Size Does Matter: Implied Object Size is Mentally Simulated during Language Comprehension
ERIC Educational Resources Information Center
de Koning, Björn B.; Wassenburg, Stephanie I.; Bos, Lisanne T.; Van der Schoot, Menno
2017-01-01
Embodied theories of language comprehension propose that readers construct a mental simulation of described objects that contains perceptual characteristics of their real-world referents. The present study is the first to investigate directly whether implied object size is mentally simulated during sentence comprehension and to study the potential…
Classroom Simulation to Prepare Teachers to Use Evidence-Based Comprehension Practices
ERIC Educational Resources Information Center
Ely, Emily; Alves, Kat D.; Dolenc, Nathan R.; Sebolt, Stephanie; Walton, Emily A.
2018-01-01
Reading comprehension is an area of weakness for many students, including those with disabilities. Innovative technology methods may play a role in improving teacher readiness to use evidence-based comprehension practices for all students. In this experimental study, researchers examined a classroom simulation (TLE TeachLivE™) to improve…
Discourse Comprehension and Simulation of Positive Emotions
ERIC Educational Resources Information Center
Horchak, Oleksandr V.; Giger, Jean-Christophe; Pochwatko, Grzegorz
2014-01-01
Recent research has suggested that emotional sentences are understood by constructing an emotion simulation of the events being described. The present study aims to investigate whether emotion simulation is also involved in online and offline comprehension of larger language segments such as discourse. Participants read a target text describing…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gigley, H.M.
1982-01-01
An artificial intelligence approach to the simulation of neurolinguistically constrained processes in sentence comprehension is developed using control strategies for simulation of cooperative computation in associative networks. The desirability of this control strategy in contrast to ATN and production system strategies is explained. A first pass implementation of HOPE, an artificial intelligence simulation model of sentence comprehension, constrained by studies of aphasic performance, psycholinguistics, neurolinguistics, and linguistic theory is described. Claims that the model could serve as a basis for sentence production simulation and for a model of language acquisition as associative learning are discussed. HOPE is a model thatmore » performs in a normal state and includes a lesion simulation facility. HOPE is also a research tool. Its modifiability and use as a tool to investigate hypothesized causes of degradation in comprehension performance by aphasic patients are described. Issues of using behavioral constraints in modelling and obtaining appropriate data for simulated process modelling are discussed. Finally, problems of validation of the simulation results are raised; and issues of how to interpret clinical results to define the evolution of the model are discussed. Conclusions with respect to the feasibility of artificial intelligence simulation process modelling are discussed based on the current state of research.« less
A Comprehensive Study of Three Delay Compensation Algorithms for Flight Simulators
NASA Technical Reports Server (NTRS)
Guo, Liwen; Cardullo, Frank M.; Houck, Jacob A.; Kelly, Lon C.; Wolters, Thomas E.
2005-01-01
This paper summarizes a comprehensive study of three predictors used for compensating the transport delay in a flight simulator; The McFarland, Adaptive and State Space Predictors. The paper presents proof that the stochastic approximation algorithm can achieve the best compensation among all four adaptive predictors, and intensively investigates the relationship between the state space predictor s compensation quality and its reference model. Piloted simulation tests show that the adaptive predictor and state space predictor can achieve better compensation of transport delay than the McFarland predictor.
ERIC Educational Resources Information Center
Riley, Jason M.; Ellegood, William A.; Solomon, Stanislaus; Baker, Jerrine
2017-01-01
Purpose: This study aims to understand how mode of delivery, online versus face-to-face, affects comprehension when teaching operations management concepts via a simulation. Conceptually, the aim is to identify factors that influence the students' ability to learn and retain new concepts. Design/methodology/approach: Leveraging Littlefield…
Comprehensive evaluation of garment assembly line with simulation
NASA Astrophysics Data System (ADS)
Xu, Y.; Thomassey, S.; Chen, Y.; Zeng, X.
2017-10-01
In this paper, a comprehensive evaluation system is established to assess the garment production performance. It is based on performance indicators and supported with the corresponding results obtained by manual calculation or computer simulation. The assembly lines of a typical men’s shirt are taken as the study objects. With the comprehensive evaluation results, garments production arrangement scenarios are better analysed and then the appropriate one is supposed to be put into actual production. This will be a guidance given to companies on quick decision-making and multi-objective optimization of garment production.
Benoit, Julia S; Chan, Wenyaw; Doody, Rachelle S
2015-01-01
Parameter dependency within data sets in simulation studies is common, especially in models such as Continuous-Time Markov Chains (CTMC). Additionally, the literature lacks a comprehensive examination of estimation performance for the likelihood-based general multi-state CTMC. Among studies attempting to assess the estimation, none have accounted for dependency among parameter estimates. The purpose of this research is twofold: 1) to develop a multivariate approach for assessing accuracy and precision for simulation studies 2) to add to the literature a comprehensive examination of the estimation of a general 3-state CTMC model. Simulation studies are conducted to analyze longitudinal data with a trinomial outcome using a CTMC with and without covariates. Measures of performance including bias, component-wise coverage probabilities, and joint coverage probabilities are calculated. An application is presented using Alzheimer's disease caregiver stress levels. Comparisons of joint and component-wise parameter estimates yield conflicting inferential results in simulations from models with and without covariates. In conclusion, caution should be taken when conducting simulation studies aiming to assess performance and choice of inference should properly reflect the purpose of the simulation.
Pedestrians’ behavior in emergency evacuation: Modeling and simulation
NASA Astrophysics Data System (ADS)
Wang, Lei; Zheng, Jie-Hui; Zhang, Xiao-Shuang; Zhang, Jian-Lin; Wang, Qiu-Zhen; Zhang, Qian
2016-11-01
The social force model has been widely used to simulate pedestrian evacuation by analyzing attractive, repulsive, driving, and fluctuating forces among pedestrians. Many researchers have improved its limitations in simulating behaviors of large-scale population. This study modifies the well-accepted social force model by considering the impacts of interaction among companions and further develops a comprehensive model by combining that with a multi-exit utility function. Then numerical simulations of evacuations based on the comprehensive model are implemented in the waiting hall of the Wulin Square Subway Station in Hangzhou, China. The results provide safety thresholds of pedestrian density and panic levels in different operation situations. In spite of the operation situation and the panic level, a larger friend-group size results in lower evacuation efficiency. Our study makes important contributions to building a comprehensive multi-exit social force model and to applying it to actual scenarios, which produces data to facilitate decision making in contingency plans and emergency treatment. Project supported by the National Natural Science Foundation of China (Grant No. 71471163).
Comprehending Sentences With the Body: Action Compatibility in British Sign Language?
Vinson, David; Perniss, Pamela; Fox, Neil; Vigliocco, Gabriella
2017-05-01
Previous studies show that reading sentences about actions leads to specific motor activity associated with actually performing those actions. We investigate how sign language input may modulate motor activation, using British Sign Language (BSL) sentences, some of which explicitly encode direction of motion, versus written English, where motion is only implied. We find no evidence of action simulation in BSL comprehension (Experiments 1-3), but we find effects of action simulation in comprehension of written English sentences by deaf native BSL signers (Experiment 4). These results provide constraints on the nature of mental simulations involved in comprehending action sentences referring to transfer events, suggesting that the richer contextual information provided by BSL sentences versus written or spoken English may reduce the need for action simulation in comprehension, at least when the event described does not map completely onto the signer's own body. Copyright © 2016 Cognitive Science Society, Inc.
Simulation: A Complementary Method for Teaching Health Services Strategic Management
Reddick, W. T.
1990-01-01
Rapid change in the health care environment mandates a more comprehensive approach to the education of future health administrators. The area of consideration in this study is that of health care strategic management. A comprehensive literature review suggests microcomputer-based simulation as an appropriate vehicle for addressing the needs of both educators and students. Seven strategic management software packages are reviewed and rated with an instrument adapted from the Infoworld review format. The author concludes that a primary concern is the paucity of health care specific strategic management simulations.
Lang, Alon; Melzer, Ehud; Bar-Meir, Simon; Eliakim, Rami; Ziv, Amitai
2006-11-01
The continuing development in computer-based medical simulators provides an ideal platform for simulator-assisted training programs for medical trainees. Computer-based endoscopic simulators provide a virtual reality environment for training endoscopic procedures. This study illustrates the use of a comprehensive training model combining the use of endoscopic simulators with simulated (actor) patients (SP). To evaluate the effectiveness of a comprehensive simulation workshop from the trainee perspective. Four case studies were developed with emphasis on communication skills. Three workshops with 10 fellows in each were conducted. During each workshop the trainees spent half of the time in SP case studies and the remaining half working with computerized endoscopic simulators with continuous guidance by an expert endoscopist. Questionnaires were completed by the fellows at the end of the workshop. Seventy percent of the fellows felt that the endoscopic simulator was close or very close to reality for gastroscopy and 63% for colonoscopy. Eighty eight percent thought the close guidance was important for the learning process with the simulator. Eighty percent felt that the case studies were an important learning experience for risk management. Further evaluation of multi-modality simulation workshops in gastroenterologist training is needed to identify how best to incorporate this form of instruction into training for gastroenterologists.
Simulating an Enactment Effect: Pronouns Guide Action Simulation during Narrative Comprehension
ERIC Educational Resources Information Center
Ditman, Tali; Brunye, Tad T.; Mahoney, Caroline R.; Taylor, Holly A.
2010-01-01
Recent research has suggested that reading involves the mental simulation of events and actions described in a text. It is possible however that previous findings did not tap into processes engaged during natural reading but rather those triggered by task demands. The present study examined whether readers spontaneously mentally simulate the…
Yeari, Menahem; van den Broek, Paul
2016-09-01
It is a well-accepted view that the prior semantic (general) knowledge that readers possess plays a central role in reading comprehension. Nevertheless, computational models of reading comprehension have not integrated the simulation of semantic knowledge and online comprehension processes under a unified mathematical algorithm. The present article introduces a computational model that integrates the landscape model of comprehension processes with latent semantic analysis representation of semantic knowledge. In three sets of simulations of previous behavioral findings, the integrated model successfully simulated the activation and attenuation of predictive and bridging inferences during reading, as well as centrality estimations and recall of textual information after reading. Analyses of the computational results revealed new theoretical insights regarding the underlying mechanisms of the various comprehension phenomena.
Simulating Retail Banking for Banking Students
ERIC Educational Resources Information Center
Supramaniam, Mahadevan; Shanmugam, Bala
2009-01-01
The purpose of this study was to examine the implementation flow and development of retail bank management simulation based training system which could provide a comprehensive knowledge about the operations and management of banks for the banking students. The prototype of a Retail banking simulation based training system was developed based on…
Luo, Chuan; Jiang, Kaixia; Wan, Rongrong; Li, Hengpeng
2017-01-01
The Hydrological Simulation Program–Fortran (HSPF) is a hydrological and water quality computer model that was developed by the United States Environmental Protection Agency. Comprehensive performance evaluations were carried out for hydrological and nutrient simulation using the HSPF model in the Xitiaoxi watershed in China. Streamflow simulation was calibrated from 1 January 2002 to 31 December 2007 and then validated from 1 January 2008 to 31 December 2010 using daily observed data, and nutrient simulation was calibrated and validated using monthly observed data during the period from July 2009 to July 2010. These results of model performance evaluation showed that the streamflows were well simulated over the study period. The determination coefficient (R2) was 0.87, 0.77 and 0.63, and the Nash-Sutcliffe coefficient of efficiency (Ens) was 0.82, 0.76 and 0.65 for the streamflow simulation in annual, monthly and daily time-steps, respectively. Although limited to monthly observed data, satisfactory performance was still achieved during the quantitative evaluation for nutrients. The R2 was 0.73, 0.82 and 0.92, and the Ens was 0.67, 0.74 and 0.86 for nitrate, ammonium and orthophosphate simulation, respectively. Some issues may affect the application of HSPF were also discussed, such as input data quality, parameter values, etc. Overall, the HSPF model can be successfully used to describe streamflow and nutrients transport in the mesoscale watershed located in the East Asian monsoon climate area. This study is expected to serve as a comprehensive and systematic documentation of understanding the HSPF model for wide application and avoiding possible misuses. PMID:29257117
Li, Zhaofu; Luo, Chuan; Jiang, Kaixia; Wan, Rongrong; Li, Hengpeng
2017-12-19
The Hydrological Simulation Program-Fortran (HSPF) is a hydrological and water quality computer model that was developed by the United States Environmental Protection Agency. Comprehensive performance evaluations were carried out for hydrological and nutrient simulation using the HSPF model in the Xitiaoxi watershed in China. Streamflow simulation was calibrated from 1 January 2002 to 31 December 2007 and then validated from 1 January 2008 to 31 December 2010 using daily observed data, and nutrient simulation was calibrated and validated using monthly observed data during the period from July 2009 to July 2010. These results of model performance evaluation showed that the streamflows were well simulated over the study period. The determination coefficient ( R ²) was 0.87, 0.77 and 0.63, and the Nash-Sutcliffe coefficient of efficiency (Ens) was 0.82, 0.76 and 0.65 for the streamflow simulation in annual, monthly and daily time-steps, respectively. Although limited to monthly observed data, satisfactory performance was still achieved during the quantitative evaluation for nutrients. The R ² was 0.73, 0.82 and 0.92, and the Ens was 0.67, 0.74 and 0.86 for nitrate, ammonium and orthophosphate simulation, respectively. Some issues may affect the application of HSPF were also discussed, such as input data quality, parameter values, etc. Overall, the HSPF model can be successfully used to describe streamflow and nutrients transport in the mesoscale watershed located in the East Asian monsoon climate area. This study is expected to serve as a comprehensive and systematic documentation of understanding the HSPF model for wide application and avoiding possible misuses.
Influence of marine engine simulator training to marine engineer's competence
NASA Astrophysics Data System (ADS)
Wang, Peng; Cheng, Xiangxin; Ma, Qiang; Song, Xiufu; Liu, Xinjian; Wang, Lianhai
2011-12-01
Marine engine simulator is broadly used in maritime education and training. Maritime education and training institutions usually use this facility to cultivate the hands-on ability and fault-treat ability of marine engineers and students. In this study, the structure and main function of DMS-2005 marine engine simulator is briefly introduced, several teaching methods are discussed. By using Delphi method and AHP method, a comprehensive evaluation system is built and the competence of marine engineers is assessed. After analyzing the calculating data, some conclusions can be drawn: comprehensive evaluation system could be used to assess marine engineer's competence; the training of marine engine simulator is propitious to enhance marine engineers' integrated ability, especially on the aspect of judgment of abnormal situation capacity, emergency treatment ability and safe operation ability.
Influence of marine engine simulator training to marine engineer's competence
NASA Astrophysics Data System (ADS)
Wang, Peng; Cheng, Xiangxin; Ma, Qiang; Song, Xiufu; Liu, Xinjian; Wang, Lianhai
2012-01-01
Marine engine simulator is broadly used in maritime education and training. Maritime education and training institutions usually use this facility to cultivate the hands-on ability and fault-treat ability of marine engineers and students. In this study, the structure and main function of DMS-2005 marine engine simulator is briefly introduced, several teaching methods are discussed. By using Delphi method and AHP method, a comprehensive evaluation system is built and the competence of marine engineers is assessed. After analyzing the calculating data, some conclusions can be drawn: comprehensive evaluation system could be used to assess marine engineer's competence; the training of marine engine simulator is propitious to enhance marine engineers' integrated ability, especially on the aspect of judgment of abnormal situation capacity, emergency treatment ability and safe operation ability.
Comprehensive Numerical Simulation of Filling and Solidification of Steel Ingots
Pola, Annalisa; Gelfi, Marcello; La Vecchia, Giovina Marina
2016-01-01
In this paper, a complete three-dimensional numerical model of mold filling and solidification of steel ingots is presented. The risk of powder entrapment and defects formation during filling is analyzed in detail, demonstrating the importance of using a comprehensive geometry, with trumpet and runner, compared to conventional simplified models. By using a case study, it was shown that the simplified model significantly underestimates the defects sources, reducing the utility of simulations in supporting mold and process design. An experimental test was also performed on an instrumented mold and the measurements were compared to the calculation results. The good agreement between calculation and trial allowed validating the simulation. PMID:28773890
Smith, Amy E; Haney, Craig
2011-10-01
This research examined the effects of several versions of capital penalty phase instructions on juror comprehension. Study One documented the impact of California's recently implemented "plain language" instruction. It showed that although the new instruction has clear advantages over the previous version, significant comprehension problems remain. Study Two evaluated several modified instructions designed to enhance comprehension. Participants heard either a standard patterned instruction or one of two alternatives-a psycholinguistically improved instruction, or a "pinpoint" instruction using case-related facts to illustrate key terms-in a simulated death penalty sentencing phase. Persons who heard modified instructions demonstrated higher levels of comprehension on virtually every measure as compared to those in the standard instruction condition.
Roon, David A.; Waits, L.P.; Kendall, K.C.
2005-01-01
Non-invasive genetic sampling (NGS) is becoming a popular tool for population estimation. However, multiple NGS studies have demonstrated that polymerase chain reaction (PCR) genotyping errors can bias demographic estimates. These errors can be detected by comprehensive data filters such as the multiple-tubes approach, but this approach is expensive and time consuming as it requires three to eight PCR replicates per locus. Thus, researchers have attempted to correct PCR errors in NGS datasets using non-comprehensive error checking methods, but these approaches have not been evaluated for reliability. We simulated NGS studies with and without PCR error and 'filtered' datasets using non-comprehensive approaches derived from published studies and calculated mark-recapture estimates using CAPTURE. In the absence of data-filtering, simulated error resulted in serious inflations in CAPTURE estimates; some estimates exceeded N by ??? 200%. When data filters were used, CAPTURE estimate reliability varied with per-locus error (E??). At E?? = 0.01, CAPTURE estimates from filtered data displayed < 5% deviance from error-free estimates. When E?? was 0.05 or 0.09, some CAPTURE estimates from filtered data displayed biases in excess of 10%. Biases were positive at high sampling intensities; negative biases were observed at low sampling intensities. We caution researchers against using non-comprehensive data filters in NGS studies, unless they can achieve baseline per-locus error rates below 0.05 and, ideally, near 0.01. However, we suggest that data filters can be combined with careful technique and thoughtful NGS study design to yield accurate demographic information. ?? 2005 The Zoological Society of London.
ERIC Educational Resources Information Center
de Koning, Björn B.; Bos, Lisanne T.; Wassenburg, Stephanie I.; van der Schoot, Menno
2017-01-01
This study investigated the effects of a mental simulation training targeted at improving children's reading comprehension. In a 4-week period, one group of third and fourth graders (n = 75) learned to draw upon their sensorimotor memories and experiences to mentally simulate text (experimental training group), whereas another group (n = 51)…
ERIC Educational Resources Information Center
Korfiatis, K.; Papatheodorou, E.; Paraskevopoulous, S.; Stamou, G. P.
1999-01-01
Describes a study of the effectiveness of computer-simulation programs in enhancing biology students' familiarity with ecological modeling and concepts. Finds that computer simulations improved student comprehension of ecological processes expressed in mathematical form, but did not allow a full understanding of ecological concepts. Contains 28…
A comprehensive three-dimensional Eulerian photochemical model (URM-1ATM) was developed that simulates urban and regional gas and size-resolved aerosol concentrations of pollutants in the atmosphere and both wet and dry deposition. In this study, RAMS and EMS-95 are used to ge...
Moving the Needle: Simulation's Impact on Patient Outcomes.
Cox, Tiffany; Seymour, Neal; Stefanidis, Dimitrios
2015-08-01
This review investigates the available literature that addresses the impact simulator training has on patient outcomes. The authors conducted a comprehensive literature search of studies reporting outcomes of simulation training and categorized studies based on the Kirkpatrick model of training evaluation. Kirkpatrick level 4 studies reporting patient outcomes were identified and included in this review. Existing evidence is promising, demonstrating patient benefits as a result of simulation training for central line placement, obstetric emergencies, cataract surgery, laparoscopic inguinal hernia repair, and team training. Copyright © 2015 Elsevier Inc. All rights reserved.
Abdelgaied, A; Fisher, J; Jennings, L M
2018-02-01
A more robust pre-clinical wear simulation framework is required in order to simulate wider and higher ranges of activities, observed in different patient populations such as younger more active patients. Such a framework will help to understand and address the reported higher failure rates for younger and more active patients (National_Joint_Registry, 2016). The current study has developed and validated a comprehensive combined experimental and computational framework for pre-clinical wear simulation of total knee replacements (TKR). The input mechanical (elastic modulus and Poisson's ratio) and wear parameters of the moderately cross-linked ultra-high molecular weight polyethylene (UHMWPE) bearing material were independently measured from experimental studies under realistic test conditions, similar to the loading conditions found in the total knee replacements. The wear predictions from the computational wear simulation were validated against the direct experimental wear measurements for size 3 Sigma curved total knee replacements (DePuy, UK) in an independent experimental wear simulation study under three different daily activities; walking, deep squat, and stairs ascending kinematic conditions. The measured compressive mechanical properties of the moderately cross-linked UHMWPE material were more than 20% lower than that reported in the literature under tensile test conditions. The pin-on-plate wear coefficient of moderately cross-linked UHMWPE was significantly dependant of the contact stress and the degree of cross-shear at the articulating surfaces. The computational wear predictions for the TKR from the current framework were consistent and in a good agreement with the independent full TKR experimental wear simulation measurements, with 0.94 coefficient of determination of the framework. In addition, the comprehensive combined experimental and computational framework was able to explain the complex experimental wear trends from the three different daily activities investigated. Therefore, such a framework can be adopted as a pre-clinical simulation approach to optimise different designs, materials, as well as patient's specific total knee replacements for a range of activities. Copyright © 2017. Published by Elsevier Ltd.
Gender Differences in Mental Simulation during Sentence and Word Processing
ERIC Educational Resources Information Center
Wassenburg, Stephanie I.; de Koning, Björn B.; de Vries, Meinou H.; Boonstra, A. Marije; van der Schoot, Menno
2017-01-01
Text comprehension requires readers to mentally simulate the described situation by reactivating previously acquired sensory and motor information from (episodic) memory. Drawing upon research demonstrating gender differences, favouring girls, in tasks involving episodic memory retrieval, the present study explores whether gender differences exist…
Knowledge-Driven Design of Virtual Patient Simulations
ERIC Educational Resources Information Center
Vergara, Victor; Caudell, Thomas; Goldsmith, Timothy; Panaiotis; Alverson, Dale
2009-01-01
Virtual worlds provide unique opportunities for instructors to promote, study, and evaluate student learning and comprehension. In this article, Victor Vergara, Thomas Caudell, Timothy Goldsmith, Panaiotis, and Dale Alverson explore the advantages of using virtual reality environments to create simulations for medical students. Virtual simulations…
Sengupta, Durba; Prasanna, Xavier; Mohole, Madhura; Chattopadhyay, Amitabha
2018-06-07
Gprotein-coupled receptors (GPCRs) are seven transmembrane receptors that mediate a large number of cellular responses and are important drug targets. One of the current challenges in GPCR biology is to analyze the molecular signatures of receptor-lipid interactions and their subsequent effects on GPCR structure, organization, and function. Molecular dynamics simulation studies have been successful in predicting molecular determinants of receptor-lipid interactions. In particular, predicted cholesterol interaction sites appear to correspond well with experimentally determined binding sites and estimated time scales of association. In spite of several success stories, the methodologies in molecular dynamics simulations are still emerging. In this Feature Article, we provide a comprehensive overview of coarse-grain and atomistic molecular dynamics simulations of GPCR-lipid interaction in the context of experimental observations. In addition, we discuss the effect of secondary and tertiary structural constraints in coarse-grain simulations in the context of functional dynamics and structural plasticity of GPCRs. We envision that this comprehensive overview will help resolve differences in computational studies and provide a way forward.
Hettinger, Lawrence J.; Kirlik, Alex; Goh, Yang Miang; Buckle, Peter
2015-01-01
Accurate comprehension and analysis of complex sociotechnical systems is a daunting task. Empirically examining, or simply envisioning the structure and behaviour of such systems challenges traditional analytic and experimental approaches as well as our everyday cognitive capabilities. Computer-based models and simulations afford potentially useful means of accomplishing sociotechnical system design and analysis objectives. From a design perspective, they can provide a basis for a common mental model among stakeholders, thereby facilitating accurate comprehension of factors impacting system performance and potential effects of system modifications. From a research perspective, models and simulations afford the means to study aspects of sociotechnical system design and operation, including the potential impact of modifications to structural and dynamic system properties, in ways not feasible with traditional experimental approaches. This paper describes issues involved in the design and use of such models and simulations and describes a proposed path forward to their development and implementation. Practitioner Summary: The size and complexity of real-world sociotechnical systems can present significant barriers to their design, comprehension and empirical analysis. This article describes the potential advantages of computer-based models and simulations for understanding factors that impact sociotechnical system design and operation, particularly with respect to process and occupational safety. PMID:25761227
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genser, Krzysztof; Hatcher, Robert; Kelsey, Michael
The Geant4 simulation toolkit is used to model interactions between particles and matter. Geant4 employs a set of validated physics models that span a wide range of interaction energies. These models rely on measured cross-sections and phenomenological models with the physically motivated parameters that are tuned to cover many application domains. To study what uncertainties are associated with the Geant4 physics models we have designed and implemented a comprehensive, modular, user-friendly software toolkit that allows the variation of one or more parameters of one or more Geant4 physics models involved in simulation studies. It also enables analysis of multiple variantsmore » of the resulting physics observables of interest in order to estimate the uncertainties associated with the simulation model choices. Based on modern event-processing infrastructure software, the toolkit offers a variety of attractive features, e.g. exible run-time con gurable work ow, comprehensive bookkeeping, easy to expand collection of analytical components. Design, implementation technology, and key functionalities of the toolkit are presented in this paper and illustrated with selected results.« less
Impaired Comprehension of Speed Verbs in Parkinson's Disease.
Speed, Laura J; van Dam, Wessel O; Hirath, Priyantha; Vigliocco, Gabriella; Desai, Rutvik H
2017-05-01
A wealth of studies provide evidence for action simulation during language comprehension. Recent research suggests such action simulations might be sensitive to fine-grained information, such as speed. Here, we present a crucial test for action simulation of speed in language by assessing speed comprehension in patients with Parkinson's disease (PD). Based on the patients' motor deficits, we hypothesized that the speed of motion described in language would modulate their performance in semantic tasks. Specifically, they would have more difficulty processing language about relatively fast speed than language about slow speed. We conducted a semantic similarity judgment task on fast and slow action verbs in patients with PD and age-matched healthy controls. Participants had to decide which of two verbs most closely matched a target word. Compared to controls, PD patients were slower making judgments about fast action verbs, but not for judgments about slow action verbs, suggesting impairment in processing language about fast action. Moreover, this impairment was specific to verbs describing fast action performed with the hand. Problems moving quickly lead to difficulties comprehending language about moving quickly. This study provides evidence that speed is an important part of action representations. (JINS, 2017, 23, 412-420).
Nodes on ropes: a comprehensive data and control flow for steering ensemble simulations.
Waser, Jürgen; Ribičić, Hrvoje; Fuchs, Raphael; Hirsch, Christian; Schindler, Benjamin; Blöschl, Günther; Gröller, M Eduard
2011-12-01
Flood disasters are the most common natural risk and tremendous efforts are spent to improve their simulation and management. However, simulation-based investigation of actions that can be taken in case of flood emergencies is rarely done. This is in part due to the lack of a comprehensive framework which integrates and facilitates these efforts. In this paper, we tackle several problems which are related to steering a flood simulation. One issue is related to uncertainty. We need to account for uncertain knowledge about the environment, such as levee-breach locations. Furthermore, the steering process has to reveal how these uncertainties in the boundary conditions affect the confidence in the simulation outcome. Another important problem is that the simulation setup is often hidden in a black-box. We expose system internals and show that simulation steering can be comprehensible at the same time. This is important because the domain expert needs to be able to modify the simulation setup in order to include local knowledge and experience. In the proposed solution, users steer parameter studies through the World Lines interface to account for input uncertainties. The transport of steering information to the underlying data-flow components is handled by a novel meta-flow. The meta-flow is an extension to a standard data-flow network, comprising additional nodes and ropes to abstract parameter control. The meta-flow has a visual representation to inform the user about which control operations happen. Finally, we present the idea to use the data-flow diagram itself for visualizing steering information and simulation results. We discuss a case-study in collaboration with a domain expert who proposes different actions to protect a virtual city from imminent flooding. The key to choosing the best response strategy is the ability to compare different regions of the parameter space while retaining an understanding of what is happening inside the data-flow system. © 2011 IEEE
Computer Simulation of Classic Studies in Psychology.
ERIC Educational Resources Information Center
Bradley, Drake R.
This paper describes DATASIM, a comprehensive software package which generates simulated data for actual or hypothetical research designs. DATASIM is primarily intended for use in statistics and research methods courses, where it is used to generate "individualized" datasets for students to analyze, and later to correct their answers.…
DOT National Transportation Integrated Search
2012-01-01
The report describes a comprehensive vehicle fleet composition, utilization, and evolution : simulator that can be used to forecast household vehicle ownership and mileage by type of : vehicle over time. The components of the simulator are developed ...
Siebert, Tobias; Leichsenring, Kay; Rode, Christian; Wick, Carolin; Stutzig, Norman; Schubert, Harald; Blickhan, Reinhard; Böl, Markus
2015-01-01
The vastly increasing number of neuro-muscular simulation studies (with increasing numbers of muscles used per simulation) is in sharp contrast to a narrow database of necessary muscle parameters. Simulation results depend heavily on rough parameter estimates often obtained by scaling of one muscle parameter set. However, in vivo muscles differ in their individual properties and architecture. Here we provide a comprehensive dataset of dynamic (n = 6 per muscle) and geometric (three-dimensional architecture, n = 3 per muscle) muscle properties of the rabbit calf muscles gastrocnemius, plantaris, and soleus. For completeness we provide the dynamic muscle properties for further important shank muscles (flexor digitorum longus, extensor digitorum longus, and tibialis anterior; n = 1 per muscle). Maximum shortening velocity (normalized to optimal fiber length) of the gastrocnemius is about twice that of soleus, while plantaris showed an intermediate value. The force-velocity relation is similar for gastrocnemius and plantaris but is much more bent for the soleus. Although the muscles vary greatly in their three-dimensional architecture their mean pennation angle and normalized force-length relationships are almost similar. Forces of the muscles were enhanced in the isometric phase following stretching and were depressed following shortening compared to the corresponding isometric forces. While the enhancement was independent of the ramp velocity, the depression was inversely related to the ramp velocity. The lowest effect strength for soleus supports the idea that these effects adapt to muscle function. The careful acquisition of typical dynamical parameters (e.g. force-length and force-velocity relations, force elongation relations of passive components), enhancement and depression effects, and 3D muscle architecture of calf muscles provides valuable comprehensive datasets for e.g. simulations with neuro-muscular models, development of more realistic muscle models, or simulation of muscle packages. PMID:26114955
NASA Astrophysics Data System (ADS)
Muhammad, Ario; Goda, Katsuichiro; Alexander, Nicholas A.; Kongko, Widjo; Muhari, Abdul
2017-12-01
This study develops tsunami evacuation plans in Padang, Indonesia, using a stochastic tsunami simulation method. The stochastic results are based on multiple earthquake scenarios for different magnitudes (Mw 8.5, 8.75, and 9.0) that reflect asperity characteristics of the 1797 historical event in the same region. The generation of the earthquake scenarios involves probabilistic models of earthquake source parameters and stochastic synthesis of earthquake slip distributions. In total, 300 source models are generated to produce comprehensive tsunami evacuation plans in Padang. The tsunami hazard assessment results show that Padang may face significant tsunamis causing the maximum tsunami inundation height and depth of 15 and 10 m, respectively. A comprehensive tsunami evacuation plan - including horizontal evacuation area maps, assessment of temporary shelters considering the impact due to ground shaking and tsunami, and integrated horizontal-vertical evacuation time maps - has been developed based on the stochastic tsunami simulation results. The developed evacuation plans highlight that comprehensive mitigation policies can be produced from the stochastic tsunami simulation for future tsunamigenic events.
Michael A. Larson; Frank R., III Thompson; Joshua J. Millspaugh; William D. Dijak; Stephen R. Shifley
2004-01-01
Methods for habitat modeling based on landscape simulations and population viability modeling based on habitat quality are well developed, but no published study of which we are aware has effectively joined them in a single, comprehensive analysis. We demonstrate the application of a population viability model for ovenbirds (Seiurus aurocapillus)...
A review of training research and virtual reality simulators for the da Vinci surgical system.
Liu, May; Curet, Myriam
2015-01-01
PHENOMENON: Virtual reality simulators are the subject of several recent studies of skills training for robot-assisted surgery. Yet no consensus exists regarding what a core skill set comprises or how to measure skill performance. Defining a core skill set and relevant metrics would help surgical educators evaluate different simulators. This review draws from published research to propose a core technical skill set for using the da Vinci surgeon console. Publications on three commercial simulators were used to evaluate the simulators' content addressing these skills and associated metrics. An analysis of published research suggests that a core technical skill set for operating the surgeon console includes bimanual wristed manipulation, camera control, master clutching to manage hand position, use of third instrument arm, activating energy sources, appropriate depth perception, and awareness of forces applied by instruments. Validity studies of three commercial virtual reality simulators for robot-assisted surgery suggest that all three have comparable content and metrics. However, none have comprehensive content and metrics for all core skills. INSIGHTS: Virtual reality simulation remains a promising tool to support skill training for robot-assisted surgery, yet existing commercial simulator content is inadequate for performing and assessing a comprehensive basic skill set. The results of this evaluation help identify opportunities and challenges that exist for future developments in virtual reality simulation for robot-assisted surgery. Specifically, the inclusion of educational experts in the development cycle alongside clinical and technological experts is recommended.
Lee Chang, Alfredo; Dym, Andrew A; Venegas-Borsellino, Carla; Bangar, Maneesha; Kazzi, Massoud; Lisenenkov, Dmitry; Qadir, Nida; Keene, Adam; Eisen, Lewis Ari
2017-04-01
Situation awareness has been defined as the perception of the elements in the environment within volumes of time and space, the comprehension of their meaning, and the projection of their status in the near future. Intensivists often make time-sensitive critical decisions, and loss of situation awareness can lead to errors. It has been shown that simulation-based training is superior to lecture-based training for some critical scenarios. Because the methods of training to improve situation awareness have not been well studied in the medical field, we compared the impact of simulation vs. lecture training using the Situation Awareness Global Assessment Technique (SAGAT) score. To identify an effective method for teaching situation awareness. We randomly assigned 17 critical care fellows to simulation vs. lecture training. Training consisted of eight cases on airway management, including topics such as elevated intracranial pressure, difficult airway, arrhythmia, and shock. During the testing scenario, at random times between 4 and 6 minutes into the simulation, the scenario was frozen, and the screens were blanked. Respondents then completed the 28 questions on the SAGAT scale. Sample items were categorized as Perception, Projection, and Comprehension of the situation. Results were analyzed using SPSS Version 21. Eight fellows from the simulation group and nine from the lecture group underwent simulation testing. Sixty-four SAGAT scores were recorded for the simulation group and 48 scores were recorded for the lecture group. The mean simulation vs. lecture group SAGAT score was 64.3 ± 10.1 (SD) vs. 59.7 ± 10.8 (SD) (P = 0.02). There was also a difference in the median Perception ability between the simulation vs. lecture groups (61.1 vs. 55.5, P = 0.01). There was no difference in the median Projection and Comprehension scores between the two groups (50.0 vs. 50.0, P = 0.92, and 83.3 vs. 83.3, P = 0.27). We found a significant, albeit modest, difference between simulation training and lecture training on the total SAGAT score of situation awareness mainly because of the improvement in perception ability. Simulation may be a superior method of teaching situation awareness.
Crack propagation life of detail fractures in rails
DOT National Transportation Integrated Search
1988-10-01
The results of a comprehensive study of the crack propagation behavior of detail fractures in railroad rails are presented. The study includes full-scale crack growth experiments in a test track under simulated heavy freight train service, similar fi...
Nataraj, Raviraj; Audu, Musa L; Kirsch, Robert F; Triolo, Ronald J
2010-12-01
Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint feedback control against postural disturbances using a bipedal, 3-D computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage.
Nataraj, Raviraj; Audu, Musa L.; Kirsch, Robert F.; Triolo, Ronald J.
2013-01-01
Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint-feedback control against postural disturbances using a bipedal, three-dimensional computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint-feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage. PMID:20923741
NASA Technical Reports Server (NTRS)
Mccllough, J. R.; Sharpe, A.; Doetsch, K. H.
1980-01-01
The SIMFAC has played a vital role in the design, development, and performance verification of the shuttle remote manipulator system (SRMS) to be installed in the space shuttle orbiter. The facility provides for realistic man-in-the-loop operation of the SRMS by an operator in the operator complex, a flightlike crew station patterned after the orbiter aft flight deck with all necessary man machine interface elements, including SRMS displays and controls and simulated out-of-the-window and CCTV scenes. The characteristics of the manipulator system, including arm and joint servo dynamics and control algorithms, are simulated by a comprehensive mathematical model within the simulation subsystem of the facility. Major studies carried out using SIMFAC include: SRMS parameter sensitivity evaluations; the development, evaluation, and verification of operating procedures; and malfunction simulation and analysis of malfunction performance. Among the most important and comprehensive man-in-the-loop simulations carried out to date on SIMFAC are those which support SRMS performance verification and certification when the SRMS is part of the integrated orbiter-manipulator system.
Higgins, Meaghan C; Penney, Sarah B; Robertson, Erin K
2017-10-01
The roles of phonological short-term memory (pSTM) and speech perception in spoken sentence comprehension were examined in an experimental design. Deficits in pSTM and speech perception were simulated through task demands while typically-developing children (N [Formula: see text] 71) completed a sentence-picture matching task. Children performed the control, simulated pSTM deficit, simulated speech perception deficit, or simulated double deficit condition. On long sentences, the double deficit group had lower scores than the control and speech perception deficit groups, and the pSTM deficit group had lower scores than the control group and marginally lower scores than the speech perception deficit group. The pSTM and speech perception groups performed similarly to groups with real deficits in these areas, who completed the control condition. Overall, scores were lowest on noncanonical long sentences. Results show pSTM has a greater effect than speech perception on sentence comprehension, at least in the tasks employed here.
Ergonomics and simulation-based approach in improving facility layout
NASA Astrophysics Data System (ADS)
Abad, Jocelyn D.
2018-02-01
The use of the simulation-based technique in facility layout has been a choice in the industry due to its convenience and efficient generation of results. Nevertheless, the solutions generated are not capable of addressing delays due to worker's health and safety which significantly impact overall operational efficiency. It is, therefore, critical to incorporate ergonomics in facility design. In this study, workstation analysis was incorporated into Promodel simulation to improve the facility layout of a garment manufacturing. To test the effectiveness of the method, existing and improved facility designs were measured using comprehensive risk level, efficiency, and productivity. Results indicated that the improved facility layout generated a decrease in comprehensive risk level and rapid upper limb assessment score; an increase of 78% in efficiency and 194% increase in productivity compared to existing design and thus proved that the approach is effective in attaining overall facility design improvement.
Comprehensive pulsed electric field (PEF) system analysis for microalgae processing.
Buchmann, Leandro; Bloch, Robin; Mathys, Alexander
2018-06-07
Pulsed electric field (PEF) is an emerging nonthermal technique with promising applications in microalgae biorefinery concepts. In this work, the flow field in continuous PEF processing and its influencing factors were analyzed and energy input distributions in PEF treatment chambers were investigated. The results were obtained using an interdisciplinary approach that combined multiphysics simulations with ultrasonic Doppler velocity profiling (UVP) and rheological measurements of Arthrospira platensis suspensions as a case study for applications in the biobased industry. UVP enabled non-invasive validation of multiphysics simulations. A. platensis suspensions follow a non-Newtonian, shear-thinning behavior, and measurement data could be fitted with rheological functions, which were used as an input for fluid dynamics simulations. Within the present work, a comprehensive system characterization was achieved that will facilitate research in the field of PEF processing. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Zhou, Peiyun; Christianson, Kiel
2016-01-01
Auditory perceptual simulation (APS) during silent reading refers to situations in which the reader actively simulates the voice of a character or other person depicted in a text. In three eye-tracking experiments, APS effects were investigated as people read utterances attributed to a native English speaker, a non-native English speaker, or no speaker at all. APS effects were measured via online eye movements and offline comprehension probes. Results demonstrated that inducing APS during silent reading resulted in observable differences in reading speed when readers simulated the speech of faster compared to slower speakers and compared to silent reading without APS. Social attitude survey results indicated that readers' attitudes towards the native and non-native speech did not consistently influence APS-related effects. APS of both native speech and non-native speech increased reading speed, facilitated deeper, less good-enough sentence processing, and improved comprehension compared to normal silent reading.
NASA Astrophysics Data System (ADS)
Fu, Qiang; Liu, Jianhua; Wang, Xiaoman; Jiang, Huilin; Liu, Zhi
2014-12-01
The laser transmission characteristics affected in the complex channel environment, which limits the performance of laser equipment and engineering application severely. The article aim at the influence of laser transmission in atmospheric and seawater channels, summarizes the foreign researching work of the simulation and comprehensive test regarding to the laser transmission characteristics in complex environment. And researched the theory of atmospheric turbulence effect, water attenuation features, and put forward the corresponding theoretical model. And researched the simulate technology of atmospheric channel and sea water channel, put forward the analog device plan, adopt the similar theory of flowing to simulate the atmosphere turbulence .When the flowing has the same condition of geometric limits including the same Reynolds, they must be similar to each other in the motivation despite of the difference in the size, speed, and intrinsic quality. On this basis, set up a device for complex channel simulation and comprehensive testing, the overall design of the structure of the device, Hot and Cold Air Convection Simulation of Atmospheric Turbulence, mainly consists of cell body, heating systems, cooling systems, automatic control system. he simulator provides platform and method for the basic research of laser transmission characteristics in the domestic.
Building Comprehensive Strategies for Obstetric Safety: Simulation Drills and Communication.
Austin, Naola; Goldhaber-Fiebert, Sara; Daniels, Kay; Arafeh, Julie; Grenon, Veronique; Welle, Dana; Lipman, Steven
2016-11-01
As pioneers in the field of patient safety, anesthesiologists are uniquely suited to help develop and implement safety strategies to minimize preventable harm on the labor and delivery unit. Most existing obstetric safety strategies are not comprehensive, lack input from anesthesiologists, are designed with a relatively narrow focus, or lack implementation details to allow customization for different units. This article attempts to address these gaps and build more comprehensive strategies by discussing the available evidence and multidisciplinary authors' local experience with obstetric simulation drills and optimization of team communication.
Simulating fiction: individual differences in literature comprehension revealed with FMRI.
Nijhof, Annabel D; Willems, Roel M
2015-01-01
When we read literary fiction, we are transported to fictional places, and we feel and think along with the characters. Despite the importance of narrative in adult life and during development, the neurocognitive mechanisms underlying fiction comprehension are unclear. We used functional magnetic resonance imaging (fMRI) to investigate how individuals differently employ neural networks important for understanding others' beliefs and intentions (mentalizing), and for sensori-motor simulation while listening to excerpts from literary novels. Localizer tasks were used to localize both the cortical motor network and the mentalizing network in participants after they listened to excerpts from literary novels. Results show that participants who had high activation in anterior medial prefrontal cortex (aMPFC; part of the mentalizing network) when listening to mentalizing content of literary fiction, had lower motor cortex activity when they listened to action-related content of the story, and vice versa. This qualifies how people differ in their engagement with fiction: some people are mostly drawn into a story by mentalizing about the thoughts and beliefs of others, whereas others engage in literature by simulating more concrete events such as actions. This study provides on-line neural evidence for the existence of qualitatively different styles of moving into literary worlds, and adds to a growing body of literature showing the potential to study narrative comprehension with neuroimaging methods.
Simulating Fiction: Individual Differences in Literature Comprehension Revealed with fMRI
Nijhof, Annabel D.; Willems, Roel M.
2015-01-01
When we read literary fiction, we are transported to fictional places, and we feel and think along with the characters. Despite the importance of narrative in adult life and during development, the neurocognitive mechanisms underlying fiction comprehension are unclear. We used functional magnetic resonance imaging (fMRI) to investigate how individuals differently employ neural networks important for understanding others’ beliefs and intentions (mentalizing), and for sensori-motor simulation while listening to excerpts from literary novels. Localizer tasks were used to localize both the cortical motor network and the mentalizing network in participants after they listened to excerpts from literary novels. Results show that participants who had high activation in anterior medial prefrontal cortex (aMPFC; part of the mentalizing network) when listening to mentalizing content of literary fiction, had lower motor cortex activity when they listened to action-related content of the story, and vice versa. This qualifies how people differ in their engagement with fiction: some people are mostly drawn into a story by mentalizing about the thoughts and beliefs of others, whereas others engage in literature by simulating more concrete events such as actions. This study provides on-line neural evidence for the existence of qualitatively different styles of moving into literary worlds, and adds to a growing body of literature showing the potential to study narrative comprehension with neuroimaging methods. PMID:25671708
ERIC Educational Resources Information Center
Sondergeld, Toni A.
2009-01-01
This dissertation examines the efficacy of a bottom-up comprehensive school reform (CSR) program by evaluating its impact on student achievement, attendance, and behavior outcomes through an explanatory mixed methods design. The CSR program (Gear Up) was implemented in an urban junior high school over the course of seven years allowing for…
Simulation Framework for Intelligent Transportation Systems
DOT National Transportation Integrated Search
1996-10-01
A simulation framework has been developed for a large-scale, comprehensive, scaleable simulation of an Intelligent Transportation System. The simulator is designed for running on parellel computers and distributed (networked) computer systems, but ca...
Action comprehension in non-human primates: motor simulation or inferential reasoning?
Wood, Justin N; Hauser, Marc D
2008-12-01
Some argue that action comprehension is intimately connected with the observer's own motor capacities, whereas others argue that action comprehension depends on non-motor inferential mechanisms. We address this debate by reviewing comparative studies that license four conclusions: monkeys and apes extract the meaning of an action (i) by going beyond the surface properties of actions, attributing goals and intentions to the agent; (ii) by using environmental information to infer when actions are rational; (iii) by making predictions about an agent's goal, and the most probable action to obtain the goal given environmental constraints; (iv) in situations in which they are physiologically incapable of producing the actions. Motor theories are, thus, insufficient to account for primate action comprehension in the absence of inferential mechanisms.
The effects of age on symbol comprehension in central rail hubs in Taiwan.
Liu, Yung-Ching; Ho, Chin-Heng
2012-11-01
The purpose of this study was to investigate the effects of age and symbol design features on passengers' comprehension of symbols and the performance of these symbols with regard to route guidance. In the first experiment, 30 young participants and 30 elderly participants interpreted the meanings and rated the features of 39 symbols. Researchers collected data on each subject's comprehension time, comprehension score, and feature ratings for each symbol. In the second experiment, this study used a series of photos to simulate scenarios in which passengers follow symbols to arrive at their destinations. The length of time each participant required to follow his/her route and his/her errors were recorded. Older adults experienced greater difficulty in understanding particular symbols as compared to younger adults. Familiarity was the feature most highly correlated with comprehension of symbols and accuracy of semantic depiction was the best predictor of behavior in following routes. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Effect of minimal/mild hearing loss on children's speech understanding in a simulated classroom.
Lewis, Dawna E; Valente, Daniel L; Spalding, Jody L
2015-01-01
While classroom acoustics can affect educational performance for all students, the impact for children with minimal/mild hearing loss (MMHL) may be greater than for children with normal hearing (NH). The purpose of this study was to examine the effect of MMHL on children's speech recognition comprehension and looking behavior in a simulated classroom environment. It was hypothesized that children with MMHL would perform similarly to their peers with NH on the speech recognition task but would perform more poorly on the comprehension task. Children with MMHL also were expected to look toward talkers more often than children with NH. Eighteen children with MMHL and 18 age-matched children with NH participated. In a simulated classroom environment, children listened to lines from an elementary-age-appropriate play read by a teacher and four students reproduced over LCD monitors and loudspeakers located around the listener. A gyroscopic headtracking device was used to monitor looking behavior during the task. At the end of the play, comprehension was assessed by asking a series of 18 factual questions. Children also were asked to repeat 50 meaningful sentences with three key words each presented audio-only by a single talker either from the loudspeaker at 0 degree azimuth or randomly from the five loudspeakers. Both children with NH and those with MMHL performed at or near ceiling on the sentence recognition task. For the comprehension task, children with MMHL performed more poorly than those with NH. Assessment of looking behavior indicated that both groups of children looked at talkers while they were speaking less than 50% of the time. In addition, the pattern of overall looking behaviors suggested that, compared with older children with NH, a larger portion of older children with MMHL may demonstrate looking behaviors similar to younger children with or without MMHL. The results of this study demonstrate that, under realistic acoustic conditions, it is difficult to differentiate performance among children with MMHL and children with NH using a sentence recognition task. The more cognitively demanding comprehension task identified performance differences between these two groups. The comprehension task represented a condition in which the persons talking change rapidly and are not readily visible to the listener. Examination of looking behavior suggested that, in this complex task, attempting to visualize the talker may inefficiently utilize cognitive resources that would otherwise be allocated for comprehension.
Opto-electronic characterization of third-generation solar cells.
Neukom, Martin; Züfle, Simon; Jenatsch, Sandra; Ruhstaller, Beat
2018-01-01
We present an overview of opto-electronic characterization techniques for solar cells including light-induced charge extraction by linearly increasing voltage, impedance spectroscopy, transient photovoltage, charge extraction and more. Guidelines for the interpretation of experimental results are derived based on charge drift-diffusion simulations of solar cells with common performance limitations. It is investigated how nonidealities like charge injection barriers, traps and low mobilities among others manifest themselves in each of the studied cell characterization techniques. Moreover, comprehensive parameter extraction for an organic bulk-heterojunction solar cell comprising PCDTBT:PC 70 BM is demonstrated. The simulations reproduce measured results of 9 different experimental techniques. Parameter correlation is minimized due to the combination of various techniques. Thereby a route to comprehensive and accurate parameter extraction is identified.
Argonne Simulation Framework for Intelligent Transportation Systems
DOT National Transportation Integrated Search
1996-01-01
A simulation framework has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS). The simulator is designed to run on parallel computers and distribu...
Reaction-mediated entropic effect on phase separation in a binary polymer system
NASA Astrophysics Data System (ADS)
Sun, Shujun; Guo, Miaocai; Yi, Xiaosu; Zhang, Zuoguang
2017-10-01
We present a computer simulation to study the phase separation behavior induced by polymerization in a binary system comprising polymer chains and reactive monomers. We examined the influence of interaction parameter between components and monomer concentration on the reaction-induced phase separation. The simulation results demonstrate that increasing interaction parameter (enthalpic effect) would accelerate phase separation, while entropic effect plays a key role in the process of phase separation. Furthermore, scanning electron microscopy observations illustrate identical morphologies as found in theoretical simulation. This study may enrich our comprehension of phase separation in polymer mixture.
Quantum chemical calculations of interatomic potentials for computer simulation of solids
NASA Technical Reports Server (NTRS)
1977-01-01
A comprehensive mathematical model by which the collective behavior of a very large number of atoms within a metal or alloy can accurately be simulated was developed. Work was done in order to predict and modify the strength of materials to suit our technological needs. The method developed is useful in studying atomic interactions related to dislocation motion and crack extension.
Comprehensive testing to measure the response of butyl rubber to Hanford tank waste simulant
DOE Office of Scientific and Technical Information (OSTI.GOV)
NIGREY,PAUL J.
This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the authors performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposuresmore » to the waste simulant at 18, 50, and 60 C. Butyl rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. From the analyses, they determined that butyl rubber has relatively good resistance to radiation, this simulant, and a combination of these factors. These results suggest that butyl rubber is a relatively good seal material to withstand aqueous mixed wastes having similar composition to the one used in this study.« less
Ramireddygari, S.R.; Sophocleous, M.A.; Koelliker, J.K.; Perkins, S.P.; Govindaraju, R.S.
2000-01-01
This paper presents the results of a comprehensive modeling study of surface and groundwater systems, including stream-aquifer interactions, for the Wet Walnut Creek Watershed in west-central Kansas. The main objective of this study was to assess the impacts of watershed structures and irrigation water use on streamflow and groundwater levels, which in turn affect availability of water for the Cheyenne Bottoms Wildlife Refuge Management area. The surface-water flow model, POTYLDR, and the groundwater flow model, MODFLOW, were combined into an integrated, watershed-scale, continuous simulation model. Major revisions and enhancements were made to the POTYLDR and MODFLOW models for simulating the detailed hydrologic budget for the Wet Walnut Creek Watershed. The computer simulation model was calibrated and verified using historical streamflow records (at Albert and Nekoma gaging stations), reported irrigation water use, observed water-level elevations in watershed structure pools, and groundwater levels in the alluvial aquifer system. To assess the impact of watershed structures and irrigation water use on streamflow and groundwater levels, a number of hypothetical management scenarios were simulated under various operational criteria for watershed structures and different annual limits on water use for irrigation. A standard 'base case' was defined to allow comparative analysis of the results of different scenarios. The simulated streamflows showed that watershed structures decrease both streamflows and groundwater levels in the watershed. The amount of water used for irrigation has a substantial effect on the total simulated streamflow and groundwater levels, indicating that irrigation is a major budget item for managing water resources in the watershed. (C) 2000 Elsevier Science B.V.This paper presents the results of a comprehensive modeling study of surface and groundwater systems, including stream-aquifer interactions, for the Wet Walnut Creek Watershed in west-central Kansas. The main objective of this study was to assess the impacts of watershed structures and irrigation water use on streamflow and groundwater levels, which in turn affect availability of water for the Cheyenne Bottoms Wildlife Refuge Management area. The surface-water flow model, POTYLDR, and the groundwater flow model, MODFLOW, were combined into an integrated, watershed-scale, continuous simulation model. Major revisions and enhancements were made to the POTYLDR and MODFLOW models for simulating the detailed hydrologic budget for the Wet Walnut Creek Watershed. The computer simulation model was calibrated and verified using historical streamflow records (at Albert and Nekoma gaging stations), reported irrigation water use, observed water-level elevations in watershed structure pools, and groundwater levels in the alluvial aquifer system. To assess the impact of watershed structures and irrigation water use on streamflow and groundwater levels, a number of hypothetical management scenarios were simulated under various operational criteria for watershed structures and different annual limits on water use for irrigation. A standard `base case' was defined to allow comparative analysis of the results of different scenarios. The simulated streamflows showed that watershed structures decrease both streamflows and groundwater levels in the watershed. The amount of water used for irrigation has a substantial effect on the total simulated streamflow and groundwater levels, indicating that irrigation is a major budget item for managing water resources in the watershed.A comprehensive simulation model that combines the surface water flow model POTYLDR and the groundwater flow model MODFLOW was used to study the impacts of watershed structures (e.g., dams) and irrigation water use (including stream-aquifer interactions) on streamflow and groundwater. The model was revised, enhanced, calibrated, and verified, then applied to evaluate the hydrologic budget for Wet Wal
Comprehensive Training Curricula for Minimally Invasive Surgery
Palter, Vanessa N
2011-01-01
Background The unique skill set required for minimally invasive surgery has in part contributed to a certain portion of surgical residency training transitioning from the operating room to the surgical skills laboratory. Simulation lends itself well as a method to shorten the learning curve for minimally invasive surgery by allowing trainees to practice the unique motor skills required for this type of surgery in a safe, structured environment. Although a significant amount of important work has been done to validate simulators as viable systems for teaching technical skills outside the operating room, the next step is to integrate simulation training into a comprehensive curriculum. Objectives This narrative review aims to synthesize the evidence and educational theories underlining curricula development for technical skills both in a broad context and specifically as it pertains to minimally invasive surgery. Findings The review highlights the critical aspects of simulation training, such as the effective provision of feedback, deliberate practice, training to proficiency, the opportunity to practice at varying levels of difficulty, and the inclusion of both cognitive teaching and hands-on training. In addition, frameworks for integrating simulation training into a comprehensive curriculum are described. Finally, existing curricula on both laparoscopic box trainers and virtual reality simulators are critically evaluated. PMID:22942951
NASA Astrophysics Data System (ADS)
Rajabzadeh Oghaz, Hamidreza; Damiano, Robert; Meng, Hui
2015-11-01
Intracranial aneurysms (IAs) are pathological outpouchings of cerebral vessels, the progression of which are mediated by complex interactions between the blood flow and vasculature. Image-based computational fluid dynamics (CFD) has been used for decades to investigate IA hemodynamics. However, the commonly adopted simplifying assumptions in CFD (e.g. rigid wall) compromise the simulation accuracy and mask the complex physics involved in IA progression and eventual rupture. Several groups have considered the wall compliance by using fluid-structure interaction (FSI) modeling. However, FSI simulation is highly sensitive to numerical assumptions (e.g. linear-elastic wall material, Newtonian fluid, initial vessel configuration, and constant pressure outlet), the effects of which are poorly understood. In this study, a comprehensive investigation of the sensitivity of FSI simulations in patient-specific IAs is investigated using a multi-stage approach with a varying level of complexity. We start with simulations incorporating several common simplifications: rigid wall, Newtonian fluid, and constant pressure at the outlets, and then we stepwise remove these simplifications until the most comprehensive FSI simulations. Hemodynamic parameters such as wall shear stress and oscillatory shear index are assessed and compared at each stage to better understand the sensitivity of in FSI simulations for IA to model assumptions. Supported by the National Institutes of Health (1R01 NS 091075-01).
