism in Streptococcus pneumoniae D39.

    PubMed

    Carvalho, Sandra M; Kloosterman, Tomas G; Manzoor, Irfan; Caldas, José; Vinga, Susana; Martinussen, Jan; Saraiva, Lígia M; Kuipers, Oscar P; Neves, Ana R

    2018-01-01

    Pyrimidine nucleotides play an important role in the biosynthesis of activated nucleotide sugars (NDP-sugars). NDP-sugars are the precursors of structural polysaccharides in bacteria, including capsule, which is a major virulence factor of the human pathogen S. pneumoniae . In this work, we identified a spontaneous non-reversible mutant of strain D39 that displayed a non-producing capsule phenotype. Whole-genome sequencing analysis of this mutant revealed several non-synonymous single base modifications, including in genes of the de novo synthesis of pyrimidines and in the -10 box of capsule operon promoter (P cps ). By directed mutagenesis we showed that the point mutation in P cps was solely responsible for the drastic decrease in capsule expression. We also demonstrated that D39 subjected to uracil deprivation shows increased biomass and decreased P cps activity and capsule amounts. Importantly, P cps expression is further decreased by mutating the first gene of the de novo synthesis of pyrimidines, carA . In contrast, the absence of uracil from the culture medium showed no effect on the spontaneous mutant strain. Co-cultivation of the wild-type and the mutant strain indicated a competitive advantage of the spontaneous mutant (non-producing capsule) in medium devoid of uracil. We propose a model in that uracil may act as a signal for the production of different capsule amounts in S. pneumoniae .

  5. Applications of Protein Thermodynamic Database for Understanding Protein Mutant Stability and Designing Stable Mutants.

    PubMed

    Gromiha, M Michael; Anoosha, P; Huang, Liang-Tsung

    2016-01-01

    Protein stability is the free energy difference between unfolded and folded states of a protein, which lies in the range of 5-25 kcal/mol. Experimentally, protein stability is measured with circular dichroism, differential scanning calorimetry, and fluorescence spectroscopy using thermal and denaturant denaturation methods. These experimental data have been accumulated in the form of a database, ProTherm, thermodynamic database for proteins and mutants. It also contains sequence and structure information of a protein, experimental methods and conditions, and literature information. Different features such as search, display, and sorting options and visualization tools have been incorporated in the database. ProTherm is a valuable resource for understanding/predicting the stability of proteins and it can be accessed at http://www.abren.net/protherm/ . ProTherm has been effectively used to examine the relationship among thermodynamics, structure, and function of proteins. We describe the recent progress on the development of methods for understanding/predicting protein stability, such as (1) general trends on mutational effects on stability, (2) relationship between the stability of protein mutants and amino acid properties, (3) applications of protein three-dimensional structures for predicting their stability upon point mutations, (4) prediction of protein stability upon single mutations from amino acid sequence, and (5) prediction methods for addressing double mutants. A list of online resources for predicting has also been provided.

  6. Mechanistic insight into the functional transition of the enzyme guanylate kinase induced by a single mutation

    PubMed Central

    Zhang, Yuebin; Niu, Huiyan; Li, Yan; Chu, Huiying; Shen, Hujun; Zhang, Dinglin; Li, Guohui

    2015-01-01

    Dramatic functional changes of enzyme usually require scores of alterations in amino acid sequence. However, in the case of guanylate kinase (GK), the functional novelty is induced by a single (S→P) mutation, leading to the functional transition of the enzyme from a phosphoryl transfer kinase into a phosphorprotein interaction domain. Here, by using molecular dynamic (MD) and metadynamics simulations, we provide a comprehensive description of the conformational transitions of the enzyme after mutating serine to proline. Our results suggest that the serine plays a crucial role in maintaining the closed conformation of wild-type GK and the GMP recognition. On the contrary, the S→P mutant exhibits a stable open conformation and loses the ability of ligand binding, which explains its functional transition from the GK enzyme to the GK domain. Furthermore, the free energy profiles (FEPs) obtained by metadymanics clearly demonstrate that the open-closed conformational transition in WT GK is positive correlated with the process of GMP binding, indicating the GMP-induced closing motion of GK enzyme, which is not observed in the mutant. In addition, the FEPs show that the S→P mutation can also leads to the mis-recognition of GMP, explaining the vanishing of catalytic activity of the mutant. PMID:25672880

  7. Nonketotic hyperglycinemia: Functional assessment of missense variants in GLDC to understand phenotypes of the disease.

    PubMed

    Bravo-Alonso, Irene; Navarrete, Rosa; Arribas-Carreira, Laura; Perona, Almudena; Abia, David; Couce, María Luz; García-Cazorla, Angels; Morais, Ana; Domingo, Rosario; Ramos, María Antonia; Swanson, Michael A; Van Hove, Johan L K; Ugarte, Magdalena; Pérez, Belén; Pérez-Cerdá, Celia; Rodríguez-Pombo, Pilar

    2017-06-01

    The rapid analysis of genomic data is providing effective mutational confirmation in patients with clinical and biochemical hallmarks of a specific disease. This is the case for nonketotic hyperglycinemia (NKH), a Mendelian disorder causing seizures in neonates and early-infants, primarily due to mutations in the GLDC gene. However, understanding the impact of missense variants identified in this gene is a major challenge for the application of genomics into clinical practice. Herein, a comprehensive functional and structural analysis of 19 GLDC missense variants identified in a cohort of 26 NKH patients was performed. Mutant cDNA constructs were expressed in COS7 cells followed by enzymatic assays and Western blot analysis of the GCS P-protein to assess the residual activity and mutant protein stability. Structural analysis, based on molecular modeling of the 3D structure of GCS P-protein, was also performed. We identify hypomorphic variants that produce attenuated phenotypes with improved prognosis of the disease. Structural analysis allows us to interpret the effects of mutations on protein stability and catalytic activity, providing molecular evidence for clinical outcome and disease severity. Moreover, we identify an important number of mutants whose loss-of-functionality is associated with instability and, thus, are potential targets for rescue using folding therapeutic approaches. © 2017 Wiley Periodicals, Inc.

  8. Multiproteomic and Transcriptomic Analysis of Oncogenic β-Catenin Molecular Networks.

    PubMed

    Ewing, Rob M; Song, Jing; Gokulrangan, Giridharan; Bai, Sheldon; Bowler, Emily H; Bolton, Rachel; Skipp, Paul; Wang, Yihua; Wang, Zhenghe

    2018-06-01

    The dysregulation of Wnt signaling is a frequent occurrence in many different cancers. Oncogenic mutations of CTNNB1/β-catenin, the key nuclear effector of canonical Wnt signaling, lead to the accumulation and stabilization of β-catenin protein with diverse effects in cancer cells. Although the transcriptional response to Wnt/β-catenin signaling activation has been widely studied, an integrated understanding of the effects of oncogenic β-catenin on molecular networks is lacking. We used affinity-purification mass spectrometry (AP-MS), label-free liquid chromatography-tandem mass spectrometry, and RNA-Seq to compare protein-protein interactions, protein expression, and gene expression in colorectal cancer cells expressing mutant (oncogenic) or wild-type β-catenin. We generate an integrated molecular network and use it to identify novel protein modules that are associated with mutant or wild-type β-catenin. We identify a DNA methyltransferase I associated subnetwork that is enriched in cells with mutant β-catenin and a subnetwork enriched in wild-type cells associated with the CDKN2A tumor suppressor, linking these processes to the transformation of colorectal cancer cells through oncogenic β-catenin signaling. In summary, multiomics analysis of a defined colorectal cancer cell model provides a significantly more comprehensive identification of functional molecular networks associated with oncogenic β-catenin signaling.

  9. Mechanistic insight into the functional transition of the enzyme guanylate kinase induced by a single mutation.

    PubMed

    Zhang, Yuebin; Niu, Huiyan; Li, Yan; Chu, Huiying; Shen, Hujun; Zhang, Dinglin; Li, Guohui

    2015-02-12

    Dramatic functional changes of enzyme usually require scores of alterations in amino acid sequence. However, in the case of guanylate kinase (GK), the functional novelty is induced by a single (S→P) mutation, leading to the functional transition of the enzyme from a phosphoryl transfer kinase into a phosphorprotein interaction domain. Here, by using molecular dynamic (MD) and metadynamics simulations, we provide a comprehensive description of the conformational transitions of the enzyme after mutating serine to proline. Our results suggest that the serine plays a crucial role in maintaining the closed conformation of wild-type GK and the GMP recognition. On the contrary, the S→P mutant exhibits a stable open conformation and loses the ability of ligand binding, which explains its functional transition from the GK enzyme to the GK domain. Furthermore, the free energy profiles (FEPs) obtained by metadymanics clearly demonstrate that the open-closed conformational transition in WT GK is positive correlated with the process of GMP binding, indicating the GMP-induced closing motion of GK enzyme, which is not observed in the mutant. In addition, the FEPs show that the S→P mutation can also leads to the mis-recognition of GMP, explaining the vanishing of catalytic activity of the mutant.

  10. EuroPhenome: a repository for high-throughput mouse phenotyping data

    PubMed Central

    Morgan, Hugh; Beck, Tim; Blake, Andrew; Gates, Hilary; Adams, Niels; Debouzy, Guillaume; Leblanc, Sophie; Lengger, Christoph; Maier, Holger; Melvin, David; Meziane, Hamid; Richardson, Dave; Wells, Sara; White, Jacqui; Wood, Joe; de Angelis, Martin Hrabé; Brown, Steve D. M.; Hancock, John M.; Mallon, Ann-Marie

    2010-01-01

    The broad aim of biomedical science in the postgenomic era is to link genomic and phenotype information to allow deeper understanding of the processes leading from genomic changes to altered phenotype and disease. The EuroPhenome project (http://www.EuroPhenome.org) is a comprehensive resource for raw and annotated high-throughput phenotyping data arising from projects such as EUMODIC. EUMODIC is gathering data from the EMPReSSslim pipeline (http://www.empress.har.mrc.ac.uk/) which is performed on inbred mouse strains and knock-out lines arising from the EUCOMM project. The EuroPhenome interface allows the user to access the data via the phenotype or genotype. It also allows the user to access the data in a variety of ways, including graphical display, statistical analysis and access to the raw data via web services. The raw phenotyping data captured in EuroPhenome is annotated by an annotation pipeline which automatically identifies statistically different mutants from the appropriate baseline and assigns ontology terms for that specific test. Mutant phenotypes can be quickly identified using two EuroPhenome tools: PhenoMap, a graphical representation of statistically relevant phenotypes, and mining for a mutant using ontology terms. To assist with data definition and cross-database comparisons, phenotype data is annotated using combinations of terms from biological ontologies. PMID:19933761

  11. A Mutation in the Bacillus subtilis rsbU Gene That Limits RNA Synthesis during Sporulation.

    PubMed

    Rothstein, David M; Lazinski, David; Osburne, Marcia S; Sonenshein, Abraham L

    2017-07-15

    Mutants of Bacillis subtilis that are temperature sensitive for RNA synthesis during sporulation were isolated after selection with a 32 P suicide agent. Whole-genome sequencing revealed that two of the mutants carried an identical lesion in the rsbU gene, which encodes a phosphatase that indirectly activates SigB, the stress-responsive RNA polymerase sigma factor. The mutation appeared to cause RsbU to be hyperactive, because the mutants were more resistant than the parent strain to ethanol stress. In support of this hypothesis, pseudorevertants that regained wild-type levels of sporulation at high temperature had secondary mutations that prevented expression of the mutant rsbU gene. The properties of these RsbU mutants support the idea that activation of SigB diminishes the bacterium's ability to sporulate. IMPORTANCE Most bacterial species encode multiple RNA polymerase promoter recognition subunits (sigma factors). Each sigma factor directs RNA polymerase to different sets of genes; each gene set typically encodes proteins important for responses to specific environmental conditions, such as changes in temperature, salt concentration, and nutrient availability. A selection for mutants of Bacillus subtilis that are temperature sensitive for RNA synthesis during sporulation unexpectedly yielded strains with a point mutation in rsbU , a gene that encodes a protein that normally activates sigma factor B (SigB) under conditions of salt stress. The mutation appears to cause RsbU, and therefore SigB, to be active inappropriately, thereby inhibiting, directly or indirectly, the ability of the cells to transcribe sporulation genes. Copyright © 2017 American Society for Microbiology.

  12. Iron-dependent modifications of the flower transcriptome, proteome, metabolome, and hormonal content in an Arabidopsis ferritin mutant

    PubMed Central

    Sudre, Damien; Gutierrez-Carbonell, Elain; Lattanzio, Giuseppe; Rellán-Álvarez, Rubén; Gaymard, Frédéric; Wohlgemuth, Gert; Fiehn, Oliver; Álvarez-Fernández, Ana; Zamarreño, Angel M.; Bacaicoa, Eva; Duy, Daniela; García-Mina, Jose-María; Abadía, Javier; Philippar, Katrin; López-Millán, Ana-Flor; Briat, Jean-François

    2013-01-01

    Iron homeostasis is an important process for flower development and plant fertility. The role of plastids in these processes has been shown to be essential. To document the relationships between plastid iron homeostasis and flower biology further, a global study (transcriptome, proteome, metabolome, and hormone analysis) was performed of Arabidopsis flowers from wild-type and triple atfer1-3-4 ferritin mutant plants grown under iron-sufficient or excess conditions. Some major modifications in specific functional categories were consistently observed at these three omic levels, although no significant overlaps of specific transcripts and proteins were detected. These modifications concerned redox reactions and oxidative stress, as well as amino acid and protein catabolism, this latter point being exemplified by an almost 10-fold increase in urea concentration of atfer1-3-4 flowers from plants grown under iron excess conditions. The mutant background caused alterations in Fe–haem redox proteins located in membranes and in hormone-responsive proteins. Specific effects of excess Fe in the mutant included further changes in these categories, supporting the idea that the mutant is facing a more intense Fe/redox stress than the wild type. The mutation and/or excess Fe had a strong impact at the membrane level, as denoted by the changes in the transporter and lipid metabolism categories. In spite of the large number of genes and proteins responsive to hormones found to be regulated in this study, changes in the hormonal balance were restricted to cytokinins, especially in the mutant plants grown under Fe excess conditions. PMID:23682113

  13. Inactivation of Genes Encoding Subunits of the Peripheral and Membrane Arms of Neurospora Mitochondrial Complex I and Effects on Enzyme Assembly

    PubMed Central

    Duarte, M.; Sousa, R.; Videira, A.

    1995-01-01

    We have isolated and characterized the nuclear genes encoding the 12.3-kD subunit of the membrane arm and the 29.9-kD subunit of the peripheral arm of complex I from Neurospora crassa. The former gene was known to be located in linkage group I and the latter is now assigned to linkage group IV of the fungal genome. The genes were separately transformed into different N. crassa strains and transformants with duplicated DNA sequences were isolated. Selected transformants were then mated with other strains to generate repeat-induced point mutations in both copies of the genes present in the nucleus of the parental transformant. From the progeny of the crosses, we were then able to recover two individual mutants lacking the 12.3- and 29.9-kD proteins in their mitochondria, mutants nuo12.3 and nuo29.9, respectively. Several other subunits of complex I are present in the mutant organelles, although with altered stoichiometries as compared with those in the wild-type strain. Based on the analysis of Triton-solubilized mitochondrial complexes in sucrose gradients, neither mutant is able to fully assemble complex I. Our results indicate that mutant nuo12.3 separately assembles the peripheral arm and most of the membrane arm of the enzyme. Mutant nuo29.9 seems to accumulate the membrane arm of complex I and being devoid of the peripheral part. This implicates the 29.9-kD protein in an early step of complex I assembly. PMID:7768434

  14. Isolation and characterization of mutated alcohol oxidases from the yeast Hansenula polymorpha with decreased affinity toward substrates and their use as selective elements of an amperometric biosensor

    PubMed Central

    Dmytruk, Kostyantyn V; Smutok, Oleh V; Ryabova, Olena B; Gayda, Galyna Z; Sibirny, Volodymyr A; Schuhmann, Wolfgang; Gonchar, Mykhailo V; Sibirny, Andriy A

    2007-01-01

    Background Accurate, rapid, and economic on-line analysis of ethanol is very desirable. However, available biosensors achieve saturation at very low ethanol concentrations and thus demand the time and labour consuming procedure of sample dilution. Results Hansenula polymorpha (Pichia angusta) mutant strains resistant to allyl alcohol in methanol medium were selected. Such strains possessed decreased affinity of alcohol oxidase (AOX) towards methanol: the KM values for AOX of wild type and mutant strains CA2 and CA4 are shown to be 0.62, 2.48 and 1.10 mM, respectively, whereas Vmax values are increased or remain unaffected. The mutant AOX alleles from H. polymorpha mutants CA2 and CA4 were isolated and sequenced. Several point mutations in the AOX gene, mostly different between the two mutant alleles, have been identified. Mutant AOX forms were isolated and purified, and some of their biochemical properties were studied. An amperometric biosensor based on the mutated form of AOX from the strain CA2 was constructed and revealed an extended linear response to the target analytes, ethanol and formaldehyde, as compared to the sensor based on the native AOX. Conclusion The described selection methodology opens up the possibility of isolating modified forms of AOX with further decreased affinity toward substrates without reduction of the maximal velocity of reaction. It can help in creation of improved ethanol biosensors with a prolonged linear response towards ethanol in real samples of wines, beers or fermentation liquids. PMID:17567895

  15. Structural characterization of V57D and V57P mutants of human cystatin C, an amyloidogenic protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlikowska, Marta; Szymańska, Aneta; Borek, Dominika

    2013-04-01

    Val57 point mutants of human cystatin C, which were designed to assess the influence of changes in the properties of the L1 loop on the dimerization propensity, were structurally characterized. Wild-type human cystatin C (hCC wt) is a low-molecular-mass protein (120 amino-acid residues, 13 343 Da) that is found in all nucleated cells. Physiologically, it functions as a potent regulator of cysteine protease activity. While the biologically active hCC wt is a monomeric protein, all crystallization efforts to date have resulted in a three-dimensional domain-swapped dimeric structure. In the recently published structure of a mutated hCC, the monomeric fold wasmore » preserved by a stabilization of the conformationally constrained loop L1 caused by a single amino-acid substitution: Val57Asn. Additional hCC mutants were obtained in order to elucidate the relationship between the stability of the L1 loop and the propensity of human cystatin C to dimerize. In one mutant Val57 was substituted by an aspartic acid residue, which is favoured in β-turns, and in the second mutant proline, a residue known for broadening turns, was substituted for the same Val57. Here, 2.26 and 3.0 Å resolution crystal structures of the V57D andV57P mutants of hCC are reported and their dimeric architecture is discussed in terms of the stabilization and destabilization effects of the introduced mutations.« less

  16. Are there multiple pathways in the pathogenesis of Huntington's disease?

    PubMed Central

    Aronin, N; Kim, M; Laforet, G; DiFiglia, M

    1999-01-01

    Studies of huntingtin localization in human post-mortem brain offer insights and a framework for basic experiments in the pathogenesis of Huntington's disease. In neurons of cortex and striatum, we identified changes in the cytoplasmic localization of huntingtin including a marked perinuclear accumulation of huntingtin and formation of multivesicular bodies, changes conceivably pointing to an altered handling of huntingtin in neurons. In Huntington's disease, huntingtin also accumulates in aberrant subcellular compartments such as nuclear and neuritic aggregates co-localized with ubiquitin. The site of protein aggregation is polyglutamine-dependent, both in juvenile-onset patients having more aggregates in the nucleus and in adult-onset patients presenting more neuritic aggregates. Studies in vitro reveal that the genesis of these aggregates and cell death are tied to cleavage of mutant huntingtin. However, we found that the aggregation of mutant huntingtin can be dissociated from the extent of cell death. Thus properties of mutant huntingtin more subtle than its aggregation, such as its proteolysis and protein interactions that affect vesicle trafficking and nuclear transport, might suffice to cause neurodegeneration in the striatum and cortex. We propose that mutant huntingtin engages multiple pathogenic pathways leading to neuronal death. PMID:10434298

  17. Engineering of DNA polymerase I from Thermus thermophilus using compartmentalized self-replication.

    PubMed

    Aye, Seaim Lwin; Fujiwara, Kei; Ueki, Asuka; Doi, Nobuhide

    2018-05-05

    Although compartmentalized self-replication (CSR) and compartmentalized partnered replication (CPR) are powerful tools for directed evolution of proteins and gene circuits, limitations remain in the emulsion PCR process with the wild-type Taq DNA polymerase used so far, including long run times, low amounts of product, and false negative results due to inhibitors. In this study, we developed a high-efficiency mutant of DNA polymerase I from Thermus thermophilus HB27 (Tth pol) suited for CSR and CPR. We modified the wild-type Tth pol by (i) deletion of the N-terminal 5' to 3' exonuclease domain, (ii) fusion with the DNA-binding protein Sso7d, (iii) introduction of four known effective point mutations from other DNA polymerase mutants, and (iv) codon optimization to reduce the GC content. Consequently, we obtained a mutant that provides higher product yields than the conventional Taq pol without decreased fidelity. Next, we performed four rounds of CSR selection with a randomly mutated library of this modified Tth pol and obtained mutants that provide higher product yields in fewer cycles of emulsion PCR than the parent Tth pol as well as the conventional Taq pol. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Excitonic Energy Landscape of the Y16F Mutant of the Chlorobium tepidum Fenna-Matthews-Olson (FMO) Complex: High Resolution Spectroscopic and Modeling Studies.

    PubMed

    Khmelnitskiy, Anton; Saer, Rafael G; Blankenship, Robert E; Jankowiak, Ryszard

    2018-04-12

    We report high-resolution (low-temperature) absorption, emission, and nonresonant/resonant hole-burned (HB) spectra and results of excitonic calculations using a non-Markovian reduced density matrix theory (with an improved algorithm for parameter optimization in heterogeneous samples) obtained for the Y16F mutant of the Fenna-Matthews-Olson (FMO) trimer from the green sulfur bacterium Chlorobium tepidum. We show that the Y16F mutant is a mixture of FMO complexes with three independent low-energy traps (located near 817, 821, and 826 nm), in agreement with measured composite emission and HB spectra. Two of these traps belong to mutated FMO subpopulations characterized by significantly modified low-energy excitonic states. Hamiltonians for the two major subpopulations (Sub 821 and Sub 817 ) provide new insight into extensive changes induced by the single-point mutation in the vicinity of BChl 3 (where tyrosine Y16 was replaced with phenylalanine F16). The average decay time(s) from the higher exciton state(s) in the Y16F mutant depends on frequency and occurs on a picosecond time scale.

  19. Comprehensive mutational profiling of core binding factor acute myeloid leukemia.

    PubMed

    Duployez, Nicolas; Marceau-Renaut, Alice; Boissel, Nicolas; Petit, Arnaud; Bucci, Maxime; Geffroy, Sandrine; Lapillonne, Hélène; Renneville, Aline; Ragu, Christine; Figeac, Martin; Celli-Lebras, Karine; Lacombe, Catherine; Micol, Jean-Baptiste; Abdel-Wahab, Omar; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric; Preudhomme, Claude

    2016-05-19

    Acute myeloid leukemia (AML) with t(8;21) or inv(16) have been recognized as unique entities within AML and are usually reported together as core binding factor AML (CBF-AML). However, there is considerable clinical and biological heterogeneity within this group of diseases, and relapse incidence reaches up to 40%. Moreover, translocations involving CBFs are not sufficient to induce AML on its own and the full spectrum of mutations coexisting with CBF translocations has not been elucidated. To address these issues, we performed extensive mutational analysis by high-throughput sequencing in 215 patients with CBF-AML enrolled in the Phase 3 Trial of Systematic Versus Response-adapted Timed-Sequential Induction in Patients With Core Binding Factor Acute Myeloid Leukemia and Treating Patients with Childhood Acute Myeloid Leukemia with Interleukin-2 trials (age, 1-60 years). Mutations in genes activating tyrosine kinase signaling (including KIT, N/KRAS, and FLT3) were frequent in both subtypes of CBF-AML. In contrast, mutations in genes that regulate chromatin conformation or encode members of the cohesin complex were observed with high frequencies in t(8;21) AML (42% and 18%, respectively), whereas they were nearly absent in inv(16) AML. High KIT mutant allele ratios defined a group of t(8;21) AML patients with poor prognosis, whereas high N/KRAS mutant allele ratios were associated with the lack of KIT or FLT3 mutations and a favorable outcome. In addition, mutations in epigenetic modifying or cohesin genes were associated with a poor prognosis in patients with tyrosine kinase pathway mutations, suggesting synergic cooperation between these events. These data suggest that diverse cooperating mutations may influence CBF-AML pathophysiology as well as clinical behavior and point to potential unique pathogenesis of t(8;21) vs inv(16) AML. © 2016 by The American Society of Hematology.

  20. Double-strand break repair and genetic recombination in topoisomerase and primase mutants of bacteriophage T4.

    PubMed

    Shcherbakov, Victor P; Kudryashova, Elena

    2014-09-01

    The effects of primase and topoisomerase II deficiency on the double-strand break (DSB) repair and genetic recombination in bacteriophage T4 were studied in vivo using focused recombination. Site-specific DSBs were induced by SegC endonuclease in the rIIB gene of one of the parents. The frequency/distance relationship was determined in crosses of the wild-type phage, topoisomerase II mutant amN116 (gene 39), and primase mutant E219 (gene 61). Ordinary two-factor (i×j) and three-factor (i k×j) crosses between point rII mutations were also performed. These data provide information about the frequency and distance distribution of the single-exchange (splice) and double-exchange (patch) events. In two-factor crosses ets1×i, the topoisomerase and primase mutants had similar recombinant frequencies in crosses at ets1-i distances longer than 1000 bp, comprising about 80% of the corresponding wild-type values. They, however, differ remarkably in crosses at shorter distances. In the primase mutant, the recombinant frequencies are similar to those in the wild-type crosses at distances less than 100 bp, being a bit diminished at longer distances. In two-factor crosses ets1×i of the topoisomerase mutant, the recombinant frequencies were reduced ten-fold at the shortest distances. In three-factor crosses a6 ets1×i, where we measure patch-related recombination, the primase mutant was quite proficient across the entire range of distances. The topoisomerase mutant crosses demonstrated virtually complete absence of rII(+) recombinants at distances up to 33 bp, with the frequencies increasing steadily at longer distances. The data were interpreted as follows. The primase mutant is fully recombination-proficient. An obvious difference from the wild-type state is some shortage of EndoVII function leading to prolonged existence of HJs and thus stretched out ds-branch migration. This is also true for the topoisomerase mutant. However, the latter is deficient in the ss-branch migration step of the DSB repair pathway and partially deficient in HJ initiation. In apparent contradiction to their effects on the DSB-induced site-specific recombination, the topoisomerase and primase mutants demonstrated about 3-8-fold increase in the recombinant frequencies in the ordinary crosses, with the recombination running exclusively via patches. This implies that most of the spontaneous recombination events are not initiated by dsDNA ends in these mutants. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The RNA Silencing Enzyme RNA Polymerase V Is Required for Plant Immunity

    PubMed Central

    López, Ana; Ramírez, Vicente; García-Andrade, Javier; Flors, Victor; Vera, Pablo

    2011-01-01

    RNA–directed DNA methylation (RdDM) is an epigenetic control mechanism driven by small interfering RNAs (siRNAs) that influence gene function. In plants, little is known of the involvement of the RdDM pathway in regulating traits related to immune responses. In a genetic screen designed to reveal factors regulating immunity in Arabidopsis thaliana, we identified NRPD2 as the OVEREXPRESSOR OF CATIONIC PEROXIDASE 1 (OCP1). NRPD2 encodes the second largest subunit of the plant-specific RNA Polymerases IV and V (Pol IV and Pol V), which are crucial for the RdDM pathway. The ocp1 and nrpd2 mutants showed increases in disease susceptibility when confronted with the necrotrophic fungal pathogens Botrytis cinerea and Plectosphaerella cucumerina. Studies were extended to other mutants affected in different steps of the RdDM pathway, such as nrpd1, nrpe1, ago4, drd1, rdr2, and drm1drm2 mutants. Our results indicate that all the mutants studied, with the exception of nrpd1, phenocopy the nrpd2 mutants; and they suggest that, while Pol V complex is required for plant immunity, Pol IV appears dispensable. Moreover, Pol V defective mutants, but not Pol IV mutants, show enhanced disease resistance towards the bacterial pathogen Pseudomonas syringae DC3000. Interestingly, salicylic acid (SA)–mediated defenses effective against PsDC3000 are enhanced in Pol V defective mutants, whereas jasmonic acid (JA)–mediated defenses that protect against fungi are reduced. Chromatin immunoprecipitation analysis revealed that, through differential histone modifications, SA–related defense genes are poised for enhanced activation in Pol V defective mutants and provide clues for understanding the regulation of gene priming during defense. Our results highlight the importance of epigenetic control as an additional layer of complexity in the regulation of plant immunity and point towards multiple components of the RdDM pathway being involved in plant immunity based on genetic evidence, but whether this is a direct or indirect effect on disease-related genes is unclear. PMID:22242006

  2. Tcof1-Related Molecular Networks in Treacher Collins Syndrome.

    PubMed

    Dai, Jiewen; Si, Jiawen; Wang, Minjiao; Huang, Li; Fang, Bing; Shi, Jun; Wang, Xudong; Shen, Guofang

    2016-09-01

    Treacher Collins syndrome (TCS) is a rare, autosomal-dominant disorder characterized by craniofacial deformities, and is primarily caused by mutations in the Tcof1 gene. This article was aimed to perform a comprehensive literature review and systematic bioinformatic analysis of Tcof1-related molecular networks in TCS. First, the up- and down-regulated genes in Tcof1 heterozygous haploinsufficient mutant mice embryos and Tcof1 knockdown and Tcof1 over-expressed neuroblastoma N1E-115 cells were obtained from the Gene Expression Omnibus database. The GeneDecks database was used to calculate the 500 genes most closely related to Tcof1. Then, the relationships between 4 gene sets (a predicted set and sets comparing the wildtype with the 3 Gene Expression Omnibus datasets) were analyzed using the DAVID, GeneMANIA and STRING databases. The analysis results showed that the Tcof1-related genes were enriched in various biological processes, including cell proliferation, apoptosis, cell cycle, differentiation, and migration. They were also enriched in several signaling pathways, such as the ribosome, p53, cell cycle, and WNT signaling pathways. Additionally, these genes clearly had direct or indirect interactions with Tcof1 and between each other. Literature review and bioinformatic analysis finds imply that special attention should be given to these pathways, as they may offer target points for TCS therapies.

  3. ENVIRONMENTAL IMPACT ASSESSMENT TAXONOMY PROVIDING COMPREHENSIVE COVERAGE OF MIDPOINTS, ENDPOINTS, DAMAGES, AND AREAS OF PROTECTION

    EPA Science Inventory

    Prior to conducting a comprehensive impact assessment, such as a Life Cycle Impact Assessment (LCIA), there is a need to discuss the range of impacts which could and should be included. Up to this point in time, there has not been available a comprehensive list of impacts for po...

  4. ChIP-Seq and RNA-Seq Reveal an AmrZ-Mediated Mechanism for Cyclic di-GMP Synthesis and Biofilm Development by Pseudomonas aeruginosa

    PubMed Central

    Jones, Christopher J.; Newsom, David; Kelly, Benjamin; Irie, Yasuhiko; Jennings, Laura K.; Xu, Binjie; Limoli, Dominique H.; Harrison, Joe J.; Parsek, Matthew R.; White, Peter; Wozniak, Daniel J.

    2014-01-01

    The transcription factor AmrZ regulates genes important for P. aeruginosa virulence, including type IV pili, extracellular polysaccharides, and the flagellum; however, the global effect of AmrZ on gene expression remains unknown, and therefore, AmrZ may directly regulate many additional genes that are crucial for infection. Compared to the wild type strain, a ΔamrZ mutant exhibits a rugose colony phenotype, which is commonly observed in variants that accumulate the intracellular second messenger cyclic diguanylate (c-di-GMP). Cyclic di-GMP is produced by diguanylate cyclases (DGC) and degraded by phosphodiesterases (PDE). We hypothesized that AmrZ limits the intracellular accumulation of c-di-GMP through transcriptional repression of gene(s) encoding a DGC. In support of this, we observed elevated c-di-GMP in the ΔamrZ mutant compared to the wild type strain. Consistent with other strains that accumulate c-di-GMP, when grown as a biofilm, the ΔamrZ mutant formed larger microcolonies than the wild-type strain. This enhanced biofilm formation was abrogated by expression of a PDE. To identify potential target DGCs, a ChIP-Seq was performed and identified regions of the genome that are bound by AmrZ. RNA-Seq experiments revealed the entire AmrZ regulon, and characterized AmrZ as an activator or repressor at each binding site. We identified an AmrZ-repressed DGC-encoding gene (PA4843) from this cohort, which we named AmrZ dependent cyclase A (adcA). PAO1 overexpressing adcA accumulates 29-fold more c-di-GMP than the wild type strain, confirming the cyclase activity of AdcA. In biofilm reactors, a ΔamrZ ΔadcA double mutant formed smaller microcolonies than the single ΔamrZ mutant, indicating adcA is responsible for the hyper biofilm phenotype of the ΔamrZ mutant. This study combined the techniques of ChIP-Seq and RNA-Seq to define the comprehensive regulon of a bifunctional transcriptional regulator. Moreover, we identified a c-di-GMP mediated mechanism for AmrZ regulation of biofilm formation and chronicity. PMID:24603766

  5. Investigating the structural impact of S311C mutation in DRD2 receptor by molecular dynamics & docking studies.

    PubMed

    Podder, Avijit; Pandey, Deeksha; Latha, N

    2016-04-01

    Dopamine receptors (DR) are neuronal cell surface proteins that mediate the action of neurotransmitter dopamine in brain. Dopamine receptor D2 (DRD2) that belongs to G-protein coupled receptors (GPCR) family is a major therapeutic target for of various neurological and psychiatric disorders in human. The third inter cellular loop (ICL3) in DRD2 is essential for coupling G proteins and several signaling scaffold proteins. A mutation in ICL3 can interfere with this binding interface, thereby altering the DRD2 signaling. In this study we have examined the deleterious effect of serine to cysteine mutation at position 311 (S311C) in the ICL3 region that is implicated in diseases like schizophrenia and alcoholism. An in silico structure modeling approach was employed to determine the wild type (WT) and mutant S311C structures of DRD2, scaffold proteins - Gαi/o and NEB2. Protein-ligand docking protocol was exercised to predict the interactions of natural agonist dopamine with both the WT and mutant structures of DRD2. Besides, atomistic molecular dynamics (MD) simulations were performed to provide insights into essential dynamics of the systems-unbound and dopamine bound DRD2 (WT and mutant) and three independent simulations for Gαi, Gαo and NEB2 systems. To provide information on intra-molecular arrangement of the structures, a comprehensive residue interactions network of both dopamine bound WT and mutant DRD2 protein were studied. We also employed a protein-protein docking strategy to find the interactions of scaffold proteins - Gαi/o and NEB2 with both dopamine bound WT and mutant structures of DRD2. We observed a marginal effect of the mutation in dopamine binding mechanism on the trajectories analyzed. However, we noticed a significant structural alteration of the mutant receptor which affects Gαi/o and NEB2 binding that can be causal for malfunctioning in cAMP-dependent signaling and Ca(+) homeostasis in the brain dopaminergic system leading to neuropsychiatric disorders. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  6. Genome-Wide Mutagenesis in Borrelia burgdorferi.

