Sample records for comprehensive spectroscopic study

  1. Raman spectroscopic study of the Chromobacterium violaceum pigment violacein using multiwavelength excitation and DFT calculations.

    PubMed

    Jehlička, Jan; Edwards, Howell G M; Němec, Ivan; Oren, Aharon

    2015-01-01

    Violacein is a bisindole pigment occurring as a biosynthetic product of Chromobacterium violaceum and Janthinobacterium lividum. It has some structural similarities to the cyanobacterial UV-protective pigment scytonemin, which has been the subject of comprehensive spectroscopic and structural studies. A detailed experimental Raman spectroscopic study with visible and near-infrared excitation of violacein produced by C. violaceum has been undertaken and supported using theoretical DFT calculations. Raman spectra with 514 and 785 nm excitation of cultivated cells as well as extracts and Gaussian (B3LYP/6-311++G(d,p)) calculations with proposed molecular vibrational assignments are reported here. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. T.D.S. spectroscopic databank for spherical tops: DOS version

    NASA Astrophysics Data System (ADS)

    Tyuterev, V. G.; Babikov, Yu. L.; Tashkun, S. A.; Perevalov, V. I.; Nikitin, A.; Champion, J.-P.; Wenger, C.; Pierre, C.; Pierre, G.; Hilico, J.-C.; Loete, M.

    1994-10-01

    T.D.S. (Traitement de Donnees Spectroscopiques or Tomsk-Dijon-Spectroscopy project) is a computer package concerned with high resolution spectroscopy of spherical top molecules like CH4, CF4, SiH4, SiF4, SnH4, GeH4, SF6, etc. T.D.S. contains information, fundamental spectroscopic data (energies, transition moments, spectroscopic constants) recovered from comprehensive modeling and simultaneous fitting of experimental spectra, and associated software written in C. The T.D.S. goal is to provide an access to all available information on vibration-rotation molecular states and transitions including various spectroscopic processes (Stark, Raman, etc.) under extended conditions based on extrapolations of laboratory measurements using validated theoretical models. Applications for T.D.S. may include: education/training in molecular physics, quantum chemistry, laser physics; spectroscopic applications (analysis, laser spectroscopy, atmospheric optics, optical standards, spectroscopic atlases); applications to environment studies and atmospheric physics (remote sensing); data supply for specific databases; and to photochemistry (laser excitation, multiphoton processes). The reported DOS-version is designed for IBM and compatible personal computers.

  3. Kepler Flares. IV. A Comprehensive Analysis of the Activity of the dM4e Star GJ 1243

    NASA Astrophysics Data System (ADS)

    Silverberg, Steven M.; Kowalski, Adam F.; Davenport, James R. A.; Wisniewski, John P.; Hawley, Suzanne L.; Hilton, Eric J.

    2016-10-01

    We present a comprehensive study of the active dM4e star GJ 1243. We use previous observations and ground-based echelle spectroscopy to determine that GJ 1243 is a member of the Argus association of field stars, suggesting it is ∼ 30{--}50 {{Myr}} old. We analyze 11 months of 1 minute cadence data from Kepler, presenting Kepler flare frequency distributions, as well as determining correlations between flare energy, amplitude, duration, and decay time. We find that the exponent α of the power-law flare energy distribution varies in time, primarily due to completeness of sample and the low frequency of high-energy flares. We also find a deviation from a single power law at high energy. We use ground-based spectroscopic observations that were simultaneous with the Kepler data to provide simultaneous photometric and spectroscopic analysis of three low-energy flares, the lowest-energy dMe flares with detailed spectral analysis to date on any star. The spectroscopic data from these flares extend constraints for radiative hydrodynamic flare models to a lower energy regime than has previously been studied. We use this simultaneous spectroscopy and Kepler photometry to develop approximate conversions from the Kepler bandpass to the traditional U and B bands. This conversion will be a critical factor in comparing any Kepler flare analyses to the canon of previous ground-based flare studies.

  4. Spectrum of hot methane in astronomical objects using a comprehensive computed line list

    PubMed Central

    Yurchenko, Sergei N.; Tennyson, Jonathan; Bailey, Jeremy; Hollis, Morgan D. J.; Tinetti, Giovanna

    2014-01-01

    Hot methane spectra are important in environments ranging from flames to the atmospheres of cool stars and exoplanets. A new spectroscopic line list, 10to10, for 12CH4 containing almost 10 billion transitions is presented. This comprehensive line list covers a broad spectroscopic range and is applicable for temperatures up to 1,500 K. Previous methane data are incomplete, leading to underestimated opacities at short wavelengths and elevated temperatures. Use of 10to10 in models of the bright T4.5 brown dwarf 2MASS 0559-14 leads to significantly better agreement with observations and in studies of the hot Jupiter exoplanet HD 189733b leads to up to a 20-fold increase in methane abundance. It is demonstrated that proper inclusion of the huge increase in hot transitions which are important at elevated temperatures is crucial for accurate characterizations of atmospheres of brown dwarfs and exoplanets, especially when observed in the near-infrared. PMID:24979770

  5. Spectrum of hot methane in astronomical objects using a comprehensive computed line list.

    PubMed

    Yurchenko, Sergei N; Tennyson, Jonathan; Bailey, Jeremy; Hollis, Morgan D J; Tinetti, Giovanna

    2014-07-01

    Hot methane spectra are important in environments ranging from flames to the atmospheres of cool stars and exoplanets. A new spectroscopic line list, 10to10, for (12)CH4 containing almost 10 billion transitions is presented. This comprehensive line list covers a broad spectroscopic range and is applicable for temperatures up to 1,500 K. Previous methane data are incomplete, leading to underestimated opacities at short wavelengths and elevated temperatures. Use of 10to10 in models of the bright T4.5 brown dwarf 2MASS 0559-14 leads to significantly better agreement with observations and in studies of the hot Jupiter exoplanet HD 189733b leads to up to a 20-fold increase in methane abundance. It is demonstrated that proper inclusion of the huge increase in hot transitions which are important at elevated temperatures is crucial for accurate characterizations of atmospheres of brown dwarfs and exoplanets, especially when observed in the near-infrared.

  6. Microscale Syntheses, Reactions, and 1H NMR Spectroscopic Investigations of Square Planar Macrocyclic Tetraamido-N Cu(III) Complexes Relevant to Green Chemistry

    ERIC Educational Resources Information Center

    Uffelman, Erich S.; Doherty, Jonathan R.; Schulze, Carl; Burke, Amy L.; Bonnema, Kristen R.; Watson, Tanya T.; Lee, Daniel W., III

    2004-01-01

    Microscale fusions, description, and spectroscopic analysis of the reactivity of a square planar Cu(III) complex significant to green chemistry, are presented. The experiment also includes nine focal points on which pre-lab and post-lab questions are based, and the final exams reflect the students' comprehension of these and other features of…

  7. Chemistry and spectroscopy of the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.; Owen, T.

    1976-01-01

    A comprehensive review is given of the chemistry and spectroscopic studies of the Jovian atmosphere. Thermochemical equilibrium models for determining atmospheric composition are considered along with possible disequilibrating processes, and studies of the photochemistry of H2, CH4, NH3, H2S, and PH3 using the modeling methods are summarized. It is shown that photodissociation and advection are the major disequilibrating processes in Jupiter's atmosphere, that lightning and charged-particle bombardment are relatively minor factors in the planet's bulk chemistry, and that the existence of living organisms on the planet is highly improbable. Spectroscopic investigations of Jupiter are discussed, emphasizing recent observations of absorption bands due to CH4, NH3, H2, He, and D. Spectroscopic abundance determinations are examined for H2, HD, CH4, CH3D, NH3, C2H6, C2H2, and PH3. Upper limits are given for the abundances of several unobserved gases in the visible atmosphere, including H2S, HCl, SiH4, benzene, purines, pyrimidines, and their derivatives.

  8. Aqua-vanadyl ion interaction with Nafion® membranes

    DOE PAGES

    Vijayakumar, Murugesan; Govind, Niranjan; Li, Bin; ...

    2015-03-23

    Lack of comprehensive understanding about the interactions between Nafion membrane and battery electrolytes prevents the straightforward tailoring of optimal materials for redox flow battery applications. In this work, we analyzed the interaction between aqua-vanadyl cation and sulfonic sites within the pores of Nafion membranes using combined theoretical and experimental X-ray spectroscopic methods. Molecular level interactions, namely, solvent share and contact pair mechanisms are discussed based on Vanadium and Sulfur K-edge spectroscopic analysis.

  9. Defect study in ZnO related structures—A multi-spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Ling, C. C.; Cheung, C. K.; Gu, Q. L.; Dai, X. M.; Xu, S. J.; Zhu, C. Y.; Luo, J. M.; Zhu, C. Y.; Tam, K. H.; Djurišić, A. B.; Beling, C. D.; Fung, S.; Lu, L. W.; Brauer, G.; Anwand, W.; Skorupa, W.; Ong, H. C.

    2008-10-01

    ZnO has attracted a great deal of attention in recent years because of its potential applications for fabricating optoelectronic devices. Using a multi-spectroscopic approach including positron annihilation spectroscopy (PAS), deep level transient spectroscopy (DLTS), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS), we have studied the two observed phenomena from ZnO related structures. They namely included the H 2O 2 pre-treatment induced ohmic to rectifying contact conversion on Au/ n-ZnO contact and the p-type doping by nitrogen ion implantation. The aim of the studies was to offering comprehensive views as to how the defects influenced the structures electrical and optical properties of the structures. It was also shown that PAS measurement using the monoenergetic positron beam could offer valuable information of vacancy type defects in the vertical ZnO nanorod array structure.

  10. S&MPO - An information system for ozone spectroscopy on the WEB

    NASA Astrophysics Data System (ADS)

    Babikov, Yurii L.; Mikhailenko, Semen N.; Barbe, Alain; Tyuterev, Vladimir G.

    2014-09-01

    Spectroscopy and Molecular Properties of Ozone ("S&MPO") is an Internet accessible information system devoted to high resolution spectroscopy of the ozone molecule, related properties and data sources. S&MPO contains information on original spectroscopic data (line positions, line intensities, energies, transition moments, spectroscopic parameters) recovered from comprehensive analyses and modeling of experimental spectra as well as associated software for data representation written in PHP Java Script, C++ and FORTRAN. The line-by-line list of vibration-rotation transitions and other information is organized as a relational database under control of MySQL database tools. The main S&MPO goal is to provide access to all available information on vibration-rotation molecular states and transitions under extended conditions based on extrapolations of laboratory measurements using validated theoretical models. Applications for the S&MPO may include: education/training in molecular physics, radiative processes, laser physics; spectroscopic applications (analysis, Fourier transform spectroscopy, atmospheric optics, optical standards, spectroscopic atlases); applications to environment studies and atmospheric physics (remote sensing); data supply for specific databases; and to photochemistry (laser excitation, multiphoton processes). The system is accessible via Internet on two sites: http://smpo.iao.ru and http://smpo.univ-reims.fr.

  11. Endohedral fullerenes: Synthesis, isolation, mono- and bis -functionalization

    DOE PAGES

    Cerón, Maira R.; Maffeis, Viviana; Stevenson, Steven; ...

    2017-03-29

    Here, in this paper, we present a short overview of the contribution of our research group to the discovery, functionalization and characterization of unprecedented endohedral fullerenes. We also report a comprehensive study of regioselective bis-1,3-dipolar cycloadditions to cluster endohedral fullerenes M 3N@I h-C 80 (M = Lu, Y and Er) and the spectroscopic characterization of the new bis-adducts obtained.

  12. On krypton-doped capsule implosion experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Ma, T.; Nora, R.; Barrios, M. A.; Scott, H. A.; Schneider, M. B.; Berzak Hopkins, L.; Casey, D. T.; Hammel, B. A.; Jarrott, L. C.; Landen, O. L.; Patel, P. K.; Rosenberg, M. J.; Spears, B. K.

    2017-07-01

    This paper presents the spectroscopic aspects of using Krypton as a dopant in NIF capsule implosions through simulation studies and the first set of NIF experiments. Using a combination of 2D hohlraum and 1D capsule simulations with comprehensive spectroscopic modeling, the calculations focused on the effect of dopant concentration on the implosion, and the impact of gradients in the electron density and temperature to the Kr line features and plasma opacity. Experimental data were obtained from three NIF Kr-dopant experiments, performed with varying Kr dopant concentrations between 0.01% and 0.03%. The implosion performance, hotspot images, and detailed Kr spectral analysis are summarized relative to the predictions. Data show that fuel-dopant spectroscopy can serve as a powerful and viable diagnostic for inertial confinement fusion implosions.

  13. Spectroscopic characterization of N = 9 armchair graphene nanoribbons

    DOE PAGES

    Senkovskiy, B. V.; Haberer, D.; Usachov, D. Yu.; ...

    2017-07-03

    In this study, we investigate the N = 9 atoms wide armchair-type graphene nanoribbons (9-AGNRs) by performing a comprehensive spectroscopic and microscopic characterization of this novel material. In particular, we use X-ray photoelectron, near edge X-ray absorption fine structure, scanning tunneling, polarized Raman and angle-resolved photoemission (ARPES) spectroscopies. The ARPES measurements are aided by calculations of the photoemission matrix elements which yield the position in k space having the strongest photoemission cross section. Comparison with well-studied narrow N = 7 AGNRs shows that the effective electron mass in 9-AGNRs is reduced by two times and the valence band maximum ismore » shifted to lower binding energy by ~0.6 eV. In polarized Raman measurements of the aligned 9-AGNR, we reveal anisotropic signal depending upon the phonon symmetry. To conclude, our results indicate the 9-AGNRs are a novel 1D semiconductor with a high potential in nanoelectronic applications.« less

  14. Study of gamma detection capabilities of the REWARD mobile spectroscopic system

    NASA Astrophysics Data System (ADS)

    Balbuena, J. P.; Baptista, M.; Barros, S.; Dambacher, M.; Disch, C.; Fiederle, M.; Kuehn, S.; Parzefall, U.

    2017-07-01

    REWARD is a novel mobile spectroscopic radiation detector system for Homeland Security applications. The system integrates gamma and neutron detection equipped with wireless communication. A comprehensive simulation study on its gamma detection capabilities in different radioactive scenarios is presented in this work. The gamma detection unit consists of a precise energy resolution system based on two stacked (Cd,Zn)Te sensors working in coincidence sum mode. The volume of each of these CZT sensors is 1 cm3. The investigated energy windows used to determine the detection capabilities of the detector correspond to the gamma emissions from 137Cs and 60Co radioactive sources (662 keV and 1173/1333 keV respectively). Monte Carlo and Technology Computer-Aided Design (TCAD) simulations are combined to determine its sensing capabilities for different radiation sources and estimate the limits of detection of the sensing unit as a function of source activity for several shielding materials.

  15. Atomic Force Microscopy and Spectroscopic Ellipsometry combined analysis of Small Ubiquitin-like Modifier adsorption on functional monolayers

    NASA Astrophysics Data System (ADS)

    Solano, Ilaria; Parisse, Pietro; Gramazio, Federico; Ianeselli, Luca; Medagli, Barbara; Cavalleri, Ornella; Casalis, Loredana; Canepa, Maurizio

    2017-11-01

    The comprehension of mechanisms of interaction between functional layers and proteins is relevant for the development of sensitive and precise biosensors. Here we report our study which combines Atomic Force Microscopy and Spectroscopic Ellipsometry to investigate the His-Ni-NTA mediated interaction between 6His-tagged Small Ubiquitin-like Modifier (SUMO) protein with self assembled monolayers of NTA terminated alkanethiols. The use of AFM-based nanolithograhic tools and the analysis of ellipsometric spectra in situ and ex situ provided us a solid method to disentangle the effects of Ni(II)-mediated interaction between the NTA layer and the 6His-tagged SUMO and to accurately determine in physiological condition the thickness value of the SUMO layer. This investigation is a first step towards the study of layered systems of greater complexity of which the NTA/6His-tagged SUMO is a prototypical example.

  16. Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Oates, T. W. H.; Wormeester, H.; Arwin, H.

    2011-12-01

    In this article, spectroscopic ellipsometry studies of plasmon resonances at metal-dielectric interfaces of thin films are reviewed. We show how ellipsometry provides valuable non-invasive amplitude and phase information from which one can determine the effective dielectric functions, and how these relate to the material nanostructure and define exactly the plasmonic characteristics of the system. There are three related plasmons that are observable using spectroscopic ellipsometry; volume plasmon resonances, surface plasmon polaritons and particle plasmon resonances. We demonstrate that the established method of exploiting surface plasmon polaritons for chemical and biological sensing may be enhanced using the ellipsometric phase information and provide a comprehensive theoretical basis for the technique. We show how the particle and volume plasmon resonances in the ellipsometric spectra of nanoparticle films are directly related to size, surface coverage and constituent dielectric functions of the nanoparticles. The regularly observed splitting of the particle plasmon resonance is theoretically described using modified effective medium theories within the framework of ellipsometry. We demonstrate the wealth of information available from real-time in situ spectroscopic ellipsometry measurements of metal film deposition, including the evolution of the plasmon resonances and percolation events. Finally, we discuss how generalized and Mueller matrix ellipsometry hold great potential for characterizing plasmonic metamaterials and sub-wavelength hole arrays.

  17. The influence of atomic alignment on absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Heshou; Yan, Huirong; Richter, Philipp

    2018-06-01

    Spectroscopic observations play essential roles in astrophysics. They are crucial for determining physical parameters in the universe, providing information about the chemistry of various astronomical environments. The proper execution of the spectroscopic analysis requires accounting for all the physical effects that are compatible to the signal-to-noise ratio. We find in this paper the influence on spectroscopy from the atomic/ground state alignment owing to anisotropic radiation and modulated by interstellar magnetic field, has significant impact on the study of interstellar gas. In different observational scenarios, we comprehensively demonstrate how atomic alignment influences the spectral analysis and provide the expressions for correcting the effect. The variations are even more pronounced for multiplets and line ratios. We show the variation of the deduced physical parameters caused by the atomic alignment effect, including alpha-to-iron ratio ([X/Fe]) and ionisation fraction. Synthetic observations are performed to illustrate the visibility of such effect with current facilities. A study of PDRs in ρ Ophiuchi cloud is presented to demonstrate how to account for atomic alignment in practice. Our work has shown that due to its potential impact, atomic alignment has to be included in an accurate spectroscopic analysis of the interstellar gas with current observational capability.

  18. In vitro drug interaction of levocetirizine and diclofenac: Theoretical and spectroscopic studies.

    PubMed

    Abo Dena, Ahmed S; Abdel Gaber, Sara A

    2017-06-15

    Levocetirizine dihydrochloride is known to interact with some anti-inflammatory drugs. We report here a comprehensive integrated theoretical and experimental study for the in vitro drug interaction between levocetirizine dihydrochloride (LEV) and diclofenac sodium (DIC). The interaction of the two drugs was confirmed by the molecular ion peak obtained from the mass spectrum of the product. Moreover, FTIR and 1 HNMR spectra of the individual drugs and their interaction product were inspected to allocate the possible sites of interaction. In addition, quantum mechanical DFT calculations were performed to search for the interaction sites and to verify the types of interactions deduced from the spectroscopic studies such as charge-transfer and non-bonding π-π interactions. It was found that the studied drugs interact with each other in aqueous solution via four types of interactions, namely, ion-pair formation, three weak hydrogen bonds, non-bonding π-π interactions and charge-transfer from DIC to LEV. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Phase transition in bulk single crystals and thin films of V O 2 by nanoscale infrared spectroscopy and imaging

    DOE PAGES

    Liu, Mengkun; Sternbach, Aaron J.; Wagner, Martin; ...

    2015-06-29

    We have systematically studied a variety of vanadium dioxide (VO 2) crystalline forms, including bulk single crystals and oriented thin films, using infrared (IR) near-field spectroscopic imaging techniques. By measuring the IR spectroscopic responses of electrons and phonons in VO 2 with sub-grain-size spatial resolution (~20nm), we show that epitaxial strain in VO 2 thin films not only triggers spontaneous local phase separations, but leads to intermediate electronic and lattice states that are intrinsically different from those found in bulk. Generalized rules of strain- and symmetry-dependent mesoscopic phase inhomogeneity are also discussed. Furthermore, these results set the stage for amore » comprehensive understanding of complex energy landscapes that may not be readily determined by macroscopic approaches.« less

  20. Operando x-ray photoelectron emission microscopy for studying forward and reverse biased silicon p-n junctions.

    PubMed

    Barrett, N; Gottlob, D M; Mathieu, C; Lubin, C; Passicousset, J; Renault, O; Martinez, E

    2016-05-01

    Significant progress in the understanding of surfaces and interfaces of materials for new technologies requires operando studies, i.e., measurement of chemical, electronic, and magnetic properties under external stimulus (such as mechanical strain, optical illumination, or electric fields) applied in situ in order to approach real operating conditions. Electron microscopy attracts much interest, thanks to its ability to determine semiconductor doping at various scales in devices. Spectroscopic photoelectron emission microscopy (PEEM) is particularly powerful since it combines high spatial and energy resolution, allowing a comprehensive analysis of local work function, chemistry, and electronic structure using secondary, core level, and valence band electrons, respectively. Here we present the first operando spectroscopic PEEM study of a planar Si p-n junction under forward and reverse bias. The method can be used to characterize a vast range of materials at near device scales such as resistive oxides, conducting bridge memories and domain wall arrays in ferroelectrics photovoltaic devices.

  1. ExoMol: Molecular Line List for Exoplanets and Other Atmospheres

    NASA Astrophysics Data System (ADS)

    Tennyson, Jonathan; Yurchenko, Sergei N.; Polyansky, Oleg

    2016-06-01

    The discovery of extrasolar planets is one of the major scientific advances of the last two decades. Thousands of planets have now been detected and astronomers are beginning to characterize their composition and physical characteristics. To do this requires a huge quantity of spectroscopic data most of which are not available from laboratory studies. The ExoMol project [1] is generating a comprehensive solution to this problem by providing spectroscopic data on all the molecular transitions of importance in the atmospheres of exoplanets. These data are widely applicable to other problems such studies on cool stars, brown dwarfs and circumstellar environments as well as industrial and technological problems on earth. ExoMol employs a mixture of first principles and empirically tuned quantum mechanical methods to compute comprehensive and very large rotation-vibration and rovibronic line lists. Results span a variety of closed (NaH, SiO, PN, NaCl, KCl, CS) and open (BeH, MgH, CaH, AlO, VO) shell diatomics to triatomics (HCN/HNC, SO_2, H_2S, H_3^+), tetratomics (H_2CO, PH_3, SO_3, H_2O_2), plus methane [2] and nitric acid [3]. This has led directly to the detection of new species in the atmospheres of exoplanets [4]. A new comprehensive data release has just been completed [5]. Progress on and future prospects of the project will be summarised. J. Tennyson, S. N. Yurchenko, Mon. Not. R. astr. Soc., 425, 21, 2012. S. N. Yurchenko, J. Tennyson, J. Bailey, M. D. J. Hollis, G Tinetti, Proc. Nat. Acad. Sci., 111, 9379, 2014. A. I. Pavlyuchko, S. N. Yurchenko, J. Tennyson, Mon. Not. R. astr. Soc., 452, 1702, 2015. A. Tsiaras et al, Astrophys. J., in press. J. Tennyson et al, J. Mol. Spectrosc., in press.

  2. The "small" NEA population: results of a spectroscopic survey in the framework of the NEOShield-2 project

    NASA Astrophysics Data System (ADS)

    Perna, D.

    2017-09-01

    One of the main aims of the NEOShield-2 project, financed in 2015-2017 by the European Commission in the framework of the H2020 program, is to undertake a comprehensive investigation of the physical properties of the "small" near-Earth asteroid (NEA) population. Here we report the results of a visible spectroscopic survey of 137 small (H>20) NEAs, performed in the framework of NEOShield-2. These data significantly increase the available literature in this size range, and show a peculiar distribution of spectral types for such small NEAs.

  3. Spectroscopic characterization of metal bound phytochelatin analogue (Glu-Cys)4-Gly.

    PubMed

    Cheng, Yongsheng; Yan, Yong-Bin; Liu, Jinyuan

    2005-10-01

    The metal ion binding properties of a phytochelatin (PC) analogue, (Glu-Cys)4-Gly (named as EC4), have been studied by a divalent metal ion binding assay monitored by UV-visible spectroscopy, circular dichroism and NMR spectroscopy. Spectro- photometric titration with different divalent metal ions have revealed that the stiochoimetry of metal-bound EC4 was 1:1, and its metal binding affinities with different divalent metal ions in the order of Cd(II)>Cu(II)>Zn(II)>Pb(II)>Ni(II)>Co(II). UV-visible spectroscopic analysis of metal complexes indicated that four sulfur atoms in cysteine residues are attributable to ligand-to-metal charge transfer (LMCT) between divalent metal ions and EC4, and further confirmed by 1D H1 NMR study and Circular Dichroism. In addition, Circular Dichroism spectra of both free and metal-bound forms of EC4 revealed that metal coordination drives the nonapeptide chain to fold into a turned conformation. The comprehensive analysis of spectroscopic properties of the nonapeptide complexed with metal ions not only provides a fundamental description of the metal ion binding properties of PC analogue, but also shows a correlation between metal binding affinity of PC analogue and the induction activity of metal ions.

  4. Formation of spectral lines in planetary atmospheres. I - Theory for cloudy atmospheres: Application to Venus.

    NASA Technical Reports Server (NTRS)

    Hunt, G. E.

    1972-01-01

    The theory of the formation of spectral lines in a cloudy planetary atmosphere is studied in detail. It is shown that models based upon homogeneous, isotropically scattering atmospheres cannot be used to reproduce observed spectroscopic features of phase effect and the shape of spectral lines for weak and strong bands. The theory must, therefore, be developed using an inhomogeneous (gravitational) model of a planetary atmosphere, accurately incorporating all the physical processes of radiative transfer. Such a model of the lower Venus atmosphere, consistent with our present knowledge, is constructed. The results discussed in this article demonstrate the effects of the parameters that describe the atmospheric model on the spectroscopic features of spectral line profile and phase effect, at visible and near infrared wavelengths. This information enables us to develop a comprehensive theory of line formation in a Venus atmosphere.

  5. Spectroscopic studies of anthracyclines: Structural characterization and in vitro tracking

    NASA Astrophysics Data System (ADS)

    Szafraniec, Ewelina; Majzner, Katarzyna; Farhane, Zeineb; Byrne, Hugh J.; Lukawska, Malgorzata; Oszczapowicz, Irena; Chlopicki, Stefan; Baranska, Malgorzata

    2016-12-01

    A broad spectroscopic characterization, using ultraviolet-visible (UV-vis) and Fourier transform infrared absorption as well as Raman scattering, of two commonly used anthracyclines antibiotics (DOX) daunorubicin (DNR), their epimers (EDOX, EDNR) and ten selected analogs is presented. The paper serves as a comprehensive spectral library of UV-vis, IR and Raman spectra of anthracyclines in the solid state and in solution. The particular advantage of Raman spectroscopy for the measurement and analysis of individual antibiotics is demonstrated. Raman spectroscopy can be used to monitor the in vitro uptake and distribution of the drug in cells, using both 488 nm and 785 nm as source wavelengths, with submicrometer spatial resolution, although the cellular accumulation of the drug is different in each case. The high information content of Raman spectra allows studies of the drug-cell interactions, and so the method seems very suitable for monitoring drug uptake and mechanisms of interaction with cellular compartments at the subcellular level.

  6. Spectroscopic Study of Terahertz Generation in Mid-Infrared Quantum Cascade Lasers.

    PubMed

    Jiang, Yifan; Vijayraghavan, Karun; Jung, Seungyong; Jiang, Aiting; Kim, Jae Hyun; Demmerle, Frederic; Boehm, Gerhard; Amann, Markus C; Belkin, Mikhail A

    2016-02-16

    Terahertz quantum cascade laser sources based on intra-cavity difference-frequency generation are currently the only room-temperature mass-producible diode-laser-like emitters of coherent 1-6 THz radiation. Device performance has improved dramatically over the past few years to reach milliwatt-level power output and broad tuning from 1.2 to 5.9 THz, all at room-temperature. Terahertz output in these sources originates from intersubband optical nonlinearity in the laser active region. Here we report the first comprehensive spectroscopic study of the optical nonlinearity and investigate its dependence on the mid-infrared pump frequencies. Our work shows that the terahertz generation efficiency can vary by a factor of 2 or greater depending on the spectral position of the mid-infrared pumps for a fixed THz difference-frequency. We have also measured for the first time the linewidth for transitions between the lower quantum cascade laser states, which is critical for determining terahertz nonlinearity and predicting optical loss in quantum cascade laser waveguides.

  7. Admittance spectroscopy or deep level transient spectroscopy: A contrasting juxtaposition

    NASA Astrophysics Data System (ADS)

    Bollmann, Joachim; Venter, Andre

    2018-04-01

    A comprehensive understanding of defects in semiconductors remains of primary importance. In this paper the effectiveness of two of the most commonly used semiconductor defect spectroscopy techniques, viz. deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) are reviewed. The analysis of defects present in commercially available SiC diodes shows that admittance spectroscopy allows the identification of deep traps with reduced measurement effort compared to deep Level Transient Spectroscopy (DLTS). Besides the N-donor, well-studied intrinsic defects were detected in these diodes. Determination of their activation energy and defect density, using the two techniques, confirm that the sensitivity of AS is comparable to that of DLTS while, due to its well defined peak shape, the spectroscopic resolution is superior. Additionally, admittance spectroscopy can analyze faster emission processes which make the study of shallow defects more practical and even that of shallow dopant levels, possible. A comparative summary for the relevant spectroscopic features of the two capacitance methods are presented.

  8. Comprehensive study of interaction between biocompatible PEG-InP/ZnS QDs and bovine serum albumin.

    PubMed

    Sannaikar, M S; Inamdar, Laxmi S; Pujar, G H; Wari, M N; Balasinor, Nafisa H; Inamdar, S R

    2018-05-01

    Polyethylene glycol (PEG) surface modified biocompatible InP/ZnS quantum dots (QDs) act as a potential alternative for conventional carcinogenic cadmium-based quantum dots for in vivo and in vitro studies. Comprehensively, we studied the interaction between a model protein bovine serum albumin (BSA) and PEGylated toxic free InP/ZnS QDs using various spectroscopic tools such as absorption, fluorescence quenching, time resolved and synchronous fluorescence spectroscopic measurements. These studies principally show that tryptophan (Trp) residues of BSA have preferable binding affinity towards PEG-InP/ZnS QDs surface and a blue shift in Trp fluorescence emission is a signature of conformational changes in its hydrophobic microenvironment. Photoluminescence (PL) intensity of Trp is quenched by ground state complex formation (static quenching) at room temperature. However, InP/ZnS@BSA conjugates become unstable with increasing temperature and PL intensity of Trp is quenched via dynamic quenching by PEG-InP/ZnS QDs. Experimentally determined thermodynamic parameters for these conjugates have shown spontaneity, entropy driven and exothermic nature of bio-conjugation. The calculated binding affinity (n ≅ 1, Hill coefficient) suggest that the affinity of InP/ZnS QDs for a BSA protein is not dependent on whether or not other BSA proteins are already bound to the QD surface. Energy transfer efficiency (E), Trp residue to InP/ZnS QDs distances and energy transfer rate (k T ) were all obtained from FÖrster resonance energy. Copyright © 2017 John Wiley & Sons, Ltd.

  9. HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data

    NASA Astrophysics Data System (ADS)

    Kochanov, R. V.; Gordon, I. E.; Rothman, L. S.; Wcisło, P.; Hill, C.; Wilzewski, J. S.

    2016-07-01

    The HITRAN Application Programming Interface (HAPI) is presented. HAPI is a free Python library, which extends the capabilities of the HITRANonline interface (www.hitran.org) and can be used to filter and process the structured spectroscopic data. HAPI incorporates a set of tools for spectra simulation accounting for the temperature, pressure, optical path length, and instrument properties. HAPI is aimed to facilitate the spectroscopic data analysis and the spectra simulation based on the line-by-line data, such as from the HITRAN database [JQSRT (2013) 130, 4-50], allowing the usage of the non-Voigt line profile parameters, custom temperature and pressure dependences, and partition sums. The HAPI functions allow the user to control the spectra simulation and data filtering process via a set of the function parameters. HAPI can be obtained at its homepage www.hitran.org/hapi.

  10. Photoelectron Diffraction and Holography Studies of 2D Materials and Interfaces

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Mikhail V.; Ogorodnikov, Ilya I.; Usachov, Dmitry Yu.; Laubschat, Clemens; Vyalikh, Denis V.; Matsui, Fumihiko; Yashina, Lada V.

    2018-06-01

    Photoelectron diffraction (XPD) and holography (XPH) are powerful spectroscopic methods that allow comprehensive exploration and characterization of certain structural properties of materials, in particular those of 2D systems and interfaces. Recent developments in XPD and XPH are especially impressive when they are applied to partially disordered systems such as intercalation compounds, doped graphene, buffer layers or adsorbates and imperfectly ordered germanene and phoshporene. In our brief review, we sum up the advances in XPD and XPH studies of 2D materials and discuss the unique opportunities granted by these two interrelated methods.

  11. A new phenolic glycoside from the stem of Dendrobium nobile.

    PubMed

    Zhou, Xue-Ming; Zheng, Cai-Juan; Wu, Jia-Ting; Chen, Guang-Ying; Zhang, Bin; Sun, Chong-Ge

    2017-05-01

    A new phenolic glycoside dendroside (1), together with seven known compounds (2-8) were isolated from the stems of Dendrobium nobile. The structures of these compounds were elucidated using comprehensive spectroscopic methods. The inhibitory activities of all compounds against three cancer cell lines HeLa, MCF-7 and A549 were evaluated.

  12. Selected spectroscopic results on element 115 decay chains

    DOE PAGES

    Rudolph, D.; Forsberg, U.; Golubev, P.; ...

    2014-08-24

    We observed thirty correlated α-decay chains in an experiment studying the fusion-evaporation reaction 48Ca + 243Am at the GSI Helmholtzzentrum fur Schwerionenforschung. The decay characteristics of the majority of these 30 chains are consistent with previous observations and interpretations of such chains to originate from isotopes of element Z = 115. High-resolution α-photon coincidence spectroscopy in conjunction with comprehensive Monte-Carlo simulations allow to propose excitation schemes of atomic nuclei of the heaviest elements, thereby probing nuclear structure models near the 'Island of Stability' with unprecedented experimental precision.

  13. Recent Developments in Hyperspectral Imaging for Assessment of Food Quality and Safety

    PubMed Central

    Huang, Hui; Liu, Li; Ngadi, Michael O.

    2014-01-01

    Hyperspectral imaging which combines imaging and spectroscopic technology is rapidly gaining ground as a non-destructive, real-time detection tool for food quality and safety assessment. Hyperspectral imaging could be used to simultaneously obtain large amounts of spatial and spectral information on the objects being studied. This paper provides a comprehensive review on the recent development of hyperspectral imaging applications in food and food products. The potential and future work of hyperspectral imaging for food quality and safety control is also discussed. PMID:24759119

  14. Lensing convergence in galaxy clustering in ΛCDM and beyond

    NASA Astrophysics Data System (ADS)

    Villa, Eleonora; Di Dio, Enea; Lepori, Francesca

    2018-04-01

    We study the impact of neglecting lensing magnification in galaxy clustering analyses for future galaxy surveys, considering the ΛCDM model and two extensions: massive neutrinos and modifications of General Relativity. Our study focuses on the biases on the constraints and on the estimation of the cosmological parameters. We perform a comprehensive investigation of these two effects for the upcoming photometric and spectroscopic galaxy surveys Euclid and SKA for different redshift binning configurations. We also provide a fitting formula for the magnification bias of SKA. Our results show that the information present in the lensing contribution does improve the constraints on the modified gravity parameters whereas the lensing constraining power is negligible for the ΛCDM parameters. For photometric surveys the estimation is biased for all the parameters if lensing is not taken into account. This effect is particularly significant for the modified gravity parameters. Conversely for spectroscopic surveys the bias is below one sigma for all the parameters. Our findings show the importance of including lensing in galaxy clustering analyses for testing General Relativity and to constrain the parameters which describe its modifications.

  15. Interstellar polycyclic aromatic hydrocarbons - The infrared emission bands, the excitation/emission mechanism, and the astrophysical implications

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Tielens, G. G. M.; Barker, J. R.

    1989-01-01

    A comprehensive study of the PAH hypothesis is presented, including the interstellar, IR spectral features which have been attributed to emission from highly vibrationally excited PAHs. Spectroscopic and IR emission features are discussed in detail. A method for calculating the IR fluorescence spectrum from a vibrationally excited molecule is described. Analysis of interstellar spectrum suggests that the PAHs which dominate the IR spectra contain between 20 and 40 C atoms. The results are compared with results from a thermal approximation. It is found that, for high levels of vibrational excitation and emission from low-frequency modes, the two methods produce similar results. Also, consideration is given to the relationship between PAH molecules and amorphous C particles, the most likely interstellar PAH molecular structures, the spectroscopic structure produced by PAHs and PAH-related materials in the UV portion of the interstellar extinction curve, and the influence of PAH charge on the UV, visible, and IR regions.

  16. Herschel spectroscopic observations of PPNe and PNe

    NASA Astrophysics Data System (ADS)

    García-Lario, Pedro; Ramos-Medina, J.; Sánchez-Contreras, C.

    2017-10-01

    We are building a catalogue of interactively reprocessed observations of evolved stars observed with Herschel. The catalogue will offer not only the PACS and SPIRE spectroscopic data for each observation, but also complementary information from other infrared space observatories. As a first step, we are concentrating our efforts on two main activities: 1) the interactive data-reduction of more than 500 individual spectra obtained with PACS in the 55-210 μm range, available in the Herschel Science Archive; 2) the creation of a catalogue, accesible via a web-based interface and through the Virtual Observatory. Our ultimate goal is to carry out a comprehensive and systematic study of the far infrared properties of low-and intermediate-mass evolved stars using these data and enable science based on Herschel archival data. The objects cover the whole range of possible evolutionary stages in this short-lived phase of stellar evolution, from the AGB to the PN stage, displaying a wide variety of chemical and physical properties.

  17. Raman spectroscopic evaluation of DNA adducts of a platinum containing anticancer drug.

    PubMed

    Jangir, Deepak K; Mehrotra, Ranjana

    2014-09-15

    Mechanistic understanding of the interaction of drugs with their target molecules is important for better understanding of their mode of action and to improve their efficacy. Carboplatin is a platinum containing anticancer drug, used to treat different type of tumors. In the present work, we applied Raman spectroscopy to study the interaction of carboplatin with DNA at molecular level using different carboplatin-DNA molar ratios. These Raman spectroscopic results provide comprehensive understanding on the carboplatin-DNA interactions and indicate that DNA cross-linked adducts formed by carboplatin are similar to cisplatin adducts. The results indicate that guanine N7 and adenine N7 are the putative sites for carboplatin interaction. It is observed that carboplatin has some affinity toward cytosine in DNA. Phosphate sugar backbone of DNA showed conformation perturbation in DNA which were easily sensible at higher concentrations of carboplatin. Most importantly, carboplatin interaction induces intermediate A- and B-DNA conformations at the cross-linking sites. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. L-shell spectroscopic diagnostics of radiation from krypton HED plasma sources.

    PubMed

    Petkov, E E; Safronova, A S; Kantsyrev, V L; Shlyaptseva, V V; Rawat, R S; Tan, K S; Beiersdorfer, P; Hell, N; Brown, G V

    2016-11-01

    X-ray spectroscopy is a useful tool for diagnosing plasma sources due to its non-invasive nature. One such source is the dense plasma focus (DPF). Recent interest has developed to demonstrate its potential application as a soft x-ray source. We present the first spectroscopic studies of krypton high energy density plasmas produced on a 3 kJ DPF device in Singapore. In order to diagnose spectral features, and to obtain a more comprehensive understanding of plasma parameters, a new non-local thermodynamic equilibrium L-shell kinetic model for krypton was developed. It has the capability of incorporating hot electrons, with different electron distribution functions, in order to examine the effects that they have on emission spectra. To further substantiate the validity of this model, it is also benchmarked with data gathered from experiments on the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory, where data were collected using the high resolution EBIT calorimeter spectrometer.

  19. L-shell spectroscopic diagnostics of radiation from krypton HED plasma sources

    DOE PAGES

    Petkov, E. E.; Safronova, A. S.; Kantsyrev, V. L.; ...

    2016-08-09

    We report that X-ray spectroscopy is a useful tool for diagnosing plasma sources due to its non-invasive nature. One such source is the dense plasma focus (DPF). Recent interest has developed to demonstrate its potential application as a soft x-ray source. We present the first spectroscopic studies of krypton high energy density plasmas produced on a 3 kJ DPF device in Singapore. In order to diagnose spectral features, and to obtain a more comprehensive understanding of plasma parameters, a new non-local thermodynamic equilibrium L-shell kinetic model for krypton was developed. It has the capability of incorporating hot electrons, with differentmore » electron distribution functions, in order to examine the effects that they have on emission spectra. Finally, to further substantiate the validity of this model, it is also benchmarked with data gathered from experiments on the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory, where data were collected using the high resolution EBIT calorimeter spectrometer.« less

  20. L-shell spectroscopic diagnostics of radiation from krypton HED plasma sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petkov, E. E., E-mail: emilp@unr.edu; Safronova, A. S.; Kantsyrev, V. L.

    2016-11-15

    X-ray spectroscopy is a useful tool for diagnosing plasma sources due to its non-invasive nature. One such source is the dense plasma focus (DPF). Recent interest has developed to demonstrate its potential application as a soft x-ray source. We present the first spectroscopic studies of krypton high energy density plasmas produced on a 3 kJ DPF device in Singapore. In order to diagnose spectral features, and to obtain a more comprehensive understanding of plasma parameters, a new non-local thermodynamic equilibrium L-shell kinetic model for krypton was developed. It has the capability of incorporating hot electrons, with different electron distribution functions,more » in order to examine the effects that they have on emission spectra. To further substantiate the validity of this model, it is also benchmarked with data gathered from experiments on the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory, where data were collected using the high resolution EBIT calorimeter spectrometer.« less

  1. Three new areca alkaloids from the nuts of Areca catechu.

    PubMed

    Tang, Shao-Nan; Zhang, Jian; Liu, Dong; Liu, Zhi-Wen; Zhang, Xiao-Qi; Ye, Wen-Cai

    2017-12-01

    Three new areca alkaloids arecatemines A-C (1-3), together with five known ones (4-8), were isolated from the nuts of Areca catechu. The structures of new compounds including absolute configurations were elucidated using comprehensive spectroscopic and electronic circular dichroism (ECD). The known compounds were identified by comparing with data in the literature.

  2. MC 2 : galaxy imaging and redshift analysis of the merging cluster Ciza J2242.8+5301

    DOE PAGES

    Dawson, William A.; Jee, M. James; Stroe, Andra; ...

    2015-05-28

    X-ray and radio observations of CIZA J2242.8+5301 suggest that it is a major cluster merger. Despite being well studied in the X-ray, and radio, little has been presented on the cluster structure and dynamics inferred from its galaxy population. We carried out a deep (i < 25) broad band imaging survey of the system with Subaru SuprimeCam (g & i bands) and the Canada France Hawaii Telescope (r band) as well as a comprehensive spectroscopic survey of the cluster area (505 redshifts) using Keck DEIMOS. We use this data to perform a comprehensive galaxy/redshift analysis of the system, which ismore » the first step to a proper understanding the geometry and dynamics of the merger, as well as using the merger to constrain self-interacting dark matter.« less

  3. Titanium and Ruthenium Phthalocyanines for NO2 Sensors: A Mini-Review

    PubMed Central

    Paoletti, Anna Maria; Pennesi, Giovanna; Rossi, Gentilina; Generosi, Amanda; Paci, Barbara; Albertini, Valerio Rossi

    2009-01-01

    This review presents studies devoted to the description and comprehension of phenomena connected with the sensing behaviour towards NO2 of films of two phthalocyanines, titanium bis-phthalocyanine and ruthenium phthalocyanine. Spectroscopic, conductometric, and morphological features recorded during exposure to the gas are explained and the mechanisms of gas-molecule interaction are also elucidated. The review also shows how X-ray reflectivity can be a useful tool for monitoring morphological parameters such as thickness and roughness that are demonstrated to be sensitive variables for monitoring the exposure of thin films of sensor materials to NO2 gas. PMID:22346697

  4. NASA EPSCoR Preparation Grant

    NASA Technical Reports Server (NTRS)

    Sukanek, Peter C.

    2002-01-01

    The NASA EPSCoR project in Mississippi involved investigations into three areas of interest to NASA by researchers at the four comprehensive universities in the state. These areas involved: (1) Noninvasive Flow Measurement Techniques, (2) Spectroscopic Exhaust Plume Measurements of Hydrocarbon Fueled Rocket Engines and (3) Integration of Remote Sensing and GIS data for Flood Forecasting on the Mississippi Gulf Coast. Each study supported a need at the Stennis Space Center in Mississippi. The first two addressed needs in rocket testing, and the third, in commercial remote sensing. Students from three of the institutions worked with researchers at Stennis Space Center on the projects.

  5. Three novel degraded steroids from cultures of the Basidiomycete Antrodiella albocinnamomea.

    PubMed

    Chen, Zi-Ming; Yang, Xiao-Yan; Fan, Qiong-Ying; Li, Zheng-Hui; Wei, Kun; Chen, He-Ping; Feng, Tao; Liu, Ji-Kai

    2014-09-01

    Three novel degraded steroids, named albocisterols A-C (1-3), have been isolated from cultures of Antrodiella albocinnamomea. Their structures were defined by comprehensive spectroscopic analysis and single crystal X-ray crystallography. The mixture of compounds 2 and 3 exhibited significant inhibitory activities against protein tyrosine phosphatase 1B (PTP1B). Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. After SDSS-IV: Pioneering Panoptic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kollmeier, Juna; AS4 Collaboration

    2018-01-01

    I will describe the current plans for a next generation sky survey that will begin After SDSS-IV --- AS4. AS4 will be an unprecedented all-sky spectroscopic survey of over six million objects. It is designed to decode the history of the Milky Way galaxy, trace the emergence of the chemical elements, reveal the inner workings of stars, the growth of black holes, and investigate the origin of planets. It will provide the most comprehensive all-sky spectroscopy to multiply the science from the Gaia, TESS and eROSITA missions. AS4 will also create a contiguous spectroscopic map of the interstellar gas in the Milky Way and nearby galaxies that is 1,000 times larger than the state of the art, uncovering the self-regulation mechanisms of Galactic ecosystems. It will pioneer systematic, spectroscopic monitoring across the whole sky, revealing changes on timescales from 20 minutes to 20 years. The project is now developing new hardware to build on the SDSS-IV infrastructure, designing the detailed survey strategy, and actively seeking to complete its consortium of institutional and individual members.

  7. Fluorescence spectroscopic and molecular docking studies of the binding interaction between the new anaplastic lymphoma kinase inhibitor crizotinib and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Abdelhameed, Ali S.; Alanazi, Amer M.; Bakheit, Ahmed H.; Darwish, Hany W.; Ghabbour, Hazem A.; Darwish, Ibrahim A.

    2017-01-01

    Binding of the recently introduced anti-cancer drug, crizotinib (CRB) with the bovine serum albumin (BSA) was comprehensively studied with the aid of fluorescence and UV-Vis spectroscopic as well as molecular docking techniques. The collective results of the study under the simulated physiological conditions proposed a static type of binding occurring between the CRB and BSA with binding constants of 104 L mol- 1. BSA conformational changes were investigated using three dimensional (3D) and synchronous fluorescence measurements. Moreover, the results of site marker competitive experiments and molecular docking, it could be deduced that CRB was inserted into the subdomain IIA (site I) of BSA yielding a more stabilized system. This was further confirmed with the molecular docking results which revealed that CRB is located in the active site residues Try149, Glu152, Ser191, Arg194, Arg198, Trp213, Arg217, Arg256, His287, Ala290, Glu291, Ser343, Asp450 within a radius of 6 Å. Combining the molecular docking studies and the computed thermodynamic parameters, it can be inferred that hydrophobic and electrostatic interactions are the major binding forces involved in formation of the CRB-BSA complex.

  8. Accurate structure, thermodynamics and spectroscopy of medium-sized radicals by hybrid Coupled Cluster/Density Functional Theory approaches: the case of phenyl radical

    PubMed Central

    Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien; Egidi, Franco; Puzzarini, Cristina

    2015-01-01

    The CCSD(T) model coupled with extrapolation to the complete basis-set limit and additive approaches represents the “golden standard” for the structural and spectroscopic characterization of building blocks of biomolecules and nanosystems. However, when open-shell systems are considered, additional problems related to both specific computational difficulties and the need of obtaining spin-dependent properties appear. In this contribution, we present a comprehensive study of the molecular structure and spectroscopic (IR, Raman, EPR) properties of the phenyl radical with the aim of validating an accurate computational protocol able to deal with conjugated open-shell species. We succeeded in obtaining reliable and accurate results, thus confirming and, partly, extending the available experimental data. The main issue to be pointed out is the need of going beyond the CCSD(T) level by including a full treatment of triple excitations in order to fulfil the accuracy requirements. On the other hand, the reliability of density functional theory in properly treating open-shell systems has been further confirmed. PMID:23802956

  9. Comprehensive analysis of TEM methods for LiFePO4/FePO4 phase mapping: spectroscopic techniques (EFTEM, STEM-EELS) and STEM diffraction techniques (ACOM-TEM).

    PubMed

    Mu, X; Kobler, A; Wang, D; Chakravadhanula, V S K; Schlabach, S; Szabó, D V; Norby, P; Kübel, C

    2016-11-01

    Transmission electron microscopy (TEM) has been used intensively in investigating battery materials, e.g. to obtain phase maps of partially (dis)charged (lithium) iron phosphate (LFP/FP), which is one of the most promising cathode material for next generation lithium ion (Li-ion) batteries. Due to the weak interaction between Li atoms and fast electrons, mapping of the Li distribution is not straightforward. In this work, we revisited the issue of TEM measurements of Li distribution maps for LFP/FP. Different TEM techniques, including spectroscopic techniques (energy filtered (EF)TEM in the energy range from low-loss to core-loss) and a STEM diffraction technique (automated crystal orientation mapping (ACOM)), were applied to map the lithiation of the same location in the same sample. This enabled a direct comparison of the results. The maps obtained by all methods showed excellent agreement with each other. Because of the strong difference in the imaging mechanisms, it proves the reliability of both the spectroscopic and STEM diffraction phase mapping. A comprehensive comparison of all methods is given in terms of information content, dose level, acquisition time and signal quality. The latter three are crucial for the design of in-situ experiments with beam sensitive Li-ion battery materials. Furthermore, we demonstrated the power of STEM diffraction (ACOM-STEM) providing additional crystallographic information, which can be analyzed to gain a deeper understanding of the LFP/FP interface properties such as statistical information on phase boundary orientation and misorientation between domains. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Multi-MHz time-of-flight electronic bandstructure imaging of graphene on Ir(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tusche, C., E-mail: c.tusche@fz-juelich.de; Peter Grünberg Institut; Goslawski, P.

    2016-06-27

    In the quest for detailed spectroscopic insight into the electronic structure at solid surfaces in a large momentum range, we have developed an advanced experimental approach. It combines the 3D detection scheme of a time-of-flight momentum microscope with an optimized filling pattern of the BESSY II storage ring. Here, comprehensive data sets covering the full surface Brillouin zone have been used to study faint substrate-film hybridization effects in the electronic structure of graphene on Ir(111), revealed by a pronounced linear dichroism in angular distribution. The method paves the way to 3D electronic bandmapping with unprecedented data recording efficiency.

  11. Atomistic interpretation of the ac-dc crossover frequency in crystalline and glassy ionic conductors

    NASA Astrophysics Data System (ADS)

    Marple, M. A. T.; Avila-Paredes, H.; Kim, S.; Sen, S.

    2018-05-01

    A comprehensive analysis of the ionic dynamics in a wide variety of crystalline and glassy ionic conductors, obtained in recent studies using a combination of electrochemical impedance and nuclear magnetic resonance spectroscopic techniques, is presented. These results demonstrate that the crossover frequency, between the frequency-independent dc conductivity and the frequency-dependent ac conductivity, corresponds to the time scale of "successful" diffusive hops of the mobile ions between the trapping sites in the structure. These inter-site hops are typically compound in nature and consist of several elementary hops in the intervening region between the neighboring trapping sites.

  12. Atomistic interpretation of the ac-dc crossover frequency in crystalline and glassy ionic conductors.

    PubMed

    Marple, M A T; Avila-Paredes, H; Kim, S; Sen, S

    2018-05-28

    A comprehensive analysis of the ionic dynamics in a wide variety of crystalline and glassy ionic conductors, obtained in recent studies using a combination of electrochemical impedance and nuclear magnetic resonance spectroscopic techniques, is presented. These results demonstrate that the crossover frequency, between the frequency-independent dc conductivity and the frequency-dependent ac conductivity, corresponds to the time scale of "successful" diffusive hops of the mobile ions between the trapping sites in the structure. These inter-site hops are typically compound in nature and consist of several elementary hops in the intervening region between the neighboring trapping sites.

  13. THROES: a caTalogue of HeRschel Observations of Evolved Stars. I. PACS range spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramos-Medina, J.; Sánchez Contreras, C.; García-Lario, P.; Rodrigo, C.; da Silva Santos, J.; Solano, E.

    2018-03-01

    This is the first of a series of papers presenting the THROES (A caTalogue of HeRschel Observations of Evolved Stars) project, intended to provide a comprehensive overview of the spectroscopic results obtained in the far-infrared (55-670 μm) with the Herschel space observatory on low-to-intermediate mass evolved stars in our Galaxy. Here we introduce the catalogue of interactively reprocessed Photoconductor Array Camera and Spectrometer (PACS) spectra covering the 55-200 μm range for 114 stars in this category for which PACS range spectroscopic data is available in the Herschel Science Archive (HSA). Our sample includes objects spanning a range of evolutionary stages, from the asymptotic giant branch to the planetary nebula phase, displaying a wide variety of chemical and physical properties. The THROES/PACS catalogue is accessible via a dedicated web-based interface and includes not only the science-ready Herschel spectroscopic data for each source, but also complementary photometric and spectroscopic data from other infrared observatories, namely IRAS, ISO, or AKARI, at overlapping wavelengths. Our goal is to create a legacy-value Herschel dataset that can be used by the scientific community in the future to deepen our knowledge and understanding of these latest stages of the evolution of low-to-intermediate mass stars. The THROES/PACS catalogue is accessible at http://https://throes.cab.inta-csic.es/

  14. Spectroscopic studies of non-volatile residue formed by photochemistry of solid C4N2: A model of condensed aerosol formation on Titan

    NASA Astrophysics Data System (ADS)

    Couturier-Tamburelli, Isabelle; Gudipati, Murthy S.; Lignell, Antti; Jacovi, Ronen; Piétri, Nathalie

    2014-05-01

    Following our recent communication (Gudipati, M.S. et al. [2013]. Nat. Commun. 4, 1648. http://dx.doi.org/10.1038/ncomms2649) on the discovery of condensed-phase non-volatile polymeric material with similar spectral features as tholins, we present here a comprehensive spectroscopic study of photochemical formation of polymeric material from condensed dicyanoacetylene (C4N2) ice films. C4N2 is chosen as starting material for the laboratory simulations because of the detection of this and similar molecules (nitriles and cyanoacetylenes) in Titan’s atmosphere. UV-Vis and infrared spectra obtained during long-wavelength (>300 nm) photon irradiation and subsequent warming of the ice films are used to analyze changes in C4N2 ice, evolution of tholins, and derive photopolymerization mechanisms. Our data analysis revealed that many processes occur during the photolysis of condensed Titan’s aerosol analogs, including isomerization and polymerization leading to the formation of long-chain as well as aromatic cyclic polymer molecules. In the light of tremendous new data from the Cassini mission on the seasonal variations in Titan’s atmosphere, our laboratory study and its results provide fresh insight into the formation and evolution of aerosols and haze in Titan’s atmosphere.

  15. New cytotoxic steroids from the leaves of Clerodendrum trichotomum.

    PubMed

    Xu, Rui-Lan; Wang, Rui; Ding, Lan; Shi, Yan-Ping

    2013-07-01

    A phytochemical investigation of the leaves of Clerodendrum trichotomum led to the isolation of five new (2-6) and two known (1 and 7) steroids, whose structures and relative configurations were elucidated by comprehensive spectroscopic analysis and by comparison of their NMR data with those of related compounds. Steroids 2 and 5 exhibited moderate cytotoxicity in vitro against HeLa cell line. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Cordioxime: a new dioxime gamma-lactam from Cordia platythyrsa.

    PubMed

    Christelle, Tsague Dongmo; Hussainb, Hidayat; Dongo, Etienne; Julius, Oben Enyong; Hussain, Javid

    2011-08-01

    Cordia platythyrsa Baker is known for its medicinal value. This paper deals with a phytochemical investigation of this species, from which cordioxime (1), a new dioxime y-lactam has been isolated. Its structure was determined by comprehensive analyses of its 1H and 13C NMR, COSY, HMQC, and HMBC spectroscopic, and HREIMS data. The remaining two known compounds were identified as beta-sitosterol, and beta-sitosterol glucopyranoside.

  17. Synthesis and characterization of metastable, 20 nm-sized Pna21-LiCoPO4 nanospheres

    NASA Astrophysics Data System (ADS)

    Ludwig, Jennifer; Nordlund, Dennis; Doeff, Marca M.; Nilges, Tom

    2017-04-01

    The majority of research activities on LiCoPO4 are focused on the phospho-olivine (space group Pnma), which is a promising high-voltage cathode material for Li-ion batteries. In contrast, comparably little is known about its metastable Pna21 modification. Herein, we present a comprehensive study on the structure-property relationships of 15-20 nm Pna21-LiCoPO4 nanospheres prepared by a simple microwave-assisted solvothermal process. Unlike previous reports, the results indicate that the compound is non-stoichiometric and shows cation-mixing with Co ions on the Li sites, which provides an explanation for the poor electrochemical performance. Co L2,3-edge X-ray absorption spectroscopic data confirm the local tetrahedral symmetry of Co2+. Comprehensive studies on the thermal stability using thermogravimetric analysis, differential scanning calorimetry, and in situ powder X-ray diffraction show an exothermic phase transition to olivine Pnma-LiCoPO4 at 527 °C. The influence of the atmosphere and the particle size on the thermal stability is also investigated.

  18. Vibrational Spectroscopic Studies on the Formation of Ion-exchangeable Titania Nanotubes

    NASA Astrophysics Data System (ADS)

    Hodos, Mária; Haspel, Henrik; Horváth, Endre; Kukovecz, Ákos; Kónya, Zoltán; Kiricsi, Imre

    2005-09-01

    Ion-exchangeable titanium-oxide nanotubes have commanded considerable interest from the materials science community in the past five years. Synthesized under hydrothermal conditions from TiO2, typical nanotubes are 150-200 nm long and 8-20 nm wide. High resolution TEM images revealed that unlike multiwall carbon nanotubes which are made of coaxial single-wall nanotubes, the titania tubes possess a spiral cross-section. An interesting feature of the titania tubes is their considerable ion-exchange capacity which could be utilized e.g. for enhancing their photocatalytic activity by doping the titania tubes with CdS nanoparticles. In this contribution we present a comprehensive TEM, FT-Raman and FT-farIR characterization study of the formation process.

  19. The CHARA Array Resolves the 1.1 Day Period Spectroscopic Binary HD 146361, the Shortest Period System Resolved To-Date

    NASA Astrophysics Data System (ADS)

    Raghavan, Deepak; McAlister, H. A.

    2007-12-01

    We present a visual orbit for the spectroscopic binary, HD 146361, derived from observations at the CHARA Array's long baseline interferometer. The 26 calibrated visibility measurements obtained during May - July 2007 allow us to determine a full orbital solution and component masses for this known spectroscopic binary. The HD 146361 pair has a circular orbit of nearly equal-mass components with a good quality double-lined spectroscopic orbit (Dave Latham, private communication). We have adopted the well-constrained spectroscopic orbital elements and fit the angular semi-major axis, inclination, and longitude of nodes to the binary visibility curve equations. Using these elements and the Hipparcos parallax of 46.11 ± 0.98 mas, we obtain component masses of 1.046 ± 0.084 Msol and 1.000 ± 0.080 Msol. We have planned further observations of this system to reduce the mass uncertainties and may present an updated result at the meeting. This is the shortest period spectroscopic binary resolved as of yet with an interferometer. This work is being done in the context of Raghavan's thesis project, which is a survey of solar-type stars in the solar neighborhood. By completing this survey, we hope to build a comprehensive view of the environments around solar-type stars and improve our understanding of their habitats by analyzing their companions of all types - stars, brown dwarfs, and planets. We have chosen an unbiased, volume-limited sample of 455 primary stars as representatives of the solar-type stars in our Galaxy. Our effort is a modern update to the seminal work of Duquennoy & Mayor (1991) and will contribute to the broader subjects of stellar evolution and planetary system formation, evolution, and stability. Research at the CHARA Array is supported by the College of Arts and Sciences at Georgia State University and by the National Science Foundation through NSF Grant AST 0606958.

  20. Model representations of kerogen structures: An insight from density functional theory calculations and spectroscopic measurements

    DOE PAGES

    Weck, Philippe F.; Kim, Eunja; Wang, Yifeng; ...

    2017-08-01

    Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematicallymore » compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution.« less

  1. Model representations of kerogen structures: An insight from density functional theory calculations and spectroscopic measurements.

    PubMed

    Weck, Philippe F; Kim, Eunja; Wang, Yifeng; Kruichak, Jessica N; Mills, Melissa M; Matteo, Edward N; Pellenq, Roland J-M

    2017-08-01

    Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematically compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution.

  2. Model representations of kerogen structures: An insight from density functional theory calculations and spectroscopic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weck, Philippe F.; Kim, Eunja; Wang, Yifeng

    Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematicallymore » compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution.« less

  3. Highly oxygenated ent-pimarane-type diterpenoids from the Chinese liverwort Pedinophyllum interruptum and their allelopathic activities.

    PubMed

    Liu, Na; Li, Rui-Juan; Wang, Xiao-Ning; Zhu, Rong-Xiu; Wang, Lei; Lin, Zhao-Min; Zhao, Yu; Lou, Hong-Xiang

    2013-09-27

    Ten highly oxygenated ent-pimarane-type diterpenoids, pedinophyllols A-J (1-10), were isolated from the Chinese liverwort Pedinophyllum interruptum. Their structures were determined by comprehensive analysis of spectroscopic data together with single-crystal X-ray diffraction analysis. The absolute configurations were elucidated by comparison of experimental and theoretically calculated electronic circular dichroism spectra. Allelopathic testing showed that several new diterpenoids inhibited germination of Arabidopsis thaliana seeds.

  4. Structure, Electronic Properties, and Electrochemical Behavior of a Boron-Doped Diamond/Quartz Optically Transparent Electrode.

    PubMed

    Wächter, Naihara; Munson, Catherine; Jarošová, Romana; Berkun, Isil; Hogan, Timothy; Rocha-Filho, Romeu C; Swain, Greg M

    2016-10-26

    The morphology, microstructure, chemistry, electronic properties, and electrochemical behavior of a boron-doped nanocrystalline diamond (BDD) thin film grown on quartz were evaluated. Diamond optically transparent electrodes (OTEs) are useful for transmission spectroelectrochemical measurements, offering excellent stability during anodic and cathodic polarization and exposure to a variety of chemical environments. We report on the characterization of a BDD OTE by atomic force microscopy, optical spectroscopy, Raman spectroscopic mapping, alternating-current Hall effect measurements, X-ray photoelectron spectroscopy, and electrochemical methods. The results reported herein provide the first comprehensive study of the relationship between the physical and chemical structure and electronic properties of a diamond OTE and the electrode's electrochemical activity.

  5. Cameroonemide A: a new ceramide from Helichrysum cameroonense.

    PubMed

    Antoine, Kakam Zanetsie; Hussain, Hidayat; Dongo, Etienne; Kouam, Simeon F; Schulz, Barbara; Krohn, Karsten

    2010-07-01

    From the extracts of all parts of the plant Helichrysum cameroonense, five compounds were isolated and identified. One of them, a ceramide, named cameroonemide A (1), is reported for the first time as a new natural product. Its structure was determined by comprehensive analyses of their 1D and 2D NMR and HR-EI-MS spectral data. The remaining four known compounds were identified by comparing their spectroscopic data with those reported in the literature as kaurenoic acid (2), 3-acetyloxykaurenoic acid (3), beta-sitosterol (4), and beta-sitosterol glucopyranoside (5). Preliminary studies showed that 3-acetyloxykaurenoic acid (3) inhibited the alga Chlorella fusca, while kaurenoic acid (2) showed strong antibacterial activity against Bacillus megaterium.

  6. Determining Hβ Color Indices for 23 δ Scuti Variable Stars

    NASA Astrophysics Data System (ADS)

    Bush, Tabitha C.; Hintz, E. G.; Shreeve, D. K.; Jorgenson, K.

    2010-01-01

    Color index is a fundamental characteristic in the study of δ Scuti variable stars. The then comprehensive catalog of δ Scutis compiled by Rodriguez et al. (Rodriguez, E. Lopez Gonzalez, M. J., & Lopez de Coca, P. 2000, A&AS, 144, 469) contains 636 δ Scuti stars and several characteristics of these stars, including Hβ color index. Of the 417 stars in this catalog brighter than 13th magnitude, about 20% of them are missing Hβ color index values. We present 23 of these previously unpublished values, calculated from a calibration relation using spectroscopic observations obtained at the Dominion Astrophysical Observatory of 167 δ Scuti stars north of -01 degrees declination and brighter than 13th magnitude.

  7. Laser spectroscopic probing of coexisting superfluid and insulating states of an atomic Bose–Hubbard system

    PubMed Central

    Kato, Shinya; Inaba, Kensuke; Sugawa, Seiji; Shibata, Kosuke; Yamamoto, Ryuta; Yamashita, Makoto; Takahashi, Yoshiro

    2016-01-01

    A system of ultracold atoms in an optical lattice has been regarded as an ideal quantum simulator for a Hubbard model with extremely high controllability of the system parameters. While making use of the controllability, a comprehensive measurement across the weakly to strongly interacting regimes in the Hubbard model to discuss the quantum many-body state is still limited. Here we observe a great change in the excitation energy spectra across the two regimes in an atomic Bose–Hubbard system by using a spectroscopic technique, which can resolve the site occupancy in the lattice. By quantitatively comparing the observed spectra and numerical simulations based on sum rule relations and a binary fluid treatment under a finite temperature Gutzwiller approximation, we show that the spectra reflect the coexistence of a delocalized superfluid state and a localized insulating state across the two regimes. PMID:27094083

  8. Synthesis, spectroscopic and electrochemical characterization of secnidazole esters

    NASA Astrophysics Data System (ADS)

    Shahid, Hafiz Abdullah; Jahangir, Sajid; Hanif, Muddasir; Xiong, Tianrou; Muhammad, Haji; Wahid, Sana; Yousuf, Sammer; Qureshi, Naseem

    2017-12-01

    We report a low-cost, less toxic to environment and simple method for the esterification of secnidazole. This is first comprehensive structural characterization of novel secnidazole esters by the spectroscopic and electrochemical methods. The important EIMS fragmentation analysis showed unique contribution of heteroatom bonds explained by the fragmentation patterns. These peaks originate from the loss of single electron, loss of HCN, M-O, M-NO, M-NO2, M-C7H10N3O3, and M-C8H10N3O4. The comparison of 13C NMR predicted values with the experimental values showed that ChemBioDraw Ultra 14.0 has advantage of predicting aromatic (sp2) carbons, while MestReNova 6.1 predicts sp3 hybrid carbons more accurately. The electrochemical properties indicated an irreversible oxidation process and reversible reduction process in these ester molecules similar to the parent secnidazole.

  9. Development and construction of a comprehensive set of research diagnostics for the FLARE user facility

    NASA Astrophysics Data System (ADS)

    Yoo, Jongsoo; Jara-Almonte, J.; Majeski, S.; Frank, S.; Ji, H.; Yamada, M.

    2016-10-01

    FLARE (Facility for Laboratory Reconnection Experiments) will be operated as a flexible user facility, and so a complete set of research diagnostics is under development, including magnetic probe arrays, Langmuir probes, Mach probes, spectroscopic probes, and a laser interferometer. In order to accommodate the various requirements of users, large-scale (1 m), variable resolution (0.5-4 cm) magnetic probes have been designed, and are currently being prototyped. Moreover, a fully fiber-coupled laser interferometer has been designed to measure the line-integrated electron density. This fiber-coupled interferometer system will reduce the complexity of alignment processes and minimize maintenance of the system. Finally, improvements to the electrostatic probes and spectroscopic probes currently used in the Magnetic Reconnection Experiment (MRX) are discussed. The specifications of other subsystems, such as integrators and digitizers, are also presented. This work is supported by DoE Contract No. DE-AC0209CH11466.

  10. Biophysical Characterization of the Type III Secretion Tip Proteins and the Tip Proteins Attached to Bacterium-Like Particles

    PubMed Central

    Choudhari, Shyamal P.; Chen, Xiaotong; Kim, Jae Hyun; van Roosmalen, Maarten L.; Greenwood, Jamie C.; Joshi, Sangeeta B.; Picking, William D.; Leenhouts, Kees; Middaugh, C. Russell; Picking, Wendy L.

    2014-01-01

    Bacterium-like particles (BLPs), derived from Lactococcus lactis, offer a self-adjuvanting delivery vehicle for subunit protein vaccines. Proteins can be specifically loaded onto the BLPs via a peptidoglycan anchoring domain (PA). In this study, the tip proteins IpaD, SipD and LcrV belonging to type three secretion systems of Shigella flexneri, Salmonella enterica and Yersinia enterocolitica, respectively, were fused to the PA and loaded onto the BLPs. Herein, we biophysically characterized these nine samples and condensed the spectroscopic results into three-index empirical phase diagrams (EPDs). The EPDs show distinctions between the IpaD/SipD and LcrV subfamilies of tip proteins, based on their physical stability, even upon addition of the PA. Upon attachment to the BLPs, the BLPs become defining moiety in the spectroscopic measurements, leaving the tip proteins to have a subtle yet modulating effect on the structural integrity of the tip proteins-BLPs binding. In summary, this work provides a comprehensive view of physical stability of the tip proteins and tip protein-BLPs and serves as a baseline for screening of excipients to increase the stability of the tip protein-BLPs for future vaccine formulation. PMID:24916512

  11. Analysis of the multiple system with chemically peculiar component φ Draconis

    NASA Astrophysics Data System (ADS)

    Liška, J.