Reichenau, Tim G; Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl
2016-01-01
The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI.
Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl
2016-01-01
The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI. PMID:27391858
Hardison, Mark E.
2017-01-01
Work-related musculoskeletal disorders are a significant burden; however, no consensus has been reached on how to maximize occupational rehabilitation programs for people with these disorders, and the impact of simulating work tasks as a mode of intervention has not been well examined. In this retrospective cohort study, the authors used logistic regression to identify client and program factors predicting success for 95 clients in a general occupational rehabilitation program and 71 clients in a comprehensive occupational rehabilitation program. The final predictive model for general rehabilitation included gender, number of sessions completed, and performance of work simulation activities. Maximum hours per session was the only significant predictor of success in the comprehensive rehabilitation program. This study identifies new factors associated with success in occupational rehabilitation, specifically highlighting the importance of intensity (i.e., session length and number of sessions) of therapy and occupation-based activities for this population. PMID:28027046
ERIC Educational Resources Information Center
Higgins, Meaghan C.; Penney, Sarah B.; Robertson, Erin K.
2017-01-01
The roles of phonological short-term memory (pSTM) and speech perception in spoken sentence comprehension were examined in an experimental design. Deficits in pSTM and speech perception were simulated through task demands while typically-developing children (N = 71) completed a sentence-picture matching task. Children performed the control,…
Comprehensive silicon solar cell computer modeling
NASA Technical Reports Server (NTRS)
Lamorte, M. F.
1984-01-01
The development of an efficient, comprehensive Si solar cell modeling program that has the capability of simulation accuracy of 5 percent or less is examined. A general investigation of computerized simulation is provided. Computer simulation programs are subdivided into a number of major tasks: (1) analytical method used to represent the physical system; (2) phenomena submodels that comprise the simulation of the system; (3) coding of the analysis and the phenomena submodels; (4) coding scheme that results in efficient use of the CPU so that CPU costs are low; and (5) modularized simulation program with respect to structures that may be analyzed, addition and/or modification of phenomena submodels as new experimental data become available, and the addition of other photovoltaic materials.
Pilcher, June J; Jennings, Kristen S; Phillips, Ginger E; McCubbin, James A
2016-11-01
The current study investigated performance on a dual auditory task during a simulated night shift. Night shifts and sleep deprivation negatively affect performance on vigilance-based tasks, but less is known about the effects on complex tasks. Because language processing is necessary for successful work performance, it is important to understand how it is affected by night work and sleep deprivation. Sixty-two participants completed a simulated night shift resulting in 28 hr of total sleep deprivation. Performance on a vigilance task and a dual auditory language task was examined across four testing sessions. The results indicate that working at night negatively impacts vigilance, auditory attention, and comprehension. The effects on the auditory task varied based on the content of the auditory material. When the material was interesting and easy, the participants performed better. Night work had a greater negative effect when the auditory material was less interesting and more difficult. These findings support research that vigilance decreases during the night. The results suggest that auditory comprehension suffers when individuals are required to work at night. Maintaining attention and controlling effort especially on passages that are less interesting or more difficult could improve performance during night shifts. The results from the current study apply to many work environments where decision making is necessary in response to complex auditory information. Better predicting the effects of night work on language processing is important for developing improved means of coping with shiftwork. © 2016, Human Factors and Ergonomics Society.
Opto-electronic characterization of third-generation solar cells
Jenatsch, Sandra
2018-01-01
Abstract We present an overview of opto-electronic characterization techniques for solar cells including light-induced charge extraction by linearly increasing voltage, impedance spectroscopy, transient photovoltage, charge extraction and more. Guidelines for the interpretation of experimental results are derived based on charge drift-diffusion simulations of solar cells with common performance limitations. It is investigated how nonidealities like charge injection barriers, traps and low mobilities among others manifest themselves in each of the studied cell characterization techniques. Moreover, comprehensive parameter extraction for an organic bulk-heterojunction solar cell comprising PCDTBT:PC70BM is demonstrated. The simulations reproduce measured results of 9 different experimental techniques. Parameter correlation is minimized due to the combination of various techniques. Thereby a route to comprehensive and accurate parameter extraction is identified. PMID:29707069
Zuccarello, Daniel J; Murphy, Michael P; Meyer, Richard F; Winslow, Paul A
2009-01-01
A comprehensive digestive approach for determining the extractable and leachable metals in pharmaceutical products by inductively-coupled plasma is investigated. This study examines several acid digestion strategies for packaging materials, containers, and formulated products for complete trace metals analysis. Packaging materials, a food product, and a simulated drug product are evaluated for leachable metals by stressing the materials under accelerated stability conditions. Trace metal profiles of 64 elements for these materials are reported.
On the Need for Multidimensional Stirling Simulations
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako
2005-01-01
Given the cost and complication of simulating Stirling convertors, do we really need multidimensional modeling when one-dimensional capabilities exist? This paper provides a comprehensive description of when and why multidimensional simulation is needed.
Li, Wei; Zhang, Min; Wang, Mingyu; Han, Zhantao; Liu, Jiankai; Chen, Zhezhou; Liu, Bo; Yan, Yan; Liu, Zhu
2018-06-01
Brownfield sites pollution and remediation is an urgent environmental issue worldwide. The screening and assessment of remedial alternatives is especially complex owing to its multiple criteria that involves technique, economy, and policy. To help the decision-makers selecting the remedial alternatives efficiently, the criteria framework conducted by the U.S. EPA is improved and a comprehensive method that integrates multiple criteria decision analysis (MCDA) with numerical simulation is conducted in this paper. The criteria framework is modified and classified into three categories: qualitative, semi-quantitative, and quantitative criteria, MCDA method, AHP-PROMETHEE (analytical hierarchy process-preference ranking organization method for enrichment evaluation) is used to determine the priority ranking of the remedial alternatives and the solute transport simulation is conducted to assess the remedial efficiency. A case study was present to demonstrate the screening method in a brownfield site in Cangzhou, northern China. The results show that the systematic method provides a reliable way to quantify the priority of the remedial alternatives.
Levett-Jones, Tracy; Lapkin, Samuel; Govind, Natalie; Pich, Jacqueline; Hoffman, Kerry; Jeong, Sarah Yeun-Sim; Norton, Carol Anne; Noble, Danielle; Maclellan, Lorna; Robinson-Reilly, Melissa; Everson, Naleya
2017-12-01
Although empathy is an integral component of professional practice and person-centred care, a body of research has identified that vulnerable patients groups frequently experience healthcare that is less than optimal and often lacking in empathy. The aim of this study was to examine the impact of an immersive point-of-view simulation on nursing students' empathy towards people with an Acquired Brain Injury. A convenience sample of 390 nursing students from a cohort of 488 participated in the study, giving a response rate of 80%. Students undertook the simulation in pairs and were randomly allocated to the role of either a person with Acquired Brain Injury or a rehabilitation nurse. The simulated 'patients' wore a hemiparesis suit that replicated the experience of dysphasia, hemianopia and hemiparesis. Characteristics of the sample were summarised using descriptive statistics. A two-group pre-test post-test design was used to investigate the impact of the simulation using the Comprehensive State Empathy Scale. t-Tests were performed to analyse changes in empathy pre post and between simulated 'patients' and 'rehabilitation nurses'. On average, participants reported significantly higher mean empathy scores post simulation (3.75, SD=0.66) compared to pre simulation (3.38 SD=0.61); t (398)=10.33, p<0.001. However, this increase was higher for participants who assumed the role of a 'rehabilitation nurse' (mean=3.86, SD=0.62) than for those who took on the 'patient' role (mean=3.64, SD=0.68), p<0.001. The results from this study attest to the potential of point-of-view simulations to positively impact nursing students' empathy towards people with a disability. Research with other vulnerable patient groups, student cohorts and in other contexts would be beneficial in taking this work forward. Copyright © 2017 Elsevier Ltd. All rights reserved.
Problem-Solving in the Pre-Clinical Curriculum: The Uses of Computer Simulations.
ERIC Educational Resources Information Center
Michael, Joel A.; Rovick, Allen A.
1986-01-01
Promotes the use of computer-based simulations in the pre-clinical medical curriculum as a means of providing students with opportunities for problem solving. Describes simple simulations of skeletal muscle loads, complex simulations of major organ systems and comprehensive simulation models of the entire human body. (TW)
DOT National Transportation Integrated Search
2014-10-01
Nearly half of all traffic-related fatalities occur : at intersections, so engineering intersections : for greater safety remains a priority for the : Florida Department of Transportation (FDOT). : Engineering in this case must take into accoun...
NASA Technical Reports Server (NTRS)
Young, Sun-Woo; Carmichael, Gregory R.
1994-01-01
Tropospheric ozone production and transport in mid-latitude eastern Asia is studied. Data analysis of surface-based ozone measurements in Japan and satellite-based tropospheric column measurements of the entire western Pacific Rim are combined with results from three-dimensional model simulations to investigate the diurnal, seasonal and long-term variations of ozone in this region. Surface ozone measurements from Japan show distinct seasonal variation with a spring peak and summer minimum. Satellite studies of the entire tropospheric column of ozone show high concentrations in both the spring and summer seasons. Finally, preliminary model simulation studies show good agreement with observed values.
Power-based Shift Schedule for Pure Electric Vehicle with a Two-speed Automatic Transmission
NASA Astrophysics Data System (ADS)
Wang, Jiaqi; Liu, Yanfang; Liu, Qiang; Xu, Xiangyang
2016-11-01
This paper introduces a comprehensive shift schedule for a two-speed automatic transmission of pure electric vehicle. Considering about driving ability and efficiency performance of electric vehicles, the power-based shift schedule is proposed with three principles. This comprehensive shift schedule regards the vehicle current speed and motor load power as input parameters to satisfy the vehicle driving power demand with lowest energy consumption. A simulation model has been established to verify the dynamic and economic performance of comprehensive shift schedule. Compared with traditional dynamic and economic shift schedules, simulation results indicate that the power-based shift schedule is superior to traditional shift schedules.
Lynch, M; Haney, C
2000-06-01
This study links two previously unrelated lines of research: the lack of comprehension of capital penalty-phase jury instructions and discriminatory death sentencing. Jury-eligible subjects were randomly assigned to view one of four versions of a simulated capital penalty trial in which the race of defendant (Black or White) and the race of victim (Black or White) were varied orthogonally. Dependent measures included a sentencing verdict (life without the possibility of parole or the death penalty), ratings of penalty phase evidence, and a test of instructional comprehension. Results indicated that instructional comprehension was poor overall and that, although Black defendants were treated only slightly more punitively than White defendants in general, discriminatory effects were concentrated among participants whose comprehension was poorest. In addition, the use of penalty phase evidence differed as a function of race of defendant and whether the participant sentenced the defendant to life or death. The study suggest that racially biased and capricious death sentencing may be in part caused or exacerbated by the inability to comprehend penalty phase instructions.
NASA Astrophysics Data System (ADS)
Achim, Pascal; Generoso, Sylvia; Morin, Mireille; Gross, Philippe; Le Petit, Gilbert; Moulin, Christophe
2016-05-01
Monitoring atmospheric concentrations of radioxenons is relevant to provide evidence of atmospheric or underground nuclear weapon tests. However, when the design of the International Monitoring Network (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) was set up, the impact of industrial releases was not perceived. It is now well known that industrial radioxenon signature can interfere with that of nuclear tests. Therefore, there is a crucial need to characterize atmospheric distributions of radioxenons from industrial sources—the so-called atmospheric background—in the frame of the CTBT. Two years of Xe-133 atmospheric background have been simulated using 2013 and 2014 meteorological data together with the most comprehensive emission inventory of radiopharmaceutical facilities and nuclear power plants to date. Annual average simulated activity concentrations vary from 0.01 mBq/m3 up to above 5 mBq/m3 nearby major sources. Average measured and simulated concentrations agree on most of the IMS stations, which indicates that the main sources during the time frame are properly captured. Xe-133 atmospheric background simulated at IMS stations turn out to be a complex combination of sources. Stations most impacted are in Europe and North America and can potentially detect Xe-133 every day. Predicted occurrences of detections of atmospheric Xe-133 show seasonal variations, more accentuated in the Northern Hemisphere, where the maximum occurs in winter. To our knowledge, this study presents the first global maps of Xe-133 atmospheric background from industrial sources based on two years of simulation and is a first attempt to analyze its composition in terms of origin at IMS stations.
Snowplow simulator training evaluation : research notes
DOT National Transportation Integrated Search
2006-11-01
Two years of experience with simulator training for snowplow operators in Arizona leaves an optimistic feeling about the potential of simulators as an integral part of comprehensive winter maintenance and driver-skill training programs. Further resea...
Valente, Daniel L.; Plevinsky, Hallie M.; Franco, John M.; Heinrichs-Graham, Elizabeth C.; Lewis, Dawna E.
2012-01-01
The potential effects of acoustical environment on speech understanding are especially important as children enter school where students’ ability to hear and understand complex verbal information is critical to learning. However, this ability is compromised because of widely varied and unfavorable classroom acoustics. The extent to which unfavorable classroom acoustics affect children’s performance on longer learning tasks is largely unknown as most research has focused on testing children using words, syllables, or sentences as stimuli. In the current study, a simulated classroom environment was used to measure comprehension performance of two classroom learning activities: a discussion and lecture. Comprehension performance was measured for groups of elementary-aged students in one of four environments with varied reverberation times and background noise levels. The reverberation time was either 0.6 or 1.5 s, and the signal-to-noise level was either +10 or +7 dB. Performance is compared to adult subjects as well as to sentence-recognition in the same condition. Significant differences were seen in comprehension scores as a function of age and condition; both increasing background noise and reverberation degraded performance in comprehension tasks compared to minimal differences in measures of sentence-recognition. PMID:22280587
Entropy in bimolecular simulations: A comprehensive review of atomic fluctuations-based methods.
Kassem, Summer; Ahmed, Marawan; El-Sheikh, Salah; Barakat, Khaled H
2015-11-01
Entropy of binding constitutes a major, and in many cases a detrimental, component of the binding affinity in biomolecular interactions. While the enthalpic part of the binding free energy is easier to calculate, estimating the entropy of binding is further more complicated. A precise evaluation of entropy requires a comprehensive exploration of the complete phase space of the interacting entities. As this task is extremely hard to accomplish in the context of conventional molecular simulations, calculating entropy has involved many approximations. Most of these golden standard methods focused on developing a reliable estimation of the conformational part of the entropy. Here, we review these methods with a particular emphasis on the different techniques that extract entropy from atomic fluctuations. The theoretical formalisms behind each method is explained highlighting its strengths as well as its limitations, followed by a description of a number of case studies for each method. We hope that this brief, yet comprehensive, review provides a useful tool to understand these methods and realize the practical issues that may arise in such calculations. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Uschold, Michael
1992-01-01
We are concerned with two important issues in simulation modelling: model comprehension and model construction. Model comprehension is limited because many important choices taken during the modelling process are not documented. This makes it difficult for models to be modified or used by others. A key factor hindering model construction is the vast modelling search space which must be navigated. This is exacerbated by the fact that many modellers are unfamiliar with the terms and concepts catered to by current tools. The root of both problems is the lack of facilities for representing or reasoning about domain concepts in current simulation technology. The basis for our achievements in both of these areas is the development of a language with two distinct levels; one for representing domain information, and the other for representing the simulation model. Of equal importance, is the fact that we make formal connections between these two levels. The domain we are concerned with is ecological modelling. This language, called Elklogic, is based on the typed lambda calculus. Important features include a rich type structure, the use of various higher order functions, and semantics. This enables complex expressions to be constructed from relatively few primitives. The meaning of each expression can be determined in terms of the domain, the simulation model, or the relationship between the two. We describe a novel representation for sets and substructure, and a variety of other general concepts that are especially useful in the ecological domain. We use the type structure in a novel way: for controlling the modelling search space, rather than a proof search space. We facilitate model comprehension by representing modelling decisions that are embodied in the simulation model. We represent the simulation model separately from, but in terms of a domain mode. The explicit links between the two models constitute the modelling decisions. The semantics of Elklogic enables English text to be generated to explain the simulation model in domain terms.
Study on the Potential Development of Rainwater Utilization in the Hilly City of Southern China
NASA Astrophysics Data System (ADS)
Fu, Xiaoran; Liu, Jiahong; Shao, Weiwei; Zhang, Haixing
2017-12-01
Aimed at the current flood problems and the contradiction between supply and demand of water resources in the southern cities of China, the comprehensive utilization of Urban Rainwater Resources (URRs) is a significant solution. At present, the research on the comprehensive utilization system of urban rainwater resources in China is still immature, especially the lack of a comprehensive method for the comprehensive utilization of the rainwater and flood resources in the south. Based on the current mode for utilization of URRs at home and abroad, Fenghuang County in Hunan Province was taken as a case of study, which is a typical mountainous city in the southern China. And the potential development of URRs was simulated and evaluated with a comparison of before and after the exploitation and utilization of URRs in this paper. The reduction effect of flood and waterlogging on the ancient city area is analyzed from SWMM. The simulation results show that the potential of exploitation and utilization of URRs in Fenghuang county is remarkable under the mode of exploitation and utilization which is given priority to flood prevention and control, and the annual development potential is 4.865×105 m3. The rainwater utilization measures of flood control effect is obvious with this mode, and the relevant research results can provide theoretical and technical support for enhancing urban water security capability, water conservation capacity, and disaster mitigation of urban flood.
A computational model for simulating text comprehension.
Lemaire, Benoît; Denhière, Guy; Bellissens, Cédrick; Jhean-Larose, Sandra
2006-11-01
In the present article, we outline the architecture of a computer program for simulating the process by which humans comprehend texts. The program is based on psycholinguistic theories about human memory and text comprehension processes, such as the construction-integration model (Kintsch, 1998), the latent semantic analysis theory of knowledge representation (Landauer & Dumais, 1997), and the predication algorithms (Kintsch, 2001; Lemaire & Bianco, 2003), and it is intended to help psycholinguists investigate the way humans comprehend texts.
NASA Astrophysics Data System (ADS)
Giannaros, Christos; Nenes, Athanasios; Giannaros, Theodore M.; Kourtidis, Konstantinos; Melas, Dimitrios
2018-03-01
This study presents a comprehensive modeling approach for simulating the spatiotemporal distribution of urban air temperatures with a modeling system that includes the Weather Research and Forecasting (WRF) model and the Single-Layer Urban Canopy Model (SLUCM) with a modified treatment of the impervious surface temperature. The model was applied to simulate a 3-day summer heat wave event over the city of Athens, Greece. The simulation, using default SLUCM parameters, is capable of capturing the observed diurnal variation of urban temperatures and the Urban Heat Island (UHI) in the greater Athens Area (GAA), albeit with systematic biases that are prominent during nighttime hours. These biases are particularly evident over low-intensity residential areas, and they are associated with the surface and urban canopy properties representing the urban environment. A series of sensitivity simulations unravels the importance of the sub-grid urban fraction parameter, surface albedo, and street canyon geometry in the overall causation and development of the UHI effect. The sensitivities are then used to determine optimal values of the street canyon geometry, which reproduces the observed temperatures throughout the simulation domain. The optimal parameters, apart from considerably improving model performance (reductions in mean temperature bias from 0.30 °C to 1.58 °C), are also consistent with actual city building characteristics - which gives confidence that the model set-up is robust, and can be used to study the UHI in the GAA in the anticipated warmer conditions in the future.
Effect of Knudsen thermal force on the performance of low-pressure micro gas sensor
NASA Astrophysics Data System (ADS)
Barzegar Gerdroodbary, M.; Ganji, D. D.; Taeibi-Rahni, M.; Vakilipour, Shidvash
2017-07-01
In this paper, Direct Simulation Monte Carlo (DSMC) simulations were applied to investigate the mechanism of the force generation inside a low-pressure gas sensor. The flow feature and force generation mechanism inside a rectangular enclosure with heat and cold arms as the non-isothermal walls are comprehensively explained. In addition, extensive parametric studies are done to study the effects of physical parameters on the performance and characteristics of this device in different operating conditions. In this research, the Knudsen number is varied from 0.1 to 4.5 (0.5 to 11torr) to reveal all the characteristics of the thermally driven force inside the MEMS sensor. In order to simulate a rarefied gas inside the micro gas detector, Boltzmann equations are applied to obtain high-precision results. The effects of ambient pressure and temperature difference of arms are comprehensively investigated. Our findings show that maximum force increases more than 7 times when the temperature difference of the cold and hot arms is increased from 10 to 100K. In addition, the results demonstrate that the thermal gradient at rarefied pressure induces complex structure, and the mechanism of force generation highly varies at different pressure conditions.
Comprehensive model of a hermetic reciprocating compressor
NASA Astrophysics Data System (ADS)
Yang, B.; Ziviani, D.; Groll, E. A.
2017-08-01
A comprehensive simulation model is presented to predict the performance of a hermetic reciprocating compressor and to reveal the underlying mechanisms when the compressor is running. The presented model is composed of sub-models simulating the in-cylinder compression process, piston ring/journal bearing frictional power loss, single phase induction motor and the overall compressor energy balance among different compressor components. The valve model, leakage through piston ring model and in-cylinder heat transfer model are also incorporated into the in-cylinder compression process model. A numerical algorithm solving the model is introduced. The predicted results of the compressor mass flow rate and input power consumption are compared to the published compressor map values. Future work will focus on detailed experimental validation of the model and parametric studies investigating the effects of structural parameters, including the stroke-to-bore ratio, on the compressor performance.
NASA Astrophysics Data System (ADS)
Ney, Michael; Abdulhalim, Ibrahim
2016-03-01
Skin cancer detection at its early stages has been the focus of a large number of experimental and theoretical studies during the past decades. Among these studies two prominent approaches presenting high potential are reflectometric sensing at the THz wavelengths region and polarimetric imaging techniques in the visible wavelengths. While THz radiation contrast agent and source of sensitivity to cancer related tissue alterations was considered to be mainly the elevated water content in the cancerous tissue, the polarimetric approach has been verified to enable cancerous tissue differentiation based on cancer induced structural alterations to the tissue. Combining THz with the polarimetric approach, which is considered in this study, is examined in order to enable higher detection sensitivity than previously pure reflectometric THz measurements. For this, a comprehensive MC simulation of radiative transfer in a complex skin tissue model fitted for the THz domain that considers the skin`s stratified structure, tissue material optical dispersion modeling, surface roughness, scatterers, and substructure organelles has been developed. Additionally, a narrow beam Mueller matrix differential analysis technique is suggested for assessing skin cancer induced changes in the polarimetric image, enabling the tissue model and MC simulation to be utilized for determining the imaging parameters resulting in maximal detection sensitivity.
Long-Term, Non-Computer, Communication Simulations as Course Integration Activities
ERIC Educational Resources Information Center
Hamilton, James P.
2008-01-01
This article offers a few guidelines for constructing effective simulations. It presents a sample class activity called simulated public hearing which aims to integrate the various elements of a public speaking course into a more comprehensive whole. Properly designed, simulated hearings have elements of persuasive, informative, and impromptu…
Conspicuity, memorability, comprehension, and priming in road hazard warning signs.
Charlton, Samuel G
2006-05-01
This study assessed driver reactions to 16 road hazard warning signs of various formats by projecting life-sized video of road scenes to drivers in a driving simulator. A range of measures, including attentional and search conspicuity, implicit and explicit recognition, dynamic and static comprehension, and sign priming were collected. Of the signs tested, road works and school warning signs were most often detected, remembered, and understood. Slippery surface warnings were associated with some of the lowest detection and comprehension rates. The effectiveness of the different formats depended on the type of hazard sign. In the case of road works warnings, a flashing variable message format was only slightly more conspicuous than the large dimension format, equal in comprehensibility, and perhaps somewhat worse in terms of memorability. For the school warnings, however, the flashing variable message format appeared to convey a greater sense of potential hazard, produced superior search conspicuity and priming, and was equal in terms of memorability and comprehensibility. The range of measures worked well as a whole with the two measures of conspicuity and the measure of static comprehension showing the greatest consistency.
DOT National Transportation Integrated Search
2008-05-01
This study was undertaken with the objective of assessing the current provisions in SDC-2006 for incorporating : vertical effects of ground motions in seismic evaluation and design of ordinary highway bridges. A : comprehensive series of simulations ...
InMAP: A model for air pollution interventions
Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.; ...
2017-04-19
Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. We present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical informationmore » from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons we run, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license.« less
InMAP: A model for air pollution interventions
Hill, Jason D.; Marshall, Julian D.
2017-01-01
Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons run here, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of −17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license. PMID:28423049
InMAP: A model for air pollution interventions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.
Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. We present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical informationmore » from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons we run, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license.« less
The space transformation in the simulation of multidimensional random fields
Christakos, G.
1987-01-01
Space transformations are proposed as a mathematically meaningful and practically comprehensive approach to simulate multidimensional random fields. Within this context the turning bands method of simulation is reconsidered and improved in both the space and frequency domains. ?? 1987.
The Influence of Roof Material on Diurnal Urban Canyon Breathing
NASA Astrophysics Data System (ADS)
Abuhegazy, Mohamed; Yaghoobian, Neda
2017-11-01
Improvements in building energy use, air quality in urban canyons and in general urban microclimates require understanding the complex interaction between urban morphology, materials, climate, and inflow conditions. Review of the literature indicates that despite a long history of valuable urban microclimate studies, more comprehensive approaches are needed to address energy, and heat and flow transport in urban areas. In this study, a more comprehensive simulation of the diurnally varying street canyon flow and associated heat transport is numerically investigated, using Large-eddy Simulation (LES). We use computational modeling to examine the impact of diurnal variation of the heat fluxes from urban surfaces on the air flow and temperature distribution in street canyons with a focus on the role of roof materials and their temperature footprints. A detailed building energy model with a three-dimensional raster-type geometry provides urban surface heat fluxes as thermal boundary conditions for the LES to determine the key aero-thermodynamic factors that affect urban street ventilation.
Hetzroni, Orit E; Banin, Irit
2017-07-01
People with intellectual and developmental disabilities (IDD) often demonstrate difficulties in social skills. The purpose of this study was to examine the effects of a comprehensive intervention program on the acquisition of social skills among students with mild IDD. Single subject multiple baseline design across situations was used for teaching five school-age children with mild IDD social skills embedded in school-based situations. Results demonstrate that the intervention program that included video modelling and games embedded with group discussions and simulations increased the level and use of adequate social behaviours within the school's natural environment. Results demonstrate the unique attribution of a comprehensive interactive program for acquisition and transfer of participants' social skills such as language pragmatics and social rules within the school environment. Group discussions and simulations were beneficial and enabled both group and personalized instruction through the unique application of the program designed for the study. © 2016 John Wiley & Sons Ltd.
From laws of inference to protein folding dynamics.
Tseng, Chih-Yuan; Yu, Chun-Ping; Lee, H C
2010-08-01
Protein folding dynamics is one of major issues constantly investigated in the study of protein functions. The molecular dynamic (MD) simulation with the replica exchange method (REM) is a common theoretical approach considered. Yet a trade-off in applying the REM is that the dynamics toward the native configuration in the simulations seems lost. In this work, we show that given REM-MD simulation results, protein folding dynamics can be directly derived from laws of inference. The applicability of the resulting approach, the entropic folding dynamics, is illustrated by investigating a well-studied Trp-cage peptide. Our results are qualitatively comparable with those from other studies. The current studies suggest that the incorporation of laws of inference and physics brings in a comprehensive perspective on exploring the protein folding dynamics.
Simulating direct shear tests with the Bullet physics library: A validation study.
Izadi, Ehsan; Bezuijen, Adam
2018-01-01
This study focuses on the possible uses of physics engines, and more specifically the Bullet physics library, to simulate granular systems. Physics engines are employed extensively in the video gaming, animation and movie industries to create physically plausible scenes. They are designed to deliver a fast, stable, and optimal simulation of certain systems such as rigid bodies, soft bodies and fluids. This study focuses exclusively on simulating granular media in the context of rigid body dynamics with the Bullet physics library. The first step was to validate the results of the simulations of direct shear testing on uniform-sized metal beads on the basis of laboratory experiments. The difference in the average angle of mobilized frictions was found to be only 1.0°. In addition, a very close match was found between dilatancy in the laboratory samples and in the simulations. A comprehensive study was then conducted to determine the failure and post-failure mechanism. We conclude with the presentation of a simulation of a direct shear test on real soil which demonstrated that Bullet has all the capabilities needed to be used as software for simulating granular systems.
An Exploration of Trainer Filtering Approaches
NASA Technical Reports Server (NTRS)
Hester, Patrick; Tolk, Andreas; Gadi, Sandeep; Carver, Quinn; Roland, Philippe
2011-01-01
Simutator operators face a twofold entity management problem during Live-Virtual-Constructive (LVC) training events. They first must filter potentially hundreds of thousands of simulation entities in order 10 determine which elements are necessary for optimal trainee comprehension. Secondarily, they must manage the number of entities entering the simulation from those present in the object model in order to limit the computational burden on the simulation system and prevent unnecessary entities from entering the simulation, This paper focuses on the first filtering stage and describes a novel approach to entity filtering undertaken to maximize trainee awareness and learning. The feasibility of this novel approach is demonstrated on a case study and limitations to the proposed approach and future work are discussed.
Ultrasonic Phased Array Simulations of Welded Components at NASA
NASA Technical Reports Server (NTRS)
Roth, D. J.; Tokars, R. P.; Martin, R. E.; Rauser, R. W.; Aldrin, J. C.
2009-01-01
Comprehensive and accurate inspections of welded components have become of increasing importance as NASA develops new hardware such as Ares rocket segments for future exploration missions. Simulation and modeling will play an increasing role in the future for nondestructive evaluation in order to better understand the physics of the inspection process, to prove or disprove the feasibility for an inspection method or inspection scenario, for inspection optimization, for better understanding of experimental results, and for assessment of probability of detection. This study presents simulation and experimental results for an ultrasonic phased array inspection of a critical welded structure important for NASA future exploration vehicles. Keywords: nondestructive evaluation, computational simulation, ultrasonics, weld, modeling, phased array
A review of quasi-coherent structures in a numerically simulated turbulent boundary layer
NASA Technical Reports Server (NTRS)
Robinson, S. K.; Kline, S. J.; Spalart, P. R.
1989-01-01
Preliminary results of a comprehensive study of the structural aspects of a numerically simulated number turbulent boundary layer are presented. A direct Navier-Stokes simulation of a flat-plate, zero pressure gradient boundary layer at Re0 = 670 was used. Most of the known nonrandom, coherent features of turbulent boundary layers are confirmed in the simulation, and several new aspects of their spatial character are reported. The spatial relationships between many of the various structures are described, forming the basis for a more complete kinematical picture of boundary layer physics than has been previously known. In particular, the importance of vortex structures of various forms to the generation of Reynolds shear stress is investigated.
This manuscript provides an overview of the formulation, process considerations, and performance for simulating tropospheric ozone and particulate matter distributions of the Multiscale Air Quality Simulation Platform (MAQSIP). MAQSIP is a comprehensive atmospheric chemistry/tran...
Liu, Dong-jun; Li, Li
2015-01-01
For the issue of haze-fog, PM2.5 is the main influence factor of haze-fog pollution in China. The trend of PM2.5 concentration was analyzed from a qualitative point of view based on mathematical models and simulation in this study. The comprehensive forecasting model (CFM) was developed based on the combination forecasting ideas. Autoregressive Integrated Moving Average Model (ARIMA), Artificial Neural Networks (ANNs) model and Exponential Smoothing Method (ESM) were used to predict the time series data of PM2.5 concentration. The results of the comprehensive forecasting model were obtained by combining the results of three methods based on the weights from the Entropy Weighting Method. The trend of PM2.5 concentration in Guangzhou China was quantitatively forecasted based on the comprehensive forecasting model. The results were compared with those of three single models, and PM2.5 concentration values in the next ten days were predicted. The comprehensive forecasting model balanced the deviation of each single prediction method, and had better applicability. It broadens a new prediction method for the air quality forecasting field. PMID:26110332
Liu, Dong-jun; Li, Li
2015-06-23
For the issue of haze-fog, PM2.5 is the main influence factor of haze-fog pollution in China. The trend of PM2.5 concentration was analyzed from a qualitative point of view based on mathematical models and simulation in this study. The comprehensive forecasting model (CFM) was developed based on the combination forecasting ideas. Autoregressive Integrated Moving Average Model (ARIMA), Artificial Neural Networks (ANNs) model and Exponential Smoothing Method (ESM) were used to predict the time series data of PM2.5 concentration. The results of the comprehensive forecasting model were obtained by combining the results of three methods based on the weights from the Entropy Weighting Method. The trend of PM2.5 concentration in Guangzhou China was quantitatively forecasted based on the comprehensive forecasting model. The results were compared with those of three single models, and PM2.5 concentration values in the next ten days were predicted. The comprehensive forecasting model balanced the deviation of each single prediction method, and had better applicability. It broadens a new prediction method for the air quality forecasting field.
Does the speaker's voice quality influence children's performance on a language comprehension test?
Lyberg-Åhlander, Viveka; Haake, Magnus; Brännström, Jonas; Schötz, Susanne; Sahlén, Birgitta
2015-02-01
A small number of studies have explored children's perception of speakers' voice quality and its possible influence on language comprehension. The aim of this explorative study was to investigate the relationship between the examiner's voice quality, the child's performance on a digital version of a language comprehension test, the Test for Reception of Grammar (TROG-2), and two measures of cognitive functioning. The participants were (n = 86) mainstreamed 8-year old children with typical language development. Two groups of children (n = 41/45) were presented with the TROG-2 through recordings of one female speaker: one group was presented with a typical voice and the other with a simulated dysphonic voice. Significant associations were found between executive functioning and language comprehension. The results also showed that children listening to the dysphonic voice achieved significantly lower scores for more difficult sentences ("the man but not the horse jumps") and used more self-corrections on simpler sentences ("the girl is sitting"). Findings suggest that a dysphonic speaker's voice may force the child to allocate capacity to the processing of the voice signal at the expense of comprehension. The findings have implications for clinical and research settings where standardized language tests are used.
Embodiment during Reading: Simulating a Story Character's Linguistic Actions
ERIC Educational Resources Information Center
Gunraj, Danielle N.; Drumm-Hewitt, April M.; Klin, Celia M.
2014-01-01
According to theories of embodied cognition, a critical element in language comprehension is the formation of sensorimotor simulations of the actions and events described in a text. Although much of the embodied cognition research has focused on simulations of motor actions, we ask whether readers form simulations of story characters' linguistic…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, Brian W; Brunhart-Lupo, Nicholas J; Gruchalla, Kenny M
This brochure describes a system dynamics simulation (SD) framework that supports an end-to-end analysis workflow that is optimized for deployment on ESIF facilities(Peregrine and the Insight Center). It includes (I) parallel and distributed simulation of SD models, (ii) real-time 3D visualization of running simulations, and (iii) comprehensive database-oriented persistence of simulation metadata, inputs, and outputs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, Brian W; Brunhart-Lupo, Nicholas J; Gruchalla, Kenny M
This presentation describes a system dynamics simulation (SD) framework that supports an end-to-end analysis workflow that is optimized for deployment on ESIF facilities(Peregrine and the Insight Center). It includes (I) parallel and distributed simulation of SD models, (ii) real-time 3D visualization of running simulations, and (iii) comprehensive database-oriented persistence of simulation metadata, inputs, and outputs.
Analysis and simulation of the I C engine Otto cycle using the second law of thermodynamics
NASA Astrophysics Data System (ADS)
Abdel-Rahim, Y. M.
The present investigation is an application of the second law of thermodynamics to the spark ignition engine cycle. A comprehensive thermodynamic analysis of the air standard cycle is conducted using the first and second laws of thermodynamics, the ideal gas equation of state and the perfect gas properties for air. The study investigates the effect of the cycle parameters on the cycle performance reflected by the first and second law efficiencies, the heat added, the work done, the available energy added as well as the history of the internal, available and unavailable energies along the cycle. The study shows that the second law efficiency is a function of the compression ratio, the initial temperature, the maximum temperature as well as the dead state temperature. A non-dimensional comprehensive thermodynamic simulation model for the actual Otto cycle is developed to study the effects of the design and operating parameters of the cycle on the cycle performance. The analysis takes into account engine geometry, mixture strength, heat transfer, piston motion, engine speed, mechanical friction, spark advance and combustion duration.
Support for stroke patients in resumption of driving: patient survey and driving simulator trial
Hitosugi, Masahito; Takehara, Itaru; Watanabe, Shu; Hayashi, Yasufumi; Tokudome, Shogo
2011-01-01
Background: Encouragement of stroke patients to resume driving is important to promote their reintegration into the community. Limited rehabilitation has been performed in this regard, owing to lack of specific knowledge on the part of medical staff. To establish an effective support program for stroke patients who wish to resume driving, we propose comprehensive training by medical staff using a driving simulator. Methods: A survey of stroke patients admitted to the Tokyo Metropolitan Rehabilitation Hospital was first performed. A questionnaire was sent to 525 patients. Of 218 responses, the answers of 118 patients who had been driving before their stroke were analyzed. More than 80% of stroke patients did not obtain enough information about resuming driving during their hospital stay, and 38.1% of patients would have liked to have had driving training with a simulator. From these results, we set out to determine the effect of driving training using a realistic and technically advanced driving simulator. Twenty-four stroke patients and 20 healthy controls were included in the study. Results: Repeat training with the simulator resulted in an increased ability to perform braking and an improvement in driving ability. The majority of stroke patients who had the mental and physical ability to drive a car were likely to be assessed as being able to resume driving as a result of the training program. Conclusion: This study indicates that comprehensive support by medical staff and provision of adequate information about resumption of driving and the opportunity for training on a driving simulator are likely to aid resumption of driving by stroke patients, thus enhancing their rehabilitation and social reintegration. PMID:21475633
Using and Evaluating Resampling Simulations in SPSS and Excel.
ERIC Educational Resources Information Center
Smith, Brad
2003-01-01
Describes and evaluates three computer-assisted simulations used with Statistical Package for the Social Sciences (SPSS) and Microsoft Excel. Designed the simulations to reinforce and enhance student understanding of sampling distributions, confidence intervals, and significance tests. Reports evaluations revealed improved student comprehension of…
Simulation/Gaming and the Acquisition of Communicative Competence in Another Language.
ERIC Educational Resources Information Center
Garcia-Carbonell, Amparo; Rising, Beverly; Montero, Begona; Watts, Frances
2001-01-01
Discussion of communicative competence in second language acquisition focuses on a theoretical and practical meshing of simulation and gaming methodology with theories of foreign language acquisition, including task-based learning, interaction, and comprehensible input. Describes experiments conducted with computer-assisted simulations in…
Kinetic Simulation and Energetic Neutral Atom Imaging of the Magnetosphere
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching H.
2011-01-01
Advanced simulation tools and measurement techniques have been developed to study the dynamic magnetosphere and its response to drivers in the solar wind. The Comprehensive Ring Current Model (CRCM) is a kinetic code that solves the 3D distribution in space, energy and pitch-angle information of energetic ions and electrons. Energetic Neutral Atom (ENA) imagers have been carried in past and current satellite missions. Global morphology of energetic ions were revealed by the observed ENA images. We have combined simulation and ENA analysis techniques to study the development of ring current ions during magnetic storms and substorms. We identify the timing and location of particle injection and loss. We examine the evolution of ion energy and pitch-angle distribution during different phases of a storm. In this talk we will discuss the findings from our ring current studies and how our simulation and ENA analysis tools can be applied to the upcoming TRIO-CINAMA mission.
Neural Basis of Action Understanding: Evidence from Sign Language Aphasia.
Rogalsky, Corianne; Raphel, Kristin; Tomkovicz, Vivian; O'Grady, Lucinda; Damasio, Hanna; Bellugi, Ursula; Hickok, Gregory
2013-01-01
The neural basis of action understanding is a hotly debated issue. The mirror neuron account holds that motor simulation in fronto-parietal circuits is critical to action understanding including speech comprehension, while others emphasize the ventral stream in the temporal lobe. Evidence from speech strongly supports the ventral stream account, but on the other hand, evidence from manual gesture comprehension (e.g., in limb apraxia) has led to contradictory findings. Here we present a lesion analysis of sign language comprehension. Sign language is an excellent model for studying mirror system function in that it bridges the gap between the visual-manual system in which mirror neurons are best characterized and language systems which have represented a theoretical target of mirror neuron research. Twenty-one life long deaf signers with focal cortical lesions performed two tasks: one involving the comprehension of individual signs and the other involving comprehension of signed sentences (commands). Participants' lesions, as indicated on MRI or CT scans, were mapped onto a template brain to explore the relationship between lesion location and sign comprehension measures. Single sign comprehension was not significantly affected by left hemisphere damage. Sentence sign comprehension impairments were associated with left temporal-parietal damage. We found that damage to mirror system related regions in the left frontal lobe were not associated with deficits on either of these comprehension tasks. We conclude that the mirror system is not critically involved in action understanding.
NASA Astrophysics Data System (ADS)
Wang, XiaoLiang; Li, JiaChun
2017-12-01
A new solver based on the high-resolution scheme with novel treatments of source terms and interface capture for the Savage-Hutter model is developed to simulate granular avalanche flows. The capability to simulate flow spread and deposit processes is verified through indoor experiments of a two-dimensional granular avalanche. Parameter studies show that reduction in bed friction enhances runout efficiency, and that lower earth pressure restraints enlarge the deposit spread. The April 9, 2000, Yigong avalanche in Tibet, China, is simulated as a case study by this new solver. The predicted results, including evolution process, deposit spread, and hazard impacts, generally agree with site observations. It is concluded that the new solver for the Savage-Hutter equation provides a comprehensive software platform for granular avalanche simulation at both experimental and field scales. In particular, the solver can be a valuable tool for providing necessary information for hazard forecasts, disaster mitigation, and countermeasure decisions in mountainous areas.
Use of Computer-Assisted Instruction to Review Microbiology and Antimicrobial Agents.
ERIC Educational Resources Information Center
Carver, Peggy L.; And Others
1991-01-01
A study assessed the effectiveness of a microcomputer-assisted instructional program using graphics, color, and text in simulations to enhance pharmacy students' knowledge of microbiology and antimicrobial agents. Results indicated high short- and long-term retention of information presented and higher levels of knowledge and comprehension among…
A Note on Cluster Effects in Latent Class Analysis
ERIC Educational Resources Information Center
Kaplan, David; Keller, Bryan
2011-01-01
This article examines the effects of clustering in latent class analysis. A comprehensive simulation study is conducted, which begins by specifying a true multilevel latent class model with varying within- and between-cluster sample sizes, varying latent class proportions, and varying intraclass correlations. These models are then estimated under…
Comprehension of Architectural Construction through Multimedia Active Learning
ERIC Educational Resources Information Center
Mas, Ángeles; Blasco, Vicente; Lerma, Carlos; Angulo, Quiteria
2013-01-01
This study presents an investigation about the use of multimedia procedures applied to architectural construction teaching. We have applied current technological resources, aiming to rationalize and optimize the active learning process. The experience presented to students is very simple and yet very effective. It has consisted in a simulation of…
NASA Astrophysics Data System (ADS)
Ma, Yingzhao; Yang, Yuan; Han, Zhongying; Tang, Guoqiang; Maguire, Lane; Chu, Zhigang; Hong, Yang
2018-01-01
The objective of this study is to comprehensively evaluate the new Ensemble Multi-Satellite Precipitation Dataset using the Dynamic Bayesian Model Averaging scheme (EMSPD-DBMA) at daily and 0.25° scales from 2001 to 2015 over the Tibetan Plateau (TP). Error analysis against gauge observations revealed that EMSPD-DBMA captured the spatiotemporal pattern of daily precipitation with an acceptable Correlation Coefficient (CC) of 0.53 and a Relative Bias (RB) of -8.28%. Moreover, EMSPD-DBMA outperformed IMERG and GSMaP-MVK in almost all metrics in the summers of 2014 and 2015, with the lowest RB and Root Mean Square Error (RMSE) values of -2.88% and 8.01 mm/d, respectively. It also better reproduced the Probability Density Function (PDF) in terms of daily rainfall amount and estimated moderate and heavy rainfall better than both IMERG and GSMaP-MVK. Further, hydrological evaluation with the Coupled Routing and Excess STorage (CREST) model in the Upper Yangtze River region indicated that the EMSPD-DBMA forced simulation showed satisfying hydrological performance in terms of streamflow prediction, with Nash-Sutcliffe coefficient of Efficiency (NSE) values of 0.82 and 0.58, compared to gauge forced simulation (0.88 and 0.60) at the calibration and validation periods, respectively. EMSPD-DBMA also performed a greater fitness for peak flow simulation than a new Multi-Source Weighted-Ensemble Precipitation Version 2 (MSWEP V2) product, indicating a promising prospect of hydrological utility for the ensemble satellite precipitation data. This study belongs to early comprehensive evaluation of the blended multi-satellite precipitation data across the TP, which would be significant for improving the DBMA algorithm in regions with complex terrain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyulassy, Miklos; Romatschke, Paul; Bass, Steffen
2015-08-31
During the 5-year funding period (2010-2015), the JET Collaboration carried out a comprehensive research program with coordinated efforts involving all PI members and external associated members according to the plan and milestones outlined in the approved JET proposal. We identified important issues in the study of parton energy loss and made significant progress toward NLO calculations; advanced event-by-event hydrodynamic simulations of bulk matter evolution; developed Monte Carlo tools that combine different parton energy loss approaches, hydrodynamic models and parton recombination model for jet hadronization; and carried out the first comprehensive phenomenological study to extract the jet transport parameter.
Simulation-based comprehensive benchmarking of RNA-seq aligners
Baruzzo, Giacomo; Hayer, Katharina E; Kim, Eun Ji; Di Camillo, Barbara; FitzGerald, Garret A; Grant, Gregory R
2018-01-01
Alignment is the first step in most RNA-seq analysis pipelines, and the accuracy of downstream analyses depends heavily on it. Unlike most steps in the pipeline, alignment is particularly amenable to benchmarking with simulated data. We performed a comprehensive benchmarking of 14 common splice-aware aligners for base, read, and exon junction-level accuracy and compared default with optimized parameters. We found that performance varied by genome complexity, and accuracy and popularity were poorly correlated. The most widely cited tool underperforms for most metrics, particularly when using default settings. PMID:27941783
Robson, Holly; Pilkington, Emma; Evans, Louise; DeLuca, Vincent; Keidel, James L
2017-06-01
Comprehension impairments in Wernicke's aphasia are thought to result from a combination of impaired phonological and semantic processes. However, the relationship between these cognitive processes and language comprehension has only been inferred through offline neuropsychological tasks. This study used ERPs to investigate phonological and semantic processing during online single word comprehension. EEG was recorded in a group of Wernicke's aphasia n=8 and control participants n=10 while performing a word-picture verification task. The N400 and Phonological Mapping Negativity/Phonological Mismatch Negativity (PMN) event-related potential components were investigated as an index of semantic and phonological processing, respectively. Individuals with Wernicke's aphasia displayed reduced and inconsistent N400 and PMN effects in comparison to control participants. Reduced N400 effects in the WA group were simulated in the control group by artificially degrading speech perception. Correlation analyses in the Wernicke's aphasia group found that PMN but not N400 amplitude was associated with behavioural word-picture verification performance. The results confirm impairments at both phonological and semantic stages of comprehension in Wernicke's aphasia. However, reduced N400 responses in Wernicke's aphasia are at least partially attributable to earlier phonological processing impairments. The results provide further support for the traditional model of Wernicke's aphasia which claims a causative link between phonological processing and language comprehension impairments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Ju-Young; Lee, Soon Hee; Kim, Jung-Hee
2018-05-01
Despite the increase in simulators at nursing schools and the high expectations regarding simulation for nursing education, the unique features of integrating simulation-based education into the curriculum are unclear. The purpose of this study was to assess the curriculum development process of simulation-based educational interventions in nursing in Korea. Integrative review of literature used. Korean Studies Information Services System (KISS), Korean Medical Database (KMbase), KoreaMed, Research Information Sharing Service (RISS), and National Digital Library (NDL). Comprehensive databases were searched for records without a time limit (until December 2016), using terms such as "nursing," "simulation," and "education." A total of 1006 studies were screened. According to the model for simulation-based curriculum development (Khamis et al., 2016), the quality of reporting on the curriculum development was reviewed. A total of 125 papers were included in this review. In three studies, simulation scenarios were made from easy to difficulty levels, and none of the studies presented the level of learners' proficiency. Only 17.6% of the studies reported faculty development or preparation. The inter-rater reliability was presented in performance test by 24 studies and two studies evaluated the long-term effects of simulation education although there was no statistically significant change in terms of publication years. These findings suggest that educators and researchers should pay more attention to the educational strategies to integrate simulation into nursing education. It could contribute to guiding educators and researchers to develop a simulation-based curriculum and improve the quality of nursing education research. Copyright © 2018 Elsevier Ltd. All rights reserved.
Surgical simulation training in orthopedics: current insights.
Kalun, Portia; Wagner, Natalie; Yan, James; Nousiainen, Markku T; Sonnadara, Ranil R
2018-01-01
While the knowledge required of residents training in orthopedic surgery continues to increase, various factors, including reductions in work hours, have resulted in decreased clinical learning opportunities. Recent work suggests residents graduate from their training programs without sufficient exposure to key procedures. In response, simulation is increasingly being incorporated into training programs to supplement clinical learning. This paper reviews the literature to explore whether skills learned in simulation-based settings results in improved clinical performance in orthopedic surgery trainees. A scoping review of the literature was conducted to identify papers discussing simulation training in orthopedic surgery. We focused on exploring whether skills learned in simulation transferred effectively to a clinical setting. Experimental studies, systematic reviews, and narrative reviews were included. A total of 15 studies were included, with 11 review papers and four experimental studies. The review articles reported little evidence regarding the transfer of skills from simulation to the clinical setting, strong evidence that simulator models discriminate among different levels of experience, varied outcome measures among studies, and a need to define competent performance in both simulated and clinical settings. Furthermore, while three out of the four experimental studies demonstrated transfer between the simulated and clinical environments, methodological study design issues were identified. Our review identifies weak evidence as to whether skills learned in simulation transfer effectively to clinical practice for orthopedic surgery trainees. Given the increased reliance on simulation, there is an immediate need for comprehensive studies that focus on skill transfer, which will allow simulation to be incorporated effectively into orthopedic surgery training programs.
NASA Technical Reports Server (NTRS)
DeSmidt, Hans A.; Smith, Edward C.; Bill, Robert C.; Wang, Kon-Well
2013-01-01
This project develops comprehensive modeling and simulation tools for analysis of variable rotor speed helicopter propulsion system dynamics. The Comprehensive Variable-Speed Rotorcraft Propulsion Modeling (CVSRPM) tool developed in this research is used to investigate coupled rotor/engine/fuel control/gearbox/shaft/clutch/flight control system dynamic interactions for several variable rotor speed mission scenarios. In this investigation, a prototypical two-speed Dual-Clutch Transmission (DCT) is proposed and designed to achieve 50 percent rotor speed variation. The comprehensive modeling tool developed in this study is utilized to analyze the two-speed shift response of both a conventional single rotor helicopter and a tiltrotor drive system. In the tiltrotor system, both a Parallel Shift Control (PSC) strategy and a Sequential Shift Control (SSC) strategy for constant and variable forward speed mission profiles are analyzed. Under the PSC strategy, selecting clutch shift-rate results in a design tradeoff between transient engine surge margins and clutch frictional power dissipation. In the case of SSC, clutch power dissipation is drastically reduced in exchange for the necessity to disengage one engine at a time which requires a multi-DCT drive system topology. In addition to comprehensive simulations, several sections are dedicated to detailed analysis of driveline subsystem components under variable speed operation. In particular an aeroelastic simulation of a stiff in-plane rotor using nonlinear quasi-steady blade element theory was conducted to investigate variable speed rotor dynamics. It was found that 2/rev and 4/rev flap and lag vibrations were significant during resonance crossings with 4/rev lagwise loads being directly transferred into drive-system torque disturbances. To capture the clutch engagement dynamics, a nonlinear stick-slip clutch torque model is developed. Also, a transient gas-turbine engine model based on first principles mean-line compressor and turbine approximations is developed. Finally an analysis of high frequency gear dynamics including the effect of tooth mesh stiffness variation under variable speed operation is conducted including experimental validation. Through exploring the interactions between the various subsystems, this investigation provides important insights into the continuing development of variable-speed rotorcraft propulsion systems.
The Role of Computer Simulation in Nanoporous Metals—A Review
Xia, Re; Wu, Run Ni; Liu, Yi Lun; Sun, Xiao Yu
2015-01-01
Nanoporous metals (NPMs) have proven to be all-round candidates in versatile and diverse applications. In this decade, interest has grown in the fabrication, characterization and applications of these intriguing materials. Most existing reviews focus on the experimental and theoretical works rather than the numerical simulation. Actually, with numerous experiments and theory analysis, studies based on computer simulation, which may model complex microstructure in more realistic ways, play a key role in understanding and predicting the behaviors of NPMs. In this review, we present a comprehensive overview of the computer simulations of NPMs, which are prepared through chemical dealloying. Firstly, we summarize the various simulation approaches to preparation, processing, and the basic physical and chemical properties of NPMs. In this part, the emphasis is attached to works involving dealloying, coarsening and mechanical properties. Then, we conclude with the latest progress as well as the future challenges in simulation studies. We believe that highlighting the importance of simulations will help to better understand the properties of novel materials and help with new scientific research on these materials. PMID:28793491
The Comprehensive Inner Magnetosphere-Ionosphere Model
NASA Technical Reports Server (NTRS)
Fok, M.-C.; Buzulukova, N. Y.; Chen, S.-H.; Glocer, A.; Nagai, T.; Valek, P.; Perez, J. D.
2014-01-01
Simulation studies of the Earth's radiation belts and ring current are very useful in understanding the acceleration, transport, and loss of energetic particles. Recently, the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model were merged to form a Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. CIMI solves for many essential quantities in the inner magnetosphere, including ion and electron distributions in the ring current and radiation belts, plasmaspheric density, Region 2 currents, convection potential, and precipitation in the ionosphere. It incorporates whistler mode chorus and hiss wave diffusion of energetic electrons in energy, pitch angle, and cross terms. CIMI thus represents a comprehensive model that considers the effects of the ring current and plasmasphere on the radiation belts. We have performed a CIMI simulation for the storm on 5-9 April 2010 and then compared our results with data from the Two Wide-angle Imaging Neutral-atom Spectrometers and Akebono satellites. We identify the dominant energization and loss processes for the ring current and radiation belts. We find that the interactions with the whistler mode chorus waves are the main cause of the flux increase of MeV electrons during the recovery phase of this particular storm. When a self-consistent electric field from the CRCM is used, the enhancement of MeV electrons is higher than when an empirical convection model is applied. We also demonstrate how CIMI can be a powerful tool for analyzing and interpreting data from the new Van Allen Probes mission.
How far does the CO2 travel beyond a leaky point?
NASA Astrophysics Data System (ADS)
Kong, X.; Delshad, M.; Wheeler, M.
2012-12-01
Xianhui Kong, Mojdeh Delshad, Mary F. Wheeler The University of Texas at Austin Numerous research studies have been carried out to investigate the long term feasibility of safe storage of large volumes of CO2 in subsurface saline aquifers. The injected CO2 will undergo complex petrophysical and geochemical processes. During these processes, part of CO2 will be trapped while some will remain as a mobile phase, causing a leakage risk. The comprehensive and accurate characterizations of the trapping and leakage mechanisms are critical for accessing the safety of sequestration, and are challenges in this research area. We have studied different leakage scenarios using realistic aquifer properties including heterogeneity and put forward a comprehensive trapping model for CO2 in deep saline aquifer. The reservoir models include several geological layers and caprocks up to the near surface. Leakage scenarios, such as fracture, high permeability pathways, abandoned wells, are studied. In order to accurately model the fractures, very fine grids are needed near the fracture. Considering that the aquifer usually has a large volume and reservoir model needs large number of grid blocks, simulation would be computational expensive. To deal with this challenge, we carried out the simulations using our in-house parallel reservoir simulator. Our study shows the significance of capillary pressure and permeability-porosity variations on CO2 trapping and leakage. The improved understanding on trapping and leakage will provide confidence in future implementation of sequestration projects.
Exploratory Factor Analysis with Small Sample Sizes
ERIC Educational Resources Information Center
de Winter, J. C. F.; Dodou, D.; Wieringa, P. A.