    PubMed

    Lin, Tao; Gao, Lihui

    2018-01-01

    Signature-tagged mutagenesis (STM) is a functional genomics approach to identify bacterial virulence determinants and virulence factors by simultaneously screening multiple mutants in a single host animal, and has been utilized extensively for the study of bacterial pathogenesis, host-pathogen interactions, and spirochete and tick biology. The signature-tagged transposon mutagenesis has been developed to investigate virulence determinants and pathogenesis of Borrelia burgdorferi. Mutants in genes important in virulence are identified by negative selection in which the mutants fail to colonize or disseminate in the animal host and tick vector. STM procedure combined with Luminex Flex ® Map™ technology and next-generation sequencing (e.g., Tn-seq) are the powerful high-throughput tools for the determination of Borrelia burgdorferi virulence determinants. The assessment of multiple tissue sites and two DNA resources at two different time points using Luminex Flex ® Map™ technology provides a robust data set. B. burgdorferi transposon mutant screening indicates that a high proportion of genes are the novel virulence determinants that are required for mouse and tick infection. In this protocol, an effective signature-tagged Himar1-based transposon suicide vector was developed and used to generate a sequence-defined library of nearly 4800 mutants in the infectious B. burgdorferi B31 clone. In STM, signature-tagged suicide vectors are constructed by inserting unique DNA sequences (tags) into the transposable elements. The signature-tagged transposon mutants are generated when transposon suicide vectors are transformed into an infectious B. burgdorferi clone, and the transposable element is transposed into the 5'-TA-3' sequence in the B. burgdorferi genome with the signature tag. The transposon library is created and consists of many sub-libraries, each sub-library has several hundreds of mutants with same tags. A group of mice or ticks are infected with a mixed population of mutants with different tags, after recovered from different tissues of infected mice and ticks, mutants from output pool and input pool are detected using high-throughput, semi-quantitative Luminex ® FLEXMAP™ or next-generation sequencing (Tn-seq) technologies. Thus far, we have created a high-density, sequence-defined transposon library of over 6600 STM mutants for the efficient genome-wide investigation of genes and gene products required for wild-type pathogenesis, host-pathogen interactions, in vitro growth, in vivo survival, physiology, morphology, chemotaxis, motility, structure, metabolism, gene regulation, plasmid maintenance and replication, etc. The insertion sites of 4480 transposon mutants have been determined. About 800 predicted protein-encoding genes in the genome were disrupted in the STM transposon library. The infectivity and some functions of 800 mutants in 500 genes have been determined. Analysis of these transposon mutants has yielded valuable information regarding the genes and gene products important in the pathogenesis and biology of B. burgdorferi and its tick vectors.

  7. Protein linear indices of the 'macromolecular pseudograph alpha-carbon atom adjacency matrix' in bioinformatics. Part 1: prediction of protein stability effects of a complete set of alanine substitutions in Arc repressor.

    PubMed

    Marrero-Ponce, Yovani; Medina-Marrero, Ricardo; Castillo-Garit, Juan A; Romero-Zaldivar, Vicente; Torrens, Francisco; Castro, Eduardo A

    2005-04-15

    A novel approach to bio-macromolecular design from a linear algebra point of view is introduced. A protein's total (whole protein) and local (one or more amino acid) linear indices are a new set of bio-macromolecular descriptors of relevance to protein QSAR/QSPR studies. These amino-acid level biochemical descriptors are based on the calculation of linear maps on Rn[f k(xmi):Rn-->Rn] in canonical basis. These bio-macromolecular indices are calculated from the kth power of the macromolecular pseudograph alpha-carbon atom adjacency matrix. Total linear indices are linear functional on Rn. That is, the kth total linear indices are linear maps from Rn to the scalar R[f k(xm):Rn-->R]. Thus, the kth total linear indices are calculated by summing the amino-acid linear indices of all amino acids in the protein molecule. A study of the protein stability effects for a complete set of alanine substitutions in the Arc repressor illustrates this approach. A quantitative model that discriminates near wild-type stability alanine mutants from the reduced-stability ones in a training series was obtained. This model permitted the correct classification of 97.56% (40/41) and 91.67% (11/12) of proteins in the training and test set, respectively. It shows a high Matthews correlation coefficient (MCC=0.952) for the training set and an MCC=0.837 for the external prediction set. Additionally, canonical regression analysis corroborated the statistical quality of the classification model (Rcanc=0.824). This analysis was also used to compute biological stability canonical scores for each Arc alanine mutant. On the other hand, the linear piecewise regression model compared favorably with respect to the linear regression one on predicting the melting temperature (tm) of the Arc alanine mutants. The linear model explains almost 81% of the variance of the experimental tm (R=0.90 and s=4.29) and the LOO press statistics evidenced its predictive ability (q2=0.72 and scv=4.79). Moreover, the TOMOCOMD-CAMPS method produced a linear piecewise regression (R=0.97) between protein backbone descriptors and tm values for alanine mutants of the Arc repressor. A break-point value of 51.87 degrees C characterized two mutant clusters and coincided perfectly with the experimental scale. For this reason, we can use the linear discriminant analysis and piecewise models in combination to classify and predict the stability of the mutant Arc homodimers. These models also permitted the interpretation of the driving forces of such folding process, indicating that topologic/topographic protein backbone interactions control the stability profile of wild-type Arc and its alanine mutants.

  8. Proteins evolve on the edge of supramolecular self-assembly.

    PubMed

    Garcia-Seisdedos, Hector; Empereur-Mot, Charly; Elad, Nadav; Levy, Emmanuel D

    2017-08-10

    The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.

  9. Proteins evolve on the edge of supramolecular self-assembly

    NASA Astrophysics Data System (ADS)

    Garcia-Seisdedos, Hector; Empereur-Mot, Charly; Elad, Nadav; Levy, Emmanuel D.

    2017-08-01

    The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.

  10. The Cerebro-oculo-facio-skeletal Syndrome Point Mutation F231L in the ERCC1 DNA Repair Protein Causes Dissociation of the ERCC1-XPF Complex.

    PubMed

    Faridounnia, Maryam; Wienk, Hans; Kovačič, Lidija; Folkers, Gert E; Jaspers, Nicolaas G J; Kaptein, Robert; Hoeijmakers, Jan H J; Boelens, Rolf

    2015-08-14

    The ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and XPF (xeroderma pigmentosum complementation group F), leads to severe NER pathway deficiencies. Here, we analyze biophysical properties and report the NMR structure of the complex of the C-terminal tandem helix-hairpin-helix domains of ERCC1-XPF that contains this mutation. The structures of wild type and the F231L mutant are very similar. The F231L mutation results in only a small disturbance of the ERCC1-XPF interface, where, in contrast to Phe(231), Leu(231) lacks interactions stabilizing the ERCC1-XPF complex. One of the two anchor points is severely distorted, and this results in a more dynamic complex, causing reduced stability and an increased dissociation rate of the mutant complex as compared with wild type. These data provide a biophysical explanation for the severe NER deficiencies caused by this mutation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Deciphering the mechanisms of developmental disorders: phenotype analysis of embryos from mutant mouse lines

    PubMed Central

    Wilson, Robert; McGuire, Christina; Mohun, Timothy

    2016-01-01

    The Deciphering the Mechanisms of Developmental Disorders (DMDD) consortium is a research programme set up to identify genes in the mouse, which if mutated (or knocked-out) result in embryonic lethality when homozygous, and initiate the study of why disruption of their function has such profound effects on embryo development and survival. The project uses a combination of comprehensive high resolution 3D imaging and tissue histology to identify abnormalities in embryo and placental structures of embryonic lethal lines. The image data we have collected and the phenotypes scored are freely available through the project website (http://dmdd.org.uk). In this article we describe the web interface to the images that allows the embryo data to be viewed at full resolution in different planes, discuss how to search the database for a phenotype, and our approach to organising the data for an embryo and a mutant line so it is easy to comprehend and intuitive to navigate. PMID:26519470

  12. Engineering peptide ligase specificity by proteomic identification of ligation sites.

    PubMed

    Weeks, Amy M; Wells, James A

    2018-01-01

    Enzyme-catalyzed peptide ligation is a powerful tool for site-specific protein bioconjugation, but stringent enzyme-substrate specificity limits its utility. We developed an approach for comprehensively characterizing peptide ligase specificity for N termini using proteome-derived peptide libraries. We used this strategy to characterize the ligation efficiency for >25,000 enzyme-substrate pairs in the context of the engineered peptide ligase subtiligase and identified a family of 72 mutant subtiligases with activity toward N-terminal sequences that were previously recalcitrant to modification. We applied these mutants individually for site-specific bioconjugation of purified proteins, including antibodies, and in algorithmically selected combinations for sequencing of the cellular N terminome with reduced sequence bias. We also developed a web application to enable algorithmic selection of the most efficient subtiligase variant(s) for bioconjugation to user-defined sequences. Our methods provide a new toolbox of enzymes for site-specific protein modification and a general approach for rapidly defining and engineering peptide ligase specificity.

  13. Hematopoietic Kit Deficiency, rather than Lack of Mast Cells, Protects Mice from Obesity and Insulin Resistance.

    PubMed

    Gutierrez, Dario A; Muralidhar, Sathya; Feyerabend, Thorsten B; Herzig, Stephan; Rodewald, Hans-Reimer

    2015-05-05

    Obesity, insulin resistance, and related pathologies are associated with immune-mediated chronic inflammation. Kit mutant mice are protected from diet-induced obesity and associated co-morbidities, and this phenotype has previously been attributed to their lack of mast cells. We performed a comprehensive metabolic analysis of Kit-dependent Kit(W/Wv) and Kit-independent Cpa3(Cre/+) mast-cell-deficient mouse strains, employing diet-induced or genetic (Lep(Ob/Ob) background) models of obesity. Our results show that mast cell deficiency, in the absence of Kit mutations, plays no role in the regulation of weight gain or insulin resistance. Moreover, we provide evidence that the metabolic phenotype observed in Kit mutant mice, while independent of mast cells, is immune regulated. Our data underscore the value of definitive mast cell deficiency models to conclusively test the involvement of this enigmatic cell in immune-mediated pathologies and identify Kit as a key hematopoietic factor in the pathogenesis of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Modeling familial British and Danish dementia.

    PubMed

    Garringer, Holly J; Murrell, Jill; D'Adamio, Luciano; Ghetti, Bernardino; Vidal, Ruben

    2010-03-01

    Familial British dementia (FBD) and familial Danish dementia (FDD) are two autosomal dominant neurodegenerative diseases caused by mutations in the BRI ( 2 ) gene. FBD and FDD are characterized by widespread cerebral amyloid angiopathy (CAA), parenchymal amyloid deposition, and neurofibrillary tangles. Transgenic mice expressing wild-type and mutant forms of the BRI(2) protein, Bri ( 2 ) knock-in mutant mice, and Bri ( 2 ) gene knock-out mice have been developed. Transgenic mice expressing a human FDD-mutated form of the BRI ( 2 ) gene have partially reproduced the neuropathological lesions observed in FDD. These mice develop extensive CAA, parenchymal amyloid deposition, and neuroinflammation in the central nervous system. These animal models allow the study of the molecular mechanism(s) underlying the neuronal dysfunction in these diseases and allow the development of potential therapeutic approaches for these and related neurodegenerative conditions. In this review, a comprehensive account of the advances in the development of animal models for FBD and FDD and of their relevance to the study of Alzheimer disease is presented.

  15. A large inversion in the linear chromosome of Streptomyces griseus caused by replicative transposition of a new Tn3 family transposon.

    PubMed

    Murata, M; Uchida, T; Yang, Y; Lezhava, A; Kinashi, H

    2011-04-01

    We have comprehensively analyzed the linear chromosomes of Streptomyces griseus mutants constructed and kept in our laboratory. During this study, macrorestriction analysis of AseI and DraI fragments of mutant 402-2 suggested a large chromosomal inversion. The junctions of chromosomal inversion were cloned and sequenced and compared with the corresponding target sequences in the parent strain 2247. Consequently, a transposon-involved mechanism was revealed. Namely, a transposon originally located at the left target site was replicatively transposed to the right target site in an inverted direction, which generated a second copy and at the same time caused a 2.5-Mb chromosomal inversion. The involved transposon named TnSGR was grouped into a new subfamily of the resolvase-encoding Tn3 family transposons based on its gene organization. At the end, terminal diversity of S. griseus chromosomes is discussed by comparing the sequences of strains 2247 and IFO13350.

  16. The circling mutant Pcdh15roda is a new mouse model for hearing loss.

    PubMed

    Torres, Adriana Amorim; Rzadzinska, Agnieszka K; Ribeiro, Andrea Frozino; Silva, Daniel Almeida da Silva E; Guénet, Jean-Louis; Massironi, Sílvia Maria Gomes; Godard, Ana Lúcia Brunialti

    2013-01-01

    Mouse mutagenesis is a key tool for studying gene function and several mutant alleles have been described and constitute mouse models for human hereditary diseases. Genetic hearing loss represents over 50% of all hearing loss cases in children and, due to the heterogeneity of the disorder, there is still a demand for the isolation and characterization of new genes and alleles. Here we report phenotypic and molecular characterization of a new mouse model for hereditary hearing loss. The mutant rodador, isolated by Massironi and colleagues in 2006, presents an autosomal recessive disorder characterized by deafness and balance dysfunction associated with abnormal stereocilia in the inner ear. The mutation was mapped to mouse chromosome 10, and characterization of the gene Pcdh15 revealed an AT-to-GC transition in intron 23 of mutant animals. The alteration led to the switch of a dinucleotide ApA for ApG, creating a novel intronic acceptor splice site, which leads to incorporation of eight intronic bases into the processed mRNA and alteration of the downstream reading frame. In silico analysis indicated that the mutated protein is truncated and lacks two cadherin domains, and the transmembrane and cytoplasmic domains. Real Time PCR analyses revealed a significantly reduced Pcdh15 mRNA level in the brain of mutant mice, which might be due to the mechanism of non-sense mediated decay. In man, mutations in the orthologue PCDH15 cause non-syndromic deafness and Usher Syndrome Type 1F, a genetic disorder characterized by hearing loss and retinitis pigmentosa. Rodador mouse constitutes a new model for studying deafness in these conditions and may help in the comprehension of the pathogeneses of the disease, as well as of the mechanisms involved in the morphogenesis and function of inner ear stereocilia. This is a new ENU-induced allele and the first isolated in a BALB/c background. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation.

    PubMed

    Wang, Fang; Travins, Jeremy; DeLaBarre, Byron; Penard-Lacronique, Virginie; Schalm, Stefanie; Hansen, Erica; Straley, Kimberly; Kernytsky, Andrew; Liu, Wei; Gliser, Camelia; Yang, Hua; Gross, Stefan; Artin, Erin; Saada, Veronique; Mylonas, Elena; Quivoron, Cyril; Popovici-Muller, Janeta; Saunders, Jeffrey O; Salituro, Francesco G; Yan, Shunqi; Murray, Stuart; Wei, Wentao; Gao, Yi; Dang, Lenny; Dorsch, Marion; Agresta, Sam; Schenkein, David P; Biller, Scott A; Su, Shinsan M; de Botton, Stephane; Yen, Katharine E

    2013-05-03

    A number of human cancers harbor somatic point mutations in the genes encoding isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2). These mutations alter residues in the enzyme active sites and confer a gain-of-function in cancer cells, resulting in the accumulation and secretion of the oncometabolite (R)-2-hydroxyglutarate (2HG). We developed a small molecule, AGI-6780, that potently and selectively inhibits the tumor-associated mutant IDH2/R140Q. A crystal structure of AGI-6780 complexed with IDH2/R140Q revealed that the inhibitor binds in an allosteric manner at the dimer interface. The results of steady-state enzymology analysis were consistent with allostery and slow-tight binding by AGI-6780. Treatment with AGI-6780 induced differentiation of TF-1 erythroleukemia and primary human acute myelogenous leukemia cells in vitro. These data provide proof-of-concept that inhibitors targeting mutant IDH2/R140Q could have potential applications as a differentiation therapy for cancer.

  18. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somerville, Chris R.; Scieble, Wolf

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS genemore » can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.« less

  19. All-Atom Simulations Reveal How Single-Point Mutations Promote Serpin Misfolding

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Orioli, Simone; Ianeselli, Alan; Spagnolli, Giovanni; a Beccara, Silvio; Gershenson, Anne; Faccioli, Pietro; Wintrode, Patrick L.

    2018-05-01

    Protein misfolding is implicated in many diseases, including the serpinopathies. For the canonical inhibitory serpin {\\alpha}1-antitrypsin (A1AT), mutations can result in protein deficiencies leading to lung disease, and misfolded mutants can accumulate in hepatocytes leading to liver disease. Using all-atom simulations based on the recently developed Bias Functional algorithm we elucidate how wild-type A1AT folds and how the disease-associated S (Glu264Val) and Z (Glu342Lys) mutations lead to misfolding. The deleterious Z mutation disrupts folding at an early stage, while the relatively benign S mutant shows late stage minor misfolding. A number of suppressor mutations ameliorate the effects of the Z mutation and simulations on these mutants help to elucidate the relative roles of steric clashes and electrostatic interactions in Z misfolding. These results demonstrate a striking correlation between atomistic events and disease severity and shine light on the mechanisms driving chains away from their correct folding routes.

  20. On the structural affinity of macromolecules with different biological properties: molecular dynamics simulations of a series of TEM-1 mutants.

    PubMed

    Giampaolo, Alessia Di; Mazza, Fernando; Daidone, Isabella; Amicosante, Gianfranco; Perilli, Mariagrazia; Aschi, Massimiliano

    2013-07-12

    Molecular Dynamics simulations have been carried out in order to provide a molecular rationalization of the biological and thermodynamic differences observed for a class of TEM β-lactamases. In particular we have considered the TEM-1(wt), the single point mutants TEM-40 and TEM-19 representative of IRT and ESBL classes respectively, and TEM-1 mutant M182T, TEM-32 and TEM-20 which differ from the first three for the additional of M182T mutation. Results indicate that most of the thermodynamic, and probably biological behaviour of these systems arise from subtle effects which, starting from the alterations of the local interactions, produce drastic modifications of the conformational space spanned by the enzymes. The present study suggests that systems showing essentially the same secondary and tertiary structure may differentiate their chemical-biological activity essentially (and probably exclusively) on the basis of the thermal fluctuations occurring in their physiological environment. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence.

    PubMed

    Liu, Tie; Longhurst, Adam D; Talavera-Rauh, Franklin; Hokin, Samuel A; Barton, M Kathryn

    2016-10-04

    Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties.

  2. The let-7 microRNA target gene, Mlin41/Trim71 is required for mouse embryonic survival and neural tube closure

    PubMed Central

    Schulman, Betsy R. Maller; Liang, Xianping; Stahlhut, Carlos; DelConte, Casey; Stefani, Giovanni; Slack, Frank J.

    2010-01-01

    In the nematode Caenorhabditis elegans, the let-7 microRNA (miRNA) controls the timing of key developmental events and terminal differentiation in part by directly regulating lin-41. C. elegans lin-41 mutants display precocious cell cycle exit and terminal differentiation of epidermal skin cells. lin-41 orthologues are found in more complex organisms including both mice and humans, but their roles are not known. We generated Mlin41 mouse mutants to ascertain a functional role for Mlin41. Strong loss of function Mlin41 gene-trap mutants demonstrated a striking neural tube closure defect during development, and embryonic lethality. Like C. elegans lin-41, Mlin41 also appears to be regulated by the let-7 and mir-125 miRNAs. Since Mlin41 is required for neural tube closure and survival it points to human lin-41 (HLIN41/TRIM71) as a potential human development and disease gene. PMID:19098426

  3. Kinetics and thermodynamics of gas diffusion in a NiFe hydrogenase.

    PubMed

    Topin, Jérémie; Rousset, Marc; Antonczak, Serge; Golebiowski, Jérôme

    2012-03-01

    We have investigated O₂ and H₂ transport across a NiFe hydrogenase at the atomic scale by means of computational methods. The Wild Type protein has been compared with the V74Q mutant. Two distinct methodologies have been applied to study the gas access to the active site. Temperature locally enhanced sampling simulations have emphasized the importance of protein dynamics on gas diffusion. The O₂ diffusion free energy profiles, obtained by umbrella sampling, are in agreement with the known kinetic data and show that in the V74Q mutant, the inhibition process is lowered from both a kinetic and a thermodynamic point of view. Copyright © 2011 Wiley Periodicals, Inc.

  4. Overlapping neural circuitry for narrative comprehension and proficient reading in children and adolescents.

    PubMed

    Horowitz-Kraus, Tzipi; Vannest, Jennifer J; Holland, Scott K

    2013-11-01

    Narrative comprehension is a perinatal linguistic ability which is more intuitive than reading activity. Whether there are specific shared brain regions for narrative comprehension and reading that are tuned to reading proficiency, even before reading is acquired, is the question of the current study. We acquired fMRI data during a narrative comprehension task at two age points, when children are age 5-7 (K-2nd grade) and later when the same children were age 11 (5th-7th grade). We then examined correlations between this fMRI data and reading and reading comprehension scores from the same children at age 11. We found that greater frontal and supramarginal gyrus (BA 40) activation in narrative comprehension at the age of 5-7 years old was associated with better word reading and reading comprehension scores at the age of 11. A shift towards temporal and occipital activation was found when correlating their narrative comprehension functional data at age 11, with reading scores at the same age point. We suggest that increased reliance on executive functions and auditory-visual networks when listening to stories before reading is acquired, facilitates reading proficiency in older age and may be a biomarker for future reading ability. Children, who rely on use of imagination/visualization as well as auditory processing for narrative comprehension when they reach age 11, also show greater reading abilities. Understanding concordant neural pathways supporting auditory narrative and reading comprehension might be guide for development of effective tools for reading intervention programs. Published by Elsevier Ltd.

  5. A Statistical Guide to the Design of Deep Mutational Scanning Experiments

    PubMed Central

    Matuszewski, Sebastian; Hildebrandt, Marcel E.; Ghenu, Ana-Hermina; Jensen, Jeffrey D.; Bank, Claudia

    2016-01-01

    The characterization of the distribution of mutational effects is a key goal in evolutionary biology. Recently developed deep-sequencing approaches allow for accurate and simultaneous estimation of the fitness effects of hundreds of engineered mutations by monitoring their relative abundance across time points in a single bulk competition. Naturally, the achievable resolution of the estimated fitness effects depends on the specific experimental setup, the organism and type of mutations studied, and the sequencing technology utilized, among other factors. By means of analytical approximations and simulations, we provide guidelines for optimizing time-sampled deep-sequencing bulk competition experiments, focusing on the number of mutants, the sequencing depth, and the number of sampled time points. Our analytical results show that sampling more time points together with extending the duration of the experiment improves the achievable precision disproportionately compared with increasing the sequencing depth or reducing the number of competing mutants. Even if the duration of the experiment is fixed, sampling more time points and clustering these at the beginning and the end of the experiment increase experimental power and allow for efficient and precise assessment of the entire range of selection coefficients. Finally, we provide a formula for calculating the 95%-confidence interval for the measurement error estimate, which we implement as an interactive web tool. This allows for quantification of the maximum expected a priori precision of the experimental setup, as well as for a statistical threshold for determining deviations from neutrality for specific selection coefficient estimates. PMID:27412710

  6. Function of the Golgi-located phosphate transporter PHT4;6 is critical for senescence-associated processes in Arabidopsis

    PubMed Central

    Hassler, Sebastian; Jung, Benjamin; Lemke, Lilia; Novák, Ondřej; Strnad, Miroslav; Martinoia, Enrico; Neuhaus, H. Ekkehard

    2016-01-01

    The phosphate transporter PHT4;6 locates to the trans-Golgi compartment, and its impaired activity causes altered intracellular phosphate compartmentation, leading to low cytosolic Pi levels, a blockage of Golgi-related processes such as protein glycosylation and hemicellulose biosynthesis, and a dwarf phenotype. However, it was unclear whether altered Pi homeostasis in pht4;6 mutants causes further cellular problems, typically associated with limited phosphate availability. Here we report that pht4;6 mutants exhibit a markedly increased disposition to induce dark-induced senescence. In control experiments, in which pht4;6 mutants and wild-type plants developed similarly, we confirmed that accelerated dark-induced senescence in mutants is not a ‘pleiotropic’ process associated with the dwarf phenotype. In fact, accelerated dark-induced senescence in pht4;6 mutants correlates strongly with increased levels of toxic NH4 + and higher sensitivity to ammonium, which probably contribute to the inability of pht4;6 mutants to recover from dark treatment. Experiments with modified levels of either salicylic acid (SA) or trans-zeatin (tZ) demonstrate that altered concentrations of these compounds in pht4;6 plants act as major cellular mediators for dark-induced senescence. This conclusion gained further support from the notion that the expression of the pht4;6 gene is, in contrast to genes coding for major phosphate importers, substantially induced by tZ. Taken together, our findings point to a critical function of PHT4;6 to control cellular phosphate levels, in particular the cytosolic Pi availability, required to energize plant primary metabolism for proper plant development. Phosphate and its allocation mediated by PHT4;6 is critical to prevent onset of dark-induced senescence. PMID:27325894

  7. Understanding Which Residues of the Active Site and Loop Structure of a Tyrosine Aminomutase Define Its Mutase and Lyase Activities.

    PubMed

    Attanayake, Gayanthi; Walter, Tyler; Walker, Kevin D

    2018-05-30

    Site-directed mutations and substrate analogues were used to gain insights into the branch-point reaction of the 3,5-dihydro-5-methylidene-4 H-imidazol-4-one (MIO)-tyrosine aminomutase from Oryza sativa ( OsTAM). Exchanging the active residues of OsTAM (Y125C/N446K) for those in a phenylalanine aminomutase TcPAM altered its substrate specificity from tyrosine to phenylalanine. The aminomutase mechanism of OsTAM surprisingly changed almost exclusively to that of an ammonia lyase making cinnamic acid (>95%) over β-phenylalanine [Walter, T., et al. (2016) Biochemistry 55, 3497-3503]. We hypothesized that the missing electronics or sterics on the aryl ring of the phenylalanine substrate, compared with the sizable electron-donating hydroxyl of the natural tyrosine substrate, influenced the unexpected lyase reactivity of the OsTAM mutant. The double mutant was incubated with 16 α-phenylalanine substituent analogues of varying electronic strengths and sterics. The mutant converted each analogue principally to its acrylate with ∼50% conversion of the p-Br substrate, making only a small amount of the β-amino acid. The inner loop structure over the entrance to the active site was also mutated to assess how the lyase and mutase activities are affected. An OsTAM loop mutant, matching the loop residues of TcPAM, still chiefly made >95% of the acrylate from each substrate. A combined active site:loop mutant was most reactive but remained a lyase, making 10-fold more acrylates than other mutants did. While mutations within the active site changed the substrate specificity of OsTAM, continued exploration is needed to fully understand the interplay among the inner loop, the substrate, and the active site in defining the mutase and lyase activities.

  8. Real-Time Monitoring of nfxB Mutant Occurrence and Dynamics in Pseudomonas aeruginosa Biofilm Exposed to Subinhibitory Concentrations of Ciprofloxacin

    PubMed Central

    Zaborskyte, Greta; Andersen, Jens Bo; Kragh, Kasper Nørskov

    2016-01-01

    ABSTRACT Biofilm infections caused by Pseudomonas aeruginosa are frequently treated with ciprofloxacin (CIP); however, resistance rapidly develops. One of the primary resistance mechanisms is the overexpression of the MexCD-OprJ pump due to a mutation in nfxB, encoding the transcriptional repressor of this pump. The aim of this study was to investigate the effect of subinhibitory concentrations of CIP on the occurrence of nfxB mutants in the wild-type PAO1 flow cell biofilm model. For this purpose, we constructed fluorescent reporter strains (PAO1 background) with an mCherry tag for constitutive red fluorescence and chromosomal transcriptional fusion between the PmexCD promoter and gfp leading to green fluorescence upon mutation of nfxB. We observed a rapid development of nfxB mutants by live confocal laser scanning microscopy (CLSM) imaging of the flow cell biofilm (reaching 80 to 90% of the whole population) when treated with 1/10 minimal biofilm inhibitory concentration of CIP for 24 h and 96 h. Based on the observed developmental stages, we propose that nfxB mutants emerged de novo in the biofilm during CIP treatment from filamentous cells, which might have arisen due to the stress responses induced by CIP. Identical nfxB mutations were found in fluorescent colonies from the same flow cell biofilm, especially in 24-h biofilms, suggesting selection and clonal expansion of the mutants during biofilm growth. Our findings point at the significant role of high-enough antibiotic dosages or appropriate combination therapy to avoid the emergence of resistant mutants in biofilms. PMID:27993856

  9. Mutational spectra of the lacI transgene isolated from Big Blue{reg_sign} mice exposed to three carcinogenic aromatic amines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staedtler, F.; Locher, F.; Sreenan, G.

    1997-10-01

    In order to evaluate the in vivo genotoxic potential of three putative genotoxic mouse liver carcinogens, high doses of 4-chloro-o-phenylenediamine, 2-nitro-p-phenylenediamine and 2, 4-diaminotoluene were tested short term in the Big Blue{reg_sign} transgenic mouse mutation assay. Small statistically significant increases in the lacI mutant frequencies in the liver by factors 1.7 to 2.0 were found. A representative number of 347 lacI mutants isolated from liver tissue of male and female animals were analyses by DNA sequencing. The mutational spectra were examined with the Adams-Skopek algorithm. The spontaneous mutational spectra from untreated male and female animals were similar and consistent withmore » spectral Big Blue{reg_sign} control data stored in the lacI database. Most of the background mutations were located in the 5{prime} portion of the coding region of the lacI gene. Single base substitutions were most prominent. G:C to A:T transitions and G:C to T:A transversions occurred predominatly and were preferentially located at CpG sites. Despite the increases observed in the mutant frequencies of the treated animals, the corresponding mutational spectra did not differ from the controls. However, it is possible that certain classes of point mutations were substantially increased but not detected due to the limited number of sequenced mutants. In two animals treated with 2, 4- diaminotoluene unusually high mutant frequencies and the multiple occurrence of certain mutations in the liver was observed. From one of these animals six lacI mutants isolated from colon tissue were all different. Since 2, 4-diaminotoluene was shown to induce liver cell proliferation these results may reflect clonal expansion of single mutated liver cells.« less

  10. Analysis of a Range of Catabolic Mutants Provides Evidence That Phytanoyl-Coenzyme A Does Not Act as a Substrate of the Electron-Transfer Flavoprotein/Electron-Transfer Flavoprotein:Ubiquinone Oxidoreductase Complex in Arabidopsis during Dark-Induced Senescence1[W][OA

    PubMed Central

    Araújo, Wagner L.; Ishizaki, Kimitsune; Nunes-Nesi, Adriano; Tohge, Takayuki; Larson, Tony R.; Krahnert, Ina; Balbo, Ilse; Witt, Sandra; Dörmann, Peter; Graham, Ian A.; Leaver, Christopher J.; Fernie, Alisdair R.

    2011-01-01

    The process of dark-induced senescence in plants is not fully understood, however, the functional involvement of an electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO), has been demonstrated. Recent studies have revealed that the enzymes isovaleryl-coenzyme A (CoA) dehydrogenase and 2-hydroxyglutarate dehydrogenase act as important electron donors to this complex. In addition both enzymes play a role in the breakdown of cellular carbon storage reserves with isovaleryl-CoA dehydrogenase being involved in degradation of the branched-chain amino acids, phytol, and lysine while 2-hydroxyglutarate dehydrogenase is exclusively involved in lysine degradation. Given that the chlorophyll breakdown intermediate phytanoyl-CoA accumulates dramatically both in knockout mutants of the ETF/ETFQO complex and of isovaleryl-CoA dehydrogenase following growth in extended dark periods we have investigated the direct importance of chlorophyll breakdown for the supply of carbon and electrons during this process. For this purpose we isolated three independent Arabidopsis (Arabidopsis thaliana) knockout mutants of phytanoyl-CoA 2-hydroxylase and grew them under the same extended darkness regime as previously used. Despite the fact that these mutants accumulated phytanoyl-CoA and also 2-hydroxyglutarate they exhibited no morphological changes in comparison to the other mutants previously characterized. These results are consistent with a single entry point of phytol breakdown into the ETF/ETFQO system and furthermore suggest that phytol is not primarily metabolized by this pathway. Furthermore analysis of isovaleryl-CoA dehydrogenase/2-hydroxyglutarate dehydrogenase double mutants generated here suggest that these two enzymes essentially account for the entire electron input via the ETF complex. PMID:21788362

  11. Increasing the thermal stability of cellulase C using rules learned from thermophilic proteins: a pilot study.

    PubMed

    Németh, Attila; Kamondi, Szilárd; Szilágyi, András; Magyar, Csaba; Kovári, Zoltán; Závodszky, Péter

    2002-05-02

    Some structural features underlying the increased thermostability of enzymes from thermophilic organisms relative to their homologues from mesophiles are known from earlier studies. We used cellulase C from Clostridium thermocellum to test whether thermostability can be increased by mutations designed using rules learned from thermophilic proteins. Cellulase C has a TIM barrel fold with an additional helical subdomain. We designed and produced a number of mutants with the aim to increase its thermostability. Five mutants were designed to create new electrostatic interactions. They all retained catalytic activity but exhibited decreased thermostability relative to the wild-type enzyme. Here, the stabilizing contributions are obviously smaller than the destabilization caused by the introduction of the new side chains. In another mutant, the small helical subdomain was deleted. This mutant lost activity but its melting point was only 3 degrees C lower than that of the wild-type enzyme, which suggests that the subdomain is an independent folding unit and is important for catalytic function. A double mutant was designed to introduce a new disulfide bridge into the enzyme. This mutant is active and has an increased stability (deltaT(m)=3 degrees C, delta(deltaG(u))=1.73 kcal/mol) relative to the wild-type enzyme. Reduction of the disulfide bridge results in destabilization and an altered thermal denaturation behavior. We conclude that rules learned from thermophilic proteins cannot be used in a straightforward way to increase the thermostability of a protein. Creating a crosslink such as a disulfide bond is a relatively sure-fire method but the stabilization may be smaller than calculated due to coupled destabilizing effects.

  12. Mutagenesis and molecular dynamics simulations revealed the chitooligosaccharide entry and exit points for chitinase D from Serratia proteamaculans.

    PubMed

    Madhuprakash, Jogi; Tanneeru, Karunakar; Karlapudi, Bhavana; Guruprasad, Lalitha; Podile, Appa Rao

    2014-09-01

    Transglycosylation (TG) activity is a property of glycosyl hydrolases (GHs) with which new glycosidic bonds are introduced between donor and acceptor sugar molecules. This special property of the GHs has potential to generate longer chain chitooligosaccharides (CHOS) that show elicitor activity in plants. We hypothesize that TG activity could be improved by retaining the substrate for a longer duration in the catalytic site. Four variants of chitinase D from Serratia proteamaculans (SpChiD) i.e. G119S, G119W, W120A and G201W were analyzed in detail for improved TG activity using high performance liquid chromatography (HPLC) and high resolution mass spectrometry (HRMS). The results were strongly supported by 50ns molecular dynamics (MD) simulations and estimated solvated interaction energies (SIE). The mutant G119W lost much of both hydrolytic and TG activities, while the mutant G201W displayed increased TG. The trajectory of MD simulations of the mutant G119W showed that the indole rings of two adjacent Trp residues create a major hindrance for the DP4 movement towards the catalytic center. Increased van der Waals (vdW) and coulombic interactions between DP4 substrate and the Trp-201 resulted in enhanced TG activity with the mutant G201W. The average number of hydrogen bonds observed for the DP4 substrate was increased for the mutants G119W and G201W compared to SpChiD. The increase in TG activity could be due to partial blocking of product exit of SpChiD. This new approach can be used for generating mutants of GHs with improved TG activity to produce longer chain oligosaccharides. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Voronoi-based spatial analysis reveals selective interneuron changes in the cortex of FALS mice.