    2016-09-01

    The star ϕ Dra comprises a spectroscopic binary and a third star that together form a visual triple system. It is one of the brightest chemically peculiar stars of the upper main sequence. Despite these facts, no comprehensive study of its multiplicity has been performed yet. In this work, we present a detailed analysis of the triple system based on available measurements. We use radial velocities taken from four sources in the literature in a re-analysis of the inner spectroscopic binary (Aab). An incorrect value of the orbital period of the inner system Aab about 27 d was accepted in literature more than 40 yr. A new solution of orbit with the 128-d period was determined. Relative position measurements of the outer visual binary system (AB) from Washington Double Star Catalog were compared with known orbital models. Furthermore, it was shown that astrometric motion in system AB is well described by the model of Andrade with a 308-yr orbital period. Parameters of A and B components were utilized to estimate individual brightness for all components and their masses from evolutionary tracks. Although we found several facts which support the gravitational bond between them, unbound solution cannot be fully excluded yet.

  12. Molecular design, synthesis and physical properties of novel Cytisine-derivatives - Experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka; Spiteller, Michael

    2013-02-01

    The paper presented a comprehensive theoretical and experimental study on the molecular drugs-design, synthesis, isolation, physical spectroscopic and mass spectrometric elucidation of novel functionalization derivatives of Cytisine (Cyt), using nucleosidic residues. Since these alkaloids have established biochemical profile, related the binding affinity of the nicotinic acetylcholine receptors (nAChRs), particularly α7 sub-type, the presented correlation between the molecular structure and properties allowed to evaluated the highlights of the biochemical hypothesises related the Schizophrenia. The anticancer activity of α7 subtype agonists and the crucial role of the nucleoside-based medications in the cancer therapy provided opportunity for further study on the biochemical relationship between Schizophrenia and few kinds of cancers, which has been hypothesized recently. The physical electronic absorptions (EAs), circular dichroic (CD) and Raman spectroscopic (RS) properties as well as mass spectrometric (MS) data, obtained using electrospray ionization (ESI) and atmospheric-pressure chemical ionization (APCI) methods under the positive single (MS) and tandem (MS/MS) modes of operation are discussed. Taking into account reports on a fatal intoxication of Cyt, the presented data would be of interest in the field of forensic chemistry, through development of highly selective and sensitive analytical protocols. Quantum chemical method is used to predict the physical properties of the isolated alkaloids, their affinity to the receptor loop and gas-phase stabilized species, observed mass spectrometrically.

  13. A New Method to Comprehensively Diagnose Shock Waves in the Solar Atmosphere Based on Simultaneous Spectroscopic and Imaging Observations

    NASA Astrophysics Data System (ADS)

    Ruan, Wenzhi; Yan, Limei; He, Jiansen; Zhang, Lei; Wang, Linghua; Wei, Yong

    2018-06-01

    Shock waves are believed to play an important role in plasma heating. The shock-like temporal jumps in radiation intensity and Doppler shift have been identified in the solar atmosphere. However, a quantitative diagnosis of the shocks in the solar atmosphere is still lacking, seriously hindering the understanding of shock dissipative heating of the solar atmosphere. Here, we propose a new method to realize the goal of the shock quantitative diagnosis, based on Rankine–Hugoniot equations and taking the advantages of simultaneous imaging and spectroscopic observations from, e.g., IRIS (Interface Region Imaging Spectrograph). Because of this method, the key parameters of shock candidates can be derived, such as the bulk velocity and temperature of the plasma in the upstream and downstream, the propagation speed and direction. The method is applied to the shock candidates observed by IRIS, and the overall characteristics of the shocks are revealed quantitatively for the first time. This method is also tested with the help of forward modeling, i.e., virtual observations of simulated shocks. The parameters obtained from the method are consistent with the parameters of the shock formed in the model and are independent of the viewing direction. Therefore, the method we proposed here is applicable to the quantitative and comprehensive diagnosis of the observed shocks in the solar atmosphere.

  14. A comprehensive near- and far-ultraviolet spectroscopic study of the hot DA white dwarf G191-B2B

    NASA Astrophysics Data System (ADS)

    Preval, S. P.; Barstow, M. A.; Holberg, J. B.; Dickinson, N. J.

    2013-11-01

    We present a detailed spectroscopic analysis of the hot DA white dwarf G191-B2B, using the best signal-to-noise ratio, high-resolution near- and far-UV spectrum obtained to date. This is constructed from co-added Hubble Space Telescope (HST) Space Telescope Imaging Spectrometer (STIS) E140H, E230H and FUSE observations, covering the spectral ranges of 1150-3145 Å and 910-1185 Å, respectively. With the aid of recently published atomic data, we have been able to identify previously undetected absorption features down to equivalent widths of only a few mÅ. In total, 976 absorption features have been detected to 3σ confidence or greater, with 947 of these lines now possessing an identification, the majority of which are attributed to Fe and Ni transitions. In our survey, we have also potentially identified an additional source of circumstellar material originating from Si III. While we confirm the presence of Ge detected by Vennes et al., we do not detect any other species. Furthermore, we have calculated updated abundances for C, N, O, Si, P, S, Fe and Ni, while also calculating, for the first time, a non-local thermodynamic equilibrium abundance for Al, deriving Al III/H=1.60_{-0.08}^{+0.07}× {10}^{-7}. Our analysis constitutes what is the most complete spectroscopic survey of any white dwarf. All observed absorption features in the FUSE spectrum have now been identified, and relatively few remain elusive in the STIS spectrum.

  15. WIYN Open Cluster Study: Binary Orbits and Tidal Circularization in NGC 6819

    NASA Astrophysics Data System (ADS)

    Morscher, Meagan B.; Mathieu, R. D.; Kaeppler, S.; Hole, K. T.; Meibom, S.

    2006-12-01

    We are conducting a comprehensive stellar radial-velocity survey in NGC 6819, a rich, intermediate age ( 2.4 Gyr) open cluster with [Fe/H] -0.05. As of October 2006, we have obtained 7065 radial-velocity measurements of 1409 stars using the WIYN Hydra Multi-Object Spectrograph, with typical velocity measurement precisions of 0.4 km/s. Using an E/I criterion of 3, we have identified 282 velocity variables. In the past year we have expanded the number of final orbital solutions by 45 to a total of more than 80 solutions. In coeval stellar populations, circular binaries tend to have the shortest orbital periods, while longer period binaries show a distribution of non-zero eccentricities. The circularization of the shortest period orbits is the result of an exchange of stellar and orbital angular momentum due to tidal interactions. We defined a population’s tidal circularization period as the longest orbital period at which a binary of typical initial eccentricity has become circularized (e.g., has evolved to an eccentricity e = 0.01) over the lifetime of the cluster (Meibom & Mathieu, 2005, ApJ, 620, 970). We are studying the trend of increasing tidal circularization periods with population age. Preliminary results in NGC 6819 indicate a tidal circularization period of 7.5 days, which is consistent with this overall trend. We will recalculate the tidal circularization period in order to include the latest sample of orbital solutions. This comprehensive survey also allows us to investigate the relative spatial distributions of spectroscopic binaries and other constant-velocity cluster members of similar mass. We find the spectroscopic binaries to be more centrally concentrated at a statistically significant level, which we attribute to energy equipartition processes. MM was supported by REU NSF grant AST-0453442. RDM, SK, KTH, and SM were supported by NSF grant AST-0406615.

  16. Interaction of phenazinium dyes with double-stranded poly(A): Spectroscopy and isothermal titration calorimetry studies

    NASA Astrophysics Data System (ADS)

    Khan, Asma Yasmeen; Saha, Baishakhi; Kumar, Gopinatha Suresh

    2014-10-01

    A comprehensive study on the binding of phenazinium dyes viz. janus green B, indoine blue, safranine O and phenosafranine with double stranded poly(A) using various spectroscopic and calorimetric techniques is presented. A higher binding of janus green B and indoine blue over safranine O and phenosafranine to poly(A) was observed from all experiments. Intercalative mode of binding of the dyes was inferred from fluorescence polarization anisotropy, iodide quenching and viscosity experiments. Circular dichroism study revealed significant perturbation of the secondary structure of poly(A) on binding of these dyes. Results from isothermal titration calorimetry experiments suggested that the binding was predominantly entropy driven with a minor contribution of enthalpy to the standard molar Gibbs energy. The results presented here may open new opportunities in the application of these dyes as RNA targeted therapeutic agents.

  17. (+)- and (-)-Cajanusine, a pair of new enantiomeric stilbene dimers with a new skeleton from the leaves of Cajanus cajan.

    PubMed

    Li, Xiao-Long; Zhao, Bing-Xin; Huang, Xiao-Jun; Zhang, Dong-Mei; Jiang, Ren-Wang; Li, Ying-Jie; Jian, Yu-Qing; Wang, Ying; Li, Yao-Lan; Ye, Wen-Cai

    2014-01-03

    A pair of new enantiomeric stilbene dimers, (+)- and (-)-cajanusine [(+)-1 and (-)-1], with a unique coupling pattern were isolated from the leaves of Cajanus cajan . Their structures including absolute configurations were elucidated on the basis of comprehensive spectroscopic and single-crystal X-ray diffraction analyses, as well as CD calculations. The plausible biogenetic pathway of 1 was also proposed. Additionally, (±)-1, (+)-1, and (-)-1 exhibited inhibitory activities on the growth of human hepatocellular carcinoma cells.

  18. Ionization of Local Interstellar Gas Based on STIS and FUSE spectra of Nearby Stars

    NASA Astrophysics Data System (ADS)

    Redfield, Seth; Linsky, J. L.

    2009-01-01

    The ultraviolet contains many resonance line transitions that are sensitive to a range of ionization stages of ions present in the local interstellar medium (LISM). We couple observations of high resolution ultraviolet spectrographs, STIS and GHRS on the Hubble Space Telescope (HST) and the Far-Ultraviolet Spectroscopic Explorer (FUSE) in order to make a comprehensive survey of the ionization structure of the local interstellar medium. In particular, we focus on the sight line toward G191-B2B, a nearby (69 pc) white dwarf. We present interstellar detections of highly ionized elements (e.g., SiIII, CIII, CIV, etc) and compare them directly to neutral or singly ionized LISM detections (e.g., SiII, CII, etc). The extensive observations of G191-B2B provides an opportunity for a broad study of ionization stages of several elements, while a survey of several sight lines provides a comprehensive look at the ionization structure of the LISM. We acknowledge support for this project through NASA FUSE Grant NNX06AD33G.

  19. Investigational study of tamoxifen phase I metabolites using chromatographic and spectroscopic analytical techniques.

    PubMed

    Teunissen, S F; Rosing, H; Seoane, M Dominguez; Brunsveld, L; Schellens, J H M; Schinkel, A H; Beijnen, J H

    2011-06-01

    A comprehensive overview is presented of currently known phase I metabolites of tamoxifen consisting of their systematic name and molecular structure. Reference standards are utilized to elucidate the MS(n) fragmentation patterns of these metabolites using a linear ion trap mass spectrometer. UV-absorption spectra are recorded and absorption maxima are defined. Serum extracts from ten breast cancer patients receiving 40mg tamoxifen once daily were qualitatively analyzed for tamoxifen phase I metabolites using a liquid chromatography-tandem mass spectrometry set-up. In total, 19 metabolites have been identified in these serum samples. Additionally a synthetic method for the preparation of the putative metabolite 3',4'-dihydroxytamoxifen is described. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grochola, A.; Kowalczyk, P.; Szczepkowski, J.

    Comprehensive spectroscopic studies of hot and ultracold samples of NaCs molecules were combined to complete the investigation of the (3){Omega}=1 <- X {sup 1}{Sigma}{sup +} transition for the NaCs molecule. Polarization labeling, photoassociation, and pulsed laser depletion spectroscopy were used to collect data on rovibrational levels of the (3){Omega}=1 state [here described as the c {sup 3}{Sigma}{sup +} state in Hund's case (a) notation]. The highest observed level was v=72 located {approx}5 GHz below the atomic asymptote Na(3 {sup 2}S{sub 1/2}) + Cs(6 {sup 2}P{sub 3/2}). Approximately 1400 levels were used to construct the potential energy curve of the (3){Omega}=1more » state for the full range of interatomic distances.« less

  1. WINGS-SPE Spectroscopy in the WIde-field Nearby Galaxy-cluster Survey

    NASA Astrophysics Data System (ADS)

    Cava, A.; Bettoni, D.; Poggianti, B. M.; Couch, W. J.; Moles, M.; Varela, J.; Biviano, A.; D'Onofrio, M.; Dressler, A.; Fasano, G.; Fritz, J.; Kjærgaard, P.; Ramella, M.; Valentinuzzi, T.

    2009-03-01

    Aims: We present the results from a comprehensive spectroscopic survey of the WINGS (WIde-field Nearby Galaxy-cluster Survey) clusters, a program called WINGS-SPE. The WINGS-SPE sample consists of 48 clusters, 22 of which are in the southern sky and 26 in the north. The main goals of this spectroscopic survey are: (1) to study the dynamics and kinematics of the WINGS clusters and their constituent galaxies, (2) to explore the link between the spectral properties and the morphological evolution in different density environments and across a wide range of cluster X-ray luminosities and optical properties. Methods: Using multi-object fiber-fed spectrographs, we observed our sample of WINGS cluster galaxies at an intermediate resolution of 6-9 Å and, using a cross-correlation technique, we measured redshifts with a mean accuracy of ~45 km s-1. Results: We present redshift measurements for 6137 galaxies and their first analyses. Details of the spectroscopic observations are reported. The WINGS-SPE has ~30% overlap with previously published data sets, allowing us both to perform a complete comparison with the literature and to extend the catalogs. Conclusions: Using our redshifts, we calculate the velocity dispersion for all the clusters in the WINGS-SPE sample. We almost triple the number of member galaxies known in each cluster with respect to previous works. We also investigate the X-ray luminosity vs. velocity dispersion relation for our WINGS-SPE clusters, and find it to be consistent with the form Lx ∝ σ_v^4. Table 4, containing the complete redshift catalog, is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/495/707

  2. Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating

    PubMed Central

    Kim, Dorothy M.; Nimigean, Crina M.

    2016-01-01

    Voltage-gated potassium channels play a fundamental role in the generation and propagation of the action potential. The discovery of these channels began with predictions made by early pioneers, and has culminated in their extensive functional and structural characterization by electrophysiological, spectroscopic, and crystallographic studies. With the aid of a variety of crystal structures of these channels, a highly detailed picture emerges of how the voltage-sensing domain reports changes in the membrane electric field and couples this to conformational changes in the activation gate. In addition, high-resolution structural and functional studies of K+ channel pores, such as KcsA and MthK, offer a comprehensive picture on how selectivity is achieved in K+ channels. Here, we illustrate the remarkable features of voltage-gated potassium channels and explain the mechanisms used by these machines with experimental data. PMID:27141052

  3. Comprehensive spectroscopic studies on the interaction of biomolecules with surfactant detached multi-walled carbon nanotubes.

    PubMed

    Sekar, Gajalakshmi; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-04-01

    This paper investigates the interaction of ten diverse biomolecules with surfactant detached Multi-Walled Carbon Nanotubes (MWCNTs) using multiple spectroscopic methods. Declining fluorescence intensity of biomolecules in combination with the hyperchromic effect in UV-Visible spectra confirmed the existence of the ground state complex formation. Quenching mechanism remains static and non-fluorescent. 3D spectral data of biomolecules suggested the possibilities of disturbances to the aromatic microenvironment of tryptophan and tyrosine residues arising out of CNTs interaction. Amide band Shifts corresponding to the secondary structure of biomolecules were observed in the of FTIR and FT-Raman spectra. In addition, there exists an increased Raman intensity of tryptophan residues of biomolecules upon interaction with CNTs. Hence, the binding of the aromatic structures of CNTs with the aromatic amino acid residues, in a particular, tryptophan was evidenced. Far UV Circular spectra have showed the loss of alpha-helical contents in biomolecules upon interaction with CNTs. Near UV CD spectra confirmed the alterations in the tryptophan positions of the peptide backbone. Hence, our results have demonstrated that the interaction of biomolecules with OH-MWCNTs would involve binding cum structural changes and alteration to their aromatic micro-environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Interpreting Vibrational Sum-frequency Spectra of Sulfur Dioxide at the Air/Water Interface: A Comprehensive Molecular Dynamics Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Marcel; Mundy, Christopher J.; Chang, Tsun-Mei

    We investigated the solvation and spectroscopic properties of SO2 at the air/water interface using molecular simulation techniques. Molecular interactions from both Kohn-Sham (KS) density functional theory (DFT) and classical polarizable models were utilized to understand the properties of SO2:(H2O)x complexes in the vicinity of the air/water interface. The KS-DFT was included to allow comparisons with sum-frequency generation spectroscopy through the identification of surface SO2:(H2O)x complexes. Using our simulation results, we were able to develop a much more detailed picture for the surface structure of SO2 that is consistent with the spectroscopic data obtained Richmond and coworkers (J. Am. Chem. Soc.more » 127, 16806 (2005)). We also found many similarities and differences between to the two interaction potentials, including a noticeable weakness of the classical potential model in reproducing the asymmetric hydrogen bonding of water with SO2 due to its inability to account for SO2 resonance structures. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  5. Near-infrared oxygen airglow from the Venus nightside

    NASA Technical Reports Server (NTRS)

    Crisp, D.; Meadows, V. S.; Allen, D. A.; Bezard, B.; Debergh, C.; Maillard, J.-P.

    1992-01-01

    Groundbased imaging and spectroscopic observations of Venus reveal intense near-infrared oxygen airglow emission from the upper atmosphere and provide new constraints on the oxygen photochemistry and dynamics near the mesopause (approximately 100 km). Atomic oxygen is produced by the Photolysis of CO2 on the dayside of Venus. These atoms are transported by the general circulation, and eventually recombine to form molecular oxygen. Because this recombination reaction is exothermic, many of these molecules are created in an excited state known as O2(delta-1). The airglow is produced as these molecules emit a photon and return to their ground state. New imaging and spectroscopic observations acquired during the summer and fall of 1991 show unexpected spatial and temporal variations in the O2(delta-1) airglow. The implications of these observations for the composition and general circulation of the upper venusian atmosphere are not yet understood but they provide important new constraints on comprehensive dynamical and chemical models of the upper mesosphere and lower thermosphere of Venus.

  6. Speciation of Soil Phosphorus Assessed by XANES Spectroscopy at Different Spatial Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hesterberg, Dean; McNulty, Ian; Thieme, Juergen

    Precise management of soil phosphorus (P) to meet competing demands of agriculture and environmental protection can benefit from more comprehensive characterization of P speciation in soils. Our objectives were to provide spatial context for spectroscopic analyses of soil P speciation in relation to molecular-scale species and landscape-scale management of P, and to compare soil P-species diversity from spectroscopic measurements at submicron and millimeter scales. The spatial range of ~26 orders of magnitude between atomic and field scales presents a challenge to upscaling and downscaling information from spectroscopic analyses of soils. Scanning fluorescence X-ray microscopy images of a 50-mm ´ 45-mmmore » area of an organic soil sample showed heterogeneous distributions of P, Al, and Si. Microscale X-ray absorption near edge structure (μ-XANES) spectra collected at the P K-edge from 12 spots on the soil sample exhibited diverse features that indicated variations in highly localized P speciation. Linear combination fitting analysis of the μ-XANES spectra included various proportions of three standards that appeared in fits for most spots and five standards that appeared in fits for one spot each. The fit to a bulk-soil spectrum was dominated by two of the common standards in the μ-XANES fits, and a fit to the sum of m-XANES spectra included four of the standards. Lastly, these results illustrate a gain in P species sensitivity from spatially resolved XANES analysis. Integrating spectroscopic analyses from multiple scales determines soil P species diversity and will ultimately help connect speciation to the chemical reactivity and mobility of P in soils.« less

  7. Speciation of Soil Phosphorus Assessed by XANES Spectroscopy at Different Spatial Scales

    DOE PAGES

    Hesterberg, Dean; McNulty, Ian; Thieme, Juergen

    2017-07-27

    Precise management of soil phosphorus (P) to meet competing demands of agriculture and environmental protection can benefit from more comprehensive characterization of P speciation in soils. Our objectives were to provide spatial context for spectroscopic analyses of soil P speciation in relation to molecular-scale species and landscape-scale management of P, and to compare soil P-species diversity from spectroscopic measurements at submicron and millimeter scales. The spatial range of ~26 orders of magnitude between atomic and field scales presents a challenge to upscaling and downscaling information from spectroscopic analyses of soils. Scanning fluorescence X-ray microscopy images of a 50-mm ´ 45-mmmore » area of an organic soil sample showed heterogeneous distributions of P, Al, and Si. Microscale X-ray absorption near edge structure (μ-XANES) spectra collected at the P K-edge from 12 spots on the soil sample exhibited diverse features that indicated variations in highly localized P speciation. Linear combination fitting analysis of the μ-XANES spectra included various proportions of three standards that appeared in fits for most spots and five standards that appeared in fits for one spot each. The fit to a bulk-soil spectrum was dominated by two of the common standards in the μ-XANES fits, and a fit to the sum of m-XANES spectra included four of the standards. Lastly, these results illustrate a gain in P species sensitivity from spatially resolved XANES analysis. Integrating spectroscopic analyses from multiple scales determines soil P species diversity and will ultimately help connect speciation to the chemical reactivity and mobility of P in soils.« less

  8. Rapid screening of guar gum using portable Raman spectral identification methods.

    PubMed

    Srivastava, Hirsch K; Wolfgang, Steven; Rodriguez, Jason D

    2016-01-25

    Guar gum is a well-known inactive ingredient (excipient) used in a variety of oral pharmaceutical dosage forms as a thickener and stabilizer of suspensions and as a binder of powders. It is also widely used as a food ingredient in which case alternatives with similar properties, including chemically similar gums, are readily available. Recent supply shortages and price fluctuations have caused guar gum to come under increasing scrutiny for possible adulteration by substitution of cheaper alternatives. One way that the U.S. FDA is attempting to screen pharmaceutical ingredients at risk for adulteration or substitution is through field-deployable spectroscopic screening. Here we report a comprehensive approach to evaluate two field-deployable Raman methods--spectral correlation and principal component analysis--to differentiate guar gum from other gums. We report a comparison of the sensitivity of the spectroscopic screening methods with current compendial identification tests. The ability of the spectroscopic methods to perform unambiguous identification of guar gum compared to other gums makes them an enhanced surveillance alternative to the current compendial identification tests, which are largely subjective in nature. Our findings indicate that Raman spectral identification methods perform better than compendial identification methods and are able to distinguish guar gum from other gums with 100% accuracy for samples tested by spectral correlation and principal component analysis. Published by Elsevier B.V.

  9. Xe isotope detection and discrimination using beta spectroscopy with coincident gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Reeder, P. L.; Bowyer, T. W.

    1998-02-01

    Beta spectroscopic techniques show promise of significant improvements for a beta-gamma coincidence counter that is part of a system for analyzing Xe automatically separated from air. The previously developed counting system for 131mXe, 133mXe, 133gXe, and 135gXe can be enhanced to give additional discrimination between these Xe isotopes by using the plastic scintillation sample cell as a beta spectrometer to resolve the conversion electron peaks. The automated system will be a key factor in monitoring the Comprehensive Test Ban Treaty.

  10. Sophopterocarpan A, a novel pterocarpine derivative with a benzotetrahydrofuran-fused bicyclo [3.3.1] nonane from Sophora flavescens.

    PubMed

    Zhu, Hui; Yang, Ya-Nan; Xu, Kuo; Xie, Jing; Feng, Zi-Ming; Jiang, Jian-Shuang; Zhang, Pei-Cheng

    2017-07-05

    Sophopterocarpan A (1), with a novel benzotetrahydrofuran-fused bicyclo [3.3.1] nonane ring, was isolated from the roots of Sophora flavescens Ait. Its unusual structure, including its stereochemistry, was determined on the basis of a comprehensive spectroscopic data analysis. A plausible biogenetic pathway for 1 is presented. Sophopterocarpan A was identified as a potential autophagy activator. Additionally, it was found that 1 exhibited cytotoxic activity in MCF-7 cells with an IC 50 of 29.36 μM.

  11. Three new isobenzofuranone derivatives from the fruiting bodies of Hericium erinaceus.

    PubMed

    Wang, Xu-Li; Gao, Jie; Li, Jing; Long, Hong-Ping; Xu, Ping-Sheng; Xu, Kang-Ping; Tan, Gui-Shan

    2017-02-01

    Three new isobenzofuranone derivatives erinaceolactones D-F (1-3), together with four known ones (4-7), were isolated from the fruiting bodies of Hericium erinaceus. Their structures were determined on the basis of comprehensive spectroscopic analyses including UV, 1D, 2D NMR and HR-TOF-MS. The absolute configuration of erinaceolactone D (1) and erinaceolactone E (2) were assigned by comparing their specific rotation with those of analogs in literatures. The four known compounds were isomers with each other and were isolated simultaneously for the first time.

  12. EPR spectroscopy of complex biological iron-sulfur systems.

    PubMed

    Hagen, Wilfred R

    2018-02-21

    From the very first discovery of biological iron-sulfur clusters with EPR, the spectroscopy has been used to study not only purified proteins but also complex systems such as respiratory complexes, membrane particles and, later, whole cells. In recent times, the emphasis of iron-sulfur biochemistry has moved from characterization of individual proteins to the systems biology of iron-sulfur biosynthesis, regulation, degradation, and implications for human health. Although this move would suggest a blossoming of System-EPR as a specific, non-invasive monitor of Fe/S (dys)homeostasis in whole cells, a review of the literature reveals limited success possibly due to technical difficulties in adherence to EPR spectroscopic and biochemical standards. In an attempt to boost application of System-EPR the required boundary conditions and their practical applications are explicitly and comprehensively formulated.

  13. An historical overview of cavity-enhanced methods

    NASA Astrophysics Data System (ADS)

    Paldus, B. A.; Kachanov, A. A.

    2005-10-01

    An historical overview of laser-based, spectroscopic methods that employ high-finesse optical resonators is presented. The overview begins with the early work in atomic absorption (1962) and optical cavities (1974) that led to the first mirror reflectivity measurements in 1980. This paper concludes with very recent extensions of cavity-enhanced methods for the study of condensed-phase media and biological systems. Methods described here include cavity ring-down spectroscopy, integrated cavity output spectroscopy, and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. Given the explosive growth of the field over the past decade, this review does not attempt to present a comprehensive bibliography of all work published in cavity-enhanced spectroscopy, but rather strives to illustrate the rich history, creative diversity, and broad applications potential of these methods.

  14. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    ERIC Educational Resources Information Center

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  15. Comprehensive studies on the nature of interaction between carboxylated multi-walled carbon nanotubes and bovine serum albumin.

    PubMed

    Lou, Kai; Zhu, Zhaohua; Zhang, Hongmei; Wang, Yanqing; Wang, Xiaojiong; Cao, Jian

    2016-01-05

    Herein, the interaction between carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) and bovine serum albumin has been investigated by using circular dichroism, UV-vis, and fluorescence spectroscopic methods and molecular modeling in order to better understand the basic behavior of carbon nanotubes in biological systems. The spectral results showed that MWCNTs-COOH bound to BSA and induced the relatively large changes in secondary structure of protein by mainly hydrophobic forces and π-π stacking interactions. Thermal denaturation of BSA in the presence of MWCNTs-COOH indicated that carbon nanotubes acted as a structure destabilizer for BSA. In addition, the putative binding site of MWCNTs-COOH on BSA was near to domain II. With regard to human health, the present study could provide a better understanding of the biological properties, cytotocicity of surface modified carbon nanotubes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Propranolol.

    PubMed

    Al-Majed, Abdulrahman A; Bakheit, Ahmed H H; Abdel Aziz, Hatem A; Alajmi, Fahad M; AlRabiah, Haitham

    Propranolol is a noncardioselective β-blocker. It is reported to have membrane-stabilizing properties, but it does not own intrinsic sympathomimetic activity. Propranolol hydrochloride is used to control hypertension, pheochromocytoma, myocardial infarction, cardiac arrhythmias, angina pectoris, and hypertrophic cardiomyopathy. It is also used to control symptoms of sympathetic overactivity in the management of hyperthyroidism, anxiety disorders, and tremor. Other indications cover the prophylaxis of migraine and of upper gastrointestinal bleeding in patients with portal hypertension. This study provides a detailed, comprehensive profile of propranolol, including formulas, elemental analysis, and the appearance of the drug. In addition, the synthesis of the drug is described. The chapter covers the physicochemical properties, including X-ray powder diffraction, pK, solubility, melting point, and procedures of analysis (spectroscopic, electrochemical, and chromatographic). In-depth pharmacology is also presented (pharmacological actions, therapeutic dosing, uses, Interactions, and adverse effects and precautions). More than 60 references are given as a proof of the abovementioned studies. © 2017 Elsevier Inc. All rights reserved.

  17. Toxicological methods for tracing drug abuse: chromatographic, spectroscopic and biological characterisation of ecstasy derivatives.

    PubMed

    Belhadj-Tahar, Hafid; Payoux, Pierre; Tafani, Mathieu; Coulais, Yvon; Calet, Serge; Bousseksou, Azzedine

    2010-03-01

    Analysis often reveals variability in the composition of ecstasy pills from pure 3,4-methylenedioxymethamphetamine (MDMA) to mixtures of MDMA derivatives, amphetamine, and other unidentified substances. For a comprehensive toxicological analysis one needs to know all steps to MDMA synthesis which may originate impurities. The aim of this study was to synthesise and determine the chemical-physical and in vitro biological properties of a series of MDMA derivatives.3,4-methylendioxyphenyl-2-nitropropene (MDNP) was obtained by condensation of piperonal with an excess of nitroethane in the presence of ammonium acetate. MDNP was then reduced to methylenedioxyamphetamine (MDA) by LiAlH3. All compounds were analysed using HPLC and spectroscopic technique [Raman, nuclear magnetic resonance (NMR), or infrared (IR)] at all the steps of synthesis. In addition, we assessed the biological potentials of these compounds by measuring in vitro their (i) blood cell/whole blood partition coefficient, (ii) binding to plasmatic proteins (Fbp), and (iii) membrane adsorption. Chemical structure was determined with antibody fluorescence polarisation immunoassay (FPIA). This study showed the presence of solid impurities, particularly of a neurotoxic compound of Al3+ in the final products. FPIA identified the aminoethane group close to the substituted benzene ring, but did not detect the two major precursors of MDMA: MDNP and piperonal. Raman spectroscopy is an attractive alternative technique to characterise ecstasy pills and it can identify stereoisomeric forms such as cis-MDNP and trans-MDNP, which exhibit signals at 1650 cm-1 and 1300 cm-1, respectively.

  18. Spectroscopic and E-tongue evaluation of medicinal plants: A taste of how rasa can be studied.

    PubMed

    Jayasundar, Rama; Ghatak, Somenath

    The use of medicinal plants in Ayurveda is based on rasa, generally taken to represent taste as a sensory perception. This chemosensory parameter plays an important role in Ayurvedic pharmacology. The aim is to explore the use of structuro-functional information deduced from analytical techniques for the rasa-based classification of medicinal plants in Ayurveda. Methods of differential sensing and spectroscopic metabolomics have been used in select medicinal plants from three different taste categories (sweet, pungent and multiple taste): Tribulus terrestris, Vitis vinifera and Glycyrrhiza glabra from sweet category; Piper longum, Cuminum cyminum and Capsicum annum from pungent group; Emblica officinalis with five tastes. While Electronic tongue was used for evaluation of the sensorial property of taste, the chemical properties were studied with Nuclear Magnetic Resonance (NMR), Fourier Transform InfraRed (FTIR) and Laser Induced Breakdown Spectroscopy (LIBS). In terms of taste and phytochemical profiles, all samples were unique but with similarities within each group. While the sensor response in E-tongue showed similarities within the sweet and pungent categories, NMR spectra in the aromatic region showed close similarities between the plants in the sweet category. The sensory, phytochemical and phytoelemental profiles of E. officinalis (with five rasa) in particular, were unique. A combination of sensorial and chemical descriptors is a promising approach for a comprehensive evaluation and fingerprinting of the Ayurvedic pharmacological parameter rasa. Copyright © 2016 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  19. CLASH-VLT: A highly precise strong lensing model of the galaxy cluster RXC J2248.7-4431 (Abell S1063) and prospects for cosmography

    NASA Astrophysics Data System (ADS)

    Caminha, G. B.; Grillo, C.; Rosati, P.; Balestra, I.; Karman, W.; Lombardi, M.; Mercurio, A.; Nonino, M.; Tozzi, P.; Zitrin, A.; Biviano, A.; Girardi, M.; Koekemoer, A. M.; Melchior, P.; Meneghetti, M.; Munari, E.; Suyu, S. H.; Umetsu, K.; Annunziatella, M.; Borgani, S.; Broadhurst, T.; Caputi, K. I.; Coe, D.; Delgado-Correal, C.; Ettori, S.; Fritz, A.; Frye, B.; Gobat, R.; Maier, C.; Monna, A.; Postman, M.; Sartoris, B.; Seitz, S.; Vanzella, E.; Ziegler, B.

    2016-03-01

    Aims: We perform a comprehensive study of the total mass distribution of the galaxy cluster RXC J2248.7-4431 (z = 0.348) with a set of high-precision strong lensing models, which take advantage of extensive spectroscopic information on many multiply lensed systems. In the effort to understand and quantify inherent systematics in parametric strong lensing modelling, we explore a collection of 22 models in which we use different samples of multiple image families, different parametrizations of the mass distribution and cosmological parameters. Methods: As input information for the strong lensing models, we use the Cluster Lensing And Supernova survey with Hubble (CLASH) imaging data and spectroscopic follow-up observations, with the VIsible Multi-Object Spectrograph (VIMOS) and Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT), to identify and characterize bona fide multiple image families and measure their redshifts down to mF814W ≃ 26. A total of 16 background sources, over the redshift range 1.0-6.1, are multiply lensed into 47 images, 24 of which are spectroscopically confirmed and belong to ten individual sources. These also include a multiply lensed Lyman-α blob at z = 3.118. The cluster total mass distribution and underlying cosmology in the models are optimized by matching the observed positions of the multiple images on the lens plane. Bayesian Markov chain Monte Carlo techniques are used to quantify errors and covariances of the best-fit parameters. Results: We show that with a careful selection of a large sample of spectroscopically confirmed multiple images, the best-fit model can reproduce their observed positions with a rms scatter of 0.̋3 in a fixed flat ΛCDM cosmology, whereas the lack of spectroscopic information or the use of inaccurate photometric redshifts can lead to biases in the values of the model parameters. We find that the best-fit parametrization for the cluster total mass distribution is composed of an elliptical pseudo-isothermal mass distribution with a significant core for the overall cluster halo and truncated pseudo-isothermal mass profiles for the cluster galaxies. We show that by adding bona fide photometric-selected multiple images to the sample of spectroscopic families, one can slightly improve constraints on the model parameters. In particular, we find that the degeneracy between the lens total mass distribution and the underlying geometry of the Universe, which is probed via angular diameter distance ratios between the lens and sources and the observer and sources, can be partially removed. Allowing cosmological parameters to vary together with the cluster parameters, we find (at 68% confidence level) Ωm = 0.25+ 0.13-0.16 and w = -1.07+ 0.16-0.42 for a flat ΛCDM model, and Ωm = 0.31+ 0.12-0.13 and ΩΛ = 0.38+ 0.38-0.27 for a Universe with w = -1 and free curvature. Finally, using toy models mimicking the overall configuration of multiple images and cluster total mass distribution, we estimate the impact of the line-of-sight mass structure on the positional rms to be 0.̋3 ± 0. We argue that the apparent sensitivity of our lensing model to cosmography is due to the combination of the regular potential shape of RXC J2248, a large number of bona fide multiple images out to z = 6.1, and a relatively modest presence of intervening large-scale structure, as revealed by our spectroscopic survey.

  20. THE SPECTROSCOPIC DIVERSITY OF TYPE Ia SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blondin, S.; Matheson, T.; Kirshner, R. P.

    2012-05-15

    We present 2603 spectra of 462 nearby Type Ia supernovae (SNe Ia), including 2065 previously unpublished spectra, obtained during 1993-2008 through the Center for Astrophysics Supernova Program. There are on average eight spectra for each of the 313 SNe Ia with at least two spectra. Most of the spectra were obtained with the FAST spectrograph at the Fred Lawrence Whipple Observatory 1.5 m telescope and reduced in a consistent manner, making this data set well suited for studies of SN Ia spectroscopic diversity. Using additional data from the literature, we study the spectroscopic and photometric properties of SNe Ia asmore » a function of spectroscopic class using the classification schemes of Branch et al. and Wang et al. The width-luminosity relation appears to be steeper for SNe Ia with broader lines, although the result is not statistically significant with the present sample. Based on the evolution of the characteristic Si II {lambda}6355 line, we propose improved methods for measuring velocity gradients, revealing a larger range than previously suspected, from {approx}0 to {approx}400 km s{sup -1} day{sup -1} considering the instantaneous velocity decline rate at maximum light. We find a weaker and less significant correlation between Si II velocity and intrinsic B - V color at maximum light than reported by Foley et al., owing to a more comprehensive treatment of uncertainties and host galaxy dust. We study the extent of nuclear burning and the presence of unburnt carbon in the outermost layers of the ejecta and report new detections of C II {lambda}6580 in 23 early-time SN Ia spectra. The frequency of C II detections is not higher in SNe Ia with bluer colors or narrower light curves, in conflict with the recent results of Thomas et al. Based on nebular spectra of 27 SNe Ia, we find no relation between the FWHM of the iron emission feature at {approx}4700 A and {Delta}m{sub 15}(B) after removing the two low-luminosity SN 1986G and SN 1991bg, suggesting that the peak luminosity is not strongly dependent on the kinetic energy of the explosion for most SNe Ia. Finally, we confirm the correlation of velocity shifts in some nebular lines with the intrinsic B - V color of SNe Ia at maximum light, although several outliers suggest a possible non-monotonic behavior for the largest blueshifts.« less

  1. A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Mathieu, Robert D.; Braden, Ella; Latham, David W.

    2008-08-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.

  2. A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Mathieu, Robert D.; Gosnell, Natalie; Latham, David W.

    2009-02-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.

  3. A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Mathieu, Robert D.; Braden, Ella; Latham, David W.

    2008-02-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.

  4. The SOLAR-C Mission

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.

    2015-12-01

    The Solar-C is a Japan-led international solar mission planned to be launched in mid2020. It is designed to investigate the magnetic activities of the Sun, focusing on the study in heating and dynamical phenomena of the chromosphere and corona, and also to develop an algorithm for predicting short and long term solar evolution. Since it has been revealed that the different parts of the magnetized solar atmosphere are essentially coupled, the SOLAR-C should tackle the spatial scales and temperature regimes that need to be observed in order to achieve a comprehensive physical understanding of this coupling. The science of Solar-C will greatly advance our understanding of the Sun, of basic physical processes operating throughout the universe. To dramatically improve the situation, SOLAR-C will carry three dedicated instruments; the Solar UV-Vis-IR Telescope (SUVIT), the EUV Spectroscopic Telescope (EUVST) and the High Resolution Coronal Imager (HCI), to jointly observe the entire visible solar atmosphere with essentially the same high spatial resolution (0.1-0.3 arcsec), performing high resolution spectroscopic measurements over all atmospheric regions and spectro-polarimetric measurements from the photosphere through the upper chromosphere. In addition, Solar-C will contribute to our understanding on the influence of the Sun-Earth environments with synergetic wide-field observations from ground-based and other space missions. Some leading science objectives and the mission concept, including designs of the three instruments aboard SOLAR-C will be presented.

  5. Core-size regulated aggregation/disaggregation of citrate-coated gold nanoparticles (5-50 nm) and dissolved organic matter: Extinction, emission, and scattering evidence

    NASA Astrophysics Data System (ADS)

    Esfahani, Milad Rabbani; Pallem, Vasanta L.; Stretz, Holly A.; Wells, Martha J. M.

    2018-01-01

    Knowledge of the interactions between gold nanoparticles (GNPs) and dissolved organic matter (DOM) is significant in the development of detection devices for environmental sensing, studies of environmental fate and transport, and advances in antifouling water treatment membranes. The specific objective of this research was to spectroscopically investigate the fundamental interactions between citrate-stabilized gold nanoparticles (CT-GNPs) and DOM. Studies indicated that 30 and 50 nm diameter GNPs promoted disaggregation of the DOM. This result-disaggregation of an environmentally important polyelectrolyte-will be quite useful regarding antifouling properties in water treatment and water-based sensing applications. Furthermore, resonance Rayleigh scattering results showed significant enhancement in the UV range which can be useful to characterize DOM and can be exploited as an analytical tool to better sense and improve our comprehension of nanomaterial interactions with environmental systems. CT-GNPs having core size diameters of 5, 10, 30, and 50 nm were studied in the absence and presence of added DOM at 2 and 8 ppm at low ionic strength and near neutral pH (6.0-6.5) approximating surface water conditions. Interactions were monitored by cross-interpretation among ultraviolet (UV)-visible extinction spectroscopy, excitation-emission matrix (EEM) spectroscopy (emission and Rayleigh scattering), and dynamic light scattering (DLS). This comprehensive combination of spectroscopic analyses lends new insights into the antifouling behavior of GNPs. The CT-GNP-5 and -10 controls emitted light and aggregated. In contrast, the CT-GNP-30 and CT-GNP-50 controls scattered light intensely, but did not aggregate and did not emit light. The presence of any CT-GNP did not affect the extinction spectra of DOM, and the presence of DOM did not affect the extinction spectra of the CT-GNPs. The emission spectra (visible range) differed only slightly between calculated and actual mixtures of CT-GNP-5 or -10 with DOM, whereas emissions for mixtures of CT-GNP-30 or -50 with DOM were enhanced at the surface plasmon resonance (SPR) wavelength. The emission spectra (ultraviolet range) for protein-like constituents of DOM were quenched. Resonance Rayleigh scattering (RRS) was more intense for the CT-GNP-30 and -50 than for the CT-GNP-5 and -10 controls. Intensity-based DLS particle size distributions (PSDs) of DOM controls, CT-GNP-5 and -10 nm controls, and 5- and 10 nm GNP-DOM mixtures exhibited multimodal aggregation. Analyses of CT-GNP-5 and CT-GNP-10 nm mixtures with DOM indicated overcoating of DOM molecules occurred in close proximity (< 10 nm) to GNPs, whereas similar overcoating was not supported for the CT-GNP-30 or -50 mixtures with DOM. These fundamental observations can be exploited to improve our comprehension of nanomaterial interactions with environmental systems.

  6. In situ spectroscopic identification of neptunium(V) inner-sphere complexes on the hematite-water interface.

    PubMed

    Müller, Katharina; Gröschel, Annett; Rossberg, André; Bok, Frank; Franzen, Carola; Brendler, Vinzenz; Foerstendorf, Harald

    2015-02-17

    Hematite plays a decisive role in regulating the mobility of contaminants in rocks and soils. The Np(V) reactions at the hematite-water interface were comprehensively investigated by a combined approach of in situ vibrational spectroscopy, X-ray absorption spectroscopy and surface complexation modeling. A variety of sorption parameters such as Np(V) concentration, pH, ionic strength, and the presence of bicarbonate was considered. Time-resolved IR spectroscopic sorption experiments at the iron oxide-water interface evidenced the formation of a single monomer Np(V) inner-sphere sorption complex. EXAFS provided complementary information on bidentate edge-sharing coordination. In the presence of atmospherically derived bicarbonate the formation of the bis-carbonato inner-sphere complex was confirmed supporting previous EXAFS findings.1 The obtained molecular structure allows more reliable surface complexation modeling of recent and future macroscopic data. Such confident modeling is mandatory for evaluating water contamination and for predicting the fate and migration of radioactive contaminants in the subsurface environment as it might occur in the vicinity of a radioactive waste repository or a reprocessing plant.

  7. Microscopy with slow electrons: from LEEM to XPEEM

    ScienceCinema

    Bauer, Ernst [Arizona State University, Phoenix, Arizona, United States

    2017-12-09

    The short penetration and escape depth of electrons with energies below 1 keV make them ideally suited for the study of surfaces and ultrathin films. The combination of the low energy electrons and the high lateral resolution of a microscope produces a powerful method for the characterization of nanostructures on bulk samples, in particular if the microscope is equipped with an imaging energy filter and connected to a synchrotron radiation source. Comprehensive characterization by imaging, diffraction, and spectroscope of the structural, chemical, and magnetic properties is then possible. The Talk will describe the various imaging techniques in using reflected and emitted electrons in low-energy electron microscopy (LEEM) and x-ray photoemission electron microscopy (XPEEM), with an emphasis on magnetic materials with spin-polarized LEEM and x-ray magnetic circular dichroism PEEM. The talk with end with an outlook on future possibilities.

  8. Evaluating polymeric biomaterial–environment interfaces by Langmuir monolayer techniques

    PubMed Central

    Schöne, Anne-Christin; Roch, Toralf; Schulz, Burkhard

    2017-01-01

    Polymeric biomaterials are of specific relevance in medical and pharmaceutical applications due to their wide range of tailorable properties and functionalities. The knowledge about interactions of biomaterials with their biological environment is of crucial importance for developing highly sophisticated medical devices. To achieve optimal in vivo performance, a description at the molecular level is required to gain better understanding about the surface of synthetic materials for tailoring their properties. This is still challenging and requires the comprehensive characterization of morphological structures, polymer chain arrangements and degradation behaviour. The review discusses selected aspects for evaluating polymeric biomaterial–environment interfaces by Langmuir monolayer methods as powerful techniques for studying interfacial properties, such as morphological and degradation processes. The combination of spectroscopic, microscopic and scattering methods with the Langmuir techniques adapted to polymers can substantially improve the understanding of their in vivo behaviour. PMID:28468918

  9. Comprehensive ab initio calculation and simulation on the low-lying electronic states of TlX (X = F, Cl, Br, I, and At).

    PubMed

    Zou, Wenli; Liu, Wenjian

    2009-03-01

    The low-lying electronic states of TlX (X=F, Cl, Br, I, and At) are investigated using the configuration interaction based complete active space third-order perturbation theory [CASPT3(CI)] with spin-orbit coupling accounted for. The potential energy curves and the corresponding spectroscopic constants are reported. The results are grossly in good agreement with the available experimental data. The absorption spectra are simulated as well to reassign the experimental bands. The present results are also useful for guiding future experimental measurements.

  10. Antimicrobial and cytotoxic constituents from native Cameroonian medicinal plant Hypericum riparium.

    PubMed

    Tala, Michel Feussi; Talontsi, Ferdinand Mouafo; Zeng, Guang-Zhi; Wabo, Hippolyte Kamdem; Tan, Ning-Hua; Spiteller, Michael; Tane, Pierre

    2015-04-01

    Bioassay guided fractionation of Hypericum riparium leaves extract has resulted in the isolation and characterization of three new compounds namely chipericumin E (1), hyperenone C (3), and hyperixanthone (5), together with twenty known compounds. Their structures were elucidated based on comprehensive interpretation of spectroscopic and spectrometric data. Compounds 1-4, and 6-8 displayed moderate antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and cytotoxic effects on the human gastric cell line BGC-823 with IC50 values ranging from 6.54 to 18.50μM. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. X-ray Emission Line Spectroscopy of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Daniel

    What are the origins of the diffuse soft X-ray emission from non-AGN galaxies? Preliminary analysis of XMM-Newton RGS spectra shows that a substantial fraction of the emission cannot arise from optically-thin thermal plasma, as commonly assumed, and may originate in charge exchange at the interface with neutral gas. We request the support for a comprehensive observing, data analysis, and modeling program to spectroscopically determine the origins of the emission. First, we will use our scheduled XMM-Newton AO-10 368 ks observations of the nearest compact elliptical galaxy M32 to obtain the first spectroscopic calibration of the cumulative soft X-ray emission from the old stellar population and will develop a spectral model for the charge exchange, as well as analysis tools to measure the spatial and kinematic properties of the X-ray line- emitting plasma. Second, we will characterize the truly diffuse emission from the hot plasma and/or its interplay with the neutral gas in a sample of galactic spheroids and active star forming/starburst regions in nearby galaxies observed by XMM-Newton. In particular, we will map out the spatial distributions of key emission lines and measure (or tightly constrain) the kinematics of hot plasma outflows for a few X-ray-emitting regions with high-quality RGS data. For galaxies with insufficient counting statistics in individual emission lines, we will conduct a spectral stacking analysis to constrain the average properties of the X-ray-emitting plasma. We will use the results of these X-ray spectroscopic analyses, together with complementary X-ray CCD imaging/spectral data and observations in other wavelength bands, to test the models of the emission. In addition to the charge exchange, alternative scenarios such as resonance scattering and relic AGN photo-ionization will also be examined for suitable regions. These studies are important to the understanding of the relationship between the diffuse soft X-ray emission and various high-energy feedback processes of the galaxies.

  12. CLASH-VLT: INSIGHTS ON THE MASS SUBSTRUCTURES IN THE FRONTIER FIELDS CLUSTER MACS J0416.1–2403 THROUGH ACCURATE STRONG LENS MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grillo, C.; Suyu, S. H.; Umetsu, K.

    2015-02-10

    We present a detailed mass reconstruction and a novel study on the substructure properties in the core of the Cluster Lensing And Supernova survey with Hubble (CLASH) and Frontier Fields galaxy cluster MACS J0416.1–2403. We show and employ our extensive spectroscopic data set taken with the VIsible Multi-Object Spectrograph instrument as part of our CLASH-VLT program, to confirm spectroscopically 10 strong lensing systems and to select a sample of 175 plausible cluster members to a limiting stellar mass of log (M {sub *}/M {sub ☉}) ≅ 8.6. We reproduce the measured positions of a set of 30 multiple images withmore » a remarkable median offset of only 0.''3 by means of a comprehensive strong lensing model comprised of two cluster dark-matter halos, represented by cored elliptical pseudo-isothermal mass distributions, and the cluster member components, parameterized with dual pseudo-isothermal total mass profiles. The latter have total mass-to-light ratios increasing with the galaxy HST/WFC3 near-IR (F160W) luminosities. The measurement of the total enclosed mass within the Einstein radius is accurate to ∼5%, including the systematic uncertainties estimated from six distinct mass models. We emphasize that the use of multiple-image systems with spectroscopic redshifts and knowledge of cluster membership based on extensive spectroscopic information is key to constructing robust high-resolution mass maps. We also produce magnification maps over the central area that is covered with HST observations. We investigate the galaxy contribution, both in terms of total and stellar mass, to the total mass budget of the cluster. When compared with the outcomes of cosmological N-body simulations, our results point to a lack of massive subhalos in the inner regions of simulated clusters with total masses similar to that of MACS J0416.1–2403. Our findings of the location and shape of the cluster dark-matter halo density profiles and on the cluster substructures provide intriguing tests of the assumed collisionless, cold nature of dark matter and of the role played by baryons in the process of structure formation.« less

  13. The spectroscopic evolution of novae in the bulge of M31 and a search for their possible origin in the M31 globular cluster system

    NASA Astrophysics Data System (ADS)

    Tomaney, Austin Bede

    Results are presented from a three year (1987 to 1989) spectroscopic and photometric survey of novae in M3l's bulge, the first comprehensive study of novae outside the Galactic and Magellanic Cloud systems. Nine novae were detected and monitored and their spectra cover a range of outburst states from early decline to the early nebular phases. Broad agreement in spectral morphology and evolution is found with Galactic novae. Since Galactic novae are mainly disk objects, this indicates that novae outburst properties are not critically dependent on the metallicity of the progenitor population. However, in this sample, and in a sample of four M31 nova spectra taken in 1983, no fast, violent outbursts frequently associated with nova systems containing ONeMg white dwarfs were found, suggestive of a systematic difference between the observed proportion of such outbursts between Galactic and M31 bulge novae. Three novae in the sample were observed on succeeding nights during the transition phase of their evolution. Extraordinary variations in some nightly line strengths, particularly the N III lines, were discovered. It is argued that this variability reflects the deposition of drag energy by the secondary star during the common envelope phase of nova evolution and is indicative of a key phase in mass loss from nova systems. Observations include the spectroscopic coverage of an extremely slow nova from 1987 to l990, during the object's evolution in the nebula phase. This provided a unique opportunity to make the first detailed comparison of the evolution and properties of an extra galactic nova with those in our own Galaxy. The roughly solar abundances obtained are typical of similar slow Galactic novae. Further observations are also presented of a unique outburst in 1988 that was independently discovered and reported by Rich et al. These data confirm the inferences of other observers that the outburst differed markedly from that of a typical classical nova. Finally an extensive spectroscopic survey of the M31 globular cluster system was made in an effort to find evidence of a previously suggested enhanced nova rate in these objects. No outbursts were detected during an effective survey time of one year for the entire system.

  14. Spectroscopic properties for identifying sapphire samples from Ban Bo Kaew, Phrae Province, Thailand

    NASA Astrophysics Data System (ADS)

    Mogmued, J.; Monarumit, N.; Won-in, K.; Satitkune, S.

    2017-09-01

    Gemstone commercial is a high revenue for Thailand especially ruby and sapphire. Moreover, Phrae is a potential gem field located in the northern part of Thailand. The studies of spectroscopic properties are mainly to identify gemstone using advanced techniques (e.g. UV-Vis-NIR spectrophotometry, FTIR spectrometry and Raman spectroscopy). Typically, UV-Vis-NIR spectrophotometry is a technique to study the cause of color in gemstones. FTIR spectrometry is a technique to study the functional groups in gem-materials. Raman pattern can be applied to identify the mineral inclusions in gemstones. In this study, the natural sapphires from Ban Bo Kaew were divided into two groups based on colors including blue and green. The samples were analyzed by UV-Vis-NIR spectrophotometer, FTIR spectrometer and Raman spectroscope for studying spectroscopic properties. According to UV-Vis-NIR spectra, the blue sapphires show higher Fe3+/Ti4+ and Fe2+/Fe3+ absorption peaks than those of green sapphires. Otherwise, green sapphires display higher Fe3+/Fe3+ absorption peaks than blue sapphires. The FTIR spectra of both blue and green sapphire samples show the absorption peaks of -OH,-CH and CO2. The mineral inclusions such as ferrocolumbite and rutile in sapphires from this area were observed by Raman spectroscope. The spectroscopic properties of sapphire samples from Ban Bo Kaew, Phrae Province, Thailand are applied to be the specific evidence for gemstone identification.

  15. Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids.

    PubMed

    Poole, Colin F

    2004-05-28

    Room temperature ionic liquids are novel solvents with favorable environmental and technical features. Synthetic routes to over 200 room temperature ionic liquids are known but for most ionic liquids physicochemical data are generally lacking or incomplete. Chromatographic and spectroscopic methods afford suitable tools for the study of solvation properties under conditions that approximate infinite dilution. Gas-liquid chromatography is suitable for the determination of gas-liquid partition coefficients and activity coefficients as well as thermodynamic constants derived from either of these parameters and their variation with temperature. The solvation parameter model can be used to define the contribution from individual intermolecular interactions to the gas-liquid partition coefficient. Application of chemometric procedures to a large database of system constants for ionic liquids indicates their unique solvent properties: low cohesion for ionic liquids with weakly associated ions compared with non-ionic liquids of similar polarity; greater hydrogen-bond basicity than typical polar non-ionic solvents; and a range of dipolarity/polarizability that encompasses the same range as occupied by the most polar non-ionic liquids. These properties can be crudely related to ion structures but further work is required to develop a comprehensive approach for the design of ionic liquids for specific applications. Data for liquid-liquid partition coefficients is scarce by comparison with gas-liquid partition coefficients. Preliminary studies indicate the possibility of using the solvation parameter model for interpretation of liquid-liquid partition coefficients determined by shake-flask procedures as well as the feasibility of using liquid-liquid chromatography for the convenient and rapid determination of liquid-liquid partition coefficients. Spectroscopic measurements of solvatochromic and fluorescent probe molecules in room temperature ionic liquids provide insights into solvent intermolecular interactions although interpretation of the different and generally uncorrelated "polarity" scales is sometimes ambiguous. All evidence points to the ionic liquids as a unique class of polar solvents suitable for technical development. In terms of designer solvents, however, further work is needed to fill the gaps in our knowledge of the relationship between ion structures and physicochemical properties.

  16. A M2FS Spectroscopic Study of Low-mass Young Stars in Orion OB1

    NASA Astrophysics Data System (ADS)

    Kaleida, Catherine C.; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus

    2015-01-01

    Surveys of pre-main sequence stars in the ~4-10 Myr range provide a window into the decline of the accretion phase of stars and the formation of planets. Nearby star clusters and stellar associations allow for the study of these young stellar populations all the way down to the lowest mass members. One of the best examples of nearby 4-10 Myr old stellar populations is the Orion OB1 association. The CIDA Variability Survey of Orion OB1 (CVSO - Briceño et al. 2001) has used the variability properties of low-mass pre-main-sequence (PMS) stars to identify hundreds of K and M-type stellar members of the Orion OB1 association, a number of them displaying IR-excess emission and thought to be representative of more evolved disk-bearing young stars. Characterizing these young, low-mass objects using spectroscopy is integral to understanding the accretion phase in young stars. We present preliminary results of a spectroscopic survey of candidate and confirmed Orion OB1 low-mass members taken during November 2014 and February 2014 using the Michigan/Magellan Fiber Spectrograph (M2FS), a PI instrument on the Magellan Clay Telescope (PI: M. Matteo). Target fields located in the off-cloud regions of Orion were identified in the CVSO, and observed using the low and high-resolution modes of M2FS. Both low and high-resolution spectra are needed in order to confirm membership and derive masses, ages, kinematics and accretion properties. Initial analysis of these spectra reveal many new K and M-type members of the Orion OB1 association in these low extinction, off-cloud areas. These are the more evolved siblings of the youngest stars still embedded in the molecular clouds, like those in the Orion Nebula Cluster. With membership and spectroscopic indicators of accretion we are building the most comprehensive stellar census of this association, enabling us to derive a robust estimate of the fraction of young stars still accreting at a various ages, a key constraint for the end of accretion and the formation of giant planets.

  17. Comprehensive Experimental and Computational Spectroscopic Study of Hexacyanoferrate Complexes in Water: From Infrared to X-ray Wavelengths.

    PubMed

    Ross, Matthew; Andersen, Amity; Fox, Zachary W; Zhang, Yu; Hong, Kiryong; Lee, Jae-Hyuk; Cordones, Amy; March, Anne Marie; Doumy, Gilles; Southworth, Stephen H; Marcus, Matthew A; Schoenlein, Robert W; Mukamel, Shaul; Govind, Niranjan; Khalil, Munira

    2018-05-17

    We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute-solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute-solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute-solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute-solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe(II) and Fe(III) complexes in solution.

  18. A new comprehensive index for discriminating adulteration in bovine raw milk.

    PubMed

    Liu, Jing; Ren, Jing; Liu, Zhen-Min; Guo, Ben-Heng

    2015-04-01

    This paper proposes a new comprehensive index, called Q, which can effectively discriminate artificial adulterated milk from unadulterated milk. Both normal and adulterated samples of bovine raw milk were analysed by Fourier transform infrared spectroscopic instrument to measure the traditional indices of quality, including fat (FAT), protein (PRO), lactose (LAC), total solids (TS), non-fat solid (NFS), freezing point (FP) and somatic cell counts (SCC). From these traditional indices, this paper elaborates a method to build the index Q. First, correlated analysis and principle component analysis were used to select parameter pairs TS-FAT and FP-LAC as predominant variables. Second, linear-regression analysis and residual analysis are applied to determine the index Q and its discriminating ranges. The verification and two-blind trial results suggested that index Q could accurately detect milk adulteration with maltodextrin and water (as low as 1.0% of adulteration proportions), and with other nine kinds of synthetic adulterants (as low as 0.5% of adulteration proportions). Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Quantum Mechanical Metric for Internal Cohesion in Cement Crystals

    PubMed Central

    Dharmawardhana, C. C.; Misra, A.; Ching, Wai-Yim

    2014-01-01

    Calcium silicate hydrate (CSH) is the main binding phase of Portland cement, the single most important structural material in use worldwide. Due to the complex structure and chemistry of CSH at various length scales, the focus has progressively turned towards its atomic level comprehension. We study electronic structure and bonding of a large subset of the known CSH minerals. Our results reveal a wide range of contributions from each type of bonding, especially hydrogen bonding, which should enable critical analysis of spectroscopic measurements and construction of realistic C-S-H models. We find the total bond order density (TBOD) as the ideal overall metric for assessing crystal cohesion of these complex materials and should replace conventional measures such as Ca:Si ratio. A rarely known orthorhombic phase Suolunite is found to have higher cohesion (TBOD) in comparison to Jennite and Tobermorite, which are considered the backbone of hydrated Portland cement. PMID:25476741

  20. Comprehensive theoretical studies on the low-lying electronic states of NiF, NiCl, NiBr, and NiI.

    PubMed

    Zou, Wenli; Liu, Wenjian

    2006-04-21

    The low-lying electronic states of the nickel monohalides, i.e., NiF, NiCl, NiBr, and NiI, are investigated by using multireference second-order perturbation theory with relativistic effects taken into account. For the energetically lowest 11 lambda-S states and 26 omega states there into, the potential energy curves and corresponding spectroscopic constants (vertical and adiabatic excitation energies, equilibrium bond lengths, vibrational frequencies, and rotational constants) are reported. The calculated results are grossly in very good agreement with those solid experimental data. In particular, the ground state of NiI is shown to be different from those of NiF, NiCl, and NiBr, being in line with the recent experimental observation. Detailed analyses are provided on those states that either have not been assigned or have been incorrectly assigned by previous experiments.

  1. TCA precipitation and ethanol/HCl single-step purification evaluation: One-dimensional gel electrophoresis, bradford assays, spectrofluorometry and Raman spectroscopy data on HSA, Rnase, lysozyme - Mascots and Skyline data.

    PubMed

    Eddhif, Balkis; Guignard, Nadia; Batonneau, Yann; Clarhaut, Jonathan; Papot, Sébastien; Geffroy-Rodier, Claude; Poinot, Pauline

    2018-04-01

    The data presented here are related to the research paper entitled "Study of a Novel Agent for TCA Precipitated Proteins Washing - Comprehensive Insights into the Role of Ethanol/HCl on Molten Globule State by Multi-Spectroscopic Analyses" (Eddhif et al., submitted for publication) [1]. The suitability of ethanol/HCl for the washing of TCA-precipitated proteins was first investigated on standard solution of HSA, cellulase, ribonuclease and lysozyme. Recoveries were assessed by one-dimensional gel electrophoresis, Bradford assays and UPLC-HRMS. The mechanistic that triggers protein conformational changes at each purification stage was then investigated by Raman spectroscopy and spectrofluorometry. Finally, the efficiency of the method was evaluated on three different complex samples (mouse liver, river biofilm, loamy soil surface). Proteins profiling was assessed by gel electrophoresis and by UPLC-HRMS.

  2. A magneto-electro-optical effect in a plasmonic nanowire material

    PubMed Central

    Valente, João; Ou, Jun-Yu; Plum, Eric; Youngs, Ian J.; Zheludev, Nikolay I.

    2015-01-01

    Electro- and magneto-optical phenomena play key roles in photonic technology enabling light modulators, optical data storage, sensors and numerous spectroscopic techniques. Optical effects, linear and quadratic in external electric and magnetic field are widely known and comprehensively studied. However, optical phenomena that depend on the simultaneous application of external electric and magnetic fields in conventional media are barely detectable and technologically insignificant. Here we report that a large reciprocal magneto-electro-optical effect can be observed in metamaterials. In an artificial chevron nanowire structure fabricated on an elastic nano-membrane, the Lorentz force drives reversible transmission changes on application of a fraction of a volt when the structure is placed in a fraction-of-tesla magnetic field. We show that magneto-electro-optical modulation can be driven to hundreds of thousands of cycles per second promising applications in magneto-electro-optical modulators and field sensors at nano-tesla levels. PMID:25906761

  3. Investigation of Localized States in GaAsSb Epilayers Grown by Molecular Beam Epitaxy

    PubMed Central

    Gao, Xian; Wei, Zhipeng; Zhao, Fenghuan; Yang, Yahui; Chen, Rui; Fang, Xuan; Tang, Jilong; Fang, Dan; Wang, Dengkui; Li, Ruixue; Ge, Xiaotian; Ma, Xiaohui; Wang, Xiaohua

    2016-01-01

    We report the carrier dynamics in GaAsSb ternary alloy grown by molecular beam epitaxy through comprehensive spectroscopic characterization over a wide temperature range. A detailed analysis of the experimental data reveals a complex carrier relaxation process involving both localized and delocalized states. At low temperature, the localized degree shows linear relationship with the increase of Sb component. The existence of localized states is also confirmed by the temperature dependence of peak position and band width of the emission. At temperature higher than 60 K, emissions related to localized states are quenched while the band to band transition dominates the whole spectrum. This study indicates that the localized states are related to the Sb component in the GaAsSb alloy, while it leads to the poor crystal quality of the material, and the application of GaAsSb alloy would be limited by this deterioration. PMID:27381641

  4. Demographics of Isolated Galaxies along the Hubble Sequence

    NASA Astrophysics Data System (ADS)

    Khim, Hong-geun; Park, Jongwon; Seo, Seong-Woo; Lee, Jaehyun; Smith, Rory; Yi, Sukyoung K.

    2015-09-01

    Isolated galaxies in low-density regions are significant in the sense that they are least affected by the hierarchical pattern of galaxy growth and interactions with perturbers, at least for the last few gigayears. To form a comprehensive picture of the star-formation history of isolated galaxies, we constructed a catalog of isolated galaxies and their comparison sample in relatively denser environments. The galaxies are drawn from the Sloan Digital Sky Survey Data Release 7 in the redshift range of 0.025\\lt z\\lt 0.044. We performed a visual inspection and classified their morphology following the Hubble classification scheme. For the spectroscopic study, we make use of the catalog provided by Oh et al. in 2011. We confirm most of the earlier understanding on isolated galaxies. The most remarkable additional results are as follows. Isolated galaxies are dominantly late type with the morphology distribution (E:S0:S:Irr) = (9.9:11.3:77.6:1.2)%. The frequency of elliptical galaxies among isolated galaxies is only a third of that of the comparison sample. Most of the photometric and spectroscopic properties are surprisingly similar between the isolated and comparison samples. However, early-type isolated galaxies are less massive by 50% and younger (by Hβ) by 20% than their counterparts in the comparison sample. This can be explained as a result of different merger and star-formation histories for differing environments in the hierarchical merger paradigm. We provide an online catalog for the list and properties of our sample galaxies.

  5. Abscisic acid-type sesquiterpenes and ansamycins from Amycolatopsis alba DSM 44262.

    PubMed

    Li, Xiao-Mei; Li, Xiao-Man; Lu, Chun-Hua

    2017-10-01

    Two new abscisic acid-type sesquiterpenes (1, 2), and one new ansamycin (3), together with four known ansamycins, namely ansacarbamitocins 4-7, were isolated from the fermentation extract of Amycolatopsis alba DSM 44262. The structures of the new compounds were elucidated to be (E)-3-methyl-5-(2,6,6-trimethyl-3-oxocyclohex-1-enyl)pent-2-enoic acid (1) and (E)-3-methyl-5-(2,6,6-trimethyl-4-oxocyclohex-2-enyl)pent-2-enoic acid (2), and 9-O-methylansacarbamitocin A1 (3), on the basis of comprehensive analysis of spectroscopic data, respectively. The antimicrobial activities were also evaluated for all seven compounds.

  6. Anthraquinones from a Marine-Derived Streptomyces spinoverrucosus

    PubMed Central

    Hu, Youcai; Martinez, Elisabeth D.; MacMillan, John B.

    2012-01-01

    Four new anthraquinone analogs including galvaquinones A-C (1–3) and an isolation artifact 5,8-dihydroxy-2,2,4-trimethyl-6-(3-methylbutyl)anthra[9,1-de][1,3]oxazin-7(2H)-one (4) were isolated from a marine-derived Streptomyces spinoverrucosus based on activity in an image-based assay to identify epigenetic modifying compounds. The structures of 1–4 were elucidated by comprehensive NMR and MS spectroscopic analysis. Galvaquinone B (2) was found to show epigenetic modulatory activity at 1.0 μM, and exhibited moderate cytotoxicity against non-small cell lung cancer (NSCLC) cell lines Calu-3 and H2887. PMID:23057874

  7. Cathepsin B inhibitory activities of three new phthalate derivatives isolated from seahorse, Hippocampus Kuda Bleeler.

    PubMed

    Li, Yong; Qian, Zhong-Ji; Kim, Se-Kwon

    2008-12-01

    Three new phthalate acid derivatives, 2,12-diethyl-11-methylhexadecyl 2-ethyl-11-methylhexadecyl phthalate (1), 2-ethyldecyl 2-ethylundecyl phthalate (2), and bis(2-ethyldodecyl) phthalate (3), were isolated from seahorse, Hippocampus Kuda Bleeler, together with a known natural analog bis(2-ethylheptyl) phthalate (4). The structures of these compounds were elucidated mainly by means of the comprehensive analysis of their NMR spectroscopic data. The four phthalate derivatives showed dose-dependent cathepsin B inhibitions activities with IC(50) values of 0.13 mM (1), 0.21 mM (2), 0.18 mM (3), and 0.29 mM (4), respectively.

  8. Lignans from the shed trunk barks of the critically endangered plant Abies beshanzuensis and their anti-neuroinflammatory activities.

    PubMed

    Hu, Chang-Ling; Xiong, Juan; Xu, Peng; Cheng, Ke-Jun; Yang, Guo-Xun; Hu, Jin-Feng

    2017-06-01

    During a further and comprehensive phytochemical investigation on the shed trunk barks of the critically endangered plant Abies beshanzuensis, one new (1) and ten known (2-11) lignans with diverse structures were isolated. On the basis of spectroscopic methods, the new structure was established to be (7S,8R,8'R)-4'-methoxyl-α-conidendrin (1). Among the isolated lignans, (-)-matairesinol (5) and (-)-arctigenin (6) showed significant anti-neuroinflammatory activities by inhibiting the overproduction of nitric oxide in lipopolysaccharide-stimulated murine BV-2 microglial cells, with IC 50 values of 11.5 and 19.0 μM, respectively.

  9. Three new biflavonoids from the branches and leaves of Cephalotaxus oliveri and their antioxidant activity.

    PubMed

    Xiao, Shu; Mu, Zhen-Qiang; Cheng, Chun-Ru; Ding, Jie

    2018-03-15

    Three new biflavonoids, named oliveriflavones A-C (1-3), together with two known flavonoids (quercetin (4) and rutin (5)), were isolated from the endangered plant Cephalotaxus oliveri. The chemical structures of these compounds were elucidated by comprehensive spectroscopic methods including NMR, HRESIMS, IR, UV, and CD spectra. Compounds 1-5 were first isolated from the genus Cephalotaxus. All the compounds were tested for their antioxidant activity. Compounds 4 and 5 showed excellent activity with IC 50 values of 0.03 ± 0.06 μM and 0.02 ± 0.10 μM, respectively.