2009-01-01
Exploratory factor analysis (EFA) is generally regarded as a technique for large sample sizes ("N"), with N = 50 as a reasonable absolute minimum. This study offers a comprehensive overview of the conditions in which EFA can yield good quality results for "N" below 50. Simulations were carried out to estimate the minimum required "N" for different…
Global sensitivity analysis of DRAINMOD-FOREST, an integrated forest ecosystem model
Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya; Eric D. Vance
2014-01-01
Global sensitivity analysis is a useful tool to understand process-based ecosystem models by identifying key parameters and processes controlling model predictions. This study reported a comprehensive global sensitivity analysis for DRAINMOD-FOREST, an integrated model for simulating water, carbon (C), and nitrogen (N) cycles and plant growth in lowland forests. The...
Mentally Simulating Narrative Perspective Is Not Universal or Necessary for Language Comprehension
ERIC Educational Resources Information Center
Brunyé, Tad T.; Ditman, Tali; Giles, Grace E.; Holmes, Amanda; Taylor, Holly A.
2016-01-01
Readers differentially adopt an agent's perspective as a function of pronouns encountered during reading. The present study assessed the reliability of this effect across narrative contexts and self-reported variation in levels of engagement during reading. Experiment 1 used an extended sample (N = 263) and replicated an interactive influence of…
Changes in vegetation cover associated with urban planning efforts may affect regional meteorology and air quality. Here we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate the influence of planned land use changes from green infrastructure impleme...
NASA Astrophysics Data System (ADS)
Meng, Fanchao; Chen, Cheng; Hu, Dianyin; Song, Jun
2017-12-01
Combining atomistic simulations and continuum modeling, a comprehensive study of the out-of-plane compressive deformation behaviors of equilateral three-dimensional (3D) graphene honeycombs was performed. It was demonstrated that under out-of-plane compression, the honeycomb exhibits two critical deformation events, i.e., elastic mechanical instability (including elastic buckling and structural transformation) and inelastic structural collapse. The above events were shown to be strongly dependent on the honeycomb cell size and affected by the local atomic bonding at the cell junction. By treating the 3D graphene honeycomb as a continuum cellular solid, and accounting for the structural heterogeneity and constraint at the junction, a set of analytical models were developed to accurately predict the threshold stresses corresponding to the onset of those deformation events. The present study elucidates key structure-property relationships of 3D graphene honeycombs under out-of-plane compression, and provides a comprehensive theoretical framework to predictively analyze their deformation responses, and more generally, offers critical new knowledge for the rational bottom-up design of 3D networks of two-dimensional nanomaterials.
An Introduction to the Transition to Work Simulator.
ERIC Educational Resources Information Center
Conroy, William G., Jr.
The transition to work simulator (TWS) was developed as a policy tool for education and manpower planning. It was designed in anticipation of the Education Amendments of 1976 and the Youth Employment and Demonstration Projects Act of 1977 to facilitate comprehensive planning. TWS is a computerized simulation model of the stream of important…
Simulating Activities: Relating Motives, Deliberation and Attentive Coordination
NASA Technical Reports Server (NTRS)
Clancey, William J.; Clancy, Daniel (Technical Monitor)
2002-01-01
Activities are located behaviors, taking time, conceived as socially meaningful, and usually involving interaction with tools and the environment. In modeling human cognition as a form of problem solving (goal-directed search and operator sequencing), cognitive science researchers have not adequately studied "off-task" activities (e.g., waiting), non-intellectual motives (e.g., hunger), sustaining a goal state (e.g., playful interaction), and coupled perceptual-motor dynamics (e.g., following someone). These aspects of human behavior have been considered in bits and pieces in past research, identified as scripts, human factors, behavior settings, ensemble, flow experience, and situated action. More broadly, activity theory provides a comprehensive framework relating motives, goals, and operations. This paper ties these ideas together, using examples from work life in a Canadian High Arctic research station. The emphasis is on simulating human behavior as it naturally occurs, such that "working" is understood as an aspect of living. The result is a synthesis of previously unrelated analytic perspectives and a broader appreciation of the nature of human cognition. Simulating activities in this comprehensive way is useful for understanding work practice, promoting learning, and designing better tools, including human-robot systems.
Ruokolainen, Miina; Gul, Turan; Permentier, Hjalmar; Sikanen, Tiina; Kostiainen, Risto; Kotiaho, Tapio
2016-02-15
The feasibility of titanium dioxide (TiO2) photocatalysis, electrochemically assisted Fenton reaction (EC-Fenton) and direct electrochemical oxidation (EC) for simulation of phase I metabolism of drugs was studied by comparing the reaction products of buspirone, promazine, testosterone and 7-ethoxycoumarin with phase I metabolites of the same compounds produced in vitro by human liver microsomes (HLM). Reaction products were analysed by UHPLC-MS. TiO2 photocatalysis simulated the in vitro phase I metabolism in HLM more comprehensively than did EC-Fenton or EC. Even though TiO2 photocatalysis, EC-Fenton and EC do not allow comprehensive prediction of phase I metabolism, all three methods produce several important metabolites without the need for demanding purification steps to remove the biological matrix. Importantly, TiO2 photocatalysis produces aliphatic and aromatic hydroxylation products where direct EC fails. Furthermore, TiO2 photocatalysis is an extremely rapid, simple and inexpensive way to generate oxidation products in a clean matrix and the reaction can be simply initiated and quenched by switching the UV lamp on/off. Copyright © 2015 Elsevier B.V. All rights reserved.
Fontan, Lionel; Ferrané, Isabelle; Farinas, Jérôme; Pinquier, Julien; Tardieu, Julien; Magnen, Cynthia; Gaillard, Pascal; Aumont, Xavier; Füllgrabe, Christian
2017-09-18
The purpose of this article is to assess speech processing for listeners with simulated age-related hearing loss (ARHL) and to investigate whether the observed performance can be replicated using an automatic speech recognition (ASR) system. The long-term goal of this research is to develop a system that will assist audiologists/hearing-aid dispensers in the fine-tuning of hearing aids. Sixty young participants with normal hearing listened to speech materials mimicking the perceptual consequences of ARHL at different levels of severity. Two intelligibility tests (repetition of words and sentences) and 1 comprehension test (responding to oral commands by moving virtual objects) were administered. Several language models were developed and used by the ASR system in order to fit human performances. Strong significant positive correlations were observed between human and ASR scores, with coefficients up to .99. However, the spectral smearing used to simulate losses in frequency selectivity caused larger declines in ASR performance than in human performance. Both intelligibility and comprehension scores for listeners with simulated ARHL are highly correlated with the performances of an ASR-based system. In the future, it needs to be determined if the ASR system is similarly successful in predicting speech processing in noise and by older people with ARHL.
NASA Technical Reports Server (NTRS)
1975-01-01
A data simulation is presented for instruments and associated control and display functions required to perform controlled active experiments of the atmosphere. A comprehensive user's guide is given for the data requirements and software developed for the following experiments: (1) electromagnetic wave transmission; (2) passive observation of ambient plasmas; (3) ionospheric measurements with a subsatellite; (4) electron accelerator beam measurements; and (5) measurement of acoustic gravity waves in the sodium layer using lasers. A complete description of each experiment is given.
Stevens, Louis-Mathieu; Cooper, Jeffrey B; Raemer, Daniel B; Schneider, Robert C; Frankel, Allan S; Berry, William R; Agnihotri, Arvind K
2012-07-01
Cardiac surgery demands effective teamwork for safe, high-quality care. The objective of this pilot study was to develop a comprehensive program to sharpen performance of experienced cardiac surgical teams in acute crisis management. We developed and implemented an educational program for cardiac surgery based on high realism acute crisis simulation scenarios and interactive whole-unit workshop. The impact of these interventions was assessed with postintervention questionnaires, preintervention and 6-month postintervention surveys, and structured interviews. The realism of the acute crisis simulation scenarios gradually improved; most participants rated both the simulation and whole-unit workshop as very good or excellent. Repeat simulation training was recommended every 6 to 12 months by 82% of the participants. Participants of the interactive workshop identified 2 areas of highest priority: encouraging speaking up about critical information and interprofessional information sharing. They also stressed the importance of briefings, early communication of surgical plan, knowing members of the team, and continued simulation for practice. The pre/post survey response rates were 70% (55/79) and 66% (52/79), respectively. The concept of working as a team improved between surveys (P = .028), with a trend for improvement in gaining common understanding of the plan before a procedure (P = .075) and appropriate resolution of disagreements (P = .092). Interviewees reported that the training had a positive effect on their personal behaviors and patient care, including speaking up more readily and communicating more clearly. Comprehensive team training using simulation and a whole-unit interactive workshop can be successfully deployed for experienced cardiac surgery teams with demonstrable benefits in participant's perception of team performance. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
ENHANCING HYDROLOGICAL SIMULATION PROGRAM - FORTRAN MODEL CHANNEL HYDRAULIC REPRESENTATION
The Hydrological Simulation Program– FORTRAN (HSPF) is a comprehensive watershed model that employs depth-area - volume - flow relationships known as the hydraulic function table (FTABLE) to represent the hydraulic characteristics of stream channel cross-sections and reservoirs. ...
Modeling Best Management Practices (BMPs) with HSPF
The Hydrological Simulation Program-Fortran (HSPF) is a semi-distributed watershed model, which simulates hydrology and water quality processes at user-specified spatial and temporal scales. Although HSPF is a comprehensive and highly flexible model, a number of investigators not...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reckinger, Scott James; Livescu, Daniel; Vasilyev, Oleg V.
A comprehensive numerical methodology has been developed that handles the challenges introduced by considering the compressive nature of Rayleigh-Taylor instability (RTI) systems, which include sharp interfacial density gradients on strongly stratified background states, acoustic wave generation and removal at computational boundaries, and stratification-dependent vorticity production. The computational framework is used to simulate two-dimensional single-mode RTI to extreme late-times for a wide range of flow compressibility and variable density effects. The results show that flow compressibility acts to reduce the growth of RTI for low Atwood numbers, as predicted from linear stability analysis.
Nagelhout, Gera E; Levy, David T; Blackman, Kenneth; Currie, Laura; Clancy, Luke; Willemsen, Marc C
2012-02-01
To develop a simulation model projecting the effect of tobacco control policies in the Netherlands on smoking prevalence and smoking-attributable deaths. Netherlands SimSmoke-an adapted version of the SimSmoke simulation model of tobacco control policy-uses population, smoking rates and tobacco control policy data for the Netherlands to predict the effect of seven types of policies: taxes, smoke-free legislation, mass media, advertising bans, health warnings, cessation treatment and youth access policies. Outcome measures were smoking prevalence and smoking-attributable deaths. With a comprehensive set of policies, as recommended by MPOWER, smoking prevalence can be decreased by as much as 21% in the first year, increasing to a 35% reduction in the next 20 years and almost 40% by 30 years. By 2040, 7706 deaths can be averted in that year alone with the stronger set of policies. Without effective tobacco control policies, almost a million lives will be lost to tobacco-related diseases between 2011 and 2040. Of those, 145,000 can be saved with a comprehensive tobacco control package. Smoking prevalence and smoking-attributable deaths in the Netherlands can be reduced substantially through tax increases, smoke-free legislation, high-intensity media campaigns, stronger advertising bans and health warnings, comprehensive cessation treatment and youth access laws. The implementation of these FCTC/MPOWER recommended policies could be expected to show similar or even larger relative reductions in smoking prevalence in other countries which currently have weak policies. © 2011 The Authors, Addiction © 2011 Society for the Study of Addiction.
NASA Technical Reports Server (NTRS)
Oluwole, Oluwayemisi O.; Wong, Hsi-Wu; Green, William
2012-01-01
AdapChem software enables high efficiency, low computational cost, and enhanced accuracy on computational fluid dynamics (CFD) numerical simulations used for combustion studies. The software dynamically allocates smaller, reduced chemical models instead of the larger, full chemistry models to evolve the calculation while ensuring the same accuracy to be obtained for steady-state CFD reacting flow simulations. The software enables detailed chemical kinetic modeling in combustion CFD simulations. AdapChem adapts the reaction mechanism used in the CFD to the local reaction conditions. Instead of a single, comprehensive reaction mechanism throughout the computation, a dynamic distribution of smaller, reduced models is used to capture accurately the chemical kinetics at a fraction of the cost of the traditional single-mechanism approach.
Ultrasonic Phased Array Inspection Simulations of Welded Components at NASA
NASA Technical Reports Server (NTRS)
Roth, D. J.; Tokars, R. P.; Martin, R. E.; Rauser, R. W.; Aldrin, J. C.; Schumacher, E. J.
2009-01-01
Comprehensive and accurate inspections of welded components have become of increasing importance as NASA develops new hardware such as Ares rocket segments for future exploration missions. Simulation and modeling will play an increased role in the future for nondestructive evaluation in order to better understand the physics of the inspection process and help explain the experimental results. It will also help to prove or disprove the feasibility for an inspection method or inspection scenario, help optimize inspections, and allow to a first approximation limits of detectability. This study presents simulation and experimental results for an ultrasonic phased array inspection of a critical welded structure important for NASA future exploration vehicles.
Transactive Systems Simulation and Valuation Platform Trial Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widergren, Steven E.; Hammerstrom, Donald J.; Huang, Qiuhua
Transactive energy systems use principles of value to coordinate responsive supply and demand in energy systems. Work continues within the Transactive Systems Program, which is funded by the U.S. Department of Energy at Pacific Northwest National Laboratory, to understand the value of, understand the theory behind, and simulate the behaviors of transactive energy systems. This report summarizes recent advances made by this program. The main capability advances include a more comprehensive valuation model, including recommended documentation that should make valuation studies of all sorts more transparent, definition of economic metrics with which transactive mechanisms can be evaluated, and multiple improvementsmore » to the time-simulation environment that is being used to evaluate transactive scenarios.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiao; Gao, Wenzhong; Wang, Jianhui
The frequency regulation capability of a wind power plant plays an important role in enhancing frequency reliability especially in an isolated power system with high wind power penetration levels. A comparison of two types of inertial control methods, namely frequency-based inertial control (FBIC) and stepwise inertial control (SIC), is presented in this paper. Comprehensive case studies are carried out to reveal features of the different inertial control methods, simulated in a modified Western System Coordination Council (WSCC) nine-bus power grid using real-time digital simulator (RTDS) platform. The simulation results provide an insight into the inertial control methods under various scenarios.
NASA Technical Reports Server (NTRS)
Janardan, B. A.; Brausch, J. F.; Price, A. O.
1984-01-01
Acoustic and diagnostic data that were obtained to determine the influence of selected geometric and aerodynamic flow variables of coannular nozzles with thermal acoustic shields are summarized in this comprehensive data report. A total of 136 static and simulated flight acoustic test points were conducted with 9 scale-model nozzles. Aerodynamic laser velocimeter measurements were made for four selected plumes. In addition, static pressure data in the chute base region of the suppressor configurations were obtained to assess the influence of the shield stream on the suppressor base drag.
A comprehensive surface-groundwater flow model
NASA Astrophysics Data System (ADS)
Arnold, Jeffrey G.; Allen, Peter M.; Bernhardt, Gilbert
1993-02-01
In this study, a simple groundwater flow and height model was added to an existing basin-scale surface water model. The linked model is: (1) watershed scale, allowing the basin to be subdivided; (2) designed to accept readily available inputs to allow general use over large regions; (3) continuous in time to allow simulation of land management, including such factors as climate and vegetation changes, pond and reservoir management, groundwater withdrawals, and stream and reservoir withdrawals. The model is described, and is validated on a 471 km 2 watershed near Waco, Texas. This linked model should provide a comprehensive tool for water resource managers in development and planning.
A new computer code for discrete fracture network modelling
NASA Astrophysics Data System (ADS)
Xu, Chaoshui; Dowd, Peter
2010-03-01
The authors describe a comprehensive software package for two- and three-dimensional stochastic rock fracture simulation using marked point processes. Fracture locations can be modelled by a Poisson, a non-homogeneous, a cluster or a Cox point process; fracture geometries and properties are modelled by their respective probability distributions. Virtual sampling tools such as plane, window and scanline sampling are included in the software together with a comprehensive set of statistical tools including histogram analysis, probability plots, rose diagrams and hemispherical projections. The paper describes in detail the theoretical basis of the implementation and provides a case study in rock fracture modelling to demonstrate the application of the software.
Importance of leadership in cardiac arrest situations: from simulation to real life and back.
Hunziker, Sabnina; Tschan, Franziska; Semmer, Norbert K; Marsch, Stephan
2013-04-18
The 2010 American Heart Association guidelines now recommend leadership training in Advanced Cardiac Life Support courses. In this review we provide a comprehensive summary of data derived from clinical studies that investigated the importance of leadership in cardiopulmonary resuscitation (CPR). Only a few, mostly observational, studies have been conducted under real-life conditions because of the high heterogeneity of the situations, difficulties in capturing the initial phase of CPR, and ethical issues. Well-controlled studies in the human simulator can fill existing gaps and provide important insights. High-fidelity video-assisted simulator studies from different research groups have shown that a prolonged process of teambuilding is associated with significant shortcomings in CPR, whereas effective leadership improves team performance. In addition, randomised controlled studies have provided evidence that medical students receiving leadership training subsequently showed improved CPR performance, which was sustained after a follow up of 4 months. In addition, leadership is influenced by gender and other factors such as emotional stress. Future studies are needed to investigate cultural differences and how findings from the simulator can be transferred to real-life situations.
Perspective image comprehension depends on both visual and proprioceptive information.
Michel, Christian W; Ray, Devin G; Kaup, Barbara; Hesse, Friedrich W
2014-11-01
Proprioceptive information can supplement visual information in the comprehension of ambiguous perspective images. The importance of proprioceptive information in unambiguous perspective image comprehension is untested, however. We explored the role of proprioception in perspective image comprehension using three experiments in which participants took or imagined taking an upward- or downward-oriented posture and then made judgments about images viewed from below or viewed from above. Participants were faster and more accurate in their judgments when their actual or simulated posture was consistent with the posture implied by the perspective of the image they were judging. These results support a role for proprioception in the comprehension of unambiguous perspective images as well as ambiguous perspective images.
Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool
NASA Astrophysics Data System (ADS)
Torlapati, Jagadish; Prabhakar Clement, T.
2013-01-01
We present the details of a comprehensive numerical modeling tool, RT1D, which can be used for simulating biochemical and geochemical reactive transport problems. The code can be run within the standard Microsoft EXCEL Visual Basic platform, and it does not require any additional software tools. The code can be easily adapted by others for simulating different types of laboratory-scale reactive transport experiments. We illustrate the capabilities of the tool by solving five benchmark problems with varying levels of reaction complexity. These literature-derived benchmarks are used to highlight the versatility of the code for solving a variety of practical reactive transport problems. The benchmarks are described in detail to provide a comprehensive database, which can be used by model developers to test other numerical codes. The VBA code presented in the study is a practical tool that can be used by laboratory researchers for analyzing both batch and column datasets within an EXCEL platform.
He, Jinsong; Chen, J Paul
2014-05-01
Heavy metals contamination has become a global issue of concern due to their higher toxicities, nature of non-biodegradability, high capabilities in bioaccumulation in human body and food chain, and carcinogenicities to humans. A series of researches demonstrate that biosorption is a promising technology for removal of heavy metals from aqueous solutions. Algae serve as good biosorbents due to their abundance in seawater and fresh water, cost-effectiveness, reusability and high metal sorption capacities. This article provides a comprehensive review of recent findings on performances, applications and chemistry of algae (e.g., brown, green and red algae, modified algae and the derivatives) for sequestration of heavy metals. Biosorption kinetics and equilibrium models are reviewed. The mechanisms for biosorption are presented. Biosorption is a complicated process involving ion-exchange, complexation and coordination. Finally the theoretical simulation tools for biosorption equilibrium and kinetics are presented so that the readers can use them for further studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Simulation-based bronchoscopy training: systematic review and meta-analysis.
Kennedy, Cassie C; Maldonado, Fabien; Cook, David A
2013-07-01
Simulation-based bronchoscopy training is increasingly used, but effectiveness remains uncertain. We sought to perform a comprehensive synthesis of published work on simulation-based bronchoscopy training. We searched MEDLINE, EMBASE, CINAHL, PsycINFO, ERIC, Web of Science, and Scopus for eligible articles through May 11, 2011. We included all original studies involving health professionals that evaluated, in comparison with no intervention or an alternative instructional approach, simulation-based training for flexible or rigid bronchoscopy. Study selection and data abstraction were performed independently and in duplicate. We pooled results using random effects meta-analysis. From an initial pool of 10,903 articles, we identified 17 studies evaluating simulation-based bronchoscopy training. In comparison with no intervention, simulation training was associated with large benefits on skills and behaviors (pooled effect size, 1.21 [95% CI, 0.82-1.60]; n=8 studies) and moderate benefits on time (0.62 [95% CI, 0.12-1.13]; n=7). In comparison with clinical instruction, behaviors with real patients showed nonsignificant effects favoring simulation for time (0.61 [95% CI, -1.47 to 2.69]) and process (0.33 [95% CI, -1.46 to 2.11]) outcomes (n=2 studies each), although variation in training time might account for these differences. Four studies compared alternate simulation-based training approaches. Inductive analysis to inform instructional design suggested that longer or more structured training is more effective, authentic clinical context adds value, and animal models and plastic part-task models may be superior to more costly virtual-reality simulators. Simulation-based bronchoscopy training is effective in comparison with no intervention. Comparative effectiveness studies are few.
Missing value imputation for microarray data: a comprehensive comparison study and a web tool.
Chiu, Chia-Chun; Chan, Shih-Yao; Wang, Chung-Ching; Wu, Wei-Sheng
2013-01-01
Microarray data are usually peppered with missing values due to various reasons. However, most of the downstream analyses for microarray data require complete datasets. Therefore, accurate algorithms for missing value estimation are needed for improving the performance of microarray data analyses. Although many algorithms have been developed, there are many debates on the selection of the optimal algorithm. The studies about the performance comparison of different algorithms are still incomprehensive, especially in the number of benchmark datasets used, the number of algorithms compared, the rounds of simulation conducted, and the performance measures used. In this paper, we performed a comprehensive comparison by using (I) thirteen datasets, (II) nine algorithms, (III) 110 independent runs of simulation, and (IV) three types of measures to evaluate the performance of each imputation algorithm fairly. First, the effects of different types of microarray datasets on the performance of each imputation algorithm were evaluated. Second, we discussed whether the datasets from different species have different impact on the performance of different algorithms. To assess the performance of each algorithm fairly, all evaluations were performed using three types of measures. Our results indicate that the performance of an imputation algorithm mainly depends on the type of a dataset but not on the species where the samples come from. In addition to the statistical measure, two other measures with biological meanings are useful to reflect the impact of missing value imputation on the downstream data analyses. Our study suggests that local-least-squares-based methods are good choices to handle missing values for most of the microarray datasets. In this work, we carried out a comprehensive comparison of the algorithms for microarray missing value imputation. Based on such a comprehensive comparison, researchers could choose the optimal algorithm for their datasets easily. Moreover, new imputation algorithms could be compared with the existing algorithms using this comparison strategy as a standard protocol. In addition, to assist researchers in dealing with missing values easily, we built a web-based and easy-to-use imputation tool, MissVIA (http://cosbi.ee.ncku.edu.tw/MissVIA), which supports many imputation algorithms. Once users upload a real microarray dataset and choose the imputation algorithms, MissVIA will determine the optimal algorithm for the users' data through a series of simulations, and then the imputed results can be downloaded for the downstream data analyses.
ERIC Educational Resources Information Center
Sato, Manami; Bergen, Benjamin K.
2013-01-01
Language comprehenders can mentally simulate perceptual and motor features of scenes they hear or read about (Barsalou, 1999; Glenberg & Kaschak, 2002; Zwaan, Stanfield, & Yaxley, 2002). Recent research shows that these simulations adopt a particular perspective (Borghi, Glenberg & Kaschak, 2004; Brunye, Ditman, Mahoney, Augustyn, & Taylor, 2009).…
ERIC Educational Resources Information Center
Smetana, Lara Kathleen; Bell, Randy L.
2012-01-01
Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is…
Physics-based simulations of the impacts forest management practices have on hydrologic response
Adrianne Carr; Keith Loague
2012-01-01
The impacts of logging on near-surface hydrologic response at the catchment and watershed scales were examined quantitatively using numerical simulation. The simulations were conducted with the Integrated Hydrology Model (InHM) for the North Fork of Caspar Creek Experimental Watershed, located near Fort Bragg, California. InHM is a comprehensive physics-based...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCorkle, D.; Yang, C.; Jordan, T.
2007-06-01
Modeling and simulation tools are becoming pervasive in the process engineering practice of designing advanced power generation facilities. These tools enable engineers to explore many what-if scenarios before cutting metal or constructing a pilot scale facility. While such tools enable investigation of crucial plant design aspects, typical commercial process simulation tools such as Aspen Plus®, gPROMS®, and HYSYS® still do not explore some plant design information, including computational fluid dynamics (CFD) models for complex thermal and fluid flow phenomena, economics models for policy decisions, operational data after the plant is constructed, and as-built information for use in as-designed models. Softwaremore » tools must be created that allow disparate sources of information to be integrated if environments are to be constructed where process simulation information can be accessed. At the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL), the Advanced Process Engineering Co-Simulator (APECS) has been developed as an integrated software suite that combines process simulation (e.g., Aspen Plus) and high-fidelity equipment simulation (e.g., Fluent® CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper, we discuss the initial phases of integrating APECS with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite utilizes the ActiveX (OLE Automation) controls in Aspen Plus wrapped by the CASI library developed by Reaction Engineering International to run the process simulation and query for unit operation results. This integration permits any application that uses the VE-Open interface to integrate with APECS co-simulations, enabling construction of the comprehensive virtual engineering environment needed for the rapid engineering of advanced power generation facilities.« less
Modeling and analysis of a resonant nanosystem
NASA Astrophysics Data System (ADS)
Calvert, Scott L.
The majority of investigations into nanoelectromechanical resonators focus on a single area of the resonator's function. This focus varies from the development of a model for a beam's vibration, to the modeling of electrostatic forces, to a qualitative explanation of experimentally-obtained currents. Despite these efforts, there remains a gap between these works, and the level of sophistication needed to truly design nanoresonant systems for efficient commercial use. Towards this end, a comprehensive system model for both a nanobeam resonator and its related experimental setup is proposed. Furthermore, a simulation arrangement is suggested as a method for facilitating the study of the system-level behavior of these devices in a variety of cases that could not be easily obtained experimentally or analytically. The dynamics driving the nanoresonator's motion, as well as the electrical interactions influencing the forcing and output of the system, are modeled, experimentally validated, and studied. The model seeks to develop both a simple circuit representation of the nanoresonator, and to create a mathematical system that can be used to predict and interpret the observed behavior. Due to the assumptions used to simplify the model to a point of reasonable comprehension, the model is most accurate for small beam deflections near the first eigenmode of the beam. The process and results of an experimental investigation are documented, and compared with a circuit simulation modeling the full test system. The comparison qualitatively proves the functionality of the model, while a numerical analysis serves to validate the functionality and setup of the circuit simulation. The use of the simulation enables a much broader investigation of both the electrical behavior and the physical device's dynamics. It is used to complement an assessment of the tuning behavior of the system's linear natural frequency by demonstrating the tuning behavior of the full nonlinear response. The simulation is used to demonstrate the difficulties with the contemporary mixing approach to experimental data collection and to complete a variety of case studies investigating the use of the nanoresonator systems in practical applications, such as signal filtering. Many of these case studies would be difficult to complete analytically, but results are quickly achieved through the use of the simulation.
NASA Astrophysics Data System (ADS)
Liu, J.
2017-12-01
Accurately estimate of ET is crucial for studies of land-atmosphere interactions. A series of ET products have been developed recently relying on various simulation methods, however, uncertainties in accuracy of products limit their implications. In this study, accuracies of total 8 popular global ET products simulated based on satellite retrieves (ETMODIS and ETZhang), reanalysis (ETJRA55), machine learning method (ETJung) and land surface models (ETCLM, ETMOS, ETNoah and ETVIC) forcing by Global Land Data Assimilation System (GLDAS), respectively, were comprehensively evaluated against observations from eddy covariance FLUXNET sites by yearly, land cover and climate zones. The result shows that all simulated ET products tend to underestimate in the lower ET ranges or overestimate in higher ET ranges compared with ET observations. Through the examining of four statistic criterias, the root mean square error (RMSE), mean bias error (MBE), R2, and Taylor skill score (TSS), ETJung provided a high performance whether yearly or land cover or climatic zones. Satellite based ET products also have impressive performance. ETMODIS and ETZhang present comparable accuracy, while were skilled for different land cover and climate zones, respectively. Generally, the ET products from GLDAS show reasonable accuracy, despite ETCLM has relative higher RMSE and MBE for yearly, land cover and climate zones comparisons. Although the ETJRA55 shows comparable R2 with other products, its performance was constraint by the high RMSE and MBE. Knowledge from this study is crucial for ET products improvement and selection when they were used.
USDA-ARS?s Scientific Manuscript database
The DAYCENT biogeochemical model was used to investigate how the use of fertilisers coated with nitrification inhibitors and the introduction of legumes in the crop rotation can affect subtropical cereal production and N2O emissions. The model was validated using comprehensive multi-seasonal, high-f...
Hydraulic actuation technology for full- and semi-active railway suspensions
NASA Astrophysics Data System (ADS)
Goodall, Roger; Freudenthaler, Gerhard; Dixon, Roger
2014-12-01
The paper describes a simulation study that provides a comprehensive comparison between full-active and semi-active suspensions for improving the vertical ride quality of railway vehicles. It includes an assessment of the ride quality benefits that can theoretically be achieved with idealised devices, and also examines the impact of real devices based upon hydraulic actuation technology.
NASA Astrophysics Data System (ADS)
Li, Na; Black, John B.
2016-10-01
Chemistry knowledge can be represented at macro-, micro- and symbolic levels, and learning a chemistry topic requires students to engage in multiple representational activities. This study focused on scaffolding for inter-level connection-making in learning chemistry knowledge with graphical simulations. We also tested whether different sequences of representational activities produced different student learning outcomes in learning a chemistry topic. A sample of 129 seventh graders participated in this study. In a simulation-based environment, participants completed three representational activities to learn several ideal gas law concepts. We conducted a 2 × 3 factorial design experiment. We compared two scaffolding conditions: (1) the inter- level scaffolding condition in which participants received inter-level questions and experienced the dynamic link function in the simulation-based environment and (2) the intra- level scaffolding condition in which participants received intra-level questions and did not experience the dynamic link function. We also compared three different sequences of representational activities: macro-symbolic-micro, micro-symbolic-macro and symbolic-micro-macro. For the scaffolding variable, we found that the inter- level scaffolding condition produced significantly better performance in both knowledge comprehension and application, compared to the intra- level scaffolding condition. For the sequence variable, we found that the macro-symbolic-micro sequence produced significantly better knowledge comprehension performance than the other two sequences; however, it did not benefit knowledge application performance. There was a trend that the treatment group who experienced inter- level scaffolding and the micro-symbolic-macro sequence achieved the best knowledge application performance.
BASIC TEST OF READING COMPREHENSION.
ERIC Educational Resources Information Center
CLOWARD, ROBERT D.; COHEN, S. ALAN
THE TEST WAS DESIGNED TO ASSESS SPEED OF READING COMPREHENSION. IT CONSISTED OF NUMBERED PASSAGES, ONE TO THREE SENTENCES IN LENGTH, ARRANGED IN PARAGRAPH FORM TO SIMULATE THE NORMAL READING EXERCISE. TOWARD THE END OF EACH PASSAGE, A WORD WAS INSERTED WHICH SPOILED THE MEANING OF THE PASSAGE. THE PUPILS WERE INSTRUCTED TO FIND THE WORD THAT…
Numerical modeling of inorganic aerosol processes is useful in air quality management, but comprehensive evaluation of modeled aerosol processes is rarely possible due to the lack of comprehensive datasets. During the Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (N...
The Research and Evaluation of Serious Games: Toward a Comprehensive Methodology
ERIC Educational Resources Information Center
Mayer, Igor; Bekebrede, Geertje; Harteveld, Casper; Warmelink, Harald; Zhou, Qiqi; van Ruijven, Theo; Lo, Julia; Kortmann, Rens; Wenzler, Ivo
2014-01-01
The authors present the methodological background to and underlying research design of an ongoing research project on the scientific evaluation of serious games and/or computer-based simulation games (SGs) for advanced learning. The main research questions are: (1) what are the requirements and design principles for a comprehensive social…
MacFarlane, Brett; Matthews, Andrew; Bergin, Jenny
2015-10-01
Patients regularly present to community pharmacies for advice about and treatment for reflux symptoms and NSAIDs are a common cause of these symptoms. There is no published literature detailing the approach that pharmacies take to these enquiries, the pharmacotherapy they recommend or whether they contribute to the safe and effective use of reflux medicines. To assess in an observational study design the clinical history gathering, recommendations for GORD management and counselling provided by community pharmacies in a simulated patient scenario involving suspected NSAID induced reflux symptoms. Setting Australian community pharmacies. Simulated patients visited 223 community pharmacies to request treatment for reflux symptoms. The interaction was audiotaped and assessed against guidelines for the treatment of reflux symptoms. Alignment of community pharmacies with international expert gastroenterologist guidance and national professional practice guidelines for the treatment of reflux symptoms by pharmacists including: consultation with a pharmacist; confirmation of reflux diagnosis based on symptoms; recommendation of short courses proton pump inhibitor (PPI) therapy; advice on the safe and effective use of reflux medicines and referral to a doctor for further assessment. Pharmacists consulted with the simulated patient in 77% of cases. Symptoms were enquired about in 95% of cases and a medicines history taken in 69% of cases. Recommendations for treatment included: PPIs (18%), histamine H2 antagonists (57%) and antacids (19%). Advice on product use was given in 83% of cases. Referral to a doctor to discuss reflux symptoms was made in 63% of cases. When assessing patients for the symptoms of GORD, Australian pharmacists and non-pharmacist support staff take a comprehensive history including symptomatology, duration of symptoms, concomitant medicines and medical conditions and any GORD treatments previously trialled. They provide comprehensive counselling on the use of antisecretory and antacid medicines. Counselling could involve more comprehensive information on lifestyle approaches for GORD management and side effects of antisecretory and antacid medicines. Further alignment with guidelines for the management of GORD would result in greater referral to a doctor for assessment of recurrent GORD and greater recommendation of PPIs for symptoms. However alignment with guidelines by all pharmacists is unrealistic if the guidelines are not universally available to them.
A Comprehensive Study of a Micro-Channel Heat Sink Using Integrated Thin-Film Temperature Sensors
Wang, Tao; Wang, Jiejun; He, Jian; Wu, Chuangui; Luo, Wenbo; Shuai, Yao; Zhang, Wanli; Chen, Xiancai; Zhang, Jian; Lin, Jia
2018-01-01
A micro-channel heat sink is a promising cooling method for high power integrated circuits (IC). However, the understanding of such a micro-channel device is not sufficient, because the tools for studying it are very limited. The details inside the micro-channels are not readily available. In this letter, a micro-channel heat sink is comprehensively studied using the integrated temperature sensors. The highly sensitive thin film temperature sensors can accurately monitor the temperature change in the micro-channel in real time. The outstanding heat dissipation performance of the micro-channel heat sink is proven in terms of maximum temperature, cooling speed and heat resistance. The temperature profile along the micro-channel is extracted, and even small temperature perturbations can be detected. The heat source formed temperature peak shifts towards the flow direction with the increasing flow rate. However, the temperature non-uniformity is independent of flow rate, but solely dependent on the heating power. Specific designs for minimizing the temperature non-uniformity are necessary. In addition, the experimental results from the integrated temperature sensors match the simulation results well. This can be used to directly verify the modeling results, helping to build a convincing simulation model. The integrated sensor could be a powerful tool for studying the micro-channel based heat sink. PMID:29351248
A Comprehensive Study of a Micro-Channel Heat Sink Using Integrated Thin-Film Temperature Sensors.
Wang, Tao; Wang, Jiejun; He, Jian; Wu, Chuangui; Luo, Wenbo; Shuai, Yao; Zhang, Wanli; Chen, Xiancai; Zhang, Jian; Lin, Jia
2018-01-19
A micro-channel heat sink is a promising cooling method for high power integrated circuits (IC). However, the understanding of such a micro-channel device is not sufficient, because the tools for studying it are very limited. The details inside the micro-channels are not readily available. In this letter, a micro-channel heat sink is comprehensively studied using the integrated temperature sensors. The highly sensitive thin film temperature sensors can accurately monitor the temperature change in the micro-channel in real time. The outstanding heat dissipation performance of the micro-channel heat sink is proven in terms of maximum temperature, cooling speed and heat resistance. The temperature profile along the micro-channel is extracted, and even small temperature perturbations can be detected. The heat source formed temperature peak shifts towards the flow direction with the increasing flow rate. However, the temperature non-uniformity is independent of flow rate, but solely dependent on the heating power. Specific designs for minimizing the temperature non-uniformity are necessary. In addition, the experimental results from the integrated temperature sensors match the simulation results well. This can be used to directly verify the modeling results, helping to build a convincing simulation model. The integrated sensor could be a powerful tool for studying the micro-channel based heat sink.
Ohira, Yoshiyuki; Uehara, Takanori; Noda, Kazutaka; Suzuki, Shingo; Shikino, Kiyoshi; Kajiwara, Hideki; Kondo, Takeshi; Hirota, Yusuke; Ikusaka, Masatomi
2017-01-01
Objectives We examined whether problem-based learning tutorials using patient-simulated videos showing daily life are more practical for clinical learning, compared with traditional paper-based problem-based learning, for the consideration rate of psychosocial issues and the recall rate for experienced learning. Methods Twenty-two groups with 120 fifth-year students were each assigned paper-based problem-based learning and video-based problem-based learning using patient-simulated videos. We compared target achievement rates in questionnaires using the Wilcoxon signed-rank test and discussion contents diversity using the Mann-Whitney U test. A follow-up survey used a chi-square test to measure students’ recall of cases in three categories: video, paper, and non-experienced. Results Video-based problem-based learning displayed significantly higher achievement rates for imagining authentic patients (p=0.001), incorporating a comprehensive approach including psychosocial aspects (p<0.001), and satisfaction with sessions (p=0.001). No significant differences existed in the discussion contents diversity regarding the International Classification of Primary Care Second Edition codes and chapter types or in the rate of psychological codes. In a follow-up survey comparing video and paper groups to non-experienced groups, the rates were higher for video (χ2=24.319, p<0.001) and paper (χ2=11.134, p=0.001). Although the video rate tended to be higher than the paper rate, no significant difference was found between the two. Conclusions Patient-simulated videos showing daily life facilitate imagining true patients and support a comprehensive approach that fosters better memory. The clinical patient-simulated video method is more practical and clinical problem-based tutorials can be implemented if we create patient-simulated videos for each symptom as teaching materials. PMID:28245193
Ikegami, Akiko; Ohira, Yoshiyuki; Uehara, Takanori; Noda, Kazutaka; Suzuki, Shingo; Shikino, Kiyoshi; Kajiwara, Hideki; Kondo, Takeshi; Hirota, Yusuke; Ikusaka, Masatomi
2017-02-27
We examined whether problem-based learning tutorials using patient-simulated videos showing daily life are more practical for clinical learning, compared with traditional paper-based problem-based learning, for the consideration rate of psychosocial issues and the recall rate for experienced learning. Twenty-two groups with 120 fifth-year students were each assigned paper-based problem-based learning and video-based problem-based learning using patient-simulated videos. We compared target achievement rates in questionnaires using the Wilcoxon signed-rank test and discussion contents diversity using the Mann-Whitney U test. A follow-up survey used a chi-square test to measure students' recall of cases in three categories: video, paper, and non-experienced. Video-based problem-based learning displayed significantly higher achievement rates for imagining authentic patients (p=0.001), incorporating a comprehensive approach including psychosocial aspects (p<0.001), and satisfaction with sessions (p=0.001). No significant differences existed in the discussion contents diversity regarding the International Classification of Primary Care Second Edition codes and chapter types or in the rate of psychological codes. In a follow-up survey comparing video and paper groups to non-experienced groups, the rates were higher for video (χ 2 =24.319, p<0.001) and paper (χ 2 =11.134, p=0.001). Although the video rate tended to be higher than the paper rate, no significant difference was found between the two. Patient-simulated videos showing daily life facilitate imagining true patients and support a comprehensive approach that fosters better memory. The clinical patient-simulated video method is more practical and clinical problem-based tutorials can be implemented if we create patient-simulated videos for each symptom as teaching materials.
Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Perilla, Juan R.; Schulten, Klaus
2017-07-01
Human immunodeficiency virus type 1 (HIV-1) infection is highly dependent on its capsid. The capsid is a large container, made of ~1,300 proteins with altogether 4 million atoms. Although the capsid proteins are all identical, they nevertheless arrange themselves into a largely asymmetric structure made of hexamers and pentamers. The large number of degrees of freedom and lack of symmetry pose a challenge to studying the chemical details of the HIV capsid. Simulations of over 64 million atoms for over 1 μs allow us to conduct a comprehensive study of the chemical-physical properties of an empty HIV-1 capsid, including its electrostatics, vibrational and acoustic properties, and the effects of solvent (ions and water) on the capsid. The simulations reveal critical details about the capsid with implications to biological function.
Virtual action and real action have different impacts on comprehension of concrete verbs
Repetto, Claudia; Cipresso, Pietro; Riva, Giuseppe
2015-01-01
In the last decade, many results have been reported supporting the hypothesis that language has an embodied nature. According to this theory, the sensorimotor system is involved in linguistic processes such as semantic comprehension. One of the cognitive processes emerging from the interplay between action and language is motor simulation. The aim of the present study is to deepen the knowledge about the simulation of action verbs during comprehension in a virtual reality setting. We compared two experimental conditions with different motor tasks: one in which the participants ran in a virtual world by moving the joypad knob with their left hand (virtual action performed with their feet plus real action performed with the hand) and one in which they only watched a video of runners and executed an attentional task by moving the joypad knob with their left hand (no virtual action plus real action performed with the hand). In both conditions, participants had to perform a concomitant go/no-go semantic task, in which they were asked to press a button (with their right hand) when presented with a sentence containing a concrete verb, and to refrain from providing a response when the verb was abstract. Action verbs described actions performed with hand, foot, or mouth. We recorded electromyography (EMG) latencies to measure reaction times of the linguistic task. We wanted to test if the simulation occurs, whether it is triggered by the virtual or the real action, and which effect it produces (facilitation or interference). Results underlined that those who virtually ran in the environment were faster in understanding foot-action verbs; no simulation effect was found for the real action. The present findings are discussed in the light of the embodied language framework, and a hypothesis is provided that integrates our results with those in literature. PMID:25759678
The Use of Computer-Based Simulation to Aid Comprehension and Incidental Vocabulary Learning
ERIC Educational Resources Information Center
Mohsen, Mohammed Ali
2016-01-01
One of the main issues in language learning is to find ways to enable learners to interact with the language input in an involved task. Given that computer-based simulation allows learners to interact with visual modes, this article examines how the interaction of students with an online video simulation affects their second language video…
ERIC Educational Resources Information Center
Kwon, Seolim; Lara, Miguel; Enfield, Jake; Frick, Theodore
2013-01-01
Conducting an iterative usability testing, a set of prompts used as a form of instructional support was developed in order to facilitate the comprehension of the diffusion of innovations theory (Rogers, 2003) in a simulation game called the Diffusion Simulation Game (DSG) (Molenda & Rice, 1979). The six subjects who participated in the study…
Sarwani, Nabeel; Tappouni, Rafel; Flemming, Donald
2012-08-01
Simulation laboratories use realistic clinical scenarios to train physicians in a controlled environment, especially in potentially life-threatening complications that require prompt management. The objective of our study was to develop a comprehensive program using the simulation laboratory to train radiology residents in the management of acute radiologic emergencies. All radiology residents attended a dedicated simulation laboratory course lasting 3 hours, divided over two sessions. Training included basic patient management skills, management of a tension pneumothorax, massive hemorrhage, and contrast agent reactions. Participants were presented with 20 multiple-choice questions before and after the course. Pre- and posttest results were analyzed, and the McNemar test was used to compare correct responses by individual question. Twenty-six radiology residents attended the class. The average pre- and posttest scores and the average difference between the scores for all residents were 13.8, 17.1, and 3.3, respectively (p < 0.0001). Incorrect answers on the pretest examination that were subsequently answered correctly concerned administration of epinephrine for severe reactions, management of a tension pneumothorax, oxygen therapy, ECG placement, cardiopulmonary resuscitation technique, and where to stand during a code situation. Persistent incorrect answers concerned vasovagal reactions and emergency telephone numbers at an off-site imaging center. Simulation laboratories can be used to teach crisis management and crisis resource management for radiology residents and should be part of the education toolbox. Defined objectives lead to a comprehensive course dealing with the management of acute radiologic emergencies. Such programs can improve the role of radiologists as members of the health care team.
Simulation of non-Newtonian oil-water core annular flow through return bends
NASA Astrophysics Data System (ADS)
Jiang, Fan; Wang, Ke; Skote, Martin; Wong, Teck Neng; Duan, Fei
2018-01-01
The volume of fluid (VOF) model is used together with the continuum surface force (CSF) model to numerically simulate the non-Newtonian oil-water core annular flow across return bends. A comprehensive study is conducted to generate the profiles of pressure, velocity, volume fraction and wall shear stress for different oil properties, flow directions, and bend geometries. It is revealed that the oil core may adhere to the bend wall under certain operating conditions. Through the analysis of the total pressure gradient and fouling angle, suitable bend geometric parameters are identified for avoiding the risk of fouling.
NASA Astrophysics Data System (ADS)
Zhu, S.; Sartelet, K. N.; Seigneur, C.
2015-06-01
The Size-Composition Resolved Aerosol Model (SCRAM) for simulating the dynamics of externally mixed atmospheric particles is presented. This new model classifies aerosols by both composition and size, based on a comprehensive combination of all chemical species and their mass-fraction sections. All three main processes involved in aerosol dynamics (coagulation, condensation/evaporation and nucleation) are included. The model is first validated by comparison with a reference solution and with results of simulations using internally mixed particles. The degree of mixing of particles is investigated in a box model simulation using data representative of air pollution in Greater Paris. The relative influence on the mixing state of the different aerosol processes (condensation/evaporation, coagulation) and of the algorithm used to model condensation/evaporation (bulk equilibrium, dynamic) is studied.
Chakraborty, Monojit; Chowdhury, Anamika; Bhusan, Richa; DasGupta, Sunando
2015-10-20
Droplet motion on a surface with chemical energy induced wettability gradient has been simulated using molecular dynamics (MD) simulation to highlight the underlying physics of molecular movement near the solid-liquid interface including the contact line friction. The simulations mimic experiments in a comprehensive manner wherein microsized droplets are propelled by the surface wettability gradient against forces opposed to motion. The liquid-wall Lennard-Jones interaction parameter and the substrate temperature are varied to explore their effects on the three-phase contact line friction coefficient. The contact line friction is observed to be a strong function of temperature at atomistic scales, confirming their experimentally observed inverse functionality. Additionally, the MD simulation results are successfully compared with those from an analytical model for self-propelled droplet motion on gradient surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koskelo, J., E-mail: jaakko.koskelo@helsinki.fi; Juurinen, I.; Ruotsalainen, K. O.
2014-12-28
We present a comprehensive simulation study on the solid-liquid phase transition of the ionic liquid 1,3-dimethylimidazolium chloride in terms of the changes in the atomic structure and their effect on the Compton profile. The structures were obtained by using ab initio molecular dynamics simulations. Chosen radial distribution functions of the liquid structure are presented and found generally to be in good agreement with previous ab initio molecular dynamics and neutron scattering studies. The main contributions to the predicted difference Compton profile are found to arise from intermolecular changes in the phase transition. This prediction can be used for interpreting futuremore » experiments.« less
Lee, Myung-Nam; Nam, Kyung-Dong; Kim, Hyeon-Young
2017-03-01
Nursing care for patients with central nervous system problems requires advanced professional knowledge and care skills. Nursing students are more likely to have difficulty in dealing with adult patients who have severe neurological problems in clinical practice. This study investigated the effect on the metacognition, team efficacy, and learning attitude of nursing students after an integrated simulation and problem-based learning program. A real scenario of a patient with increased intracranial pressure was simulated for the students. The results showed that this method was effective in improving the metacognitive ability of the students. Furthermore, we used this comprehensive model of simulation with problem-based learning in order to assess the consequences of student satisfaction with the nursing major, interpersonal relationships, and importance of simulation-based education in relation to the effectiveness of the integrated simulation with problem-based learning. The results can be used to improve the design of clinical practicum and nursing education.
An Evaluation of the Ability of Amputees to Operate Highway Transport Equipment. Final Report.
ERIC Educational Resources Information Center
McFarland, Ross A.; And Others
To document the driving experience of amputees and to test whether amputees differ from non-amputees in the operation of a simulated motor vehicle, related literature was reviewed, a comprehensive study of private motor vehicle operation by amputees was carried out, and 100 persons (20 non-impaired, non-commercial drivers, 20 non-impaired,…
Load Modeling and Calibration Techniques for Power System Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, Forrest S.; Mayhorn, Ebony T.; Elizondo, Marcelo A.
2011-09-23
Load modeling is the most uncertain area in power system simulations. Having an accurate load model is important for power system planning and operation. Here, a review of load modeling and calibration techniques is given. This paper is not comprehensive, but covers some of the techniques most commonly found in the literature. The advantages and disadvantages of each technique are outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, J. R.; Peng, E.; Ahmad, Z.
2015-05-15
We present a comprehensive methodology for the simulation of astronomical images from optical survey telescopes. We use a photon Monte Carlo approach to construct images by sampling photons from models of astronomical source populations, and then simulating those photons through the system as they interact with the atmosphere, telescope, and camera. We demonstrate that all physical effects for optical light that determine the shapes, locations, and brightnesses of individual stars and galaxies can be accurately represented in this formalism. By using large scale grid computing, modern processors, and an efficient implementation that can produce 400,000 photons s{sup −1}, we demonstratemore » that even very large optical surveys can be now be simulated. We demonstrate that we are able to (1) construct kilometer scale phase screens necessary for wide-field telescopes, (2) reproduce atmospheric point-spread function moments using a fast novel hybrid geometric/Fourier technique for non-diffraction limited telescopes, (3) accurately reproduce the expected spot diagrams for complex aspheric optical designs, and (4) recover system effective area predicted from analytic photometry integrals. This new code, the Photon Simulator (PhoSim), is publicly available. We have implemented the Large Synoptic Survey Telescope design, and it can be extended to other telescopes. We expect that because of the comprehensive physics implemented in PhoSim, it will be used by the community to plan future observations, interpret detailed existing observations, and quantify systematics related to various astronomical measurements. Future development and validation by comparisons with real data will continue to improve the fidelity and usability of the code.« less
Simulation-Based Bronchoscopy Training
Kennedy, Cassie C.; Maldonado, Fabien
2013-01-01
Background: Simulation-based bronchoscopy training is increasingly used, but effectiveness remains uncertain. We sought to perform a comprehensive synthesis of published work on simulation-based bronchoscopy training. Methods: We searched MEDLINE, EMBASE, CINAHL, PsycINFO, ERIC, Web of Science, and Scopus for eligible articles through May 11, 2011. We included all original studies involving health professionals that evaluated, in comparison with no intervention or an alternative instructional approach, simulation-based training for flexible or rigid bronchoscopy. Study selection and data abstraction were performed independently and in duplicate. We pooled results using random effects meta-analysis. Results: From an initial pool of 10,903 articles, we identified 17 studies evaluating simulation-based bronchoscopy training. In comparison with no intervention, simulation training was associated with large benefits on skills and behaviors (pooled effect size, 1.21 [95% CI, 0.82-1.60]; n = 8 studies) and moderate benefits on time (0.62 [95% CI, 0.12-1.13]; n = 7). In comparison with clinical instruction, behaviors with real patients showed nonsignificant effects favoring simulation for time (0.61 [95% CI, −1.47 to 2.69]) and process (0.33 [95% CI, −1.46 to 2.11]) outcomes (n = 2 studies each), although variation in training time might account for these differences. Four studies compared alternate simulation-based training approaches. Inductive analysis to inform instructional design suggested that longer or more structured training is more effective, authentic clinical context adds value, and animal models and plastic part-task models may be superior to more costly virtual-reality simulators. Conclusions: Simulation-based bronchoscopy training is effective in comparison with no intervention. Comparative effectiveness studies are few. PMID:23370487
Comprehensive study of numerical anisotropy and dispersion in 3-D TLM meshes
NASA Astrophysics Data System (ADS)
Berini, Pierre; Wu, Ke
1995-05-01
This paper presents a comprehensive analysis of the numerical anisotropy and dispersion of 3-D TLM meshes constructed using several generalized symmetrical condensed TLM nodes. The dispersion analysis is performed in isotropic lossless, isotropic lossy and anisotropic lossless media and yields a comparison of the simulation accuracy for the different TLM nodes. The effect of mesh grading on the numerical dispersion is also determined. The results compare meshes constructed with Johns' symmetrical condensed node (SCN), two hybrid symmetrical condensed nodes (HSCN) and two frequency domain symmetrical condensed nodes (FDSCN). It has been found that under certain circumstances, the time domain nodes may introduce numerical anisotropy when modelling isotropic media.
Parametric Testing of Launch Vehicle FDDR Models
NASA Technical Reports Server (NTRS)
Schumann, Johann; Bajwa, Anupa; Berg, Peter; Thirumalainambi, Rajkumar
2011-01-01
For the safe operation of a complex system like a (manned) launch vehicle, real-time information about the state of the system and potential faults is extremely important. The on-board FDDR (Failure Detection, Diagnostics, and Response) system is a software system to detect and identify failures, provide real-time diagnostics, and to initiate fault recovery and mitigation. The ERIS (Evaluation of Rocket Integrated Subsystems) failure simulation is a unified Matlab/Simulink model of the Ares I Launch Vehicle with modular, hierarchical subsystems and components. With this model, the nominal flight performance characteristics can be studied. Additionally, failures can be injected to see their effects on vehicle state and on vehicle behavior. A comprehensive test and analysis of such a complicated model is virtually impossible. In this paper, we will describe, how parametric testing (PT) can be used to support testing and analysis of the ERIS failure simulation. PT uses a combination of Monte Carlo techniques with n-factor combinatorial exploration to generate a small, yet comprehensive set of parameters for the test runs. For the analysis of the high-dimensional simulation data, we are using multivariate clustering to automatically find structure in this high-dimensional data space. Our tools can generate detailed HTML reports that facilitate the analysis.
A Flight Simulator Program Takes Off
ERIC Educational Resources Information Center
McMahon, Don
2003-01-01
Aviation concepts, including forces acting on an airplane, navigation, correct aircraft terminology, and general aviation vocabulary, are often part of a comprehensive fifth-grade aviation curriculum. But in one school district, students also learned about flying planes and even trained in a flight simulator. This article describes how industry…
Intervention: Simulating the War on Global Terrorism
ERIC Educational Resources Information Center
Steinbrink, John E.; Helmer, Joel W.
2004-01-01
Students analyze a contemporary geopolitical event from a comprehensive geographic perspective using role play simulation, discussion, and decision-making. The three-day activity provides teachers with a realistic, ready-made classroom lesson that combines powerful conceptual learning with drama and surprise. The task of the teacher is to…
Simulating forest fuel and fire risk dynamics across landscapes--LANDIS fuel module design
Hong S. He; Bo Z. Shang; Thomas R. Crow; Eric J. Gustafson; Stephen R. Shifley
2004-01-01
Understanding fuel dynamics over large spatial (103-106 ha) and temporal scales (101-103 years) is important in comprehensive wildfire management. We present a modeling approach to simulate fuel and fire risk dynamics as well as impacts of alternative fuel treatments. The...
APPLICATION OF THE HSPF MODEL TO THE SOUTH FORK OF THE BROAD RIVER WATERSHED IN NORTHEASTERN GEORGIA
The Hydrological Simulation Program-Fortran (HSPF) is a comprehensive watershed model which simulates hydrology and water quality at user-specified temporal and spatial scales. Well-established model calibration and validation procedures are followed when adjusting model paramete...
Radioxenon Production from an Underground Nuclear Detonation
NASA Astrophysics Data System (ADS)
Sun, Y.
2016-12-01
The Comprehensive Nuclear Test Ban Treaty of 1996 has sparked the attention of many nations around the world for detecting Underground Nuclear Explosions (UNEs). The radioisotopes, specifically isotopes of xenon, Xe-131m, Xe-133m, Xe-133, and Xe-135, are being studied using their half-lives and decay networks for distinguishing civilian nuclear applications from UNEs. This study aims to simulate radioxenon concentrations and their uncertainties using analytical solutions of radioactive decay networks.