    PubMed

    Minciacchi, Diego; Kassa, Roman M; Del Tongo, Claudia; Mariotti, Raffaella; Bentivoglio, Marina

    2009-01-01

    The neurodegenerative disease amyotrophic lateral sclerosis affects lower motoneurons and corticospinal cells. Mice expressing human mutant superoxide dismutase (SOD)1 provide widely investigated models of the familial form of disease, but information on cortical changes in these mice is still limited. We here analyzed the spatial organization of interneurons characterized by parvalbumin immunoreactivity in the motor, somatosensory, and visual cortical areas of SOD1(G93A) mice. Cell number and sociological spatial behavior were assessed by digital charts of cell location in cortical samples, cell counts, and generation of two-dimensional Voronoi diagrams. In end-stage SOD1-mutant mice, an increase of parvalbumin-containing cortical interneurons was found in the motor and somatosensory areas (about 35% and 20%, respectively) with respect to wild-type littermates. Changes in cell spatial distribution, as documented by Voronoi-derived coefficients of variation, indicated increased tendency of parvalbumin cells to aggregate into clusters in the same areas of the SOD1-mutant cortex. Counts and coefficients of variation of parvalbumin cells in the visual cortex gave instead similar results in SOD1-mutant and wild-type mice. Analyses of motor and somatosensory areas in presymptomatic SOD1-mutant mice provided findings very similar to those obtained at end-stage, indicating early changes of interneurons in these cortical areas during the pathology. Altogether the data reveal in the SOD1-mutant mouse cortex an altered architectonic pattern of interneurons, which selectively affects areas involved in motor control. The findings, which can be interpreted as pathogenic factors or early disease-related adaptations, point to changes in the cortical regulation and modulation of the motor circuit during motoneuron disease.

  14. Structure-function discrepancy in Clostridium botulinum C3 toxin for its rational prioritization as a subunit vaccine.

    PubMed

    Prathiviraj, R; Prisilla, A; Chellapandi, P

    2016-06-01

    Clostridium botulinum is anaerobic pathogenic bacterium causing food-born botulism in human and animals by producing botulinum neurotoxins A-H, C2, and C3 cytotoxins. Physiological group III strains (type C and D) of this bacterium are capable of producing C2 and C3 toxins in cattle and avian. Herein, we have revealed the structure-function disparity of C3 toxins from two different C. botulinum type C phage (CboC) and type D phage (CboD) to design avirulent toxins rationally. Structure-function discrepancy of the both toxins was computationally evaluated from their homology models based on the conservation in sequence-structure-function relationships upon covariation and point mutations. It has shown that 8 avirulent mutants were generated from CboC of 34 mutants while 27 avirulent mutants resulted from CboD mutants. No major changes were found in tertiary structure of these toxins; however, some structural variations appeared in the coiled and loop regions. Correlated mutation on the first residue would disorder or revolutionize the hydrogen bonding pattern of the coevolved pairs. It suggested that the residues coupling in the local structural environments were compensated with coevolved pairs so as to preserve a pseudocatalytic function in the avirulent mutants. Avirulent mutants of C3 toxins have shown a stable structure with a common blue print of folding process and also attained a near-native backrub ensemble. Thus, we concluded that selecting the site-directed mutagenesis sites are very important criteria for designing avirulent toxins, in development of rational subunit vaccines, to cattle and avian, but the vaccine specificity can be determined by the C3 toxins of C. botulinum harboring phages.

  15. Molecular dynamics simulations of site point mutations in the TPR domain of cyclophilin 40 identify conformational states with distinct dynamic and enzymatic properties

    NASA Astrophysics Data System (ADS)

    Gur, Mert; Blackburn, Elizabeth A.; Ning, Jia; Narayan, Vikram; Ball, Kathryn L.; Walkinshaw, Malcolm D.; Erman, Burak

    2018-04-01

    Cyclophilin 40 (Cyp40) is a member of the immunophilin family that acts as a peptidyl-prolyl-isomerase enzyme and binds to the heat shock protein 90 (Hsp90). Its structure comprises an N-terminal cyclophilin domain and a C-terminal tetratricopeptide (TPR) domain. Cyp40 is overexpressed in prostate cancer and certain T-cell lymphomas. The groove for Hsp90 binding on the TPR domain includes residues Lys227 and Lys308, referred to as the carboxylate clamp, and is essential for Cyp40-Hsp90 binding. In this study, the effect of two mutations, K227A and K308A, and their combinative mutant was investigated by performing a total of 5.76 μs of all-atom molecular dynamics (MD) simulations in explicit solvent. All simulations, except the K308A mutant, were found to adopt two distinct (extended or compact) conformers defined by different cyclophilin-TPR interdomain distances. The K308A mutant was only observed in the extended form which is observed in the Cyp40 X-ray structure. The wild-type, K227A, and combined mutant also showed bimodal distributions. The experimental melting temperature, Tm, values of the mutants correlate with the degree of compactness with the K308A extended mutant having a marginally lower melting temperature. Another novel measure of compactness determined from the MD data, the "coordination shell volume," also shows a direct correlation with Tm. In addition, the MD simulations show an allosteric effect with the mutations in the remote TPR domain having a pronounced effect on the molecular motions of the enzymatic cyclophilin domain which helps rationalise the experimentally observed increase in enzyme activity measured for all three mutations.

  16. A coumaroyl-ester-3-hydroxylase Insertion Mutant Reveals the Existence of Nonredundant meta-Hydroxylation Pathways and Essential Roles for Phenolic Precursors in Cell Expansion and Plant Growth1[W][OA

    PubMed Central

    Abdulrazzak, Nawroz; Pollet, Brigitte; Ehlting, Jürgen; Larsen, Kim; Asnaghi, Carole; Ronseau, Sebastien; Proux, Caroline; Erhardt, Mathieu; Seltzer, Virginie; Renou, Jean-Pierre; Ullmann, Pascaline; Pauly, Markus; Lapierre, Catherine; Werck-Reichhart, Danièle

    2006-01-01

    Cytochromes P450 monooxygenases from the CYP98 family catalyze the meta-hydroxylation step in the phenylpropanoid biosynthetic pathway. The ref8 Arabidopsis (Arabidopsis thaliana) mutant, with a point mutation in the CYP98A3 gene, was previously described to show developmental defects, changes in lignin composition, and lack of soluble sinapoyl esters. We isolated a T-DNA insertion mutant in CYP98A3 and show that this mutation leads to a more drastic inhibition of plant development and inhibition of cell growth. Similar to the ref8 mutant, the insertion mutant has reduced lignin content, with stem lignin essentially made of p-hydroxyphenyl units and trace amounts of guaiacyl and syringyl units. However, its roots display an ectopic lignification and a substantial proportion of guaiacyl and syringyl units, suggesting the occurrence of an alternative CYP98A3-independent meta-hydroxylation mechanism active mainly in the roots. Relative to the control, mutant plantlets produce very low amounts of sinapoyl esters, but accumulate flavonol glycosides. Reduced cell growth seems correlated with alterations in the abundance of cell wall polysaccharides, in particular decrease in crystalline cellulose, and profound modifications in gene expression and homeostasis reminiscent of a stress response. CYP98A3 thus constitutes a critical bottleneck in the phenylpropanoid pathway and in the synthesis of compounds controlling plant development. CYP98A3 cosuppressed lines show a gradation of developmental defects and changes in lignin content (40% reduction) and structure (prominent frequency of p-hydroxyphenyl units), but content in foliar sinapoyl esters is similar to the control. The purple coloration of their leaves is correlated to the accumulation of sinapoylated anthocyanins. PMID:16377748

  17. Pharmacochaperoning in a Drosophila model system rescues human dopamine transporter variants associated with infantile/juvenile parkinsonism

    PubMed Central

    Asjad, H. M. Mazhar; Kasture, Ameya; El-Kasaby, Ali; Sackel, Michael; Hummel, Thomas; Freissmuth, Michael; Sucic, Sonja

    2017-01-01

    Point mutations in the gene encoding the human dopamine transporter (hDAT, SLC6A3) cause a syndrome of infantile/juvenile dystonia and parkinsonism. To unravel the molecular mechanism underlying these disorders and investigate possible pharmacological therapies, here we examined 13 disease-causing DAT mutants that were retained in the endoplasmic reticulum when heterologously expressed in HEK293 cells. In three of these mutants, i.e. hDAT-V158F, hDAT-G327R, and hDAT-L368Q, the folding deficit was remedied with the pharmacochaperone noribogaine or the heat shock protein 70 (HSP70) inhibitor pifithrin-μ such that endoplasmic reticulum export of and radioligand binding and substrate uptake by these DAT mutants were restored. In Drosophila melanogaster, DAT deficiency results in reduced sleep. We therefore exploited the power of targeted transgene expression of mutant hDAT in Drosophila to explore whether these hDAT mutants could also be pharmacologically rescued in an intact organism. Noribogaine or pifithrin-μ treatment supported hDAT delivery to the presynaptic terminals of dopaminergic neurons and restored sleep to normal length in DAT-deficient (fumin) Drosophila lines expressing hDAT-V158F or hDAT-G327R. In contrast, expression of hDAT-L368Q in the Drosophila DAT mutant background caused developmental lethality, indicating a toxic action not remedied by pharmacochaperoning. Our observations identified those mutations most likely amenable to pharmacological rescue in the affected children. In addition, our findings also highlight the challenges of translating insights from pharmacochaperoning in cell culture to the clinical situation. Because of the evolutionary conservation in dopaminergic neurotransmission between Drosophila and people, pharmacochaperoning of DAT in D. melanogaster may allow us to bridge that gap. PMID:28972153

  18. Free energy calculations on the stability of the 14-3-3ζ protein.

    PubMed

    Jandova, Zuzana; Trosanova, Zuzana; Weisova, Veronika; Oostenbrink, Chris; Hritz, Jozef

    2018-03-01

    Mutations of cysteine are often introduced to e.g. avoid formation of non-physiological inter-molecular disulfide bridges in in-vitro experiments, or to maintain specificity in labeling experiments. Alanine or serine is typically preferred, which usually do not alter the overall protein stability, when the original cysteine was surface exposed. However, selecting the optimal mutation for cysteines in the hydrophobic core of the protein is more challenging. In this work, the stability of selected Cys mutants of 14-3-3ζ was predicted by free-energy calculations and the obtained data were compared with experimentally determined stabilities. Both the computational predictions as well as the experimental validation point at a significant destabilization of mutants C94A and C94S. This destabilization could be attributed to the formation of hydrophobic cavities and a polar solvation of a hydrophilic side chain. A L12E, M78K double mutant was further studied in terms of its reduced dimerization propensity. In contrast to naïve expectations, this double mutant did not lead to the formation of strong salt bridges, which was rationalized in terms of a preferred solvation of the ionic species. Again, experiments agreed with the calculations by confirming the monomerization of the double mutants. Overall, the simulation data is in good agreement with experiments and offers additional insight into the stability and dimerization of this important family of regulatory proteins. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  19. Plastid Uridine Salvage Activity Is Required for Photoassimilate Allocation and Partitioning in Arabidopsis[C][W

    PubMed Central

    Chen, Mingjie; Thelen, Jay J.

    2011-01-01

    Nucleotides are synthesized from de novo and salvage pathways. To characterize the uridine salvage pathway, two genes, UKL1 and UKL2, that tentatively encode uridine kinase (UK) and uracil phosphoribosyltransferase (UPRT) bifunctional enzymes were studied in Arabidopsis thaliana. T-DNA insertions in UKL1 and UKL2 reduced transcript expression and increased plant tolerance to toxic analogs 5-fluorouridine and 5-fluorouracil. Enzyme activity assays using purified recombinant proteins indicated that UKL1 and UKL2 have UK but not UPRT activity. Subcellular localization using a C-terminal enhanced yellow fluorescent protein fusion indicated that UKL1 and UKL2 localize to plastids. The ukl2 mutant shows reduced transient leaf starch during the day. External application of orotate rescued this phenotype in ukl2, indicating pyrimidine pools are limiting for starch synthesis in ukl2. Intermediates for lignin synthesis were upregulated, and there was increased lignin and reduced cellulose content in the ukl2 mutant. Levels of ATP, ADP, ADP-glucose, UTP, UDP, and UDP-glucose were altered in a light-dependent manner. Seed composition of the ukl1 and ukl2 mutants included lower oil and higher protein compared with the wild type. Unlike single gene mutants, the ukl1 ukl2 double mutant has severe developmental defects and reduced biomass accumulation, indicating these enzymes catalyze redundant reactions. These findings point to crucial roles played by uridine salvage for photoassimilate allocation and partitioning. PMID:21828290

  20. CopM is a novel copper-binding protein involved in copper resistance in Synechocystis sp. PCC 6803.

    PubMed

    Giner-Lamia, Joaquín; López-Maury, Luis; Florencio, Francisco J

    2015-02-01

    Copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803 comprises two operons, copMRS and copBAC, which are expressed in response to copper in the media. copBAC codes for a heavy-metal efflux-resistance nodulation and division (HME-RND) system, while copMRS codes for a protein of unknown function, CopM, and a two-component system CopRS, which controls the expression of these two operons. Here, we report that CopM is a periplasmic protein able to bind Cu(I) with high affinity (KD ~3 × 10(-16) ). Mutants lacking copM showed a sensitive copper phenotype similar to mutants affected in copB, but lower than mutants of the two-component system CopRS, suggesting that CopBAC and CopM constitute two independent resistance mechanisms. Moreover, constitutive expression of copM is able to partially suppress the copper sensitivity of the copR mutant strain, pointing out that CopM per se is able to confer copper resistance. Furthermore, constitutive expression of copM was able to reduce total cellular copper content of the copR mutant to the levels determined in the wild-type (WT) strain. Finally, CopM was localized not only in the periplasm but also in the extracellular space, suggesting that CopM can also prevent copper accumulation probably by direct copper binding outside the cell. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  1. Quantitative Analysis of Mutant Subclones in Chronic Myeloid Leukemia: Comparison of Different Methodological Approaches

    PubMed Central

    Preuner, Sandra; Barna, Agnes; Frommlet, Florian; Czurda, Stefan; Konstantin, Byrgazov; Alikian, Mary; Machova Polakova, Katerina; Sacha, Tomasz; Richter, Johan; Lion, Thomas; Gabriel, Christian

    2016-01-01

    Identification and quantitative monitoring of mutant BCR-ABL1 subclones displaying resistance to tyrosine kinase inhibitors (TKIs) have become important tasks in patients with Ph-positive leukemias. Different technologies have been established for patient screening. Various next-generation sequencing (NGS) platforms facilitating sensitive detection and quantitative monitoring of mutations in the ABL1-kinase domain (KD) have been introduced recently, and are expected to become the preferred technology in the future. However, broad clinical implementation of NGS methods has been hampered by the limited accessibility at different centers and the current costs of analysis which may not be regarded as readily affordable for routine diagnostic monitoring. It is therefore of interest to determine whether NGS platforms can be adequately substituted by other methodological approaches. We have tested three different techniques including pyrosequencing, LD (ligation-dependent)-PCR and NGS in a series of peripheral blood specimens from chronic myeloid leukemia (CML) patients carrying single or multiple mutations in the BCR-ABL1 KD. The proliferation kinetics of mutant subclones in serial specimens obtained during the course of TKI-treatment revealed similar profiles via all technical approaches, but individual specimens showed statistically significant differences between NGS and the other methods tested. The observations indicate that different approaches to detection and quantification of mutant subclones may be applicable for the monitoring of clonal kinetics, but careful calibration of each method is required for accurate size assessment of mutant subclones at individual time points. PMID:27136541

  2. Deletion and overexpression studies on DacB2, a putative low molecular mass penicillin binding protein from Mycobacterium tuberculosis H(37)Rv.

    PubMed

    Bourai, Neema; Jacobs, William R; Narayanan, Sujatha

    2012-02-01

    Mycobacterium tuberculosis genome encodes several high and low molecular mass penicillin binding proteins. One such low molecular mass protein is DacB2 encoded by open reading frame Rv2911 of M. tuberculosis which is predicted to play a role in peptidoglycan synthesis. In this study we have tried to gain an insight into the role of this accessory cell division protein in mycobacterial physiology by performing overexpression and deletion studies. The overproduction of DacB2 in non-pathogenic, fast growing mycobacterium Mycobacterium smegmatis mc(2)155 resulted in reduced growth, an altered colony morphology, a defect in sliding motility and biofilm formation. A point mutant of DacB2 was made wherein the active site serine residue was mutated to cysteine to abolish the penicillin binding function of protein. The overexpression of mutant protein showed similar results indicating that the effects produced were independent of protein's penicillin binding function. The gene encoding DacB2 was deleted in M. tuberculosis by specialized transduction method. The deletion mutant showed reduced growth in Sauton's medium under acidic and low oxygen availability. The in vitro infection studies with THP-1 cells showed increased intracellular survival of dacB2 mutant compared to parent and complemented strains. The colony morphology and antibiotic sensitivity of mutant and wild-type strains were similar. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. A Role for the TOC Complex in Arabidopsis Root Gravitropism1[W][OA

    PubMed Central

    Stanga, John P.; Boonsirichai, Kanokporn; Sedbrook, John C.; Otegui, Marisa S.; Masson, Patrick H.

    2009-01-01

    Arabidopsis (Arabidopsis thaliana) roots perceive gravity and reorient their growth accordingly. Starch-dense amyloplasts within the columella cells of the root cap are important for gravitropism, and starchless mutants such as pgm1 display an attenuated response to gravistimulation. The altered response to gravity1 (arg1) mutant is known to be involved with the early phases of gravity signal transduction. arg1 responds slowly to gravistimulation and is in a genetically distinct pathway from pgm1, as pgm1 mutants enhance the gravitropic defect of arg1. arg1 seeds were mutagenized with ethylmethane sulfonate to identify new mutants that enhance the gravitropic defect of arg1. Two modifier of arg1 mutants (mar1 and mar2) grow in random directions only when arg1 is present, do not affect phototropism, and respond like the wild type to application of phytohormones. Both have mutations affecting different components of the Translocon of Outer Membrane of Chloroplasts (TOC) complex. mar1 possesses a mutation in the TOC75-III gene; mar2 possesses a mutation in the TOC132 gene. Overexpression of TOC132 rescues the random growth phenotype of mar2 arg1 roots. Root cap amyloplasts in mar2 arg1 appear ultrastructurally normal. They saltate like the wild type and sediment at wild-type rates upon gravistimulation. These data point to a role for the plastidic TOC complex in gravity signal transduction within the statocytes. PMID:19211693

  4. A role for the TOC complex in Arabidopsis root gravitropism.

    PubMed

    Stanga, John P; Boonsirichai, Kanokporn; Sedbrook, John C; Otegui, Marisa S; Masson, Patrick H

    2009-04-01

    Arabidopsis (Arabidopsis thaliana) roots perceive gravity and reorient their growth accordingly. Starch-dense amyloplasts within the columella cells of the root cap are important for gravitropism, and starchless mutants such as pgm1 display an attenuated response to gravistimulation. The altered response to gravity1 (arg1) mutant is known to be involved with the early phases of gravity signal transduction. arg1 responds slowly to gravistimulation and is in a genetically distinct pathway from pgm1, as pgm1 mutants enhance the gravitropic defect of arg1. arg1 seeds were mutagenized with ethylmethane sulfonate to identify new mutants that enhance the gravitropic defect of arg1. Two modifier of arg1 mutants (mar1 and mar2) grow in random directions only when arg1 is present, do not affect phototropism, and respond like the wild type to application of phytohormones. Both have mutations affecting different components of the Translocon of Outer Membrane of Chloroplasts (TOC) complex. mar1 possesses a mutation in the TOC75-III gene; mar2 possesses a mutation in the TOC132 gene. Overexpression of TOC132 rescues the random growth phenotype of mar2 arg1 roots. Root cap amyloplasts in mar2 arg1 appear ultrastructurally normal. They saltate like the wild type and sediment at wild-type rates upon gravistimulation. These data point to a role for the plastidic TOC complex in gravity signal transduction within the statocytes.

  5. CopM is a novel copper-binding protein involved in copper resistance in Synechocystis sp. PCC 6803

    PubMed Central

    Giner-Lamia, Joaquín; López-Maury, Luis; Florencio, Francisco J

    2015-01-01

    Copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803 comprises two operons, copMRS and copBAC, which are expressed in response to copper in the media. copBAC codes for a heavy-metal efflux–resistance nodulation and division (HME-RND) system, while copMRS codes for a protein of unknown function, CopM, and a two-component system CopRS, which controls the expression of these two operons. Here, we report that CopM is a periplasmic protein able to bind Cu(I) with high affinity (KD ∼3 × 10−16). Mutants lacking copM showed a sensitive copper phenotype similar to mutants affected in copB, but lower than mutants of the two-component system CopRS, suggesting that CopBAC and CopM constitute two independent resistance mechanisms. Moreover, constitutive expression of copM is able to partially suppress the copper sensitivity of the copR mutant strain, pointing out that CopM per se is able to confer copper resistance. Furthermore, constitutive expression of copM was able to reduce total cellular copper content of the copR mutant to the levels determined in the wild-type (WT) strain. Finally, CopM was localized not only in the periplasm but also in the extracellular space, suggesting that CopM can also prevent copper accumulation probably by direct copper binding outside the cell. PMID:25545960

  6. Exploration of Structural and Functional Variations Owing to Point Mutations in α-NAGA.

    PubMed

    Meshach Paul, D; Rajasekaran, R

    2018-03-01

    Schindler disease is a lysosomal storage disorder caused due to deficiency or defective activity of alpha-N-acetylgalactosaminidase (α-NAGA). Mutations in gene encoding α-NAGA cause wide range of diseases, characterized with mild to severe clinical features. Molecular effects of these mutations are yet to be explored in detail. Therefore, this study was focused on four missense mutations of α-NAGA namely, S160C, E325K, R329Q and R329W. Native and mutant structures of α-NAGA were analysed to determine geometrical deviations such as the contours of root mean square deviation, root mean square fluctuation, percentage of residues in allowed regions of Ramachandran plot and solvent accessible surface area, using conformational sampling technique. Additionally, global energy-minimized structures of native and mutants were further analysed to compute their intra-molecular interactions, hydrogen bond dilution and distribution of secondary structure. In addition, docking studies were also performed to determine variations in binding energies between native and mutants. The deleterious effects of mutants were evident due to variations in their active site residues pertaining to spatial conformation and flexibility, comparatively. Hence, variations exhibited by mutants, namely S160C, E325K, R329Q and R329W to that of native, consequently, lead to the detrimental effects causing Schindler disease. This study computationally explains the underlying reasons for the pathogenesis of the disease, thereby aiding future researchers in drug development and disease management.

  7. Quantitative Analysis of Mutant Subclones in Chronic Myeloid Leukemia: Comparison of Different Methodological Approaches.

    PubMed

    Preuner, Sandra; Barna, Agnes; Frommlet, Florian; Czurda, Stefan; Konstantin, Byrgazov; Alikian, Mary; Machova Polakova, Katerina; Sacha, Tomasz; Richter, Johan; Lion, Thomas; Gabriel, Christian

    2016-04-29

    Identification and quantitative monitoring of mutant BCR-ABL1 subclones displaying resistance to tyrosine kinase inhibitors (TKIs) have become important tasks in patients with Ph-positive leukemias. Different technologies have been established for patient screening. Various next-generation sequencing (NGS) platforms facilitating sensitive detection and quantitative monitoring of mutations in the ABL1-kinase domain (KD) have been introduced recently, and are expected to become the preferred technology in the future. However, broad clinical implementation of NGS methods has been hampered by the limited accessibility at different centers and the current costs of analysis which may not be regarded as readily affordable for routine diagnostic monitoring. It is therefore of interest to determine whether NGS platforms can be adequately substituted by other methodological approaches. We have tested three different techniques including pyrosequencing, LD (ligation-dependent)-PCR and NGS in a series of peripheral blood specimens from chronic myeloid leukemia (CML) patients carrying single or multiple mutations in the BCR-ABL1 KD. The proliferation kinetics of mutant subclones in serial specimens obtained during the course of TKI-treatment revealed similar profiles via all technical approaches, but individual specimens showed statistically significant differences between NGS and the other methods tested. The observations indicate that different approaches to detection and quantification of mutant subclones may be applicable for the monitoring of clonal kinetics, but careful calibration of each method is required for accurate size assessment of mutant subclones at individual time points.

  8. Reduction of the immunostainable length of the hippocampal dentate granule cells' primary cilia in 3xAD-transgenic mice producing human A{beta}{sub 1-42} and tau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarthy, Balu, E-mail: Balu.Chakravarthy@nrc-cnrc.gc.ca; Gaudet, Chantal; Menard, Michel

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer A{beta} and tau-induced neurofibrillary tangles play a key role in Alzheimer's disease. Black-Right-Pointing-Pointer A{beta}{sub 1-42} and mutant tau protein together reduce the primary cilium length. Black-Right-Pointing-Pointer This shortening likely reduces cilium-dependent neurogenesis and memory function. Black-Right-Pointing-Pointer This provides a model of an A{beta}/tau targeting of a neuronal signaling organelle. -- Abstract: The hippocampal dentate gyrus is one of the two sites of continuous neurogenesis in adult rodents and humans. Virtually all dentate granule cells have a single immobile cilium with a microtubule spine or axoneme covered with a specialized cell membrane loaded with receptors such as the somatostatinmore » receptor 3 (SSTR3), and the p75 neurotrophin receptor (p75{sup NTR}). The signals from these receptors have been reported to stimulate neuroprogenitor proliferation and the post-mitotic maturation of newborn granule cells into functioning granule cells. We have found that in 6-24-months-old triple transgenic Alzheimer's disease model mice (3xTg-AD) producing both A{beta}{sub 1-42} and the mutant human tau protein tau{sub P301L,} the dentate granule cells still had immunostainable SSTR3- and p75{sup NTR}-bearing cilia but they were only half the length of the immunostained cilia in the corresponding wild-type mice. However, the immunostainable length of the granule cell cilia was not reduced either in 2xTg-AD mice accumulating large amounts of A{beta}{sub 1-42} or in mice accumulating only a mutant human tau protein. Thus it appears that a combination of A{beta}{sub 1-42} and tau protein accumulation affects the levels of functionally important receptors in 3xTg-AD mice. These observations raise the important possibility that structural and functional changes in granule cell cilia might have a role in AD.« less

  9. A Disease-associated Mutant of NLRC4 Shows Enhanced Interaction with SUG1 Leading to Constitutive FADD-dependent Caspase-8 Activation and Cell Death.

    PubMed

    Raghawan, Akhouri Kishore; Sripada, Anand; Gopinath, Gayathri; Pushpanjali, Pendyala; Kumar, Yatender; Radha, Vegesna; Swarup, Ghanshyam

    2017-01-27

    Nod-like receptor family card containing 4 (NLRC4)/Ipaf is involved in recognition of pathogen-associated molecular patterns leading to caspase-1 activation and cytokine release, which mediate protective innate immune response. Point mutations in NLRC4 cause autoinflammatory syndromes. Although all the mutations result in constitutive caspase-1 activation, their phenotypic presentations are different, implying that these mutations cause different alterations in properties of NLRC4. NLRC4 interacts with SUG1 and induces caspase-8-mediated cell death. Here, we show that one of the autoinflammatory syndrome-causing mutants of NLRC4, H443P, but not T337A and V341A, constitutively activates caspase-8 and induces apoptotic cell death in human lung epithelial cells. Compared with wild type NLRC4, the H443P mutant shows stronger interaction with SUG1 and with ubiquitinated cellular proteins. Phosphorylation of NLRC4 at Ser 533 plays a crucial role in caspase-8 activation and cell death. However, H443P mutant does not require Ser 533 phosphorylation for caspase-8 activation and cell death. Caspase-8 activation by NLRC4 and its H443P mutant are dependent on the adaptor protein FADD. A phosphomimicking mutant of NLRC4, S533D does not require SUG1 activity for inducing cell death. Ubiquitin-tagged NLRC4 could induce cell death and activate caspase-8 independent of Ser 533 phosphorylation. Our work suggests that SUG1-mediated signaling results in enhanced ubiquitination and regulates FADD-dependent caspase-8 activation by NLRC4. We show that the autoinflammation-associated H443P mutant is altered in interaction with SUG1 and ubiquitinated proteins, triggering constitutive caspase-8-mediated cell death dependent on FADD but independent of Ser 533 phosphorylation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Transmembrane Segment Five Serines of the D4 Dopamine Receptor Uniquely Influence the Interactions of Dopamine, Norepinephrine, and Ro10-4548

    PubMed Central

    Cummings, David F.; Ericksen, Spencer S.; Goetz, Angela

    2010-01-01

    Conserved serines of transmembrane segment (TM) five (TM5) are critical for the interactions of endogenous catecholamines with α1- and α2-adrenergic, β2-adrenergic, and D1, D2, and D3 dopamine receptors. The unique high-affinity interaction of the D4 dopamine receptor subtype with both norepinephrine and dopamine, and the fact that TM5 serine interactions have never been studied for this receptor subtype, led us to investigate the interactions of ligands with D4 receptor TM5 serines. Serine-to-alanine mutations at positions 5.42 and 5.46 drastically decreased affinities of dopamine and norepinephrine for the D4 receptor. The D4-S5.43A receptor mutant had substantially reduced affinity for norepinephrine, but a modest loss of affinity for dopamine. In functional assays of cAMP accumulation, norephinephrine was unable to activate any of the mutant receptors, even though the agonist quinpirole displayed wild-type functional properties for all of them. Dopamine was unable to activate the S5.46A mutant and had reduced potency for the S5.43A mutant and reduced potency and efficacy for the S5.42A mutant. In contrast, Ro10-4548 [RAC-2′-2-hydroxy-3-4-(4-hydroxy-2-methoxyphenyl)-1-piperazinyl-propoxy-acetanilide], a catechol-like antagonist of the wild-type receptor unexpectedly functions as an agonist of the S5.43A mutant. Other noncatechol ligands had similar properties for mutant and wild-type receptors. This is the first example of a dopamine receptor point mutation selectively changing the receptor's interaction with a specific antagonist to that of an agonist, and together with other data, provides evidence, supported by molecular modeling, that catecholamine-type agonism is induced by different ligand-specific configurations of intermolecular H-bonds with the TM5 conserved serines. PMID:20215412

  11. Mutanlallemand (mtl) and Belly Spot and Deafness (bsd) Are Two New Mutations of Lmx1a Causing Severe Cochlear and Vestibular Defects

    PubMed Central

    Pearson, Selina; Brooker, Rachael H.; Spiden, Sarah; Kiernan, Amy E.; Guénet, Jean-Louis; Steel, Karen P.

    2012-01-01

    Mutanlallemand (mtl) and Belly Spot and Deafness (bsd) are two new spontaneous alleles of the Lmx1a gene in mice. Homozygous mutants show head tossing and circling behaviour, indicative of vestibular defects, and they have short tails and white belly patches of variable size. The analysis of auditory brainstem responses (ABR) showed that mtl and bsd homozygotes are deaf, whereas heterozygous and wildtype littermates have normal hearing. Paint-filled inner ears at E16.5 revealed that mtl and bsd homozygotes lack endolymphatic ducts and semicircular canals and have short cochlear ducts. These new alleles show similarities with dreher (Lmx1a) mutants. Complementation tests between mtl and dreher and between mtl and bsd suggest that mtl and bsd are new mutant alleles of the Lmx1a gene. To determine the Lmx1a mutation in mtl and bsd mutant mice we performed PCR followed by sequencing of genomic DNA and cDNA. The mtl mutation is a single point mutation in the 3′ splice site of exon 4 leading to an exon extension and the activation of a cryptic splice site 44 base pairs downstream, whereas the bsd mutation is a genomic deletion that includes exon 3. Both mutations lead to a truncated LMX1A protein affecting the homeodomain (mtl) or LIM2-domain (bsd), which is critical for LMX1A protein function. Moreover, the levels of Lmx1a transcript in mtl and bsd mutants are significantly down-regulated. Hmx2/3 and Pax2 expression are also down-regulated in mtl and bsd mutants, suggesting a role of Lmx1a upstream of these transcription factors in early inner ear morphogenesis. We have found that these mutants develop sensory patches although they are misshapen. The characterization of these two new Lmx1a alleles highlights the critical role of this gene in the development of the cochlea and vestibular system. PMID:23226461

  12. The Resistome: A Comprehensive Database of Escherichia coli Resistance Phenotypes.

    PubMed

    Winkler, James D; Halweg-Edwards, Andrea L; Erickson, Keesha E; Choudhury, Alaksh; Pines, Gur; Gill, Ryan T

    2016-12-16

    The microbial ability to resist stressful environmental conditions and chemical inhibitors is of great industrial and medical interest. Much of the data related to mutation-based stress resistance, however, is scattered through the academic literature, making it difficult to apply systematic analyses to this wealth of information. To address this issue, we introduce the Resistome database: a literature-curated collection of Escherichia coli genotypes-phenotypes containing over 5,000 mutants that resist hundreds of compounds and environmental conditions. We use the Resistome to understand our current state of knowledge regarding resistance and to detect potential synergy or antagonism between resistance phenotypes. Our data set represents one of the most comprehensive collections of genomic data related to resistance currently available. Future development will focus on the construction of a combined genomic-transcriptomic-proteomic framework for understanding E. coli's resistance biology. The Resistome can be downloaded at https://bitbucket.org/jdwinkler/resistome_release/overview .

  13. Time-Resolved Transposon Insertion Sequencing Reveals Genome-Wide Fitness Dynamics during Infection.

    PubMed

    Yang, Guanhua; Billings, Gabriel; Hubbard, Troy P; Park, Joseph S; Yin Leung, Ka; Liu, Qin; Davis, Brigid M; Zhang, Yuanxing; Wang, Qiyao; Waldor, Matthew K

    2017-10-03

    Transposon insertion sequencing (TIS) is a powerful high-throughput genetic technique that is transforming functional genomics in prokaryotes, because it enables genome-wide mapping of the determinants of fitness. However, current approaches for analyzing TIS data assume that selective pressures are constant over time and thus do not yield information regarding changes in the genetic requirements for growth in dynamic environments (e.g., during infection). Here, we describe structured analysis of TIS data collected as a time series, termed pattern analysis of conditional essentiality (PACE). From a temporal series of TIS data, PACE derives a quantitative assessment of each mutant's fitness over the course of an experiment and identifies mutants with related fitness profiles. In so doing, PACE circumvents major limitations of existing methodologies, specifically the need for artificial effect size thresholds and enumeration of bacterial population expansion. We used PACE to analyze TIS samples of Edwardsiella piscicida (a fish pathogen) collected over a 2-week infection period from a natural host (the flatfish turbot). PACE uncovered more genes that affect E. piscicida 's fitness in vivo than were detected using a cutoff at a terminal sampling point, and it identified subpopulations of mutants with distinct fitness profiles, one of which informed the design of new live vaccine candidates. Overall, PACE enables efficient mining of time series TIS data and enhances the power and sensitivity of TIS-based analyses. IMPORTANCE Transposon insertion sequencing (TIS) enables genome-wide mapping of the genetic determinants of fitness, typically based on observations at a single sampling point. Here, we move beyond analysis of endpoint TIS data to create a framework for analysis of time series TIS data, termed pattern analysis of conditional essentiality (PACE). We applied PACE to identify genes that contribute to colonization of a natural host by the fish pathogen Edwardsiella piscicida. PACE uncovered more genes that affect E. piscicida 's fitness in vivo than were detected using a terminal sampling point, and its clustering of mutants with related fitness profiles informed design of new live vaccine candidates. PACE yields insights into patterns of fitness dynamics and circumvents major limitations of existing methodologies. Finally, the PACE method should be applicable to additional "omic" time series data, including screens based on clustered regularly interspaced short palindromic repeats with Cas9 (CRISPR/Cas9). Copyright © 2017 Yang et al.