  10. Rhodomollanol A, a Highly Oxygenated Diterpenoid with a 5/7/5/5 Tetracyclic Carbon Skeleton from the Leaves of Rhododendron molle.

    PubMed

    Zhou, Junfei; Zhan, Guanqun; Zhang, Hanqi; Zhang, Qihua; Li, Ying; Xue, Yongbo; Yao, Guangmin

    2017-07-21

    A novel diterpenoid with an unprecedented carbon skeleton, rhodomollanol A (1), and a new grayanane diterpenoid, rhodomollein XXXI (2), were isolated from the leaves of Rhododendron molle. Their structures were elucidated using comprehensive spectroscopic methods and single-crystal X-ray diffraction. Compound 1 possesses a unique cis/trans/trans/cis/cis-fused 3/5/7/5/5/5 hexacyclic ring system featuring a rare 7-oxabicyclo[4.2.1]nonane core decorated with three cyclopentane units. The plausible biosynthetic pathway for 1 was proposed. Compound 1 exhibited moderate PTP1B inhibitory activity.

  11. Formation of metallic magnetic clusters in a Kondo-lattice metal: Evidence from an optical study

    PubMed Central

    Kovaleva, N. N.; Kugel, K. I.; Bazhenov, A. V.; Fursova, T. N.; Löser, W.; Xu, Y.; Behr, G.; Kusmartsev, F. V.

    2012-01-01

    Magnetic materials are usually divided into two classes: those with localised magnetic moments, and those with itinerant charge carriers. We present a comprehensive experimental (spectroscopic ellipsomerty) and theoretical study to demonstrate that these two types of magnetism do not only coexist but complement each other in the Kondo-lattice metal, Tb2PdSi3. In this material the itinerant charge carriers interact with large localised magnetic moments of Tb(4f) states, forming complex magnetic lattices at low temperatures, which we associate with self-organisation of magnetic clusters. The formation of magnetic clusters results in low-energy optical spectral weight shifts, which correspond to opening of the pseudogap in the conduction band of the itinerant charge carriers and development of the low- and high-spin intersite electronic transitions. This phenomenon, driven by self-trapping of electrons by magnetic fluctuations, could be common in correlated metals, including besides Kondo-lattice metals, Fe-based and cuprate superconductors. PMID:23189239

  12. Photometric Redshift Calibration Strategy for WFIRST Cosmology

    NASA Astrophysics Data System (ADS)

    Hemmati, Shoubaneh; WFIRST, WFIRST-HLS-COSMOLOGY

    2018-01-01

    In order for WFIRST and other Stage IV Dark energy experiments (e.g. LSST, Euclid) to infer cosmological parameters not limited by systematic errors, accurate redshift measurements are needed. This accuracy can only be met using spectroscopic subsamples to calibrate the full sample. In this poster, we employ the machine leaning, SOM based spectroscopic sampling technique developed in Masters et al. 2015, using the empirical color-redshift relation among galaxies to find the minimum spectra required for the WFIRST weak lensing calibration. We use galaxies from the CANDELS survey to build the LSST+WFIRST lensing analog sample of ~36k objects and train the LSST+WFIRST SOM. We show that 26% of the WFIRST lensing sample consists of sources fainter than the Euclid depth in the optical, 91% of which live in color cells already occupied by brighter galaxies. We demonstrate the similarity between faint and bright galaxies as well as the feasibility of redshift measurements at different brightness levels. 4% of SOM cells are however only occupied by faint galaxies for which we recommend extra spectroscopy of ~200 new sources. Acquiring the spectra of these sources will enable the comprehensive calibration of the WFIRST color-redshift relation.

  13. A rapid ATR-FTIR spectroscopic method for detection of sibutramine adulteration in tea and coffee based on hierarchical cluster and principal component analyses.

    PubMed

    Cebi, Nur; Yilmaz, Mustafa Tahsin; Sagdic, Osman

    2017-08-15

    Sibutramine may be illicitly included in herbal slimming foods and supplements marketed as "100% natural" to enhance weight loss. Considering public health and legal regulations, there is an urgent need for effective, rapid and reliable techniques to detect sibutramine in dietetic herbal foods, teas and dietary supplements. This research comprehensively explored, for the first time, detection of sibutramine in green tea, green coffee and mixed herbal tea using ATR-FTIR spectroscopic technique combined with chemometrics. Hierarchical cluster analysis and PCA principle component analysis techniques were employed in spectral range (2746-2656cm -1 ) for classification and discrimination through Euclidian distance and Ward's algorithm. Unadulterated and adulterated samples were classified and discriminated with respect to their sibutramine contents with perfect accuracy without any false prediction. The results suggest that existence of the active substance could be successfully determined at the levels in the range of 0.375-12mg in totally 1.75g of green tea, green coffee and mixed herbal tea by using FTIR-ATR technique combined with chemometrics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Spectroscopic and laser characterization of Yb,Tm:KLu(WO4)2 crystal

    NASA Astrophysics Data System (ADS)

    Loiko, P. A.; Serres, J. M.; Mateos, X.; Demesh, M. P.; Yasukevich, A. S.; Yumashev, K. V.; Petrov, V.; Griebner, U.; Aguiló, M.; Díaz, F.

    2016-01-01

    We report on a comprehensive spectroscopic and laser characterization of monoclinic Yb,Tm:KLu(WO4)2 crystals. Stimulated-emission cross-section spectra corresponding to the 3F4 → 3H6 transition of Tm3+ ions are determined. The radiative lifetime of the 3F4 state of Tm3+ ions is 0.82 ms. The maximum Yb3+ → Tm3+ energy transfer efficiency is 83.9% for 5 at.% Yb - 8 at.% Tm doping. The fractional heat loading for Yb,Tm:KLu(WO4)2 is 0.45 ± 0.05. Using a hemispherical cavity and 5 at.% Yb - 6 at.% Tm doped crystal, a maximum CW power of 227 mW is achieved at 1.983-2.011 μm with a maximum slope efficiency η = 14%. In the microchip laser set-up, the highest slope efficiency is 20% for a 5 at.% Yb- 8 at.% Tm doped crystal with a maximum output power of 201 mW at 1.99-2.007 μm. Operation of Yb,Tm:KLu(WO4)2 as a vibronic laser emitting at 2.081-2.093 μm is also demonstrated.

  15. Recent advances and remaining challenges for the spectroscopic detection of explosive threats.

    PubMed

    Fountain, Augustus W; Christesen, Steven D; Moon, Raphael P; Guicheteau, Jason A; Emmons, Erik D

    2014-01-01

    In 2010, the U.S. Army initiated a program through the Edgewood Chemical Biological Center to identify viable spectroscopic signatures of explosives and initiate environmental persistence, fate, and transport studies for trace residues. These studies were ultimately designed to integrate these signatures into algorithms and experimentally evaluate sensor performance for explosives and precursor materials in existing chemical point and standoff detection systems. Accurate and validated optical cross sections and signatures are critical in benchmarking spectroscopic-based sensors. This program has provided important information for the scientists and engineers currently developing trace-detection solutions to the homemade explosive problem. With this information, the sensitivity of spectroscopic methods for explosives detection can now be quantitatively evaluated before the sensor is deployed and tested.

  16. Review of spectroscopic parameters for upper atmospheric measurements

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H. (Editor)

    1985-01-01

    The workshop included communication of spectroscopic data requirements for the planned upper atmosphere research satellite (UARS) mission, review of the status of currently available spectroscopic parameters, and recommendation of additional studies. The objectives were accomplished and resulted in a series of general and specific recommendations for laboratory spectroscopy research to meet the needs of UARS and other atmospheric remote sensing programs.

  17. Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grunwaldt, Jan-Dierk; Kimmerle, Bertram; Baiker, Alfons

    2009-09-25

    Spectroscopic studies on heterogeneous catalysts have mostly been done in an integral mode. However, in many cases spatial variations in catalyst structure can occur, e.g. during impregnation of pre-shaped particles, during reaction in a catalytic reactor, or in microstructured reactors as the present overview shows. Therefore, spatially resolved molecular information on a microscale is required for a comprehensive understanding of theses systems, partly in ex situ studies, partly under stationary reaction conditions and in some cases even under dynamic reaction conditions. Among the different available techniques, X-ray absorption spectroscopy (XAS) is a well-suited tool for this purpose as the differentmore » selected examples highlight. Two different techniques, scanning and full-field X-ray microscopy/tomography, are described and compared. At first, the tomographic structure of impregnated alumina pellets is presented using full-field transmission microtomography and compared to the results obtained with a scanning X-ray microbeam technique to analyse the catalyst bed inside a catalytic quartz glass reactor. On the other hand, by using XAS in scanning microtomography, the structure and the distribution of Cu(0), Cu(I), Cu(II) species in a Cu/ZnO catalyst loaded in a quartz capillary microreactor could be reconstructed quantitatively on a virtual section through the reactor. An illustrating example for spatially resolved XAS under reaction conditions is the partial oxidation of methane over noble metal-based catalysts. In order to obtain spectroscopic information on the spatial variation of the oxidation state of the catalyst inside the reactor XAS spectra were recorded by scanning with a micro-focussed beam along the catalyst bed. Alternatively, full-field transmission imaging was used to efficiently determine the distribution of the oxidation state of a catalyst inside a reactor under reaction conditions. The new technical approaches together with quantitative data analysis and an appropriate in situ catalytic experiment allowed drawing important conclusions on the reaction mechanism, and the analytical strategy might be similarly applied in other case studies. The corresponding temperature profiles and the catalytic performance were measured by means of an IR-camera and mass spectrometric analysis. In a more advanced experiment the ignition process of the partial oxidation of methane was followed in a spatiotemporal manner which demonstrates that spatially resolved spectroscopic information can even be obtained in the subsecond scale.« less

  18. An empirical evaluation of three vibrational spectroscopic methods for detection of aflatoxins in maize.

    PubMed

    Lee, Kyung-Min; Davis, Jessica; Herrman, Timothy J; Murray, Seth C; Deng, Youjun

    2015-04-15

    Three commercially available vibrational spectroscopic techniques, including Raman, Fourier transform near infrared reflectance (FT-NIR), and Fourier transform infrared (FTIR) were evaluated to help users determine the spectroscopic method best suitable for aflatoxin analysis in maize (Zea mays L.) grain based on their relative efficiency and predictive ability. Spectral differences of Raman and FTIR spectra were more marked and pronounced among aflatoxin contamination groups than those of FT-NIR spectra. From the observations and findings in our current and previous studies, Raman and FTIR spectroscopic methods are superior to FT-NIR method in terms of predictive power and model performance for aflatoxin analysis and they are equally effective and accurate in predicting aflatoxin concentration in maize. The present study is considered as the first attempt to assess how spectroscopic techniques with different physical processes can influence and improve accuracy and reliability for rapid screening of aflatoxin contaminated maize samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The WIYN Open Cluster Study: A 15-Year Report

    NASA Astrophysics Data System (ADS)

    Mathieu, Robert D.; WOCS Collaboration

    2013-06-01

    The WIYN 3.5m telescope combines large aperture, wide field of view and superb image quality. The WIYN consortium includes investigators in numerous areas of open cluster research. The combination spawned the WIYN Open Cluster Study (WOCS) over a decade ago, with the goals of producing 1) comprehensive photometric, astrometric and spectroscopic data for new fundamental open clusters and 2) addressing key astrophysical problems with these data. The set of core WOCS open clusters spans age and metallicity. Low reddening, solar proximity and richness were also desirable features in selecting core open clusters. More than 50 WIYN Open Cluster Study papers have been published in refereed journals. Highlights include: deep and wide-field photometry of NGC 188, NGC 2168 (M35), and NGC 6819 (WOCS I, II, XI and LII); deep and wide-field proper-motion studies of the old open clusters NGC 188, NGC 2682 (M67) and NGC 6791 (WOCS XVII, XXXIII and XLVI); comprehensive radial-velocity surveys of NGC 188, NGC 2168 and NGC 6819 (WOCS XXXII, XXIV, and XXXVIII); metallicity and lithium abundances in NGC 2168 (WOCS V); comprehensive definition of the hard-binary populations of NGC 188 and NGC 2168 (WOCS XXII and XLVIII); rotation period distributions in NGC 1039 (M34) and NGC 2168 (WOCS XXXV, XLIII, and XLV); study of chromospheric activity in NGC 2682 (WOCS XVIII); photometric variability surveys in NGC 188 and NGC 2682 (IX and XV); new Bayesian techniques for determination of cluster parameters (WOCS XXIII); a new infrared age-diagnostic for open clusters (WOCS XL); theoretical studies of stellar rotation (WOCS XIII and XIV); sophisticated N-body simulations of NGC 188 (WOCS LI); and the discovery of a high binary frequency and white dwarf companions among NGC 188 blue stragglers. While the WIYN 3.5m telescope remains at its heart, today the WIYN Open Cluster Study collaboration extends beyond both the WIYN observatory and consortium, and continues as a vital and productive exploration into these fundamental stellar systems. Publication list can be found at http://www.astro.ufl.edu ata/wocs/pubs.html. The WIYN Open Cluster Study has been continuously supported by grants from the National Science Foundation.

  20. Spectroscopic Studies of Double Beta Decays and MOON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejiri, H.; Nuclear Science, Czech Technical University, Brehova, Prague, Czech Republic, National Institute of Radiological Sciences, Chiba, 263-8555

    2007-10-12

    This is a brief review of future spectroscopic experiments of neutrino-less double beta decays (0{nu}{beta}{beta}) and the MOON (Mo Observatory Of Neutrinos) project. Spectroscopic 0{nu}{beta}{beta} experiments of MOON, SuperNEMO and DCBA are planned to study Majorana masses in the quasi-degenerate (QD) and inverted mass hierarchy (IH) regions. MOON aims at 0{nu}{beta}{beta} studies with the {nu}-mass sensitivities of 100-30 meV by means of a super ensemble of multi-layer modules, each being consist of a scintillator plate, two tracking detector planes and a thin {beta}{beta} source film.

  1. Microheterogeneity in binary mixtures of water with CH3OH and CD3OH: ATR-IR spectroscopic, chemometric and DFT studies

    NASA Astrophysics Data System (ADS)

    Tomza, Paweł; Wrzeszcz, Władysław; Mazurek, Sylwester; Szostak, Roman; Czarnecki, Mirosław Antoni

    2018-05-01

    Here we report ATR-IR spectroscopic study on the separation at a molecular level (microheterogeneity) and the degree of deviation of H2O/CH3OH and H2O/CD3OH mixtures from the ideal mixture. Of particular interest is the effect of isotopic substitution in methyl group on molecular structure and interactions in both mixtures. To obtain comprehensive information from the multivariate data we applied the excess molar absorptivity spectra together with two-dimensional correlation analysis (2DCOS) and chemometric methods. In addition, the experimental results were compared and discussed with the structures of various model clusters obtained from theoretical (DFT) calculations. Our results evidence the presence of separation at a molecular level and deviation from the ideal mixture for both mixtures. The experimental and theoretical results show that the maximum of these deviations appears at equimolar mixture. Both mixtures consist of three kinds of species: homoclusters of water and methanol and mixed clusters (heteroclusters). The heteroclusters exist in the whole range of mole fractions with the maximum close to the equimolar mixture. At this mixture composition near 55-60% of molecules are involved in heteroclusters. In contrast, the homoclusters of water occur in a limited range of mole fractions (XME < 0.85-0.9). Upon mixing the molecules of methanol form weaker hydrogen bonding as compared with the pure alcohol. In contrast, the molecules of water in the mixture are involved in stronger hydrogen bonding than those in bulk water. All these results indicate that both mixtures have similar degree of deviation from the ideal mixture.

  2. Oscillating red giants in eclipsing binary systems: empirical reference value for asteroseismic scaling relation

    NASA Astrophysics Data System (ADS)

    Themeßl, N.; Hekker, S.; Southworth, J.; Beck, P. G.; Pavlovski, K.; Tkachenko, A.; Angelou, G. C.; Ball, W. H.; Barban, C.; Corsaro, E.; Elsworth, Y.; Handberg, R.; Kallinger, T.

    2018-05-01

    The internal structures and properties of oscillating red-giant stars can be accurately inferred through their global oscillation modes (asteroseismology). Based on 1460 days of Kepler observations we perform a thorough asteroseismic study to probe the stellar parameters and evolutionary stages of three red giants in eclipsing binary systems. We present the first detailed analysis of individual oscillation modes of the red-giant components of KIC 8410637, KIC 5640750 and KIC 9540226. We obtain estimates of their asteroseismic masses, radii, mean densities and logarithmic surface gravities by using the asteroseismic scaling relations as well as grid-based modelling. As these red giants are in double-lined eclipsing binaries, it is possible to derive their independent dynamical masses and radii from the orbital solution and compare it with the seismically inferred values. For KIC 5640750 we compute the first spectroscopic orbit based on both components of this system. We use high-resolution spectroscopic data and light curves of the three systems to determine up-to-date values of the dynamical stellar parameters. With our comprehensive set of stellar parameters we explore consistencies between binary analysis and asteroseismic methods, and test the reliability of the well-known scaling relations. For the three red giants under study, we find agreement between dynamical and asteroseismic stellar parameters in cases where the asteroseismic methods account for metallicity, temperature and mass dependence as well as surface effects. We are able to attain agreement from the scaling laws in all three systems if we use Δνref, emp = 130.8 ± 0.9 μHz instead of the usual solar reference value.

  3. Microheterogeneity in binary mixtures of water with CH3OH and CD3OH: ATR-IR spectroscopic, chemometric and DFT studies.

    PubMed

    Tomza, Paweł; Wrzeszcz, Władysław; Mazurek, Sylwester; Szostak, Roman; Czarnecki, Mirosław Antoni

    2018-05-15

    Here we report ATR-IR spectroscopic study on the separation at a molecular level (microheterogeneity) and the degree of deviation of H 2 O/CH 3 OH and H 2 O/CD 3 OH mixtures from the ideal mixture. Of particular interest is the effect of isotopic substitution in methyl group on molecular structure and interactions in both mixtures. To obtain comprehensive information from the multivariate data we applied the excess molar absorptivity spectra together with two-dimensional correlation analysis (2DCOS) and chemometric methods. In addition, the experimental results were compared and discussed with the structures of various model clusters obtained from theoretical (DFT) calculations. Our results evidence the presence of separation at a molecular level and deviation from the ideal mixture for both mixtures. The experimental and theoretical results show that the maximum of these deviations appears at equimolar mixture. Both mixtures consist of three kinds of species: homoclusters of water and methanol and mixed clusters (heteroclusters). The heteroclusters exist in the whole range of mole fractions with the maximum close to the equimolar mixture. At this mixture composition near 55-60% of molecules are involved in heteroclusters. In contrast, the homoclusters of water occur in a limited range of mole fractions (X ME  < 0.85-0.9). Upon mixing the molecules of methanol form weaker hydrogen bonding as compared with the pure alcohol. In contrast, the molecules of water in the mixture are involved in stronger hydrogen bonding than those in bulk water. All these results indicate that both mixtures have similar degree of deviation from the ideal mixture. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Metal Evolution and TrAnsport in the Large Magellanic Cloud (METAL): Probing Dust Evolution in Star Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Roman-Duval

    2016-10-01

    METAL is a large spectroscopic and imaging program with HST dedicated to the study of dust evolution in the Large Magellanic Cloud (LMC). The program will obtain FUV and NUV medium-resolution spectra of 33 massive stars in the LMC with STIS and COS complementing existing archival data to measure gas-phase and dust-phase (depletion) elemental abundances. With these spectra, we will subsequently directly measure the dust composition and abundance as a function of environment (surface density, radiation field, dynamical conditions, such as the proximity of supernova remnants or expanding HI shells). The depletion information will be complemented with dust UV extinction curves (i.e., the UV opacity of dust grains as a function of wavelength) derived from either archival IUE, or new COS and low-resolution STIS spectra acquired as part of this program. Together, the depletions and extinction curves will constrain how the dust abundance and properties (composition, size distribution) vary with environment at Z=0.5Zo. In parallel to the spectroscopic observations, we will obtain WFC3 NUV-NIR imaging to map dust extinction parameters (AV, RV) in the vicinity of our targets and calibrate the far-infrared (FIR) emissivity of dust. Our observations we will improve the accuracy of dust mass and extinction estimates in the local and high-redshift universe by up to an order of magnitude.METAL will complement a Cycle 23 HST/STIS program (GO-13778) focused on dust evolution in the Small Magellanic Cloud (SMC) at Z=0.2Zo, and previously published depletion studies in the Milky Way (Jenkins et al. 2009) to provide a comprehensive view of dust evolution as a function of metallicity.

  5. SPIDERS: the spectroscopic follow-up of X-ray-selected clusters of galaxies in SDSS-IV

    DOE PAGES

    Clerc, N.; Merloni, A.; Zhang, Y. -Y.; ...

    2016-09-05

    SPIDERS (The SPectroscopic IDentification of ERosita Sources) is a programme dedicated to the homogeneous and complete spectroscopic follow-up of X-ray active galactic nuclei and galaxy clusters over a large area (~7500 deg 2) of the extragalactic sky. SPIDERS is part of the Sloan Digital Sky Survey (SDSS)-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey and the Time-Domain Spectroscopic Survey. This study describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray-selected, massive (~10 14–10 15 M⊙) galaxy clusters discovered in ROSAT and XMM–Newton imaging. The immediate aim is to determine precisemore » (Δz ~ 0.001) redshifts for 4000–5000 of these systems out to z ~ 0.6. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters (0.031 < z < 0.658), found in pilot observations. Finally, we discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion (LX–σ) relation and the building of stacked phase-space diagrams.« less

  6. High-Resolution Photoionization, Photoelectron and Photodissociation Studies. Determination of Accurate Energetic and Spectroscopic Database for Combustion Radicals and Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Cheuk-Yiu

    2016-04-25

    The main goal of this research program was to obtain accurate thermochemical and spectroscopic data, such as ionization energies (IEs), 0 K bond dissociation energies, 0 K heats of formation, and spectroscopic constants for radicals and molecules and their ions of relevance to combustion chemistry. Two unique, generally applicable vacuum ultraviolet (VUV) laser photoion-photoelectron apparatuses have been developed in our group, which have used for high-resolution photoionization, photoelectron, and photodissociation studies for many small molecules of combustion relevance.

  7. Tracing the Evolution of Disk Galaxies with Galactic Structures and Gas Kinematics

    NASA Astrophysics Data System (ADS)

    Sheth, K.

    2007-10-01

    Current evidence suggests that the epoch of disk formation occurred between 1 < z < 3. What were the properties of galaxy disks at the epoch of their formation? How did they evolve to their present state, and how was the Hubble sequence assembled? Although large and comprehensive datasets such as COSMOS, GEMS, and GOODS are now becoming available, it is possible that these questions will remain unanswered because of the difficulty in obtaining redshifts from optical spectroscopy as emission lines are redshifted into the infrared. This historical shortcoming has also hampered millimeter and submillimeter studies where the limited bandwidth and sensitivity of current telescopes have restricted studies to only a handful of bright galaxies with spectroscopic redshifts. With the future generation of z-machines, we can overcome the current obstacles and combine optical, infrared, millimeter, and submillimeter observations to trace the evolution of disk galaxies. In this contribution, we describe a research strategy to study the assembly of disk galaxies using space- and ground-based telescopes at multiple wavelengths. In particular, we emphasize the critical role of z-machines and millimeter/submillimeter interferometers.

  8. Mixed-Penetrant Sorption in Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1.

    PubMed

    Ogieglo, Wojciech; Furchner, Andreas; Ghanem, Bader; Ma, Xiaohua; Pinnau, Ingo; Wessling, Matthias

    2017-11-02

    Mixed-penetrant sorption into ultrathin films of a superglassy polymer of intrinsic microporosity (PIM-1) was studied for the first time by using interference-enhanced in situ spectroscopic ellipsometry. PIM-1 swelling and the concurrent changes in its refractive index were determined in ultrathin (12-14 nm) films exposed to pure and mixed penetrants. The penetrants included water, n-hexane, and ethanol and were chosen on the basis of their significantly different penetrant-penetrant and penetrant-polymer affinities. This allowed studying microporous polymer responses at diverse ternary compositions and revealed effects such as competition for the sorption sites (for water/n-hexane or ethanol/n-hexane) or enhancement in sorption of typically weakly sorbing water in the presence of more highly sorbing ethanol. The results reveal details of the mutual sorption effects which often complicate comprehension of glassy polymers' behavior in applications such as high-performance membranes, adsorbents, or catalysts. Mixed-penetrant effects are typically very challenging to study directly, and their understanding is necessary owing to a broadly recognized inadequacy of simple extrapolations from measurements in a pure component environment.

  9. Nuclear Structure Studies with Radioactive Ion Beams in the Mass A = 80 Region

    NASA Astrophysics Data System (ADS)

    Galindo-Uribarri, A.; Padilla-Rodal, E.; Batchelder, J. C.; Beene, J. R.; Lagergren, K. B.; Mueller, P. E.; Radford, D. C.; Stracener, D. W.; Urrego-Blanco, J. P.; Varner, R. L.; Yu, C.-H.

    2009-03-01

    An experimental program to measure spectroscopic properties of neutron-rich nuclei in the A = 80 region is underway at the Holifield Radioactive Ion Beam Facility. Our approach has been to get a comprehensive picture of the shell structure in this region by studying a series of properties of low lying states (E(2+), B(E2), g-factors and quadrupole moments). The beams, instrumentation and techniques developed specifically for this purpose have allowed us to systematically study the behavior of these observables along isotopic and isotonic chains using both stable and radioactive nuclei under almost identical experimental conditions. We have developed many techniques and detectors for in-beam gamma spectroscopy with radioactive ion beams. Most of the detectors can be used individually or in combination. Generally these detector systems have very large efficiencies. We give examples of their use from three recent experiments; namely, Coulomb excitation of n-rich nuclei along the N = 50 shell closure, the static quadrupole moment of the first 2+ in 78Ge and g-factor measurements of n-rich isotopes near N = 50.

  10. Reference-free spectroscopic determination of fat and protein in milk in the visible and near infrared region below 1000nm using spatially resolved diffuse reflectance fiber probe.

    PubMed

    Bogomolov, Andrey; Belikova, Valeria; Galyanin, Vladislav; Melenteva, Anastasiia; Meyer, Hans

    2017-05-15

    New technique of diffuse reflectance spectroscopic analysis of milk fat and total protein content in the visible (Vis) and adjacent near infrared (NIR) region (400-995nm) has been developed and tested. Sample analysis was performed through a probe having eight 200-µm fiber channels forming a linear array. One of the end fibers was used for the illumination and other seven - for the spectroscopic detection of diffusely reflected light. One of the detection channels was used as a reference to normalize the spectra and to convert them into absorbance-equivalent units. The method has been tested experimentally using a designed sample set prepared from industrial raw milk standards with widely varying fat and protein content. To increase the modelling robustness all milk samples were measured in three different homogenization degrees. Comprehensive data analysis has shown the advantage of combining both spectral and spatial resolution in the same measurement and revealed the most relevant channels and wavelength regions. The modelling accuracy was further improved using joint variable selection and preprocessing optimization method based on the genetic algorithm. The root mean-square errors of different validation methods were below 0.10% for fat and below 0.08% for total protein content. Based on the present experimental data, it was computationally shown that the full-spectrum analysis in this method can be replaced by a sensor measurement at several specific wavelengths, for instance, using light-emitting diodes (LEDs) for illumination. Two optimal sensor configurations have been suggested: with nine LEDs for the analysis of fat and seven - for protein content. Both simulated sensors exhibit nearly the same component determination accuracy as corresponding full-spectrum analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Marginalizing Instrument Systematics in HST WFC3 Transit Light Curves

    NASA Astrophysics Data System (ADS)

    Wakeford, H. R.; Sing, D. K.; Evans, T.; Deming, D.; Mandell, A.

    2016-03-01

    Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations at 1.1-1.7 μm probe primarily the H2O absorption band at 1.4 μm, and have provided low-resolution transmission spectra for a wide range of exoplanets. We present the application of marginalization based on Gibson to analyze exoplanet transit light curves obtained from HST WFC3 to better determine important transit parameters such as Rp/R*, which are important for accurate detections of H2O. We approximate the evidence, often referred to as the marginal likelihood, for a grid of systematic models using the Akaike Information Criterion. We then calculate the evidence-based weight assigned to each systematic model and use the information from all tested models to calculate the final marginalized transit parameters for both the band-integrated and spectroscopic light curves to construct the transmission spectrum. We find that a majority of the highest weight models contain a correction for a linear trend in time as well as corrections related to HST orbital phase. We additionally test the dependence on the shift in spectral wavelength position over the course of the observations and find that spectroscopic wavelength shifts {δ }λ (λ ) best describe the associated systematic in the spectroscopic light curves for most targets while fast scan rate observations of bright targets require an additional level of processing to produce a robust transmission spectrum. The use of marginalization allows for transparent interpretation and understanding of the instrument and the impact of each systematic evaluated statistically for each data set, expanding the ability to make true and comprehensive comparisons between exoplanet atmospheres.

  12. Performance assessment and beamline diagnostics based on evaluation of temporal information from infrared spectral datasets by means of R Environment for statistical analysis.

    PubMed

    Banas, Krzysztof; Banas, Agnieszka; Gajda, Mariusz; Kwiatek, Wojciech M; Pawlicki, Bohdan; Breese, Mark B H

    2014-07-15

    Assessment of the performance and up-to-date diagnostics of scientific equipment is one of the key components in contemporary laboratories. Most reliable checks are performed by real test experiments while varying the experimental conditions (typically, in the case of infrared spectroscopic measurements, the size of the beam aperture, the duration of the experiment, the spectral range, the scanner velocity, etc.). On the other hand, the stability of the instrument response in time is another key element of the great value. Source stability (or easy predictable temporal changes, similar to those observed in the case of synchrotron radiation-based sources working in non top-up mode), detector stability (especially in the case of liquid nitrogen- or liquid helium-cooled detectors) should be monitored. In these cases, recorded datasets (spectra) include additional variables such as time stamp when a particular spectrum was recorded (in the case of time trial experiments). A favorable approach in evaluating these data is building hyperspectral object that consist of all spectra and all additional parameters at which these spectra were recorded. Taking into account that these datasets could be considerably large in size, there is a need for the tools for semiautomatic data evaluation and information extraction. A comprehensive R archive network--the open-source R Environment--with its flexibility and growing potential, fits these requirements nicely. In this paper, examples of practical implementation of methods available in R for real-life Fourier transform infrared (FTIR) spectroscopic data problems are presented. However, this approach could easily be adopted to many various laboratory scenarios with other spectroscopic techniques.

  13. Marginalizing Instrument Systematics in HST WFC3 Transit Light Curves

    NASA Technical Reports Server (NTRS)

    Wakeford, H. R.; Sing, D.K.; Deming, D.; Mandell, A.

    2016-01-01

    Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations at 1.1-1.7 microns probe primarily the H2O absorption band at 1.4 microns, and have provided low-resolution transmission spectra for a wide range of exoplanets. We present the application of marginalization based on Gibson to analyze exoplanet transit light curves obtained from HST WFC3 to better determine important transit parameters such as "ramp" probability (R (sub p)) divided by "ramp" total (R (sub asterisk)), which are important for accurate detections of H2O. We approximate the evidence, often referred to as the marginal likelihood, for a grid of systematic models using the Akaike Information Criterion. We then calculate the evidence-based weight assigned to each systematic model and use the information from all tested models to calculate the final marginalized transit parameters for both the band-integrated and spectroscopic light curves to construct the transmission spectrum. We find that a majority of the highest weight models contain a correction for a linear trend in time as well as corrections related to HST orbital phase. We additionally test the dependence on the shift in spectral wavelength position over the course of the observations and find that spectroscopic wavelength shifts delta (sub lambda) times lambda) best describe the associated systematic in the spectroscopic light curves for most targets while fast scan rate observations of bright targets require an additional level of processing to produce a robust transmission spectrum. The use of marginalization allows for transparent interpretation and understanding of the instrument and the impact of each systematic evaluated statistically for each data set, expanding the ability to make true and comprehensive comparisons between exoplanet atmospheres.

  14. The new eclipsing magnetic binary system E 1114 + 182

    NASA Technical Reports Server (NTRS)

    Biermann, P.; Schmidt, G. D.; Liebert, J.; Tapia, S.; Strittmatter, P. A.; West, S.; Stockman, H. S.; Kuehr, H.; Lamb, D. Q.

    1985-01-01

    A comprehensive analysis of E 1114 + 182, the first eclipsing AM Herculis binary system and the shortest-period eclipsing cataclysmic variable known, is presented. The time-resolved X-ray observations which led to the system's recognition as an AM Her system with a roughly 90 minute orbital period are reported. The current optical photometric and polarimetric ephemeris and a description of the system's phase-modulated properties are given. The detailed photometric eclipse profile and the highly variable spectroscopic behavior are addressed. This information is used to determine systemic parameters and derive new information on the line emission regions. The data put severe constraints on current torque models for keeping the binary and white dwarf rotation in phase.

  15. Four new triterpenoids from the leaves of Psidium guajava.

    PubMed

    Shao, Meng; Wang, Ying; Huang, Xiao-Jun; Fan, Chun-Lin; Zhang, Qing-Wen; Zhang, Xiao-Qi; Ye, Wen-Cai

    2012-01-01

    Four new triterpenoids, psiguanins A-D (1-4), along with 13 known ones (5-17), were isolated from the leaves of Psidium guajava. The structures of new compounds were determined as 2α,3β-dihydroxy-taraxer-20-en-28-oic acid (1), 2α,3β,12α,13β-tetrahydroxy-urs-28-oic acid (2), 2α,3β,12β,13β-tetrahydroxy-urs-28-oic acid (3), and 2α,3β,12β,13α-tetrahydroxy-urs-28-oic acid (4), respectively, on the basis of comprehensive spectroscopic methods and molecular modeling calculation. Among them, compound 4 was characterized as an unusual ursane-type triterpenoid with cis-fused C/D ring system.

  16. Conformational and vibrational reassessment of solid paracetamol

    NASA Astrophysics Data System (ADS)

    Amado, Ana M.; Azevedo, Celeste; Ribeiro-Claro, Paulo J. A.

    2017-08-01

    This work provides an answer to the urge for a more detailed and accurate knowledge of the vibrational spectrum of the widely used analgesic/antipyretic drug commonly known as paracetamol. A comprehensive spectroscopic analysis - including infrared, Raman, and inelastic neutron scattering (INS) - is combined with a computational approach which takes account for the effects of intermolecular interactions in the solid state. This allows a full reassessment of the vibrational assignments for Paracetamol, thus preventing the propagation of incorrect data analysis and misassignments already found in the literature. In particular, the vibrational modes involving the hydrogen-bonded Nsbnd H and Osbnd H groups are correctly reallocated to bands shifted by up to 300 cm- 1 relatively to previous assignments.

  17. Active spectroscopic measurements of the bulk deuterium properties in the DIII-D tokamak (invited).

    PubMed

    Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Kaplan, D H; Heidbrink, W W; Muñoz Burgos, J M; Pablant, N A; Solomon, W M; Van Zeeland, M A

    2012-10-01

    The neutral-beam induced D(α) emission spectrum contains a wealth of information such as deuterium ion temperature, toroidal rotation, density, beam emission intensity, beam neutral density, and local magnetic field strength magnitude |B| from the Stark-split beam emission spectrum, and fast-ion D(α) emission (FIDA) proportional to the beam-injected fast ion density. A comprehensive spectral fitting routine which accounts for all photoemission processes is employed for the spectral analysis. Interpretation of the measurements to determine physically relevant plasma parameters is assisted by the use of an optimized viewing geometry and forward modeling of the emission spectra using a Monte-Carlo 3D simulation code.

  18. Spectroscopic techniques to study the immune response in human saliva

    NASA Astrophysics Data System (ADS)

    Nepomnyashchaya, E.; Savchenko, E.; Velichko, E.; Bogomaz, T.; Aksenov, E.

    2018-01-01

    Studies of the immune response dynamics by means of spectroscopic techniques, i.e., laser correlation spectroscopy and fluorescence spectroscopy, are described. The laser correlation spectroscopy is aimed at measuring sizes of particles in biological fluids. The fluorescence spectroscopy allows studying of the conformational and other structural changings in immune complex. We have developed a new scheme of a laser correlation spectrometer and an original signal processing algorithm. We have suggested a new fluorescence detection scheme based on a prism and an integrating pin diode. The developed system based on the spectroscopic techniques allows studies of complex process in human saliva and opens some prospects for an individual treatment of immune diseases.

  19. Handling Different Spatial Resolutions in Image Fusion by Multivariate Curve Resolution-Alternating Least Squares for Incomplete Image Multisets.

    PubMed

    Piqueras, Sara; Bedia, Carmen; Beleites, Claudia; Krafft, Christoph; Popp, Jürgen; Maeder, Marcel; Tauler, Romà; de Juan, Anna

    2018-06-05

    Data fusion of different imaging techniques allows a comprehensive description of chemical and biological systems. Yet, joining images acquired with different spectroscopic platforms is complex because of the different sample orientation and image spatial resolution. Whereas matching sample orientation is often solved by performing suitable affine transformations of rotation, translation, and scaling among images, the main difficulty in image fusion is preserving the spatial detail of the highest spatial resolution image during multitechnique image analysis. In this work, a special variant of the unmixing algorithm Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) for incomplete multisets is proposed to provide a solution for this kind of problem. This algorithm allows analyzing simultaneously images collected with different spectroscopic platforms without losing spatial resolution and ensuring spatial coherence among the images treated. The incomplete multiset structure concatenates images of the two platforms at the lowest spatial resolution with the image acquired with the highest spatial resolution. As a result, the constituents of the sample analyzed are defined by a single set of distribution maps, common to all platforms used and with the highest spatial resolution, and their related extended spectral signatures, covering the signals provided by each of the fused techniques. We demonstrate the potential of the new variant of MCR-ALS for multitechnique analysis on three case studies: (i) a model example of MIR and Raman images of pharmaceutical mixture, (ii) FT-IR and Raman images of palatine tonsil tissue, and (iii) mass spectrometry and Raman images of bean tissue.

  20. Structural transformation of synthetic hydroxyapatite under simulated in vivo conditions studied with ATR-FTIR spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Sroka-Bartnicka, Anna; Borkowski, Leszek; Ginalska, Grazyna; Ślósarczyk, Anna; Kazarian, Sergei G.

    2017-01-01

    Hydroxyapatite and carbonate-substituted hydroxyapatite are widely used in bone tissue engineering and regenerative medicine. Both apatite materials were embedded into recently developed ceramic/polymer composites, subjected to Simulated Body Fluid (SBF) for 30 days and characterized using ATR-FTIR spectroscopic imaging to assess their behaviour and structures. The specific aim was to detect the transition phases between both types of hydroxyapatite during the test and to analyze the surface modification caused by SBF. ATR-FTIR spectroscopic imaging was successfully applied to characterise changes in the hydroxyapatite lattice due to the elastic properties of the scaffolds. It was observed that SBF treatment caused a replacement of phosphates in the lattice of non-substituted hydroxyapatite by carbonate ions. A detailed study excluded the formation of pure A type carbonate apatite. In turn, CO32- content in synthetic carbonate-substituted hydroxyapatite decreased. The usefulness of ATR-FTIR spectroscopic imaging studies in the evaluation of elastic and porous β-glucan hydroxyapatite composites has been demonstrated.

  1. Spectroscopic ellipsometry analysis of a thin film composite membrane consisting of polysulfone on a porous α-alumina support.

    PubMed

    Ogieglo, Wojciech; Wormeester, Herbert; Wessling, Matthias; Benes, Nieck E

    2012-02-01

    Exposure of a thin polymer film to a fluid can affect properties of the film such as the density and thickness. In particular in membrane technology, these changes can have important implications for membrane performance. Spectroscopic ellipsometry is a convenient technique for in situ studies of thin films, because of its noninvasive character and very high precision. The applicability of spectroscopic ellipsometry is usually limited to samples with well-defined interfacial regions, whereas in typical composite membranes, often substantial and irregular intrusion of the thin film into the pores of a support exists. In this work, we provide a detailed characterization of a polished porous alumina membrane support, using variable-angle spectroscopic ellipsometry in combination with atomic force microscopy and mercury porosimetry. Two Spectroscopic ellipsometry optical models are presented that can adequately describe the surface roughness of the support. These models consider the surface roughness as a distinct layer in which the porosity gradually increases toward the outer ambient interface. The first model considers the porosity profile to be linear; the second model assumes an exponential profile. It is shown that the models can be extended to account for a composite membrane geometry, by deposition of a thin polysulfone film onto the support. The developed method facilitates practicability for in situ spectroscopic ellipsometry studies of nonequilibrium systems, i.e., membranes under actual permeation conditions.

  2. High-level magnetic activity nature of the eclipsing binary KIC 12418816

    NASA Astrophysics Data System (ADS)

    Dal, H. A.; Özdarcan, O.

    2018-02-01

    We present comprehensive spectroscopic and photometric analysis of the detached eclipsing binary KIC 12418816, which is composed of two very similar and young main-sequence stars of spectral type K0 on a circular orbit. Combining spectroscopic and photometric modelling, we find masses and radii of the components of 0.88 ± 0.06 M⊙ and 0.85 ± 0.02 R⊙ for the primary and 0.84 ± 0.05 M⊙ and 0.84 ± 0.02 R⊙ for the secondary. Both components exhibit narrow emission features superposed on the cores of the Ca II H and K lines, while H α and H β photospheric absoprtion is more completely infilled by broader emission. Very high precision Kepler photometry reveals remarkable sinusoidal light variation at out-of-eclipse phases, indicating strong spot activity, presumably on the surface of the secondary component. Spots on the secondary component appear to migrate towards decreasing orbital phase with a migration period of 0.72 ± 0.05 yr. Besides the sinusoidal variation, we detect 81 flares and find that both components possess flare activity. Our analysis shows that 25 flares out of 81 exhibit very high energies together with lower frequency, while the rest of them are very frequent but with lower energies.

  3. Metallicity calibrations for dwarf stars and giants in the Geneva photometric system

    NASA Astrophysics Data System (ADS)

    Netopil, Martin

    2017-08-01

    We use the most homogeneous Geneva seven-colour photometric system to derive new metallicity calibrations for early A- to K-type stars that cover both, dwarf stars and giants. The calibrations are based on several spectroscopic data sets that were merged to a common scale, and we applied them to open cluster data to obtain an additional proof of the metallicity scale and accuracy. In total, metallicities of 54 open clusters are presented. The accuracy of the calibrations for single stars is in general below 0.1 dex, but for the open cluster sample with mean values based on several stars we find a much better precision, a scatter as low as about 0.03 dex. Furthermore, we combine the new results with another comprehensive photometric data set to present a catalogue of mean metallicities for more than 3000 F- and G-type dwarf stars with σ ˜ 0.06 dex. The list was extended by more than 1200 hotter stars up to about 8500 K (or spectral type A3) by taking advantage of their almost reddening free characteristic in the new Geneva metallicity calibrations. These two large samples are well suited as primary or secondary calibrators of other data, and we already identified about 20 spectroscopic data sets that show offsets up to about 0.4 dex.

  4. In vivo spectroscopic photoacoustic tomography imaging of a far red fluorescent protein expressed in the exocrine pancreas of adult zebrafish

    NASA Astrophysics Data System (ADS)

    Liu, Mengyang; Schmitner, Nicole; Sandrian, Michelle G.; Zabihian, Behrooz; Hermann, Boris; Salvenmoser, Willi; Meyer, Dirk; Drexler, Wolfgang

    2014-03-01

    Fluorescent proteins brought a revolution in life sciences and biological research in that they make a powerful tool for researchers to study not only the structural and morphological information, but also dynamic and functional information in living cells and organisms. While green fluorescent proteins (GFP) have become a common labeling tool, red-shifted or even near infrared fluorescent proteins are becoming the research focus due to the fact that longer excitation wavelengths are more suitable for deep tissue imaging. In this study, E2-Crimson, a far red fluorescent protein whose excitation wavelength is 611 nm, was genetically expressed in the exocrine pancreas of adult zebrafish. Using spectroscopic all optical detection photoacoustic tomography, we mapped the distribution of E2-Crimson in 3D after imaging the transgenic zebrafish in vivo using two different wavelengths. With complementary morphological information provided by imaging the same fish using a spectral domain optical coherence tomography system, the E2-Crimson distribution acquired from spectroscopic photoacoustic tomography was confirmed in 2D by epifluorescence microscopy and in 3D by histology. To the authors' knowledge, this is the first time a far red fluorescent protein is imaged in vivo by spectroscopic photoacoustic tomography. Due to the regeneration feature of zebrafish pancreas, this work preludes the longitudinal studies of animal models of diseases such as pancreatitis by spectroscopic photoacoustic tomography. Since the effective penetration depth of photoacoustic tomography is beyond the transport mean free path length, other E2-Crimson labeled inner organs will also be able to be studied dynamically using spectroscopic photoacoustic tomography.

  5. How Much Do Ultrathin Polymers with Intrinsic Microporosity Swell in Liquids?

    PubMed

    Ogieglo, Wojciech; Ghanem, Bader; Ma, Xiaohua; Pinnau, Ingo; Wessling, Matthias

    2016-10-06

    As synthetic membrane materials, polymers with intrinsic microporosity (PIMs) have demonstrated unprecedented permeation and molecular-separation properties. Here, we report the swelling characteristics of submicron-thick supported films of spirobisindane-based PIMs, PIM-1 and PIM-6FDA-OH, for six organic solvents and water using in situ spectroscopic ellipsometry. Surprisingly, PIMs swell significantly in most organic solvents, with swelling factors (SF = h swollen /h dry ) as high as 2.5. This leads to the loss of the ultrarigid character of the polymer and produces equilibrated liquid-like swollen films. Filling of the excess frozen-in fractional free volume with liquid was discovered next to swelling-induced polymer matrix dilation. Water hardly swells the polymer matrix, but it penetrates into the intrinsic microporous structure. This study is the first to provide fundamental swelling data for PIMs, leading to better comprehension of their permeation properties. Such an understanding is indispensable for applications such as solvent filtration, natural-gas separation, and ion retention in flow batteries.

  6. On the Electronic Structure of Cu Chlorophyllin and Its Breakdown Products: A Carbon K-Edge X-ray Absorption Spectroscopy Study.

    PubMed

    Witte, Katharina; Mantouvalou, Ioanna; Sánchez-de-Armas, Rocío; Lokstein, Heiko; Lebendig-Kuhla, Janina; Jonas, Adrian; Roth, Friedrich; Kanngießer, Birgit; Stiel, Holger

    2018-02-15

    Using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, the carbon backbone of sodium copper chlorophyllin (SCC), a widely used chlorophyll derivative, and its breakdown products are analyzed to elucidate their electronic structure and physicochemical properties. Using various sample preparation methods and complementary spectroscopic methods (including UV/Vis, X-ray photoelectron spectroscopy), a comprehensive insight into the SCC breakdown process is presented. The experimental results are supported by density functional theory calculations, allowing a detailed assignment of characteristic NEXAFS features to specific C bonds. SCC can be seen as a model system for the large group of porphyrins; thus, this work provides a novel and detailed description of the electronic structure of the carbon backbone of those molecules and their breakdown products. The achieved results also promise prospective optical pump/X-ray probe investigations of dynamic processes in chlorophyll-containing photosynthetic complexes to be analyzed more precisely.

  7. Mixing-Induced Anisotropic Correlations in Molecular Crystalline Systems: Rationalizing the Behavior of Organic Semiconductor Blends

    NASA Astrophysics Data System (ADS)

    Broch, Katharina; Aufderheide, Antje; Novak, Jiri; Hinderhofer, Alexander; Gerlach, Alexander; Banerjee, Rupak; Schreiber, Frank

    2013-03-01

    Binary mixtures of organic semiconductors (OSCs) have recently become an important field of research, as they find applications in opto-electronic devices. In these systems, the mixing (intermixing vs. phase separation) and ordering behavior is crucial, since it affects the optical and electronic properties. We present a comprehensive study of binary mixtures of the three prototypical OSCs pentacene (PEN), perfluoropentacene (PFP) and diindenoperlyene (DIP) in all possible combinations. Using X-ray reflectivity and grazing incidence X-ray diffraction we investigate the stuctural properties of the mixed films as well as their impact on the optical spectra obtained by spectroscopic ellipsometry. For PEN:DIP we find an anisotropic ordering behavior, comparable to that observed in some liquid crystals, which is fundamentally new for OSCs. The influence of sterical compatibility and the strength of the intermolecular interactions on the mixing and ordering behavior in the different blends will be discussed by extending a conventional mean-field model. Finally, we discuss general rules for the targeted preparation of blends of OSCs.

  8. Evidences For Charge Transfer-Induced Conformational Changes In Carbon Nanostructure-Protein Corona

    PubMed Central

    Podila, R.; Vedantam, P.; Ke, P. C.; Brown, J. M.; Rao, A. M.

    2012-01-01

    The binding of proteins to a nanostructure often alters protein secondary and tertiary structures. However, the main physical mechanisms that elicit protein conformational changes in the presence of the nanostructure have not yet been fully established. Here we performed a comprehensive spectroscopic study to probe the interactions between bovine serum albumin (BSA) and carbon-based nanostructures of graphene and single-walled carbon nanotubes (SWNTs). Our results showed that the BSA “corona” acted as a weak acceptor to facilitate charge transfer from the carbon nanostructures. Notably, we observed that charge transfer occurred only in the case of SWNTs but not in graphene, resulting from the sharp and discrete electronic density of states of the former. Furthermore, the relaxation of external α–helices in BSA secondary structure increased concomitantly with the charge transfer. These results may help guide controlled nanostructure-biomolecular interactions and prove beneficial for developing novel drug delivery systems, biomedical devices and engineering of safe nanomaterials. PMID:23243478

  9. Chemical Compositions of RV Tauri Stars and Related Objects

    NASA Astrophysics Data System (ADS)

    Rao, S. S.; Giridhar, S.

    2014-04-01

    We have undertaken a comprehensive abundance analysis for a sample of relatively unexplored RV Tauri and RV Tauri like stars to further our understanding of post-Asymptotic Giant Branch (post-AGB) evolution. From our study based on high resolution spectra and a grid of model atmospheres, we find indications of mild s-processing for V820 Cen and IRAS 06165+3158. On the other hand, SU Gem and BT Lac exhibit the effects of mild dust-gas winnowing. We have also compiled the existing abundance data on RV Tauri objects and find that a large fraction of them are afflicted by dust-gas winnowing and aided by the present work, we find a small group of two RV Tauris showing mild s-process enhancement in our Galaxy. With two out of three reported s-process enhanced objects belonging to RV Tauri spectroscopic class C, these intrinsically metal-poor objects appear to be promising candidates to analyse the possible s-processing in RV Tauri stars.

  10. Thermo-optical characteristics and concentration quenching effects in Nd3+doped yttrium calcium borate glasses

    NASA Astrophysics Data System (ADS)

    Santos, D. R. S.; Santos, C. N.; de Camargo, A. S. S.; Silva, W. F.; Santos, W. Q.; Vermelho, M. V. D.; Astrath, N. G. C.; Malacarne, L. C.; Li, M. S.; Hernandes, A. C.; Ibanez, A.; Jacinto, C.

    2011-03-01

    In this work we present a comprehensive study of the spectroscopic and thermo-optical properties of a set of samples with composition xNd2O3-(5-x)Y2O3-40CaO-55B2O3 (0 ≤ x ≤ 1.0 mol%). Their fluorescence quantum efficiency (η) values were determined using the thermal lens technique and the dependence on the ionic concentration was analyzed in terms of energy transfer processes, based on the Förster-Dexter model of multipolar ion-ion interactions. A maximum η = 0.54 was found to be substantially higher than for yttrium aluminoborate crystals and glasses with comparable Nd3+ content. As for the thermo-optical properties of yttrium calcium borate, they are comparable to other well-known laser glasses. The obtained energy transfer microparameters and the weak dependence of η on the Nd3+ concentration with a high optimum Nd3+ concentration put this system as a strong candidate for photonics applications.

  11. How specific Raman spectroscopic models are: a comparative study between different cancers

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Kumar, K. Kalyan; Chowdary, M. V. P.; Maheedhar, K.; Krishna, C. Murali

    2010-02-01

    Optical spectroscopic methods are being contemplated as adjunct/ alternative to existing 'Gold standard' of cancer diagnosis, histopathological examination. Several groups are actively pursuing diagnostic applications of Ramanspectroscopy in cancers. We have developed Raman spectroscopic models for diagnosis of breast, oral, stomach, colon and larynx cancers. So far, specificity and applicability of spectral- models has been limited to particular tissue origin. In this study we have evaluated explicitly of spectroscopic-models by analyzing spectra from already developed spectralmodels representing normal and malignant tissues of breast (46), cervix (52), colon (25), larynx (53), and oral (47). Spectral data was analyzed by Principal Component Analysis (PCA) using scores of factor, Mahalanobis distance and Spectral residuals as discriminating parameters. Multiparametric limit test approach was also explored. The preliminary unsupervised PCA of pooled data indicates that normal tissue types were always exclusive from their malignant counterparts. But when we consider tissue of different origin, large overlap among clusters was found. Supervised analysis by Mahalanobis distance and spectral residuals gave similar results. The 'limit test' approach where classification is based on match / mis-match of the given spectrum against all the available spectra has revealed that spectral models are very exclusive and specific. For example breast normal spectral model show matches only with breast normal spectra and mismatch to rest of the spectra. Same pattern was seen for most of spectral models. Therefore, results of the study indicate the exclusiveness and efficacy of Raman spectroscopic-models. Prospectively, these findings might open new application of Raman spectroscopic models in identifying a tumor as primary or metastatic.

  12. Modification of heterogeneous chemistry by complex substrate morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henson, B.F.; Buelow, S.J.; Robinson, J.M.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Chemistry in many environmental systems is determined at some stage by heterogeneous reaction with a surface. Typically the surface exists as a dispersion or matrix of particulate matter or pores, and a determination of the heterogeneous chemistry of the system must address the extent to which the complexity of the environmental surface affects the reaction rates. Reactions that are of current interest are the series of chlorine nitrate reactions important in polar ozone depletion. The authors have applied surfacemore » spectroscopic techniques developed at LANL to address the chemistry of chlorine nitrate reactions on porous nitric and sulfuric acid ice surfaces as a model study of the measurement of complex, heterogeneous reaction rates. The result of the study is an experimental determination of the surface coverage of one adsorbed reagent and a mechanism of reactivity based on the dependence of this coverage on temperature and vapor pressure. The resulting mechanism allows the first comprehensive modeling of chlorine nitrate reaction probability data from several laboratories.« less

  13. Advanced Characterization Techniques for Sodium-Ion Battery Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadike, Zulipiya; Zhao, Enyue; Zhou, Yong-Ning

    Sodium (Na)-ion batteries (NIBs) are considered promising alternative candidates to the well-commercialized lithium-ion batteries, especially for applications in large-scale energy storage systems. The electrochemical performance of NIBs such as the cyclability, rate capability, and voltage profiles are strongly dependent on the structural and morphological evolution, phase transformation, sodium-ion diffusion, and electrode/electrolyte interface reconstruction during charge–discharge cycling. Therefore, in-depth understanding of the structure and kinetics of electrode materials and the electrode/electrolyte interfaces is essential for optimizing current NIB systems and exploring new materials for NIBs. Recently, rapid progress and development in spectroscopic, microscopic, and scattering techniques have provided extensive insight intomore » the nature of structural evolution, morphological changes of electrode materials, and electrode/electrolyte interface in NIBs. Here in this review, a comprehensive overview of both static (ex situ) and real-time (in situ or in operando) techniques for studying the NIBs is provided. Lastly, special focus is placed on how these techniques are applied to the fundamental investigation of NIB systems and what important results are obtained.« less

  14. Comprehensive studies of structural, electronic and magnetic properties of Zn{sub 0.95}Co{sub 0.05}O nanopowders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radisavljević, Ivana, E-mail: iva@vin.bg.ac.rs; Novaković, Nikola; Matović, Branko

    2016-02-15

    Highlights: • Zn{sub 0.95}Co{sub 0.05}O nanopowders are characterized by high structural order. • Co atoms show no tendency for Co–Co clustering and Co–Ov complexes formation. • Co–O–Co clustering along the c-axis has not lead to ferromagnetic order. • XMCD provides no evidence of magnetic polarization of O 2p and Co 3d states. - Abstract: X-ray absorption (XANES, EXAFS, XMCD) and photoelectron (XPS) spectroscopic techniques were employed to study local structural, electronic and magnetic properties of Zn{sub 0.95}Co{sub 0.05}O nanopowders. The substitutional Co{sup 2+} ions are incorporated in ZnO lattice at regular Zn sites and the sample is characterized by highmore » structural order. There was no sign of ferromagnetic ordering of Co magnetic moments and the sample is in paramagnetic state at all temperatures down to 5 K. The possible connection of the structural defects with the absence of ferromagnetism is discussed on the basis of theoretical calculations of the O K-edge absorption spectra.« less

  15. Advanced Characterization Techniques for Sodium-Ion Battery Studies

    DOE PAGES

    Shadike, Zulipiya; Zhao, Enyue; Zhou, Yong-Ning; ...

    2018-02-19

    Sodium (Na)-ion batteries (NIBs) are considered promising alternative candidates to the well-commercialized lithium-ion batteries, especially for applications in large-scale energy storage systems. The electrochemical performance of NIBs such as the cyclability, rate capability, and voltage profiles are strongly dependent on the structural and morphological evolution, phase transformation, sodium-ion diffusion, and electrode/electrolyte interface reconstruction during charge–discharge cycling. Therefore, in-depth understanding of the structure and kinetics of electrode materials and the electrode/electrolyte interfaces is essential for optimizing current NIB systems and exploring new materials for NIBs. Recently, rapid progress and development in spectroscopic, microscopic, and scattering techniques have provided extensive insight intomore » the nature of structural evolution, morphological changes of electrode materials, and electrode/electrolyte interface in NIBs. Here in this review, a comprehensive overview of both static (ex situ) and real-time (in situ or in operando) techniques for studying the NIBs is provided. Lastly, special focus is placed on how these techniques are applied to the fundamental investigation of NIB systems and what important results are obtained.« less

  16. How much can we trust high-resolution spectroscopic stellar chemical abundances?

    NASA Astrophysics Data System (ADS)

    Blanco-Cuaresma, S.; Nordlander, T.; Heiter, U.; Jofré, P.; Masseron, T.; Casamiquela, L.; Tabernero, H. M.; Bhat, S. S.; Casey, A. R.; Meléndez, J.; Ramírez, I.

    2017-03-01

    To study stellar populations, it is common to combine chemical abundances from different spectroscopic surveys/studies where different setups were used. These inhomogeneities can lead us to inaccurate scientific conclusions. In this work, we studied one aspect of the problem: When deriving chemical abundances from high-resolution stellar spectra, what differences originate from the use of different radiative transfer codes?

  17. Fourier transform infrared and Raman spectroscopic characterization of homogeneous solution concentration gradients near a container wall at different temperatures

    NASA Technical Reports Server (NTRS)

    Loo, B. H.; Burns, D. H.; Lee, Y. G. L.; Emerson, M. T.

    1991-01-01

    Fourier transform infrared (FTIR) and Raman spectroscopic techniques were used to study the solution concentration gradient in succino nitrile-rich and water-rich homogeneous solutions. The spectroscopic data shows significant concentration dependency. Although FTIR-attenuated total reflectance could not yield surface spectra since the evanescent infrared wave penetrated deep into the bulk solution, it showed that water-rich clusters were decreased at higher temperatures. This result is consistent with the calorimetric results reported earlier.

  18. Triclinic-monoclinic-orthorhombic (T-M-O) structural transitions in phase diagram of FeVO4-CrVO4 solid solutions

    NASA Astrophysics Data System (ADS)

    Bera, Ganesh; Reddy, V. R.; Rambabu, P.; Mal, P.; Das, Pradip; Mohapatra, N.; Padmaja, G.; Turpu, G. R.

    2017-09-01

    Phase diagram of FeVO4-CrVO4 solid solutions pertinent with structural and magnetic phases is presented with unambiguous experimental evidences. Solid solutions Fe1-xCrxVO4 (0 ≤ x ≤ 1.0) were synthesized through the standard solid state route and studied by X-ray diffraction, scanning electron microscopy, energy dispersive spectra of X-rays, Raman spectroscopy, d.c. magnetization, and 57Fe Mössbauer spectroscopic studies. FeVO4 and CrVO4 were found to be in triclinic (P-1 space group) and orthorhombic structures (Cmcm space group), respectively. Cr incorporation into the FeVO4 lattice leads to the emergence of a new monoclinic phase dissimilar to the both end members of the solid solutions. In Fe1-xCrxVO4 up to x = 0.10, no discernible changes in the triclinic structure were found. A new structural monoclinic phase (C2/m space group) emerges within the triclinic phase at x = 0.125, and with the increase in Cr content, it gets stabilized with clear single phase signatures in the range of x = 0.175-0.25 as evidenced by the Rietveld analysis of the structures. Beyond x = 0.33, orthorhombic phase similar to CrVO4 (Cmcm space group) emerges and coexists with a monoclinic structure up to x = 0.85, which finally tends to stabilize in the range of x = 0.90-1.00. The Raman spectroscopic studies also confirm the structural transition. FeVO4 Raman spectra show the modes related to three nonequivalent V ions in the triclinic structure, where up to 42 Raman modes are observed in the present study. With the stabilization of structures having higher symmetry, the number of Raman modes decreases and the modes related to symmetry inequivalent sites collate into singular modes from the doublet structure. A systematic crossover from two magnetic transitions in FeVO4, at 21.5 K and 15.4 K to single magnetic transition in CrVO4, at 71 K (antiferromagnetic transition), is observed in magnetization studies. The intermediate solid solution with x = 0.15 shows two magnetic transitions, whereas in the compound with x = 0.33 one of the magnetic transitions disappears. 57Fe Mössbauer spectroscopic studies show a finger print evidence for disappearance of non-equivalent sites of Fe as the structure changes from Triclinic-Monoclinic-Orthorhombic phases with the increasing Cr content in Fe1-xCrxVO4. Comprehensive studies related to the structural changes in Fe1-xCrxVO4 solid solutions lead us to detailed phase diagrams which shall be characteristic for room temperature structural and temperature dependent magnetic transitions in these solid solutions, respectively.

  19. Quantitative fluorescence and elastic scattering tissue polarimetry using an Eigenvalue calibrated spectroscopic Mueller matrix system.

    PubMed

    Soni, Jalpa; Purwar, Harsh; Lakhotia, Harshit; Chandel, Shubham; Banerjee, Chitram; Kumar, Uday; Ghosh, Nirmalya

    2013-07-01

    A novel spectroscopic Mueller matrix system has been developed and explored for both fluorescence and elastic scattering polarimetric measurements from biological tissues. The 4 × 4 Mueller matrix measurement strategy is based on sixteen spectrally resolved (λ = 400 - 800 nm) measurements performed by sequentially generating and analyzing four elliptical polarization states. Eigenvalue calibration of the system ensured high accuracy of Mueller matrix measurement over a broad wavelength range, either for forward or backscattering geometry. The system was explored for quantitative fluorescence and elastic scattering spectroscopic polarimetric studies on normal and precancerous tissue sections from human uterine cervix. The fluorescence spectroscopic Mueller matrices yielded an interesting diattenuation parameter, exhibiting differences between normal and precancerous tissues.

  20. Orbital parameters of the multiple system EM Boo

    NASA Astrophysics Data System (ADS)

    Özkardeş, B.; Bakış, H.; Bakış, V.

    2018-02-01

    EM Boo is a relatively bright (V = 8.98 mag.) and short orbital period (P⁓2.45 days) binary star member of the multiple system WDS J14485+2445AB. There is neither photometric nor spectroscopic study of the system in the literature. In this work, we obtained spectroscopic orbital parameters of the system from new high resolution spectroscopic observations made with échelle spectrograph attached to UBT60 telescope of Akdeniz University. The spectroscopic solution yielded the values K1 = 100.7±2.6 km/s, K2 = 120.1±2.6 km/s and Vγ = -14.6±3.1 km/s, and thus the mass ratio of the system q = 0.838±0.064.

  1. The use of gum Arabic as "Green" stabilizer of poly(aniline) nanocomposites: a comprehensive study of spectroscopic, morphological and electrochemical properties.

    PubMed

    Quintanilha, Ronaldo C; Orth, Elisa S; Grein-Iankovski, Aline; Riegel-Vidotti, Izabel C; Vidotti, Marcio

    2014-11-15

    Herein we show the synthesis and characterization of water dispersible composites formed by poly(aniline) and the natural polymer gum Arabic (GA), used as stabilizer. The materials were synthesized via a rapid and straightforward method and were fully characterized by different techniques such as UV-Vis, Raman, FTIR, TEM, SEM and cyclic voltammetry. TEM and SEM images revealed that the proportion of stabilizer highly influences the growth mechanism of the nanostructures. It was found spherical particles, elongated structures and large agglomerates at the lower, intermediate and at the higher GA amount, respectively. Accordingly to fluorescence spectra, different hydrophobic structures are formed depending on the GA amount in aqueous solutions, possibly acting as hosting sites for the PANI growth. In order to further study the PANI polymerization in the presence of GA, kinetics experiments were performed and showed that nucleation is the limiting step for the composite growth and a model is proposed. Spectroscopic experiments showed that the presence of GA affects the PANI conformation, avoiding the formation of phenazine structures which highly impairs the electroactivity of PANI. The material integrity is achieved by strong hydrogen bond interactions between PANI and GA as evidenced by the study of specific NH bands in FTIR and Raman analyses. The intensity of the hydrogen bonds decreased upon higher amounts of GA, probably due to steric impediment around the NH sites. Cyclic voltammograms showed a good electroactivity behavior of the modified electrodes presenting distinguishable diffusional processes through the adsorbed composites. By this way, we have thoroughly investigated the formation and properties of new conducting polymer composite materials. Taken into account the low toxicity of GA and the excellent dispersity in water, the materials can successfully be applied in bioelectrochemical applications or as green corrosion inhibitors. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. (+)- and (-)-Pestaloxazine A, a Pair of Antiviral Enantiomeric Alkaloid Dimers with a Symmetric Spiro[oxazinane-piperazinedione] Skeleton from Pestalotiopsis sp.

    PubMed

    Jia, Yan-Lai; Wei, Mei-Yan; Chen, Hai-Yan; Guan, Fei-Fei; Wang, Chang-Yun; Shao, Chang-Lun

    2015-09-04

    A pair of new enantiomeric alkaloid dimers, (+)- and (-)-pestaloxazine A (1), with an unprecedented symmetric spiro[oxazinane-piperazinedione] skeleton, consisting of 22 carbons and 12 heteroatoms, were isolated from a Pestalotiopsis sp. fungus derived from a soft coral. Separation of the enantiomeric alkaloid dimers was achieved by chiral HPLC. Their structures including absolute configurations were elucidated on the basis of a comprehensive analysis of their spectroscopic and X-ray diffraction data and CD calculations. (+)-Pestaloxazine A exhibited potent antiviral activity against EV71 with an IC50 value of 14.2 ± 1.3 μM, which was stronger than that of the positive control ribavirin (IC50 = 256.1 ± 15.1 μM).

  3. TDPAC and β-NMR applications in chemistry and biochemistry

    NASA Astrophysics Data System (ADS)

    Jancso, Attila; Correia, Joao G.; Gottberg, Alexander; Schell, Juliana; Stachura, Monika; Szunyogh, Dániel; Pallada, Stavroula; Lupascu, Doru C.; Kowalska, Magdalena; Hemmingsen, Lars

    2017-06-01

    Time differential perturbed angular correlation (TDPAC) of γ-rays spectroscopy has been applied in chemistry and biochemistry for decades. Herein we aim to present a comprehensive review of chemical and biochemical applications of TDPAC spectroscopy conducted at ISOLDE over the past 15 years, including elucidation of metal site structure and dynamics in proteins and model systems. β-NMR spectroscopy is well established in nuclear physics, solid state physics, and materials science, but only a limited number of applications in chemistry have appeared. Current endeavors at ISOLDE advancing applications of β-NMR towards chemistry and biochemistry are presented, including the first experiment on 31Mg2+ in an ionic liquid solution. Both techniques require the production of radioisotopes combined with advanced spectroscopic instrumentation present at ISOLDE.

  4. Harnessing Reversible Electronic Energy Transfer: From Molecular Dyads to Molecular Machines.

    PubMed

    Denisov, Sergey A; Yu, Shinlin; Pozzo, Jean-Luc; Jonusauskas, Gediminas; McClenaghan, Nathan D

    2016-06-17

    Reversible electronic energy transfer (REET) may be instilled in bi-/multichromophoric molecule-based systems, following photoexcitation, upon judicious structural integration of matched chromophores. This leads to a new set of photophysical properties for the ensemble, which can be fully characterized by steady-state and time-resolved spectroscopic methods. Herein, we take a comprehensive look at progress in the development of this type of supermolecule in the last five years, which has seen systems evolve from covalently tethered dyads to synthetic molecular machines, exemplified by two different pseudorotaxanes. Indeed, REET holds promise in the control of movement in molecular machines, their assembly/disassembly, as well as in charge separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Drimane sesquiterpenoids from the Aspergillus oryzae QXPC-4.

    PubMed

    Ren, Ren; Chen, Chao-Jun; Hu, Sha-Sha; Ge, Hui-Ming; Zhu, Wen-Yong; Tan, Ren-Xiang; Jiao, Rui-Hua

    2015-03-01

    Three new drimane sesquiterpenoids, astellolides C-E (1-3, resp.), four new drimane sesquiterpenoid p-hydroxybenzoates, astellolides F-I (4-7, resp.), together with two known compounds astellolides A and B (8 and 9, resp.), have been isolated from the liquid culture of Aspergillus oryzae (strain No. QXPC-4). Their structures were established by comprehensive analysis of spectroscopic data. The relative and absolute configurations were determined on the basis of NOESY and CD data, together with single-crystal X-ray diffraction analyses of compounds 1-3. The metabolites were evaluated for their cytotoxic activities, however, no compounds showed a significant cytotoxicity against the tested cell lines at a concentration of 20 μM. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  6. A Halogen-Containing Stilbene Derivative from the Leaves of Cajanus cajan that Induces Osteogenic Differentiation of Human Mesenchymal Stem Cells.

    PubMed

    Cai, Jia-Zhong; Tang, Rong; Ye, Gui-Fu; Qiu, Sheng-Xiang; Zhang, Nen-Ling; Hu, Ying-Jie; Shen, Xiao-Ling

    2015-06-11

    A new natural halogen-containing stilbene derivative was isolated from the leaves of Cajanus cajan (L.) Millsp. and identified as 3-O-(3-chloro-2-hydroxyl-propanyl)-longistylin A by comprehensive spectroscopic and chemical analysis, and named cajanstilbene H (1). It is the first halogen-containing stilbene derivative found from plants. In human mesenchymal stem cells (hMSC) from bone marrow, 1 did not promote cell proliferation, but distinctly enhanced osteogenic differentiation of hMSC in time- and dose-dependent manners. In six human cancer cell lines, 1 showed a moderate inhibitory effect on cell proliferation, with IC50 values of 21.42-25.85 μmol·L(-1).