Drijvers, Linda; Özyürek, Asli; Jensen, Ole
2018-05-01
During face-to-face communication, listeners integrate speech with gestures. The semantic information conveyed by iconic gestures (e.g., a drinking gesture) can aid speech comprehension in adverse listening conditions. In this magnetoencephalography (MEG) study, we investigated the spatiotemporal neural oscillatory activity associated with gestural enhancement of degraded speech comprehension. Participants watched videos of an actress uttering clear or degraded speech, accompanied by a gesture or not and completed a cued-recall task after watching every video. When gestures semantically disambiguated degraded speech comprehension, an alpha and beta power suppression and a gamma power increase revealed engagement and active processing in the hand-area of the motor cortex, the extended language network (LIFG/pSTS/STG/MTG), medial temporal lobe, and occipital regions. These observed low- and high-frequency oscillatory modulations in these areas support general unification, integration and lexical access processes during online language comprehension, and simulation of and increased visual attention to manual gestures over time. All individual oscillatory power modulations associated with gestural enhancement of degraded speech comprehension predicted a listener's correct disambiguation of the degraded verb after watching the videos. Our results thus go beyond the previously proposed role of oscillatory dynamics in unimodal degraded speech comprehension and provide first evidence for the role of low- and high-frequency oscillations in predicting the integration of auditory and visual information at a semantic level. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Özyürek, Asli; Jensen, Ole
2018-01-01
Abstract During face‐to‐face communication, listeners integrate speech with gestures. The semantic information conveyed by iconic gestures (e.g., a drinking gesture) can aid speech comprehension in adverse listening conditions. In this magnetoencephalography (MEG) study, we investigated the spatiotemporal neural oscillatory activity associated with gestural enhancement of degraded speech comprehension. Participants watched videos of an actress uttering clear or degraded speech, accompanied by a gesture or not and completed a cued‐recall task after watching every video. When gestures semantically disambiguated degraded speech comprehension, an alpha and beta power suppression and a gamma power increase revealed engagement and active processing in the hand‐area of the motor cortex, the extended language network (LIFG/pSTS/STG/MTG), medial temporal lobe, and occipital regions. These observed low‐ and high‐frequency oscillatory modulations in these areas support general unification, integration and lexical access processes during online language comprehension, and simulation of and increased visual attention to manual gestures over time. All individual oscillatory power modulations associated with gestural enhancement of degraded speech comprehension predicted a listener's correct disambiguation of the degraded verb after watching the videos. Our results thus go beyond the previously proposed role of oscillatory dynamics in unimodal degraded speech comprehension and provide first evidence for the role of low‐ and high‐frequency oscillations in predicting the integration of auditory and visual information at a semantic level. PMID:29380945
Validating agent oriented methodology (AOM) for netlogo modelling and simulation
NASA Astrophysics Data System (ADS)
WaiShiang, Cheah; Nissom, Shane; YeeWai, Sim; Sharbini, Hamizan
2017-10-01
AOM (Agent Oriented Modeling) is a comprehensive and unified agent methodology for agent oriented software development. AOM methodology was proposed to aid developers with the introduction of technique, terminology, notation and guideline during agent systems development. Although AOM methodology is claimed to be capable of developing a complex real world system, its potential is yet to be realized and recognized by the mainstream software community and the adoption of AOM is still at its infancy. Among the reason is that there are not much case studies or success story of AOM. This paper presents two case studies on the adoption of AOM for individual based modelling and simulation. It demonstrate how the AOM is useful for epidemiology study and ecological study. Hence, it further validate the AOM in a qualitative manner.
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview.
Šponer, Jiří; Bussi, Giovanni; Krepl, Miroslav; Banáš, Pavel; Bottaro, Sandro; Cunha, Richard A; Gil-Ley, Alejandro; Pinamonti, Giovanni; Poblete, Simón; Jurečka, Petr; Walter, Nils G; Otyepka, Michal
2018-04-25
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
NASA Technical Reports Server (NTRS)
Simanonok, K. E.; Srinivasan, R. S.; Myrick, E. E.; Blomkalns, A. L.; Charles, J. B.
1994-01-01
The Guyton model of fluid, electrolyte, and circulatory regulation is an extensive mathematical model capable of simulating a variety of experimental conditions. It has been modified for use at NASA to simulate head-down tilt, a frequently used analog of weightlessness. Weightlessness causes a headward shift of body fluids that is believed to expand central blood volume, triggering a series of physiologic responses resulting in large losses of body fluids. We used the modified Guyton model to test the hypothesis that preadaptation of the blood volume before weightless exposure could counteract the central volume expansion caused by fluid shifts, and thereby attenuate the circulatory and renal responses that result in body fluid losses. Simulation results show that circulatory preadaptation, by a procedure resembling blood donation immediately before head-down bedrest, is effective in damping the physiologic responses to fluid shifts and reducing body fluid losses. After 10 hours of head-down tilt, preadaptation also produces higher blood volume, extracellular volume, and total body water for 20 to 30 days of bedrest, compared with non-preadapted control. These results indicate that circulatory preadaptation before current Space Shuttle missions may be beneficial for the maintenance of reentry and postflight orthostatic tolerance in astronauts. This paper presents a comprehensive examination of the simulation results pertaining to changes in relevant physiologic variables produced by blood volume reduction before a prolonged head-down tilt. The objectives were to study and develop the countermeasure theoretically, to aid in planning experimental studies of the countermeasure, and to identify potentially disadvantageous physiologic responses that may be caused by the countermeasure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, Laura; Genser, Krzysztof; Hatcher, Robert
Geant4 is the leading detector simulation toolkit used in high energy physics to design detectors and to optimize calibration and reconstruction software. It employs a set of carefully validated physics models to simulate interactions of particles with matter across a wide range of interaction energies. These models, especially the hadronic ones, rely largely on directly measured cross-sections and phenomenological predictions with physically motivated parameters estimated by theoretical calculation or measurement. Because these models are tuned to cover a very wide range of possible simulation tasks, they may not always be optimized for a given process or a given material. Thismore » raises several critical questions, e.g. how sensitive Geant4 predictions are to the variations of the model parameters, or what uncertainties are associated with a particular tune of a Geant4 physics model, or a group of models, or how to consistently derive guidance for Geant4 model development and improvement from a wide range of available experimental data. We have designed and implemented a comprehensive, modular, user-friendly software toolkit to study and address such questions. It allows one to easily modify parameters of one or several Geant4 physics models involved in the simulation, and to perform collective analysis of multiple variants of the resulting physics observables of interest and comparison against a variety of corresponding experimental data. Based on modern event-processing infrastructure software, the toolkit offers a variety of attractive features, e.g. flexible run-time configurable workflow, comprehensive bookkeeping, easy to expand collection of analytical components. Design, implementation technology, and key functionalities of the toolkit are presented and illustrated with results obtained with Geant4 key hadronic models.« less
Kulsing, Chadin; Nolvachai, Yada; Wong, Yong Foo; Glouzman, Melissa I; Marriott, Philip J
2018-04-20
Real-time interconversion processes produce unconventional peak broadening in gas chromatography (GC), and can be used to generate kinetic and thermodynamic data. In this study, an unusual separation situation in comprehensive two dimensional GC where two dimensional interconversion (i.e. a raised plateau in both first and second dimension, 1 D and 2 D) was observed in analysis of oxime isomers. This resulted in a characteristic and unusual rectangular peak shape in the two dimensional result. A related theoretical approach was introduced to explain the peak shape supported by simulation results which can be varied depending on concentration profiles and kinetics of the process. The simulated results were supported by experimental results obtained by a comprehensive heart-cut multidimensional GC (H/C MDGC) approach which was developed to clearly investigate isomerisation of E/Z oxime molecules in both 1 D and 2 D separations under different isothermal conditions. The carrier gas flow and oven temperature were selected according to initial results for 1D interconversion on a poly(ethyleneglycol) stationary phase, which was further used in both 1 D and 2 D separations to result in broad zones of oxime interconversion in both dimensions. The method involved repetitive injections of oxime sample, then sampling contiguous fractions of sample into a long 2 D column which is intended to promote considerable interconversion. Comprehensiveness arises from the fact that the whole sample is sampled from the 1 D to the 2 D column, with the long 2 D column replacing the short 2 D column used in classical comprehensive two-dimensional gas chromatography, where the latter will not promote sufficient interconversion. Data processing and presentation permits a 'rectangular' distribution corresponding to the separated compounds, characteristic of this experiment. Copyright © 2018 Elsevier B.V. All rights reserved.
Ghassabi Kondalaji, Samaneh; Khakinejad, Mahdiar; Tafreshian, Amirmahdi; J Valentine, Stephen
2017-05-01
Collision cross-section (CCS) measurements with a linear drift tube have been utilized to study the gas-phase conformers of a model peptide (acetyl-PAAAAKAAAAKAAAAKAAAAK). Extensive molecular dynamics (MD) simulations have been conducted to derive an advanced protocol for the generation of a comprehensive pool of in-silico structures; both higher energy and more thermodynamically stable structures are included to provide an unbiased sampling of conformational space. MD simulations at 300 K are applied to the in-silico structures to more accurately describe the gas-phase transport properties of the ion conformers including their dynamics. Different methods used previously for trajectory method (TM) CCS calculation employing the Mobcal software [1] are evaluated. A new method for accurate CCS calculation is proposed based on clustering and data mining techniques. CCS values are calculated for all in-silico structures, and those with matching CCS values are chosen as candidate structures. With this approach, more than 300 candidate structures with significant structural variation are produced; although no final gas-phase structure is proposed here, in a second installment of this work, gas-phase hydrogen deuterium exchange data will be utilized as a second criterion to select among these structures as well as to propose relative populations for these ion conformers. Here the need to increase conformer diversity and accurate CCS calculation is demonstrated and the advanced methods are discussed. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Ghassabi Kondalaji, Samaneh; Khakinejad, Mahdiar; Tafreshian, Amirmahdi; J. Valentine, Stephen
2017-05-01
Collision cross-section (CCS) measurements with a linear drift tube have been utilized to study the gas-phase conformers of a model peptide (acetyl-PAAAAKAAAAKAAAAKAAAAK). Extensive molecular dynamics (MD) simulations have been conducted to derive an advanced protocol for the generation of a comprehensive pool of in-silico structures; both higher energy and more thermodynamically stable structures are included to provide an unbiased sampling of conformational space. MD simulations at 300 K are applied to the in-silico structures to more accurately describe the gas-phase transport properties of the ion conformers including their dynamics. Different methods used previously for trajectory method (TM) CCS calculation employing the Mobcal software [1] are evaluated. A new method for accurate CCS calculation is proposed based on clustering and data mining techniques. CCS values are calculated for all in-silico structures, and those with matching CCS values are chosen as candidate structures. With this approach, more than 300 candidate structures with significant structural variation are produced; although no final gas-phase structure is proposed here, in a second installment of this work, gas-phase hydrogen deuterium exchange data will be utilized as a second criterion to select among these structures as well as to propose relative populations for these ion conformers. Here the need to increase conformer diversity and accurate CCS calculation is demonstrated and the advanced methods are discussed.
HSPF Toolkit: a New Tool for Stormwater Management at the Watershed Scale
The Hydrological Simulation Program - FORTRAN (HSPF) is a comprehensive watershed model endorsed by US EPA for simulating point and nonpoint source pollutants. The model is used for developing total maximum daily load (TMDL) plans for impaired water bodies; as such, HSPF is the c...
Synergy across the Curriculum: Simulating the Institution of Postwar Iraqi Government
ERIC Educational Resources Information Center
Austin, W. Chadwick; McDowell, Todd; Sacko, David H.
2006-01-01
This article describes an undergraduate simulation that formulates Iraqi regimes following the removal of Saddam Hussein's Baathist regime. This exercise reinforces student comprehension and awareness for a range of legal and political topics--including group decision making, international law, diplomacy, and human rights--by actively engaging the…
Macromod: Computer Simulation For Introductory Economics
ERIC Educational Resources Information Center
Ross, Thomas
1977-01-01
The Macroeconomic model (Macromod) is a computer assisted instruction simulation model designed for introductory economics courses. An evaluation of its utilization at a community college indicates that it yielded a 10 percent to 13 percent greater economic comprehension than lecture classes and that it met with high student approval. (DC)
Uncertainty-based Optimization Algorithms in Designing Fractionated Spacecraft
Ning, Xin; Yuan, Jianping; Yue, Xiaokui
2016-01-01
A fractionated spacecraft is an innovative application of a distributive space system. To fully understand the impact of various uncertainties on its development, launch and in-orbit operation, we use the stochastic missioncycle cost to comprehensively evaluate the survivability, flexibility, reliability and economy of the ways of dividing the various modules of the different configurations of fractionated spacecraft. We systematically describe its concept and then analyze its evaluation and optimal design method that exists during recent years and propose the stochastic missioncycle cost for comprehensive evaluation. We also establish the models of the costs such as module development, launch and deployment and the impacts of their uncertainties respectively. Finally, we carry out the Monte Carlo simulation of the complete missioncycle costs of various configurations of the fractionated spacecraft under various uncertainties and give and compare the probability density distribution and statistical characteristics of its stochastic missioncycle cost, using the two strategies of timing module replacement and non-timing module replacement. The simulation results verify the effectiveness of the comprehensive evaluation method and show that our evaluation method can comprehensively evaluate the adaptability of the fractionated spacecraft under different technical and mission conditions. PMID:26964755
Mukhtar, Hussnain; Lin, Yu-Pin; Shipin, Oleg V; Petway, Joy R
2017-07-12
This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH₃-N and NO₃-N. Results indicate that the integrated FME-GLUE-based model, with good Nash-Sutcliffe coefficients (0.53-0.69) and correlation coefficients (0.76-0.83), successfully simulates the concentrations of ON-N, NH₃-N and NO₃-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH₃-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO₃-N simulation, which was measured using global sensitivity.
Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perilla, Juan R.; Schulten, Klaus
Human immunodeficiency virus type 1 (HIV-1) infection is highly dependent on its capsid. The capsid is a large container, made of B 1,300 proteins with altogether 4 million atoms. Though the capsid proteins are all identical, they nevertheless arrange themselves into a largely asymmetric structure made of hexamers and pentamers. The large number of degrees of freedom and lack of symmetry pose a challenge to studying the chemical details of the HIV capsid. Simulations of over 64 million atoms for over 1 μs allow us to conduct a comprehensive study of the chemical–physical properties of an empty HIV-1 capsid, includingmore » its electrostatics, vibrational and acoustic properties, and the effects of solvent (ions and water) on the capsid. Furthermore, the simulations reveal critical details about the capsid with implications to biological function.« less
Nagasaka, Masanari; Kondoh, Hiroshi; Nakai, Ikuyo; Ohta, Toshiaki
2007-01-28
The dynamics of adsorbate structures during CO oxidation on Pt(111) surfaces and its effects on the reaction were studied by the dynamic Monte Carlo method including lateral interactions of adsorbates. The lateral interaction energies between adsorbed species were calculated by the density functional theory method. Dynamic Monte Carlo simulations were performed for the oxidation reaction over a mesoscopic scale, where the experimentally determined activation energies of elementary paths were altered by the calculated lateral interaction energies. The simulated results reproduced the characteristics of the microscopic and mesoscopic scale adsorbate structures formed during the reaction, and revealed that the complicated reaction kinetics is comprehensively explained by a single reaction path affected by the surrounding adsorbates. We also propose from the simulations that weakly adsorbed CO molecules at domain boundaries promote the island-periphery specific reaction.
Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations
Perilla, Juan R.; Schulten, Klaus
2017-07-19
Human immunodeficiency virus type 1 (HIV-1) infection is highly dependent on its capsid. The capsid is a large container, made of B 1,300 proteins with altogether 4 million atoms. Though the capsid proteins are all identical, they nevertheless arrange themselves into a largely asymmetric structure made of hexamers and pentamers. The large number of degrees of freedom and lack of symmetry pose a challenge to studying the chemical details of the HIV capsid. Simulations of over 64 million atoms for over 1 μs allow us to conduct a comprehensive study of the chemical–physical properties of an empty HIV-1 capsid, includingmore » its electrostatics, vibrational and acoustic properties, and the effects of solvent (ions and water) on the capsid. Furthermore, the simulations reveal critical details about the capsid with implications to biological function.« less
NASA Astrophysics Data System (ADS)
Han, Suyue; Chang, Gary Han; Schirmer, Clemens; Modarres-Sadeghi, Yahya
2016-11-01
We construct a reduced-order model (ROM) to study the Wall Shear Stress (WSS) distributions in image-based patient-specific aneurysms models. The magnitude of WSS has been shown to be a critical factor in growth and rupture of human aneurysms. We start the process by running a training case using Computational Fluid Dynamics (CFD) simulation with time-varying flow parameters, such that these parameters cover the range of parameters of interest. The method of snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases using the training CFD simulation. The resulting ROM enables us to study the flow patterns and the WSS distributions over a range of system parameters computationally very efficiently with a relatively small number of modes. This enables comprehensive analysis of the model system across a range of physiological conditions without the need to re-compute the simulation for small changes in the system parameters.
Li, Chih-Huang; Kuan, Win-Sen; Mahadevan, Malcolm; Daniel-Underwood, Lynda; Chiu, Te-Fa; Nguyen, H Bryant
2012-07-01
Medical simulation has been used to teach critical illness in a variety of settings. This study examined the effect of didactic lectures compared with simulated case scenario in a medical simulation course on the early management of severe sepsis. A prospective multicentre randomised study was performed enrolling resident physicians in emergency medicine from four hospitals in Asia. Participants were randomly assigned to a course that included didactic lectures followed by a skills workshop and simulated case scenario (lecture-first) or to a course that included a skills workshop and simulated case scenario followed by didactic lectures (simulation-first). A pre-test was given to the participants at the beginning of the course, post-test 1 was given after the didactic lectures or simulated case scenario depending on the study group assignment, then a final post-test 2 was given at the end of the course. Performance on the simulated case scenario was evaluated with a performance task checklist. 98 participants were enrolled in the study. Post-test 2 scores were significantly higher than pre-test scores in all participants (80.8 ± 12.0% vs 65.4 ± 12.2%, p<0.01). There was no difference in pre-test scores between the two study groups. The lecture-first group had significantly higher post-test 1 scores than the simulation-first group (78.8 ± 10.6% vs 71.6 ± 12.6%, p<0.01). There was no difference in post-test 2 scores between the two groups. The simulated case scenario task performance completion was 90.8% (95% CI 86.6% to 95.0%) in the lecture-first group compared with 83.8% (95% CI 79.5% to 88.1%) in the simulation-first group (p=0.02). A medical simulation course can improve resident physician knowledge in the early management of severe sepsis. Such a course should include a comprehensive curriculum that includes didactic lectures followed by simulation experience.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, David; Agarwal, Deborah A.; Sun, Xin
2011-09-01
The Carbon Capture Simulation Initiative is developing state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technology. The CCSI Toolset consists of an integrated multi-scale modeling and simulation framework, which includes extensive use of reduced order models (ROMs) and a comprehensive uncertainty quantification (UQ) methodology. This paper focuses on the interrelation among high performance computing, detailed device simulations, ROMs for scale-bridging, UQ and the integration framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D.; Agarwal, D.; Sun, X.
2011-01-01
The Carbon Capture Simulation Initiative is developing state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technology. The CCSI Toolset consists of an integrated multi-scale modeling and simulation framework, which includes extensive use of reduced order models (ROMs) and a comprehensive uncertainty quantification (UQ) methodology. This paper focuses on the interrelation among high performance computing, detailed device simulations, ROMs for scale-bridging, UQ and the integration framework.
Modeling Amorphous Microporous Polymers for CO2 Capture and Separations.
Kupgan, Grit; Abbott, Lauren J; Hart, Kyle E; Colina, Coray M
2018-06-13
This review concentrates on the advances of atomistic molecular simulations to design and evaluate amorphous microporous polymeric materials for CO 2 capture and separations. A description of atomistic molecular simulations is provided, including simulation techniques, structural generation approaches, relaxation and equilibration methodologies, and considerations needed for validation of simulated samples. The review provides general guidelines and a comprehensive update of the recent literature (since 2007) to promote the acceleration of the discovery and screening of amorphous microporous polymers for CO 2 capture and separation processes.
Shuhua Yi; A. David McGuire; Eric Kasischke; Jennifer Harden; Kristen Manies; Michelle Mack; Merritt Turetsky
2010-01-01
Ecosystem models have not comprehensively considered how interactions among fire disturbance, soil environmental conditions, and biogeochemical processes affect ecosystem dynamics in boreal forest ecosystems. In this study, we implemented a dynamic organic soil structure in the Terrestrial Ecosystem Model (DOS-TEM) to investigate the effects of fire on soil temperature...
Microgrid Modeling and Simulation Study
2016-09-01
will be used to guide DOD M&S strategy and planning, as well as develop a comprehensive microgrid M&S capability and prioritize future efforts...contingencies and sequencing (Short term investment) Peer-to-peer Rapid send- listen techniques M&S is needed to determine an approach for handling...tactical microgrid network with interconnected grids. ○ Rapid Send- Listen Techniques is a specific enabler necessary for communications in a
Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors
NASA Astrophysics Data System (ADS)
Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.
2007-01-01
Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz.
A comprehensive computational model of sound transmission through the porcine lung
Dai, Zoujun; Peng, Ying; Henry, Brian M.; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas J.
2014-01-01
A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This “subject-specific” model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in comsol FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment. PMID:25190415
A comprehensive computational model of sound transmission through the porcine lung.
Dai, Zoujun; Peng, Ying; Henry, Brian M; Mansy, Hansen A; Sandler, Richard H; Royston, Thomas J
2014-09-01
A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This "subject-specific" model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in comsol FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment.
Huang, Qiuhua; Vittal, Vijay
2018-05-09
Conventional electromagnetic transient (EMT) and phasor-domain hybrid simulation approaches presently exist for trans-mission system level studies. Their simulation efficiency is generally constrained by the EMT simulation. With an increasing number of distributed energy resources and non-conventional loads being installed in distribution systems, it is imperative to extend the hybrid simulation application to include distribution systems and integrated transmission and distribution systems. Meanwhile, it is equally important to improve the simulation efficiency as the modeling scope and complexity of the detailed system in the EMT simulation increases. To meet both requirements, this paper introduces an advanced EMT and phasor-domain hybrid simulationmore » approach. This approach has two main features: 1) a comprehensive phasor-domain modeling framework which supports positive-sequence, three-sequence, three-phase and mixed three-sequence/three-phase representations and 2) a robust and flexible simulation mode switching scheme. The developed scheme enables simulation switching from hybrid simulation mode back to pure phasor-domain dynamic simulation mode to achieve significantly improved simulation efficiency. The proposed method has been tested on integrated transmission and distribution systems. In conclusion, the results show that with the developed simulation switching feature, the total computational time is significantly reduced compared to running the hybrid simulation for the whole simulation period, while maintaining good simulation accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qiuhua; Vittal, Vijay
Conventional electromagnetic transient (EMT) and phasor-domain hybrid simulation approaches presently exist for trans-mission system level studies. Their simulation efficiency is generally constrained by the EMT simulation. With an increasing number of distributed energy resources and non-conventional loads being installed in distribution systems, it is imperative to extend the hybrid simulation application to include distribution systems and integrated transmission and distribution systems. Meanwhile, it is equally important to improve the simulation efficiency as the modeling scope and complexity of the detailed system in the EMT simulation increases. To meet both requirements, this paper introduces an advanced EMT and phasor-domain hybrid simulationmore » approach. This approach has two main features: 1) a comprehensive phasor-domain modeling framework which supports positive-sequence, three-sequence, three-phase and mixed three-sequence/three-phase representations and 2) a robust and flexible simulation mode switching scheme. The developed scheme enables simulation switching from hybrid simulation mode back to pure phasor-domain dynamic simulation mode to achieve significantly improved simulation efficiency. The proposed method has been tested on integrated transmission and distribution systems. In conclusion, the results show that with the developed simulation switching feature, the total computational time is significantly reduced compared to running the hybrid simulation for the whole simulation period, while maintaining good simulation accuracy.« less
[Does action semantic knowledge influence mental simulation in sentence comprehension?].
Mochizuki, Masaya; Naito, Katsuo
2012-04-01
This research investigated whether action semantic knowledge influences mental simulation during sentence comprehension. In Experiment 1, we confirmed that the words of face-related objects include the perceptual knowledge about the actions that bring the object to the face. In Experiment 2, we used an acceptability judgment task and a word-picture verification task to compare the perceptual information that is activated by the comprehension of sentences describing an action using face-related objects near the face (near-sentence) or far from the face (far-sentence). Results showed that participants took a longer time to judge the acceptability of the far-sentence than the near-sentence. Verification times were significantly faster when the actions in the pictures matched the action described in the sentences than when they were mismatched. These findings suggest that action semantic knowledge influences sentence processing, and that perceptual information corresponding to the content of the sentence is activated regardless of the action semantic knowledge at the end of the sentence processing.
Missing value imputation for microarray data: a comprehensive comparison study and a web tool
2013-01-01
Background Microarray data are usually peppered with missing values due to various reasons. However, most of the downstream analyses for microarray data require complete datasets. Therefore, accurate algorithms for missing value estimation are needed for improving the performance of microarray data analyses. Although many algorithms have been developed, there are many debates on the selection of the optimal algorithm. The studies about the performance comparison of different algorithms are still incomprehensive, especially in the number of benchmark datasets used, the number of algorithms compared, the rounds of simulation conducted, and the performance measures used. Results In this paper, we performed a comprehensive comparison by using (I) thirteen datasets, (II) nine algorithms, (III) 110 independent runs of simulation, and (IV) three types of measures to evaluate the performance of each imputation algorithm fairly. First, the effects of different types of microarray datasets on the performance of each imputation algorithm were evaluated. Second, we discussed whether the datasets from different species have different impact on the performance of different algorithms. To assess the performance of each algorithm fairly, all evaluations were performed using three types of measures. Our results indicate that the performance of an imputation algorithm mainly depends on the type of a dataset but not on the species where the samples come from. In addition to the statistical measure, two other measures with biological meanings are useful to reflect the impact of missing value imputation on the downstream data analyses. Our study suggests that local-least-squares-based methods are good choices to handle missing values for most of the microarray datasets. Conclusions In this work, we carried out a comprehensive comparison of the algorithms for microarray missing value imputation. Based on such a comprehensive comparison, researchers could choose the optimal algorithm for their datasets easily. Moreover, new imputation algorithms could be compared with the existing algorithms using this comparison strategy as a standard protocol. In addition, to assist researchers in dealing with missing values easily, we built a web-based and easy-to-use imputation tool, MissVIA (http://cosbi.ee.ncku.edu.tw/MissVIA), which supports many imputation algorithms. Once users upload a real microarray dataset and choose the imputation algorithms, MissVIA will determine the optimal algorithm for the users' data through a series of simulations, and then the imputed results can be downloaded for the downstream data analyses. PMID:24565220
Cost: the missing outcome in simulation-based medical education research: a systematic review.
Zendejas, Benjamin; Wang, Amy T; Brydges, Ryan; Hamstra, Stanley J; Cook, David A
2013-02-01
The costs involved with technology-enhanced simulation remain unknown. Appraising the value of simulation-based medical education (SBME) requires complete accounting and reporting of cost. We sought to summarize the quantity and quality of studies that contain an economic analysis of SBME for the training of health professions learners. We performed a systematic search of MEDLINE, EMBASE, CINAHL, ERIC, PsychINFO, Scopus, key journals, and previous review bibliographies through May 2011. Articles reporting original research in any language evaluating the cost of simulation, in comparison with nonstimulation instruction or another simulation intervention, for training practicing and student physicians, nurses, and other health professionals were selected. Reviewers working in duplicate evaluated study quality and abstracted information on learners, instructional design, cost elements, and outcomes. From a pool of 10,903 articles we identified 967 comparative studies. Of these, 59 studies (6.1%) reported any cost elements and 15 (1.6%) provided information on cost compared with another instructional approach. We identified 11 cost components reported, most often the cost of the simulator (n = 42 studies; 71%) and training materials (n = 21; 36%). Ten potential cost components were never reported. The median number of cost components reported per study was 2 (range, 1-9). Only 12 studies (20%) reported cost in the Results section; most reported it in the Discussion (n = 34; 58%). Cost reporting in SBME research is infrequent and incomplete. We propose a comprehensive model for accounting and reporting costs in SBME. Copyright © 2013 Mosby, Inc. All rights reserved.
A holistic approach for large-scale derived flood frequency analysis
NASA Astrophysics Data System (ADS)
Dung Nguyen, Viet; Apel, Heiko; Hundecha, Yeshewatesfa; Guse, Björn; Sergiy, Vorogushyn; Merz, Bruno
2017-04-01
Spatial consistency, which has been usually disregarded because of the reported methodological difficulties, is increasingly demanded in regional flood hazard (and risk) assessments. This study aims at developing a holistic approach for deriving flood frequency at large scale consistently. A large scale two-component model has been established for simulating very long-term multisite synthetic meteorological fields and flood flow at many gauged and ungauged locations hence reflecting the spatially inherent heterogeneity. The model has been applied for the region of nearly a half million km2 including Germany and parts of nearby countries. The model performance has been multi-objectively examined with a focus on extreme. By this continuous simulation approach, flood quantiles for the studied region have been derived successfully and provide useful input for a comprehensive flood risk study.
Cosmogenic activation of germanium used for tonne-scale rare event search experiments
NASA Astrophysics Data System (ADS)
Wei, W.-Z.; Mei, D.-M.; Zhang, C.
2017-11-01
We report a comprehensive study of cosmogenic activation of germanium used for tonne-scale rare event search experiments. The germanium exposure to cosmic rays on the Earth's surface are simulated with and without a shielding container using Geant4 for a given cosmic muon, neutron, and proton energy spectrum. The production rates of various radioactive isotopes are obtained for different sources separately. We find that fast neutron induced interactions dominate the production rate of cosmogenic activation. Geant4-based simulation results are compared with the calculation of ACTIVIA and the available experimental data. A reasonable agreement between Geant4 simulations and several experimental data sets is presented. We predict that cosmogenic activation of germanium can set limits to the sensitivity of the next generation of tonne-scale experiments.
Wildfire exposure and fuel management on western US national forests.
Ager, Alan A; Day, Michelle A; McHugh, Charles W; Short, Karen; Gilbertson-Day, Julie; Finney, Mark A; Calkin, David E
2014-12-01
Substantial investments in fuel management activities on national forests in the western US are part of a national strategy to reduce human and ecological losses from catastrophic wildfire and create fire resilient landscapes. Prioritizing these investments within and among national forests remains a challenge, partly because a comprehensive assessment that establishes the current wildfire risk and exposure does not exist, making it difficult to identify national priorities and target specific areas for fuel management. To gain a broader understanding of wildfire exposure in the national forest system, we analyzed an array of simulated and empirical data on wildfire activity and fuel treatment investments on the 82 western US national forests. We first summarized recent fire data to examine variation among the Forests in ignition frequency and burned area in relation to investments in fuel reduction treatments. We then used simulation modeling to analyze fine-scale spatial variation in burn probability and intensity. We also estimated the probability of a mega-fire event on each of the Forests, and the transmission of fires ignited on national forests to the surrounding urban interface. The analysis showed a good correspondence between recent area burned and predictions from the simulation models. The modeling also illustrated the magnitude of the variation in both burn probability and intensity among and within Forests. Simulated burn probabilities in most instances were lower than historical, reflecting fire exclusion on many national forests. Simulated wildfire transmission from national forests to the urban interface was highly variable among the Forests. We discuss how the results of the study can be used to prioritize investments in hazardous fuel reduction within a comprehensive multi-scale risk management framework. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Barry, D. A.; Robinson, C.; Brovelli, A.; Harkness, M.; Fisher, A.; Mack, E. E.; Payne, J. A.; Dworatzek, S.; Roberts, J.
2008-12-01
A detailed model to simulate trichloroethene (TCE) dechlorination in anaerobic groundwater systems has been developed and implemented through PHAST, a robust and flexible geochemical modeling platform. The approach is comprehensive but retains flexibility such that models of varying complexity can be used to simulate TCE biodegradation in the vicinity of nonaqueous phase liquid (NAPL) source zones. The complete model considers a full suite of biological (e.g., dechlorination, fermentation, sulfate and iron reduction, electron donor competition, toxic inhibition, pH inhibition), physical (e.g., flow and mass transfer) and geochemical processes (e.g., pH modulation, gas formation, mineral interactions). Example simulations with the model demonstrated that the feedback between biological, physical, and geochemical processes is critical. Successful simulation of a thirty-two-month column experiment with site soil, complex groundwater chemistry, and exhibiting both anaerobic dechlorination and endogenous respiration, provided confidence in the modeling approach. A comprehensive suite of batch simulations was then conducted to estimate the sensitivity of predicted TCE degradation to the 36 model input parameters. A local sensitivity analysis was first employed to rank the importance of parameters, revealing that 5 parameters consistently dominated model predictions across a range of performance metrics. A global sensitivity analysis was then performed to evaluate the influence of a variety of full parameter data sets available in the literature. The modeling study was performed as part of the SABRE (Source Area BioREmediation) project, a public/private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The modelling conducted has provided valuable insight into the complex interactions between processes in the evolving biogeochemical systems, particularly at the laboratory scale.
Challenges in reducing the computational time of QSTS simulations for distribution system analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deboever, Jeremiah; Zhang, Xiaochen; Reno, Matthew J.
The rapid increase in penetration of distributed energy resources on the electric power distribution system has created a need for more comprehensive interconnection modelling and impact analysis. Unlike conventional scenario - based studies , quasi - static time - series (QSTS) simulation s can realistically model time - dependent voltage controllers and the diversity of potential impacts that can occur at different times of year . However, to accurately model a distribution system with all its controllable devices, a yearlong simulation at 1 - second resolution is often required , which could take conventional computers a computational time of 10more » to 120 hours when an actual unbalanced distribution feeder is modeled . This computational burden is a clear l imitation to the adoption of QSTS simulation s in interconnection studies and for determining optimal control solutions for utility operations . Our ongoing research to improve the speed of QSTS simulation has revealed many unique aspects of distribution system modelling and sequential power flow analysis that make fast QSTS a very difficult problem to solve. In this report , the most relevant challenges in reducing the computational time of QSTS simulations are presented: number of power flows to solve, circuit complexity, time dependence between time steps, multiple valid power flow solutions, controllable element interactions, and extensive accurate simulation analysis.« less
Progress on the Multiphysics Capabilities of the Parallel Electromagnetic ACE3P Simulation Suite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kononenko, Oleksiy
2015-03-26
ACE3P is a 3D parallel simulation suite that is being developed at SLAC National Accelerator Laboratory. Effectively utilizing supercomputer resources, ACE3P has become a key tool for the coupled electromagnetic, thermal and mechanical research and design of particle accelerators. Based on the existing finite-element infrastructure, a massively parallel eigensolver is developed for modal analysis of mechanical structures. It complements a set of the multiphysics tools in ACE3P and, in particular, can be used for the comprehensive study of microphonics in accelerating cavities ensuring the operational reliability of a particle accelerator.
Mannava, Sandeep; Plate, Johannes F; Tuohy, Christopher J; Seyler, Thorsten M; Whitlock, Patrick W; Curl, Walton W; Smith, Thomas L; Saul, Katherine R
2013-07-01
The purpose of this article is to review basic science studies using various animal models for rotator cuff research and to describe structural, biomechanical, and functional changes to muscle following rotator cuff tears. The use of computational simulations to translate the findings from animal models to human scale is further detailed. A comprehensive review was performed of the basic science literature describing the use of animal models and simulation analysis to examine muscle function following rotator cuff injury and repair in the ageing population. The findings from various studies of rotator cuff pathology emphasize the importance of preventing permanent muscular changes with detrimental results. In vivo muscle function, electromyography, and passive muscle-tendon unit properties were studied before and after supraspinatus tenotomy in a rodent rotator cuff injury model (acute vs chronic). Then, a series of simulation experiments were conducted using a validated computational human musculoskeletal shoulder model to assess both passive and active tension of rotator cuff repairs based on surgical positioning. Outcomes of rotator cuff repair may be improved by earlier surgical intervention, with lower surgical repair tensions and fewer electromyographic neuromuscular changes. An integrated approach of animal experiments, computer simulation analyses, and clinical studies may allow us to gain a fundamental understanding of the underlying pathology and interpret the results for clinical translation.
Evaluative methodology for comprehensive water quality management planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, H. L.
Computer-based evaluative methodologies have been developed to provide for the analysis of coupled phenomena associated with natural resource comprehensive planning requirements. Provisions for planner/computer interaction have been included. Each of the simulation models developed is described in terms of its coded procedures. An application of the models for water quality management planning is presented; and the data requirements for each of the models are noted.
Comprehensive silicon solar-cell computer modeling
NASA Technical Reports Server (NTRS)
Lamorte, M. F.
1984-01-01
A comprehensive silicon solar cell computer modeling scheme was developed to perform the following tasks: (1) model and analysis of the net charge distribution in quasineutral regions; (2) experimentally determined temperature behavior of Spire Corp. n+pp+ solar cells where n+-emitter is formed by ion implantation of 75As or 31P; and (3) initial validation results of computer simulation program using Spire Corp. n+pp+ cells.
Assessing anesthesiology residents' out-of-the-operating-room (OOOR) emergent airway management.
Rochlen, Lauryn R; Housey, Michelle; Gannon, Ian; Mitchell, Shannon; Rooney, Deborah M; Tait, Alan R; Engoren, Milo
2017-07-15
At many academic institutions, anesthesiology residents are responsible for managing emergent intubations outside of the operating room (OOOR), with complications estimated to be as high as 39%. In order to create an OOOR training curriculum, we evaluated residents' familiarity with the content and correct adherence to the American Society of Anesthesiologists' Difficult Airway Algorithm (ASA DAA). Residents completed a pre-simulation multiple-choice survey measuring their understanding and use of the DAA. Residents then managed an emergent, difficult OOOR intubation in the simulation center, where two trained reviewers assessed performance using checklists. Post-simulation, the residents completed a survey rating their behaviors during the simulation. The primary outcome was comprehension and adherence to the DAA as assessed by survey responses and behavior in the simulation. Sixty-three residents completed both surveys and the simulation. Post-survey responses indicated a shift toward decreased self-perceived familiarity with the DAA content compared to pre-survey responses. During the simulation, 22 (35%) residents were unsuccessful with intubation. Of these, 46% placed an LMA and 46% prepared for cricothyroidotomy. Nineteen residents did not attempt intubation. Of these, only 31% considered LMA placement, and 26% initiated cricothyroidotomy. Many anesthesiology residency training programs permit resident autonomy in managing emergent intubations OOOR. Residents self-reported familiarity with the content of and adherence to the DAA was higher than that observed during the simulation. Curriculum focused on comprehension of the DAA, as well as improving communication with higher-level physicians and specialists, may improve outcomes during OOORs.
Improving Collaboration Among Social Work and Nursing Students Through Interprofessional Simulation.
Kuehn, Mary Beth; Huehn, Susan; Smalling, Susan
2017-08-01
This project implemented first-time simulation with nursing and social work students. Students participated in a contextual learning experience through a patient simulation of interprofessional practice as a health care team member and reflection through debriefing and open response comments. Simulation offers a means to practice interprofessional collaboration prior to entering practice. Participants reported an increased understanding of the scope of practice of other team members through their reflections following simulation. In addition, participants reported increased comprehension of team dynamics and their relationship to improved patient care. Overall, the simulation encouraged development of the skills necessary to function as part of a collaborative, interprofessional team.
Protein Simulation Data in the Relational Model.
Simms, Andrew M; Daggett, Valerie
2012-10-01
High performance computing is leading to unprecedented volumes of data. Relational databases offer a robust and scalable model for storing and analyzing scientific data. However, these features do not come without a cost-significant design effort is required to build a functional and efficient repository. Modeling protein simulation data in a relational database presents several challenges: the data captured from individual simulations are large, multi-dimensional, and must integrate with both simulation software and external data sites. Here we present the dimensional design and relational implementation of a comprehensive data warehouse for storing and analyzing molecular dynamics simulations using SQL Server.
Protein Simulation Data in the Relational Model
Simms, Andrew M.; Daggett, Valerie
2011-01-01
High performance computing is leading to unprecedented volumes of data. Relational databases offer a robust and scalable model for storing and analyzing scientific data. However, these features do not come without a cost—significant design effort is required to build a functional and efficient repository. Modeling protein simulation data in a relational database presents several challenges: the data captured from individual simulations are large, multi-dimensional, and must integrate with both simulation software and external data sites. Here we present the dimensional design and relational implementation of a comprehensive data warehouse for storing and analyzing molecular dynamics simulations using SQL Server. PMID:23204646
Simulation in otolaryngology: smart dummies and more.
Deutsch, Ellen S
2011-12-01
Simulation is revolutionizing medical education, certification, and ongoing professional development. Simulation encompasses a variety of technologies as well as nontechnical approaches to improve individual psychomotor skills, group effectiveness, and systems processes, all without direct risk to patients. Simulation-enhanced learning experiences, addressing learning objectives based on the needs of the individual or the group and following the principles of adult education, can be used to ensure consistent and comprehensive learning opportunities, thereby creatively complementing didactic and clinical learning experiences. Pockets of simulation expertise are already present in the field of otolaryngology; more will develop as these exciting and important innovations blossom.
The influence of health literacy on comprehension of a colonoscopy preparation information leaflet
Smith, Samuel G.; von Wagner, Christian; McGregor, Lesley M.; Curtis, Laura M.; Wilson, Elizabeth A. H.; Serper, Marina; Wolf, Michael S.
2012-01-01
BACKGROUND Successful bowel preparation is important for safe, efficacious, cost-effective colonoscopy procedures, however poor preparation is common. OBJECTIVE We sought to determine if there was an association between health literacy and comprehension of typical written instructions on how to prepare for a colonoscopy to enable more targeted interventions in this area. DESIGN Cross-sectional observational study SETTING Primary care clinics and federally qualified health centres in Chicago, Illinois. PATIENTS 764 participants (mean age: 63 years; Standard Deviation: 5.42) were recruited. The sample was from a mixed socio-demographic background and 71.9% of the participants were classified as having adequate health literacy scores. INTERVENTION 764 participants were presented with an information leaflet outlining the bowel preparatory instructions for colonoscopy. MAIN OUTCOME MEASURES Five questions assessing comprehension of the instructions in an ‘open book’ test. RESULTS Comprehension scores on the bowel preparation items were low. The mean number of items correctly answered was 3.2 (Standard Deviation, 1.2) out of a possible 5. Comprehensions scores overall and for each individual item differed significantly by health literacy level (all p<0.001). After controlling for gender, age, race, socio-economic status and previous colonoscopy experience in a multivariable model, health literacy was a significant predictor of comprehension (inadequate vs. adequate: β = −0.2; p < 0.001; marginal vs. adequate: β = −0.2; p < 0.001). LIMITATIONS The outcome represents a simulated task and not actual comprehension of preparation instructions for participants’ own recommended behavior. CONCLUSIONS Comprehension of a written colonoscopy preparation leaflet was generally low and significantly more so among people with low health literacy. Poor comprehension has implications for the safety and economic impact of gastroenterological procedures such as colonoscopy. Therefore future interventions should aim to improve comprehension of complex medical information by reducing literacy-related barriers. PMID:22965407
NASA Astrophysics Data System (ADS)
Ho, Teck Seng; Charles, Christine; Boswell, Roderick W.
2016-12-01
This paper presents computational fluid dynamics simulations of the cold gas operation of Pocket Rocket and Mini Pocket Rocket radiofrequency electrothermal microthrusters, replicating experiments performed in both sub-Torr and vacuum environments. This work takes advantage of flow velocity choking to circumvent the invalidity of modelling vacuum regions within a CFD simulation, while still preserving the accuracy of the desired results in the internal regions of the microthrusters. Simulated results of the plenum stagnation pressure is in precise agreement with experimental measurements when slip boundary conditions with the correct tangential momentum accommodation coefficients for each gas are used. Thrust and specific impulse is calculated by integrating the flow profiles at the exit of the microthrusters, and are in good agreement with experimental pendulum thrust balance measurements and theoretical expectations. For low thrust conditions where experimental instruments are not sufficiently sensitive, these cold gas simulations provide additional data points against which experimental results can be verified and extrapolated. The cold gas simulations presented in this paper will be used as a benchmark to compare with future plasma simulations of the Pocket Rocket microthruster.
NASA Astrophysics Data System (ADS)
Tang, C.; Lynch, J. A.; Dennis, R. L.
2016-12-01
The biogeochemical processing of nitrogen and associated pollutants is driven by meteorological and hydrological processes in conjunction with pollutant loading. There are feedbacks between meteorology and hydrology that will be affected by land-use change and climate change. Changes in meteorology will affect pollutant deposition. It is important to account for those feedbacks and produce internally consistent simulations of meteorology, hydrology, and pollutant loading to drive the (watershed/water quality) biogeochemical models. In this study, the ecological response to emission reductions in streams in the Potomac watershed was evaluated. Firstly, we simulated the deposition by using the fully coupled Weather Research & Forecasting (WRF) model and the Community Multiscale Air Quality (CAMQ) model; secondly, we created the hydrological data by the offline linked Variable Infiltration Capacity (VIC) model and the WRF model. Lastly, we investigated the water quality by one comprehensive/environment model, namely the linkage of CMAQ, WRF, VIC and the Model of Acidification of Groundwater In Catchment (MAGIC) model from 2002 to 2010.The simulated results (such as NO3, SO4, and SBC) fit well to the observed values. The linkage provides a generally accurate, well-tested tool for evaluating sensitivities to varying meteorology and environmental changes on acidification and other biogeochemical processes, with capability to comprehensively explore strategic policy and management design.
Constrained Local UniversE Simulations: a Local Group factory
NASA Astrophysics Data System (ADS)
Carlesi, Edoardo; Sorce, Jenny G.; Hoffman, Yehuda; Gottlöber, Stefan; Yepes, Gustavo; Libeskind, Noam I.; Pilipenko, Sergey V.; Knebe, Alexander; Courtois, Hélène; Tully, R. Brent; Steinmetz, Matthias
2016-05-01
Near-field cosmology is practised by studying the Local Group (LG) and its neighbourhood. This paper describes a framework for simulating the `near field' on the computer. Assuming the Λ cold dark matter (ΛCDM) model as a prior and applying the Bayesian tools of the Wiener filter and constrained realizations of Gaussian fields to the Cosmicflows-2 (CF2) survey of peculiar velocities, constrained simulations of our cosmic environment are performed. The aim of these simulations is to reproduce the LG and its local environment. Our main result is that the LG is likely a robust outcome of the ΛCDMscenario when subjected to the constraint derived from CF2 data, emerging in an environment akin to the observed one. Three levels of criteria are used to define the simulated LGs. At the base level, pairs of haloes must obey specific isolation, mass and separation criteria. At the second level, the orbital angular momentum and energy are constrained, and on the third one the phase of the orbit is constrained. Out of the 300 constrained simulations, 146 LGs obey the first set of criteria, 51 the second and 6 the third. The robustness of our LG `factory' enables the construction of a large ensemble of simulated LGs. Suitable candidates for high-resolution hydrodynamical simulations of the LG can be drawn from this ensemble, which can be used to perform comprehensive studies of the formation of the LG.
The (human) science of medical virtual learning environments.
Stone, Robert J
2011-01-27
The uptake of virtual simulation technologies in both military and civilian surgical contexts has been both slow and patchy. The failure of the virtual reality community in the 1990s and early 2000s to deliver affordable and accessible training systems stems not only from an obsessive quest to develop the 'ultimate' in so-called 'immersive' hardware solutions, from head-mounted displays to large-scale projection theatres, but also from a comprehensive lack of attention to the needs of the end users. While many still perceive the science of simulation to be defined by technological advances, such as computing power, specialized graphics hardware, advanced interactive controllers, displays and so on, the true science underpinning simulation--the science that helps to guarantee the transfer of skills from the simulated to the real--is that of human factors, a well-established discipline that focuses on the abilities and limitations of the end user when designing interactive systems, as opposed to the more commercially explicit components of technology. Based on three surgical simulation case studies, the importance of a human factors approach to the design of appropriate simulation content and interactive hardware for medical simulation is illustrated. The studies demonstrate that it is unnecessary to pursue real-world fidelity in all instances in order to achieve psychological fidelity--the degree to which the simulated tasks reproduce and foster knowledge, skills and behaviours that can be reliably transferred to real-world training applications.
Influence of atmospheric transport patterns on xenon detections at the CTBTO radionuclide network
NASA Astrophysics Data System (ADS)
Krysta, Monika; Kusmierczyk-Michulec, Jolanta
2016-04-01
In order to fulfil its task of monitoring for signals emanating from nuclear explosions, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) operates global International Monitoring System (IMS) comprising seismic, infrasound, hydroacoustic and radionuclide measurement networks. At present, 24 among 80 radionuclide stations foreseen by the Comprehensive Nuclear-Test-Ban Treaty (CTBT) are equipped with certified noble gas measurement systems. Over a past couple of years these systems collected a rich set of measurements of radioactive isotopes of xenon. Atmospheric transport modelling simulations are crucial to an assessment of the origin of xenon detected at the IMS stations. Numerous studies undertaken in the past enabled linking these detections to non Treaty-relevant activities and identifying main contributors. Presence and quantity of xenon isotopes at the stations is hence a result of an interplay of emission patterns and atmospheric circulation. In this presentation we analyse the presence or absence of radioactive xenon at selected stations from an angle of such an interplay. We attempt to classify the stations according to similarity of detection patterns, examine seasonality in those patterns and link them to large scale or local meteorological phenomena. The studies are undertaken using crude hypotheses on emission patterns from known sources and atmospheric transport modelling simulations prepared with the FLEXPART model.
Townsend, Molly T; Sarigul-Klijn, Nesrin
2016-01-01
Simplified material models are commonly used in computational simulation of biological soft tissue as an approximation of the complicated material response and to minimize computational resources. However, the simulation of complex loadings, such as long-duration tissue swelling, necessitates complex models that are not easy to formulate. This paper strives to offer the updated Lagrangian formulation comprehensive procedure of various non-linear material models for the application of finite element analysis of biological soft tissues including a definition of the Cauchy stress and the spatial tangential stiffness. The relationships between water content, osmotic pressure, ionic concentration and the pore pressure stress of the tissue are discussed with the merits of these models and their applications.
NASA Astrophysics Data System (ADS)
Marchetti, Luca; Priami, Corrado; Thanh, Vo Hong
2016-07-01
This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance and accuracy of HRSSA against other state of the art algorithms.
Jiang, Dong; Hao, Mengmeng; Wang, Qiao; Huang, Yaohuan; Fu, Xinyu
2014-01-01
The main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed. PMID:25045736
Direct speech quotations promote low relative-clause attachment in silent reading of English.
Yao, Bo; Scheepers, Christoph
2018-07-01
The implicit prosody hypothesis (Fodor, 1998, 2002) proposes that silent reading coincides with a default, implicit form of prosody to facilitate sentence processing. Recent research demonstrated that a more vivid form of implicit prosody is mentally simulated during silent reading of direct speech quotations (e.g., Mary said, "This dress is beautiful"), with neural and behavioural consequences (e.g., Yao, Belin, & Scheepers, 2011; Yao & Scheepers, 2011). Here, we explored the relation between 'default' and 'simulated' implicit prosody in the context of relative-clause (RC) attachment in English. Apart from confirming a general low RC-attachment preference in both production (Experiment 1) and comprehension (Experiments 2 and 3), we found that during written sentence completion (Experiment 1) or when reading silently (Experiment 2), the low RC-attachment preference was reliably enhanced when the critical sentences were embedded in direct speech quotations as compared to indirect speech or narrative sentences. However, when reading aloud (Experiment 3), direct speech did not enhance the general low RC-attachment preference. The results from Experiments 1 and 2 suggest a quantitative boost to implicit prosody (via auditory perceptual simulation) during silent production/comprehension of direct speech. By contrast, when reading aloud (Experiment 3), prosody becomes equally salient across conditions due to its explicit nature; indirect speech and narrative sentences thus become as susceptible to prosody-induced syntactic biases as direct speech. The present findings suggest a shared cognitive basis between default implicit prosody and simulated implicit prosody, providing a new platform for studying the effects of implicit prosody on sentence processing. Copyright © 2018 Elsevier B.V. All rights reserved.
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
2018-01-01
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA–ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field. PMID:29297679
2015-08-01
published in the NGA’s DNCs, with distinct values assigned to areas of sand, gravel, clay , etc. ERDC/CHL TR-15-14 94 6.5.2 Lateral eddy viscosity As with...6.5.1 Manning’s n bottom friction coefficient ................................................................... 93 6.5.2 Lateral eddy viscosity ...this study include (1) Manning’s n bottom friction coefficient, (2) lateral eddy viscosity , (3) land cover effects on winds (also referred to as
Coded spread spectrum digital transmission system design study
NASA Technical Reports Server (NTRS)
Heller, J. A.; Odenwalder, J. P.; Viterbi, A. J.
1974-01-01
Results are presented of a comprehensive study of the performance of Viterbi-decoded convolutional codes in the presence of nonideal carrier tracking and bit synchronization. A constraint length 7, rate 1/3 convolutional code and parameters suitable for the space shuttle coded communications links are used. Mathematical models are developed and theoretical and simulation results are obtained to determine the tracking and acquisition performance of the system. Pseudorandom sequence spread spectrum techniques are also considered to minimize potential degradation caused by multipath.
NASA Astrophysics Data System (ADS)
Awai, Ikuo
A new comprehensive method to suppress the spurious modes in a BPF is proposed taking the multi-strip resonator BPF as an example. It consists of disturbing the resonant frequency, coupling coefficient and external Q of the higher-order modes at the same time. The designed example has shown an extraordinarily good out-of-band response in the computer simulation.
Modeling a Hall Thruster from Anode to Plume Far Field
2005-01-01
Hall thruster simulation capability that begins with propellant injection at the thruster anode, and ends in the plume far field. The development of a comprehensive simulation capability is critical for a number of reasons. The main motivation stems from the need to directly couple simulation of the plasma discharge processes inside the thruster and the transport of the plasma to the plume far field. The simulation strategy will employ two existing codes, one for the Hall thruster device and one for the plume. The coupling will take place in the plume
Interfacing Simulations with Training Content
2006-09-01
a panelist at numerous international training and elearning conferences, ADL Plugfests and IMS Global Learning Consortium Open Technical Forums. Dr...communication technologies has enabled higher quality learning to be made available through increasingly sophisticated modes of presentation. Traditional...However, learning is a comprehensive process which does not simply consist of the transmission and learning of content. While simulations offer the
Faculty Flow in a Medical School: A Policy Simulator. AIR Forum 1979 Paper.
ERIC Educational Resources Information Center
Kutina, Kenneth L.; Bruss, Edward A.
A computer-based simulation model is described that can be used in an interactive mode to analyze the effects of alternative hiring, promotion, tenure granting, retirement, and salary policies on faculty size, distribution, and aggregate salary expense. The model was designed to be adequately flexible and comprehensive to incorporate the array of…
Teaching Lean Six Sigma within a Supply Chain Context: The Airplane Supply Chain Simulation
ERIC Educational Resources Information Center
Ellis, Scott C.; Goldsby, Thomas J.; Bailey, Ana M.; Oh, Jae-Young
2014-01-01
Lean six sigma is a management methodology that firms can employ to achieve substantial improvement in supply chain performance. However, few pedagogical exercises facilitate students' use of a comprehensive set of lean six sigma principles within a supply chain context. We describe the Airplane Supply Chain Simulation that helps students…
The Bilingual Language Interaction Network for Comprehension of Speech*
Marian, Viorica
2013-01-01
During speech comprehension, bilinguals co-activate both of their languages, resulting in cross-linguistic interaction at various levels of processing. This interaction has important consequences for both the structure of the language system and the mechanisms by which the system processes spoken language. Using computational modeling, we can examine how cross-linguistic interaction affects language processing in a controlled, simulated environment. Here we present a connectionist model of bilingual language processing, the Bilingual Language Interaction Network for Comprehension of Speech (BLINCS), wherein interconnected levels of processing are created using dynamic, self-organizing maps. BLINCS can account for a variety of psycholinguistic phenomena, including cross-linguistic interaction at and across multiple levels of processing, cognate facilitation effects, and audio-visual integration during speech comprehension. The model also provides a way to separate two languages without requiring a global language-identification system. We conclude that BLINCS serves as a promising new model of bilingual spoken language comprehension. PMID:24363602
Comprehensive rotorcraft analysis methods
NASA Technical Reports Server (NTRS)
Stephens, Wendell B.; Austin, Edward E.
1988-01-01
The development and application of comprehensive rotorcraft analysis methods in the field of rotorcraft technology are described. These large scale analyses and the resulting computer programs are intended to treat the complex aeromechanical phenomena that describe the behavior of rotorcraft. They may be used to predict rotor aerodynamics, acoustic, performance, stability and control, handling qualities, loads and vibrations, structures, dynamics, and aeroelastic stability characteristics for a variety of applications including research, preliminary and detail design, and evaluation and treatment of field problems. The principal comprehensive methods developed or under development in recent years and generally available to the rotorcraft community because of US Army Aviation Research and Technology Activity (ARTA) sponsorship of all or part of the software systems are the Rotorcraft Flight Simulation (C81), Dynamic System Coupler (DYSCO), Coupled Rotor/Airframe Vibration Analysis Program (SIMVIB), Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD), General Rotorcraft Aeromechanical Stability Program (GRASP), and Second Generation Comprehensive Helicopter Analysis System (2GCHAS).