  14. Time-resolved cellular effects induced by TcdA from Clostridium difficile.

    PubMed

    Jochim, Nelli; Gerhard, Ralf; Just, Ingo; Pich, Andreas

    2014-05-30

    The anaerobe Clostridium difficile is a common pathogen that causes infection of the colon leading to diarrhea or pseudomembranous colitis. Its major virulence factors are toxin A (TcdA) and toxin B (TcdB), which specifically inactivate small GTPases by glucosylation leading to reorganization of the cytoskeleton and finally to cell death. In the present work a quantitative proteome analysis using the isotope-coded protein label (ICPL) approach was conducted to investigate proteome changes in the colon cell line Caco-2 after treatment with recombinant wild-type TcdA (rTcdA-wt) or a glucosyltransferase-deficient mutant TcdA (rTcdA-mut). Proteins from crude cell lysates or cellular subfractions were identified by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS). Two time points (5 h, 24 h) of toxin treatment were analyzed and about 4000 proteins were identified in each case. After 5 h treatment with rTcdA-wt, 150 proteins had a significantly altered abundance; rTcdA-mut caused regulation of 50 proteins at this time point. After 24 h treatment with rTcdA-wt changes in abundance of 61 proteins were observed, but no changes in protein abundance were detected after 24 h if cells were treated with rTcdA-mut. TcdA affected several proteins involved in signaling events, cytoskeleton and cell-cell contact organization, translation, and metabolic processes. The ICPL-dependent quantification was verified by label-free targeted MS techniques based on multiple reaction monitoring (MRM) and triple quadrupole mass spectrometry. LC/MS-based proteome analyses and the ICPL approach revealed comprehensive and reproducible proteome date and provided new insights into the cellular effects of clostridial glucosylating toxins (CGT). Copyright © 2014 John Wiley & Sons, Ltd.

  15. 4D atlas of the mouse embryo for precise morphological staging.

    PubMed

    Wong, Michael D; van Eede, Matthijs C; Spring, Shoshana; Jevtic, Stefan; Boughner, Julia C; Lerch, Jason P; Henkelman, R Mark

    2015-10-15

    After more than a century of research, the mouse remains the gold-standard model system, for it recapitulates human development and disease and is quickly and highly tractable to genetic manipulations. Fundamental to the power and success of using a mouse model is the ability to stage embryonic mouse development accurately. Past staging systems were limited by the technologies of the day, such that only surface features, visible with a light microscope, could be recognized and used to define stages. With the advent of high-throughput 3D imaging tools that capture embryo morphology in microscopic detail, we now present the first 4D atlas staging system for mouse embryonic development using optical projection tomography and image registration methods. By tracking 3D trajectories of every anatomical point in the mouse embryo from E11.5 to E14.0, we established the first 4D atlas compiled from ex vivo 3D mouse embryo reference images. The resulting 4D atlas comprises 51 interpolated 3D images in this gestational range, resulting in a temporal resolution of 72 min. From this 4D atlas, any mouse embryo image can be subsequently compared and staged at the global, voxel and/or structural level. Assigning an embryonic stage to each point in anatomy allows for unprecedented quantitative analysis of developmental asynchrony among different anatomical structures in the same mouse embryo. This comprehensive developmental data set offers developmental biologists a new, powerful staging system that can identify and compare differences in developmental timing in wild-type embryos and shows promise for localizing deviations in mutant development. © 2015. Published by The Company of Biologists Ltd.

  16. Escalating Plasmodium falciparum antifolate drug resistance mutations in Macha, rural Zambia

    PubMed Central

    Mkulama, Mtawa AP; Chishimba, Sandra; Sikalima, Jay; Rouse, Petrica; Thuma, Philip E; Mharakurwa, Sungano

    2008-01-01

    Background In Zambia the first-line treatment for uncomplicated malaria is artemisinin combination therapy (ACT), with artemether-lumefantrine currently being used. However, the antifolate regimen, sulphadoxine-pyrimethamine (SP), remains the treatment of choice in children weighing less than 5 kg and also in expectant mothers. SP is also the choice drug for intermittent preventive therapy in pregnancy and serves as stand-by treatment during ACT stock outs. The current study assessed the status of Plasmodium falciparum point mutations associated with antifolate drug resistance in the area around Macha. Methods A representative sample of 2,780 residents from the vicinity of Macha was screened for malaria by microscopy. At the same time, blood was collected onto filter paper and dried for subsequent P. falciparum DNA analysis. From 188 (6.8%) individuals that were thick film-positive, a simple random sub-set of 95 P. falciparum infections were genotyped for DHFR and DHPS antifolate resistance mutations, using nested PCR and allele-specific restriction enzyme digestion. Results Plasmodium falciparum field samples exhibited a high prevalence of antifolate resistance mutations, including the DHFR triple (Asn-108 + Arg-59 + Ile-51) mutant (41.3%) and DHPS double (Gly-437 + Glu-540) mutant (16%). The quintuple (DHFR triple + DHPS double) mutant was found in 4 (6.5%) of the samples. Levels of mutated parasites showed a dramatic escalation, relative to previous surveys since 1988. However, neither of the Val-16 and Thr-108 mutations, which jointly confer resistance to cycloguanil, was detectable among the human infections. The Leu-164 mutation, associated with high grade resistance to both pyrimethamine and cycloguanil, as a multiple mutant with Asn-108, Arg-59 and (or) Ile-51, was also absent. Conclusion This study points to escalating levels of P. falciparum antifolate resistance in the vicinity of Macha. Continued monitoring is recommended to ensure timely policy revisions before widespread resistance exacts a serious public health toll. PMID:18495008

  17. Escalating Plasmodium falciparum antifolate drug resistance mutations in Macha, rural Zambia.

    PubMed

    Mkulama, Mtawa A P; Chishimba, Sandra; Sikalima, Jay; Rouse, Petrica; Thuma, Philip E; Mharakurwa, Sungano

    2008-05-21

    In Zambia the first-line treatment for uncomplicated malaria is artemisinin combination therapy (ACT), with artemether-lumefantrine currently being used. However, the antifolate regimen, sulphadoxine-pyrimethamine (SP), remains the treatment of choice in children weighing less than 5 kg and also in expectant mothers. SP is also the choice drug for intermittent preventive therapy in pregnancy and serves as stand-by treatment during ACT stock outs. The current study assessed the status of Plasmodium falciparum point mutations associated with antifolate drug resistance in the area around Macha. A representative sample of 2,780 residents from the vicinity of Macha was screened for malaria by microscopy. At the same time, blood was collected onto filter paper and dried for subsequent P. falciparum DNA analysis. From 188 (6.8%) individuals that were thick film-positive, a simple random sub-set of 95 P. falciparum infections were genotyped for DHFR and DHPS antifolate resistance mutations, using nested PCR and allele-specific restriction enzyme digestion. Plasmodium falciparum field samples exhibited a high prevalence of antifolate resistance mutations, including the DHFR triple (Asn-108 + Arg-59 + Ile-51) mutant (41.3%) and DHPS double (Gly-437 + Glu-540) mutant (16%). The quintuple (DHFR triple + DHPS double) mutant was found in 4 (6.5%) of the samples. Levels of mutated parasites showed a dramatic escalation, relative to previous surveys since 1988. However, neither of the Val-16 and Thr-108 mutations, which jointly confer resistance to cycloguanil, was detectable among the human infections. The Leu-164 mutation, associated with high grade resistance to both pyrimethamine and cycloguanil, as a multiple mutant with Asn-108, Arg-59 and (or) Ile-51, was also absent. This study points to escalating levels of P. falciparum antifolate resistance in the vicinity of Macha. Continued monitoring is recommended to ensure timely policy revisions before widespread resistance exacts a serious public health toll.

  18. Crystal Structures of Wild-type and Mutant Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase Reveal an Alternative Conformation of NADPH that may be Linked to Trimethoprim Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, K.; Liu, J; Lombardo, M

    2009-01-01

    Both hospital- and community-acquired Staphylococcus aureus infections have become major health concerns in terms of morbidity, suffering and cost. Trimethoprim-sulfamethoxazole (TMP-SMZ) is an alternative treatment for methicillin-resistant S. aureus (MRSA) infections. However, TMP-resistant strains have arisen with point mutations in dihydrofolate reductase (DHFR), the target for TMP. A single point mutation, F98Y, has been shown biochemically to confer the majority of this resistance to TMP. Using a structure-based approach, we have designed a series of novel propargyl-linked DHFR inhibitors that are active against several trimethoprim-resistant enzymes. We screened this series against wild-type and mutant (F98Y) S. aureus DHFR and foundmore » that several are active against both enzymes and specifically that the meta-biphenyl class of these inhibitors is the most potent. In order to understand the structural basis of this potency, we determined eight high-resolution crystal structures: four each of the wild-type and mutant DHFR enzymes bound to various propargyl-linked DHFR inhibitors. In addition to explaining the structure-activity relationships, several of the structures reveal a novel conformation for the cofactor, NADPH. In this new conformation that is predominantly associated with the mutant enzyme, the nicotinamide ring is displaced from its conserved location and three water molecules complete a network of hydrogen bonds between the nicotinamide ring and the protein. In this new position, NADPH has reduced interactions with the inhibitor. An equilibrium between the two conformations of NADPH, implied by their occupancies in the eight crystal structures, is influenced both by the ligand and the F98Y mutation. The mutation induced equilibrium between two NADPH-binding conformations may contribute to decrease TMP binding and thus may be responsible for TMP resistance.« less

  19. Mutational activation of CheA, the protein kinase in the chemotaxis system of Escherichia coli.

    PubMed Central

    Tawa, P.; Stewart, R. C.

    1994-01-01

    In Escherichia coli and Salmonella typhimurium, appropriate changes of cell swimming patterns are mediated by CheA, an autophosphorylating histidine protein kinase whose activity is regulated by receptor/transducer proteins. The molecular mechanism underlying this regulation remains unelucidated but may involve CheA shifting between high-activity and low-activity conformations. We devised an in vivo screen to search for potential hyperkinase variants of CheA and used this screen to identify two cheA point mutations that cause the CheA protein to have elevated autokinase activity. Each point mutation resulted in alteration of proline 337. In vitro, CheA337PL and CheA337PS autophosphorylated significantly more rapidly than did wild-type CheA. This rate enhancement reflected the higher affinities of the mutant proteins for ATP and an increased rate constant for acquisition by CheA of the gamma-phosphoryl group of ATP within a kinetically defined CheA.ATP complex. In addition, the mutant proteins reacted with ADP more rapidly than did wild-type CheA. We considered the possibility that the mutations served to lock CheA into an activated signaling conformation; however, we found that both mutant proteins were regulated in a normal fashion by the transducer Tsr in the presence of CheW. We exploited the activated properties of one of these mutants to investigate whether the CheA subunits within a CheA dimer make equivalent contributions to the mechanism of trans phosphorylation. Our results indicate that CheA trans phosphorylation may involve active-site residues that are located both in cis and in trans to the autophosphorylation site and that the two protomers of a CheA dimer make nonequivalent contributions in determining the affinity of the ATP-binding site(s) of CheA. Images PMID:8021207

  20. Effect of apoA-I Mutations in the Capacity of Reconstituted HDL to Promote ABCG1-Mediated Cholesterol Efflux.

    PubMed

    Daniil, Georgios; Zannis, Vassilis I; Chroni, Angeliki

    2013-01-01

    ATP binding cassette transporter G1 (ABCG1) mediates the cholesterol transport from cells to high-density lipoprotein (HDL), but the role of apolipoprotein A-I (apoA-I), the main protein constituent of HDL, in this process is not clear. To address this, we measured cholesterol efflux from HEK293 cells or J774 mouse macrophages overexpressing ABCG1 using as acceptors reconstituted HDL (rHDL) containing wild-type or various mutant apoA-I forms. It was found that ABCG1-mediated cholesterol efflux was severely reduced (by 89%) when using rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185-243)]. ABCG1-mediated cholesterol efflux was not affected or moderately decreased by rHDL containing amino-terminal deletion mutants and several mid-region deletion or point apoA-I mutants, and was restored to 69-99% of control by double deletion mutants apoA-I[Δ(1-41)Δ(185-243)] and apoA-I[Δ(1-59)Δ(185-243)]. These findings suggest that the central helices alone of apoA-I associated to rHDL can promote ABCG1-mediated cholesterol efflux. Further analysis showed that rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185-243)] only slightly reduced (by 22%) the ABCG1-mediated efflux of 7-ketocholesterol, indicating that depending on the sterol type, structural changes in rHDL-associated apoA-I affect differently the ABCG1-mediated efflux of cholesterol and 7-ketocholesterol. Overall, our findings demonstrate that rHDL-associated apoA-I structural changes affect the capacity of rHDL to accept cellular cholesterol by an ABCG1-mediated process. The structure-function relationship seen here between rHDL-associated apoA-I mutants and ABCG1-mediated cholesterol efflux closely resembles that seen before in lipid-free apoA-I mutants and ABCA1-dependent cholesterol efflux, suggesting that both processes depend on the same structural determinants of apoA-I.

  1. [The development of pollen grains and formation of pollen tubes in higher plants : I. Quantitative measurements of the DNA-content of generative and vegetative nuclei in the pollen grain and pollen tube of Petunia hybrida mutants].

    PubMed

    Hesemann, C U

    1971-01-01

    The DNA-content of generative and vegetative nuclei in mature pollen grains of four Petunia hybrida mutants was determined by cytophotometry. In addition the DNA-content of generative and vegetative nuclei in the pollen tube of two of these four mutants (virescens-2 n and ustulata-2 n) was cytophotometrically measured.The DNA-values found in the generative nuclei indicate that the DNA-replication continues in the mature pollen grain and comes to an end only after the migration of the nuclei into the pollen tube. These data are in disagreement with the results of DNA-measurements described for a limited number of other species which all show completion of DNA-synthesis during the maturation stage of the pollen grains.The vegetative nuclei of the four Petunia mutants studied show significant differences in the onset of the degenerative phase. Extreme variation is manifested in the ustulata-2 n mutant in which the degeneration of nuclei may reach the final stage in the maturing pollen grain. However in this mutant vegetative nuclei with an unaltered DNA-content may also be demonstrated in the pollen tube. Some of the vegetative nuclei in the pollen tube of ustulata-2 n exhibit an increased amount of DNA which could be the result of differential DNA-replication in the vegetative nuclei. The decrease of the DNA-content in a certain fraction of the vegetative nuclei in the maturing pollen grain does not agree with observations made in other species by several authors who report DNA constancy until the pollen grain is fully mature.The data obtained from the analysis of the four Petunia hybrida mutants point to an important role of the vegetative nucleus in the development of the pollen tube. The Petunia hybrida mutants may be regarded as especially favourable material for investigations concerning the function of the vegetative cell in the development of the pollen grain and pollen tube.

  2. Influencing Food Selection with Point-of-Choice Nutrition Information.

    ERIC Educational Resources Information Center

    Davis-Chervin, Doryn; And Others

    1985-01-01

    Evaluated the effectiveness of a point-of-choice nutrition information program that used a comprehensive set of communication functions in its design. Results indicate that point-of-choice information without direct tangible rewards can (to a moderate degree) modify food-selection behavior of cafeteria patrons. (JN)

  3. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development.

    PubMed

    Covassin, L D; Siekmann, A F; Kacergis, M C; Laver, E; Moore, J C; Villefranc, J A; Weinstein, B M; Lawson, N D

    2009-05-15

    In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development.

  4. The GYF domain protein PSIG1 dampens the induction of cell death during plant-pathogen interactions

    PubMed Central

    Matsui, Hidenori; Nomura, Yuko; Egusa, Mayumi; Hamada, Takahiro; Hyon, Gang-Su; Kaminaka, Hironori; Ueda, Takashi

    2017-01-01

    The induction of rapid cell death is an effective strategy for plants to restrict biotrophic and hemi-biotrophic pathogens at the infection site. However, activation of cell death comes at a high cost, as dead cells will no longer be available for defense responses nor general metabolic processes. In addition, necrotrophic pathogens that thrive on dead tissue, take advantage of cell death-triggering mechanisms. Mechanisms by which plants solve this conundrum remain described. Here, we identify PLANT SMY2-TYPE ILE-GYF DOMAIN-CONTAINING PROTEIN 1 (PSIG1) and show that PSIG1 helps to restrict cell death induction during pathogen infection. Inactivation of PSIG1 does not result in spontaneous lesions, and enhanced cell death in psig1 mutants is independent of salicylic acid (SA) biosynthesis or reactive oxygen species (ROS) production. Moreover, PSIG1 interacts with SMG7, which plays a role in nonsense-mediated RNA decay (NMD), and the smg7-4 mutant allele mimics the cell death phenotype of the psig1 mutants. Intriguingly, the psig1 mutants display enhanced susceptibility to the hemi-biotrophic bacterial pathogen. These findings point to the existence and importance of the SA- and ROS-independent cell death constraining mechanism as a part of the plant immune system. PMID:29073135

  5. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development

    PubMed Central

    Covassin, L. D.; Siekmann, A. F.; Kacergis, M. C.; Laver, E.; Moore, J. C.; Villefranc, J. A.; Weinstein, B. M.; Lawson, N. D.

    2009-01-01

    In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development. PMID:19269286

  6. BEAMing and Droplet Digital PCR Analysis of Mutant IDH1 mRNA in Glioma Patient Serum and Cerebrospinal Fluid Extracellular Vesicles

    PubMed Central

    Chen, Walter W; Balaj, Leonora; Liau, Linda M; Samuels, Michael L; Kotsopoulos, Steve K; Maguire, Casey A; LoGuidice, Lori; Soto, Horacio; Garrett, Matthew; Zhu, Lin Dan; Sivaraman, Sarada; Chen, Clark; Wong, Eric T; Carter, Bob S; Hochberg, Fred H; Breakefield, Xandra O; Skog, Johan

    2013-01-01

    Development of biofluid-based molecular diagnostic tests for cancer is an important step towards tumor characterization and real-time monitoring in a minimally invasive fashion. Extracellular vesicles (EVs) are released from tumor cells into body fluids and can provide a powerful platform for tumor biomarkers because they carry tumor proteins and nucleic acids. Detecting rare point mutations in the background of wild-type sequences in biofluids such as blood and cerebrospinal fluid (CSF) remains a major challenge. Techniques such as BEAMing (beads, emulsion, amplification, magnetics) PCR and droplet digital PCR (ddPCR) are substantially more sensitive than many other assays for mutant sequence detection. Here, we describe a novel approach that combines biofluid EV RNA and BEAMing RT-PCR (EV-BEAMing), as well droplet digital PCR to interrogate mutations from glioma tumors. EVs from CSF of patients with glioma were shown to contain mutant IDH1 transcripts, and we were able to reliably detect and quantify mutant and wild-type IDH1 RNA transcripts in CSF of patients with gliomas. EV-BEAMing and EV-ddPCR represent a valuable new strategy for cancer diagnostics, which can be applied to a variety of biofluids and neoplasms. PMID:23881452

  7. Foot-and-Mouth Disease (FMD) Virus 3C Protease Mutant L127P: Implications for FMD Vaccine Development.

    PubMed

    Puckette, Michael; Clark, Benjamin A; Smith, Justin D; Turecek, Traci; Martel, Erica; Gabbert, Lindsay; Pisano, Melia; Hurtle, William; Pacheco, Juan M; Barrera, José; Neilan, John G; Rasmussen, Max

    2017-11-15

    The foot-and-mouth disease virus (FMDV) afflicts livestock in more than 80 countries, limiting food production and global trade. Production of foot-and-mouth disease (FMD) vaccines requires cytosolic expression of the FMDV 3C protease to cleave the P1 polyprotein into mature capsid proteins, but the FMDV 3C protease is toxic to host cells. To identify less-toxic isoforms of the FMDV 3C protease, we screened 3C mutants for increased transgene output in comparison to wild-type 3C using a Gaussia luciferase reporter system. The novel point mutation 3C(L127P) increased yields of recombinant FMDV subunit proteins in mammalian and bacterial cells expressing P1-3C transgenes and retained the ability to process P1 polyproteins from multiple FMDV serotypes. The 3C(L127P) mutant produced crystalline arrays of FMDV-like particles in mammalian and bacterial cells, potentially providing a practical method of rapid, inexpensive FMD vaccine production in bacteria. IMPORTANCE The mutant FMDV 3C protease L127P significantly increased yields of recombinant FMDV subunit antigens and produced virus-like particles in mammalian and bacterial cells. The L127P mutation represents a novel advancement for economical FMD vaccine production. Copyright © 2017 Puckette et al.

  8. Defective calmodulin-dependent rapid apical endocytosis in zebrafish sensory hair cell mutants.

    PubMed

    Seiler, C; Nicolson, T

    1999-11-15

    Vertebrate mechanosensory hair cells contain a narrow "pericuticular" zone which is densely populated with small vesicles between the cuticular plate and cellular junctions near the apical surface. The presence of many cytoplasmic vesicles suggests that the apical surface of hair cells has a high turnover rate. The significance of intense membrane trafficking at the apical surface is not known. Using a marker of endocytosis, the styryl dye FM1-43, this report shows that rapid apical endocytosis in zebrafish lateral line sensory hair cells is calcium and calmodulin dependent and is partially blocked by the presence of amiloride and dihydrostreptomycin, known inhibitors of mechanotransduction channels. As seen in lateral line hair cells, sensory hair cells within the larval otic capsule also exhibit rapid apical endocytosis. Defects in internalization of the dye in both lateral line and inner ear hair cells were found in five zebrafish auditory/vestibular mutants: sputnik, mariner, orbiter, mercury, and skylab. In addition, lateral line hair cells in these mutants were not sensitive to prolonged exposure to streptomycin, which is toxic to hair cells. The presence of endocytic defects in the majority of zebrafish mechanosensory mutants points to a important role of apical endocytosis in hair cell function. Copyright 1999 John Wiley & Sons, Inc.

  9. Engineering the Pseudomonas aeruginosa II lectin: designing mutants with changed affinity and specificity

    NASA Astrophysics Data System (ADS)

    Kříž, Zdeněk; Adam, Jan; Mrázková, Jana; Zotos, Petros; Chatzipavlou, Thomais; Wimmerová, Michaela; Koča, Jaroslav

    2014-09-01

    This article focuses on designing mutations of the PA-IIL lectin from Pseudomonas aeruginosa that lead to change in specificity. Following the previous results revealing the importance of the amino acid triad 22-23-24 (so-called specificity-binding loop), saturation in silico mutagenesis was performed, with the intent of finding mutations that increase the lectin's affinity and modify its specificity. For that purpose, a combination of docking, molecular dynamics and binding free energy calculation was used. The combination of methods revealed mutations that changed the performance of the wild-type lectin and its mutants to their preferred partners. The mutation at position 22 resulted in 85 % in inactivation of the binding site, and the mutation at 23 did not have strong effects thanks to the side chain being pointed away from the binding site. Molecular dynamics simulations followed by binding free energy calculation were performed on mutants with promising results from docking, and also at those where the amino acid at position 24 was replaced for bulkier or longer polar chain. The key mutants were also prepared in vitro and their binding properties determined by isothermal titration calorimetry. Combination of the used methods proved to be able to predict changes in the lectin performance and helped in explaining the data observed experimentally.

  10. The hetC Gene Is a Direct Target of the NtcA Transcriptional Regulator in Cyanobacterial Heterocyst Development

    PubMed Central

    Muro-Pastor, Alicia M.; Valladares, Ana; Flores, Enrique; Herrero, Antonia

    1999-01-01

    The heterocyst is the site of nitrogen fixation in aerobically grown cultures of some filamentous cyanobacteria. Heterocyst development in Anabaena sp. strain PCC 7120 is dependent on the global nitrogen regulator NtcA and requires, among others, the products of the hetR and hetC genes. Expression of hetC, tested by RNA- DNA hybridization, was impaired in an ntcA mutant. A nitrogen-regulated, NtcA-dependent putative transcription start point was localized at nucleotide −571 with respect to the hetC translational start. Sequences upstream from this transcription start point exhibit the structure of the canonical cyanobacterial promoter activated by NtcA, and purified NtcA protein specifically bound to a DNA fragment containing this promoter. Activation of expression of hetC during heterocyst development appears thus to be directly operated by NtcA. NtcA-mediated activation of hetR expression was not impaired in a hetC mutant, indicating that HetC is not an NtcA-dependent element required for hetR induction. PMID:10542167

  11. Fusion peptide of influenza hemagglutinin requires a fixed angle boomerang structure for activity.

    PubMed

    Lai, Alex L; Park, Heather; White, Judith M; Tamm, Lukas K

    2006-03-03

    The fusion peptide of influenza hemagglutinin is crucial for cell entry of this virus. Previous studies showed that this peptide adopts a boomerang-shaped structure in lipid model membranes at the pH of membrane fusion. To examine the role of the boomerang in fusion, we changed several residues proposed to stabilize the kink in this structure and measured fusion. Among these, mutants E11A and W14A expressed hemagglutinins with hemifusion and no fusion activities, and F9A and N12A had no effect on fusion, respectively. Binding enthalpies and free energies of mutant peptides to model membranes and their ability to perturb lipid bilayer structures correlated well with the fusion activities of the parent full-length molecules. The structure of W14A determined by NMR and site-directed spin labeling features a flexible kink that points out of the membrane, in sharp contrast to the more ordered boomerang of the wild-type, which points into the membrane. A specific fixed angle boomerang structure is thus required to support membrane fusion.

  12. Soft epidermis of a scaleless snake lacks beta-keratin.

    PubMed

    Toni, M; Alibardi, L

    2007-01-01

    Beta-keratins are responsible for the mechanical resistance of scales in reptiles. In a scaleless crotalus snake (Crotalus atrox), large areas of the skin are completely devoid of scales, and the skin appears delicate and wrinkled. The epidermis of this snake has been assessed for the presence of beta-keratin by immunocytochemistry and immunoblotting using an antibody against chicken scale beta-keratin. This antibody recognizes beta-keratins in normal snake scales with molecular weights of 15-18 kDa and isoelectric points at 6.8, 7.5, 8.3 and 9.4. This indicates that beta-keratins of the stratum corneum are mainly basic proteins, so may interact with cytokeratins of the epidermis, most of which appear acidic (isoelectric points 4.5-5.5). A beta-layer and beta-keratin immunoreactivity are completely absent in moults of the scaleless mutant, and the corneous layer comprises a multi-layered alpha-layer covered by a flat oberhautchen. In conclusion, the present study shows that a lack of beta-keratins is correlated with the loss of scales and mechanical protection in the skin of this mutant snake.

  13. Autism-Relevant Social Abnormalities and Cognitive Deficits in Engrailed-2 Knockout Mice

    PubMed Central

    Brielmaier, Jennifer; Matteson, Paul G.; Silverman, Jill L.; Senerth, Julia M.; Kelly, Samantha; Genestine, Matthieu; Millonig, James H.

    2012-01-01

    ENGRAILED 2 (En2), a homeobox transcription factor, functions as a patterning gene in the early development and connectivity of rodent hindbrain and cerebellum, and regulates neurogenesis and development of monoaminergic pathways. To further understand the neurobiological functions of En2, we conducted neuroanatomical expression profiling of En2 wildtype mice. RTQPCR assays demonstrated that En2 is expressed in adult brain structures including the somatosensory cortex, hippocampus, striatum, thalamus, hypothalamus and brainstem. Human genetic studies indicate that EN2 is associated with autism. To determine the consequences of En2 mutations on mouse behaviors, including outcomes potentially relevant to autism, we conducted comprehensive phenotyping of social, communication, repetitive, and cognitive behaviors. En2 null mutants exhibited robust deficits in reciprocal social interactions as juveniles and adults, and absence of sociability in adults, replicated in two independent cohorts. Fear conditioning and water maze learning were impaired in En2 null mutants. High immobility in the forced swim test, reduced prepulse inhibition, mild motor coordination impairments and reduced grip strength were detected in En2 null mutants. No genotype differences were found on measures of ultrasonic vocalizations in social contexts, and no stereotyped or repetitive behaviors were observed. Developmental milestones, general health, olfactory abilities, exploratory locomotor activity, anxiety-like behaviors and pain responses did not differ across genotypes, indicating that the behavioral abnormalities detected in En2 null mutants were not attributable to physical or procedural confounds. Our findings provide new insight into the role of En2 in complex behaviors and suggest that disturbances in En2 signaling may contribute to neuropsychiatric disorders marked by social and cognitive deficits, including autism spectrum disorders. PMID:22829897

  14. Pathogenesis, Molecular Genetics, and Genomics of Mycobacterium avium subsp. paratuberculosis, the Etiologic Agent of Johne’s Disease

    PubMed Central

    Rathnaiah, Govardhan; Zinniel, Denise K.; Bannantine, John P.; Stabel, Judith R.; Gröhn, Yrjö T.; Collins, Michael T.; Barletta, Raúl G.

    2017-01-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne’s disease in ruminants causing chronic diarrhea, malnutrition, and muscular wasting. Neonates and young animals are infected primarily by the fecal–oral route. MAP attaches to, translocates via the intestinal mucosa, and is phagocytosed by macrophages. The ensuing host cellular immune response leads to granulomatous enteritis characterized by a thick and corrugated intestinal wall. We review various tissue culture systems, ileal loops, and mice, goats, and cattle used to study MAP pathogenesis. MAP can be detected in clinical samples by microscopy, culturing, PCR, and an enzyme-linked immunosorbent assay. There are commercial vaccines that reduce clinical disease and shedding, unfortunately, their efficacies are limited and may not engender long-term protective immunity. Moreover, the potential linkage with Crohn’s disease and other human diseases makes MAP a concern as a zoonotic pathogen. Potential therapies with anti-mycobacterial agents are also discussed. The completion of the MAP K-10 genome sequence has greatly improved our understanding of MAP pathogenesis. The analysis of this sequence has identified a wide range of gene functions involved in virulence, lipid metabolism, transcriptional regulation, and main metabolic pathways. We also review the transposons utilized to generate random transposon mutant libraries and the recent advances in the post-genomic era. This includes the generation and characterization of allelic exchange mutants, transcriptomic analysis, transposon mutant banks analysis, new efforts to generate comprehensive mutant libraries, and the application of transposon site hybridization mutagenesis and transposon sequencing for global analysis of the MAP genome. Further analysis of candidate vaccine strains development is also provided with critical discussions on their benefits and shortcomings, and strategies to develop a highly efficacious live-attenuated vaccine capable of differentiating infected from vaccinated animals. PMID:29164142

  15. The Role of the Regulator Fur in Gene Regulation and Virulence of Riemerella anatipestifer Assessed Using an Unmarked Gene Deletion System

    PubMed Central

    Guo, Yunqing; Hu, Di; Guo, Jie; Li, Xiaowen; Guo, Jinyue; Wang, Xiliang; Xiao, Yuncai; Jin, Hui; Liu, Mei; Li, Zili; Bi, Dingren; Zhou, Zutao

    2017-01-01

    Riemerella anatipestifer, an avian pathogen, has resulted in enormous economic losses to the duck industry globally. Notwithstanding, little is known regarding the physiological, pathogenic and virulence mechanisms of Riemerella anatipestifer (RA) infection. However, the role of Ferric uptake regulator (Fur) in the virulence of R. anatipestifer has not, to date, been demonstrated. Using a genetic approach, unmarked gene deletion system, we evaluated the function of fur gene in the virulence of R. anatipestifer. For this purpose, we constructed a suicide vector containing pheS as a counter selectable marker for unmarked deletion of fur gene to investigate its role in the virulence. After successful transformation of the newly constructed vector, a mutant strain was characterized for genes regulated by iron and Fur using RNA-sequencing and a comparison was made between wild type and mutant strains in both iron restricted and enriched conditions. RNA-seq analysis of the mutant strain in a restricted iron environment showed the downregulation and upregulation of genes which were involved in either important metabolic pathways, transport processes, growth or cell membrane synthesis. Electrophoretic mobility shift assay was performed to identify the putative sequences recognized by Fur. The putative Fur-box sequence was 5′-GATAATGATAATCATTATC-3′. Lastly, the median lethal dose and histopathological investigations of animal tissues also illustrated mild pathological lesions produced by the mutant strain as compared to the wild type RA strain, hence showing declined virulence. Conclusively, an unmarked gene deletion system was successfully developed for RA and the role of the fur gene in virulence was explored comprehensively. PMID:28971067

  16. Analyzing structure-function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa PARP1 knock-out cells.

    PubMed

    Rank, Lisa; Veith, Sebastian; Gwosch, Eva C; Demgenski, Janine; Ganz, Magdalena; Jongmans, Marjolijn C; Vogel, Christopher; Fischbach, Arthur; Buerger, Stefanie; Fischer, Jan M F; Zubel, Tabea; Stier, Anna; Renner, Christina; Schmalz, Michael; Beneke, Sascha; Groettrup, Marcus; Kuiper, Roland P; Bürkle, Alexander; Ferrando-May, Elisa; Mangerich, Aswin

    2016-12-01

    Genotoxic stress activates PARP1, resulting in the post-translational modification of proteins with poly(ADP-ribose) (PAR). We genetically deleted PARP1 in one of the most widely used human cell systems, i.e. HeLa cells, via TALEN-mediated gene targeting. After comprehensive characterization of these cells during genotoxic stress, we analyzed structure-function relationships of PARP1 by reconstituting PARP1 KO cells with a series of PARP1 variants. Firstly, we verified that the PARP1\\E988K mutant exhibits mono-ADP-ribosylation activity and we demonstrate that the PARP1\\L713F mutant is constitutively active in cells. Secondly, both mutants exhibit distinct recruitment kinetics to sites of laser-induced DNA damage, which can potentially be attributed to non-covalent PARP1-PAR interaction via several PAR binding motifs. Thirdly, both mutants had distinct functional consequences in cellular patho-physiology, i.e. PARP1\\L713F expression triggered apoptosis, whereas PARP1\\E988K reconstitution caused a DNA-damage-induced G2 arrest. Importantly, both effects could be rescued by PARP inhibitor treatment, indicating distinct cellular consequences of constitutive PARylation and mono(ADP-ribosyl)ation. Finally, we demonstrate that the cancer-associated PARP1 SNP variant (V762A) as well as a newly identified inherited PARP1 mutation (F304L\\V762A) present in a patient with pediatric colorectal carcinoma exhibit altered biochemical and cellular properties, thereby potentially supporting human carcinogenesis. Together, we establish a novel cellular model for PARylation research, by revealing strong structure-function relationships of natural and artificial PARP1 variants. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Effects of three different nucleoid-associated proteins encoded on IncP-7 plasmid pCAR1 on host Pseudomonas putida KT2440.

    PubMed

    Suzuki-Minakuchi, Chiho; Hirotani, Ryusuke; Shintani, Masaki; Takeda, Toshiharu; Takahashi, Yurika; Matsui, Kazuhiro; Vasileva, Delyana; Yun, Choong-Soo; Okada, Kazunori; Yamane, Hisakazu; Nojiri, Hideaki

    2015-04-01

    Nucleoid-associated proteins (NAPs), which fold bacterial DNA and influence gene transcription, are considered to be global transcriptional regulators of genes on both plasmids and the host chromosome. Incompatibility P-7 group plasmid pCAR1 carries genes encoding three NAPs: H-NS family protein Pmr, NdpA-like protein Pnd, and HU-like protein Phu. In this study, the effects of single or double disruption of pmr, pnd, and phu were assessed in host Pseudomonas putida KT2440. When pmr and pnd or pmr and phu were simultaneously disrupted, both the segregational stability and the structural stability of pCAR1 were markedly decreased, suggesting that Pmr, Pnd, and Phu act as plasmid-stabilizing factors in addition to their established roles in replication and partition systems. The transfer frequency of pCAR1 was significantly decreased in these double mutants. The segregational and structural instability of pCAR1 in the double mutants was recovered by complementation of pmr, whereas no recovery of transfer deficiency was observed. Comprehensive phenotype comparisons showed that the host metabolism of carbon compounds, which was reduced by pCAR1 carriage, was restored by disruption of the NAP gene(s). Transcriptome analyses of mutants indicated that transcription of genes for energy production, conversion, inorganic ion transport, and metabolism were commonly affected; however, how their products altered the phenotypes of mutants was not clear. The findings of this study indicated that Pmr, Pnd, and Phu act synergistically to affect pCAR1 replication, maintenance, and transfer, as well as to alter the host metabolic phenotype. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Effects of Three Different Nucleoid-Associated Proteins Encoded on IncP-7 Plasmid pCAR1 on Host Pseudomonas putida KT2440

    PubMed Central

    Suzuki-Minakuchi, Chiho; Hirotani, Ryusuke; Shintani, Masaki; Takeda, Toshiharu; Takahashi, Yurika; Matsui, Kazuhiro; Vasileva, Delyana; Yun, Choong-Soo; Okada, Kazunori; Yamane, Hisakazu

    2015-01-01

    Nucleoid-associated proteins (NAPs), which fold bacterial DNA and influence gene transcription, are considered to be global transcriptional regulators of genes on both plasmids and the host chromosome. Incompatibility P-7 group plasmid pCAR1 carries genes encoding three NAPs: H-NS family protein Pmr, NdpA-like protein Pnd, and HU-like protein Phu. In this study, the effects of single or double disruption of pmr, pnd, and phu were assessed in host Pseudomonas putida KT2440. When pmr and pnd or pmr and phu were simultaneously disrupted, both the segregational stability and the structural stability of pCAR1 were markedly decreased, suggesting that Pmr, Pnd, and Phu act as plasmid-stabilizing factors in addition to their established roles in replication and partition systems. The transfer frequency of pCAR1 was significantly decreased in these double mutants. The segregational and structural instability of pCAR1 in the double mutants was recovered by complementation of pmr, whereas no recovery of transfer deficiency was observed. Comprehensive phenotype comparisons showed that the host metabolism of carbon compounds, which was reduced by pCAR1 carriage, was restored by disruption of the NAP gene(s). Transcriptome analyses of mutants indicated that transcription of genes for energy production, conversion, inorganic ion transport, and metabolism were commonly affected; however, how their products altered the phenotypes of mutants was not clear. The findings of this study indicated that Pmr, Pnd, and Phu act synergistically to affect pCAR1 replication, maintenance, and transfer, as well as to alter the host metabolic phenotype. PMID:25681185

  19. A genetic screen in Myxococcus xanthus identifies mutants that uncouple outer membrane exchange from a downstream cellular response.