  7. Five new lactone derivatives from the stems of Dendrobium nobile.

    PubMed

    Zhou, Xue-Ming; Zheng, Cai-Juan; Wu, Jia-Ting; Chen, Guang-Ying; Chen, Jun; Sun, Chong-Ge

    2016-12-01

    Five new lactone derivatives decumbic acids A and B (1 and 2), (-)-decumbic acid (3a), (-)- and (+)-dendrolactone (4a and 4b) together with four known compounds (3b and 5-7) were isolated from the stems of Dendrobium nobile. Their structures were elucidated using comprehensive spectroscopic methods. Compounds 3a and 3b, 4a and 4b were isolated as two pair of enantiomers by chiral HPLC. The absolute configurations of 1, 2, 3a, 4a and 4b were determined by optical rotation and X-ray crystallographic analysis. The inhibitory activities of all compounds against nine phytopathogenic fungi and three cancer cell lines were evaluated. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Cluster Tool for In Situ Processing and Comprehensive Characterization of Thin Films at High Temperatures.

    PubMed

    Wenisch, Robert; Lungwitz, Frank; Hanf, Daniel; Heller, René; Zscharschuch, Jens; Hübner, René; von Borany, Johannes; Abrasonis, Gintautas; Gemming, Sibylle; Escobar-Galindo, Ramon; Krause, Matthias

    2018-06-13

    A new cluster tool for in situ real-time processing and depth-resolved compositional, structural and optical characterization of thin films at temperatures from -100 to 800 °C is described. The implemented techniques comprise magnetron sputtering, ion irradiation, Rutherford backscattering spectrometry, Raman spectroscopy, and spectroscopic ellipsometry. The capability of the cluster tool is demonstrated for a layer stack MgO/amorphous Si (∼60 nm)/Ag (∼30 nm), deposited at room temperature and crystallized with partial layer exchange by heating up to 650 °C. Its initial and final composition, stacking order, and structure were monitored in situ in real time and a reaction progress was defined as a function of time and temperature.

  9. Design and calibration of zero-additional-phase SPIDER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, Peter; Riedle, Eberhard

    2005-09-01

    Zero-additional-phase spectral phase interferometry for direct electric field reconstruction (ZAP-SPIDER) is a novel technique for measuring the temporal shape and phase of ultrashort optical pulses directly at the interaction point of a spectroscopic experiment. The scheme is suitable for an extremely wide wavelength region from the ultraviolet to the near infrared. We present a comprehensive description of the experimental setup and design guidelines to effectively apply the technique to various wavelengths and pulse durations. The calibration of the setup and procedures to check the consistency of the measurement are discussed in detail. We show experimental data for various center wavelengthsmore » and pulse durations down to 7 fs to verify the applicability to a wide range of pulse parameters.« less

  10. Structure and spectroscopic properties of neutral and cationic tetratomic [C,H,N,Zn] isomers: A theoretical study

    NASA Astrophysics Data System (ADS)

    Redondo, Pilar; Largo, Antonio; Vega-Vega, Álvaro; Barrientos, Carmen

    2015-05-01

    The structure and spectroscopic parameters of the most relevant [C,H,N,Zn] isomers have been studied employing high-level quantum chemical methods. For each isomer, we provide predictions for their molecular structure, thermodynamic stabilities as well as vibrational and rotational spectroscopic parameters which could eventually help in their experimental detection. In addition, we have carried out a detailed study of the bonding situations by means of a topological analysis of the electron density in the framework of the Bader's quantum theory of atoms in molecules. The analysis of the relative stabilities and spectroscopic parameters suggests two linear isomers of the neutral [C,H,N,Zn] composition, namely, cyanidehydridezinc HZnCN (1Σ) and hydrideisocyanidezinc HZnNC (1Σ), as possible candidates for experimental detections. For the cationic [C,H,N,Zn]+ composition, the most stable isomers are the ion-molecule complexes arising from the direct interaction of the zinc cation with either the nitrogen or carbon atom of either hydrogen cyanide or hydrogen isocyanide, namely, HCNZn+ (2Σ) and HCNZn+ (2Σ).

  11. Synthesis, spectroscopic, single crystal diffraction and potential nonlinear optical properties of novel pyrazoline derivatives: Interplay of experimental and computational analyses.

    PubMed

    Arshad, Muhammad Nadeem; Birinji, Abdulhadi Salih; Khalid, Muhammad; Asiri, Abdullah M; Al-Amry, Khalid A; Aqlan, Faisal M S; Braga, Ataualpa A C

    2018-09-05

    Pyrazoline are widely being studied due to their potential applications in chemical field. Herein, five pyrazolines compounds were synthesized and characterized spectroscopically using nuclear magnetic resonance techniques ( 1 H NMR & 13 C NMR) to determine the structures of molecules along-with UV-Visible and infrared (FT-IR) studies for additional spectroscopic support in characterization of entitle synthesized molecules. Unit cells, specific space groups, bond lengths, bond angles and hydrogen bonding interactions were determined by the x-ray diffraction studies. Further, computational study of compounds with B3LYP/6-311 + G(d,p) level were carried out to explore optimized geometry, spectroscopic data for FT-IR, frontier molecular orbitals (FMOs) and non-linear optical (NLO) parameters. While, UV-Vis spectral were performed by TD-DFT/B3LYP/6-311 + G(d,p) level. The experimental results of spectroscopic and single crystal studies were compared and found in good agreement with the computational. The global reactivity parameters have been calculated with the help of the energy of FMOs. The order for the total first and second order hyperpolarizabilities of 1-5 is found in the following orders: 1 > 4 > 3 > 5 > 2 and 1 > 4 > 5 > 2 > 3 respectively. Overall, greater NLO response than urea molecule prove that investigated molecules are excellent candidate for NLO applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Penetration kinetics of dimethyl sulphoxide and glycerol in dynamic optical clearing of porcine skin tissue in vitro studied by Fourier transform infrared spectroscopic imaging.

    PubMed

    Jiang, Jingying; Boese, Matthias; Turner, Paul; Wang, Ruikang K

    2008-01-01

    By use of a Fourier transform infrared (FTIR) spectroscopic imaging technique, we examine the dynamic optical clearing processes occurring in hyperosmotically biocompatible agents penetrating into skin tissue in vitro. The sequential collection of images in a time series provides an opportunity to assess penetration kinetics of dimethyl sulphoxide (DMSO) and glycerol beneath the surface of skin tissue over time. From 2-D IR spectroscopic images and 3-D false color diagrams, we show that glycerol takes at least 30 min to finally penetrate the layer of epidermis, while DMSO can be detected in epidermis after only 4 min of being topically applied over stratum corneum sides of porcine skin. The results demonstrate the potential of a FTIR spectroscopic imaging technique as an analytical tool for the study of dynamic optical clearing effects when the bio-tissue is impregnated by hyperosmotically biocompatible agents such as glycerol and DMSO.

  13. The origin, composition and history of cometary ices from spectroscopic studies

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1989-01-01

    The spectroscopic analysis of pristine cometary material provides a very important probe of the chemical identity of the material as well as of the physical and chemical conditions which prevailed during the comet's history. Concerning classical spectroscopy, the spectral regions which will most likely prove most useful are the infrared, the visible and ultraviolet. Newer spectroscopic techniques which have the potential to provide equally important information include nuclear magnetic resonance (NMR) and electron spin resonance (ESR). Each technique is summarized with emphasis placed on the kind of information which can be obtained.

  14. Massive and Distant Clusters of WISE Survey (MaDCoWS)

    NASA Astrophysics Data System (ADS)

    Brodwin, Mark; MaDCoWS Collaboration

    2018-06-01

    The Massive and Distant Clusters of WISE Survey (MaDCoWS) is a comprehensive program to detect and characterize the most massive galaxy clusters in the Universe at z ~ 1, and is the only all-sky survey sensitive to galaxy clusters at this epoch. The foundation for this program is data from the NASA Wide-field Infrared Survey Explorer (WISE). The primary goal is to study the evolution of massive galaxies in the most overdense environments at z > 1 when star formation and AGN activity may be peaking in these structures. Spitzer follow-up imaging of 2000 MaDCoWS clusters has allowed us to select the richest and/or most distant clusters for detailed study. To date we have spectroscopically confirmed over 35 MaDCoWS clusters, spanning a wide range of masses (2-11 x 10^14 Msun), out to z = 1.5. This includes the discovery of the most massive z > 1.15 cluster found to date, as well as a cluster at z = 1.23 that is lensing a z = 2.22 supernova Ia. Multiwavelength follow-up observations of these distant clusters, currently underway, will permit several novel studies of galaxy evolution in rich cluster environments at z > 1.

  15. Application of Fourier transform infrared spectroscopy with chemometrics on postmortem interval estimation based on pericardial fluids.

    PubMed

    Zhang, Ji; Li, Bing; Wang, Qi; Wei, Xin; Feng, Weibo; Chen, Yijiu; Huang, Ping; Wang, Zhenyuan

    2017-12-21

    Postmortem interval (PMI) evaluation remains a challenge in the forensic community due to the lack of efficient methods. Studies have focused on chemical analysis of biofluids for PMI estimation; however, no reports using spectroscopic methods in pericardial fluid (PF) are available. In this study, Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance (ATR) accessory was applied to collect comprehensive biochemical information from rabbit PF at different PMIs. The PMI-dependent spectral signature was determined by two-dimensional (2D) correlation analysis. The partial least square (PLS) and nu-support vector machine (nu-SVM) models were then established based on the acquired spectral dataset. Spectral variables associated with amide I, amide II, COO - , C-H bending, and C-O or C-OH vibrations arising from proteins, polypeptides, amino acids and carbohydrates, respectively, were susceptible to PMI in 2D correlation analysis. Moreover, the nu-SVM model appeared to achieve a more satisfactory prediction than the PLS model in calibration; the reliability of both models was determined in an external validation set. The study shows the possibility of application of ATR-FTIR methods in postmortem interval estimation using PF samples.

  16. IR spectroscopic studies in microchannel structures

    NASA Astrophysics Data System (ADS)

    Guber, A. E.; Bier, W.

    1998-06-01

    By means of the various microengineering methods available, microreaction systems can be produced among others. These microreactors consist of microchannels, where chemical reactions take place under defined conditions. For optimum process control, continuous online analytics is envisaged in the microchannels. For this purpose, a special analytical module has been developed. It may be applied for IR spectroscopic studies at any point of the microchannel.

  17. A Spectroscopic study on the fuel value of softwoods in relation to chemical composition

    Treesearch

    Chi-Leung So; Thomas L. Eberhardt; Les Groom; Todd F. Shupe

    2012-01-01

    The recent focus on bioenergy has led to interest in developing alternative technologies for assessing the fuel value of available biomass resources. In this study, both near- and mid-infrared spectroscopic datawere used to predict fuel value in relation to extractives and lignin contents for longleaf pine wood. Samples were analyzed both before and after extraction....

  18. A cautionary tale of interpreting O-C diagrams: period instability in a classical RR Lyr Star Z CVn mimicking as a distant companion

    NASA Astrophysics Data System (ADS)

    Skarka, M.; Liška, J.; Dřevěný, R.; Guggenberger, E.; Sódor, Á.; Barnes, T. G.; Kolenberg, K.

    2018-02-01

    We present a comprehensive study of Z CVn, an RR Lyrae star that shows long-term cyclic variations of its pulsation period. A possible explanation suggested from the shape of the O-C diagram is the light travel-time effect, which we thoroughly examine. We used original photometric and spectroscopic measurements and investigated the period evolution using available maximum times spanning more than one century. If the binary hypothesis is valid, Z CVn orbits around a black hole with minimal mass of 56.5 M_{⊙} on a very wide (Porbit = 78.3 yr) and eccentric orbit (e = 0.63). We discuss the probability of the formation of a black hole-RR Lyrae pair, and, although we found it possible, there is no observational evidence of the black hole in the direction to Z CVn. However, the main objection against the binary hypothesis is the comparison of the systemic radial velocity curve model and spectroscopic observations that clearly show that Z CVn cannot be bound in such a binary. Therefore, the variations of pulsation period are likely intrinsic to the star. This finding represents a discovery/confirmation of a new type of cyclic period changes in RR Lyrae stars. By the analysis of our photometric data, we found that the Blazhko modulation with period of 22.931 d is strongly dominant in amplitude. The strength of the phase modulation varies and is currently almost undetectable. We also estimated photometric physical parameters of Z CVn and investigated their variations during the Blazhko cycle using the inverse Baade-Wesselink method.

  19. The Redshift Evolution of Rest-UV Spectroscopic Properties in Lyman-break Galaxies at z ∼ 2–4

    NASA Astrophysics Data System (ADS)

    Du, Xinnan; Shapley, Alice E.; Reddy, Naveen A.; Jones, Tucker; Stark, Daniel P.; Steidel, Charles C.; Strom, Allison L.; Rudie, Gwen C.; Erb, Dawn K.; Ellis, Richard S.; Pettini, Max

    2018-06-01

    We present the first comprehensive evolutionary analysis of the rest-frame UV spectroscopic properties of star-forming galaxies at z ∼ 2–4. We match samples at different redshifts in UV luminosity and stellar mass, and perform systematic measurements of spectral features and stellar population modeling. By creating composite spectra grouped according to Lyα equivalent width (EW) and various galaxy properties, we study the evolutionary trends among Lyα, low- and high-ionization interstellar (LIS and HIS) absorption features, and integrated galaxy properties. We also examine the redshift evolution of Lyα and LIS absorption kinematics, and fine-structure emission EWs. The connections among the strengths of Lyα, LIS lines, and dust extinction are redshift independent, as is the decoupling of the Lyα and HIS line strengths, and the bulk outflow kinematics as traced by the LIS lines. Stronger Lyα emission is observed at higher redshift at fixed UV luminosity, stellar mass, SFR, and age. Much of this variation in the average Lyα strength with redshift, and the variation in Lyα strength at fixed redshift, can be explained in terms of variations in the neutral gas covering fraction and/or dust content in the ISM and CGM. However, based on the connection between Lyα and C III] emission strengths, we additionally find evidence for variations in the intrinsic production rate of Lyα photons at the highest Lyα EWs. The challenge now is to understand the observed evolution of the neutral gas covering fraction and dust extinction within a coherent model for galaxy formation, and make robust predictions for the escape of ionizing radiation at z > 6.

  20. Super-Diffraction Limited Measurements through the Turbulent Atmosphere by Speckle Interferometry

    DTIC Science & Technology

    1990-02-22

    independently confirmed by a submotion in the residuals to spectroscopically obtained radial velocities of the system. / (3) Atmospheric Turbulence Studies ...spectroscopically obtained radial velocities 1. (3) Atmospheric Turbulence Studies - The very extensive data accumu- lated under this project at the two... studies . I B. RESEARCH ACCOMPLISHMENTS 1. Observing Opportunities Observing time on the 1.8-meter telescope was provided by the Lowell Observatory3 on a

  1. Systematic shell-model study on spectroscopic properties from light to heavy nuclei

    NASA Astrophysics Data System (ADS)

    Yuan, Cenxi

    2018-05-01

    A systematic shell-model study is performed to study the spectroscopic properties from light to heavy nuclei, such as binding energies, energy levels, electromagnetic properties, and β decays. The importance of cross-shell excitation is shown in the spectroscopic properties of neutron-rich boron, carbon, nitrogen, and oxygen isotopes. A special case is presented for low-lying structure of 14C. The weakly bound effect of proton 1s1/2 orbit is necessary for the description of the mirror energy difference in the nuclei around A=20. Some possible isomers are predicted in the nuclei in the southeast region of 132Sn based on a newly suggested Hamiltonian. A preliminary study on the nuclei around 208Pb are given to show the ability of the shell model in the heavy nuclei.

  2. Spectroscopic study of gel grown L-Valine Zinc Glycine Thiourea Sulfate (VZGTS) crystal: A novel NLO crystal

    NASA Astrophysics Data System (ADS)

    Rathod, Kiran T.; Patel, I. B.

    2017-05-01

    In recent years, organometalic non linear optical (NLO) materials have attained immense appeal form researchers due to its range of technological applications in photonic field and optoelectronic technology. In present research work, novel semi organic NLO L-Valine Zinc Glycine Thiourea Sulfate crystals (VZGTS) with different morphologies were grown by gel method at ambient temperature. Presence and identification of functional groups were confirmed by FITR analysis. Spectroscopic studies were carried out for it. The UV-Vis spectroscopy is recorded for crystal. PL study stats that the crystal has insulating nature. Spectroscopic study shows that this crystal has good transparency in the case of fundamental wavelength of Nd : YAG laser. Second Harmonic Generation (SHG) efficiency was confirmed by Kurtz - Perry powder method. Results are discussed in the paper.

  3. SPIDERS: the spectroscopic follow-up of X-ray selected clusters of galaxies in SDSS-IV

    NASA Astrophysics Data System (ADS)

    Clerc, N.; Merloni, A.; Zhang, Y.-Y.; Finoguenov, A.; Dwelly, T.; Nandra, K.; Collins, C.; Dawson, K.; Kneib, J.-P.; Rozo, E.; Rykoff, E.; Sadibekova, T.; Brownstein, J.; Lin, Y.-T.; Ridl, J.; Salvato, M.; Schwope, A.; Steinmetz, M.; Seo, H.-J.; Tinker, J.

    2016-12-01

    SPIDERS (The SPectroscopic IDentification of eROSITA Sources) is a programme dedicated to the homogeneous and complete spectroscopic follow-up of X-ray active galactic nuclei and galaxy clusters over a large area (˜7500 deg2) of the extragalactic sky. SPIDERS is part of the Sloan Digital Sky Survey (SDSS)-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey and the Time-Domain Spectroscopic Survey. This paper describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray-selected, massive (˜1014-1015 M⊙) galaxy clusters discovered in ROSAT and XMM-Newton imaging. The immediate aim is to determine precise (Δz ˜ 0.001) redshifts for 4000-5000 of these systems out to z ˜ 0.6. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters (0.031 < z < 0.658), found in pilot observations. We discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion (LX-σ) relation and the building of stacked phase-space diagrams.

  4. Noninvasive, near infrared spectroscopic-measured muscle pH and PO2 indicate tissue perfusion for cardiac surgical patients undergoing cardiopulmonary bypass

    NASA Technical Reports Server (NTRS)

    Soller, Babs R.; Idwasi, Patrick O.; Balaguer, Jorge; Levin, Steven; Simsir, Sinan A.; Vander Salm, Thomas J.; Collette, Helen; Heard, Stephen O.

    2003-01-01

    OBJECTIVE: To determine whether near infrared spectroscopic measurement of tissue pH and Po2 has sufficient accuracy to assess variation in tissue perfusion resulting from changes in blood pressure and metabolic demand during cardiopulmonary bypass. DESIGN: Prospective clinical study. SETTING: Academic medical center. SUBJECTS: Eighteen elective cardiac surgical patients. INTERVENTION: Cardiac surgery under cardiopulmonary bypass. MEASUREMENTS AND MAIN RESULTS: A near infrared spectroscopic fiber optic probe was placed over the hypothenar eminence. Reference Po2 and pH sensors were inserted in the abductor digiti minimi (V). Data were collected every 30 secs during surgery and for 6 hrs following cardiopulmonary bypass. Calibration equations developed from one third of the data were used with the remaining data to investigate sensitivity of the near infrared spectroscopic measurement to physiologic changes resulting from cardiopulmonary bypass. Near infrared spectroscopic and reference pH and Po2 measurements were compared for each subject using standard error of prediction. Near infrared spectroscopic pH and Po2 at baseline were compared with values during cardiopulmonary bypass just before rewarming commenced (hypotensive, hypothermic), after rewarming (hypotensive, normothermic) just before discontinuation of cardiopulmonary bypass, and at 6 hrs following cardiopulmonary bypass (normotensive, normothermic) using mixed-model analysis of variance. Near infrared spectroscopic pH and Po2 were well correlated with the invasive measurement of pH (R2 =.84) and Po2 (R 2 =.66) with an average standard error of prediction of 0.022 +/- 0.008 pH units and 6 +/- 3 mm Hg, respectively. The average difference between the invasive and near infrared spectroscopic measurement was near zero for both the pH and Po2 measurements. Near infrared spectroscopic Po2 significantly decreased 50% on initiation of cardiopulmonary bypass and remained depressed throughout the bypass and monitored intensive care period. Near infrared spectroscopic pH decreased significantly during cardiopulmonary bypass, decreased significantly during rewarming, and remained depressed 6 hrs after cardiopulmonary bypass. Diabetic patients responded differently than nondiabetic subjects to cardiopulmonary bypass, with lower muscle pH values (p =.02). CONCLUSIONS: Near infrared spectroscopic-measured muscle pH and Po2 are sensitive to changes in tissue perfusion during cardiopulmonary bypass.

  5. LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY

    EPA Science Inventory

    The sorption and desorption of Pb on RuO2 xH2O were examined kinetically and thermodynamically via spectroscopic and macroscopic investigations. X-ray absorption spectroscopy (XAS) was employed to determine the sorption mechanism with regard to identity of nearest atomic neighbo...

  6. Prediction and interpretation of infrared intensities of polymethylene chain molecules

    NASA Astrophysics Data System (ADS)

    Jona, P.; Gussoni, M.; Zerbi, G.

    1986-03-01

    We have calculated the IR intensities of some polymethylene chain molecules containing conformational defects or polar heads. Calculations provide spectroscopic markers of end-TG, GTG', GTG, GG and GGTGG defects. Further, a spectroscopical study of interactions between polar heads and alkyl chain is allowed.

  7. An ALMA Survey of Submillimeter Galaxies in the Extended Chandra Deep Field South: Spectroscopic Redshifts

    NASA Astrophysics Data System (ADS)

    Danielson, A. L. R.; Swinbank, A. M.; Smail, Ian; Simpson, J. M.; Casey, C. M.; Chapman, S. C.; da Cunha, E.; Hodge, J. A.; Walter, F.; Wardlow, J. L.; Alexander, D. M.; Brandt, W. N.; de Breuck, C.; Coppin, K. E. K.; Dannerbauer, H.; Dickinson, M.; Edge, A. C.; Gawiser, E.; Ivison, R. J.; Karim, A.; Kovacs, A.; Lutz, D.; Menten, K.; Schinnerer, E.; Weiß, A.; van der Werf, P.

    2017-05-01

    We present spectroscopic redshifts of {\\text{}}{S}870μ {{m}} ≳ 2 mJy submillimeter galaxies (SMGs), which have been identified from the ALMA follow-up observations of 870 μm detected sources in the Extended Chandra Deep Field South (the ALMA-LESS survey). We derive spectroscopic redshifts for 52 SMGs, with a median of z = 2.4 ± 0.1. However, the distribution features a high-redshift tail, with ˜23% of the SMGs at z≥slant 3. Spectral diagnostics suggest that the SMGs are young starbursts, and the velocity offsets between the nebular emission and UV ISM absorption lines suggest that many are driving winds, with velocity offsets of up to 2000 km s-1. Using the spectroscopic redshifts and the extensive UV-to-radio photometry in this field, we produce optimized spectral energy distributions (SEDs) using Magphys, and use the SEDs to infer a median stellar mass of {M}\\star = (6 ± 1)× 1010 M {}⊙ for our SMGs with spectroscopic redshift. By combining these stellar masses with the star formation rates (measured from the far-infrared SEDs), we show that SMGs (on average) lie a factor of ˜5 above the so-called “main sequence” at z˜ 2. We provide this library of 52 template fits with robust and uniquely well-sampled SEDs as a resource for future studies of SMGs, and also release the spectroscopic catalog of ˜2000 (mostly infrared-selected) galaxies targeted as part of the spectroscopic campaign.

  8. Spectral analysis of four surprisingly similar hot hydrogen-rich subdwarf O stars

    NASA Astrophysics Data System (ADS)

    Latour, M.; Chayer, P.; Green, E. M.; Irrgang, A.; Fontaine, G.

    2018-01-01

    Context. Post-extreme horizontal branch stars (post-EHB) are helium-shell burning objects evolving away from the EHB and contracting directly towards the white dwarf regime. While the stars forming the EHB have been extensively studied in the past, their hotter and more evolved progeny are not so well characterized. Aims: We perform a comprehensive spectroscopic analysis of four such bright sdO stars, namely Feige 34, Feige 67, AGK+81°266, and LS II+18°9, among which the first three are used as standard stars for flux calibration. Our goal is to determine their atmospheric parameters, chemical properties, and evolutionary status to better understand this class of stars that are en route to become white dwarfs. Methods: We used non-local thermodynamic equilibrium model atmospheres in combination with high quality optical and UV spectra. Photometric data were also used to compute the spectroscopic distances of our stars and to characterize the companion responsible for the infrared excess of Feige 34. Results: The four bright sdO stars have very similar atmospheric parameters with Teff between 60 000 and 63 000 K and log g (cm s-2) in the range 5.9 to 6.1. This places these objects right on the theoretical post-EHB evolutionary tracks. The UV spectra are dominated by strong iron and nickel lines and suggest abundances that are enriched with respect to those of the Sun by factors of 25 and 60. On the other hand, the lighter elements, C, N, O, Mg, Si, P, and S are depleted. The stars have very similar abundances, although AGK+81°266 shows differences in its light element abundances. For instance, the helium abundance of this object is 10 times lower than that observed in the other three stars. All our stars show UV spectral lines that require additional line broadening that is consistent with a rotational velocity of about 25 km s-1. The infrared excess of Feige 34 is well reproduced by a M0 main-sequence companion and the surface area ratio of the two stars suggests that the system is a physical binary. However, the lack of radial velocity variations points towards a low inclination and/or long orbital period. Spectroscopic and Hipparcos distances are in good agreement for our three brightest stars. Conclusions: We performed a spectroscopic analysis of four hot sdO stars that are very similar in terms of atmospheric parameters and chemical compositions. The rotation velocities of our stars are significantly higher than what is observed in their immediate progenitors on the EHB, suggesting that angular momentum may be conserved as the stars evolve away from the EHB.

  9. Spectroscopic analysis of solar and cosmic X-ray spectra. 1: The nature of cosmic X-ray spectra and proposed analytical techniques

    NASA Technical Reports Server (NTRS)

    Walker, A. B. C., Jr.

    1975-01-01

    Techniques for the study of the solar corona are reviewed as an introduction to a discussion of modifications required for the study of cosmic sources. Spectroscopic analysis of individual sources and the interstellar medium is considered. The latter was studied via analysis of its effect on the spectra of selected individual sources. The effects of various characteristics of the ISM, including the presence of grains, molecules, and ionization, are first discussed, and the development of ISM models is described. The expected spectral structure of individual cosmic sources is then reviewed with emphasis on supernovae remnants and binary X-ray sources. The observational and analytical requirements imposed by the characteristics of these sources are identified, and prospects for the analysis of abundances and the study of physical parameters within them are assessed. Prospects for the spectroscopic study of other classes of X-ray sources are also discussed.

  10. Pharmaceutical properties of two ethenzamide-gentisic acid cocrystal polymorphs: Drug release profiles, spectroscopic studies and theoretical calculations.

    PubMed

    Sokal, Agnieszka; Pindelska, Edyta; Szeleszczuk, Lukasz; Kolodziejski, Waclaw

    2017-04-30

    The aim of this study was to evaluate the stability and solubility of the polymorphic forms of the ethenzamide (ET) - gentisic acid (GA) cocrystals during standard technological processes leading to tablet formation, such as compression and excipient addition. In this work two polymorphic forms of pharmaceutical cocrystals (ETGA) were characterized by 13 C and 15 N solid-state nuclear magnetic resonance and Fourier transformed infrared spectroscopy. Spectroscopic studies were supported by gauge including projector augmented wave (GIPAW) calculations of chemical shielding constants.Polymorphs of cocrystals were easily identified and characterized on the basis of solid-state spectroscopic studies. ETGA cocrystals behaviour during direct compressionand tabletting with excipient addition were tested. In order to choose the best tablet composition with suitable properties for the pharmaceutical industry dissolution profile studies of tablets containing polymorphic forms of cocrystals with selected excipients were carried out. Copyright © 2017. Published by Elsevier B.V.

  11. The Time-domain Spectroscopic Survey: Target Selection for Repeat Spectroscopy

    NASA Astrophysics Data System (ADS)

    MacLeod, Chelsea L.; Green, Paul J.; Anderson, Scott F.; Eracleous, Michael; Ruan, John J.; Runnoe, Jessie; Nielsen Brandt, William; Badenes, Carles; Greene, Jenny; Morganson, Eric; Schmidt, Sarah J.; Schwope, Axel; Shen, Yue; Amaro, Rachael; Lebleu, Amy; Filiz Ak, Nurten; Grier, Catherine J.; Hoover, Daniel; McGraw, Sean M.; Dawson, Kyle; Hall, Patrick B.; Hawley, Suzanne L.; Mariappan, Vivek; Myers, Adam D.; Pâris, Isabelle; Schneider, Donald P.; Stassun, Keivan G.; Bershady, Matthew A.; Blanton, Michael R.; Seo, Hee-Jong; Tinker, Jeremy; Fernández-Trincado, J. G.; Chambers, Kenneth; Kaiser, Nick; Kudritzki, R.-P.; Magnier, Eugene; Metcalfe, Nigel; Waters, Chris Z.

    2018-01-01

    As astronomers increasingly exploit the information available in the time domain, spectroscopic variability in particular opens broad new channels of investigation. Here we describe the selection algorithms for all targets intended for repeat spectroscopy in the Time Domain Spectroscopic Survey (TDSS), part of the extended Baryon Oscillation Spectroscopic Survey within the Sloan Digital Sky Survey (SDSS)-IV. Also discussed are the scientific rationale and technical constraints leading to these target selections. The TDSS includes a large “repeat quasar spectroscopy” (RQS) program delivering ∼13,000 repeat spectra of confirmed SDSS quasars, and several smaller “few-epoch spectroscopy” (FES) programs targeting specific classes of quasars as well as stars. The RQS program aims to provide a large and diverse quasar data set for studying variations in quasar spectra on timescales of years, a comparison sample for the FES quasar programs, and an opportunity for discovering rare, serendipitous events. The FES programs cover a wide variety of phenomena in both quasars and stars. Quasar FES programs target broad absorption line quasars, high signal-to-noise ratio normal broad line quasars, quasars with double-peaked or very asymmetric broad emission line profiles, binary supermassive black hole candidates, and the most photometrically variable quasars. Strongly variable stars are also targeted for repeat spectroscopy, encompassing many types of eclipsing binary systems, and classical pulsators like RR Lyrae. Other stellar FES programs allow spectroscopic variability studies of active ultracool dwarf stars, dwarf carbon stars, and white dwarf/M dwarf spectroscopic binaries. We present example TDSS spectra and describe anticipated sample sizes and results.

  12. Extended X-ray Absorption Fine Structure Study of Bond Constraints in Ge-Sb-Te Alloys

    DTIC Science & Technology

    2011-02-07

    Ray Absorption Spectroscopy, or EXAFS. Using the spectroscopic capabilities provided by the MCAT line at the Advanced Photon Source at Argonne...Absorption Spectroscopy, or EXAFS. Using the spectroscopic capabilities provided by the MCAT line at the Advanced Photon Source at Argonne National

  13. Raman Spectroscopic Imaging of the Whole Ciona intestinalis Embryo during Development

    PubMed Central

    Nakamura, Mitsuru J.; Hotta, Kohji; Oka, Kotaro

    2013-01-01

    Intracellular composition and the distribution of bio-molecules play central roles in the specification of cell fates and morphogenesis during embryogenesis. Consequently, investigation of changes in the expression and distribution of bio-molecules, especially mRNAs and proteins, is an important challenge in developmental biology. Raman spectroscopic imaging, a non-invasive and label-free technique, allows simultaneous imaging of the intracellular composition and distribution of multiple bio-molecules. In this study, we explored the application of Raman spectroscopic imaging in the whole Ciona intestinalis embryo during development. Analysis of Raman spectra scattered from C. intestinalis embryos revealed a number of localized patterns of high Raman intensity within the embryo. Based on the observed distribution of bio-molecules, we succeeded in identifying the location and structure of differentiated muscle and endoderm within the whole embryo, up to the tailbud stage, in a label-free manner. Furthermore, during cell differentiation, we detected significant differences in cell state between muscle/endoderm daughter cells and daughter cells with other fates that had divided from the same mother cells; this was achieved by focusing on the Raman intensity of single Raman bands at 1002 or 1526 cm−1, respectively. This study reports the first application of Raman spectroscopic imaging to the study of identifying and characterizing differentiating tissues in a whole chordate embryo. Our results suggest that Raman spectroscopic imaging is a feasible label-free technique for investigating the developmental process of the whole embryo of C. intestinalis. PMID:23977129

  14. A Comparison of Galaxy Bulge+Disk Decomposition Between Pan-STARRS and SDSS

    NASA Astrophysics Data System (ADS)

    Lokken, Martine Elena; McPartland, Conor; Sanders, David B.

    2018-01-01

    Measurements of the size and shape of bulges in galaxies provide key constraints for models of galaxy evolution. A comprehensive catalog of bulge measurements for Sloan Digital Sky Survey (SDSS) DR7 galaxies is currently available to the public. However, the Pan-STARRS1 (PS1) 3π survey now covers the same region with ~1-2 mag deeper photometry, a ~10-30% smaller PSF, and additional coverage in y-band. To test how much improvement in galaxy parameter measurements (e.g. bulge + disk) can be achieved using the new PS1 data, we make use of ultra-deep imaging data from the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP). We fit bulge+disk models to images of 372 bright (mi < 18.5) galaxies detected in all three surveys. Comparison of galaxy parameters derived from SDSS and PS1 images with those measured from HSC-SSP images shows a tighter correlation between PS1 and SSP measurements for both bulge and disk parameters. Bulge parameters, such as bulge-to-total fraction and bulge radius, show the strongest improvement. However, measurements of all parameters degrade for galaxies with total r-band magnitude below the SDSS spectroscopic limit, mr = 17.7. We plan to use the PS1 3π survey data to produce an updated catalog of bulge+disk decomposition measurements for the entire SDSS DR7 spectroscopic galaxy sample.

  15. The influence of superimposed DC current on electrical and spectroscopic characteristics of HiPIMS discharge

    NASA Astrophysics Data System (ADS)

    Zuo, Xiao; Chen, Rende; Liu, Jingzhou; Ke, Peiling; Wang, Aiying

    2018-01-01

    The electrical characteristics and spectroscopic properties have been comprehensively investigated in a DC superimposed high power impulse magnetron sputtering (DC-HiPIMS) deposition system in this paper. The influence of superimposed DC current on the variation of target and substrate current waveforms, active species and electron temperatures with pulse voltages are focused. The peak target currents in DC-HiPIMS are lower than in HiPIMS. The time scales of the two main discharge processes like ionization and gas rarefaction in DC-HiPIMS are analyzed. When the pulse voltage is higher than 600 V, the gas rarefaction effect becomes apparent. Overall, the ionization process is found to be dominant in the initial ˜100 μs during each pulse. The active species of Ar and Cr in DC-HiPIMS are higher than in HiPIMS unless that the pulse voltage reaches 900 V. However, the ionization degree in HiPIMS exceeds that in DC-HiPIMS at around 600 V. The electron temperature calculated by modified Boltzmann plot method based on corona model has a precipitous increase from 0.87 to 25.0 eV in HiPIMS, but varies mildly after the introduction of the superimposed DC current. Additionally, the current from plasma flowing to the substrate is improved when a DC current is superimposed with HiPIMS.

  16. FIREFLY (Fitting IteRativEly For Likelihood analYsis): a full spectral fitting code

    NASA Astrophysics Data System (ADS)

    Wilkinson, David M.; Maraston, Claudia; Goddard, Daniel; Thomas, Daniel; Parikh, Taniya

    2017-12-01

    We present a new spectral fitting code, FIREFLY, for deriving the stellar population properties of stellar systems. FIREFLY is a chi-squared minimization fitting code that fits combinations of single-burst stellar population models to spectroscopic data, following an iterative best-fitting process controlled by the Bayesian information criterion. No priors are applied, rather all solutions within a statistical cut are retained with their weight. Moreover, no additive or multiplicative polynomials are employed to adjust the spectral shape. This fitting freedom is envisaged in order to map out the effect of intrinsic spectral energy distribution degeneracies, such as age, metallicity, dust reddening on galaxy properties, and to quantify the effect of varying input model components on such properties. Dust attenuation is included using a new procedure, which was tested on Integral Field Spectroscopic data in a previous paper. The fitting method is extensively tested with a comprehensive suite of mock galaxies, real galaxies from the Sloan Digital Sky Survey and Milky Way globular clusters. We also assess the robustness of the derived properties as a function of signal-to-noise ratio (S/N) and adopted wavelength range. We show that FIREFLY is able to recover age, metallicity, stellar mass, and even the star formation history remarkably well down to an S/N ∼ 5, for moderately dusty systems. Code and results are publicly available.1

  17. Quantification of bone marrow water and lipid composition in anterior cruciate ligament-injured and osteoarthritic knees using three-dimensional magnetic resonance spectroscopic imaging.

    PubMed

    Tufts, Lauren S; Shet, Keerthi; Liang, Fei; Majumdar, Sharmila; Li, Xiaojuan

    2016-06-01

    To quantitatively evaluate longitudinal changes in water and lipid in knee bone marrow with and without bone marrow edema-like lesions (BMELs) in subjects with acutely ruptured anterior cruciate ligaments (ACLs) or osteoarthritis (OA) using three-dimensional magnetic resonance spectroscopic imaging (3D MRSI). Ten ACL and 10 OA subjects who presented with BMEL and seven BMEL-free controls were scanned at 3T. All ACL and OA subjects had one-year follow-up scans. 3D MRSI was acquired in BMEL and adjacent bone marrow, and water content (WC) and unsaturated lipid index (UI) were calculated in each region of interest. At baseline, ACL BMEL WC was significantly higher than ACL non-BMEL, OA BMEL, and control WC; ACL non-BMEL WC, ACL BMEL UI, and OA BMEL WC were significantly higher than control. ACL BMEL WC decreased significantly one year post-reconstruction; UI decreased non-significantly (p=0.09). No significant changes in OA BMEL or ACL and OA non-BMEL WC and UI were observed. 3D MRSI is a powerful method of quantitatively assessing the biochemical composition of bone marrow in OA and ACL-injured knees, which may serve as imaging markers to improve comprehension of primary and secondary OA pathology. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Diamond detectors for high-temperature transactinide chemistry experiments

    NASA Astrophysics Data System (ADS)

    Steinegger, Patrick; Dressler, Rugard; Eichler, Robert; Piguet, Dave; Streuli, Silvan; Türler, Andreas

    2017-04-01

    Here, we present the fabrication details and functional tests of diamond-based α-spectroscopic sensors, dedicated for high-temperature experiments, targeting the chemistry of transactinide elements. Direct heating studies with this sensor material, revealed a current upper temperature threshold for a safe α-spectroscopic operation of Tdet = 453 K . Up to this temperature, the diamond sensor could be operated in a stable manner over long time periods of the order of days. A satisfying resolution of ≈ 50 keVFWHM was maintained throughout all conducted measurements. However, exceeding the mentioned temperature limit led to a pronounced spectroscopic degradation in the range of 453 - 473 K , thereby preventing any further α-spectroscopic application. These findings are in full agreement with available literature data. The presented detector development generally enables the chemical investigation of more short-lived and less volatile transactinide elements and their compounds, yet unreachable with the currently employed silicon-based solid state sensors. In a second part, the design, construction, and α-spectroscopic performance of a 4-segmented diamond detector, dedicated and used for transactinide element research, is given as an application example.

  19. Calibration Efforts and Unique Capabilities of the HST Space Telescope Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Monroe, TalaWanda R.; Proffitt, Charles R.; Welty, Daniel; Branton, Doug; Carlberg, Joleen K.; debes, John Henry; Lockwood, Sean; Riley, Allyssa; Sohn, Sangmo Tony; Sonnentrucker, Paule G.; Walborn, Nolan R.; Jedrzejewski, Robert I.

    2018-01-01

    The Space Telescope Imaging Spectrograph (STIS) continues to offer the astronomy community the ability to carry out innovative UV and optical spectroscopic and imaging studies, two decades after its deployment on the Hubble Space Telescope (HST). Most notably, STIS provides spectroscopy in the FUV and NUV, including high spectral resolution echelle modes, imaging in the FUV, optical spectroscopy, and coronagraphic capabilities. Additionally, spatial scanning on the CCD with the long-slits is now possible to enable very high S/N spectroscopic observations without saturation while mitigating telluric and fringing concerns in the far red and near-IR. This new mode may especially benefit the diffuse interstellar bands and exoplanet transiting communities. We present recent calibration efforts for the instrument, including work to optimize the calibration of the echelle spectroscopic modes by improving the flux agreement of overlapping spectral orders affected by changes in the grating blaze function since HST Servicing Mission 4. We also discuss considerations to maintain the wavelength precision of the spectroscopic modes, and the current capabilities of CCD spectroscopic spatial trails.

  20. Quantitative properties of clustering within modern microscopic nuclear models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volya, A.; Tchuvil’sky, Yu. M., E-mail: tchuvl@nucl-th.sinp.msu.ru

    2016-09-15

    A method for studying cluster spectroscopic properties of nuclear fragmentation, such as spectroscopic amplitudes, cluster form factors, and spectroscopic factors, is developed on the basis of modern precision nuclear models that take into account the mixing of large-scale shell-model configurations. Alpha-cluster channels are considered as an example. A mathematical proof of the need for taking into account the channel-wave-function renormalization generated by exchange terms of the antisymmetrization operator (Fliessbach effect) is given. Examples where this effect is confirmed by a high quality of the description of experimental data are presented. By and large, the method in question extends substantially themore » possibilities for studying clustering phenomena in nuclei and for improving the quality of their description.« less

  1. Near-infrared diode laser based spectroscopic detection of ammonia: a comparative study of photoacoustic and direct optical absorption methods

    NASA Technical Reports Server (NTRS)

    Bozoki, Zoltan; Mohacsi, Arpad; Szabo, Gabor; Bor, Zsolt; Erdelyi, Miklos; Chen, Weidong; Tittel, Frank K.

    2002-01-01

    A photoacoustic spectroscopic (PAS) and a direct optical absorption spectroscopic (OAS) gas sensor, both using continuous-wave room-temperature diode lasers operating at 1531.8 nm, were compared on the basis of ammonia detection. Excellent linear correlation between the detector signals of the two systems was found. Although the physical properties and the mode of operation of both sensors were significantly different, their performances were found to be remarkably similar, with a sub-ppm level minimum detectable concentration of ammonia and a fast response time in the range of a few minutes.

  2. Physics of the inner heliosphere: Mechanisms, models and observational signatures

    NASA Technical Reports Server (NTRS)

    Withbroe, G. L.

    1985-01-01

    The physics of the solar wind acceleration phenomena (e.g. effect of transient momentum deposition on the temporal and spatial variation of the temperature, density and flow speed of the solar wind, formation of shocks, etc.) and the resultant effects on observational signatures, particularly spectroscopic signature are studied. Phenomena under study include: (1) wave motions, particularly spectroscopic signatures are studied. Phenomena under study include:(1) wave motions, particularly Alfven and fast mode waves, (2) the formation of standing shocks in the inner heliosphere as a result of momentum and/or heat addition to the wind and (3) coronal transient phenomena where momentum and/or heat are deposited in the corona to produce transient plasma heating and/or mass ejections. Also included are the theoretical investigation of spectroscopic plasma diagnostics for the inner heliosphere and the analysis of existing Skylab and other relevant data.

  3. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots

    DOE PAGES

    Makarov, Nikolay Sergeevich; Guo, Shaojun; Isaienko, Oleksandr; ...

    2016-02-16

    Organic–inorganic lead-halide perovskites have been the subject of recent intense interest due to their unusually strong photovoltaic performance. A new addition to the perovskite family is all-inorganic Cs–Pb-halide perovskite nanocrystals, or quantum dots, fabricated via a moderate-temperature colloidal synthesis. While being only recently introduced to the research community, these nanomaterials have already shown promise for a range of applications from color-converting phosphors and light-emitting diodes to lasers, and even room-temperature single-photon sources. Knowledge of the optical properties of perovskite quantum dots still remains vastly incomplete. Here we apply various time-resolved spectroscopic techniques to conduct a comprehensive study of spectral andmore » dynamical characteristics of single- and multiexciton states in CsPbX3 nanocrystals with X being either Br, I, or their mixture. Specifically, we measure exciton radiative lifetimes, absorption cross-sections, and derive the degeneracies of the band-edge electron and hole states. We also characterize the rates of intraband cooling and nonradiative Auger recombination and evaluate the strength of exciton–exciton coupling. The overall conclusion of this work is that spectroscopic properties of Cs–Pb-halide quantum dots are largely similar to those of quantum dots of more traditional semiconductors such as CdSe and PbSe. At the same time, we observe some distinctions including, for example, an appreciable effect of the halide identity on radiative lifetimes, considerably shorter biexciton Auger lifetimes, and apparent deviation of their size dependence from the “universal volume scaling” previously observed for many traditional nanocrystal systems. The high efficiency of Auger decay in perovskite quantum dots is detrimental to their prospective applications in light-emitting devices and lasers. Furthermore, this points toward the need for the development of approaches for effective suppression of Auger recombination in these nanomaterials, using perhaps insights gained from previous studies of II–VI nanocrystals.« less

  4. In situ spectroscopic ellipsometry study of low-temperature epitaxial silicon growth

    NASA Astrophysics Data System (ADS)

    Halagačka, L.; Foldyna, M.; Leal, R.; Roca i Cabarrocas, P.

    2018-07-01

    Low-temperature growth of doped epitaxial silicon layers is a promising way to reduce the cost of p-n junction formation in c-Si solar cells. In this work, we study process of highly doped epitaxial silicon layer growth using in situ spectroscopic ellipsometry. The film was deposited by plasma-enhanced chemical vapor deposition (PECVD) on a crystalline silicon substrate at a low substrate temperature of 200 °C. In the deposition process, SiF4 was used as a precursor, B2H6 as doping gas, and a hydrogen/argon mixture as carrier gas. A spectroscopic ellipsometer with a wide spectral range was used for in situ spectroscopic measurements. Since the temperature during process is 200 °C, the optical functions of silicon differ from these at room temperature and have to be adjusted. Thickness of the epitaxial silicon layer was fitted on in situ ellipsometric data. As a result we were able to determine the dynamics of epitaxial layer growth, namely initial layer formation time and epitaxial growth rate. This study opens new perspectives in understanding and monitoring the epitaxial silicon deposition processes as the model fitting can be applied directly during the growth.

  5. Phased Array 3D MR Spectroscopic Imaging of the Brain at 7 Tesla

    PubMed Central

    Xu, Duan; Cunningham, Charles H; Chen, Albert P.; Li, Yan; Kelley, Douglas AC; Mukherjee, Pratik; Pauly, John M.; Nelson, Sarah J.; Vigneron, Daniel B.

    2008-01-01

    Ultrahigh field 7T MR scanners offer the potential for greatly improved MR spectroscopic imaging due to increased sensitivity and spectral resolution. Prior 7T human single-voxel MRS studies have shown significant increases in SNR and spectral resolution as compared to lower magnetic fields, but have not demonstrated the increase in spatial resolution and multivoxel coverage possible with 7T MR spectroscopic imaging. The goal of this study was to develop specialized rf pulses and sequences for 3D MRSI at 7T to address the challenges of increased chemical shift misregistration, B1 power limitations, and increased spectral bandwidth. The new 7T MRSI sequence was tested in volunteer studies and demonstrated the feasibility of obtaining high SNR phased-array 3D MRSI from the human brain. PMID:18486386

  6. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, David R.

    1998-01-01

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets.

  7. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, D.R.

    1998-11-17

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets. 3 figs.

  8. Customizing model membranes and samples for NMR spectroscopic studies of complex membrane proteins.

    PubMed

    Sanders, C R; Oxenoid, K

    2000-11-23

    Both solution and solid state nuclear magnetic resonance (NMR) techniques for structural determination are advancing rapidly such that it is possible to contemplate bringing these techniques to bear upon integral membrane proteins having multiple transmembrane segments. This review outlines existing and emerging options for model membrane media for use in such studies and surveys the special considerations which must be taken into account when preparing larger membrane proteins for NMR spectroscopic studies.

  9. PMMA and polystyrene films modification under ion implantation studied by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Leontyev, A. V.; Kovalev, V. I.; Khomich, A. V.; Komarov, Fadei F.; Grigoryev, V. V.; Kamishan, A. S.

    2004-05-01

    We have applied spectroscopic ellipsometry with binary polarization modulation to study the refractive index n(λ) and extinction coefficient k(λ) spectra of as-deposited and irradiated with nitrogen ions polymethylmethacrylate (PMMA) and polystyrene (PS) films in 300-1030 nm range. The results of performed investigation confirmed the possibility and estimate restrictions of the ion implantation for local change the refractive index of polymeric materials.

  10. Concentric Rings K-Space Trajectory for Hyperpolarized 13C MR Spectroscopic Imaging

    PubMed Central

    Jiang, Wenwen; Lustig, Michael; Larson, Peder E.Z.

    2014-01-01

    Purpose To develop a robust and rapid imaging technique for hyperpolarized 13C MR Spectroscopic Imaging (MRSI) and investigate its performance. Methods A concentric rings readout trajectory with constant angular velocity is proposed for hyperpolarized 13C spectroscopic imaging and its properties are analyzed. Quantitative analyses of design tradeoffs are presented for several imaging scenarios. The first application of concentric rings on 13C phantoms and in vivo animal hyperpolarized 13C MRSI studies were performed to demonstrate the feasibility of the proposed method. Finally, a parallel imaging accelerated concentric rings study is presented. Results The concentric rings MRSI trajectory has the advantages of acquisition timesaving compared to echo-planar spectroscopic imaging (EPSI). It provides sufficient spectral bandwidth with relatively high SNR efficiency compared to EPSI and spiral techniques. Phantom and in vivo animal studies showed good image quality with half the scan time and reduced pulsatile flow artifacts compared to EPSI. Parallel imaging accelerated concentric rings showed advantages over Cartesian sampling in g-factor simulations and demonstrated aliasing-free image quality in a hyperpolarized 13C in vivo study. Conclusion The concentric rings trajectory is a robust and rapid imaging technique that fits very well with the speed, bandwidth, and resolution requirements of hyperpolarized 13C MRSI. PMID:25533653

  11. Critical insight into the interaction of naringenin with human haemoglobin: A combined spectroscopic and computational modeling approaches

    NASA Astrophysics Data System (ADS)

    Maity, Subhajit; Chakraborty, Sandipan; Chakraborti, Abhay Sankar

    2017-02-01

    The present study demonstrates critical insight into the binding of a bioactive flavanone naringenin with normal human haemoglobin (NHb). Both spectrophotometric and spectrofluorimetric studies reveal that naringenin interacts with NHb. The binding affinity constant and number of binding sites appear to be approximately (1.5 ± 0.2) × 104 M-1 and 1, respectively. Static quenching seems to be an important factor in binding process, as evident from steady-state and time-resolved fluorescence spectroscopic studies. Far UV circular dichroism spectroscopy depicts that binding of naringenin to NHb causes no change in the secondary structure of the protein, which is also evident from Fourier transform infrared spectroscopic study. Free energy change (ΔG0) for naringenin-NHb interaction, determined by spectroscopic and isothermal calorimetric method, appears to be -5.67 kcal/mol and -6.90 kcal/mol, respectively, and is close to the docking energy -6.84 kcal/mol. Molecular docking suggests that naringenin binds near the cavity of the tetrameric heme protein, forming hydrogen bonds with surrounding amino acid residues. The binding site is away from the heme moieties, implicating naringenin binding does not affect the oxygen binding capacity of NHb, which makes the protein a suitable carrier of the flavonoid.

  12. Introducing Students to a Synthetic and Spectroscopic Study of the Free Radical Chlorine Dioxide

    ERIC Educational Resources Information Center

    Sutton, Sarah C.; Cleland, Walter E.; Hammer, Nathan I.

    2017-01-01

    This advanced undergraduate chemistry laboratory exercise takes advantage of the unique spectroscopic properties of the free radical chlorine dioxide to allow for a direct comparison of its symmetric stretch in both the ground and excited states. It incorporates several subject areas covered in an undergraduate chemistry degree (synthesis,…

  13. MULTISPECTRAL IDENTIFICATION OF POTENTIALLY HAZARDOUS BYPRODUCTS OF OZONATION AND CHLORINATION - PART I: STUDIES OF CHROMATOGRAPHIC AND SPECTROSCOPIC PROPERTIES OF MX

    EPA Science Inventory

    The gas chromatographic (GC) and Fourier transform infrared and mass spectroscopic (FT-IR and MS, respectively) properties of (Z)-2-chloro-3-(dichloromethyl)4-oxobutenoic acid (MX) (a highly mutagenic byproduct of drinking water chlorination) and several related compounds were st...

  14. Study of spectroscopic properties of nanosized particles of core-shell morphology

    NASA Astrophysics Data System (ADS)

    Bzhalava, T. N.; Kervalishvili, P. J.

    2018-03-01

    Method of studying spectroscopic properties of nanosized particles and estimation of resonance wavelength range for determination of specific and unique “spectral” signatures in purpose of sensing, identification of nanobioparticles, viruses is proposed. Elaboration of relevant models of viruses, estimation of spectral response on interaction of electromagnetic (EM) field and viral nanoparticle is the goal of proposed methodology. Core-shell physical model is used as the first approximation of shape-structure of virion. Theoretical solution of EM wave scattering on single spherical virus-like particle (VLP) is applied for determination of EM fields in the areas of core, shell and surrounding medium of (VLP), as well as scattering and absorption characteristics. Numerical results obtained by computer simulation for estimation of EM “spectra” of bacteriophage T7 demonstrate the strong dependence of spectroscopic characteristics on core-shell related electric and geometric parameters of VLP in resonance wavelengths range. Expected spectral response is observable on far-field characterizations. Obtained analytical EM field expressions, modelling technique in complement with experimental spectroscopic methods should be the way of providing the virus spectral signatures, important in bioparticles characterization.

  15. Lyman-alpha fractions in the Hubble Ultra Deep Field at 4 < z < 6

    NASA Astrophysics Data System (ADS)

    Harish, Santosh; Malhotra, Sangeeta; Rhoads, James; Christensen, Lise; Tilvi, Vithal; Finkelstein, Steven; Pharo, John

    2018-01-01

    Lyman-alpha (Lya) emitting galaxies at high-redshifts serve as a good probe of neutral hydrogen in the intergalactic medium (IGM). Here we present measurements of the Lya fraction using a sample of Lyman-break galaxies (LBGs) between 4 < z < 6 with deep HST grism observations from the GRAPES/PEARS projects as well as spectroscopic observations from the MUSE integral-field spectrograph. The sample of LBGs at z~5 & 6 are spectroscopically confirmed with deep HST grism data from the GRAPES and PEARS projects. We also measure Lya fractions using a sample of photometrically-selected LBGs for the same redshift range. In addition, we study the EW distribution in relation to continuum and line luminosities, as well as the relation between photometric and spectroscopic redshift. We find that objects with higher EWs tend to have larger differences between photometric and spectroscopic redshifts.

  16. Crystal structures, DFT calculations and Hirshfeld surface analyses of three new cobalt(III) Schiff base complexes derived from meso-1,2-diphenyl-1,2-ethylenediamine

    NASA Astrophysics Data System (ADS)

    Masoudi, Mohaddeseh; Behzad, Mahdi; Arab, Ali; Tarahhomi, Atekeh; Rudbari, Hadi Amiri; Bruno, Giuseppe

    2016-10-01

    Three new Cobalt(III) Schiff base complexes were synthesized and characterized by spectroscopic methods and x-ray crystallography. The DFT optimized structures of the complexes agreed well with the corresponding x-ray structures. According to the calculated vibrational normal modes, the observed signals in the IR spectra of the complexes were assigned. The experimental UV-Vis spectra of the complexes were also discussed considering the calculated excited states and molecular orbitals. Hirshfeld surface analysis was carried out to study the inter-contact interactions in these complexes. These studies provided comprehensive description of such inter-contact interactions by means of an appealing graphical approach using 3D Hirshfeld surfaces and 2D fingerprint plots derived from the surfaces. It indicated the dominant role of various hydrogen intermolecular interactions such as H⋯H (above 60%), C⋯H/H⋯C (near 15%-20%), O⋯H/H⋯O (about 16% or 17% for structures with counter ion ClO4-) and H⋯F (17% for structure with counter ion PF6-) contacts into the crystal packing which are discussed in details.

  17. Diode lasers: From laboratory to industry

    NASA Astrophysics Data System (ADS)

    Nasim, Hira; Jamil, Yasir

    2014-03-01

    The invention of first laser in 1960 triggered the discovery of several new families of lasers. A rich interplay of different lasing materials resulted in a far better understanding of the phenomena particularly linked with atomic and molecular spectroscopy. Diode lasers have gone through tremendous developments on the forefront of applied physics that have shown novel ways to the researchers. Some interesting attributes of the diode lasers like cost effectiveness, miniature size, high reliability and relative simplicity of use make them good candidates for utilization in various practical applications. Diode lasers are being used by a variety of professionals and in several spectroscopic techniques covering many areas of pure and applied sciences. Diode lasers have revolutionized many fields like optical communication industry, medical science, trace gas monitoring, studies related to biology, analytical chemistry including elemental analysis, war fare studies etc. In this paper the diode laser based technologies and measurement techniques ranging from laboratory research to automated field and industry have been reviewed. The application specific developments of diode lasers and various methods of their utilization particularly during the last decade are discussed comprehensively. A detailed snapshot of the current state of the art diode laser applications is given along with a detailed discussion on the upcoming challenges.

  18. The Far-Ultraviolet Spectra of "Cool" PG1159 Stars

    NASA Technical Reports Server (NTRS)

    Werner, K.; Rauch, T.; Kruk, J. W.

    2015-01-01

    We present a comprehensive study of Far Ultraviolet Spectroscopic Explorer (FUSE) spectra (912-1190 A) of two members of the PG1159 spectral class, which consists of hydrogen-deficient (pre-) white dwarfs with effective temperatures in the range T(sub eff) = 75000-200000 K. As two representatives of the cooler objects, we have selected PG1707+427 (T(sub eff) = 85000 K) and PG1424+535 (T(sub eff) = 110000 K), complementing a previous study of the hotter prototype PG1159-035 (T(sub eff) = 140000 K). The helium-dominated atmospheres are strongly enriched in carbon and oxygen, therefore, their spectra are dominated by lines from C III-IV and O III-VI, many of which were never observed before in hot stars. In addition, lines of many other metals (N, F, Ne, Si, P, S, Ar, Fe) are detectable, demonstrating that observations in this spectral region are most rewarding when compared to the near-ultraviolet and optical wavelength bands. We perform abundance analyses of these species and derive upper limits for several undetected light and heavy metals including iron-group and trans-iron elements. The results are compared to predictions of stellar evolution models for neutron-capture nucleosynthesis and good agreement is found.

  19. Synthesis and characterization of amorphous mesoporous silica using TEMPO-functionalized amphiphilic templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vries, Wilke de; Doerenkamp, Carsten; Zeng, Zhaoyang

    Inorganic–organic hybrid materials based on amorphous mesoporous silica containing organized nitroxide radicals within its mesopores have been prepared using the micellar self-assembly of TEOS solutions containing the nitroxide functionalized amphiphile (4-(N,N-dimethyl-N-hexadecylammonium)-2,2,6, 6-tetramethyl-piperidin-N-oxyl-iodide) (CAT-16). This template has been used both in its pure form and in various mixtures with cetyl trimethylammonium bromide (CTAB). The samples have been characterized by chemical analysis, N{sub 2} sorption studies, magnetic susceptibility measurements, and various spectroscopic methods. While electron paramagnetic resonance (EPR) spectra indicate that the strength of the intermolecular spin–spin interactions can be controlled via the CAT-16/CTAB ratio, nuclear magnetic resonance (NMR) data suggest thatmore » these interactions are too weak to facilitate cooperative magnetism. - Graphical abstract: The amphiphilic radical CAT-16 is used as a template for the synthesis of amorphous mesoporous silica. The resulting paramagnetic hybrid materials are characterized by BET, FTIR, NMR, EPR and magnetic susceptibility studies. - Highlights: • Amphiphilic CAT-16 as a template for mesoporous silica. • Comprehensive structural characterization by BET, FTIR; EPR and NMR. • Strength of radical-radical interactions tuable within CAT-16/CTAB mixtures.« less

  20. Quantum mechanical, spectroscopic study (FT-IR and FT - Raman), NBO analysis, HOMO-LUMO, first order hyperpolarizability and docking studies of a non-steroidal anti-inflammatory compound

    NASA Astrophysics Data System (ADS)

    Sakthivel, S.; Alagesan, T.; Muthu, S.; Abraham, Christina Susan; Geetha, E.

    2018-03-01

    Experimental and theoretical studies on the optimized geometrical structure, electronic and vibrational characteristics of (+)-(S)-2-(6-methoxynaphthalen-2-yl) propanoic acid are presented employing B3LYP/6-311++G (d,p) basis set. Simulated FT-IR and FT-Raman spectra were in concurrence with the observed spectra attained in a spectral range of FT-IR (4000 - 400 cm-1) and FT-Raman (4000 - 100 cm-1). Quantum chemical calculations and the comprehensive vibrational assignments of wavenumbers of the optimized geometry using Potential Energy Distribution (PED) were calculated with scaled quantum mechanics. The infrared intensities and Raman intensities of (+)-(S)-2-(6-methoxynaphthalen-2-yl) propanoic acid were reported. Frontier molecular orbital analysis and reactivity parameters were calculated. Molecular Electrostatic Potential (MEP), Natural Bond Orbital (NBO) analysis, Non Linear Optical (NLO) behavior and thermodynamic properties were studied. In addition, the Mulliken charge distribution and Fukui function were analyzed. Molecular docking was used to dock in the title molecule into the active site of the protein 5L9B which belongs to the class of proteins exhibiting the property as a HIF1A (Hypoxia-inducible factor 1-alpha) expression inhibitor and the minimum binding energy was detected to be -6.2 kcal/mol.

  1. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flesch, K.; Kremeyer, T.; Schmitz, O.

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D-2 molecules and the He ash which will be produced by deuterium-tritium fusion. In order to study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. There are three different anode geometries that we have studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least onemore » order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.« less

  2. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flesch, K., E-mail: kbflesch@wisc.edu; Kremeyer, T.; Schmitz, O.

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D{sub 2} molecules and the He ash which will be produced by deuterium-tritium fusion. To study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. Three different anode geometries have been studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least one order of magnitude abovemore » the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.« less

  3. Spectroscopic study of non-amphiphilic 2-(4-biphenylyl)-5-(4- tert-butylphenyl)-l,3,4-oxadiazole aggregates at air-water interface and in Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Acharya, Somobrata; Bhattacharjee, D.; Sarkar, Jyotirmoy; Talapatra, G. B.

    2004-07-01

    This Letter reports the spectroscopic characteristics of a non-amphiphilic 2-(4-biphenylyl)-5-(4- tert-butylphenyl)-1,3,4-oxadiazole (buPBD) molecule, in Langmuir and Langmuir-Blodgett (LB) films mixed with polymethyl methacrylate (PMMA) as well as with arachidic acid (AA). The π- A isotherms of buPBD mixed with PMMA/AA at different molefractions show that at very low surface pressure, a phase transition corresponding to a reorientation of the buPBD molecules occur, whereas at high surface pressure, buPBD molecules form aggregates among the hydrophobic tail part of PMMA/AA. Absorption and fluorescence spectroscopic study of the mixed LB films reveal formation of different types of aggregates.

  4. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    DOE PAGES

    Flesch, K.; Kremeyer, T.; Schmitz, O.; ...

    2016-08-18

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D-2 molecules and the He ash which will be produced by deuterium-tritium fusion. In order to study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. There are three different anode geometries that we have studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least onemore » order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.« less

  5. Fluxes of MeV particles at Earth's orbit and their relationship with the global structure of the solar corona: Observations from SOHO

    NASA Technical Reports Server (NTRS)

    Posner, A.; Bothmer, V.; Kunow, H.; Heber, B.; Mueller-Mellin, R.; Delaboudiniere, J.-P.; Thompson, B. J.; Brueckner, G. E.; Howard, R. A.; Michels, D. J.

    1997-01-01

    The SOHO satellite, launched on 2 December 1995, combines a unique set of instruments which allow comparative studies of the interior of the sun, the outer corona and solar to be carried out. In its halo orbit around the L1 Lagrangian point of the sun-earth system, SOHO's comprehensive suprathermal and energetic particle analyzer (COSTEP) measures in situ energetic particles in the energy range of 44 keV/particle to greater than 53 MeV/n. The MeV proton, electron and helium nuclei measurements from the COSTEP electron proton helium instrument (EPHIN) were used to investigate the relationships of intensity increases of these particle species with the large-scale structures of the solar corona and heliosphere, including temporal variations. Coronal observatons are provided by the large angle spectroscopic coronagraph (LASCO) and the extreme ultraviolet imaging telescope (EIT). It was found that during times of minimum solar activity, intensity increases of the particles have two well defined sources: corotating interaction regions (CIRs) in the heliosphere related to coronal holes at the sun and coronal mass ejections.

  6. Exciplexes versus Loose Ion Pairs: How Does the Driving Force Impact the Initial Product Ratio of Photoinduced Charge Separation Reactions?

    PubMed Central

    2014-01-01

    Many donor–acceptor systems can undergo a photoinduced charge separation reaction, yielding loose ion pairs (LIPs). LIPs can be formed either directly via (distant) electron transfer (ET) or indirectly via the dissociation of an initially formed exciplex or tight ion pair. Establishing the prevalence of one of the reaction pathways is challenging because differentiating initially formed exciplexes from LIPs is difficult due to similar spectroscopic footprints. Hence, no comprehensive reaction model has been established for moderately polar solvents. Here, we employ an approach based on the time-resolved magnetic field effect (MFE) of the delayed exciplex luminescence to distinguish the two reaction channels. We focus on the effects of the driving force of ET and the solvent permittivity. We show that, surprisingly, the exciplex channel is significant even for an exergonic ET system with a free energy of ET of −0.58 eV and for the most polar solutions studied (butyronitrile). Our findings demonstrate that exciplexes play a crucial role even in polar solvents and at moderate driving forces, contrary to what is usually assumed. PMID:25243054

  7. Distinctive effect on nerve growth factor-induced PC12 cell neurite outgrowth by two unique neolignan enantiomers from Illicium merrillianum

    PubMed Central

    Tian, Xinhui; Yue, Rongcai; Zeng, Huawu; Li, Honglin; Shan, Lei; He, Weiwei; Shen, Yunheng; Zhang, Weidong

    2015-01-01

    Merrillianoid (1), a racemic neolignan possessing the characteristic benzo-2,7-dioxabicyclo[3.2.1]octane moiety, was isolated from the branches and leaves of Illicium merrillianum. Chiral separation of 1 gave two enantiomers (+)−1 and (−)−1. The structure of 1 was established by comprehensive spectroscopic analysis and single crystal X-ray diffraction. The absolute configurations of enantiomers were determined by quantum mechanical calculation. Compound (+)−1 exhibited a better neurotrophic activity than racemate 1 by promoting nerve growth factor (NGF) induced PC12 cell neurite outgrowth, while (−)−1 showed a distinctive inhibitory effect. Furthermore, a mechanism study indicated that the two enantiomers influenced NGF-induced neurite outgrowth of PC12 cells possibly by interacting with the trkA receptor, and extracellular signal regulated kinases 1/2 (ERK1/2) and mitogen-activated protein kinase (MEK) in Ras/ERK signal cascade. But the phosphorylation level of serine/threonine kinase Akt1 and Akt2 in PI3K/Akt signal pathway showed no significant difference between (+)−1 and (−)−1. PMID:26585042

  8. Flexible Transient Optical Waveguides and Surface-Wave Biosensors Constructed from Monocrystalline Silicon.

    PubMed

    Bai, Wubin; Yang, Hongjun; Ma, Yinji; Chen, Hao; Shin, Jiho; Liu, Yonghao; Yang, Quansan; Kandela, Irawati; Liu, Zhonghe; Kang, Seung-Kyun; Wei, Chen; Haney, Chad R; Brikha, Anlil; Ge, Xiaochen; Feng, Xue; Braun, Paul V; Huang, Yonggang; Zhou, Weidong; Rogers, John A

    2018-06-26

    Optical technologies offer important capabilities in both biological research and clinical care. Recent interest is in implantable devices that provide intimate optical coupling to biological tissues for a finite time period and then undergo full bioresorption into benign products, thereby serving as temporary implants for diagnosis and/or therapy. The results presented here establish a silicon-based, bioresorbable photonic platform that relies on thin filaments of monocrystalline silicon encapsulated by polymers as flexible, transient optical waveguides for accurate light delivery and sensing at targeted sites in biological systems. Comprehensive studies of the mechanical and optical properties associated with bending and unfurling the waveguides from wafer-scale sources of materials establish general guidelines in fabrication and design. Monitoring biochemical species such as glucose and tracking physiological parameters such as oxygen saturation using near-infrared spectroscopic methods demonstrate modes of utility in biomedicine. These concepts provide versatile capabilities in biomedical diagnosis, therapy, deep-tissue imaging, and surgery, and suggest a broad range of opportunities for silicon photonics in bioresorbable technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Mapping the Properties of Blue Compact Dwarf Galaxies by Means of Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; Weilbacher, P.; Papaderos, P.; García-Lorenzo, B.

    Blue Compact Dwarf (BCD) galaxies are metal-poor and gas-rich systems undergoing intense, spatially extended star-forming activity. These galaxies offer a unique opportunity to investigate dwarf galaxy formation and evolution, and probe violent star formation and its implications on the chemical, dynamical and structural properties of low-mass extragalactic systems near and far. Several fundamental questions in BCD research, such as their star formation histories and the mechanisms that control their cyclic starburst activity, are still far from well understood. In order to improve our understanding on BCD evolution, we are carrying out a comprehensive Integral Field Spectroscopic (IFS) survey of a large sample of BCDs. Integral Field Unit (IFU) spectroscopy provides simultaneously spectral and spatial information, allowing, in just one shot, to study the morphology and evolutionary status of the stellar component, and the physical properties of the warm interstellar medium (e.g., extinction, chemical abundances, kinematics). This ongoing IFS survey will supply much needed local templates that will ease the interpretation of IFS data for intermediate and high-redshift star-forming galaxies.