A decrease in brain activation associated with driving when listening to someone speak.
Just, Marcel Adam; Keller, Timothy A; Cynkar, Jacquelyn
2008-04-18
Behavioral studies have shown that engaging in a secondary task, such as talking on a cellular telephone, disrupts driving performance. This study used functional magnetic resonance imaging (fMRI) to investigate the impact of concurrent auditory language comprehension on the brain activity associated with a simulated driving task. Participants steered a vehicle along a curving virtual road, either undisturbed or while listening to spoken sentences that they judged as true or false. The dual-task condition produced a significant deterioration in driving accuracy caused by the processing of the auditory sentences. At the same time, the parietal lobe activation associated with spatial processing in the undisturbed driving task decreased by 37% when participants concurrently listened to sentences. The findings show that language comprehension performed concurrently with driving draws mental resources away from the driving and produces deterioration in driving performance, even when it does not require holding or dialing a phone.
A Decrease in Brain Activation Associated with Driving When Listening to Someone Speak
Just, Marcel Adam; Keller, Timothy A.; Cynkar, Jacquelyn
2009-01-01
Behavioral studies have shown that engaging in a secondary task, such as talking on a cellular telephone, disrupts driving performance. This study used functional magnetic resonance imaging (fMRI) to investigate the impact of concurrent auditory language comprehension on the brain activity associated with a simulated driving task. Participants steered a vehicle along a curving virtual road, either undisturbed or while listening to spoken sentences that they judged as true or false. The dual task condition produced a significant deterioration in driving accuracy caused by the processing of the auditory sentences. At the same time, the parietal lobe activation associated with spatial processing in the undisturbed driving task decreased by 37% when participants concurrently listened to sentences. The findings show that language comprehension performed concurrently with driving draws mental resources away from the driving and produces deterioration in driving performance, even when it does not require holding or dialing a phone. PMID:18353285
Akiba, K.; Akbiyik, M.; Albrow, M.; ...
2016-10-17
The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chaptermore » 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. Here, the report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cartiglia, N.; Royon, C.
The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chaptermore » 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. The report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.« less
NASA Astrophysics Data System (ADS)
Tajuddin, Wan Ahmad
1994-02-01
Ease in finding the configuration at the global energy minimum in a symmetric neural network is important for combinatorial optimization problems. We carry out a comprehensive survey of available strategies for seeking global minima by comparing their performances in the binary representation problem. We recall our previous comparison of steepest descent with analog dynamics, genetic hill-climbing, simulated diffusion, simulated annealing, threshold accepting and simulated tunneling. To this, we add comparisons to other strategies including taboo search and one with field-ordered updating.
Mukhtar, Hussnain; Lin, Yu-Pin; Shipin, Oleg V.; Petway, Joy R.
2017-01-01
This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH3-N and NO3-N. Results indicate that the integrated FME-GLUE-based model, with good Nash–Sutcliffe coefficients (0.53–0.69) and correlation coefficients (0.76–0.83), successfully simulates the concentrations of ON-N, NH3-N and NO3-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH3-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO3-N simulation, which was measured using global sensitivity. PMID:28704958
The Reactivation of Motion influences Size Categorization in a Visuo-Haptic Illusion.
Rey, Amandine E; Dabic, Stephanie; Versace, Remy; Navarro, Jordan
2016-09-01
People simulate themselves moving when they view a picture, read a sentence, or simulate a situation that involves motion. The simulation of motion has often been studied in conceptual tasks such as language comprehension. However, most of these studies investigated the direct influence of motion simulation on tasks inducing motion. This article investigates whether a mo- tion induced by the reactivation of a dynamic picture can influence a task that did not require motion processing. In a first phase, a dynamic picture and a static picture were systematically presented with a vibrotactile stimulus (high or low frequency). The second phase of the experiment used a priming paradigm in which a vibrotactile stimulus was presented alone and followed by pictures of objects. Participants had to categorize objects as large or small relative to their typical size (simulated size). Results showed that when the target object was preceded by the vibrotactile stimulus previously associated with the dynamic picture, participants perceived all the objects as larger and categorized them more quickly when the objects were typically "large" and more slowly when the objects were typically "small." In light of embodied cognition theories, this bias in participants' perception is assumed to be caused by an induced forward motion. generated by the reactivated dynamic picture, which affects simulation of the size of the objects.
NASA Astrophysics Data System (ADS)
Yang, Shuai; Wu, Wei; Wang, Xingshu; Xu, Zhiguang
2018-01-01
The coupling error in the measurement of ship hull deformation can significantly influence the attitude accuracy of the shipborne weapons and equipments. It is therefore important to study the characteristics of the coupling error. In this paper, an comprehensive investigation on the coupling error is reported, which has a potential of deducting the coupling error in the future. Firstly, the causes and characteristics of the coupling error are analyzed theoretically based on the basic theory of measuring ship deformation. Then, simulations are conducted for verifying the correctness of the theoretical analysis. Simulation results show that the cross-correlation between dynamic flexure and ship angular motion leads to the coupling error in measuring ship deformation, and coupling error increases with the correlation value between them. All the simulation results coincide with the theoretical analysis.
Predicting drug hydrolysis based on moisture uptake in various packaging designs.
Naversnik, Klemen; Bohanec, Simona
2008-12-18
An attempt was made to predict the stability of a moisture sensitive drug product based on the knowledge of the dependence of the degradation rate on tablet moisture. The moisture increase inside a HDPE bottle with the drug formulation was simulated with the sorption-desorption moisture transfer model, which, in turn, allowed an accurate prediction of the drug degradation kinetics. The stability prediction, obtained by computer simulation, was made in a considerably shorter time frame and required little resources compared to a conventional stability study. The prediction was finally upgraded to a stochastic Monte Carlo simulation, which allowed quantitative incorporation of uncertainty, stemming from various sources. The resulting distribution of the outcome of interest (amount of degradation product at expiry) is a comprehensive way of communicating the result along with its uncertainty, superior to single-value results or confidence intervals.
NASA Technical Reports Server (NTRS)
Lim, Young-Kwon; Shin, D. W.; Cocke, Steven; Kang, Sung-Dae; Kim, Hae-Dong
2011-01-01
Community Land Model version 2 (CLM2) as a comprehensive land surface model and a simple land surface model (SLM) were coupled to an atmospheric climate model to investigate the role of land surface processes in the development and the persistence of the South Asian summer monsoon. Two-way air-sea interactions were not considered in order to identify the reproducibility of the monsoon evolution by the comprehensive land model, which includes more realistic vertical soil moisture structures, vegetation and 2-way atmosphere-land interactions at hourly intervals. In the monsoon development phase (May and June). comprehensive land-surface treatment improves the representation of atmospheric circulations and the resulting convergence/divergence through the improvements in differential heating patterns and surface energy fluxes. Coupling with CLM2 also improves the timing and spatial distribution of rainfall maxima, reducing the seasonal rainfall overestimation by approx.60 % (1.8 mm/d for SLM, 0.7 mm/dI for CLM2). As for the interannual variation of the simulated rainfall, correlation coefficients of the Indian seasonal rainfall with observation increased from 0.21 (SLM) to 0.45 (CLM2). However, in the mature monsoon phase (July to September), coupling with the CLM2 does not exhibit a clear improvement. In contrast to the development phase, latent heat flux is underestimated and sensible heat flux and surface temperature over India are markedly overestimated. In addition, the moisture fluxes do not correlate well with lower-level atmospheric convergence, yielding correlation coefficients and root mean square errors worse than those produced by coupling with the SLM. A more realistic representation of the surface temperature and energy fluxes is needed to achieve an improved simulation for the mature monsoon period.
Comparison of Computed and Measured Vortex Evolution for a UH-60A Rotor in Forward Flight
NASA Technical Reports Server (NTRS)
Ahmad, Jasim Uddin; Yamauchi, Gloria K.; Kao, David L.
2013-01-01
A Computational Fluid Dynamics (CFD) simulation using the Navier-Stokes equations was performed to determine the evolutionary and dynamical characteristics of the vortex flowfield for a highly flexible aeroelastic UH-60A rotor in forward flight. The experimental wake data were acquired using Particle Image Velocimetry (PIV) during a test of the fullscale UH-60A rotor in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel. The PIV measurements were made in a stationary cross-flow plane at 90 deg rotor azimuth. The CFD simulation was performed using the OVERFLOW CFD solver loosely coupled with the rotorcraft comprehensive code CAMRAD II. Characteristics of vortices captured in the PIV plane from different blades are compared with CFD calculations. The blade airloads were calculated using two different turbulence models. A limited spatial, temporal, and CFD/comprehensive-code coupling sensitivity analysis was performed in order to verify the unsteady helicopter simulations with a moving rotor grid system.
NEST: a comprehensive model for scintillation yield in liquid xenon
Szydagis, M.; Barry, N.; Kazkaz, K.; ...
2011-10-03
Here, a comprehensive model for explaining scintillation yield in liquid xenon is introduced. We unify various definitions of work function which abound in the literature and incorporate all available data on electron recoil scintillation yield. This results in a better understanding of electron recoil, and facilitates an improved description of nuclear recoil. An incident gamma energy range of O(1 keV) to O(1 MeV) and electric fields between 0 and O(10 kV/cm) are incorporated into this heuristic model. We show results from a Geant4 implementation, but because the model has a few free parameters, implementation in any simulation package should bemore » simple. We use a quasi-empirical approach, with an objective of improving detector calibrations and performance verification. The model will aid in the design and optimization of future detectors. This model is also easy to extend to other noble elements. In this paper we lay the foundation for an exhaustive simulation code which we call NEST (Noble Element Simulation Technique).« less
NetMOD version 1.0 user's manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant, Bion John
2014-01-01
NetMOD (Network Monitoring for Optimal Detection) is a Java-based software package for conducting simulation of seismic networks. Specifically, NetMOD simulates the detection capabilities of seismic monitoring networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed atmore » each of the stations. From these signal-to-noise ratios (SNR), the probability of detection can be computed given a detection threshold. This manual describes how to configure and operate NetMOD to perform seismic detection simulations. In addition, NetMOD is distributed with a simulation dataset for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) International Monitoring System (IMS) seismic network for the purpose of demonstrating NetMOD's capabilities and providing user training. The tutorial sections of this manual use this dataset when describing how to perform the steps involved when running a simulation.« less
Computer simulations of optimum boost and buck-boost converters
NASA Technical Reports Server (NTRS)
Rahman, S.
1982-01-01
The development of mathematicl models suitable for minimum weight boost and buck-boost converter designs are presented. The facility of an augumented Lagrangian (ALAG) multiplier-based nonlinear programming technique is demonstrated for minimum weight design optimizations of boost and buck-boost power converters. ALAG-based computer simulation results for those two minimum weight designs are discussed. Certain important features of ALAG are presented in the framework of a comprehensive design example for boost and buck-boost power converter design optimization. The study provides refreshing design insight of power converters and presents such information as weight annd loss profiles of various semiconductor components and magnetics as a function of the switching frequency.
Three-dimensional modelling of trace species in the Arctic lower stratosphere
NASA Technical Reports Server (NTRS)
Chipperfield, Martyn; Cariolle, Daniel; Simon, Pascal; Ramaroson, Richard
1994-01-01
A three-dimensional radiative-dynamical-chemical model has been developed and used to study some aspects of modeling the polar lower stratosphere. The model includes a comprehensive gas-phase chemistry scheme as well as a treatment of heterogeneous reactions occurring on the surface of polar stratospheric clouds. Tracer transport is treated by an accurate, nondispersive scheme with little diffusion suited to the representation of strong gradients. Results from a model simulation of early February 1990 are presented and used to illustrate the importance of the model transport scheme. The model simulation is also used to examine the potential for Arctic ozone destruction and the relative contributions of the chemical cycles responsible.
Ab initio simulations of the dynamic ion structure factor of warm dense lithium
Witte, B. B. L.; Shihab, M.; Glenzer, S. H.; ...
2017-04-06
Here, we present molecular dynamics simulations based on finite-temperature density functional theory that determine self-consistently the dynamic ion structure factor and the electronic form factor in lithium. Our comprehensive data set allows for the calculation of the dispersion relation for collective excitations, the calculation of the sound velocity, and the determination of the ion feature from the total electronic form factor and the ion structure factor. The results are compared with available experimental x-ray and neutron scattering data. Good agreement is found for both the liquid metal and warm dense matter domain. Finally, we study the impact of possible targetmore » inhomogeneities on x-ray scattering spectra.« less
Ab initio simulations of the dynamic ion structure factor of warm dense lithium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, B. B. L.; Shihab, M.; Glenzer, S. H.
Here, we present molecular dynamics simulations based on finite-temperature density functional theory that determine self-consistently the dynamic ion structure factor and the electronic form factor in lithium. Our comprehensive data set allows for the calculation of the dispersion relation for collective excitations, the calculation of the sound velocity, and the determination of the ion feature from the total electronic form factor and the ion structure factor. The results are compared with available experimental x-ray and neutron scattering data. Good agreement is found for both the liquid metal and warm dense matter domain. Finally, we study the impact of possible targetmore » inhomogeneities on x-ray scattering spectra.« less
NASA Technical Reports Server (NTRS)
Janardan, B. A.; Brausch, J. F.; Price, A. O.
1984-01-01
Acoustic and diagnostic data that were obtained to determine the influence of selected geometric and aerodynamic flow variables of coannular nozzles with thermal acoustic shields are summarized in this comprehensive data report. A total of 136 static and simulated flight acoustic test points were conducted with 9 scale-model nozzles The tested nozzles included baseline (unshielded), 180 deg shielded, and 360 deg shielded dual flow coannular plug configurations. The baseline configurations include a high radius ratio unsuppressed coannular plug nozzle and a coanuular plug nozzle and a coannular plug nozzle with a 20-chute outer stream suppressor. The tests were conducted at nozzle temperatures and pressure typical of operating conditions of variable cycle engine.
AuNP-PE interface/phase and its effects on the tensile behaviour of AuNP-PE composites
NASA Astrophysics Data System (ADS)
Wang, Yue; Wang, Ruijie; Wang, Chengyuan; Yu, Xiaozhu
2018-06-01
A comprehensive study was conducted for a gold nanoparticle (AuNP)-polyethylene (PE) composite. Molecular dynamic (MD) simulations were employed to construct the AuNP-PE systems, achieve their constitutive relations, and measure their tensile properties. Specifically, the AuNP-PE interface/phase was studied via the mass density profile, and its effect was evaluated by comparing the composite with a pure PE matrix. These research studies were followed by the study of the fracture mechanisms and the size and volume fraction effects of AuNPs. Efforts were also made to reveal the underlying physics of the MD simulations. In the present work, an AuNP-PE interface and a densified PE interphase were achieved due to the AuNP-PE van der Waals interaction. Such an interface/phase is found to enhance the Young's modulus and yield stress but decrease the fracture strength and strain.
Simulation framework for intelligent transportation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewing, T.; Doss, E.; Hanebutte, U.
1996-10-01
A simulation framework has been developed for a large-scale, comprehensive, scaleable simulation of an Intelligent Transportation System (ITS). The simulator is designed for running on parallel computers and distributed (networked) computer systems, but can run on standalone workstations for smaller simulations. The simulator currently models instrumented smart vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide two-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphicalmore » user interfaces to support human-factors studies. Realistic modeling of variations of the posted driving speed are based on human factors studies that take into consideration weather, road conditions, driver personality and behavior, and vehicle type. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on parallel computers, such as ANL`s IBM SP-2, for large-scale problems. A novel feature of the approach is that vehicles are represented by autonomous computer processes which exchange messages with other processes. The vehicles have a behavior model which governs route selection and driving behavior, and can react to external traffic events much like real vehicles. With this approach, the simulation is scaleable to take advantage of emerging massively parallel processor (MPP) systems.« less
The formation of disc galaxies in high-resolution moving-mesh cosmological simulations
NASA Astrophysics Data System (ADS)
Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker
2014-01-01
We present cosmological hydrodynamical simulations of eight Milky Way-sized haloes that have been previously studied with dark matter only in the Aquarius project. For the first time, we employ the moving-mesh code AREPO in zoom simulations combined with a comprehensive model for galaxy formation physics designed for large cosmological simulations. Our simulations form in most of the eight haloes strongly disc-dominated systems with realistic rotation curves, close to exponential surface density profiles, a stellar mass to halo mass ratio that matches expectations from abundance matching techniques, and galaxy sizes and ages consistent with expectations from large galaxy surveys in the local Universe. There is no evidence for any dark matter core formation in our simulations, even so they include repeated baryonic outflows by supernova-driven winds and black hole quasar feedback. For one of our haloes, the object studied in the recent `Aquila' code comparison project, we carried out a resolution study with our techniques, covering a dynamic range of 64 in mass resolution. Without any change in our feedback parameters, the final galaxy properties are reassuringly similar, in contrast to other modelling techniques used in the field that are inherently resolution dependent. This success in producing realistic disc galaxies is reached, in the context of our interstellar medium treatment, without resorting to a high density threshold for star formation, a low star formation efficiency, or early stellar feedback, factors deemed crucial for disc formation by other recent numerical studies.
Kim, Ji-Hoon; Kim, Young-Min; Park, Seong Heui; Ju, Eun A; Choi, Se Min; Hong, Tai Yong
2017-06-01
The aim of the study was to compare the educational impact of two postsimulation debriefing methods-focused and corrective feedback (FCF) versus Structured and Supported Debriefing (SSD)-on team dynamics in simulation-based cardiac arrest team training. This was a pilot randomized controlled study conducted at a simulation center. Fourth-year medical students were randomly assigned to the FCF or SSD group, with each team composed of six students and a confederate. Each team participated in two simulations and the assigned debriefing (FCF or SSD) sessions and then underwent a test simulation. Two trained raters blindly assessed all of the recorded simulations using checklists. The primary outcome was the improvement in team dynamics scores between baseline and test simulation. The secondary outcomes were improvements before and after training in team clinical performance scores, self-assessed comprehension of and confidence in cardiac arrest management and team dynamics, as well as evaluations of the postsimulation debriefing intervention. In total, 95 students participated [FCF (8 teams, n = 47) and SSD (8 teams, n = 48)]. The SSD team dynamics score during the test simulation was higher than at baseline [baseline: 74.5 (65.9-80.9), test: 85.0 (71.9-87.6), P = 0.035]. However, there were no differences in the improvement in the team dynamics or team clinical performance scores between the two groups (P = 0.328, respectively). There was no significant difference in improvement in team dynamics scores during the test simulation compared with baseline between the SSD and FCF groups in a simulation-based cardiac arrest team training in fourth-year Korean medical students.
Progress through precedent: Going where no helicopter simulator has gone before
NASA Technical Reports Server (NTRS)
Adams, Richard J.
1992-01-01
Helicopter simulators have been approved by means of special exemption; there are no FAA standards for simulators used in training or airmen Certification checking. The fixed-wing industry provides a precedent which can be used for expediting implementation of helicopter simulators. The analysis in this paper is founded on the experience with that precedent and is driven by a clear definition of helicopter user needs for (1) improved training at lower cost, (2) more comprehensive emergency training at lower risk, (3) increased fidelity of transition and instrument training compared with low-cost aircraft alternatives, and (4) certification credit for improved simulator training.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchetti, Luca, E-mail: marchetti@cosbi.eu; Priami, Corrado, E-mail: priami@cosbi.eu; University of Trento, Department of Mathematics
This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance andmore » accuracy of HRSSA against other state of the art algorithms.« less
Parametric sensitivity analysis of leachate transport simulations at landfills.
Bou-Zeid, E; El-Fadel, M
2004-01-01
This paper presents a case study in simulating leachate generation and transport at a 2000 ton/day landfill facility and assesses leachate migration away from the landfill in order to control associated environmental impacts, particularly on groundwater wells down gradient of the site. The site offers unique characteristics in that it is a former quarry converted to a landfill and is planned to have refuse depths that could reach 100 m, making it one of the deepest in the world. Leachate quantity and potential percolation into the subsurface are estimated using the Hydrologic Evaluation of Landfill Performance (HELP) model. A three-dimensional subsurface model (PORFLOW) was adopted to simulate ground water flow and contaminant transport away from the site. A comprehensive sensitivity analysis to leachate transport control parameters was also conducted. Sensitivity analysis suggests that changes in partition coefficient, source strength, aquifer hydraulic conductivity, and dispersivity have the most significant impact on model output indicating that these parameters should be carefully selected when similar modeling studies are performed. Copyright 2004 Elsevier Ltd.
Analytical evaluation of current starch methods used in the international sugar industry: Part I.
Cole, Marsha; Eggleston, Gillian; Triplett, Alexa
2017-08-01
Several analytical starch methods exist in the international sugar industry to mitigate starch-related processing challenges and assess the quality of traded end-products. These methods use iodometric chemistry, mostly potato starch standards, and utilize similar solubilization strategies, but had not been comprehensively compared. In this study, industrial starch methods were compared to the USDA Starch Research method using simulated raw sugars. Type of starch standard, solubilization approach, iodometric reagents, and wavelength detection affected total starch determination in simulated raw sugars. Simulated sugars containing potato starch were more accurately detected by the industrial methods, whereas those containing corn starch, a better model for sugarcane starch, were only accurately measured by the USDA Starch Research method. Use of a potato starch standard curve over-estimated starch concentrations. Among the variables studied, starch standard, solubilization approach, and wavelength detection affected the sensitivity, accuracy/precision, and limited the detection/quantification of the current industry starch methods the most. Published by Elsevier Ltd.
Driving indicators in teens with attention deficit hyperactivity and/or autism spectrum disorder.
Classen, Sherrilene; Monahan, Miriam; Brown, Kiah E; Hernandez, Stephanie
2013-12-01
Motor vehicle crashes are leading causes of death among teens. Those teens with attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), or a dual diagnosis of ADHD/ASD have defining characteristics placing them at a greater risk for crashes. This study examined the between-group demographic, clinical, and simulated driving differences in teens, representing three diagnostic groups, compared to healthy controls (HCs). In this prospective observational study, we used a convenience sample of teens recruited from a variety of community settings. Compared to the 22 HCs (mean age = 14.32, SD = +/-.72), teen drivers representing the diagnostic groups (ADHD/ASD, n = 6, mean age = 15.00, SD = +/-.63; ADHD, n = 9, mean age = 15.00, SD = +/- 1.00; ASD, n = 7, mean age = 15.14, SD = +/-. 1.22) performed poorer on visual function, visual-motor integration, cognition, and motor performance and made more errors on the driving simulator. Teens from diagnostic groups have more deficits driving on a driving simulator and may require a comprehensive driving evaluation.
ERIC Educational Resources Information Center
Fontan, Lionel; Ferrané, Isabelle; Farinas, Jérôme; Pinquier, Julien; Tardieu, Julien; Magnen, Cynthia; Gaillard, Pascal; Aumont, Xavier; Füllgrabe, Christian
2017-01-01
Purpose: The purpose of this article is to assess speech processing for listeners with simulated age-related hearing loss (ARHL) and to investigate whether the observed performance can be replicated using an automatic speech recognition (ASR) system. The long-term goal of this research is to develop a system that will assist…
ERIC Educational Resources Information Center
Carey, Cayelan C.; Gougis, Rebekka Darner
2017-01-01
Ecosystem modeling is a critically important tool for environmental scientists, yet is rarely taught in undergraduate and graduate classrooms. To address this gap, we developed a teaching module that exposes students to a suite of modeling skills and tools (including computer programming, numerical simulation modeling, and distributed computing)…
An extensive coronagraphic simulation applied to LBT
NASA Astrophysics Data System (ADS)
Vassallo, D.; Carolo, E.; Farinato, J.; Bergomi, M.; Bonavita, M.; Carlotti, A.; D'Orazi, V.; Greggio, D.; Magrin, D.; Mesa, D.; Pinna, E.; Puglisi, A.; Stangalini, M.; Verinaud, C.; Viotto, V.
2016-08-01
In this article we report the results of a comprehensive simulation program aimed at investigating coronagraphic capabilities of SHARK-NIR, a camera selected to proceed to the final design phase at Large Binocular Telescope. For the purpose, we developed a dedicated simulation tool based on physical optics propagation. The code propagates wavefronts through SHARK optical train in an end-to-end fashion and can implement any kind of coronagraph. Detection limits can be finally computed, exploring a wide range of Strehl values and observing conditions.
Brownian dynamics simulation of protein diffusion in crowded environments
NASA Astrophysics Data System (ADS)
Mereghetti, Paolo; Wade, Rebecca C.
2013-02-01
High macromolecular concentrations are a distinguishing feature of living organisms. Understanding how the high concentration of solutes affects the dynamic properties of biological macromolecules is fundamental for the comprehension of biological processes in living systems. We first describe the development of a Brownian dynamics simulation methodology to investigate the dynamic and structural properties of protein solutions using atomic-detail protein structures. We then discuss insights obtained from applying this approach to simulation of solutions of a range of types of proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elber, Ron
Atomically detailed computer simulations of complex molecular events attracted the imagination of many researchers in the field as providing comprehensive information on chemical, biological, and physical processes. However, one of the greatest limitations of these simulations is of time scales. The physical time scales accessible to straightforward simulations are too short to address many interesting and important molecular events. In the last decade significant advances were made in different directions (theory, software, and hardware) that significantly expand the capabilities and accuracies of these techniques. This perspective describes and critically examines some of these advances.
RFA Guardian: Comprehensive Simulation of Radiofrequency Ablation Treatment of Liver Tumors.
Voglreiter, Philip; Mariappan, Panchatcharam; Pollari, Mika; Flanagan, Ronan; Blanco Sequeiros, Roberto; Portugaller, Rupert Horst; Fütterer, Jurgen; Schmalstieg, Dieter; Kolesnik, Marina; Moche, Michael
2018-01-15
The RFA Guardian is a comprehensive application for high-performance patient-specific simulation of radiofrequency ablation of liver tumors. We address a wide range of usage scenarios. These include pre-interventional planning, sampling of the parameter space for uncertainty estimation, treatment evaluation and, in the worst case, failure analysis. The RFA Guardian is the first of its kind that exhibits sufficient performance for simulating treatment outcomes during the intervention. We achieve this by combining a large number of high-performance image processing, biomechanical simulation and visualization techniques into a generalized technical workflow. Further, we wrap the feature set into a single, integrated application, which exploits all available resources of standard consumer hardware, including massively parallel computing on graphics processing units. This allows us to predict or reproduce treatment outcomes on a single personal computer with high computational performance and high accuracy. The resulting low demand for infrastructure enables easy and cost-efficient integration into the clinical routine. We present a number of evaluation cases from the clinical practice where users performed the whole technical workflow from patient-specific modeling to final validation and highlight the opportunities arising from our fast, accurate prediction techniques.
Zevin, Boris; Dedy, Nicolas J; Bonrath, Esther M; Grantcharov, Teodor P
2017-05-01
There is no comprehensive simulation-enhanced training curriculum to address cognitive, psychomotor, and nontechnical skills for an advanced minimally invasive procedure. 1) To develop and provide evidence of validity for a comprehensive simulation-enhanced training (SET) curriculum for an advanced minimally invasive procedure; (2) to demonstrate transfer of acquired psychomotor skills from a simulation laboratory to live porcine model; and (3) to compare training outcomes of SET curriculum group and chief resident group. University. This prospective single-blinded, randomized, controlled trial allocated 20 intermediate-level surgery residents to receive either conventional training (control) or SET curriculum training (intervention). The SET curriculum consisted of cognitive, psychomotor, and nontechnical training modules. Psychomotor skills in a live anesthetized porcine model in the OR was the primary outcome. Knowledge of advanced minimally invasive and bariatric surgery and nontechnical skills in a simulated OR crisis scenario were the secondary outcomes. Residents in the SET curriculum group went on to perform a laparoscopic jejunojejunostomy in the OR. Cognitive, psychomotor, and nontechnical skills of SET curriculum group were also compared to a group of 12 chief surgery residents. SET curriculum group demonstrated superior psychomotor skills in a live porcine model (56 [47-62] versus 44 [38-53], P<.05) and superior nontechnical skills (41 [38-45] versus 31 [24-40], P<.01) compared with conventional training group. SET curriculum group and conventional training group demonstrated equivalent knowledge (14 [12-15] versus 13 [11-15], P = 0.47). SET curriculum group demonstrated equivalent psychomotor skills in the live porcine model and in the OR in a human patient (56 [47-62] versus 63 [61-68]; P = .21). SET curriculum group demonstrated inferior knowledge (13 [11-15] versus 16 [14-16]; P<.05), equivalent psychomotor skill (63 [61-68] versus 68 [62-74]; P = .50), and superior nontechnical skills (41 [38-45] versus 34 [27-35], P<.01) compared with chief resident group. Completion of the SET curriculum resulted in superior training outcomes, compared with conventional surgery training. Implementation of the SET curriculum can standardize training for an advanced minimally invasive procedure and can ensure that comprehensive proficiency milestones are met before exposure to patient care. Copyright © 2017 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fischer, T.; Naumov, D.; Sattler, S.; Kolditz, O.; Walther, M.
2015-11-01
We offer a versatile workflow to convert geological models built with the ParadigmTM GOCAD© (Geological Object Computer Aided Design) software into the open-source VTU (Visualization Toolkit unstructured grid) format for usage in numerical simulation models. Tackling relevant scientific questions or engineering tasks often involves multidisciplinary approaches. Conversion workflows are needed as a way of communication between the diverse tools of the various disciplines. Our approach offers an open-source, platform-independent, robust, and comprehensible method that is potentially useful for a multitude of environmental studies. With two application examples in the Thuringian Syncline, we show how a heterogeneous geological GOCAD model including multiple layers and faults can be used for numerical groundwater flow modeling, in our case employing the OpenGeoSys open-source numerical toolbox for groundwater flow simulations. The presented workflow offers the chance to incorporate increasingly detailed data, utilizing the growing availability of computational power to simulate numerical models.
Foust, Thomas D.; Ziegler, Jack L.; Pannala, Sreekanth; ...
2017-02-28
Here in this computational study, we model the mixing of biomass pyrolysis vapor with solid catalyst in circulating riser reactors with a focus on the determination of solid catalyst residence time distributions (RTDs). A comprehensive set of 2D and 3D simulations were conducted for a pilot-scale riser using the Eulerian-Eulerian two-fluid modeling framework with and without sub-grid-scale models for the gas-solids interaction. A validation test case was also simulated and compared to experiments, showing agreement in the pressure gradient and RTD mean and spread. For simulation cases, it was found that for accurate RTD prediction, the Johnson and Jackson partialmore » slip solids boundary condition was required for all models and a sub-grid model is useful so that ultra high resolutions grids that are very computationally intensive are not required. Finally, we discovered a 2/3 scaling relation for the RTD mean and spread when comparing resolved 2D simulations to validated unresolved 3D sub-grid-scale model simulations.« less
WE-H-BRA-04: Biological Geometries for the Monte Carlo Simulation Toolkit TOPASNBio
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNamara, A; Held, K; Paganetti, H
2016-06-15
Purpose: New advances in radiation therapy are most likely to come from the complex interface of physics, chemistry and biology. Computational simulations offer a powerful tool for quantitatively investigating radiation interactions with biological tissue and can thus help bridge the gap between physics and biology. The aim of TOPAS-nBio is to provide a comprehensive tool to generate advanced radiobiology simulations. Methods: TOPAS wraps and extends the Geant4 Monte Carlo (MC) simulation toolkit. TOPAS-nBio is an extension to TOPAS which utilizes the physics processes in Geant4-DNA to model biological damage from very low energy secondary electrons. Specialized cell, organelle and molecularmore » geometries were designed for the toolkit. Results: TOPAS-nBio gives the user the capability of simulating biological geometries, ranging from the micron-scale (e.g. cells and organelles) to complex nano-scale geometries (e.g. DNA and proteins). The user interacts with TOPAS-nBio through easy-to-use input parameter files. For example, in a simple cell simulation the user can specify the cell type and size as well as the type, number and size of included organelles. For more detailed nuclear simulations, the user can specify chromosome territories containing chromatin fiber loops, the later comprised of nucleosomes on a double helix. The chromatin fibers can be arranged in simple rigid geometries or within factual globules, mimicking realistic chromosome territories. TOPAS-nBio also provides users with the capability of reading protein data bank 3D structural files to simulate radiation damage to proteins or nucleic acids e.g. histones or RNA. TOPAS-nBio has been validated by comparing results to other track structure simulation software and published experimental measurements. Conclusion: TOPAS-nBio provides users with a comprehensive MC simulation tool for radiobiological simulations, giving users without advanced programming skills the ability to design and run complex simulations.« less
Wu, Hao
2018-05-01
In structural equation modelling (SEM), a robust adjustment to the test statistic or to its reference distribution is needed when its null distribution deviates from a χ 2 distribution, which usually arises when data do not follow a multivariate normal distribution. Unfortunately, existing studies on this issue typically focus on only a few methods and neglect the majority of alternative methods in statistics. Existing simulation studies typically consider only non-normal distributions of data that either satisfy asymptotic robustness or lead to an asymptotic scaled χ 2 distribution. In this work we conduct a comprehensive study that involves both typical methods in SEM and less well-known methods from the statistics literature. We also propose the use of several novel non-normal data distributions that are qualitatively different from the non-normal distributions widely used in existing studies. We found that several under-studied methods give the best performance under specific conditions, but the Satorra-Bentler method remains the most viable method for most situations. © 2017 The British Psychological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leon E.; Haas, Derek A.; Gavron, Victor A.
2009-09-25
Under funding from the Department of Energy Office of Nuclear Energy’s Materials, Protection, Accounting, and Control for Transmutation (MPACT) program (formerly the Advanced Fuel Cycle Initiative Safeguards Campaign), Pacific Northwest National Laboratory (PNNL) and Los Alamos National Laboratory (LANL) are collaborating to study the viability of lead slowing-down spectroscopy (LSDS) for spent-fuel assay. Based on the results of previous simulation studies conducted by PNNL and LANL to estimate potential LSDS performance, a more comprehensive study of LSDS viability has been defined. That study includes benchmarking measurements, development and testing of key enabling instrumentation, and continued study of time-spectra analysis methods.more » This report satisfies the requirements for a PNNL/LANL deliverable that describes the objectives, plans and contributing organizations for a comprehensive three-year study of LSDS for spent-fuel assay. This deliverable was generated largely during the LSDS workshop held on August 25-26, 2009 at Rensselaer Polytechnic Institute (RPI). The workshop itself was a prominent milestone in the FY09 MPACT project and is also described within this report.« less
GneimoSim: A Modular Internal Coordinates Molecular Dynamics Simulation Package
Larsen, Adrien B.; Wagner, Jeffrey R.; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan
2014-01-01
The Generalized Newton Euler Inverse Mass Operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this paper we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. PMID:25263538
NASA Astrophysics Data System (ADS)
Smetana, Lara Kathleen; Bell, Randy L.
2012-06-01
Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is currently known and providing guidance for future research. We report on the outcomes of 61 empirical studies dealing with the efficacy of, and implications for, computer simulations in science instruction. The overall findings suggest that simulations can be as effective, and in many ways more effective, than traditional (i.e. lecture-based, textbook-based and/or physical hands-on) instructional practices in promoting science content knowledge, developing process skills, and facilitating conceptual change. As with any other educational tool, the effectiveness of computer simulations is dependent upon the ways in which they are used. Thus, we outline specific research-based guidelines for best practice. Computer simulations are most effective when they (a) are used as supplements; (b) incorporate high-quality support structures; (c) encourage student reflection; and (d) promote cognitive dissonance. Used appropriately, computer simulations involve students in inquiry-based, authentic science explorations. Additionally, as educational technologies continue to evolve, advantages such as flexibility, safety, and efficiency deserve attention.
A virtual reality dental simulator predicts performance in an operative dentistry manikin course.
Imber, S; Shapira, G; Gordon, M; Judes, H; Metzger, Z
2003-11-01
This study was designed to test the ability of a virtual reality dental simulator to predict the performance of students in a traditional operative dentistry manikin course. Twenty-six dental students were pre-tested on the simulator, prior to the course. They were briefly instructed and asked to prepare 12 class I cavities which were automatically graded by the simulator. The instructors in the manikin course that followed were unaware of the students' performances in the simulator pre-test. The scores achieved by each student in the last six simulator cavities were compared to their final comprehensive grades in the manikin course. Class standing of the students in the simulator pre-test positively correlated with their achievements in the manikin course with a correlation coefficient of 0.49 (P = 0.012). Eighty-nine percent of the students in the lower third of the class in the pre-test remained in the low performing half of the class in the manikin course. These results indicate that testing students in a dental simulator, prior to a manikin course, may be an efficient way to allow early identification of those who are likely to perform poorly. This in turn could enable early allocation of personal tutors to these students in order to improve their chances of success.
GneimoSim: a modular internal coordinates molecular dynamics simulation package.
Larsen, Adrien B; Wagner, Jeffrey R; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan
2014-12-05
The generalized Newton-Euler inverse mass operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this article, we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, and Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. © 2014 Wiley Periodicals, Inc.
Risk assessment of flood disaster and forewarning model at different spatial-temporal scales
NASA Astrophysics Data System (ADS)
Zhao, Jun; Jin, Juliang; Xu, Jinchao; Guo, Qizhong; Hang, Qingfeng; Chen, Yaqian
2018-05-01
Aiming at reducing losses from flood disaster, risk assessment of flood disaster and forewarning model is studied. The model is built upon risk indices in flood disaster system, proceeding from the whole structure and its parts at different spatial-temporal scales. In this study, on the one hand, it mainly establishes the long-term forewarning model for the surface area with three levels of prediction, evaluation, and forewarning. The method of structure-adaptive back-propagation neural network on peak identification is used to simulate indices in prediction sub-model. Set pair analysis is employed to calculate the connection degrees of a single index, comprehensive index, and systematic risk through the multivariate connection number, and the comprehensive assessment is made by assessment matrixes in evaluation sub-model. The comparison judging method is adopted to divide warning degree of flood disaster on risk assessment comprehensive index with forewarning standards in forewarning sub-model and then the long-term local conditions for proposing planning schemes. On the other hand, it mainly sets up the real-time forewarning model for the spot, which introduces the real-time correction technique of Kalman filter based on hydrological model with forewarning index, and then the real-time local conditions for presenting an emergency plan. This study takes Tunxi area, Huangshan City of China, as an example. After risk assessment and forewarning model establishment and application for flood disaster at different spatial-temporal scales between the actual and simulated data from 1989 to 2008, forewarning results show that the development trend for flood disaster risk remains a decline on the whole from 2009 to 2013, despite the rise in 2011. At the macroscopic level, project and non-project measures are advanced, while at the microcosmic level, the time, place, and method are listed. It suggests that the proposed model is feasible with theory and application, thus offering a way for assessing and forewarning flood disaster risk.
Wilkening, G Lucy; Gannon, Jessica M; Ross, Clint; Brennan, Jessica L; Fabian, Tanya J; Marcsisin, Michael J; Benedict, Neal J
2017-02-01
This pilot study evaluated the utility of branched-narrative virtual patients in an interprofessional education series for psychiatry residents. Third-year psychiatry residents attended four interprofessional education advanced psychopharmacology sessions that involved completion of a branched-narrative virtual patient and a debriefing session with a psychiatric pharmacist. Pre- and post-assessments analyzed resident learning and were administered around each virtual patient. Simulation 4 served as a comprehensive review. The primary outcome was differences in pre- and post-assessment scores. Secondary outcomes included resident satisfaction with the virtual patient format and psychiatric pharmacist involvement. Post-test scores for simulations 1, 2, and 3 demonstrated significant improvement (p < 0.05) from pre-test scores. Scores for simulation 4 did not retain significance. Resident satisfaction with the branched-narrative virtual patient format and psychiatric pharmacist involvement was high throughout the series (100 %; n = 18). Although there are important methodological limitations to this study including a small sample size and absence of a comparator group, this pilot study supports the use of branched-narrative virtual patients in an interprofessional education series for advanced learners.
Picard, Melissa; Curry, Nancy; Collins, Heather; Soma, LaShonda; Hill, Jeanne
2015-10-01
Simulation-based training has been shown to be a useful adjunct to standard didactic lecture in teaching residents appropriate management of adverse contrast reactions. In addition, it has been suggested that a biannual refresher is needed; however, the type of refresher education has not been assessed. This was a prospective study involving 31 radiology residents across all years in a university program. All residents underwent standard didactic lecture followed by high-fidelity simulation-based training. At approximately 6 months, residents were randomized into a didactic versus simulation group for a refresher. At approximately 9 months, all residents returned to the simulation center for performance testing. Knowledge and confidence assessments were obtained from all participants before and after each phase. Performance testing was obtained at each simulation session and scored based on predefined critical actions. There was significant improvement in knowledge (P < .002) and confidence (P < .001) after baseline education of combined didactic and simulation-based training. There was no statistical difference between the simulation and didactic groups in knowledge or confidence at any phase of the study. There was no significant difference in tested performance between the groups in either performance testing session. This study suggests that a curriculum consisting of an annual didactic lecture combined with simulation-based training followed by a didactic refresher at 6 months is an effective and efficient (both cost-effective and time-effective) method of educating radiology residents in the management of adverse contrast reactions. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pappas, E. P.; Moutsatsos, A.; Pantelis, E.; Zoros, E.; Georgiou, E.; Torrens, M.; Karaiskos, P.
2016-02-01
This work presents a comprehensive Monte Carlo (MC) simulation model for the Gamma Knife Perfexion (PFX) radiosurgery unit. Model-based dosimetry calculations were benchmarked in terms of relative dose profiles (RDPs) and output factors (OFs), against corresponding EBT2 measurements. To reduce the rather prolonged computational time associated with the comprehensive PFX model MC simulations, two approximations were explored and evaluated on the grounds of dosimetric accuracy. The first consists in directional biasing of the 60Co photon emission while the second refers to the implementation of simplified source geometric models. The effect of the dose scoring volume dimensions in OF calculations accuracy was also explored. RDP calculations for the comprehensive PFX model were found to be in agreement with corresponding EBT2 measurements. Output factors of 0.819 ± 0.004 and 0.8941 ± 0.0013 were calculated for the 4 mm and 8 mm collimator, respectively, which agree, within uncertainties, with corresponding EBT2 measurements and published experimental data. Volume averaging was found to affect OF results by more than 0.3% for scoring volume radii greater than 0.5 mm and 1.4 mm for the 4 mm and 8 mm collimators, respectively. Directional biasing of photon emission resulted in a time efficiency gain factor of up to 210 with respect to the isotropic photon emission. Although no considerable effect on relative dose profiles was detected, directional biasing led to OF overestimations which were more pronounced for the 4 mm collimator and increased with decreasing emission cone half-angle, reaching up to 6% for a 5° angle. Implementation of simplified source models revealed that omitting the sources’ stainless steel capsule significantly affects both OF results and relative dose profiles, while the aluminum-based bushing did not exhibit considerable dosimetric effect. In conclusion, the results of this work suggest that any PFX simulation model should be benchmarked in terms of both RDP and OF results.
Low-Frequency Waves in HF Heating of the Ionosphere
NASA Astrophysics Data System (ADS)
Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.
2016-02-01
Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.
Reliability of numerical wind tunnels for VAWT simulation
NASA Astrophysics Data System (ADS)
Raciti Castelli, M.; Masi, M.; Battisti, L.; Benini, E.; Brighenti, A.; Dossena, V.; Persico, G.
2016-09-01
Computational Fluid Dynamics (CFD) based on the Unsteady Reynolds Averaged Navier Stokes (URANS) equations have long been widely used to study vertical axis wind turbines (VAWTs). Following a comprehensive experimental survey on the wakes downwind of a troposkien-shaped rotor, a campaign of bi-dimensional simulations is presented here, with the aim of assessing its reliability in reproducing the main features of the flow, also identifying areas needing additional research. Starting from both a well consolidated turbulence model (k-ω SST) and an unstructured grid typology, the main simulation settings are here manipulated in a convenient form to tackle rotating grids reproducing a VAWT operating in an open jet wind tunnel. The dependence of the numerical predictions from the selected grid spacing is investigated, thus establishing the less refined grid size that is still capable of capturing some relevant flow features such as integral quantities (rotor torque) and local ones (wake velocities).
NASA Astrophysics Data System (ADS)
Wang, Li Han
2018-06-01
Taking the forest vegetation in Zijin Mountain (Purple Mountain) Area of Nanjing as the research object, based on the simulation natural and semi natural plant communities, the systematic research on the construction of Nanjing regional plant landscape is carried out by the method such as literature and theory, investigation and evaluation, discussion and reference. On the basis of TWINSPAN classification, the species composition (flora and geographical composition), community structure, species diversity, interspecific relationship and ecological niche of Zijin Mountain natural vegetation are studied and analyzed as a basis for simulation design and planting. Then, from the three levels of ornamental value, resource development and utilization potential and biological characteristics, a comprehensive evaluation system used for wild ornamental plant resources in Zijin Mountain is built. Finally, some suggestions on the planting species of deep forest vegetation in Zijin Mountain are put forward.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.
Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less
Characteristics of 3-D transport simulations of the stratosphere and mesosphere
NASA Technical Reports Server (NTRS)
Fairlie, T. D. A.; Siskind, D. E.; Turner, R. E.; Fisher, M.
1992-01-01
A 3D mechanistic, primitive-equation model of the stratosphere and mesosphere is coupled to an offline spectral transport model. The dynamics model is initialized with and forced by observations so that the coupled models may be used to study specific episodes. Results are compared with those obtained by transport online in the dynamics model. Although some differences are apparent, the results suggest that coupling of the models to a comprehensive photochemical package will provide a useful tool for studying the evolution of constituents in the middle atmosphere during specific episodes.
GenoBase: comprehensive resource database of Escherichia coli K-12
Otsuka, Yuta; Muto, Ai; Takeuchi, Rikiya; Okada, Chihiro; Ishikawa, Motokazu; Nakamura, Koichiro; Yamamoto, Natsuko; Dose, Hitomi; Nakahigashi, Kenji; Tanishima, Shigeki; Suharnan, Sivasundaram; Nomura, Wataru; Nakayashiki, Toru; Aref, Walid G.; Bochner, Barry R.; Conway, Tyrrell; Gribskov, Michael; Kihara, Daisuke; Rudd, Kenneth E.; Tohsato, Yukako; Wanner, Barry L.; Mori, Hirotada
2015-01-01
Comprehensive experimental resources, such as ORFeome clone libraries and deletion mutant collections, are fundamental tools for elucidation of gene function. Data sets by omics analysis using these resources provide key information for functional analysis, modeling and simulation both in individual and systematic approaches. With the long-term goal of complete understanding of a cell, we have over the past decade created a variety of clone and mutant sets for functional genomics studies of Escherichia coli K-12. We have made these experimental resources freely available to the academic community worldwide. Accordingly, these resources have now been used in numerous investigations of a multitude of cell processes. Quality control is extremely important for evaluating results generated by these resources. Because the annotation has been changed since 2005, which we originally used for the construction, we have updated these genomic resources accordingly. Here, we describe GenoBase (http://ecoli.naist.jp/GB/), which contains key information about comprehensive experimental resources of E. coli K-12, their quality control and several omics data sets generated using these resources. PMID:25399415
Comprehensive Study of Plasma-Wall Sheath Transport Phenomena
2016-10-26
function of the applied thermo-mechanical stress. An experiment was designed to test whether and how the process of plasma erosion might depend on ...of exposed surface, a, b) pretest height and laser image, c, d) post - test height and laser image. For the following analysis, a curve fit of the...normal to the ion beam. However, even with a one -dimensional simulation, features of a similar depth and profile to the post - test surface develop
Lee, Tae Hoon; Loke, Desmond; Elliott, Stephen R
2015-10-07
A comprehensive microscopic mechanism of doping-induced kinetically constrained crystallization in phase-change materials is provided by investigating structural and dynamical dopant characteristics via ab initio molecular dynamics simulations. The information gained from this study may provide a basis for a fast screening of dopant species for electronic memory devices, or for understanding the general physics involved in the crystallization of doped glasses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dual-spin attitude control for outer planet missions
NASA Technical Reports Server (NTRS)
Ward, R. S.; Tauke, G. J.
1977-01-01
The applicability of dual-spin technology to a Jupiter orbiter with probe mission was investigated. Basic mission and system level attitude control requirements were established and preliminary mechanization and control concepts developed. A comprehensive 18-degree-of-freedom digital simulation was utilized extensively to establish control laws, study dynamic interactions, and determined key sensitivities. Fundamental system/subsystem constraints were identified, and the applicability of dual-spin technology to a Jupiter orbiter with probe mission was validated.
"No-Go Considerations" for In Situ Simulation Safety.
Bajaj, Komal; Minors, Anjoinette; Walker, Katie; Meguerdichian, Michael; Patterson, Mary
2018-06-01
In situ simulation is the practice of simulation in the actual clinical environment and has demonstrated utility in the assessment of system processes, identification of latent safety threats, and improvement in teamwork and communication. Nonetheless, performing simulated events in a real patient care setting poses potential risks to patient and staff safety. One integral aspect of a comprehensive approach to ensure the safety of in situ simulation includes the identification and establishment of "no-go considerations," that is, key decision-making considerations under which in situ simulations should be canceled, postponed, moved to another area, or rescheduled. These considerations should be modified and adjusted to specific clinical units. This article provides a framework of key essentials in developing no-go considerations.
INACSL Standards of Best Practice for Simulation: Past, Present, and Future.
Sittner, Barbara J; Aebersold, Michelle L; Paige, Jane B; Graham, Leslie L M; Schram, Andrea Parsons; Decker, Sharon I; Lioce, Lori
2015-01-01
To describe the historical evolution of the International Nursing Association for Clinical Simulation and Learning's (INACSL) Standards of Best Practice: Simulation. The establishment of simulation standards began as a concerted effort by the INACSL Board of Directors in 2010 to provide best practices to design, conduct, and evaluate simulation activities in order to advance the science of simulation as a teaching methodology. A comprehensive review of the evolution of INACSL Standards of Best Practice: Simulation was conducted using journal publications, the INACSL website, INACSL member survey, and reports from members of the INACSL Standards Committee. The initial seven standards, published in 2011, were reviewed and revised in 2013. Two new standards were published in 2015. The standards will continue to evolve as the science of simulation advances. As the use of simulation-based experiences increases, the INACSL Standards of Best Practice: Simulation are foundational to standardizing language, behaviors, and curricular design for facilitators and learners.
Jacob LaFontaine; Lauren Hay; Stacey Archfield; William Farmer; Julie Kiang
2016-01-01
The U.S. Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the continental US. The portion of the NHM located within the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperative (GCPO LCC) is...
A comprehensive defect data bank for no. 2 common oak lumber
Edwin L. Lucas; Leathern R.R. Catron; Leathern R.R. Catron
1973-01-01
Computer simulation of rough mill cut-up operations allows lowcost evaluation of furniture rough mill cut-up procedures. The defect data bank serves as input to such simulation programs. The data bank contains a detailed accounting of defect data taken from 637 No. 2 Common oak boards. Included is a description of each defect (location, size, and type), as well as the...
Simulation of Flywheel Energy Storage System
2006-01-01
currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 02/11/06 2. REPORT TYPE...Government Purpose Rights 14. ABSTRACT Presented is a comprehensive power model for the Flywheel Attitude Control , Energy Transmission, and Storage...flywheel units and the Agile Multi-Purpose Satellite Simulator (AMPSS). The purpose of FACETS is to demonstrate integrated attitude control maneuvers
Three-Dimensional Visualization of Ozone Process Data.
1997-06-18
Scattered Multivariate Data. IEEE Computer Graphics & Applications. 11 (May), 47-55. Odman, M.T. and Ingram, C.L. (1996) Multiscale Air Quality Simulation...the Multiscale Air Quality Simulation Platform (MAQSIP) modeling system. MAQSIP is a modular comprehensive air quality modeling system which MCNC...photolyzed back again to nitric oxide. Finally, oxides of 6 nitrogen are terminated through loss or combination into nitric acid, organic nitrates
NASA Technical Reports Server (NTRS)
Dominguez, Jesus A.; Victor, Elias; Vasquez, Angel L.; Urbina, Alfredo R.
2017-01-01
A multi-threaded software application has been developed in-house by the Ground Special Power (GSP) team at NASA Kennedy Space Center (KSC) to separately simulate and fully emulate all units that supply VDC power and battery-based power backup to multiple KSC launch ground support systems for NASA Space Launch Systems (SLS) rocket.
Hendricks-Munoz, Karen D; Mayers, Roslyn M
2014-11-01
This study assessed the impact of a nurse simulation training program on perception of kangaroo mother care (KMC) value and transfer skill competency. An 8-item Likert scale skill survey tool and a 24-item Likert developmental care survey tool were used in a prospective cohort study to analyze perceptions of 30 neonatal nurses who underwent a comprehensive KMC simulation-based training program. Competency skills were evaluated pretraining and tracked by direct observation for 6 months posttraining. Pre- and postsurvey data were analyzed and KMC utilization for preterm infants born at ≤ 34 weeks' gestation was determined. Nurses' competency in infant transfer improved, especially in infants receiving nasal continuous positive airway pressure or ventilator support, from 30 to 93% or 10 to 50%, respectively, p < 0.0001. Neonatal nurses' perceived KMC value increased from 50 to 100%, p < 0.001, and parent KMC utilization increased from 26.5 to 85.9%, p < 0.0001. Nurses' support for parental visitation improved from 38 to 73%, p < 0.001; discussion of KMC with parents on the 1st day increased from 5 to 45%, p < 0.001; and initial day of KMC provision improved from 18.0 ± 2.7 to 5.6 ± 1.2 days, p < 0.001. A comprehensive simulation-based KMC education program improved nurses' perception of KMC value, their competency and comfort in infant transfer for KMC care, and successfully promoted KMC parent utilization for the preterm infant in the neonatal intensive care unit. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Discrete Particle Method for Simulating Hypervelocity Impact Phenomena.
Watson, Erkai; Steinhauser, Martin O
2017-04-02
In this paper, we introduce a computational model for the simulation of hypervelocity impact (HVI) phenomena which is based on the Discrete Element Method (DEM). Our paper constitutes the first application of DEM to the modeling and simulating of impact events for velocities beyond 5 kms -1 . We present here the results of a systematic numerical study on HVI of solids. For modeling the solids, we use discrete spherical particles that interact with each other via potentials. In our numerical investigations we are particularly interested in the dynamics of material fragmentation upon impact. We model a typical HVI experiment configuration where a sphere strikes a thin plate and investigate the properties of the resulting debris cloud. We provide a quantitative computational analysis of the resulting debris cloud caused by impact and a comprehensive parameter study by varying key parameters of our model. We compare our findings from the simulations with recent HVI experiments performed at our institute. Our findings are that the DEM method leads to very stable, energy-conserving simulations of HVI scenarios that map the experimental setup where a sphere strikes a thin plate at hypervelocity speed. Our chosen interaction model works particularly well in the velocity range where the local stresses caused by impact shock waves markedly exceed the ultimate material strength.
Discrete Particle Method for Simulating Hypervelocity Impact Phenomena
Watson, Erkai; Steinhauser, Martin O.
2017-01-01
In this paper, we introduce a computational model for the simulation of hypervelocity impact (HVI) phenomena which is based on the Discrete Element Method (DEM). Our paper constitutes the first application of DEM to the modeling and simulating of impact events for velocities beyond 5 kms−1. We present here the results of a systematic numerical study on HVI of solids. For modeling the solids, we use discrete spherical particles that interact with each other via potentials. In our numerical investigations we are particularly interested in the dynamics of material fragmentation upon impact. We model a typical HVI experiment configuration where a sphere strikes a thin plate and investigate the properties of the resulting debris cloud. We provide a quantitative computational analysis of the resulting debris cloud caused by impact and a comprehensive parameter study by varying key parameters of our model. We compare our findings from the simulations with recent HVI experiments performed at our institute. Our findings are that the DEM method leads to very stable, energy–conserving simulations of HVI scenarios that map the experimental setup where a sphere strikes a thin plate at hypervelocity speed. Our chosen interaction model works particularly well in the velocity range where the local stresses caused by impact shock waves markedly exceed the ultimate material strength. PMID:28772739
EMU Suit Performance Simulation
NASA Technical Reports Server (NTRS)
Cowley, Matthew S.; Benson, Elizabeth; Harvill, Lauren; Rajulu, Sudhakar
2014-01-01
Introduction: Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. To verify that new suit designs meet requirements, full prototypes must be built and tested with human subjects. However, numerous design iterations will occur before the hardware meets those requirements. Traditional draw-prototype-test paradigms for research and development are prohibitively expensive with today's shrinking Government budgets. Personnel at NASA are developing modern simulation techniques that focus on a human-centric design paradigm. These new techniques make use of virtual prototype simulations and fully adjustable physical prototypes of suit hardware. This is extremely advantageous and enables comprehensive design down-selections to be made early in the design process. Objectives: The primary objective was to test modern simulation techniques for evaluating the human performance component of two EMU suit concepts, pivoted and planar style hard upper torso (HUT). Methods: This project simulated variations in EVA suit shoulder joint design and subject anthropometry and then measured the differences in shoulder mobility caused by the modifications. These estimations were compared to human-in-the-loop test data gathered during past suited testing using four subjects (two large males, two small females). Results: Results demonstrated that EVA suit modeling and simulation are feasible design tools for evaluating and optimizing suit design based on simulated performance. The suit simulation model was found to be advantageous in its ability to visually represent complex motions and volumetric reach zones in three dimensions, giving designers a faster and deeper comprehension of suit component performance vs. human performance. Suit models were able to discern differing movement capabilities between EMU HUT configurations, generic suit fit concerns, and specific suit fit concerns for crewmembers based on individual anthropometry
Electrostatic atomization--Experiment, theory and industrial applications
NASA Astrophysics Data System (ADS)
Okuda, H.; Kelly, Arnold J.