    PubMed

    Dey, Arup; Wall, Daniel

    2014-12-01

    Upon physical contact with sibling cells, myxobacteria transiently fuse their outer membranes (OMs) and exchange OM proteins and lipids. From previous work, TraA and TraB were identified to be essential factors for OM exchange (OME) in donor and recipient cells. To define the genetic complexity of OME, we carried out a comprehensive forward genetic screen. The screen was based on the observation that Myxococcus xanthus nonmotile cells, by a Tra-dependent mechanism, block swarm expansion of motile cells when mixed. Thus, mutants defective in OME or a downstream responsive pathway were readily identified as escape flares from mixed inocula seeded on agar. This screen was surprisingly powerful, as we found >50 mutants defective in OME. Importantly, all of the mutations mapped to the traAB operon, suggesting that there may be few, if any, proteins besides TraA and TraB directly required for OME. We also found a second and phenotypically different class of mutants that exhibited wild-type OME but were defective in a responsive pathway. This pathway is postulated to control inner membrane homeostasis by covalently attaching amino acids to phospholipids. The identified proteins are homologous to the Staphylococcus aureus MprF protein, which is involved in membrane adaptation and antibiotic resistance. Interestingly, we also found that a small number of nonmotile cells were sufficient to block the swarming behavior of a large gliding-proficient population. This result suggests that an OME-derived signal could be amplified from a few nonmotile producers to act on many responder cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Proteomic analysis of proteins related to rice grain chalkiness using iTRAQ and a novel comparison system based on a notched-belly mutant with white-belly

    PubMed Central

    2014-01-01

    Background Grain chalkiness is a complex trait adversely affecting appearance and milling quality, and therefore has been one of principal targets for rice improvement. Eliminating chalkiness from rice has been a daunting task due to the complex interaction between genotype and environment and the lack of molecular markers. In addition, the molecular mechanisms underlying grain chalkiness formation are still imperfectly understood. Results We identified a notched-belly mutant (DY1102) with high percentage of white-belly, which only occurs in the bottom part proximal to the embryo. Using this mutant, a novel comparison system that can minimize the effect of genetic background and growing environment was developed. An iTRAQ-based comparative display of the proteins between the bottom chalky part and the upper translucent part of grains of DY1102 was performed. A total of 113 proteins responsible for chalkiness formation was identified. Among them, 70 proteins are up-regulated and 43 down-regulated. Approximately half of these differentially expressed proteins involved in central metabolic or regulatory pathways including carbohydrate metabolism (especially cell wall synthesis) and protein synthesis, folding and degradation, providing proteomic confirmation of the notion that chalkiness formation involves diverse but delicately regulated pathways. Protein metabolism was the most abundant category, accounting for 27.4% of the total differentially expressed proteins. In addition, down regulation of PDIL 2–3 and BiP was detected in the chalky tissue, indicating the important role of protein metabolism in grain chalkiness formation. Conclusions Using this novel comparison system, our comprehensive survey of endosperm proteomics in the notched-belly mutant provides a valuable proteomic resource for the characterization of pathways contributing to chalkiness formation at molecular and biochemical levels. PMID:24924297

  1. Analyzing structure–function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa PARP1 knock-out cells

    PubMed Central

    Rank, Lisa; Veith, Sebastian; Gwosch, Eva C.; Demgenski, Janine; Ganz, Magdalena; Jongmans, Marjolijn C.; Vogel, Christopher; Fischbach, Arthur; Buerger, Stefanie; Fischer, Jan M.F.; Zubel, Tabea; Stier, Anna; Renner, Christina; Schmalz, Michael; Beneke, Sascha; Groettrup, Marcus; Kuiper, Roland P.; Bürkle, Alexander; Ferrando-May, Elisa; Mangerich, Aswin

    2016-01-01

    Genotoxic stress activates PARP1, resulting in the post-translational modification of proteins with poly(ADP-ribose) (PAR). We genetically deleted PARP1 in one of the most widely used human cell systems, i.e. HeLa cells, via TALEN-mediated gene targeting. After comprehensive characterization of these cells during genotoxic stress, we analyzed structure–function relationships of PARP1 by reconstituting PARP1 KO cells with a series of PARP1 variants. Firstly, we verified that the PARP1\\E988K mutant exhibits mono-ADP-ribosylation activity and we demonstrate that the PARP1\\L713F mutant is constitutively active in cells. Secondly, both mutants exhibit distinct recruitment kinetics to sites of laser-induced DNA damage, which can potentially be attributed to non-covalent PARP1–PAR interaction via several PAR binding motifs. Thirdly, both mutants had distinct functional consequences in cellular patho-physiology, i.e. PARP1\\L713F expression triggered apoptosis, whereas PARP1\\E988K reconstitution caused a DNA-damage-induced G2 arrest. Importantly, both effects could be rescued by PARP inhibitor treatment, indicating distinct cellular consequences of constitutive PARylation and mono(ADP-ribosyl)ation. Finally, we demonstrate that the cancer-associated PARP1 SNP variant (V762A) as well as a newly identified inherited PARP1 mutation (F304L\\V762A) present in a patient with pediatric colorectal carcinoma exhibit altered biochemical and cellular properties, thereby potentially supporting human carcinogenesis. Together, we establish a novel cellular model for PARylation research, by revealing strong structure–function relationships of natural and artificial PARP1 variants. PMID:27694308

  2. Simulation and estimation of gene number in a biological pathway using almost complete saturation mutagenesis screening of haploid mouse cells.

    PubMed

    Tokunaga, Masahiro; Kokubu, Chikara; Maeda, Yusuke; Sese, Jun; Horie, Kyoji; Sugimoto, Nakaba; Kinoshita, Taroh; Yusa, Kosuke; Takeda, Junji

    2014-11-24

    Genome-wide saturation mutagenesis and subsequent phenotype-driven screening has been central to a comprehensive understanding of complex biological processes in classical model organisms such as flies, nematodes, and plants. The degree of "saturation" (i.e., the fraction of possible target genes identified) has been shown to be a critical parameter in determining all relevant genes involved in a biological function, without prior knowledge of their products. In mammalian model systems, however, the relatively large scale and labor intensity of experiments have hampered the achievement of actual saturation mutagenesis, especially for recessive traits that require biallelic mutations to manifest detectable phenotypes. By exploiting the recently established haploid mouse embryonic stem cells (ESCs), we present an implementation of almost complete saturation mutagenesis in a mammalian system. The haploid ESCs were mutagenized with the chemical mutagen N-ethyl-N-nitrosourea (ENU) and processed for the screening of mutants defective in various steps of the glycosylphosphatidylinositol-anchor biosynthetic pathway. The resulting 114 independent mutant clones were characterized by a functional complementation assay, and were shown to be defective in any of 20 genes among all 22 known genes essential for this well-characterized pathway. Ten mutants were further validated by whole-exome sequencing. The predominant generation of single-nucleotide substitutions by ENU resulted in a gene mutation rate proportional to the length of the coding sequence, which facilitated the experimental design of saturation mutagenesis screening with the aid of computational simulation. Our study enables mammalian saturation mutagenesis to become a realistic proposition. Computational simulation, combined with a pilot mutagenesis experiment, could serve as a tool for the estimation of the number of genes essential for biological processes such as drug target pathways when a positive selection of mutants is available.

  3. Stratification of Recanalization for Patients with Endovascular Treatment of Intracranial Aneurysms

    PubMed Central

    Ogilvy, Christopher S.; Chua, Michelle H.; Fusco, Matthew R.; Reddy, Arra S.; Thomas, Ajith J.

    2015-01-01

    Background With increasing utilization of endovascular techniques in the treatment of both ruptured and unruptured intracranial aneurysms, the issue of obliteration efficacy has become increasingly important. Objective Our goal was to systematically develop a comprehensive model for predicting retreatment with various types of endovascular treatment. Methods We retrospectively reviewed medical records that were prospectively collected for 305 patients who received endovascular treatment for intracranial aneurysms from 2007 to 2013. Multivariable logistic regression was performed on candidate predictors identified by univariable screening analysis to detect independent predictors of retreatment. A composite risk score was constructed based on the proportional contribution of independent predictors in the multivariable model. Results Size (>10 mm), aneurysm rupture, stent assistance, and post-treatment degree of aneurysm occlusion were independently associated with retreatment while intraluminal thrombosis and flow diversion demonstrated a trend towards retreatment. The Aneurysm Recanalization Stratification Scale was constructed by assigning the following weights to statistically and clinically significant predictors. Aneurysm-specific factors: Size (>10 mm), 2 points; rupture, 2 points; presence of thrombus, 2 points. Treatment-related factors: Stent assistance, -1 point; flow diversion, -2 points; Raymond Roy 2 occlusion, 1 point; Raymond Roy 3 occlusion, 2 points. This scale demonstrated good discrimination with a C-statistic of 0.799. Conclusion Surgical decision-making and patient-centered informed consent require comprehensive and accessible information on treatment efficacy. We have constructed the Aneurysm Recanalization Stratification Scale to enhance this decision-making process. This is the first comprehensive model that has been developed to quantitatively predict the risk of retreatment following endovascular therapy. PMID:25621984

  4. De Novo Transcriptome Analysis for Kentucky Bluegrass Dwarf Mutants Induced by Space Mutation

    PubMed Central

    Gan, Lu; Di, Rong; Chao, Yuehui; Han, Liebao; Chen, Xingwu; Wu, Chao; Yin, Shuxia

    2016-01-01

    Kentucky bluegrass (Poa pratensis L.) is a major cool-season turfgrass requiring frequent mowing. Utilization of cultivars with slow growth is a promising method to decrease mowing frequency. In this study, two dwarf mutant selections of Kentucky bluegrass (A12 and A16) induced by space mutation were analyzed for the differentially expressed genes compared with the wild type (WT) by the high-throughput RNA-Seq technology. 253,909 unigenes were obtained by de novo assembly. 24.20% of the unigenes had a significant level of amino acid sequence identity to Brachypodium distachyon proteins, followed by Hordeum vulgare with 18.72% among the non-redundant (NR) Blastx top hits. Assembled unigenes were associated with 32 pathways using KEGG orthology terms and their respective KEGG maps. Between WT and A16 libraries, 4,203 differentially expressed genes (DEGs) were identified, whereas there were 883 DEGs between WT and A12 libraries. Further investigation revealed that the DEG pathways were mainly involved in terpenoid biosynthesis and plant hormone metabolism, which might account for the differences of plant height and leaf blade color between dwarf mutant and WT plants. Our study presents the first comprehensive transcriptomic data and gene function analysis of Poa pratensis L., providing a valuable resource for future studies in plant dwarfing breeding and comparative genome analysis for Pooideae plants. PMID:27010560

  5. Structural and mechanistic analysis of engineered trichodiene synthase enzymes from Trichoderma harzianum: towards higher catalytic activities empowering sustainable agriculture.

    PubMed

    Kumari, Indu; Chaudhary, Nitika; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf

    2016-06-01

    Trichoderma spp. are well-known bioagents for the plant growth promotion and pathogen suppression. The beneficial activities of the fungus Trichoderma spp. are attributed to their ability to produce and secrete certain secondary metabolites such as trichodermin that belongs to trichothecene family of molecules. The initial steps of trichodermin biosynthetic pathway in Trichoderma are similar to the trichothecenes from Fusarium sporotrichioides. Trichodiene synthase (TS) encoded by tri5 gene in Trichoderma catalyses the conversion of farnesyl pyrophosphate to trichodiene as reported earlier. In this study, we have carried out a comprehensive comparative sequence and structural analysis of the TS, which revealed the conserved residues involved in catalytic activity of the protein. In silico, modelled tertiary structure of TS protein showed stable structural behaviour during simulations. Two single-substitution mutants, i.e. D109E, D248Y and one double-substitution mutant (D109E and D248Y) of TS with potentially higher activities are screened out. The mutant proteins showed more stability than the wild type, an increased number of electrostatic interactions and better binding energies with the ligand, which further elucidates the amino acid residues involved in the reaction mechanism. These results will lead to devise strategies for higher TS activity to ultimately enhance the trichodermin production by Trichoderma spp. for its better exploitation in the sustainable agricultural practices.

  6. The Triple Response Assay and Its Use to Characterize Ethylene Mutants in Arabidopsis.

    PubMed

    Merchante, Catharina; Stepanova, Anna N

    2017-01-01

    Exposure of plants to ethylene results in drastic morphological changes. Seedlings germinated in the dark in the presence of saturating concentrations of ethylene display a characteristic phenotype known as the triple response. This phenotype is robust and easy to score. In Arabidopsis the triple response is usually evaluated at 3 days post germination in seedlings grown in the dark in rich media supplemented with 10 μM of the ethylene precursor ACC in air or in unsupplemented media in the presence of 10 ppm ethylene. The triple response in Arabidopsis consists of shortening and thickening of hypocotyls and roots and exaggeration of the curvature of apical hooks. The search for Arabidopsis mutants that fail to show this phenotype in ethylene or, vice versa, display the triple response in the absence of exogenously supplied hormone has allowed the identification of the key components of the ethylene biosynthesis and signaling pathways. Herein, we describe a simple protocol for assaying the triple response in Arabidopsis. The method can also be employed in many other dicot species, with minor modifications to account for species-specific differences in germination. We also compiled a comprehensive table of ethylene-related mutants of Arabidopsis, including many lines with auxin-related defects, as wild-type levels of auxin biosynthesis, transport, signaling, and response are necessary for the normal response of plants to ethylene.

  7. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue

    PubMed Central

    Wallentine, Brad D.; Wang, Ying; Tretyachenko-Ladokhina, Vira; Tan, Martha; Senear, Donald F.; Luecke, Hartmut

    2013-01-01

    To gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53, X-ray crystallographic structures of four p53 core-domain variants were determined. These include an oncogenic mutant, V157F, two single-site suppressor mutants, N235K and N239Y, and the rescued cancer mutant V157F/N235K/N239Y. The V157F mutation substitutes a smaller hydrophobic valine with a larger hydrophobic phenylalanine within strand S4 of the hydrophobic core. The structure of this cancer mutant shows no gross structural changes in the overall fold of the p53 core domain, only minor rearrangements of side chains within the hydrophobic core of the protein. Based on biochemical analysis, these small local perturbations induce instability in the protein, increasing the free energy by 3.6 kcal mol−1 (15.1 kJ mol−1). Further biochemical evidence shows that each suppressor mutation, N235K or N239Y, acts individually to restore thermodynamic stability to V157F and that both together are more effective than either alone. All rescued mutants were found to have wild-type DNA-binding activity when assessed at a permissive temperature, thus pointing to thermodynamic stability as the critical underlying variable. Interestingly, thermodynamic analysis shows that while N239Y demonstrates stabilization of the wild-type p53 core domain, N235K does not. These observations suggest distinct structural mechanisms of rescue. A new salt bridge between Lys235 and Glu198, found in both the N235K and rescued cancer mutant structures, suggests a rescue mechanism that relies on stabilizing the β-sandwich scaffold. On the other hand, the substitution N239Y creates an advantageous hydrophobic contact between the aromatic ring of this tyrosine and the adjacent Leu137. Surprisingly, the rescued cancer mutant shows much larger structural deviations than the cancer mutant alone when compared with wild-type p53. These suppressor mutations appear to rescue p53 function by creating novel intradomain interactions that stabilize the core domain, allowing compensation for the destabilizing V157F mutation. PMID:24100332

  8. The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex.

    PubMed

    Dzierzbicki, Piotr; Kaniak-Golik, Aneta; Malc, Ewa; Mieczkowski, Piotr; Ciesla, Zygmunt

    2012-12-01

    Oxidative stress is known to enhance the frequency of two major types of alterations in the mitochondrial genome of Saccharomyces cerevisiae: point mutations and large deletions resulting in the generation of respiration-deficient petite rhō mutants. We investigated the effect of antimycin A, a well-known agent inducing oxidative stress, on the stability of mtDNA. We show that antimycin enhances exclusively the generation of respiration-deficient petite mutants and this is accompanied by a significant increase in the level of reactive oxygen species (ROS) and in a marked drop of cellular ATP. Whole mitochondrial genome sequencing revealed that mtDNAs of antimycin-induced petite mutants are deleted for most of the wild-type sequence and usually contain one of the active origins of mtDNA replication: ori1, ori2 ori3 or ori5. We show that the frequency of antimycin-induced rhō mutants is significantly elevated in mutants deleted either for the RAD50 or XRS2 gene, both encoding the components of the MRX complex, which is known to be involved in the repair of double strand breaks (DSBs) in DNA. Furthermore, enhanced frequency of rhō mutants in cultures of antimycin-treated cells lacking Rad50 was further increased by the simultaneous absence of the Ogg1 glycosylase, an important enzyme functioning in mtBER. We demonstrate also that rad50Δ and xrs2Δ deletion mutants display a considerable reduction in the frequency of allelic mitochondrial recombination, suggesting that it is the deficiency in homologous recombination which is responsible for enhanced rearrangements of mtDNA in antimycin-treated cells of these mutants. Finally, we show that the generation of large-scale mtDNA deletions induced by antimycin is markedly decreased in a nuc1Δ mutant lacking the activity of the Nuc1 nuclease, an ortholog of the mammalian mitochondrial nucleases EndoG and ExoG. This result indicates that the nuclease plays an important role in processing of oxidative stress-induced lesions in the mitochondrial genome. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Mapping mitochondrial heteroplasmy in a Leydig tumor by laser capture micro-dissection and cycling temperature capillary electrophoresis.

    PubMed

    Refinetti, Paulo; Arstad, Christian; Thilly, William G; Morgenthaler, Stephan; Ekstrøm, Per Olaf

    2017-01-01

    The growth of tumor cells is accompanied by mutations in nuclear and mitochondrial genomes creating marked genetic heterogeneity. Tumors also contain non-tumor cells of various origins. An observed somatic mitochondrial mutation would have occurred in a founding cell and spread through cell division. Micro-anatomical dissection of a tumor coupled with assays for mitochondrial point mutations permits new insights into this growth process. More generally, the ability to detect and trace, at a histological level, somatic mitochondrial mutations in human tissues and tumors, makes these mutations into markers for lineage tracing. A tumor was first sampled by a large punch biopsy and scanned for any significant degree of heteroplasmy in a set of sequences containing known mutational hotspots of the mitochondrial genome. A heteroplasmic tumor was sliced at a 12 μm thickness and placed on membranes. Laser capture micro-dissection was used to take 25000 μm 2 subsamples or spots. After DNA amplification, cycling temperature capillary electrophoresis (CTCE) was used on the laser captured samples to quantify mitochondrial mutant fractions. Of six testicular tumors studied, one, a Leydig tumor, was discovered to carry a detectable degree of heteroplasmy for two separate point mutations: a C → T mutation at bp 64 and a T → C mutation found at bp 152. From this tumor, 381 spots were sampled with laser capture micro-dissection. The ordered distribution of spots exhibited a wide range of fractions of the mutant sequences from 0 to 100% mutant copies. The two mutations co-distributed in the growing tumor indicating they were present on the same genome copies in the founding cell. Laser capture microdissection of sliced tumor samples coupled with CTCE-based point mutation assays provides an effective and practical means to obtain maps of mitochondrial mutational heteroplasmy within human tumors.

  10. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides.

    PubMed

    Rivera-Torres, Natalia; Banas, Kelly; Bialk, Pawel; Bloh, Kevin M; Kmiec, Eric B

    2017-01-01

    CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and CRISPR/Cas9 ribonucleoprotein complex.

  11. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides

    PubMed Central

    Rivera-Torres, Natalia; Bialk, Pawel; Bloh, Kevin M.; Kmiec, Eric B.

    2017-01-01

    CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and CRISPR/Cas9 ribonucleoprotein complex. PMID:28052104

  12. Use of Chimeras, Point Mutants, and Molecular Modeling to Map the Antagonist-binding Site of 4,4′,4″,4‴-(Carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic Acid (NF449) at P2X1 Receptors for ATP*

    PubMed Central

    Farmer, Louise K.; Schmid, Ralf; Evans, Richard J.

    2015-01-01

    P2X receptor subtype-selective antagonists are promising candidates for treatment of a range of pathophysiological conditions. However, in contrast to high resolution structural understanding of agonist action in the receptors, comparatively little is known about the molecular basis of antagonist binding. We have generated chimeras and point mutations in the extracellular ligand-binding loop of the human P2X1 receptor, which is inhibited by NF449, suramin, and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate, with residues from the rat P2X4 receptor, which is insensitive to these antagonists. There was little or no effect on sensitivity to suramin and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate in chimeric P2X1/4 receptors, indicating that a significant number of residues required for binding of these antagonists are present in the P2X4 receptor. Sensitivity to the P2X1 receptor-selective antagonist NF449 was reduced by ∼60- and ∼135-fold in chimeras replacing the cysteine-rich head, and the dorsal fin region below it in the adjacent subunit, respectively. Point mutants identified the importance of four positively charged residues at the base of the cysteine-rich head and two variant residues in the dorsal fin for high affinity NF449 binding. These six residues were used as the starting area for molecular docking. The four best potential NF449-binding poses were then discriminated by correspondence with the mutagenesis data and an additional mutant to validate the binding of one lobe of NF449 within the core conserved ATP-binding pocket and the other lobes coordinated by positive charge on the cysteine-rich head region and residues in the adjacent dorsal fin. PMID:25425641

  13. Use of chimeras, point mutants, and molecular modeling to map the antagonist-binding site of 4,4',4″,4‴-(carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic acid (NF449) at P2X1 receptors for ATP.

    PubMed

    Farmer, Louise K; Schmid, Ralf; Evans, Richard J

    2015-01-16

    P2X receptor subtype-selective antagonists are promising candidates for treatment of a range of pathophysiological conditions. However, in contrast to high resolution structural understanding of agonist action in the receptors, comparatively little is known about the molecular basis of antagonist binding. We have generated chimeras and point mutations in the extracellular ligand-binding loop of the human P2X1 receptor, which is inhibited by NF449, suramin, and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate, with residues from the rat P2X4 receptor, which is insensitive to these antagonists. There was little or no effect on sensitivity to suramin and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate in chimeric P2X1/4 receptors, indicating that a significant number of residues required for binding of these antagonists are present in the P2X4 receptor. Sensitivity to the P2X1 receptor-selective antagonist NF449 was reduced by ∼60- and ∼135-fold in chimeras replacing the cysteine-rich head, and the dorsal fin region below it in the adjacent subunit, respectively. Point mutants identified the importance of four positively charged residues at the base of the cysteine-rich head and two variant residues in the dorsal fin for high affinity NF449 binding. These six residues were used as the starting area for molecular docking. The four best potential NF449-binding poses were then discriminated by correspondence with the mutagenesis data and an additional mutant to validate the binding of one lobe of NF449 within the core conserved ATP-binding pocket and the other lobes coordinated by positive charge on the cysteine-rich head region and residues in the adjacent dorsal fin. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Understanding Learning: Assessment in the Turning Points School

    ERIC Educational Resources Information Center

    Center for Collaborative Education, 2005

    2005-01-01

    Turning Points helps middle schools create challenging, caring, and equitable learning communities that meet the needs of young adolescents as they reach the "turning point" between childhood and adulthood. Based on more than a decade of research and experience, this comprehensive school reform model focuses on improving student learning through…

  15. Gene Editing and Gene-Based Therapeutics for Cardiomyopathies.

    PubMed

    Ohiri, Joyce C; McNally, Elizabeth M

    2018-04-01

    With an increasing understanding of genetic defects leading to cardiomyopathy, focus is shifting to correcting these underlying genetic defects. One approach involves treating mutant RNA through antisense oligonucleotides; the first drug has received regulatory approval to treat specific mutations associated with Duchenne muscular dystrophy. Gene editing is being evaluated in the preclinical setting. For inherited cardiomyopathies, genetic correction strategies require tight specificity for the mutant allele. Gene-editing methods are being tested to create deletions that may be useful to restore protein expression by through the bypass of mutations that restore protein production. Site-specific gene editing, which is required to correct many point mutations, is a less efficient process than inducing deletions. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Mutant botrocetin-2 inhibits von Willebrand factor-induced platelet agglutination.

    PubMed

    Matsui, T; Hori, A; Hamako, J; Matsushita, F; Ozeki, Y; Sakurai, Y; Hayakawa, M; Matsumoto, M; Fujimura, Y

    2017-03-01

    Essentials Botrocetin-2 (Bot2) binds to von Willebrand factor (VWF) and induces platelet agglutination. We identified Bot2 residues that are required for binding to VWF and glycoprotein (GP) Ib. We produced a mutant Bot2 that binds to VWF but inhibits platelet agglutination. Mutant Bot2 could be used as a potential anti-thrombotic reagent to block VWF-GPIb interaction. Background Botrocetin-2 (Bot2) is a botrocetin-like protein composed of α and β subunits that have been cloned from the snake Bothrops jararaca. Bot2 binds specifically to von Willebrand factor (VWF), and the complex induces glycoprotein (GP) Ib-dependent platelet agglutination. Objectives To exploit Bot2's VWF-binding capacity in order to attempt to create a mutant Bot2 that binds to VWF but inhibits platelet agglutination. Methods and Results Several point mutations were introduced into Bot2 cDNA, and the recombinant protein (recombinant Bot2 [rBot2]) was purified on an anti-botrocetin column. The mutant rBot2 with either Ala at Asp70 in the β subunit (Aspβ70Ala), or Argβ115Ala and Lysβ117Ala, showed reduced platelet agglutination-inducing activity. rBot2 with Aspβ70Ala showed little binding activity towards immobilized VWF on an ELISA plate, whereas rBot2 with Argβ115Ala/Lysβ117Ala showed reduced binding activity towards GPIb (glycocalicin) after forming a complex with VWF. rBot2 point-mutated to oppositely charged Glu at both Argβ115 and Lysβ117 showed normal binding activity towards VWF but no platelet-agglutinating activity. Furthermore, this doubly mutated protein inhibited ristocetin-induced or high shear stress-induced platelet aggregation, and restrained thrombus formation under flow conditions. Conclusions Asp70 in the β subunit of botrocetin is important for VWF binding, and Arg115 and Lys117 in the β subunit are essential for interaction with GPIb. Doubly mutated rBot2, with Argβ115Glu and Lysβ117Glu, repels GPIb and might have potential as an antithrombotic reagent that specifically blocks VWF function. This is the first report on an artificial botrocetin that can inhibit the VWF-GPIb interaction. © 2017 International Society on Thrombosis and Haemostasis.

  17. Transcript profiling by microarray and marker analysis of the short cotton (Gossypium hirsutum L.) fiber mutant Ligon lintless-1 (Li1).

    PubMed

    Gilbert, Matthew K; Turley, Rickie B; Kim, Hee Jin; Li, Ping; Thyssen, Gregory; Tang, Yuhong; Delhom, Christopher D; Naoumkina, Marina; Fang, David D

    2013-06-17

    Cotton fiber length is very important to the quality of textiles. Understanding the genetics and physiology of cotton fiber elongation can provide valuable tools to the cotton industry by targeting genes or other molecules responsible for fiber elongation. Ligon Lintless-1 (Li1) is a monogenic mutant in Upland cotton (Gossypium hirsutum) which exhibits an early cessation of fiber elongation resulting in very short fibers (< 6 mm) at maturity. This presents an excellent model system for studying the underlying molecular and cellular processes involved with cotton fiber elongation. Previous reports have characterized Li1 at early cell wall elongation and during later secondary cell wall synthesis, however there has been very limited analysis of the transition period between these developmental time points. Physical and morphological measurements of the Li1 mutant fibers were conducted, including measurement of the cellulose content during development. Affymetrix microarrays were used to analyze transcript profiles at the critical developmental time points of 3 days post anthesis (DPA), the late elongation stage of 12 DPA and the early secondary cell wall synthesis stage of 16 DPA. The results indicated severe disruption to key hormonal and other pathways related to fiber development, especially pertaining to the transition stage from elongation to secondary cell wall synthesis. Gene Ontology enrichment analysis identified several key pathways at the transition stage that exhibited altered regulation. Genes involved in ethylene biosynthesis and primary cell wall rearrangement were affected, and a primary cell wall-related cellulose synthase was transcriptionally repressed. Linkage mapping using a population of 2,553 F2 individuals identified SSR markers associated with the Li1 genetic locus on chromosome 22. Linkage mapping in combination with utilizing the diploid G. raimondii genome sequences permitted additional analysis of the region containing the Li1 gene. The early termination of fiber elongation in the Li1 mutant is likely controlled by an early upstream regulatory factor resulting in the altered regulation of hundreds of downstream genes. Several elongation-related genes that exhibited altered expression profiles in the Li1 mutant were identified. Molecular markers closely associated with the Li1 locus were developed. Results presented here will lay the foundation for further investigation of the genetic and molecular mechanisms of fiber elongation.

  18. Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains.

    PubMed

    Sánchez, Ailen M; Bennett, George N; San, Ka-Yiu

    2006-05-01

    This study presents an in-depth analysis of the anaerobic metabolic fluxes of various mutant strains of Escherichia coli overexpressing the Lactococcus lactis pyruvate carboxylase (PYC) for the production of succinate. Previously, a metabolic network design that includes an active glyoxylate pathway implemented in vivo increased succinate yield from glucose in an E. coli mutant to 1.6 mol/mol under fully anaerobic conditions. The design consists of a dual succinate synthesis route, which diverts required quantities of NADH through the traditional fermentative pathway and maximizes the carbon converted to succinate by balancing the carbon flux through the fermentative pathway and the glyoxylate pathway (which has a lower NADH requirement). Mutant strains previously constructed during the development of high-yield succinate-producing strains were selected for further characterization to understand their metabolic response as a result of several genetic manipulations and to determine the significance of the fermentative and the glyoxylate pathways in the production of succinate. Measured fluxes obtained under batch cultivation conditions were used to estimate intracellular fluxes and identify critical branch point flux split ratios. The comparison of changes in branch point flux split ratios to the glyoxylate pathway and the fermentative pathway at the oxaloacetate (OAA) node as a result of different mutations revealed the sensitivity of succinate yield to these manipulations. The most favorable split ratio to obtain the highest succinate yield was the fractional partition of OAA to glyoxylate of 0.32 and 0.68 to the fermentative pathway obtained in strains SBS550MG (pHL413) and SBS990MG (pHL413). The succinate yields achieved in these two strains were 1.6 and 1.7 mol/mol, respectively. In addition, an active glyoxylate pathway in an ldhA, adhE, ack-pta mutant strain is shown to be responsible for the high succinate yields achieved anaerobically. Furthermore, in vitro activity measurements of seven crucial enzymes involved in the pathways studied and intracellular measurements of key intermediate metabolite pools provided additional insights on the physiological perturbations caused by these mutations. The characterization of these recombinant mutant strains in terms of flux distribution pattern, in vitro enzyme activity and intracellular metabolite pools provides useful information for the rational modification of metabolic fluxes to improve succinate production.

  19. ENU-mutagenesis mice with a non-synonymous mutation in Grin1 exhibit abnormal anxiety-like behaviors, impaired fear memory, and decreased acoustic startle response

    PubMed Central

    2013-01-01

    Background The Grin1 (glutamate receptor, ionotropic, NMDA1) gene expresses a subunit of N-methyl-D-aspartate (NMDA) receptors that is considered to play an important role in excitatory neurotransmission, synaptic plasticity, and brain development. Grin1 is a candidate susceptibility gene for neuropsychiatric disorders, including schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD). In our previous study, we examined an N-ethyl-N-nitrosourea (ENU)-generated mutant mouse strain (Grin1Rgsc174/Grin1+) that has a non-synonymous mutation in Grin1. These mutant mice showed hyperactivity, increased novelty-seeking to objects, and abnormal social interactions. Therefore, Grin1Rgsc174/Grin1+ mice may serve as a potential animal model of neuropsychiatric disorders. However, other behavioral characteristics related to these disorders, such as working memory function and sensorimotor gating, have not been fully explored in these mutant mice. In this study, to further investigate the behavioral phenotypes of Grin1Rgsc174/Grin1+ mice, we subjected them to a comprehensive battery of behavioral tests. Results There was no significant difference in nociception between Grin1Rgsc174/Grin1+ and wild-type mice. The mutants did not display any abnormalities in the Porsolt forced swim and tail suspension tests. We confirmed the previous observations that the locomotor activity of these mutant mice increased in the open field and home cage activity tests. They displayed abnormal anxiety-like behaviors in the light/dark transition and the elevated plus maze tests. Both contextual and cued fear memory were severely deficient in the fear conditioning test. The mutant mice exhibited slightly impaired working memory in the eight-arm radial maze test. The startle amplitude was markedly decreased in Grin1Rgsc174/Grin1+ mice, whereas no significant differences between genotypes were detected in the prepulse inhibition (PPI) test. The mutant mice showed no obvious deficits in social behaviors in three different social interaction tests. Conclusions This study demonstrated that the Grin1Rgsc174/Grin1+ mutation causes abnormal anxiety-like behaviors, a deficiency in fear memory, and a decreased startle amplitude in mice. Although Grin1Rgsc174/Grin1+ mice only partially recapitulate symptoms of patients with ADHD, schizophrenia, and bipolar disorder, they may serve as a unique animal model of a certain subpopulation of patients with these disorders. PMID:23688147

  20. Functional interaction of CCAAT/enhancer-binding-protein-α basic region mutants with E2F transcription factors and DNA.