  10. Mass spectroscopic phosphoprotein mapping of Ral Binding protein 1 (RalBP1/Rip1/RLIP76)

    PubMed Central

    Herlevsen, Mikael C; Theodorescu, Dan

    2009-01-01

    RalBP1, a multifunctional protein implicated in cancer cell proliferation, radiation and chemoresistance and ligand dependent receptor internalization, is upregulated in bladder cancer and is a downstream effector of RalB, a GTPase associated with metastasis. RalBP1 can be regulated by phosphorylation by protein kinase C (PKC). No studies have comprehensively mapped RalBP1 phosphorylation sites or whether RalB affects these. We identified fourteen phosphorylation sites of RalBP1 in human bladder carcinoma UMUC-3 and embryonic kidney derived 293T cells. The phosphorylated residues are concentrated at the N-terminus. Ten of the first 100 amino acids of the primary structure were phosphorylated. Nine were serine residues, and one a threonine. We evaluated the effect of RalB overexpression on RalBP1 phosphorylation and found the largest change in phosphorylation status at S463 and S645. Further characterization of these sites will provide novel insights on RalBP1 biology, its functional relationship to RalB and possible avenues for therapeutic intervention. PMID:17706599

  11. Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques.

    PubMed

    Pindelska, Edyta; Sokal, Agnieszka; Kolodziejski, Waclaw

    2017-08-01

    The main goal of a novel drug development is to obtain it with optimal physiochemical, pharmaceutical and biological properties. Pharmaceutical companies and scientists modify active pharmaceutical ingredients (APIs), which often are cocrystals, salts or carefully selected polymorphs, to improve the properties of a parent drug. To find the best form of a drug, various advanced characterization methods should be used. In this review, we have described such analytical methods, dedicated to solid drug forms. Thus, diffraction, spectroscopic, thermal and also pharmaceutical characterization methods are discussed. They all are necessary to study a solid API in its intrinsic complexity from bulk down to the molecular level, gain information on its structure, properties, purity and possible transformations, and make the characterization efficient, comprehensive and complete. Furthermore, these methods can be used to monitor and investigate physical processes, involved in the drug development, in situ and in real time. The main aim of this paper is to gather information on the current advancements in the analytical methods and highlight their pharmaceutical relevance. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Case study on the dynamics of ultrafast laser heating and ablation of gold thin films by ultrafast pump-probe reflectometry and ellipsometry

    NASA Astrophysics Data System (ADS)

    Pflug, T.; Wang, J.; Olbrich, M.; Frank, M.; Horn, A.

    2018-02-01

    To increase the comprehension of ultrafast laser ablation, the ablation process has to be portrayed with sufficient temporal resolution. For example, the temporal modification of the complex refractive index {\\tilde{n}} and the relative reflectance of a sample material after irradiation with ultrafast single-pulsed laser radiation can be measured with a pump-probe setup. This work describes the construction and validation of a pump-probe setup enabling spatially, temporally, and spectroscopically resolved Brewster angle microscopy, reflectometry, ellipsometry, and shadow photography. First pump-probe reflectometry and ellipsometry measurements are performed on gold at λ _{probe}= 440 nm and three fluences of the single-pulsed pump radiation at λ _{pump}= 800 nm generating no, gentle, and strong ablation. The relative reflectance overall increases at no and gentle ablation. At strong ablation, the relative reflectance locally decreases, presumable caused by emitted thermal electrons, ballistic electrons, and ablating material. The refractive index n is slightly decreasing after excitation, while the extinction coefficient k is increasing.

  13. Mossbauer spectroscopic studies in ferroboron

    NASA Astrophysics Data System (ADS)

    Yadav, Ravi Kumar; Govindaraj, R.; Amarendra, G.

    2017-05-01

    Mossbauer spectroscopic studies have been carried out in a detailed manner on ferroboron in order to understand the local structure and magnetic properties of the system. Evolution of the local structure and magnetic properties of the amorphous and crystalline phases and their thermal stability have been addressed in a detailed manner in this study. Role of bonding between Fe 4s and/or 4p electrons with valence electrons of boron (2s,2p) in influencing the stability and magnetic properties of Fe-B system is elucidated.

  14. Molecular interactions in ethyl acetate-chlorobenzene binary solution: Dielectric, spectroscopic studies and quantum chemical calculations.

    PubMed

    Karthick, N K; Kumbharkhane, A C; Joshi, Y S; Mahendraprabu, A; Shanmugam, R; Elangovan, A; Arivazhagan, G

    2017-05-05

    Dielectric studies using Time Domain Reflectometry method has been carried out on the binary solution of Ethyl acetate (EA) with Chlorobenzene (CBZ) over the entire composition range. Spectroscopic (FTIR and 13 C NMR) signatures of neat EA, CBZ and their equimolar binary solution have also been recorded. The results of the spectroscopic studies favour the presence of (CBZ) CH⋯OC (EA), (EA) methylene CH⋯π electrons (CBZ) and (EA) methyl CH⋯Cl (CBZ) contacts which have been validated using quantum chemical calculations. Dimerization of CBZ has been identified. Presence of β-clusters has been identified in all the solutions. Although EA and CBZ molecules have nearly equal molar volumes, CBZ molecules experience larger hindrance for the rotation than EA molecules. Very small excess dielectric constant (ε E ) values may be correlated with weak heteromolecular forces and/or closed heteromolecular association. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Molecular interactions in ethyl acetate-chlorobenzene binary solution: Dielectric, spectroscopic studies and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Karthick, N. K.; Kumbharkhane, A. C.; Joshi, Y. S.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.

    2017-05-01

    Dielectric studies using Time Domain Reflectometry method has been carried out on the binary solution of Ethyl acetate (EA) with Chlorobenzene (CBZ) over the entire composition range. Spectroscopic (FTIR and 13C NMR) signatures of neat EA, CBZ and their equimolar binary solution have also been recorded. The results of the spectroscopic studies favour the presence of (CBZ) Csbnd H ⋯ Odbnd C (EA), (EA) methylene Csbnd H ⋯ π electrons (CBZ) and (EA) methyl Csbnd H ⋯ Cl (CBZ) contacts which have been validated using quantum chemical calculations. Dimerization of CBZ has been identified. Presence of β-clusters has been identified in all the solutions. Although EA and CBZ molecules have nearly equal molar volumes, CBZ molecules experience larger hindrance for the rotation than EA molecules. Very small excess dielectric constant (εE) values may be correlated with weak heteromolecular forces and/or closed heteromolecular association.

  16. Spectroscopic studies of GTA welding plasmas. Temperature calculation and dilution measurement

    NASA Astrophysics Data System (ADS)

    Lacroix, D.; Boudot, C.; Jeandel, G.

    1999-10-01

    A spectroscopic study of the GTAW plasma-plume created during the welding of stainless steel and other materials (iron, nickel and chromium) has been carried out. The spectra of these plasmas have been studied for several welding parameters. Temperature calculations are based on the observation of relative intensities and shapes of the emission peaks. We assume that the plasma is in local thermal equilibrium. The temperature is calculated with the Boltzmann plot method from twelve iron emission lines (in the range 368 385 nm): it varies between 9650 and 12 100 K. Dilution experiments have been carried out. We checked the mixing of metals: during welding of two different metallic plates and during welding with an Inconel wire. Dilution is monitored following the intensity of some characteristic emission lines (chromium and nickel). Comparison of spectroscopic results and metallographic ones is made.

  17. Spectroscopic thermoacoustic imaging of water and fat composition

    NASA Astrophysics Data System (ADS)

    Bauer, Daniel R.; Wang, Xiong; Vollin, Jeff; Xin, Hao; Witte, Russell S.

    2012-07-01

    During clinical studies, thermoacoustic imaging (TAI) failed to reliably identify malignant breast tissue. To increase detection capability, we propose spectroscopic TAI to differentiate samples based on the slope of their dielectric absorption. Phantoms composed of different ratios of water and fat were imaged using excitation frequencies between 2.7 and 3.1 GHz. The frequency-dependent slope of the TA signal was highly correlated with that of its absorption coefficient (R2 = 0.98 and p < 0.01), indicating spectroscopic TAI can distinguish materials based on their intrinsic dielectric properties. This approach potentially enhances cancer detection due to the increased water content of many tumors.

  18. Spectroscopic properties of some borate glasses containg uranium

    NASA Astrophysics Data System (ADS)

    Culea, E.; Milea, I.; Bratu, I.

    1993-03-01

    Spectroscopic properties of some borate glasses containing 1-5%UO 3 have been studied in the fields of 700-1200 cm -1 and 10,000-30,000 cm -1 Absorption bands specific for U 6+ and U 4+ ions were observed. The increase of the melting time produces the reduction of U 6+ ions to U 4+.

  19. Phenomenological and Spectroscopic Analysis on the Effects of Sediment Ageing and Organic Carbon on the Fate of a PCB Congener Spiked to Sediment

    EPA Science Inventory

    This study assesses the full cycle transport and fate of a polychlorinated biphenyl (PCB) congener spiked to sediment to empirically and spectroscopically investigate the effects of sediment ageing and organic carbon on the adsorption, desorption, and reaction of the PCB. Caesar ...

  20. Raman Spectroscopic Detection of Graphitic Carbon of Biogenic Parentage in an Ancient South African Chert

    NASA Technical Reports Server (NTRS)

    Wang, Alian; Haskin, Larry A.; Kuebler, Karla E.; Jolliff, Bradley L.; Walsh, Maud M.

    2001-01-01

    The detection of reduced carbon in martian rocks and soils is important in the search for evidence of life. A Raman spectroscopic study of South Africa chert reveals that 50 ppm carbon or less can be determined by this technique. Additional information is contained in the original extended abstract.

  1. Spectroscopic Diagnosis of Excited-State Aromaticity: Capturing Electronic Structures and Conformations upon Aromaticity Reversal.

    PubMed

    Oh, Juwon; Sung, Young Mo; Hong, Yongseok; Kim, Dongho

    2018-03-06

    Aromaticity, the special energetic stability derived from cyclic [4 n + 2]π-conjugated electronic structures, has been the topic of intense interest in chemistry because it plays a critical role in rationalizing molecular stability, reactivity, and physical/chemical properties. Recently, the pioneering work by Colin Baird on aromaticity reversal, postulating that aromatic (antiaromatic) character in the ground state reverses to antiaromatic (aromatic) character in the lowest excited triplet state, has attracted much scientific attention. The completely reversed aromaticity in the excited state provides direct insight into understanding the photophysical/chemical properties of photoactive materials. In turn, the application of aromatic molecules to photoactive materials has led to numerous studies revealing this aromaticity reversal. However, most studies of excited-state aromaticity have been based on the theoretical point of view. The experimental evaluation of aromaticity in the excited state is still challenging and strenuous because the assessment of (anti)aromaticity with conventional magnetic, energetic, and geometric indices is difficult in the excited state, which practically restricts the extension and application of the concept of excited-state aromaticity. Time-resolved optical spectroscopies can provide a new and alternative avenue to evaluate excited-state aromaticity experimentally while observing changes in the molecular features in the excited states. Time-resolved optical spectroscopies take advantage of ultrafast laser pulses to achieve high time resolution, making them suitable for monitoring ultrafast changes in the excited states of molecular systems. This can provide valuable information for understanding the aromaticity reversal. This Account presents recent breakthroughs in the experimental assessment of excited-state aromaticity and the verification of aromaticity reversal with time-resolved optical spectroscopic measurements. To scrutinize this intriguing and challenging scientific issue, expanded porphyrins have been utilized as the ideal testing platform for investigating aromaticity because they show distinct aromatic and antiaromatic characters with aromaticity-specific spectroscopic features. Expanded porphyrins exhibit perfect aromatic and antiaromatic congener pairs having the same molecular framework but different numbers of π electrons, which facilitates the study of the pure effect of aromaticity by comparative analyses. On the basis of the characteristics of expanded porphyrins, time-resolved electronic and vibrational absorption spectroscopies capture the changes in electronic structure and molecular conformations driven by the change in aromaticity and provide clear evidence for aromaticity reversal in the excited states. The approaches described in this Account pave the way for the development of new and alternative experimental indices for the evaluation of excited-state aromaticity, which will enable overarching and fundamental comprehension of the role of (anti)aromaticity in the stability, dynamics, and reactivity in the excited states with possible implications for practical applications.

  2. Spectroscopic study of intermolecular complexes between FAD and some β-carboline derivatives

    NASA Astrophysics Data System (ADS)

    Codoñer, Armando; Monzó, Isidro S.; Tomás, Francisco; Valero, Rosa

    The formation of molecular complexes between flavine adenine dinucleotide (FAD) and some β-carboline derivatives [antidepressant drugs that have a pronounced inhibition of monoamine oxidase (MAO)] has been studied by using electronic absorption and fluorescence spectroscopic methods. Thermodynamic parameters have been determined from the values of association constants for the molecular complexes at various temperatures. The influence of substituents in the β-carboline molecule on the stability of the complexes formed was also investigated.

  3. Comprehensive study of solid pharmaceutical tablets in visible, near infrared (NIR), and longwave infrared (LWIR) spectral regions using a rapid simultaneous ultraviolet/visible/NIR (UVN) + LWIR laser-induced breakdown spectroscopy linear arrays detection system and a fast acousto-optic tunable filter NIR spectrometer.

    PubMed

    Yang, Clayton S C; Jin, Feng; Swaminathan, Siva R; Patel, Sita; Ramer, Evan D; Trivedi, Sudhir B; Brown, Ei E; Hommerich, Uwe; Samuels, Alan C

    2017-10-30

    This is the first report of a simultaneous ultraviolet/visible/NIR and longwave infrared laser-induced breakdown spectroscopy (UVN + LWIR LIBS) measurement. In our attempt to study the feasibility of combining the newly developed rapid LWIR LIBS linear array detection system to existing rapid analytical techniques for a wide range of chemical analysis applications, two different solid pharmaceutical tablets, Tylenol arthritis pain and Bufferin, were studied using both a recently designed simultaneous UVN + LWIR LIBS detection system and a fast AOTF NIR (1200 to 2200 nm) spectrometer. Every simultaneous UVN + LWIR LIBS emission spectrum in this work was initiated by one single laser pulse-induced micro-plasma in the ambient air atmosphere. Distinct atomic and molecular LIBS emission signatures of the target compounds measured simultaneously in UVN (200 to 1100 nm) and LWIR (5.6 to 10 µm) spectral regions are readily detected and identified without the need to employ complex data processing. In depth profiling studies of these two pharmaceutical tablets without any sample preparation, one can easily monitor the transition of the dominant LWIR emission signatures from coating ingredients gradually to the pharmaceutical ingredients underneath the coating. The observed LWIR LIBS emission signatures provide complementary molecular information to the UVN LIBS signatures, thus adding robustness to identification procedures. LIBS techniques are more surface specific while NIR spectroscopy has the capability to probe more bulk materials with its greater penetration depth. Both UVN + LWIR LIBS and NIR absorption spectroscopy have shown the capabilities of acquiring useful target analyte spectral signatures in comparable short time scales. The addition of a rapid LWIR spectroscopic probe to these widely used optical analytical methods, such as NIR spectroscopy and UVN LIBS, may greatly enhance the capability and accuracy of the combined system for a comprehensive analysis.

  4. FT-IR spectroscopic, thermal analysis of human urinary stones and their characterization

    NASA Astrophysics Data System (ADS)

    Selvaraju, R.; Raja, A.; Thiruppathi, G.

    2015-02-01

    In the present study, FT-IR, XRD, TGA-DTA spectral methods have been used to investigate the chemical compositions of urinary calculi. Multi-components of urinary calculi such as calcium oxalate, hydroxyl apatite, struvite and uric acid have been studied. The chemical compounds are identified by FT-IR spectroscopic technique. The mineral identification was confirmed by powder X-ray diffraction patterns as compared with JCPDS reported values. Thermal analysis techniques are considered the best techniques for the characterization and detection of endothermic and exothermic behaviors of the urinary stones. The percentages of each hydrate (COM and COD) are present together, in the presences of MAPH or UA. Finally, the present study suggests that the Urolithiasis is significant health problem in children, and is very common in some parts of the world, especially in India. So that present study is so useful and helpful to the scientific community for identification of latest human health problems and their remedies using spectroscopic techniques.

  5. Glutamate receptors as seen by light: Spectroscopic studies of structure-function relationships

    PubMed Central

    Mankiewicz, Kimberly A.; Jayaraman, Vasanthi

    2010-01-01

    Ionotropic glutamate receptors are major excitatory receptors in the central nervous system and also have far reaching influence in other areas of the body. Their modular nature has allowed for the isolation of the ligand binding domain and subsequent structural studies using a variety of spectroscopic techniques. This review will discuss the role of specific ligand:protein interactions in mediating activation in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of glutamate receptors as established by various spectroscopic investigations of the GluR2 and GluR4 subunits of this receptor. Specifically, this review will provide an introduction of the insight gained from X-ray crystallography and nuclear magnetic resonance (NMR) investigations and then go on to focus on studies utilizing vibrational spectroscopy and fluorescence resonance energy transfer (FRET) to study the behavior of the isolated ligand binding domain in solution and discuss the importance of specific ligand:protein interactions in the mechanism of receptor activation. PMID:17934637

  6. Spectroscopic survey of southern hemisphere white dwarfs. II. Spectroscopic data for forty-one southern white dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wegner, G.

    New spectroscopic data on 41 southern white dwarfs are presented. Most of these stars have not teen previously observed spectroscopically. Spectral types, as well as equivalent widths and line profiles for a few selected lines, are given. (auth)

  7. Spectroscopic and DFT-based computational studies on the molecular electronic structural characteristics and the third-order nonlinear property of an organic NLO crystal: (E)-N‧-(4-chlorobenzylidene)-4-methylbenzenesulfonohydrazide

    NASA Astrophysics Data System (ADS)

    Sasikala, V.; Sajan, D.; Joseph, Lynnette; Balaji, J.; Prabu, S.; Srinivasan, P.

    2017-04-01

    Single crystals of (E)-N‧-(4-chlorobenzylidene)-4-methylbenzenesulfonohydrazide (CBMBSH) have been grown by slow evaporation crystal growth method. The structure stabilizing intramolecular donor-acceptor interactions and the presence of the Nsbnd H⋯O, Csbnd H⋯O and Csbnd H⋯C(π) hydrogen bonds in the crystal were confirmed by vibrational spectroscopic and DFT methods. The linear optical absorption characteristics of the solvent phase of CBMBSH were investigated using UV-Vis-NIR spectroscopic and TD-DFT approaches. The 2PA assisted RSA nonlinear absorption and the optical limiting properties of CBMBSH were studied using the open-aperture Z-scan method. The topological characteristics of the electron density have been determined using the quantum theory of atoms in molecules method.

  8. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    PubMed Central

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; Tan, Li Huey

    2014-01-01

    In this review, we summarize recent progresses in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed. PMID:25205057

  9. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    DOE PAGES

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; ...

    2014-09-10

    In this paper, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insightsmore » gained from these studies are described and future directions of this field are also discussed.« less

  10. Raman spectroscopic signature of vaginal fluid and its potential application in forensic body fluid identification.

    PubMed

    Sikirzhytskaya, Aliaksandra; Sikirzhytski, Vitali; Lednev, Igor K

    2012-03-10

    Traces of human body fluids, such as blood, saliva, sweat, semen and vaginal fluid, play an increasingly important role in forensic investigations. However, a nondestructive, easy and rapid identification of body fluid traces at the scene of a crime has not yet been developed. The obstacles have recently been addressed in our studies, which demonstrated the considerable potential of Raman spectroscopy. In this study, we continued to build a full library of body fluid spectroscopic signatures. The problems concerning vaginal fluid stain identification were addressed using Raman spectroscopy coupled with advanced statistical analysis. Calculated characteristic Raman and fluorescent spectral components were used to build a multidimensional spectroscopic signature of vaginal fluid, which demonstrated good specificity and was able to handle heterogeneous samples from different donors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, H.A.; Bautista, J.A.; Josue, J.

    2000-05-11

    The spectroscopic properties and dynamics of the lowest excited singlet states of peridinin, fucoxanthin, neoxanthin, uriolide acetate, spheroidene, and spheroidenone in several different solvents have been studied by steady-state absorption and fast-transient optical spectroscopic techniques. Peridinin, fucoxanthin, uriolide acetate, and spheroidenone, which contain carbonyl functional groups in conjugation with the carbon-carbon {pi}-electron system, display broader absorption spectral features and are affected more by the solvent environment than neoxanthin and spheroidene, which do not contain carbonyl functional groups. The possible sources of the spectral broadening are explored by examining the absorption spectra at 77 K in glassy solvents. Also, carotenoids whichmore » contain carbonyls have complex transient absorption spectra and show a pronounced dependence of the excited singlet state lifetime on the solvent environment. It is postulated that these effects are related to the presence of an intramolecular charge transfer state strongly coupled to the S{sub 1} (2{sup 1}A{sub g}) excited singlet state. Structural variations in the series of carotenoids studied here make it possible to focus on the general molecular features that control the spectroscopic and dynamic properties of carotenoids.« less

  12. Recent advances in the applications of vibrational spectroscopic imaging and mapping to pharmaceutical formulations

    NASA Astrophysics Data System (ADS)

    Ewing, Andrew V.; Kazarian, Sergei G.

    2018-05-01

    Vibrational spectroscopic imaging and mapping approaches have continued in their development and applications for the analysis of pharmaceutical formulations. Obtaining spatially resolved chemical information about the distribution of different components within pharmaceutical formulations is integral for improving the understanding and quality of final drug products. This review aims to summarise some key advances of these technologies over recent years, primarily since 2010. An overview of FTIR, NIR, terahertz spectroscopic imaging and Raman mapping will be presented to give a perspective of the current state-of-the-art of these techniques for studying pharmaceutical samples. This will include their application to reveal spatial information of components that reveals molecular insight of polymorphic or structural changes, behaviour of formulations during dissolution experiments, uniformity of materials and detection of counterfeit products. Furthermore, new advancements will be presented that demonstrate the continuing novel applications of spectroscopic imaging and mapping, namely in FTIR spectroscopy, for studies of microfluidic devices. Whilst much of the recently developed work has been reported by academic groups, examples of the potential impacts of utilising these imaging and mapping technologies to support industrial applications have also been reviewed.

  13. Spectroscopic and theoretical studies of charge-transfer interaction of 1-(2-pyridylazo)-2-napthol with nitroaromatics

    NASA Astrophysics Data System (ADS)

    Karmakar, Animesh; Singh, Bula

    2017-05-01

    1-(2-Pyridylazo)-2-napthol (hereafter 1Q) is widely used as a chelating ligand applied in chelatometric, spectrophotometric analysis of metal ions. It appeared from the literature survey that no inclusion complex of 1Q was reported with nitroaromatics. The formation of charge-transfer complex gives an opportunity to improve the physico-chemical properties of different donors. So the complex of 1Q with 4-nitrophenol (4-NP), 2,4-dinitrophenol (2,4-DNP), picric acid (PA), and 3,5-dinitrosalicylic acid (3,5-DNSA) was described in this work in methanol medium. The ground and excited state binding constants and other spectroscopic data have been determined using UV-vis and fluorescence spectroscopic studies. All the complexes have been synthesized and characterized using FT-IR, 1H NMR, and elemental analysis. Spectroscopic data reveal that 1Q joins by a N+sbnd Hsbnd O- type hydrogen bond with nitroaromatics. Job's plot of the continuous variation of absorbance indicates that stoichiometry of CT-complex was 1:1. Thermal stability of the synthesized complex has determined by TGA-DTA analysis. Energy-minimization DFT calculation further supported the formation of the H-bonded charge-transfer adduct.

  14. Density functional theory and phytochemical study of 8-hydroxyisodiospyrin

    NASA Astrophysics Data System (ADS)

    Ullah, Zakir; Ata-ur-Rahman; Fazl-i-Sattar; Rauf, Abdur; Yaseen, Muhammad; Hassan, Waseem; Tariq, Muhammad; Ayub, Khurshid; Tahir, Asif Ali; Ullah, Habib

    2015-09-01

    Comprehensive theoretical and experimental studies of a natural product, 8-hydroxyisodiospyrin (HDO) have been carried out. Based on the correlation of experimental and theoretical data, an appropriate computational model was developed for obtaining the electronic, spectroscopic, and thermodynamic parameters of HDO. First of all, the exact structure of HDO is confirmed from the nice correlation of theory and experiment, prior to determination of its electroactive nature. Hybrid density functional theory (DFT) is employed for all theoretical simulations. The experimental and predicted IR and UV-vis spectra [B3LYP/6-31+G(d,p) level of theory] have excellent correlation. Inter-molecular non-covalent interaction of HDO with different gases such as NH3, CO2, CO, H2O is investigated through geometrical counterpoise (gCP) i.e., B3LYP-gCP-D3/6-31G∗ method. Furthermore, the inter-molecular interaction is also supported by geometrical parameters, electronic properties, thermodynamic parameters and charge analysis. All these characterizations have corroborated each other and confirmed the electroactive nature (non-covalent interaction ability) of HDO for the studied gases. Electronic properties such as Ionization Potential (IP), Electron Affinities (EA), electrostatic potential (ESP), density of states (DOS), HOMO, LUMO, and band gap of HDO have been estimated for the first time theoretically.

  15. Longitudinal optical monitoring of blood flow in breast tumors during neoadjuvant chemotherapy

    NASA Astrophysics Data System (ADS)

    Cochran, J. M.; Chung, S. H.; Leproux, A.; Baker, W. B.; Busch, D. R.; DeMichele, A. M.; Tchou, J.; Tromberg, B. J.; Yodh, A. G.

    2017-06-01

    We measure tissue blood flow markers in breast tumors during neoadjuvant chemotherapy and investigate their correlation to pathologic complete response in a pilot longitudinal patient study (n  =  4). Tumor blood flow is quantified optically by diffuse correlation spectroscopy (DCS), and tissue optical properties, blood oxygen saturation, and total hemoglobin concentration are derived from concurrent diffuse optical spectroscopic imaging (DOSI). The study represents the first longitudinal DCS measurement of neoadjuvant chemotherapy in humans over the entire course of treatment; it therefore offers a first correlation between DCS flow indices and pathologic complete response. The use of absolute optical properties measured by DOSI facilitates significant improvement of DCS blood flow calculation, which typically assumes optical properties based on literature values. Additionally, the combination of the DCS blood flow index and the tissue oxygen saturation from DOSI permits investigation of tissue oxygen metabolism. Pilot results from four patients suggest that lower blood flow in the lesion-bearing breast is correlated with pathologic complete response. Both absolute lesion blood flow and lesion flow relative to the contralateral breast exhibit potential for characterization of pathological response. This initial demonstration of the combined optical approach for chemotherapy monitoring provides incentive for more comprehensive studies in the future and can help power those investigations.

  16. Nuclear Data Sheets for A = 235

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browne, E.; Tuli, J.K.

    Spectroscopic data and level schemes from radioactive decay and nuclear reaction studies are presented here for all nuclei with mass number A=235. The highlight of this evaluation consists of the precise and comprehensive Coulomb excitation study (2012Wa35) on {sup 235}U, which in addition to the 7/2[743] ground state rotational band, extended the 1/2[631], 5/2[622], 5/2[752], and 3/2[631] rotational bands up to Jπ=53/2+, 49/2+, 441/2−, and 43/2+, respectively. This evaluation presents a study (2010Hu02) of the {sup 237}Np({sup 116}Sn, {sup 118}Snγ) reaction where the ground state rotational band 5/2[642] was observed up to Jπ=(53/2+). It is worth for historical knowledge tomore » mention the report on the “Discovery of isotopes of the transuranium elements with 93≤Z≤98” (2013Fr02), where the information for elements Np, Pu, and Am with mass number A=235 is given. {sup 235}Cf has not been observed. The alpha hindrance factors (HF) presented in this evaluation were calculated using values of the radius parameter (r{sub 0}) interpolated from those for even–even adjacent nuclei given by 1998Ak04.« less

  17. Nuclear Data Sheets for A = 235

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browne, E.; Tuli, J. K.

    Spectroscopic data and level schemes from radioactive decay and nuclear reaction studies are presented here for all nuclei with mass number A=235. The highlight of this evaluation consists of the precise and comprehensive Coulomb excitation study (2012Wa35) on ²³⁵U, which in addition to the 7/2[743] ground state rotational band, extended the 1/2[631], 5/2[622], 5/2[752], and 3/2[631] rotational bands up to Jπ=53/2+, 49/2+, 441/2–, and 43/2+, respectively. This evaluation presents a study (2010Hu02) of the ²³⁷Np(¹¹⁶Sn, ¹¹⁸Snγ) reaction where the ground state rotational band 5/2[642] was observed up to Jπ=(53/2+). It is worth for historical knowledge to mention the report onmore » the “Discovery of isotopes of the transuranium elements with 93≤Z≤98” (2013Fr02), where the information for elements Np, Pu, and Am with mass number A=235 is given. ²³⁵Cf has not been observed. The alpha hindrance factors (HF) presented in this evaluation were calculated using values of the radius parameter (r₀) interpolated from those for even–even adjacent nuclei given by 1998Ak04.« less

  18. Nuclear Data Sheets for A = 235

    DOE PAGES

    Browne, E.; Tuli, J. K.

    2014-11-01

    Spectroscopic data and level schemes from radioactive decay and nuclear reaction studies are presented here for all nuclei with mass number A=235. The highlight of this evaluation consists of the precise and comprehensive Coulomb excitation study (2012Wa35) on ²³⁵U, which in addition to the 7/2[743] ground state rotational band, extended the 1/2[631], 5/2[622], 5/2[752], and 3/2[631] rotational bands up to Jπ=53/2+, 49/2+, 441/2–, and 43/2+, respectively. This evaluation presents a study (2010Hu02) of the ²³⁷Np(¹¹⁶Sn, ¹¹⁸Snγ) reaction where the ground state rotational band 5/2[642] was observed up to Jπ=(53/2+). It is worth for historical knowledge to mention the report onmore » the “Discovery of isotopes of the transuranium elements with 93≤Z≤98” (2013Fr02), where the information for elements Np, Pu, and Am with mass number A=235 is given. ²³⁵Cf has not been observed. The alpha hindrance factors (HF) presented in this evaluation were calculated using values of the radius parameter (r₀) interpolated from those for even–even adjacent nuclei given by 1998Ak04.« less

  19. Photoreduction of Graphene Oxide and Photochemical Synthesis of Graphene-Metal Nanoparticle Hybrids by Ketyl Radicals.

    PubMed

    Mangadlao, Joey Dacula; Cao, Pengfei; Choi, Diana; Advincula, Rigoberto C

    2017-07-26

    The photoreduction of graphene oxide (GO) using ketyl radicals is demonstrated for the first time. The use of photochemical reduction through ketyl radicals generated by I-2959 or (1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one) is interesting because it affords spatial and temporal control of the reduction process. Graphene-metal nanoparticle hybrids of Ag, Au, and Pd were also photochemically fabricated in a one-pot procedure. Comprehensive spectroscopic and imaging techniques were carried out to fully characterize the materials. The nanoparticle hybrids showed promising action for the catalytic degradation of model environmental pollutants, namely, 4-nitrophenol, Rose Bengal, and Methyl Orange. The process described can be extended to polymer nanocomposites that can be photopatterned and could be potentially extended to fabricating plastic electronic devices.

  20. The Cassini mission: Infrared and microwave spectroscopic measurements

    NASA Technical Reports Server (NTRS)

    Kunde, V. G.

    1989-01-01

    The Cassini Orbiter and Titan Probe model payloads include a number of infrared and microwave instruments. This document describes: (1) the fundamental scientific objectives for Saturn and Titan which can be addressed by infrared and microwave instrumentation, (2) the instrument requirements and the accompanying instruments, and (3) the synergism resulting from the comprehensive coverage of the total infrared and microwave spectrum by the complement of individual instruments. The baseline consists of four instruments on the orbiter and two on the Titan probe. The orbiter infrared instruments are: (1) a microwave spectrometer and radiometer; (2) a far to mid-infrared spectrometer; (3) a pressure modulation gas correlation spectrometer, and (4) a near-infrared grating spectrometer. The two Titan probe infrared instruments are: (1) a near-infrared instrument, and (2) a tunable diode laser infrared absorption spectrometer and nephelometer.

  1. ent-Kaurane Diterpenoids with Neuroprotective Properties from Corn Silk ( Zea mays).

    PubMed

    Qi, Xiao-Li; Zhang, Ying-Ying; Zhao, Peng; Zhou, Le; Wang, Xiao-Bo; Huang, Xiao-Xiao; Lin, Bin; Song, Shao-Jiang

    2018-05-25

    Thirteen new ent-kaurane diterpenoids, stigmaydenes A-M (1-13), together with two known compounds (14, 15), were isolated from the crude extract of corn silk ( Zea mays). The structures of the compounds were confirmed by comprehensive spectroscopic analyses. The absolute configuration of compound 1 was defined by single-crystal X-ray diffraction. The absolute configurations of the compounds were also confirmed by comparison of experimental and calculated specific rotations. The compounds were evaluated for their neuroprotective effects against H 2 O 2 -induced SH-SY5Y cell injury, and compound 8 was active at 100 μM, as determined by flow cytometry (annexin V-FITC/PI staining) and Hoechst 33258 staining. The results suggested that compound 8 could protect neuronal cells from H 2 O 2 -induced injury by inhibiting apoptosis in SH-SY5Y cells.

  2. Bioactive Phenanthrene and Bibenzyl Derivatives from the Stems of Dendrobium nobile.

    PubMed

    Zhou, Xue-Ming; Zheng, Cai-Juan; Gan, Li-She; Chen, Guang-Ying; Zhang, Xiao-Peng; Song, Xiao-Ping; Li, Gao-Nan; Sun, Chong-Ge

    2016-07-22

    A new enantiomeric pair of spirodiketones, (+)- and (-)-denobilone A (1 and 2), three new phenanthrene derivatives (3-5), and three new biphenanthrenes (22-24), along with 11 known phenanthrene derivatives (6-16), five known bibenzyl derivatives (17-21), and four known biphenanthrenes (25-28), were isolated from Dendrobium nobile. The structures of 1-5 and 22-24 were elucidated using comprehensive spectroscopic methods. (+)-Denobilone and (-)-denobilone A (1 and 2) were isolated as a pair of enantiomers by chiral HPLC. The absolute configurations of (+)- and (-)-denobilone A (1 and 2) were determined by comparing their experimental and calculated electronic circular dichroism spectra. The absolute configuration of denobilone B (3) was determined by X-ray crystallographic analysis. The inhibitory activities of all compounds against nine phytopathogenic fungi and three cancer cell lines were evaluated.

  3. Hydride Molecules towards Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Monje, Raquel R.; La, Ngoc; Goldsmith, Paul

    2018-06-01

    Observations carried out by the Herschel Space Observatory revealed strong spectroscopic signatures from light hydride molecules within the Milky Way and nearby active galaxies. To better understand the chemical and physical conditions of the interstellar medium, we conducted the first comprehensive survey of hydrogen fluoride (HF) and water molecular lines observed through the SPIRE Fourier Transform Spectrometer. By collecting and analyzing the sub-millimeter spectra of over two hundred sources, we found that the HF J = 1 - 0 rotational transition which occurs at approximately 1232 GHz was detected in a total of 39 nearby galaxies both in absorption and emission. The analysis will determine the main excitation mechanism of HF in nearby galaxies and provide steady templates of the chemistry and physical conditions of the ISM to be used in the early universe, where observations of hydrides are more scarce.

  4. Rhodomollacetals A-C, PTP1B Inhibitory Diterpenoids with a 2,3:5,6-Di-seco-grayanane Skeleton from the Leaves of Rhododendron molle.

    PubMed

    Zhou, Junfei; Sun, Na; Zhang, Hanqi; Zheng, Guijuan; Liu, Junjun; Yao, Guangmin

    2017-10-06

    Three novel diterpenoids with an unprecedented 2,3:5,6-di-seco-grayanane carbon skeleton, rhodomollacetals A-C (1-3), are isolated from the leaves of Rhododendron molle. Their structures are elucidated by comprehensive spectroscopic techniques and single-crystal X-ray diffraction. Rhodomollacetal A (1) possesses a novel cis/cis/cis/cis-fused 6/6/6/6/5 pentacyclic ring system, featuring an unprecedented 11,13,18-trioxa-pentacyclo [8.7.1.1 5,8 .0 2,8 .0 12,17 ]nonadecane scaffold. Compounds 2 and 3 have a rare 4-oxatricyclo[7.2.1.0 1,6 ]dodecane moiety and a 2,3-dihydro-4H-pyran-4-one unit. Compounds 1-3 showed moderate PTP1B inhibitory activities, and their molecular dockings were investigated.

  5. Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators.

    PubMed

    Good, Philipp; Cooper, Thomas; Querci, Marco; Wiik, Nicolay; Ambrosetti, Gianluca; Steinfeld, Aldo

    2016-03-01

    The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300-2500 nm at incidence angles 15-60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0-60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350-1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article "Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators" in Solar Energy Materials and Solar Cells.

  6. Mid-infrared integrated photonics on silicon: a perspective

    NASA Astrophysics Data System (ADS)

    Lin, Hongtao; Luo, Zhengqian; Gu, Tian; Kimerling, Lionel C.; Wada, Kazumi; Agarwal, Anu; Hu, Juejun

    2017-12-01

    The emergence of silicon photonics over the past two decades has established silicon as a preferred substrate platform for photonic integration. While most silicon-based photonic components have so far been realized in the near-infrared (near-IR) telecommunication bands, the mid-infrared (mid-IR, 2-20-μm wavelength) band presents a significant growth opportunity for integrated photonics. In this review, we offer our perspective on the burgeoning field of mid-IR integrated photonics on silicon. A comprehensive survey on the state-of-the-art of key photonic devices such as waveguides, light sources, modulators, and detectors is presented. Furthermore, on-chip spectroscopic chemical sensing is quantitatively analyzed as an example of mid-IR photonic system integration based on these basic building blocks, and the constituent component choices are discussed and contrasted in the context of system performance and integration technologies.

  7. New phenanthrene and 9, 10-dihydrophenanthrene derivatives from the stems of Dendrobium officinale with their cytotoxic activities.

    PubMed

    Zhao, Gui-Yun; Deng, Bo-Wen; Zhang, Chong-Yu; Cui, Yi-Da; Bi, Jia-Yi; Zhang, Guo-Gang

    2018-01-01

    Two new phenanthrene and 9, 10-dihydrophenanthrene derivatives (1-2) with six known congeners (3-8) were isolated from the extraction of stems of Dendrobium officinale. Compounds 1 and 2 were based on carbon skeleton in which phenanthrene and 9, 10-dihydrophenanthrene moiety were linked with a phenylpropane unit through a dioxane bridge, respectively. Their structures were determined by comprehensive NMR spectroscopic data, the absolute configuration of new compounds were determined by comparing their experimental and calculated ECD for the first time. All the compounds were investigated contains two cancer cell lines (HI-60, THP-1). All the isolates showed cytotoxicity, especially compound 4 showed markedly cytotoxic activities against HI-60 and THP-1 cell lines with IC 50 values of 11.96 and 8.92 μM.

  8. Development of a Tandem Electrodynamic Trap Apparatus for Merging Charged Droplets and Spectroscopic Characterization of Resultant Dried Particles.

    PubMed

    Kohno, Jun-Ya; Higashiura, Tetsu; Eguchi, Takaaki; Miura, Shumpei; Ogawa, Masato

    2016-08-11

    Materials work in multicomponent forms. A wide range of compositions must be tested to obtain the optimum composition for a specific application. We propose optimization using a series of small levitated single particles. We describe a tandem-trap apparatus for merging liquid droplets and analyzing the merged droplets and/or dried particles that are produced from the merged droplets under levitation conditions. Droplet merging was confirmed by Raman spectroscopic studies of the levitated particles. The tandem-trap apparatus enables the synthesis of a particle and spectroscopic investigation of its properties. This provides a basis for future investigation of the properties of levitated single particles.

  9. Spectroscopic Study of the Early-Type Binary HX Vel A

    NASA Astrophysics Data System (ADS)

    Özkardeş, Burcu; Sürgit, Derya; Erdem, Ahmet; Budding, Edwin; Soydugan, Faruk; Demircan, Osman

    2012-04-01

    This paper presents high resolution spectroscopy of the HX Vel (IDS 08390-4744 AB) multiple system. New spectroscopic observations of the system were made at Mt. John University Observatory in 2007 and 2008. Radial velocities of both components of HX Vel A were measured using gaussian fitting. The spectroscopic mass ratio of the close binary was determined as 0.599+/-0.052, according to a Keplerian orbital solution. The resulting orbital elements are a1sini=0.0098+/-0.0003 AU, a2sini=0.0164+/-0.0003 AU, M1sin3i=1.19+/-0.07 M⊙ and M2sin3i=0.71+/-0.04 M⊙.

  10. Spectroscopic Detection of Minerals in Martian Meteorites using Reflectance and Emittance Spectroscopy and Applications to Surface Mineralogy on Mars

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.; Hamilton, V. E.

    2001-12-01

    Martian meteorites provide direct information about crustal rocks on Mars. In this study we are measuring reflectance and emittance spectra of multiple Martian meteorites in order to characterize the spectral properties of the minerals present and to develop comprehensive criteria for remote detection of rocks and minerals. Previous studies have evaluated mid-IR emittance spectra [Hamilton et al., 1997] and visible/IR reflectance spectra [Bishop et al., 1998a,b] of Martian meteorites independently. The current study includes comparisons of the visible/NIR and mid-IR spectral regions and also involves comparison of mid-IR spectra measured using biconical reflectance and thermal emission techniques. Combining spectral analyses of Martian meteorite chips and powders enables characterization of spectral bands for remote detection of potential source regions for meteorite-like rocks on the surface of Mars using both Thermal Emission Spectrometer (TES) datasets and visible/NIR datasets from past and future missions. Identification of alteration minerals in these meteorites also provides insights into the alteration processes taking place on Mars. Analysis of TES data on Mars has identified global regions of basaltic and andesitic surface material [e.g. Bandfield et al., 2000; Christensen et al., 2000]; however neither of these spectral endmembers corresponds well to the spectra of Martian meteorites. Some preliminary findings suggest that small regions on the surface of Mars may relate to meteorite compositions [e.g. Hoefen et al., 2000; Hamilton et al., 2001]. Part of the difficulty in identifying meteorite compositions on Mars may be due to surface alteration. We hope to apply the results of our spectroscopic analyses of Martian meteorites, as well as fresh and altered basaltic material, toward analysis of composition on Mars using multiple spectral datasets. References: Bandfield J. et al., Science 287, 1626, 2000. Bishop J. et al., MAPS 33, 699, 1998a. Bishop J. et al., MAPS 33, 693, 1998b. Christensen P., et al., JGR 105, 9609, 2000. Hamilton V. et al., JGR 102, 25593, 1997. Hamilton V. et al., LPSC XXXII, #2184, 2001. Hoefen T. et al., Bull. Am. Astron. Soc. 32, 1118, 2000.

  11. Potential energy surface, dipole moment surface and the intensity calculations for the 10 μm, 5 μm and 3 μm bands of ozone

    NASA Astrophysics Data System (ADS)

    Polyansky, Oleg L.; Zobov, Nikolai F.; Mizus, Irina I.; Kyuberis, Aleksandra A.; Lodi, Lorenzo; Tennyson, Jonathan

    2018-05-01

    Monitoring ozone concentrations in the Earth's atmosphere using spectroscopic methods is a major activity which undertaken both from the ground and from space. However there are long-running issues of consistency between measurements made at infrared (IR) and ultraviolet (UV) wavelengths. In addition, key O3 IR bands at 10 μm, 5 μm and 3 μm also yield results which differ by a few percent when used for retrievals. These problems stem from the underlying laboratory measurements of the line intensities. Here we use quantum chemical techniques, first principles electronic structure and variational nuclear-motion calculations, to address this problem. A new high-accuracy ab initio dipole moment surface (DMS) is computed. Several spectroscopically-determined potential energy surfaces (PESs) are constructed by fitting to empirical energy levels in the region below 7000 cm-1 starting from an ab initio PES. Nuclear motion calculations using these new surfaces allow the unambiguous determination of the intensities of 10 μm band transitions, and the computation of the intensities of 10 μm and 5 μm bands within their experimental error. A decrease in intensities within the 3 μm is predicted which appears consistent with atmospheric retrievals. The PES and DMS form a suitable starting point both for the computation of comprehensive ozone line lists and for future calculations of electronic transition intensities.

  12. Vibrational spectroscopic study of fluticasone propionate

    NASA Astrophysics Data System (ADS)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-03-01

    Fluticasone propionate is a synthetic glucocorticoid with potent anti-inflammatory activity that has been used effectively in the treatment of chronic asthma. The present work reports a vibrational spectroscopic study of fluticasone propionate and gives proposed molecular assignments on the basis of ab initio calculations using BLYP density functional theory with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation. Several spectral features and band intensities are explained. This study generated a library of information that can be employed to aid the process monitoring of fluticasone propionate.

  13. Models of red giants in the CoRoT asteroseismology fields combining asteroseismic and spectroscopic constraints

    NASA Astrophysics Data System (ADS)

    Nadège, Lagarde

    The availability of asteroseismic constraints for a large sample of red-giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations. We use a detailed spectroscopic study of 19 CoRoT red-giant stars (Morel et al. 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars. This study is already published in Lagarde et al. (2015)

  14. Spectroscopic and quantum chemical study of the structure of a new paramagnetic dimeric palladium(II,III) complex with creatine

    NASA Astrophysics Data System (ADS)

    Mitewa, Mariana; Enchev, Venelin; Bakalova, Tatyana

    2002-05-01

    The structure and coordination mode of the newly synthesized dimeric paramagnetic Pd(II,III) complex are studied using magneto-chemical, EPR and IR spectroscopic methods. In order to perform reliable assignment of the IR bands, the structure and IR spectrum of the free creatine were calculated using ab initio method. For calculation of the configuration of its deprotonated and doubly deprotonated forms the semiempirical AM1 method was used.

  15. Spectroscopic ellipsometry study on E2 peak splitting of Si-Ge short period superlattices

    NASA Astrophysics Data System (ADS)

    Kim, Y. D.; Klein, M. V.; Baribeau, J.-M.; Hwang, S. H.; Whang, K. W.; Yoon, E.

    1997-06-01

    We report spectroscopic ellipsometry (SE) studies on (Si)2(Ge)12, (Si)6(Ge)2, and (Si)12(Ge)2 short period superlattices (SLs) whose optical response has not been reported yet. Multilayer calculations enabled us to determine the dielectric response of the superlattice layers. We report the clear observation of splitting of the E2 peak in (Si)m(Ge)n superlattices contrary to the previous SE report that the separation was observed only in larger period SLs.

  16. Comparison of spectroscopically measured finger and forearm tissue ethanol concentration to blood and breath ethanol measurements

    NASA Astrophysics Data System (ADS)

    Ridder, Trent D.; Hull, Edward L.; Ver Steeg, Benjamin J.; Laaksonen, Bentley D.

    2011-02-01

    Previous works investigated a spectroscopic technique that offered a promising alternative to blood and breath assays for determining in vivo alcohol concentration. Although these prior works measured the dorsal forearm, we report the results of a 26-subject clinical study designed to evaluate the spectroscopic technique at a finger measurement site through comparison to contemporaneous forearm spectroscopic, venous blood, and breath measurements. Through both Monte Carlo simulation and experimental data, it is shown that tissue optical probe design has a substantial impact on the effective path-length of photons through the skin and the signal-to-noise ratio of the spectroscopic measurements. Comparison of the breath, blood, and tissue assays demonstrated significant differences in alcohol concentration that are attributable to both assay accuracy and alcohol pharmacokinetics. Similar to past works, a first order kinetic model is used to estimate the fraction of concentration variance explained by alcohol pharmacokinetics (72.6-86.7%). A significant outcome of this work was significantly improved pharmacokinetic agreement with breath (arterial) alcohol of the finger measurement (mean kArt-Fin = 0.111 min-1) relative to the forearm measurement (mean kArt-For = 0.019 min-1) that is likely due to the increased blood perfusion of the finger.

  17. Time-frequency analysis in optical coherence tomography for technical objects examination

    NASA Astrophysics Data System (ADS)

    StrÄ kowski, Marcin R.; Kraszewski, Maciej; Trojanowski, Michał; Pluciński, Jerzy

    2014-05-01

    Optical coherence tomography (OCT) is one of the most advanced optical measurement techniques for complex structure visualization. The advantages of OCT have been used for surface and subsurface defect detection in composite materials, polymers, ceramics, non-metallic protective coatings, and many more. Our research activity has been focused on timefrequency spectroscopic analysis in OCT. It is based on time resolved spectral analysis of the backscattered optical signal delivered by the OCT. The time-frequency method gives spectral characteristic of optical radiation backscattered or backreflected from the particular points inside the tested device. This provides more information about the sample, which are useful for further analysis. Nowadays, the applications of spectroscopic analysis for composite layers characterization or tissue recognition have been reported. During our studies we have found new applications of spectroscopic analysis. We have used this method for thickness estimation of thin films, which are under the resolution of OCT. Also, we have combined the spectroscopic analysis with polarization sensitive OCT (PS-OCT). This approach enables to obtain a multiorder retardation value directly and may become a breakthrough in PS-OCT measurements of highly birefringent media. In this work, we present the time-frequency spectroscopic algorithms and their applications for OCT. Also, the theoretical simulations and measurement validation of this method are shown.

  18. NARROW-LINE X-RAY-SELECTED GALAXIES IN THE CHANDRA -COSMOS FIELD. I. OPTICAL SPECTROSCOPIC CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pons, E.; Watson, M. G.; Elvis, M.

    2016-04-20

    The COSMOS survey is a large and deep survey with multiwavelength observations of sources from X-rays to the UV, allowing an extensive study of their properties. The central 0.9 deg{sup 2} of the COSMOS field have been observed by Chandra with a sensitivity up to 1.9 × 10{sup −16} erg cm{sup −2} s{sup −1} in the full (0.5–10 keV) band. Photometric and spectroscopic identification of the Chandra -COSMOS (C-COSMOS) sources is available from several catalogs and campaigns. Despite the fact that the C-COSMOS galaxies have a reliable spectroscopic redshift in addition to a spectroscopic classification, the emission-line properties of thismore » sample have not yet been measured. We present here the creation of an emission-line catalog of 453 narrow-line sources from the C-COSMOS spectroscopic sample. We have performed spectral fitting for the more common lines in galaxies ([O ii] λ 3727, [Ne iii] λ 3869, H β , [O iii] λλ 4959, 5007, H α , and [N ii] λλ 6548, 6584). These data provide an optical classification for 151 (i.e., 33%) of the C-COSMOS narrow-line galaxies based on emission-line diagnostic diagrams.« less

  19. Spectroscopic Study of L Hypernuclei with Electron Beams at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Satoshi; Gogami, Toshiyuki; Tang, Liguang

    The missing mass spectroscopy of L hypernuclei with the (e, e'K^+) reaction was started from 2000 at Jefferson Lab. In this fifteen years, various hypernuclei (A = 7 - 52) including hyperon (L, S^0) productions have been studied with newly developed experimental techniques. The (e, e'K^+) reaction spectroscopy of L hypernuclei features its capability of absolute missing mass calibration and production of new species of hypernuclei which are the isospin partners of well studied hypernuclei by (K^-, pi-) and (pi^+, K^+) reactions. In this paper, we will review how we established the (e, e'K^+) spectroscopic study of hypernuclei.

  20. Studies on the binding behavior of prodigiosin with bovine hemoglobin by multi-spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Yang, Chao; Zhou, Lin; Ma, Fei; Liu, Shuchao; Wei, Shaohua; Zhou, Jiahong; Zhou, Yanhuai

    2012-10-01

    In this article, the interaction mechanism of prodigiosin (PG) with bovine hemoglobin (BHb) is studied in detail using various spectroscopic technologies. UV-vis absorption and fluorescence spectra demonstrate the interaction process. The Stern-Volmer plot and the time-resolved fluorescence study suggest the quenching mechanism of fluorescence of BHb by PG is a static quenching procedure, and the hydrophobic interactions play a major role in binding of PG to BHb. Furthermore, synchronous fluorescence studies, Fourier transform infrared (FTIR) and circular dichroism (CD) spectra reveal that the conformation of BHb is changed after conjugation with PG.

  1. The GEISA Spectroscopic Database System in its latest Edition

    NASA Astrophysics Data System (ADS)

    Jacquinet-Husson, N.; Crépeau, L.; Capelle, V.; Scott, N. A.; Armante, R.; Chédin, A.

    2009-04-01

    GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information)[1] is a computer-accessible spectroscopic database system, designed to facilitate accurate forward planetary radiative transfer calculations using a line-by-line and layer-by-layer approach. It was initiated in 1976. Currently, GEISA is involved in activities related to the assessment of the capabilities of IASI (Infrared Atmospheric Sounding Interferometer on board the METOP European satellite -http://earth-sciences.cnes.fr/IASI/)) through the GEISA/IASI database[2] derived from GEISA. Since the Metop (http://www.eumetsat.int) launch (October 19th 2006), GEISA/IASI is the reference spectroscopic database for the validation of the level-1 IASI data, using the 4A radiative transfer model[3] (4A/LMD http://ara.lmd.polytechnique.fr; 4A/OP co-developed by LMD and Noveltis with the support of CNES). Also, GEISA is involved in planetary research, i.e.: modelling of Titan's atmosphere, in the comparison with observations performed by Voyager: http://voyager.jpl.nasa.gov/, or by ground-based telescopes, and by the instruments on board the Cassini-Huygens mission: http://www.esa.int/SPECIALS/Cassini-Huygens/index.html. The updated 2008 edition of GEISA (GEISA-08), a system comprising three independent sub-databases devoted, respectively, to line transition parameters, infrared and ultraviolet/visible absorption cross-sections, microphysical and optical properties of atmospheric aerosols, will be described. Spectroscopic parameters quality requirement will be discussed in the context of comparisons between observed or simulated Earth's and other planetary atmosphere spectra. GEISA is implemented on the CNES/CNRS Ether Products and Services Centre WEB site (http://ether.ipsl.jussieu.fr), where all archived spectroscopic data can be handled through general and user friendly associated management software facilities. More than 350 researchers are registered for on line use of GEISA. Refs: 1. Jacquinet-Husson N., N.A. Scott, A. Chédin,L. Crépeau, R. Armante, V. Capelle, J. Orphal, A. Coustenis, C. Boonne, N. Poulet-Crovisier, et al. THE GEISA SPECTROSCOPIC DATABASE: Current and future archive for Earth and planetary atmosphere studies. JQSRT, 109, 1043-1059, 2008 2. Jacquinet-Husson N., N.A. Scott, A. Chédin, K. Garceran, R. Armante, et al. The 2003 edition of the GEISA/IASI spectroscopic database. JQSRT, 95, 429-67, 2005. 3. Scott, N.A. and A. Chedin, 1981: A fast line-by-line method for atmospheric absorption computations: The Automatized Atmospheric Absorption Atlas. J. Appl. Meteor., 20,556-564.

  2. Spectroscopic characterization of low dose rate brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Beach, Stephen M.

    The low dose rate (LDR) brachytherapy seeds employed in permanent radioactive-source implant treatments usually use one of two radionuclides, 125I or 103Pd. The theoretically expected source spectroscopic output from these sources can be obtained via Monte Carlo calculation based upon seed dimensions and materials as well as the bare-source photon emissions for that specific radionuclide. However the discrepancies resulting from inconsistent manufacturing of sources in comparison to each other within model groups and simplified Monte Carlo calculational geometries ultimately result in undesirably large uncertainties in the Monte Carlo calculated values. This dissertation describes experimentally attained spectroscopic outputs of the clinically used brachytherapy sources in air and in liquid water. Such knowledge can then be applied to characterize these sources by a more fundamental and metro logically-pure classification, that of energy-based dosimetry. The spectroscopic results contained within this dissertation can be utilized in the verification and benchmarking of Monte Carlo calculational models of these brachytherapy sources. This body of work was undertaken to establish a usable spectroscopy system and analysis methods for the meaningful study of LDR brachytherapy seeds. The development of a correction algorithm and the analysis of the resultant spectroscopic measurements are presented. The characterization of the spectrometer and the subsequent deconvolution of the measured spectrum to obtain the true spectrum free of any perturbations caused by the spectrometer itself is an important contribution of this work. The approach of spectroscopic deconvolution that was applied in this work is derived in detail and it is applied to the physical measurements. In addition, the spectroscopically based analogs to the LDR dosimetry parameters that are currently employed are detailed, as well as the development of the theory and measurement methods to arrive at these analogs. Several dosimetrically-relevant water-equivalent plastics were also investigated for their transmission properties within a liquid water environment, as well as in air. The framework for the accurate spectrometry of LDR sources is established as a result of this dissertation work. In addition to the measurement and analysis methods, this work presents the basic measured spectroscopic characteristics of each LDR seed currently in use in the clinic today.

  3. The IACOB project. V. Spectroscopic parameters of the O-type stars in the modern grid of standards for spectral classification

    NASA Astrophysics Data System (ADS)

    Holgado, G.; Simón-Díaz, S.; Barbá, R. H.; Puls, J.; Herrero, A.; Castro, N.; Garcia, M.; Maíz Apellániz, J.; Negueruela, I.; Sabín-Sanjulián, C.

    2018-06-01

    Context. The IACOB and OWN surveys are two ambitious, complementary observational projects which have made available a large multi-epoch spectroscopic database of optical high resolution spectra of Galactic massive O-type stars. Aims: Our aim is to study the full sample of (more than 350) O stars surveyed by the IACOB and OWN projects. As a first step towards this aim, we have performed the quantitative spectroscopic analysis of a subsample of 128 stars included in the modern grid of O-type standards for spectral classification. The sample comprises stars with spectral types in the range O3-O9.7 and covers all luminosity classes. Methods: We used the semi-automatized IACOB-BROAD and IACOB-GBAT/FASTWIND tools to determine the complete set of spectroscopic parameters that can be obtained from the optical spectrum of O-type stars. A quality flag was assigned to the outcome of the IACOB-GBAT/FASTWIND analysis for each star, based on a visual evaluation of how the synthetic spectrum of the best fitting FASTWIND model reproduces the observed spectrum. We also benefitted from the multi-epoch character of the IACOB and OWN surveys to perform a spectroscopic variability study of the complete sample, providing two different flags for each star accounting for spectroscopic binarity as well as variability of the main wind diagnostic lines. Results: We obtain - for the first time in a homogeneous and complete manner - the full set of spectroscopic parameters of the "anchors" of the spectral classification system in the O star domain. We provide a general overview of the stellar and wind parameters of this reference sample, as well as updated recipes for the SpT-Teff and SpT-log g calibrations for Galactic O-type stars. We also propose a distance-independent test for the wind-momentum luminosity relationship. We evaluate the reliability of our semi-automatized analysis strategy using a subsample of 40 stars extensively studied in the literature, and find a fairly good agreement between our derived effective temperatures and gravities and those obtained by means of more traditional "by-eye" techniques and different stellar atmosphere codes. The overall agreement between the synthetic spectra associated with the IACOB-GBAT/FASTWIND best fitting models and the observed spectra is good for most of the analyzed targets, but 46 stars out of the 128 present a particular behavior of the wind diagnostic lines that cannot be reproduced by our grid of spherically symmetric unclumped models. These are potential targets of interest for more detailed investigations of clumpy winds and/or the existence of additional circumstellar emitting components contaminating the wind diagnostic lines (e.g., disks, magnetospheres). Last, our spectroscopic variability study has led to the detection of clear or likely signatures of spectroscopic binarity in 27% of the stars and small amplitude radial velocity variations in the photospheric lines of another 30%. Additionally, 31% of the investigated stars show variability in the wind diagnostic lines. Tables D.1 and D.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A65

  4. A Photometric (griz) Metallicity Calibration for Cool Stars

    NASA Astrophysics Data System (ADS)

    West, Andrew A.; Davenport, James R. A.; Dhital, Saurav; Mann, Andrew; Massey, Angela P

    2014-06-01

    We present results from a study that uses wide pairs as tools for estimating and constraining the metal content of cool stars from their spectra and broad band colors. Specifically, we will present results that optimize the Mann et al. M dwarf metallicity calibrations (derived using wide binaries) for the optical regime covered by SDSS spectra. We will demonstrate the robustness of the new calibrations using a sample of wide, low-mass binaries for which both components have an SDSS spectrum. Using these new spectroscopic metallicity calibrations, we will present relations between the metallicities (from optical spectra) and the Sloan colors derived using more than 20,000 M dwarfs in the SDSS DR7 spectroscopic catalog. These relations have important ramifications for studies of Galactic chemical evolution, the search for exoplanets and subdwarfs, and are essential for surveys such as Pan-STARRS and LSST, which use griz photometry but have no spectroscopic component.

  5. Thermodynamic and Spectroscopic Investigation of Interactions between Reactive Red 223 and Reactive Orange 122 Anionic Dyes and Cetyltrimethyl Ammonium Bromide (CTAB) Cationic Surfactant in Aqueous Solution

    PubMed Central

    Irfan, Muhammad; Usman, Muhammad; Mansha, Asim; Rasool, Nasir; Ibrahim, Muhammad; Rana, Usman Ali; Siddiq, Mohammad; Zia-Ul-Haq, Muhammad; Jaafar, Hawa Z. E.; Khan, Salah Ud-Din

    2014-01-01

    The present study describes the conductometric and spectroscopic study of the interaction of reactive anionic dyes, namely, reactive red 223 and reactive orange 122 with the cationic surfactant cetyltrimethyl ammonium bromide (CTAB). In a systematic investigation, the electrical conductivity data was used to calculate various thermodynamic parameters such as free energy (ΔG), enthalpy (ΔH), and the entropy (ΔS) of solubilization. The trend of change in these thermodynamic quantities indicates toward the entropy driven solubilization process. Moreover, the results from spectroscopic data reveal high degree of solubilization, with strong interactions observed in the cases of both dyes and the CTAB. The spontaneous nature of solubilization and binding was evident from the observed negative values of free energies (ΔG p and ΔG b). PMID:25243216

  6. A Markov random field based approach to the identification of meat and bone meal in feed by near-infrared spectroscopic imaging.

    PubMed

    Jiang, Xunpeng; Yang, Zengling; Han, Lujia

    2014-07-01

    Contaminated meat and bone meal (MBM) in animal feedstuff has been the source of bovine spongiform encephalopathy (BSE) disease in cattle, leading to a ban in its use, so methods for its detection are essential. In this study, five pure feed and five pure MBM samples were used to prepare two sets of sample arrangements: set A for investigating the discrimination of individual feed/MBM particles and set B for larger numbers of overlapping particles. The two sets were used to test a Markov random field (MRF)-based approach. A Fourier transform infrared (FT-IR) imaging system was used for data acquisition. The spatial resolution of the near-infrared (NIR) spectroscopic image was 25 μm × 25 μm. Each spectrum was the average of 16 scans across the wavenumber range 7,000-4,000 cm(-1), at intervals of 8 cm(-1). This study introduces an innovative approach to analyzing NIR spectroscopic images: an MRF-based approach has been developed using the iterated conditional mode (ICM) algorithm, integrating initial labeling-derived results from support vector machine discriminant analysis (SVMDA) and observation data derived from the results of principal component analysis (PCA). The results showed that MBM covered by feed could be successfully recognized with an overall accuracy of 86.59% and a Kappa coefficient of 0.68. Compared with conventional methods, the MRF-based approach is capable of extracting spectral information combined with spatial information from NIR spectroscopic images. This new approach enhances the identification of MBM using NIR spectroscopic imaging.

  7. Massive Young Stellar Objects in the Galactic Center. 1; Spectroscopic Identification from Spitzer/IRS Observations

    NASA Technical Reports Server (NTRS)

    An, Deokkeun; Ramirez, Solange V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C. Adwin; Robitaille, Thomas P.; Schultheis, Mathias; Cotera, Angela S.; Smith, Howard A.; Stolovy, Susan R.

    2011-01-01

    We present results from our spectroscopic study, using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, designed to identify massive young stellar objects (YSOs) in the Galactic Center (GC). Our sample of 107 YSO candidates was selected based on IRAC colors from the high spatial resolution, high sensitivity Spitzer/IRAC images in the Central Molecular Zone (CMZ), which spans the central approximately 300 pc region of the Milky Way Galaxy. We obtained IRS spectra over 5 micron to 35 micron using both high- and low-resolution IRS modules. We spectroscopically identify massive YSOs by the presence of a 15.4 micron shoulder on the absorption profile of 15 micron CO2 ice, suggestive of CO2 ice mixed with CH30H ice on grains. This 15.4 micron shoulder is clearly observed in 16 sources and possibly observed in an additional 19 sources. We show that 9 massive YSOs also reveal molecular gas-phase absorption from C02, C2H2, and/or HCN, which traces warm and dense gas in YSOs. Our results provide the first spectroscopic census of the massive YSO population in the GC. We fit YSO models to the observed spectral energy distributions and find YSO masses of 8 - 23 solar Mass, which generally agree with the masses derived from observed radio continuum emission. We find that about 50% of photometrically identified YSOs are confirmed with our spectroscopic study. This implies a preliminary star formation rate of approximately 0.07 solar mass/yr at the GC.

  8. The identification of post-starburst galaxies at z ˜ 1 using multiwavelength photometry: a spectroscopic verification

    NASA Astrophysics Data System (ADS)

    Maltby, David T.; Almaini, Omar; Wild, Vivienne; Hatch, Nina A.; Hartley, William G.; Simpson, Chris; McLure, Ross J.; Dunlop, James; Rowlands, Kate; Cirasuolo, Michele

    2016-06-01

    Despite decades of study, we still do not fully understand why some massive galaxies abruptly switch off their star formation in the early Universe, and what causes their rapid transition to the red sequence. Post-starburst galaxies provide a rare opportunity to study this transition phase, but few have currently been spectroscopically identified at high redshift (z > 1). In this paper, we present the spectroscopic verification of a new photometric technique to identify post-starbursts in high-redshift surveys. The method classifies the broad-band optical-near-infrared spectral energy distributions (SEDs) of galaxies using three spectral shape parameters (supercolours), derived from a principal component analysis of model SEDs. When applied to the multiwavelength photometric data in the UKIDSS Ultra Deep Survey, this technique identified over 900 candidate post-starbursts at redshifts 0.5 < z < 2.0. In this study, we present deep optical spectroscopy for a subset of these galaxies, in order to confirm their post-starburst nature. Where a spectroscopic assessment was possible, we find the majority (19/24 galaxies; ˜80 per cent) exhibit the strong Balmer absorption (H δ equivalent width Wλ > 5 Å) and Balmer break, characteristic of post-starburst galaxies. We conclude that photometric methods can be used to select large samples of recently-quenched galaxies in the distant Universe.

  9. High-pressure spectroscopic measurement on diffusion with a diamond-anvil cell

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Katoh, Eriko; Yamawaki, H.; Fujihisa, H.; Sakashita, M.

    2003-04-01

    We report a diamond-anvil-cell (DAC) technique developed for spectroscopic measurement on the diffusion process in molecular solids at high pressure. The diffusion processes of atoms, molecules, or their ionic species are investigated for a bilayer specimen by measuring the variation of infrared vibrational spectra with time. The experimental procedures for the protonic and molecular diffusion measurements on ice at 400 K and 10.2 GPa are presented as an example study. The in situ spectroscopic technique with a DAC significantly extends the pressure range accessible for diffusion measurement. The diffusion process at a rate of 10-16-10-14 m2/s can currently be observed at temperatures of 300-600 K and pressures up to several tens of gigaPascals.

  10. Note: Small anaerobic chamber for optical spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauvet, Adrien A. P., E-mail: adrien.chauvet@gmail.com; Chergui, Majed; Agarwal, Rachna

    2015-10-15

    The study of oxygen-sensitive biological samples requires an effective control of the atmosphere in which they are housed. In this aim however, no commercial anaerobic chamber is adequate to solely enclose the sample and small enough to fit in a compact spectroscopic system with which analysis can be performed. Furthermore, spectroscopic analysis requires the probe beam to pass through the whole chamber, introducing a requirement for adequate windows. In response to these challenges, we present a 1 l anaerobic chamber that is suitable for broad-band spectroscopic analysis. This chamber has the advantage of (1) providing access, via a septum, tomore » the sample and (2) allows the sample position to be adjusted while keeping the chamber fixed and hermetic during the experiment.« less

  11. Spectroscopic database

    NASA Technical Reports Server (NTRS)

    Husson, N.; Barbe, A.; Brown, L. R.; Carli, B.; Goldman, A.; Pickett, H. M.; Roche, A. E.; Rothman, L. S.; Smith, M. A. H.

    1985-01-01

    Several aspects of quantitative atmospheric spectroscopy are considered, using a classification of the molecules according to the gas amounts in the stratosphere and upper troposphere, and reviews of quantitative atmospheric high-resolution spectroscopic measurements and field measurements systems are given. Laboratory spectroscopy and spectral analysis and prediction are presented with a summary of current laboratory spectroscopy capabilities. Spectroscopic data requirements for accurate derivation of atmospheric composition are discussed, where examples are given for space-based remote sensing experiments of the atmosphere: the ATMOS (Atmospheric Trace Molecule) and UARS (Upper Atmosphere Research Satellite) experiment. A review of the basic parameters involved in the data compilations; a summary of information on line parameter compilations already in existence; and a summary of current laboratory spectroscopy studies are used to assess the data base.

  12. V342 Andromedae B is an eccentric-orbit eclipsing binary

    NASA Astrophysics Data System (ADS)

    Dimitrov, W.; Kamiński, K.; Lehmann, H.; Ligęza, P.; Fagas, M.; Bagińska, P.; Kwiatkowski, T.; Bąkowska, K.; Kowalczyk, A.; Polińska, M.; Bartczak, P.; Przybyszewska, A.; Kruszewski, A.; Kurzawa, K.; Schwarzenberg-Czerny, A.

    2015-03-01

    We present a photometric and spectroscopic study of the visual binary V342 Andromedae. Visual components of the system have angular separations of 3 arcseconds. We obtained two spectroscopic data sets. An examination of both the A and B component spectra reveals that the B component is a spectroscopic binary with an eccentric orbit. The orbital period, taken from the Hipparcos Catalog, agrees with the orbital period of the B component measured spectroscopically. We also collected a new set of photometric measurements. The argument of periastron is close to 270° and the orbit eccentricity is not seen in our photometric data. About five years after the first spectroscopic observations, a new set of spectroscopic data was obtained. We analysed the apsidal motion, but we did not find any significant changes in the orbital orientation. A Wilson-Devinney model was calculated based on the photometric and the radial velocity curves. The result shows two very similar stars with masses M1 = 1.27 ± 0.01 M⊙, M2 = 1.28 ± 0.01 M⊙, respectively. The radii are R1 = 1.21 ± 0.01 R⊙, R2 = 1.25 ± 0.01 R⊙, respectively. Radial velocity measurements of component A, the most luminous star in the system, reveal no significant periodic variations. We calculated the time of the eclipsing binary orbit's circularization, which is about two orders of magnitude shorter than the estimated age of the system. The discrepancies in the age estimation can be explained by the Kozai effect induced by the visual component A. The atmospheric parameters and the chemical abundances for the eclipsing pair, as well as the LSD profiles for both visual components, were calculated from two high-resolution, well-exposed spectra obtained on the 2-m class telescope. Based on spectroscopy obtained at the David Dunlap Observatory, University of Toronto, Canada, Poznań Spectroscopic Telescope 1, Poland and Thüringer Landessternwarte, Tautenburg, Germany.