1996-05-01
Experimental and theoretical research has been initiated at the Princeton Plasma Physics Laboratory on the electrostatic atomization process in collaboration with Charged Injection Corporation. The goal of this collaboration is to set up a comprehensive research and development program on the electrostatic atomization at the Princeton Plasma Physics Laboratory so that both institutions can benefit from the collaboration. Experimental, theoretical and numerical simulation approaches are used for this purpose. An experiment consisting of a capillary sprayer combined with a quadrupole mass filter and a charge detector was installed at the Electrostatic Atomization Laboratory to study fundamental properties of the charged droplets such as the distribution of charges with respect to the droplet radius. In addition, a numerical simulation model is used to study interaction of beam electrons with atmospheric pressure water vapor, supporting an effort to develop an electrostatic water mist fire-fighting nozzle.
Variable-Speed Simulation of a Dual-Clutch Gearbox Tiltrotor Driveline
NASA Technical Reports Server (NTRS)
DeSmidt, Hans; Wang, Kon-Well; Smith, Edward C.; Lewicki, David G.
2012-01-01
This investigation explores the variable-speed operation and shift response of a prototypical two-speed dual-clutch transmission tiltrotor driveline in forward flight. Here, a Comprehensive Variable-Speed Rotorcraft Propulsion System Modeling (CVSRPM) tool developed under a NASA funded NRA program is utilized to simulate the drive system dynamics. In this study, a sequential shifting control strategy is analyzed under a steady forward cruise condition. This investigation attempts to build upon previous variable-speed rotorcraft propulsion studies by 1) including a fully nonlinear transient gas-turbine engine model, 2) including clutch stick-slip friction effects, 3) including shaft flexibility, 4) incorporating a basic flight dynamics model to account for interactions with the flight control system. Through exploring the interactions between the various subsystems, this analysis provides important insights into the continuing development of variable-speed rotorcraft propulsion systems.
Zhou, Wei; Feng, Chuqiao; Liu, Xinghong; Liu, Shuhua; Zhang, Chao; Yuan, Wei
2016-01-01
This work is a contrastive investigation of numerical simulations to improve the comprehension of thermo-structural coupled phenomena of mass concrete structures during construction. The finite element (FE) analysis of thermo-structural behaviors is used to investigate the applicability of supersulfated cement (SSC) in mass concrete structures. A multi-scale framework based on a homogenization scheme is adopted in the parameter studies to describe the nonlinear concrete behaviors. Based on the experimental data of hydration heat evolution rate and quantity of SSC and fly ash Portland cement, the hydration properties of various cements are studied. Simulations are run on a concrete dam section with a conventional method and a chemo-thermo-mechanical coupled method. The results show that SSC is more suitable for mass concrete structures from the standpoint of temperature control and crack prevention. PMID:28773517
Zhou, Wei; Feng, Chuqiao; Liu, Xinghong; Liu, Shuhua; Zhang, Chao; Yuan, Wei
2016-05-20
This work is a contrastive investigation of numerical simulations to improve the comprehension of thermo-structural coupled phenomena of mass concrete structures during construction. The finite element (FE) analysis of thermo-structural behaviors is used to investigate the applicability of supersulfated cement (SSC) in mass concrete structures. A multi-scale framework based on a homogenization scheme is adopted in the parameter studies to describe the nonlinear concrete behaviors. Based on the experimental data of hydration heat evolution rate and quantity of SSC and fly ash Portland cement, the hydration properties of various cements are studied. Simulations are run on a concrete dam section with a conventional method and a chemo-thermo-mechanical coupled method. The results show that SSC is more suitable for mass concrete structures from the standpoint of temperature control and crack prevention.
Simulating the energy performance of holographic glazings
NASA Astrophysics Data System (ADS)
Papamichael, K.; Beltran, L.; Furler, Reto; Lee, E. S.; Selkowitz, Steven E.; Rubin, Michael
1994-09-01
The light diffraction properties of holographic diffractive structures present an opportunity to improve the daylight performance in side-lit office spaces by redirecting and reflecting sunlight off the ceiling, providing adequate daylight illumination up to 30 ft (9.14 m) from the window wall. Prior studies of prototypical holographic glazings, installed above conventional `view' windows, have shown increased daylight levels over a deeper perimeter area than clear glass, for selected sun positions. In this study, we report on the simulation of the energy performance of prototypical holographic glazings assuming a commercial office building in the inland Los Angeles climate. The simulation of the energy performance involved determination of both luminous and thermal performance. Since the optical complexity of holographic glazings prevented the use of conventional algorithms for the simulation of their luminous performance, we used a newly developed method that combines experimentally determined directional workplane illuminance coefficients with computer-based analytical routines to determine a comprehensive set of daylight factors for many sun positions. These daylight factors were then used within the DOE-2.1D energy simulation program to determine hourly daylight and energy performance over the course of an entire year for four window orientations. Since the prototypical holographic diffractive structures considered in this study were applied on single pane clear glass, we also simulated the performance of hypothetical glazings, assuming the daylight performance of the prototype holographic glazings and the thermal performance of double-pane and low-e glazings. Finally, we addressed various design and implementation issues towards potential performance improvement.
Yang, Jie; Shu, Hua
2012-08-01
Although numerous studies find the premotor cortex and the primary motor cortex are involved in action language comprehension, so far the nature of these motor effects is still in controversy. Some researchers suggest that the motor effects reflect that the premotor cortex and the primary motor cortex make functional contributions to the semantic access of action verbs, while other authors argue that the motor effects are caused by comprehension. In the current study, we used Granger causality analysis to investigate the roles of the premotor cortex and the primary motor cortex in processing of manual-action verbs. Regions of interest were selected in the primary motor cortex (M1) and the premotor cortex based on a hand motion task, and in the left posterior middle temporal gyrus (lexical semantic area) based on the reading task effect. We found that (1) the left posterior middle temporal gyrus had a causal influence on the left M1; and (2) the left posterior middle temporal gyrus and the left premotor cortex had bidirectional causal relations. These results suggest that the premotor cortex and the primary motor cortex play different roles in manual verb comprehension. The premotor cortex may be involved in motor simulation that contributes to action language processing, while the primary motor cortex may be engaged in a processing stage influenced by the meaning access of manual-action verbs. Further investigation combining effective connectivity analysis and technique with high temporal resolution is necessary for better clarification of the roles of the premotor cortex and the primary motor cortex in action language comprehension. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Cicolani, Luigi; Kanning, Gerd
1987-01-01
A comprehensive static aerodynamic simulation model of the 8 by 8 by 20 ft MILVAN cargo container is determined by combining the wind tunnel data from a 1972 NASA Ames Research Center study taken over the restricted domain (0 is less than or equal to phi is less than or equal to 90 degrees; 0 is less than or equal to alpha is less than or equal to 45 degrees) with extrapolation relations derived from the geometric symmetry of rectangular boxes. It is found that the aerodynamics of any attitude can be defined from the aerodynamics at an equivalent attitude in the restricted domain (0 is less than phi is less than 45 degrees; 0 is less than alpha is less than 90 degrees). However, a similar comprehensive equivalence with the domain spanned by the data is not available; in particular, about two-thirds of the domain with the absolute value of alpha is greater than 45 degrees is unrelated to the data. Nevertheless, as estimate can be defined for this region consistent with the measured or theoretical values along its boundaries and the theoretical equivalence of points within the region. These descrepancies are assumed to be due to measurement errors. Data from independent wind tunnel studies are reviewed; these are less comprehensive than the NASA Ames Research Center but show good to fair agreement with both the theory and the estimate given here.
Judd, Belinda K; Scanlan, Justin N; Alison, Jennifer A; Waters, Donna; Gordon, Christopher J
2016-08-05
Despite the recent widespread adoption of simulation in clinical education in physiotherapy, there is a lack of validated tools for assessment in this setting. The Assessment of Physiotherapy Practice (APP) is a comprehensive tool used in clinical placement settings in Australia to measure professional competence of physiotherapy students. The aim of the study was to evaluate the validity of the APP for student assessment in simulation settings. A total of 1260 APPs were collected, 971 from students in simulation and 289 from students in clinical placements. Rasch analysis was used to examine the construct validity of the APP tool in three different simulation assessment formats: longitudinal assessment over 1 week of simulation; longitudinal assessment over 2 weeks; and a short-form (25 min) assessment of a single simulation scenario. Comparison with APPs from 5 week clinical placements in hospital and clinic-based settings were also conducted. The APP demonstrated acceptable fit to the expectations of the Rasch model for the 1 and 2 week clinical simulations, exhibiting unidimensional properties that were able to distinguish different levels of student performance. For the short-form simulation, nine of the 20 items recorded greater than 25 % of scores as 'not-assessed' by clinical educators which impacted on the suitability of the APP tool in this simulation format. The APP was a valid assessment tool when used in longitudinal simulation formats. A revised APP may be required for assessment in short-form simulation scenarios.
Papaleo, Elena
2015-01-01
In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.
The role of water vapor in the ITCZ response to hemispherically asymmetric forcings
NASA Astrophysics Data System (ADS)
Clark, S.; Ming, Y.; Held, I.
2016-12-01
Studies using both comprehensive and simplified models have shown that changes to the inter-hemispheric energy budget can lead to changes in the position of the ITCZ. In these studies, the mean position of the ITCZ tends to shift toward the hemisphere receiving more energy. While included in many studies using comprehensive models, the role of the water vapor-radiation feedback in influencing ITCZ shifts has not been focused on in isolation in an idealized setting. Here we use an aquaplanet idealized moist general circulation model initially developed by Dargan Frierson, without clouds, newly coupled to a full radiative transfer code to investigate the role of water vapor in the ITCZ response to hemispherically asymmetric forcings. We induce a southward ITCZ shift by reducing the incoming solar radiation in the northern hemisphere. To isolate the radiative impact of water vapor, we run simulations where the radiation code sees the prognostic water vapor field, which responds dynamically to temperature, parameterized convection, and the circulation and also run simulations where the radiation code sees a prescribed static climatological water vapor field. We find that under Earth-like climate conditions, a shifting water vapor distribution's interaction with longwave radiation amplifies the latitudinal displacement of the ITCZ in response to a given hemispherically asymmetric forcing roughly by a factor of two; this effect appears robust to the convection scheme used. We argue that this amplifying effect can be explained using the energy flux equator theory for the position of the ITCZ.
Best practices in teaching echocardiography to cardiology fellows: a review of the evidence.
Ruden, Emily A; Way, David P; Nagel, Rollin W; Cheek, Fern; Auseon, Alex J
2016-11-01
Best practices in the teaching of performance and interpretation of echocardiography to cardiology fellows are unknown, and thus, it has traditionally been performed through an apprenticeship model. This review summarizes the existing literature describing evidence-based teaching of echocardiography. A comprehensive search of multiple scientific and educational databases included prospective studies describing an educational intervention for teaching echocardiography to physicians. A total of 288 articles were retrieved, and 10 articles were included in our review. The Medical Education Research Study Quality Instrument (MERSQI), a validated rubric designed to measure the methodological quality of educational research, was used to assign a comprehensive score to each paper. The articles were categorized by educational themes as follows: focused curriculum-based training, simulation, and assessment of competency. Individual study MERSQI scores varied from 8 to 13 (mean 10.55) on a scale of 18 points. The distribution of each group's median score (focused curriculum-based training 11.64; simulation 12.92; assessment of competency 9.39) was analyzed using boxplots with a 95% confidence interval. The median MERSQI score for the assessment of competency group was significantly lower than the others. A review of the data exploring best practices in teaching echocardiography shows only limited effects describing the curricular and assessment components of an overall educational system, rather than one-on-one clinical teaching. Future papers should explore application of point-of-care teaching and the impact of interventions on patient outcomes. © 2016, Wiley Periodicals, Inc.
Choi, Bryan; Asselin, Nicholas; Pettit, Catherine C; Dannecker, Max; Machan, Jason T; Merck, Derek L; Merck, Lisa H; Suner, Selim; Williams, Kenneth A; Jay, Gregory D; Kobayashi, Leo
2016-12-01
Effective resuscitation of out-of-hospital cardiac arrest (OHCA) patients is challenging. Alternative resuscitative approaches using electromechanical adjuncts may improve provider performance. Investigators applied simulation to study the effect of an experimental automation-assisted, goal-directed OHCA management protocol on EMS providers' resuscitation performance relative to standard protocols and equipment. Two-provider (emergency medical technicians (EMT)-B and EMT-I/C/P) teams were randomized to control or experimental group. Each team engaged in 3 simulations: baseline simulation (standard roles); repeat simulation (standard roles); and abbreviated repeat simulation (reversed roles, i.e., basic life support provider performing ALS tasks). Control teams used standard OHCA protocols and equipment (with high-performance cardiopulmonary resuscitation training intervention); for second and third simulations, experimental teams performed chest compression, defibrillation, airway, pulmonary ventilation, vascular access, medication, and transport tasks with goal-directed protocol and resuscitation-automating devices. Videorecorders and simulator logs collected resuscitation data. Ten control and 10 experimental teams comprised 20 EMT-B's; 1 EMT-I, 8 EMT-C's, and 11 EMT-P's; study groups were not fully matched. Both groups suboptimally performed chest compressions and ventilations at baseline. For their second simulations, control teams performed similarly except for reduced on-scene time, and experimental teams improved their chest compressions (P=0.03), pulmonary ventilations (P<0.01), and medication administration (P=0.02); changes in their performance of chest compression, defibrillation, airway, and transport tasks did not attain significance against control teams' changes. Experimental teams maintained performance improvements during reversed-role simulations. Simulation-based investigation into OHCA resuscitation revealed considerable variability and improvable deficiencies in small EMS teams. Goal-directed, automation-assisted OHCA management augmented select resuscitation bundle element performance without comprehensive improvement.
Dissecting the evolution of dark matter subhaloes in the Bolshoi simulation
NASA Astrophysics Data System (ADS)
van den Bosch, Frank C.
2017-06-01
We present a comprehensive analysis of the evolution of dark matter subhaloes in the cosmological Bolshoi simulation. We identify a complete set of 12 unique evolution channels by which subhaloes evolve in between simulation outputs, and study their relative importance and demographics. We show that instantaneous masses and maximum circular velocities of individual subhaloes are extremely noisy, despite the use of a sophisticated, phase-space-based halo finder. We also show that subhaloes experience frequent penetrating encounters with other subhaloes (on average about one per dynamical time), and that subhaloes whose apo-centre lies outside the virial radius of their host (the 'ejected' or 'backsplash' haloes) experience tidal forces that modify their orbits. This results in an average fractional subhalo exchange rate among host haloes of ˜0.01 Gyr-1 (at the present time). In addition, we show that there are three distinct disruption channels; one in which subhaloes drop below the mass resolution limit of the simulation, one in which subhaloes 'merge' with their host halo largely driven by dynamical friction, and one in which subhaloes abruptly disintegrate. We estimate that roughly 80 per cent of all subhalo disruption in the Bolshoi simulation is numerical, rather than physical. This 'overmerging' is a serious road-block for the use of numerical simulations to interpret small-scale clustering, or for any other study that is sensitive to the detailed demographics of dark matter substructure.
Measuring Management Abilities and Motivation.
ERIC Educational Resources Information Center
Howard, Ann
1983-01-01
The complexity of managerial abilities and motivation is displayed in the assessment center method, where judgments depend on a comprehensive package of such techniques as paper-and-pencil tests, interviews, simulations, and projective tests. (Author)
Multi-time scale energy management of wind farms based on comprehensive evaluation technology
NASA Astrophysics Data System (ADS)
Xu, Y. P.; Huang, Y. H.; Liu, Z. J.; Wang, Y. F.; Li, Z. Y.; Guo, L.
2017-11-01
A novel energy management of wind farms is proposed in this paper. Firstly, a novel comprehensive evaluation system is proposed to quantify economic properties of each wind farm to make the energy management more economical and reasonable. Then, a combination of multi time-scale schedule method is proposed to develop a novel energy management. The day-ahead schedule optimizes unit commitment of thermal power generators. The intraday schedule is established to optimize power generation plan for all thermal power generating units, hydroelectric generating sets and wind power plants. At last, the power generation plan can be timely revised in the process of on-line schedule. The paper concludes with simulations conducted on a real provincial integrated energy system in northeast China. Simulation results have validated the proposed model and corresponding solving algorithms.
Reliability evaluation of microgrid considering incentive-based demand response
NASA Astrophysics Data System (ADS)
Huang, Ting-Cheng; Zhang, Yong-Jun
2017-07-01
Incentive-based demand response (IBDR) can guide customers to adjust their behaviour of electricity and curtail load actively. Meanwhile, distributed generation (DG) and energy storage system (ESS) can provide time for the implementation of IBDR. The paper focus on the reliability evaluation of microgrid considering IBDR. Firstly, the mechanism of IBDR and its impact on power supply reliability are analysed. Secondly, the IBDR dispatch model considering customer’s comprehensive assessment and the customer response model are developed. Thirdly, the reliability evaluation method considering IBDR based on Monte Carlo simulation is proposed. Finally, the validity of the above models and method is studied through numerical tests on modified RBTS Bus6 test system. Simulation results demonstrated that IBDR can improve the reliability of microgrid.
Predictive simulations and optimization of nanowire field-effect PSA sensors including screening
NASA Astrophysics Data System (ADS)
Baumgartner, Stefan; Heitzinger, Clemens; Vacic, Aleksandar; Reed, Mark A.
2013-06-01
We apply our self-consistent PDE model for the electrical response of field-effect sensors to the 3D simulation of nanowire PSA (prostate-specific antigen) sensors. The charge concentration in the biofunctionalized boundary layer at the semiconductor-electrolyte interface is calculated using the propka algorithm, and the screening of the biomolecules by the free ions in the liquid is modeled by a sensitivity factor. This comprehensive approach yields excellent agreement with experimental current-voltage characteristics without any fitting parameters. Having verified the numerical model in this manner, we study the sensitivity of nanowire PSA sensors by changing device parameters, making it possible to optimize the devices and revealing the attributes of the optimal field-effect sensor.
Parametric investigation of scalable tactile sensors
NASA Astrophysics Data System (ADS)
Saadatzi, Mohammad Nasser; Yang, Zhong; Baptist, Joshua R.; Sahasrabuddhe, Ritvij R.; Wijayasinghe, Indika B.; Popa, Dan O.
2017-05-01
In the near future, robots and humans will share the same environment and perform tasks cooperatively. For intuitive, safe, and reliable physical human-robot interaction (pHRI), sensorized robot skins for tactile measurements of contact are necessary. In a previous study, we presented skins consisting of strain gauge arrays encased in silicone encapsulants. Although these structures could measure normal forces applied directly onto the sensing elements, they also exhibited blind spots and response asymmetry to certain loading patterns. This study presents a parametric investigation of piezoresistive polymeric strain gauge that exhibits a symmetric omniaxial response thanks to its novel star-shaped structure. This strain gauge relies on the use of gold micro-patterned star-shaped structures with a thin layer of PEDOT:PSS which is a flexible polymer with piezoresistive properties. In this paper, the sensor is first modeled and comprehensively analyzed in the finite-element simulation environment COMSOL. Simulations include stress-strain loading for a variety of structure parameters such as gauge lengths, widths, and spacing, as well as multiple load locations relative to the gauge. Subsequently, sensors with optimized configurations obtained through simulations were fabricated using cleanroom photolithographic and spin-coating processes, and then experimentally tested. Results show a trend-wise agreement between experiments and simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.A.; Lake, L.W.; Sepehrnoori, K.
1988-11-01
The objective of this research is to develop, validate, and apply a comprehensive chemical flooding simulator for chemical recovery processes involving surfactants, polymers, and alkaline chemicals in various combinations. This integrated program includes components of laboratory experiments, physical property modelling, scale-up theory, and numerical analysis as necessary and integral components of the simulation activity. Developing, testing and applying flooding simulator (UTCHEM) to a wide variety of laboratory and reservoir problems involving tracers, polymers, polymer gels, surfactants, and alkaline agent has been continued. Improvements in both the physical-chemical and numerical aspects of UTCHEM have been made which enhance its versatility, accuracymore » and speed. Supporting experimental studies during the past year include relative permeability and trapping of microemulsion, tracer flow studies oil recovery in cores using alcohol free surfactant slugs, and microemulsion viscosity measurements. These have enabled model improvement simulator testing. Another code called PROPACK has also been developed which is used as a preprocessor for UTCHEM. Specifically, it is used to evaluate input to UTCHEM by computing and plotting key physical properties such as phase behavior interfacial tension.« less
Connecting Returned Apollo Soils and Remote Sensing: Application to the Diviner Lunar Radiometer
NASA Technical Reports Server (NTRS)
Greenhagen, B. T.; DonaldsonHanna, K. L.; Thomas, I. R.; Bowles, N. E.; Allen, Carlton C.; Pieters, C. M.; Paige, D. A.
2014-01-01
The Diviner Lunar Radiometer, onboard NASA's Lunar Reconnaissance Orbiter, has produced the first global, high resolution, thermal infrared observations of an airless body. The Moon, which is the most accessible member of this most abundant class of solar system objects, is also the only body for which we have extraterrestrial samples with known spatial context, returned Apollo samples. Here we present the results of a comprehensive study to reproduce an accurate simulated lunar environment, evaluate the most appropriate sample and measurement conditions, collect thermal infrared spectra of a representative suite of Apollo soils, and correlate them with Diviner observations of the lunar surface. It has been established previously that thermal infrared spectra measured in simulated lunar environment (SLE) are significantly altered from spectra measured under terrestrial or martian conditions. The data presented here were collected at the University of Oxford Simulated Lunar Environment Chamber (SLEC). In SLEC, we simulate the lunar environment by: (1) pumping the chamber to vacuum pressures (less than 10-4 mbar) sufficient to simulate lunar heat transport processes within the sample, (2) cooling the chamber with liquid nitrogen to simulate radiation to the cold space environment, and (3) heating the samples with heaters and lamp to set-up thermal gradients similar to those experienced in the upper hundreds of microns of the lunar surface. We then conducted a comprehensive suite of experiments using different sample preparation and heating conditions on Apollo soils 15071 (maria) and 67701 (highland) and compared the results to Diviner noontime data to select the optimal experimental conditions. This study includes thermal infrared SLE measurements of 10084 (A11 - LM), 12001 (A12 - LM), 14259 (A14 - LM), 15071 (A15 - S1), 15601 (A15 - S9a), 61141 (A16 - S1), 66031 (A16 - S6), 67701 (A16 - S11), and 70181 (A17 - LM). The Diviner dataset includes all six Apollo sites at approximately 200 m spatial resolution We find that analyses of Diviner observations of individual sampling stations and SLE measurements returned Apollo soils show good agreement, while comparisons to thermal infrared reflectance under ambient conditions do not agree well, which underscores the need for SLE measurements and validates the Diviner compositional measurement technique.
The WEPP Model Application in a Small Watershed in the Loess Plateau
Han, Fengpeng; Ren, Lulu; Zhang, Xingchang; Li, Zhanbin
2016-01-01
In the Loess Plateau, soil erosion has not only caused serious ecological and environmental problems but has also impacted downstream areas. Therefore, a model is needed to guide the comprehensive control of soil erosion. In this study, we introduced the WEPP model to simulate soil erosion both at the slope and watershed scales. Our analyses showed that: the simulated values at the slope scale were very close to the measured. However, both the runoff and soil erosion simulated values at the watershed scale were higher than the measured. At the slope scale, under different coverage, the simulated erosion was slightly higher than the measured. When the coverage is 40%, the simulated results of both runoff and erosion are the best. At the watershed scale, the actual annual runoff of the Liudaogou watershed is 83m3; sediment content is 0.097 t/m3, annual erosion sediment 8.057t and erosion intensity 0.288 t ha-1 yr-1. Both the simulated values of soil erosion and runoff are higher than the measured, especially the runoff. But the simulated erosion trend is relatively accurate after the farmland is returned to grassland. We concluded that the WEPP model can be used to establish a reasonable vegetation restoration model and guide the vegetation restoration of the Loess Plateau. PMID:26963704
Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.; ...
2016-06-09
Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less
NASA Technical Reports Server (NTRS)
Brown, S. C.; Hardy, G. H.; Hindson, W. S.
1983-01-01
As part of a comprehensive flight-test program of STOL operating systems for the terminal area, an automatic landing system was developed and evaluated for a light wing loading turboprop aircraft. The aircraft utilized an onboard advanced digital avionics system. Flight tests were conducted at a facility that included a STOL runway site with a microwave landing system. Longitudinal flight-test results were presented and compared with available (basically CTOL) criteria. These comparisons were augmented by results from a comprehensive simulation of the controlled aircraft which included representations of navigation errors that were encountered in flight and atmospheric disturbances. Acceptable performance on final approach and at touchdown was achieved by the autoland (automatic landing) system for the moderate winds and turbulence conditions encountered in flight. However, some touchdown performance goals were marginally achieved, and simulation results suggested that difficulties could be encountered in the presence of more extreme atmospheric conditions. Suggestions were made for improving performance under those more extreme conditions.
The (human) science of medical virtual learning environments
Stone, Robert J.
2011-01-01
The uptake of virtual simulation technologies in both military and civilian surgical contexts has been both slow and patchy. The failure of the virtual reality community in the 1990s and early 2000s to deliver affordable and accessible training systems stems not only from an obsessive quest to develop the ‘ultimate’ in so-called ‘immersive’ hardware solutions, from head-mounted displays to large-scale projection theatres, but also from a comprehensive lack of attention to the needs of the end users. While many still perceive the science of simulation to be defined by technological advances, such as computing power, specialized graphics hardware, advanced interactive controllers, displays and so on, the true science underpinning simulation—the science that helps to guarantee the transfer of skills from the simulated to the real—is that of human factors, a well-established discipline that focuses on the abilities and limitations of the end user when designing interactive systems, as opposed to the more commercially explicit components of technology. Based on three surgical simulation case studies, the importance of a human factors approach to the design of appropriate simulation content and interactive hardware for medical simulation is illustrated. The studies demonstrate that it is unnecessary to pursue real-world fidelity in all instances in order to achieve psychological fidelity—the degree to which the simulated tasks reproduce and foster knowledge, skills and behaviours that can be reliably transferred to real-world training applications. PMID:21149363
Training effectiveness assessment: Methodological problems and issues
NASA Technical Reports Server (NTRS)
Cross, Kenneth D.
1992-01-01
The U.S. military uses a large number of simulators to train and sustain the flying skills of helicopter pilots. Despite the enormous resources required to purchase, maintain, and use those simulators, little effort has been expended in assessing their training effectiveness. One reason for this is the lack of an evaluation methodology that yields comprehensive and valid data at a practical cost. Some of these methodological problems and issues that arise in assessing simulator training effectiveness, as well as problems with the classical transfer-of-learning paradigm were discussed.
Wear simulation of total knee prostheses using load and kinematics waveforms from stair climbing.
Abdel-Jaber, Sami; Belvedere, Claudio; Leardini, Alberto; Affatato, Saverio
2015-11-05
Knee wear simulators are meant to perform load cycles on knee implants under physiological conditions, matching exactly, if possible, those experienced at the replaced joint during daily living activities. Unfortunately, only conditions of low demanding level walking, specified in ISO-14243, are used conventionally during such tests. A recent study has provided a consistent knee kinematic and load data-set measured during stair climbing in patients implanted with a specific modern total knee prosthesis design. In the present study, wear simulation tests were performed for the first time using this data-set on the same prosthesis design. It was hypothesised that more demanding tasks would result in wear rates that differ from those observed in retrievals. Four prostheses for total knee arthroplasty were tested using a displacement-controlled knee wear simulator for two million cycles at 1.1 Hz, under kinematics and load conditions typical of stair climbing. After simulation, the corresponding damage scars on the bearings were qualified and compared with equivalent explanted prostheses. An average mass loss of 20.2±1.5 mg was found. Scanning digital microscopy revealed similar features, though the explant had a greater variety of damage modes, including a high prevalence of adhesive wear damage and burnishing in the overall articulating surface. This study confirmed that the results from wear simulation machines are strongly affected by kinematics and loads applied during simulations. Based on the present results for the full understanding of the current clinical failure of knee implants, a more comprehensive series of conditions are necessary for equivalent simulations in vitro. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chang, Hsiao-Yun Annie; Chan, Luke; Siren, Betty
2013-06-01
This is a report of a study which evaluated simulation-based learning as a teaching strategy for improving participants' ENP reading proficiency in the senior college program of students whose first language is Chinese, not English. Simulation-based learning is known to be one of most effective teaching strategies in the healthcare professional curricula, which brings a clinical setting into the classroom. However, developing English reading skills for English written nursing journals through simulation-based learning in the nursing curricula, is largely unknown. We used a quasi-experimental approach with nonequivalent control group design to collect the causal connections between intervention and outcomes. 101 students were enrolled in this study (response rate 92.6%) of these 48 students volunteered for the intervention group, and 53 students for the control group. The findings indicated that the intervention group had significantly higher mean scores in ENP reading proficiency with unknown words in the article (p=.004), vocabulary (p<.001), and comprehension (p<.001) compared to the control group. Also, the intervention students showed more improvement in their English reading, both from quantitative and qualitative findings. Simulation-based learning may have some advantages in improving the English reading ability on English written nursing journals among nursing students. However, the benefits to the students of this study is still to be determined, and further exploration is needed with well designed research and a universal method of outcome measurement. Copyright © 2012 Elsevier Ltd. All rights reserved.
Comprehensive Model of Single Particle Pulverized Coal Combustion Extended to Oxy-Coal Conditions
Holland, Troy; Fletcher, Thomas H.
2017-02-22
Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive CFD simulations are valuable tools in evaluating and deploying oxy-fuel and other carbon capture technologies either as retrofit technologies or for new construction. But, accurate predictive simulations require physically realistic submodels with low computational requirements. In particular, comprehensive char oxidation and gasification models have been developed that describe multiple reaction and diffusion processes. Our work extends a comprehensive char conversion code (CCK), which treats surface oxidation and gasification reactions as well as processes such as film diffusion, pore diffusion, ash encapsulation, and annealing. In this work several submodels inmore » the CCK code were updated with more realistic physics or otherwise extended to function in oxy-coal conditions. Improved submodels include the annealing model, the swelling model, the mode of burning parameter, and the kinetic model, as well as the addition of the chemical percolation devolatilization (CPD) model. We compare our results of the char combustion model to oxy-coal data, and further compared to parallel data sets near conventional conditions. A potential method to apply the detailed code in CFD work is given.« less
Comprehensive Model of Single Particle Pulverized Coal Combustion Extended to Oxy-Coal Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, Troy; Fletcher, Thomas H.
Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive CFD simulations are valuable tools in evaluating and deploying oxy-fuel and other carbon capture technologies either as retrofit technologies or for new construction. But, accurate predictive simulations require physically realistic submodels with low computational requirements. In particular, comprehensive char oxidation and gasification models have been developed that describe multiple reaction and diffusion processes. Our work extends a comprehensive char conversion code (CCK), which treats surface oxidation and gasification reactions as well as processes such as film diffusion, pore diffusion, ash encapsulation, and annealing. In this work several submodels inmore » the CCK code were updated with more realistic physics or otherwise extended to function in oxy-coal conditions. Improved submodels include the annealing model, the swelling model, the mode of burning parameter, and the kinetic model, as well as the addition of the chemical percolation devolatilization (CPD) model. We compare our results of the char combustion model to oxy-coal data, and further compared to parallel data sets near conventional conditions. A potential method to apply the detailed code in CFD work is given.« less
NASA Technical Reports Server (NTRS)
Guo, Li-Wen; Cardullo, Frank M.; Telban, Robert J.; Houck, Jacob A.; Kelly, Lon C.
2003-01-01
A study was conducted employing the Visual Motion Simulator (VMS) at the NASA Langley Research Center, Hampton, Virginia. This study compared two motion cueing algorithms, the NASA adaptive algorithm and a new optimal control based algorithm. Also, the study included the effects of transport delays and the compensation thereof. The delay compensation algorithm employed is one developed by Richard McFarland at NASA Ames Research Center. This paper reports on the analyses of the results of analyzing the experimental data collected from preliminary simulation tests. This series of tests was conducted to evaluate the protocols and the methodology of data analysis in preparation for more comprehensive tests which will be conducted during the spring of 2003. Therefore only three pilots were used. Nevertheless some useful results were obtained. The experimental conditions involved three maneuvers; a straight-in approach with a rotating wind vector, an offset approach with turbulence and gust, and a takeoff with and without an engine failure shortly after liftoff. For each of the maneuvers the two motion conditions were combined with four delay conditions (0, 50, 100 & 200ms), with and without compensation.
Modelling and scale-up of chemical flooding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.A.; Lake, L.W.; Sepehrnoori, K.
1990-03-01
The objective of this research is to develop, validate, and apply a comprehensive chemical flooding simulator for chemical recovery processes involving surfactants, polymers, and alkaline chemicals in various combinations. This integrated program includes components of laboratory experiments, physical property modelling, scale-up theory, and numerical analysis as necessary and integral components of the simulation activity. We have continued to develop, test, and apply our chemical flooding simulator (UTCHEM) to a wide variety of laboratory and reservoir problems involving tracers, polymers, polymer gels, surfactants, and alkaline agents. Part I is an update on the Application of Higher-Order Methods in Chemical Flooding Simulation.more » This update focuses on the comparison of grid orientation effects for four different numerical methods implemented in UTCHEM. Part II is on Simulation Design Studies and is a continuation of Saad's Big Muddy surfactant pilot simulation study reported last year. Part III reports on the Simulation of Gravity Effects under conditions similar to those of some of the oil reservoirs in the North Sea. Part IV is on Determining Oil Saturation from Interwell Tracers UTCHEM is used for large-scale interwell tracer tests. A systematic procedure for estimating oil saturation from interwell tracer data is developed and a specific example based on the actual field data provided by Sun E P Co. is given. Part V reports on the Application of Vectorization and Microtasking for Reservoir Simulation. Part VI reports on Alkaline Simulation. The alkaline/surfactant/polymer flood compositional simulator (UTCHEM) reported last year is further extended to include reactions involving chemical species containing magnesium, aluminium and silicon as constituent elements. Part VII reports on permeability and trapping of microemulsion.« less
Sun, Peng; Zhou, Haoyin; Ha, Seongmin; Hartaigh, Bríain ó; Truong, Quynh A.; Min, James K.
2016-01-01
In clinical cardiology, both anatomy and physiology are needed to diagnose cardiac pathologies. CT imaging and computer simulations provide valuable and complementary data for this purpose. However, it remains challenging to gain useful information from the large amount of high-dimensional diverse data. The current tools are not adequately integrated to visualize anatomic and physiologic data from a complete yet focused perspective. We introduce a new computer-aided diagnosis framework, which allows for comprehensive modeling and visualization of cardiac anatomy and physiology from CT imaging data and computer simulations, with a primary focus on ischemic heart disease. The following visual information is presented: (1) Anatomy from CT imaging: geometric modeling and visualization of cardiac anatomy, including four heart chambers, left and right ventricular outflow tracts, and coronary arteries; (2) Function from CT imaging: motion modeling, strain calculation, and visualization of four heart chambers; (3) Physiology from CT imaging: quantification and visualization of myocardial perfusion and contextual integration with coronary artery anatomy; (4) Physiology from computer simulation: computation and visualization of hemodynamics (e.g., coronary blood velocity, pressure, shear stress, and fluid forces on the vessel wall). Substantially, feedback from cardiologists have confirmed the practical utility of integrating these features for the purpose of computer-aided diagnosis of ischemic heart disease. PMID:26863663
A longitudinal medical Spanish program at one US medical school.
Reuland, Daniel S; Frasier, Pamela Y; Slatt, Lisa M; Alemán, Marco A
2008-07-01
Policymakers have recommended recruiting or training (or both) more US physicians who can provide care in Spanish. Few longitudinal medical Spanish programs have been described and evaluated. This study aims to describe development and evaluation of the preclinical phase of a 4-y program designed to graduate physicians who can provide language-concordant care in Spanish. Study was done in one public medical school in southeastern USA. The program targeted intermediate/advanced Spanish speakers. Standardized fluency assessments were used to determine eligibility and evaluate participants' progress. Curriculum included didactic coursework, simulated patients, socio-cultural seminars, clinical skills rotations at sites serving Latinos, service-learning, and international immersion. For the first two cohorts (n = 45) qualitative evaluation identified program improvement opportunities and found participants believed the program helped them maintain their Spanish skills. Mean interim (2-y) speaking proficiency scores were unchanged from baseline: 9.0 versus 8.7 at baseline on 12-point scale (p = 0.15). Mean interim listening comprehension scores (second cohort only, n = 25) increased from a baseline of 77 to 86% (p = 0.003). Proportions "passing" the listening comprehension test increased from 72 to 92% (p = 0.06). We describe development of a longitudinal Spanish program within a medical school. Participation was associated with improved Spanish listening comprehension and no change in speaking proficiency.
1990-04-01
across the coastal plain to the surrounding mountains . Historically, the lowlands were frequently inundated by tidal flows through a direct natural...approximately in the center of the Los Angeles coastal plain. This low plain is bordered on the north by the eastern Santa Monica Mountains and the Repetto...Hills, on the east by the Puente Hills and the Santa Ana Mountains , on the southeast by the San Joaquin Hills, and on the south and west by the
Earthquake Shaking - Finding the "Hot Spots"
Field, Edward; Jones, Lucile; Jordan, Tom; Benthien, Mark; Wald, Lisa
2001-01-01
A new Southern California Earthquake Center study has quantified how local geologic conditions affect the shaking experienced in an earthquake. The important geologic factors at a site are softness of the rock or soil near the surface and thickness of the sediments above hard bedrock. Even when these 'site effects' are taken into account, however, each earthquake exhibits unique 'hotspots' of anomalously strong shaking. Better predictions of strong ground shaking will therefore require additional geologic data and more comprehensive computer simulations of individual earthquakes.
Learning prosthetic vision: a virtual-reality study.
Chen, Spencer C; Hallum, Luke E; Lovell, Nigel H; Suaning, Gregg J
2005-09-01
Acceptance of prosthetic vision will be heavily dependent on the ability of recipients to form useful information from such vision. Training strategies to accelerate learning and maximize visual comprehension would need to be designed in the light of the factors affecting human learning under prosthetic vision. Some of these potential factors were examined in a visual acuity study using the Landolt C optotype under virtual-reality simulation of prosthetic vision. Fifteen normally sighted subjects were tested for 10-20 sessions. Potential learning factors were tested at p < 0.05 with regression models. Learning was most evident across-sessions, though 17% of sessions did express significant within-session trends. Learning was highly concentrated toward a critical range of optotype sizes, and subjects were less capable in identifying the closed optotype (a Landolt C with no gap, forming a closed annulus). Training for implant recipients should target these critical sizes and the closed optotype to extend the limit of visual comprehension. Although there was no evidence that image processing affected overall learning, subjects showed varying personal preferences.
Educating the delivery of bad news in medicine: Preceptorship versus simulation
Jacques, Andrew P; Adkins, Eric J; Knepel, Sheri; Boulger, Creagh; Miller, Jessica; Bahner, David P
2011-01-01
Simulation experiences have begun to replace traditional education models of teaching the skill of bad news delivery in medical education. The tiered apprenticeship model of medical education emphasizes experiential learning. Studies have described a lack of support in bad news delivery and inadequacy of training in this important clinical skill as well as poor familial comprehension and dissatisfaction on the part of physicians in training regarding the resident delivery of bad news. Many residency training programs lacked a formalized training curriculum in the delivery of bad news. Simulation teaching experiences may address these noted clinical deficits in the delivery of bad news to patients and their families. Unique experiences can be role-played with this educational technique to simulate perceived learner deficits. A variety of scenarios can be constructed within the framework of the simulation training method to address specific cultural and religious responses to bad news in the medical setting. Even potentially explosive and violent scenarios can be role-played in order to prepare physicians for these rare and difficult situations. While simulation experiences cannot supplant the model of positive, real-life clinical teaching in the delivery of bad news, simulation of clinical scenarios with scripting, self-reflection, and peer-to-peer feedback can be powerful educational tools. Simulation training can help to develop the skills needed to effectively and empathetically deliver bad news to patients and families in medical practice. PMID:22229135
Educating the delivery of bad news in medicine: Preceptorship versus simulation.
Jacques, Andrew P; Adkins, Eric J; Knepel, Sheri; Boulger, Creagh; Miller, Jessica; Bahner, David P
2011-07-01
Simulation experiences have begun to replace traditional education models of teaching the skill of bad news delivery in medical education. The tiered apprenticeship model of medical education emphasizes experiential learning. Studies have described a lack of support in bad news delivery and inadequacy of training in this important clinical skill as well as poor familial comprehension and dissatisfaction on the part of physicians in training regarding the resident delivery of bad news. Many residency training programs lacked a formalized training curriculum in the delivery of bad news. Simulation teaching experiences may address these noted clinical deficits in the delivery of bad news to patients and their families. Unique experiences can be role-played with this educational technique to simulate perceived learner deficits. A variety of scenarios can be constructed within the framework of the simulation training method to address specific cultural and religious responses to bad news in the medical setting. Even potentially explosive and violent scenarios can be role-played in order to prepare physicians for these rare and difficult situations. While simulation experiences cannot supplant the model of positive, real-life clinical teaching in the delivery of bad news, simulation of clinical scenarios with scripting, self-reflection, and peer-to-peer feedback can be powerful educational tools. Simulation training can help to develop the skills needed to effectively and empathetically deliver bad news to patients and families in medical practice.
Competency-Based Training and Simulation: Making a "Valid" Argument.
Noureldin, Yasser A; Lee, Jason Y; McDougall, Elspeth M; Sweet, Robert M
2018-02-01
The use of simulation as an assessment tool is much more controversial than is its utility as an educational tool. However, without valid simulation-based assessment tools, the ability to objectively assess technical skill competencies in a competency-based medical education framework will remain challenging. The current literature in urologic simulation-based training and assessment uses a definition and framework of validity that is now outdated. This is probably due to the absence of awareness rather than an absence of comprehension. The following review article provides the urologic community an updated taxonomy on validity theory as it relates to simulation-based training and assessments and translates our simulation literature to date into this framework. While the old taxonomy considered validity as distinct subcategories and focused on the simulator itself, the modern taxonomy, for which we translate the literature evidence, considers validity as a unitary construct with a focus on interpretation of simulator data/scores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.; Dickens, T.G.; Dickman, P.T.
1997-08-01
Based on regulatory requirements for Type A and B radioactive material packaging, a Testing Program was developed to evaluate the effects of mixed wastes on plastic materials which could be used as liners and seals in transportation containers. The plastics evaluated in this program were butadiene-acrylonitrile copolymer (Nitrile rubber), cross-linked polyethylene, epichlorohydrin, ethylene-propylene rubber (EPDM), fluorocarbons, high-density polyethylene (HDPE), butyl rubber, polypropylene, polytetrafluoroethylene, and styrene-butadiene rubber (SBR). These plastics were first screened in four simulant mixed wastes. The liner materials were screened using specific gravity measurements and seal materials by vapor transport rate (VTR) measurements. For the screening of linermore » materials, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals. The tests also indicated that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture waste, none of the seal materials met the screening criteria. Those materials which passed the screening tests were subjected to further comprehensive testing in each of the simulant wastes. The materials were exposed to four different radiation doses followed by exposure to a simulant mixed waste at three temperatures and four different exposure times (7, 14, 28, 180 days). Materials were tested by measuring specific gravity, dimensional, hardness, stress cracking, VTR, compression set, and tensile properties. The second phase of this Testing Program involving the comprehensive testing of plastic liner has been completed and for seal materials is currently in progress.« less
A comprehensive alpha-heating model for inertial confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopherson, A. R.; Betti, R.; Bose, A.
In this paper, a comprehensive model is developed to study alpha-heating in inertially confined plasmas. It describes the time evolution of a central low-density hot spot confined by a compressible shell, heated by fusion alphas, and cooled by radiation and thermal losses. The model includes the deceleration, stagnation, and burn phases of inertial confinement fusion implosions, and is valid for sub-ignited targets with ≤10× amplification of the fusion yield from alpha-heating. The results of radiation-hydrodynamic simulations are used to derive realistic initial conditions and dimensionless parameters for the model. It is found that most of the alpha energy (~90%) producedmore » before bang time is deposited within the hot spot mass, while a small fraction (~10%) drives mass ablation off the inner shell surface and its energy is recycled back into the hot spot. Of the bremsstrahlung radiation emission, ~40% is deposited in the hot spot, ~40% is recycled back in the hot spot by ablation off the shell, and ~20% leaves the hot spot. We show here that the hot spot, shocked shell, and outer shell trajectories from this analytical model are in good agreement with simulations. Finally, a detailed discussion of the effect of alpha-heating on the hydrodynamics is also presented.« less
Selecting the optimum plot size for a California design-based stream and wetland mapping program.
Lackey, Leila G; Stein, Eric D
2014-04-01
Accurate estimates of the extent and distribution of wetlands and streams are the foundation of wetland monitoring, management, restoration, and regulatory programs. Traditionally, these estimates have relied on comprehensive mapping. However, this approach is prohibitively resource-intensive over large areas, making it both impractical and statistically unreliable. Probabilistic (design-based) approaches to evaluating status and trends provide a more cost-effective alternative because, compared with comprehensive mapping, overall extent is inferred from mapping a statistically representative, randomly selected subset of the target area. In this type of design, the size of sample plots has a significant impact on program costs and on statistical precision and accuracy; however, no consensus exists on the appropriate plot size for remote monitoring of stream and wetland extent. This study utilized simulated sampling to assess the performance of four plot sizes (1, 4, 9, and 16 km(2)) for three geographic regions of California. Simulation results showed smaller plot sizes (1 and 4 km(2)) were most efficient for achieving desired levels of statistical accuracy and precision. However, larger plot sizes were more likely to contain rare and spatially limited wetland subtypes. Balancing these considerations led to selection of 4 km(2) for the California status and trends program.
A comprehensive alpha-heating model for inertial confinement fusion
NASA Astrophysics Data System (ADS)
Christopherson, A. R.; Betti, R.; Bose, A.; Howard, J.; Woo, K. M.; Campbell, E. M.; Sanz, J.; Spears, B. K.
2018-01-01
A comprehensive model is developed to study alpha-heating in inertially confined plasmas. It describes the time evolution of a central low-density hot spot confined by a compressible shell, heated by fusion alphas, and cooled by radiation and thermal losses. The model includes the deceleration, stagnation, and burn phases of inertial confinement fusion implosions, and is valid for sub-ignited targets with ≤10 × amplification of the fusion yield from alpha-heating. The results of radiation-hydrodynamic simulations are used to derive realistic initial conditions and dimensionless parameters for the model. It is found that most of the alpha energy (˜90%) produced before bang time is deposited within the hot spot mass, while a small fraction (˜10%) drives mass ablation off the inner shell surface and its energy is recycled back into the hot spot. Of the bremsstrahlung radiation emission, ˜40% is deposited in the hot spot, ˜40% is recycled back in the hot spot by ablation off the shell, and ˜20% leaves the hot spot. We show here that the hot spot, shocked shell, and outer shell trajectories from this analytical model are in good agreement with simulations. A detailed discussion of the effect of alpha-heating on the hydrodynamics is also presented.
Modelling the role of forests on water provision services: a hydro-economic valuation approach
NASA Astrophysics Data System (ADS)
Beguería, S.; Campos, P.
2015-12-01
Hydro-economic models that allow integrating the ecological, hydrological, infrastructure, economic and social aspects into a coherent, scientifically- informed framework constitute preferred tools for supporting decision making in the context of integrated water resources management. We present a case study of water regulation and provision services of forests in the Andalusia region of Spain. Our model computes the physical water flows and conducts an economic environmental income and asset valuation of forest surface and underground water yield. Based on available hydrologic and economic data, we develop a comprehensive water account for all the forest lands at the regional scale. This forest water environmental valuation is integrated within a much larger project aiming at providing a robust and easily replicable accounting tool to evaluate yearly the total income and capital of forests, encompassing all measurable sources of private and public incomes (timber and cork production, auto-consumption, recreational activities, biodiversity conservation, carbon sequestration, water production, etc.). We also force our simulation with future socio-economic scenarios to quantify the physical and economic efects of expected trends or simulated public and private policies on future water resources. Only a comprehensive integrated tool may serve as a basis for the development of integrated policies, such as those internationally agreed and recommended for the management of water resources.
A comprehensive alpha-heating model for inertial confinement fusion
Christopherson, A. R.; Betti, R.; Bose, A.; ...
2018-01-08
In this paper, a comprehensive model is developed to study alpha-heating in inertially confined plasmas. It describes the time evolution of a central low-density hot spot confined by a compressible shell, heated by fusion alphas, and cooled by radiation and thermal losses. The model includes the deceleration, stagnation, and burn phases of inertial confinement fusion implosions, and is valid for sub-ignited targets with ≤10× amplification of the fusion yield from alpha-heating. The results of radiation-hydrodynamic simulations are used to derive realistic initial conditions and dimensionless parameters for the model. It is found that most of the alpha energy (~90%) producedmore » before bang time is deposited within the hot spot mass, while a small fraction (~10%) drives mass ablation off the inner shell surface and its energy is recycled back into the hot spot. Of the bremsstrahlung radiation emission, ~40% is deposited in the hot spot, ~40% is recycled back in the hot spot by ablation off the shell, and ~20% leaves the hot spot. We show here that the hot spot, shocked shell, and outer shell trajectories from this analytical model are in good agreement with simulations. Finally, a detailed discussion of the effect of alpha-heating on the hydrodynamics is also presented.« less
Open-source framework for power system transmission and distribution dynamics co-simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Renke; Fan, Rui; Daily, Jeff
The promise of the smart grid entails more interactions between the transmission and distribution networks, and there is an immediate need for tools to provide the comprehensive modelling and simulation required to integrate operations at both transmission and distribution levels. Existing electromagnetic transient simulators can perform simulations with integration of transmission and distribution systems, but the computational burden is high for large-scale system analysis. For transient stability analysis, currently there are only separate tools for simulating transient dynamics of the transmission and distribution systems. In this paper, we introduce an open source co-simulation framework “Framework for Network Co-Simulation” (FNCS), togethermore » with the decoupled simulation approach that links existing transmission and distribution dynamic simulators through FNCS. FNCS is a middleware interface and framework that manages the interaction and synchronization of the transmission and distribution simulators. Preliminary testing results show the validity and capability of the proposed open-source co-simulation framework and the decoupled co-simulation methodology.« less
New Insights in Tropospheric Ozone and its Variability
NASA Technical Reports Server (NTRS)
Oman, Luke D.; Douglass, Anne R.; Ziemke, Jerry R.; Rodriquez, Jose M.
2011-01-01
We have produced time-slice simulations using the Goddard Earth Observing System Version 5 (GEOS-5) coupled to a comprehensive stratospheric and tropospheric chemical mechanism. These simulations are forced with observed sea surface temperatures over the past 25 years and use constant specified surface emissions, thereby providing a measure of the dynamically controlled ozone response. We examine the model performance in simulating tropospheric ozone and its variability. Here we show targeted comparisons results from our simulations with a multi-decadal tropical tropospheric column ozone dataset obtained from satellite observations of total column ozone. We use SHADOZ ozonesondes to gain insight into the observed vertical response and compare with the simulated vertical structure. This work includes but is not limited to ENSO related variability.
Comprehensive risk assessment method of catastrophic accident based on complex network properties
NASA Astrophysics Data System (ADS)
Cui, Zhen; Pang, Jun; Shen, Xiaohong
2017-09-01
On the macro level, the structural properties of the network and the electrical characteristics of the micro components determine the risk of cascading failures. And the cascading failures, as a process with dynamic development, not only the direct risk but also potential risk should be considered. In this paper, comprehensively considered the direct risk and potential risk of failures based on uncertain risk analysis theory and connection number theory, quantified uncertain correlation by the node degree and node clustering coefficient, then established a comprehensive risk indicator of failure. The proposed method has been proved by simulation on the actual power grid. Modeling a network according to the actual power grid, and verified the rationality of the proposed method.
NASA Technical Reports Server (NTRS)
Nelson, D. P.
1981-01-01
Tabulated data from wind tunnel tests conducted to evaluate the aerodynamic performance of an advanced coannular exhaust nozzle for a future supersonic propulsion system are presented. Tests were conducted with two test configurations: (1) a short flap mechanism for fan stream control with an isentropic contoured flow splitter, and (2) an iris fan nozzle with a conical flow splitter. Both designs feature a translating primary plug and an auxiliary inlet ejector. Tests were conducted at takeoff and simulated cruise conditions. Data were acquired at Mach numbers of 0, 0.36, 0.9, and 2.0 for a wide range of nozzle operating conditions. At simulated supersonic cruise, both configurations demonstrated good performance, comparable to levels assumed in earlier advanced supersonic propulsion studies. However, at subsonic cruise, both configurations exhibited performance that was 6 to 7.5 percent less than the study assumptions. At takeoff conditions, the iris configuration performance approached the assumed levels, while the short flap design was 4 to 6 percent less. Data are provided through test run 25.
Salipur, Zdravko; Bertocci, Gina
2010-01-01
It has been shown that ANSI WC19 transit wheelchairs that are crashworthy in frontal impact exhibit catastrophic failures in rear impact and may not be able to provide stable seating support and thus occupant protection for the wheelchair occupant. Thus far only limited sled test and computer simulation data have been available to study rear impact wheelchair safety. Computer modeling can be used as an economic and comprehensive tool to gain critical knowledge regarding wheelchair integrity and occupant safety. This study describes the development and validation of a computer model simulating an adult wheelchair-seated occupant subjected to a rear impact event. The model was developed in MADYMO and validated rigorously using the results of three similar sled tests conducted to specifications provided in the draft ISO/TC 173 standard. Outcomes from the model can provide critical wheelchair loading information to wheelchair and tiedown manufacturers, resulting in safer wheelchair designs for rear impact conditions. (c) 2009 IPEM. Published by Elsevier Ltd. All rights reserved.
Teaching Business Chinese Online.
ERIC Educational Resources Information Center
Zhang, Hang
2002-01-01
Discusses a comprehensive approach to teaching business Chinese online that is beng developed in the language learning laboratory at the University of Illinois. The courseware consists of two complementary parts: a business Chinese workbook and a business Chinese simulation. (Author/VWL)
DOT National Transportation Integrated Search
2009-01-01
Metropolitan planning agencies face increasingly complex issues in modeling interactions between the built environment and multimodal transportation systems. Although great strides have been made in simulating land use, travel demand, and traffic flo...
Program For Analysis Of Metal-Matrix Composites
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Mital, S. K.
1994-01-01
METCAN (METal matrix Composite ANalyzer) is computer program used to simulate computationally nonlinear behavior of high-temperature metal-matrix composite structural components in specific applications, providing comprehensive analyses of thermal and mechanical performances. Written in FORTRAN 77.
ENHANCING HSPF MODEL CHANNEL HYDRAULIC REPRESENTATION
The Hydrological Simulation Program - FORTRAN (HSPF) is a comprehensive watershed model, which employs depth-area-volume-flow relationships known as hydraulic function table (FTABLE) to represent stream channel cross-sections and reservoirs. An accurate FTABLE determination for a...
NASA Astrophysics Data System (ADS)
James, C. M.; Gildfind, D. E.; Lewis, S. W.; Morgan, R. G.; Zander, F.
2018-03-01
Expansion tubes are an important type of test facility for the study of planetary entry flow-fields, being the only type of impulse facility capable of simulating the aerothermodynamics of superorbital planetary entry conditions from 10 to 20 km/s. However, the complex flow processes involved in expansion tube operation make it difficult to fully characterise flow conditions, with two-dimensional full facility computational fluid dynamics simulations often requiring tens or hundreds of thousands of computational hours to complete. In an attempt to simplify this problem and provide a rapid flow condition prediction tool, this paper presents a validated and comprehensive analytical framework for the simulation of an expansion tube facility. It identifies central flow processes and models them from state to state through the facility using established compressible and isentropic flow relations, and equilibrium and frozen chemistry. How the model simulates each section of an expansion tube is discussed, as well as how the model can be used to simulate situations where flow conditions diverge from ideal theory. The model is then validated against experimental data from the X2 expansion tube at the University of Queensland.
Evans, Leigh V.; Crimmins, Ashley C.; Bonz, James W.; Gusberg, Richard J.; Tsyrulnik, Alina; Dziura, James D.; Dodge, Kelly L.