    PubMed

    Kowenz-Leutz, Elisabeth; Schuetz, Anja; Liu, Qingbin; Knoblich, Maria; Heinemann, Udo; Leutz, Achim

    2016-07-01

    The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) regulates cell cycle arrest and terminal differentiation of neutrophils and adipocytes. Mutations in the basic leucine zipper domain (bZip) of C/EBPα are associated with acute myeloid leukemia. A widely used murine transforming C/EBPα basic region mutant (BRM2) entails two bZip point mutations (I294A/R297A). BRM2 has been discordantly described as defective for DNA binding or defective for interaction with E2F. We have separated the two BRM2 mutations to shed light on the intertwined reciprocity between C/EBPα-E2F-DNA interactions. Both, C/EBPα I294A and R297A retain transactivation capacity and interaction with E2F-DP. The C/EBPα R297A mutation destabilized DNA binding, whereas the C/EBPα I294A mutation enhanced binding to DNA. The C/EBPα R297A mutant, like BRM2, displayed enhanced interaction with E2F-DP but failed to repress E2F-dependent transactivation although both mutants were readily suppressed by E2F1 for transcription through C/EBP cis-regulatory sites. In contrast, the DNA binding enhanced C/EBPα I294A mutant displayed increased repression of E2F-DP mediated transactivation and resisted E2F-DP mediated repression. Thus, the efficient repression of E2F dependent S-phase genes and the activation of differentiation genes reside in the balanced DNA binding capacity of C/EBPα. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Thermal Stability of Rhodopsin and Progression of Retinitis Pigmentosa

    PubMed Central

    Liu, Monica Yun; Liu, Jian; Mehrotra, Devi; Liu, Yuting; Guo, Ying; Baldera-Aguayo, Pedro A.; Mooney, Victoria L.; Nour, Adel M.; Yan, Elsa C. Y.

    2013-01-01

    Over 100 point mutations in the rhodopsin gene have been associated with retinitis pigmentosa (RP), a family of inherited visual disorders. Among these, we focused on characterizing the S186W mutation. We compared the thermal properties of the S186W mutant with another RP-causing mutant, D190N, and with WT rhodopsin. To assess thermal stability, we measured the rate of two thermal reactions contributing to the thermal decay of rhodopsin as follows: thermal isomerization of 11-cis-retinal and hydrolysis of the protonated Schiff base linkage between the 11-cis-retinal chromophore and opsin protein. We used UV-visible spectroscopy and HPLC to examine the kinetics of these reactions at 37 and 55 °C for WT and mutant rhodopsin purified from HEK293 cells. Compared with WT rhodopsin and the D190N mutant, the S186W mutation dramatically increases the rates of both thermal isomerization and dark state hydrolysis of the Schiff base by 1–2 orders of magnitude. The results suggest that the S186W mutant thermally destabilizes rhodopsin by disrupting a hydrogen bond network at the receptor's active site. The decrease in the thermal stability of dark state rhodopsin is likely to be associated with higher levels of dark noise that undermine the sensitivity of rhodopsin, potentially accounting for night blindness in the early stages of RP. Further studies of the thermal stability of additional pathogenic rhodopsin mutations in conjunction with clinical studies are expected to provide insight into the molecular mechanism of RP and test the correlation between rhodopsin's thermal stability and RP progression in patients. PMID:23625926

  2. Targeting glutamine metabolism in myeloproliferative neoplasms

    PubMed Central

    Zhan, Huichun; Ciano, Kristen; Dong, Katherine; Zucker, Stanley

    2016-01-01

    JAK2V617F mutation can be detected in the majority of myeloproliferative neoplasm (MPN) patients. The JAK2 inhibitor Ruxolitinib is the first FDA-approved treatment for MPNs. However, its use is limited by various dose related toxicities. Here, we studied the metabolic state and glutamine metabolism of BaF3-hEPOR-JAK2V617F and BaF3-hEPOR-JAK2WT cells. We found that the JAK2V617F-mutant cells were associated with increased oxygen consumption rate and extracellular acidification rate than the JAK2WT cells and there was an increased glutamine metabolism in JAK2V617F-mutant cells compared to wild-type cells. Glutaminase (GLS), the key enzyme in gluta-mine metabolism, was upregulated in the JAK2V617F-mutant BaF3 cells compared to the JAK2WT BaF3 cells. In MPN patient peripheral blood CD34+ cells, GLS expression was increased in JAK2V617F-mutant progenitor cells compared to JAK2 wild-type progenitor cells from the same patients and GLS levels were increased at the time of disease progression compared to at earlier time points. Moreover, GLS inhibitor increased the growth inhibitory effect of Ruxolitinib in both JAK2V617F-mutant cell lines and peripheral blood CD34+ cells from MPN patients. Therefore, GLS inhibitor should be further explored to enhance the therapeutic effectiveness of JAK2 inhibitor and allow the administration of lower doses of the drug to avoid its toxicity. PMID:26227854

  3. An Overexpressed Q Allele Leads to Increased Spike Density and Improved Processing Quality in Common Wheat (Triticum aestivum).

    PubMed

    Xu, Bin-Jie; Chen, Qing; Zheng, Ting; Jiang, Yun-Feng; Qiao, Yuan-Yuan; Guo, Zhen-Ru; Cao, Yong-Li; Wang, Yan; Zhang, Ya-Zhou; Zong, Lu-Juan; Zhu, Jing; Liu, Cai-Hong; Jiang, Qian-Tao; Lan, Xiu-Jin; Ma, Jian; Wang, Ji-Rui; Zheng, You-Liang; Wei, Yu-Ming; Qi, Peng-Fei

    2018-03-02

    Spike density and processing quality are important traits in modern wheat production and are controlled by multiple gene loci. The associated genes have been intensively studied and new discoveries have been constantly reported during the past few decades. However, no gene playing a significant role in the development of these two traits has been identified. In the current study, a common wheat mutant with extremely compact spikes and good processing quality was isolated and characterized. A new allele ( Q c1 ) of the Q gene (an important domestication gene) responsible for the mutant phenotype was cloned, and the molecular mechanism for the mutant phenotype was studied. Results revealed that Q c1 originated from a point mutation that interferes with the miRNA172-directed cleavage of Q transcripts, leading to its overexpression. It also reduces the longitudinal cell size of rachises, resulting in an increased spike density. Furthermore, Q c1 increases the number of vascular bundles, which suggests a higher efficiency in the transportation of assimilates in the spikes of the mutant than that of wild type. This accounts for the improved processing quality. The effects of Q c1 on spike density and wheat processing quality were confirmed by analyzing nine common wheat mutants possessing four different Q c alleles. These results deepen our understanding of the key roles of Q gene, and provide new insights for the potential application of Q c alleles in wheat quality breeding. Copyright © 2018 Xu et al.

  4. "Just Remember This": Lexicogrammatical Relevance Markers in Lectures

    ERIC Educational Resources Information Center

    Deroey, Katrien L. B.; Taverniers, Miriam

    2012-01-01

    This paper presents a comprehensive overview of lexicogrammatical devices which highlight important or relevant points in lectures. Despite the established usefulness of discourse organizational cues for lecture comprehension and note-taking, very little is known about the marking of relevance in this genre. The current overview of…

  5. Comprehensive Essays for World History Finals.

    ERIC Educational Resources Information Center

    Feldman, Martha J.

    1997-01-01

    Describes a novel approach to comprehensive questions in world history examinations. Recommends using current events as illustrative reference points for complex subjects such as nationalism, liberalism, and international trade. Students receive information packets on the events for several weeks and must relate the subjects to these events. (MJP)

  6. Identification of Salmonella enterica Serovar Typhimurium Genes Regulated during Biofilm Formation on Cholesterol Gallstone Surfaces

    PubMed Central

    Gonzalez-Escobedo, Geoffrey

    2013-01-01

    Salmonella spp. are able to form biofilms on abiotic and biotic surfaces. In vivo studies in our laboratory have shown that Salmonella can form biofilms on the surfaces of cholesterol gallstones in the gallbladders of mice and human carriers. Biofilm formation on gallstones has been demonstrated to be a mechanism of persistence. The purpose of this work was to identify and evaluate Salmonella sp. cholesterol-dependent biofilm factors. Differential gene expression analysis between biofilms on glass or cholesterol-coated surfaces and subsequent quantitative real-time PCR (qRT-PCR) revealed that type 1 fimbria structural genes and a gene encoding a putative outer membrane protein (ycfR) were specifically upregulated in Salmonella enterica serovar Typhimurium biofilms grown on cholesterol-coated surfaces. Spatiotemporal expression of ycfR and FimA verified their regulation during biofilm development on cholesterol-coated surfaces. Surprisingly, confocal and scanning electron microscopy demonstrated that a mutant of type 1 fimbria structural genes (ΔfimAICDHF) and a ycfR mutant showed increased biofilm formation on cholesterol-coated surfaces. In vivo experiments using Nramp1+/+ mice harboring gallstones showed that only the ΔycfR mutant formed extensive biofilms on mouse gallstones at 7 and 21 days postinfection; ΔfimAICDHF was not observed on gallstone surfaces after the 7-day-postinfection time point. These data suggest that in Salmonella spp., wild-type type 1 fimbriae are important for attachment to and/or persistence on gallstones at later points of chronic infection, whereas YcfR may represent a specific potential natural inhibitor of initial biofilm formation on gallstones. PMID:23897604

  7. Influence of adaptive mutations, from thermal adaptation experiments, on the infection cycle of RNA bacteriophage Qβ.

    PubMed

    Kashiwagi, Akiko; Kadoya, Tamami; Kumasaka, Naoya; Kumagai, Tomofumi; Tsushima, Fumie Sano; Yomo, Tetsuya

    2018-06-04

    A population's growth rate is determined by multiple 'life history traits'. To quantitatively determine which life history traits should be improved to allow a living organism to adapt to an inhibitory environment is an important issue. Previously, we conducted thermal adaptation experiments on the RNA bacteriophage Qβ using three independent replicates and reported that all three end-point populations could grow at a temperature (43.6°C) that inhibited the growth of the ancestral strain. Even though the fitness values of the endpoint populations were almost the same, their genome sequence was not, indicating that the three thermally adapted populations may have different life history traits. In this study, we introduced each mutation observed in these three end-point populations into the cDNA of the Qβ genome and prepared three different mutants. Quantitative analysis showed that they tended to increase their fitness by increasing the adsorption rate to their host, shortening their latent period (i.e., the duration between phage infection and progeny release), and increasing the burst size (i.e., the number of progeny phages per infected cell), but all three mutants decreased their thermal stability. However, the degree to which these traits changed differed. The mutant with the least mutations showed a smaller decrease in thermal stability, the largest adsorption rate to the host, and the shortest latent period. These results indicated that several different adaptive routes exist by which Qβ can adapt to higher temperatures, even though Qβ is a simple RNA bacteriophage with a small genome size, encoding only four genes.

  8. Three-dimensional microCT imaging of murine embryonic development from immediate post-implantation to organogenesis: application for phenotyping analysis of early embryonic lethality in mutant animals.

    PubMed

    Ermakova, Olga; Orsini, Tiziana; Gambadoro, Alessia; Chiani, Francesco; Tocchini-Valentini, Glauco P

    2018-04-01

    In this work, we applied three-dimensional microCT imaging to study murine embryogenesis in the range from immediate post-implantation period (embryonic day 5.5) to mid-gestation (embryonic day 12.5) with the resolution up to 1.4 µm/voxel. Also, we introduce an imaging procedure for non-invasive volumetric estimation of an entire litter of embryos within the maternal uterine structures. This method allows for an accurate, detailed and systematic morphometric analysis of both embryonic and extra-embryonic components during embryogenesis. Three-dimensional imaging of unperturbed embryos was performed to visualize the egg cylinder, primitive streak, gastrulation and early organogenesis stages of murine development in the C57Bl6/N mouse reference strain. Further, we applied our microCT imaging protocol to determine the earliest point when embryonic development is arrested in a mouse line with knockout for tRNA splicing endonuclease subunit Tsen54 gene. Our analysis determined that the embryonic development in Tsen54 null embryos does not proceed beyond implantation. We demonstrated that application of microCT imaging to entire litter of non-perturbed embryos greatly facilitate studies to unravel gene function during early embryogenesis and to determine the precise point at which embryonic development is arrested in mutant animals. The described method is inexpensive, does not require lengthy embryos dissection and can be applicable for detailed analysis of mutant mice at laboratory scale as well as for high-throughput projects.

  9. Non-canonical role of the SNARE protein Ykt6 in autophagosome-lysosome fusion

    PubMed Central

    Takáts, Szabolcs; Glatz, Gábor; Szenci, Győző; Boda, Attila; Horváth, Gábor V.; Hegedűs, Krisztina; Kovács, Attila L.

    2018-01-01

    The autophagosomal SNARE Syntaxin17 (Syx17) forms a complex with Snap29 and Vamp7/8 to promote autophagosome-lysosome fusion via multiple interactions with the tethering complex HOPS. Here we demonstrate that, unexpectedly, one more SNARE (Ykt6) is also required for autophagosome clearance in Drosophila. We find that loss of Ykt6 leads to large-scale accumulation of autophagosomes that are unable to fuse with lysosomes to form autolysosomes. Of note, loss of Syx5, the partner of Ykt6 in ER-Golgi trafficking does not prevent autolysosome formation, pointing to a more direct role of Ykt6 in fusion. Indeed, Ykt6 localizes to lysosomes and autolysosomes, and forms a SNARE complex with Syx17 and Snap29. Interestingly, Ykt6 can be outcompeted from this SNARE complex by Vamp7, and we demonstrate that overexpression of Vamp7 rescues the fusion defect of ykt6 loss of function cells. Finally, a point mutant form with an RQ amino acid change in the zero ionic layer of Ykt6 protein that is thought to be important for fusion-competent SNARE complex assembly retains normal autophagic activity and restores full viability in mutant animals, unlike palmitoylation or farnesylation site mutant Ykt6 forms. As Ykt6 and Vamp7 are both required for autophagosome-lysosome fusion and are mutually exclusive subunits in a Syx17-Snap29 complex, these data suggest that Vamp7 is directly involved in membrane fusion and Ykt6 acts as a non-conventional, regulatory SNARE in this process. PMID:29694367

  10. Division Planes Alternate in Spherical Cells of Escherichia coli

    PubMed Central

    Begg, K. J.; Donachie, W. D.

    1998-01-01

    In the spherical cells of Escherichia coli rodA mutants, division is initiated at a single point, from which a furrow extends progressively around the cell. Using “giant” rodA ftsA cells, we confirmed that each new division furrow is initiated at the midpoint of the previous division plane and runs perpendicular to it. PMID:9573213

  11. L166P MUTANT DJ-1, CAUSATIVE FOR RECESSIVE PARKINSON'S DISEASE IS DEGRADED THROUGH THE UBIQUITIN-PROTEASOME SYSTEM

    EPA Science Inventory

    Abstract

    Mutations in a gene on chromosome 1, DJ-1, have been reported recently to be associated with recessive, early-onset Parkinson's disease. Whilst one mutation is a large deletion that is predicted to produce an effective knockout of the gene, the second is a point ...

  12. MUTANT FREQUENCY AND MUTATIONAL SPECTRA IN THETK AND HPRT GENES OF N-ETHYL-N-NITROSOUREA TREATED MOUSE LYMPHOMA CELLS

    EPA Science Inventory

    Abstract

    The mouse lymphoma assay (MLA) utilizing the Tk locus is widely used to identify chemical mutagens. The autosomal location of the Tk locus allows for the detection of a wide range of mutational events, from point mutations to chromosome alterations. However, the ...

  13. Problem-Based Test: Functional Analysis of Mutant 16S rRNAs

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2010-01-01

    Terms to be familiar with before you start to solve the test: ribosome, ribosomal subunits, antibiotics, point mutation, 16S, 5S, and 23S rRNA, Shine-Dalgarno sequence, mRNA, tRNA, palindrome, hairpin, restriction endonuclease, fMet-tRNA, peptidyl transferase, initiation, elongation, termination of translation, expression plasmid, transformation,…

  14. A Statistical Guide to the Design of Deep Mutational Scanning Experiments.

    PubMed

    Matuszewski, Sebastian; Hildebrandt, Marcel E; Ghenu, Ana-Hermina; Jensen, Jeffrey D; Bank, Claudia

    2016-09-01

    The characterization of the distribution of mutational effects is a key goal in evolutionary biology. Recently developed deep-sequencing approaches allow for accurate and simultaneous estimation of the fitness effects of hundreds of engineered mutations by monitoring their relative abundance across time points in a single bulk competition. Naturally, the achievable resolution of the estimated fitness effects depends on the specific experimental setup, the organism and type of mutations studied, and the sequencing technology utilized, among other factors. By means of analytical approximations and simulations, we provide guidelines for optimizing time-sampled deep-sequencing bulk competition experiments, focusing on the number of mutants, the sequencing depth, and the number of sampled time points. Our analytical results show that sampling more time points together with extending the duration of the experiment improves the achievable precision disproportionately compared with increasing the sequencing depth or reducing the number of competing mutants. Even if the duration of the experiment is fixed, sampling more time points and clustering these at the beginning and the end of the experiment increase experimental power and allow for efficient and precise assessment of the entire range of selection coefficients. Finally, we provide a formula for calculating the 95%-confidence interval for the measurement error estimate, which we implement as an interactive web tool. This allows for quantification of the maximum expected a priori precision of the experimental setup, as well as for a statistical threshold for determining deviations from neutrality for specific selection coefficient estimates. Copyright © 2016 by the Genetics Society of America.

  15. Morphological Effects in Auditory Word Recognition: Evidence from Danish

    ERIC Educational Resources Information Center

    Balling, Laura Winther; Baayen, R. Harald

    2008-01-01

    In this study, we investigate the processing of morphologically complex words in Danish using auditory lexical decision. We document a second critical point in auditory comprehension in addition to the Uniqueness Point (UP), namely the point at which competing morphological continuation forms of the base cease to be compatible with the input,…

  16. The bacterial alarmone (p)ppGpp activates the type III secretion system in Erwinia amylovora.

    PubMed

    Ancona, Veronica; Lee, Jae Hoon; Chatnaparat, Tiyakhon; Oh, Jinrok; Hong, Jong-In; Zhao, Youfu

    2015-04-01

    The hypersensitive response and pathogenicity (hrp) type III secretion system (T3SS) is a key pathogenicity factor in Erwinia amylovora. Previous studies have demonstrated that the T3SS in E. amylovora is transcriptionally regulated by a sigma factor cascade. In this study, the role of the bacterial alarmone ppGpp in activating the T3SS and virulence of E. amylovora was investigated using ppGpp mutants generated by Red recombinase cloning. The virulence of a ppGpp-deficient mutant (ppGpp(0)) as well as a dksA mutant of E. amylovora was completely impaired, and bacterial growth was significantly reduced, suggesting that ppGpp is required for full virulence of E. amylovora. Expression of T3SS genes was greatly downregulated in the ppGpp(0) and dksA mutants. Western blotting showed that accumulations of the HrpA protein in the ppGpp(0) and dksA mutants were about 10 and 4%, respectively, of that in the wild-type strain. Furthermore, higher levels of ppGpp resulted in a reduced cell size of E. amylovora. Moreover, serine hydroxamate and α-methylglucoside, which induce amino acid and carbon starvation, respectively, activated hrpA and hrpL promoter activities in hrp-inducing minimal medium. These results demonstrated that ppGpp and DksA play central roles in E. amylovora virulence and indicated that E. amylovora utilizes ppGpp as an internal messenger to sense environmental/nutritional stimuli for regulation of the T3SS and virulence. The type III secretion system (T3SS) is a key pathogenicity factor in Gram-negative bacteria. Fully elucidating how the T3SS is activated is crucial for comprehensively understanding the function of the T3SS, bacterial pathogenesis, and survival under stress conditions. In this study, we present the first evidence that the bacterial alarmone ppGpp-mediated stringent response activates the T3SS through a sigma factor cascade, indicating that ppGpp acts as an internal messenger to sense environmental/nutritional stimuli for the regulation of the T3SS and virulence in plant-pathogenic bacteria. Furthermore, the recovery of an spoT null mutant, which displayed very unique phenotypes, suggested that small proteins containing a single ppGpp hydrolase domain are functional. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. The Bacterial Alarmone (p)ppGpp Activates the Type III Secretion System in Erwinia amylovora

    PubMed Central

    Ancona, Veronica; Lee, Jae Hoon; Chatnaparat, Tiyakhon; Oh, Jinrok; Hong, Jong-In

    2015-01-01

    ABSTRACT The hypersensitive response and pathogenicity (hrp) type III secretion system (T3SS) is a key pathogenicity factor in Erwinia amylovora. Previous studies have demonstrated that the T3SS in E. amylovora is transcriptionally regulated by a sigma factor cascade. In this study, the role of the bacterial alarmone ppGpp in activating the T3SS and virulence of E. amylovora was investigated using ppGpp mutants generated by Red recombinase cloning. The virulence of a ppGpp-deficient mutant (ppGpp0) as well as a dksA mutant of E. amylovora was completely impaired, and bacterial growth was significantly reduced, suggesting that ppGpp is required for full virulence of E. amylovora. Expression of T3SS genes was greatly downregulated in the ppGpp0 and dksA mutants. Western blotting showed that accumulations of the HrpA protein in the ppGpp0 and dksA mutants were about 10 and 4%, respectively, of that in the wild-type strain. Furthermore, higher levels of ppGpp resulted in a reduced cell size of E. amylovora. Moreover, serine hydroxamate and α-methylglucoside, which induce amino acid and carbon starvation, respectively, activated hrpA and hrpL promoter activities in hrp-inducing minimal medium. These results demonstrated that ppGpp and DksA play central roles in E. amylovora virulence and indicated that E. amylovora utilizes ppGpp as an internal messenger to sense environmental/nutritional stimuli for regulation of the T3SS and virulence. IMPORTANCE The type III secretion system (T3SS) is a key pathogenicity factor in Gram-negative bacteria. Fully elucidating how the T3SS is activated is crucial for comprehensively understanding the function of the T3SS, bacterial pathogenesis, and survival under stress conditions. In this study, we present the first evidence that the bacterial alarmone ppGpp-mediated stringent response activates the T3SS through a sigma factor cascade, indicating that ppGpp acts as an internal messenger to sense environmental/nutritional stimuli for the regulation of the T3SS and virulence in plant-pathogenic bacteria. Furthermore, the recovery of an spoT null mutant, which displayed very unique phenotypes, suggested that small proteins containing a single ppGpp hydrolase domain are functional. PMID:25666138

  18. Effects of training students to identify the semantic base of prose materials

    PubMed Central

    Glover, John A.; Zimmer, John W.; Filbeck, Robert W.; Plake, Barbara S.

    1980-01-01

    Feedback and feedback plus points toward a course grade were applied to the attentional behaviors (defined as the ability to identify the semantic base of text passages) of 30 undergraduate students participating in a reading comprehension development program. Correct underlining was increased, extraneous underlining was decreased, and postreading comprehension test scores improved as a result of the procedures. Scores on a standardized test of reading comprehension also increased significantly. PMID:16795637

  19. Deregulation of Feedback Inhibition of Phosphoenolpyruvate Carboxylase for Improved Lysine Production in Corynebacterium glutamicum

    PubMed Central

    Chen, Zhen; Bommareddy, Rajesh Reddy; Frank, Doinita; Rappert, Sugima

    2014-01-01

    Allosteric regulation of phosphoenolpyruvate carboxylase (PEPC) controls the metabolic flux distribution of anaplerotic pathways. In this study, the feedback inhibition of Corynebacterium glutamicum PEPC was rationally deregulated, and its effect on metabolic flux redistribution was evaluated. Based on rational protein design, six PEPC mutants were designed, and all of them showed significantly reduced sensitivity toward aspartate and malate inhibition. Introducing one of the point mutations (N917G) into the ppc gene, encoding PEPC of the lysine-producing strain C. glutamicum LC298, resulted in ∼37% improved lysine production. In vitro enzyme assays and 13C-based metabolic flux analysis showed ca. 20 and 30% increases in the PEPC activity and corresponding flux, respectively, in the mutant strain. Higher demand for NADPH in the mutant strain increased the flux toward pentose phosphate pathway, which increased the supply of NADPH for enhanced lysine production. The present study highlights the importance of allosteric regulation on the flux control of central metabolism. The strategy described here can also be implemented to improve other oxaloacetate-derived products. PMID:24334667

  20. Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum.

    PubMed

    Chen, Zhen; Bommareddy, Rajesh Reddy; Frank, Doinita; Rappert, Sugima; Zeng, An-Ping

    2014-02-01

    Allosteric regulation of phosphoenolpyruvate carboxylase (PEPC) controls the metabolic flux distribution of anaplerotic pathways. In this study, the feedback inhibition of Corynebacterium glutamicum PEPC was rationally deregulated, and its effect on metabolic flux redistribution was evaluated. Based on rational protein design, six PEPC mutants were designed, and all of them showed significantly reduced sensitivity toward aspartate and malate inhibition. Introducing one of the point mutations (N917G) into the ppc gene, encoding PEPC of the lysine-producing strain C. glutamicum LC298, resulted in ∼37% improved lysine production. In vitro enzyme assays and (13)C-based metabolic flux analysis showed ca. 20 and 30% increases in the PEPC activity and corresponding flux, respectively, in the mutant strain. Higher demand for NADPH in the mutant strain increased the flux toward pentose phosphate pathway, which increased the supply of NADPH for enhanced lysine production. The present study highlights the importance of allosteric regulation on the flux control of central metabolism. The strategy described here can also be implemented to improve other oxaloacetate-derived products.

  1. Mutational analysis of the gag-pol junction of Moloney murine leukemia virus: requirements for expression of the gag-pol fusion protein.

    PubMed Central

    Felsenstein, K M; Goff, S P

    1992-01-01

    The gag-pol polyprotein of the murine and feline leukemia viruses is expressed by translational readthrough of a UAG terminator codon at the 3' end of the gag gene. To explore the cis-acting sequence requirements for the readthrough event in vivo, we generated a library of mutants of the Moloney murine leukemia virus with point mutations near the terminator codon and tested the mutant viral DNAs for the ability to direct synthesis of the gag-pol fusion protein and formation of infectious virus. The analysis showed that sequences 3' to the terminator are necessary and sufficient for the process. The results do not support a role for one proposed stem-loop structure that includes the terminator but are consistent with the involvement of another stem-loop 3' to the terminator. One mutant, containing two compensatory changes in this stem structure, was temperature sensitive for replication and for formation of the gag-pol protein. The results suggest that RNA sequence and structure are critical determinants of translational readthrough in vivo. Images PMID:1404606

  2. Arabidopsis Nitrate Transporter NRT1.9 Is Important in Phloem Nitrate Transport[W][OA

    PubMed Central

    Wang, Ya-Yun; Tsay, Yi-Fang

    2011-01-01

    This study of the Arabidopsis thaliana nitrate transporter NRT1.9 reveals an important function for a NRT1 family member in phloem nitrate transport. Functional analysis in Xenopus laevis oocytes showed that NRT1.9 is a low-affinity nitrate transporter. Green fluorescent protein and β-glucuronidase reporter analyses indicated that NRT1.9 is a plasma membrane transporter expressed in the companion cells of root phloem. In nrt1.9 mutants, nitrate content in root phloem exudates was decreased, and downward nitrate transport was reduced, suggesting that NRT1.9 may facilitate loading of nitrate into the root phloem and enhance downward nitrate transport in roots. Under high nitrate conditions, the nrt1.9 mutant showed enhanced root-to-shoot nitrate transport and plant growth. We conclude that phloem nitrate transport is facilitated by expression of NRT1.9 in root companion cells. In addition, enhanced root-to-shoot xylem transport of nitrate in nrt1.9 mutants points to a negative correlation between xylem and phloem nitrate transport. PMID:21571952

  3. Mutants of phospholipase A (pPLA-I) have a red light and auxin phenotype.

    PubMed

    Effendi, Yunus; Radatz, Katrin; Labusch, Corinna; Rietz, Steffen; Wimalasekera, Rinukshi; Helizon, Hanna; Zeidler, Mathias; Scherer, Günther F E

    2014-07-01

    pPLA-I is the evolutionarily oldest patatin-related phospholipase A (pPLA) in plants, which have previously been implicated to function in auxin and defence signalling. Molecular and physiological analysis of two allelic null mutants for pPLA-I [ppla-I-1 in Wassilewskija (Ws) and ppla-I-3 in Columbia (Col) ] revealed pPLA-I functions in auxin and light signalling. The enzyme is localized in the cytosol and to membranes. After auxin application expression of early auxin-induced genes is significantly slower compared with wild type and both alleles show a slower gravitropic response of hypocotyls, indicating compromised auxin signalling. Additionally, phytochrome-modulated responses like abrogation of gravitropism, enhancement of phototropism and growth in far red-enriched light are decreased in both alleles. While early flowering, root coils and delayed phototropism are only observed in the Ws mutant devoid of phyD, the light-related phenotypes observed in both alleles point to an involvement of pPLA-I in phytochrome signalling. © 2014 John Wiley & Sons Ltd.

  4. Fast maximum likelihood estimation of mutation rates using a birth-death process.

    PubMed

    Wu, Xiaowei; Zhu, Hongxiao

    2015-02-07

    Since fluctuation analysis was first introduced by Luria and Delbrück in 1943, it has been widely used to make inference about spontaneous mutation rates in cultured cells. Under certain model assumptions, the probability distribution of the number of mutants that appear in a fluctuation experiment can be derived explicitly, which provides the basis of mutation rate estimation. It has been shown that, among various existing estimators, the maximum likelihood estimator usually demonstrates some desirable properties such as consistency and lower mean squared error. However, its application in real experimental data is often hindered by slow computation of likelihood due to the recursive form of the mutant-count distribution. We propose a fast maximum likelihood estimator of mutation rates, MLE-BD, based on a birth-death process model with non-differential growth assumption. Simulation studies demonstrate that, compared with the conventional maximum likelihood estimator derived from the Luria-Delbrück distribution, MLE-BD achieves substantial improvement on computational speed and is applicable to arbitrarily large number of mutants. In addition, it still retains good accuracy on point estimation. Published by Elsevier Ltd.

  5. Pyridones as NNRTIs against HIV-1 mutants: 3D-QSAR and protein informatics

    NASA Astrophysics Data System (ADS)

    Debnath, Utsab; Verma, Saroj; Jain, Surabhi; Katti, Setu B.; Prabhakar, Yenamandra S.

    2013-07-01

    CoMFA and CoMSIA based 3D-QSAR of HIV-1 RT wild and mutant (K103, Y181C, and Y188L) inhibitory activities of 4-benzyl/benzoyl pyridin-2-ones followed by protein informatics of corresponding non-nucleoside inhibitors' binding pockets from pdbs 2BAN, 3MED, 1JKH, and 2YNF were analysed to discover consensus features of the compounds for broad-spectrum activity. The CoMFA/CoMSIA models indicated that compounds with groups which lend steric-cum-electropositive fields in the vicinity of C5, hydrophobic field in the vicinity of C3 of pyridone region and steric field in aryl region produce broad-spectrum anti-HIV-1 RT activity. Also, a linker rendering electronegative field between pyridone and aryl moieties is common requirement for the activities. The protein informatics showed considerable alteration in residues 181 and 188 characteristics on mutation. Also, mutants' isoelectric points shifted in acidic direction. The study offered fresh avenues for broad-spectrum anti-HIV-1 agents through designing new molecules seeded with groups satisfying common molecular fields and concerns of mutating residues.

  6. Systematic strain construction and process development: Xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild-type or mutant form.

    PubMed

    Pratter, S M; Eixelsberger, T; Nidetzky, B

    2015-12-01

    A novel Saccharomyces cerevisiae whole-cell biocatalyst for xylitol production based on Candida tenuis xylose reductase (CtXR) is presented. Six recombinant strains expressing wild-type CtXR or an NADH-specific mutant were constructed and evaluated regarding effects of expression mode, promoter strength, biocatalyst concentration and medium composition. Intracellular XR activities ranged from 0.09 U mgProt(-1) to 1.05 U mgProt(-1) but did not correlate with the strains' xylitol productivities, indicating that other factors limited xylose conversion in the high-activity strains. The CtXR mutant decreased the biocatalyst's performance, suggesting use of the NADPH-preferring wild-type enzyme when (semi-)aerobic conditions are applied. In a bioreactor process, the best-performing strain converted 40 g L(-1) xylose with an initial productivity of 1.16 g L(-1)h(-1) and a xylitol yield of 100%. The obtained results underline the potential of CtXR wild-type for xylose reduction and point out parameters to improve "green" xylitol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Hepatic fibrosis and carcinogenesis in α1-antitrypsin deficiency: a prototype for chronic tissue damage in gain-of-function disorders.

    PubMed

    Perlmutter, David H; Silverman, Gary A

    2011-03-01

    In α1-antitrypsin (AT) deficiency, a point mutation renders a hepatic secretory glycoprotein prone to misfolding and polymerization. The mutant protein accumulates in the endoplasmic reticulum of liver cells and causes hepatic fibrosis and hepatocellular carcinoma by a gain-of-function mechanism. Genetic and/or environmental modifiers determine whether an affected homozygote is susceptible to hepatic fibrosis/carcinoma. Two types of proteostasis mechanisms for such modifiers have been postulated: variation in the function of intracellular degradative mechanisms and/or variation in the signal transduction pathways that are activated to protect the cell from protein mislocalization and/or aggregation. In recent studies we found that carbamazepine, a drug that has been used safely as an anticonvulsant and mood stabilizer, reduces the hepatic load of mutant AT and hepatic fibrosis in a mouse model by enhancing autophagic disposal of this mutant protein. These results provide evidence that pharmacological manipulation of endogenous proteostasis mechanisms is an appealing strategy for chemoprophylaxis in disorders involving gain-of-function mechanisms.

  8. Inactivation of Mre11 does not affect VSG gene duplication mediated by homologous recombination in Trypanosoma brucei.

    PubMed

    Robinson, Nicholas P; McCulloch, Richard; Conway, Colin; Browitt, Alison; Barry, J David

    2002-07-19

    We demonstrate, by gene deletion analysis, that Mre11 has a critical role in maintaining genomic integrity in Trypanosoma brucei. mre11(-/-) null mutant strains exhibited retarded growth but no delay or disruption of cell cycle progression. They showed also a weak hyporecombination phenotype and the accumulation of gross chromosomal rearrangements, which did not involve sequence translocation, telomere loss, or formation of new telomeres. The trypanosome mre11(-/-) strains were hypersensitive to phleomycin, a mutagen causing DNA double strand breaks (DSBs) but, in contrast to mre11(-/-) null mutants in other organisms and T. brucei rad51(-/-) null mutants, displayed no hypersensitivity to methyl methanesulfonate, which causes point mutations and DSBs. Mre11 therefore is important for the repair of chromosomal damage and DSBs in trypanosomes, although in this organism the intersection of repair pathways appears to differ from that in other organisms. Mre11 inactivation appears not to affect VSG gene switching during antigenic variation of a laboratory strain, which is perhaps surprising given the importance of homologous recombination during this process.

  9. Adaptive evolutionary walks require neutral intermediates in RNA fitness landscapes.

    PubMed

    Rendel, Mark D

    2011-01-01

    In RNA fitness landscapes with interconnected networks of neutral mutations, neutral precursor mutations can play an important role in facilitating the accessibility of epistatic adaptive mutant combinations. I use an exhaustively surveyed fitness landscape model based on short sequence RNA genotypes (and their secondary structure phenotypes) to calculate the minimum rate at which mutants initially appearing as neutral are incorporated into an adaptive evolutionary walk. I show first, that incorporating neutral mutations significantly increases the number of point mutations in a given evolutionary walk when compared to estimates from previous adaptive walk models. Second, that incorporating neutral mutants into such a walk significantly increases the final fitness encountered on that walk - indeed evolutionary walks including neutral steps often reach the global optimum in this model. Third, and perhaps most importantly, evolutionary paths of this kind are often extremely winding in their nature and have the potential to undergo multiple mutations at a given sequence position within a single walk; the potential of these winding paths to mislead phylogenetic reconstruction is briefly considered. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. A Structure of a Collagen VI VWA Domain Displays N and C Termini at Opposite Sides of the Protein

    PubMed Central

    Becker, Ann-Kathrin A.; Mikolajek, Halina; Paulsson, Mats; Wagener, Raimund; Werner, Jörn M.