  13. The Long-Term Spectroscopic Misadventures of AG Dra with a Nod toward V407 Cyg: Degenerates Behaving Badly

    NASA Technical Reports Server (NTRS)

    Shore, S.N.; Genovali, K.; Wahlgren, G. M.

    2013-01-01

    We present some results of an ongoing study of the long-term spectroscopic variations of AG Dra, a prototypical eruptive symbiotic system. We discuss the effects of the environment and orbital modulation in this system and some of the physical processes revealed by a comparison with the nova outburst of the symbiotic-like recurrent nova V407 Cyg 2010.

  14. A convolutional neural network to filter artifacts in spectroscopic MRI.

    PubMed

    Gurbani, Saumya S; Schreibmann, Eduard; Maudsley, Andrew A; Cordova, James Scott; Soher, Brian J; Poptani, Harish; Verma, Gaurav; Barker, Peter B; Shim, Hyunsuk; Cooper, Lee A D

    2018-03-09

    Proton MRSI is a noninvasive modality capable of generating volumetric maps of in vivo tissue metabolism without the need for ionizing radiation or injected contrast agent. Magnetic resonance spectroscopic imaging has been shown to be a viable imaging modality for studying several neuropathologies. However, a key hurdle in the routine clinical adoption of MRSI is the presence of spectral artifacts that can arise from a number of sources, possibly leading to false information. A deep learning model was developed that was capable of identifying and filtering out poor quality spectra. The core of the model used a tiled convolutional neural network that analyzed frequency-domain spectra to detect artifacts. When compared with a panel of MRS experts, our convolutional neural network achieved high sensitivity and specificity with an area under the curve of 0.95. A visualization scheme was implemented to better understand how the convolutional neural network made its judgement on single-voxel or multivoxel MRSI, and the convolutional neural network was embedded into a pipeline capable of producing whole-brain spectroscopic MRI volumes in real time. The fully automated method for assessment of spectral quality provides a valuable tool to support clinical MRSI or spectroscopic MRI studies for use in fields such as adaptive radiation therapy planning. © 2018 International Society for Magnetic Resonance in Medicine.

  15. In vitro electrochemical corrosion and cell viability studies on nickel-free stainless steel orthopedic implants.

    PubMed

    Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J; Rad, Armin Tahmasbi; Madihally, Sundararajan V; Tayebi, Lobat

    2013-01-01

    The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments.

  16. Spectroscopic and structural study of the newly synthesized heteroligand complex of copper with creatinine and urea.

    PubMed

    Gangopadhyay, Debraj; Singh, Sachin Kumar; Sharma, Poornima; Mishra, Hirdyesh; Unnikrishnan, V K; Singh, Bachcha; Singh, Ranjan K

    2016-02-05

    Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV-vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV-visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu-Crn-urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. GLASS: The Grism Lens-Amplified Survey From Space. HST Grism Spectroscopy of the Frontier Fields.

    NASA Astrophysics Data System (ADS)

    Borello Schmidt, Kasper

    2015-08-01

    The Grism Lens-Amplified Survey From Space (GLASS) is a 140 orbit spectroscopic survey of 10 massive galaxy clusters, including the six Hubble Frontier Fields. GLASS has observed the cluster cores in the HST-WFC3 G102 and G141 grisms providing a wide wavelength coverage in the near-infrared from roughly 0.8 - 1.7 μm. The parallel fields were observed through the optical ACS G800L grism. Taking advantage of the lensing magnification of the clusters, GLASS reaches excellent spectroscopic limits of ˜10-18 erg/s/cm2 and improved spatial resolution for lensed sources behind the clusters. These features are particularly useful for the three main science drivers of GLASS, which are: I) Use the hundreds of spectra of galaxies at z>6 to shed light on the epoch of reionization, the role galaxies play in reionizing the universe, and the Lyα escape fraction at the cosmic dawn. II) Study gas accretion, star formation, and outflows by spatially mapping resolved star formation and determine metallicity gradients from emission lines at z˜2. III) Explore the environmental dependence of galaxy evolution using the first comprehensive census of spatially resolved star formation in dense environments, i.e., the cluster cores as well as the cluster infall regions. The former two benefit highly from the improved depth and increased resolution provided by the cluster lensing. Apart from the main science drivers, a slew of ancillary science has been enabled by the survey. One particularly interesting example is the search for supernovae in the more than 40 GLASS visits, which resulted in the detection of the first multiple imaged supernova, SN Refsdal. I will present the survey, give an update on the current science results, in particular on the GLASS galaxies at the epoch of reionization, and provide a status report on the GLASS data releases, which are continuously being made available to the community.

  18. Antinociceptive activity of extracts and secondary metabolites from wild growing and micropropagated plants of Renealmia alpinia

    PubMed Central

    Gómez-Betancur, Isabel; Cortés, Natalie; Benjumea, Dora; Osorio, Edison; León, Francisco; Cutler, Stephen J.

    2015-01-01

    Ethnopharmacological relevance Renealmia alpinia is native to the American continent and can be found from Mexico to Brazil, and in the Caribbean islands. It is known as “matandrea” in Colombia, and it has been commonly used in traditional medicine to treat painful diseases and ailments. Based on its traditional uses, it is of interest to evaluate the pharmacologic effects of this plant and its secondary metabolites. Materials and methods Methanol and aqueous extracts of wild and micropropagated R. alpinia (leaves) were obtained and chemically compared by High Performance Thin Layer Chromatography (HPTLC). The antinociceptive activity of these extracts was examined using an in vivo assay (Siegmund test). Additionally, the dichloromethane extract of R. alpinia was fractionated and pure compounds were isolated by chromatographic methods. The structure elucidation of isolated compounds was performed by NMR experiments and spectroscopic techniques and comparison with the literature data. Purified compounds were evaluated for their in vitro binding affinity for opioids and cannabinoids receptors. Results The dichloromethane extract of the plant’s aerial part afforded sinostrobin (1), naringenin 7,4′-dimethyl ether (2), 2′,6′-dihydroxy-4′-methoxychalcone (3), 4-methoxy-6-(2-phenylethenyl)-2H-pyran-2-one (4), naringenin 7-methyl ether (5) and 3,5-heptanediol, 1,7-diphenyl (6), which were isolated using chromatographic methods. Their chemical structures were established by physical and spectroscopic techniques. The antinociceptive effects observed in mice by extracts of wild and micropropagated plants were similar. The compounds isolated from R. alpinia do not show affinity to opioid or cannabinoid receptors. Conclusion Aqueous and methanol extracts of R. alpinia provide antinociceptive and analgesic effects in an in vivo model. These results contribute additional insight as to why this plant is traditionally used for pain management. Also, this is the first comprehensive report of a phytochemical study of R. alpinia. PMID:25686780

  19. The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and early data

    DOE PAGES

    Kyle S. Dawson

    2016-02-04

    In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered bymore » BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d A(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ~195,000 new emission line galaxy redshifts, we expect BAO measurements of d A(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d A(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of d A(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Lastly, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS.« less

  20. The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and early data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyle S. Dawson

    In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered bymore » BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d A(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ~195,000 new emission line galaxy redshifts, we expect BAO measurements of d A(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d A(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of d A(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Lastly, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS.« less

  1. Pilot Study to Confirm that Fat and Liver can be Distinguished by Spectroscopic Tissue Response on a Medipix-All-Resolution System-CT (MARS-CT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Kyra B.; Anderson, Nigel G.; Butler, Alexandra P.

    2009-07-23

    NAFLD, liver component of the 'metabolic' syndrome, has become the most common liver disease in western nations. Non-invasive imaging techniques exist, but have limitations, especially in detection and quantification of mild to moderate fatty liver. In this pilot study, we produced attenuation curves from biomedical-quality projection images of liver and fat using the MARS spectroscopic-CT scanner. Difficulties obtaining attenuation spectra after reconstruction demonstrated that standard reconstruction programs do not preserve spectral information.

  2. Vibrational spectroscopic study of nickel (II) formate, Ni(HCO 2) 2, and its aqueous solution

    NASA Astrophysics Data System (ADS)

    Edwards, H. G. M.; Knowles, A.

    1992-04-01

    A vibrational spectroscopic study of nickel (II) formate and its aqueous solution has been made. The vibrations characteristic of a formato—nickel complex have been assigned and it is concluded that the species Ni(HCO 2) +(HCO 2) - exists in the solid state, with monodentate ligand-to-metal bonding. The Raman spectrum of an aqueous solution of nickel (II) formate indicates that complete dissociation of the formato—nickel (II) species occurs to formate ions and nickel (II) hexa-aquo ions. Comparisons are made with other nickel (II) carboxylates.

  3. Pilot Study to Confirm that Fat and Liver can be Distinguished by Spectroscopic Tissue Response on a Medipix-All-Resolution System-CT (MARS-CT)

    NASA Astrophysics Data System (ADS)

    Berg, Kyra B.; Carr, James M.; Clark, Michael J.; Cook, Nick J.; Anderson, Nigel G.; Scott, Nicola J.; Butler, Alexandra P.; Butler, Philip H.; Butler, Anthony P.

    2009-07-01

    NAFLD, liver component of the "metabolic" syndrome, has become the most common liver disease in western nations. Non-invasive imaging techniques exist, but have limitations, especially in detection and quantification of mild to moderate fatty liver. In this pilot study, we produced attenuation curves from biomedical-quality projection images of liver and fat using the MARS spectroscopic-CT scanner. Difficulties obtaining attenuation spectra after reconstruction demonstrated that standard reconstruction programs do not preserve spectral information.

  4. Polyketide derivatives from a marine-sponge-associated fungus Pestalotiopsis heterocornis.

    PubMed

    Lei, Hui; Lin, Xiuping; Han, Li; Ma, Jian; Dong, Kailin; Wang, Xingbo; Zhong, Jialiang; Mu, Yu; Liu, Yonghong; Huang, Xueshi

    2017-10-01

    Twelve previously undescribed polyketide derivatives, heterocornols A-L, and seven known analogues were isolated from a culture of the fungus Pestalotiopsis heterocornis associated with sponge. Their structures were elucidated by a comprehensive spectroscopic data analysis and CD Cotton effects. These compounds were evaluated for cytotoxic and antibacterial activities in vitro. Among them, heterocornols A-C, F-H, methyl-(2-formyl-3-hydroxyphenyl)propanoate, agropyrenol, and vaccinol G exhibited cytotoxicities against four human cancer cell lines with IC 50 values 15-100 μM, and they also showed antibacterial activities against Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis with MIC values ranging from 25 to 100 μg/mL. Moreover, compounds heterocornol C, heterocornol G, agropyrenol, and vaccinol G showed weak antifungal activities against Candida parapsilosis and Cryptococcus neoformans with MIC values 100 μg/mL. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Cytotoxic prenylated flavones from the stem and root bark of Daphne giraldii.

    PubMed

    Sun, Qian; Wang, Di; Li, Fei-Fei; Yao, Guo-Dong; Li, Xue; Li, Ling-Zhi; Huang, Xiao-Xiao; Song, Shao-Jiang

    2016-08-15

    Three new prenylated flavones (1-3), along with three known analogues (4-6), were isolated from the stem and root bark of Daphne giraldii. Their structures were determined by comprehensive NMR and HRESIMS spectroscopic data analyses. The absolute configurations of compounds 2 and 3 were assigned by optical rotation comparison, CD and [Rh2(OCOCF3)4]-induced CD spectral methods. The in vitro cytotoxicity experiments carried out involving five cancer cell lines (U251, A549, HepG2, MCF-7 and Bcap37) showed that 2 markedly inhibited the proliferation of all tested cells with IC50 values ranging from 4.26 to 20.82μM. The preliminary structure-activity relationships of these flavones are discussed. In addition, compound 2 was found to effectively induce apoptosis in HepG2 cells according to a flow cytometry analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Near-field spectroscopic investigation of dual-band heavy fermion metamaterials.

    PubMed

    Gilbert Corder, Stephanie N; Chen, Xinzhong; Zhang, Shaoqing; Hu, Fengrui; Zhang, Jiawei; Luan, Yilong; Logan, Jack A; Ciavatti, Thomas; Bechtel, Hans A; Martin, Michael C; Aronson, Meigan; Suzuki, Hiroyuki S; Kimura, Shin-Ichi; Iizuka, Takuya; Fei, Zhe; Imura, Keiichiro; Sato, Noriaki K; Tao, Tiger H; Liu, Mengkun

    2017-12-22

    Broadband tunability is a central theme in contemporary nanophotonics and metamaterials research. Combining metamaterials with phase change media offers a promising approach to achieve such tunability, which requires a comprehensive investigation of the electromagnetic responses of novel materials at subwavelength scales. In this work, we demonstrate an innovative way to tailor band-selective electromagnetic responses at the surface of a heavy fermion compound, samarium sulfide (SmS). By utilizing the intrinsic, pressure sensitive, and multi-band electron responses of SmS, we create a proof-of-principle heavy fermion metamaterial, which is fabricated and characterized using scanning near-field microscopes with <50 nm spatial resolution. The optical responses at the infrared and visible frequency ranges can be selectively and separately tuned via modifying the occupation of the 4f and 5d band electrons. The unique pressure, doping, and temperature tunability demonstrated represents a paradigm shift for nanoscale metamaterial and metasurface design.

  7. ExoMol line lists XXV: a hot line list for silicon sulphide, SiS

    NASA Astrophysics Data System (ADS)

    Upadhyay, Apoorva; Conway, Eamon K.; Tennyson, Jonathan; Yurchenko, Sergei N.

    2018-06-01

    SiS has long been observed in the circumstellar medium of the carbon-rich star IRC+10216 CW Leo. Comprehensive and accurate rotation-vibrational line lists and partition functions are computed for 12 isotopologues of silicon sulphide (28Si32S, 28Si34S, 29Si32S, 28Si33S, 30Si32S, 29Si34S, 30Si34S, 28Si36S, 29Si33S, 29Si36S, 30Si33S, and 30Si36S) in its ground (X 1Σ+) electronic state. The calculations employ an existing spectroscopically accurate potential energy curve (PEC) derived from experimental measurements and a newly computed ab initio dipole moment curve (DMC). The 28Si32S line list includes 10 104 states and 91 715 transitions. These line lists are available from the ExoMol website (www.exomol.com) and the CDS data base.

  8. PCF-Based Cavity Enhanced Spectroscopic Sensors for Simultaneous Multicomponent Trace Gas Analysis

    PubMed Central

    Nakaema, Walter M.; Hao, Zuo-Qiang; Rohwetter, Philipp; Wöste, Ludger; Stelmaszczyk, Kamil

    2011-01-01

    A multiwavelength, multicomponent CRDS gas sensor operating on the basis of a compact photonic crystal fibre supercontinuum light source has been constructed. It features a simple design encompassing one radiation source, one cavity and one detection unit (a spectrograph with a fitted ICCD camera) that are common for all wavelengths. Multicomponent detection capability of the device is demonstrated by simultaneous measurements of the absorption spectra of molecular oxygen (spin-forbidden b-X branch) and water vapor (polyads 4v, 4v + δ) in ambient atmospheric air. Issues related to multimodal cavity excitation, as well as to obtaining the best signal-to-noise ratio are discussed together with methods for their practical resolution based on operating the cavity in a “quasi continuum” mode and setting long camera gate widths, respectively. A comprehensive review of multiwavelength CRDS techniques is also given. PMID:22319372

  9. Determination of the nitrogen vacancy as a shallow compensating center in GaN doped with divalent metals.

    PubMed

    Buckeridge, J; Catlow, C R A; Scanlon, D O; Keal, T W; Sherwood, P; Miskufova, M; Walsh, A; Woodley, S M; Sokol, A A

    2015-01-09

    We report accurate energetics of defects introduced in GaN on doping with divalent metals, focusing on the technologically important case of Mg doping, using a model that takes into consideration both the effect of hole localization and dipolar polarization of the host material, and includes a well-defined reference level. Defect formation and ionization energies show that divalent dopants are counterbalanced in GaN by nitrogen vacancies and not by holes, which explains both the difficulty in achieving p-type conductivity in GaN and the associated major spectroscopic features, including the ubiquitous 3.46 eV photoluminescence line, a characteristic of all lightly divalent-metal-doped GaN materials that has also been shown to occur in pure GaN samples. Our results give a comprehensive explanation for the observed behavior of GaN doped with low concentrations of divalent metals in good agreement with relevant experiment.

  10. Quantum-state-selective decay spectroscopy of 213Ra

    NASA Astrophysics Data System (ADS)

    Lorenz, Ch.; Sarmiento, L. G.; Rudolph, D.; Ward, D. E.; Block, M.; Heßberger, F. P.; Ackermann, D.; Andersson, L.-L.; Cortés, M. L.; Droese, C.; Dworschak, M.; Eibach, M.; Forsberg, U.; Golubev, P.; Hoischen, R.; Kojouharov, I.; Khuyagbaatar, J.; Nesterenko, D.; Ragnarsson, I.; Schaffner, H.; Schweikhard, L.; Stolze, S.; Wenzl, J.

    2017-09-01

    An experimental scheme combining the mass resolving power of a Penning trap with contemporary decay spectroscopy has been established at GSI Darmstadt. The Universal Linear Accelerator (UNILAC) at GSI Darmstadt provided a 48Ca beam impinging on a thin 170Er target foil. Subsequent to velocity filtering of reaction products in the Separator for Heavy Ion reaction Products (SHIP), the nuclear ground state of the 5 n evaporation channel 213Ra was mass-selected in SHIPTRAP, and the 213Ra ions were finally transferred into an array of silicon strip detectors surrounded by large composite germanium detectors. Based on comprehensive geant4 simulations and supported by theoretical calculations, the spectroscopic results call for a revision of the decay path of 213Ra, thereby exemplifying the potential of a combination of a mass-selective Penning trap device with a dedicated nuclear decay station and contemporary geant4 simulations.

  11. Near-field spectroscopic investigation of dual-band heavy fermion metamaterials

    DOE PAGES

    Gilbert Corder, Stephanie N.; Chen, Xinzhong; Zhang, Shaoqing; ...

    2017-12-22

    Broadband tunability is a central theme in contemporary nanophotonics and metamaterials research. Combining metamaterials with phase change media offers a promising approach to achieve such tunability, which requires a comprehensive investigation of the electromagnetic responses of novel materials at subwavelength scales. In this work, we demonstrate an innovative way to tailor band-selective electromagnetic responses at the surface of a heavy fermion compound, samarium sulfide (SmS). By utilizing the intrinsic, pressure sensitive, and multi-band electron responses of SmS, we create a proof-of-principle heavy fermion metamaterial, which is fabricated and characterized using scanning near-field microscopes with < 50 nm spatial resolution. Themore » optical responses at the infrared and visible frequency ranges can be selectively and separately tuned via modifying the occupation of the 4f and 5d band electrons. The unique pressure, doping, and temperature tunability demonstrated represents a paradigm shift for nanoscale metamaterial and metasurface design.« less

  12. Atomic scale characterization and surface chemistry of metal modified titanate nanotubes and nanowires

    NASA Astrophysics Data System (ADS)

    Kukovecz, Ákos; Kordás, Krisztián; Kiss, János; Kónya, Zoltán

    2016-10-01

    Titanates are salts of polytitanic acid that can be synthesized as nanostructures in a great variety concerning crystallinity, morphology, size, metal content and surface chemistry. Titanate nanotubes (open-ended hollow cylinders measuring up to 200 nm in length and 15 nm in outer diameter) and nanowires (solid, elongated rectangular blocks with length up to 1500 nm and 30-60 nm diameter) are the most widespread representatives of the titanate nanomaterial family. This review covers the properties and applications of these two materials from the surface science point of view. Dielectric, vibrational, electron and X-ray spectroscopic results are comprehensively discussed first, then surface modification methods including covalent functionalization, ion exchange and metal loading are covered. The versatile surface chemistry of one-dimensional titanates renders them excellent candidates for heterogeneous catalytic, photocatalytic, photovoltaic and energy storage applications, therefore, these fields are also reviewed.

  13. An evaluation of traditional and emerging remote sensing technologies for the detection of fugitive contamination at selected Superfund hazardous waste sites

    USGS Publications Warehouse

    Slonecker, E. Terrence; Fisher, Gary B.

    2011-01-01

    This report represents a remote sensing research effort conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency (EPA) for the EPA Office of Inspector General. The objective of this investigation was to explore the efficacy of remote sensing as a technology for postclosure monitoring of hazardous waste sites as defined under the Comprehensive Environmental Response Compensation and Liability Act of 1980 (Public Law 96-510, 42 U.S.C. §9601 et seq.), also known as \\"Superfund.\\" Five delisted Superfund sites in Maryland and Virginia were imaged with a hyperspectral sensor and visited for collection of soil, water, and spectral samples and inspection of general site conditions. This report evaluates traditional and hyperspectral imagery and field spectroscopic measurement techniques in the characterization and analysis of fugitive (anthropogenic, uncontrolled) contamination at previously remediated hazardous waste disposal sites.

  14. Extracting biomarkers of commitment to cancer development: potential role of vibrational spectroscopy in systems biology.

    PubMed

    Theophilou, Georgios; Paraskevaidi, Maria; Lima, Kássio M G; Kyrgiou, Maria; Martin-Hirsch, Pierre L; Martin, Francis L

    2015-05-01

    The complex processes driving cancer have so far impeded the discovery of dichotomous biomarkers associated with its initiation and progression. Reductionist approaches utilizing 'omics' technologies have met some success in identifying molecular alterations associated with carcinogenesis. Systems biology is an emerging science that combines high-throughput investigation techniques to define the dynamic interplay between regulatory biological systems in response to internal and external cues. Vibrational spectroscopy has the potential to play an integral role within systems biology research approaches. It is capable of examining global models of carcinogenesis by scrutinizing chemical bond alterations within molecules. The application of infrared or Raman spectroscopic approaches coupled with computational analysis under the systems biology umbrella can assist the transition of biomarker research from the molecular level to the system level. The comprehensive representation of carcinogenesis as a multilevel biological process will inevitably revolutionize cancer-related healthcare by personalizing risk prediction and prevention.

  15. Be Stars in the Open Cluster NGC 6830

    NASA Astrophysics Data System (ADS)

    Yu, Po-Chieh; Lin, Chien-Cheng; Lin, Hsing-Wen; Lee, Chien-De; Konidaris, Nick; Ngeow, Chow-Choong; Ip, Wing-Huen; Chen, Wen-Ping; Chen, Hui-Chen; Malkan, Matthew A.; Chang, Chan-Kao; Laher, Russ; Huang, Li-Ching; Cheng, Yu-Chi; Edelson, Rick; Ritter, Andreas; Quimby, Robert; Ben-Ami, Sagi; Ofek, Eran. O.; Surace, Jason; Kulkarni, Shrinivas R.

    2016-05-01

    We report the discovery of two new Be stars, and re-identify one known Be star in the open cluster NGC 6830. Eleven Hα emitters were discovered using the Hα imaging photometry of the Palomar Transient Factory Survey. Stellar membership of the candidates was verified with photometric and kinematic information using 2MASS data and proper motions. The spectroscopic confirmation was carried out by using the Shane 3 m telescope at the Lick observatory. Based on their spectral types, three Hα emitters were confirmed as Be stars with Hα equivalent widths greater than -10 Å. Two objects were also observed by the new spectrograph spectral energy distribution-machine (SED-machine) on the Palomar 60-inch Telescope. The SED-machine results show strong Hα emission lines, which are consistent with the results of the Lick observations. The high efficiency of the SED-machine can provide rapid observations for Be stars in a comprehensive survey in the future.

  16. Determination of the Nitrogen Vacancy as a Shallow Compensating Center in GaN Doped with Divalent Metals

    NASA Astrophysics Data System (ADS)

    Buckeridge, J.; Catlow, C. R. A.; Scanlon, D. O.; Keal, T. W.; Sherwood, P.; Miskufova, M.; Walsh, A.; Woodley, S. M.; Sokol, A. A.

    2015-01-01

    We report accurate energetics of defects introduced in GaN on doping with divalent metals, focusing on the technologically important case of Mg doping, using a model that takes into consideration both the effect of hole localization and dipolar polarization of the host material, and includes a well-defined reference level. Defect formation and ionization energies show that divalent dopants are counterbalanced in GaN by nitrogen vacancies and not by holes, which explains both the difficulty in achieving p -type conductivity in GaN and the associated major spectroscopic features, including the ubiquitous 3.46 eV photoluminescence line, a characteristic of all lightly divalent-metal-doped GaN materials that has also been shown to occur in pure GaN samples. Our results give a comprehensive explanation for the observed behavior of GaN doped with low concentrations of divalent metals in good agreement with relevant experiment.

  17. High-precision R-branch transition frequencies in the ν2 fundamental band of H 3+ %A Perry, Adam J.; Hodges, James N.; Markus, Charles R.; Kocheril, G. Stephen; McCall, Benjamin J.

    NASA Astrophysics Data System (ADS)

    Perry, Adam J.; Hodges, James N.; Markus, Charles R.; Kocheril, G. Stephen; McCall, Benjamin J.

    2015-11-01

    The H3+ molecular ion has served as a long-standing benchmark for state-of-the-art ab initio calculations of molecular potentials and variational calculations of rovibrational energy levels. However, the accuracy of such calculations would not have been confirmed if not for the wealth of spectroscopic data that has been made available for this molecule. Recently, a new high-precision ion spectroscopy technique was demonstrated by Hodges et al., which led to the first highly accurate and precise (∼MHz) H3+ transition frequencies. As an extension of this work, we present ten additional R-branch transitions measured to similar precision as a next step toward the ultimate goal of producing a comprehensive high-precision survey of this molecule, from which rovibrational energy levels can be calculated.

  18. Diarylheptanoids from Rhizomes of Alpinia officinarum Inhibit Aggregation of α-Synuclein.

    PubMed

    Fu, Guangmiao; Zhang, Wei; Du, Dongsheng; Ng, Yu Pong; Ip, Fanny C F; Tong, Rongbiao; Ip, Nancy Y

    2017-08-09

    Two new diarylheptanoids, alpinin A (1) and alpinin B (2), together with 18 known diarylheptanoids (3-20), were isolated from the rhizomes of Alpinia officinarum. Their structures were elucidated by comprehensive spectroscopic analysis, including high-resolution mass spectrometry, infrared spectroscopy, and one- and two-dimensional nuclear magnetic resonance spectroscopy. Structurally, alpinin A is a new member of the small family of oxa-bridged diarylheptanoids and contains the characteristic 2,6-cis-configured tetrahydropyran motif (C 1 -C 5 oxa bridge). The absolute configuration of alpinin A was confirmed by asymmetric total synthesis of the enantiomer (ent-1), corroborating the assignment of the molecular structure. The absolute configuration of alpinin B was determined on the basis of the analysis of the circular dichroism exciton chirality spectrum. We evaluated the inhibitory activity of all isolated diarylheptanoids against α-synuclein aggregation at 10 μM. Alpinins A and B significantly inhibited α-synuclein aggregation by 66 and 67%, respectively.

  19. Alterporriol-Type Dimers from the Mangrove Endophytic Fungus, Alternaria sp. (SK11), and Their MptpB Inhibitions

    PubMed Central

    Xia, Guoping; Li, Jia; Li, Hanxiang; Long, Yuhua; Lin, Shao’e; Lu, Yongjun; He, Lei; Lin, Yongcheng; Liu, Lan; She, Zhigang

    2014-01-01

    A new alterporriol-type anthranoid dimer, alterporriol S (1), along with seven known anthraquinone derivatives, (+)-aS-alterporriol C (2), hydroxybostrycin (3), halorosellinia A (4), tetrahydrobostrycin (5), 9α-hydroxydihydrodesoxybostrycin (6), austrocortinin (7) and 6-methylquinizarin (8), were isolated from the culture broth of the mangrove fungus, Alternaria sp. (SK11), from the South China Sea. Their structures and the relative configurations were elucidated using comprehensive spectroscopic methods, including 1D and 2D NMR spectra. The absolute configurations of 1 and the axial configuration of 2 were defined by experimental and theoretical ECD spectroscopy. 1 was identified as the first member of alterporriols consisting of a unique C-10−C-2′ linkage. Atropisomer 2 exhibited strong inhibitory activity against Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB) with an IC50 value 8.70 μM. PMID:24840716

  20. Four new neolignan glucosides from the fruits of Arctium lappa.

    PubMed

    Huang, Xiao-Ying; Feng, Zi-Ming; Yang, Ya-Nan; Jiang, Jian-Shuang; Zhang, Pei-Cheng

    2015-05-01

    Four new neolignan glucosides named (7S, 8R)-4,7,9,9'-tetrahydroxy-3,3'-dimethoxy-8-O-4'-neolignan-9'-O-β-d-apiofuranosyl-(1 → 6)-O-β-d-glucopyranoside (1), (8R)-4,9,9'-trihydroxy-3,3'-dimethoxy-7-oxo-8-O-4'-neolignan-4-O-β-d-glucopyranoside (2), (7R, 8S)-dihydrodehydrodiconiferyl alcohol-7'-oxo-4-O-β-d-glucopyranoside (3), and (7'S, 8'R, 8S)-4,4',9'-trihydroxy-3,3'-dimethoxy-7',9-epoxylignan-7-oxo-4-O-β-d-glucopyranoside (4) were isolated from the fruits of Arctium lappa L. Their structures and absolute configurations were elucidated on the basis of comprehensive spectroscopic analyses (UV, IR, HR-ESI-MS, 1D and 2D NMR, CD), as well as by comparison with known analogues in the literature.

  1. Chiral three-nucleon forces and the evolution of correlations along the oxygen isotopic chain

    NASA Astrophysics Data System (ADS)

    Cipollone, A.; Barbieri, C.; Navrátil, P.

    2015-07-01

    Background: Three-nucleon forces (3NFs) have nontrivial implications on the evolution of correlations at extreme proton-neutron asymmetries. Recent ab initio calculations show that leading-order chiral interactions are crucial to obtain the correct binding energies and neutron driplines along the O, N, and F chains [A. Cipollone, C. Barbieri, and P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013), 10.1103/PhysRevLett.111.062501]. Purpose: Here we discuss the impact of 3NFs along the oxygen chain for other quantities of interest, such has the spectral distribution for attachment and removal of a nucleon, spectroscopic factors, and radii. The objective is to better delineate the general effects of 3NFs on nuclear correlations. Methods: We employ self-consistent Green's function (SCGF) theory which allows a comprehensive calculation of the single-particle spectral function. For the closed subshell isotopes, 14O, 16O, 22O, 24O, and 28O, we perform calculations with the Dyson-ADC(3) method, which is fully nonperturbative and is the state of the art for both nuclear physics and quantum chemistry applications. The remaining open-shell isotopes are studied using the newly developed Gorkov-SCGF formalism up to second order. Results: We produce complete plots for the spectral distributions. The spectroscopic factors for the dominant quasiparticle peaks are found to depend very little on the leading-order (NNLO) chiral 3NFs. The latter have small impact on the calculated matter radii, which, however, are consistently obtained smaller than experiment. Similarly, single-particle spectra tend to be too spread with respect to the experiment. This effect might hinder, to some extent, the onset of correlations and screen the quenching of calculated spectroscopic factors. The most important effect of 3NFs is thus the fine tuning of the energies for the dominant quasiparticle states, which governs the shell evolution and the position of driplines. Conclusions: Although present chiral NNLO 3NFs interactions do reproduce the binding energies correctly in this mass region, the details of the nuclear spectral function remain at odds with the experiment showing too-small radii and a too-spread single-particle spectrum, similar to what has already been pointed out for larger masses. This suggests a lack of repulsion in the present model of N N +3 N interactions, which is mildly apparent already for masses in the A =14 - 28 mass range.

  2. Urea nitrate, an exceptionally easy-to-make improvised explosive: studies towards trace characterization.

    PubMed

    Tamiri, Tsippy; Rozin, Rinat; Lemberger, Nitay; Almog, Joseph

    2009-09-01

    Urea nitrate is a powerful improvised explosive, frequently used by terrorists in the Israeli arena. It was also used in the first World Trade Center bombing in New York in February 1993. It is difficult to identify urea nitrate in post-explosion debris, since only a very small fraction survives the blast. Also, in the presence of water, it readily decomposes to its original components, urea and nitric acid. It is suspected that post-blast debris of urea nitrate can be confused with ammonium nitrate, the main solid product of urea nitrate thermal decomposition. In a comprehensive study towards identification of urea nitrate in post-blast traces, a spectrophotometric technique for quantitative determination of urea nitrate was developed, and conditions were found for extraction and separation of un-exploded traces of urea nitrate with minimal decomposition. Nevertheless, out of 28 samples collected from a series of three controlled firings of urea nitrate charges, only one gave the typical adduct ion by liquid chromatography/mass spectrometry analysis. We found that urea nitrate can be extracted from solid mixtures to organic solvents by using Crown ethers as "host compounds." The adducts thus formed are solid, crystalline compounds that can be characterized by microanalysis and spectroscopic techniques.

  3. Reduction Dynamics of Doped Ceria, Nickel Oxide, and Cermet Composites Probed Using In Situ Raman Spectroscopy

    PubMed Central

    Shearing, Paul R.; Brightman, Edward; Brett, Dan J. L.; Brandon, Nigel P.; Cohen, Lesley F.

    2016-01-01

    The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single‐step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance. PMID:27595058

  4. Reduction Dynamics of Doped Ceria, Nickel Oxide, and Cermet Composites Probed Using In Situ Raman Spectroscopy.

    PubMed

    Maher, Robert C; Shearing, Paul R; Brightman, Edward; Brett, Dan J L; Brandon, Nigel P; Cohen, Lesley F

    2016-01-01

    The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single-step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance.

  5. NuBBEDB: an updated database to uncover chemical and biological information from Brazilian biodiversity.

    PubMed

    Pilon, Alan C; Valli, Marilia; Dametto, Alessandra C; Pinto, Meri Emili F; Freire, Rafael T; Castro-Gamboa, Ian; Andricopulo, Adriano D; Bolzani, Vanderlan S

    2017-08-03

    The intrinsic value of biodiversity extends beyond species diversity, genetic heritage, ecosystem variability and ecological services, such as climate regulation, water quality, nutrient cycling and the provision of reproductive habitats it is also an inexhaustible source of molecules and products beneficial to human well-being. To uncover the chemistry of Brazilian natural products, the Nuclei of Bioassays, Ecophysiology and Biosynthesis of Natural Products Database (NuBBE DB ) was created as the first natural product library from Brazilian biodiversity. Since its launch in 2013, the NuBBE DB has proven to be an important resource for new drug design and dereplication studies. Consequently, continuous efforts have been made to expand its contents and include a greater diversity of natural sources to establish it as a comprehensive compendium of available biogeochemical information about Brazilian biodiversity. The content in the NuBBE DB is freely accessible online (https://nubbe.iq.unesp.br/portal/nubbedb.html) and provides validated multidisciplinary information, chemical descriptors, species sources, geographic locations, spectroscopic data (NMR) and pharmacological properties. Herein, we report the latest advancements concerning the interface, content and functionality of the NuBBE DB . We also present a preliminary study on the current profile of the compounds present in Brazilian territory.

  6. Sesquiterpene Lactones from Cynara cornigera: Acetyl Cholinesterase Inhibition and In Silico Ligand Docking.

    PubMed

    Hegazy, Mohamed-Elamir F; Ibrahim, Abeer Y; Mohamed, Tarik A; Shahat, Abdelaaty A; El Halawany, Ali M; Abdel-Azim, Nahla S; Alsaid, Mansour S; Paré, Paul W

    2016-01-01

    Wild artichoke (Cynara cornigera), a thistle-like perennial belonging to the Asteraceae family, is native to the Mediterranean region, northwestern Africa, and the Canary Islands. While the pleasant, albeit bitter, taste of the leaves and flowers is attributed to the sesquiterpene lactones cynaropicrin and cynarin, a comprehensive phytochemical investigation still needs to be reported. In this study seven sesquiterpene lactones were isolated from an aqueous methanol plant extract, including a new halogenated metabolite (1), the naturally isolated compound sibthorpine (2), and five metabolites isolated for the first time from C. cornigera. Structures were established by spectroscopic methods, including HREIMS, (1 )H, (13 )C, DEPT, (1 )H-(1 )H COSY, HMQC, and HMBC-NMR experiments as well as by X-ray analysis. The isolated bioactive nutrients were analyzed for their antioxidant and metal chelating activity. Compound 1 exhibited a potent metal chelating activity as well as a high antioxidant capacity. Moreover, select compounds were effective as acetyl cholinesterase inhibitors presenting the possibility for such compounds to be examined for anti-neurodegenerative activity. A computational pharmacophore elucidation and docking study was performed to estimate the pharmacophoric features and binding conformation of isolated compounds in the acetyl cholinesterase active site. Georg Thieme Verlag KG Stuttgart · New York.

  7. Gradient separation of oligosaccharides and suppressing anomeric mutarotation with enhanced-fluidity liquid hydrophilic interaction chromatography.

    PubMed

    Bennett, Raffeal; Olesik, Susan V

    2017-04-01

    Enhanced fluidity liquid chromatography using the hydrophilic interaction retention mechanism (EFLC-HILIC) is studied as an alternative separation mode for analyzing oligosaccharides and other sugars. These carbohydrates, which are important for the study of foods and biological systems, are difficult to comprehensively profile and either require a non-green, expensive solvent (i.e. acetonitrile) or derivatization of the analytes at the expense of time, sample loss, and loss of quantitative information. These difficulties arise from the diverse isomerism, mutarotation, and lack of a useable chromophore/fluorophore for spectroscopic detection. Enhanced fluidity liquid chromatography is an alternative separation method that involves the use of conventional polar solvents, such as methanol/water mixtures, as the primary mobile phase component and liquid carbon dioxide (CO 2 ) as the modifier in subcritical conditions. The addition of liquid CO 2 enhances diffusivity and decreases viscosity while maintaining mixture polarity, which typically results in reduced time of analysis and higher efficiency. This work illustrates an optimized EFLC-HILIC separation of a test mixture of oligosaccharides and simple sugars with a resolution greater than 1.3 and an analysis time decrease of over 35% compared to a conventional HPLC HILIC-mode analysis using acetonitrile/water mobile phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Detection of structurally similar adulterants in botanical dietary supplements by thin-layer chromatography and surface enhanced Raman spectroscopy combined with two-dimensional correlation spectroscopy.

    PubMed

    Li, Hao; Zhu, Qing xia; Chwee, Tsz sian; Wu, Lin; Chai, Yi feng; Lu, Feng; Yuan, Yong fang

    2015-07-09

    Thin-layer chromatography (TLC) coupled with surface enhanced Raman spectroscopy (SERS) has been widely used for the study of various complex systems, especially for the detection of adulterants in botanical dietary supplements (BDS). However, this method is not sufficient to distinguish structurally similar adulterants in BDS since the analogs have highly similar chromatographic and/or spectroscopic behaviors. Taking into account the fact that higher cost and more time will be required for comprehensive chromatographic separation, more efforts with respect to spectroscopy are now focused on analyzing the overlapped SERS peaks. In this paper, the combination of a TLC-SERS method with two-dimensional correlation spectroscopy (2DCOS), with duration of exposure to laser as the perturbation, is applied to solve this problem. Besides the usual advantages of the TLC-SERS method, such as its simplicity, rapidness, and sensitivity, more advantages are presented here, such as enhanced selectivity and good reproducibility, which are obtained by 2DCOS. Two chemicals with similar structures are successfully differentiated from the complex BDS matrices. The study provides a more accurate qualitative screening method for detection of BDS with adulterants, and offers a new universal approach for the analysis of highly overlapped SERS peaks. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. WFIRST: Science from the Guest Investigator and Parallel Observation Programs

    NASA Astrophysics Data System (ADS)

    Postman, Marc; Nataf, David; Furlanetto, Steve; Milam, Stephanie; Robertson, Brant; Williams, Ben; Teplitz, Harry; Moustakas, Leonidas; Geha, Marla; Gilbert, Karoline; Dickinson, Mark; Scolnic, Daniel; Ravindranath, Swara; Strolger, Louis; Peek, Joshua; Marc Postman

    2018-01-01

    The Wide Field InfraRed Survey Telescope (WFIRST) mission will provide an extremely rich archival dataset that will enable a broad range of scientific investigations beyond the initial objectives of the proposed key survey programs. The scientific impact of WFIRST will thus be significantly expanded by a robust Guest Investigator (GI) archival research program. We will present examples of GI research opportunities ranging from studies of the properties of a variety of Solar System objects, surveys of the outer Milky Way halo, comprehensive studies of cluster galaxies, to unique and new constraints on the epoch of cosmic re-ionization and the assembly of galaxies in the early universe.WFIRST will also support the acquisition of deep wide-field imaging and slitless spectroscopic data obtained in parallel during campaigns with the coronagraphic instrument (CGI). These parallel wide-field imager (WFI) datasets can provide deep imaging data covering several square degrees at no impact to the scheduling of the CGI program. A competitively selected program of well-designed parallel WFI observation programs will, like the GI science above, maximize the overall scientific impact of WFIRST. We will give two examples of parallel observations that could be conducted during a proposed CGI program centered on a dozen nearby stars.

  10. Localized and Spectroscopic Orbitals: Squirrel Ears on Water.

    ERIC Educational Resources Information Center

    Martin, R. Bruce

    1988-01-01

    Reexamines the electronic structure of water considering divergent views. Discusses several aspects of molecular orbital theory using spectroscopic molecular orbitals and localized molecular orbitals. Gives examples for determining lowest energy spectroscopic orbitals. (ML)

  11. Spectroscopic analysis of 8-hydroxyquinoline derivatives and investigation of its reactive properties by DFT and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sureshkumar, B.; Mary, Y. Sheena; Resmi, K. S.; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.; Narayana, B.; Suma, S.

    2018-03-01

    Two 8-hydroxyquinoline derivatives, 5,7-dichloro-8-hydroxyquinoline (57DC8HQ) and 5-chloro-7-iodo-8-hydroxy quinoline (5CL7I8HQ) have been investigated in details by means of spectroscopic characterization and computational molecular modelling techniques. FT-IR and FT-Raman experimental spectroscopic approaches have been utilized in order to obtain detailed spectroscopic signatures of title compounds, while DFT calculations have been used in order to visualize and assign vibrations. The computed values of dipole moment, polarizability and hyperpolarizability indicate that the title molecules exhibit NLO properties. The evaluated HOMO and LUMO energies demonstrate the chemical stability of the molecules. NBO analysis is made to study the stability of the molecules arising from hyperconjugative interactions and charge delocalization. DFT calculations have been also used jointly with MD simulations in order to investigate in details global and local reactivity properties of title compounds. Also, molecular docking has been also used in order to investigate affinity of title compounds against decarboxylase inhibitor and quinoline derivatives can be a lead compounds for developing new antiparkinsonian drug.

  12. Spectroscopic and electric dipole properties of Sr+Ar and SrAr systems including high excited states

    NASA Astrophysics Data System (ADS)

    Hamdi, Rafika; Abdessalem, Kawther; Dardouri, Riadh; Al-Ghamdi, Attieh A.; Oujia, Brahim; Gadéa, Florent Xavier

    2018-01-01

    The spectroscopic properties of the fundamental and several excited states of Sr+Ar and SrAr, Van der Waals systems are investigated by employing an ab initio method in a pseudo-potential approach. The potential energy curves and the spectroscopic parameters are displayed for the 1-10 2Σ+, 1-6 2Π and 1-3 2Δ electronic states of the Sr+Ar molecule and for the 1-6 1Σ+, 1-4 3Σ+, 1-3 1,3Π and 1-3 1,3Δ states of the neutral molecule SrAr. In addition, from these curves, the vibrational levels and their energy spacing are deduced for Σ+, Π and Δ symmetries. The spectra of the permanent and transition dipole moments are studied for the 1,3Σ+ states of SrAr, which are considered to be two-electron systems and 2Σ+ states of the single electron Sr+Ar ion. The spectroscopic parameters obtained for each molecular system are compared with previous theoretical and experimental works. A significant correlation revealed the accuracy of our results.

  13. ON THE INCORPORATION OF METALLICITY DATA INTO MEASUREMENTS OF STAR FORMATION HISTORY FROM RESOLVED STELLAR POPULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolphin, Andrew E., E-mail: adolphin@raytheon.com

    The combination of spectroscopic stellar metallicities and resolved star color–magnitude diagrams (CMDs) has the potential to constrain the entire star formation history (SFH) of a galaxy better than fitting CMDs alone (as is most common in SFH studies using resolved stellar populations). In this paper, two approaches to incorporating external metallicity information into CMD-fitting techniques are presented. Overall, the joint fitting of metallicity and CMD information can increase the precision of measured age–metallicity relationships (AMRs) and star formation rates by 10% over CMD fitting alone. However, systematics in stellar isochrones and mismatches between spectroscopic and photometric determinations of metallicity canmore » reduce the accuracy of the recovered SFHs. I present a simple mitigation of these systematics that can reduce their amplitude to the level obtained from CMD fitting alone, while ensuring that the AMR is consistent with spectroscopic metallicities. As is the case in CMD-fitting analysis, improved stellar models and calibrations between spectroscopic and photometric metallicities are currently the primary impediment to gains in SFH precision from jointly fitting stellar metallicities and CMDs.« less

  14. Rapid measurement of human milk macronutrients in the neonatal intensive care unit: accuracy and precision of fourier transform mid-infrared spectroscopy.

    PubMed

    Smilowitz, Jennifer T; Gho, Deborah S; Mirmiran, Majid; German, J Bruce; Underwood, Mark A

    2014-05-01

    Although it is well established that human milk varies widely in macronutrient content, it remains common for human milk fortification for premature infants to be based on historic mean values. As a result, those caring for premature infants often underestimate protein intake. Rapid precise measurement of human milk protein, fat, and lactose to allow individualized fortification has been proposed for decades but remains elusive due to technical challenges. This study aimed to evaluate the accuracy and precision of a Fourier transform (FT) mid-infrared (IR) spectroscope in the neonatal intensive care unit to measure human milk fat, total protein, lactose, and calculated energy compared with standard chemical analyses. One hundred sixteen breast milk samples across lactation stages from women who delivered at term (n = 69) and preterm (n = 5) were analyzed with the FT mid-IR spectroscope and with standard chemical methods. Ten of the samples were tested in replicate using the FT mid-IR spectroscope to determine repeatability. The agreement between the FT mid-IR spectroscope analysis and reference methods was high for protein and fat and moderate for lactose and energy. The intra-assay coefficients of variation for all outcomes were less than 3%. The FT mid-IR spectroscope demonstrated high accuracy in measurement of total protein and fat of preterm and term milk with high precision.

  15. Accurate potential energy curves, spectroscopic parameters, transition dipole moments, and transition probabilities of 21 low-lying states of the CO+ cation

    NASA Astrophysics Data System (ADS)

    Xing, Wei; Shi, Deheng; Zhang, Jicai; Sun, Jinfeng; Zhu, Zunlue

    2018-05-01

    This paper calculates the potential energy curves of 21 Λ-S and 42 Ω states, which arise from the first two dissociation asymptotes of the CO+ cation. The calculations are conducted using the complete active space self-consistent field method, which is followed by the valence internally contracted multireference configuration interaction approach with the Davidson correction. To improve the reliability and accuracy of the potential energy curves, core-valence correlation and scalar relativistic corrections, as well as the extrapolation of potential energies to the complete basis set limit are taken into account. The spectroscopic parameters and vibrational levels are determined. The spin-orbit coupling effect on the spectroscopic parameters and vibrational levels is evaluated. To better study the transition probabilities, the transition dipole moments are computed. The Franck-Condon factors and Einstein coefficients of some emissions are calculated. The radiative lifetimes are determined for a number of vibrational levels of several states. The transitions between different Λ-S states are evaluated. Spectroscopic routines for observing these states are proposed. The spectroscopic parameters, vibrational levels, transition dipole moments, and transition probabilities reported in this paper can be considered to be very reliable and can be used as guidelines for detecting these states in an appropriate spectroscopy experiment, especially for the states that were very difficult to observe or were not detected in previous experiments.

  16. Astronomy and Cancer Research: X-Rays and Nanotechnology from Black Holes to Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Pradhan, Anil K.; Nahar, Sultana N.

    It seems highly unlikely that any connection is to be found between astronomy and medicine. But then it also appears to be obvious: X-rays. However, that is quite superficial because the nature of X-rays in the two disciplines is quite different. Nevertheless, we describe recent research on exactly that kind of link. Furthermore, the linkage lies in atomic physics, and via spectroscopy which is a vital tool in astronomy and may also be equally valuable in biomedical research. This review begins with the physics of black hole environments as viewed through X-ray spectroscopy. It is then shown that similar physics can be applied to spectroscopic imaging and therapeutics using heavy-element (high-Z) moieties designed to target cancerous tumors. X-ray irradiation of high-Z nanomaterials as radiosensitizing agents should be extremely efficient for therapy and diagnostics (theranostics). However, broadband radiation from conventional X-ray sources (such as CT scanners) results in vast and unnecessary radiation exposure. Monochromatic X-ray sources are expected to be considerably more efficient. We have developed a new and comprehensive methodology—Resonant Nano-Plasma Theranostics (RNPT)—that encompasses the use of monochromatic X-ray sources and high-Z nanoparticles. Ongoing research entails theoretical computations, numerical simulations, and in vitro and in vivo biomedical experiments. Stemming from basic theoretical studies of Kα resonant photoabsorption and fluorescence in all elements of the Periodic Table, we have established a comprehensive multi-disciplinary program involving researchers from physics, chemistry, astronomy, pathology, radiation oncology and radiology. Large-scale calculations necessary for theory and modeling are done at a variety of computational platforms at the Ohio Supercomputer Center. The final goal is the implementation of RNPT for clinical applications.

  17. Enzymatic and spectroscopic properties of a thermostable [NiFe]‑hydrogenase performing H2-driven NAD+-reduction in the presence of O2.

    PubMed

    Preissler, Janina; Wahlefeld, Stefan; Lorent, Christian; Teutloff, Christian; Horch, Marius; Lauterbach, Lars; Cramer, Stephen P; Zebger, Ingo; Lenz, Oliver

    2018-01-01

    Biocatalysts that mediate the H 2 -dependent reduction of NAD + to NADH are attractive from both a fundamental and applied perspective. Here we present the first biochemical and spectroscopic characterization of an NAD + -reducing [NiFe]‑hydrogenase that sustains catalytic activity at high temperatures and in the presence of O 2 , which usually acts as an inhibitor. We isolated and sequenced the four structural genes, hoxFUYH, encoding the soluble NAD + -reducing [NiFe]‑hydrogenase (SH) from the thermophilic betaproteobacterium, Hydrogenophilus thermoluteolus TH-1 T (Ht). The HtSH was recombinantly overproduced in a hydrogenase-free mutant of the well-studied, H 2 -oxidizing betaproteobacterium Ralstonia eutropha H16 (Re). The enzyme was purified and characterized with various biochemical and spectroscopic techniques. Highest H 2 -mediated NAD + reduction activity was observed at 80°C and pH6.5, and catalytic activity was found to be sustained at low O 2 concentrations. Infrared spectroscopic analyses revealed a spectral pattern for as-isolated HtSH that is remarkably different from those of the closely related ReSH and other [NiFe]‑hydrogenases. This indicates an unusual configuration of the oxidized catalytic center in HtSH. Complementary electron paramagnetic resonance spectroscopic analyses revealed spectral signatures similar to related NAD + -reducing [NiFe]‑hydrogenases. This study lays the groundwork for structural and functional analyses of the HtSH as well as application of this enzyme for H 2 -driven cofactor recycling under oxic conditions at elevated temperatures. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Photometric and Spectroscopic Analysis for the Determination of Physical Parameters of an Eclipsing Binary Star System

    NASA Astrophysics Data System (ADS)

    Reid, Piper

    2013-01-01

    A binary star system is a pair of stars that are bound together by gravity. Most of the stars that we see in the night sky are members of multiple star systems. A system of stars where one star passes in front of the other (as observed from Earth) on a periodic basis is called an eclipsing binary. Eclipsing binaries can have very short rotational periods and in all cases these pairs of stars are so far away that they can only be resolved from Earth as a single point of light. The interaction of the two stars serves to produce physical phenomena that can be observed and used to study stellar properties. By careful data collection and analysis is it possible for an amateur astronomer using commercial, low cost equipment (including a home built spectroscope) to gather photometric (brightness versus time) and spectroscopic (brightness versus wavelength) data, analyze the data, and calculate the physical properties of a binary star system? Using a CCD camera, tracking mount and telescope photometric data of BB Pegasi was collected and a light curve produced. 57 Cygni was also studied using a spectroscope, tracking mount and telescope to prove that Doppler shift of Hydrogen Balmer absorption lines can be used to determine radial velocity. The orbital period, orbital velocity, radius of each star, separation of the two stars and mass of each star was calculated for the eclipsing binary BB Pegasi using photometric and spectroscopic data and Kepler’s 3rd Law. These data were then compared to published data. By careful use of consumer grade astronomical equipment it is possible for an amateur astronomer to determine an array of physical parameters of a distant binary star system from a suburban setting.

  19. Optical Properties of Tm(3+) Ions in Alkali Germanate Glass

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Barnes, Norman P.; Reichle, Donald J.; Jiang, Shibin

    2006-01-01

    Tm-doped alkali germanate glass is investigated for use as a laser material. Spectroscopic investigations of bulk Tm-doped germanate glass are reported for the absorption, emission and luminescence decay. Tm:germanate shows promise as a fiber laser when pumped with 0.792 m diodes because of low phonon energies. Spectroscopic analysis indicates low nonradiative quenching and pulsed laser performance studies confirm this prediction by showing a quantum efficiency of 1.69.

  20. Experimental and theoretical studies on the structural, spectroscopic and hydrogen bonding on 4-nitro-n-(2,4-dinitrophenyl) benzenamine

    NASA Astrophysics Data System (ADS)

    Subhapriya, G.; Kalyanaraman, S.; Jeyachandran, M.; Ragavendran, V.; Krishnakumar, V.

    2018-04-01

    Synthesized 4-nitro-N-(2,4-dinitrophenyl) benzenamine (NDPBA) molecule was confirmed applying the tool of NMR. Theoretical prediction addressed the NMR chemical shifts and correlated well with the experimental data. The molecule subjected to theoretical DFT at 6-311++G** level unraveled the spectroscopic and structural properties of the NDPBA molecule. Moreover the structural features proved the occurrence of intramolecular Nsbnd H· · O hydrogen bonding in the molecule which was further confirmed with the help of Frontier molecular orbital analysis. Vibrational spectroscopic characterization through FT-IR and Raman experimentally and theoretically gave an account for the vibrational properties. An illustration of the topology of the molecule theoretically helped also in finding the hydrogen bonding energy.

  1. The Maunakea Spectroscopic ExplorerStatus and System overview

    NASA Astrophysics Data System (ADS)

    Mignot, S.; Murowinski, R.; Szeto, K.; Blin, A.; Caillier, P.

    2017-12-01

    The Maunakea Spectroscopic Explorer (MSE) project explores the possibility of upgrading the existing CFHT telescope and collaboration to turn it into the most powerful spectroscopic facility available in the years 2020s. Its 10 meter aperture and its 1.5°² hexagonal field of view will allow both large and deep surveys, as complements to current (Gaia, eRosita, LOFAR) and future imaging (Euclid, WFIRST, SKA, LSST) surveys, but also to provide tentative targets to the TMT or the E-ELT. In perfect agreement with INSU's 2015-2020 prospective, besides being well represented in MSE's science team (23/105 members), France is also a major contributor to the Conceptual Design studies with CRAL developing a concept for the low and moderate spectrographs, DT INSU for the prime focus environment and GEPI for systems engineering.

  2. Searching for Lyman-alpha Emitters as a Probe of Cosmic Reionization and Peering Inside Galaxies in the First Two Billion Years

    NASA Astrophysics Data System (ADS)

    Jung, Intae; Finkelstein, Steven; CANDELS team

    2018-01-01

    In the reionization era an immediately accessible method for studying the intergalactic medium is to measure the equivalent width distribution of Lyman-alpha emission from galaxies with follow-up spectroscopy. To search for Lyman-alpha emission from galaxies at z ~ 5-8, we perform spectroscopic observations of candidate galaxies from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). We utilize data from the Keck DEIMOS (optical) and MOSFIRE (near-infrared) spectrographs, ensuring a comprehensive wavelength coverage of Lyman-alpha emission at z ~ 5-8. We have a total of 1170 object-hours of spectroscopic integration of galaxies at z > 5: 118 galaxies with DEIMOS and 69 galaxies with MOSFIRE. The equivalent width distribution of Lyman-alpha emission is constrained with the number of detected objects from our dataset by constructing detailed simulations of mock emission lines, which consider observational conditions and the photometric redshift probability distribution function. We present our robust measure of the evolution of the Lyman-alpha emission equivalent width distribution at z ~ 5-8.Understanding what drives star-formation quenching in the early universe is a long-standing puzzle. To reveal the hidden relation of quenching with galaxy structural properties, particularly central stellar mass density, we perform the first spatially resolved stellar population study of galaxies at z ~ 4, utilizing the CANDELS imaging data set over the GOODS-S field. We examine 166 photometric-redshift-selected galaxies at 3.5 < z < 4.0 with additional deep K-band survey data from the HAWK-I UDS and GOODS Survey which covers the 4000Å break at these redshifts. We estimate the stellar mass, star formation rate, and dust extinction for galaxy inner and outer regions via spatially resolved spectral energy distribution fitting based on a Markov Chain Monte Carlo algorithm. By comparing specific star formation rates (sSFRs) between inner and outer parts of the galaxies we find that the majority of galaxies with high central mass densities show evidence for a preferentially lower sSFR in their centers than in their outer regions, indicative of reduced sSFRs in their central regions.

  3. A high definition view of the COSMOS Wall at z ~ 0.73

    NASA Astrophysics Data System (ADS)

    Iovino, A.; Petropoulou, V.; Scodeggio, M.; Bolzonella, M.; Zamorani, G.; Bardelli, S.; Cucciati, O.; Pozzetti, L.; Tasca, L.; Vergani, D.; Zucca, E.; Finoguenov, A.; Ilbert, O.; Tanaka, M.; Salvato, M.; Kovač, K.; Cassata, P.

    2016-08-01

    Aims: We present a study of a large filamentary structure at z ~ 0.73 in the field of the COSMOS survey, the so-called COSMOS Wall. This structure encompasses a comprehensive range of environments from a dense cluster and a number of galaxy groups to filaments, less dense regions, and adjacent voids. It thus provides a valuable laboratory for the accurate mapping of environmental effects on galaxy evolution at a look-back time of ~6.5 Gyr, when the Universe was roughly half its present age. Methods: We performed deep spectroscopic observations with VIMOS at VLT of a K-band selected sample of galaxies in this complex structure, building a sample of galaxies complete in galaxy stellar mass down to a lower limit of log(ℳ∗/ℳ⊙) ~ 9.8, which is significantly deeper than previously available data. Thanks to its location within the COSMOS survey, each galaxy benefits from a wealth of ancillary information: HST-ACS data with I-band exposures down to IAB ~ 28 complemented by extensive multiwavelength ground- and space-based observations spanning the entire electromagnetic spectrum. Results: In this paper we detail the survey strategy and weighting scheme adopted to account for the biases introduced by the photometric preselection of our targets. We present our galaxy stellar mass and rest-frame magnitudes estimates together with a group catalog obtained with our new data and their member galaxies color/mass distribution. Conclusions: Owing to our new sample we can perform a detailed, high definition mapping of the complex COSMOS Wall structure. The sharp environmental information, coupled with high quality spectroscopic information and rich ancillary data available in the COSMOS field, enables a detailed study of galaxy properties as a function of local environment in a redshift slice where environmental effects are important, and in a stellar mass range where mass and environment driven effects are both at work. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under program ESO 085.A-0664.

  4. STarlight Absorption Reduction through a Survey of Multiple Occulting Galaxies (STARSMOG)

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2014-10-01

    Dust absorption remains the poorest constrained parameter in both Cosmological distances and multi-wavelength studies of galaxy populations. A galaxy's dust distribution can be measured to great accuracy in the case of an overlapping pair of galaxies, i.e., when a foreground spiral galaxy accidentally overlaps a more distant, preferably elliptical galaxy. We have identified over 300 bona-fide overlapping pairs --well separated in redshift but close on the sky-- in the GAMA spectroscopic survey, taking advantage of its high completeness (98%) on small scales. We propose to map the fine-scale (~50pc) dust structure in these occulting galaxies, using HST/WFC3 SNAP observations. The resulting dust maps will (1) serve as an extinction probability for supernova lightcurve fits in similar type host galaxies, (2) strongly constrain the role of ISM structure in Spectral Energy Distribution models of spiral galaxies, and (3) map the level of ISM turbulence (through the spatial power-spectrum). We ask for SNAP observations with a parent list of 355 targets to ensure a complete and comprehensive coverage of each foreground galaxy mass, radius and inclination. The resulting extinction maps will serve as a library for SNIa measurements, galaxy SED modelling and ISM turbulence measurements.

  5. Multiply Reduced Oligofluorenes: Their Nature and Pairing with THF-Solvated Sodium Ions

    DOE PAGES

    Wu, Qin; Zaikowski, Lori; Kaur, Parmeet; ...

    2016-07-01

    Conjugated oligofluorenes are chemically reduced up to five charges in tetrahydrofuran solvent and confirmed with clear spectroscopic evidence. Stimulated by these experimental results, we have conducted a comprehensive computational study of the electronic structure and the solvation structure of representative oligofluorene anions with a focus on the pairing between sodium ions and these multianions. In addition, using density functional theory (DFT) methods and a solvation model of both explicit solvent molecules and implicit polarizable continuum, we first elucidate the structure of tightly solvated free sodium ions, and then explore the pairing of sodium ions either in contact with reduced oligofluorenesmore » or as solvent-separated ion pairs. Computed time-dependent-DFT absorption spectra are compared with experiments to assign the dominant ion pairing structure for each multianion. Computed ion pair binding energies further support our assignment. Lastly, the availability of different length and reducing level of oligofluorenes enables us to investigate the effects of total charge and charge density on the binding with sodium ions, and our results suggest both factors play important roles in ion pairing for small molecules. However, as the oligofluorene size grows, its charge density determines the binding strength with the sodium ion.« less

  6. Eu(III) uptake on rectorite in the presence of humic acid: a macroscopic and spectroscopic study.

    PubMed

    Chen, Changlun; Yang, Xin; Wei, Juan; Tan, Xiaoli; Wang, Xiangke

    2013-03-01

    This work contributed to the comprehension of humic acid (HA) effect on Eu(III) uptake to Na-rectorite by batch sorption experiments, model fitting, scanning electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and extended X-ray absorption fine structure (EXAFS) spectroscopy. At low pH, the presence of HA enhanced Eu(III) sorption on Na-rectorite, while reduced Eu(III) sorption at high pH. The experimental data of Eu(III) sorption in the absence and presence of HA were simulated by the diffuse-layer model well with the aid of FITEQL 3.2 software. The basal spacing of rectorite became large after Eu(III) and HA sorption on Na-rectorite. Some of Eu(III) ions and HA might be intercalated into the interlayer space of Na-rectorite. EXAFS analysis showed that the R(Eu-O) (the bond distance of Eu and O in the first shell of Eu) and N values (coordination number) of Eu(III)-HA-rectorite system were smaller than those of Eu(III)-rectorite system. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Thermoviscous analysis of open photoacoustic cells

    NASA Astrophysics Data System (ADS)

    Mannoor, Madhusoodanan; Kang, Sangmo

    2017-11-01

    Open photoacoustic cells, apart from the conventional spectroscopic applications, are increasingly useful in bio medical applications such as in vivo blood sugar measurement. Maximising the acoustic pressure amplitude and the quality factor are major design considerations associated with open cells.Conventionaly, resonant photoacoustic cells are analyzed by either transmission line analogy or Eigen mode expansion method. In this study, we conducted a more comprehensive thermo viscous analysis of open photoacoustic cells. A Helmholtz cell and a T-shaped cell, which are acoustically different, are considered for analysis. Effect of geometrical dimensions on the acoustic pressure, quality factor and the intrusion of noise are analyzed and compared between these cells. Specific attention is given to the sizing of the opening and fixtures on it to minimize the radiational losses and the intrusion of noise. Our results are useful for proper selection of the type of open photoacoustic cells for in vivo blood sugar measurement and the optimization of geometric variables of such cells. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future planning (2017R1A2B4005006).

  8. Heavy quarkonia in a potential model: binding energy, decay width, and survival probability

    NASA Astrophysics Data System (ADS)

    Srivastava, P. K.; Chaturvedi, O. S. K.; Thakur, Lata

    2018-06-01

    Recently a lot of progress has been made in deriving the heavy quark potential within a QCD medium. In this article we have considered heavy quarkonium in a hot quark gluon plasma phase. The heavy-quark potential has been modeled properly for short as well as long distances. The potential at long distances is modeled as a QCD string which is screened at the same scale as the Coulomb field. We have numerically solved the 1+1-dimensional Schrodinger equation for this potential and obtained the eigen wavefunction and binding energy for the 1 S and 2 S states of charmonium and bottomonium. Further, we have calculated the decay width and dissociation temperature of quarkonium states in the QCD plasma. Finally, we have used our recently proposed unified model with these new values of decay widths to calculate the survival probability of the various quarkonium states with respect to centrality at relativistic heavy ion collider and large hadron collider energies. This study provides a unified, consistent and comprehensive description of spectroscopic properties of various quarkonium states at finite temperatures along with their nuclear modification factor at different collision energies.

  9. Identifying Multiple Populations in M71 using CN

    NASA Astrophysics Data System (ADS)

    Gerber, Jeffrey M.; Friel, Eileen D.; Vesperini, Enrico

    2018-01-01

    It is now well established that globular clusters (GCs) host multiple stellar populations characterized by differences in several light elements. While these populations have been found in nearly all GCs, we still lack an entirely successful model to explain their formation. A key constraint to these models is the detailed pattern of light element abundances seen among the populations; different techniques for identifying these populations probe different elements and do not always yield the same results. We study a large sample of stars in the GC M71 for light elements C and N, using the CN and CH band strength to identify multiple populations. Our measurements come from low-resolution spectroscopy obtained with the WIYN-3.5m telescope for ~150 stars from the tip of the red-giant branch down to the main-sequence turn-off. The large number of stars and broad spatial coverage of our sample (out to ~3.5 half-light radii) allows us to carry out a comprehensive characterization of the multiple populations in M71. We use a combination of the various spectroscopic and photometric indicators to draw a more complete picture of the properties of the populations and to investigate the consistency of classifications using different techniques.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qin; Zaikowski, Lori; Kaur, Parmeet

    Conjugated oligofluorenes are chemically reduced up to five charges in tetrahydrofuran solvent and confirmed with clear spectroscopic evidence. Stimulated by these experimental results, we have conducted a comprehensive computational study of the electronic structure and the solvation structure of representative oligofluorene anions with a focus on the pairing between sodium ions and these multianions. In addition, using density functional theory (DFT) methods and a solvation model of both explicit solvent molecules and implicit polarizable continuum, we first elucidate the structure of tightly solvated free sodium ions, and then explore the pairing of sodium ions either in contact with reduced oligofluorenesmore » or as solvent-separated ion pairs. Computed time-dependent-DFT absorption spectra are compared with experiments to assign the dominant ion pairing structure for each multianion. Computed ion pair binding energies further support our assignment. Lastly, the availability of different length and reducing level of oligofluorenes enables us to investigate the effects of total charge and charge density on the binding with sodium ions, and our results suggest both factors play important roles in ion pairing for small molecules. However, as the oligofluorene size grows, its charge density determines the binding strength with the sodium ion.« less

  11. Comparative evaluation of spectroscopic models using different multivariate statistical tools in a multicancer scenario

    NASA Astrophysics Data System (ADS)

    Ghanate, A. D.; Kothiwale, S.; Singh, S. P.; Bertrand, Dominique; Krishna, C. Murali

    2011-02-01

    Cancer is now recognized as one of the major causes of morbidity and mortality. Histopathological diagnosis, the gold standard, is shown to be subjective, time consuming, prone to interobserver disagreement, and often fails to predict prognosis. Optical spectroscopic methods are being contemplated as adjuncts or alternatives to conventional cancer diagnostics. The most important aspect of these approaches is their objectivity, and multivariate statistical tools play a major role in realizing it. However, rigorous evaluation of the robustness of spectral models is a prerequisite. The utility of Raman spectroscopy in the diagnosis of cancers has been well established. Until now, the specificity and applicability of spectral models have been evaluated for specific cancer types. In this study, we have evaluated the utility of spectroscopic models representing normal and malignant tissues of the breast, cervix, colon, larynx, and oral cavity in a broader perspective, using different multivariate tests. The limit test, which was used in our earlier study, gave high sensitivity but suffered from poor specificity. The performance of other methods such as factorial discriminant analysis and partial least square discriminant analysis are at par with more complex nonlinear methods such as decision trees, but they provide very little information about the classification model. This comparative study thus demonstrates not just the efficacy of Raman spectroscopic models but also the applicability and limitations of different multivariate tools for discrimination under complex conditions such as the multicancer scenario.

  12. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-01

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298 K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper.

  13. Catalytic Reduction of 4-Nitrophenol: A Quantitative Assessment of the Role of Dissolved Oxygen in Determining the Induction Time.

    PubMed

    Menumerov, Eredzhep; Hughes, Robert A; Neretina, Svetlana

    2016-12-14

    The reduction of 4-nitrophenol to 4-aminophenol by borohydride is one of the foremost model catalytic reactions because it allows for a straightforward assessment of catalysts using the kinetic parameters extracted from the real-time spectroscopic monitoring of an aqueous solution. Crucial to its standing as a model reaction is a comprehensive mechanistic framework able to explain the entire time evolution of the reaction. While much of this framework is in place, there is still much debate over the cause of the induction period, an initial time interval where no reaction seemingly occurs. Here, we report on the simultaneous monitoring of the spectroscopic signal and the dissolved oxygen content within the aqueous solution. It reveals that the induction period is the time interval required for the level of dissolved oxygen to fall below a critical value that is dependent upon whether Au, Ag, or Pd nanoparticles are used as the catalyst. With this understanding, we are able to exert complete control over the induction period, being able to eliminate it, extend it indefinitely, or even induce multiple induction periods over the course of a single reaction. Moreover, we have determined that the reaction product, 4-aminophenol, in the presence of the same catalyst reacts with dissolved oxygen to form 4-nitrophenolate. The implication of these results is that the induction period relates, not to some activation of the catalyst, but to a time interval where the reaction product is being rapidly transformed back into a reactant by a side reaction.