2014-01-01
The purpose of this study was to determine if third-year medical students participating in a mandatory 12-week simulation course perceived improvement in decision-making, communication, and teamwork skills. Students participated in or observed 24 acute emergency scenarios. At 4-week intervals, students completed 0-10 point Likert scale questionnaires evaluating the curriculum and role of team leader. Linear contrasts were used to examine changes in outcomes. P-values were Bonferroni-corrected for multiple pairwise comparisons. Student evaluations (n = 96) demonstrated increases from week 4 to 12 in educational value (p = 0.006), decision-making (p < 0.001), communication (p = 0.02), teamwork (p = 0.01), confidence in management (p < 0.001), and translation to clinical experience (p < 0.001). Regarding the team leader role, students reported a decrease in stress (p = 0.001) and increase in ability to facilitate team function (p < 0.001) and awareness of team building (p = <0.001). Ratings demonstrate a positive impact of simulation on both clinical management skills and team leadership skills. A simulation curriculum can enhance the ability to manage acute clinical problems and translates well to the clinical experience. These positive perceptions increase as the exposure to simulation increases. PMID:25506290
NASA Technical Reports Server (NTRS)
Boriakoff, Valentin; Chen, Wei
1990-01-01
The NASA-Cornell Univ.-Worcester Polytechnic Institute Fast Fourier Transform (FFT) chip based on the architecture of the systolic FFT computation as presented by Boriakoff is implemented into an operating device design. The kernel of the system, a systolic inner product floating point processor, was designed to be assembled into a systolic network that would take incoming data streams in pipeline fashion and provide an FFT output at the same rate, word by word. It was thoroughly simulated for proper operation, and it has passed a comprehensive set of tests showing no operational errors. The black box specifications of the chip, which conform to the initial requirements of the design as specified by NASA, are given. The five subcells are described and their high level function description, logic diagrams, and simulation results are presented. Some modification of the Read Only Memory (ROM) design were made, since some errors were found in it. Because a four stage pipeline structure was used, simulating such a structure is more difficult than an ordinary structure. Simulation methods are discussed. Chip signal protocols and chip pinout are explained.
LIPID11: A Modular Framework for Lipid Simulations using Amber
Skjevik, Åge A.; Madej, Benjamin D.; Walker, Ross C.; eigen, Knut T
2013-01-01
Accurate simulation of complex lipid bilayers has long been a goal in condensed phase molecular dynamics (MD). Structure and function of membrane-bound proteins are highly dependent on the lipid bilayer environment and are challenging to study through experimental methods. Within Amber, there has been limited focus on lipid simulations, although some success has been seen with the use of the General Amber Force Field (GAFF). However, to date there are no dedicated Amber lipid force fields. In this paper we describe a new charge derivation strategy for lipids consistent with the Amber RESP approach, and a new atom and residue naming and type convention. In the first instance, we have combined this approach with GAFF parameters. The result is LIPID11, a flexible, modular framework for the simulation of lipids that is fully compatible with the existing Amber force fields. The charge derivation procedure, capping strategy and nomenclature for LIPID11, along with preliminary simulation results and a discussion of the planned long-term parameter development are presented here. Our findings suggest that Lipid11 is a modular framework feasible for phospholipids and a flexible starting point for the development of a comprehensive, Amber-compatible lipid force field. PMID:22916730
NASA Astrophysics Data System (ADS)
López, Víctor; Pintó, Roser
2017-07-01
Computer simulations are often considered effective educational tools, since their visual and communicative power enable students to better understand physical systems and phenomena. However, previous studies have found that when students read visual representations some reading difficulties can arise, especially when these are complex or dynamic representations. We have analyzed how secondary-school students read the visual representations displayed in two PhET simulations (one addressing the friction-heating at microscopic level, and the other addressing the electromagnetic induction), and different typologies of reading difficulties have been identified: when reading the compositional structure of the representation, when giving appropriate relevance and semantic meaning to each visual element, and also when dealing with multiple representations and dynamic information. All students experienced at least one of these difficulties, and very similar difficulties appeared in the two groups of students, despite the different scientific content of the simulations. In conclusion, visualisation does not imply a full comprehension of the content of scientific simulations per se, and an effective reading process requires a set of reading skills, previous knowledge, attention, and external supports. Science teachers should bear in mind these issues in order to help students read images to take benefit of their educational potential.
Response of ethylene propylene diene monomer rubber (EPDM) to simulant Hanford tank waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
NIGREY,PAUL J.
2000-02-01
This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the author performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposuresmore » to the waste simulant at 18, 50, and 60 C. Ethylene propylene diene monomer (EPDM) rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. The author has determined that EPDM rubber has excellent resistance to radiation, this simulant, and a combination of these factors. These results suggest that EPDM is an excellent seal material to withstand aqueous mixed wastes having similar composition to the one used in this study.« less
A comprehensive overview of the applications of artificial life.
Kim, Kyung-Joong; Cho, Sung-Bae
2006-01-01
We review the applications of artificial life (ALife), the creation of synthetic life on computers to study, simulate, and understand living systems. The definition and features of ALife are shown by application studies. ALife application fields treated include robot control, robot manufacturing, practical robots, computer graphics, natural phenomenon modeling, entertainment, games, music, economics, Internet, information processing, industrial design, simulation software, electronics, security, data mining, and telecommunications. In order to show the status of ALife application research, this review primarily features a survey of about 180 ALife application articles rather than a selected representation of a few articles. Evolutionary computation is the most popular method for designing such applications, but recently swarm intelligence, artificial immune network, and agent-based modeling have also produced results. Applications were initially restricted to the robotics and computer graphics, but presently, many different applications in engineering areas are of interest.
Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery.
Sakamoto, Takuto
2016-01-01
Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level.
Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery
Sakamoto, Takuto
2016-01-01
Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level. PMID:26963526
NASA Astrophysics Data System (ADS)
Kiefer, Johannes; Wagenfeld, Sabine; Kerlé, Daniela
2018-01-01
Alkyl alcohols are widely used in academia, industry, and our everyday lives, e.g. as cleaning agents and solvents. Vibrational spectroscopy is commonly used to identify and quantify these compounds, but also to study their structure and behavior. However, a comprehensive investigation and comparison of all normal alkanols that are liquid at room temperature has not been performed, surprisingly. This study aims at bridging this gap with a combined experimental and computational effort. For this purpose, the alkyl alcohols from methanol to undecan-1-ol have been analyzed using infrared and Raman spectroscopy. A detailed assignment of the individual peaks is presented and the influence of the alkyl chain length on the hydrogen bonding network is discussed. A 2D vibrational mapping allows a straightforward visualization of the effects. The conclusions drawn from the experimental data are backed up with results from Monte Carlo simulations using the simulation package Cassandra.
A study of waste and delivery valve design modification to the pump performance
NASA Astrophysics Data System (ADS)
Harith, M. N.; Bakar, R. A.; Ramasamy, D.; Kardigama, K.; Quanjin, Ma
2018-04-01
This paper objective is to share design revolution of waste and delivery valve that contribute to the overall pump performance. In this paper, 3 new designs of waste and delivery valve pump are presented with comprehensive internal flow analysis using computational fluid dynamics (CFD) simulation over 4 cases that have been deeply study for one of the design chosen. 4 cases involving opening and closing both valve or either one. 0.265m height size of customized waste valve with an opening limiter and spring was used to demonstrate cyclic closing and opening valve operation extended up to 0.164m gap. Based on result, this characteristics contribute to 10-20% waste water reduction and enhancement of flow rate height up to 80m. Apart from that this paper also share some of pressure (dynamic, total, static), velocity (x, y, z axis) simulation including the vector flow were under different flow cases.
NASA Astrophysics Data System (ADS)
Le Floch, Francois; Harris, Wesley L.
2009-11-01
A novel methodology has been developed to address sickle cell disease, based on highly descriptive mathematical models for blood flow in the capillaries. Our investigations focus on the coupling between oxygen delivery and red blood cell dynamics, which is crucial to understanding sickle cell crises and is unique to this blood disease. The main part of our work is an extensive study of blood dynamics through simulations of red cells deforming within the capillary vessels, and relies on the use of a large mathematical system of equations describing oxygen transfer, blood plasma dynamics and red cell membrane mechanics. This model is expected to lead to the development of new research strategies for sickle cell disease. Our simulation model could be used not only to assess current researched remedies, but also to spur innovative research initiatives, based on our study of the physical properties coupled in sickle cell disease.
Study of gamma detection capabilities of the REWARD mobile spectroscopic system
NASA Astrophysics Data System (ADS)
Balbuena, J. P.; Baptista, M.; Barros, S.; Dambacher, M.; Disch, C.; Fiederle, M.; Kuehn, S.; Parzefall, U.
2017-07-01
REWARD is a novel mobile spectroscopic radiation detector system for Homeland Security applications. The system integrates gamma and neutron detection equipped with wireless communication. A comprehensive simulation study on its gamma detection capabilities in different radioactive scenarios is presented in this work. The gamma detection unit consists of a precise energy resolution system based on two stacked (Cd,Zn)Te sensors working in coincidence sum mode. The volume of each of these CZT sensors is 1 cm3. The investigated energy windows used to determine the detection capabilities of the detector correspond to the gamma emissions from 137Cs and 60Co radioactive sources (662 keV and 1173/1333 keV respectively). Monte Carlo and Technology Computer-Aided Design (TCAD) simulations are combined to determine its sensing capabilities for different radiation sources and estimate the limits of detection of the sensing unit as a function of source activity for several shielding materials.
Improved Force Fields for Peptide Nucleic Acids with Optimized Backbone Torsion Parameters.
Jasiński, Maciej; Feig, Michael; Trylska, Joanna
2018-06-06
Peptide nucleic acids are promising nucleic acid analogs for antisense therapies as they can form stable duplex and triplex structures with DNA and RNA. Computational studies of PNA-containing duplexes and triplexes are an important component for guiding their design, yet existing force fields have not been well validated and parametrized with modern computational capabilities. We present updated CHARMM and Amber force fields for PNA that greatly improve the stability of simulated PNA-containing duplexes and triplexes in comparison with experimental structures and allow such systems to be studied on microsecond time scales. The force field modifications focus on reparametrized PNA backbone torsion angles to match high-level quantum mechanics reference energies for a model compound. The microsecond simulations of PNA-PNA, PNA-DNA, PNA-RNA, and PNA-DNA-PNA complexes also allowed a comprehensive analysis of hydration and ion interactions with such systems.
Framework for modeling urban restoration resilience time in the aftermath of an extreme event
Ramachandran, Varun; Long, Suzanna K.; Shoberg, Thomas G.; Corns, Steven; Carlo, Héctor
2015-01-01
The impacts of extreme events continue long after the emergency response has terminated. Effective reconstruction of supply-chain strategic infrastructure (SCSI) elements is essential for postevent recovery and the reconnectivity of a region with the outside. This study uses an interdisciplinary approach to develop a comprehensive framework to model resilience time. The framework is tested by comparing resilience time results for a simulated EF-5 tornado with ground truth data from the tornado that devastated Joplin, Missouri, on May 22, 2011. Data for the simulated tornado were derived for Overland Park, Johnson County, Kansas, in the greater Kansas City, Missouri, area. Given the simulated tornado, a combinatorial graph considering the damages in terms of interconnectivity between different SCSI elements is derived. Reconstruction in the aftermath of the simulated tornado is optimized using the proposed framework to promote a rapid recovery of the SCSI. This research shows promising results when compared with the independent quantifiable data obtained from Joplin, Missouri, returning a resilience time of 22 days compared with 25 days reported by city and state officials.
Howard, Mary F; Poeppel, David
2010-11-01
Speech stimuli give rise to neural activity in the listener that can be observed as waveforms using magnetoencephalography. Although waveforms vary greatly from trial to trial due to activity unrelated to the stimulus, it has been demonstrated that spoken sentences can be discriminated based on theta-band (3-7 Hz) phase patterns in single-trial response waveforms. Furthermore, manipulations of the speech signal envelope and fine structure that reduced intelligibility were found to produce correlated reductions in discrimination performance, suggesting a relationship between theta-band phase patterns and speech comprehension. This study investigates the nature of this relationship, hypothesizing that theta-band phase patterns primarily reflect cortical processing of low-frequency (<40 Hz) modulations present in the acoustic signal and required for intelligibility, rather than processing exclusively related to comprehension (e.g., lexical, syntactic, semantic). Using stimuli that are quite similar to normal spoken sentences in terms of low-frequency modulation characteristics but are unintelligible (i.e., their time-inverted counterparts), we find that discrimination performance based on theta-band phase patterns is equal for both types of stimuli. Consistent with earlier findings, we also observe that whereas theta-band phase patterns differ across stimuli, power patterns do not. We use a simulation model of the single-trial response to spoken sentence stimuli to demonstrate that phase-locked responses to low-frequency modulations of the acoustic signal can account not only for the phase but also for the power results. The simulation offers insight into the interpretation of the empirical results with respect to phase-resetting and power-enhancement models of the evoked response.
Technical Report: TG-142 compliant and comprehensive quality assurance tests for respiratory gating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Kyle; Rong, Yi, E-mail: yrong@ucdavis.edu
2015-11-15
Purpose: To develop and establish a comprehensive gating commissioning and quality assurance procedure in compliance with TG-142. Methods: Eight Varian TrueBeam Linacs were used for this study. Gating commissioning included an end-to-end test and baseline establishment. The end-to-end test was performed using a CIRS dynamic thoracic phantom with a moving cylinder inside the lung, which was used for carrying both optically simulated luminescence detectors (OSLDs) and Gafchromic EBT2 films while the target is moving, for a point dose check and 2D profile check. In addition, baselines were established for beam-on temporal delay and calibration of the surrogate, for both megavoltagemore » (MV) and kilovoltage (kV) beams. A motion simulation device (MotionSim) was used to provide periodic motion on a platform, in synchronizing with a surrogate motion. The overall accuracy and uncertainties were analyzed and compared. Results: The OSLD readings were within 5% compared to the planned dose (within measurement uncertainty) for both phase and amplitude gated deliveries. Film results showed less than 3% agreement to the predicted dose with a standard sinusoid motion. The gate-on temporal accuracy was averaged at 139 ± 10 ms for MV beams and 92 ± 11 ms for kV beams. The temporal delay of the surrogate motion depends on the motion speed and was averaged at 54.6 ± 3.1 ms for slow, 24.9 ± 2.9 ms for intermediate, and 23.0 ± 20.1 ms for fast speed. Conclusions: A comprehensive gating commissioning procedure was introduced for verifying the output accuracy and establishing the temporal accuracy baselines with respiratory gating. The baselines are needed for routine quality assurance tests, as suggested by TG-142.« less
Technical Report: TG-142 compliant and comprehensive quality assurance tests for respiratory gating.
Woods, Kyle; Rong, Yi
2015-11-01
To develop and establish a comprehensive gating commissioning and quality assurance procedure in compliance with TG-142. Eight Varian TrueBeam Linacs were used for this study. Gating commissioning included an end-to-end test and baseline establishment. The end-to-end test was performed using a CIRS dynamic thoracic phantom with a moving cylinder inside the lung, which was used for carrying both optically simulated luminescence detectors (OSLDs) and Gafchromic EBT2 films while the target is moving, for a point dose check and 2D profile check. In addition, baselines were established for beam-on temporal delay and calibration of the surrogate, for both megavoltage (MV) and kilovoltage (kV) beams. A motion simulation device (MotionSim) was used to provide periodic motion on a platform, in synchronizing with a surrogate motion. The overall accuracy and uncertainties were analyzed and compared. The OSLD readings were within 5% compared to the planned dose (within measurement uncertainty) for both phase and amplitude gated deliveries. Film results showed less than 3% agreement to the predicted dose with a standard sinusoid motion. The gate-on temporal accuracy was averaged at 139±10 ms for MV beams and 92±11 ms for kV beams. The temporal delay of the surrogate motion depends on the motion speed and was averaged at 54.6±3.1 ms for slow, 24.9±2.9 ms for intermediate, and 23.0±20.1 ms for fast speed. A comprehensive gating commissioning procedure was introduced for verifying the output accuracy and establishing the temporal accuracy baselines with respiratory gating. The baselines are needed for routine quality assurance tests, as suggested by TG-142.
Sun, Daquan; Sun, Guoqiang; Zhu, Xingyi; Guarin, Alvaro; Li, Bin; Dai, Ziwei; Ling, Jianming
2018-06-01
Self-healing has great potential to extend the service life of asphalt pavement, and this capability has been regarded as an important strategy when designing a sustainable infrastructure. This review presents a comprehensive summary of the state-of-the-art investigations concerning the self-healing mechanism, model, characterization and enhancement, ranging from asphalt to asphalt pavement. Firstly, the self-healing phenomenon as a general concept in asphalt materials is analyzed including its definition and the differences among self-healing and some viscoelastic responses. Additionally, the development of self-healing in asphalt pavement design is introduced. Next, four kinds of possible self-healing mechanism and corresponding models are presented. It is pointed out that the continuum thermodynamic model, considering the whole process from damage initiation to healing recovery, can be a promising study field. Further, a set of self-healing multiscale characterization methods from microscale to macroscale as well as computational simulation scale, are summed up. Thereinto, the computational simulation shows great potential in simulating the self-healing behavior of asphalt materials from mechanical and molecular level. Moreover, the factors influencing self-healing capability are discussed, but the action mechanisms of some factors remain unclear and need to be investigated. Finally, two extrinsic self-healing technologies, induction heating and capsule healing, are recommended as preventive maintenance applications in asphalt pavement. In future, more effective energy-based healing systems or novel material-based healing systems are expected to be developed towards designing sustainable long-life asphalt pavement. Copyright © 2018 Elsevier B.V. All rights reserved.
Efficacy of simulation-based trauma team training of non-technical skills. A systematic review.
Gjeraa, K; Møller, T P; Østergaard, D
2014-08-01
Trauma resuscitation is a complex situation, and most organisations have multi-professional trauma teams. Non-technical skills are challenged during trauma resuscitation, and they play an important role in the prevention of critical incidents. Simulation-based training of these is recommended. Our research question was: Does simulation-based trauma team training of non-technical skills have effect on reaction, learning, behaviour or patient outcome? The authors searched PubMed, EMBASE and the Cochrane Library and found 13 studies eligible for analysis. We described and compared the educational interventions and the evaluations of effect according to the four Kirkpatrick levels: reaction, learning (knowledge, skills, attitudes), behaviour (in a clinical setting) and patient outcome. No studies were randomised, controlled and blinded, resulting in a moderate to high risk of bias. The multi-professional trauma teams had positive reactions to simulation-based training of non-technical skills. Knowledge and skills improved in all studies evaluating the effect on learning. Three studies found improvements in team performance (behaviour) in the clinical setting. One of these found difficulties in maintaining these skills. Two studies evaluated on patient outcome, of which none showed improvements in mortality, complication rate or duration of hospitalisation. A significant effect on learning was found after simulation-based training of the multi-professional trauma team in non-technical skills. Three studies demonstrated significantly increased clinical team performance. No effect on patient outcome was found. All studies had a moderate to high risk of bias. More comprehensive randomised studies are needed to evaluate the effect on patient outcome. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Investigating the impact of moulage on simulation engagement - A systematic review.
Stokes-Parish, Jessica B; Duvivier, Robbert; Jolly, Brian
2018-05-01
Simulation Based Education (SBE) is used as a primer for clinical education in nursing and other health professions. Participant engagement strategies and good debriefing have been identified as key for effective simulations. The environment in which the simulation is situated also plays a large role in the degree of participant engagement. Various cues are staged within simulations to enhance this engagement process. Moulage techniques are used in current-day simulation to mimic illnesses and wounds, acting as visual and tactile cues for the learner. To effectively utilise moulage in simulation, significant expense is required to train simulation staff and to purchase relevant equipment. Explore the use of moulage in simulation practice today and its influence on participant engagement. Using a systematic process to extract papers, we reviewed the literature with a critical-realist lens. CINAHL Complete, ERIC, Embase, Medline, PsycINFO, SCOPUS, Web of Science, Proquest, Science Direct and SAGE. 10 databases were systematically reviewed using the keyword "moulage" to answer the question "How does the authenticity of moulage impact on participant engagement?". 1318 records were identified prior to exclusion criterion were applied. 10 articles were targeted for review, following exclusion for English language and publication between 2005 and 2015. The resulting 10 papers were assessed for quality using the Medical Education Research Study Quality Instrument (MERSQI). The majority of papers were situated in dermatology teaching, with only one nursing paper. Study participants were both undergraduate and postgraduate. Most of the studies were undertaken at a university setting. No papers comprehensively addressed whether the authenticity of moulage influences learner engagement. Results were limited, yet clearly outline a widely held assumption that moulage is essential in simulation-based education for improved realism and subsequent learner engagement. Despite this, there is no clear evidence from the literature that this is the case, suggesting that further research to explore the impact of moulage on participant engagement is warranted. A number of recommendations are made for future research. Copyright © 2018 Elsevier Ltd. All rights reserved.
Three-Dimensional Imaging in Rhinoplasty: A Comparison of the Simulated versus Actual Result.
Persing, Sarah; Timberlake, Andrew; Madari, Sarika; Steinbacher, Derek
2018-05-22
Computer imaging has become increasingly popular for rhinoplasty. Three-dimensional (3D) analysis permits a more comprehensive view from multiple vantage points. However, the predictability and concordance between the simulated and actual result have not been morphometrically studied. The purpose of this study was to aesthetically and quantitatively compare the simulated to actual rhinoplasty result. A retrospective review of 3D images (VECTRA, Canfield) for rhinoplasty patients was performed. Images (preop, simulated, and actual) were randomized. A blinded panel of physicians rated the images (1 = poor, 5 = excellent). The image series considered "best" was also recorded. A quantitative assessment of nasolabial angle and tip projection was compared. Paired and two-sample t tests were performed for statistical analysis (P < 0.05 as significant). Forty patients were included. 67.5% of preoperative images were rated as poor (mean = 1.7). The simulation received a mean score of 2.9 (good in 60% of cases). 82.5% of actual cases were rated good to excellent (mean 3.4) (P < 0.001). Overall, the panel significantly preferred the actual postoperative result in 77.5% of cases compared to the simulation in 22.5% of cases (P < 0.001). The actual nasal tip was more projected compared to the simulations for both males and females. There was no significant difference in nasal tip rotation between simulated and postoperative groups. 3D simulation is a powerful communication and planning tool in rhinoplasty. In this study, the actual result was deemed more aesthetic than the simulated image. Surgeon experience is important to translate the plan and achieve favorable postoperative results. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Li, Xiangyu; Luo, Yanbo; Jiang, Xingyi; Zhang, Hongfei; Zhu, Fengpeng; Hu, Shaodong; Hou, Hongwei; Hu, Qingyuan; Pang, Yongqiang
2018-01-08
Tobacco Heating System 2.2 (THS 2.2, marketed as iQOS), is a heat-not-burn (HNB) tobacco product that has been successfully introduced to global markets. Despite its expanding market, few independent and systematic researches into THS 2.2 have been carried out to date. We tested a comprehensive list of total particulate matter (TPM), water, tar, nicotine, propylene glycol, glycerin, carbon monoxide, volatile organic compounds, aromatic amines, hydrogen cyanide, ammonia, N-nitrosamines, phenol, and polycyclic aromatic hydrocarbon under both ISO and HCI regimes. We also simulated pyrolysis of THS 2.2 heating sticks and made comparisons with conventional cigarette tobacco fillers using comprehensive gas chromatography-mass spectrometry (GC × GC-MS) to determine whether the specially designed ingredients help reduce harmful constituents. Other than some carbonyls, ammonia, and N-nitrosoanabasine (NAB), the delivered releases from THS 2.2 were at least 80% lower than those from 3R4F. Tar and nicotine remained almost the same as 3R4F. Interestingly, the normalized yield of THS 2.2 to 3R4F under the HCI regime was lower than under the ISO regime. THS 2.2 delivered fewer harmful constituents than the conventional cigarette 3R4F. Simulated pyrolysis results showed that the lower temperature instead of specially designed ingredients contributed to the distinct shift. In particular, if smoking machines are involved to evaluate the HNB products, smoking regimes of heat-not-burn tobacco products should be carefully chosen. To our knowledge, few independent studies of HNB products have been published. In this paper, a comprehensive list of chemical releases was tested systematically and compared to those from 3R4F. Although THS 2.2 generates lower levels of harmful constituents, the nicotine and tar levels were almost identical to 3R4F.The results should be discussed carefully in the future when assess the dual-use with other conventional cigarettes, nicotine dependence of HNB products, etc. This study also suggests that regulatory agencies should pay attention to the smoking regimes that are adopted to evaluate HNB tobacco products. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The effects of atmospheric chemistry on radiation budget in the Community Earth Systems Model
NASA Astrophysics Data System (ADS)
Choi, Y.; Czader, B.; Diao, L.; Rodriguez, J.; Jeong, G.
2013-12-01
The Community Earth Systems Model (CESM)-Whole Atmosphere Community Climate Model (WACCM) simulations were performed to study the impact of atmospheric chemistry on the radiation budget over the surface within a weather prediction time scale. The secondary goal is to get a simplified and optimized chemistry module for the short time period. Three different chemistry modules were utilized to represent tropospheric and stratospheric chemistry, which differ in how their reactions and species are represented: (1) simplified tropospheric and stratospheric chemistry (approximately 30 species), (2) simplified tropospheric chemistry and comprehensive stratospheric chemistry from the Model of Ozone and Related Chemical Tracers, version 3 (MOZART-3, approximately 60 species), and (3) comprehensive tropospheric and stratospheric chemistry (MOZART-4, approximately 120 species). Our results indicate the different details in chemistry treatment from these model components affect the surface temperature and impact the radiation budget.
Comprehensive 3D-elastohydrodynamic simulation of hermetic compressor crank drive
NASA Astrophysics Data System (ADS)
Posch, S.; Hopfgartner, J.; Berger, E.; Zuber, B.; Almbauer, R.; Schöllauf, P.
2017-08-01
Mechanical, electrical and thermodynamic losses form the major loss mechanisms of hermetic compressors for refrigeration application. The present work deals with the investigation of the mechanical losses of a hermetic compressor crank drive. Focus is on 3d-elastohydrodynamic (EHD) modelling of the journal bearings, piston-liner contact and piston secondary motion in combination with multi-body and structural dynamics of the crank drive elements. A detailed description of the model development within the commercial software AVL EXCITE Power Unit is given in the work. The model is used to create a comprehensive analysis of the mechanical losses of a hermetic compressor. Further on, a parametric study concerning oil viscosity and compressor speed is carried out which shows the possibilities of the usage of the model in the development process of hermetic compressors for refrigeration application. Additionally, the usage of the results in an overall thermal network for the determination of the thermal compressor behaviour is discussed.
NASA Astrophysics Data System (ADS)
Cao, M.; Xiao, J.
2008-02-01
Bearing excitation is one of the most important mechanical sources for vibration and noise generation in machine systems of a broad range of industries. Although extensively investigated, accurately predicting the vibration/acoustic behavior of bearings remains a challenging task because of its complicated nonlinear behaviors. While some ground work has been laid out on single-row deep-grooved ball (DGB) bearing, comprehensive modeling effort on spherical roller bearing (SRB) has yet to be carried out. This is mainly due to the facts that SRB system carries one more extra degree of freedom (DOF) on the moving race (could be either inner or outer race) and in general has more rolling elements compared with DGB. In this study, a comprehensive SRB excitation source model is developed. In addition to the vertical and horizontal displacements considered in previous investigations, the impacts of axial displacement/load are addressed by introducing the DOF in the axial shaft direction. Hence, instead of being treated as pre-assumed constants, the roller-inner/outer race contact angles are formulated as functions of the axial displacement of the moving race to reflect their dependence on the axial movement. The approach presented in this paper accounts for the point contacts between rollers and inner/outer races, as well as line contacts when the loads on individual rollers exceed the limit for point contact. A detailed contact-damping model reflecting the influences of the surface profiles and the speeds of the both contacting elements is developed and applied in the SRB model. Waviness of all the contact surfaces (including inner race, outer race, and rollers) is included and compared in this analysis. Extensive case studies are carried out to reveal the impacts of surface waviness, radial clearance, surface defects, and loading conditions on the force and displacement responses of the SRB system. System design guidelines are recommended based on the simulation results. This model is also applicable for bearing health monitoring, as demonstrated by the numerical case studies showing the frequency response of the system with moderate-to-large point defects on both inner and outer races, as well as the rollers. Comparisons between the simulation results and some conclusions reflecting common sense available in open literature serves as first hand partial validation of the developed model. Future validation efforts and further improvement directions are also provided. The comprehensive model developed in this investigation is a useful tool for machine system design, optimization, and performance evaluation.
Yang, Li; Zhao, Qiuli; Zhu, Xuemei; Shen, Xiaoying; Zhu, Yulan; Yang, Liu; Gao, Wei; Li, Minghui
2017-08-01
Many factors influence pre-hospital delays in the event of stroke. This study aimed to develop and evaluate a comprehensive educational program for decreasing pre-hospital delays in high-risk stroke population. We enrolled 220 high-risk stroke population and caregivers from six urban communities in Harbin from May 2013 to May 2015, and randomly divided them into intervention and control groups. We implemented a comprehensive educational program (intervention group), comprising public lectures, instructional brochures, case videos, simulations, and role-playing from May 2013 to May 2015. We delivered conventional oral education in the control group. We compared stroke pre-hospital delay behavioral intention (SPDBI), pre-hospital stroke symptom coping test (PSSCT), and stroke pre-symptoms alert test (SPSAT) results between the groups before and 6, 12, and 18 months after health intervention. There were significant differences between before and after intervention (P < 0.01). SPDBI, PSSCT, and SPSAT scores were significantly different between the groups (P < 0.01). The interaction between time and intervention method was significant (P < 0.01). According to multivariate repeated measures analysis of variance, SPDBI, PSSCT, and SPSAT scores were significantly different at each time after intervention (P < 0.05). The comprehensive educational program was significantly effective in decreasing SPDBI, improving knowledge, enhancing stroke pre-symptoms alert, and reducing the possibility of pre-hospital delays.
NASA Astrophysics Data System (ADS)
Li, Huidong; Wolter, Michael; Wang, Xun; Sodoudi, Sahar
2017-09-01
Urban-rural difference of land cover is the key determinant of urban heat island (UHI). In order to evaluate the impact of land cover data on the simulation of UHI, a comparative study between up-to-date CORINE land cover (CLC) and Urban Atlas (UA) with fine resolution (100 and 10 m) and old US Geological Survey (USGS) data with coarse resolution (30 s) was conducted using the Weather Research and Forecasting model (WRF) coupled with bulk approach of Noah-LSM for Berlin. The comparison between old data and new data partly reveals the effect of urbanization on UHI and the historical evolution of UHI, while the comparison between different resolution data reveals the impact of resolution of land cover on the simulation of UHI. Given the high heterogeneity of urban surface and the fine-resolution land cover data, the mosaic approach was implemented in this study to calculate the sub-grid variability in land cover compositions. Results showed that the simulations using UA and CLC data perform better than that using USGS data for both air and land surface temperatures. USGS-based simulation underestimates the temperature, especially in rural areas. The longitudinal variations of both temperature and land surface temperature show good agreement with urban fraction for all the three simulations. To better study the comprehensive characteristic of UHI over Berlin, the UHI curves (UHIC) are developed for all the three simulations based on the relationship between temperature and urban fraction. CLC- and UA-based simulations show smoother UHICs than USGS-based simulation. The simulation with old USGS data obviously underestimates the extent of UHI, while the up-to-date CLC and UA data better reflect the real urbanization and simulate the spatial distribution of UHI more accurately. However, the intensity of UHI simulated by CLC and UA data is not higher than that simulated by USGS data. The simulated air temperature is not dominated by the land cover as much as the land surface temperature, as air temperature is also affected by air advection.
A Comprehensive Revision of the Logistics Planning Exercise (Log-Plan-X).
1981-06-01
teaching objectives. The difference between conventional teaching methods and simulation rests in the fact that most conventional techniques focus on...Communication and Humanitie. AFIT/LSH, WPAFB OH 45433220 V&. MONITORING AGENCY NAME9 & ADORES(II different fron Ca.U.Ufind Office) is. SECURITY UNCLASSIFIED I...error systems in real life can be very costly. Simulations can be an efficient and effective alternative to such trial and error methods by allowing
Evaluation of Resuspension from Propeller Wash in Pearl Harbor and San Diego Bay
2014-07-01
water cleanup plans, or total maximum daily loads (TMDLs) must be developed to bring the water body back into compliance. Under the Comprehensive...Waterways Experiment Station ( Johnson et. al., 1991) to simulate physical processes in bays, rivers, lakes and estuaries (Wang and Martin, 1991...Wang, 1992; Wang and McCutcheon, 1993; Wang et al., 1997, 1998; Johnson et al., 1995). The model simulates hydrodynamic currents in four dimensions (x
The experimental and numerical investigation of pistol bullet penetrating soft tissue simulant.
Wang, Yongjuan; Shi, Xiaoning; Chen, Aijun; Xu, Cheng
2015-04-01
Gelatin, a representative simulant for soft tissue of the human body, was used to study the effects of 9 mm pistol bullet's penetration. The behavior of a bullet penetrating gelatin was quantified by the temporary cavity sizes in ballistic gelatin and the pressure values of bullet's impact. A numerical simulation model of a bullet penetrating the soft tissue simulant gelatin was built using the finite element method (FEM). The model was validated by the comparison between the numerical results and the experimental results. During a bullet penetrating ballistic gelatin, four stages were clearly observed in both the experiment and the numerical simulation: a smooth attenuation stage, a rolling stage, a full penetration stage, and a stage of expansion and contraction. The cavity evolution, equivalent stress field and the strain field in gelatin were analyzed by numerical simulation. Moreover, the effects of the bullet's impact velocities and angles of incidence on the temporary cavity in gelatin, its velocity attenuation, and its rolling angle were investigated, as well as the bullet's resistance and energy variation. The physical process and the interactive mechanism during a pistol bullet penetrating gelatin were comprehensively revealed. This may be significant for research in wound ballistics. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Free Energy Simulations of Ligand Binding to the Aspartate Transporter GltPh
Heinzelmann, Germano; Baştuğ, Turgut; Kuyucak, Serdar
2011-01-01
Glutamate/Aspartate transporters cotransport three Na+ and one H+ ions with the substrate and countertransport one K+ ion. The binding sites for the substrate and two Na+ ions have been observed in the crystal structure of the archeal homolog GltPh, while the binding site for the third Na+ ion has been proposed from computational studies and confirmed by experiments. Here we perform detailed free energy simulations of GltPh, giving a comprehensive characterization of the substrate and ion binding sites, and calculating their binding free energies in various configurations. Our results show unequivocally that the substrate binds after the binding of two Na+ ions. They also shed light into Asp/Glu selectivity of GltPh, which is not observed in eukaryotic glutamate transporters. PMID:22098736
Kinematic Model of Transient Shape-Induced Anisotropy in Dense Granular Flow
NASA Astrophysics Data System (ADS)
Nadler, B.; Guillard, F.; Einav, I.
2018-05-01
Nonspherical particles are ubiquitous in nature and industry, yet previous theoretical models of granular media are mostly limited to systems of spherical particles. The problem is that in systems of nonspherical anisotropic particles, dynamic particle alignment critically affects their mechanical response. To study the tendency of such particles to align, we propose a simple kinematic model that relates the flow to the evolution of particle alignment with respect to each other. The validity of the proposed model is supported by comparison with particle-based simulations for various particle shapes ranging from elongated rice-like (prolate) to flattened lentil-like (oblate) particles. The model shows good agreement with the simulations for both steady-state and transient responses, and advances the development of comprehensive constitutive models for shape-anisotropic particles.
Simulation Analysis of Temperature Field in the Heat Transfer Process of Shell
NASA Astrophysics Data System (ADS)
Zhang, Di; Luo, Zhen; Xuan, Wenbo
Sea temperature is the key factors that determines whether shellfish can maintain normal growth development and survival, as protective film, the shell is a very important part of structure of shellfish, so the research of heat transfer characteristics become very important. In this paper, we firstly make a comprehensive analysis on the appearance of the shell, for the next simulation builds a good foundation, and based on the large general finite element analysis software ANSYS, we analyze the thermodynamics of shells, study the effect of the shell thickness and structure on heat transfer time. And through apply different temperature load, analyze the heat transfer characteristics and temperature distribution of the shells, It is expected that the results is useful at the biological heat transfer of shellfish.
On krypton-doped capsule implosion experiments at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Chen, Hui; Ma, T.; Nora, R.; Barrios, M. A.; Scott, H. A.; Schneider, M. B.; Berzak Hopkins, L.; Casey, D. T.; Hammel, B. A.; Jarrott, L. C.; Landen, O. L.; Patel, P. K.; Rosenberg, M. J.; Spears, B. K.
2017-07-01
This paper presents the spectroscopic aspects of using Krypton as a dopant in NIF capsule implosions through simulation studies and the first set of NIF experiments. Using a combination of 2D hohlraum and 1D capsule simulations with comprehensive spectroscopic modeling, the calculations focused on the effect of dopant concentration on the implosion, and the impact of gradients in the electron density and temperature to the Kr line features and plasma opacity. Experimental data were obtained from three NIF Kr-dopant experiments, performed with varying Kr dopant concentrations between 0.01% and 0.03%. The implosion performance, hotspot images, and detailed Kr spectral analysis are summarized relative to the predictions. Data show that fuel-dopant spectroscopy can serve as a powerful and viable diagnostic for inertial confinement fusion implosions.
Consumer involvement: effects on information processing from over-the-counter medication labels.
Sansgiry, S S; Cady, P S; Sansgiry, S
2001-01-01
The objective of this study was to evaluate the effects of consumer involvement on information processing from over-the-counter (OTC) medication labels. A sample of 256 students evaluated simulated OTC product labels for two product categories (headache and cold) in random order. Each participant evaluated labels after reading a scenario to simulate high and low involvement respectively. A questionnaire was used to collect data on variables such as label comprehension, attitude-towards-product label, product evaluation, and purchase intention. The results indicate that when consumers are involved in their purchase of OTC medications they are significantly more likely to understand information from the label and evaluate it accordingly. However, involvement does not affect attitude-towards-product label nor does it enhance purchase intention.
Sensitivity of the Boundary Plasma to the Plasma-Material Interface
Canik, John M.; Tang, X. -Z.
2017-01-01
While the sensitivity of the scrape-off layer and divertor plasma to the highly uncertain cross-field transport assumptions is widely recognized, the plasma is also sensitive to the details of the plasma-material interface (PMI) models used as part of comprehensive predictive simulations. Here in this paper, these PMI sensitivities are studied by varying the relevant sub-models within the SOLPS plasma transport code. Two aspects are explored: the sheath model used as a boundary condition in SOLPS, and fast particle reflection rates for ions impinging on a material surface. Both of these have been the study of recent high-fidelity simulation efforts aimedmore » at improving the understanding and prediction of these phenomena. It is found that in both cases quantitative changes to the plasma solution result from modification of the PMI model, with a larger impact in the case of the reflection coefficient variation. Finally, this indicates the necessity to better quantify the uncertainties within the PMI models themselves, and perform thorough sensitivity analysis to propagate these throughout the boundary model; this is especially important for validation against experiment, where the error in the simulation is a critical and less-studied piece of the code-experiment comparison.« less
NASA Astrophysics Data System (ADS)
Takeda, Kotaro; Honda, Kentaro; Takeya, Tsutomu; Okazaki, Kota; Hiraki, Tatsurou; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Fukuda, Hiroshi; Usui, Mitsuo; Nosaka, Hideyuki; Yamamoto, Tsuyoshi; Yamada, Koji
2015-01-01
We developed a design technique for a photonics-electronics convergence system by using an equivalent circuit of optical devices in an electrical circuit simulator. We used the transfer matrix method to calculate the response of an optical device. This method used physical parameters and dimensions of optical devices as calculation parameters to design a device in the electrical circuit simulator. It also used an intermediate frequency to express the wavelength dependence of optical devices. By using both techniques, we simulated bit error rates and eye diagrams of optical and electrical integrated circuits and calculated influences of device structure change and wavelength shift penalty.
NASA Astrophysics Data System (ADS)
Yan, Beichuan; Regueiro, Richard A.
2018-02-01
A three-dimensional (3D) DEM code for simulating complex-shaped granular particles is parallelized using message-passing interface (MPI). The concepts of link-block, ghost/border layer, and migration layer are put forward for design of the parallel algorithm, and theoretical scalability function of 3-D DEM scalability and memory usage is derived. Many performance-critical implementation details are managed optimally to achieve high performance and scalability, such as: minimizing communication overhead, maintaining dynamic load balance, handling particle migrations across block borders, transmitting C++ dynamic objects of particles between MPI processes efficiently, eliminating redundant contact information between adjacent MPI processes. The code executes on multiple US Department of Defense (DoD) supercomputers and tests up to 2048 compute nodes for simulating 10 million three-axis ellipsoidal particles. Performance analyses of the code including speedup, efficiency, scalability, and granularity across five orders of magnitude of simulation scale (number of particles) are provided, and they demonstrate high speedup and excellent scalability. It is also discovered that communication time is a decreasing function of the number of compute nodes in strong scaling measurements. The code's capability of simulating a large number of complex-shaped particles on modern supercomputers will be of value in both laboratory studies on micromechanical properties of granular materials and many realistic engineering applications involving granular materials.
Abbasi, Mostafa; Barakat, Mohammed S; Vahidkhah, Koohyar; Azadani, Ali N
2016-09-01
Computational modeling has an important role in design and assessment of medical devices. In computational simulations, considering accurate constitutive models is of the utmost importance to capture mechanical response of soft tissue and biomedical materials under physiological loading conditions. Lack of comprehensive three-dimensional constitutive models for soft tissue limits the effectiveness of computational modeling in research and development of medical devices. The aim of this study was to use inverse finite element (FE) analysis to determine three-dimensional mechanical properties of bovine pericardial leaflets of a surgical bioprosthesis under dynamic loading condition. Using inverse parameter estimation, 3D anisotropic Fung model parameters were estimated for the leaflets. The FE simulations were validated using experimental in-vitro measurements, and the impact of different constitutive material models was investigated on leaflet stress distribution. The results of this study showed that the anisotropic Fung model accurately simulated the leaflet deformation and coaptation during valve opening and closing. During systole, the peak stress reached to 3.17MPa at the leaflet boundary while during diastole high stress regions were primarily observed in the commissures with the peak stress of 1.17MPa. In addition, the Rayleigh damping coefficient that was introduced to FE simulations to simulate viscous damping effects of surrounding fluid was determined. Copyright © 2016 Elsevier Ltd. All rights reserved.
Redundancy Maintenance and Garbage Collection Strategies in Peer-to-Peer Storage Systems
NASA Astrophysics Data System (ADS)
Liu, Xin; Datta, Anwitaman
Maintaining redundancy in P2P storage systems is essential for reliability guarantees. Numerous P2P storage system maintenance algorithms have been proposed in the last years, each supposedly improving upon the previous approaches. We perform a systematic comparative study of the various strategies taking also into account the influence of different garbage collection mechanisms, an issue not studied so far. Our experiments show that while some strategies generally perform better than some others, there is no universally best strategy, and their relative superiority depends on various other design choices as well as the specific evaluation criterion. Our results can be used by P2P storage systems designers to make prudent design decisions, and our exploration of the various evaluation metrics also provides a more comprehensive framework to compare algorithms for P2P storage systems. While there are numerous network simulators specifically developed even to simulate peer-to-peer networks, there existed no P2P storage simulators - a byproduct of this work is a generic modular P2P storage system simulator which we provide as open-source. Different redundancy, maintenance, placement, garbage-collection policies, churn scenarios can be easily integrated to the simulator to try out new schemes in future, and provides a common framework to compare (future) p2p storage systems designs - something which has not been possible so far.
NASA Astrophysics Data System (ADS)
Cho, G. S.
2017-09-01
For performance optimization of Refrigerated Warehouses, design parameters are selected based on the physical parameters such as number of equipment and aisles, speeds of forklift for ease of modification. This paper provides a comprehensive framework approach for the system design of Refrigerated Warehouses. We propose a modeling approach which aims at the simulation optimization so as to meet required design specifications using the Design of Experiment (DOE) and analyze a simulation model using integrated aspect-oriented modeling approach (i-AOMA). As a result, this suggested method can evaluate the performance of a variety of Refrigerated Warehouses operations.
Feng, Dai; Baumgartner, Richard; Svetnik, Vladimir
2018-04-05
The concordance correlation coefficient (CCC) is a widely used scaled index in the study of agreement. In this article, we propose estimating the CCC by a unified Bayesian framework that can (1) accommodate symmetric or asymmetric and light- or heavy-tailed data; (2) select model from several candidates; and (3) address other issues frequently encountered in practice such as confounding covariates and missing data. The performance of the proposal was studied and demonstrated using simulated as well as real-life biomarker data from a clinical study of an insomnia drug. The implementation of the proposal is accessible through a package in the Comprehensive R Archive Network.
HUMAN--A Comprehensive Physiological Model.
ERIC Educational Resources Information Center
Coleman, Thomas G.; Randall, James E.
1983-01-01
Describes computer program (HUMAN) used to simulate physiological experiments on patient pathology. Program (available from authors, including versions for microcomputers) consists of dynamic interactions of over 150 physiological variables and integrating approximations of cardiovascular, renal, lung, temperature regulation, and some hormone…
Network-based simulation of aircraft at gates in airport terminals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Y.
1998-03-01
Simulation is becoming an essential tool for planning, design, and management of airport facilities. A simulation of aircraft at gates at an airport can be applied for various periodically performed applications, relating to the dynamic behavior of aircraft at gates in airport terminals for analyses, evaluations, and decision supports. Conventionally, such simulations are implemented using an event-driven method. For a more efficient simulation, this paper proposes a network-based method. The basic idea is to transform all the sequence constraint relations of aircraft at gates into a network. The simulation is done by calculating the longest path to all the nodesmore » in the network. The effect of the algorithm of the proposed method has been examined by experiments, and the superiority of the proposed method over the event-driven method is revealed through comprehensive comparisons of their overall simulation performance.« less
Li, Li; Liu, Dong-Jun
2014-01-01
Since 2012, China has been facing haze-fog weather conditions, and haze-fog pollution and PM2.5 have become hot topics. It is very necessary to evaluate and analyze the ecological status of the air environment of China, which is of great significance for environmental protection measures. In this study the current situation of haze-fog pollution in China was analyzed first, and the new Ambient Air Quality Standards were introduced. For the issue of air quality evaluation, a comprehensive evaluation model based on an entropy weighting method and nearest neighbor method was developed. The entropy weighting method was used to determine the weights of indicators, and the nearest neighbor method was utilized to evaluate the air quality levels. Then the comprehensive evaluation model was applied into the practical evaluation problems of air quality in Beijing to analyze the haze-fog pollution. Two simulation experiments were implemented in this study. One experiment included the indicator of PM2.5 and was carried out based on the new Ambient Air Quality Standards (GB 3095-2012); the other experiment excluded PM2.5 and was carried out based on the old Ambient Air Quality Standards (GB 3095-1996). Their results were compared, and the simulation results showed that PM2.5 was an important indicator for air quality and the evaluation results of the new Air Quality Standards were more scientific than the old ones. The haze-fog pollution situation in Beijing City was also analyzed based on these results, and the corresponding management measures were suggested. PMID:25170682
GenoBase: comprehensive resource database of Escherichia coli K-12.
Otsuka, Yuta; Muto, Ai; Takeuchi, Rikiya; Okada, Chihiro; Ishikawa, Motokazu; Nakamura, Koichiro; Yamamoto, Natsuko; Dose, Hitomi; Nakahigashi, Kenji; Tanishima, Shigeki; Suharnan, Sivasundaram; Nomura, Wataru; Nakayashiki, Toru; Aref, Walid G; Bochner, Barry R; Conway, Tyrrell; Gribskov, Michael; Kihara, Daisuke; Rudd, Kenneth E; Tohsato, Yukako; Wanner, Barry L; Mori, Hirotada
2015-01-01
Comprehensive experimental resources, such as ORFeome clone libraries and deletion mutant collections, are fundamental tools for elucidation of gene function. Data sets by omics analysis using these resources provide key information for functional analysis, modeling and simulation both in individual and systematic approaches. With the long-term goal of complete understanding of a cell, we have over the past decade created a variety of clone and mutant sets for functional genomics studies of Escherichia coli K-12. We have made these experimental resources freely available to the academic community worldwide. Accordingly, these resources have now been used in numerous investigations of a multitude of cell processes. Quality control is extremely important for evaluating results generated by these resources. Because the annotation has been changed since 2005, which we originally used for the construction, we have updated these genomic resources accordingly. Here, we describe GenoBase (http://ecoli.naist.jp/GB/), which contains key information about comprehensive experimental resources of E. coli K-12, their quality control and several omics data sets generated using these resources. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
McKenzie, Carly T; Tilashalski, Ken R; Peterson, Dawn Taylor; White, Marjorie Lee
2017-10-01
The aim of this study was to investigate dental students' long-term retention of clinical communication skills learned in a second-year standardized patient simulation at one U.S. dental school. Retention was measured by students' performance with an actual patient during their fourth year. The high-fidelity simulation exercise focused on clinical communication skills took place during the spring term of the students' second year. The effect of the simulation was measured by comparing the fourth-year clinical performance of two groups: those who had participated in the simulation (intervention group; Class of 2016) and those who had not (no intervention/control group; Class of 2015). In the no intervention group, all 47 students participated; in the intervention group, 58 of 59 students participated. Both instructor assessments and students' self-assessments were used to evaluate the effectiveness of key patient interaction principles as well as comprehensive presentation of multiple treatment options. The results showed that students in the intervention group more frequently included cost during their treatment option presentation than did students in the no intervention group. The instructor ratings showed that the intervention group included all key treatment option components except duration more frequently than did the no intervention group. However, the simulation experience did not result in significantly more effective student-patient clinical communication on any of the items measured. This study presents limited evidence of the effectiveness of a standardized patient simulation to improve dental students' long-term clinical communication skills with respect to thorough presentation of treatment options to a patient.
NASA Astrophysics Data System (ADS)
Lentz, C. L.; Baker, D. N.; Jaynes, A. N.; Dewey, R. M.; Lee, C. O.; Halekas, J. S.; Brain, D. A.
2018-02-01
Normal solar wind flows and intense solar transient events interact directly with the upper Martian atmosphere due to the absence of an intrinsic global planetary magnetic field. Since the launch of the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, there are now new means to directly observe solar wind parameters at the planet's orbital location for limited time spans. Due to MAVEN's highly elliptical orbit, in situ measurements cannot be taken while MAVEN is inside Mars' magnetosheath. To model solar wind conditions during these atmospheric and magnetospheric passages, this research project utilized the solar wind forecasting capabilities of the WSA-ENLIL+Cone model. The model was used to simulate solar wind parameters that included magnetic field magnitude, plasma particle density, dynamic pressure, proton temperature, and velocity during a four Carrington rotation-long segment. An additional simulation that lasted 18 Carrington rotations was then conducted. The precision of each simulation was examined for intervals when MAVEN was in the upstream solar wind, that is, with no exospheric or magnetospheric phenomena altering in situ measurements. It was determined that generalized, extensive simulations have comparable prediction capabilities as shorter, more comprehensive simulations. Generally, this study aimed to quantify the loss of detail in long-term simulations and to determine if extended simulations can provide accurate, continuous upstream solar wind conditions when there is a lack of in situ measurements.
NetMOD Version 2.0 User?s Manual.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant, Bion J.
2015-10-01
NetMOD ( Net work M onitoring for O ptimal D etection) is a Java-based software package for conducting simulation of seismic, hydracoustic, and infrasonic networks. Specifically, NetMOD simulates the detection capabilities of monitoring networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes ofmore » signal and noise that are observed at each of the stations. From these signal-to-noise ratios (SNR), the probability of detection can be computed given a detection threshold. This manual describes how to configure and operate NetMOD to perform detection simulations. In addition, NetMOD is distributed with simulation datasets for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) International Monitoring System (IMS) seismic, hydroacoustic, and infrasonic networks for the purpose of demonstrating NetMOD's capabilities and providing user training. The tutorial sections of this manual use this dataset when describing how to perform the steps involved when running a simulation. ACKNOWLEDGEMENTS We would like to thank the reviewers of this document for their contributions.« less
Free-energy landscape of protein oligomerization from atomistic simulations
Barducci, Alessandro; Bonomi, Massimiliano; Prakash, Meher K.; Parrinello, Michele
2013-01-01
In the realm of protein–protein interactions, the assembly process of homooligomers plays a fundamental role because the majority of proteins fall into this category. A comprehensive understanding of this multistep process requires the characterization of the driving molecular interactions and the transient intermediate species. The latter are often short-lived and thus remain elusive to most experimental investigations. Molecular simulations provide a unique tool to shed light onto these complex processes complementing experimental data. Here we combine advanced sampling techniques, such as metadynamics and parallel tempering, to characterize the oligomerization landscape of fibritin foldon domain. This system is an evolutionarily optimized trimerization motif that represents an ideal model for experimental and computational mechanistic studies. Our results are fully consistent with previous experimental nuclear magnetic resonance and kinetic data, but they provide a unique insight into fibritin foldon assembly. In particular, our simulations unveil the role of nonspecific interactions and suggest that an interplay between thermodynamic bias toward native structure and residual conformational disorder may provide a kinetic advantage. PMID:24248370
The Analysis of Rush Orders Risk in Supply Chain: A Simulation Approach
NASA Technical Reports Server (NTRS)
Mahfouz, Amr; Arisha, Amr
2011-01-01
Satisfying customers by delivering demands at agreed time, with competitive prices, and in satisfactory quality level are crucial requirements for supply chain survival. Incidence of risks in supply chain often causes sudden disruptions in the processes and consequently leads to customers losing their trust in a company's competence. Rush orders are considered to be one of the main types of supply chain risks due to their negative impact on the overall performance, Using integrated definition modeling approaches (i.e. IDEF0 & IDEF3) and simulation modeling technique, a comprehensive integrated model has been developed to assess rush order risks and examine two risk mitigation strategies. Detailed functions sequence and objects flow were conceptually modeled to reflect on macro and micro levels of the studied supply chain. Discrete event simulation models were then developed to assess and investigate the mitigation strategies of rush order risks, the objective of this is to minimize order cycle time and cost.
Free-energy landscape of protein oligomerization from atomistic simulations.
Barducci, Alessandro; Bonomi, Massimiliano; Prakash, Meher K; Parrinello, Michele
2013-12-03
In the realm of protein-protein interactions, the assembly process of homooligomers plays a fundamental role because the majority of proteins fall into this category. A comprehensive understanding of this multistep process requires the characterization of the driving molecular interactions and the transient intermediate species. The latter are often short-lived and thus remain elusive to most experimental investigations. Molecular simulations provide a unique tool to shed light onto these complex processes complementing experimental data. Here we combine advanced sampling techniques, such as metadynamics and parallel tempering, to characterize the oligomerization landscape of fibritin foldon domain. This system is an evolutionarily optimized trimerization motif that represents an ideal model for experimental and computational mechanistic studies. Our results are fully consistent with previous experimental nuclear magnetic resonance and kinetic data, but they provide a unique insight into fibritin foldon assembly. In particular, our simulations unveil the role of nonspecific interactions and suggest that an interplay between thermodynamic bias toward native structure and residual conformational disorder may provide a kinetic advantage.
NASA Astrophysics Data System (ADS)
Chen, Xinzhong; Lo, Chiu Fan Bowen; Zheng, William; Hu, Hai; Dai, Qing; Liu, Mengkun
2017-11-01
Over the last decade, scattering-type scanning near-field optical microscopy and spectroscopy have been widely used in nano-photonics and material research due to their fine spatial resolution and broad spectral range. A number of simplified analytical models have been proposed to quantitatively understand the tip-scattered near-field signal. However, a rigorous interpretation of the experimental results is still lacking at this stage. Numerical modelings, on the other hand, are mostly done by simulating the local electric field slightly above the sample surface, which only qualitatively represents the near-field signal rendered by the tip-sample interaction. In this work, we performed a more comprehensive numerical simulation which is based on realistic experimental parameters and signal extraction procedures. By directly comparing to the experiments as well as other simulation efforts, our methods offer a more accurate quantitative description of the near-field signal, paving the way for future studies of complex systems at the nanoscale.
A decontamination study of simulated chemical and biological agents
NASA Astrophysics Data System (ADS)
Uhm, Han S.; Lee, Han Y.; Hong, Yong C.; Shin, Dong H.; Park, Yun H.; Hong, Yi F.; Lee, Chong K.
2007-07-01
A comprehensive decontamination scheme of the chemical and biological agents, including airborne agents and surface contaminating agents, is presented. When a chemical and biological attack occurs, it is critical to decontaminate facilities or equipments to an acceptable level in a very short time. The plasma flame presented here may provide a rapid and effective elimination of toxic substances in the interior air in isolated spaces. As an example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies air with an airflow rate of 5000l/min contaminated with toluene, the simulated chemical agent, and soot from a diesel engine, the simulated aerosol for biological agents. Although the airborne agents in an isolated space are eliminated to an acceptable level by the plasma flame, the decontamination of the chemical and biological agents cannot be completed without cleaning surfaces of the facilities. A simulated sterilization study of micro-organisms was carried out using the electrolyzed ozone water. The electrolyzed ozone water very effectively kills endospores of Bacillus atrophaeus (ATCC 9372) within 3min. The electrolyzed ozone water also kills the vegetative micro-organisms, fungi, and virus. The electrolyzed ozone water, after the decontamination process, disintegrates into ordinary water and oxygen without any trace of harmful materials to the environment.