    2014-01-01

    Summary Von Willebrand factor A (VWA) domains are versatile protein interaction domains with N and C termini in close proximity placing spatial constraints on overall protein structure. The 1.2 Å crystal structures of a collagen VI VWA domain and a disease-causing point mutant show C-terminal extensions that place the N and C termini at opposite ends. This allows a “beads-on-a-string” arrangement of multiple VWA domains as observed for ten N-terminal domains of the collagen VI α3 chain. The extension is linked to the core domain by a salt bridge and two hydrophobic patches. Comparison of the wild-type and a muscular dystrophy-associated mutant structure identifies a potential perturbation of a protein interaction interface and indeed, the secretion of mutant collagen VI tetramers is affected. Homology modeling is used to locate a number of disease-associated mutations and analyze their structural impact, which will allow mechanistic analysis of collagen-VI-associated muscular dystrophy phenotypes. PMID:24332716

  11. Direct Binding to Replication Protein A (RPA)-coated Single-stranded DNA Allows Recruitment of the ATR Activator TopBP1 to Sites of DNA Damage*

    PubMed Central

    Acevedo, Julyana; Yan, Shan; Michael, W. Matthew

    2016-01-01

    A critical event for the ability of cells to tolerate DNA damage and replication stress is activation of the ATR kinase. ATR activation is dependent on the BRCT (BRCA1 C terminus) repeat-containing protein TopBP1. Previous work has shown that recruitment of TopBP1 to sites of DNA damage and stalled replication forks is necessary for downstream events in ATR activation; however, the mechanism for this recruitment was not known. Here, we use protein binding assays and functional studies in Xenopus egg extracts to show that TopBP1 makes a direct interaction, via its BRCT2 domain, with RPA-coated single-stranded DNA. We identify a point mutant that abrogates this interaction and show that this mutant fails to accumulate at sites of DNA damage and that the mutant cannot activate ATR. These data thus supply a mechanism for how the critical ATR activator, TopBP1, senses DNA damage and stalled replication forks to initiate assembly of checkpoint signaling complexes. PMID:27129245

  12. Identification and characterization of an autolysin gene, atlA, from Streptococcus criceti.

    PubMed

    Tamura, Haruki; Yamada, Arisa; Kato, Hirohisa

    2012-10-01

    AtlA of Streptococcus mutans is a major autolysin and belongs to glycoside hydrolase family 25 with cellosyl of Streptomyces coelicolor. The autolysin gene (atlA) encoding AtlA was identified from S. criceti. AtlA of S. criceti comprises the signal sequence in the N-terminus, the putative cell-wall-binding domain in the middle, and the catalytic domain in the C-terminus. Homology modeling analysis of the catalytic domain of AtlA showed the resemblance of the spatial arrangement of five amino acids around the predicted catalytic cavity to that of cellosyl. Recombinant AtlA and its four point mutants, D655A, D747A, W831A, and D849A, were evaluated on zymogram of S. criceti cells. Lytic activity was destroyed in the mutants D655A and D747A and diminished in the mutants W831A and D849A. These results suggest that Asp655 and Asp747 residues are critical for lytic activity and Trp831 and Asp849 residues are also associated with enzymatic activity.

  13. Probability and surprisal in auditory comprehension of morphologically complex words.

    PubMed

    Balling, Laura Winther; Baayen, R Harald

    2012-10-01

    Two auditory lexical decision experiments document for morphologically complex words two points at which the probability of a target word given the evidence shifts dramatically. The first point is reached when morphologically unrelated competitors are no longer compatible with the evidence. Adapting terminology from Marslen-Wilson (1984), we refer to this as the word's initial uniqueness point (UP1). The second point is the complex uniqueness point (CUP) introduced by Balling and Baayen (2008), at which morphologically related competitors become incompatible with the input. Later initial as well as complex uniqueness points predict longer response latencies. We argue that the effects of these uniqueness points arise due to the large surprisal (Levy, 2008) carried by the phonemes at these uniqueness points, and provide independent evidence that how cumulative surprisal builds up in the course of the word co-determines response latencies. The presence of effects of surprisal, both at the initial uniqueness point of complex words, and cumulatively throughout the word, challenges the Shortlist B model of Norris and McQueen (2008), and suggests that a Bayesian approach to auditory comprehension requires complementation from information theory in order to do justice to the cognitive cost of updating probability distributions over lexical candidates. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Improved informed consent documents for biomedical research do not increase patients’ understanding but reduce enrolment: a study in real settings

    PubMed Central

    Paris, Adeline; Deygas, Béatrice; Cornu, Catherine; Thalamas, Claire; Maison, Patrick; Duale, Christian; Kane, Maty; Hodaj, Enkelejda; Cracowski, Jean-Luc

    2015-01-01

    Aims The aim was to evaluate the comprehension of participants of an improved informed consent document (ICD). Method This was a randomized controlled French multicentre study performed in real conditions. Participants were adult patients undergoing screening for enrolment in biomedical research studies, who agreed to answer a validated questionnaire evaluating objective and subjective comprehension scored from 0 (no comprehension) to 100 (excellent comprehension). Patients were provided either the original ICD or an ICD modified in terms of structure and readability. The primary end point was the score of objective comprehension. The secondary end-points were the enrolment rate in the clinical study and patient characteristics associated with the score of objective comprehension. Results Four hundred and eighty-one patients were included, 241 patients in the original ICD group and 240 patients in the modified ICD group. There was no difference between the two groups for the score of objective comprehension (original ICD 72.7 (95% CI 71.3, 74.1) vs. modified ICD 72.5 (95% CI 71.0, 74.0); P = 0.81). However, the rate of enrolment in the clinical study was lower in the group who received the modified ICD (64.4% (95% CI 58.3, 70.5)) than for the original ICD (73.0% (95% CI 67.4, 78.7)) (P = 0.042). Only female gender and high educational level were associated with a better objective comprehension. Conclusions Improving ICDs had no effect on participants’ understanding, whereas the rate of enrolment was lower in this group. In attempts at improving potential participants’ understanding of clinical research information, efforts and future trials should focus on other ways to improve comprehension. PMID:26147763

  15. Does Validation during Language Comprehension Depend on an Evaluative Mindset?

    ERIC Educational Resources Information Center

    Isberner, Maj-Britt; Richter, Tobias

    2014-01-01

    Whether information is routinely and nonstrategically evaluated for truth during comprehension is still a point of contention. Previous studies supporting the assumption of nonstrategic validation have used a Stroop-like paradigm in which participants provided yes/no judgments in tasks unrelated to the truth or plausibility of the experimental…

  16. Pulse Detonation Physiochemical and Exhaust Relaxation Processes

    DTIC Science & Technology

    2006-05-01

    based on total time to detonation and detonation percentage. Nomenclature A = Arrehenius Constant Ea = Activation Energy Ecrit = Critical...the precision uncertainties vary for each data point. Therefore, the total experimental uncertainty will vary by data point. A comprehensive bias

  17. QRAC-the-Code: a comprehension monitoring strategy for middle school social studies textbooks.

    PubMed

    Berkeley, Sheri; Riccomini, Paul J

    2013-01-01

    Requirements for reading and ascertaining information from text increase as students advance through the educational system, especially in content-rich classes; hence, monitoring comprehension is especially important. However, this is a particularly challenging skill for many students who struggle with reading comprehension, including students with learning disabilities. A randomized pre-post experimental design was employed to investigate the effectiveness of a comprehension monitoring strategy (QRAC-the-Code) for improving the reading comprehension of 323 students in grades 6 and 7 in inclusive social studies classes. Findings indicated that both general education students and students with learning disabilities who were taught a simple comprehension monitoring strategy improved their comprehension of textbook content compared to students who read independently and noted important points. In addition, students in the comprehension monitoring condition reported using more reading strategies after the intervention. Implications for research and practice are discussed.

  18. Cln6 mutants associated with neuronal ceroid lipofuscinosis are degraded in a proteasome-dependent manner.

    PubMed

    Oresic, Kristina; Mueller, Britta; Tortorella, Domenico

    2009-06-01

    NCLs (neuronal ceroid lipofuscinoses), a group of inherited neurodegenerative lysosomal storage diseases that predominantly affect children, are the result of autosomal recessive mutations within one of the nine cln genes. The wild-type cln gene products are composed of membrane and soluble proteins that localize to the lysosome or the ER (endoplasmic reticulum). However, the destiny of the Cln variants has not been fully characterized. To explore a possible link between ER quality control and processing of Cln mutants, we investigated the fate of two NCL-related Cln6 mutants found in patient samples (Cln6(G123D) and Cln6(M241T)) in neuronal-derived human cells. The point mutations are predicted to be in the putative transmembrane domains and most probably generate misfolded membrane proteins that are subjected to ER quality control. Consistent with this paradigm, both mutants underwent rapid proteasome-mediated degradation and complexed with components of the ER extraction apparatus, Derlin-1 and p97. In addition, knockdown of SEL1L [sel-1 suppressor of lin-12-like (Caenorhabditis elegans)], a member of an E3 ubiquitin ligase complex involved in ER protein extraction, rescued significant amounts of Cln6(G123D) and Cln6(M241T) polypeptides. The results implicate ER quality control in the instability of the Cln variants that probably contributes to the development of NCL.

  19. Key Components of Different Plant Defense Pathways Are Dispensable for Powdery Mildew Resistance of the Arabidopsis mlo2 mlo6 mlo12 Triple Mutant.

    PubMed

    Kuhn, Hannah; Lorek, Justine; Kwaaitaal, Mark; Consonni, Chiara; Becker, Katia; Micali, Cristina; Ver Loren van Themaat, Emiel; Bednarek, Paweł; Raaymakers, Tom M; Appiano, Michela; Bai, Yuling; Meldau, Dorothea; Baum, Stephani; Conrath, Uwe; Feussner, Ivo; Panstruga, Ralph

    2017-01-01

    Loss of function mutations of particular plant MILDEW RESISTANCE LOCUS O ( MLO ) genes confer durable and broad-spectrum penetration resistance against powdery mildew fungi. Here, we combined genetic, transcriptomic and metabolomic analyses to explore the defense mechanisms in the fully resistant Arabidopsis thaliana mlo2 mlo6 mlo12 triple mutant. We found that this genotype unexpectedly overcomes the requirement for indolic antimicrobials and defense-related secretion, which are critical for incomplete resistance of mlo2 single mutants. Comparative microarray-based transcriptome analysis of mlo2 mlo6 mlo12 mutants and wild type plants upon Golovinomyces orontii inoculation revealed an increased and accelerated accumulation of many defense-related transcripts. Despite the biotrophic nature of the interaction, this included the non-canonical activation of a jasmonic acid/ethylene-dependent transcriptional program. In contrast to a non-adapted powdery mildew pathogen, the adapted powdery mildew fungus is able to defeat the accumulation of defense-relevant indolic metabolites in a MLO protein-dependent manner. We suggest that a broad and fast activation of immune responses in mlo2 mlo6 mlo12 plants can compensate for the lack of single or few defense pathways. In addition, our results point to a role of Arabidopsis MLO2, MLO6, and MLO12 in enabling defense suppression during invasion by adapted powdery mildew fungi.

  20. Concomitant BCORL1 and BRAF Mutations in Vemurafenib-Resistant Melanoma Cells.

    PubMed

    Mologni, Luca; Costanza, Mariantonia; Sharma, Geeta Geeta; Viltadi, Michela; Massimino, Luca; Citterio, Stefania; Purgante, Stefania; Raman, Hima; Pirola, Alessandra; Zucchetti, Massimo; Piazza, Rocco; Gambacorti-Passerini, Carlo

    2018-05-01

    BRAF is the most frequently mutated gene in melanoma. Constitutive activation of mutant BRAF V600E leads to aberrant Ras-independent MAPK signaling and cell transformation. Inhibition of mutant BRAF is a current frontline therapy for such cases, with improved survival compared with chemotherapy. Unfortunately, reactivation of MAPK signaling by several mechanisms has been shown to cause drug resistance and disease recurrence. In this work, we describe the co-occurrence of an in-frame deletion within an amplified BRAF V600E locus and a missense point mutation of the transcriptional repressor BCORL1 in vemurafenib-resistant A375 melanoma cells. Functional data confirmed that truncated p47BRAF V600E and mutant BCORL1 Q1076H both contribute to resistance. Interestingly, either endogenous BCORL1 silencing or ectopic BCORL1 Q1076H expression mimicked the effects of a CRISPR/Cas9-edited BCORL1 Q1076H locus, suggesting a complex mixture of loss- and gain-of-function effects caused by the mutation. Transcriptomic data confirmed this hypothesis. Finally, we show that the pan-RAF inhibitor sorafenib is not affected by expression of BRAF deletion variant and effectively synergizes with vemurafenib to block resistant cells, suggesting a possible intervention for this class of mutants. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. The Molybdenum Cofactor Biosynthetic Protein Cnx1 Complements Molybdate-Repairable Mutants, Transfers Molybdenum to the Metal Binding Pterin, and Is Associated with the Cytoskeleton

    PubMed Central

    Schwarz, Günter; Schulze, Jutta; Bittner, Florian; Eilers, Thomas; Kuper, Jochen; Bollmann, Gabriele; Nerlich, Andrea; Brinkmann, Henner; Mendel, Ralf R.

    2000-01-01

    Molybdenum (Mo) plays an essential role in the active site of all eukaryotic Mo-containing enzymes. In plants, Mo enzymes are important for nitrate assimilation, phytohormone synthesis, and purine catabolism. Mo is bound to a unique metal binding pterin (molybdopterin [MPT]), thereby forming the active Mo cofactor (Moco), which is highly conserved in eukaryotes, eubacteria, and archaebacteria. Here, we describe the function of the two-domain protein Cnx1 from Arabidopsis in the final step of Moco biosynthesis. Cnx1 is constitutively expressed in all organs and in plants grown on different nitrogen sources. Mo-repairable cnxA mutants from Nicotiana plumbaginifolia accumulate MPT and show altered Cnx1 expression. Transformation of cnxA mutants and the corresponding Arabidopsis chl-6 mutant with cnx1 cDNA resulted in functional reconstitution of their Moco deficiency. We also identified a point mutation in the Cnx1 E domain of Arabidopsis chl-6 that causes the molybdate-repairable phenotype. Recombinant Cnx1 protein is capable of synthesizing Moco. The G domain binds and activates MPT, whereas the E domain is essential for activating Mo. In addition, Cnx1 binds to the cytoskeleton in the same way that its mammalian homolog gephyrin does in neuronal cells, which suggests a hypothetical model for anchoring the Moco-synthetic machinery by Cnx1 in plant cells. PMID:11148290

  2. Multiple point mutations in a shuttle vector propagated in human cells: evidence for an error-prone DNA polymerase activity.

    PubMed

    Seidman, M M; Bredberg, A; Seetharam, S; Kraemer, K H

    1987-07-01

    Mutagenesis was studied at the DNA-sequence level in human fibroblast and lymphoid cells by use of a shuttle vector plasmid, pZ189, containing a suppressor tRNA marker gene. In a series of experiments, 62 plasmids were recovered that had two to six base substitutions in the 160-base-pair marker gene. Approximately 20-30% of the mutant plasmids that were recovered after passing ultraviolet-treated pZ189 through a repair-proficient human fibroblast line contained these multiple mutations. In contrast, passage of ultraviolet-treated pZ189 through an excision-repair-deficient (xeroderma pigmentosum) line yielded only 2% multiple base substitution mutants. Introducing a single-strand nick in otherwise unmodified pZ189 adjacent to the marker, followed by passage through the xeroderma pigmentosum cells, resulted in about 66% multiple base substitution mutants. The multiple mutations were found in a 160-base-pair region containing the marker gene but were rarely found in an adjacent 170-base-pair region. Passing ultraviolet-treated or nicked pZ189 through a repair-proficient human B-cell line also yielded multiple base substitution mutations in 20-33% of the mutant plasmids. An explanation for these multiple mutations is that they were generated by an error-prone polymerase while filling gaps. These mutations share many of the properties displayed by mutations in the immunoglobulin hypervariable regions.

  3. BEAMing and Droplet Digital PCR Analysis of Mutant IDH1 mRNA in Glioma Patient Serum and Cerebrospinal Fluid Extracellular Vesicles.

    PubMed

    Chen, Walter W; Balaj, Leonora; Liau, Linda M; Samuels, Michael L; Kotsopoulos, Steve K; Maguire, Casey A; Loguidice, Lori; Soto, Horacio; Garrett, Matthew; Zhu, Lin Dan; Sivaraman, Sarada; Chen, Clark; Wong, Eric T; Carter, Bob S; Hochberg, Fred H; Breakefield, Xandra O; Skog, Johan

    2013-07-23

    Development of biofluid-based molecular diagnostic tests for cancer is an important step towards tumor characterization and real-time monitoring in a minimally invasive fashion. Extracellular vesicles (EVs) are released from tumor cells into body fluids and can provide a powerful platform for tumor biomarkers because they carry tumor proteins and nucleic acids. Detecting rare point mutations in the background of wild-type sequences in biofluids such as blood and cerebrospinal fluid (CSF) remains a major challenge. Techniques such as BEAMing (beads, emulsion, amplification, magnetics) PCR and droplet digital PCR (ddPCR) are substantially more sensitive than many other assays for mutant sequence detection. Here, we describe a novel approach that combines biofluid EV RNA and BEAMing RT-PCR (EV-BEAMing), as well droplet digital PCR to interrogate mutations from glioma tumors. EVs from CSF of patients with glioma were shown to contain mutant IDH1 transcripts, and we were able to reliably detect and quantify mutant and wild-type IDH1 RNA transcripts in CSF of patients with gliomas. EV-BEAMing and EV-ddPCR represent a valuable new strategy for cancer diagnostics, which can be applied to a variety of biofluids and neoplasms.Molecular Therapy-Nucleic Acids (2013) 2, e109; doi:10.1038/mtna.2013.28; published online 23 July 2013.

  4. Identification of residues of SARS-CoV nsp1 that differentially affect inhibition of gene expression and antiviral signaling.

    PubMed

    Jauregui, Andrew R; Savalia, Dhruti; Lowry, Virginia K; Farrell, Cara M; Wathelet, Marc G

    2013-01-01

    An epidemic of Severe Acute Respiratory Syndrome (SARS) led to the identification of an associated coronavirus, SARS-CoV. This virus evades the host innate immune response in part through the expression of its non-structural protein (nsp) 1, which inhibits both host gene expression and virus- and interferon (IFN)-dependent signaling. Thus, nsp1 is a promising target for drugs, as inhibition of nsp1 would make SARS-CoV more susceptible to the host antiviral defenses. To gain a better understanding of nsp1 mode of action, we generated and analyzed 38 mutants of the SARS-CoV nsp1, targeting 62 solvent exposed residues out of the 180 amino acid protein. From this work, we identified six classes of mutants that abolished, attenuated or increased nsp1 inhibition of host gene expression and/or antiviral signaling. Each class of mutants clustered on SARS-CoV nsp1 surface and suggested nsp1 interacts with distinct host factors to exert its inhibitory activities. Identification of the nsp1 residues critical for its activities and the pathways involved in these activities should help in the design of drugs targeting nsp1. Significantly, several point mutants increased the inhibitory activity of nsp1, suggesting that coronaviruses could evolve a greater ability to evade the host response through mutations of such residues.

  5. Identification of the recA (tif) gene product of Escherichia coli

    PubMed Central

    Gudas, Lorraine J.; Mount, David W.

    1977-01-01

    Treatments that inhibit DNA synthesis in recA+lexA+Escherichia coli stimulate synthesis of a 40,000 molecular weight protein species (protein X). The protein X molecules produced by wild-type and mutant E. coli strains have been compared by two-dimensional gel electrophoresis. One recA mutant (DM1415 spr recA1) produced a protein X with a more acidic isoelectric point than protein X from the wild type, demonstrating that protein X is probably the product of the recA gene. Additional mutants carrying the recA-linked tif-1 mutation yielded a protein X that was more basic than the wild-type protein, indicating that the tif-1 mutation also alters the recA protein. Protein X molecules from the above mutants and wild-type E. coli have been shown to yield similar partial products upon limited proteolysis in sodium dodecyl sulfate, indicating they are the same protein species. These and additional studies suggest that (i) the tif-1 mutation alters a site on the recA protein that is sensitive to DNA synthesis inhibition, (ii) synthesis of recA protein is self-regulated, and (iii) synthesis of recA protein is also regulated by the lexA product with lexA-suppressor mutations such as spr resulting in constitutive synthesis of recA protein. Images PMID:341152

  6. Key Components of Different Plant Defense Pathways Are Dispensable for Powdery Mildew Resistance of the Arabidopsis mlo2 mlo6 mlo12 Triple Mutant

    PubMed Central

    Kuhn, Hannah; Lorek, Justine; Kwaaitaal, Mark; Consonni, Chiara; Becker, Katia; Micali, Cristina; Ver Loren van Themaat, Emiel; Bednarek, Paweł; Raaymakers, Tom M.; Appiano, Michela; Bai, Yuling; Meldau, Dorothea; Baum, Stephani; Conrath, Uwe; Feussner, Ivo; Panstruga, Ralph

    2017-01-01

    Loss of function mutations of particular plant MILDEW RESISTANCE LOCUS O (MLO) genes confer durable and broad-spectrum penetration resistance against powdery mildew fungi. Here, we combined genetic, transcriptomic and metabolomic analyses to explore the defense mechanisms in the fully resistant Arabidopsis thaliana mlo2 mlo6 mlo12 triple mutant. We found that this genotype unexpectedly overcomes the requirement for indolic antimicrobials and defense-related secretion, which are critical for incomplete resistance of mlo2 single mutants. Comparative microarray-based transcriptome analysis of mlo2 mlo6 mlo12 mutants and wild type plants upon Golovinomyces orontii inoculation revealed an increased and accelerated accumulation of many defense-related transcripts. Despite the biotrophic nature of the interaction, this included the non-canonical activation of a jasmonic acid/ethylene-dependent transcriptional program. In contrast to a non-adapted powdery mildew pathogen, the adapted powdery mildew fungus is able to defeat the accumulation of defense-relevant indolic metabolites in a MLO protein-dependent manner. We suggest that a broad and fast activation of immune responses in mlo2 mlo6 mlo12 plants can compensate for the lack of single or few defense pathways. In addition, our results point to a role of Arabidopsis MLO2, MLO6, and MLO12 in enabling defense suppression during invasion by adapted powdery mildew fungi. PMID:28674541

  7. The APPLE Trial: Feasibility and Activity of AZD9291 (Osimertinib) Treatment on Positive PLasma T790M in EGFR-mutant NSCLC Patients. EORTC 1613.

    PubMed

    Remon, Jordi; Menis, Jessica; Hasan, Baktiar; Peric, Aleksandra; De Maio, Eleonora; Novello, Silvia; Reck, Martin; Berghmans, Thierry; Wasag, Bartosz; Besse, Benjamin; Dziadziuszko, Rafal

    2017-09-01

    The AZD9291 (Osimertinib) Treatment on Positive PLasma T790M in EGFR-mutant NSCLC Patients (APPLE) trial is a randomized, open-label, multicenter, 3-arm, phase II study in advanced, epidermal growth factor receptor (EGFR)-mutant and EGFR tyrosine kinase inhibitor (TKI)-naive non-small-cell lung cancer (NSCLC) patients, to evaluate the best strategy for sequencing gefitinib and osimertinib treatment. Advanced EGFR-mutant NSCLC patients, with World Health Organization performance status 0-2 who are EGFR TKI treatment-naive and eligible to receive first-line treatment with EGFR TKI will be randomized to: In all arms, a plasmatic ctDNA T790M test will be performed by a central laboratory at the Medical University of Gdansk (Poland) but will be applied as a predictive marker for making treatment decisions only in arm B. The primary objective is to evaluate the best strategy for sequencing of treatment with gefitinib and osimertinib in advanced NSCLC patients with common EGFR mutations, and to understand the value of liquid biopsy for the decision-making process. The progression-free survival rate at 18 months is the primary end point of the trial. The activity of osimertinib versus gefitinib to prevent brain metastases will be evaluated. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. New insights from an old mutant: SPADIX4 governs fruiting body development but not hyphal fusion in Sordaria macrospora.

    PubMed

    Teichert, Ines; Lutomski, Miriam; Märker, Ramona; Nowrousian, Minou; Kück, Ulrich

    2017-02-01

    During the sexual life cycle of filamentous fungi, multicellular fruiting bodies are generated for the dispersal of spores. The filamentous ascomycete Sordaria macrospora has a long history as a model system for studying fruiting body formation, and two collections of sterile mutants have been generated. However, for most of these mutants, the underlying genetic defect remains unknown. Here, we investigated the mutant spadix (spd) that was generated by X-ray mutagenesis in the 1950s and terminates sexual development after the formation of pre-fruiting bodies (protoperithecia). We sequenced the spd genome and found a 22 kb deletion affecting four genes, which we termed spd1-4. Generation of deletion strains revealed that only spd4 is required for fruiting body formation. Although sterility in S. macrospora is often coupled with a vegetative hyphal fusion defect, Δspd4 was still capable of fusion. This feature distinguishes SPD4 from many other regulators of sexual development. Remarkably, GFP-tagged SPD4 accumulated in the nuclei of vegetative hyphae and fruiting body initials, the ascogonial coils, but not in sterile tissue from the developing protoperithecium. Our results point to SPD4 as a specific determinant of fruiting body formation. Research on SPD4 will, therefore, contribute to understanding cellular reprogramming during initiation of sexual development in fungi.

  9. The Zebrafish Model Organism Database: new support for human disease models, mutation details, gene expression phenotypes and searching

    PubMed Central

    Howe, Douglas G.; Bradford, Yvonne M.; Eagle, Anne; Fashena, David; Frazer, Ken; Kalita, Patrick; Mani, Prita; Martin, Ryan; Moxon, Sierra Taylor; Paddock, Holly; Pich, Christian; Ramachandran, Sridhar; Ruzicka, Leyla; Schaper, Kevin; Shao, Xiang; Singer, Amy; Toro, Sabrina; Van Slyke, Ceri; Westerfield, Monte

    2017-01-01

    The Zebrafish Model Organism Database (ZFIN; http://zfin.org) is the central resource for zebrafish (Danio rerio) genetic, genomic, phenotypic and developmental data. ZFIN curators provide expert manual curation and integration of comprehensive data involving zebrafish genes, mutants, transgenic constructs and lines, phenotypes, genotypes, gene expressions, morpholinos, TALENs, CRISPRs, antibodies, anatomical structures, models of human disease and publications. We integrate curated, directly submitted, and collaboratively generated data, making these available to zebrafish research community. Among the vertebrate model organisms, zebrafish are superbly suited for rapid generation of sequence-targeted mutant lines, characterization of phenotypes including gene expression patterns, and generation of human disease models. The recent rapid adoption of zebrafish as human disease models is making management of these data particularly important to both the research and clinical communities. Here, we describe recent enhancements to ZFIN including use of the zebrafish experimental conditions ontology, ‘Fish’ records in the ZFIN database, support for gene expression phenotypes, models of human disease, mutation details at the DNA, RNA and protein levels, and updates to the ZFIN single box search. PMID:27899582

  10. A Model of Yeast Cell-Cycle Regulation Based on a Standard Component Modeling Strategy for Protein Regulatory Networks.

    PubMed

    Laomettachit, Teeraphan; Chen, Katherine C; Baumann, William T; Tyson, John J

    2016-01-01

    To understand the molecular mechanisms that regulate cell cycle progression in eukaryotes, a variety of mathematical modeling approaches have been employed, ranging from Boolean networks and differential equations to stochastic simulations. Each approach has its own characteristic strengths and weaknesses. In this paper, we propose a "standard component" modeling strategy that combines advantageous features of Boolean networks, differential equations and stochastic simulations in a framework that acknowledges the typical sorts of reactions found in protein regulatory networks. Applying this strategy to a comprehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of standard component modeling. The deterministic version of our model reproduces the phenotypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the CLB2-dbΔ clb5Δ mutant strain. Our simulations show that mathematical modeling with "standard components" can capture in quantitative detail many essential properties of cell cycle control in budding yeast.

  11. A Model of Yeast Cell-Cycle Regulation Based on a Standard Component Modeling Strategy for Protein Regulatory Networks

    PubMed Central

    Laomettachit, Teeraphan; Chen, Katherine C.; Baumann, William T.

    2016-01-01

    To understand the molecular mechanisms that regulate cell cycle progression in eukaryotes, a variety of mathematical modeling approaches have been employed, ranging from Boolean networks and differential equations to stochastic simulations. Each approach has its own characteristic strengths and weaknesses. In this paper, we propose a “standard component” modeling strategy that combines advantageous features of Boolean networks, differential equations and stochastic simulations in a framework that acknowledges the typical sorts of reactions found in protein regulatory networks. Applying this strategy to a comprehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of standard component modeling. The deterministic version of our model reproduces the phenotypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the CLB2-dbΔ clb5Δ mutant strain. Our simulations show that mathematical modeling with “standard components” can capture in quantitative detail many essential properties of cell cycle control in budding yeast. PMID:27187804

  12. Tn-Seq Analysis of Vibrio cholerae Intestinal Colonization Reveals a Role for T6SS-Mediated Antibacterial Activity in the Host

    PubMed Central

    Fu, Yang; Waldor, Matthew K.; Mekalanos, John J.

    2014-01-01

    SUMMARY Analysis of genes required for host infection will provide clues to the drivers of evolutionary fitness of pathogens like Vibrio cholerae, a mounting threat to global heath. We used transposon insertion site sequencing (Tn-seq) to comprehensively assess the contribution of nearly all V. cholerae genes toward growth in the infant rabbit intestine. Four hundred genes were identified as critical to V. cholerae in vivo fitness. These included most known colonization factors and several new genes affecting the bacterium's metabolic properties, resistance to bile, and ability to synthesize cyclic AMP-GMP. Notably, a mutant carrying an insertion in tsiV3, encoding immunity to a bacteriocidal type VI secretion system (T6SS) effector VgrG3, exhibited a colonization defect. The reduced in vivo fitness of tsiV3 mutants depends on their cocolonization with bacterial cells carrying an intact T6SS locus and VgrG3 gene, suggesting that the V. cholerae T6SS is functional and mediates antagonistic interbacterial interactions during infection. PMID:24331463

  13. Modulating Neurotrophin Receptor Signaling as a Therapeutic Strategy for Huntington’s Disease

    PubMed Central

    Simmons, Danielle A.

    2017-01-01

    Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by CAG repeat expansions in the IT15 gene which encodes the huntingtin (HTT) protein. Currently, no treatments capable of preventing or slowing disease progression exist. Disease modifying therapeutics for HD would be expected to target a comprehensive set of degenerative processes given the diverse mechanisms contributing to HD pathogenesis including neuroinflammation, excitotoxicity, and transcription dysregulation. A major contributor to HD-related degeneration is mutant HTT-induced loss of neurotrophic support. Thus, neurotrophin (NT) receptors have emerged as therapeutic targets in HD. The considerable overlap between NT signaling networks and those dysregulated by mutant HTT provides strong theoretical support for this approach. This review will focus on the contributions of disrupted NT signaling in HD-related neurodegeneration and how targeting NT receptors to augment pro-survival signaling and/or to inhibit degenerative signaling may combat HD pathologies. Therapeutic strategies involving NT delivery, peptidomimetics, and the targeting of specific NT receptors (e.g., Trks or p75NTR), particularly with small molecule ligands, are discussed. PMID:29254102

  14. Knockout-Rescue Embryonic Stem Cell-Derived Mouse Reveals Circadian-Period Control by Quality and Quantity of CRY1.

    PubMed

    Ode, Koji L; Ukai, Hideki; Susaki, Etsuo A; Narumi, Ryohei; Matsumoto, Katsuhiko; Hara, Junko; Koide, Naoshi; Abe, Takaya; Kanemaki, Masato T; Kiyonari, Hiroshi; Ueda, Hiroki R

    2017-01-05

    To conduct comprehensive characterization of molecular properties in organisms, we established an efficient method to produce knockout (KO)-rescue mice within a single generation. We applied this method to produce 20 strains of almost completely embryonic stem cell (ESC)-derived mice ("ES mice") rescued with wild-type and mutant Cry1 gene under a Cry1 -/- :Cry2 -/- background. A series of both phosphorylation-mimetic and non-phosphorylation-mimetic CRY1 mutants revealed that multisite phosphorylation of CRY1 can serve as a cumulative timer in the mammalian circadian clock. KO-rescue ES mice also revealed that CRY1-PER2 interaction confers a robust circadian rhythmicity in mice. Surprisingly, in contrast to theoretical predictions from canonical transcription/translation feedback loops, the residues surrounding the flexible P loop and C-lid domains of CRY1 determine circadian period without changing the degradation rate of CRY1. These results suggest that CRY1 determines circadian period through both its degradation-dependent and -independent pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urushihara, Yusuke; Kobayashi, Junya; Matsumoto, Yoshihisa

    Highlights: Black-Right-Pointing-Pointer We investigated the effect of DNA-PK inhibition on DSB repair using fish cells. Black-Right-Pointing-Pointer A radiation sensitive mutant RIC1 strain showed a low level of DNA-PK activity. Black-Right-Pointing-Pointer DNA-PK dysfunction leads defects in HR repair and DNA-PKcs autophosphorylation. Black-Right-Pointing-Pointer DNA-PK dysfunction leads a slight increase in the number of 53BP1 foci after DSBs. Black-Right-Pointing-Pointer DNA-PK dysfunction leads an alternative NHEJ that depends on 53BP1. -- Abstract: Nonhomologous end joining (NHEJ) and homologous recombination (HR) are known as DNA double-strand break (DSB) repair pathways. It has been reported that DNA-PK, a member of PI3 kinase family, promotes NHEJ andmore » aberrant DNA-PK causes NHEJ deficiency. However, in this study, we demonstrate that a wild-type cell line treated with DNA-PK inhibitor and a mutant cell line with dysfunctional DNA-PK showed decreased HR efficiency in fish cells (Medaka, Oryzias latipes). Previously, we reported that the radiation-sensitive mutant RIC1 strain has a defect in the Histone H2AX phosphorylation after {gamma}-irradiation. Here, we showed that a DNA-PK inhibitor, NU7026, treatment resulted in significant reduction in the number of {gamma}H2AX foci after {gamma}-irradiation in wild-type cells, but had no significant effect in RIC1 cells. In addition, RIC1 cells showed significantly lower levels of DNA-PK kinase activity compared with wild-type cells. We investigated NHEJ and HR efficiency after induction of DSBs. Wild-type cells treated with NU7026 and RIC1 cells showed decreased HR efficiency. These results indicated that aberrant DNA-PK causes the reduction in the number of {gamma}H2AX foci and HR efficiency in RIC1 cells. We performed phosphorylated DNA-PKcs (Thr2609) and 53BP1 focus assay after {gamma}-irradiation. RIC1 cells showed significant reduction in the number of phosphorylated DNA-PKcs foci and no deference in the number of 53BP1 foci compared with wild-type cells. These results suggest that low level of DNA-PK activity causes aberrant DNA-PKcs autophosphorylation in RIC1 cells. It is known that 53BP1 is involved in both DNA-PK dependent and independent NHEJ. Therefore we suggest that DNA-PK independent NHEJ repair DSBs under the condition of decreased DNA-PK activity, which causes reduction of HR efficiency.« less

  16. Underlying mechanisms of cyclic peptide inhibitors interrupting the interaction of CK2α/CK2β: comparative molecular dynamics simulation studies.