  14. Modeling and in Situ Probing of Surface Reactions in Atomic Layer Deposition.

    PubMed

    Zheng, Yuanxia; Hong, Sungwook; Psofogiannakis, George; Rayner, G Bruce; Datta, Suman; van Duin, Adri C T; Engel-Herbert, Roman

    2017-05-10

    Atomic layer deposition (ALD) has matured into a preeminent thin film deposition technique by offering a highly scalable and economic route to integrate chemically dissimilar materials with excellent thickness control down to the subnanometer regime. Contrary to its extensive applications, a quantitative and comprehensive understanding of the reaction processes seems intangible. Complex and manifold reaction pathways are possible, which are strongly affected by the surface chemical state. Here, we report a combined modeling and experimental approach utilizing ReaxFF reactive force field simulation and in situ real-time spectroscopic ellipsometry to gain insights into the ALD process of Al 2 O 3 from trimethylaluminum and water on hydrogenated and oxidized Ge(100) surfaces. We deciphered the origin for the different peculiarities during initial ALD cycles for the deposition on both surfaces. While the simulations predicted a nucleation delay for hydrogenated Ge(100), a self-cleaning effect was discovered on oxidized Ge(100) surfaces and resulted in an intermixed Al 2 O 3 /GeO x layer that effectively suppressed oxygen diffusion into Ge. In situ spectroscopic ellipsometry in combination with ex situ atomic force microscopy and X-ray photoelectron spectroscopy confirmed these simulation results. Electrical impedance characterizations evidenced the critical role of the intermixed Al 2 O 3 /GeO x layer to achieve electrically well-behaved dielectric/Ge interfaces with low interface trap density. The combined approach can be generalized to comprehend the deposition and reaction kinetics of other ALD precursors and surface chemistry, which offers a path toward a theory-aided rational design of ALD processes at a molecular level.

  15. Far-UV spectroscopy of two extremely hot, helium-rich white dwarfs

    NASA Astrophysics Data System (ADS)

    Werner, K.; Rauch, T.; Kruk, J. W.

    2017-05-01

    A large proportion of hot post-asymptotic giant branch stars and white dwarfs (WDs) are hydrogen-deficient. Two distinct evolutionary sequences have been identified. One of them comprises stars of spectral type [WC] and PG1159, and it originates from a late helium-shell flash, creating helium-rich stellar atmospheres with significant admixtures of carbon (up to about 50%, mass fraction). The other sequence comprises stars of spectral type O(He) and luminous subdwarf O stars which possibly are descendants of RCrB stars and extreme helium stars. Their carbon abundances are significantly lower (of the order of 1% or less) and it is thought that they originate from binary-star evolution (through merger or common-envelope evolution). Here we investigate two of the three hottest known helium-rich (DO) WDs (PG 1034+001 and PG 0038+199). They are the only ones for which spectra were recorded with the Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope, allowing a comprehensive ultraviolet spectral analysis. We find effective temperatures of Teff = 115 000 ± 5000 K and 125 000 ± 5000 K, respectively, and a surface gravity of log g= 7 ± 0.5. In both stars, nitrogen is strongly oversolar while C and O are significantly subsolar. For all other assessed metals (Ne, Si, P, S, Ar, Fe, and Ni) we find abundances close to solar. We conclude that these WDs are immediate descendants of O(He) stars and, hence, result from close-binary evolution. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer.

  16. Active spectroscopic measurements using the ITER diagnostic system.

    PubMed

    Thomas, D M; Counsell, G; Johnson, D; Vasu, P; Zvonkov, A

    2010-10-01

    Active (beam-based) spectroscopic measurements are intended to provide a number of crucial parameters for the ITER device being built in Cadarache, France. These measurements include the determination of impurity ion temperatures, absolute densities, and velocity profiles, as well as the determination of the plasma current density profile. Because ITER will be the first experiment to study long timescale (∼1 h) fusion burn plasmas, of particular interest is the ability to study the profile of the thermalized helium ash resulting from the slowing down and confinement of the fusion alphas. These measurements will utilize both the 1 MeV heating neutral beams and a dedicated 100 keV hydrogen diagnostic neutral beam. A number of separate instruments are being designed and built by several of the ITER partners to meet the different spectroscopic measurement needs and to provide the maximum physics information. In this paper, we describe the planned measurements, the intended diagnostic ensemble, and we will discuss specific physics and engineering challenges for these measurements in ITER.

  17. Spectroscopic analysis of radiation-generated changes in tensile properties of a polyetherimide film

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.; Long, S. A. T.

    1985-01-01

    The effects of electron radiation on Ultem, a polyetherimide were studied for doses from 2 x 10 to the 9th power to 6 x 10 to the 9th power rad. Specimens were studied for tensile property testing and for electron paramagnetic resonance and infrared spectroscopic measurements of molecular structure. A Faraday cup design and a method for remote temperature measurement were developed. The spectroscopic data show that radiation caused dehydrogenation of methyl groups, rupture of main-chain ether linkage, and opening of imide rings, all to form radicals and indicate that the so-formed atomic hydrogen attached to phenyl radicals, but not to phenoxyl radicals, which would have formed hydroxyls. The observed decays of the radiation-generated phenoxyl, gem-dimethyl, and carbonyl radicals were interpreted as a combining of the radicals to form crosslinking. This crosslinking is the probable cause of the major reduction in the elongation of the tensile specimens after irradiation. Subsequent classical solubility tests indicate that the irradiation caused massive crosslinking.

  18. Binary star orbits from speckle interferometry. 5: A combined speckle/spectroscopic study of the O star binary 15 Monocerotis

    NASA Technical Reports Server (NTRS)

    Gies, Douglas R.; Mason, Brian D.; Hartkopf, William I.; Mcalister, Harold A.; Frazin, Richard A.; Hahula, Michael E.; Penny, Laura R.; Thaller, Michelle L.; Fullerton, Alexander W.; Shara, Michael M.

    1993-01-01

    We report on the discovery of a speckle binary companion to the O7 V (f) star 15 Monocerotis. A study of published radial velocities in conjunction with new measurements from Kitt Peak National Observatory (KPNO) and IUE suggests that the star is also a spectroscopic binary with a period of 25 years and a large eccentricity. Thus, 15 Mon is the first O star to bridge the gap between the spectroscopic and visual separation regimes. We have used the star's membership in the cluster NGC 2264 together with the cluster distance to derive masses of 34 and 19 solar mass for the primary and secondary, respectively. Several of the He I line profiles display a broad shallow component which we associate with the secondary, and we estimate the secondary's classification to be O9.5 Vn. The new orbit leads to several important predictions that can be tested over the next few years.

  19. Synthesis, characterization, and application of novel biodegradable self-assembled 2-(N-phthalimido) ethyl-palmitate nanoparticles for cancer therapy

    NASA Astrophysics Data System (ADS)

    Kasoju, Naresh; Bora, Debajeet K.; Bhonde, Ramesh R.; Bora, Utpal

    2010-03-01

    We report the synthesis of novel biodegradable nanoparticles (NPs) which can kill the cancer cells without any additional drug loading. The NP was a self-assembled form of a phthalimide based conjugate, in which the phthalimide moiety was responsible for the anticancer activity. We describe the synthesis of a novel 2-(N-phthalimido) ethyl palmitate (PHEP-Pal) conjugate and subsequent preparation of NPs by a simple self assembly process. The successful synthesis of conjugate was confirmed by various characterization studies including nuclear magnetic resonance spectroscope, Fourier transform infrared spectroscope, TOF-liquid chromatography mass spectroscope, differential scanning calorimetry, and X-ray diffraction unit. The synthesis, shape, size, and size distribution of PHEP-Pal NPs were determined by transmission electron microscope, atomic force microscope, and dynamic light scattering technique. Finally, cell culture studies using A549 and HeLa cells were done to evaluate the anticancer effect of PHEP-Pal NPs, which demonstrated the potency of these NPs for use in cancer chemotherapy.

  20. HALOE Science Investigation

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris

    1998-01-01

    This cooperative agreement has investigated a number of spectroscopic problems of interest to the Halogen Occultation Experiment (HALOE). The types of studies performed are in two parts, namely, those that involve the testing and characterization of correlation spectrometers and those that provide basic molecular spectroscopic information. In addition, some solar studies were performed with the calibration data returned by HALOE from orbit. In order to accomplish this a software package was written as part of this cooperative agreement. The HALOE spectroscopic instrument package was used in various tests of the HALOE flight instrument. These included the spectral response test, the early stages of the gas response test and various spectral response tests of the detectors and optical elements of the instruments. Considerable effort was also expended upon the proper laboratory setup for many of the prelaunch tests of the HALOE flight instrument, including the spectral response test and the gas response test. These tests provided the calibration and the assurance that the calibration was performed correctly.

  1. The Hydrothermal Diamond Anvil Cell (HDAC) for raman spectroscopic studies of geologic fluids at high pressures and temperatures

    USGS Publications Warehouse

    Schmidt, Christian; Chou, I-Ming; Dubessy, Jean; Caumon, Marie-Camille; Pérez, Fernando Rull

    2012-01-01

    In this chapter, we describe the hydrothermal diamond-anvil cell (HDAC), which is specifically designed for experiments on systems with aqueous fluids to temperatures up to ⬚~1000ºC and pressures up to a few GPa to tens of GPa. This cell permits optical observation of the sample and the in situ determination of properties by ‘photon-in photon-out’ techniques such as Raman spectroscopy. Several methods for pressure measurement are discussed in detail including the Raman spectroscopic pressure sensors a-quartz, berlinite, zircon, cubic boron nitride (c-BN), and 13C-diamond, the fluorescence sensors ruby (α-Al2O3:Cr3+), Sm:YAG (Y3Al5O12:Sm3+) and SrB4O7:Sm2+, and measurements of phase-transition temperatures. Furthermore, we give an overview of published Raman spectroscopic studies of geological fluids to high pressures and temperatures, in which diamond anvil cells were applied.

  2. Chapter 7: The hydrothermal diamond anvil cell (HDAC) for Raman spectroscopic studies of geological fluids at high pressures and temperatures

    USGS Publications Warehouse

    Schmidt, Christian; Chou, I-Ming; Dubessy, J.; Caumon, M.-C.; Rull, F.

    2012-01-01

    In this chapter, we describe the hydrothermal diamond-anvil cell (HDAC), which is specifically designed for experiments on systems with aqueous fluids to temperatures up to ~1000ºC and pressures up to a few GPa to tens of GPa. This cell permits optical observation of the sample and the in situ determination of properties by ‘photon-in photon-out’ techniques such as Raman spectroscopy. Several methods for pressure measurement are discussed in detail including the Raman spectroscopic pressure sensors a-quartz, berlinite, zircon, cubic boron nitride (c-BN), and 13C-diamond, the fluorescence sensors ruby (α-Al2O3:Cr3+), Sm:YAG (Y3Al5O12:Sm3+) and SrB4O7:Sm2+, and measurements of phase-transition temperatures. Furthermore, we give an overview of published Raman spectroscopic studies of geological fluids to high pressures and temperatures, in which diamond anvil cells were applied.

  3. Electrochemical and spectroscopic study on the interaction between isoprenaline and DNA using multivariate curve resolution-alternating least squares.

    PubMed

    Ni, Yongnian; Wei, Min; Kokot, Serge

    2011-11-01

    Interaction of isoprenaline (ISO) with calf-thymus DNA was studied by spectroscopic and electrochemical methods. The behavior of ISO was investigated at a glassy carbon electrode (GCE) by cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPSV); ISO was oxidized and an irreversible oxidation peak was observed. The binding constant K and the stoichiometric coefficient m of ISO with DNA were evaluated. Also, with the addition of DNA, hyperchromicity of the UV-vis absorption spectra of ISO was noted, while the fluorescence intensity decreased significantly. Multivariate curve resolution-alternating least squares (MCR-ALS) chemometrics method was applied to resolve the combined spectroscopic data matrix, which was obtained by the UV-vis and fluorescence methods. Pure spectra of ISO, DNA and ISO-DNA complex, and their concentration profiles were then successfully obtained. The results indicated that the ISO molecule intercalated into the base-pairs of DNA, and the complex of ISO-DNA was formed. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Diradicals acting through diamagnetic phenylene vinylene bridges: Raman spectroscopy as a probe to characterize spin delocalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González, Sandra Rodríguez; Nieto-Ortega, Belén; González Cano, Rafael C.

    2014-04-28

    We present a complete Raman spectroscopic study in two structurally well-defined diradical species of different lengths incorporating oligo p-phenylene vinylene bridges between two polychlorinated triphenylmethyl radical units, a disposition that allows sizeable conjugation between the two radicals through and with the bridge. The spectroscopic data are interpreted and supported by quantum chemical calculations. We focus the attention on the Raman frequency changes, interpretable in terms of: (i) bridge length (conjugation length); (ii) bridge conformational structure; and (iii) electronic coupling between the terminal radical units with the bridge and through the bridge, which could delineate through-bond spin polarization, or spin delocalization.more » These items are addressed by using the “oligomer approach” in conjunction with pressure and temperature dependent Raman spectroscopic data. In summary, we have attempted to translate the well-known strategy to study the electron (charge) structure of π−conjugated molecules by Raman spectroscopy to the case of electron (spin) interactions via the spin delocalization mechanism.« less

  5. Synthesis, spectroscopic characterization and biological activities of N4O2 Schiff base ligand and its metal complexes of Co(II), Ni(II), Cu(II) and Zn(II)

    NASA Astrophysics Data System (ADS)

    Al-Resayes, Saud I.; Shakir, Mohammad; Abbasi, Ambreen; Amin, Kr. Mohammad Yusuf; Lateef, Abdul

    The Schiff base ligand, bis(indoline-2-one)triethylenetetramine (L) obtained from condensation of triethylenetetramine and isatin was used to synthesize the complexes of type, [ML]Cl2 [M = Co(II), Ni(II), Cu(II) and Zn(II)]. L was characterized on the basis of the results of elemental analysis, FT-IR, 1H and 13C NMR, mass spectroscopic studies. The stoichiometry, bonding and stereochemistries of complexes were ascertained on the basis of results of elemental analysis, magnetic susceptibility values, molar conductance and various spectroscopic studies. EPR, UV-vis and magnetic moments revealed an octahedral geometry for complexes. L and its Cu(II) and Zn(II) complexes were screened for their antibacterial activity. Analgesic activity of Cu(II) and Zn(II) complexes was also tested in rats by tail flick method. Both complexes were found to possess good antibacterial and moderate analgesic activity.

  6. Single-Molecule Interfacial Electron Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, H. Peter

    This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static andmore » dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO 2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO 2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO 2 nanoparticle surfaces by using ultrafast single-molecule spectroscopy and electrochemical AFM metal tip scanning microscopy, focusing on understanding the interfacial electron transfer dynamics at specific nanoscale electron transfer sites with high-spatially and temporally resolved topographic-and-spectroscopic characterization at individual molecule basis, characterizing single-molecule rate processes, reaction driving force, and molecule-substrate electronic coupling. One of the most significant characteristics of our new approach is that we are able to interrogate the complex interfacial electron transfer dynamics by actively pin-point energetic manipulation of the surface interaction and electronic couplings, beyond the conventional excitation and observation.« less

  7. Quantagenetics® analysis of laser-induced breakdown spectroscopic data: Rapid and accurate authentication of materials

    NASA Astrophysics Data System (ADS)

    McManus, Catherine E.; Dowe, James; McMillan, Nancy J.

    2018-07-01

    Many industrial and commercial issues involve authentication of such matters as the manufacturer or geographic source of a material, and quality control of materials, determining whether specific treatments have been properly applied, or if a material is authentic or fraudulent. Often, multiple analytical techniques and tests are used, resulting in expensive and time-consuming testing procedures. Laser-Induced Breakdown Spectroscopy (LIBS) is a rapid laser ablation spectroscopic analytical method. Each LIBS spectrum contains information about the concentration of every element, some isotopic ratios, and the molecular structure of the material, making it a unique and comprehensive signature of the material. Quantagenetics® is a multivariate statistical method based on Bayesian statistics that uses the Euclidian distance between LIBS spectra of materials to classify materials (US Patents 9,063,085 and 8,699,022). The fundamental idea behind Quantagenetics® is that LIBS spectra contain sufficient information to determine the origin and history of materials. This study presents two case studies that illustrate the method. LIBS spectra from 510 Colombian emeralds from 18 mines were classified by mine. Overall, 99.4% of the spectra were correctly classified; the success rate for individual mines ranges from 98.2% to 100%. Some of the mines are separated by distances as little as 200 m, indicating that the method uses the slight but consistent differences in composition to identify the mine of origin accurately. The second study used bars of 17-4 stainless steel from three manufacturers. Each of the three bars was cut into 90 coupons; 30 of each bar received no further treatment, another 30 from each bar received one tempering and hardening treatment, and the final 30 coupons from each bar received a different heat treatment. Using LIBS spectra taken from the coupons, the Quantagenetics® method classified the 270 coupons both by manufacturer (composition) and heat treatment (structure) with an overall success rate of 95.3%. Individual success rates range from 92.4% to 97.6%. These case studies were successful despite having no preconceived knowledge of the materials; artificial intelligence allows the materials to classify themselves without human intervention or bias. Multivariate analysis of LIBS spectra using the Quantagenetics® method has promise to improve quality control and authentication of a wide variety of materials in industrial enterprises.

  8. In Vitro Electrochemical Corrosion and Cell Viability Studies on Nickel-Free Stainless Steel Orthopedic Implants

    PubMed Central

    Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J.; Rad, Armin Tahmasbi; Madihally, Sundararajan V.; Tayebi, Lobat

    2013-01-01

    The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments. PMID:23630603

  9. Modeling the magnetic properties of lanthanide complexes: relationship of the REC parameters with Pauling electronegativity and coordination number.

    PubMed

    Baldoví, José J; Gaita-Ariño, Alejandro; Coronado, Eugenio

    2015-07-28

    In a previous study, we introduced the Radial Effective Charge (REC) model to study the magnetic properties of lanthanide single ion magnets. Now, we perform an empirical determination of the effective charges (Zi) and radial displacements (Dr) of this model using spectroscopic data. This systematic study allows us to relate Dr and Zi with chemical factors such as the coordination number and the electronegativities of the metal and the donor atoms. This strategy is being used to drastically reduce the number of free parameters in the modeling of the magnetic and spectroscopic properties of f-element complexes.

  10. The Sloan Digital Sky Survey Reverberation Mapping Project: Ensemble Spectroscopic Variability of Quasar Broad Emission Lines

    NASA Astrophysics Data System (ADS)

    Sun, Mouyuan; Trump, Jonathan R.; Shen, Yue; Brandt, W. N.; Dawson, Kyle; Denney, Kelly D.; Hall, Patrick B.; Ho, Luis C.; Horne, Keith; Jiang, Linhua; Richards, Gordon T.; Schneider, Donald P.; Bizyaev, Dmitry; Kinemuchi, Karen; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey

    2015-09-01

    We explore the variability of quasars in the Mg ii and {{H}}β broad emission lines and ultraviolet/optical continuum emission using the Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM). This is the largest spectroscopic study of quasar variability to date: our study includes 29 spectroscopic epochs from SDSS-RM over 6 months, containing 357 quasars with Mg ii and 41 quasars with {{H}}β . On longer timescales, the study is also supplemented with two-epoch data from SDSS-I/II. The SDSS-I/II data include an additional 2854 quasars with Mg ii and 572 quasars with {{H}}β . The Mg ii emission line is significantly variable ({{Δ }}f/f∼ 10% on ∼100-day timescales), a necessary prerequisite for its use for reverberation mapping studies. The data also confirm that continuum variability increases with timescale and decreases with luminosity, and the continuum light curves are consistent with a damped random-walk model on rest-frame timescales of ≳ 5 days. We compare the emission-line and continuum variability to investigate the structure of the broad-line region. Broad-line variability shows a shallower increase with timescale compared to the continuum emission, demonstrating that the broad-line transfer function is not a δ-function. {{H}}β is more variable than Mg ii (roughly by a factor of ∼1.5), suggesting different excitation mechanisms, optical depths and/or geometrical configuration for each emission line. The ensemble spectroscopic variability measurements enabled by the SDSS-RM project have important consequences for future studies of reverberation mapping and black hole mass estimation of 1\\lt z\\lt 2 quasars.

  11. Towards a comprehensive model for the electronic and vibrational structure of the Creutz-Taube ion.

    PubMed

    Reimers, Jeffrey R; Wallace, Brett B; Hush, Noel S

    2008-01-13

    Since the synthesis of the Creutz-Taube ion, the nature of its charge localization has been of immense scientific interest, this molecule providing a model system for the understanding of the operation of biological photosynthetic and electron-transfer processes. However, recent work has shown that its nature remains an open question. Many systems of this type, including photosynthetic reaction centres, are of current research interest, and thereby the Creutz-Taube ion provides an important chemical paradigm: the key point of interest is the details of how such molecules behave. We lay the groundwork for the construction of a comprehensive model for its chemical and spectroscopic properties. Advances are described in some of the required areas including: simulation of electronic absorption spectra; quantitative depiction of the large interaction of the ion's electronic description with solvent motions; and the physics of Ru-NH3 spectator-mode vibrations. We show that details of the solvent electron-phonon coupling are critical in the interpretation of the spectator-mode vibrations, as these strongly mix with solvent motions when 0.75<2J/lambda<1. In this regime, a double-well potential exists which does not support localized zero-point vibration, and many observed properties of the Creutz-Taube ion are shown to be consistent with the hypothesis that the ion has this character.

  12. The calibration of photographic and spectroscopic films. A densitometric analysis of IIaO film flown aboard the space shuttle transportation system STS3, STS8, and STS7

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.

    1987-01-01

    The results of these studies have implications for the utilization of the IIaO spectroscopic film on the future shuttle and space lab missions. These responses to standard photonic energy sources will have immediate application for the uneven responses of the film photographing a star field in a terrestrial or extraterrestrial environment with associated digital imaging equipment.

  13. Use of different spectroscopic techniques in the analysis of Roman age wall paintings.

    PubMed

    Agnoli, Francesca; Calliari, Irene; Mazzocchin, Gian-Antonio

    2007-01-01

    In this paper the analysis of samples of Roman age wall paintings coming from: Pordenone, Vicenza and Verona is carried out by using three different techniques: energy dispersive x-rays spectroscopy (EDS), x-rays fluorescence (XRF) and proton induced x-rays emission (PIXE). The features of the three spectroscopic techniques in the analysis of samples of archaeological interest are discussed. The studied pigments were: cinnabar, yellow ochre, green earth, Egyptian blue and carbon black.

  14. Near-Infrared Spectroscopic Method for Monitoring Water Content in Epoxy Resins and Fiber-Reinforced Composites

    PubMed Central

    Gagani, Abedin I.; Echtermeyer, Andreas T.

    2018-01-01

    Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR) spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR) spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer–Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described. PMID:29641451

  15. Catastrophic photometric redshift errors: Weak-lensing survey requirements

    DOE PAGES

    Bernstein, Gary; Huterer, Dragan

    2010-01-11

    We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number N spec of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of N spec is ~10 6 we findmore » that using only the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in N spec to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the z s – z p distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.« less

  16. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging.

    PubMed

    Sroka-Bartnicka, Anna; Kimber, James A; Borkowski, Leszek; Pawlowska, Marta; Polkowska, Izabela; Kalisz, Grzegorz; Belcarz, Anna; Jozwiak, Krzysztof; Ginalska, Grazyna; Kazarian, Sergei G

    2015-10-01

    The spectroscopic approaches of FTIR imaging and Raman mapping were applied to the characterisation of a new carbon hydroxyapatite/β-glucan composite developed for bone tissue engineering. The composite is an artificial bone material with an apatite-forming ability for the bone repair process. Rabbit bone samples were tested with an implanted bioactive material for a period of several months. Using spectroscopic and chemometric methods, we were able to determine the presence of amides and phosphates and the distribution of lipid-rich domains in the bone tissue, providing an assessment of the composite's bioactivity. Samples were also imaged in transmission using an infrared microscope combined with a focal plane array detector. CaF2 lenses were also used on the infrared microscope to improve spectral quality by reducing scattering artefacts, improving chemometric analysis. The presence of collagen and lipids at the bone/composite interface confirmed biocompatibility and demonstrate the suitability of FTIR microscopic imaging with lenses in studying these samples. It confirmed that the composite is a very good background for collagen growth and increases collagen maturity with the time of the bone growth process. The results indicate the bioactive and biocompatible properties of this composite and demonstrate how Raman and FTIR spectroscopic imaging have been used as an effective tool for tissue characterisation.

  17. Growth, structure, Hirshfeld surface and spectroscopic properties of 2-amino-4-hydroxy-6-methylpyrimidinium-2,3-pyrazinedicorboxylate single crystal

    NASA Astrophysics Data System (ADS)

    Faizan, Mohd; Alam, Mohammad Jane; Afroz, Ziya; Rodrigues, Vítor Hugo Nunes; Ahmad, Shabbir

    2018-03-01

    The present work is focused on the crystal structure, vibrational spectroscopy and DFT calculations of hydrogen bonded 2,3-pyrazinedicorboxylic acid and 2-amino-4-hydroxy-6-methylpyrimidine (PDCA-.AHMP+) crystal. The crystal structure has been determined using single crystal X-ray diffraction analysis which shows that the crystal belongs to monoclinic space group P21/n. The PDCA-.AHMP+ crystal has been characterized by FTIR, FT-Raman and FT-NMR spectroscopic techniques. The FTIR and FT-Raman spectra of the complex have unique spectroscopic feature as compared with those of the starting material to confirm salt formation. The theoretical vibrational studies have been performed to understand the modes of the vibrations of asymmetric unit of the complex by DFT methods. Hirschfeld surface and 2D fingerprint plots analyses were carried out to investigate the intermolecular interactions and its contribution in the building of PDCA-.AHMP+ crystal. The experimental and simulated 13C and 1H NMR studies have assisted in structural analysis of PDCA-.AHMP+ crystal. The electronic spectroscopic properties of the complex were explored by the experimental as well as theoretical electronic spectra simulated using TD-DFT/IEF-PCM method at B3LYP/6-311++G (d,p) level of theory. In addition, frontier molecular orbitals, molecular electrostatic potential map (MEP) and nonlinear optical (NLO) properties using DFT method have been also presented.

  18. Near-Infrared Spectroscopic Method for Monitoring Water Content in Epoxy Resins and Fiber-Reinforced Composites.

    PubMed

    Krauklis, Andrey E; Gagani, Abedin I; Echtermeyer, Andreas T

    2018-04-11

    Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR) spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR) spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer-Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described.

  19. HeI photoelectron spectroscopic studies on the electronic structure of alkyl nitrosamines

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Qian, Ximei; Li, Chunhui; Qiao, Chunhua; Wang, Dianxun

    1997-10-01

    HeI photoelectron spectroscopic (PES) studies on the electronic structure of alkyl nitrosamines R 2N 2O (R = CH 3-, CH 3CH 2-, and CH 3CH 2CH 2-) are reported. The assignment of the PES bands for this series of compounds has been made with the aid of the band shapes, the band intensity and ab initio SCF MO calculations based on the 631 ∗ G basis sets. Both PES experiment and the ab initio SCF MO calculations show that the detoxification ability of nitrosamine with longer alkyl chain is stronger.

  20. Synthesis and characterization of metastable, 20 nm-sized Pna2{sub 1}-LiCoPO{sub 4} nanospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludwig, Jennifer; Nordlund, Dennis; Doeff, Marca M.

    The majority of research activities on LiCoPO{sub 4} are focused on the phospho-olivine (space group Pnma), which is a promising high-voltage cathode material for Li-ion batteries. In contrast, comparably little is known about its metastable Pna2{sub 1} modification. Herein, we present a comprehensive study on the structure–property relationships of 15–20 nm Pna2{sub 1}-LiCoPO{sub 4} nanospheres prepared by a simple microwave-assisted solvothermal process. Unlike previous reports, the results indicate that the compound is non-stoichiometric and shows cation-mixing with Co ions on the Li sites, which provides an explanation for the poor electrochemical performance. Co L{sub 2,3}-edge X-ray absorption spectroscopic data confirmmore » the local tetrahedral symmetry of Co{sup 2+}. Comprehensive studies on the thermal stability using thermogravimetric analysis, differential scanning calorimetry, and in situ powder X-ray diffraction show an exothermic phase transition to olivine Pnma-LiCoPO{sub 4} at 527 °C. The influence of the atmosphere and the particle size on the thermal stability is also investigated. - Graphical abstract: Blue nano-sized Pna2{sub 1}-LiCoPO{sub 4,} featuring tetrahedrally-coordinated Co{sup 2+}, was synthesized in a rapid one-step microwave-assisted solvothermal process. The phase relation between this metastable and the stable polymorph was analyzed and electrochemical properties are discussed. - Highlights: • Preparation of uniform 15–20 nm nanospheres of metastable Pna2{sub 1}-LiCoPO{sub 4} polymorph. • Structure redetermination shows cation-mixing (Co blocking Li sites). • In situ investigation of phase transformation to olivine Pnma-LiCoPO{sub 4} at 527 °C. • Pna2{sub 1}-LiCoPO{sub 4} reemerges as a stable high-temperature phase above 800 °C. • X-ray absorption spectroscopy confirms local tetrahedral symmetry (T{sub d} Co{sup 2+}).« less

  1. Diatomic interhalogens - Systematics and implications of spectroscopic interatomic potentials and curve crossings

    NASA Technical Reports Server (NTRS)

    Child, M. S.; Bernstein, R. B.

    1973-01-01

    Spectroscopically derived potential curves for the low-lying excited states of homonuclear and heteronuclear diatomic interhalogens are systematized by the spin-orbit state of their dissociation products. The implications of spectroscopic interatomic potentials and curve crossings are discussed.

  2. Velocity Curve Analysis of Spectroscopic Binary Stars AI Phe, GM Dra, HD 93917 and V502 Oph by Nonlinear Regression

    NASA Astrophysics Data System (ADS)

    Karami, K.; Mohebi, R.

    2007-08-01

    We introduce a new method to derive the orbital parameters of spectroscopic binary stars by nonlinear least squares of (o-c). Using the measured radial velocity data of the four double lined spectroscopic binary systems, AI Phe, GM Dra, HD 93917 and V502 Oph, we derived both the orbital and combined spectroscopic elements of these systems. Our numerical results are in good agreement with the those obtained using the method of Lehmann-Filhé.

  3. Synthesis, crystal structures and spectroscopic properties of triazine-based hydrazone derivatives; a comparative experimental-theoretical study.

    PubMed

    Arshad, Muhammad Nadeem; Bibi, Aisha; Mahmood, Tariq; Asiri, Abdullah M; Ayub, Khurshid

    2015-04-03

    We report here a comparative theoretical and experimental study of four triazine-based hydrazone derivatives. The hydrazones are synthesized by a three step process from commercially available benzil and thiosemicarbazide. The structures of all compounds were determined by using the UV-Vis., FT-IR, NMR (1H and 13C) spectroscopic techniques and finally confirmed unequivocally by single crystal X-ray diffraction analysis. Experimental geometric parameters and spectroscopic properties of the triazine based hydrazones are compared with those obtained from density functional theory (DFT) studies. The model developed here comprises of geometry optimization at B3LYP/6-31G (d, p) level of DFT. Optimized geometric parameters of all four compounds showed excellent correlations with the results obtained from X-ray diffraction studies. The vibrational spectra show nice correlations with the experimental IR spectra. Moreover, the simulated absorption spectra also agree well with experimental results (within 10-20 nm). The molecular electrostatic potential (MEP) mapped over the entire stabilized geometries of the compounds indicated their chemical reactivates. Furthermore, frontier molecular orbital (electronic properties) and first hyperpolarizability (nonlinear optical response) were also computed at the B3LYP/6-31G (d, p) level of theory.

  4. Semi-supervised learning for photometric supernova classification

    NASA Astrophysics Data System (ADS)

    Richards, Joseph W.; Homrighausen, Darren; Freeman, Peter E.; Schafer, Chad M.; Poznanski, Dovi

    2012-01-01

    We present a semi-supervised method for photometric supernova typing. Our approach is to first use the non-linear dimension reduction technique diffusion map to detect structure in a data base of supernova light curves and subsequently employ random forest classification on a spectroscopically confirmed training set to learn a model that can predict the type of each newly observed supernova. We demonstrate that this is an effective method for supernova typing. As supernova numbers increase, our semi-supervised method efficiently utilizes this information to improve classification, a property not enjoyed by template-based methods. Applied to supernova data simulated by Kessler et al. to mimic those of the Dark Energy Survey, our methods achieve (cross-validated) 95 per cent Type Ia purity and 87 per cent Type Ia efficiency on the spectroscopic sample, but only 50 per cent Type Ia purity and 50 per cent efficiency on the photometric sample due to their spectroscopic follow-up strategy. To improve the performance on the photometric sample, we search for better spectroscopic follow-up procedures by studying the sensitivity of our machine-learned supernova classification on the specific strategy used to obtain training sets. With a fixed amount of spectroscopic follow-up time, we find that, despite collecting data on a smaller number of supernovae, deeper magnitude-limited spectroscopic surveys are better for producing training sets. For supernova Ia (II-P) typing, we obtain a 44 per cent (1 per cent) increase in purity to 72 per cent (87 per cent) and 30 per cent (162 per cent) increase in efficiency to 65 per cent (84 per cent) of the sample using a 25th (24.5th) magnitude-limited survey instead of the shallower spectroscopic sample used in the original simulations. When redshift information is available, we incorporate it into our analysis using a novel method of altering the diffusion map representation of the supernovae. Incorporating host redshifts leads to a 5 per cent improvement in Type Ia purity and 13 per cent improvement in Type Ia efficiency. A web service for the supernova classification method used in this paper can be found at .

  5. Spectroscopic investigation of the spectroscopic signatures of 2,4-DNT and 2,6-DNT: their interactions with sand particles

    NASA Astrophysics Data System (ADS)

    Blanco, Alejandro; Mina, Nairmen; Castro, Miguel E.; Castillo-Chara, Jairo; Hernandez-Rivera, Samuel P.

    2004-09-01

    Raman Spectroscopy is a well established tool for vibrational spectroscopy analysis. Interactions of explosives with different substrates can be measured by using quantitative vibrational signal shift information of scattered Raman light associated with these interactions. A vibrational spectroscopic study has been carried out on 2,4-DNT and 2,6-DNT crystals. Raman Microscopy spectrometers equipped with 514 nm and 785 nm laser excitation lines were used. The samples were recrystallized on different solvents (water, methanol and acetonitrile) and allowed to interact with soil samples. The interaction with sand and soil samples doped with the nitroaromatic compounds showed significant shifts in its peaks. The above information was used to detect DNT in soil using Raman Microscopy. These results will make possible the development of highly sensitive sensors for detection of explosives materials.

  6. GEISA-97 spectroscopic database system related information resources: current status and perspectives

    NASA Astrophysics Data System (ADS)

    Chursin, Alexei A.; Jacquinet-Husson, N.; Lefevre, G.; Scott, Noelle A.; Chedin, Alain

    2000-01-01

    This paper presents the recently developed information content diffusion facilities, e.g. the WWW-server of GEISA, MS DOS, WINDOWS-95/NT, and UNIX software packages, associated with the 1997 version of the GEISA-(Gestion et Etude des Informations Spectroscopiques Atmospheriques; word translation: Management and Study of Atmospheric Spectroscopic Information) infrared spectroscopic databank developed at LMD (Laboratoire de Meteorologie Dynamique, France). GEISA-97 individual lines file involves 42 molecules (96 isotopic species) and contains 1,346,266 entries, between 0 and 22,656 cm-1. GEISA-97 also has a catalog of cross-sections at different temperatures and pressures for species (such as chlorofluorocarbons) with complex spectra. The current version of the GEISA-97 cross- section databank contains 4,716,743 entries related to 23 molecules between 555 and 1700 cm-1.

  7. Extracting Spectroscopic Factors of Argon Isotopes from Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Manfredi, Juan; Lee, J.; Tsang, M. B.; Lynch, W. G.; Barney, J.; Estee, J.; Sweany, S.; Brown, K. W.; Cerizza, G.; Anderson, C.; Setiawan, H.; Loelius, C.; Xu, Z.; Rogers, A. M.; Pruitt, C.; Sobotka, L. G.; Elson, J. M.; Langer, C.; Chajecki, Z.; Chen, G.; Jones, K. L.; Smith, K.; Xiao, Z.; Li, Z.; Winkelbauer, J. R.

    2017-01-01

    A spectroscopic factor (SF) quantifies the single particle occupancy of a given state in a nucleus. For the argon isotopes, there is a discrepancy of the SF between studies that use transfer reactions and knockout reactions. Understanding the SFs of these isotopes, and in particular how the SF changes across the isotopic chain, is important for understanding how single particle structure changes with neutron number. The transfer reactions 34Ar(p,d) and 46Ar(p,d) were measured at the National Superconducting Cyclotron Laboratory (NSCL) using the same beam energy (70 MeV/u) as from the previous knockout measurement. Spectroscopic factors were extracted from measured angular distributions via ADWA calculations. Preliminary findings will be presented. The National Superconducting Cyclotron Laboratory is supported by the NSF (PHY 1102511), and Juan Manfredi is supported by the DOE NNSA Stewardship Science Graduate Fellowship.

  8. Synthesis, spectroscopic characterization (FT-IR, FT-Raman, and NMR), quantum chemical studies and molecular docking of 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione

    NASA Astrophysics Data System (ADS)

    Avdović, Edina H.; Milenković, Dejan; Dimitrić Marković, Jasmina M.; Đorović, Jelena; Vuković, Nenad; Vukić, Milena D.; Jevtić, Verica V.; Trifunović, Srećko R.; Potočňák, Ivan; Marković, Zoran

    2018-04-01

    The experimental and theoretical investigations of structure of the 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione were performed. X-ray structure analysis and spectroscopic methods (FTIR and FT-Raman, 1H and 13C NMR), along with the density functional theory calculations (B3LYP functional with empirical dispersion corrections D3BJ in combination with the 6-311 + G(d,p) basis set), were used in order to characterize the molecular structure and spectroscopic behavior of the investigated coumarin derivative. Molecular docking analysis was carried out to identify the potency of inhibition of the title molecule against human's Ubiquinol-Cytochrome C Reductase Binding Protein (UQCRB) and Methylenetetrahydrofolate reductase (MTHFR). The inhibition activity was obtained for ten conformations of ligand inside the proteins.

  9. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Kyle S.; Bautista, Julian E.; Kneib, Jean-Paul

    In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered bymore » BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d{sub A}(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ∼195,000 new emission line galaxy redshifts, we expect BAO measurements of d{sub A}(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d{sub A}(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of d{sub A}(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Here, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS.« less

  10. Dual-window dual-bandwidth spectroscopic optical coherence tomography metric for qualitative scatterer size differentiation in tissues.

    PubMed

    Tay, Benjamin Chia-Meng; Chow, Tzu-Hao; Ng, Beng-Koon; Loh, Thomas Kwok-Seng

    2012-09-01

    This study investigates the autocorrelation bandwidths of dual-window (DW) optical coherence tomography (OCT) k-space scattering profile of different-sized microspheres and their correlation to scatterer size. A dual-bandwidth spectroscopic metric defined as the ratio of the 10% to 90% autocorrelation bandwidths is found to change monotonically with microsphere size and gives the best contrast enhancement for scatterer size differentiation in the resulting spectroscopic image. A simulation model supports the experimental results and revealed a tradeoff between the smallest detectable scatterer size and the maximum scatterer size in the linear range of the dual-window dual-bandwidth (DWDB) metric, which depends on the choice of the light source optical bandwidth. Spectroscopic OCT (SOCT) images of microspheres and tonsil tissue samples based on the proposed DWDB metric showed clear differentiation between different-sized scatterers as compared to those derived from conventional short-time Fourier transform metrics. The DWDB metric significantly improves the contrast in SOCT imaging and can aid the visualization and identification of dissimilar scatterer size in a sample. Potential applications include the early detection of cell nuclear changes in tissue carcinogenesis, the monitoring of healing tendons, and cell proliferation in tissue scaffolds.

  11. Spectroscopic investigation on structure and pH dependent Cocrystal formation between gamma-aminobutyric acid and benzoic acid

    NASA Astrophysics Data System (ADS)

    Du, Yong; Xue, Jiadan; Cai, Qiang; Zhang, Qi

    2018-02-01

    Vibrational spectroscopic methods, including terahertz absorption and Raman scattering spectroscopy, were utilized for the characterization and analysis of gamma-aminobutyric acid (GABA), benzoic acid (BA), and the corresponding GABA-BA cocrystal formation under various pH values of aqueous solution. Vibrational spectroscopic results demonstrated that the solvent GABA-BA cocrystal, similar as grinding counterpart, possessed unique characteristic features compared with that of starting parent compounds. The change of vibrational modes for GABA-BA cocrystal comparing with starting components indicates there is strong inter-molecular interaction between GABA and BA molecules during its cocrystallization process. Formation of GABA-BA cocrystal under slow solvent evaporation is impacted by the pH value of aqueous solution. Vibrational spectra indicate that the GABA-BA cocrystal could be stably formed with the solvent condition of 2.00 ≤ pH ≤ 7.00. In contrast, such cocrystallization did not occur and the cocrystal would dissociate into its parent components when the pH value of solvent is lower than 2.00. This study provides experimental benchmark to discriminate and identify the structure of cocrystal and also pH-dependent cocrystallization effect with vibrational spectroscopic techniques in solid-state pharmaceutical fields.

  12. The Dark Energy Spectroscopic Instrument (DESI)

    NASA Astrophysics Data System (ADS)

    Flaugher, Brenna; Bebek, Chris

    2014-07-01

    The Dark Energy Spectroscopic Instrument (DESI) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar spectroscopic redshift survey. The DESI instrument consists of a new wide-field (3.2 deg. linear field of view) corrector plus a multi-object spectrometer with up to 5000 robotically positioned optical fibers and will be installed at prime focus on the Mayall 4m telescope at Kitt Peak, Arizona. The fibers feed 10 three-arm spectrographs producing spectra that cover a wavelength range from 360-980 nm and have resolution of 2000-5500 depending on the wavelength. The DESI instrument is designed for a 14,000 sq. deg. multi-year survey of targets that trace the evolution of dark energy out to redshift 3.5 using the redshifts of luminous red galaxies (LRGs), emission line galaxies (ELGs) and quasars. DESI is the successor to the successful Stage-III BOSS spectroscopic redshift survey and complements imaging surveys such as the Stage-III Dark Energy Survey (DES, currently operating) and the Stage-IV Large Synoptic Survey Telescope (LSST, planned start early in the next decade).

  13. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  14. Spectroscopic studies on the interaction of cysteine capped CuS nanoparticles with tyrosine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasanth, S.; Raj, D. Rithesh; Kumar, T. V. Vineesh

    2015-06-24

    Biocompatible cysteine coated CuS nanoparticles were synthesized by a simple aqueous solution method. Hexagonal phase of the samples were confirmed from X-ray diffraction and particle size found to be 9 nm. The possible interaction between the bioactive cysteine capped CuS nanoparticles and tyrosine were investigated using spectroscopic techniques such as UV-Visible absorption and fluorescence spectroscopy. It is observed that the luminescence intensity of tyrosine molecule enhanced by the addition CuS nanoparticles.

  15. Terahertz source requirements for molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    De Lucia, Frank C.; Goyette, Thomas M.

    1994-06-01

    Molecular spectroscopy was the earliest application in the terahertz spectral region and remains one of the most important. With the development of modern technology, spectroscopy has expanded beyond the laboratory and is the basis for a number of important remote sensing systems, especially in atmospheric science and studies of the interstellar medium. Concurrently, these spectroscopic applications have been one of the prime motivators for the development of terahertz technology. This paper will review these issues in the context of the requirements placed on future technology developments by spectroscopic applications.

  16. Terahertz source requirements for molecular spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Lucia, F.C.; Goyette, T.M.

    1994-12-31

    Molecular spectroscopy was the earliest application in the terahertz spectral region and remains one of the most important. With the development of modern technology, spectroscopy has expanded beyond the laboratory and is the basis for a number of important remote sensing systems, especially in atmospheric science and studies of the interstellar medium. Concurrently, these spectroscopic applications have been one of the prime motivators for the development of terahertz technology. This paper will review these issues in the context of the requirements placed on future technology developments by spectroscopic applications.

  17. Novel heterocyclic thiosemicarbazones derivatives as colorimetric and "turn on" fluorescent sensors for fluoride anion sensing employing hydrogen bonding.

    PubMed

    Ashok Kumar, S L; Saravana Kumar, M; Sreeja, P B; Sreekanth, A

    2013-09-01

    Two novel heterocyclic thiosemicarbazone derivatives have been synthesized, and characterized, by means of spectroscopic and single crystal X-ray diffraction methods. Their chromophoric-fluorogenic response towards anions in competing solvent dimethyl sulfoxide (DMSO) was studied. The receptor shows selective recognition towards fluoride anion. The binding affinity of the receptors with fluoride anion was calculated using UV-visible and fluorescence spectroscopic techniques. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Novel cholinesterase modulators and their ability to interact with DNA

    NASA Astrophysics Data System (ADS)

    Janockova, Jana; Gulasova, Zuzana; Musilek, Kamil; Kuca, Kamil; Kozurkova, Maria

    2013-11-01

    In the present work, an interaction of four cholinesterase modulators (1-4) with calf thymus DNA was studied via spectroscopic techniques (UV-Vis, fluorescent spectroscopy and circular dichroism). From UV-Vis spectroscopic analysis, the binding constants for DNA-pyridinium oximes complexes were calculated (K = 3.5 × 104 to 1.4 × 105 M-1). All these measurements indicated that the compounds behave as effective DNA-interacting agents. Electrophoretic techniques proved that ligand 2 inhibited topoisomerase I at a concentration 5 μM.

  19. Closed inductively coupled plasma cell

    DOEpatents

    Manning, Thomas J.; Palmer, Byron A.; Hof, Douglas E.

    1990-01-01

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy.

  20. Extinction measurement of dense media by an optical coherence tomography technique

    NASA Astrophysics Data System (ADS)

    Ago, Tomoki; Iwai, Toshiaki; Yokota, Ryoko

    2016-10-01

    The optical coherence tomography will make progress as the next stage toward a spectroscopic analysis technique. The spectroscopic analysis is based on the Beer-Lambert law. The absorption and scattering coefficients even for the dense medium can be measured by the Beer-Lambert law because the OCT can detect only the light keeping the coherency which propagated rectilinearly and retro-reflected from scatters. This study is concerned with the quantitative verification of Beer-Lambert law in the OCT imaging.

  1. Enhanced emission of Nile Red on plasmonic platforms

    NASA Astrophysics Data System (ADS)

    Synak, Anna; Bojarski, Piotr; Grobelna, Beata; Gryczyński, Ignacy; Fudala, Rafał; Mońka, Michal

    2018-04-01

    Strongly enhanced fluorescence of Nile Red deposited in the vicinity of silver nanoparticles and gold semitransparent mirror was observed. The properties of three different plasmonic platforms based on TiO2, TiO2-GLYMO (1:1) and SiO2 matrices were studied with spectroscopic and microscopic techniques. Significant differences of Nile Red spectroscopic properties in both matrices were observed. In particular, the sensitivity of Nile Red fluorescence enhancement and its peak location to the polarity of local surrounding was found.

  2. Interstellar Medium, Young Stars, and Astrometric Binaries in Galactic Archaeology Spectroscopic Surveys

    NASA Astrophysics Data System (ADS)

    Zwitter, T.; Kos, J.; Žerjal, M.; Traven, G.

    2016-10-01

    Current ongoing stellar spectroscopic surveys (RAVE, GALAH, Gaia-ESO, LAMOST, APOGEE, Gaia) are mostly devoted to studying Galactic archaeology and the structure of the Galaxy. But they allow also for important auxiliary science: (i) the Galactic interstellar medium can be studied in four dimensions (position in space plus radial velocity) through weak but numerous diffuse interstellar bands and atomic absorptions seen in spectra of background stars, (ii) emission spectra which are quite frequent even in field stars can serve as a good indicator of their youth, pointing e.g. to stars recently ejected from young stellar environments, (iii) an astrometric solution of the photocenter of a binary to be obtained by Gaia can yield accurate masses when joined by spectroscopic information obtained serendipitously during a survey. These points are illustrated by first results from the first three surveys mentioned above. These hint at the near future: spectroscopic studies of the dynamics of the interstellar medium can identify and quantify Galactic fountains which may sustain star formation in the disk by entraining fresh gas from the halo; RAVE already provided a list of ˜ 14,000 field stars with chromospheric emission in Ca II lines, to be supplemented by many more observations by Gaia in the same band, and by GALAH and Gaia-ESO observations of Balmer lines; several millions of astrometric binaries with periods up to a few years which are being observed by Gaia can yield accurate masses when supplemented with measurements from only a few high-quality ground based spectra.

  3. Radial Velocity Studies of Close Binary Stars. XI.

    NASA Astrophysics Data System (ADS)

    Pribulla, Theodor; Rucinski, Slavek M.; Lu, Wenxian; Mochnacki, Stefan W.; Conidis, George; Blake, R. M.; DeBond, Heide; Thomson, J. R.; Pych, Wojtek; Ogłoza, Waldemar; Siwak, Michal

    2006-08-01

    Radial-velocity measurements and sine-curve fits to orbital radial velocity variations are presented for 10 close binary systems: DU Boo, ET Boo, TX Cnc, V1073 Cyg, HL Dra, AK Her, VW LMi, V566 Oph, TV UMi, and AG Vir. With this contribution, the David Dunlap Observatory program has reached the point of 100 published radial velocity orbits. The radial velocities have been determined using an improved fitting technique that uses rotational profiles to approximate individual peaks in broadening functions. Three systems, ET Boo, VW LMi, and TV UMi, are found to be quadruple, while AG Vir appears to be a spectroscopic triple. ET Boo, a member of a close visual binary with Pvis=113 yr, was previously known to be a multiple system, but we show that the second component is actually a close, noneclipsing binary. The new observations have enabled us to determine the spectroscopic orbits of the companion, noneclipsing pairs in ET Boo and VW LMi. A particularly interesting case is VW LMi, for which the period of the mutual revolution of the two spectroscopic binaries is only 355 days. While most of the studied eclipsing pairs are contact binaries, ET Boo is composed of two double-lined detached binaries, and HL Dra is a single-lined detached or semidetached system. Five systems of this group have been observed spectroscopically before: TX Cnc, V1073 Cyg, AK Her (as a single-lined binary), V566 Oph, and AG Vir, but our new data are of much higher quality than in the previous studies. Based on data obtained at the David Dunlap Observatory, University of Toronto, Canada.

  4. Using non-invasive molecular spectroscopic techniques to detect unique aspects of protein Amide functional groups and chemical properties of modeled forage from different sourced-origins

    NASA Astrophysics Data System (ADS)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-01

    The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm- 1 and 1545 cm- 1, respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties.

  5. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOEpatents

    Westerfield, Curtis L.; Morris, John S.; Agnew, Stephen F.

    1997-01-01

    Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear.

  6. Proposal of one-shot-type spectroscopic-tomography for non-invasive medical-measurement

    NASA Astrophysics Data System (ADS)

    Sato, Shun; Fujiwara, Masaru; Abeygunawardhana, Pradeep K. W.; Suzuki, Satoru; Nishiyama, Akira; Ishimaru, Ichiro

    2013-06-01

    The one-shot-type spectroscopic-tomography is proposed to develop the medical-patient-condition monitoring systems. The optical-setup is configured with the relative-inclined phase-shifter for improving the time resolution and the phase-shift array for improving visibility. We obtained the line-spectroscopic imaging and could recognize the Hg bright-line-spectrum that is a component of the light-source. The realization of the optical stethoscope for early diagnosis of cancer can be expected by obtaining the 2-dimensional spectroscopic distribution with rotating interferometer.

  7. Computational and spectroscopic data correlation study of N,N'-bisarylmalonamides (Part II).

    PubMed

    Arsovski, Violeta M; Božić, Bojan Đ; Mirković, Jelena M; Vitnik, Vesna D; Vitnik, Željko J; Petrović, Slobodan D; Ušćumlić, Gordana S; Mijin, Dušan Ž

    2015-09-01

    To complement a previous UV study, we present a quantitative evaluation of substituent effects on spectroscopic data ((1)H and (13)C NMR chemical shifts as well as FT-IR absorption frequency) applied to N,N'-bisarylmalonamides, using simple and extended Hammett equations as well as the Swain-Lupton equation. Furthermore, the DFT CAM-B3LYP/6-311+G(d,p) method was applied to study the impact of different solvents on the geometry of the molecules and their spectral data. Additionally, experimental data are correlated with theoretical results; excellent linear dependence was obtained. The overall results presented in this paper show that N,N'-bisarylmalonamides are prominent candidates for model molecules.

  8. Spectroscopic study of N-acetylcysteine and N-acetylcystine/hydrogen peroxide complexation

    NASA Astrophysics Data System (ADS)

    Picquart, Michel; Abedinzadeh, Zohreh; Grajcar, Lydie; Baron, Marie Héléne

    1998-03-01

    A spectroscopic study of N-acetylcysteine (RSH) and N-acetylcystine (RSSR) has been performed using infrared absorption and Raman scattering in order to pinpoint the sites of complexation of these two species with H 2O 2. Molecules of RSH and RSSR were studied in KBr pellets, and in aqueous solutions of H 2O, D 2O and H 2O with H 2O 2 (1 mol l -1) to characterize the specific influence of the solvent molecules. A time-resolved Raman study was performed for RSH-H 2O 2 in aqueous solution at 1:1 molar ratio in order to observe the formation of RSSR and to discuss the mechanism of this redox reaction.

  9. A SYSTEMATIC SURVEY OF PROTOCLUSTERS AT z ∼ 3–6 IN THE CFHTLS DEEP FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toshikawa, Jun; Kashikawa, Nobunari; Furusawa, Hisanori

    2016-08-01

    We present the discovery of three protoclusters at z ∼ 3–4 with spectroscopic confirmation in the Canada–France–Hawaii Telescope Legacy Survey Deep Fields. In these fields, we investigate the large-scale projected sky distribution of z ∼ 3–6 Lyman-break galaxies and identify 21 protocluster candidates from regions that are overdense at more than 4 σ overdensity significance. Based on cosmological simulations, it is expected that more than 76% of these candidates will evolve into a galaxy cluster of at least a halo mass of 10{sup 14} M {sub ⊙} at z = 0. We perform follow-up spectroscopy for eight of the candidatesmore » using Subaru/FOCAS, Keck II/DEIMOS, and Gemini-N/GMOS. In total we target 462 dropout candidates and obtain 138 spectroscopic redshifts. We confirm three real protoclusters at z = 3–4 with more than five members spectroscopically identified and find one to be an incidental overdense region by mere chance alignment. The other four candidate regions at z ∼ 5–6 require more spectroscopic follow-up in order to be conclusive. A z = 3.67 protocluster, which has 11 spectroscopically confirmed members, shows a remarkable core-like structure composed of a central small region (<0.5 physical Mpc) and an outskirts region (∼1.0 physical Mpc). The Ly α equivalent widths of members of the protocluster are significantly smaller than those of field galaxies at the same redshift, while there is no difference in the UV luminosity distributions. These results imply that some environmental effects start operating as early as at z ∼ 4 along with the growth of the protocluster structure. This study provides an important benchmark for our analysis of protoclusters in the upcoming Subaru/HSC imaging survey and its spectroscopic follow-up with the Subaru/PFS that will detect thousands of protoclusters up to z ∼ 6.« less

  10. A Systematic Survey of Protoclusters at z ~ 3-6 in the CFHTLS Deep Fields

    NASA Astrophysics Data System (ADS)

    Toshikawa, Jun; Kashikawa, Nobunari; Overzier, Roderik; Malkan, Matthew A.; Furusawa, Hisanori; Ishikawa, Shogo; Onoue, Masafusa; Ota, Kazuaki; Tanaka, Masayuki; Niino, Yuu; Uchiyama, Hisakazu

    2016-08-01

    We present the discovery of three protoclusters at z ˜ 3-4 with spectroscopic confirmation in the Canada-France-Hawaii Telescope Legacy Survey Deep Fields. In these fields, we investigate the large-scale projected sky distribution of z ˜ 3-6 Lyman-break galaxies and identify 21 protocluster candidates from regions that are overdense at more than 4σ overdensity significance. Based on cosmological simulations, it is expected that more than 76% of these candidates will evolve into a galaxy cluster of at least a halo mass of 1014 M ⊙ at z = 0. We perform follow-up spectroscopy for eight of the candidates using Subaru/FOCAS, Keck II/DEIMOS, and Gemini-N/GMOS. In total we target 462 dropout candidates and obtain 138 spectroscopic redshifts. We confirm three real protoclusters at z = 3-4 with more than five members spectroscopically identified and find one to be an incidental overdense region by mere chance alignment. The other four candidate regions at z ˜ 5-6 require more spectroscopic follow-up in order to be conclusive. A z = 3.67 protocluster, which has 11 spectroscopically confirmed members, shows a remarkable core-like structure composed of a central small region (<0.5 physical Mpc) and an outskirts region (˜1.0 physical Mpc). The Lyα equivalent widths of members of the protocluster are significantly smaller than those of field galaxies at the same redshift, while there is no difference in the UV luminosity distributions. These results imply that some environmental effects start operating as early as at z ˜ 4 along with the growth of the protocluster structure. This study provides an important benchmark for our analysis of protoclusters in the upcoming Subaru/HSC imaging survey and its spectroscopic follow-up with the Subaru/PFS that will detect thousands of protoclusters up to z ˜ 6.

  11. Spectroscopic study of the strontium AM binaries HD 434 and 41 Sex A

    NASA Astrophysics Data System (ADS)

    Sreedhar Rao, S.; Abhyankar, K. D.

    1992-10-01

    Improved spectroscopic orbital elements of the single-line Am binary HD 434 are presented, and cover large gaps in the radial velocity curve obtained earlier by Hube and Gulliver (1985). The MK morphology of the spectrum of HD 434 is examined, and the classification of its metallic line types in the violet and blue regions, along with its revised K- and H-line spectral types, are given for the first time. The strontium anomaly in its spectrum is discussed. 41 Sex A is found to be a prototype of an Am star exhibiting transitional characteristics, forming an evolutionary link between Ap and Am groups of CP stars. Its spectroscopic orbital elements are confirmed using our own velocities. The MK morphology of its spectrum and its spectral line behavior, especially that of the Sr II 4077 line, are briefly discussed.

  12. The calibration of photographic and spectroscopic films. 1: Film batch variations of reciprocity failure in IIaO film. 2: Thermal and aging effects in relationship to reciprocity failure. 3: Shifting of reciprocity failure points as a function of thermal and aging effects

    NASA Technical Reports Server (NTRS)

    Peters, K. A.; Atkinson, P. F.; Hammond, E. C., Jr.

    1986-01-01

    Reciprocity failure was examined for IIaO spectroscopic film. Three separate experiments were performed in order to study film batch variations, thermal and aging effects in relationship to reciprocity failure, and shifting of reciprocity failure points as a function of thermal and aging effects. The failure was examined over ranges of time between 5 and 60 seconds. The variation to illuminance was obtained by using thirty neutral density filters. A standard sensitometer device imprinted the wedge pattern on the film as exposure time was subjected to variation. The results indicate that film batch differences, temperature, and aging play an important role in reciprocity failure of IIaO spectroscopic film. A shifting of the failure points was also observed in various batches of film.

  13. Protonated Nitrous Oxide, NNOH(+): Fundamental Vibrational Frequencies and Spectroscopic Constants from Quartic Force Fields

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.

    2013-01-01

    The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(subJ) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(exp-1), and the vibrational configuration interaction computed result is 3330.9 cm(exp-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the ISM and the laboratory.

  14. Spectroscopic studies of the molecular parentage of radical species in cometary comae

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Pierce, Donna; Cochran, Anita

    2015-11-01

    We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CH, CN, NH2). By constructing azimuthal average profiles from the full-coma spectroscopic images we can test Haser model parameters with our observations. The Haser model was used to determine production rates and possible parent lifetimes that would be consistent with the model. By iterating through a large range of possible parents lifetimes, we can see what range of values in which the Haser model is consistent with observations. Also, this type of analysis gives us perspective on how sensitive the model's fit quality is to changes in parent lifetimes. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys.

  15. Synthesis, spectroscopic characterization (FT-IR, FT-Raman, and NMR), quantum chemical studies and molecular docking of 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione.

    PubMed

    Avdović, Edina H; Milenković, Dejan; Dimitrić Marković, Jasmina M; Đorović, Jelena; Vuković, Nenad; Vukić, Milena D; Jevtić, Verica V; Trifunović, Srećko R; Potočňák, Ivan; Marković, Zoran

    2018-04-15

    The experimental and theoretical investigations of structure of the 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione were performed. X-ray structure analysis and spectroscopic methods (FTIR and FT-Raman, 1 H and 13 C NMR), along with the density functional theory calculations (B3LYP functional with empirical dispersion corrections D3BJ in combination with the 6-311 + G(d,p) basis set), were used in order to characterize the molecular structure and spectroscopic behavior of the investigated coumarin derivative. Molecular docking analysis was carried out to identify the potency of inhibition of the title molecule against human's Ubiquinol-Cytochrome C Reductase Binding Protein (UQCRB) and Methylenetetrahydrofolate reductase (MTHFR). The inhibition activity was obtained for ten conformations of ligand inside the proteins. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Vibrational Frequencies and Spectroscopic Constants for 1(sup 3)A' HNC and 1(sup 3)A' HOC+ from High-Accuracy Quartic Force Fields

    NASA Technical Reports Server (NTRS)

    Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.

    2014-01-01

    The spectroscopic constants and vibrational frequencies for the 1(sup 3)A' states of HNC, DNC, HOC+, and DOC+ are computed and discussed in this work. The reliable CcCR quartic force field based on high-level coupled cluster ab initio quantum chemical computations is exclusively utilized to provide the anharmonic potential. Then, second order vibrational perturbation theory and vibrational configuration interaction methods are employed to treat the nuclear Schroedinger equation. Second-order perturbation theory is also employed to provide spectroscopic data for all molecules examined. The relationship between these molecules and the corresponding 1(sup 3)A' HCN and HCO+ isomers is further developed here. These data are applicable to laboratory studies involving formation of HNC and HOC+ as well as astronomical observations of chemically active astrophysical environments.

  17. Detection of the spectroscopic signatures of explosives and their degradation products

    NASA Astrophysics Data System (ADS)

    Florian, Vivian; Cabanzo, Andrea; Baez, Bibiana; Correa, Sandra; Irrazabal, Maik; Briano, Julio G.; Castro, Miguel E.; Hernandez-Rivera, Samuel P.

    2005-06-01

    Detection and removal of antipersonnel and antitank landmines is a great challenge and a worldwide enviromental and humanitarian problem. Sensors tuned on the spectroscopic signature of the chemicals released from mines are a potential solution. Enviromental factors (temperature, relative humidity, rainfall precipitation, wind, sun irradiation, pressure, etc.) as well as soil characteristics (water content, compaction, porosity, chemical composition, particle size distribution, topography, vegetation, etc), have a direct impact on the fate and transport of the chemicals released from landmines. Chemicals such as TNT, DNT and their degradation products, are semi-volatile, and somewhat soluble in water. Also, they may adsorb strongly to soil particles, and are susceptible to degradation by microorganisms, light, or chemical agents. Here we show an experimental procedure to quantify the effect of the above variables on the spectroscopic signature. A number of soil tanks under controlled conditions are used to study the effect of temperature, water content, relative humidity and light radiation.

  18. UV-visible, Raman and E.S.R. studies of gamma-irradiated NiO-doped sodium metaphosphate glasses.

    PubMed

    ElBatal, Fatma H; Morsi, Reham M; Ouis, Mona A; Marzouk, Samir Y

    2010-11-01

    UV-visible spectroscopic measurements of Ni-doped sodium phosphate glasses were carried out before and after successive gamma irradiation. The undoped glass reveals strong UV absorption originating from trace iron impurities. NiO-doped glasses show characteristic absorption bands due mainly to octahedral coordination of Ni(2+) ions. Gamma irradiation produces induced bands generated from intrinsic defects and extrinsic defects. The changes in the spectroscopic data are discussed in relation to the structural evolution caused by the changes in composition and coordination state of nickel ions. The change in the growth behaviour of the induced bands is related to the annihilation or approach saturation of these characteristic induced bands. Raman and E.S.R. spectroscopic measurements confirm the presence of nickel as Ni(2+) ions in octahedral state. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. A comparative study of the spectroscopic properties of Mn4+ in the garnet Y2Mg3Ge3O12 and the commercial Mg28Ge7.55O32F15.04 phosphor

    NASA Astrophysics Data System (ADS)

    Srivastava, A. M.

    2018-05-01

    The spectroscopic properties of Mn4+ (3 d3) ions in the garnet Y2Mg3Ge3O12 and in the commercial Mg28Ge7.55O32F15.04 (MFG) phosphors are compared. We find that despite the differences in host crystal composition and crystal structures, the 4A2g→ 4T1g and 2Eg→4A2g optical transitions of the Mn4+ ion occur at similar energies. We provide some insights into the nature of chemical bonding that is responsible for the observed similarity in the spectroscopic data. Additionally, discussion is given to the site preference of the Mn4+ ion in the MFG host crystal.

  20. Mid-infrared spectroscopic analysis of saccharides in aqueous solutions with sodium chloride.

    PubMed

    Kanou, Mikihito; Kameoka, Takaharu; Suehara, Ken-Ichiro; Hashimoto, Atsushi

    2017-04-01

    The infrared spectral characteristics of three different types of disaccharides (trehalose, maltose, and sucrose) and four different types of monosaccharides (glucose, mannose, galactose, and fructose) in aqueous solutions with sodium chloride (NaCl) were determined. The infrared spectra were obtained using the FT-IR/ATR method and the absorption intensities respected the interaction between the saccharide and water with NaCl were determined. This study also focused on not only the glycosidic linkage position and the constituent monosaccharides, but also the concentration of the saccharides and NaCl and found that they have a significant influence on the infrared spectroscopic characterization of the disaccharides in an aqueous solution with NaCl. The absorption intensities representing the interaction between a saccharide and water with NaCl were spectroscopically determined. Additionally, the applications of MIR spectroscopy to obtain information about saccharide-NaCl interactions in foods and biosystems were suggested.

  1. Optimization of spectroscopic surveys for testing non-Gaussianity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raccanelli, Alvise; Doré, Olivier; Dalal, Neal, E-mail: alvise@caltech.edu, E-mail: Olivier.P.Dore@jpl.nasa.gov, E-mail: dalaln@illinois.edu

    We investigate optimization strategies to measure primordial non-Gaussianity with future spectroscopic surveys. We forecast measurements coming from the 3D galaxy power spectrum and compute constraints on primordial non-Gaussianity parameters f{sub NL} and n{sub NG}. After studying the dependence on those parameters upon survey specifications such as redshift range, area, number density, we assume a reference mock survey and investigate the trade-off between number density and area surveyed. We then define the observational requirements to reach the detection of f{sub NL} of order 1. Our results show that power spectrum constraints on non-Gaussianity from future spectroscopic surveys can improve on currentmore » CMB limits, but the multi-tracer technique and higher order correlations will be needed in order to reach an even better precision in the measurements of the non-Gaussianity parameter f{sub NL}.« less

  2. Raman spectroscopic monitoring of the bioeffects of nitroglycerin on Hb-O II in single red blood cell

    NASA Astrophysics Data System (ADS)

    Chiang, Huihua Kenny; Ruan, Hung-Shiang; Cheng, Hung-You; Fang, Tung-Ting

    2007-02-01

    Raman spectroscopy has been shown to have the potential for providing oxygenated ability of erythrocytes. Raman line at 1638 cm-1 has also been reported as one significant oxygenic indicator for erythrocytes. In this research, we develop the Raman spectroscopic monitoring of the bioeffects of Nitroglycerin on hemoglobin oxygen saturation in a single red blood cell (RBC). Nitroglycerin has been frequently used in the management of angina pectoris. Nitroglycerin liberates nitric oxide (NO) to blood vessels. NO is an oxidizer that easily converts hemoglobin to methemoglobin. The conversion may cause the decrease of oxygenated ability of erythrocytes. In this study, we observed the oxidize state of erythrocytes caused by the over dosage of Nitroglycerin. When the dose of Nitroglycerin exceeds 2x10 -4 M, the oxygenic state of erythrocytes decreases significantly. The Raman spectroscopic results demonstrate the observation of the bioeffects of Nitroglycerin on hemoglobin.

  3. A photometrically and spectroscopically confirmed population of passive spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin A.; Dolley, Tim; Crossett, Jacob P.; Bonne, Nicolas J.

    2016-10-01

    We have identified a population of passive spiral galaxies from photometry and integral field spectroscopy. We selected z < 0.035 spiral galaxies that have WISE colours consistent with little mid-infrared emission from warm dust. Matched aperture photometry of 51 spiral galaxies in ultraviolet, optical and mid-infrared show these galaxies have colours consistent with passive galaxies. Six galaxies form a spectroscopic pilot study and were observed using the Wide-Field Spectrograph to check for signs of nebular emission from star formation. We see no evidence of substantial nebular emission found in previous red spiral samples. These six galaxies possess absorption-line spectra with 4000 Å breaks consistent with an average luminosity-weighted age of 2.3 Gyr. Our photometric and integral field spectroscopic observations confirm the existence of a population of local passive spiral galaxies, implying that transformation into early-type morphologies is not required for the quenching of star formation.

  4. Spectroscopic Results of Gravitational Microlenses: Are These Dark Objects or Faint Stars?

    NASA Astrophysics Data System (ADS)

    Joseph, C. L.; Gallagher, J.; Phillips, M.

    1994-12-01

    We report on the spectroscopic results obtained in October 1994 with the 4-meter telescope on Cerro Tololo Interamerican Observatory (CTIO). Spectra of 2 recent microlens candidates toward the Galactic bulge reported by the Optical Gravitational Lens Experiment (OGLE) as well as one caught in the early phases of brightening toward the LMC reported by the MAssive Compact Halo Object (MACHO) Project have been obtained. The spectral coverage is from 6500 to 9800 Angstroms at a resolution of 6 Angstroms. The long-term goal of this spectroscopic study is to obtain censored statistical evidence on the luminosity of the microlenses, constraining the nature of these lenses. Several models of composite spectra of a bulge or LMC star plus a cool lensing star of different spectral types are presented to demonstrate the ranges in the product of luminosity times distance that the faint star could be detected in a composite spectrum.