Real-time, haptics-enabled simulator for probing ex vivo liver tissue.
Lister, Kevin; Gao, Zhan; Desai, Jaydev P
2009-01-01
The advent of complex surgical procedures has driven the need for realistic surgical training simulators. Comprehensive simulators that provide realistic visual and haptic feedback during surgical tasks are required to familiarize surgeons with the procedures they are to perform. Complex organ geometry inherent to biological tissues and intricate material properties drive the need for finite element methods to assure accurate tissue displacement and force calculations. Advances in real-time finite element methods have not reached the state where they are applicable to soft tissue surgical simulation. Therefore a real-time, haptics-enabled simulator for probing of soft tissue has been developed which utilizes preprocessed finite element data (derived from accurate constitutive model of the soft-tissue obtained from carefully collected experimental data) to accurately replicate the probing task in real-time.
NASA Astrophysics Data System (ADS)
Schmidl, Marius
2017-04-01
We present a comprehensive training data set covering a large range of atmospheric conditions, including disperse volcanic ash and desert dust layers. These data sets contain all information required for the development of volcanic ash detection algorithms based on artificial neural networks, urgently needed since volcanic ash in the airspace is a major concern of aviation safety authorities. Selected parts of the data are used to train the volcanic ash detection algorithm VADUGS. They contain atmospheric and surface-related quantities as well as the corresponding simulated satellite data for the channels in the infrared spectral range of the SEVIRI instrument on board MSG-2. To get realistic results, ECMWF, IASI-based, and GEOS-Chem data are used to calculate all parameters describing the environment, whereas the software package libRadtran is used to perform radiative transfer simulations returning the brightness temperatures for each atmospheric state. As optical properties are a prerequisite for radiative simulations accounting for aerosol layers, the development also included the computation of optical properties for a set of different aerosol types from different sources. A description of the developed software and the used methods is given, besides an overview of the resulting data sets.
Ji, Yue; Xu, Mengjie; Li, Xingfei; Wu, Tengfei; Tuo, Weixiao; Wu, Jun; Dong, Jiuzhi
2018-06-13
The magnetohydrodynamic (MHD) angular rate sensor (ARS) with low noise level in ultra-wide bandwidth is developed in lasing and imaging applications, especially the line-of-sight (LOS) system. A modified MHD ARS combined with the Coriolis effect was studied in this paper to expand the sensor’s bandwidth at low frequency (<1 Hz), which is essential for precision LOS pointing and wide-bandwidth LOS jitter suppression. The model and the simulation method were constructed and a comprehensive solving method based on the magnetic and electric interaction methods was proposed. The numerical results on the Coriolis effect and the frequency response of the modified MHD ARS were detailed. In addition, according to the experimental results of the designed sensor consistent with the simulation results, an error analysis of model errors was discussed. Our study provides an error analysis method of MHD ARS combined with the Coriolis effect and offers a framework for future studies to minimize the error.
NASA Astrophysics Data System (ADS)
Mohaghegh, Shahab
2010-05-01
Surrogate Reservoir Model (SRM) is new solution for fast track, comprehensive reservoir analysis (solving both direct and inverse problems) using existing reservoir simulation models. SRM is defined as a replica of the full field reservoir simulation model that runs and provides accurate results in real-time (one simulation run takes only a fraction of a second). SRM mimics the capabilities of a full field model with high accuracy. Reservoir simulation is the industry standard for reservoir management. It is used in all phases of field development in the oil and gas industry. The routine of simulation studies calls for integration of static and dynamic measurements into the reservoir model. Full field reservoir simulation models have become the major source of information for analysis, prediction and decision making. Large prolific fields usually go through several versions (updates) of their model. Each new version usually is a major improvement over the previous version. The updated model includes the latest available information incorporated along with adjustments that usually are the result of single-well or multi-well history matching. As the number of reservoir layers (thickness of the formations) increases, the number of cells representing the model approaches several millions. As the reservoir models grow in size, so does the time that is required for each run. Schemes such as grid computing and parallel processing helps to a certain degree but do not provide the required speed for tasks such as: field development strategies using comprehensive reservoir analysis, solving the inverse problem for injection/production optimization, quantifying uncertainties associated with the geological model and real-time optimization and decision making. These types of analyses require hundreds or thousands of runs. Furthermore, with the new push for smart fields in the oil/gas industry that is a natural growth of smart completion and smart wells, the need for real time reservoir modeling becomes more pronounced. SRM is developed using the state of the art in neural computing and fuzzy pattern recognition to address the ever growing need in the oil and gas industry to perform accurate, but high speed simulation and modeling. Unlike conventional geo-statistical approaches (response surfaces, proxy models …) that require hundreds of simulation runs for development, SRM is developed only with a few (from 10 to 30 runs) simulation runs. SRM can be developed regularly (as new versions of the full field model become available) off-line and can be put online for real-time processing to guide important decisions. SRM has proven its value in the field. An SRM was developed for a giant oil field in the Middle East. The model included about one million grid blocks with more than 165 horizontal wells and took ten hours for a single run on 12 parallel CPUs. Using only 10 simulation runs, an SRM was developed that was able to accurately mimic the behavior of the reservoir simulation model. Performing a comprehensive reservoir analysis that included making millions of SRM runs, wells in the field were divided into five clusters. It was predicted that wells in cluster one & two are best candidates for rate relaxation with minimal, long term water production while wells in clusters four and five are susceptive to high water cuts. Two and a half years and 20 wells later, rate relaxation results from the field proved that all the predictions made by the SRM analysis were correct. While incremental oil production increased in all wells (wells in clusters 1 produced the most followed by wells in cluster 2, 3 …) the percent change in average monthly water cut for wells in each cluster clearly demonstrated the analytic power of SRM. As it was correctly predicted, wells in clusters 1 and 2 actually experience a reduction in water cut while a substantial increase in water cut was observed in wells classified into clusters 4 and 5. Performing these analyses would have been impossible using the original full field simulation model.
Shetty, Shohan; Zevin, Boris; Grantcharov, Teodor P; Roberts, Kurt E; Duffy, Andrew J
2014-01-01
Simulation training for surgical residents can shorten learning curves, improve technical skills, and expedite competency. Several studies have shown that skills learned in the simulated environment are transferable to the operating room. Residency programs are trying to incorporate simulation into the resident training curriculum to supplement the hands-on experience gained in the operating room. Despite the availability and proven utility of surgical simulators and simulation laboratories, they are still widely underutilized by surgical trainees. Studies have shown that voluntary use leads to minimal participation in a training curriculum. Although there are several simulation tools, there is no clear evidence of the superiority of one tool over the other in skill acquisition. The purpose of this study was to explore resident perceptions, training experiences, and preferences regarding laparoscopic simulation training. Our goal was to profile resident participation in surgical skills simulation, recognize potential barriers to voluntary simulator use, and identify simulation tools and tasks preferred by residents. Furthermore, this study may help to inform whether mandatory/protected training time, as part of the residents' curriculum is essential to enhance participation in the simulation laboratory. A cross-sectional study on general surgery residents (postgraduate years 1-5) at Yale University School of Medicine and the University of Toronto via an online questionnaire was conducted. Overall, 67 residents completed the survey. The institutional review board approved the methods of the study. Overall, 95.5% of the participants believed that simulation training improved their laparoscopic skills. Most respondents (92.5%) perceived that skills learned during simulation training were transferrable to the operating room. Overall, 56.7% of participants agreed that proficiency in a simulation curriculum should be mandatory before operating room experience. The simulation laboratory was most commonly used during work hours; lack of free time during work hours was most commonly cited as a reason for underutilization. Factors influencing use of the simulation laboratory in order of importance were the need for skill development, an interest in minimally invasive surgery, mandatory/protected time in a simulation environment as part of the residency program curriculum, a recommendation by an attending surgeon, and proximity of the simulation center. The most preferred simulation tool was the live animal model followed by cadaveric tissue. Virtual reality simulators were among the least-preferred (25%) simulation tools. Most residents (91.0%) felt that mandatory/protected time in a simulation environment should be introduced into resident training protocols. Mandatory and protected time in a simulation environment as part of the resident training curriculum may improve participation in simulation training. A comprehensive curriculum, which includes the use of live animals, cadaveric tissue, and virtual reality simulators, may enhance the laparoscopic training experience and interest level of surgical trainees. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
A Computational Cluster for Multiscale Simulations of Ionic Liquids
2008-09-16
AND SUBTITLE DURIP: A Computational Cluster for Multiscale Simulations of Ionic Liquids 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA955007-1-0512 5c...AVAILABILITY STATEMENT ZO\\5oc\\\\%1>^ 13. SUPPLEMENTARY NOTES 14. ABSTRACT The focus of this project was to acquire and use computer cluster nodes...by ANSI Std. Z39.18 Adobe Professional 7.0 Comprehensive Final Report: Gregory A. Voth, PI Contract/Grant Title: DURIP: A Computational Cluster for
Environmental, Transient, Three-Dimensional, Hydrothermal, Mass Transport Code - FLESCOT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Yasuo; Bao, Jie; Glass, Kevin A.
The purpose of the project was to modify and apply the transient, three-dimensional FLESCOT code to be able to effectively simulate cesium behavior in Fukushima lakes/dam reservoirs, river mouths, and coastal areas. The ultimate objective of the FLESCOT simulation is to predict future changes of cesium accumulation in Fukushima area reservoirs and costal water. These evaluation results will assist ongoing and future environmental remediation activities and policies in a systematic and comprehensive manner.
Allen, Robert C; Rutan, Sarah C
2011-10-31
Simulated and experimental data were used to measure the effectiveness of common interpolation techniques during chromatographic alignment of comprehensive two-dimensional liquid chromatography-diode array detector (LC×LC-DAD) data. Interpolation was used to generate a sufficient number of data points in the sampled first chromatographic dimension to allow for alignment of retention times from different injections. Five different interpolation methods, linear interpolation followed by cross correlation, piecewise cubic Hermite interpolating polynomial, cubic spline, Fourier zero-filling, and Gaussian fitting, were investigated. The fully aligned chromatograms, in both the first and second chromatographic dimensions, were analyzed by parallel factor analysis to determine the relative area for each peak in each injection. A calibration curve was generated for the simulated data set. The standard error of prediction and percent relative standard deviation were calculated for the simulated peak for each technique. The Gaussian fitting interpolation technique resulted in the lowest standard error of prediction and average relative standard deviation for the simulated data. However, upon applying the interpolation techniques to the experimental data, most of the interpolation methods were not found to produce statistically different relative peak areas from each other. While most of the techniques were not statistically different, the performance was improved relative to the PARAFAC results obtained when analyzing the unaligned data. Copyright © 2011 Elsevier B.V. All rights reserved.
Comprehensive design of omnidirectional high-performance perovskite solar cells
Zhang, Yutao; Xuan, Yimin
2016-01-01
The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight. PMID:27405419
Comprehensive design of omnidirectional high-performance perovskite solar cells.
Zhang, Yutao; Xuan, Yimin
2016-07-13
The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight.
Driver memory for in-vehicle visual and auditory messages
DOT National Transportation Integrated Search
1999-12-01
Three experiments were conducted in a driving simulator to evaluate effects of in-vehicle message modality and message format on comprehension and memory for younger and older drivers. Visual icons and text messages were effective in terms of high co...
Comprehensible Presentation of Topological Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Gunther H.; Beketayev, Kenes; Bremer, Peer-Timo
2012-03-05
Topological information has proven very valuable in the analysis of scientific data. An important challenge that remains is presenting this highly abstract information in a way that it is comprehensible even if one does not have an in-depth background in topology. Furthermore, it is often desirable to combine the structural insight gained by topological analysis with complementary information, such as geometric information. We present an overview over methods that use metaphors to make topological information more accessible to non-expert users, and we demonstrate their applicability to a range of scientific data sets. With the increasingly complex output of exascale simulations,more » the importance of having effective means of providing a comprehensible, abstract overview over data will grow. The techniques that we present will serve as an important foundation for this purpose.« less
Topographies and dynamics on multidimensional potential energy surfaces
NASA Astrophysics Data System (ADS)
Ball, Keith Douglas
The stochastic master equation is a valuable tool for elucidating potential energy surface (PES) details that govern structural relaxation in clusters, bulk systems, and protein folding. This work develops a comprehensive framework for studying non-equilibrium relaxation dynamics using the master equation. Since our master equations depend upon accurate partition function models for use in Rice-Ramsperger-Kassel-Marcus (RRK(M) transition state theory, this work introduces several such models employing various harmonic and anharmonic approximations and compares their predicted equilibrium population distributions with those determined from molecular dynamics. This comparison is performed for the fully-delineated surfaces (KCl)5 and Ar9 to evaluate model performance for potential surfaces with long- and short-range interactions, respectively. For each system, several models perform better than a simple harmonic approximation. While no model gives acceptable results for all minima, and optimal modeling strategies differ for (KCl)5 and Ar9, a particular one-parameter model gives the best agreement with simulation for both systems. We then construct master equations from these models and compare their isothermal relaxation predictions for (KCl)5 and Ar9 with molecular dynamics simulations. This is the first comprehensive test of the kinetic performance of partition function models of its kind. Our results show that accurate modeling of transition-state partition functions is more important for (KCl)5 than for Ar9 in reproducing simulation results, due to a marked stiffening anharmonicity in the transition-state normal modes of (KCl)5. For both systems, several models yield qualitative agreement with simulation over a large temperature range. To examine the robustness of the master equation when applied to larger systems, for which full topographical descriptions would be either impossible or infeasible, we compute relaxation predictions for Ar11 using a master equation constructed from data representing the full PES, and compare these predictions to those of reduced master equations based on statistical samples of the full PES. We introduce a sampling method which generates random, Boltzmann-weighted, energetically 'downhill' sequences. The study reveals that, at moderate temperatures, the slowest relaxation timescale converges as the number of sequences in a sample grows to ~1000. Furthermore, the asymptotic timescale is comparable to the full-PES value.
Decision-analytic modeling studies: An overview for clinicians using multiple myeloma as an example.
Rochau, U; Jahn, B; Qerimi, V; Burger, E A; Kurzthaler, C; Kluibenschaedl, M; Willenbacher, E; Gastl, G; Willenbacher, W; Siebert, U
2015-05-01
The purpose of this study was to provide a clinician-friendly overview of decision-analytic models evaluating different treatment strategies for multiple myeloma (MM). We performed a systematic literature search to identify studies evaluating MM treatment strategies using mathematical decision-analytic models. We included studies that were published as full-text articles in English, and assessed relevant clinical endpoints, and summarized methodological characteristics (e.g., modeling approaches, simulation techniques, health outcomes, perspectives). Eleven decision-analytic modeling studies met our inclusion criteria. Five different modeling approaches were adopted: decision-tree modeling, Markov state-transition modeling, discrete event simulation, partitioned-survival analysis and area-under-the-curve modeling. Health outcomes included survival, number-needed-to-treat, life expectancy, and quality-adjusted life years. Evaluated treatment strategies included novel agent-based combination therapies, stem cell transplantation and supportive measures. Overall, our review provides a comprehensive summary of modeling studies assessing treatment of MM and highlights decision-analytic modeling as an important tool for health policy decision making. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The response of tropical rainforests to drought-lessons from recent research and future prospects.
Bonal, Damien; Burban, Benoit; Stahl, Clément; Wagner, Fabien; Hérault, Bruno
We review the recent findings on the influence of drought on tree mortality, growth or ecosystem functioning in tropical rainforests. Drought plays a major role in shaping tropical rainforests and the response mechanisms are highly diverse and complex. The numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical rainforests on the three continents. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance. Tropical rainforest ecosystems are characterized by high annual rainfall. Nevertheless, rainfall regularly fluctuates during the year and seasonal soil droughts do occur. Over the past decades, a number of extreme droughts have hit tropical rainforests, not only in Amazonia but also in Asia and Africa. The influence of drought events on tree mortality and growth or on ecosystem functioning (carbon and water fluxes) in tropical rainforest ecosystems has been studied intensively, but the response mechanisms are complex. Herein, we review the recent findings related to the response of tropical forest ecosystems to seasonal and extreme droughts and the current knowledge about the future of these ecosystems. This review emphasizes the progress made over recent years and the importance of the studies conducted under extreme drought conditions or in through-fall exclusion experiments in understanding the response of these ecosystems. It also points to the great diversity and complexity of the response of tropical rainforest ecosystems to drought. The numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical forest regions. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance.
Simulating the dispersion of NOx and CO2 in the city of Zurich at building resolving scale
NASA Astrophysics Data System (ADS)
Brunner, Dominik; Berchet, Antoine; Emmenegger, Lukas; Henne, Stephan; Müller, Michael
2017-04-01
Cities are emission hotspots for both greenhouse gases and air pollutants. They contribute about 70% of global greenhouse gas emissions and are home to a growing number of people potentially suffering from poor air quality in the urban environment. High-resolution atmospheric transport modelling of greenhouse gases and air pollutants at the city scale has, therefore, several important applications such as air pollutant exposure assessment, air quality forecasting, or urban planning and management. When combined with observations, it also has the potential to quantify emissions and monitor their long-term trends, which is the main motivation for the deployment of urban greenhouse gas monitoring networks. We have developed a comprehensive atmospheric modeling model system for the city of Zurich, Switzerland ( 600,000 inhabitants including suburbs), which is composed of the mesoscale model GRAMM simulating the flow in a larger domain around Zurich at 100 m resolution, and the nested high-resolution model GRAL simulating the flow and air pollutant dispersion in the city at building resolving (5-10 m) scale. Based on an extremely detailed emission inventory provided by the municipality of Zurich, we have simulated two years of hourly NOx and CO2 concentration fields across the entire city. Here, we present a detailed evaluation of the simulations against a comprehensive network of continuous monitoring sites and passive samplers for NOx and analyze the sensitivity of the results to the temporal variability of the emissions. Furthermore, we present first simulations of CO2 and investigate the challenges associated with CO2 sources not covered by the inventory such as human respiration and exchange fluxes with urban vegetation.
NASA Astrophysics Data System (ADS)
Lou, Yang; Zhou, Weimin; Matthews, Thomas P.; Appleton, Catherine M.; Anastasio, Mark A.
2017-04-01
Photoacoustic computed tomography (PACT) and ultrasound computed tomography (USCT) are emerging modalities for breast imaging. As in all emerging imaging technologies, computer-simulation studies play a critically important role in developing and optimizing the designs of hardware and image reconstruction methods for PACT and USCT. Using computer-simulations, the parameters of an imaging system can be systematically and comprehensively explored in a way that is generally not possible through experimentation. When conducting such studies, numerical phantoms are employed to represent the physical properties of the patient or object to-be-imaged that influence the measured image data. It is highly desirable to utilize numerical phantoms that are realistic, especially when task-based measures of image quality are to be utilized to guide system design. However, most reported computer-simulation studies of PACT and USCT breast imaging employ simple numerical phantoms that oversimplify the complex anatomical structures in the human female breast. We develop and implement a methodology for generating anatomically realistic numerical breast phantoms from clinical contrast-enhanced magnetic resonance imaging data. The phantoms will depict vascular structures and the volumetric distribution of different tissue types in the breast. By assigning optical and acoustic parameters to different tissue structures, both optical and acoustic breast phantoms will be established for use in PACT and USCT studies.
Collaborative en-route and slot allocation algorithm based on fuzzy comprehensive evaluation
NASA Astrophysics Data System (ADS)
Yang, Shangwen; Guo, Baohua; Xiao, Xuefei; Gao, Haichao
2018-01-01
To allocate the en-routes and slots to the flights with collaborative decision making, a collaborative en-route and slot allocation algorithm based on fuzzy comprehensive evaluation was proposed. Evaluation indexes include flight delay costs, delay time and the number of turning points. Analytic hierarchy process is applied to determining index weights. Remark set for current two flights not yet obtained the en-route and slot in flight schedule is established. Then, fuzzy comprehensive evaluation is performed, and the en-route and slot for the current two flights are determined. Continue selecting the flight not yet obtained an en-route and a slot in flight schedule. Perform fuzzy comprehensive evaluation until all flights have obtained the en-routes and slots. MatlabR2007b was applied to numerical test based on the simulated data of a civil en-route. Test results show that, compared with the traditional strategy of first come first service, the algorithm gains better effect. The effectiveness of the algorithm was verified.
Holistic Nursing Simulation: A Concept Analysis.
Cohen, Bonni S; Boni, Rebecca
2018-03-01
Simulation as a technology and holistic nursing care as a philosophy are two components within nursing programs that have merged during the process of knowledge and skill acquisition in the care of the patients as whole beings. Simulation provides opportunities to apply knowledge and skill through the use of simulators, standardized patients, and virtual settings. Concerns with simulation have been raised regarding the integration of the nursing process and recognizing the totality of the human being. Though simulation is useful as a technology, the nursing profession places importance on patient care, drawing on knowledge, theories, and expertise to administer patient care. There is a need to promptly and comprehensively define the concept of holistic nursing simulation to provide consistency and a basis for quality application within nursing curricula. This concept analysis uses Walker and Avant's approach to define holistic nursing simulation by defining antecedents, consequences, and empirical referents. The concept of holism and the practice of holistic nursing incorporated into simulation require an analysis of the concept of holistic nursing simulation by developing a language and model to provide direction for educators in design and development of holistic nursing simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Jian; Zhang, Yang; Wang, Kai
Accurate simulations of air quality and climate require robust model parameterizations on regional and global scales. The Weather Research and Forecasting model with Chemistry version 3.4.1 has been coupled with physics packages from the Community Atmosphere Model version 5 (CAM5) (WRF-CAM5) to assess the robustness of the CAM5 physics package for regional modeling at higher grid resolutions than typical grid resolutions used in global modeling. In this two-part study, Part I describes the application and evaluation of WRF-CAM5 over East Asia at a horizontal resolution of 36-km for six years: 2001, 2005, 2006, 2008, 2010, and 2011. The simulations aremore » evaluated comprehensively with a variety of datasets from surface networks, satellites, and aircraft. The results show that meteorology is relatively well simulated by WRF-CAM5. However, cloud variables are largely or moderately underpredicted, indicating uncertainties in the model treatments of dynamics, thermodynamics, and microphysics of clouds/ices as well as aerosol-cloud interactions. For chemical predictions, the tropospheric column abundances of CO, NO2, and O3 are well simulated, but those of SO2 and HCHO are moderately overpredicted, and the column HCHO/NO2 indicator is underpredicted. Large biases exist in the surface concentrations of CO, NO2, and PM10 due to uncertainties in the emissions as well as vertical mixing. The underpredictions of NO lead to insufficient O3 titration, thus O3 overpredictions. The model can generally reproduce the observed O3 and PM indicators. These indicators suggest to control NOx emissions throughout the year, and VOCs emissions in summer in big cities and in winter over North China Plain, North/South Korea, and Japan to reduce surface O3, and to control SO2, NH3, and NOx throughout the year to reduce inorganic surface PM.« less
Srisungsitthisunti, Pornsak; Ersoy, Okan K; Xu, Xianfan
2009-01-01
Light diffraction by volume Fresnel zone plates (VFZPs) is simulated by the Hankel transform beam propagation method (Hankel BPM). The method utilizes circularly symmetric geometry and small step propagation to calculate the diffracted wave fields by VFZP layers. It is shown that fast and accurate diffraction results can be obtained with the Hankel BPM. The results show an excellent agreement with the scalar diffraction theory and the experimental results. The numerical method allows more comprehensive studies of the VFZP parameters to achieve higher diffraction efficiency.
Selected spectroscopic results on element 115 decay chains
Rudolph, D.; Forsberg, U.; Golubev, P.; ...
2014-08-24
We observed thirty correlated α-decay chains in an experiment studying the fusion-evaporation reaction 48Ca + 243Am at the GSI Helmholtzzentrum fur Schwerionenforschung. The decay characteristics of the majority of these 30 chains are consistent with previous observations and interpretations of such chains to originate from isotopes of element Z = 115. High-resolution α-photon coincidence spectroscopy in conjunction with comprehensive Monte-Carlo simulations allow to propose excitation schemes of atomic nuclei of the heaviest elements, thereby probing nuclear structure models near the 'Island of Stability' with unprecedented experimental precision.
Scan blindness in infinite phased arrays of printed dipoles
NASA Technical Reports Server (NTRS)
Pozar, D. M.; Schaubert, D. H.
1984-01-01
A comprehensive study of infinite phased arrays of printed dipole antennas is presented, with emphasis on the scan blindness phenomenon. A rigorous and efficient moment method procedure is used to calculate the array impedance versus scan angle. Data are presented for the input reflection coefficient for various element spacings and substrate parameters. A simple theory, based on coupling from Floquet modes to surface wave modes on the substrate, is shown to predict the occurrence of scan blindness. Measurements from a waveguide simulator of a blindness condition confirm the theory.
Blind consent? A social psychological investigation of non-readership of click-through agreements.
Plaut, Victoria C; Bartlett, Robert P
2012-08-01
Across two studies we aimed to measure empirically the extent of non-readership of click-through agreements (CTAs), identify the dominant beliefs about CTAs contributing to non-readership, and experimentally manipulate these beliefs to decrease automatic non-reading behavior and enhance contract efficiency. In our initial questionnaire study (Study 1), as predicted, the vast majority of participants reported not reading CTAs and the most prevalent beliefs about CTAs contributing to non-readership included: they are too long and time-consuming, they are all the same, they give one no choice but to agree, they are irrelevant, and vendors are generally reputable. Manipulating these beliefs on a simulated music website (Study 2) revealed an increase in readership. In addition, CTA comprehension and CTA rejection rates were both increased significantly by manipulating the length of the CTA. These results demonstrate support for the influence of widely held beliefs about CTAs on contract readership, provide evidence against the common "limited cognition" perspective on non-readership, and suggest that presenting CTAs in a short, readable format can increase CTA readership and comprehension as well as shopping of CTA terms. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
Nataraja, R M; Webb, N; Lopez, P J
2018-04-01
Surgical training has changed radically in the last few decades. The traditional Halstedian model of time-bound apprenticeship has been replaced with competency-based training. In our previous article, we presented an overview of learning theory relevant to clinical teaching; a summary for the busy paediatric surgeon and urologist. We introduced the concepts underpinning current changes in surgical education and training. In this next article, we give an overview of the various modalities of surgical simulation, the educational principles that underlie them, and potential applications in clinical practice. These modalities include; open surgical models and trainers, laparoscopic bench trainers, virtual reality trainers, simulated patients and role-play, hybrid simulation, scenario-based simulation, distributed simulation, virtual reality, and online simulation. Specific examples of technology that may be used for these modalities are included but this is not a comprehensive review of all available products. Copyright © 2018 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
Effectiveness of Virtual Reality Training in Orthopaedic Surgery.
Aïm, Florence; Lonjon, Guillaume; Hannouche, Didier; Nizard, Rémy
2016-01-01
The purpose of this study was to conduct a systematic review to determine the effectiveness of virtual reality (VR) training in orthopaedic surgery. A comprehensive systematic review was performed of articles of VR training in orthopaedic surgery published up to November 2014 from MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials databases. We included 10 relevant trials of 91 identified articles, which all reported on training in arthroscopic surgery (shoulder, n = 5; knee, n = 4; undefined, n = 1). A total of 303 participants were involved. Assessment after training was made on a simulator in 9 of the 10 studies, and in one study it took place in the operating room (OR) on a real patient. A total of 32 different outcomes were extracted; 29 of them were about skills assessment. None involved a patient-related outcome. One study focused on anatomic learning, and the other evaluated technical task performance before and after training on a VR simulator. Five studies established construct validity. Three studies reported a statistically significant improvement in technical skills after training on a VR simulator. VR training leads to an improvement of technical skills in orthopaedic surgery. Before its widespread use, additional trials are needed to clarify the transfer of VR training to the OR. Systematic review of Level I through Level IV studies. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
A PERFORMANCE EVALUATION OF THE 2004 RELEASE OF MODELS-3 CMAQ
This performance evaluation compares a full annual simulation (2001) of CMAQ (Version4.4) covering the contiguous United States against monitoring data from four nationwide networks. This effort, which represents one of the most spatially and temporally comprehensive performance...
Users guide to ACORn: a comprehensive Ozark regeneration simulator.
Daniel C. Dey; Michael Ter-Mikaelian; Paul S. Johnson; Stephen R. Shifley
1996-01-01
Describes how to use the ACORn computer program for predicting number of trees per acre and stocking percent by species and diameter classes 21 years after complete overstory removal of oak stands in the Ozark Highlands of Missouri and adjacent States.
KINETIC MODELING OF COUNTERFLOW DIFFUSION FLAMES OF BUTADIENE. (R828193)
A comprehensive, semi-detailed kinetic scheme was used to simulate the chemical structures of counterflow diffusion and fuel-rich premixed 1,3-butadiene flames, to better understand the formation of polycyclic aromatic hydrocarbons (PAH). The results showed that model predicti...
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George
1990-01-01
Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.
The Dyslexia Simulation: Impact and Implications
ERIC Educational Resources Information Center
Wadlington, Elizabeth; Elliot, Cynthia; Kirylo, James
2008-01-01
Many students with reading difficulties have a specific learning disability called dyslexia, which is neurobiological in origin and characterized by problems with spelling, decoding, and accurate/fluent word identification, negatively impacting vocabulary growth and comprehension. Consequently, the role of the insightful teacher is critical in…
Ahmed, Marawan; Jalily Hasani, Horia; Ganesan, Aravindhan; Houghton, Michael; Barakat, Khaled
2017-01-01
Abnormalities in the human Nav1.5 (hNav1.5) voltage-gated sodium ion channel (VGSC) are associated with a wide range of cardiac problems and diseases in humans. Current structural models of hNav1.5 are still far from complete and, consequently, their ability to study atomistic interactions of this channel is very limited. Here, we report a comprehensive atomistic model of the hNav1.5 ion channel, constructed using homology modeling technique and refined through long molecular dynamics simulations (680 ns) in the lipid membrane bilayer. Our model was comprehensively validated by using reported mutagenesis data, comparisons with previous models, and binding to a panel of known hNav1.5 blockers. The relatively long classical MD simulation was sufficient to observe a natural sodium permeation event across the channel’s selectivity filters to reach the channel’s central cavity, together with the identification of a unique role of the lysine residue. Electrostatic potential calculations revealed the existence of two potential binding sites for the sodium ion at the outer selectivity filters. To obtain further mechanistic insight into the permeation event from the central cavity to the intracellular region of the channel, we further employed “state-of-the-art” steered molecular dynamics (SMD) simulations. Our SMD simulations revealed two different pathways through which a sodium ion can be expelled from the channel. Further, the SMD simulations identified the key residues that are likely to control these processes. Finally, we discuss the potential binding modes of a panel of known hNav1.5 blockers to our structural model of hNav1.5. We believe that the data presented here will enhance our understanding of the structure–property relationships of the hNav1.5 ion channel and the underlying molecular mechanisms in sodium ion permeation and drug interactions. The results presented here could be useful for designing safer drugs that do not block the hNav1.5 channel. PMID:28831242
NASA Astrophysics Data System (ADS)
Ong, Ernest E. S.; O'Byrne, Sean; Liow, Jong-Leng
2018-04-01
Xanthan gum (XG) is considered one of the most industrially important polysaccharides, with applications ranging from food products such as ice creams and salad dressings to pharmaceuticals and oil well drilling fluids. The wide application of XG is due to its favourable rheological properties and its capability to resist degradation under a high shear or high temperature environment. It is generally accepted that both inter- and intramolecular interactions, including hydrogen bonding (HB), are responsible for its unique properties. To date, there is still a lack of comprehensive examination on the HB mechanism in polysaccharides. Therefore, the study proposed here was conducted using molecular dynamics (MD) simulations that are able to provide insights with an unparalleled temporal and spatial resolution. Since XG is used over a broad range of temperatures, the implications of thermal effect on the structure and molecular interactions of XG in an aqueous solution are discussed in this paper. MD simulations were run at an isobaric-isothermal condition with 1 atm target pressure and five temperatures ranging between 283K and 353K. From the simulation results, an increasingly extended conformation of XG is observed as the temperature rises, and this finding matches qualitatively with the results published in the literature. The radius of gyration, radial pair distribution functions and intramolecular HB of XG were also discussed. The outcomes of the present study may serve as a stepping stone for the future studies on polysaccharides using MD simulations.
NASA Technical Reports Server (NTRS)
Pawson, Steven; Lin, Shian-Jiann; Rood, Richard B.; Stajner, Ivanka; Nebuda, Sharon; Nielsen, J. Eric; Douglass, Anne R.
2000-01-01
In order to support the EOS-Chem project, a comprehensive assimilation package for the coupled chemical-dynamical system is being developed by the Data Assimilation Office at NASA GSFC. This involves development of a coupled chemistry/meteorology model and of data assimilation techniques for trace species and meteorology. The model is being developed using the flux-form semi-Lagrangian dynamical core of Lin and Rood, the physical parameterizations from the NCAR Community Climate Model, and atmospheric chemistry modules from the Atmospheric Chemistry and Dynamics branch at NASA GSFC. To date the following results have been obtained: (i) multi-annual simulations with the dynamics-radiation model show the credibility of the package for atmospheric simulations; (ii) initial simulations including a limited number of middle atmospheric trace gases reveal the realistic nature of transport mechanisms, although there is still a need for some improvements. Samples of these results will be shown. A meteorological assimilation system is currently being constructed using the model; this will form the basis for the proposed meteorological/chemical assimilation package. The latter part of the presentation will focus on areas targeted for development in the near and far terms, with the objective of Providing a comprehensive assimilation package for the EOS-Chem science experiment. The first stage will target ozone assimilation. The plans also encompass a reanalysis (ReSTS) for the 1991-1995 period, which includes the Mt. Pinatubo eruption and the time when a large number of UARS observations were available. One of the most challenging aspects of future developments will be to couple theoretical advances in tracer assimilation with the practical considerations of a real environment and eventually a near-real-time assimilation system.
Measuring the Lense-Thirring precession using a second Lageos satellite
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Ciufolini, I.
1989-01-01
A complete numerical simulation and error analysis was performed for the proposed experiment with the objective of establishing an accurate assessment of the feasibility and the potential accuracy of the measurement of the Lense-Thirring precession. Consideration was given to identifying the error sources which limit the accuracy of the experiment and proposing procedures for eliminating or reducing the effect of these errors. Analytic investigations were conducted to study the effects of major error sources with the objective of providing error bounds on the experiment. The analysis of realistic simulated data is used to demonstrate that satellite laser ranging of two Lageos satellites, orbiting with supplemental inclinations, collected for a period of 3 years or more, can be used to verify the Lense-Thirring precession. A comprehensive covariance analysis for the solution was also developed.
Space life support engineering program
NASA Technical Reports Server (NTRS)
Seagrave, Richard C.
1992-01-01
A comprehensive study to develop software to simulate the dynamic operation of water reclamation systems in long-term closed-loop life support systems is being carried out as part of an overall program for the design of systems for a moon station or a Mars voyage. This project is being done in parallel with a similar effort in the Department of Chemistry to develop durable accurate low-cost sensors for monitoring of trace chemical and biological species in recycled water supplies. Aspen-Plus software is being used on a group of high-performance work stations to develop the steady state descriptions for a number of existing technologies. Following completion, a dynamic simulation package will be developed for determining the response of such systems to changes in the metabolic needs of the crew and to upsets in system hardware performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witt, Adam; Chalise, Dol Raj; Hadjerioua, Boualem
The slow pace of Pumped Storage Hydropower development in the US over the past twenty years has led to widespread interest in the feasibility and viability of alternative PSH designs, development schemes, and technologies. Since 2011, Oak Ridge National Lab has been exploring the economic viability of modular Pumped Storage Hydropower (m-PSH) development through targeted case studies, revenue simulations, and analysis of innovative configurations and designs. This paper outlines the development and supporting analysis of a scalable, comprehensive cost modeling tool designed to simulate the initial capital costs for a variety of potential m-PSH projects and deployment scenarios. The toolmore » is used to explore and determine innovative research strategies that can improve the economic viability of m-PSH in US markets.« less
Numerical study of read scheme in one-selector one-resistor crossbar array
NASA Astrophysics Data System (ADS)
Kim, Sungho; Kim, Hee-Dong; Choi, Sung-Jin
2015-12-01
A comprehensive numerical circuit analysis of read schemes of a one selector-one resistance change memory (1S1R) crossbar array is carried out. Three schemes-the ground, V/2, and V/3 schemes-are compared with each other in terms of sensing margin and power consumption. Without the aid of a complex analytical approach or SPICE-based simulation, a simple numerical iteration method is developed to simulate entire current flows and node voltages within a crossbar array. Understanding such phenomena is essential in successfully evaluating the electrical specifications of selectors for suppressing intrinsic drawbacks of crossbar arrays, such as sneaky current paths and series line resistance problems. This method provides a quantitative tool for the accurate analysis of crossbar arrays and provides guidelines for developing an optimal read scheme, array configuration, and selector device specifications.
Validation of Model Simulations of Anvil Cirrus Properties During TWP-ICE: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zipser, Edward J.
2013-05-20
This 3-year grant, with two extensions, resulted in a successful 5-year effort, led by Ph.D. student Adam Varble, to compare cloud resolving model (CRM) simulations with the excellent database obtained during the TWP-ICE field campaign. The objective, largely achieved, is to undertake these comparisons comprehensively and quantitatively, informing the community in ways that goes beyond pointing out errors in the models, but points out ways to improve both cloud dynamics and microphysics parameterizations in future modeling efforts. Under DOE support, Adam Varble, with considerable assistance from Dr. Ann Fridlind and others, entrained scientists who ran some 10 different CRMs andmore » 4 different limited area models (LAMs) using a variety of microphysics parameterizations, to ensure that the conclusions of the study will have considerable generality.« less
NASA Astrophysics Data System (ADS)
Zheng, Yibo; Zhang, Lei; Wang, Yuan
2017-10-01
In this letter, surface plasmon resonance sensors based on grapefruit-type photonic crystal fiber (PCF)with different silver nano-filling structure have been analyzed and compared though the finite element method (FEM). The regularity of the resonant wavelength changing with refractive index of the sample has been numerically simulated. The surface plasmon resonance (SPR) sensing properties have been numerically simulated in both areas of resonant wavelength and intensity detection. Numerical results show that excellent sensor resolution of 4.17×10-5RIU can be achieved as the radius of the filling silver nanowires is 150 nm by spectrum detection method. Comprehensive comparison indicates that the 150 nm silver wire filling structure is suitable for spectrum detection and 30 nm silver film coating structure is suitable for the amplitude detection.
Virtual acoustic environments for comprehensive evaluation of model-based hearing devices.
Grimm, Giso; Luberadzka, Joanna; Hohmann, Volker
2018-06-01
Create virtual acoustic environments (VAEs) with interactive dynamic rendering for applications in audiology. A toolbox for creation and rendering of dynamic virtual acoustic environments (TASCAR) that allows direct user interaction was developed for application in hearing aid research and audiology. The software architecture and the simulation methods used to produce VAEs are outlined. Example environments are described and analysed. With the proposed software, a tool for simulation of VAEs is available. A set of VAEs rendered with the proposed software was described.
NASA Technical Reports Server (NTRS)
Moore, W. W., Jr.; Lemons, J. F.; Kurtz, R. L.; Liu, H.-K.
1977-01-01
A comprehensive examination is made of recent advanced research directions in the applications of electro-optical and holographic instrumentations and methods to atmospheric sciences problems. In addition, an overview is given of the in-house research program for environmental and atmospheric measurements with emphasis on particulates systems. Special treatment is made of the instrument methods and applications work in the areas of laser scattering spectrometers and pulsed holography sizing systems. Selected engineering tests data on space simulation chamber programs are discussed.
2010-12-01
computers in 1953. HIL motion simulators were also built for the dynamic testing of vehicle com- ponents (e.g. suspensions, bodies ) with hydraulic or...complex, comprehensive mechanical systems can be simulated in real-time by parallel computers; examples include multi- body sys- tems, brake systems...hard constraints in a multivariable control framework. And the third aspect is the ability to perform online optimization. These aspects results in
Modelling the B2C Marketplace: Evaluation of a Reputation Metric for e-Commerce
NASA Astrophysics Data System (ADS)
Gutowska, Anna; Sloane, Andrew
This paper evaluates recently developed novel and comprehensive reputation metric designed for the distributed multi-agent reputation system for the Business-to-Consumer (B2C) E-commerce applications. To do that an agent-based simulation framework was implemented which models different types of behaviours in the marketplace. The trustworthiness of different types of providers is investigated to establish whether the simulation models behaviour of B2C e-Commerce systems as they are expected to behave in real life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brink, A.; Kilpinen, P.; Hupa, M.
1996-01-01
Two methods to improve the modeling of NO{sub x} emissions in numerical flow simulation of combustion are investigated. The models used are a reduced mechanism for nitrogen chemistry in methane combustion and a new model based on regression analysis of perfectly stirred reactor simulations using detailed comprehensive reaction kinetics. The applicability of the methods to numerical flow simulation of practical furnaces, especially in the near burner region, is tested against experimental data from a pulverized coal fired single burner furnace. The results are also compared to those obtained using a commonly used description for the overall reaction rate of NO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit; Dooraghi, Mike
Development of accurate transposition models to simulate plane-of-array (POA) irradiance from horizontal measurements or simulations is a complex process mainly because of the anisotropic distribution of diffuse solar radiation in the atmosphere. The limited availability of reliable POA measurements at large temporal and spatial scales leads to difficulties in the comprehensive evaluation of transposition models. This paper proposes new algorithms to assess the uncertainty of transposition models using both surface-based observations and modeling tools. We reviewed the analytical derivation of POA irradiance and the approximation of isotropic diffuse radiation that simplifies the computation. Two transposition models are evaluated against themore » computation by the rigorous analytical solution. We proposed a new algorithm to evaluate transposition models using the clear-sky measurements at the National Renewable Energy Laboratory's (NREL's) Solar Radiation Research Laboratory (SRRL) and a radiative transfer model that integrates diffuse radiances of various sky-viewing angles. We found that the radiative transfer model and a transposition model based on empirical regressions are superior to the isotropic models when compared to measurements. We further compared the radiative transfer model to the transposition models under an extensive range of idealized conditions. Our results suggest that the empirical transposition model has slightly higher cloudy-sky POA irradiance than the radiative transfer model, but performs better than the isotropic models under clear-sky conditions. Significantly smaller POA irradiances computed by the transposition models are observed when the photovoltaics (PV) panel deviates from the azimuthal direction of the sun. The new algorithms developed in the current study have opened the door to a more comprehensive evaluation of transposition models for various atmospheric conditions and solar and PV orientations.« less
Xie, Yu; Sengupta, Manajit; Dooraghi, Mike
2018-03-20
Development of accurate transposition models to simulate plane-of-array (POA) irradiance from horizontal measurements or simulations is a complex process mainly because of the anisotropic distribution of diffuse solar radiation in the atmosphere. The limited availability of reliable POA measurements at large temporal and spatial scales leads to difficulties in the comprehensive evaluation of transposition models. This paper proposes new algorithms to assess the uncertainty of transposition models using both surface-based observations and modeling tools. We reviewed the analytical derivation of POA irradiance and the approximation of isotropic diffuse radiation that simplifies the computation. Two transposition models are evaluated against themore » computation by the rigorous analytical solution. We proposed a new algorithm to evaluate transposition models using the clear-sky measurements at the National Renewable Energy Laboratory's (NREL's) Solar Radiation Research Laboratory (SRRL) and a radiative transfer model that integrates diffuse radiances of various sky-viewing angles. We found that the radiative transfer model and a transposition model based on empirical regressions are superior to the isotropic models when compared to measurements. We further compared the radiative transfer model to the transposition models under an extensive range of idealized conditions. Our results suggest that the empirical transposition model has slightly higher cloudy-sky POA irradiance than the radiative transfer model, but performs better than the isotropic models under clear-sky conditions. Significantly smaller POA irradiances computed by the transposition models are observed when the photovoltaics (PV) panel deviates from the azimuthal direction of the sun. The new algorithms developed in the current study have opened the door to a more comprehensive evaluation of transposition models for various atmospheric conditions and solar and PV orientations.« less
Comprehensive Logic Based Analyses of Toll-Like Receptor 4 Signal Transduction Pathway
Padwal, Mahesh Kumar; Sarma, Uddipan; Saha, Bhaskar
2014-01-01
Among the 13 TLRs in the vertebrate systems, only TLR4 utilizes both Myeloid differentiation factor 88 (MyD88) and Toll/Interleukin-1 receptor (TIR)-domain-containing adapter interferon-β-inducing Factor (TRIF) adaptors to transduce signals triggering host-protective immune responses. Earlier studies on the pathway combined various experimental data in the form of one comprehensive map of TLR signaling. But in the absence of adequate kinetic parameters quantitative mathematical models that reveal emerging systems level properties and dynamic inter-regulation among the kinases/phosphatases of the TLR4 network are not yet available. So, here we used reaction stoichiometry-based and parameter independent logical modeling formalism to build the TLR4 signaling network model that captured the feedback regulations, interdependencies between signaling kinases and phosphatases and the outcome of simulated infections. The analyses of the TLR4 signaling network revealed 360 feedback loops, 157 negative and 203 positive; of which, 334 loops had the phosphatase PP1 as an essential component. The network elements' interdependency (positive or negative dependencies) in perturbation conditions such as the phosphatase knockout conditions revealed interdependencies between the dual-specific phosphatases MKP-1 and MKP-3 and the kinases in MAPK modules and the role of PP2A in the auto-regulation of Calmodulin kinase-II. Our simulations under the specific kinase or phosphatase gene-deficiency or inhibition conditions corroborated with several previously reported experimental data. The simulations to mimic Yersinia pestis and E. coli infections identified the key perturbation in the network and potential drug targets. Thus, our analyses of TLR4 signaling highlights the role of phosphatases as key regulatory factors in determining the global interdependencies among the network elements; uncovers novel signaling connections; identifies potential drug targets for infections. PMID:24699232
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan
2011-01-24
Uranium contamination is a serious concern at several sites motivating the development of novel treatment strategies such as the Geobacter-mediated reductive immobilization of uranium. However, this bioremediation strategy has not yet been optimized for the sustained uranium removal. While several reactive-transport models have been developed to represent Geobacter-mediated bioremediation of uranium, these models often lack the detailed quantitative description of the microbial process (e.g., biomass build-up in both groundwater and sediments, electron transport system, etc.) and the interaction between biogeochemical and hydrological process. In this study, a novel multi-scale model was developed by integrating our recent model on electron capacitancemore » of Geobacter (Zhao et al., 2010) with a comprehensive simulator of coupled fluid flow, hydrologic transport, heat transfer, and biogeochemical reactions. This mechanistic reactive-transport model accurately reproduces the experimental data for the bioremediation of uranium with acetate amendment. We subsequently performed global sensitivity analysis with the reactive-transport model in order to identify the main sources of prediction uncertainty caused by synergistic effects of biological, geochemical, and hydrological processes. The proposed approach successfully captured significant contributing factors across time and space, thereby improving the structure and parameterization of the comprehensive reactive-transport model. The global sensitivity analysis also provides a potentially useful tool to evaluate uranium bioremediation strategy. The simulations suggest that under difficult environments (e.g., highly contaminated with U(VI) at a high migration rate of solutes), the efficiency of uranium removal can be improved by adding Geobacter species to the contaminated site (bioaugmentation) in conjunction with the addition of electron donor (biostimulation). The simulations also highlight the interactive effect of initial cell concentration and flow rate on U(VI) reduction.« less
Larkin, Anne C; Cahan, Mitchell A; Whalen, Giles; Hatem, David; Starr, Susan; Haley, Heather-Lyn; Litwin, Demetrius; Sullivan, Kate; Quirk, Mark
2010-08-01
This study examines the development and implementation of a pilot human factors curriculum during a 2-year period. It is one component of a comprehensive 5-year human factors curriculum spanning core competencies of interpersonal and communication skills, systems-based practice, and professionalism and using low-and high-fidelity simulation techniques. Members of the Department of Surgery and the Center for Clinical Communication and Performance Outcomes jointly constructed a curriculum for PGY1 and PGY2 residents on topics ranging from challenging communication to time and stress management. Video demonstrations, triggers, and simulated scenarios involving acting patients were created by surgeons and medical educators. Pre- and postintervention measures were obtained for communication skills, perceived stress level, and teamwork. Communication skills were evaluated using a series of video vignettes. The validated Perceived Stress Scale and Teamwork and Patient Safety Attitudes survey were used. Residents' perceptions of the program were also measured. Twenty-seven PGY1 residents and 15 PGY2 residents participated during 2 years. Analyses of video vignette tests indicated significant improvement in empathic communication for PGY1 (t = 3.62, p = 0.001) and PGY2 (t = 5.00, p = 0.004). There were no significant changes to teamwork attitudes. Perceived levels of stress became considerably higher. PGY1 residents reported trying 1 to 3 strategies taught in the time management session, with 60% to 75% reporting improvement post-training. This unique and comprehensive human factors curriculum is shown to be effective in building communication competency for junior-level residents in the human and emotional aspects of surgical training and practice. Continued refinement and ongoing data acquisition and analyses are underway. Copyright 2010 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
The Chemistry of Shocked High-energy Materials: Connecting Atomistic Simulations to Experiments
NASA Astrophysics Data System (ADS)
Islam, Md Mahbubul; Strachan, Alejandro
2017-06-01
A comprehensive atomistic-level understanding of the physics and chemistry of shocked high energy (HE) materials is crucial for designing safe and efficient explosives. Advances in the ultrafast spectroscopy and laser shocks enabled the study of shock-induced chemistry at extreme conditions occurring at picosecond timescales. Despite this progress experiments are not without limitations and do not enable a direct characterization of chemical reactions. At the same time, large-scale reactive molecular dynamics (MD) simulations are capable of providing description of the shocked-induced chemistry but the uncertainties resulting from the use of approximate descriptions of atomistic interactions remain poorly quantified. We use ReaxFF MD simulations to investigate the shock and temperature induced chemical decomposition mechanisms of polyvinyl nitrate, RDX, and nitromethane. The effect of various shock pressures on reaction initiation mechanisms is investigated for all three materials. We performed spectral analysis from atomistic velocities at different shock pressures to enable direct comparison with experiments. The simulations predict volume-increasing reactions at the shock-to-detonation transitions and the shock vs. particle velocity data are in good agreement with available experimental data. The ReaxFF MD simulations validated against experiments enabled prediction of reaction kinetics of shocked materials, and interpretation of experimental spectroscopy data via assignment of the spectral peaks to dictate various reaction pathways at extreme conditions.
Simulation Of A Photofission-Based Cargo Interrogation System
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Michael; Gozani, Tsahi; Stevenson, John
A comprehensive model has been developed to characterize and optimize the detection of Bremsstrahlung x-ray induced fission signatures from nuclear materials hidden in cargo containers. An effective active interrogation system should not only induce a large number of fission events but also efficiently detect their signatures. The proposed scanning system utilizes a 9-MV commercially available linear accelerator and the detection of strong fission signals i.e. delayed gamma rays and prompt neutrons. Because the scanning system is complex and the cargo containers are large and often highly attenuating, the simulation method segments the model into several physical steps, representing each changemore » of radiation particle. Each approximation is carried-out separately, resulting in a major reduction in computational time and a significant improvement in tally statistics. The model investigates the effect on the fission rate and detection rate by various cargo types, densities and distributions. Hydrogenous and metallic cargos, homogeneous and heterogeneous, as well as various locations of the nuclear material inside the cargo container were studied. We will show that for the photofission-based interrogation system simulation, the final results are not only in good agreement with a full, single-step simulation but also with experimental results, further validating the full-system simulation.« less
Jung, Kwang-Wook; Yoon, Choon-G; Jang, Jae-Ho; Kong, Dong-Soo
2008-01-01
Effective watershed management often demands qualitative and quantitative predictions of the effect of future management activities as arguments for policy makers and administration. The BASINS geographic information system was developed to compute total maximum daily loads, which are helpful to establish hydrological process and water quality modeling system. In this paper the BASINS toolkit HSPF model is applied in 20,271 km(2) large watershed of the Han River Basin is used for applicability of HSPF and BMPs scenarios. For proper evaluation of watershed and stream water quality, comprehensive estimation methods are necessary to assess large amounts of point source and nonpoint-source (NPS) pollution based on the total watershed area. In this study, The Hydrological Simulation Program-FORTRAN (HSPF) was estimated to simulate watershed pollutant loads containing dam operation and applied BMPs scenarios for control NPS pollution. The 8-day monitoring data (about three years) were used in the calibration and verification processes. Model performance was in the range of "very good" and "good" based on percent difference. The water-quality simulation results were encouraging for this large sizable watershed with dam operation practice and mixed land uses; HSPF proved adequate, and its application is recommended to simulate watershed processes and BMPs evaluation. IWA Publishing 2008.
NASA Technical Reports Server (NTRS)
Lee, Meemong; Weidner, Richard J.
2008-01-01
The Juno spacecraft is planned to launch in August of 2012 and would arrive at Jupiter four years later. The spacecraft would spend more than one year orbiting the planet and investigating the existence of an ice-rock core; determining the amount of global water and ammonia present in the atmosphere, studying convection and deep- wind profiles in the atmosphere; investigating the origin of the Jovian magnetic field, and exploring the polar magnetosphere. Juno mission management is responsible for mission and navigation design, mission operation planning, and ground-data-system development. In order to ensure successful mission management from initial checkout to final de-orbit, it is critical to share a common vision of the entire mission operation phases with the rest of the project teams. Two major challenges are 1) how to develop a shared vision that can be appreciated by all of the project teams of diverse disciplines and expertise, and 2) how to continuously evolve a shared vision as the project lifecycle progresses from formulation phase to operation phase. The Juno mission simulation team addresses these challenges by developing agile and progressive mission models, operation simulations, and real-time visualization products. This paper presents mission simulation visualization network (MSVN) technology that has enabled a comprehensive mission simulation suite (MSVN-Juno) for the Juno project.
NASA Technical Reports Server (NTRS)
Kung, Ernest C.
1994-01-01
The contract research has been conducted in the following three major areas: analysis of numerical simulations and parallel observations of atmospheric blocking, diagnosis of the lower boundary heating and the response of the atmospheric circulation, and comprehensive assessment of long-range forecasting with numerical and regression methods. The essential scientific and developmental purpose of this contract research is to extend our capability of numerical weather forecasting by the comprehensive general circulation model. The systematic work as listed above is thus geared to developing a technological basis for future NASA long-range forecasting.
System dynamic modeling on construction waste management in Shenzhen, China.
Tam, Vivian W Y; Li, Jingru; Cai, Hong
2014-05-01
This article examines the complexity of construction waste management in Shenzhen, Mainland China. In-depth analysis of waste generation, transportation, recycling, landfill and illegal dumping of various inherent management phases is explored. A system dynamics modeling using Stella model is developed. Effects of landfill charges and also penalties from illegal dumping are also simulated. The results show that the implementation of comprehensive policy on both landfill charges and illegal dumping can effectively control the illegal dumping behavior, and achieve comprehensive construction waste minimization. This article provides important recommendations for effective policy implementation and explores new perspectives for Shenzhen policy makers.
A Trial of Nursing Cost Accounting using Nursing Practice Data on a Hospital Information System.
Miyahira, Akiko; Tada, Kazuko; Ishima, Masatoshi; Nagao, Hidenori; Miyamoto, Tadashi; Nakagawa, Yoshiaki; Takemura, Tadamasa
2015-01-01
Hospital administration is very important and many hospitals carry out activity-based costing under comprehensive medicine. However, nursing cost is unclear, because nursing practice is expanding both quantitatively and qualitatively and it is difficult to grasp all nursing practices, and nursing cost is calculated in many cases comprehensively. On the other hand, a nursing information system (NIS) is implemented in many hospitals in Japan and we are beginning to get nursing practical data. In this paper, we propose a nursing cost accounting model and we simulate a cost by nursing contribution using NIS data.
A vibrational study of inulin by means of experimental and theoretical methods
NASA Astrophysics Data System (ADS)
Balan, C.; Chis, M. I.; Rachisan, A. L.; Baia, M.
2018-07-01
Inulin, a natural polymer formed by several units of fructose and just one unit of glucose, is found in different plants or directly in some fruits or vegetables. Due to its structure it has been used in many applications from medicine, pharmacology or food industry. In spite of this, a complete vibrational analysis of the molecule is missing in the literature. Moreover, there are contradictory results regarding the assignment of certain vibrational modes. Therefore, the aim of this study was to obtain a comprehensive vibrational investigation of inulin by means of experimental (FT-IR and Raman spectroscopy) and theoretical (density functional theory -DFT simulations) methods.