    PubMed

    Zhou, Yue; Zhang, Na; Chen, Wenjuan; Zhao, Lijiao; Zhong, Rugang

    2016-04-07

    Protein-protein interactions (PPIs) are fundamental to all biological processes. Recently, the CK2β-derived cyclic peptide Pc has been demonstrated to efficiently antagonize the CK2α/CK2β interaction and strongly affect the phosphorylation of CK2β-dependent CK2 substrate specificity. The binding affinity of Pc to CK2α is destroyed to different extents by two single-point mutations of Tyr188 to Ala (Y188A) and Phe190 to Ala (F190A), which exert negative effects on the inhibitory activity (IC50) of Pc against the CK2α/CK2β interaction from 3.0 μM to 54.0 μM and ≫100 μM, respectively. However, the structural influences of Y188A and F190A mutations on the CK2α-Pc complex remain unclear. In this study, comparative molecular dynamics (MD) simulations, principal component analysis (PCA), domain cross-correlation map (DCCM) analysis and energy calculations were performed on wild type (WT), Y188A mutant, and F190A mutant systems. The results revealed that ordered communications between hydrophobic and polar interactions were essential for CK2α-Pc binding in the WT system. In addition to the loss of the hydrogen bond between Gln36 of CK2α and Gly189 of Pc in the two mutants, the improper recognition mechanisms occurred through different pathways. These pathways included the weakened hydrophobic interactions in the Y188A mutant as well as decreased polar and hydrophobic interactions in the F190A mutant. The energy analysis results qualitatively elucidated the instability of the two mutants and energetic contributions of the key residues. This study not only revealed the structural mechanisms for the decreased binding affinity of Y188A and F190A mutant CK2α-Pc complexes, but also provided valuable clues for the rational design of CK2α/CK2β subunit interaction inhibitors with high affinity and specificity.

  17. The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion.

    PubMed

    Deuerling, E; Mogk, A; Richter, C; Purucker, M; Schumann, W

    1997-03-01

    The ftsH gene of Bacillus subtilis has been identified as a general stress gene which is transiently induced after thermal or osmotic upshift. The FtsH protein exhibits 70.1% homology to FtsH of Escherichia coli which constitutes an essential ATP- and Zn(2+)-dependent protease anchored in the cytoplasmic membrane via two N-terminal transmembrane domains. This paper describes the isolation and functional characterization of an ftsH null mutant which was obtained by integration of a cat-cassette near the 5' end of ftsH, thereby preventing the synthesis of FtsH protein. In contrast to the situation in E. coli, ftsH is dispensable in B. subtilis but results in a pleiotropic phenotype. While the mutant cells grew mostly as large filaments under physiological conditions, they turned out to be extremely sensitive to heat and salt stress. Although ftsH is necessary for adaptation to heat, it is not involved in the regulation of the heat-shock response. The induction profiles of representative genes of the CIRCE and sigma-B regulon and class III heat-shock genes ion and clpC were identical in the wild type and the ftsH null mutant. Furthermore, the ftsH knockout strain was unable to sporulate, and this failure was probably due to the absence of Spo0A protein which is essential for entry into the sporulation programme. In addition, secretion of bulk exoproteins was severely impaired in the ftsH null mutant after entry into stationary phase. The alpha-amylase and subtilisin activity in the supernatant was specifically tested. Whereas the activity of alpha-amylase increased after entry into stationary phase in both the wild type and the ftsH mutant strain, that of subtilisin encoded by aprE was prevented at the level of transcription in the mutant. Most of these results can be explained by the failure to synthesize appropriate amounts of Spo0A protein in the ftsH null mutant and point to ftsH as a developmental checkpoint.

  18. ςBldN, an Extracytoplasmic Function RNA Polymerase Sigma Factor Required for Aerial Mycelium Formation in Streptomyces coelicolor A3(2)

    PubMed Central

    Bibb, Maureen J.; Molle, Virginie; Buttner, Mark J.

    2000-01-01

    Sporulation mutants of Streptomyces coelicolor appear white because they are defective in the synthesis of the gray polyketide spore pigment, and such white (whi) mutants have been used to define 13 sporulation loci. whiN, one of five new whi loci identified in a recent screen of NTG (N-methyl-N′-nitro-N-nitrosoguanidine)-induced whi strains (N. J. Ryding et al., J. Bacteriol. 181:5419–5425, 1999), was defined by two mutants, R112 and R650. R650 produced frequent spores that were longer than those of the wild type. In contrast, R112 produced long, straight, undifferentiated hyphae, although rare spore chains were observed, sometimes showing highly irregular septum placement. Subcloning and sequencing showed that whiN encodes a member of the extracytoplasmic function subfamily of RNA polymerase sigma factors and that the sigma factor has an unusual N-terminal extension of approximately 86 residues that is not present in other sigma factors. A constructed whiN null mutant failed to form aerial mycelium (the “bald” phenotype) and, as a consequence, whiN was renamed bldN. This observation was not totally unexpected because, on some media, the R112 point mutant produced substantially less aerial mycelium than its parent, M145. The bldN null mutant did not fit simply into the extracellular signaling cascade proposed for S. coelicolor bld mutants. Expression of bldN was analyzed during colony development in wild-type and aerial mycelium-deficient bld strains. bldN was transcribed from a single promoter, bldNp. bldN transcription was developmentally regulated, commencing approximately at the time of aerial mycelium formation, and depended on bldG and bldH, but not on bldA, bldB, bldC, bldF, bldK, or bldJ or on bldN itself. Transcription from the p1 promoter of the response-regulator gene bldM depended on bldN in vivo, and the bldMp1 promoter was shown to be a direct biochemical target for ςBldN holoenzyme in vitro. PMID:10913095

  19. Do Infants Need Social Cognition to Act Socially? An Alternative Look at Infant Pointing

    ERIC Educational Resources Information Center

    D'Entremont, Barbara; Seamans, Elizabeth

    2007-01-01

    Tomasello, Carpenter, and Liszkowski (2007) present a comprehensive review of the infant pointing literature. They conclude that infant pointing demonstrates communicative intent from its onset, at about 1 year of age. In this commentary, it is noted that for infants to understand communicative intent, they must have a concept of self and others…

  20. A Fluorescence Quenching Assay Based on Molecular Beacon Formation through a Ligase Detection Reaction for Facile and Rapid Detection of Point Mutations.

    PubMed

    Sawamura, Kensuke; Hashimoto, Masahiko

    2017-01-01

    A fluorescence quenching assay based on a ligase detection reaction was developed for facile and rapid detection of point mutations present in a mixed population of non-variant DNA. If the test DNA carried a targeted mutation, then the two allele-specific primers were ligated to form a molecular beacon resulting in the expected fluorescence quenching signatures. Using this method, we successfully detected as low as 5% mutant DNA in a mixture of wild-type DNA (t test at 99% confidence level).

  1. A novel MPL point mutation resulting in thrombopoietin-independent activation.

    PubMed

    Abe, M; Suzuki, K; Inagaki, O; Sassa, S; Shikama, H

    2002-08-01

    Thrombopoietin (TPO) and its receptor (MPL) are important regulators of megakaryopoiesis. MPL belongs to a cytokine receptor superfamily. To date, all constitutively active MPL mutants have been artificially constructed with amino acid substitutions in the transmembrane domain or extracellular domain of the protein, and they activate signal transduction pathways in Ba/F3 cells that can also be activated by the normal MPL. In this paper, we report a novel spontaneously occurring mutation of MPL, with an amino acid substitution of Trp(508) to Ser(508) in the intracellular domain of MPL, that induces the factor-independent growth of Ba/F3 cells. Examination of intracellular signaling pathways demonstrated that the mutant MPL protein constitutively activates three distinct signaling pathways, SHC-Ras-Raf-MAPK/JNK, JAK-STAT, and PI3K-Akt-Bad.

  2. Deletion Mapping of zwf, the Gene for a Constitutive Enzyme, Glucose 6-Phosphate Dehydrogenase in ESCHERICHIA COLI

    PubMed Central

    Fraenkel, D. G.; Banerjee, Santimoy

    1972-01-01

    Genes for three enzymes of intermediary sugar metabolism in E. coli, zwf (glucose 6-phosphate dehydrogenase, constitutive), edd (gluconate 6-phosphate dehydrase, inducible), and eda (2-keto-3-deoxygluconate 6-phosphate aldolase, differently inducible) are closely linked on the E. coli genetic map, the overall gene order being man... old... eda. edd. zwf... cheB... uvrC... his. One class of apparent revertants of an eda mutant strain contains a secondary mutation in edd, and some of these mutations are deletions extending into zwf. We have used a series of spontaneous edd-zwf deletions to map a series of point mutants in zwf and thus report the first fine structure map of a gene for a constitutive enzyme (zwf). PMID:4560065

  3. The Sinorhizobium fredii HH103 Lipopolysaccharide Is Not Only Relevant at Early Soybean Nodulation Stages but Also for Symbiosome Stability in Mature Nodules

    PubMed Central

    Margaret, Isabel; Lucas, M. Mercedes; Acosta-Jurado, Sebastián; Buendía-Clavería, Ana M.; Fedorova, Elena; Hidalgo, Ángeles; Rodríguez-Carvajal, Miguel A.; Rodriguez-Navarro, Dulce N.; Ruiz-Sainz, José E.; Vinardell, José M.

    2013-01-01

    In this work we have characterised the Sinorhizobium fredii HH103 greA lpsB lpsCDE genetic region and analysed for the first time the symbiotic performance of Sinorhizobium fredii lps mutants on soybean. The organization of the S. fredii HH103 greA, lpsB, and lpsCDE genes was equal to that of Sinorhizobium meliloti 1021. S. fredii HH103 greA, lpsB, and lpsE mutant derivatives produced altered LPS profiles that were characteristic of the gene mutated. In addition, S. fredii HH103 greA mutants showed a reduction in bacterial mobility and an increase of auto-agglutination in liquid cultures. RT-PCR and qPCR experiments demonstrated that the HH103 greA gene has a positive effect on the transcription of lpsB. Soybean plants inoculated with HH103 greA, lpsB or lpsE mutants formed numerous ineffective pseudonodules and showed severe symptoms of nitrogen starvation. However, HH103 greA and lps mutants were also able to induce the formation of a reduced number of soybean nodules of normal external morphology, allowing the possibility of studying the importance of bacterial LPS in later stages of the S. fredii HH103-soybean symbiosis. The infected cells of these nodules showed signs of early termination of symbiosis and lytical clearance of bacteroids. These cells also had very thick walls and accumulation of phenolic-like compounds, pointing to induced defense reactions. Our results show the importance of bacterial LPS in later stages of the S. fredii HH103-soybean symbiosis and their role in preventing host cell defense reactions. S. fredii HH103 lpsB mutants also showed reduced nodulation with Vigna unguiculata, although the symbiotic impairment was less pronounced than in soybean. PMID:24098345

  4. Active Center Control of Termination by RNA Polymerase III and tRNA Gene Transcription Levels In Vivo

    PubMed Central

    Rijal, Keshab; Maraia, Richard J.

    2016-01-01

    The ability of RNA polymerase (RNAP) III to efficiently recycle from termination to reinitiation is critical for abundant tRNA production during cellular proliferation, development and cancer. Yet understanding of the unique termination mechanisms used by RNAP III is incomplete, as is its link to high transcription output. We used two tRNA-mediated suppression systems to screen for Rpc1 mutants with gain- and loss- of termination phenotypes in S. pombe. 122 point mutation mutants were mapped to a recently solved 3.9 Å structure of yeast RNAP III elongation complex (EC); they cluster in the active center bridge helix and trigger loop, as well as the pore and funnel, the latter of which indicate involvement of the RNA cleavage domain of the C11 subunit in termination. Purified RNAP III from a readthrough (RT) mutant exhibits increased elongation rate. The data strongly support a kinetic coupling model in which elongation rate is inversely related to termination efficiency. The mutants exhibit good correlations of terminator RT in vitro and in vivo, and surprisingly, amounts of transcription in vivo. Because assessing in vivo transcription can be confounded by various parameters, we used a tRNA reporter with a processing defect and a strong terminator. By ruling out differences in RNA decay rates, the data indicate that mutants with the RT phenotype synthesize more RNA than wild type cells, and than can be accounted for by their increased elongation rate. Finally, increased activity by the mutants appears unrelated to the RNAP III repressor, Maf1. The results show that the mobile elements of the RNAP III active center, including C11, are key determinants of termination, and that some of the mutations activate RNAP III for overall transcription. Similar mutations in spontaneous cancer suggest this as an unforeseen mechanism of RNAP III activation in disease. PMID:27518095

  5. Deregulation of the arginine deiminase (arc) operon in penicillin-tolerant mutants of Streptococcus gordonii.

    PubMed

    Caldelari, I; Loeliger, B; Langen, H; Glauser, M P; Moreillon, P

    2000-10-01

    Penicillin tolerance is an incompletely understood phenomenon that allows bacteria to resist drug-induced killing. Tolerance was studied with independent Streptococcus gordonii mutants generated by cyclic exposure to 500 times the MIC of penicillin. Parent cultures lost 4 to 5 log(10) CFU/ml of viable counts/24 h. In contrast, each of four independent mutant cultures lost < or =2 log(10) CFU/ml/24 h. The mutants had unchanged penicillin-binding proteins but contained increased amounts of two proteins with respective masses of ca. 50 and 45 kDa. One mutant (Tol1) was further characterized. The two proteins showing increased levels were homologous to the arginine deiminase and ornithine carbamoyl transferase of other gram-positive bacteria and were encoded by an operon that was >80% similar to the arginine-deiminase (arc) operon of these organisms. Partial nucleotide sequencing and insertion inactivation of the S. gordonii arc locus indicated that tolerance was not a direct consequence of arc alteration. On the other hand, genetic transformation of tolerance by Tol1 DNA always conferred arc deregulation. In nontolerant recipients, arc was repressed during exponential growth and up-regulated during postexponential growth. In tolerant transformants, arc was constitutively expressed. Tol1 DNA transformed tolerance at the same rate as transformation of a point mutation (10(-2) to 10(-3)). The tolerance mutation mapped on a specific chromosomal fragment but was physically distant from arc. Importantly, arc deregulation was observed in most (6 of 10) of additional independent penicillin-tolerant mutants. Thus, although not exclusive, the association between arc deregulation and tolerance was not fortuitous. Since penicillin selection mimicked the antibiotic pressure operating in the clinical environment, arc deregulation might be an important correlate of naturally occurring tolerance and help in understanding the mechanism(s) underlying this clinically problematic phenotype.

  6. First somatic mutation of E2F1 in a critical DNA binding residue discovered in well-differentiated papillary mesothelioma of the peritoneum

    PubMed Central

    2011-01-01

    Background Well differentiated papillary mesothelioma of the peritoneum (WDPMP) is a rare variant of epithelial mesothelioma of low malignancy potential, usually found in women with no history of asbestos exposure. In this study, we perform the first exome sequencing of WDPMP. Results WDPMP exome sequencing reveals the first somatic mutation of E2F1, R166H, to be identified in human cancer. The location is in the evolutionarily conserved DNA binding domain and computationally predicted to be mutated in the critical contact point between E2F1 and its DNA target. We show that the R166H mutation abrogates E2F1's DNA binding ability and is associated with reduced activation of E2F1 downstream target genes. Mutant E2F1 proteins are also observed in higher quantities when compared with wild-type E2F1 protein levels and the mutant protein's resistance to degradation was found to be the cause of its accumulation within mutant over-expressing cells. Cells over-expressing wild-type E2F1 show decreased proliferation compared to mutant over-expressing cells, but cell proliferation rates of mutant over-expressing cells were comparable to cells over-expressing the empty vector. Conclusions The R166H mutation in E2F1 is shown to have a deleterious effect on its DNA binding ability as well as increasing its stability and subsequent accumulation in R166H mutant cells. Based on the results, two compatible theories can be formed: R166H mutation appears to allow for protein over-expression while minimizing the apoptotic consequence and the R166H mutation may behave similarly to SV40 large T antigen, inhibiting tumor suppressive functions of retinoblastoma protein 1. PMID:21955916

  7. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallentine, Brad D.; Wang, Ying; Tretyachenko-Ladokhina, Vira

    2013-10-01

    X-ray crystallographic structures of four p53 core-domain variants were determined in order to gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53. To gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53, X-ray crystallographic structures of four p53 core-domain variants were determined. These include an oncogenic mutant, V157F, two single-site suppressor mutants, N235K and N239Y, and the rescued cancer mutant V157F/N235K/N239Y. The V157F mutationmore » substitutes a smaller hydrophobic valine with a larger hydrophobic phenylalanine within strand S4 of the hydrophobic core. The structure of this cancer mutant shows no gross structural changes in the overall fold of the p53 core domain, only minor rearrangements of side chains within the hydrophobic core of the protein. Based on biochemical analysis, these small local perturbations induce instability in the protein, increasing the free energy by 3.6 kcal mol{sup −1} (15.1 kJ mol{sup −1}). Further biochemical evidence shows that each suppressor mutation, N235K or N239Y, acts individually to restore thermodynamic stability to V157F and that both together are more effective than either alone. All rescued mutants were found to have wild-type DNA-binding activity when assessed at a permissive temperature, thus pointing to thermodynamic stability as the critical underlying variable. Interestingly, thermodynamic analysis shows that while N239Y demonstrates stabilization of the wild-type p53 core domain, N235K does not. These observations suggest distinct structural mechanisms of rescue. A new salt bridge between Lys235 and Glu198, found in both the N235K and rescued cancer mutant structures, suggests a rescue mechanism that relies on stabilizing the β-sandwich scaffold. On the other hand, the substitution N239Y creates an advantageous hydrophobic contact between the aromatic ring of this tyrosine and the adjacent Leu137. Surprisingly, the rescued cancer mutant shows much larger structural deviations than the cancer mutant alone when compared with wild-type p53. These suppressor mutations appear to rescue p53 function by creating novel intradomain interactions that stabilize the core domain, allowing compensation for the destabilizing V157F mutation.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, Benjamin E.; Wetmore, Kelly M.; Price, Morgan N.

    Synechococcus elongatus PCC 7942 is a model organism used for studying photosynthesis and the circadian clock, and it is being developed for the production of fuel, industrial chemicals, and pharmaceuticals. To identify a comprehensive set of genes and intergenic regions that impacts fitness in S. elongatus, we created a pooled library of ~250,000 transposon mutants and used sequencing to identify the insertion locations. By analyzing the distribution and survival of these mutants, we identified 718 of the organism's 2,723 genes as essential for survival under laboratory conditions. The validity of the essential gene set is supported by its tight overlapmore » with wellconserved genes and its enrichment for core biological processes. The differences noted between our dataset and these predictors of essentiality, however, have led to surprising biological insights. One such finding is that genes in a large portion of the TCA cycle are dispensable, suggesting that S. elongatus does not require a cyclic TCA process. Furthermore, the density of the transposon mutant library enabled individual and global statements about the essentiality of noncoding RNAs, regulatory elements, and other intergenic regions. In this way, a group I intron located in tRNA Leu , which has been used extensively for phylogenetic studies, was shown here to be essential for the survival of S. elongatus. Our survey of essentiality for every locus in the S. elongatus genome serves as a powerful resource for understanding the organism's physiology and defines the essential gene set required for the growth of a photosynthetic organism.« less

  9. The essential gene set of a photosynthetic organism

    DOE PAGES

    Rubin, Benjamin E.; Wetmore, Kelly M.; Price, Morgan N.; ...

    2015-10-27

    Synechococcus elongatus PCC 7942 is a model organism used for studying photosynthesis and the circadian clock, and it is being developed for the production of fuel, industrial chemicals, and pharmaceuticals. To identify a comprehensive set of genes and intergenic regions that impacts fitness in S. elongatus, we created a pooled library of ~250,000 transposon mutants and used sequencing to identify the insertion locations. By analyzing the distribution and survival of these mutants, we identified 718 of the organism's 2,723 genes as essential for survival under laboratory conditions. The validity of the essential gene set is supported by its tight overlapmore » with wellconserved genes and its enrichment for core biological processes. The differences noted between our dataset and these predictors of essentiality, however, have led to surprising biological insights. One such finding is that genes in a large portion of the TCA cycle are dispensable, suggesting that S. elongatus does not require a cyclic TCA process. Furthermore, the density of the transposon mutant library enabled individual and global statements about the essentiality of noncoding RNAs, regulatory elements, and other intergenic regions. In this way, a group I intron located in tRNA Leu , which has been used extensively for phylogenetic studies, was shown here to be essential for the survival of S. elongatus. Our survey of essentiality for every locus in the S. elongatus genome serves as a powerful resource for understanding the organism's physiology and defines the essential gene set required for the growth of a photosynthetic organism.« less

  10. Molecular Determinants of Sporulation in Ashbya gossypii

    PubMed Central

    Wasserstrom, Lisa; Lengeler, Klaus B.; Walther, Andrea; Wendland, Jürgen

    2013-01-01

    Regulation of development and entry into sporulation is critical for fungi to ensure survival of unfavorable environmental conditions. Here we present an analysis of gene sets regulating sporulation in the homothallic ascomycete Ashbya gossypii. Deletion of components of the conserved pheromone/starvation MAP kinase cascades, e.g., STE11 and STE7, results in increased sporulation. In kar3 mutants sporulation is severely reduced, while deletion of KAR4 as well as of homologs of central Saccharomyces cerevisiae regulators of sporulation, IME1, IME2, IME4, and NDT80, abolishes sporulation in A. gossypii. Comparison of RNAseq transcript profiles of sporulation-deficient mutants identified a set of 67 down-regulated genes, most of which were up-regulated in the oversporulating ste12 mutant. One of these differentially expressed genes is an endoglucanase encoded by ENG2. We found that Eng2p promotes hyphal fragmentation as part of the developmental program of sporulation, which generates single-celled sporangia. Sporulation-deficient strains are arrested in their development but form sporangia. Supply of new nutrients enabled sporangia to return to hyphal growth, indicating that these cells are not locked in meiosis. Double-strand break (DSB) formation by Spo11 is apparently not required for sporulation; however, the absence of DMC1, which repairs DSBs in S. cerevisiae, results in very poor sporulation in A. gossypii. We present a comprehensive analysis of the gene repertoire governing sporulation in A. gossypii and suggest an altered regulation of IME1 expression compared to S. cerevisiae. PMID:23833180

  11. Molecular determinants of sporulation in Ashbya gossypii.

    PubMed

    Wasserstrom, Lisa; Lengeler, Klaus B; Walther, Andrea; Wendland, Jürgen

    2013-09-01

    Regulation of development and entry into sporulation is critical for fungi to ensure survival of unfavorable environmental conditions. Here we present an analysis of gene sets regulating sporulation in the homothallic ascomycete Ashbya gossypii. Deletion of components of the conserved pheromone/starvation MAP kinase cascades, e.g., STE11 and STE7, results in increased sporulation. In kar3 mutants sporulation is severely reduced, while deletion of KAR4 as well as of homologs of central Saccharomyces cerevisiae regulators of sporulation, IME1, IME2, IME4, and NDT80, abolishes sporulation in A. gossypii. Comparison of RNAseq transcript profiles of sporulation-deficient mutants identified a set of 67 down-regulated genes, most of which were up-regulated in the oversporulating ste12 mutant. One of these differentially expressed genes is an endoglucanase encoded by ENG2. We found that Eng2p promotes hyphal fragmentation as part of the developmental program of sporulation, which generates single-celled sporangia. Sporulation-deficient strains are arrested in their development but form sporangia. Supply of new nutrients enabled sporangia to return to hyphal growth, indicating that these cells are not locked in meiosis. Double-strand break (DSB) formation by Spo11 is apparently not required for sporulation; however, the absence of DMC1, which repairs DSBs in S. cerevisiae, results in very poor sporulation in A. gossypii. We present a comprehensive analysis of the gene repertoire governing sporulation in A. gossypii and suggest an altered regulation of IME1 expression compared to S. cerevisiae.

  12. JAK-STAT and G-protein-coupled receptor signaling pathways are frequently altered in epitheliotropic intestinal T-cell lymphoma

    PubMed Central

    Nairismägi, M-L; Tan, J; Lim, J Q; Nagarajan, S; Ng, C C Y; Rajasegaran, V; Huang, D; Lim, W K; Laurensia, Y; Wijaya, G C; Li, Z M; Cutcutache, I; Pang, W L; Thangaraju, S; Ha, J; Khoo, L P; Chin, S T; Dey, S; Poore, G; Tan, L H C; Koh, H K M; Sabai, K; Rao, H-L; Chuah, K L; Ho, Y-H; Ng, S-B; Chuang, S-S; Zhang, F; Liu, Y-H; Pongpruttipan, T; Ko, Y H; Cheah, P-L; Karim, N; Chng, W-J; Tang, T; Tao, M; Tay, K; Farid, M; Quek, R; Rozen, S G; Tan, P; Teh, B T; Lim, S T; Tan, S-Y; Ong, C K

    2016-01-01

    Epitheliotropic intestinal T-cell lymphoma (EITL, also known as type II enteropathy-associated T-cell lymphoma) is an aggressive intestinal disease with poor prognosis and its molecular alterations have not been comprehensively characterized. We aimed to identify actionable easy-to-screen alterations that would allow better diagnostics and/or treatment of this deadly disease. By performing whole-exome sequencing of four EITL tumor-normal pairs, followed by amplicon deep sequencing of 42 tumor samples, frequent alterations of the JAK-STAT and G-protein-coupled receptor (GPCR) signaling pathways were discovered in a large portion of samples. Specifically, STAT5B was mutated in a remarkable 63% of cases, JAK3 in 35% and GNAI2 in 24%, with the majority occurring at known activating hotspots in key functional domains. Moreover, STAT5B locus carried copy-neutral loss of heterozygosity resulting in the duplication of the mutant copy, suggesting the importance of mutant STAT5B dosage for the development of EITL. Dysregulation of the JAK-STAT and GPCR pathways was also supported by gene expression profiling and further verified in patient tumor samples. In vitro overexpression of GNAI2 mutants led to the upregulation of pERK1/2, a member of MEK-ERK pathway. Notably, inhibitors of both JAK-STAT and MEK-ERK pathways effectively reduced viability of patient-derived primary EITL cells, indicating potential therapeutic strategies for this neoplasm with no effective treatment currently available. PMID:26854024

  13. JAK-STAT and G-protein-coupled receptor signaling pathways are frequently altered in epitheliotropic intestinal T-cell lymphoma.

    PubMed

    Nairismägi, M-L; Tan, J; Lim, J Q; Nagarajan, S; Ng, C C Y; Rajasegaran, V; Huang, D; Lim, W K; Laurensia, Y; Wijaya, G C; Li, Z M; Cutcutache, I; Pang, W L; Thangaraju, S; Ha, J; Khoo, L P; Chin, S T; Dey, S; Poore, G; Tan, L H C; Koh, H K M; Sabai, K; Rao, H-L; Chuah, K L; Ho, Y-H; Ng, S-B; Chuang, S-S; Zhang, F; Liu, Y-H; Pongpruttipan, T; Ko, Y H; Cheah, P-L; Karim, N; Chng, W-J; Tang, T; Tao, M; Tay, K; Farid, M; Quek, R; Rozen, S G; Tan, P; Teh, B T; Lim, S T; Tan, S-Y; Ong, C K

    2016-06-01

    Epitheliotropic intestinal T-cell lymphoma (EITL, also known as type II enteropathy-associated T-cell lymphoma) is an aggressive intestinal disease with poor prognosis and its molecular alterations have not been comprehensively characterized. We aimed to identify actionable easy-to-screen alterations that would allow better diagnostics and/or treatment of this deadly disease. By performing whole-exome sequencing of four EITL tumor-normal pairs, followed by amplicon deep sequencing of 42 tumor samples, frequent alterations of the JAK-STAT and G-protein-coupled receptor (GPCR) signaling pathways were discovered in a large portion of samples. Specifically, STAT5B was mutated in a remarkable 63% of cases, JAK3 in 35% and GNAI2 in 24%, with the majority occurring at known activating hotspots in key functional domains. Moreover, STAT5B locus carried copy-neutral loss of heterozygosity resulting in the duplication of the mutant copy, suggesting the importance of mutant STAT5B dosage for the development of EITL. Dysregulation of the JAK-STAT and GPCR pathways was also supported by gene expression profiling and further verified in patient tumor samples. In vitro overexpression of GNAI2 mutants led to the upregulation of pERK1/2, a member of MEK-ERK pathway. Notably, inhibitors of both JAK-STAT and MEK-ERK pathways effectively reduced viability of patient-derived primary EITL cells, indicating potential therapeutic strategies for this neoplasm with no effective treatment currently available.

  14. Prediction of change in protein unfolding rates upon point mutations in two state proteins.

    PubMed

    Chaudhary, Priyashree; Naganathan, Athi N; Gromiha, M Michael

    2016-09-01

    Studies on protein unfolding rates are limited and challenging due to the complexity of unfolding mechanism and the larger dynamic range of the experimental data. Though attempts have been made to predict unfolding rates using protein sequence-structure information there is no available method for predicting the unfolding rates of proteins upon specific point mutations. In this work, we have systematically analyzed a set of 790 single mutants and developed a robust method for predicting protein unfolding rates upon mutations (Δlnku) in two-state proteins by combining amino acid properties and knowledge-based classification of mutants with multiple linear regression technique. We obtain a mean absolute error (MAE) of 0.79/s and a Pearson correlation coefficient (PCC) of 0.71 between predicted unfolding rates and experimental observations using jack-knife test. We have developed a web server for predicting protein unfolding rates upon mutation and it is freely available at https://www.iitm.ac.in/bioinfo/proteinunfolding/unfoldingrace.html. Prominent features that determine unfolding kinetics as well as plausible reasons for the observed outliers are also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Impact of point mutation P29S in RAC1 on tumorigenesis.

    PubMed

    Rajendran, Vidya; Gopalakrishnan, Chandrasekhar; Purohit, Rituraj

    2016-11-01

    A point mutation (P29S) in the RAS-related C3 botulinum toxin substrate 1 (RAC1) was considered to be a trigger for melanoma, a form of skin cancer with highest mortality rate. In this study, we have investigated the pathogenic role of P29S based on the conformational behavior of RAC1 protein toward guanosine triphosphate (GTP). Molecular interaction, molecular dynamics trajectory analysis (RMSD, RMSF, Rg, SASA, DSSP, and PCA), and shape analysis of binding pocket were performed to analyze the interaction energy and the dynamic behavior of native and mutant RAC1 at the atomic level. Due to this mutation, the RAC1 switch I region acquired more flexibility and, to compensate it, the switch II region becomes rigid in their conformational space, as a result of which the interaction energy of the protein for GTP increased. The overall results strongly implied that the changes in atomic conformation of the switch I and II regions in mutant RAC1 protein were a significant reason for its malignant transformation and tumorigenesis. We raised the opportunity for researchers to design possible therapeutic molecule by considering our findings.

  16. Point of care assessment of melanoma tumor signaling and metastatic burden from μNMR analysis of tumor fine needle aspirates and peripheral blood.

    PubMed

    Gee, Michael S; Ghazani, Arezou A; Haq, Rizwan; Wargo, Jennifer A; Sebas, Matthew; Sullivan, Ryan J; Lee, Hakho; Weissleder, Ralph

    2017-04-01

    This study evaluates μNMR technology for molecular profiling of tumor fine needle aspirates and peripheral blood of melanoma patients. In vitro assessment of melanocyte (MART-1, HMB45) and MAP kinase signaling (pERK, pS6K) molecule expression was performed in human cell lines, while clinical validation was performed in an IRB-approved study of melanoma patients undergoing biopsy and blood sampling. Tumor FNA and blood specimens were compared with BRAF genetic analysis and cross-sectional imaging. μNMR in vitro analysis showed increased expression of melanocyte markers in melanoma cells as well as increased expression of phosphorylated MAP kinase targets in BRAF-mutant melanoma cells. Melanoma patient FNA samples showed increased pERK and pS6K levels in BRAF mutant compared with BRAF WT melanomas, with μNMR blood circulating tumor cell level increased with higher metastatic burden visible on imaging. These results indicate that μNMR technology provides minimally invasive point-of-care evaluation of tumor signaling and metastatic burden in melanoma patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. EPR analysis of cyanide complexes of wild-type human neuroglobin and mutants in comparison to horse heart myoglobin.

    PubMed

    Van Doorslaer, Sabine; Trandafir, Florin; Harmer, Jeffrey R; Moens, Luc; Dewilde, Sylvia

    2014-06-01

    Electron paramagnetic resonance (EPR) data reveal large differences between the ferric ((13)C-)cyanide complexes of wild-type human neuroglobin (NGB) and its H64Q and F28L point mutants and the cyanide complexes of mammalian myo- and haemoglobin. The point mutations, which involve residues comprising the distal haem pocket in NGB, induce smaller, but still significant changes, related to changes in the stabilization of the cyanide ligand. Furthermore, for the first time, the full (13)C hyperfine tensor of the cyanide carbon of cyanide-ligated horse heart myoglobin (hhMb) was determined using Davies ENDOR (electron nuclear double resonance). Disagreement of these experimental data with earlier predictions based on (13)C NMR data and a theoretical model reveal significant flaws in the model assumptions. The same ENDOR procedure allowed also partial determination of the corresponding (13)C hyperfine tensor of cyanide-ligated NGB and H64QNGB. These (13)C parameters differ significantly from those of cyanide-ligated hhMb and challenge our current theoretical understanding of how the haem environment influences the magnetic parameters obtained by EPR and NMR in cyanide-ligated haem proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Roles for the Rad27 Flap Endonuclease in Mitochondrial Mutagenesis and Double-Strand Break Repair in Saccharomyces cerevisiae.

    PubMed

    Nagarajan, Prabha; Prevost, Christopher T; Stein, Alexis; Kasimer, Rachel; Kalifa, Lidza; Sia, Elaine A

    2017-06-01

    The structure-specific nuclease, Rad27p/FEN1, plays a crucial role in DNA repair and replication mechanisms in the nucleus. Genetic assays using the rad27-∆ mutant have shown altered rates of DNA recombination, microsatellite instability, and point mutation in mitochondria. In this study, we examined the role of Rad27p in mitochondrial mutagenesis and double-strand break (DSB) repair in Saccharomyces cerevisiae Our findings show that Rad27p is essential for efficient mitochondrial DSB repair by a pathway that generates deletions at a region flanked by direct repeat sequences. Mutant analysis suggests that both exonuclease and endonuclease activities of Rad27p are required for its role in mitochondrial DSB repair. In addition, we found that the nuclease activities of Rad27p are required for the prevention of mitochondrial DNA (mtDNA) point mutations, and in the generation of spontaneous mtDNA rearrangements. Overall, our findings underscore the importance of Rad27p in the maintenance of mtDNA, and demonstrate that it participates in multiple DNA repair pathways in mitochondria, unlinked to nuclear phenotypes. Copyright © 2017 by the Genetics Society of America.

  19. Fukutin-related protein localizes to the Golgi apparatus and mutations lead to mislocalization in muscle in vivo.

    PubMed

    Keramaris-Vrantsis, Elizabeth; Lu, Pei J; Doran, Timothy; Zillmer, Allen; Ashar, Jignya; Esapa, Christopher T; Benson, Matthew A; Blake, Derek J; Rosenfeld, Jeffrey; Lu, Qi L

    2007-10-01

    Mutations in the fukutin-related protein gene (FKRP) are associated with a spectrum of diseases from mild limb-girdle muscular dystrophy type 2I to severe congenital muscular dystrophy type 1C, muscle-eye-brain disease (MEB), and Walker-Warburg syndrome (WWS). The effect of mutations on the transportation of the mutant proteins may constitute the underlying mechanisms for the pathogenesis of these diseases. Here we examined the subcellular localization of mouse and human normal and mutant FKRP proteins in cells and in muscle in vivo. Both normal human and mouse FKRPs localize in part of the Golgi apparatus in muscle fibers. Mutations in the FKRP gene invariably altered the localization of the protein, leading to endoplasmic reticulum retention within cells and diminished Golgi localization in muscle fibers. Our results therefore suggest that an individual missense point mutation can confer at least two independent effects on the protein, causing (1) reduction or loss of the presumed glycosyltransferase activity directly and (2) mislocalization that could further alter the function of the protein. The complexity of the effect of individual missense point mutations may partly explain the wide variation of the FKRP-related myopathies.

  20. The Comprehensive Business Exam: Usefulness for Assessing Instructional and Student Performance Outcomes

    ERIC Educational Resources Information Center

    Hahn, William; Leslie, Beth

    2017-01-01

    The authors explore the results of the Comprehensive Business Exam (CBE) administered to business majors during their senior-year business capstone course. The study results identified students' SAT and grade point average as a predictor of CBE performance, and variables that explain the correlation between CBE performance, SAT score, and grade…

Top