  5. Binding-Induced Fluorescence of Serotonin Transporter Ligands: A Spectroscopic and Structural Study of 4-(4-(Dimethylamino)phenyl)-1-methylpyridinium (APP+) and APP+ Analogues

    PubMed Central

    2014-01-01

    The binding-induced fluorescence of 4-(4-(dimethylamino)-phenyl)-1-methylpyridinium (APP+) and two new serotonin transporter (SERT)-binding fluorescent analogues, 1-butyl-4-[4-(1-dimethylamino)phenyl]-pyridinium bromide (BPP+) and 1-methyl-4-[4-(1-piperidinyl)phenyl]-pyridinium (PPP+), has been investigated. Optical spectroscopy reveals that these probes are highly sensitive to their chemical microenvironment, responding to variations in polarity with changes in transition energies and responding to changes in viscosity or rotational freedom with emission enhancements. Molecular docking calculations reveal that the probes are able to access the nonpolar and conformationally restrictive binding pocket of SERT. As a result, the probes exhibit previously not identified binding-induced turn-on emission that is spectroscopically distinct from dyes that have accumulated intracellularly. Thus, binding and transport dynamics of SERT ligands can be resolved both spatially and spectroscopically. PMID:24460204

  6. Spectral measurements of Terrestrial Mars Analogues: support for the ExoMars - Ma_Miss instrument

    NASA Astrophysics Data System (ADS)

    De Angelis, S.; De Sanctis, M. C.; Ammannito, E.; Di Iorio, T.; Carli, C.; Frigeri, A.; Capria, M. T.; Federico, C.; Boccaccini, A.; Capaccioni, F.; Giardino, M.; Cerroni, P.; Palomba, E.; Piccioni, G.

    2013-09-01

    The Ma_Miss (Mars Multispectral Imager for Subsurface Studies) instrument onboard of ExoMars 2018 mission to Mars will investigate the Martian subsoil down to a depth of 2 meters [1]. Ma_Miss is a miniaturized spectrometer, completely integrated within the drilling system of the ExoMars Pasteur rover; it will acquire spectra in the range 0.4-2.2μm, from the excavated borehole wall. The spectroscopic investigation of the subsurface materials will give us precious information about mineralogical, petrologic and geological processes, and will give insights about materials that have not been modified by surface processes such as erosion, weathering or oxidation. Spectroscopic measurements have been performed on Terrestrial Mars Analogues with the Ma_Miss laboratory model (breadboard). Moreover spectroscopic investigation of different sets of Terrestrial Mars Analogues is being carried on with different laboratory setups, as a support for the ExoMars-Ma_Miss instrument.

  7. Raman spectroscopic study of the photoprotection of extremophilic microbes against ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Edwards, H. G. M.; Moeller, R.; Jorge Villar, S. E.; Horneck, G.; Stackebrandt, E.

    2006-12-01

    Extremophiles use a range of pigments for protection against low-wavelength radiation in exposed terrestrial habitats and photoaccessory materials are synthesized for the effective harnessing of photosynthetically active radiation. Raman spectroscopy has been demonstrated to be a useful probe for information on the survival strategies employed by extremophilic bacteria through the identification of key biomolecular signatures of the suite of protective chemicals synthesized by the organisms in stressed environments. Raman spectroscopic analyses of Bacillus spp. spores, Bacillus atrophaeus (DSM 675: deep red) and Bacillus subtilis (DSM 5611: light grey and DSM 7264: dark grey), Deinococcus radiodurans (pink) and Natronomonas pharaonis (red), of visually different pigmentation showed the presence of different carotenoids and other protectant biomolecules, which assist microorganisms against UVA radiation. The implications for the survival of extremophilic microbes in extraterrestrial habitats and for the detection of the protectant biomolecules by remote, robotic Raman spectroscopic instrumentation in an astrobiological search for life context are discussed.

  8. Linking groundwater dissolved organic matter to sedimentary organic matter from a fluvio-lacustrine aquifer at Jianghan Plain, China by EEM-PARAFAC and hydrochemical analyses.

    PubMed

    Huang, Shuang-bing; Wang, Yan-xin; Ma, Teng; Tong, Lei; Wang, Yan-yan; Liu, Chang-rong; Zhao, Long

    2015-10-01

    The sources of dissolved organic matter (DOM) in groundwater are important to groundwater chemistry and quality. This study examined similarities in the nature of DOM and investigated the link between groundwater DOM (GDOM) and sedimentary organic matter (SOM) from a lacustrine-alluvial aquifer at Jianghan Plain. Sediment, groundwater and surface water samples were employed for SOM extraction, optical and/or chemical characterization, and subsequent fluorescence excitation-emission matrix (EEM) and parallel factor analyses (PARAFAC). Spectroscopic properties of bulk DOM pools showed that indices indicative of GDOM (e.g., biological source properties, humification level, aromaticity and molecule mobility) varied within the ranges of those of two extracted end-members of SOM: humic-like materials and microbe-associated materials. The coexistence of PARAFAC compositions and the sustaining internal relationship between GDOM and extracted SOM indicate a similar source. The results from principal component analyses with selected spectroscopic indices showed that GDOM exhibited a transition trend regarding its nature: from refractory high-humification DOM to intermediate humification DOM and then to microbe-associated DOM, with decreasing molecular weight. Correlations of spectroscopic indices with physicochemical parameters of the groundwater suggested that GDOM was released from SOM and was modified by microbial diagenetic processes. The current study demonstrated the associations of GDOM with SOM from a spectroscopic viewpoint and provided new evidence supporting SOM as the source of GDOM. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Hydrogen bonds in crystalline D-alanine: diffraction and spectroscopic evidence for differences between enantiomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belo, Ezequiel A.; Pereira, Jose E. M.; Freire, Paulo T. C.

    Enantiomeric amino acids have specific physiological functions in complex biological systems. Systematic studies focusing on the solid-state properties of D-amino acids are, however, still limited. To shed light on this field, structural and spectroscopic studies of D-alanine using neutron powder diffraction, polarized Raman scattering and ab initio calculations of harmonic vibrational frequencies were carried out. Clear changes in the number of vibrational modes are observed as a function of temperature, which can be directly connected to variations of the N—D bond lengths. These results reveal dissimilarities in the structural properties of D-alanine compared with L-alanine.

  10. Spectroscopic studies of gel grown zinc doped calcium hydrogen phosphate dihydrate crystals

    NASA Astrophysics Data System (ADS)

    Suryawanshi, V. B.; Chaudhari, R. T.

    2018-05-01

    The influence of zinc doping on the gel grown calcium hydrogen phosphate dihydrate crystals was studied using the spectroscopic techniques, which included SEM, FTIR and EDAX. It was found that, zinc ions transform the morphology of brushite crystals from rectangular plate shaped crystals to branching microcrystal patterns. However in FT-IR spectroscopy, as compared to undoped brushite crystals few vibrations were shifted to higher value. The observed changes in the vibrations were due to the impact of zinc ions. EDAX techniques is use to determine the percentage composition of elements present in the doped crystals. It revealed that the sample was of a mixed composition.

  11. Hydrogen bonds in crystalline D-alanine: diffraction and spectroscopic evidence for differences between enantiomers

    DOE PAGES

    Belo, Ezequiel A.; Pereira, Jose E. M.; Freire, Paulo T. C.; ...

    2018-01-01

    Enantiomeric amino acids have specific physiological functions in complex biological systems. Systematic studies focusing on the solid-state properties of D-amino acids are, however, still limited. To shed light on this field, structural and spectroscopic studies of D-alanine using neutron powder diffraction, polarized Raman scattering and ab initio calculations of harmonic vibrational frequencies were carried out. Clear changes in the number of vibrational modes are observed as a function of temperature, which can be directly connected to variations of the N—D bond lengths. These results reveal dissimilarities in the structural properties of D-alanine compared with L-alanine.

  12. Aziridinyl-substituted benzo-1,4-quinones: A preliminary investigation on the theoretical and experimental studies of their structure and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Šarlauskas, Jonas; Tamulienė, Jelena; Čėnas, Narimantas

    2017-05-01

    The detailed structure, chemical and spectroscopic properties of the derivatives of the selected 2,5-bis(1-aziridinyl)-benzo-1,4-quinone conformers were studied by applying quantum chemical and experimental methods. The relationship between the structure and chemical activity of the selected 3 bifunctional bioreductive quinonic anticancer agents - aziridinyl benzoquinones (AzBQ compounds) was obtained. The results obtained showed that the position of aziridine rings influenced by the chemical activity of the investigated compound were more significant than the substitutions of the benzene ring of the AzBQ compounds. The solvents influencing this activity were obtained, too.

  13. Mg co-ordination with potential carcinogenic molecule acrylamide: Spectroscopic, computational and cytotoxicity studies

    NASA Astrophysics Data System (ADS)

    Singh, Ranjana; Mishra, Vijay K.; Singh, Hemant K.; Sharma, Gunjan; Koch, Biplob; Singh, Bachcha; Singh, Ranjan K.

    2018-03-01

    Acrylamide (acr) is a potential toxic molecule produced in thermally processed food stuff. Acr-Mg complex has been synthesized chemically and characterized by spectroscopic techniques. The binding sites of acr with Mg were identified by experimental and computational methods. Both experimental and theoretical results suggest that Mg coordinated with the oxygen atom of Cdbnd O group of acr. In-vitro cytotoxicity studies revealed significant decrease in the toxic level of acr-Mg complex as compared to pure acr. The decrease in toxicity on complexation with Mg may be a useful step for future research to reduce the toxicity of acr.

  14. One-Pot Synthesis, Spectroscopic and Physicochemical Studies of Quinoline Based Blue Emitting Donor-Acceptor Chromophores with Their Biological Application.

    PubMed

    Asiri, Abdullah M; Khan, Salman A; Al-Thaqafya, Saad H

    2015-09-01

    Blue emitting cyano substituted isoquinoline dyes were synthesized by one-pot multicomponent reactions (MCRs) of aldehydes, malononitrile, 6-methoxy-1,2,3,4-tetrahydro-naphthalin-1-one and ammonium acetate. Results obtained from spectroscopic (FT-IR, (1)H-NMR, (13)C-NMR, EI-MS) and elemental analysis of synthesized compounds was in good agreement with their chemical structures. UV-vis and fluorescence spectroscopy measurements proved that all compounds are good absorbent and fluorescent. Fluorescence polarity study demonstrated that these compounds were sensitive to the polarity of the microenvironment provided by different solvents. In addition, spectroscopic and physicochemical parameters, including electronic absorption, excitation coefficient, stokes shift, oscillator strength, transition dipole moment and fluorescence quantum yield were investigated in order to explore the analytical potential of synthesized compounds. The anti-bacterial activity of these compounds were first studied in vitro by the disk diffusion assay against two Gram-positive and two Gram-negative bacteria then the minimum inhibitory concentration (MIC) was determined with the reference of standard drug chloramphenicol. The results displayed that compound 3 was better inhibitors of both types of the bacteria (Gram-positive and Gram-negative) than chloramphenicol. Graphical Abstract ᅟ.

  15. Shedding light on the photostability of two intermolecular charge-transfer complexes between highly fluorescent bis-1,8-naphthalimide dyes and some π-acceptors: A spectroscopic study in solution and solid states

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Ismail, Lamia A.; Adam, Abdel Majid A.

    2015-01-01

    Given the great importance of the various uses of 1,8-naphthalimides in the trends of biology, medicine and industry, the current study focused on extending the scope of these dyes by introducing some of their charge-transfer (CT) complexes. For this purpose, two highly fluorescent bis-1,8-naphthalimide dyes and their complexes with some π-acceptors have been synthesized and characterized spectroscopically. The π-acceptors include picric acid (PA), chloranilic acid (CLA), tetracyanoquinodimethane (TCNQ) and dichlorodicyanobenzoquinone (DDQ). The molecular structure, spectroscopic and fluorescence properties as well as the binding modes were deduced from IR, UV-vis and 1H NMR spectral studies. The binding ratio of complexation was determined to be 1:1 according to the elemental analyses and photometric titrations. It has been found that the order of acceptance ability for the different acceptors is TCNQ > DDQ > CLA > PA. The photostability of 1,8-naphthalimide dye as a donor and its charge-transfer complex doped in polymethyl methacrylate/PMMA were exposed to UV-Vis radiation and the change in the absorption spectra was achieved at different times during irradiation period.

  16. In vitro FTIR microspectroscopy analysis of primary oral squamous carcinoma cells treated with cisplatin and 5-fluorouracil: a new spectroscopic approach for studying the drug-cell interaction.

    PubMed

    Giorgini, Elisabetta; Sabbatini, Simona; Rocchetti, Romina; Notarstefano, Valentina; Rubini, Corrado; Conti, Carla; Orilisi, Giulia; Mitri, Elisa; Bedolla, Diana E; Vaccari, Lisa

    2018-06-22

    In the present study, human primary oral squamous carcinoma cells treated with cisplatin and 5-fluorouracil were analyzed, for the first time, by in vitro FTIR Microspectroscopy (FTIRM), to improve the knowledge on the biochemical pathways activated by these two chemotherapy drugs. To date, most of the studies regarding FTIRM cellular analysis have been executed on fixed cells from immortalized cell lines. FTIRM analysis performed on primary tumor cells under controlled hydrated conditions provides more reliable information on the biochemical processes occurring in in vivo tumor cells. This spectroscopic analysis allows to get on the same sample and at the same time an overview of the composition and structure of the most remarkable cellular components. In vitro FTIRM analysis of primary oral squamous carcinoma cells evidenced a time-dependent drug-specific cellular response, also including apoptosis triggering. Furthermore, the univariate and multivariate analyses of IR data evidenced meaningful spectroscopic differences ascribable to alterations affecting cellular proteins, lipids and nucleic acids. These findings suggest for the two drugs different pathways and extents of cellular damage, not provided by conventional cell-based assays (MTT assay and image-based cytometry).

  17. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOEpatents

    Westerfield, C.L.; Morris, J.S.; Agnew, S.F.

    1997-01-14

    Diamond anvil cell is described for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear. 4 figs.

  18. A DVD Spectroscope: A Simple, High-Resolution Classroom Spectroscope

    ERIC Educational Resources Information Center

    Wakabayashi, Fumitaka; Hamada, Kiyohito

    2006-01-01

    Digital versatile disks (DVDs) have successfully made up an inexpensive but high-resolution spectroscope suitable for classroom experiments that can easily be made with common material and gives clear and fine spectra of various light sources and colored material. The observed spectra can be photographed with a digital camera, and such images can…

  19. Obtaining the Electron Angular Momentum Coupling Spectroscopic Terms, jj

    ERIC Educational Resources Information Center

    Orofino, Hugo; Faria, Roberto B.

    2010-01-01

    A systematic procedure is developed to obtain the electron angular momentum coupling (jj) spectroscopic terms, which is based on building microstates in which each individual electron is placed in a different m[subscript j] "orbital". This approach is similar to that used to obtain the spectroscopic terms under the Russell-Saunders (LS) coupling…

  20. Structural and spectroscopic changes to natural nontronite induced by experimental impacts between 10 and 40 GPa

    NASA Astrophysics Data System (ADS)

    Friedlander, Lonia R.; Glotch, Timothy D.; Bish, David L.; Dyar, M. Darby; Sharp, Thomas G.; Sklute, Elizabeth C.; Michalski, Joseph R.

    2015-05-01

    Many phyllosilicate deposits remotely detected on Mars occur within bombarded terrains. Shock metamorphism from meteor impacts alters mineral structures, producing changed mineral spectra. Thus, impacts have likely affected the spectra of remotely sensed Martian phyllosilicates. We present spectral analysis results for a natural nontronite sample before and after laboratory-generated impacts over five peak pressures between 10 and 40 GPa. We conducted a suite of spectroscopic analyses to characterize the sample's impact-induced structural and spectral changes. Nontronite becomes increasingly disordered with increasing peak impact pressure. Every infrared spectroscopic technique used showed evidence of structural changes at shock pressures above ~25 GPa. Reflectance spectroscopy in the visible near-infrared region is primarily sensitive to the vibrations of metal-OH and interlayer H2O groups in the nontronite octahedral sheet. Midinfrared (MIR) spectroscopic techniques are sensitive to the vibrations of silicon and oxygen in the nontronite tetrahedral sheet. Because the tetrahedral and octahedral sheets of nontronite deform differently, impact-driven structural deformation may contribute to differences in phyllosilicate detection between remote sensing techniques sensitive to different parts of the nontronite structure. Observed spectroscopic changes also indicated that the sample's octahedral and tetrahedral sheets were structurally deformed but not completely dehydroxylated. This finding is an important distinction from previous studies of thermally altered phyllosilicates in which dehydroxylation follows dehydration in a stepwise progression preceding structural deformation. Impact alteration may thus complicate mineral-specific identifications based on the location of OH-group bands in remotely detected spectra. This is a key implication for Martian remote sensing arising from our results.

  1. The role of simulation chambers in the development of spectroscopic techniques: campaigns at EUPHORE

    NASA Astrophysics Data System (ADS)

    Ródenas, Milagros; Muñoz, Amalia; Euphore Team

    2016-04-01

    Simulation chambers represent a very useful tool for the study of chemical reactions and their products, but also to characterize instruments. The development of spectroscopic techniques throughout the last decades has benefited from tests and intercomparison exercises carried out in chambers. In fact, instruments can be exposed to various controlled atmospheric scenarios that account for different environmental conditions, eliminating the uncertainties associated to fluctuations of the air mass, which must be taken into account when extrapolating results to the real conditions. Hence, a given instrument can be characterized by assessing its precision, accuracy, detection limits, time response and potential interferences in the presence of other chemical compounds, aerosols, etc. This implies that the instrument can be calibrated and validated, which allows to enhance the features of the instrument. Moreover, chambers are also the scenario of intercomparison trials, permitting multiple instruments to sample from the same well-mixed air mass simultaneously. An overview of different campaigns to characterize and/or intercompare spectroscopic techniques that have taken place in simulation chambers will be given; in particular, those carried out at EUPHORE (two twin domes, 200 m3 each, Spain), where various intercomparison exercises have been deployed under the frame of European projects (e.g. TOXIC, FIONA, PSOA campaigns supported by EUROCHAMP-II). With the common aim of measuring given compounds (e.g. HONO, NO2, OH, glyoxal, m-glyoxal, etc), an important number of spectroscopic instruments and institutions have been involved in chamber experiments, having the chance to intercompare among them and also with other non-spectroscopic systems (e.g. monitors, cromatographs, etc) or model simulations.

  2. Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at redshift two

    DOE PAGES

    Smith, M.

    2017-12-11

    Here, we present observations of DES16C2nm, the first spectroscopically confirmed hydrogen-free superluminous supernova (SLSN-I) at redshift z~2. DES16C2nm was discovered by the Dark Energy Survey (DES) Supernova Program, with follow-up photometric data from the Hubble Space Telescope, Gemini, and the European Southern Observatory Very Large Telescope supplementing the DES data. Spectroscopic observations confirm DES16C2nm to be at z=1.998, and spectroscopically similar to Gaia16apd (a SLSN-I at z=0.102), with a peak absolute magnitude of U=-22.26more » $$\\pm$$0.06. The high redshift of DES16C2nm provides a unique opportunity to study the ultraviolet (UV) properties of SLSNe-I. Combining DES16C2nm with ten similar events from the literature, we show that there exists a homogeneous class of SLSNe-I in the UV (~2500A), with peak luminosities in the (rest-frame) U band, and increasing absorption to shorter wavelengths. There is no evidence that the mean photometric and spectroscopic properties of SLSNe-I differ between low (z<1) and high redshift (z>1), but there is clear evidence of diversity in the spectrum at <2000A, possibly caused by the variations in temperature between events. No significant correlations are observed between spectral line velocities and photometric luminosity. Using these data, we estimate that SLSNe-I can be discovered to z=3.8 by DES. While SLSNe-I are typically identified from their blue observed colors at low redshift (z<1), we highlight that at z>2 these events appear optically red, peaking in the observer-frame z-band. Such characteristics are critical to identify these objects with future facilities such as the Large Synoptic Survey Telescope, Euclid, and the Wide-Field Infrared Survey Telescope, which should detect such SLSNe-I to z=3.5, 3.7, and 6.6, respectively.« less

  3. Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at Redshift Two

    NASA Astrophysics Data System (ADS)

    Smith, M.; Sullivan, M.; Nichol, R. C.; Galbany, L.; D’Andrea, C. B.; Inserra, C.; Lidman, C.; Rest, A.; Schirmer, M.; Filippenko, A. V.; Zheng, W.; Cenko, S. Bradley; Angus, C. R.; Brown, P. J.; Davis, T. M.; Finley, D. A.; Foley, R. J.; González-Gaitán, S.; Gutiérrez, C. P.; Kessler, R.; Kuhlmann, S.; Marriner, J.; Möller, A.; Nugent, P. E.; Prajs, S.; Thomas, R.; Wolf, R.; Zenteno, A.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; da Costa, L. N.; Davis, C.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Johnson, M. W. G.; Kuehn, K.; Kuropatkin, N.; Li, T. S.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; Menanteau, F.; Miller, C. J.; Miquel, R.; Ogando, R. L. C.; Petravick, D.; Plazas, A. A.; Romer, A. K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Walker, A. R.; The DES Collaboration

    2018-02-01

    We present observations of DES16C2nm, the first spectroscopically confirmed hydrogen-free superluminous supernova (SLSN-I) at redshift z≈ 2. DES16C2nm was discovered by the Dark Energy Survey (DES) Supernova Program, with follow-up photometric data from the Hubble Space Telescope, Gemini, and the European Southern Observatory Very Large Telescope supplementing the DES data. Spectroscopic observations confirm DES16C2nm to be at z = 1.998, and spectroscopically similar to Gaia16apd (a SLSN-I at z = 0.102), with a peak absolute magnitude of U=-22.26+/- 0.06. The high redshift of DES16C2nm provides a unique opportunity to study the ultraviolet (UV) properties of SLSNe-I. Combining DES16C2nm with 10 similar events from the literature, we show that there exists a homogeneous class of SLSNe-I in the UV ({λ }{rest}≈ 2500 Å), with peak luminosities in the (rest-frame) U band, and increasing absorption to shorter wavelengths. There is no evidence that the mean photometric and spectroscopic properties of SLSNe-I differ between low (z< 1) and high redshift (z> 1), but there is clear evidence of diversity in the spectrum at {λ }{rest}< 2000 \\mathringA , possibly caused by the variations in temperature between events. No significant correlations are observed between spectral line velocities and photometric luminosity. Using these data, we estimate that SLSNe-I can be discovered to z = 3.8 by DES. While SLSNe-I are typically identified from their blue observed colors at low redshift (z< 1), we highlight that at z> 2 these events appear optically red, peaking in the observer-frame z-band. Such characteristics are critical to identify these objects with future facilities such as the Large Synoptic Survey Telescope, Euclid, and the Wide-field Infrared Survey Telescope, which should detect such SLSNe-I to z = 3.5, 3.7, and 6.6, respectively.

  4. Spectroscopic detections of C III] λ1909 Å at z ≃ 6-7: a new probe of early star-forming galaxies and cosmic reionization

    NASA Astrophysics Data System (ADS)

    Stark, Daniel P.; Richard, Johan; Charlot, Stéphane; Clément, Benjamin; Ellis, Richard; Siana, Brian; Robertson, Brant; Schenker, Matthew; Gutkin, Julia; Wofford, Aida

    2015-06-01

    Deep spectroscopic observations of z ≳ 6.5 galaxies have revealed a marked decline with increasing redshift in the detectability of Ly α emission. While this may offer valuable insight into the end of the reionization process, it presents a challenge to the detailed spectroscopic study of bright photometrically-selected distant sources now being found via deep Hubble Space Telescope imaging, and particularly those highly magnified sources viewed through foreground lensing clusters. In this paper, we demonstrate the validity of a new way forward via the detection of an alternative diagnostic line, C III] λ1909 Å, seen in spectroscopic exposures of a star-forming galaxy at zLyα = 6.029. We also report tentative detection of C III] λ1909 Å in a galaxy at zLyα = 7.213. The former 3.3σ detection is based on a 3.5 h XShooter spectrum of a bright (J125 = 25.2) gravitationally-lensed galaxy behind the cluster Abell 383. The latter 2.8σ detection is based on a 4.2 h MOSFIRE spectra of one of the most distant spectroscopically confirmed galaxies, GN-108036, with J140 = 25.2. Both targets were chosen for their continuum brightness and previously-known redshift (based on Ly α), ensuring that any C III] emission would be located in a favourable portion of the near-infrared sky spectrum. Since the availability of secure Ly α redshifts significantly narrows the wavelength range where C III] is sought, this increases confidence in these, otherwise, low-signal-to-noise ratio detections. We compare our C III] and Ly α equivalent widths in the context of those found at z ≃ 2 from earlier work and discuss the motivation for using lines other than Ly α to study galaxies in the reionization era.

  5. Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at redshift two

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.

    Here, we present observations of DES16C2nm, the first spectroscopically confirmed hydrogen-free superluminous supernova (SLSN-I) at redshift z~2. DES16C2nm was discovered by the Dark Energy Survey (DES) Supernova Program, with follow-up photometric data from the Hubble Space Telescope, Gemini, and the European Southern Observatory Very Large Telescope supplementing the DES data. Spectroscopic observations confirm DES16C2nm to be at z=1.998, and spectroscopically similar to Gaia16apd (a SLSN-I at z=0.102), with a peak absolute magnitude of U=-22.26more » $$\\pm$$0.06. The high redshift of DES16C2nm provides a unique opportunity to study the ultraviolet (UV) properties of SLSNe-I. Combining DES16C2nm with ten similar events from the literature, we show that there exists a homogeneous class of SLSNe-I in the UV (~2500A), with peak luminosities in the (rest-frame) U band, and increasing absorption to shorter wavelengths. There is no evidence that the mean photometric and spectroscopic properties of SLSNe-I differ between low (z<1) and high redshift (z>1), but there is clear evidence of diversity in the spectrum at <2000A, possibly caused by the variations in temperature between events. No significant correlations are observed between spectral line velocities and photometric luminosity. Using these data, we estimate that SLSNe-I can be discovered to z=3.8 by DES. While SLSNe-I are typically identified from their blue observed colors at low redshift (z<1), we highlight that at z>2 these events appear optically red, peaking in the observer-frame z-band. Such characteristics are critical to identify these objects with future facilities such as the Large Synoptic Survey Telescope, Euclid, and the Wide-Field Infrared Survey Telescope, which should detect such SLSNe-I to z=3.5, 3.7, and 6.6, respectively.« less

  6. Spectroscopic and molecular docking studies on the interaction of human serum albumin with copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Bhargab; Pradhan, Ankur Bikash; Das, Suman; Bandyopadhyay, Nirmalya; Lu, Liping; Zhu, Miaoli; Naskar, Jnan Prakash

    2017-02-01

    Two osazone based ligands, butane-2,3-dione bis(2‧-pyridylhydrazone) (BDBPH) and hexane-3,4-dione bis(2‧-pyridylhydrazone) (HDBPH), were synthesized out of the 2:1 M Schiff base condensation of 2-hydrazino pyridine respectively with 2,3-butanedione and 3,4-hexanedione. The X-ray crystal structures of both the ligands have been determined. The copper(II) complex of HDBPH has also been synthesized and structurally characterized. HDBPH and its copper(II) complex have thoroughly been characterized through various spectroscopic and analytical techniques. The X-ray crystal structure of the copper complex of HDBPH shows that it is a monomeric Cu(II) complex having 'N4O2' co-ordination chromophore. Interaction of human serum albumin (HSA) with these ligands and their monomeric copper(II) complexes have been studied by various spectroscopic means. The experimental findings show that the ligands as well as their copper complexes are good HSA binders. Molecular docking investigations have also been done to unravel the mode of binding of the species with HSA.

  7. Molecular insight into the inclusion of the dietary plant flavonol fisetin and its chromophore within a chemically modified γ-cyclodextrin: Multi-spectroscopic, molecular docking and solubility studies.

    PubMed

    Pahari, Biswapathik; Chakraborty, Sandipan; Sengupta, Pradeep K

    2018-09-15

    We explored the encapsulation of dietary plant flavonols fisetin and its chromophore 3-hydroxyflavone, within 2-hydroxypropyl-γ-cyclodextrin (HPγ-CDx) nano-cavity in aqueous solution using multi-spectroscopic approaches and molecular docking. Upon addition of HPγ-CDx, dramatic changes occur in the intrinsic 'two color' fluorescence behavior of the fluorophores. This is manifested by significant increase in the steady state fluorescence intensities, anisotropies, average fluorescence lifetimes and rotational correlation times. Furthermore, in the CDx environment, intrinsically achiral flavonols exhibit prominent induced circular dichroism bands. These findings indicate that the flavonol molecules spontaneously enter the relatively hydrophobic, chiral environment of the HPγ-CDx nano-cavities. Molecular docking computations corroborate the spectroscopic findings, and predict selectivity in orientation of the encapsulated flavonols. HPγ-CDx inclusion increases the aqueous solubility of individual flavonols ∼100-1000 times. The present study demonstrates that the hydroxypropyl substituent in γ-CDx controls the inclusion mode of the flavonols, leading to their enhanced solubilization and altered spectral signatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. DFT calculations on spectroscopic and structural properties of a NLO chromophore

    NASA Astrophysics Data System (ADS)

    Altürk, Sümeyye; Avci, Davut; Tamer, Ömer; Atalay, Yusuf

    2016-03-01

    The molecular geometry optimization, vibrational frequencies and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values of 2-(1'-(4'''-Methoxyphenyl)-5'-(thien-2″-yl)pyrrol-2'-yl)-1,3-benzothiazole as potential nonlinear optical (NLO) material were calculated using density functional theory (DFT) HSEh1PBE method with 6-311G(d,p) basis set. The best of our knowledge, this study have not been reported to date. Additionally, a detailed vibrational study was performed on the basis of potential energy distribution (PED) using VEDA program. It is noteworthy that NMR chemical shifts are quite useful for understanding the relationship between the molecular structure and electronic properties of molecules. The computed IR and NMR spectra were used to determine the types of the experimental bands observed. Predicted values of structural and spectroscopic parameters of the chromophore were compared with each other so as to display the effects of the different substituents on the spectroscopic and structural properties. Obtained data showed that there is an agreement between the predicted and experimental data.

  9. Confronting the Gaia and NLTE spectroscopic parallaxes for the FGK stars

    NASA Astrophysics Data System (ADS)

    Sitnova, Tatyana; Mashonkina, Lyudmila; Pakhomov, Yury

    2018-04-01

    The understanding of the chemical evolution of the Galaxy relies on the stellar chemical composition. Accurate atmospheric parameters is a prerequisite of determination of accurate chemical abundances. For late type stars with known distance, surface gravity (log g) can be calculated from well-known relation between stellar mass, T eff, and absolute bolometric magnitude. This method weakly depends on model atmospheres, and provides reliable log g. However, accurate distances are available for limited number of stars. Another way to determine log g for cool stars is based on ionisation equilibrium, i.e. consistent abundances from lines of neutral and ionised species. In this study we determine atmospheric parameters moving step-by-step from well-studied nearby dwarfs to ultra-metal poor (UMP) giants. In each sample, we select stars with the most reliable T eff based on photometry and the distance-based log g, and compare with spectroscopic gravity calculated taking into account deviations from local thermodinamic equilibrium (LTE). After that, we apply spectroscopic method of log g determination to other stars of the sample with unknown distances.

  10. Spectroscopic properties of Nd3+ doped transparent oxyfluoride glass ceramics.

    PubMed

    Yu, Yunlong; Chen, Daqin; Ma, En; Wang, Yuansheng; Hu, Zhongjian

    2007-07-01

    In this paper, the spectroscopic properties of Nd(3+) doped transparent oxyfluoride glass ceramics containing LaF(3) nano-crystals were systematically studied. The formation and distribution of LaF(3) nano-crystals in the glass matrix were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Based on Judd-Ofelt theory, the intensity parameters Omega(t) (t=2, 4, 6), spontaneous emission probability, radiative lifetime, radiative quantum efficiency, width of the emission line and stimulated emission cross-section of Nd(3+) were evaluated. Particularly, the effect of Nd(3+) doping level on them was discussed. With the increase of Nd(3+) concentration in the glass ceramic, the experimental luminescence lifetime, radiative quantum efficiency and stimulated emission cross-section vary from 353.4 micros, 78.3% and 1.86 x 10(-20)cm(2) to 214.7 micros, 39.9% and 1.52 x 10(-20)cm(2), respectively. The comparative study of Nd(3+) spectroscopic parameters in different hosts suggests that the investigated glass ceramic system is potentially applicable as laser materials for 1.06 microm emission.

  11. In vivo measurement of regional brain metabolic response to hyperventilation using magnetic resonance: proton echo planar spectroscopic imaging (PEPSI).

    PubMed

    Posse, S; Dager, S R; Richards, T L; Yuan, C; Ogg, R; Artru, A A; Müller-Gärtner, H W; Hayes, C

    1997-06-01

    A new rapid spectroscopic imaging technique with improved sensitivity and lipid suppression, referred to as Proton Echo Planar Spectroscopic Imaging (PEPSI), has been developed to measure the 2-dimensional distribution of brain lactate increases during hyperventilation on a conventional clinical scanner equipped with a head surface coil phased array. PEPSI images (nominal voxel size: 1.125 cm3) in five healthy subjects from an axial section approximately 20 mm inferior to the intercommissural line were obtained during an 8.5-min baseline period of normocapnia and during the final 8.5 min of a 10-min period of capnometry-controlled hyperventilation (end-tidal PCO2 of 20 mmHg). The lactate/N-acetyl aspartate signal increased significantly from baseline during hyperventilation for the insular cortex, temporal cortex, and occipital regions of both the right and left hemisphere, but not in the basal ganglia. Regional or hemispheric right-to-left differences were not found. The study extends previous work using single-voxel MR spectroscopy to dynamically study hyperventilation effects on brain metabolism.

  12. Lanthanide and transition metal complexes of bioactive coumarins: molecular modeling and spectroscopic studies.

    PubMed

    Georgieva, I; Mihaylov, Tz; Trendafilova, N

    2014-06-01

    The present paper summarizes theoretical and spectroscopic investigations on a series of active coumarins and their lanthanide and transition metal complexes with application in medicine and pharmacy. Molecular modeling as well as IR, Raman, NMR and electronic spectral simulations at different levels of theory were performed to obtain important molecular descriptors: total energy, formation energy, binding energy, stability, conformations, structural parameters, electron density distribution, molecular electrostatic potential, Fukui functions, atomic charges, and reactive indexes. The computations are performed both in gas phase and in solution with consideration of the solvent effect on the molecular structural and energetic parameters. The investigations have shown that the advanced computational methods are reliable for prediction of the metal-coumarin binding mode, electron density distribution, thermodynamic properties as well as the strength and nature of the metal-coumarin interaction (not experimentally accessible) and correctly interpret the experimental spectroscopic data. Known results from biological tests for cytotoxic, antimicrobial, anti-fungal, spasmolytic and anti-HIV activities on the studied metal complexes are reported and discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Breakup effects on alpha spectroscopic factors of 16O

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Basu, C.; Sugathan, P.; Jhinghan, A.; Behera, B. R.; Saneesh, N.; Kaur, G.; Thakur, M.; Mahajan, R.; Dubey, R.; Mitra, A. K.

    2017-01-01

    The triton angular distribution for the 12C(7Li,t)16O* reaction is measured at 20 MeV, populating discrete states of 16O. Continuum discretized coupled reaction channel calculations are used to to extract the alpha spectroscopic properties of 16O states instead of the distorted wave born approximation theory to include the effects of breakup on the transfer process. The alpha reduced width, spectroscopic factors and the asymptotic normalization constant (ANC) of 16O states are extracted. The error in the spectroscopic factor is about 35% and in that of the ANC about 27%.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, Adam; Connaughton, Valerie; Briggs, Michael S.

    We present a method to estimate the jet opening angles of long duration gamma-ray bursts (GRBs) using the prompt gamma-ray energetics and an inversion of the Ghirlanda relation, which is a correlation between the time-integrated peak energy of the GRB prompt spectrum and the collimation-corrected energy in gamma-rays. The derived jet opening angles using this method and detailed assumptions match well with the corresponding inferred jet opening angles obtained when a break in the afterglow is observed. Furthermore, using a model of the predicted long GRB redshift probability distribution observable by the Fermi Gamma-ray Burst Monitor (GBM), we estimate themore » probability distributions for the jet opening angle and rest-frame energetics for a large sample of GBM GRBs for which the redshifts have not been observed. Previous studies have only used a handful of GRBs to estimate these properties due to the paucity of observed afterglow jet breaks, spectroscopic redshifts, and comprehensive prompt gamma-ray observations, and we potentially expand the number of GRBs that can be used in this analysis by more than an order of magnitude. In this analysis, we also present an inferred distribution of jet breaks which indicates that a large fraction of jet breaks are not observable with current instrumentation and observing strategies. We present simple parameterizations for the jet angle, energetics, and jet break distributions so that they may be used in future studies.« less

  15. Structural variability of E. coli thioredoxin captured in the crystal structures of single-point mutants

    PubMed Central

    Noguera, Martín E.; Vazquez, Diego S.; Ferrer-Sueta, Gerardo; Agudelo, William A.; Howard, Eduardo; Rasia, Rodolfo M.; Manta, Bruno; Cousido-Siah, Alexandra; Mitschler, André; Podjarny, Alberto; Santos, Javier

    2017-01-01

    Thioredoxin is a ubiquitous small protein that catalyzes redox reactions of protein thiols. Additionally, thioredoxin from E. coli (EcTRX) is a widely-used model for structure-function studies. In a previous paper, we characterized several single-point mutants of the C-terminal helix (CTH) that alter global stability of EcTRX. However, spectroscopic signatures and enzymatic activity for some of these mutants were found essentially unaffected. A comprehensive structural characterization at the atomic level of these near-invariant mutants can provide detailed information about structural variability of EcTRX. We address this point through the determination of the crystal structures of four point-mutants, whose mutations occurs within or near the CTH, namely L94A, E101G, N106A and L107A. These structures are mostly unaffected compared with the wild-type variant. Notably, the E101G mutant presents a large region with two alternative traces for the backbone of the same chain. It represents a significant shift in backbone positions. Enzymatic activity measurements and conformational dynamics studies monitored by NMR and molecular dynamic simulations show that E101G mutation results in a small effect in the structural features of the protein. We hypothesize that these alternative conformations represent samples of the native-state ensemble of EcTRX, specifically the magnitude and location of conformational heterogeneity. PMID:28181556

  16. Elucidating the interaction of clofazimine with bovine liver catalase; a comprehensive spectroscopic and molecular docking approach.

    PubMed

    Zaman, Masihuz; Nusrat, Saima; Zakariya, Syed Mohammad; Khan, Mohsin Vahid; Ajmal, Mohammad Rehan; Khan, Rizwan Hasan

    2017-08-01

    Nowadays, understanding of interface between protein and drugs has become an active research area of interest. These types of interactions provide structural guidelines in drug design with greater clinical efficacy. Thus, structural changes in catalase induced by clofazimine were monitored by various biophysical techniques including UV-visible spectrometer, fluorescence spectroscopy, circular dichroism, and dynamic light scattering techniques. Increase in absorption spectra (UV-visible spectrum) confers the complex formation between drug and protein. Fluorescence quenching with a binding constants of 2.47 × 10 4  M -1 revealed that clofazimine binds with protein. Using fluorescence resonance energy transfer, the distance (r) between the protein (donor) and drug (acceptor) was found to be 2.89 nm. Negative Gibbs free energy change (ΔG°) revealed that binding process is spontaneous. In addition, an increase in α-helicity was observed by far-UV circular dichroism spectra by adding clofazimine to protein. Dynamic light scattering results indicate that topology of bovine liver catalase was slightly altered in the presence of clofazimine. Hydrophobic interactions are the main forces between clofazimine and catalase interaction as depicted by molecular docking studies. Apart from hydrophobic interactions, some hydrogen bonding was also observed during docking method. The results obtained from the present study may establish abundant in optimizing the properties of ligand-protein mixtures relevant for numerous formulations. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Spectroscopic analysis and charge transfer interaction studies of 4-benzyloxy-2-nitroaniline insecticide: A density functional theoretical approach

    NASA Astrophysics Data System (ADS)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2015-01-01

    A widespread exploration on the intra-molecular charge transfer interaction through an efficient π-conjugated path from a strong electron-donor group (amino) to a strong electron-acceptor group (nitro) has been carried out using FTIR, FT-Raman, UV-Vis, fluorescence and NMR spectra on insecticide compound 4-benzyloxy-2-nitroaniline. Density functional theory method is used to determine optimized molecular geometry, harmonic vibrational wavenumbers and intensities using 6-311G(d,p) basis set by means of Gaussian 09W program suit. A comprehensive investigation on the sp2 to sp3 hybridization and non-planarity property has been performed. Natural bond orbital analysis is used to study the existence of C-H⋯O, N-H⋯O and C-H⋯π proper and improper hydrogen bonds. The HOMO and LUMO analysis reveals the possibility of charge transfer within the molecule. A complete assignment of the experimental absorption peaks in the ultraviolet region has also been performed. Isotropic chemical shifts of 13C, 1H, 15N and 18O NMR and nuclear spin-spin coupling constants have been computed using the gauge-invariant atomic orbital method. The biological activity of substituent amino and nitro groups are evident from the hydrogen bonds through which the target amino acids are linked to the drug as evidenced from molecular docking.

  18. Structural variability of E. coli thioredoxin captured in the crystal structures of single-point mutants

    NASA Astrophysics Data System (ADS)

    Noguera, Martín E.; Vazquez, Diego S.; Ferrer-Sueta, Gerardo; Agudelo, William A.; Howard, Eduardo; Rasia, Rodolfo M.; Manta, Bruno; Cousido-Siah, Alexandra; Mitschler, André; Podjarny, Alberto; Santos, Javier

    2017-02-01

    Thioredoxin is a ubiquitous small protein that catalyzes redox reactions of protein thiols. Additionally, thioredoxin from E. coli (EcTRX) is a widely-used model for structure-function studies. In a previous paper, we characterized several single-point mutants of the C-terminal helix (CTH) that alter global stability of EcTRX. However, spectroscopic signatures and enzymatic activity for some of these mutants were found essentially unaffected. A comprehensive structural characterization at the atomic level of these near-invariant mutants can provide detailed information about structural variability of EcTRX. We address this point through the determination of the crystal structures of four point-mutants, whose mutations occurs within or near the CTH, namely L94A, E101G, N106A and L107A. These structures are mostly unaffected compared with the wild-type variant. Notably, the E101G mutant presents a large region with two alternative traces for the backbone of the same chain. It represents a significant shift in backbone positions. Enzymatic activity measurements and conformational dynamics studies monitored by NMR and molecular dynamic simulations show that E101G mutation results in a small effect in the structural features of the protein. We hypothesize that these alternative conformations represent samples of the native-state ensemble of EcTRX, specifically the magnitude and location of conformational heterogeneity.

  19. Case study: in vivo stress diagnostics by spectroscopic determination of the cutaneous carotenoid antioxidant concentration in midwives depending on shift work

    NASA Astrophysics Data System (ADS)

    Maeter, H.; Briese, V.; Gerber, B.; Darvin, M. E.; Lademann, J.; Olbertz, D. M.

    2013-10-01

    Laser spectroscopic methods, for instance resonance Raman spectroscopy and reflectance spectroscopy, permit us for the first time to investigate the antioxidative status in human skin non-invasively by measurement of carotenoid concentration. The individual antioxidant concentration of the human skin is determined by the nutritional habits, on the one hand, and by stressors, such as shift work, on the other. Due to the disturbance of the circadian rhythm and melatonin secretion, shift work is associated with, inter alia, insomnia and gastrointestinal disorders. The study at hand was the first to determine the cutaneous antioxidant concentration of midwives using reflectance spectroscopy and to relate the results to shift work. Seven midwives took part in the study. An LED-based compact scanner system was used for non-invasive measurements of carotenoids in human skin. The measuring principle is based on reflection spectroscopy. The study at hand suggests that the cutaneous antioxidative status may be adversely affected by shift work. Despite numerous international strategies of programmes available which invite people to eat more healthily, there are only a few measures aiming at stress reduction and management. In this field the use of reflectance spectroscopic investigation methods could play an essential role in the future.

  20. Spectroscopic profiling and computational study of the binding of tschimgine: A natural monoterpene derivative, with calf thymus DNA

    NASA Astrophysics Data System (ADS)

    Khajeh, Masoumeh Ashrafi; Dehghan, Gholamreza; Dastmalchi, Siavoush; Shaghaghi, Masoomeh; Iranshahi, Mehrdad

    2018-03-01

    DNA is a major target for a number of anticancer substances. Interaction studies between small molecules and DNA are essential for rational drug designing to influence main biological processes and also introducing new probes for the assay of DNA. Tschimgine (TMG) is a monoterpene derivative with anticancer properties. In the present study we tried to elucidate the interaction of TMG with calf thymus DNA (CT-DNA) using different spectroscopic methods. UV-visible absorption spectrophotometry, fluorescence and circular dichroism (CD) spectroscopies as well as molecular docking study revealed formation of complex between TMG and CT-DNA. Binding constant (Kb) between TMG and DNA was 2.27 × 104 M- 1, that is comparable to groove binding agents. The fluorescence spectroscopic data revealed that the quenching mechanism of fluorescence of TMG by CT-DNA is static quenching. Thermodynamic parameters (ΔH < 0 and ΔS < 0) at different temperatures indicated that van der Waals forces and hydrogen bonds were involved in the binding process of TMG with CT-DNA. Competitive binding assay with methylene blue (MB) and Hoechst 33258 using fluorescence spectroscopy displayed that TMG possibly binds to the minor groove of CT-DNA. These observations were further confirmed by CD spectral analysis, viscosity measurements and molecular docking.

  1. Synthesis, spectroscopic characterizations, crystal structures and DFT studies of nalidixic acid carbonyl hydrazones derivatives

    NASA Astrophysics Data System (ADS)

    Bergamini, F. R. G.; Ribeiro, M. A.; Lancellotti, M.; Machado, D.; Miranda, P. C. M. L.; Cuin, A.; Formiga, A. L. B.; Corbi, P. P.

    2016-09-01

    This article describes the synthesis and characterization of the 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide (hzd) and six carbonyl hydrazones derivatives of the nalidixic with 1H-pyrrol-2-ylmethylidene (hpyrr), 1H-imidazol-2-ylmethylidene (h2imi), pyridin-2-ylmethylidene (h2py), pyridin-3-ylmethylidene (h3py), pyridin-4-ylmethylidene(h4py) and (2-hydroxyphenyl)methylidene (hsali). The carbonyl hydrazones were characterized by elemental and ESI-QTOF-MS analyses, IR and detailed NMR spectroscopic measurements. The 2D NMR experiments allowed the unambiguous assignment of the hydrogen, carbon and nitrogen atoms, which have not been reported for nalidixic acid carbonyl hydrazone derivatives so far. Crystal structures of hzd and the new carbonyl hydrazones h2imi, hpyrr and h3py were determined by X-ray diffraction studies. Although the synthesis of hzd was reported decades ago, the hzd crystal structure have not been reported yet. Geometric optimizations of all the characterized structures were performed with the aid of DFT studies. Despite the fact that the hydrazones with 2-pyridine carboxylic acid (h2py) and salicyl aldehyde (hsali) were already reported by literature, a detailed spectroscopic study followed by DFT studies are also reported for such compounds in this manuscript. Antimicrobial studies of the compounds are also presented.

  2. Spectroscopic analysis and control

    DOEpatents

    Tate; , James D.; Reed, Christopher J.; Domke, Christopher H.; Le, Linh; Seasholtz, Mary Beth; Weber, Andy; Lipp, Charles

    2017-04-18

    Apparatus for spectroscopic analysis which includes a tunable diode laser spectrometer having a digital output signal and a digital computer for receiving the digital output signal from the spectrometer, the digital computer programmed to process the digital output signal using a multivariate regression algorithm. In addition, a spectroscopic method of analysis using such apparatus. Finally, a method for controlling an ethylene cracker hydrogenator.

  3. ePESSTO spectroscopic classification of the candidate TDE XMMSL2 J140446.9-251135

    NASA Astrophysics Data System (ADS)

    Taubenberger, S.; Floers, A.; Vogl, C.; Benetti, S.; Pastorello, A.; Cappellaro, E.; Anderson, J.; Gromadzki, M.; Onori, F.; Kostrzewa-Rutkowska, Z.; Jonker, P.; Leloudas, G.; Inserra, C.; Kankare, E.; Maguire, K.; Smartt, S. J.; Yaron, O.; Young, D.

    2018-03-01

    ePESSTO, the extended Public ESO Spectroscopic Survey for Transient Objects (see Smartt et al. 2015, A & A, 579, 40; http://www.pessto.org ), reports the following spectroscopic observation of the new X-ray source XMMSL2 J140446.9-251135 in the galaxy 2MASX 14044671-2511433 (ATel #11394).

  4. IR spectroscopic study of the chemical composition of epiphytic lichens

    NASA Astrophysics Data System (ADS)

    Meysurova, A. F.; Khizhnyak, S. D.; Pakhomov, P. M.

    2011-11-01

    Changes in the chemical composition of lichens exposed to pollutants are investigated by means of FTIR spectroscopy. According to model experiments, alkyl nitrates, ammonium salts, amines, and sulfones develop in the lichen thallus through the action of ammonia and nitric and sulfuric acids. Spectroscopic data of modeling experiments enabled nitrogen- and sulfur-containing substances to be identified as the main air pollutants in the vicinity of a pig-breeding complex and information to be obtained on the content of the pollutants and their impact on the lichens.

  5. Closed inductively coupled plasma cell

    DOEpatents

    Manning, T.J.; Palmer, B.A.; Hof, D.E.

    1990-11-06

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.

  6. Low resolution spectroscopy of selected Algol systems

    NASA Astrophysics Data System (ADS)

    Devarapalli, Shanti Priya; Jagirdar, Rukmini; Parthasarathy, M.; Sahu, D. K.; Mohan, Vijay; Bhatt, B. C.; Thomas, Vineet S.

    2018-04-01

    The analysis of spectroscopic data for 30 Algol-type binaries is presented. All these systems are short period Algols having primaries with spectral types B and A. Dominant spectral lines were identified for the spectra collected and their equivalent widths were calculated. All the spectra were examined to understand presence of mass transfer, a disk or circumstellar matter and chromospheric emission. We also present first spectroscopic and period study for few Algols and conclude that high resolution spectra within and outside the primary minimum are needed for better understanding of these Algol type close binaries.

  7. Spectroscopic and electrochemical behavior of the novel tetra-2-methyl-pyrazinoporphyrazines

    NASA Astrophysics Data System (ADS)

    Pişkin, Mehmet; Öztürk, Naciye; Durmuş, Mahmut

    2017-12-01

    This study presents the synthesis and characterization of novel metal-free (H2Pc) and metallo porphyrazines (magnesium(II) (MgPz), copper(II) (CuPz), iron(II) (FePz), manganese(II) (MnPz) and nickel(II) (NiPz)) substituted with four 2-methylpyrazine groups on the peripheral positions. The spectroscopic properties of newly synthesized porphyrazines were investigated. The electrochemical behaviors of these porphyrazines were also determined in DMSO solution by cyclic voltammetry (CV) and square wave voltammetry (SWV) methods on edge plane pyrolytic graphite electrode (EPPG) electrode.

  8. Exploring Raman spectroscopy for the evaluation of glaucomatous retinal changes

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Grozdanic, Sinisa D.; Harper, Matthew M.; Hamouche, Nicolas; Kecova, Helga; Lazic, Tatjana; Yu, Chenxu

    2011-10-01

    Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cells and subsequent loss of visual function. Early detection of glaucoma is critical for the prevention of permanent structural damage and irreversible vision loss. Raman spectroscopy is a technique that provides rapid biochemical characterization of tissues in a nondestructive and noninvasive fashion. In this study, we explored the potential of using Raman spectroscopy for detection of glaucomatous changes in vitro. Raman spectroscopic imaging was conducted on retinal tissues of dogs with hereditary glaucoma and healthy control dogs. The Raman spectra were subjected to multivariate discriminant analysis with a support vector machine algorithm, and a classification model was developed to differentiate disease tissues versus healthy tissues. Spectroscopic analysis of 105 retinal ganglion cells (RGCs) from glaucomatous dogs and 267 RGCs from healthy dogs revealed spectroscopic markers that differentiated glaucomatous specimens from healthy controls. Furthermore, the multivariate discriminant model differentiated healthy samples and glaucomatous samples with good accuracy [healthy 89.5% and glaucomatous 97.6% for the same breed (Basset Hounds); and healthy 85.0% and glaucomatous 85.5% for different breeds (Beagles versus Basset Hounds)]. Raman spectroscopic screening can be used for in vitro detection of glaucomatous changes in retinal tissue with a high specificity.

  9. Exploring Raman spectroscopy for the evaluation of glaucomatous retinal changes.

    PubMed

    Wang, Qi; Grozdanic, Sinisa D; Harper, Matthew M; Hamouche, Nicolas; Kecova, Helga; Lazic, Tatjana; Yu, Chenxu

    2011-10-01

    Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cells and subsequent loss of visual function. Early detection of glaucoma is critical for the prevention of permanent structural damage and irreversible vision loss. Raman spectroscopy is a technique that provides rapid biochemical characterization of tissues in a nondestructive and noninvasive fashion. In this study, we explored the potential of using Raman spectroscopy for detection of glaucomatous changes in vitro. Raman spectroscopic imaging was conducted on retinal tissues of dogs with hereditary glaucoma and healthy control dogs. The Raman spectra were subjected to multivariate discriminant analysis with a support vector machine algorithm, and a classification model was developed to differentiate disease tissues versus healthy tissues. Spectroscopic analysis of 105 retinal ganglion cells (RGCs) from glaucomatous dogs and 267 RGCs from healthy dogs revealed spectroscopic markers that differentiated glaucomatous specimens from healthy controls. Furthermore, the multivariate discriminant model differentiated healthy samples and glaucomatous samples with good accuracy [healthy 89.5% and glaucomatous 97.6% for the same breed (Basset Hounds); and healthy 85.0% and glaucomatous 85.5% for different breeds (Beagles versus Basset Hounds)]. Raman spectroscopic screening can be used for in vitro detection of glaucomatous changes in retinal tissue with a high specificity.

  10. Spectroscopic investigation on structure and pH dependent Cocrystal formation between gamma-aminobutyric acid and benzoic acid.

    PubMed

    Du, Yong; Xue, Jiadan; Cai, Qiang; Zhang, Qi

    2018-02-15

    Vibrational spectroscopic methods, including terahertz absorption and Raman scattering spectroscopy, were utilized for the characterization and analysis of gamma-aminobutyric acid (GABA), benzoic acid (BA), and the corresponding GABA-BA cocrystal formation under various pH values of aqueous solution. Vibrational spectroscopic results demonstrated that the solvent GABA-BA cocrystal, similar as grinding counterpart, possessed unique characteristic features compared with that of starting parent compounds. The change of vibrational modes for GABA-BA cocrystal comparing with starting components indicates there is strong inter-molecular interaction between GABA and BA molecules during its cocrystallization process. Formation of GABA-BA cocrystal under slow solvent evaporation is impacted by the pH value of aqueous solution. Vibrational spectra indicate that the GABA-BA cocrystal could be stably formed with the solvent condition of 2.00≤pH≤7.00. In contrast, such cocrystallization did not occur and the cocrystal would dissociate into its parent components when the pH value of solvent is lower than 2.00. This study provides experimental benchmark to discriminate and identify the structure of cocrystal and also pH-dependent cocrystallization effect with vibrational spectroscopic techniques in solid-state pharmaceutical fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Infrared-spectroscopic single-shot laser mapping ellipsometry: Proof of concept for fast investigations of structured surfaces and interactions in organic thin films

    NASA Astrophysics Data System (ADS)

    Furchner, Andreas; Kratz, Christoph; Gkogkou, Dimitra; Ketelsen, Helge; Hinrichs, Karsten

    2017-11-01

    We present a novel infrared-spectroscopic laser mapping ellipsometer based on a single-shot measurement concept. The ellipsometric set-up employs multiple analyzers and detectors to simultaneously measure the sample's optical response under different analyzer azimuths. An essential component is a broadly tunable quantum cascade laser (QCL) covering the important marker region of 1800-1540 cm-1. The ellipsometer allows for fast single-wavelength as well as spectroscopic studies with thin-film sensitivity at temporal resolutions of 60 ms per wavelength. We applied the single-shot mapping ellipsometer for the characterization of metal-island enhancement surfaces as well as of molecular interactions in organic thin films. In less than 3 min, a linescan with 1600 steps revealed profile and infrared-enhancement properties of a gradient gold-island film for sensing applications. Spectroscopic measurements were performed to probe the amide I band of thin films of poly(N-isopropylacrylamide) [PNIPAAm], a stimuli-responsive polymer for bioapplications. The QCL spectra agree well with conventional FT-IR ellipsometric results, showing different band components associated with hydrogen-bond interactions between polymer and adsorbed water. Multi-wavelength ellipsometric maps were used to analyze homogeneity and surface contaminations of the polymer films.

  12. Line-by-line spectroscopic parameters of HFC-32 ro-vibrational transitions within the atmospheric window around 8.2 μm

    NASA Astrophysics Data System (ADS)

    Tasinato, Nicola; Ceselin, Giorgia; Pietropolli Charmet, Andrea; Stoppa, Paolo; Giorgianni, Santi

    2018-06-01

    Difluoromethane (CH2F2,HFC-32) presents strong ro-vibrational bands within the 8-12 μm atmospheric window and hence it represents a greenhouse gas able of contributing to global warming. Numerous spectroscopic studies have been devoted to this molecule, however, much information on line-by-line parameters, like line intensities and broadening parameters, is still lacking. In this work, line-by-line spectroscopic parameters are retrieved for several CH2F2 ro-vibrational transitions belonging to the ν7 band located around 8.5 μm. Self-broadening as well N2- and O2- broadening experiments are carried out at room temperature by using a tunable diode laser (TDL) spectrometer. The line shape analysis of CH2F2 self-broadened spectra leads to the determination of resonant frequencies, integrated absorption coefficients and self-broadening parameters, while CH2F2-N2 and CH2F2-O2 broadening coefficients are obtained from foreign-broadening measurements. In addition, the broadening parameters of CH2F2 in air are derived from the N2- and O2- broadening coefficients. The results of the present work provide fundamental information to measure the concentration profiles of this molecule in the atmosphere through remote sensing spectroscopic techniques.

  13. Raman spectroscopic analysis of human tissue engineered oral mucosa constructs (EVPOME) perturbed by physical and biochemical methods

    NASA Astrophysics Data System (ADS)

    Khmaladze, Alexander; Ganguly, Arindam; Raghavan, Mekhala; Kuo, Shiuhyang; Cole, Jacqueline H.; Marcelo, Cynthia L.; Feinberg, Stephen E.; Izumi, Kenji; Morris, Michael D.

    2012-01-01

    We show the application of near-infrared Raman Spectroscopy to in-vitro monitoring of the viability of tissue constructs (EVPOMEs). During their two week production period EVPOME may encounter thermal, chemical or biochemical stresses that could cause development to cease, rendering the affected constructs useless. We discuss the development of a Raman spectroscopic technique to study EVPOMEs noninvasively, with the ultimate goal of applying it in-vivo. We identify Raman spectroscopic failure indicators for EVPOMEs, which are stressed by temperature, and discuss the implications of varying calcium concentration and pre-treatment of the human keratinocytes with Rapamycin. In particular, Raman spectra show correlation of the peak height ratios of CH2 deformation to phenylalanine ring breathing, providing a Raman metric to distinguish between viable and nonviable constructs. We also show the results of singular value decomposition analysis, demonstrating the applicability of Raman spectroscopic technique to both distinguish between stressed and non-stressed EVPOME constructs, as well as between EVPOMEs and bare AlloDerm® substrates, on which the oral keratinocytes have been cultured. We also discuss complications arising from non-uniform thickness of the AlloDerm® substrate and the cultured constructs, as well as sampling protocols used to detect local stress and other problems that may be encountered in the constructs.

  14. The Origin, Composition and History of Comets from Spectroscopic Studies

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1997-01-01

    A wealth of information essential to understanding the composition and physical structure of cometary ice and hence gain deep insight into the comet's origin and history, can be gleaned by carrying out a full range of spectroscopic studies on the returned sample. These studies ought to be among the first performed as they are generally non-destructive and will provide a broad data bank which will be crucial in planning subsequent analysis. Examples of the spectroscopic techniques along with relative sensitivities and transitions probed, are discussed. Different kind of "spectroscopy" is summarized, with emphasis placed on the kind of information each provides. Infrared spectroscopy should be the premier method of analysis as the mid-IR absorption spectrum of a substance contains more global information about the identity and structure of that material than any other property. In fact, the greatest strides in our understanding of the composition of interstellar ices (thought by many to be the primordial material from which comets have formed) have been taken during the past ten years or so because this was when high quality infrared spectra of the interstellar medium (ISM) first became available. The interpretation of the infrared spectra of mixtures, such as expected in comets, is often (not always) ambiguous. Consequently, a full range of other non-destructive, complementary spectroscopic measurements are required to fully characterize the material, to probe for substances for which the IR is not well suited and to lay the groundwork for future analysis. Given the likelihood that the icy component (including some of the organic and mineral phases) of the returned sample will be exceedingly complex, these techniques must be intensely developed over the next decade and then made ready to apply flawlessly to what will certainly be one of the most precious, and most challenging, samples ever analyzed.

  15. A COMPARISON OF GALAXY COUNTING TECHNIQUES IN SPECTROSCOPICALLY UNDERSAMPLED REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specian, Mike A.; Szalay, Alex S., E-mail: mspecia1@jhu.edu, E-mail: szalay@jhu.edu

    2016-11-01

    Accurate measures of galactic overdensities are invaluable for precision cosmology. Obtaining these measurements is complicated when members of one’s galaxy sample lack radial depths, most commonly derived via spectroscopic redshifts. In this paper, we utilize the Sloan Digital Sky Survey’s Main Galaxy Sample to compare seven methods of counting galaxies in cells when many of those galaxies lack redshifts. These methods fall into three categories: assigning galaxies discrete redshifts, scaling the numbers counted using regions’ spectroscopic completeness properties, and employing probabilistic techniques. We split spectroscopically undersampled regions into three types—those inside the spectroscopic footprint, those outside but adjacent to it,more » and those distant from it. Through Monte Carlo simulations, we demonstrate that the preferred counting techniques are a function of region type, cell size, and redshift. We conclude by reporting optimal counting strategies under a variety of conditions.« less

  16. Dielectric studies of boron sub phthalocyanine chloride thin films by admittance spectroscopic techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalia, Sameer; Neerja; Mahajan, Aman, E-mail: dramanmahajan@yahoo.co.in

    The dielectric properties of Boron Sub Phthalocyanine Chloride (Cl-SubPc) thermally deposited on ITO substrate have been studied using admittance spectroscopic techniques. The I-V and capacitance –frequency (C-F) studies at various bias voltages reveal that the mobility of charge carriers decrease with bias voltage, however the conduction phenomenon still remain hopping in nature. From the differential susceptance curve, the contribution of the Schottky barrier contact in the charge carrier concentration was found to be absent. The mobility of charge carriers have been determined using differential susceptance variation and from the phase of admittance curve. The values obtained in two cases havemore » been found to be in agreement with each other.« less

  17. Electronic properties of diphenyl-s-tetrazine and some related oligomers. An spectroscopic and theoretical study

    NASA Astrophysics Data System (ADS)

    Moral, Mónica; García, Gregorio; Peñas, Antonio; Garzón, Andrés; Granadino-Roldán, José M.; Melguizo, Manuel; Fernández-Gómez, Manuel

    2012-10-01

    This work presents a theoretical and spectroscopic study on the electronic and structural properties of the diphenyl-s-tetrazine molecule (Ph2Tz) and some oligomeric derivatives. Ph2Tz was synthesized through a variation of Pinner-type reaction which uses N-acetylcysteine as catalyst. Insight into the structure and electronic properties of the title compound was obtained through IR, Raman, UV-Vis spectra in different solvents, and theoretical calculations. Theoretical studies have been extended to different n-mers derivatives up to an ideal molecular wire through the oligomeric approximation, predicting this way electronic properties such as LUMO energy levels, electron affinity and reorganization energy in order to assess their possible applications in molecular electronics.

  18. RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE SCULPTOR GALAXY NGC 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gazak, J. Zachary; Kudritzki, Rolf; Bresolin, Fabio

    2015-06-01

    We present a quantitative spectroscopic study of 27 red supergiants (RSGs) in the Sculptor Galaxy NGC 300. J-band spectra were obtained using KMOS on the Very Large Telescope and studied with state of the art synthetic spectra including NLTE corrections for the strongest diagnostic lines. We report a central metallicity of [Z] = −0.03 ± 0.05 with a gradient of −0.083 ± 0.014 [dex/kpc], in agreement with previous studies of blue supergiants and H ii-region auroral line measurements. This result marks the first application of the J-band spectroscopic method to a population of individual RSG stars beyond the Local Groupmore » of galaxies and reveals the great potential of this technique.« less

  19. Stellar populations in spiral galaxies: Broadband versus spectroscopic viewpoints

    NASA Astrophysics Data System (ADS)

    MacArthur, Lauren Anne

    This thesis addresses the stellar population content in the bulges and disks of spiral galaxies using broad-band and spectroscopic data. The results can be used to constrain models of galaxy formation in addition to establishing a comprehensive, model-independent, picture of colour and line-index gradients in spiral galaxies. Building upon my Masters study of structural parameters in spiral galaxies, I use the largest collection of multi-band (optical and IR) surface brightness profiles for face-on and moderately-tilted galaxies to extract radial colour profiles. The colour gradients are then translated into age and metallicity gradients by comparison with stellar population synthesis (SPS) models considering a range of star formation histories, including recent bursts. Based on their integrated light, we find that high surface brightness (SB) regions of galaxies formed their stars earlier than lower SB ones, or at a similar epoch but on shorter timescale. At a given SB level, the star formation histories are modulated by the overall potential of the galaxy such that brighter/higher rotational velocity galaxies formed earlier. This formation "down-sizing" implied by our results is inconsistent with current implementations of semi-analytic structure formation models. In order to alleviate concerns that our colour gradients could be affected by dust reddening, we designed a similar spectroscopic investigation and explored the dust sensitivity of absorption-line indices. The latter test makes use of the latest SPS, models incorporating a multi-component model for the line and continuum attenuation due to dust. For quiescent stellar populations (e.g. spheroids and globular clusters), dust extinction effects are small for most indices with the exception of the 4000 Å break. For models with current star formation, many indices may suffer from dust reddening and any departures depend on age, dust distribution, and the effective optical depth. However, a number of useful indices are only weakly affected by dust extinction (especially relative to typical measurement uncertainties), and can thus be safely used in spectroscopic studies of dusty systems. Motivated by our previous results, we embarked on a long-term project to determine age and metallicity gradients from absorption features in spiral galaxy spectra from their centers and extending well into their disks for the first time. A pilot sample of 8 barred and unbarred nearby spiral galaxies was observed with Gemini/GMOS and line indices with S/N > 40 per Å were extracted out to ~1-1.5 disk scale lengths. Emission contamination and a suite of instrumental effects were fully taken into account. Reliable line-indices compared with the latest SPS models reveal that; (i) late-type bulges and inner disks are generally young (light-weighted SSP ages <1 to 6 Gyr) with no age gradients, and (ii) late-type spirals have metallicities close to solar at their center decreasing rapidly outward (with gradients of ~-0.3 to -0.7 dex per r d ). Disk contamination into the bulge is an issue but the inferred young ages exclude the interpretation of early rapid collapse or merger origin of late-type bulges. While secular evolution processes are likely the predominant mechanism for the bulge build-up, the strong observed metallicity gradients are not currently supported by such models. Our analysis has demonstrated the feasibility of age and metallicity determinations from longslit spectroscopy of gas rich, star-forming systems. However, a systematic comparison with galaxy properties requires a larger statistical sample. New GMOS longslit spectra acquired recently will augment our data base and contribute to the build-up of this instrumental data base for the study of bulge and disk formation models.

  20. Stellar populations in spiral galaxies: broadband versus spectroscopic viewpoints

    NASA Astrophysics Data System (ADS)

    MacArthur, Lauren Anne

    2006-06-01

    This thesis addresses the stellar population content in the bulges and disks of spiral galaxies using broad-band and spectroscopic data. The results can be used to constrain models of galaxy formation in addition to establishing a comprehensive, model-independent, picture of colour and line-index gradients in spiral galaxies. Building upon my Masters study of structural parameters in spiral galaxies, I use the largest collection of multi-band (optical and IR) surface brightness profiles for face-on and moderately-tilted galaxies to extract radial colour profiles. The colour gradients are then translated into age and metallicity gradients by comparison with stellar population synthesis (SPS) models considering a range of star formation histories, including recent bursts. Based on their integrated light, we find that high surface brightness (SB) regions of galaxies formed their stars earlier than lower SB ones, or at a similar epoch but on shorter timescale. At a given SB level, the star formation histories are modulated by the overall potential of the galaxy such that brighter/higher rotational velocity galaxies formed earlier. This formation "down-sizing" implied by our results is inconsistent with current implementations of semi-analytic structure formation models. In order to alleviate concerns that our colour gradients could be affected by dust reddening, we designed a similar spectroscopic investigation and explored the dust sensitivity of absorption-line indices. The latter test makes use of the latest SPS, models incorporating a multi-component model for the line and continuum attenuation due to dust. For quiescent stellar populations (e.g. spheroids and globular clusters), dust extinction effects are small for most indices with the exception of the 4000 Å break. For models with current star formation, many indices may suffer from dust reddening and any departures depend on age, dust distribution, and the effective optical depth. However, a number of useful indices are only weakly affected by dust extinction (especially relative to typical measurement uncertainties), and can thus be safely used in spectroscopic studies of dusty systems. Motivated by our previous results, we embarked on a long-term project to determine age and metallicity gradients from absorption features in spiral galaxy spectra from their centers and extending well into their disks for the first time. A pilot sample of 8 barred and unbarred nearby spiral galaxies was observed with Gemini/GMOS and line indices with S/N > 40 per Å were extracted out to ~1-1.5 disk scale lengths. Emission contamination and a suite of instrumental effects were fully taken into account. Reliable line-indices compared with the latest SPS models reveal that; (i) late-type bulges and inner disks are generally young (light-weighted SSP ages <= 1 to 6 Gyr) with no age gradients, and (ii) late-type spirals have metallicities close to solar at their center decreasing rapidly outward (with gradients of ~-0.3 to -0.7 dex per r d ). Disk contamination into the bulge is an issue but the inferred young ages exclude the interpretation of early rapid collapse or merger origin of late-type bulges. While secular evolution processes are likely the predominant mechanism for the bulge build-up, the strong observed metallicity gradients are not currently supported by such models. Our analysis has demonstrated the feasibility of age and metallicity determinations from longslit spectroscopy of gas rich, star-forming systems. However, a systematic comparison with galaxy properties requires a larger statistical sample. New GMOS longslit spectra acquired recently will augment our data base and contribute to the build-up of this instrumental data base for the study of bulge and disk formation models.

Top